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Reliability Programs at UT COE
• Maintenance and Reliability Center (MRC)

– University - industry association dedicated to improving industrial 

productivity, efficiency, safety & profitability through advanced 

maintenance and reliability technologies and management 

principles

– Industrial Center since 1996 with 30 members

• Reliability and Maintainability Engineering Program (RME) 

– Interdisciplinary Academic Program 

• Undergraduate Minor in RME

• Graduate Certificate and/or MS in RME

– Local or Synchronous, Interactive Distance Delivery

• Prognostics, Reliability Optimization and Control Technologies 

(PROaCT)

– Interdisciplinary research program with professors and students in 

industrial, mechanical, and nuclear engineering, and statistics.



Monitoring and Prognostics Research
• Experimental Breeder Reactor II, 1989.
• Florida Power Corporation Nuclear Plant Monitoring, 1995.
• Dow Corning Chemical Plant Monitoring, 1996.
• High Flux Isotope Reactor Monitoring, 1997.
• Idaho National Engineering and Environmental Lab, 1998-2000.
• TVA Kingston Fossil Power Plant, 1998-2003.
• SmartSignal Inc. Uncertainty Estimation, Model Regularization and Input Optimization, 2001-2005.
• Sun Microsystems, Improved Real-time Fault Detection, 2002 - 2003.
• EPRI Redundant Sensor Calibration Monitoring and Reduction System, 2003
• Halden Reactor Project, Uncertainty Analysis, 2003.
• Oak Ridge Y-12 Sensor Fault Detection for CAVIS 2003
• DOE Automated On-Line Monitoring and Diagnostics of the Integrity of Nuclear Plant Steam 

Generators and Heat Exchangers 2002-2005
• NSF Cooperative Research Project on Monitoring and Diagnosis of Process System Components, 2004-

2006
• NRC,  On-Line Monitoring Regulatory Research Needs, 2005-2006
• Expert Microsystem, Uncertainty Analysis of Empirical Models  2005–2006
• EPRI, Improved Probability of Failure Analysis using Equipment Condition Assessment (ECA) Based 

on Health Monitoring Technologies, 2005- 2006 
• Sun Microsystems, Computer Monitoring and Diagnostics, 2005- 2006.
• Idaho National Laboratory, SCADA System Modeling and Diagnostics, 2005-6.
• BHI, On-Line Monitoring, Diagnostics, and Prognostics of Drilling Operations, 2006-2007.

• Global Strategic Solutions, Advanced Prognostic and Health Management (PHM) and Model Based 
Prognostic Useful Life Remaining Capabilities for Aircraft Tactical Information and Communication 
Systems for the U.S. Navy SBIR 2007.1 - Topic N07-010, 2007-2009

• EPRI, Prognostics Methods for Power Plants 2008-2009.
• Halliburton, Monitoring Drilling Operations, 2008-2009.
• Ridgetop, Prognostics and Health Management (PHM) for Digital Electronics Using Existing 

Parameters 
and Measurands for the U.S. Navy, 2007-2009

• DOE, Advanced Instrumentation and Control Methods for Small Export Reactors , 2007-2010.
• US Dept of Justice, Improved Facial Reconstruction Techniques, 2009.



Overview

• Overview of Equipment Surveillance

• Introduction to Equipment Prognostics

• Prognostic Methods

• Prognostic Case Studies



Typical Equipment Surveillance 

System

Re-organize

• How can the 
effects of 
failure be 
mitigated?
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Basic Identification Architecture

• Use information in environmental and operational 
conditions, measured process values, and monitored 
residuals, and fault alarms to identify the fault mode.

• Different fault modes progress to failure differently and 
thus will require different prognostic models.
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Prognostics Definitions

• Methods used to predict:

– Remaining Useful Life (RUL): the amount of time, 

in terms of operating hours, cycles, or other 

measures the component will continue to 

meets its design specification.

– Time to Failure (TTF): the time a component is 

expected to fail (no longer meet its design 

specifications).

– Probability of Failure (POF): the failure 

probability distribution of the component.



Prognostics Motivation

• Improved prognostic and predictive capabilities using existing 
monitoring systems, data, and information will enable more 
accurate equipment risk assessment for improved decision-
making.

– Reduce needless maintenance through lengthened (optimized) 
maintenance intervals.

– Reduce unplanned maintenance and associated costs.

– Improve safety and reduce environmental impacts.

• Operational Decisions:

– Should we continue to operate or immediately shutdown for 
maintenance?

– Can we change operations (speed, load, stress) to make it to the
next maintenance opportunity?

– Will the equipment have high probability of safe operation for the 
planned mission?



