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@ Introduction and Motivation

Definition
Motivations
— Ceiling of performance of individual classifiers

Basic Design Criteria
— Topology: Parallel, Serial, Hybrid
— Ensemble Models

— Fuser:
» Type: Fusion, Selection

* Fuser as a Meta-model
— Static or Dynamic
— Structure & parameters

Fusion Type
— Integration (Fusion) of Competing Models
— Selection of Complementary Models

Diversity
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Definition: Model Fusion or Ensemble Learning & 2sfinition

« Ensemble Learning is the process by which multiple
models, such as classifiers or experts, are strategically
generated and combined to solve a particular
computational intelligence problem.

 Ensemble learning is primarily used to improve the
(classification, prediction, function approximation, etc.)
performance of a model, or reduce the likelihood of an
unfortunate selection of a poor one.

« QOther applications of ensemble learning include
assigning a confidence to the decision made by the
model, selecting optimal (or near optimal) features, data
fusion, incremental learning, nonstationary learning and
error-correcting

Source: Robi Polikar (2009), Scholarpedia, 4(1):2776 - doi:10.4249/scholarpedia.2776  http://www.scholarpedia.org/article/Ensemble learning




Ensemble Learning Example . oefiition
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Figure 1: Combining an ensemble of classifiers for reducing classification error and/or model selection
http://www.scholarpedia.org/article/Ensemble learning

Source: Robi Polikar (2009), Scholarpedia, 4(1):2776 - doi:10.4249/scholarpedia.2776



MOtivationS 1. Motivations

» Worst Classifier Motivation:

— In 2005 Fumera and Roli confirmed theoretically the claim of Tom Dietterich
(2000). They proved that averaging of classifiers outputs guarantees a
better test set performance than the worst classifier of the ensemble
(IEEE-T on PAMI, June 2005)

 Worst Classifier Motivation:

— Beside avoiding the selection of the worst classifier, under particular
hypotheses (linear combiners of individual classifiers with unbiased and
uncorrelated errors), fusion of multiple classifiers can improve the
performance of the best individual classifiers. In some special cases
(infinite number of classifiers) fusion can provide the optimal Bayes classifier
(Tumer and J. Ghosh; 1996).

— This is possible if individual classifiers make “different” errors (diversity).

« Computational Motivation:
— Many learning algorithms suffer from the problem of local minima Neural
Networks, Decision Trees (optimal training is NP-hard!). Finding the best
classifier C can be difficult even with enough training data

— Fusion of multiple classifiers constructed by running the training algorithm
from different starting points can better approximate C

Adapted with permission from: Fabio Roli (2009). Mini Tutorial on Multiple Classifier Systems - School on the Analysis of Patterns 2009
http://www.analysis-of-patterns.net/files/MCS-Part1.pdf




Multi Classifiers: Basics

 Architecture/Topology
— Parallel, Serial, Hybrid
» Classifier Ensemble

— Type and number of base classifiers. The ensemble can be subdivided into
subsets in the case of non parallel architectures

* Fuser
— Integration (Fusion), Selection

Adapted with permission from: Fabio Roli (2009). Mini Tutorial on Multiple Classifier Systems - School on the Analysis of Patterns 2009
http://www.analysis-of-patterns.net/files/MCS-Part1.pdf




1. Basic Design

MCS Architectures/Topologies —

 Parallel topology: multiple classifiers operate in parallel. A
single combination function merges the outputs of the
individual classifiers

 Serial/Conditional topology

-Classifiers are applied in succession, with each classifier
producing a reduced set of possible classes

-A primary classifier can be used. When it rejects a
pattern, a secondary classifier is used, and so on

* Hybrid topologies

Adapted with permission from: Fabio Roli (2009). Mini Tutorial on Multiple Classifier Systems - School on the Analysis of Patterns 2009
http://www.analysis-of-patterns.net/files/MCS-Part1.pdf




The Classifier Ensemble L. Basic Design

*The most common type of MCS, widely used and
investigated, includes an ensemble of classifiers, named
“base” classifiers, and a function for parallel combination of
classifier outputs

*The base classifiers are often algorithms of the same type
(e.g., decision trees or neural networks), and statistical
classifiers are the most common choice.

*The use of hybrid ensembles containing different types of
algorithms has been investigated much less, as well as
ensembles of structural, graph-based, classifiers have not
attracted much attention, although they could be important
for some real applications.

Adapted with permission from: Fabio Roli (2009). Mini Tutorial on Multiple Classifier Systems - School on the Analysis of Patterns 2009
http://www.analysis-of-patterns.net/files/MCS-Part1.pdf




1. Basic Design

Fuser (“Combination” Rule) —

Two main categories of fuser:

* Integration (fusion) functions: for each pattern, all
the classifiers contribute to the final decision.
Integration assumes competitive classifiers

« Selection* functions: for each pattern, just one
classifier, or a subset, is responsible for the final
decision. Selection assumes complementary
classifiers

Integration and Selection can be “merged” for
designing hybrid fuser

Note by P. Bonissone: In the case of continuous outputs (model residuals, predictions, etc.) selection might be improved by
interpolating rather than switching between models— see Case Study 1

Adapted with permission from: Fabio Roli (2009). Mini Tutorial on Multiple Classifier Systems - School on the Analysis of Patterns 2009
http://www.analysis-of-patterns.net/files/MCS-Part1.pdf




Type

- Static (Algebraic functions)

1. Basic Design

Fuser Type -

Rinat (x) = arg maxp; (x
i

)
", where the final class supports are computed as follows:

. T
1 .
uy(x) == E i (%)
e Mean rule: T =

T
py (%) = dej (x)
t=1

¢ Sum rule: (provides identical final decision as the mean rule)

T
i fx.) = Z U-'l‘d\‘j fx.)
t=1

¢ Weighted sum rule: (where »: is the weight assigned to the #th classifier

Hy(x)
e Product rule: =1

A j(x) = max_{d:;(x)
o Maximum rule "’ Sl ()

L. j(x)= min {d:;(x)
o Minimum rule "’ Jin gl (69}

. j(x) = med {d;;(x)
« Median rute ** = 2% )

(1 d A\
Hia(x) = (? D dy fx)a)
o Generalized mean rule =1
o @~ ~% = Minimum rule
o @ %= maximum rule
o @=0= Geometric mean rule
o _2=1= Meanrule

- Dynamic (with variable structures and/or parameters)
A meta-model that embodies selection or integration knowledge

Source: Robi Polikar (2009), Scholarpedia, 4(1):2776 - doi:10.4249/scholarpedia.2776  http://www.scholarpedia.org/article/Ensemble learning




Classifiers “Diversity” vs. Fuser Complexity i biversity

Fusion is obviously useful only if the combined classifiers
are not the same classifier...

Intuition: classifiers with high accuracy and high “diversity”

The required degree of error diversity depends on the fuser
complexity

*Majority vote fuser: the majority should be always correct

ldeal selector (“oracle”): only one classifier should be
correct for each pattern

An example, four diversity levels (A. Sharkey, 1997)

Level 1: no more than one classifier is wrong for each pattern
Level 2: the majority is always correct

Level 3: at least one classifier is correct for each pattern
Level 4: all classifiers are wrong for some patterns

Adapted with permission from: Fabio Roli (2009). Mini Tutorial on Multiple Classifier Systems - School on the Analysis of Patterns 2009
http://www.analysis-of-patterns.net/files/MCS-Part1.pdf




Classifiers Diversity Measures: An Example 1 oiersity

 Various measures (classifier outputs correlation, Partridge’s
diversity measures, Giacinto and Roli compound diversity,
etc.) can be used to assess how similar two classifiers are

* For two classifier D, and D,, L. Kuncheva (2000) proposes
the use of Yule's Q statistics:

where:
NllNOO - NOINIO | Dy correct (1) | Dy wrong (0)
O = = S R A R
i, N11N00 n N01N10 D, wrong (0) N N

* Q varies between —1 and 1. Classifiers that tend to
classify the same patterns correctly will have values of
Q close to 1, and those which commit errors on different
patterns will render Q negative

Adapted with permission from: Fabio Roli (2009). Mini Tutorial on Multiple Classifier Systems - School on the Analysis of Patterns 2009
http://www.analysis-of-patterns.net/files/MCS-Part1.pdf







@ Example of Model Ensemble Fusion: e
Random Forest

« SC: Probabilistics and Statistics Systems
« Bias and Variance

 Ensembles of classifiers

« Bagging/boosting

» Classification trees

 Random forests (RF)

* RF Design

 Resources
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Bias and Variance -~ Variance

*Bias:
— the classifier (regressor) cannot represent the true function
— i.e., the classifier (regressor) underfits the data

e\/ariance:
— variance arises when the classifier overfits the data
Hizsh Bias Low Bias
Low Variance Hich Variajoce
e mmmsm= s ammsas -

* There is often a tradeoff
*between bias and variance:

Test Sam

Prediction Error

Training Sainple

Low Hich
Model Complexity

Source : Fig. 2.11, T. Hastie, R. Tibshirani, J. Friedman, The Elements of
Statistical Learning, Chapter 2, Springer 2009.
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2. Bias &

Bias and Variance Example asiance

‘red — experimental data
*blue — underlying function

- fit Degree=| Degree=5
: f/!“’ : ,
1 o 1 - g
* Large bias, small variance: T ’
K ‘,-", 1
%2 1 1 2 2 1 1 2
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« Small bias, high variance: i R S
0t -
1 Ve Py
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Ensembles of Classifiers i

For any single classifier, there is typically a tradeoff between bias and variance.

Might we achieve high accuracy by combining ensembles of high variance (i.e.,
uncorrelated), low bias classifiers?

— variance is reduced by combining outputs
— bias remains low

Basic idea:
Train a set of diverse classifiers (or regressors) and combine their output

Math:
— For independent identically distributed (iid) variables: 1
The average of B iid variables, each with variance ¢, has a EGZ variance

— Foridentically distributed (id) variables:
The average of B id variables with positive pairwise correlation p, each with variance o2, has a variance:

2+(1_P)O_2

o
r B

when B is large, variance is:

2
X PO

Source : T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning, Chapter 15 Springer 2009.
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2. Bias &

Example: Data Generation e

blue — underlying function
black — data with noise

o _
w —
D
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o
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|
e | g
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feature
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* red-
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fit
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I So,

what happens if we run it multiple times? I
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2. Bias &

Case 1b: Large Bias... Small Variance i

« black — multiple fits

* red — average of fits
]

—

target
0
|

-10

I I I I I
-1.0 -0.5 0.0 0.5 1.0

teature

jﬁ poor ensemble fit I
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Case 2a: Small Bias... S

* red -fit
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2. Bias &

Case 2b: Small Bias... ...High Variance

« black — multiple fits
* red — average of fits

=

p—

target
0
|
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Bagging (Parallel Topology) et

 Bootstrap AGGregation

— create multiple bootstrap samples (samples of the same size, with
replacement)

— train a classifier on each sample
— combine output of classifiers by voting

« Good for unstable (with large variance) classifiers — otherwise different
classifiers aren't very diverse.

