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1 Fusion of Ensemble of Models:
Motivation &Introduction 
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1   Introduction and Motivation

• Definition

• Motivations

– Ceiling of performance of individual classifiers

• Basic Design Criteria

– Topology: Parallel, Serial, Hybrid

– Ensemble Models

– Fuser: 

• Type: Fusion, Selection

• Fuser as a Meta-model

– Static or Dynamic

– Structure & parameters

• Fusion Type

– Integration (Fusion) of Competing Models

– Selection of Complementary Models

• Diversity
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Definition: Model Fusion or Ensemble Learning

• Ensemble Learning is the process by which multiple 

models, such as classifiers or experts, are strategically 

generated and combined to solve a particular 

computational intelligence problem. 

• Ensemble learning is primarily used to improve the
(classification, prediction, function approximation, etc.) 

performance of a model, or reduce the likelihood of an 

unfortunate selection of a poor one. 

• Other applications of ensemble learning include 

assigning a confidence to the decision made by the 

model, selecting optimal (or near optimal) features, data 

fusion, incremental learning, nonstationary learning and 

error-correcting

Source: Robi Polikar (2009), Scholarpedia, 4(1):2776 - doi:10.4249/scholarpedia.2776    http://www.scholarpedia.org/article/Ensemble_learning

1. Definition



Dr. Piero P. Bonissone © All rights Reserved – 2010 PHM Tutorial

Ensemble Learning Example

Source: Robi Polikar (2009), Scholarpedia, 4(1):2776 - doi:10.4249/scholarpedia.2776    http://www.scholarpedia.org/article/Ensemble_learning

Figure 1: Combining an ensemble of classifiers for reducing classification error and/or model selection 

1. Definition
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Motivations
• Worst Classifier Motivation:

– In 2005 Fumera and Roli confirmed theoretically the claim of Tom Dietterich

(2000). They proved that averaging of classifiers outputs guarantees a 

better test set performance than the worst classifier of the ensemble
(IEEE-T on PAMI, June 2005)

• Worst Classifier Motivation:

– Beside avoiding the selection of the worst classifier, under particular 

hypotheses (linear combiners of individual classifiers with unbiased and 

uncorrelated errors), fusion of multiple classifiers can improve the 

performance of the best individual classifiers. In some special cases 

(infinite number of classifiers) fusion can provide the optimal Bayes classifier 
(Tumer and J. Ghosh; 1996).

– This is possible if individual classifiers make “different” errors (diversity).

• Computational Motivation:

– Many learning algorithms suffer from the problem of local minima Neural 

Networks, Decision Trees (optimal training is NP-hard!). Finding the best 

classifier C can be difficult even with enough training data

– Fusion of multiple classifiers constructed by running the training algorithm 

from different starting points can better approximate C

Adapted with permission from: Fabio Roli (2009). Mini Tutorial on Multiple Classifier Systems - School on the Analysis of Patterns 2009

http://www.analysis-of-patterns.net/files/MCS-Part1.pdf

1. Motivations
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Multi Classifiers: Basics

• Architecture/Topology

– Parallel, Serial, Hybrid

• Classifier Ensemble

– Type and number of base classifiers. The ensemble can be subdivided into 

subsets in the case of non parallel architectures

• Fuser

– Integration (Fusion), Selection

Adapted with permission from: Fabio Roli (2009). Mini Tutorial on Multiple Classifier Systems - School on the Analysis of Patterns 2009

http://www.analysis-of-patterns.net/files/MCS-Part1.pdf

1. Basic Design
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MCS Architectures/Topologies

• Parallel topology: multiple classifiers operate in parallel. A 

single combination function merges the outputs of the 

individual classifiers

• Serial/Conditional topology

-Classifiers are applied in succession, with each classifier 

producing a reduced set of possible classes

-A primary classifier can be used. When it rejects a 

pattern, a secondary classifier is used, and so on

• Hybrid topologies

Adapted with permission from: Fabio Roli (2009). Mini Tutorial on Multiple Classifier Systems - School on the Analysis of Patterns 2009

http://www.analysis-of-patterns.net/files/MCS-Part1.pdf

1. Basic Design
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The Classifier Ensemble

•The most common type of MCS, widely used and 

investigated, includes an ensemble of classifiers, named 

“base” classifiers, and a function for parallel combination of 

classifier outputs

•The base classifiers are often algorithms of the same type 

(e.g., decision trees or neural networks), and statistical 

classifiers are the most common choice. 

•The use of hybrid ensembles containing different types of 

algorithms has been investigated much less, as well as 

ensembles of structural, graph-based, classifiers have not 

attracted much attention, although they could be important 

for some real applications.

Adapted with permission from: Fabio Roli (2009). Mini Tutorial on Multiple Classifier Systems - School on the Analysis of Patterns 2009

http://www.analysis-of-patterns.net/files/MCS-Part1.pdf

1. Basic Design
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Fuser (“Combination” Rule)

Two main categories of fuser:

• Selection* functions: for each pattern, just one 

classifier, or a subset, is responsible for the final 

decision. Selection assumes complementary
classifiers

Integration and Selection can be “merged” for 

designing hybrid fuser

• Integration (fusion) functions: for each pattern, all 

the classifiers contribute to the final decision. 

Integration assumes competitive classifiers

Adapted with permission from: Fabio Roli (2009). Mini Tutorial on Multiple Classifier Systems - School on the Analysis of Patterns 2009

http://www.analysis-of-patterns.net/files/MCS-Part1.pdf

1. Basic Design

Note by P. Bonissone: In the case of continuous outputs (model residuals, predictions, etc.) selection might be improved by 
interpolating rather than switching between models– see Case Study 1
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Fuser Type

Type

- Static (Algebraic functions)

- Dynamic (with variable structures and/or parameters)
A meta-model that embodies selection or integration knowledge

Source: Robi Polikar (2009), Scholarpedia, 4(1):2776 - doi:10.4249/scholarpedia.2776    http://www.scholarpedia.org/article/Ensemble_learning

1. Basic Design
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Classifiers “Diversity” vs. Fuser Complexity

Fusion is obviously useful only if the combined classifiers 

are not the same classifier…

Intuition: classifiers with high accuracy and high “diversity”

The required degree of error diversity depends on the fuser 

complexity

•Majority vote fuser: the majority should be always correct

•Ideal selector (“oracle”): only one classifier should be 

correct for each pattern

An example, four diversity levels (A. Sharkey, 1997)
Level 1: no more than one classifier is wrong for each pattern

Level 2: the majority is always correct

Level 3: at least one classifier is correct for each pattern

Level 4: all classifiers are wrong for some patterns

Adapted with permission from: Fabio Roli (2009). Mini Tutorial on Multiple Classifier Systems - School on the Analysis of Patterns 2009

http://www.analysis-of-patterns.net/files/MCS-Part1.pdf

1. Diversity
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Classifiers Diversity Measures: An Example

• Various measures (classifier outputs correlation, Partridge’s 

diversity measures, Giacinto and Roli compound diversity, 

etc.) can be used to assess  how similar two classifiers are 

• For two classifier Di and Dk, L. Kuncheva (2000) proposes 

the use of Yule’s Q statistics:

11 00 01 10

, 11 00 01 10i k

N N N N
Q

N N N N

−
=

+

• Q varies between –1 and 1. Classifiers that tend to 

classify the same patterns correctly will have values of 

Q close to 1, and those which commit errors on different 

patterns will render Q negative
Adapted with permission from: Fabio Roli (2009). Mini Tutorial on Multiple Classifier Systems - School on the Analysis of Patterns 2009

http://www.analysis-of-patterns.net/files/MCS-Part1.pdf

where:

1. Diversity
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2  Example of Model Ensemble 
Fusion: Random Forest
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2   Example of Model Ensemble Fusion: 
Random Forest 

• SC: Probabilistics and Statistics Systems

• Bias and Variance

• Ensembles of classifiers

• Bagging/boosting

• Classification trees

• Random forests (RF)

• RF Design

• Resources

2. Random
Forest



Dr. Piero P. Bonissone © All rights Reserved – 2010 PHM Tutorial

Soft Computing: Probabilistic Systems

Functional Approximation/ 
Randomized Search

Neural
Networks

Bayesian

Belief Nets 

Evolutionary
Algorithms 

Multivalued &
Fuzzy Logics

Dempster-

Shafer 

Probabilistic
& Statistical 
Models 

Approximate 
Reasoning 

CART

Trees 

Random 

Forest

2. Soft 
Computing
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Bias and Variance

Source : Fig. 2.11, T. Hastie, R. Tibshirani, J. Friedman, The Elements of 

Statistical Learning, Chapter 2,  Springer 2009.

•Bias:

– the classifier (regressor) cannot represent the true function 

– i.e., the classifier  (regressor) underfits the data

•Variance:

– variance arises when the classifier overfits the data

•There is often a tradeoff 

•between bias and variance:

2. Bias & 
Variance
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Bias and Variance Example

•red – experimental data

•blue – underlying function

•green - fit

• Large bias, small variance: 

• Small bias, high variance:

2. Bias & 
Variance
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Ensembles of Classifiers

• For any single classifier, there is typically a tradeoff between bias and variance. 

• Might we achieve high accuracy by combining ensembles of high variance (i.e., 

uncorrelated), low bias classifiers?

– variance is reduced by combining outputs

– bias remains low

• Basic idea: 

Train a set of diverse classifiers (or regressors) and combine their output

• Math: 
– For independent identically distributed (iid) variables:

The average of B iid variables, each with variance σ2, has a variance

– For identically distributed (id) variables:

The average of B id variables with positive pairwise correlation ρ, each with variance σ2, has a variance:

when B is large, variance is: 

21
σ

B

22 )1(
σ

ρ
ρσ

B

−
+

2ρσ≈

2. Bias & 
Variance

Source : T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning, Chapter 15 Springer 2009.
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Example: Data Generation

• blue – underlying function

• black – data with noise

2. Bias & 
Variance
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Case 1a: Large Bias…

• red - fit

So, what happens if we run it multiple times?

2. Bias & 
Variance
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Case 1b: Large Bias… Small Variance

• black – multiple fits

• red – average of fits

poor ensemble fit

2. Bias & 
Variance
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Case 2a: Small Bias…

• red - fit

So, what happens if we run it multiple times?