Constant Failure Rate

• What if the failure mode has a constant failure rate: 
truly random failures?  (no wear-out)

• Can you do prognostics?

• Yes you can: If you can detect failures before they 
occur, you can take action.

• Eg.  Getting a nail in your tire is a random event, you 
can’t predict it, so Weibull analysis, planned 
replacement, and overhaul have no value; but, if you 
measure pressure or look at your tires frequently, 
you may be able to detect the fault and replace it 
before it fails.



Decision Time

• We routinely hear that if there is a very short time 
between detection and failure, monitoring is useless.

• Do you agree?

• If you can detect and identify a failure, then 
reconfigure, you may improve availability.

• Eg: Multi Level Inverter Drives
– Automated fault detection and accommodation. 



Prognostics Data Hurdle

• In many fields failure data may be difficult to 
obtain.

WHY?

1. When components are found to be degraded they are 
repaired or replaced.

• Unexpected vibration levels of a nuclear power plant 
reactor coolant pump will prompt an immediate 
response. 

2. When important failure modes are discovered, they are 
designed out of the system.

• When several failures of a truck’s steering system are 
discovered, a redesign and recall may be initiated.



Basic Prognostics Methodology

1. Collect historical failure data and related information.

2. Perform a Failure Modes Effects and Criticality Assessment 

(FMECA) of the system of interest.

� A FMECA++ also identifies sensor information that changes with 

degradation.

3. Perform Accelerated Life Testing 

� Collect degradation data identified in FMECA++

4. Develop Prognostic Model

� Many types are available.

5. Validate Prognostic Model

Note: Each failure mode may require its own prognostics model.



Prognostic Method Categories
• Type I:  Reliability Data-based (population)

– These methods consider historical time to failure data which are
used to model the failure distribution.  They estimate the life of an 
average component under average usage conditions. 

– Example Method: Weibull Analysis

• Type II: Stress-based (population)

– These  methods also consider the environmental stresses 
(temperature, load, vibration, etc.) on the component.  They 
estimate the life of an average component under specific 
usage conditions. 

– Example Method: Proportional Hazards Model.

• Type III: Effects-based (individual)
– These methods also consider the measured or inferred component 

degradation. They estimate the life of a specific component 
under specific usage and degradation conditions. 

– Example Method: Cumulative Damage Model



Prognostic Method Types
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Tire Prognostics Example

• Type I: Tire failure distribution is normally distributed with a

mean of 50,000 miles and standard deviation of 5,000 miles.
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Tire Prognostics Example

• Type II: Tire failure is estimated by knowing the number of 

miles driven and the tire conditions for each mile driven: 

temperature, slippage, inflation, etc.

– This results in a new distribution for that particular tire.
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Tire Prognostics Example

• Type III: Tire failure is estimated by knowing the 

actual condition (tread depth, dry rot) of the tire.
– This results in a new distribution for that particular tire.
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Some Basic Prognostic Data 
Requirements

• For Type I, failure modes must be related to  measurable 
stressors for historical data to be beneficial.

– Failures cannot be random (characterized by an exponential 
failure model)

• For Type II, environmental effects that drive the failure modes 
must be measurable.

• For Type III, degradation severity must be related to a 
measurable parameter such as tread depth or bearing 
vibration level or temperature.

– Degradation growth must be slow enough for decisions to be 
made and actions to be taken.



Type I. Reliability DataType I. Reliability DataType I. Reliability DataType I. Reliability Data----Based Based Based Based 
PrognosticsPrognosticsPrognosticsPrognostics
(population based)

• This group of methods attempts to estimate failure 

density functions with parametric or non-parametric 

models.  

– A population of components is tracked and their failure 

times are noted.  

– Components that have not failed are called censored data 

and that information is also useful in predicting the failure 

density.

• Example parametric models include exponential, 

normal, log-normal, and Weibull.



Weibull Model

• Probably the most common parametric model is the 

Weibull distribution.  

• This model is used because it is flexible enough to 

model a variety of failure rate profiles.  

• The failure rate is modeled with two parameters

– a shape parameter (ββββ) and 

– a characteristic life (θθθθ). 
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Two Parameter Weibull
• Increasing failure rate (ββββ>1), a constant failure rate (ββββ=1), and a 

decreasing failure rate (ββββ<1). 

• the Weibull distribution does a good job of modeling failure 

data with exponential, normal, or Rayleigh distributions. 
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Reliability Data-Based Limitations

• A readily apparent disadvantage of reliability data-
based prognostics is that it does not consider the 
operating condition of the component.

– Components operating under harsh conditions would be 
expected to fail sooner and components operating under 
mild conditions to last longer. 

