Verification & Validation for PHM

Dr. Guillaume Brat, NASA ARC

NASA Ames Research Center, Code Tl

11 October 2010 PHM 2010 1

Who am |?

* Deputy Area Lead for Robust Software Engineering in the
Intelligent Systems division at the NASA Ames Research Center

* Our goal is to increase the reliability and robustness of
NASA software, and the productivity of its software
engineering, through the research, development, application,
and transfer of automated software engineering technology
that scales to meet NASA's software challenges.

* We draw upon many techniques from Computer Science
(eg, program verification, automated reasoning, model
checking, static analysis, symbolic evaluation, and machine
learning) and apply them to the verification and validation of
software, as well as code generation.

* Bio nuggets:
« Ph.D. from the ECE Dept. at The University of Texas at Austin in 1998

« Principal Scientist for the FY’10 V&V of Flight Critical Systems study
for the Aviation Safety program in NASA ARMD

11 October 2010 PHM 2010 2

Outline

Setting the stage

A few definitions

Current V&V trends

What about V&V for PHM?

Conclusion: need more research

11 October 2010 PHM 2010 3

Setting the stage

15 June 2010 S5 4

Focus on aeronautic

~ .. W

787 Flight Test Milestones

11 October 2010 PHM 2010 5

Impact: Cost, and Co

Size Comparisons of
Embedded Software

Lines of Code

System

Typical GM car in 2010

100M\

NASA Study

Flight Software Complexity, 4/23/200€

13 April 2010

Relative cost to fix error

175.00 -

150.00 -

125.00 -

100.00 -

75.00 -

50.00 -

25.00 +

0.00

B

Mars Reconnaissance 545K

Orbiter

Orion Primary Flight Sys. 1.2M

F-22 Raptor 1.7M

Seawolf Submarine 3.6M

Combat System AN/BSY-2

Boeing 777 4M

Boeing 787 6.5M

F-35 Joint Strike Fighter 5.7M /\ Fig 1- Typical Transport Aircraft

relopment Cost Distribution — Current
Generation
Winter, D. (VP, Engineering & IT, Boeing PW)

-ouse Committee on Science and Technology, July 31,
2008

I T | . - . . . I .

Requirements Design Code Development Acceptance Operation
Test Test

Phase in which error was detected and corrected

NFM 2010 6

oehm, B. 1981 Software Engineering Economics, as cited in DAA, 2008

Software Certification

« DO-178B | ED-12B: Software Considerations in Airborne £=
Systems and Equipment Certification N
— Prepared by RTCA SC-167 and EUROCAE WG-12 EUROCAE
« Main V&V elements:
— Requires structural testing (with code coverage analysis)

« testing of executable object code
— Strong emphasis also on requirement-based testing

— Review of all requirements, design and code

* Need to ensure traceability between requirements, code, and the tests that
verify that the code satisfy the requirements

11 October 2010 PHM 2010 7

Software Certification Evoluti

« DO-178C
— Prepared by RTCA SC-205 and EUROCAE WG-12

* Among other things, it emphasizes:

— Model-based design and verification
 New guidance for model execution/simulation

« Attempting to define model coverage metrics
— Formal methods

* Define new objectives/activities/documentation (abstractions, assumptions)

* Avoid common errors (false hypotheses)

11 October 2010 PHM 2010 8

Place of V&V in certificatic

Safety Requirements ‘

Arguments

TN

Evidence

V&YV provides evidences for a certification case

11 October 2010 PHM 2010 9

A few definitions

15 June 2010 S5 10

V&YV Definitions

* Verification is a process that is used to evaluate whether or not
a product, service, or system complies with regulations,
specifications, or conditions imposed at the start of a
development phase.

— Are we building it right?

» Validation is the process of establishing evidence that provides
a high degree of assurance that a product, service, or system
accomplishes its intended requirements.

— Have we built the right thing?

11 October 2010 PHM 2010 11

V&V Misconception

Verification Validation

Testing Strategies

Peer Reviews Black Box White Box

Wrong: validation does not equate testing

11 October 2010 PHM 2010 12

In the research world

* During the research activity, we're mostly concerned with
validation:
— Is the new algorithm solving the right problems?
— How do we convince people that it is the case?
— We typically do just enough verification to make sure that we can
trust the simulation results.

* During technology transfer, we're very concerned with
verification:
— |s the software correct with respect to the specifications?

— We are still concerned with validation because nothing replaces
validation on the final product.

11 October 2010 PHM 2010 13

Current V&V trends

15 June 2010 S5 14

V&V and the Lifecycle

Methods of Examining for
Big Issues Early-On

System Verification Plan
{System Acceptance)

Subsystem
Verification Plan

Unit / Device
Test Plan |

Implementation
Development Processes

18 June 2010 15

Requirements

* Requirements analysis determine the needs or conditions
to meet for a new or altered product, taking account of the
possibly conflicting requirements of the various
stakeholders.