— e.g., good with decision trees
— e.dg., bad with naive Bayes

Key idea: reduce the variance by averaging many noisy
but approximately unbiased models
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Boosting 2. Bagging &

Family of methods (several different approaches):
— sequential production of classifiers
— each classifier is dependent on the previous one

— examples that are incorrectly predicted in previous classifiers are
chosen more often or weighted more heavily

Description of Boosting from: Robi Polikar (2009), Scholarpedia, 4(1):2776

. in boosting, resampling is strategically geared to provide the most informative training data
for each consecutive classifier. In essence, each iteration of boosting creates three weak
classifiers: the first classifier C1 is trained with a random subset of the available training
data. The training data subset for the second classifier C2 is chosen as the most informative
subset, given C1. Specifically, C2 is trained on a training data only half of which is correctly
classified by C1, and the other half is misclassified. The third classifier C3 is trained with
instances on which C1 and C2 disagree. The three classifiers are combined through a three-
way majority vote.”

Good for relatively stable (with low variance) classifiers.
— e.g., good with naive Bayes
— e.g., bad with decision trees
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2. Classification

Classification (Regression) Trees < jees

(CART, C4.5,etc.)

« Binary Recursive Partitioning
— binary: split parent node into two child nodes
» look at all features at each split, and choose best one
— recursive: each child node can be treated as parent node

— partitioning: data set is partitioned into mutually exclusive subsets in
each split

— prune tree to get good generalization

Xy <ty
| R5
Ro ' ta
XE i: tZ Xl < f'; bé\l
Rj3
Xo <ty
R, R2s Rj 48!
t1 ta
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CART Description _—

» Classification and Regression Tree (CART)
— Algorithm defined by Breiman et al in 1984

— Creates a binary decision tree to classify the data into one of 2"
linear regression models to minimize the Gini index for the current
node cC:

Gini(c)=1-% sz =2 PP, (for different 1, j)

where:
* nis the depth of the tree
* p;is the probability of class j in node c

 Gini(c) measure the amount of “impurity” (incorrect
classification) in node ¢

« For binary outcomes, Gini(c) has minima at 0 and maxima at 0.5

[ For regressions, CART minimizes sum of variance over all leaves }

30
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Classification (Regression) Trees (CART) 2. CART
Performance Function

In a node m, representing region R with N observations.
Puimy is the proportion of class k& observations in node m =

. 1
Puk(my = N ZieRm I(yi: k(m))
Functions commonly used for classification:
Misclassification error —1 Z-ER I(yﬁt k(m)) =1- ﬁmk(m)
N, =
~ ~ K N N . .
Gini Index o Dok Do = Zk:l p,.(=p, )  measures the amount of “impurity
K N ~
Cross-Entropy =2 P 108 P,y
= 7 _’_,/ =N '\\
3 - /
- . : ™ FIGURE 9.3. Node impurity measures for fwo-class classification, as a function
= 7 - . of the proportion p in class 2. Cross-entropy has been scaled fo pass through
- (0.5,0.5).
= 7] i N \\
s1 /// \
l:l![ :IZ U!-i- EI= ﬂfﬁ I

Source: The Elements of Statistical LearBing - Data Mining, Inference, and Prediction (Ch 9 )Trevor Hastie, Robert Tibshirani, Jerome Friedman, §p1'inger
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CART Construction

Classified as high risk

Dr. Piero P. Bonissone © All rights Reserved — 2010 PHM Tutorial

2. CART
High 17%
Low 83%
Is BP <= 917
V WA
High 70% High 12%
Low 30% Low 88%
Classified as high risk |s age <= 62.57
Ayes/ No
High 2% High 23%
Low 98% Low 77%
Classified as low risk Is ST present
b= Mo
High 50% High 11%
Low 50% Low 89%

Classified as low risk



2. Random

Random Forests Forest (RF).

 Bagging decision trees with “randomization injection”.

— create multiple bootstrap samples (samples of the same size, with
replacement)

— train a decision tree on each sample
« at each node, select a random subset of m variables to split on
« grow trees to maximum depth (i.e., no pruning)

— combine resulting trees by voting

» Properties of Random Forests (RF):

— test set error rates (modulo a little noise) are monotonically decreasing
and converge to a limit

* i.e., there is no overfitting as the number of trees increases

« The key to accuracy is low correlation (high variance across trees,
achieved by small values of m) and low bias:

— to maximize variance, randomness in variable selection is introduced
— to minimize bias, trees are grown to maximum depth.

Dr. Piero P. Bonissone © All rights Reserved — 2010 PHM Tutorial



2. RF Design

RF Construction —

A

PN T
d{;m d{}m d{} d{;m




2. RF Design

Growing Each Tree —

Each tree is grown as follows:

1. If the number of cases in the training set is N, sample N cases at random -
with replacement - from the original data. This sample will be the training
set for growing the tree

2. If there are p input variables, a number m<<p is specified such that at each
node, m variables are selected at random out of the M

- The best split on these m is used to split the node.
- The value of mis held constant during the forest growing

3. Each tree is grown to the largest extent possible. There is no pruning

Dr. Piero P. Bonissone © All rights Reserved — 2010 PHM Tutorial



Prediction by plurality voting «zgrosia

The forest consists of B trees.

e To classify a new object from an input vector, we put the input
vector down each of the trees in the forest.

e Each tree gives a classification, and we say the tree "votes" for that
class

e The forest chooses the classification having the most votes (over all
the trees in the forest).

— Class prediction: Each tree votes for a class; the predicted class C for
an observation is the plurality,

maxc X, [f(x,T) == C]

— Regression random forest: predicted value is the average prediction

Dr. Piero P. Bonissone © All rights Reserved — 2010 PHM Tutorial



Random Forest Algorithm  2.RF Design

Algorithm 15.1 Random Forest for Regression or Classification.

1. Forb=1 to B:

(a) Draw a bootstrap sample Z* of size N from the training data.

(b) Grow a random-forest tree Ty to the bootstrapped data, by re-
cursively repeating the following steps for each terminal node of
the tree, until the minimum node size n,,,;,, 1s reached.

1. Select m variables at random from the p variables.
1. Pick the best variable/split-point among the m.
m. Split the node into two daughter nodes.

2. Output the ensemble of trees {T} 14,
To make a prediction at a new point x:
Regression: ff(aj = %Eil Ty(x).

Classification: Let Cg.(ﬁ:j be the class prediction of the bth random-forest
tree. Then C5(x) = majority vote {Cy(x)} 7.

Source: T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning, Chapter 15, Springer
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Random Forest: 2. RF Design
Classification and Regressions .

RF for Classification and Regressions

When used for classification, a random forest obtains a class vote
from each tree, and then classifies using majority vote.

When used for regression, the predictions from each tree at a
target point x are simply averaged.

Recommendations default values of m and MinNodeSize

Classification: m=|./p |
minimum node size : 1

Regression: m=|p/3]
minimum node size : 5

Dr. Piero P. Bonissone © All rights Reserved — 2010 PHM Tutorial



Out-of-bag (oob) error estimate 2z oesin

e In RF, there is no need for cross-validation or a separate
test set to get an unbiased estimate of the test set error. It is
estimated internally, during the run, as follows:

Each tree is constructed using a different bootstrap sample from the
original data. About one-third of the cases are left out of the bootstrap
sample and not used in the construction of the kth tree.

Put each case left out in the construction of the k" tree down the kth tree
to get a classification. In this way, a test set classification is obtained for
each case in about one-third of the trees.

At the end of the run, take j to be the class that received most of the
votes every time case n was oob.

The proportion of times that j is not equal to the true class of n averaged
over all cases is the oob error estimate. This has proven to be unbiased
in many tests.

Source: www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm
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Variable Importance 2. RF Design

Random forests also use the oob samples to construct a variable
importance measure, apparently to measure the prediction strength of
each variable.

(1) When the bt tree is grown, the oob samples are passed down the tree,
and the prediction accuracy is recorded.

(2) Then the values for the jt variable are randomly permuted in the oob
samples, and the accuracy is again computed.

(3) The decrease in accuracy as a result of this permuting is averaged over all
trees, and is used as a measure of the importance of variable j in the random
forest.

These are expressed as a percent of the maximum.

The randomization effectively voids the effect of a variable, much like setting
a coefficient to zero in a linear model.

Source: T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning, Chapter 15, Springer
Dr. Piero P. Bonissone © All rights Reserved — 2010 PHM Tutorial



Variable Importance 2. RF Design
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FIGURE 15.5. Variable importance plots for a classification random forest
grown on the span data. The left plot bases the importance on the Gim split-
ting index, as in gradient boosting. The rankings compare well with the rankings
produced by gradient boosting (Figure 10.6 on page 354 ). The right plot uses 00B
randemization to compute variable importances, and tends to spread the impor-
tances more uniformiy.

Source: T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning, Chapter 15, Springer
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Forest Error Rate S

The forest error rate depends on two things:

The correlation between any two trees in the forest. Increasing the
correlation increases the forest error rate.

The strength of each individual tree in the forest. A tree with a low error

rate is a strong classifier. Increasing the strength of the individual
trees decreases the forest error rate.

Reducing m reduces both correlation and strength.
Increasing it increases both.

Somewhere in between is an "optimal” range of m - usually quite wide.

Notes on parameter m

- m is the only adjustable parameter to which random forests is
somewhat sensitive.

- Using the out of bag (OOB) error rate a value of m in the range
can quickly be found.

- Typically this range is quite broad. Good default values for m
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2. RF Design

Some Properties of RF

Bias:
— The bias of RF is the same of any of the individual Sampled trees
— Prediction improvements in RF are solely a result of variance reduction

RF accuracy is as good as Adaboost (and sometimes better.)
It's relatively robust to outliers and noise.
It's faster than bagging or boosting.

It gives useful internal estimates of error, strength, correlation and
variable importance.

It's simple and easily parallelized.

[RF = Bagging + Random Subspace Method (Ho 1998 ) at every node}
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Random Forest Sources -

T. Hastie, R. Tibshirani, J. Friedman, The
Elements of Statistical Learning, Chapter 15,
Springer, 2009

http://www-stat.stanford.edu/~tibs/ElemStatLearn/index.html

http://www-stat.stanford.edu/~hastie/Papers/ESLII.pdf

L. Breiman (2001). Random forests. Machine
Learning 45(1), 5-32.

Trevor Hastie
Robert Tibshirani
lerome Friedman

The Elements of
Statistical Learning

Second Edition
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2. RF Sources

Random Forest Sources (cont.) ===

Free software implementations of random forests.

Google Code implementations (most current)
* http://code.google.com/p/randomforest-matlab/
« http://code.google.com/p/fast-random-forest/

randomfForest package in R, maintained by Andy Liaw, available from the
CRAN website (cran-r.project.org)

This allows both split-variable selection, as well as sub-sampling.