2. Bias & 
Variance
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Case 2b: Small Bias… …High Variance

Fantastic ensemble fit

• black – multiple fits

• red – average of fits

2. Bias & 
Variance
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Bagging (Parallel Topology)

• Bootstrap AGGregation

– create multiple bootstrap samples (samples of the same size, with 

replacement)

– train a classifier on each sample

– combine output of classifiers by voting

• Good for unstable (with large variance) classifiers – otherwise different 

classifiers aren't very diverse. 

– e.g., good with decision trees

– e.g., bad with naive Bayes

Key idea: reduce the variance by averaging many noisy 

but approximately unbiased models

2. Bagging & 
Boosting 
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Boosting

• Family of methods (several different approaches):

– sequential production of classifiers

– each classifier is dependent on the previous one

– examples that are incorrectly predicted in previous classifiers are 

chosen more often or weighted more heavily

• Description of Boosting from: Robi Polikar (2009), Scholarpedia, 4(1):2776

“… in boosting, resampling is strategically geared to provide the most informative training data 

for each consecutive classifier. In essence, each iteration of boosting creates three weak 

classifiers: the first classifier  C1 is trained with a random subset of the available training 

data. The training data subset for the second classifier  C2 is chosen as the most informative 

subset, given C1. Specifically, C2 is trained on a training data only half of which is correctly

classified by C1, and the other half is misclassified. The third classifier C3  is trained with 

instances on which C1  and  C2 disagree. The three classifiers are combined through a three-

way majority vote.”

• Good for relatively stable (with low variance) classifiers. 

– e.g., good with naive Bayes

– e.g., bad with decision trees

2. Bagging & 
Boosting 
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• Binary Recursive Partitioning

– binary: split parent node into two child nodes

• look at all features at each split, and choose best one

– recursive: each child node can be treated as parent node

– partitioning: data set is partitioned into mutually exclusive subsets in 

each split 

– prune tree to get good generalization

Classification (Regression) Trees 
(CART, C4.5,etc.)

2. Classification
Trees
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30

• Classification and Regression Tree (CART)

– Algorithm defined by Breiman et al in 1984

– Creates a binary decision tree to classify the data into one of 2n 

linear regression models to minimize the Gini index for the current 

node c:

Gini(c) = 1 - ΣΣΣΣ Pj2 = ΣΣΣΣ Pi Pj (for different i, j)

where:

• n is the depth of the tree 

• pj is the probability of class j in node c 

• Gini(c) measure the amount of “impurity” (incorrect 

classification) in node c

• For binary outcomes, Gini(c) has minima at 0 and maxima at 0.5

CART Description

For regressions, CART minimizes sum of variance over all leaves

2. CART
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31

Functions commonly used for classification:

Misclassification error

Gini Index

Cross-Entropy
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Source: The Elements of Statistical Learning - Data Mining, Inference, and Prediction (Ch 9 )Trevor Hastie, Robert Tibshirani, Jerome Friedman, Springer 

Classification (Regression) Trees (CART)
Performance Function

measures the amount of “impurity

2. CART
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High 12%

Low  88%

High 17%

Low  83%

Is BP <= 91?

High 70%

Low  30%

High 11%

Low  89%

High 50%

Low  50%

High 2%

Low  98%

High 23%

Low  77%

Is age <= 62.5?Classified as high risk

Classified as low risk

Classified as high risk Classified as low risk

Is ST present

CART Construction

Yes No

No

No

Yes

Yes

2. CART
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Random Forests

• Bagging decision trees with “randomization injection”.

– create multiple bootstrap samples (samples of the same size, with 

replacement)

– train a decision tree on each sample

• at each node, select a random subset of  m variables to split on

• grow trees to maximum depth (i.e., no pruning)

– combine resulting trees by voting

• Properties of Random Forests (RF):

– test set error rates (modulo a little noise) are monotonically decreasing 

and converge to a limit

• i.e., there is no overfitting as the number of trees increases

• The key to accuracy is low correlation (high variance across trees, 

achieved by small values of m) and low bias:

– to maximize variance, randomness in variable selection is introduced

– to minimize bias, trees are grown to maximum depth.

2. Random 
Forest (RF)
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RF Construction

…

2. RF Design
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Growing Each Tree

Each tree is grown as follows: 

1. If the number of cases in the training set is N, sample N cases at random -

with replacement - from the original data. This sample will be the training 

set for growing the tree

2. If there are p input variables, a number m<<p is specified such that at each 

node, m variables are selected at random out of the M 

- The best split on these m is used to split the node. 

- The value of m is held constant during the forest growing

3. Each tree is grown to the largest extent possible. There is no pruning

2. RF Design
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Prediction by plurality voting

The forest consists of B trees. 

• To classify a new object from an input vector, we put the input 
vector down each of the trees in the forest. 

• Each tree gives a classification, and we say the tree "votes" for that 
class

• The forest chooses the classification having the most votes (over all 
the trees in the forest). 
– Class prediction: Each tree votes for a class; the predicted class C for 

an observation is the plurality, 

maxC Σk [fk(x,T) == C]

– Regression random forest: predicted value is the average prediction

2. RF Design
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Random Forest Algorithm

Source: T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning, Chapter 15, Springer

2. RF Design
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Random Forest: 
Classification and Regressions

RF for Classification and Regressions

When used for classification, a random forest obtains a class vote 

from each tree, and then classifies using majority vote.

When used for regression, the predictions from each tree at a 

target point x are simply averaged. 

Recommendations default values of m and MinNodeSize 

Classification: 

minimum node size : 1

Regression : 

minimum node size : 5

 pm =

 3/pm =

2. RF Design
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Out-of-bag (oob) error estimate

• In RF, there is no need for cross-validation or a separate 

test set to get an unbiased estimate of the test set error. It is 

estimated internally, during the run, as follows: 

– Each tree is constructed using a different bootstrap sample from the 

original data. About one-third of the cases are left out of the bootstrap 

sample and not used in the construction of the kth tree.

– Put each case left out in the construction of the kth tree down the kth tree 

to get a classification. In this way, a test set classification is obtained for 

each case in about one-third of the trees. 

– At the end of the run, take j to be the class that received most of the 

votes every time case n was oob. 

– The proportion of times that j is not equal to the true class of n averaged 
over all cases is the oob error estimate. This has proven to be unbiased 

in many tests. 

Source: www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm

2. RF Design
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Variable Importance

Random forests also use the oob samples to construct a variable 
importance measure, apparently to measure the prediction strength of 
each variable. 

(1) When the bth tree is grown, the oob samples are passed down the tree, 
and the prediction accuracy is recorded. 

(2) Then the values for the jth variable are randomly permuted in the oob
samples, and the accuracy is again computed. 

(3) The decrease in accuracy as a result of this permuting is averaged over all 
trees, and is used as a measure of the importance of variable j in the random 
forest. 

These are expressed as a percent of the maximum.

The randomization effectively voids the effect of a variable, much like setting 
a coefficient to zero in a linear model. 

Source: T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning, Chapter 15, Springer

2. RF Design
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Variable Importance

Source: T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning, Chapter 15, Springer

2. RF Design
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Forest Error Rate

The forest error rate depends on two things:

The correlation between any two trees in the forest. Increasing the 
correlation increases the forest error rate. 

The strength of each individual tree in the forest. A tree with a low error 
rate is a strong classifier. Increasing the strength of the individual 
trees decreases the forest error rate. 

Reducing m reduces both correlation and strength. 
Increasing it increases both. 
Somewhere in between is an "optimal" range of m - usually quite wide. 

Notes on parameter m
- m is the only adjustable parameter to which random forests is 
somewhat sensitive. 

- Using the out of bag (OOB) error rate a value of m in the range
can quickly be found.  

- Typically this range is quite broad.  Good default values for m

2. RF Design
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Some Properties of RF

• Bias:

– The bias of RF is the same of any of the individual Sampled trees

– Prediction improvements in RF are solely a result of variance reduction

• RF accuracy is as good as Adaboost (and sometimes better.)

• It's relatively robust to outliers and noise.

• It's faster than bagging or boosting.

• It gives useful internal estimates of error, strength, correlation and 

variable importance.

• It's simple and easily parallelized.

2. RF Design

RF = Bagging + Random Subspace Method (Ho 1998 ) at every node
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Random Forest Sources

• T. Hastie, R. Tibshirani, J. Friedman, The 

Elements of Statistical Learning, Chapter 15, 
Springer, 2009

• L. Breiman (2001). Random forests. Machine 

Learning 45(1), 5-32.

http://www-stat.stanford.edu/~tibs/ElemStatLearn/index.html

http://www-stat.stanford.edu/~hastie/Papers/ESLII.pdf

2. RF Sources
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Random Forest Sources (cont.)
Free software implementations of random forests. 

Google Code implementations (most current)
• http://code.google.com/p/randomforest-matlab/

• http://code.google.com/p/fast-random-forest/

randomForest package in R, maintained by Andy Liaw, available from the 
CRAN website (cran-r.project.org)

This allows both split-variable selection, as well as sub-sampling.

Adele Cutler maintains a random forest website 
http://www.math.usu.edu/∼∼∼∼adele/forests/

where (as of August 2008) the software written by Leo Breiman and Adele 
Cutler is freely available

The Weka machine learning archive 
http://www.cs.waikato.ac.nz/ml/weka/

at Waikato University, New Zealand, offers a free java implementation of 
random forests.