• It provides a failure distribution for the average 
component operating under average conditions 
(population-based).  

• Shortcomings

– Failures observed during lifetime tests may not be useful for 
different operating conditions.

• Equipment setups may be different for different applications 
and the amount of failure data may not be sufficient.



Type II: StressType II: StressType II: StressType II: Stress----Based PrognosticsBased PrognosticsBased PrognosticsBased Prognostics

• General Covariate Model

– One or more of the failure distribution parameters (such as 

hazard rate) is a function of explanatory or covariate 

variables.

– Usually there is a physical cause and effect

• If cause and effect exist, then one can use covariates to 

control reliability

• Otherwise, can only use covariates to predict reliability.

• Use design of experiments to establish cause and effect



StressStressStressStress----Based Prognostics ModelsBased Prognostics ModelsBased Prognostics ModelsBased Prognostics Models

• The simplest class of methods for stress-based prognostics 

is failure-time, linear regression models.  

• These methods use prior observations of explanatory 

variables such as temperature, load, voltage, etc. and the 

response variable, which is usually the failure time, to model 

relationship between the stressors and life of a component.

• The stressors are regressed onto the response variable to 

optimize the regression coefficients: 

0 1 2Failure T ime ... n nTemp Load Stressβ β β β= + ∗ + ∗ + + ∗



Proportional Hazards Model (PHM) 

• The proportional hazards model (PHM) [Cox 1984] is 

a technique that merges failure time data and stress 

data.  

• The model uses environmental condition 

information, termed covariates (zj), to modify a 

baseline hazard rate (λλλλ0(t)) to form a new hazard rate: 
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λ0(t) is an arbitrary baseline hazard or function
zj is a multiplicative factor, explanatory variable or covariate

βj is a model parameter



PHM Assumptions

• Failure data collected at covariate operating conditions are 

used to solve for the parameters (ββββj) using an ordinary least 

squares algorithm. 

• A basic assumption of the PHM is that the covariates are 

multiplicative.  

• The baseline hazard is when covariates have no influence on 

the failure rate.

0 1000 2000 3000 4000 5000 6000
-4

-2

0

2

4

6

8

10

Time in Hours

L
o
g
 o

f 
-L

o
g
 o

f 
R

e
lia

b
ili

ty
 F

u
n
c
ti
o
n

lo
g
(l
o
g
(R

(t
))
)

 

 

1st Temp

2nd Temp

3rd Temp

4th Temp

Reliability functions, after 

logarithmic transformations, 

will resemble parallel lines.



Proportional Hazards Model 
Example• PHM has the property that individual component hazard rate 

functions are proportional to each other.

• Example (Ebeling’s book): Time to failure of a motor is Weibull with 

a shape parameter of 1.5  and characteristic life

• where x = load placed on the motor. 

• Find the .95 design life if a motor has a load of 115.  What if the load 

is reduced to 100?

2 3 .2 .1 3 4( ) xx eθ −=

B
t

R(t) = e θ
 −  
 θ ( ) . .x e x= −2 3 2 1 3 4

Solution:      (115) = 2416.3

and t.95 =  2416.3 ( - ln .95 ).6667 = 333.5  hr.

(100) = 18033.7 

and  t.95 =  18,033.7 ( - ln .95 )
.6667 = 2489.3  hr.

θ
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Type III: EffectsType III: EffectsType III: EffectsType III: Effects----Based PrognosticsBased PrognosticsBased PrognosticsBased Prognostics

• Effects-based prognostics uses degradation 

measures to form a prognostic prediction.  

• A degradation measure is a scalar or vector quantity 

that numerically reflects the current ability of the 

system to perform its designated functions properly. 

It is a quantity that is correlated with the probability 

of failure at a given moment.  

• A degradation path is a trajectory along which the 

degradation measure is evolving in time towards the 

critical level corresponding to a failure event.



Degradation Parameter

• The degradation measure does not have to be a 
directly measured parameter.  

• It could be a function of several measured variables 
that provide a quantitative measure of degradation.  

• It could also be an empirical model prediction of the 
degradation that cannot be measured.  

• Example: pipe wall thickness may be an appropriate 
degradation parameter but there may not be an 
unobtrusive method to directly measure it.  However, 
there may be related measurable variables (corrosion, 
etc.) that can be used to predict the wall thickness.   In 
this case the degradation parameter is not a directly 
measurable parameter but a function of several 
measurable parameters.



Type III Model Types

• Many effects-based prognostics models track the 

degradation (damage) as a function of time and predict 

when the total damage will exceed a predefined 

threshold that defines failure.  

• Cumulative damage is defined to be irreversible 

accumulation of damage in components under cyclical 

loadings.  

