
Software Health Management

An Introduction

Gabor Karsai

Vanderbilt University/ISIS

Tutorial at PHM 2009

Outline

 Definitions

 Backgrounds

 Approaches

 Summary

Definitions

 Software Health Management:

A branch of System Health Management that

applies health management techniques to the

controlling software of a system.

 SHM goes beyond classical fault tolerance
Software Fault Tolerance Software Health Management

Fault detected

 Functionality restored

Anomaly detected

 Fault source isolated

 Fault mitigated

 Fault prognosticated

When the fault happens, SFT reacts Software and system health is managed

Software Health Management

 Goals:

 To prevent a (software) fault from becoming a

(system) failure

 Manage „health‟ of the software

 Sense, analyze, and act upon health indicators

 Provide (relevant) information to operator,

maintainer, designer

 Assumption:

 Software „health‟ is a measurable, non-binary

property

Software Health Management

 Characteristics

 Performed at run-time, on the running system

 Includes all phases of health management:

 Detection: detect anomalous behavior

 Isolation: isolate source of fault (component, failure

mode)

 Mitigation: take action to reduce/eliminate impact of fault

 Prognostics: predict impending faults and failures

 Can be highly mode- and mission/goal-dependent

Backgrounds:

Basics of Software Fault Tolerance

 Definition:

 Software Fault Tolerance: Methods and

techniques to implement software that can

tolerate faults in itself, in the platform it is running

on, in the hardware system it is connected to, in

the environment

Backgrounds:

Basics of Software Fault Tolerance

 Why?  Serves as a foundation for SHM

 See Fault-Tolerance vs. System Health

Management

 What?  Follows the (HW) Fault Tolerance

principles in SW

 Literature:
 Wilfredo Torres-Pomales: Software Fault Tolerance: A Tutorial, NASA/TM-2000-

210616, Langley Research Center, 2000  CREDIT

 Software Fault Tolerance, Edited by Michael R. Lyu, Published by John Wiley &

Sons Ltd.

 Google: “Software Fault Tolerance”

Basics of Software Fault Tolerance

Single version

 Definition: FT for a software component (module,

application, service,…) – one version of the component (code) is

used

 Architectural issues

 Foundation for SFT: the architecture

 Component-oriented architecture

 Modularization – horizontal partitioning

 Layering – vertical partitioning

 Common thread: prevent propagation of failures (H + V)

Basics of Software Fault Tolerance

Single version

 Detection

 Requires:

 Self protection: component protects itself from outside effects

 Self checking: component detects its own faults and prevents their

propagation

 Concepts / Techniques:

 Replication checks: components replicated and results compared

 Timing checks: deadlines, response times, …

 Reversal checks: „inverse‟ function: output  input

 Coding checks: use redundancy in representations, e.g. CRC

 Reasonableness checks: value/range/rate/sequence of data

 Structural checks : verify data structure integrity

Basics of Software Fault Tolerance

Single version

 Exceptions and their management

 Language-based mechanisms

 C++, Java, Ada, …not in C!

 Hierarchical nesting (per control flow)

 Incorrect requirements/design can lead to major problems (Ariane 5)

 Categories:

 Interface exceptions: self-protecting component raises it

 Local exceptions: generated and contained w/in component

 Failure exceptions: local management failed, global actions is

needed

Basics of Software Fault Tolerance

Single version

 Checkpoints and restarts

 Detect and restart

 Categories:

 Static : reset to an „initial‟ state

 Dynamic : checkpoint state, restore

previous one upon failure

 Problems: non-invertible actions

 Process pairs

 Identical versions

 Separate processors

 State checkpointed

 On fault, backup takes over

Component

Error

detector

Checkpointed

state

Checkpoint

Restart

Primary

Error

detector

State copy

Backup

Selector

Basics of Software Fault Tolerance

Multi version

 Definition: FT for software system – multiple versions of

component/s (code) are used

 Multiple versions:

 Same spec

 Diversity: in design, implementation, language, compiler,

processor, etc. + independent teams

 Issues

 Specification errors (e.g. omissions) could be a common source

of faults

 Experimental result: faults are not really independently distributed

over the input space – underlying similarities in

design/implementation/etc. and faults…?