Requirements ‘\ System Analysis
and Control

Analysis
A (Balance
| Requirements
Loop

Functional Analysis |

and Allocation
Design
Loop
Verification \ 4

Design Synthesis

__

PROCESS OUTPUT

- CcCUovZ - wemOOXT

11 October 2010 PHM 2010 16

Requirements

&2 INR 08A Shutdown

Requirements can be

— architectural, i

— structural, @ 0mmen pr—

— behavioral, ——a Activity
— functional, and e diagrams

non-functional.

@0 Record Shutdown o Record Shutdown

3.1.1

The Spacecraft Navigation Sub- Spacecraft Navigation
system shall stop performing
Spacecraft Navigation upon receipt of
a Shutdown Ground Command.

11 October 2010

PHM 2010 17

Requirements

Operations Changes :
o o (\ Retirement /
Replacement

_ System Veldaion Plan_ __ | Syse

System Verification Plan
em Acceptan System
ASystem Agceptance) . ¢ e TL e f /.

Subsystem De en!
Verification Plan

» Requirements must be

— documented,
- meaSU ra b | e, me Document/Approval
- teSta b | e) Time Line Develr;z:::letr:’tmses

— defined to a level of detail sufficient for system design, and,
— traceable all the way to code and tests.
 Requirements are mostly verified through peer reviews

— Some checks (conflicts, ambiguities) can be automated if
requirements are expressed formally.

11 October 2010 PHM 2010 18

Tabular representation:

2.3 Flight Director (FD)

The Flight Director (FD) displays the pitch and roll guidance commands to the pilot and copilot
on the Primary Flight Display. This component defines when the Flight Director guidance cues

are turned on and off.

Definitions of Values to be Imported

When_Turn_FD_On

| .\I:\(‘It()l

Condition:

When_FD_Switch_Pressed,,aq()

When(AP, 120 =Engaged)

When(Overspeed, 1)

A |When_ GA Switch_Pressed,,,102()

N When_Lateral_Mode_Manually_Selected,,, 23()

When_Vertical_ Mode Mannally_Selected,,, 04()

When_Pilot_Flying_Transfer,, os()

Pilot _Flying,.o =THIS_SIDE| gpr

Were_Modes_On,, 31()

Purpose: This event defines when the onside FD is to be turned on (i.e., displaved on the

PED).

11 October 2010

PHM 2010

OR

EEIEIE

19

Models and Testing

The goal of Model-Based Testing (MBT) is to reduce costly test

development.

The use of model checking enables the QA engineers to test contractor code

developed from the models

Requirements
Coverage Generation

5
e p‘—ope“\ =L
- CTL Properties

model

D ,
' A Creay T SG T e
P em, o EorE :
1l W‘_ B g Formal Model
Software Requirements g ==

RCI/UMN Translator .)
with properties

L g S Formal Model
Simulink Model

check

requirements
coverage

Design

* Software design is a process of problem-solving and planning
for a software solution that meets the requirements.

UML
diagrams

11 October 2010 PHM 2010 21

Simulink model

Left_FGS_Cloek(?

n
-1
P Other_Side ’.
Left FGS_0Out
LR_Channel_Clock
C’f:night_res_mock
@—b Independent_hode n il
Left_Independent_Modd
FGS_Out p{ln Outfp——— P Other_Side

LR_Channel @—-’ Independent_hdode

Right_Independent_Mode

true [initial_Pilot_Flying FGS_Out »(2)
Right_FGS_Out
[Transfer_Switch] Transfer_Switch
Left_FGS
false ——pm{Initial_Pilot_Flying
RL_Channel
Right_F&S
Out Injeg
(1 _—W=="[Transfer_Switch] | n