• There are several mathematical approaches to model 

cumulative damage:

– Markov Chain-based Models

– Shock Models

– General Path Models



Markov Chain-based Models

• Markov Chain (MC) models can be used as Type II or 
Type III prognostic models.
– The Type II (stressor) case is when one is not able to 

observe the individual component’s response to the 
influence of the dominant failure mechanism.  

• Degradation is not directly measurable.

• Degradation may be inferred through measured stressors.

– The Type III (effects) case is when one is able to directly 
observe a numerical quantity characterizing the 
component’s ability to function in accordance with its 
specifications. 

• Degradation is directly measurable or inferred through other 
degradation parameters.  



Markov Chain Models

• MC models explain the equipment degradation as a 

transition of states.  

– The states can be the environmental conditions that cause 

degradation or the degradation state itself.

– Transition probabilities control state movement through a 

transition matrix Q.
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Markov Chain Prognostic Models 

• Markov Chain Prognostic Models are discrete in the time 
domain and in the degradation measure domain.  

• For each duty cycle, there is a non-zero probability of receiving 
a unit-size damage.  

• The model is usually formulated as a probabilistic simulation of
past and future degradation.  

– If the degradation is directly measurable, then the simulation is 
only performed for the future.  

• The model has several parameters which can be estimated 
from historical degradation and failure data:

– Probability of a damage occurrence in a duty cycle

– The magnitude of the damage (usually a unit-size damage is 
assumed)

– The critical damage level (Failure Threshold)



Cumulative Damage Model

• Cumulative Damage model was originally proposed by Kozin and 

Bogdanoff in “Probabilistic Models of Cumulative Damage” (1985)

• Cumulative Damage is defined to be irreversible accumulation of 

damage in components under cyclical loadings

• A discrete time Markov Chain (MC) was used to model the damage 

accumulation process

• The MC-based model can naturally account for different sources of 

uncertainty in reliability data.

– Random initial level of damage

– Different severity and order of the loads in successive duty cycles.

– Variable states of damage at the moments of retirement.

– Imperfections in measurements



Stochastic Cumulative Damage 

Model
• Parameters of the model

– Number of possible damage states (levels), b

– Distribution of Initial Damage, π0(d)

– Transition Matrix, Q = {qij}, where qij = P(yk=i | yk-1=j)
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Stochastic Cumulative Damage 
Model



Cumulative Damage Model



Cumulative Damage Model



Cumulative Damage Model



Shock Models

• Shock Models are used predict the RUL for systems 
which are subject to randomly arriving shocks, 
which deliver some damage of a random magnitude.   

• They are continuous in the time and the degradation 
measure domains.

• Shock models have several important parameters 
that are estimated from historical failure data:
– Time between successive shocks, t ~ Exp(λλλλ)

– The magnitude of shocks, x ~ F(x)

– The critical failure threshold

• The method is similar to the Markov Chain model but 
the time between shocks and the shock magnitudes 
are continuous random variables. 



Shock Model Example
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Shock Accumulation Pathways
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General Path Models

• GPM was originally proposed by Lu and Meeker 
[1993] as a statistical method for using degradation 
measures to estimate a time-to-failure distribution
– Some systems result in few or no failures during 

accelerated testing.

– Degradation measurements may contain useful information 
about product reliability.

• The GPM assumes that the degradation is a function of time, 
duty cycles, or some other measure.  

• Extrapolation of this degradation function has been used to 
predict remaining useful life.  



GPM has two main assumptions 

• The degradation signal 

for each individual 

device is unique

• There is a critical 

threshold at which 

failure occurs
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Linear Damage Accumulation Model

• The constant degradation rate zone takes the longest time in 

the item’s lifespan.

• The primary interest is the item’s degradation within this zone.
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Linear Damage Accumulation Model
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Using the GPM to estimate RUL

• Step 1: Fit a parametric 

model to the exemplar 

degradation paths; 

quantify mean and 

covariance values to 

describe individual, 

random parameters

– Censored data can be 

used

– Physical models can be 

used when available
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Using the GPM to estimate RUL

• Step 2: Use the model 

from step 1 and existing 

degradation 

measurements to fit a 

model to the current 

individual

• Step 3: Extrapolate this 

model to the critical 

failure threshold to 

estimate RUL
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Quantifying uncertainty in RUL

• Because parameters (or an appropriate 

reparameterization) are normally distributed, 95% CIs

can be constructed for each parameter 

where s is the standard deviation of the parameter

• s can be estimated from the prior distributions for each 

operating condition

[ ]nstnst nn /11ˆ,/11ˆ
2/,12/,1 +++−∈ −− αα θθθ



Bayesian Regression

• Can be used to incorporate prior information or 
beliefs about the model parameters.