Adele Cutler maintains a random forest website
http://www.math.usu.edu/ ~adele/forests/

where (as of August 2008) the software written by Leo Breiman and Adele
Cutler is freely available

The Weka machine learning archive
http://www.cs.waikato.ac.nz/ml/weka/

at Waikato University, New Zealand, offers a free java implementation of
random forests.
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Focus on the P of PHM: From Anomaly .
Detection to Diagnostics and Prognostics D
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PHM Models Y

— Anomaly Detection: 1-class classification
— Diagnostics: Multi-class classification
— Prognostics: Prediction
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PHM Capabilities and Enabling Technologies w

Stage 1: AD + RM&D | [Stage 2: Prognostics| |

Stage 3: Control & Optimization

Data Control /

Anomaly

- Diagnostics
Detection

Prognostics Advisory

Generation

Acquisition

Optimization

Feedback &
Learning

e !ﬁl“ BN
=1 -' ; T pai

Functions/Enabling Technolo ies

State Interpretation RUL Prediction On-board Fault
Generation/Selection Manual/Automated Automated forecast of:  Accommodation
Manual/Automated Classification - Deterioration level Off-board DSS

Anomaly Detection (AD)  Fault mode Id. - RUL

Normal / Abnormal Health Assessment Health Assessment

structures (trajectory, Projection

clusters, states, patterns) Lifing

Anomaly Resolution / Id. Fault propagation

Resolving sensors faults,

op. transients, model

Faults, system faults

On-platform sensors
Data recorders
Off-platform sensors

Inspection / NDE
Data repository
Data de-noising
Data smoothing
Data compression
Data transmission

Features

Shop scheduling

Logistics Optimization
Supply Chain Mgmt

Operational Optimization
Asset/mission allocation

Maintenance Optimization Performance metrics
Workscope (build level)

dashboard
Ground truth acquisition
Structured feedback

Uncertainty Management

Sensor Fusion
Extended KF

Feature Fusion
Hierarchy of local AD
models

Fusion of global (or

hierarchies of) AD models
A

Classifier Fusion Predictors Fusion

Reduce bias & variance

Jncertainty in DSS

dominance

Robust optimization

Functional approximations
error bounds; extrapolations  (confidence interval)

MCDM: Tolerance/fuzziness in - Noisy ground truth

Evaluation Uncertainty
Stochastic simulations

(consistency checks)

Model Lifecycle Management

On-platform sensors Anomaly Detectors

Diagnostics Models Prognostics Models DSS Models Optimization Models
lifecycle/maintenance update updates updates updates updates
Off-platform sensors Update training sets Update training sets Update training sets Update DSS models  Update training sets

lifecycle/maintenance  Recompile detectors
Obsolescence challenges  Re-assess meta-level
(thresholds & costs)

to re-tune fusion

Recompile classifiers Recompile predictors
Re-assess meta-level Re-assess meta-level
(misclassification costs)  (misclassification costs)
to re-tune fusion to re-tune fusion
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Re-assess fitness (cost)
function parameters

Evolve/Compute new

optimization models

(Semi-) Automate new
requirements acquisition
Learning vs adaptation

-Testing adaptivity

-Integr. adaptations in new
releases & sharing

-Tracking region of competenc

Automated spec gen.

-Autonomous V&V






Reference: “P. Bonissone, X Hu, R. Subbu (2009) A Systematic PHM Approach for Anomaly Resolution:
A Hybrid Neural Fuzzy System for Model Construction, Proc. PHM 2009, San Diego, CA, Sept 27-Oct 1, 2009.
- [GE GR Technical Report, 2009, GRC839, Sept. 2009 |




Anomaly Detection (AD) - 1class classification

- SC Technologies for AD
- Example of AD for Aircraft Engines
- Design:
Offline MH (EA)
- Run-time:
Online MH (Fuzzy Sup.)
Object-level (AANN)
- Evolutionary Search for Designing a F-IBM
- Experiments
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Soft Computing Technologies for AD:
Fuzzy Systems

Approximate Functional Approximation/
Reasoning Randomized Search

p 4/\ /\

Probabilistic | Multivalued & { Neural J { Evolutionary }

4.1 SC for AD

Models Fuzzy Logics Networks Algorithms
- J .
; ~ - I
Fuzzy Multivalued
Systems / Algebras

Output Variable
S - IEI' XI

Guzzy Logia
Controllers

Input: [-0.6186 -0.8247] || Help | Close |

Example: Fuzzy Logic Controller
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Soft Computing Technologies for AD A—
Neural Systems -

[ Approximate } Functional Approximation/

Reasoning Randomized Search
) / \ \
Probabilistic| Multivalued & Neural Evolutionary
Models Fuzzy Logics Networks Algorithms
-

b

| )
éeedforward — L Recurrent
l \ NN NN ) l
Y !
Single/Multipl :
RBF (Layer Perceptro) (HopfleIcD (SOM)(ART)

s STy,
>

f
: 7 J Y,

k Example of Feedforward NN J
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Soft Computing Technologies for AD A—
Evolutionary Systems E—

{ Approximate } Functional Approximation/

Reasoning Randomized Search
- — —
Probabilistic || Multivalued & Neural Evolutionary
Models Fuzzy Logics Networks Algorithms
o l
| R

Evolution Genetic
Strategies Algorithms

01100010 01100010

10100100 10100100
10011001 |} f[10011101
01111101 01111001

D eeston)[crossorer) et DN

(Evolutiona@h Genetic J
10010110 ]’_E>j 10010110 ¥Pr09rams Progr.

Current Next
generation generation

Example of Binary- Encoded GA /

.
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Soft Computing Technologies for AD
Hybrid Systems

P
Probabilistic

Models

-
/

Auto-Associative
NN

Fuzzy
Controller

Genetic
Algorithm

Fuzzy Supervisory Rule Set

E‘di"i:_ual Individual Individual
ncodin - i
Altitude | Amb. | Mach# | Model # 9 Decoder Evaluation

State
Variables Temp.
R1 | High High High AANN-1
v, (input) :
RULES{ R2 [ High Medium | Medium | AANN-2 inputs bottleneck outputs ‘
V., (input,) layer
r3 | Medium | Low Low AANN-3
v, (input,) v, (npat )
. )
Fuzzy Supervisory Term Set 3 SN Sy ‘
Allitude o T
. ! T v
5 — High 20N
205 — Median
% — i
n - {
0 0125 0.25  0.37¢ 0.5C 0.62¢ 0.75 0.875 1.00 encoeding decoding
. Ambient layer layer
i —High
2 05 w—fedian
= — |y

0 0125 0.25 0.37¢ 0.5C 0.62¢ 0.75 0.875 1.00
Mach #

— High
e edlian
s |

| T
\ 0 0125 0.25 0.37¢ 0.5 0.62¢ 0.75 0.875 1.00
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Offline MH'’s [

SC Techniques for Offline MH'’s,

Object-level

Online MH's }

Object-level

-

" " local
Online MH’s, & Object-level Models prcblom Problem
. Solver Solver
Design Run-time \
Problem Problem Model Design Model Object-level models References
Instance Type (Offline MH’s) Controller [As listed in
(Online MH’s) Bonissone 2010]
Anomaly Detection | Classification Model T-norm Fuzzy Multiple Models: SVM, [24]
(System) tuning Aggregation NN, Case-Based, MARS
Anomaly Detection | Classification Manual design Fusion Multiple Models: [25, 26]
(System) Kolmogorov Complexity,
SOM. Random Forest,
Hotteling T2, AANN
Anomaly Detection Classification EA tuning of Fuzzy Multiple-ModelS: [27, 28]
(Model) & Prediction fuzzy supervisory | Supervisory Ensemble of AANN’s
termset
Insurance Classification EA Fusion Multiple Models: [29, 30]
Underwriting: Risk NN, Fuzzy, MARS,
management
Load, HR, NOx Prediction Multiple CART Fusion Multiple Models: [31, 34]
forecast trees Ensemble of NN’s
Aircraft engine Control/Fault EA tuning of Crisp Multiple Models (Loop): [14]
fault recovery Accommodati | linear control supervisory SVM + linear control
on gains
Power plant Optimization Manual design Fusion Multiple Models (Loop): [32, 33, 34]
optimization MOEA + NN’s
Flexible mfg. Optimization Manual design Fuzzy EA [10, 35]
optimization supervisory
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4.1 AD

Anomaly Detection

Fuzzy Supervisory Rule Set
.', StatebI Altitude | Amb. Mach # | Model # Offline MH:

. g Variables Temp. i i

Operational _ _ _ A Evolutionary Algorithm
Envelope » Engine Physics-based SImU|at9I’ R1 I;izl:pu%) High High sma | ———————
. S High Medium | Medium | AANN-2 — )
Operational Sensor K RULES 2 v, (input) Individual in EA
State Vector Data /) g3 | Medium | Low Low AANN-3 » population defines

7 ., (npug) V. (input,) - “¥| Fuzzy Sup. Termset

1 !

Fuzzy Supervisory Term Set -~

Atiuds” Fuzzy Supervisory

X ] L ‘ E interpolates among i
Online MH: £ — tign : AANN’s using termset i
FUZZy £ 05 — o dian i :
Supervisory = — ! y i
SyStem 8 0.125 0.25 : 0.375 0.50 0.625 0.75 0.875 1.00 i CompUte reSIc uaIS between E
\ Ambiont Temperature - | nine simulated sensors |
. 2 Yy \‘Xm _ . ! ' & interpolated AANN'’s output '
IR N A = || v i
Models: [[% 353 3|% 88 e 3][2 3888 3] 5 — Compute Fitness Function |
AANN’s )| ¥ .2 2| ¥.2 3|9 T n | i based on aggregate i
AAN_N_" AANN_Z AANN_3 \\ 0 0125 0.25 0.375 0.50 0.625 0.75 0.875 1.00 : Of nlne sensor reSIduals :
* ' 1 Mach # i l i
s g < AN g 05 i || Evolutionary Algorithm E
Y 3 E based on Fitness Function i
\\ [ 0 0125 0.25 0.375 0.50 0.625 0.75 0.875 : 1.00 i i
Problem Problem Type | Model Design (Offline | Model Controller Object-level models
Instance MH’s) (Online MH'’s)
Anomaly 1-class EA tuning of fuzzy Fuzzy Supervisory | Multiple Models:
Detection Classification | supervisory termset Ensemble of AANN'’s

Reference: "A Systematic PHM Approach for Anomaly Resolution: A Hybrid Neural Fuzzy System for Model Construction”,
Proc. PHM 2009, San Diego, CA, Sept 27-Oct 1, 2009. - [GE GR Technical Report, 2009, GRC839, Sept. 2009]
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Ensemble of Complementary AD models with Simulated
GE90 Aircraft Engines (Detailed Description )

- Potential Sources of Anomalies
- Dynamic System and Sensors Simulation
- AD Model (AANN)
- Experiment Setup
- Segmentation of the Operating Space
- Experiments
1st - 3 local models
e - 1 Global Model
3rd - 3 local Models + Supervisory Model
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Potential Sources of Anomalies 4.1 Anomaly

- Sources
Transients Assuming perfect controls System Failures
Sensor Failures
[ Ope rator ] Controller Mode/ /naa'equacy
3 Desi
/ Pilot Provess
u UComputed

Dynamic System

[Iéeference}é_ o Controller |—»| Actuata
enerato Reference

Reference XEStimQte xPhySiC0| L
Generator | S >Y<5ensed r
Design tate )
Process . < ensed Sensors ——
Estimator L
S I ) W I _>|E Real-valued,
! il ¥ time-stamped data
! \ rical, "
Operational Event/Message | _timN§tomped Anomaly Detection
Log Generator Log Generator Model

1T 1T

| S | S

Operational Log Event Log
Generator Design Generator Design
Process Process
Operations Control Monitoring
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Reference I C R
Generator Referende

I Operator I
Pil

Controller

Design
Process

UComputed

Controller

— Actuator

X

Reference
Generator
Design
Process

Estimate

Physics-Based Simulation

State
Estimator

Operational
Log Generator

Operational Log|
\Generator Desigi
Process

Operations

Catego

_E Event/Message _t_irp_e:s_t_a[n_F_ev_d_
Log Generator dat

Event Log
iGenerator Desig
Process

Control

AD Model
Design
Process

Monitoring

—CLM: Component Level Model is a physics-based
thermodynamic model widely used to simulate the
performance of a commercial aircraft engines.