2. RF Sources
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3  PHM Models
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PHM: A Comprehensive View
Health Assessment

Warnings & Alerts, 
Change detection time

(3) Anomaly 
Detection

Subsystem Health 
Assessment 

(η, Deterior. Index)

(5) Diagnostics

Time-stamped Features, 
Event Messages,
Parametric Data

Raw Sensor Data

(2) Data Pre-
Processing

(6) Prognostics

On-board Tactical Control

(7) Fault

Accommodation
Corrective Action 
Identification

Part Level Health RUL 
Assessment

(8) Logistics

Decision 

Engine

Mission 
Objectives  & 
Requirements

Available 
Reconfigurations

Parts Availability

Available Assets

Other Inputs

Operational
Impact 

Assessment

Maintenance

Actions / 
Plans

Supply Chain

Actions / 
Plans

Inventory
Assessment

Readiness 
Improvement 
Assessment

Off-board Strategic Planning

(1) Remote
Monitoring

Asset Operator

(4) Anomaly 
Identification

Anomaly Source ID:
- System
- Sensor
- Operator
- Control
- Reference
- Model

Health Management

Subsystem 
Failure Modes

Remaining 
Useful Life (RUL)

Prediction

Classification

Operational
Actions / 
Plans

Detection

Health Assessment

Warnings & Alerts, 
Change detection time

(3) Anomaly 
Detection

Subsystem Health 
Assessment 

(η, Deterior. Index)

(5) Diagnostics

Time-stamped Features, 
Event Messages,
Parametric Data

Raw Sensor Data

(2) Data Pre-
Processing

(6) Prognostics

On-board Tactical Control

(7) Fault

Accommodation
Corrective Action 
Identification

Part Level Health RUL 
Assessment

(8) Logistics

Decision 

Engine

Mission 
Objectives  & 
Requirements

Available 
Reconfigurations

Parts Availability

Available Assets

Other Inputs

Operational
Impact 

Assessment

Maintenance

Actions / 
Plans

Supply Chain

Actions / 
Plans

Inventory
Assessment

Readiness 
Improvement 
Assessment

Off-board Strategic Planning

(1) Remote
Monitoring

Asset Operator

(4) Anomaly 
Identification

Anomaly Source ID:
- System
- Sensor
- Operator
- Control
- Reference
- Model

Health Management

Subsystem 
Failure Modes

Remaining 
Useful Life (RUL)

Prediction

Classification

Operational
Actions / 
Plans

Detection

P HM

3. PHM
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Focus on the P of PHM: From Anomaly 
Detection to Diagnostics and Prognostics

Time to Failure 
Threshold (T2F)Prognostics

Time and Type of 
Anomaly

Anomaly 
Detection

Subsystem 
Failure Mode(s)

Subsystem Health 
Assessment 

(η, Deterior. Index)

Diagnostics

Time of Early Warning

Failure Mode Diagnostics

T2F Prediction

0 50 100 150 200 250 300 350 400 450 500 550
0
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X
i(
t)
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X
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X
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X
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X
i(
t)
 �� ��

X
i(
t)
 �� ��

X
i(
t)
 �� ��

X
i(
t)
 �� ��

X
i(
t)
 �� ��

X
i(
t)
 �� ��

Time of Anomaly

Fault/Failure 

Mode 
Signature 

Time of 

Fault

Time of 

Fault

T2F

Failure Mode 

induced Life Decay

cycles

H
e
a
lt
h
 I
n
d
e
x

Anomaly

Unit #

Time

Type

T2F Value &

UncertaintyPHM Models
– Anomaly Detection: 1-class classification
– Diagnostics: Multi-class classification
– Prognostics: Prediction

3. PHM
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DiagnosticsData 
Acquisition

Anomaly 
Detection

Control / 
Advisory 

Generation

Feedback & 

Learning
Prognostics Optimization

PHM Capabilities and Enabling Technologies

Features
Generation/Selection
Manual/Automated

Anomaly Detection (AD)
Normal / Abnormal
structures (trajectory, 
clusters, states, patterns) 
Anomaly Resolution / Id.
Resolving sensors faults, 
op. transients, model
Faults, system faults 

State Interpretation
Manual/Automated 
Classification
Fault mode Id.
Health Assessment

RUL Prediction 
Automated forecast of: 
- Deterioration level 
- RUL
Health Assessment 
Projection
Lifing
Fault propagation

On-board Fault 
Accommodation
Off-board DSS

Maintenance Optimization 
Workscope (build level)
Shop scheduling
Logistics Optimization
Supply Chain Mgmt
Operational Optimization
Asset/mission allocation

Performance metrics 
dashboard
Ground truth acquisition
Structured feedback

On-platform sensors
Data recorders 

Off-platform sensors
Inspection / NDE

Data repository
Data de-noising
Data smoothing
Data compression
Data transmission

Functions/Enabling Technologies

On-platform sensors
lifecycle/maintenance 

Off-platform sensors
lifecycle/maintenance 

Obsolescence challenges

(Semi-) Automate new  
requirements acquisition
Learning vs adaptation
-Testing adaptivity 
-Integr. adaptations in new  
releases & sharing

-Tracking region of competence

Automated spec gen.
-Autonomous V&V

Anomaly Detectors 
update 
Update training sets 
Recompile detectors
Re-assess meta-level   
(thresholds & costs)     
to re-tune fusion

Diagnostics Models 
updates 
Update training sets 
Recompile classifiers
Re-assess meta-level   
(misclassification costs)     
to re-tune fusion

Prognostics Models 
updates 
Update training sets 
Recompile predictors
Re-assess meta-level   
(misclassification costs)     
to re-tune fusion

Optimization Models 
updates 
Update training sets 
Re-assess fitness (cost)  
function parameters
Evolve/Compute new 
optimization models

DSS Models 
updates 
Update DSS models 

Model Lifecycle Management

Stage 1: AD + RM&D Stage 2: Prognostics Stage 3: Control & Optimization 

Uncertainty Management

Sensor Fusion 
Extended KF

Feature Fusion
Hierarchy of local AD 
models
Fusion of global (or 
hierarchies of) AD models 

Classifier Fusion Predictors Fusion
Reduce bias & variance

Uncertainty in DSS Robust optimization 
Functional approximations
error bounds; extrapolations
MCDM: Tolerance/fuzziness in
dominance

Evaluation Uncertainty 
Stochastic simulations
(confidence interval)
Noisy ground truth
(consistency checks)

3. PHM
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4 Fusion for PHM Models
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4.1.  Case Study 1:

Selection of ^ Complementary 
AD Models

Reference: “P. Bonissone, X Hu, R. Subbu (2009) A Systematic PHM Approach for Anomaly Resolution: 

A Hybrid Neural Fuzzy System for Model Construction, Proc. PHM 2009, San Diego, CA, Sept 27-Oct 1, 2009. 

- [GE GR Technical Report, 2009, GRC839, Sept. 2009 ]

Interpolation Among
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4.1 Anomaly Detection (AD) - 1class classification

- SC Technologies for AD 

- Example of AD for Aircraft Engines

- Design: 

Offline MH (EA)

- Run-time: 

Online MH (Fuzzy Sup.)

Object-level (AANN)

- Evolutionary Search for Designing a F-IBM

- Experiments
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Functional Approximation/ 
Randomized Search

Probabilistic 
Models 

Neural
Networks

Fuzzy

Systems 

Evolutionary
Algorithms 

Multivalued &
Fuzzy Logics

Fuzzy Logic 

Controllers 

Approximate 
Reasoning 

S

S

L

L

S

L

S

L

LN

SN

SP

LP
Defuzzification

Inter-
polationFuzzy 

Rules

State Variables Output Variable

Example: Fuzzy Logic Controller

Multivalued

Algebras 

4.1 SC for ADSoft Computing Technologies for AD:
Fuzzy Systems
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Probabilistic 
Models 

Multivalued &
Fuzzy Logics

Feedforward

NN 

RBF

Recurrent

NN

Neural
Networks

Hopfield SOM ART

Functional Approximation/ 
Randomized Search

Approximate 
Reasoning 

Evolutionary
Algorithms 

Single/Multiple

Layer Perceptron

x1

x2

y1

y2

Example of Feedforward NN

4.1 SC for ADSoft Computing Technologies for AD
Neural Systems



Dr. Piero P. Bonissone © All rights Reserved – 2010 PHM Tutorial

Probabilistic 
Models 

Multivalued &
Fuzzy Logics

Neural
Networks

Evolution 

Strategies

Evolutionary 

Programs

Genetic

Progr.

Genetic 

Algorithms

Evolutionary
Algorithms 

Approximate 
Reasoning 

Functional Approximation/ 
Randomized Search

Example of Binary- Encoded GA

10010110
01100010
10100100
10011001
01111101

. . .

. . .

. . .

. . .

Current
generation

10010110
01100010
10100100
10011101
01111001

. . .

. . .

. . .

. . .

Next
generation

Selection Crossover Mutation

Elitism

4.1 SC for ADSoft Computing Technologies for AD
Evolutionary Systems
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Probabilistic 
Models 

Fuzzy

Controller

Multivalued &
Fuzzy Logics

Approximate 
Reasoning 

Neural
Networks

Functional Approximation/ 
Randomized Search

Evolutionary
Algorithms 

Auto-Associative

NN 

Genetic

Algorithm

4.1 SC for ADSoft Computing Technologies for AD
Hybrid Systems

AANN-3LowLowMedium

AANN-2MediumMediumHigh

AANN-1HighHighHighR1

RULES R2

R3

Model #Mach #Amb. 
Temp.

AltitudeState 
Variables

AANN-3LowLowMedium

AANN-2MediumMediumHigh

AANN-1HighHighHighR1

RULES R2

R3

Model #Mach #Amb. 
Temp.

AltitudeState 
Variables

( )
11,1

InputV

( )
33,3

InputV

( )
11,2

InputV

( )
11,3

InputV

AANN-3LowLowMedium

AANN-2MediumMediumHigh

AANN-1HighHighHighR1

RULES R2

R3

Model #Mach #Amb. 
Temp.

AltitudeState 
Variables

AANN-3LowLowMedium

AANN-2MediumMediumHigh

AANN-1HighHighHighR1

RULES R2

R3

Model #Mach #Amb. 
Temp.