Basics of Software Fault Tolerance

Multi version

 Recovery blocks

 Create checkpoint before start

 If version fails, try another one

(use checkpointed state)

 Alternatives can provide

„graceful degradation‟

 N-version programming

 Independent alternatives

 Generic „voter‟ selects

Primary

Acceptance

test

Alt 1

Selector

Alt 2

Alt n

Checkpoint

state

State copy

Alt 1

Voter
Alt 2

Alt n

Basics of Software Fault Tolerance

Multi version

 N self-checking

 Each alternative is self-

checking

 Selection logic selects „best‟

 Consensus-based

 If the selection algorithm

fails to find a correct output

then an output is chosen that

has passed the acceptance

test

Alt 1

Selection

Logic

Acceptance

Test

Alt 2

Acceptance

Test

Alt n

Acceptance

Test

Alt 1
Selection

Algorithm

Alt 2

Switch

Alt n
Acceptance

Test

Switch

Failure

Error

Basics of Software Fault Tolerance

Multi version

 Output selection issues
 Acceptance tests are hard to build

 Voters may have to work with inexact comparisons

 Two-step process:

 Filtering via acceptance tests

 Arbitration step to choose output

 Generalized voters:

 Majority, median, plurality, weighted averaging,…

 Choice must be based on system level issues

 Reliability, safety, availability, etc.

Software Fault Tolerance vs.

Software Health Management

 Complexity of systems necessitates an additional layer „above‟ SFT

that manages the „Software Health‟

 Why?

 Software is a crucial ingredient in aerospace systems

 Software as a method for implementing functionality

 Software as the „universal system integrator‟

 Software could exhibit faults that lead to system failures

 Software complexity has progressed to the point that zero-defect

systems (containing both hardware and software) are very difficult to

build

 Systems Health Management is an emerging field that addresses

precisely this problem: How to manage systems‟ health in case of

faults ?

Software Health Management and

System Health Management

 What is System Health Management?

 The „on-line‟ view:
 Detection of anomalies in system or component behavior

 Identification and isolation of the fault source/s

 Prognostication of impending faults that could lead to system failures

 Mitigation of current or impending fault effects while preserving mission

objective/s

Detection

Isolation

Prognostics

Mitigation

Observations
Corrections

Reports

Design for

Software Health Management

 Component-oriented software architecture

 Systems are built by composing components via well-

defined interfaces and composition principles

 There is a (highly robust and reliable) component

framework that mitigates all component interactions

 Component framework is built to higher integrity/quality

standards than „application‟ software (e.g. RTOS vs. app)

 Beyond classical architecture-based SFT:

 No „single fault‟ assumption – multiple faults are possible

 Cascading fault effects are also possible

 Software Health Management is a system-level function – it

must be integrated with System Health Management

Example: Component Model

A component is a unit (containing potentially many objects). The component is parameterized, has state,

it consumes resources, publishes and subscribes to events, provides interfaces and requires

interfaces from other components.

Publish/Subscribe: Event-driven, asynchronous communication

Required/Provided: Synchronous communication using call/return semantics.

Triggering can be periodic or sporadic.

Subscribe

(Event)

Publish

(Event)

Provided

(Interface)

Required

(Interface)

Resource
State

Parameter

Trigger

Component

Example: Component Interactions

Components can interact via asynchronous/event-triggered and synchronous/call-driven connections.

Example: The Sampler component is triggered periodically and it publishes an event upon each

activation. The GPS component subscribes to this event and is triggered sporadically to obtain

GPS data from the receiver, and when ready it publishes its own output event. The Display

component is triggered sporadically via this event and it uses a required interface to retrieve the

position data from the GPS component.

Sampler

Component GPS

Component

Display

Component

P
S

S

Design for

Software Health Management

 Component-level health management

 Very localized  limited capability, yet needed for higher levels

 Monitor component – detect anomalies

 What to monitor

 Input and output: pre- and post-conditions on incoming and outgoing synchronous

calls and asynchronous events

 State: invariants over the component state

 Timing: component operation execution time

 Execution (response) time

 Frequency of invocation

 Resource usage: component resource consumption patterns

 Memory, resource lock/unlock, etc.

 How to monitor

 Momentary values

 Rates

 History/trends

Component Monitoring

Component

Monitor

arriving events

Monitor

incoming calls

Monitor published

events

Monitor outgoing

calls

Observe state Monitor resource

usage
Monitor control

flow/ triggering

Component-level Health Management

A Component Level Health Manager

reacts to detected events and takes

mitigation actions. It also reports

events to higher-level manager/s.