—Flight Regime: Flight conditions, such as altitude,
Mach number, ambient temperature, and engine fan
speed, and a large variety of model parameters, such as
module efficiency and flow capacity are inputs to the
CLM

—Outputs: CLM'’s outputs are the values for pressures,
core speed and temperatures at various locations of
engine, which simulate sensor measurements.

—Noise: Realistic values of sensor noise can be added
after the CLM calculation.

Module parameters
(Efficiency & Flow
capacity)

2

Flight Conditions

L

—»| Cycledeck

Model

—

—
» Sensor

measurements
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Basic AD Model: Auto-Associative Neural Network 4.1 Ab Model

Actuator l Dynamic System Y physical

Rati ond I © Operator Controller
The Auto-Associative Neural Network /Pjot P ﬁ
(AANN) leverages covariance information Reference | CO%ouer B
like other approaches (SRC and T2). The Cenerator) fereerge
AANN also produces sensor estimated ;t
values to replace the ones generated by s Estimator

faulty sensors. This approach provides a ——
. . . . perationa 1

better discrimination between sensor faults [ Log Generator }

and system component faults.

Definition/Properties

Log

K [ Event/Message

Generator }

Operations

Control

Catego
time-stq|

G

AANN computes the largest Non-Linear Principal
components (NLPCA) - the nodes in the intermediate
layer - to identify and remove correlations among

variables.

NLPCA uncover both linear and nonlinear correlations,
without restriction on the type of the nonlinearities

present in the data.

Computation

Traditional NN training with back-propagation

Variable Contribution

Residuals magnitude/distribution

inputs

.ﬂ'
;

i
o
-,

encoding
layer

ol \ / ol e
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layer
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Experi ment Setu p 4.1 Experiments

Operations Control Monitoring/Simulation
[ Operator ]
/ Pilot
UComputed UPhysicoI

Reference '

[G N }’é——» Controller > Actuator {Dynomlc SyS’cer’n}‘+ Yehysical
enerator Reference

TXFcfimnfn X

Physical
Sta te X Sensed -
. Y.
Estimator . Sensed { Sensors ]‘
Operational Event/Message Real-valued,
Log Generator Log Generator time-stamped data
v layer
Anomqu Detection Raw Sensor | | Y ;f&‘ || Sensor
Measurement U IR Estimation
YN odlng decod
Abnormal layer layer
Type of Anomaly (system, sensor)
Time of Anomaly >é)<
Anomaly Severity
Residual Analysis

(Aggregate Measure)
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Pressure Aftitude (1000 1)

Segmentation of the Operating Space 4.1 Operating

Three regions in the Flight Envelops
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Experiments

Experiments Settings

— We used a steady state CLM model for a commercial, high-bypass, twin-spool,
turbofan engine.

— We can manipulate flight conditions to simulate different operation regimes (i.e.
flight envelops of aircraft) and generate data corresponding to them

1st Experiment
Three AANN’s: One for each region in the flight envelop (region)
Vary ALT, Mach and Tamb ->1000 normal operating pts for each region
Run each operation point through CLM to generate a 9x1 sensor vector
900 points for training (200 for validation); 100 points reserved for test

Results: Each local model performs very well (better than global model) in region of
competence, and performs poorly (outside its limited scope)

2"d Experiment
One Global AANN
Train on same 2700 training data points from experiment 1
Run each operation point through CLM to generate a 9x1 sensor vector
Test on the left 300 points

Results: Global model performs fairly across all three regions - shows higher
variance than each local AANN operating within its scope

3 Experiment
Three AANN’s: One for each region in the flight envelop
A Fuzzy Supervisory Model (FSM) to interpolate among local AANN’s

Results: Hierarchical structure performs very well across all regions — including
transitions
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4.1 Experiment 1

Experiment 1

Vary ALT, Mach and Tamb ->1000 normal operating pts for each flight
envelop

Run each operation point thru CLM to generate a sensor vector (9x1)
Three AANN’s: One for each region in the flight envelop
900 points for training (200 for validation); 100 points reserved for test

Results: High performance when in scope

Goal: Create three local models
inadequate performance when out of scope
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Residuals: test set from FE1 on AANN1 4.1 Experiment 1
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[Correct Scope of local model: Small Residuals!}
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Residuals: test set from FE3 on AANN3  4iExperiment}
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Residuals: test set from FE2 on AANN1 4.1 Experiment 1
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[Incorrect Scope of local model: Larger Residuals (10x)}
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Experiment 2 ‘S

* One global AANN
 Train on the 2700 training data points from experiment 1
 Test on the left 300 points

Goal: Create one Global model
Results: Mediocre performance across entire space
- better than worse performance of local models
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Test data from FE1 4.1 Experiment 2
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[Increased variance (3x) compared to experiment }
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4.1 Experiment 2

Test data from FE3

[Increased variance (2x) compared to experiment 1}
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Test data from FE2 ‘Gl
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[ Smaller residuals (20%) compared to FE2 on NN1 }
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Experiments (con't) 41 Experiment 3

3rd Experiment
- Three AANN'’s: One for each region in the flight envelop
- Fuzzy Supervisory Model (FSM) to interpolate among local AANN'’s
- Simulate the change of flight conditions
FE1: 200 pts
FE1 — FE2: 200 pts
FEZ2: 200 pts
FE2 — FE3: 200 pts
FE3: 200 pts
- Test simulated data on Fuzzy Supervisory Model with AANN1, AANN2, AANN3

- Intentionally make transitions in state space not covered by any pre-trained
flight envelop

Results: Hierarchical structure performs very well across all regions — including
transitions

Goal: Create a Fuzzy Supervisory Model for three local AANN models
Results: Higher performance across all regions
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4.1 Operating

Flight Envelop Transitions i

Operating Regime Transitb e

FE1 Transition FE2 Transition FE3 )
<+ 'y
g
1] i -
: o -
£ | I | |
< I I I I
| 1 1 | ! =
0 z?u 4'?1: 600 3'?1: 10p0 1200
Ambient Temp Mach Num
o i i ' | i
K | | | | Crisp Model-Transition
= I I I
3 | I |
< S -
0 200 400 600 sdo 1000 1200
£ | | | I .
2 l | | | :
5 I | =
L]
=
l l : 1 |
0 200 400 600 800 1000 1200
Flight Num
Ambient Temp Mach Num

Fuzzy Model-Transition

Dr. Piero P. Bonissone © All rights Reserved — 2010 PHM Tutorial



Transition Management Using Fuzzy Supervisory Model

AANN Interpolation by Fuzzy Supervisory

4.1 Design

Network Implementation

<4+—Inputy ——»
3
State Altitude | Amb. Mach # | Model # =11V (Input
Variables Temp. g "’k( P k)
R1 | High High High AANN-1 T
> Vi inpus) W
RULES{ R2 | High Medium | Medium | AANN-2 | Model,
Vz,l(lnpuﬁ) W2
r3 | Medium Low Low AANN-3 i w
Vatnput) VaslInput,) 3
Y(AA4NN,
e AANN-1 - Residuals Generation
O /8, e ond
» Piiii ] R(44WN)=
o e ¢ e
o ow X, -Y,(4ANN,)
Y (44NN,
-, AANN-Z ... Residuals Generation
Raw Sensor .. oo
Measurement f— | 2 3 33 20— R.(AANN,) = Z
X Vo e
V= = X, —~Y,(44NN,)
Y(AANN,
% ﬁANNf = Residuals Generation
. 333 3 E ——p R.(AANN,) =
- 4 L .
v ow e X, -Y,(4ANN,)
3
w; xR,.(AANN]) ;
=
R= 5 ='W, xR (AANN,)|e—
=1
ZWJ
j=1

Dr. Piero P. Bonissone © All rights
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In |::-L.I'['I- ISENs0r
measuraments)

A HI
ﬂ.LT s
+H]
lTu'l::i"lm
/)
~|_|*

L
W—l_[J 1.3 %) W= wi/wy+wo+ws)
Figure Of Merit (FOM)
FOM= ZZ( ’f)
i=l j=1 i

n is the number of the variables (sensors)

m is the number of data points (measurement)

R;; is the residual between true measurement and
AANN estimation,

)?i is the mean of the true measurement
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Residuals for each AANN and for hierarchical system (with FSM)l S—

AANN-1 ANN- B
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. onC . Flight &
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Design Tuning 442esn

- Design Choices in the Fuzzy Supervisory Model (FSM)
- Tuning the Fuzzy Supervisory Model

- Manual tuning of FSM State Partitions
- Automated tuning of FSM State Partitions
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Manual FLS Tuning: Membership function

parameters

4.1 Design

B
1 . 1
£ — Tuning £ —
E ns ] ki . 4 os m— i ian
F — | (extending AANN1 scope) : —
u?l 3t 32 313 34 38 G I 15 uil 3 32 33 i 36 38 iy 15
it i Alilude w10’
| 1 —_
-t =
ﬁ _H.gh 'E / — High
208 e [l i3 gos / — [l
E — e 2 ——
!]Fi -0 B B S5 B 4 -0 X - 65 B0 A0 -85 a0 35
Embiant Temp I-mtuenl Temp
1 1
= =
E e Hijh E m— High
2 ns — fl ] ATy 2 o5 — e ran
§ —|_rog g — e
T TR i
khich & Warch i
10 10
] i
™l e, e e
§ ! 5 .
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=21l o ] 40
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m (RIS, W T T -, -] [ e T
A0 -0
A0 =0
K] B
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. W o . L'"u 4 g & " 1] —H,.“l—l— g -]
R Ty PR & A T T - [, . i 2 0
™ .50 L M .50 L
= 5 ]

Manual tuning, extending AANN1's scope, lead to a 25% FOM improvement
We could use FOM for gradient or evolutionary parametric tuning