• Can be used to update model parameter predictions 
using observations.

Notation   

ΘΘΘΘ - the parameter to estimate

DATA - available observations

L(DATA | ΘΘΘΘ) - Likelihood of DATA

f(ΘΘΘΘ) - the prior density of ΘΘΘΘ
f(ΘΘΘΘ | DATA) - the posterior PDF of ΘΘΘΘ



Bayesian Inference 

Model for DATA

M(ΘΘΘΘ)

DATA

Prior f(ΘΘΘΘ)

Likelihood

L(DATA | ΘΘΘΘ)

Posterior

f( ΘΘΘΘ | DATA)

NEW DATA

New Prior 

f(ΘΘΘΘ)

New Posterior

f( ΘΘΘΘ | DATA)



GPM Prior Parameter Distribution 

can be used for better model fitting

• Bayesian methods for linear regression can be used 

to incorporate prior information

• The standard linear regression model is given by

• The model parameters are estimated as:



• βj ~ N(βj0, σ
2

β)

• The prior information on βj is considered to be another 
“data point” in the regression.

b = (XT Σy
-1 X)-1 XT Σy

-1 Y

• New parameter estimates become the prior information for 
the next data observation

Prior Information About Regression 
Coefficients



Prior Information About All 
Regression Coefficients
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Hybrid Prognostics Approach

• Always begin with a Failure Modes Effects and 
Criticality Assessment (FMECA)

– Historical failure data will be used to estimate the 
population POF.

– Covariates (e.g. speeds, currents, pressures, vibration, etc.), 
or covariate residuals with the use of empirical models, will 
be used to develop a degradation parameter and used to 
augment population POF to provide individual POF.

– A Bayesian framework has been developed to update RUL 
or POF predictions based on new data.



Example Basic Prognostics 
Framework
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Prognostics Comparison 

Example



GPM Tire Case Study

• A case study involving the simulation of tire degradation data 
was chosen to demonstrate the main prognostic models.

• Tire degradation is assumed to come only from wear

• Three possible environmental operating conditions

1. Normal

2. Off-road

3. High Slip

• The tires are assumed to have negligible initial wear and one 
duty cycle is equal to 100 miles.

• Tires will be simulated as operating in one environmental 
condition for the life of the tire or as operating in one condition 
for a duty cycle but allowing the condition to change between 
duty cycles.  

– The simulation method will depend on the prognostic method 
applied.



Reliability Assumptions

• The functional form of the TTF probability density function for 
each mode is assumed to be Gaussian. 

• The mean time to failure and standard deviation for different 
environmental conditions are provided in Table 1. 

• The typical usage pattern is also given in Table 1 where pi is the 
probability of a tire operating in the ith condition.  

• The three individual distributions can be combined using this 
usage pattern to get a mean and standard deviation of the 
population of tires; these values are also included in Table 1. 

Tire Degradation Parameters

0.120200Z3, High Slip

0.230300Z2, Off road

0.740400Z1, Normal

piσσσσTTF,[DC]µTTF, [DC]Env. Condition



Simulation Experiments

• Type I: distributions for the population of tires will be 
constructed and population based methods will be used to 
calculate the predicted distribution. 

• Type II: the PHM case will be evaluated in which it is 
assumed that the tire is operated in one mode for its life and 
that the mode is known.  

• Type III: In the GPM case, it is assumed that the tire is 
operated in one of the modes and that measurements with 
noise can be made, but that the mode is not known.  

• Finally, two Markov Chain simulations will be given in which 
the mode can change at each duty cycle.



Type I: Reliability data based 

• Population based prognosis.

• Tires are expected to operate in one condition for the life of the 
tire. 

• One thousand tires are simulated and a Weibull model is used 
to predict the population mean time to failure.  
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Weibull Analysis

• Because the failure times are a composition of three normal 
distributions with significantly different means, the Weibull plot 
does not fit the population exceptionally well.

• The mean of the plot is 36,200 miles with a standard deviation 
of 7,259 miles.  

• This is very close to the true mean of 36,000 miles and standard
deviation of 7,580 miles. 
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Type II: Proportional Hazards Model 

• It is assumed that the tire only operates in one mode 

and that the mode is known.  

• Simulated data is used to solve for the parameter ββββ
in the PHM and then the model is used to predict the 

failure distribution for each mode.  

• Covariate values

– Normal condition z=0

– Off road z=1

– High slip z=2 ( )0 0

1

( ; ) ( ) exp( ) ( ) exp
q

j j

j

t z t z t zλ λ β λ β
=

= =∑



Proportionality Check
• It is important that the covariates be proportional for the PHM 

to be used effectively.  