AltitudeState 
Variables

( )
11,1

InputV ( )
11,1

InputV

( )
33,3

InputV ( )
33,3

InputV

( )
11,2

InputV ( )
11,2

InputV

( )
11,3

InputV ( )
11,3

InputV

0 0.125 0. 25 0. 375 0. 50 0. 625 0. 75 0. 875 1.000 0.125 0. 25 0. 375 0. 50 0. 625 0. 75 0. 875 1.00

Altitude

Ambient Temperature

Mach #

0 0.125 0. 25 0. 375 0. 50 0. 625 0. 75 0. 875 1.000 0.125 0. 25 0. 375 0. 50 0. 625 0. 75 0. 875 1.00

0 0.125 0. 25 0. 375 0. 50 0. 625 0. 75 0. 875 1.000 0.125 0. 25 0. 375 0. 50 0. 625 0. 75 0. 875 1.00

Fuzzy Supervisory Rule Set

Fuzzy Supervisory Term Set

∑∑
= =

=
n

i

m

j i

ij

X

R

nm
FOM

1 1

2)(
1 Pop.(i+1)

Mutations 

Elitist

(best from Pop i)
P(selection)FitnessPop.(i)

Individual
Decoder

Uniform Mutation
Gaussian Mutation

Original

Best

EVOLUTIONARY ALGORITHM

Individual Fitness 
Function

Individual
Evaluation

Individual
Encoding
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SC Techniques for Offline MH’s,
Online MH’s, & Object-level Models

Problem 

Instance 

Problem 

Type 

Model Design 

(Offline MH’s)  

Model 

Controller 

(Online MH’s)  

Object-level models References 

Anomaly Detection 

(System)  

Classification Model T-norm 

tuning 

Fuzzy 

Aggregation 

Multiple Models: SVM, 

NN, Case-Based, MARS 

[24] 

Anomaly Detection 

(System) 

Classification Manual design Fusion  Multiple Models: 

Kolmogorov Complexity, 

SOM. Random Forest, 

Hotteling T2, AANN 

[25, 26] 

Anomaly Detection 

(Model) 

Classification 

& Prediction 

EA tuning of 

fuzzy supervisory 

termset 

Fuzzy 

Supervisory 

Multiple Models: 

Ensemble of AANN’s 

[27, 28] 

Insurance 

Underwriting: Risk 

management  

Classification EA Fusion Multiple Models:  

NN, Fuzzy, MARS,  

[29, 30] 

Load, HR, NOx 

forecast 

Prediction Multiple CART 

trees  

Fusion Multiple Models: 

Ensemble of NN’s 

[31, 34] 

Aircraft engine 

fault recovery 

Control/Fault 

Accommodati

on 

EA tuning of 

linear control 

gains 

Crisp 

supervisory 

Multiple Models (Loop): 

SVM + linear control 

[14] 

Power plant 

optimization 

Optimization Manual design Fusion Multiple Models (Loop): 

MOEA + NN’s 

[32, 33, 34] 

Flexible mfg. 

optimization 

Optimization Manual design Fuzzy 

supervisory 

EA [10, 35] 

 

[As listed in 

Bonissone 2010]

Online MH’s

Object-level 
(local) 

Problem 
Solver

Object-level 
(local) 

Problem 
Solver

Offline MH’s

…

Online MH’s

Object-level 
(local) 

Problem 
Solver

Object-level 
(local) 

Problem 
Solver

Offline MH’s

…

Run-timeDesign
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Anomaly Detection

 

Sensor 
Data

Operational 
State Vector

Engine Physics-based Simulator

Run-Time Anomaly Detection Model

Online MH:

Fuzzy 

Supervisory 

System

Residual Analysis

AANN-3LowLowMedium

AANN-2MediumMediumHigh

AANN-1HighHighHighR1

RULES R2

R3

Model #Mach #Amb. 
Temp.

AltitudeState 
Variables

AANN-3LowLowMedium

AANN-2MediumMediumHigh

AANN-1HighHighHighR1

RULES R2

R3

Model #Mach #Amb. 
Temp.

AltitudeState 
Variables

( )11,1 InputV

( )33,3 InputV

( )11,2 InputV

( )11,3 InputV

0 0.125 0. 25 0. 375 0. 50 0. 625 0. 75 0. 875 1.000 0.125 0. 25 0. 375 0. 50 0. 625 0. 75 0. 875 1.00

Altitude

Ambient Temperature

Mach #

0 0.125 0. 25 0. 375 0. 50 0. 625 0. 75 0. 875 1.000 0.125 0. 25 0. 375 0. 50 0. 625 0. 75 0. 875 1.00

0 0.125 0. 25 0. 375 0. 50 0. 625 0. 75 0. 875 1.000 0.125 0. 25 0. 375 0. 50 0. 625 0. 75 0. 875 1.00

Offline MH: 
Evolutionary Algorithm

Fuzzy Supervisory Rule Set

Fuzzy Supervisory Term Set

Compute residuals between 

nine simulated sensors 

& interpolated AANN’s output

Compute Fitness Function 

based on aggregate 

of nine sensor residuals

Evolutionary Algorithm 

based on Fitness Function

Fuzzy Supervisory 

interpolates among

AANN’s using termset

Individual in EA 

population defines 

Fuzzy Sup. Termset

Object 

Models: 

AANN’s

Operational

Envelope

AANN-1 AANN-2 AANN-3

Multiple Models:

Ensemble of AANN’s

Fuzzy SupervisoryEA tuning of fuzzy 

supervisory termset

1-class 

Classification

Anomaly 

Detection

Object-level modelsModel Controller 
(Online MH’s)

Model Design (Offline 
MH’s)

Problem TypeProblem 
Instance

Reference: "A Systematic PHM Approach for Anomaly Resolution: A Hybrid Neural Fuzzy System for Model Construction", 

Proc. PHM 2009, San Diego, CA, Sept 27-Oct 1, 2009. - [GE GR Technical Report, 2009, GRC839, Sept. 2009]

4.1 AD 
Model Design
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Ensemble of Complementary AD models with Simulated 

GE90 Aircraft Engines (Detailed Description )

- Potential Sources of Anomalies

- Dynamic System and Sensors Simulation

- AD Model (AANN)

- Experiment Setup

- Segmentation of the Operating Space 

- Experiments

1st - 3 local models

2nd - 1 Global Model

3rd - 3 local Models + Supervisory Model
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Dynamic SystemActuator YPhysical

XPhysical

State

Estimator

UPhysical

XSensed
YSensed

UComputed

XEstimate

Controller 

Design

Process

AD Model

Design

Process

Operator

/ Pilot

Real-valued,
time-stamped data

Categorical, 
time-stamped 

data

Sensors

Event Log 

Generator Design

Process 

Reference

Generator 

Design

Process

Reference

Controller
Reference 

Generator

Operational

Log Generator

Operational  Log 

Generator Design

Process 

Operations Control Monitoring

Anomaly Detection
Model

Event/Message

Log Generator

Potential Sources of Anomalies

Transients
System Failures
Sensor Failures
Model Inadequacy

Assuming perfect controls System Failures
Sensor Failures
Model Inadequacy

4.1 Anomaly 
Sources
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Dynamic System: Simulated Aircraft Engine [GE 90] 4.1 Dynamic System 
& Sensors

Physics-Based Simulation
–CLM: Component Level Model is a physics-based 

thermodynamic model widely used to simulate the 

performance of a commercial aircraft engines.

–Flight Regime: Flight conditions, such as altitude, 

Mach number, ambient temperature, and engine fan 

speed, and a large variety of model parameters, such as 

module efficiency and flow capacity are inputs to the 

CLM 

–Outputs: CLM’s outputs are the values for pressures, 
core speed and temperatures at various locations of 

engine, which simulate sensor measurements.

–Noise: Realistic values of sensor noise can be added 

after the CLM calculation. 

Dynamic SystemActuator YPhysical

XPhysical

State

Estimator

UPhysical

XSensed
YSensed

UComputed

XEstimate

Controller 

Design

Process

AD Model

Design

Process

Operator

/ Pilot

Real-valued,
time-stamped data

Categorical, 
time-stamped 

data

Sensors

Event Log 

Generator Design

Process 

Reference

Generator 

Design

Process

Reference

Controller
Reference 
Generator

Operational

Log Generator

Operational  Log 

Generator Design

Process 

Operations Control Monitoring

Anomaly Detection

Model
Event/Message

Log Generator

  

Cycledeck 
Model 

Sensor  
measurements 

Flight Conditions 

… 
Module parameters  
(Efficiency & Flow  
capacity) … 
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Basic AD Model: Auto-Associative Neural Network 4.1 AD Model

Definition/Properties 
AANN computes the largest Non-Linear Principal 
components (NLPCA) - the nodes in the intermediate 
layer – to identify and remove correlations among 
variables. 

NLPCA uncover both linear and nonlinear correlations, 
without restriction on the type of the nonlinearities 
present in the data.

Computation
Traditional NN training with back-propagation

Variable Contribution
Residuals magnitude/distribution

Dynamic SystemActuator YPhysical

XPhysical

State

Estimator

UPhysical

XSensed
YSensed

UComputed

XEstimate

Controller 

Design

Process

AD Model

Design

Process

Operator
/ Pilot

Real-valued,

time-stamped data
Categorical, 

time-stamped 
data

Sensors

Event Log 

Generator Design

Process 

Reference

Generator 

Design

Process

Reference

Controller
Reference 
Generator

Operational

Log Generator

Operational  Log 

Generator Design

Process 

Operations Control Monitoring

Anomaly Detection

Model
Event/Message

Log Generator

Rationale 
The Auto-Associative Neural Network 
(AANN) leverages covariance information 
like other approaches (SRC and T2). The 
AANN also produces sensor estimated 
values to replace the ones generated by 
faulty sensors. This approach provides a 
better discrimination between sensor faults 
and system component faults.
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Dynamic SystemActuator YPhysical

XPhysical

UPhysical

XSensed
YSensed

UComputed

XEstimate

Operator
/ Pilot

Real-valued,
time-stamped data

Reference

Controller
Reference 

Generator

Operational

Log Generator

Monitoring/Simulation

Event/Message

Log Generator

Experiment Setup
Operations Control

Raw Sensor
Measurement

Sensor
Estimation

-

Residual Analysis
(Aggregate Measure)

OK
Abnormal

Type of Anomaly (system, sensor)
Time of Anomaly
Anomaly Severity

Sensors

State

Estimator

Anomaly Detection

4.1 Experiments
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Segmentation of the Operating Space
Three regions in the Flight Envelops

1 12 2

33

4.1 Operating 
Space
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Experiments
Experiments Settings

– We used a steady state CLM model for a commercial, high-bypass, twin-spool, 
turbofan engine.