Automated FLS Tuning with an EA  410esion
using a Wrapper Approach

/ Fuzzy Supervisory Rule Set Evolutionary Algorithm

/. State Altitude | Amb. | Mach# | Model # Tuning the FS termset in
Operational . . . 7 variables Teme. a wrapper approach
Envelope » Engine Physics-based Slmulgtor RL | High High High AANN-1
/ . . . 1 1
. RULES{ R2 | High Medium | Medium | AANN-2 1 .. _ H
Operational Sensor / 7, (nput) ! Individual in EA '
State Vector Data ks [ Medium | tow | tow | AanNs | | > population defines i
~ v, (Inpus) v, (imput) ! _--¥| Fuzzy Sup. Termset '
/ 1 -~ 1
/ L1 * '
- . / . 17 1
- e 1 R 1
Run-Time Anomaly Detectu?/n Model Fuzzy Superwgﬁjcy Term Set : Fuzzy Supervisory :
T T T T T T T 1 . 1
. ! interpolates among !
Fuzzy £ 0 i AANN’s using termset i
q £ 1 1
Supervisory E : ;
System 0 i . '
0 0125 0.25 0.375 0.50 0.625 0.75 0.875 1.00 : Comlete reSIduaIS between :
# Ambient Temperature - i nine simulated sensors '
vy Vv . ! & interpolated AANN's output | !
ayer g m— High : :
E 05 — y{edian : . . :
2 —Low ! Compute Fitness Function :
A A 0 | i based on aggregate |
AAN_N_1 AAN_N_Z 0 0.125 0.25 0.375 0.50 0.625 0.75 0.875 1.00 : Of n|ne sensor reSIduaIS :
* Mach # : $ :
1 { 1 1
Residual Analysis < : g — Hih : , : ;
y AN £ 0sp — VL Evolutionary Algorithm '
N = — ! based on Fitness Function i
\ 0 1 1
\\ ! 0 0125 0.25 0.375 0.50 0.625 0.75 0.875 : 1.00 i i
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hembership Membership

bembership

Automated FLS Tuning: Encoding Trapezoidal

Membership functions

3 3.1

Altitude

4.1 Design

) bl L]

— High

m— fedian

—— | gy

0.55 06 x4_“5 07 s 07s 08 l Mach #
L
Encoding the abscissa of the slope intersections (x))

and the lengths of the bases of each triangle (L) as an
individual in the Evolutionary Algorithm population
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Evolutionary Search for Tuning a Fuzzy Supervisory%
System using a Wrapper Approach

Operational
Envelope
Script

Engine Physics-based
Simulator

Run-Time Anomaly Detection Model

Fuzzy
Supervisory

AR ;EAI\{_N-E - AANN-S

Residuals { R; }

Pop Size = 500 individuals
GenMax = 1,000 generations
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VaY

Anomaly Detection - Results

ina: : : 4.1 Desi
Automated FLS Tuning: Membership function parameters &2 =290

Meta-Heuristic

3 e‘ I T T ¥ v T ——y L 1 I'I "|
Tuning —
= -E |—|_qw
" a1 a2 33 34 as 36 37 a8 N ettty et e
Akifude o1t = " Al
- ! z | - .
g . 3 — i
3 os — i Use Global Tuning 105 S
3 — Lo , . 37 o —
N A, W . W (based on FOM fltness.functlon st 5B e s W
e Temo and Genetic Algorithm) T T
. g i
s '3< X to further improve results | [=—hw
H — 3 o5 m— o |
E o5 — e AT E L
3 — ] gl ]
" T m X® W} N W @ m @ %I
U Note: Magnified scale to e
enhance comparison Before GA After GA
02 02 °2(FOM = 6.80
1 o ' 0.1 0.1 0.1
aa BE| o~ w L ﬂ Iﬁ w
e ——
4 ‘“ i 4 L r—————— z ° ! a ¢ ﬂ 2 | s
& 5 = 04 ! 01 0.1 ' S
an &5
| | 02 02 0.2
A - A 0 400 800 1200 0 400 800 1200 0 400 800 1200
b i3 ME 4330 # W B0 1 o A0 2 mN 1Im
4 " _ 02 02 0.2
o5 a5 " 0.1 0.1 0.1
O P E e Qo a "W i UM
¥ w I ol
a5 a5 B 01| 1\ 0.1 0.1
A S . A — . A .
Booam e e Boodm mn 1 oooos e um 0200 0 1200 %o a0 s0 1200 20 400 800 1200
) N 02 02 0.2
aa ™t e
: = 2 - o | " 04 0.1
S W ] | : y
2 T > fa |
a3 =0 - ax @ of I ; D'M g 0
 — . ) - oy A TP 041 041 0.1
I % AN BN 2w n TR
Flakd k¥ Flisht & . . T 400 800 1200 4"211 400 800 1200 -u.zo 400 800 1200
ur. rFiero F. ponissone © Al rights F Flight # Flight# Flight #



Improving AD Design : Add AANN-4 & retune FLS 4.1 Design

FOM = 6.80 Before GA After GA
0.2 0.2 02 ]
0.1 0.1 0.1 @
_ z
: — W "I - o -
g ] ﬁ%ﬁ‘y(*vwﬂ*# : e E 0 ﬂr}if % ﬁ 0 -.Wv,x"rqe:-,p\:ﬁ_,_ﬁl,aﬁ&s- é
0.1 ' 0.1 0.1 ! Lo P
02 02 02 1
0 | 400 | @00 1200 0 | 400 | 800 1200 0 | 400 | 800 1200
02 0.2 02
01 0.1 0.1 B :
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2 1] — J ] mwmr:ﬁu g D T‘@ﬁ#}_ﬂ.ﬁ:ﬂ:—ﬁﬁlh‘m ﬂ 1] - &Q«"“% Amblent Temp MaCh Num
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e | o : . :
- E | ' | a— - ' [ 1 : g | | g feee
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o : é e
01 01 0.1 = : o = :
= -~
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0 | 400 | @00 1200 0 | 400 | 800 1200 0 | 400 | 800 1200 s A
Flight # Flight# Flight# = '

Ambient Temp | Mach Num

Most residual errors occur in the [200, 600] interval, indicating a performance limit
that cannot be addressed only by tuning the FLS. Rather it suggests
the need for an additional AANN-4 to provide better coverage in that region




Design Tradeoffs 4LDesidn

Model
Complexity a9 : .
A Manual design of additional Local AANN (AANN-4) +

GA tuning of FLS using GBF & T-norms** parameters

B O  FLS Trapezoid parameters tuned by GA*

O Multiple Local AANN's + Better aggregation (Prod)
+ FLS w/ manually tuned parameters

N

— (O Multiple Local AANN's + FLS

— O Multiple Local AANN's - simple model switch

B O single Global AANN

Model Accuracy (- FOM)
>

* Chromosome:
[xl,...,xs,Ll,...,,LS]

** Chromosome: [(anabnscn )= ---a(a13ab13=C11 ),o--, (an39bn3’cn3 ),P]
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4.1 Conclusions

Future Work

e Hierarchical Design (to Improve Accuracy and Extend Region
of competence)

+ Used Offline Metaheuristics (EA) and Online Metaheuristics (FLS) with
AANN model

- Use a more complex encoding for the EA individual to evolve BOTH
structure and parameters:
# AANN Models
Scope of AANN Models
Evolve membership Functions (GBF) in FLS
Evolve Aggregation operators (parameterized T-norms)

* Model Lifecycle (to maintain model Vitality)

- Use Offline Metaheuristics (EA) to create/retune hierarchical design with
updated data sets (e.g. reflecting more recent engine degradation)
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4.2 Case Study 2:

Fusion of (Competing) Classifiers
for Diagnostics (multi-class classification)

Reference: W. Yan and F. Xue (2008). Jet Engine Gas Path Fault Diagnosis Using Dynamic Fusion of Multiple Classifiers,
IJCNN 2008, Hong Kong, pp-1585-1591— [GE GR Technical Report, 2008GRC395, May 22, 2008].
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Fusion of (Competing) Classifiers 4z2biagnostics

MCS Obijectives

Static Selection/Fusion

Dynamic Selection/Fusion

Performance Evaluation

Application Example: Jet engine fault diagnosis
Results

Conclusions & Future Work

Dr. Piero P. Bonissone © All rights Reserved — 2010 PHM Tutorial



Multiple Classifier Systems (MCS) &2Mse

Objectives

- Introduce a new classifier fusion scheme: dynamic classifier fusion
- Apply it to a real-world classification problem - Jet engine fault diagnosis

Global methods

Local methods

dynamic

selection
static <

fusion

selection

— fusion

ﬂ[ ) Dynamic fusion of multiple classifiers

Adapted with permission from: W. Yan and F. Xue (2008). Jet Engine Gas Path Fault Diagnosis Using Dynamic Fusion of Multiple Classifiers,
IJCNN 2008, Hong Kong, pp-1585-1591



Static Fusion

Conventional static fusion

@ Test sample

—— M —p' (@)

™

M. = ith Classifier, i=1, ..

.m -

4.2 Fusion

p@|y) = f(p" @|y))
k=12,.m

|

Final Decisio
() = argmax|f

Adapted with permission from: W. Yan and F. Xue (2008). Jet Engine Gas Path Fault Diagnosis Using Dynamic Fusion of Multiple Classifiers,

IJCNN 2008, Hong Kong, pp-1585-1591




4.2 Fusion

Dynamic fusion e Fusion

Information

integration

@ Test sample

Final Decisio
(Q) = argmax|

Local
performance
assessment

d:

Query (Q)
Peerof Q,j=1,...N

Not a Peer of Q

Q

C0@®
in

n = Number of features
m = Number of classifiers

Adapted with permission from: W. Yan and F. Xue (2008). Jet Engine Gas Path Fault Diagnosis Using Dynamic Fusion of Multiple Classifiers,
IJCNN 2008, Hong Kong, pp-1585-1591




Dynamic fusion - cont'd

0. Training Set
Dj,i M* %& eﬁﬂ(wﬁtj)

p A ~ J
Features Target
i > t
1 n /
 —
Training
records /
d
\ 4
1. Peer set retrieval
A O O
Xy O ~
N(Q)ziuj xi’Q—xi’j‘<Rl. i=1,...,n}
O O
O
» X,

4.2 Fusion

Example for # classes = |@}|=C=7

@' =[0.2,0,0.1,0.7,0,0,0]
t, =[0,0,0,0,1,0,0,0]
et =[0.2,0,0.1,-0.3,0,0,0]

Design Parameter R,

‘N(Q)‘ = N, is a function of the point density
and the value of hyper-edge R,

R, should be tuned for each problem using
local or global search techniques

In our example R, =5% range X,

Adapted with permission from: W. Yan and F. Xue (2008). Jet Engine Gas Path Fault Diagnosis Using Dynamic Fusion of Multiple Classifiers,

IJCNN 2008, Hong Kong, pp-1585-1591




Dynamic fusion - cont'd 42 Fusion

2. Local performance assessment 4. Final Decision

Baselines

Local performance for ki classifier:
(a) Final decision (by simple averaging):

(a) Compute error for each record of the 1
kh classifier training set @ (Q) = argmax [—Z(p (w‘Q))]
m -

ko k
e; =(@; —1)) (b) Final decision (by dynamic selection)

(b) Compute meg the mean error of [Woods 1997]: i glassifier Local Accuracy for Q
th o
the k" classifier over all the Peers of Q LACT(0) = ZCM i) ZCM i)