• To check this, the hazard rates and reliability functions for all 
three modes are estimated from the data and a log(-log((R(t))) 
plot is made (Figure 14). 

• The plot shows the appearance of proportionality between the 
different models as all three of the lines appear parallel 

100 150 200 250 300 350 400 450 500
-15

-10

-5

0

5

10
Hazard rates

Duty Cycles

lo
g
(-
lo

g
(R

))

 

 

Normal

Off Road

High Slip



Baseline Hazard Rate

• The baseline hazard rate is estimated as a function of duty 
cycle.  

• The normal condition hazard rate be used for the baseline 
hazard rate and that the covariate value for normal is 0  
– This results in

• The distributions are modeled with Weibull distributions.  
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PHM Results
• The PHM results in a regression coefficient of 3.7090 with a 

standard error of 0.1567.  

• PHM results in a reduction of the standard deviation of failure 
time estimates from that of the population (7,592 miles from 
Weibull) to that predicted for the three conditions: 4,840 miles
for normal, 3,243 miles for off road and 2,351 miles for high 
slip.
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Type III. General Path Model

• A tire degradation path is assumed to be of linear form

– where  r=N(µdr ,σdr ) is the random degradation rate, 

– ε is 1% random measurement error, 

– and x is the number of duty cycles (100 miles)

y rx ε= +

0.250.01710.28Population

0.250.04780.50High Slip

0.250.03140.33Off-Road

0.250.02170.25Normal

σσσσ2
noise (%2)σσσσdr (%/DC)μμμμdr (%/DC)Environment



Historical Degradation Paths
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Obtaining Prior Information

• Historical paths were used to estimate distribution 

parameters and noise variance for each condition

• A typical usage pattern is given as

• This pattern is used to estimate distribution 

parameters for the population

Environment µdr (%/DC) σdr (%/DC) σ2
noise (%2)

Normal 0.251 0.0217 0.252

Off-Road 0.329 0.0314 0.252

High Slip 0.496 0.0478 0.251

Population 0.291 0.0171 0.252



GPM/Bayes algorithm has 7 steps
• Compose X and Y matrices with all m observations.

• Compose the Σy matrix with noise variance-covariance values for 

each observation.  For the present case, the covariance between 

observations is zero, and the noise variance is assumed to be 

constant and equal to 0.252 %2.  

• Augment the X, Y, and Σy matrices with prior information.



GPM/Bayes algorithm has 7 steps 
(cont’d)

• Estimate the degradation rate.

• Estimate the uncertainty of the fitted degradation rate.

where pi is the probability that r belongs to the ith environment.

• Estimate 95% PI for r and use these values to estimate a 95% PI for 
the time of failure.

This PI form is adjusted by substituting n = m+1, because estimation 
of r is performed with m observations and the one prior information 
"observation".  The time to failure and corresponding 95% PI can be 
estimated as:

• Use the new posterior estimates and prior information for the next 
observation.



New degradation paths are used to 

test the GPM/Bayes algorithm

• Three degradation paths are tested

– Test 1: Degradation similar to the population mean 

degradation path

• This degradation path is tested with two different sampling 

rates

– Test 2: “Extreme” degradation path which lies in the 

range of the training data set 

– Test 3: Degradation path which is well outside the 

range of the training data set



Test 1: Near-Mean Degradation Path
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• The traditional reliability based estimated TTF is approximately 17 

DC (~1,700 miles) greater than the actual TTF.  

• However, the PI limits are quite large, the 95% PI for the 

population prognostics is 80 DC (8000 miles) wide.  

Test Case Original Prediction



Test 1: TTF estimates

• TTF estimates are correct 

to within ~1.5 DC (~150 

miles)

• 95% PI width for TTF 

estimate is ~5 DC (500 

miles)

• This accuracy level is 

obtained after ~40 

observations (4,000 miles)
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Test 1: Less frequent sampling 

rate

• One observation per DC may 

be unrealistically frequent

• The algorithm was applied 

with 1 obs per 10 DC (1,000 

miles)

• Estimates are accurate to ~1 

DC with 95% PI width ~5 DC

• Accuracy obtained after 14 

obs (14,000 miles)
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Test 2: “Extreme” Degradation Rate 

within Training

• Test 2 degradation path 

is for a tire in the high 

slip condition

– Test path has high 

degradation rate (fails 

sooner)

• Degradation path lies 

within the range of the 

historical paths used to 

establish prior 
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Test 2: TTF estimates

