References
Ansell, J. I. & Phillips, M. J. (1990). Practical reliability data analysis. Reliability Engineering & System Safety, vol. 28, pp. 337-356.
Caroni, C. (2010). "Failure limited" data and TTT-based trend tests in multiple repairable systems. Reliability Engineering & System Safety, vol. 95, pp. 704-706.
Delghandi, S. H., Sayadi, A. R. & Hoseinie, S. H. (2014). Reliability analysis of loading system of hydraulic excavator. International Conference on Reliability Engineering, Godkand:
Durrant-Whyte, H., Geraghty, R., Pujol, F. & Sellschop, R. (2015). How digital innovation can improve mining productivity. Metals and Mining, vol. November, pp.
Hall, R. A. & Daneshmend, L. K. (2003). Reliability modelling of surface mining equipment: data gathering and analysis methodologies. International Journal of Surface Mining, Reclamation and Environment, vol. 17, pp. 139-155.
Ho, M. T., Hodkiewicz, M. R., Pun, C., Petchey, J. & Li, Z. (2013). Asset Data Quality - A case study on mobile mining assets. 8th World Congress on Engineering Asset Management October, Hong Kong:
Ho, M. T. W. (2015). A shared reliability database for mobile mining equipment. Doctoral dissertation. University of Western Australia, Perth, Australia
Hodkiewicz, M. & Ho, M. T. W. (2016). Cleaning historical maintenance work order data for reliability analysis. Journal of Quality in Maintenance Engineering, vol. 22, pp. 146-163.
Hodkiewicz, M. R. (2015). Maintainer of the future. Australian Journal of Multi-Disciplinary Engineering, vol. 11, pp. 135-146.
Kumar, U., Klefsjo, B. & Granholm, S. (1989). Reliability investigation for a fleet of load haul dump machines in a Swedish Mine. Reliability Engineering & System Safety, vol. 26, pp. 341-361.
Louit, D. M., Pascual, R. & Jardine, A. K. (2009). A practical procedure for the selection of time-to-failure models based on the assessment of trends in maintenance data. Reliability Engineering & System Safety, vol. 94, pp. 1618-1628.
O'Connor, P. D. T. (2012). Practical Reliability Engineering, John Wiley & Sons Ltd.
Copyright Information
The Prognostic and Health Management Society advocates open-access to scientific data and uses a Creative Commons license for publishing and distributing any papers. A Creative Commons license does not relinquish the author’s copyright; rather it allows them to share some of their rights with any member of the public under certain conditions whilst enjoying full legal protection. By submitting an article to the International Conference of the Prognostics and Health Management Society, the authors agree to be bound by the associated terms and conditions including the following:
As the author, you retain the copyright to your Work. By submitting your Work, you are granting anybody the right to copy, distribute and transmit your Work and to adapt your Work with proper attribution under the terms of the Creative Commons Attribution 3.0 United States license. You assign rights to the Prognostics and Health Management Society to publish and disseminate your Work through electronic and print media if it is accepted for publication. A license note citing the Creative Commons Attribution 3.0 United States License as shown below needs to be placed in the footnote on the first page of the article.
First Author et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 United States License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.