ZNQ ;
j=16i w(Q):argmaxk)argmax[m%](w |%)‘

YT

meQ represents the bias the ki" classifier
in the neighborhood of Q

Select ki"classifier with highest Local
Accuracy for Q

3. Information integration Pr°p°s_ed Dec'_s'?" Method

(c) Final decision (by dynamic fusion):

7(0) =argmax[-- " (p* (@]g) - mefy)
\kzl 4
MEM rule

Adapted with permission from: W. Yan and F. Xue (2008). Jet Engine Gas Path Fault Diagnosis Using Dynamic Fusion of Multiple Classifiers,
IJCNN 2008, Hong Kong, pp-1585-1591

Bias adjusted output of k" classifier:

k k
p (w‘Q) —meg




4.2 Evaluation

Performance evaluation

Performance indices

Example for C=7

i Classif .i| Predicted Classes peAC
¢ N & .. PSSOl Np | F | P2 | F3 | F4 | FS | F6
Overall accuracy: OACzlg,CM(l,l) EHCM(I’J) NF 21397 [ 106 [ 150 [ 197 [ 70 [136][ 76.26
’ g | FI 27803 | opl 2 [ 0 [ 4 [[9932
" & N < . g | 2 [[118]] N245ANg2 \ 94 | 57 | 13 | 87.49
False positive rate: FPR=3CM(Lj)/ 2 CM (1)) S e liss 2,7&3@&&1 16 [ 22 [ 787
” ” S [ 288|5<,?/ 81 | STNIROINGZ | 47 |[ 67.49
. c ) c o =1 (202 X1 | 86 | 7 | 190NQ292RZ_| 81.71
False negative rate: FNR=CM(@G,)/ XCM(,j) Fo |77l N\ [ 4 [ 8 | 37\ 22Resq)| 9447
i=2 i=2,j=1

Classifigr Performance Indices

OAC=83.65% TPR =23.74% FNR =5.19%

Performance evaluation

Stratified 5-fold cross-validation

Adapted with permission from: W. Yan and F. Xue (2008). Jet Engine Gas Path Fault Diagnosis Using Dynamic Fusion of Multiple Classifiers,
IJCNN 2008, Hong Kong, pp-1585-1591



Application Example: Jet engine fault diagnosis  4.2Example

Ce————

Characteristics

« Engine initial quality varies

« Engine quality deteriorates over time

« Engines are operated at different points in

flight regime

» Increases flight safety

« Prevents costly component damage Constraints

and/or catastrophic failure

« Reduces turnaround time * Complexity of engine as a system
- Reduces delays and cancellations * Limited number of sensors allowed
* Increases engine on-wing time * Noisy environment and noisy sensed data

More accurate and reliable fault diagnostic systems are the key

Adapted with permission from: W. Yan and F. Xue (2008). Jet Engine Gas Path Fault Diagnosis Using Dynamic Fusion of Multiple Classifiers,
IJCNN 2008, Hong Kong, pp-1585-1591



Application Example: Jet engine fault diagnosis 4.2 Example

General information

» GEAE CFM56-7B engine for commercial aircrafts
» Simulated data

» 6 engine gas path faults

> 9 standard sensor parameters

> 5 levels of engine deterioration

6 engine gas path faults 12 parametric inputs

® Fan fault (FAN) _
.c Ut 1 fuel flow rate 7.  comp. inlet temp.
ompressor fau 2 fan speed 8. comp. exit temp.

® High Pressure Turbine (HPT) fault 3 core speed 9. HP turbine exit temp)|
= Low Pressure Turbine (LPT) fault 4. comp.inletpressure 10.  LP turbine exit temp,
. . 5 comp. exit pressure 11. 5/4

Customer Discharge Pressure (CDP) fault 6 fan tip exit pressure 12, 1/5
= Variable Bleed Valve (VBV) fault

Jet engine fault diagnosis is a 7-class classification problem

Adapted with permission from: W. Yan and F. Xue (2008). Jet Engine Gas Path Fault Diagnosis Using Dynamic Fusion of Multiple Classifiers,
IJCNN 2008, Hong Kong, pp-1585-1591



4.2 Results

Results ~—

NN classifier SVM classifier
Predicted Classes Predicted Classes

pcAC pcAC

NF |[FAN|CMP|HPT|LPT |[CDP|VBV NF |FAN|CMP(HPT|LPT |CDP|VBV
NF ||2139| 7 | 106|150 | 197 | 70 | 136 |[ 76.26 NF ||1912] O | 181 (253|237 | 75 | 147 || 68.16
¢ [FANJ 0 |2786] 13 | 0 | 2 | O | 4 | 99.32 o [FANJ 0 |2803] 2 | 0 | 0 | 0 | 0 | 9993
2 |CMP|| 118 | 7 |2454] 62 | 94 | 57 | 13 || 8749 2 |cMmp|l 98 | 1 [2512] 60 | 77 | 52 | 5 | 89.55
O |HPT 188 2 | 76 |2210[291 | 16 | 22 || 78.79 O (HPT| 183] 0 [107 (2221|249 | 18 | 27 |[ 79.18
£ |LPT [[288 | 2 81 317 (1893|177 | 47 || 67.49 E LPT | 302| O |[115 (547 [1563|229 | 49 || 55.72
= lcpp|[202] 1 86 | 7 |190(2292| 27 |[ 81.71 = lcpp|197] 0 [105| 4 | 184 (2288] 27 |l 81.57
VBV || 77 1 4 8 37 | 28 |2650(f 94.47 vBV | 61 0 2 4 16 | 23 [2699( 96.22

Classifier Performance Indices Classifier Performance Indices
OAC=83.65% TPR =23.74% FNR =5.19% OAC=81.48% TPR =31.84% FNR =5.00%

DT classifier

Predicted Classes
NF |FAN|CMP/HPT|LPT |[CDP|VBV
NF ||1773] 3 | 160 | 320|316 | 84 | 149 |[ 63.21
FAN| 2 (2797| 5 1 0 0 0 |f 99.71
CMP| 148 | 2 2250|117 | 169 | 111 | 8 80.21
HPT | 319 0 | 181 (1835|414 | 32 | 24 || 65.42
LPT | 366 | 0 |[182 |449 (1436|304 | 68 | 51.19
CDP | 187 | 0 | 106 | 35 | 302 |2105| 70 ([ 75.04
VBV 151 0 8 36 | 112 | 60 |2438| 86.92

pcAC

True Classes

Classifier Performance Indices
OAC=74.53% TPR =36.79% FNR =6.97%

Adapted with permission from: W. Yan and F. Xue (2008). Jet Engine Gas Path Fault Diagnosis Using Dynamic Fusion of Multiple Classifiers,
IJCNN 2008, Hong Kong, pp-1585-1591



4.2 Results

Results — cont’d ——

Overall accuracy: OAC=3CM(i,i) | 3. CM (i, j)

i,j=1

False positive rate: FPR = 2CM(I,]‘) ECM(LJ')

False negative rate: ~ FNR = iCM(z‘,l) > CM (i, j)

i=2,j=1

Overall False False
Accuracy | Positive Negative
(OAC) [Rate (FPR)| Rate (FNR)
S5 NN 83.65 23.74 5.19
'§ “§ SVM 81.48 31.84 5.00
23| cART 74.53 36.79 6.97
3 ;“s'°“.by 85.51 21.21 4.63
o veraging
° R
= | Dynamic | ., 21.96 4.64
S Selection
4 || Dynamic | go 18.72 4.92
L Fusion

[ Dynamic Fusion outperforms both baselines ]

Adapted with permission from: W. Yan and F. Xue (2008). Jet Engine Gas Path Fault Diagnosis Using Dynamic Fusion of Multiple Classifiers,
IJCNN 2008, Hong Kong, pp-1585-1591



4.2 Conclusions

Summary T

Dynamic fusion of multiple classifiers proposed in this study can be
effective in improving performance of jet engine fault diagnostic
systems and general classification problems as well.

Future work

Improve the dynamic fusion scheme by exploring different
approaches for each of the three key components of the DF.

Apply DF to other real-world data.

Adapted with permission from: W. Yan and F. Xue (2008). Jet Engine Gas Path Fault Diagnosis Using Dynamic Fusion of Multiple Classifiers,
IJCNN 2008, Hong Kong, pp-1585-1591



4.3. Case Study 3:

Fusion of (Competing)
Predictive Models

Reference: “Fast Meta-models for Local Fusion of Multiple Predictive Models” Applied Soft Computing Journal, 2008,
doi:10.1016/j.as0c.2008.03.006 — [GE GR Technical Report, 2007GRC832, Oct 12, 2007].
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Fusion of (Competing) Predictive 43 prognostics
Models -

Prognostics Issues

Prediction Problem: Motivation & Description
Technical Challenge: Prediction Uncertainty
Multiple Predictive Model Fusion

Model Generation

Spectrum of Weighting Schemes
— Global
— Local: Run-time Peers (Lazy Learning), Compiled (CART)

Evaluation and Results
Conclusions & Future Work
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4.3 Prognostics

Prognostics (RUL Prediction) ™22

* Prognostics is considered as Remaining Useful Life
(RUL) Prediction

» Typically run-to-failure data is not widely available (due
to its operational cost)

« As aresult RUL prediction tends to have high variance

* Fusion of multiple predictive models is one way to
decrease such variance

« Usually multiple prediction models include combination
of physics-based models and data-driven models

For a variety of reasons, such as background complexity, proprietary information,
and time constraints, in this tutorial we will focus on a prediction problem
for optimization, as a surrogate for the prognostics problem.
The problem will be solved using a dynamic fusion of predictive models )

-
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4.3 Problem

Prediction Problem: Motivation

Primary Market Opportunity

e 700+ coal-fired boilers > 100 MW in U.S.A.
e 2000+ coal-fired boilers > 100 MW outside U.S.A.