– We can manipulate flight conditions to simulate different operation regimes (i.e. 

flight envelops of aircraft) and generate data corresponding to them

1st Experiment

Three AANN’s: One for each region in the flight envelop (region)

Vary ALT, Mach and Tamb ->1000 normal operating pts for each region

Run each operation point through CLM to generate a 9x1 sensor vector 

900 points for training (200 for validation); 100 points reserved for test

Results: Each local model performs very well (better than global model) in region of 

competence, and performs poorly (outside its limited scope)

2nd Experiment

One Global AANN

Train on same 2700 training data points from experiment 1

Run each operation point through CLM to generate a 9x1 sensor vector

Test on the left 300 points

Results: Global model performs fairly across all three regions - shows higher 

variance than each local AANN operating within its scope

3rd Experiment

Three AANN’s: One for each region in the flight envelop

A Fuzzy Supervisory Model (FSM) to interpolate among local AANN’s

Results: Hierarchical structure performs very well across all regions – including 

transitions

AANN2
AANN1

AANN3

4.1 Experiments
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Experiment 1

• Vary ALT, Mach and Tamb ->1000 normal operating pts for each flight 

envelop

• Run each operation point thru CLM to generate a sensor vector (9x1)

• Three AANN’s: One for each region in the flight envelop

• 900 points for training (200 for validation); 100 points reserved for test

Goal: Create three local models 
Results: High performance when in scope 
inadequate performance when out of scope

4.1 Experiment 1
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Raw Data from Flight Env 1

4.1 Experiment 1
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Residuals: test set from FE1 on AANN1
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Correct Scope of local model: Small Residuals!

6x 10-2

4.1 Experiment 1
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Residuals: test set from FE3 on AANN3
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4.1 Experiment 1
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Residuals: test set from FE2 on AANN1
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4.1 Experiment 1
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Experiment 2

• One global AANN

• Train on the 2700 training data points from experiment 1

• Test on the left 300 points

Goal: Create one Global model
Results: Mediocre performance across entire space 
– better than worse performance of local models

4.1 Experiment 2
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Test data from FE1
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4.1 Experiment 2



Dr. Piero P. Bonissone © All rights Reserved – 2010 PHM Tutorial

Test data from FE3
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4.1 Experiment 2
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Test data from FE2
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4.1 Experiment 2
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Experiments (con’t) 4.1 Experiment 3

3rd Experiment
- Three AANN’s: One for each region in the flight envelop

- Fuzzy Supervisory Model (FSM) to interpolate among local AANN’s

- Simulate the change of flight conditions

FE1: 200 pts

FE1 → FE2: 200 pts 

FE2: 200 pts

FE2 → FE3: 200 pts

FE3: 200 pts

- Test simulated data on Fuzzy Supervisory Model with AANN1, AANN2, AANN3

- Intentionally make transitions in state space not covered by any pre-trained 

flight envelop

Results: Hierarchical structure performs very well across all regions – including 

transitions

Goal: Create a Fuzzy Supervisory Model for three local AANN models 
Results: Higher performance across all regions
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FE1 FE2 FE3
Transition Transition

Operating Regime Transition

Flight Envelop Transitions 4.1 Operating 
Space

Crisp Model-Transition

Fuzzy  Model-Transition
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Transition Management Using Fuzzy Supervisory Model

Raw Sensor
Measurement

X
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w’i= wi/(w1+w2+w3)wi= Πj=1..3 Xij(Ii)

Network ImplementationAANN Interpolation by Fuzzy Supervisory
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Figure Of Merit (FOM)

is the number of the variables (sensors) 
is the number of data points (measurement)       

is the residual between true measurement and   
AANN estimation, 

is the mean of the true measurement

n

m

ijR

iX

is the number of the variables (sensors) 
is the number of data points (measurement)       

is the residual between true measurement and   
AANN estimation, 

is the mean of the true measurement

n

m

ijR

iX

4.1 Design
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AANN-1 AANN-2

AANN-3 Fuzzy Supervisory Model

Residuals for each AANN and for hierarchical system (with FSM) 

FSM provides great transition management across regions 

4.1 Results Exp. 3
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- Design Choices in the Fuzzy Supervisory Model (FSM)

- Tuning the Fuzzy Supervisory Model

- Manual tuning of FSM State Partitions

- Automated tuning of FSM State Partitions

Design Tuning 4.1 Design



Dr. Piero P. Bonissone © All rights Reserved – 2010 PHM Tutorial

Manual FLS Tuning: Membership function parameters

FOM = 7.25FOM = 9.64

Manual 

Tuning

(extending AANN1 scope)

4.1 Design

Manual tuning, extending AANN1’s scope, lead to a 25% FOM improvement 
We could use FOM for gradient or evolutionary parametric tuning
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Sensor 
Data

Operational 
State Vector

Engine Physics-based Simulator

Run-Time Anomaly Detection Model

Fuzzy 

Supervisory 

System

Residual Analysis

AANN-3LowLowMedium

AANN-2MediumMediumHigh

AANN-1HighHighHighR1

RULES R2

R3

Model #Mach #Amb. 
Temp.

AltitudeState 
Variables

AANN-3LowLowMedium

AANN-2MediumMediumHigh

AANN-1HighHighHighR1

RULES R2

R3

Model #Mach #Amb. 
Temp.

AltitudeState 
Variables

( )11,1 InputV

( )33,3 InputV

( )11,2 InputV

( )11,3 InputV

0 0.125 0. 25 0. 375 0. 50 0. 625 0. 75 0. 875 1.00

Altitude

Ambient Temperature

Mach #

0 0.125 0. 25 0. 375 0. 50 0. 625 0. 75 0. 875 1.00

0 0.125 0. 25 0. 375 0. 50 0. 625 0. 75 0. 875 1.00

Evolutionary Algorithm

Tuning the FS termset in 

a wrapper approach

Fuzzy Supervisory Rule Set

Fuzzy Supervisory Term Set

Compute residuals between 

nine simulated sensors 

& interpolated AANN’s output

Compute Fitness Function 

based on aggregate 

of nine sensor residuals

Evolutionary Algorithm 

based on Fitness Function

Fuzzy Supervisory 

interpolates among

AANN’s using termset

Individual in EA 

population defines 

Fuzzy Sup. Termset

Operational
Envelope

AANN-1 AANN-2 AANN-3

Automated FLS Tuning with an EA 
using a Wrapper Approach 

4.1 Design
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1x

3x

[ ]
5,...,1,5,...,1 LLxx

Encoding the abscissa of the slope intersections (xi) 
and the lengths of the bases of each triangle (Li) as an 
individual in the Evolutionary Algorithm population

2x

4x 5x

Altitude

Tamb

Mach #

1L

2L 3L

4L 5L

Automated FLS Tuning:  Encoding Trapezoidal 
Membership functions

1x

4.1 Design
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Evolutionary Search for Tuning a Fuzzy Supervisory 
System using a Wrapper Approach 

∑∑
= =

=
n

i
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j i

ij

X

R

nm
FOM

1 1

2)(
1

[ ]5,...,1,5,...,1 LLxx

CBR EVALUATION

Pop.(i+1)

AD MODEL EVALUATION

Mutations 

Elitist

(best from Pop i)
P(selection)FitnessPop.(i)

Individual
Decoder

Uniform Mutation
Gaussian Mutation

Original

Best

EVOLUTIONARY ALGORITHM

Fitness Function: FOM

Sensor 
Data

Operational 
State Vector

Engine Physics-based 
Simulator

Run-Time Anomaly Detection Model

Fuzzy 

Supervisory 

System

Residuals { Rij }

Operational
Envelope
Script

AANN-1 AANN-2 AANN-3

Individual

∑∑
= =

=
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i

m

j i

ij

X

R

nm
FOM

1 1

2)(
1

[ ]5,...,1,5,...,1 LLxx

Pop Size = 500 individuals

GenMax = 1,000 generations

4.1 Design
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Automated FLS Tuning: Membership function parameters

Use Global Tuning
(based on FOM fitness function 

and Genetic Algorithm)
to further improve results

Meta-Heuristic 

Tuning

FOM = 6.80FOM = 7.25

Note: Magnified scale to 
enhance comparison

Anomaly Detection - Results
4.1 Design
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Improving AD Design : Add AANN-4  & retune FLS

FOM = 6.80

GAP

4

Most residual errors occur in the [200, 600] interval, indicating a performance limit 

that cannot be addressed only by tuning the FLS.  Rather it suggests

the need for an additional AANN-4 to provide better coverage in that region 

4.1 Design
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Design Tradeoffs
Model

Complexity

Model Accuracy  (- FOM)

Single Global AANN

Multiple Local AANN’s – simple model switch

Multiple Local AANN’s + FLS

Manual design of additional Local AANN (AANN-4) +

GA tuning of FLS using GBF & T-norms** parameters 

Multiple Local AANN’s  + Better aggregation (Prod)

+ FLS w/ manually tuned parameters

D
O
N
E

T
O
 D
O

[ ]5151 ,,...,,,..., LLxx
* Chromosome:

FLS Trapezoid parameters tuned by GA* 

( ) ( ) ( )[ ]pcbacbacba nnn ,,, ,...,,,..., ,,, 333111313111111** Chromosome:

4.1 Design
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Future Work

• Hierarchical Design (to Improve Accuracy and Extend Region 
of competence)

+ Used Offline Metaheuristics (EA) and Online Metaheuristics (FLS) with 
AANN model

- Use a more complex encoding for the EA individual to evolve BOTH 
structure and parameters:

# AANN Models

Scope of AANN Models

Evolve membership Functions (GBF) in FLS

Evolve Aggregation operators (parameterized T-norms)

• Model Lifecycle (to maintain model Vitality)

- Use Offline Metaheuristics (EA) to create/retune hierarchical design with 
updated data sets (e.g. reflecting more recent engine degradation)

4.1 Conclusions
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4.2 Case Study 2:

Fusion of (Competing) Classifiers
for Diagnostics (multi-class classification)

Reference: W. Yan and F. Xue (2008). Jet Engine Gas Path Fault Diagnosis Using Dynamic Fusion of Multiple Classifiers, 

IJCNN 2008, Hong Kong, pp-1585-1591– [GE GR Technical Report, 2008GRC395, May 22, 2008].
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4.2   Fusion of (Competing) Classifiers 

• MCS Objectives

• Static Selection/Fusion

• Dynamic Selection/Fusion

• Performance Evaluation

• Application Example: Jet engine fault diagnosis

• Results

• Conclusions & Future Work

4.2 Diagnostics
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Multiple Classifier Systems (MCS)

Global methods

Local methods

selection

fusion

selectiondynamic

static

fusion

Dynamic fusion of multiple classifiers

Adapted with permission from: W. Yan and F. Xue (2008). Jet Engine Gas Path Fault Diagnosis Using Dynamic Fusion of Multiple Classifiers, 