• Initial TTF estimates are 

highly biased by the prior 

information, but result is 

similar to Test 1 case

• The TTF estimate is 

accurate to less than 1 DC 

after ~40 observations 

(4,000 miles)

• 95% PI is ~5 DC (500 miles)
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Test 3: “Extreme” Degradation Rate 

outside Training

• Test 3 degradation path 

has a very low 

degradation rate

– Test path has extremely 

long lifetime (100,000 miles)

• Degradation path lies 

well outside the range of 

the historical paths used 

to establish prior 

information
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Test 3: TTF estimates

• Test 3 results are very poor

• TTF estimates are accurate 

to ~ 5 DC (500 miles) 

• 95% PI width is ~25 DC 

(2,500 miles)

• This indicates that the 

current prognostic model is 

not suitable for use outside 

its training data range
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GPM Conclusions

• The General Path Model methodology can easily be applied to 

problems of estimating RUL

• A Bayesian Regression method for including prior information 

in parameter estimation was presented 

• Application of the GPM/Bayes method to a simple tire 

degradation problem was described

– Method performed well for degradation paths contained within the

range of training paths, even with infrequent data collection

• RUL estimates were both accurate (within 1 DC) and precise (PI width of 

~5 DC)

– Method did not perform well on a degradation path well outside the 

training data, giving an estimate which was neither accurate nor

precise



More Practical GPM Situations

• More complicated degradation models
– Models with multiple degradation signals

– Linear-regression for non-linear models (transformation)

– Nonlinear-regression models

• Reduced measurement accuracy.

• Use of degradation paths with variable sampling rate for 
both training and application

• Variable or uncertain failure levels.

• Model misspecification

• Environmental conditions change

• Application for control.



Markov Chain Tire Case Study

• The Markov chain model will be applied for Type II and III.

E(Road Conditions) = { 1 = Normal, 2 = Off Road,  3 = High Slip }

• A tire only operates in one condition for one duty cycle, but 
conditions can change from duty cycle to duty cycle.

• Each environmental condition imposes a certain tire 
degradation rate, which can be deterministic or stochastic.
– Deterministic Relationship: Certain degradation rate =  Ri,  

– Stochastic Relationship: Probability distribution FR(r) = P(Ri > r)



MC Simulated Data

• transition matrix is taken to be of the following form

• The initial environmental condition is always normal.

ππππ(E0) = [ 1  0  0 ]
















=

3.2.5.

1.4.5.

05.15.8.

M



Effects Based (Type III)

• The tire degradation is expressed in terms of tread depth. 
– The value of 9mm is taken to be the initial degradation level.

– The value of 1.6 mm is taken to be the critical threshold.

• Degradation rates are chosen to be 

R = [ -0.0247   -0.0370   -0.1480] mm / duty cycle

where a duty cycle (dc) is taken to be 100 miles. 

• The choice of the degradation rate values means that the tire 
mean lifetime is about 300 duty cycles for the normal condition,
200 dc for the “off-road” condition, and 50 dc for the “high-slip” 
condition.



Simulated Degradation Paths



Example Degradation Data
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• 50 degradation paths are generated. 

• The degradation measurements are assumed to be taken once 
a duty cycle. 

• Each simulated tire’s lifespan has about 200 measurements.

• The measurements are assumed to be noiseless. 



Estimation of the Markov chain 
model

• Observe the states, collect data. 

• Compute the residence times in each state 

• Estimate the transition probabilities qij

• where nij is the number of transitions from State i to State j, 
Ni is the number of duty cycles where the condition has not 
changed. 

• The estimated transition matrix is close to the true values of 
the transition probabilities 
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Time to Failure Prediction w/95% CI
• At the initial prediction phase the RUL prediction is identical with the 

population-based mean time-to-failure and variance. However, the 95% 

prediction intervals associated with the predicted remaining useful life 

tend to converge to the true time-to-failure.



MC Continued

• If we assume that only 5 observations are available for each 

tire, the estimation is expected to be less certain.
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Transition Matrix Estimation

• If one has apriori knowledge of how many environmental 
conditions can be encountered during the usage of the tire, a 
good technique to apply is a clustering method, 

• This approach allows for a relatively good estimation of the 
degradation rates:

Rest = [.0247 .0370 .1480] 

• However, the uncertainty in the degradation rates still affects 
the estimated transition matrix. 
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MC Stress-based Prognostics: Type II

• If environmental stress condition is the only available 

information in the degradation analysis, one needs to deduce 

two models

1. A stochastic model for the random behavior of the 

environmental conditions (Environment Model), 

2. A stochastic relationship between the environmental model and 

the failure mechanism under investigation (Prognostic 

Parameter Model).

• The prognostic parameter is represented as a cumulative 

function of observable environmental conditions. 