Secondary Market Opportunity

* Industrial boilers worldwide Underiying
closed-loop
. . plant control

» Coal, gas, oil, combined cycle systom

Emphasis on Environmental Issues

aspobnls Lo the I =W 42
* Clean Air Act — U.S.A. A i Otpective
Optimal X's (Optimizer |
» Kyoto Protocol L e A

e Dlaision problem

[ Significant market need for model-predictive optimization of coal-fired boilers 1
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Multi-Objective Decision Making: Control Setting Selection EA (EMOO) + NN + Fuzzy + Fusion

e Key Goal: Generate hierarchical control settings for Coal-

T Fired boiler to

\gK - Reduce emissions (NOx) and Decrease fuel cost (Heat Rate),
i j - while satisfying all operational constraints (load, CO, SO, etc.)

e Key Challenge:
- Prediction Uncertainty [due to model extrapolation from
training set image]

ASSET (e.g. BOILER)

Pareto Front for Heat Rate and NOx

:g? AI'?uke‘Marsl"mallat‘400I\/‘IW
e Solution: 2
Use fusion of predictive models 5
(hybrid first-principle and data- e N B
driven NN's) to determine (HR, e Bt —
NOx) coordinates of given setting. | X =

0 + ‘
NN '
OFA (paaAnA) NOXx ‘ ‘ ‘ ‘ ‘ ‘ ‘ .
Damper POSItlon }—' Sm% 2 0.25 0.3 0.35 0.4 .45 0.5 0.55 0.6 0. 6?
NOx
Mill 8,c.0.E} Bias EPA Fines
Threshold

Constraints

- Use of Evolutionary Multi-
NNco Satifaction

Objective Search to generate Evaluation
Pareto Surface in (HR , NOX)

%
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4.3 Problem

Prediction Problem: Description

I nad = 400 MW
9350 1 1
*  Optimized Settings
O Historical Settings
9300 -~ "~"F " T T TS mom oo

= NOx

«
N
a
o

— Heat Rate

o
N
o
o

— | oad

-~ ~t- -t TN

©
=
a
o

(IOCX
9100~ - - - - gt Q---

NOx,
Heat Rate,

(o]
R
o

soooo--Pareto-+--—--N 1"

Heat Rate (oc fuel usage cost)

8950~~~ e

8900
0.

n = # inputs ~ 23

» Pareto Frontier = best achievable operation * Model-predictive multi-objective optimization

* Goal: Optimize NOx * Neural networks, evolutionary algorithms
Optimize Heat Rate (« fuel usage cost) * Needed: High fidelity predictive models
Operate the boiler at Pareto frontier * Modeling: NOx, Heat Rate, Load
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Technical Challenge: Prediction Uncertainty ‘3 Pfroplem

Function approximation model

Cross Product Space X xY YT

t(x) = f(x) + &(X)

Data noise g(;‘c’)

Model parameter misspecification @ Probe U= [X,. 7,

Variation due to randomly sampling of training dataset
Non-deterministic training results
Varying initial conditions
Model structure misspecification
e.g. not enough neurons
Misspecification of regression models
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4.3 Fusion of

Multiple Predictive Model Fusion Radiciass

@ Probe Q(U,=[X,,?])

|
TrainingI = :
1storica | "ﬁ‘-__' - SfF "E;" ~. eee g '“F,g;_' -
| |
| I T (N |
Al AD Am
Yo Yo Yo

Fusion of multiple model outputs

v
Yo

Effective fusion of multiple diverse models can boost accuracy
1. Active literature in multiple classifier fusion (voting, weighting, fuzzy, Dempster-Shafer)
2. Ensemble of neural networks (Stacked generalization, decorrelated neural networks)
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4.3 Fusion of

Need for Locally Weighted Fusion eredictors.

System model f/(X) obtained from a given data set D: f(x;D)

Mean square error over all possible dataset D:

Bias

/
E,[(f(¥;D) = 1(¥))"]= (E,[f (¥, D)] - 1(3))” +
ED[(f()_éaD) o ED[f()_éaD)])z] <«— Variance

[1. Mean square error depends on the position of query points in the inputs space }

2. Averaging will not eliminate bias error
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4.3 Fusion of

Weighted Fusion — Model Generation

Bootstrap data

Historical data

[ Train m models from same historical dataset using Bootstrap }
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4.3 Fusion of

Weighted Fusion — Model Generation (cont.) 7 i

Models: MFE, k=1,..

m

Bootstrap data to
increase models diversity

B [ 28 VE

Training data

[— B % =) v

Models

B" II‘ M" w:* \ 7
Training Data: D, j=1,..d;i=1,.
ST, T k —
Dj,i Mk @ ej =
— 1
Features Target
i > t
1 n )
] [
Training
records ’
d
v

Since each model has been trained in the
best possible way, the quality of the fusion
will depend on selecting the correct fusion
meta-model structure & parameters.

Let’s start with on the parameters (weights)

Each weight reflects the degree to which we
want each model to contribute to the
fusion. We want the most reliable models
to have the highest weights, and vice
versa.

Thus the computation of the weights will be
based on the historical errors that each
model has shdwn during training.

The trajning data should then be update by
ual runs, models errors should be
updated accordingly, once ground truth is
available, and weights should be
recomputed to avoid obsolescence.

By features, we mean the inputs used to train
the individual models (e.g., altitude, speed,
pressure, temperature,, derivatives of
above vars., etc).

Dr. Piero P. Bonissone © All rights Reserved — 2010 PHM Tutorial




Spectrum of Weighting Schemes (Global) gy

The most important aspect in selecting the weights is
obal methods . . .
to determine which training records to use
Local methods

— static T selection For offline fusion model generation we have many
fusion choices, depending on the tradeoff between
accuracy and complexity:

— dynamic —[ selection

fusion
(1) Large granularity — Global Weight (for each model)
Use all d training records
ar s Wei ht /
- g mae® where
e’
k
1 e.
Train ‘ Z| J | Mean Absolute Error
raining k =1
records J mae = for model &
k=1, ..., m
d
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Spectrum of Weighting Schemes (Local -cont.) 4.3 Design

Global methods

Local methods

— static —|: selection

fusion

— dynamic selection
%m

eﬁ :(J’}f_tj)

.

k
€ Tree (ii)
1 Xy =ty
Training
records / gt [ X<
E
vd Y ke :‘ Xa =ty
R: Hx
; Grid (iii)
X4
>
y R | R |Ry
, ; " R4 R5 RG iy
Peers (i) B
R; |Rs |Rg
Rio |Ri1 Ry,
v -

iero P

(2) Small granularity — Automatically select a subset of
training records — With Learning (dynamic)

Quantitative Description: Use domain knowledge or
expert knowledge to determine [using mathematical
expressions] regions of the feature space in each
model should have a different weight:

Region R; should be assigned weight K;
Run-time region generation
(i) Run-time Peers — Lazy Learning

(using hyper-rectangles or hyper-spheres around Q)
Compiled-time region generation
(ii) Trees (using inequalities)

(iii) Grids (using Intervals) -> exp. complexity

Qualitative Description: [using linguistic expressions]
(iv) Fuzzy Partitions (using fuzzy rules)
-> exp. complexity Not covered
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Run-time: Lazy Learning — Predictive model weights (2 i) 4‘5 D! esign

Manage complexity by leveraging contextual knowledge The model is in the data
Problem decomposition using + no model to train
- Lazy Learning (Run-tim Peers) - need to compute region
for every query Q
Lazy Learning Fusion — Step 1 of 3 - curse of dimensionality
Mk ,;"‘-i' o
_ @ Probe Q J
State Space X e
J
AXn O Peer u; uJ.EP(Q) 1 @
Training
! records —
)
@ QQ O Peers (Q) =P(Q) I
: o P(Q) =1}, =1,m|u; € N(O)
P > # of peers of (Q) = N,
’ 1 Xl —
/ “R—> No = |P(O)
X Neighborhood (Q) = N(Q)
2 NQ)=|xp—x <R i=1,..,n 3 4
where R, =5% X, =
(i)

[Retrieve historically similar neighbors/peers of probe Q]
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Run-time: Lazy Learning — Predictive model weights (2 i)

Lazy Learning Fusion — Step 2 of 3

. ; L :.'{:3”1.-‘{ eers
Target for the peer o PE:'ETIJ.J u, € F{Q} E hJ?% gP

[

¢,
_'\.':-l ."|'|='|
Mean Absolute Ermor based Z! E‘f | | | Mean Error (bias) based Zef
onpeers formodel £ . & _ =l on peers formodel &k _ =l
k=1, ..., m e _.i'-.,-'Q k=1, .., m . ."\.-’L:I
Evaluate local performance of each of the m
predictive models using their training sets
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Run-time: Lazy Learning — Predictive model weights (2 i)

Lazy Learning Fusion — Step 3 of 3

, AN M & 5
Local weight for model k- Yo maeg @
I
k
€
1 E
Training
records |
: ; )
Locally weighted learning w/ bias Locally weighted learning without bias v
Compensation compensation
m s m i
K gk kv S knk S
Z wo (s —mey) ﬁ D> Woly
.}Jﬂl = ;,-’;m 1 .-]';I:I = k= ;;fr.rl'r ¥
/ 2% / 2%
& j—:] ri li::]_
A 3 P
Yo Yo Ot
- . - - ) H
Aggregation of multiple predictions based (i)
L on local performance )
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Curse of dimensionality
(for Lazy Learning type of models — e.g. kernel based models)

- =
Uit Cul - _ 4=10
\ . o | B — d=3
- - =
B y ~ d=2
1 — ) ] s} -7
— - =T P d=1
—~ _@ ~ ~
o 4
(=] = rd e L
° Iy S
//J ,J'//
B o [/
1 - o ||/ )
g ,/"f"
\ ) o ||
1 = T
0.0 0.2 0.4 0.6

Neighborhood

Fraction of Volume

The figure on the right shows the side-length of the sub-cube needed
to capture a fraction r of the volume of the data, for different dimensions n.

...In ten dimensions we need to cover 80% of the range of each coordinate
to capture 10% of the data.

Source: The Elements of Statistical Learning - Data Mining, Inference, and Prediction, Chapter 2, Figure 2.6
Trevor Hastie, Robert Tibshirani, Jerome Friedman, Springer

Local Methods need to reduce their dimensionality to avoid this “curse”
— dimensionality reduction via transformation (e.g. PCA)
— dimensionality reduction via subset selection (e.g. CART)




4.3 Design
- Options

Compile-time: CART Tree —» Predictive model weights (2 ii)

Manage complexity by leveraging contextual knowledge (A), (B), (C), and (D) are equivalent
Problem decomposition using: representations

- CART (Classification Analysis and Regression Tree) (C) and (D) assume that each output Y

in a region is constant, i.e., Weight(R)=K,

CARYT (Classification Analysis and Regression Tree)

(A) (B) (C) il
X<ty B
L < | i
”.’. . - L . J
.Irlll" i f._ ) : =
'1"-? i! ) ) x| < i3 H - .:r_ . 1 @
'h: Iril-!. '. . .
4 R, y T Training
Xz Sty e records’
! F |I .H_-' H;; ﬁ‘I )
leaves J
v

R

Tree

Local Models = X2 < 1t2/ Xy < tg
Context < > Local Precomputed l
Weights

[ Dimensionality reduction via subset selection (using CART) ] (ii)

(D)

KXo <ty
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Compile-time: CART Tree —» Predictive model weights (2 ii)

Each Model will have a TREE T,

CART minimizes the sum of the variances of the leaves, so there is
no need to compute weights as the inverse of mean absolute errors (or
the inverse of the variance) as in case 3i

So the constants K, assigned to each region (a leaf in the tree) are just
the biases to be used for that model, when the input Q falls in region R,

1) Pre-compile the bias of each region: For each model £ compute
the bias as the Mean Error of all the points (residuals) in region R,

‘Ri‘ k
ko e j=1 ]
le' —

X

2) Determine which bias to use: For each model %, for a given query
Q, find the region R, (leaf node in tree T, ) to which Q belongs:

bg = bf;[ such that O € R,

3) Apply bias removal to output of model &, and average over all the
models (considering all weights wg equal to 1)

_ ~
—_ ~

0 mo k=1
m
Zk:1 WQ

N Z:’:lwg(j/(l)c_bg) lzm (j;g_bg)

4.3 Design
- Options

v (P
I

€
1
Training .
records’
)
d
v
Tree
Xp <t
Xo <ty X, <t
J Xo <ty
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A
~ 2,300 points