IJCNN 2008, Hong Kong, pp-1585-1591

Objectives

- Introduce a new classifier fusion scheme: dynamic classifier fusion

- Apply it to a real-world classification problem - Jet engine fault diagnosis

4.2 MCS
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Static Fusion

…

Test sample

M1

M2

Mm

)(1 Qp ϖ

)(2 Qp ϖ

)( Q
mp ϖ

…

fusion

Conventional static fusion

Mi = ith Classifier,  i=1, …m,…

mk

pfp Q

k

Q

,...2,1     

))(()(

=

= ϖϖ

Adapted with permission from: W. Yan and F. Xue (2008). Jet Engine Gas Path Fault Diagnosis Using Dynamic Fusion of Multiple Classifiers, 

IJCNN 2008, Hong Kong, pp-1585-1591

4.2 Fusion

Final Decision
[ ]fQ maxarg)( =ϖ
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Dynamic fusion

…

Test sample

Local 
performance 
assessment

M1

M2

Mm

)(1 Qp ϖ

)(2 Qp ϖ

)( Q
mp ϖ

x1

xn

x1

xn

Peer set retrieval

mk

wpfp k
QQ

k
Q

,...2,1     

),)(()(

=

= ϖϖ

Information 
integration

…
mkwk

Q ,...2,1  , =

1

2

3

Legend:
= Query (Q)

= Peer of Q, j = 1, … NQ
= Not a Peer of Q

n = Number of features

m = Number of classifiers

Adapted with permission from: W. Yan and F. Xue (2008). Jet Engine Gas Path Fault Diagnosis Using Dynamic Fusion of Multiple Classifiers, 

IJCNN 2008, Hong Kong, pp-1585-1591

4.2 Fusion

4

Final Decision
[ ]fQ maxarg)( =ϖ
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Dynamic fusion – cont’d

Adapted with permission from: W. Yan and F. Xue (2008). Jet Engine Gas Path Fault Diagnosis Using Dynamic Fusion of Multiple Classifiers, 

IJCNN 2008, Hong Kong, pp-1585-1591

4.2 Fusion

Features

Training 

records

d
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1 n

Target
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i tj
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0. Training Set

Example for # classes  = 
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1. Peer set retrieval

{ }niRxxuQN ijiQij ,...,1     )( ,, =<−=
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xn

x1

xn

iR

Design Parameter

QNQN =)( is a function of the point density

and the value of hyper-edge iR

ii XrangeR   %5=

should be tuned for each problem using

local or global search techniques 

In our example

iR
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Dynamic fusion – cont’d

2. Local performance assessment

3. Information integration

∑ =
= QN
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Local performance for kth classifier:

(a) Compute error for each record of the 

kth classifier training set
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Bias adjusted output of kth classifier:
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k
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(c) Final decision (by dynamic fusion):

(a) Final decision (by simple averaging):

(b) Final decision (by dynamic selection) 
[Woods 1997]:

4. Final Decision
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k jiCMiiCMQLAC
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k
QpQ |maxarg)(
][LAC maxarg ϖϖ =

Baselines

Proposed Decision Method

MEAN rule

Select kthclassifier with highest Local 

Accuracy for Q

kth classifier Local Accuracy for Q

Adapted with permission from: W. Yan and F. Xue (2008). Jet Engine Gas Path Fault Diagnosis Using Dynamic Fusion of Multiple Classifiers, 

IJCNN 2008, Hong Kong, pp-1585-1591

4.2 Fusion

)( j

k

j

k

j te −= ϖ

(b) Compute           the mean error of 

the kth classifier over all the Peers of Q

k

Qme

k

Qme represents the bias the kth classifier 

in the neighborhood of Q
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∑∑=
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jCMjCMFPR
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Overall accuracy:

False positive rate:

False negative rate:

Performance indices

Performance evaluation

Stratified 5-fold cross-validation

Performance evaluation

Predicted Classes   

NF FAN CMP HPT LPT CDP VBV 
pcAC 

NF 2139 7 106 150 197 70 136 76.26 

FAN 0 2786 13 0 2 0 4 99.32 

CMP 118 7 2454 62 94 57 13 87.49 

HPT 188 2 76 2210 291 16 22 78.79 

LPT 288 2 81 317 1893 177 47 67.49 

CDP 202 1 86 7 190 2292 27 81.71 T
r
u
e 
C
la
ss
e
s 

VBV 77 1 4 8 37 28 2650 94.47 

Classifier Performance Indices 

OAC=83.65% TPR =23.74% FNR =5.19% 

F1 F2 F3 F4 F5 F6

F1

F2

F3

F4

F5

F6

Example for C=7

ith Classifier

Adapted with permission from: W. Yan and F. Xue (2008). Jet Engine Gas Path Fault Diagnosis Using Dynamic Fusion of Multiple Classifiers, 

IJCNN 2008, Hong Kong, pp-1585-1591

4.2 Evaluation
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Application Example: Jet engine fault diagnosis

• Increases flight safety

• Prevents costly component damage 

and/or catastrophic failure

• Reduces turnaround time

• Reduces delays and cancellations

• Increases engine on-wing time

More accurate and reliable fault diagnostic systems are the key

Why?

What?

Adapted with permission from: W. Yan and F. Xue (2008). Jet Engine Gas Path Fault Diagnosis Using Dynamic Fusion of Multiple Classifiers, 

IJCNN 2008, Hong Kong, pp-1585-1591

• Engine initial quality varies

• Engine quality deteriorates over time

• Engines are operated at different points in 

flight regime

Characteristics

• Complexity of engine as a system

• Limited number of sensors allowed

• Noisy environment and noisy sensed data

Constraints

4.2 Example
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Application Example: Jet engine fault diagnosis

� Fan fault (FAN)

� Compressor fault

� High Pressure Turbine (HPT) fault 

� Low Pressure Turbine (LPT) fault 

� Customer Discharge Pressure (CDP) fault 

� Variable Bleed Valve (VBV) fault 

General information

� GEAE CFM56-7B engine for commercial aircrafts

� Simulated data

� 6 engine gas path faults

� 9 standard sensor parameters

� 5 levels of engine deterioration

6 engine gas path faults

Jet engine fault diagnosis is a 7-class classification problem

1. fuel flow rate

2. fan speed

3. core speed

4. comp. inlet pressure

5. comp. exit pressure

6. fan tip exit pressure

12 parametric inputs

7. comp. inlet temp.

8. comp. exit temp.

9. HP turbine exit temp.

10. LP turbine exit temp.

11. 5/4

12. 1/5

 

N2 P3

T3 WF36
T5

P25

T25
T495

N1

PS13

Adapted with permission from: W. Yan and F. Xue (2008). Jet Engine Gas Path Fault Diagnosis Using Dynamic Fusion of Multiple Classifiers, 

IJCNN 2008, Hong Kong, pp-1585-1591

4.2 Example
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Results

Predicted Classes   

NF FAN CMP HPT LPT CDP VBV 
pcAC 

NF 2139 7 106 150 197 70 136 76.26 

FAN 0 2786 13 0 2 0 4 99.32 

CMP 118 7 2454 62 94 57 13 87.49 

HPT 188 2 76 2210 291 16 22 78.79 

LPT 288 2 81 317 1893 177 47 67.49 

CDP 202 1 86 7 190 2292 27 81.71 T
r
u
e 
C
la
ss
e
s 

VBV 77 1 4 8 37 28 2650 94.47 

Classifier Performance Indices 

OAC=83.65% TPR =23.74% FNR =5.19% 

Predicted Classes   

NF FAN CMP HPT LPT CDP VBV 
pcAC 

NF 1912 0 181 253 237 75 147 68.16 

FAN 0 2803 2 0 0 0 0 99.93 

CMP 98 1 2512 60 77 52 5 89.55 

HPT 183 0 107 2221 249 18 27 79.18 

LPT 302 0 115 547 1563 229 49 55.72 

CDP 197 0 105 4 184 2288 27 81.57 T
r
u
e 
C
la
ss
e
s 

VBV 61 0 2 4 16 23 2699 96.22 

Classifier Performance Indices 

OAC=81.48% TPR =31.84% FNR =5.00% 

Predicted Classes   

NF FAN CMP HPT LPT CDP VBV 
pcAC 

NF 1773 3 160 320 316 84 149 63.21 

FAN 2 2797 5 1 0 0 0 99.71 

CMP 148 2 2250 117 169 111 8 80.21 

HPT 319 0 181 1835 414 32 24 65.42 

LPT 366 0 182 449 1436 304 68 51.19 

CDP 187 0 106 35 302 2105 70 75.04 T
r
u
e 
C
la
ss
es
 

VBV 151 0 8 36 112 60 2438 86.92 

Classifier Performance Indices 

OAC=74.53% TPR =36.79% FNR =6.97% 

NN classifier SVM classifier

DT classifier

Adapted with permission from: W. Yan and F. Xue (2008). Jet Engine Gas Path Fault Diagnosis Using Dynamic Fusion of Multiple Classifiers, 

IJCNN 2008, Hong Kong, pp-1585-1591

4.2 Results
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Results – cont’d

  

Overall 
Accuracy 
(OAC) 

False 
Positive 
Rate (FPR) 

False 
Negative 
Rate (FNR) 

NN 83.65 23.74 5.19 

SVM 81.48 31.84 5.00 

In
d
iv
id
u
a
l 

C
la
s
s
if
ie
rs
 

CART 74.53 36.79 6.97 

Fusion by 
Averaging 

85.51 21.21 4.63 

Dynamic 
Selection 

85.12 21.96 4.64 

F
u
s
io
n
 M
e
th
o
d
s
 

Dynamic 
Fusion 

86.04 18.72 4.92 
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Overall accuracy:

False positive rate:

False negative rate:

Adapted with permission from: W. Yan and F. Xue (2008). Jet Engine Gas Path Fault Diagnosis Using Dynamic Fusion of Multiple Classifiers, 

IJCNN 2008, Hong Kong, pp-1585-1591

Dynamic Fusion outperforms both baselines

4.2 Results
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Dynamic fusion of multiple classifiers proposed in this study can be 

effective in improving performance of jet engine fault diagnostic 

systems and general classification problems as well.

Future work

Improve the dynamic fusion scheme by exploring different 

approaches for each of the three key components of the DF.

Apply DF to other real-world data.