Transfer_Switch
LR_Channel_Clock1

11 October 2010 PHM 2010 22

Model-based Development Ex

Company Product Tools Specified & Autocoded Benefits Claimed
Airbus A340 SCADE * 70% Fly-by-wire Controls * 20X Reduction in Errors
With Code |« 70% Automatic Flight Controls | * Reduced Time to Market
Generator | « 50% Display Computer
* 40% Warning & Maint Computer
Eurocopter EC-155/135 SCADE * 90 % of Autopilot * 50% Reduction in Cycle Time
Autopilot With Code
Generator
GE & FADEDC Engine | ADI Beacon | * Not Stated * Reduction in Errors
Lockheed Controls * 50% Reduction in Cycle Time
Martin » Decreased Cost
Schneider Nuclear Power SCADE e 200,000 SLOC Auto Generated * 8X Reduction in Errors while
Electric Plant Safety With Code from 1,200 Design Views Complexity Increased 4x
Control Generator
us DCX Rocket MATRIXx * Not Stated * 50-75% Reduction in Cost
Spaceware * Reduced Schedule & Risk
PSA Electrical SCADE * 50% SLOC Auto Generated * 60% Reduction in Cycle Time
Management With Code * 5X Reduction in Errors
System Generator
CSEE Subway SCADE * 80,000 C SLOC Auto Generated | ¢ Improved Productivity from
Transport Signaling System | With Code 20 to 300 SLOC/day
Generator
Honeywell Primus Epic MATLAB * 60% Automatic Flight Controls * 5X Increase in Productivity
Commercial Flight Control Simulink * No Coding Errors
Aviation System * Received FAA Certification
Systems

July 8, 2010

23

Model-based development

 More and more, code is automatically generated from design models.
* Verification can be built into the auto-coding process.

transition

Prog ram / }ose_door open_dool

void add(Object o) { transition condition
buffer[head] = o;
head = (head+1)%size;

Object take() { try acti
entry action

i;il=(tail+1)%size;
FIOW Cha rt return buffer[tail];
}

Finite state machine

* It's very important to verify and validate models

11 October 2010 PHM 2010 24

Model Checking

model checker

NO + counterexample:
\ A)vides a violating execution)

N\

YES (property holds)

safety property
always(¢ ory) [

Testing

10 June 2010 25

Formal Requirement/desi

Simulink NuSMV

Simulink 2%, scADE
Lustre » PVS
Safe State
StateFlow — Machines Design
Verifier
ICS

—— Rockwell Collins | Symbolic
—— Esterel Technologies SAL Model Checker
— SRI International Bounded
——> MathWorks Model Checker

Infinite

Model Checker
11 October 2010 PHM 2010 26

Models and Testing

The goal of Model-Based Testing (MBT) is to reduce costly test
development.

The use of model checking enables the QA engineers to test contractor code
developed from the models

Model

: rtk
: model
A .
BRI E Cregy, I D T o= check
- Ll W‘: 5 A— o /
Software Requirements [TS e

Formal Model
with properties

model coverage

17 gy S Formal Model
Simulink Model

Coding

» Coding is the process of designing, writing, testing,
debugging/troubleshooting, and maintaining the source
code of computer programs.

» Most embedded systems are coded in C and C++.

 The main V&V means for coding are: k o -

— Dynamic analysis, or testing, and,

— Static analysis. . BIARNE
y STROUSTRUP

AN
AL

11 October 2010 PHM 2010 28

Static Analysis

The goal of static analysis
is to exercise all data
ranges for all paths

Operations are:

» safe

* unsafe

* potentially unsafe

—
-
—
-
-

Testing exercises
some data points
and some paths

l

Oi;
. r 7

1
r_r

Sq

*

else {
y

}
v

if

}
while (v < 1

Dou

Static analysis is well-suited for catching runtime errors, e.g.:
— Array-out-bound accesses
— Un-initialized variables/pointers
— Overflow/Underflow
— Invalid arithmetic operations

10 June 2010 29

Static Analysis Challenge

A
Scalability[(KLOC) o~

1000

500
C Global Surveyor
(NASA Ames)
Astree
100 %
50

PolySpace
C-Verifier

» Precision
80% 95%

13 April 2010 NFM 2010 30

Software testing

» Testing is the most common means of verifying software.

Testing

Requirements based test :
Functional based test Designed based test

Black-box White-box

Testing Strategies

Boundary-Value Analysis Statement Coverage
Equivalence-Partitioning Decision Coverage

Error-Guessing Condition Coverage

Black box methods for
Function Based tests Path Coverage

White box methods for
Internal Based tests

11 October 2010 PHM 2010 31

Unit Testing

Unit testing refers to tests that verify the functionality of a
specific section of code, usually at the function level.

— They are usually written by developers as they work on code, to

ensure that the specific function is working as expected.

One function might have multiple tests, to

— validate nominal cases

— exercise corner cases or

— verify that off-nominal cases are caught by exception handlers.

Unit testing alone cannot verify the functionality of a piece
of software, but rather is used to assure that the building
blocks the software uses work independently of each other.

11 October 2010 PHM 2010 32

Integration Testing

* Integration testing is any type of software testing that seeks to
verify the interfaces between components against a software

design.
Component A ’

» Traditionally, larger groups of tested software components
corresponding to elements of the architectural design are
integrated and tested until the software works as a system.

11 October 2010 PHM 2010 33

Compositional Verification

July 8, 2010

Use system’s natural decomposition
iInto components to break-up the
verification task

« Divide-and-Conquer approach

Components typically satisfy
requirements in specific contexts /
environments

« safety assumptions about contexts

System safety derives from the ability to
compose the components’ contexts at
the system level

34

System V&V

« System testing tests a completely integrated system to
verify that it meets its requirements.