~ 5,000 points

Fusion Performance Evaluation

4.3 Design
- Options

Validation Validate fusion strategies l
P Bootstrap + trainin.
Trainin p g )
e B————=—"| Multiple Neural Network models
- I . |
! Different fusion strategies !
: Average Aggregation based or(globa Weighted Locall i arning :
: performance learning with bias compensation :
| |
: i U :
~ k ~k k
: m y 0 — Z w y 0 Z w m ok m . . . :
1 A — — A ~ _ 1
: Z;Vg = = ZWQyO Z Q(yo meQ) !
. - . N k=l A k=1
: y —_ k—l Ntraln yo m yo m :
| om 3w 3w :
! k j=1 ¢ WQ I
! mae = k=1 k=1 !
1 1
1 1
1 1
k
: w = 1 k :
: mae :
| \ / \\ / |
1 1
ey

Constant weights

Dynamic weights
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Results — Fusion Perf. Evaluation (with Hyper-rectangles 43 Experiment

St Of predictions (Bi/KWh)

~ Results

Settings: 30 NN models trained, performance based on validation dataset
Performance metric: MAE (mean absolute error) over validation dataset

Baseline: average MAE of 30 MAEs from singleton NN model

MAE ; — baseline

Fusion performance gain: pg, =
’ baseline

Performance comparison from Heat Rate modeling

Degree of prediction inconsistence from multiple HR models 100
350 T T T T

300 - —

250 Average & L
Fusion w/ Global Weighfs
200 —
Fusion w/ Local WeightT_Z?i
80- — .
150 | S —k-Individual models
= -O-Fusion with simple average
75- <0~ Fusion with global weights .
100} 4 -% Locally weighted fusion
; ; -4 Locally weighted fusion with bias compensation
MWMMW Fusion w/ Local Welghtls_::>70Z \
50 - I + Bias Comp. [
| n | | | | |
. ‘ ‘ ‘ WA ‘ i %% 5 10 15 20 25 30
0 500 1000 1500 2000 2500 Models

Validation Data point

Large model to model variation for each individual query point
Locally weighted fusion takes advantage of such discrepancy
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Summary of Results Fusion Perf. Evaluation

4.3 Experiment

. - Results
(with Hyper-rectangles) I
Heat Rate NOx (Ib/MBtu) Load (MW)
Fusion Strategy MAE pg MAE pe MAE pg
Baseline 901.79]  0.00%]  0.0228]  0.00% 1.050]  0.00%
fusion with global|Simple Average 87.15 5.00%  0.0214]  6.00% 1.042]  0.76%
(1) information  [GWF 86.91]  530% 00214  6.00% 1.040] 1.80%
. hyper-rectangle |LWF 82.19 10.46% 0.0202 11.40% 1.024 2.48%
(3i) | weights w bias |[LWE=+bias 69.20] 24.61%]  0.0140] 38.60% 0.855]  18.57%
MAE: mean absolute error YT
pg: performance gain Mg, = sy T OBOEne
baseline

GWEF': globally weighted fusion
LWEF: locally weighted fusion

LWF+bias: locally weighted fusion with bias compensation

Locally weighted fusion (hyper-rectangle) with bias compensation
boosts performance 18~38% over baseline
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Additional Experiments Training & Validation I

Validation Validate fusion strategies

Training >DEIBootstlrag +

training Multiple Neural Network models

ﬁ Different fusion strategies

i |
i !
i :
i Hyper-rectangle K-nn CART model I
i neighborhood neighborhood °ee fusion :
i !
i |
i Model MAE ; — baseline !
! _ |
| performance P& s baseline i

S —— T ————— S S e |

Dr. Piero P. Bonissone © All rights Reserved — 2010 PHM Tutorial



u ] ] s
Predictive Model Fusion - Results %2 esiner
Heat Rate (Btu/KWHr) NOx (Ib/MBtu) Load (MW)
Fusion Strategy MAE pg MAE pg MAE pg
[ Baseline > f;;;l;’:;éifgfsr)“ge 91.79 0.00% 0.0228)  0.00%|  1.050] 0.00%
| Best Predicto> fg;f:;’;jjoﬁj‘" of 85.10 729%D  0.0213 @> 0.987(C6.00%D
Average 87.15 %l 0.0214 14%) 1.042] 0.78%
(1) Global Weight Global neighborhood GWF 86.91] C_ 5.32% 0.02€4]  6.14% LOGO[ 0.95%>
Least square weight 83.05 9.52%) 0.0200] 12.28%) 0.984 .29%
Hyper-rectangle neighborhood +|LWF 82.19 10.46% 0.0202] 11.40%) 1.024]  2.48%)
Weight LWF+bias 69.20 24.61%) 0.0140] 38.60%) 0.855] 18.57%
0 0, 0,
Hyper-rectagle neighborhood Average : 87.15 5.06%) 0.0214 6.14%) 1.042] 0.78%
Average + bias 69.23 24.58%) 0.0140] 38.60%) 0.855] 18.56%
(3’_) Lazy Learning Hyper-recta.ngle nelghborhood +|LWF 83.93 % 0.0208 % 1.030, %
(Hyper-Rectangles Weight w/o bias LWF+bias 69.16] C_24.66% 0.014€[_38.60% 0.8€4] 18.63%
/ . . LWF 81.19 11.55% 0.0214 6.14%) 1.008] 4.02%
1nn neighborhood + Weight -
LWF+bias 72.99 20.48% 0.0143] 37.28%) 0.861] 17.98%)
0, ) 0,
Snn neighborhood + Weight LWF : 84.31 8.15%) 0.0206 9.65%) 1.029] 1.97%
LWF+bias 76.34 16.83% 0.0169] 25.88%) 0.903] 14.04%
CART model LWF 82.12] 10.53% 0.0201] 11.84%) 1.022] 2.67%
l\ LWF+bias 68.56 25.31% 0.0148] 35.09%) 0.817] 22.19%
(3ii) CART CART model Average 87.15 _2.06%) 0.0214 6.14%) 1.042] 0.78%
Average-+bias 60.451C_ 34.14%D 00114 48.68%p  0.72( 31.38%D
MAE: mean absolute error MAE]& —baseline
pg: performance gain P PS 5= :
GWF: globally weighted fusion baseline

LWEF: locally weighted fusion
LWF+bias: locally weighted fusion with bias compensation

CART- segmented fusion with bias compensation boosts performance 31~48% over baseline

doi:10.1016/j.as0c.2008.03.006 — [GE GR Technical Report, 2007 GRC832, Oct 12, 2007].

Reference: “Fast Meta-models for Local Fusion of Multiple Predictive Models” Applied Soft Computing Journal, 2008,




Predictive Model Fusion: Summary

k
Dy M
~ —- ~
Features Target
H_w., 1 i 4»” t]
‘1—
Training '
records /

Lo

- ¢
J
yk

(J’}j 71‘,‘)

S )=

R

Historical data
| —

Object
Models:
NN'’s

Bootstrap sample to Models

increase model diversity

F e i [P
=

) R S0 Offline MH: : -
S e -ff__,-"l N NG, CART Trees trained| \L B E = "'
5«_?;‘3-@4\ P S ~~Imﬁa1ﬂ- on error vectors
. e e ":"I-,:' /'ix.:: ) i M* | =~ X
. e = P i i yj tj) =
_..o-;r_,x'ﬁa ! : .ﬁ' CART Tree |.Pr0be Ch [XO’?])|
_,4,._, A For M* |
PR - |
Historical Training:
1 data I.-I
Training ; In___ _—— __J:. ______
records [ )}(1) )33 i R v
d Online MH: - - !
Fusion mechanism | Fusion of multiple model ouputs I‘—'
with adjustable biases
compiled in CART tree Yo
Problem Problem Model Design Model Object-level models
Instance Type (Offline MH’s) Controller
(Online MH'’s)
Load, HR, Prediction | Multiple CART trees Fusion Multiple Models:
NOx Forecast (one for each model) Ensemble of 30 NN's

Reference: “Fast Meta-models for Local Fusion of Multiple Predictive Models” Applied Soft Computing Journal, 2008,
doi:10.1016/.as0c.2008.03.006 — [GE GR Technical Report, 2007GRC832, Oct 12, 2007].




Predictive Model Fusion: Conclusions 4.3 Conclusions

Locally Weighted Fusion (off-line): CART-based Precompiled Segmentation

Adaptive fusion based on localized model-specific characteristics
» Takes non-uniform prediction uncertainties into account
» Model prediction quality is input dependent
» Uses CART Segmentation to compute local bias

» 31-48% performance boost observed over baseline fusion techniques

Advantage:
» Can be precomputed: Faster than on-line locally weighted fusion
Future Work
 k-nearest neighbors retrieval: tested but did not improve performance
» Kernel-based functions for peer/neighborhood distance computations

* Winner-take-all with bias compensation
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Summary and Conclusions

* Fusion Benefits:
— Overcoming the ceiling of performance of single models
— Increase accuracy and robustness
— Reduce uncertainty to make information actionable

 Fusion Requirements
— Diversity in model ensemble(via boosting or multi technologies)
— Aggregation function (meta model capturing meta-knowledge)

« Tradeoff Performance versus Complexity
— Including models lifecycle in complexity (e.g., cost of ownership)
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Multiple Classifier Systems (MCS 2005), pp. 376-386, Monterey, CA, June 13 -1, 2005

+ P. Bonissone, K. Goebel, and W. Yan (2004), Classifier Fusion using Triangular Norms, Multiple Classifier Systems (MCS) 2004,
pp. 154-163, Cagliari, ltaly, June 2004 - [GE GR Tech. Report, 2006GRC143, Feb 21, 2006]

+ K. Woods, WP. Kegelmeyer, and K. Bowyer (1997), Combination of multiple classifiers using local accuracy estimates, IEEE
Transactions on Pattern Analysis and Machine Intelligence, 19(4):405-410

PREDICTION (Ensemble Learning for Prediction)
Case Study 4.3: P. Bonissone, F. Xue, and R. Subbu (2008), Fast Meta-models for Local Fusion of Multiple Predictive Models,
Applied Soft Computing Journal, 2008, doi:10.1016/j.as0c.2008.03.006 - [GE GR Tech. Report 2007GRC832, Oct 2007]

* F. Xue, R. Subbu, P. Bonissone (2006), Locally Weighted Fusion of Multiple Predictive Models, IEEE International Joint Conference

on Neural Networks (IJCNN’06), pp. 2137-2143, Vancouver, BC, Canada, July 16 —21, 2006 - [GE GR Technical Report,
2006GRC454, Nov. 2006]

* F. Xue, P. Bonissone, A. Varma, W. Yan, N. Eklund, K. Goebel (2008), An Instance-Based Method for Remaining Useful Life
Estimation for Aircraft Engines, Journal of Failure Analysis and Prevention, (8)-2:199-206, April 2008,
http://www.springerlink.com/content/4t7656400t571727/ ) — [GE GR Tech. Report 2007GRC276, Apr. 2007].

+ P. Bonissone, A. Varma, K. Aggour, and F. Xue (2006), Design of local fuzzy models using evolutionary algorithms, Computational
Statistics and Data Analysis, 51:398-416, 2007 — [GE GR Tech. Report 2006GRC594, Oct. 2007]
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