Summary

Adapted with permission from: W. Yan and F. Xue (2008). Jet Engine Gas Path Fault Diagnosis Using Dynamic Fusion of Multiple Classifiers, 

IJCNN 2008, Hong Kong, pp-1585-1591

4.2 Conclusions
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4.3. Case Study 3:

Fusion of (Competing) 
Predictive Models

Reference: “Fast Meta-models for Local Fusion of Multiple Predictive Models” Applied Soft Computing Journal, 2008, 

doi:10.1016/j.asoc.2008.03.006 – [GE GR Technical Report, 2007GRC832, Oct 12, 2007].
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4.3   Fusion of (Competing) Predictive 
Models

• Prognostics Issues

• Prediction Problem: Motivation & Description

• Technical Challenge: Prediction Uncertainty

• Multiple Predictive Model Fusion

• Model Generation

• Spectrum of Weighting Schemes

– Global

– Local: Run-time Peers (Lazy Learning), Compiled (CART)

• Evaluation and Results

• Conclusions & Future Work

4.3 Prognostics
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Prognostics (RUL Prediction)

• Prognostics is considered as Remaining Useful Life 

(RUL) Prediction

• Typically run-to-failure data is not widely available (due 

to its operational cost)

• As a result RUL prediction tends to have high variance

• Fusion of multiple predictive models is one way to 

decrease such variance

• Usually multiple prediction models include combination 

of physics-based models and data-driven models

4.3 Prognostics

For a variety of reasons, such as background complexity, proprietary information, 

and time constraints, in this tutorial we will focus on a prediction problem

for optimization, as a surrogate for the prognostics problem.

The problem will be solved using a dynamic fusion of predictive models
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Prediction Problem: Motivation

Primary Market Opportunity

• 700+ coal-fired boilers > 100 MW in U.S.A.

• 2000+ coal-fired boilers > 100 MW outside U.S.A. 

Secondary Market Opportunity

• Industrial boilers worldwide

• Coal, gas, oil, combined cycle

Emphasis on Environmental Issues

• Clean Air Act – U.S.A.

• Kyoto Protocol

Significant market need for model-predictive optimization of coal-fired boilers

4.3 Problem 
Definition
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Prediction Problem: Motivation (cont.)
Multi-Objective Decision Making: Control Setting Selection

Evolutionary

Multi-Objective

Optimizer

Y ’s:

HR , 
NOx

T ime Variable 
Desired 

Performance

Neural-Network 
System Models

Test 
X ’s

T ime Variable 
E xtraneous 
Variables

Objective / 
F itness 

Functions

Recommended 
setpoints to 
operator or 
plant control 

system

Optimal X ’s S upervisory Decis ion-support Models and Optimizer

Underlying 
C losed-loop

Control
S ystem 
(DCS )

Decis ion problemControl problem

OPTIMIZER

ASSET

MODEL

TUNER

A
S

S
E

T
 (

e
.g

. 
B

O
IL

E
R

)
OS’

Plant 

Asset 

Mgmt. 

Platform

• Key Goal: Generate hierarchical control settings for Coal-
Fired boiler to   

- Reduce emissions (NOx) and Decrease fuel cost (Heat Rate), 
- while satisfying all  operational constraints (load, CO, SO, etc.)

EA (EMOO) + NN + Fuzzy + Fusion
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8950
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9050
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Optimized Settings
Historical Settings

Pareto Front for Heat Rate and NOx

Pareto 
Frontier

H
e
a
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R
a
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 (

∝∝ ∝∝
fu
e
l 
u
s
a
g
e
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o
s
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NOx

Duke Marshall at 400MW

$

EPA Fines

Threshold 

NNHR

Constraints 
Satifaction 
Evaluation

NNLoad

NNCO

NNSO

&

&
=X

r

Excess O2

Aux Air Damper 
{B,BC,CD,E} Bias

OFA {A,AA,AAA}

Damper Position

Mill {A,B,C,D,E} Bias

...

NNNOx

• Key Challenge: 
- Prediction Uncertainty [due to model extrapolation from  
training set image]

• Solution: 
- Use fusion of predictive models
(hybrid first-principle and data-

driven NN’s) to determine (HR , 

NOx) coordinates of given setting.

- Use of Evolutionary Multi-
Objective Search to generate 

Pareto Surface in (HR , NOx) 

4.3 Problem 
Definition
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Prediction Problem: Description

• Model-predictive multi-objective optimization

• Neural networks, evolutionary algorithms

• Needed: High fidelity predictive models

• Modeling: NOx, Heat Rate, Load

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65
8900

8950

9000
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9100

9150

9200

9250

9300
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NOx
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R
a
te

Load = 400 MW

Optimized Settings
Historical Settings

• Pareto Frontier���� best achievable operation

• Goal: Optimize NOx

Optimize Heat Rate (∝ fuel usage cost)

Operate the boiler at Pareto frontier

Pareto 
FrontierH

e
a
t 
R

a
te

 (
∝

fu
e
l 
u
s
a
g
e
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o
s
t)

NOx

400MW Plant

$

n = # inputs ≈ 23

4.3 Problem 
Definition
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Data noise 

Model parameter misspecification

Variation due to randomly sampling of training dataset

Non-deterministic training results

Varying initial conditions

Model structure misspecification

e.g. not enough neurons

Misspecification of regression models

X1

Y

0.0

0.2

0.4

0.6

0.8

c2

a2

Probe U0=

  Product  ross YXSpaceC ×

X2 …, Xn

Function approximation model

[ ]00
ˆ, yX

0ŷ

0X

)(x
r

ε

)()()( xxfxt
rrr

ε+=

Technical Challenge: Prediction Uncertainty 4.3 Problem 
Definition
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…Historical

data

Probe Q

1

0ŷ
2

0ŷ
… my0ˆ

Fusion of multiple model outputs

0ŷ

Training

(U0=            )?],[ 0X
r

Effective fusion of multiple diverse models can boost accuracy
1. Active literature in multiple classifier fusion (voting, weighting, fuzzy, Dempster-Shafer)
2. Ensemble of neural networks (Stacked generalization, decorrelated neural networks)

Multiple Predictive Model Fusion
4.3 Fusion of
Predictors
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obtained from a given data set D: 

Mean square error over all possible dataset D:

Bias

Variance

1. Mean square error depends on the position of query points in the inputs space

2. Averaging will not eliminate bias error

System model

Need for Locally Weighted Fusion
4.3 Fusion of
Predictors
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Weighted Fusion – Model Generation

Train m models from same historical dataset using Bootstrap

…

Historical data

…

Bootstrap data Models

1B

2B

mB

1M

2M

mM

4.3 Fusion of
Predictors
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Weighted Fusion – Model Generation (cont.)

Models: Mk, k = 1,… m

…

Training data

…

Bootstrap data to
increase models diversity

Models

1B

2B

mB

1M

2
M

mM

Features

Training 

records

d

1

1 n

Target

j

i tj

kM

k

jŷ

Training Data: Dj,i j = 1,… d ; i=1,…, n

)ˆ( j

k

j

k

j tye −=

k

je

Dj,i

Since each model has been trained in the 

best possible way, the quality of the fusion 

will depend on selecting the correct fusion 
meta-model structure & parameters.

Let’s start with on the parameters (weights)

Each weight reflects the degree to which we 
want each model to contribute to the 
fusion. We want the most reliable models 

to have the highest weights, and vice 

versa.

Thus the computation of the weights will be 

based on the historical errors that each 

model has shown during training.  

The training data should then be update by 

actual runs, models errors should be 

updated accordingly, once ground truth is 

available, and weights should be 

recomputed to avoid obsolescence.

By features, we mean the inputs used to train 

the individual models (e.g., altitude, speed, 

pressure, temperature,, derivatives of 

above vars., etc).

4.3 Fusion of
Predictors
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Spectrum of Weighting Schemes (Global)

The most important aspect in selecting the weights is 
to determine which training records to use

For offline fusion model generation we have many 
choices, depending on the tradeoff between 
accuracy and complexity:

(1) Large granularity →→→→ Global Weight (for each model)

Use all d training records

Training 

records

d

1

j

kM )ˆ( j

k

j

k

j tye −=

k

je

( ) k
kk

j mae
KyWeight 1ˆ ==

Mean Absolute Error 

for model k

k=1, …, m

where

d

e

mae

d

j

k

j

k

∑
== 1

||

4.3 Design
Options

Global methods

Local methods

selection

fusion

selectiondynamic

static

fusion
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Spectrum of Weighting Schemes (Local -cont.)

(2) Small granularity – Automatically select a subset of 
training records – With Learning (dynamic) 

Quantitative Description: Use domain knowledge or 
expert knowledge to determine [using mathematical 
expressions] regions of the feature space in each 
model should have a different weight:  

Region Ri should be assigned weight Ki
Run-time region generation

(i) Run-time Peers – Lazy Learning

(using hyper-rectangles or hyper-spheres around Q)

Compiled-time region generation 

(ii) Trees (using inequalities)

(iii) Grids (using Intervals) -> exp. complexity

Qualitative Description: [using linguistic expressions] 

(iv) Fuzzy Partitions (using fuzzy rules) 

-> exp. complexity

Training 

records

d

1

j

kM

{Variable}
Grid

R1 R2 R3

R4 R5 R6

R7 R8 R9

R10 R11 R12

x1

Tree

)ˆ( j

k

j

k

j tye −=

k

je

Q

Peers (i)

(iii)

(ii)

Not covered

4.3 Design
Options

Global methods

Local methods

selection

fusion

selectiondynamic

static

fusion
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{Variable}

Run-time: Lazy Learning →→→→ Predictive model weights (2 i)

Manage complexity by leveraging contextual knowledge

Problem decomposition using 

- Lazy Learning (Run-tim Peers)

The model is in the data
+ no model to train
- need to compute region  
for every query Q
- curse of dimensionality

Peers (Q) =P(Q)

Probe Q

{ })(|,...,1,)( QNumjuQP jj ∈==

niRxxQN ijiQi ,...,1   )( ,, =<−=
Neighborhood (Q) = N(Q)

)(QPu j ∈Peer uj

x2

x1

xn

   XSpaceState

)(QPNQ =
# of peers of (Q) = NQ

iR

ii XR %5  where =

Retrieve historically similar neighbors/peers of probe Q

Lazy Learning Fusion – Step 1 of 3

d

1

j

kM

k

je

Q

(i)

Training 

records

4.3 Design
Options
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Run-time: Lazy Learning →→→→ Predictive model weights (2 i)

Evaluate local performance of each of the m
predictive models using their training sets

4.3 Design
Options

Lazy Learning Fusion – Step 2 of 3

d

1

j

kM

k

je

Q

(i)

Training 

records
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Run-time: Lazy Learning →→→→ Predictive model weights (2 i)

Aggregation of multiple predictions based 
on local performance 

Lazy Learning Fusion – Step 3 of 3

4.3 Design
Options

d

1

j

kM

k

je

Q

(i)

Training 

records
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Curse of dimensionality 
(for Lazy Learning type of models – e.g. kernel based models)

The figure on the right shows the side-length of the sub-cube needed

to capture a fraction r of the volume of the data, for different dimensions n.