Events: detected by monitoring

Actions:

Basic mitigation: reset, init, shutdown,

destroy, checkpoint/restore

Intercept related: allow/block call

Specialized mitigation: inject event,

call method, deallocate memory,

release resource, …

Event or time-triggered activation

Reporting

Report events/actions to other

managers

Component

Component Framework

Monitor

M
a

n
a

g
e

r

Actions

Events

Events

Manager‟s behavioral model:

- Finite-state machine

- Triggers: monitored events, time

- Actions: mitigation activities

Manager is local to component container

(for efficiency) but must be protected

from the faults of functional components.

Component-level Health Management

Manager behavior:

Track component state changes via
detected events and progression
of time

Take mitigation actions as needed

Design issues:

 Co-location with component
 Fault containment

 Efficiency

 Local detection may implicate
another component

 Mitigation action may include
blocking the call, overriding data…

 Complexity of mitigation actions

 Verification of mitigation logic
 Safety conditions

 Performance issues

Manager encapsulates all HM Logic

Idle

Exec

InvA

WCET

start

finish

timeout

/init

invA_violation

/reset

Component

Component Framework

Monitor

M
a

n
a

g
e

r

Actions

Events

Events

Design for

Software Health Management

 System-level health management

 Multiple components can fail, independently

 Fault effects cascade through components

 Anomalies (with cascading effects) and faults

propagating through components and assemblies

must be correlated and managed

 Diagnosis: Isolate the fault source component

 Mitigation: Take (component-)local or global action to

mitigate effect of fault/s

Design for

Software Health Management

 A system-level fault model: Timed Failure Propagation Graph

FM1

FM2

SD1

D2

D1

D4

D3

2,3 a,b

1,4 a,c

1,3 b,c

1,6 a,b,c

1,3 b,c
t=3 t=6

t=8

1,6 a,b,c

1,3 b,c

2,5 a

1,4 a,c

 Current Time = 10

 Op. Modes = {a,b,c}, Current Mode = b

 Alarm sequence: {(3,D2), (6,D3), (8,D4)}

 F: set of failure modes

 D: set of discrepancies

 Discrepancy attributes:

– Type: {AND, OR}

– Condition:
{Monitored,
unmonitored}

 M: Set of operating
modes

 E: set of edges

 Edge attributes:

– Propagation interval:
[tmin,tmax]

– Activation modes

Unmonitored

Discrepancy (OR)

Monitored

Discrepancy

(AND)
Failure Mode

Propagation

interval

Abdelwahed, S., G. Karsai, and G. Biswas, "A Consistency-based Robust Diagnosis Approach for Temporal Causal Systems", 16th

International Workshop on Principles of Diagnosis (DX '05), Monterey, CA, June, 2005.

Design for

Software Health Management

 System-level health management

 Model:

 Faults (failure modes) and discrepancies (observed

anomalies) can be located in different components

 Fault propagation occurs along component

communication links / call chains

 Diagnosis:

 Correlate observations across multiple components,

deduce fault source

 Features: modal, robust, ranked results, multiple faults

Design for

Software Health Management

 System-level health management:

 Multi-component diagnosis

Component Platform

Managed Component

Component CHM

Managed Component

Component CHM

Component Fault Model
Component Fault Model

FM
FM

FM

FM

D
D

FMDD

D

D

D

Diagnoser

M
a

n
a

g
e

r

Design for

Software Health Management

 System-level health management:

 Multi-component, hierarchical mitigation

Dubey, A., S. Nordstrom, T. Keskinpala, S. Neema, T. Bapty, and G. Karsai, "Towards a verifiable real-time,

autonomic, fault mitigation framework for large scale real-time systems", ISSE, vol. 3, pp. 33--52, 2007.

Local: reflex reactions

Regional: mitigation

in an area

Global: system-level

mitigation

Summary

 Software Health Management: A branch of System

Health Management that applies HM techniques to the

controlling software of a larger system.

 Software Fault Tolerance provides useful techniques for

SHM, but SHM reaches beyond SFT as it has a

comprehensive approach to anomaly detection,

diagnosis, mitigation and prognostics.

 Initial progress in the area of component-level and

system-level software health management shows

promise, but it is subject of ongoing research.