( ) i

k

i

iiik ttttEgtY ∆∆+=∑
=1

),()(

where where Y(tY(t
kk) is the prognostic parameter value at time ) is the prognostic parameter value at time ttkk, , 

EE((ttii, , ttii+∆+∆tt) is the environmental condition observed at the time interval [) is the environmental condition observed at the time interval [ttii , , ttii+∆+∆tt], ], 

g(.) is a function of environmental conditions. g(.) is a function of environmental conditions. 



Environmental Changes

• The typical evolution on the left was simulated with the prior 

transition matrix

• On the right is a collection of paths with a typical one in red.

• Since we cannot measure the prognostic parameter, there is 

another source of uncertainty which is discussed next.



Failure Evaluation
• The stochastic relationship between the prognostic parameter 

and failure can be established via statistical analysis of 

available failure data. 

• Failure data will allow for expressing the failure times in terms 

of prognostic parameter values. P[failure | y ] = F(y)

• With 10 degradation paths 

to failure, one is able to 

estimate the critical 

prognostic parameter 

value as a certain 

distribution function with 

the following mean and 

variance.

• Mean = –264.3;  Var = 82.9  



Tire Example  Conclusions

• A simple tire simulation is provided to show the relative 
benefits of the different types of prognostic models. 

1. If failure time data is available but no measurements related to
the operating condition or degradation state can be obtained, 
then a reliability based distributional model (Type I) can be 
used.  

2. If the operating condition is known, but does not change 
during the life of the component, then Type II models such as 
the proportional hazards model can be used. 

3. If the degradation state can be measured, a general path model 
(Type III) can be used.  

4. Lastly, if the operating condition changes during the life of the 
component, then a Markov chain model may be the best 
selection and implemented as either Type II or III depending on 
the observational data. 



Prognostic Models
– Markov Chain Models

• The transition probability matrix is used to 
generate possible operating condition 
evolutions (Model I)

• These potential operating histories are then 

mapped to a degradation measure (Model II)

– General Path Models
• The GPM assumes that the degradation is a 

function of time, duty cycles, or some other 
measure

• Extrapolation of this degradation function can 
be used to predict remaining useful life

– Bayesian methods
• Can be used to incorporate prior knowledge in 

GPM models

– Hybrid Mixed Models
• Weibull, Stressor, Performance
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The PEM and PEP toolboxes can be used in 

conjunction for a total monitoring, detection, and 

prognostics system.

Data
x(t) F(x,r,s)AAKR
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Hybrid Model: Progressing through 
Prognostic Types
• Architecture Combines Type I, II and III Prognostics

– I. Historical failure data will be used to estimate the population POF.

– II. Covariates (e.g. speeds, currents, pressures, vibration, etc.)

– III. Empirical model residuals will be used to develop a degradation 

parameter and used to augment population POF to provide individual POF.

– A Bayesian framework has been developed to update RUL or POF 

predictions based on new data.

Type I Type II Type III

Operating Time



Degradation Parameter Development
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General Path Model 
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Methods are being developed to aid 
in and automate model development.

• Black box approach to identify an appropriate 
prognostic parameter from data
– Trendability

– Monotonicity

– Prognosability

• Method and metrics to determine which algorithm 
type and modeling method are best suited for a 
specific situation

• Bayesian methods to progress between prognostic 
model types as information becomes available
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Trendability

• The degree to 
which the 
parameters of a 
population of 
systems have the 
same underlying 
shape

• Each example 
appears to have a 
roughly 
exponential shape
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Monotonicity

• The underlying positive 

or negative trend of the 

parameter

• Parameter should be 

monotonic because 

‘self-healing’ is 

considered non-

physical
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Prognosability

• A measure of the variance in 

the critical failure value of a 

population of systems

• Failure should occur at 

approximately the  same 

value for the entire 

population

• This may be improved by 

bagging multiple parameters 

or denoising the signals
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Selecting an Appropriate 

Prognostic Architecture

• Selecting the correct prognostic type and 

architecture for a particular system can be 

complicated

• Usually based on engineering judgment and 

personal expertise

• The PEP toolbox will automate this based on

– The type of data available

– Assumptions which can be made about the system

– Assumptions of each prognostic algorithm
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Conclusions

• Sensed data contains degradation information and 
should be used to improve operational reliability 
through:

– Optimizing maintenance scheduling (condition-based)

– Improving operations (equipment state knowledge)

• The potential benefits of early warning are significant

– Improved availability

– Reduced equipment damage

– Improved safety

• Several methods exist, the selection is based on
– Data available: failure, causal, effects.

– Knowledge of degradation mode (physical model)