…In ten dimensions we need to cover 80% of the range of each coordinate 

to capture 10% of the data.

Source: The Elements of Statistical Learning - Data Mining, Inference, and Prediction, Chapter 2, Figure 2.6

Trevor Hastie, Robert Tibshirani, Jerome Friedman, Springer 

Local Methods need to reduce their dimensionality to avoid this “curse”:

→ dimensionality reduction via transformation (e.g. PCA)

→ dimensionality reduction via subset selection (e.g. CART)
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{Variable}

Compile-time: CART Tree →→→→ Predictive model weights (2 ii)

Manage complexity by leveraging contextual knowledge

Problem decomposition using:

- CART (Classification Analysis and Regression Tree)

CART (Classification Analysis and Regression Tree)

Context

Local Models = 
Local Precomputed 

Weights

(A) (B) (C)

(D)

y

leaves

x1 x2 y

≤ t1 ≤ t2 R1 = f1(x1,x2)
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R3 = f3(x1,x2)

> t3 > t4 R5 = f5(x1,x2)

x1 x2 y

≤ t1 ≤ t2 R1 = f1(x1,x2)
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(t1 , t3]
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> t3 ≤ t4

R2 = f2(x1,x2)

R4 = f4(x1,x2)

R3 = f3(x1,x2)

> t3 > t4 R5 = f5(x1,x2)

x1 x2 y

≤ t1 ≤ t2 R1 = f1(x1,x2)

≤ t1 > t2

(t1 , t3]
don’t 

care

> t3 ≤ t4

R2 = f2(x1,x2)

R4 = f4(x1,x2)

R3 = f3(x1,x2)

> t3 > t4 R5 = f5(x1,x2)

K1

K2

K5

K3

K4

(A), (B), (C), and (D) are equivalent 
representations

(C) and (D) assume that each output Y 
in a region is constant, i.e.,

ii KRWeight =)(
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Training 

records

Tree

(ii)

4.3 Design
Options

Dimensionality reduction via subset selection (using CART)
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{Variable}

Compile-time: CART Tree →→→→ Predictive model weights (2 ii)

Each Model will have a TREE Tk

CART minimizes the sum of the variances of the leaves, so there is 

no need to compute weights as the inverse of mean absolute errors (or 

the inverse of the variance) as in case 3i

So the constants Ki assigned to each region (a leaf in the tree) are just 

the biases to be used for that model, when the input Q falls in region Ri

1) Pre-compile the bias of each region: For each model k compute 

the bias as the Mean Error of all the points (residuals) in region Ri,.

2) Determine which bias to use: For each model k, for a given query 

Q, find the region RQ (leaf node in tree Tk ) to which Q belongs:

3) Apply bias removal to output of model k, and average over all the 

models (considering all weights         equal to 1)
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4.3 Design
Options
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Training

Validation

Multiple Neural Network models

Average Aggregation based on global 

performance
Locally weighted learning 

with bias compensation 

Locally weighted 

learning

Different fusion strategies
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Bootstrap + training

Validate fusion strategies

…

Constant weights Dynamic weights

~ 2,300 points

~ 5,000 points

Fusion Performance Evaluation
4.3 Design
Options
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Performance comparison from Heat Rate modeling

Settings: 30 NN models trained, performance based on validation dataset

Performance metric: MAE (mean absolute error) over validation dataset

Validation 

Baseline: average MAE of 30 MAEs from singleton NN model

Large model to model variation for each individual query point
Locally weighted fusion takes advantage of such discrepancy

Fusion performance gain:
baseline

baselineMAE
pg

fs

fs

−
=

Fusion w/ Local Weights

Fusion w/ Local Weights

+ Bias Comp.

Average &

Fusion w/ Global Weights

Results – Fusion Perf. Evaluation (with Hyper-rectangles)4.3 Experiment
Results
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MAE: mean absolute error

pg: performance gain

GWF: globally weighted fusion

LWF: locally weighted fusion

LWF+bias: locally weighted fusion with bias compensation

Locally weighted fusion (hyper-rectangle) with bias compensation 
boosts performance 18~38% over baseline

Summary of Results Fusion Perf. Evaluation 
(with Hyper-rectangles)

MAE pg MAE pg MAE pg

Baseline 91.79 0.00% 0.0228 0.00% 1.050 0.00%

Simple Average 87.15 5.00% 0.0214 6.00% 1.042 0.76%

GWF 86.91 5.30% 0.0214 6.00% 1.040 1.80%

LWF 82.19 10.46% 0.0202 11.40% 1.024 2.48%

LWF+bias 69.20 24.61% 0.0140 38.60% 0.855 18.57%

Load (MW)

Fusion Strategy

fusion with global 

information

hyper-rectangle 

weights w bias

Heat Rate NOx (lb/MBtu)

(3i)

(1)

baseline

baselineMAE
pg

fs

fs

−
=

4.3 Experiment
Results
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Additional Experiments Training & Validation

Training

Validation

Multiple Neural Network models
Bootstrap + 

training

Validate fusion strategies

…

baseline

baselineMAE
pg

fs

fs

−
=

Different fusion strategies

Hyper-rectangle 

neighborhood

K-nn

neighborhood

CART model 

fusion

Model 

performance

4.3 Experiment
Results
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Predictive Model Fusion - Results

 
MAE pg MAE pg MAE pg

Baseline 1 (average 

of 30 predictors)
91.79 0.00% 0.0228 0.00% 1.050 0.00%

Baseline 2 (best of  

30 predictors)
85.10 7.29% 0.0213 6.58% 0.987 6.00%

Average 87.15 5.06% 0.0214 6.14% 1.042 0.78%

GWF 86.91 5.32% 0.0214 6.14% 1.040 0.95%

Least square weight 83.05 9.52% 0.0200 12.28% 0.984 6.29%

LWF 82.19 10.46% 0.0202 11.40% 1.024 2.48%

LWF+bias 69.20 24.61% 0.0140 38.60% 0.855 18.57%

Average 87.15 5.06% 0.0214 6.14% 1.042 0.78%

Average + bias 69.23 24.58% 0.0140 38.60% 0.855 18.56%

LWF 83.93 8.56% 0.0208 8.77% 1.030 1.93%

LWF+bias 69.16 24.66% 0.0140 38.60% 0.854 18.63%

LWF 81.19 11.55% 0.0214 6.14% 1.008 4.02%

LWF+bias 72.99 20.48% 0.0143 37.28% 0.861 17.98%

LWF 84.31 8.15% 0.0206 9.65% 1.029 1.97%

LWF+bias 76.34 16.83% 0.0169 25.88% 0.903 14.04%

LWF 82.12 10.53% 0.0201 11.84% 1.022 2.67%

LWF+bias 68.56 25.31% 0.0148 35.09% 0.817 22.19%

Average 87.15 5.06% 0.0214 6.14% 1.042 0.78%

Average+bias 60.45 34.14% 0.0117 48.68% 0.721 31.38%

Heat Rate (Btu/KWHr) NOx (lb/MBtu) Load (MW)

Fusion Strategy

Global neighborhood

Hyper-rectangle neighborhood + 

Weight

MAE: mean absolute error

pg: performance gain

GWF: globally weighted fusion

LWF: locally weighted fusion

LWF+bias: locally weighted fusion with bias compensation

CART model

Hyper-rectagle neighborhood  

Hyper-rectangle neighborhood + 

Weight w/o bias

CART model

1nn neighborhood + Weight

5nn neighborhood + Weight

Reference: “Fast Meta-models for Local Fusion of Multiple Predictive Models” Applied Soft Computing Journal, 2008, 

doi:10.1016/j.asoc.2008.03.006 – [GE GR Technical Report, 2007GRC832, Oct 12, 2007].

CART

CART- segmented fusion with bias compensation boosts performance 31~48% over baseline

Lazy Learning
(Hyper-Rectangles)

Best Predictor

(3i)

(3ii)

(1)Global Weights

baseline

baselineMAE
pg

fs

fs

−
=

Baseline

4.3 Experiment
Results
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Predictive Model Fusion: Summary
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increase model diversity
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Reference: “Fast Meta-models for Local Fusion of Multiple Predictive Models” Applied Soft Computing Journal, 2008, 

doi:10.1016/j.asoc.2008.03.006 – [GE GR Technical Report, 2007GRC832, Oct 12, 2007].

Object 

Models: 
NN’s

Online MH:

Fusion mechanism

with adjustable biases

compiled in CART trees

Offline MH: 
CART Trees trained 

on error vectors
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Predictive Model Fusion: Conclusions

Locally Weighted Fusion (off-line): CART-based Precompiled Segmentation

Adaptive fusion based on localized model-specific characteristics

• Takes non-uniform prediction uncertainties into account 

• Model prediction quality is input dependent

• Uses CART Segmentation to compute local bias

• 31-48% performance boost observed over baseline fusion techniques

Advantage:

• Can be precomputed: Faster than on-line locally weighted fusion

Future Work

• k-nearest neighbors retrieval: tested but did not improve performance

• Kernel-based functions for peer/neighborhood distance computations

• Winner-take-all with bias compensation

4.3 Conclusions
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Summary and Conclusions

• Fusion Benefits:

– Overcoming the ceiling of performance of single models

– Increase accuracy and robustness

– Reduce uncertainty to make information actionable

• Fusion Requirements

– Diversity in model ensemble(via boosting or multi technologies)

– Aggregation function (meta model capturing meta-knowledge)

• Tradeoff Performance versus Complexity 

– Including models lifecycle in complexity (e.g., cost of ownership)
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