— Hence, the importance of having requirement traceability all the
way to system testing (for verification).

— It also test beyond the bounds defined in the requirements and
specification, and therefore the believed expectations of the
customer , for validation.

* |t can use test-beds with different level of fidelity, such as
— Hardware-in-the-loop testing
— Human-in-the-loop testing

11 October 2010 PHM 2010 35

What about V&V for PHM?

15 June 2010 S5 36

PHM algorithm classific

ISHM Algorithms
Model-based Data-driven
Physics-based Classical Al Conveptlonal Machine Learning
numerical methods
Systems 'of Expert systems, Linear regression, Neural networks,
differential finite-state machines, Kalman filters decision trees, support
equations qualitative reasoning vector machines

11 October 2010 PHM 2010 37

PHM algorithm classific

ISHM Algorithms
Model-based Data-driven
K \ . — v \q
Physics-based Classical Al onventiona Machine Learning
numerical methods
Systems 'Of Expert systems, Linear regression, Neural networks,
differential finite-state machines, Kalman filters decision trees, support
¢quations qualitative reasoning vector machines

11 October 2010 PHM 2010 38

Physics-based models

Adequacy of the conceptual
model with the domain of
Model intended application

Qualification

[REALITY]\ .
Analysis
N

A \

Is the computerized I

model an accurate I CONCEPTUAL
representation of the real N.l“d‘fl Qnmpu!cr MODEL
world for the perspective Validation Slmllllﬂtl“ﬂ _
of its intended uses? I .
I Programming

! -
COMPUTERIZED
MODEL

Does the implementation

Model accurately represents the
Verification conceptual model and its
solution?

11 October 2010 PHM 2010 39

Physics-based models

« Verification

— determining that a model implementation accurately represents
the developer’s conceptual description of the model and the
solution of the model

* |deas
— Certifiable code synthesis from equations

— V&V for numerical analysis code (similar to flight control SW)
 Numerical instabilities (floating point computation problems)
« Complex data structure manipulation problems (buffer overflow)

11 October 2010 PHM 2010 40

Physics-based models

» Validation
— determining the degree to which a physics model is an accurate
representation of the real world from the perspective of its

intended uses
* Correctness of the differential equations

« Usually done through simulations
« Stability and convergence of the implemented algorithm

* Analysis of the off-nominal cases

11 October 2010 PHM 2010 41

Physics-based models

 Related concepts:

— Model interpolation

 means application of a model to conditions bounded by the calibration and
validation experiments

— Model extrapolation

« outside the range of model parameters tested, or
* to conditions not tested (i.e., different geometries or boundary conditions),
* to different physical phenomena for which the model acts as a surrogate

— Model approximation

* In the sense that we're looking for a bounding model for a physical
phenomenon

11 October 2010 PHM 2010 42

Physics-based models V&V r

« Statistical Validation of Engineering and Scientific Models: Bounds,
Calibration, and Extrapolation by Richard G. Hills and Kevin Dowding, SANDIA
REPORTSAND2005-1826.

« A General Strategy for Physics-Based Model Validation by Didier Sornette,
Anthony B. Davis, James R. Kamm, and Kayo Ide, in Proceedings of in
Computational Methods in Transport, Granlibakken 2006.

11 October 2010 PHM 2010 43

PHM algorithm classific

—

Model-based

AN

Physics-based

ISHM Algorithms

\

Data-driven

v

A

Systems of
differential
equations

Classical Al

Conventional

Expert systems,

numerical methods

Machine Learning

finite-state machines, Kalman filters
qualitative reasoning

11 October 2010

PHM 2010

Linear regression,

Neural networks,
decision trees, support
vector machines

44

Machine learning (Neural netwc

* The core-layer contains rigorous, mathematically sound results
concerning robustness, stability, and convergence.
— Current state-of-the-art provides relatively weak results in form of asymptotic
guarantees.
* Lyapunov proofs of (asymptotic) stability
* Vapnik-Cherenovis-dimension arguments to reason about the NN’s generalization abilities
» Testing techniques to provide convergence guarantees in the
required short period of time e
— Analysis of numerical issues
— tests for convergence and robustness of the system

Run-time monitoring on NN performance

by Johann Schumann and Stacy Nelson, WOSS’02 . dynamic monicoring

11 October 2010 PHM 2010 45

Machine learning

* Requirements and Design.

— Documentation must include the specification for the
NN and its architecture.

« type of NN (feed-forward, Self Organizing Map, etc), T —

« the learning algorithm (gradient descent, Least Means %) ey
Squared, Levenberg-Marquardt, Newton’s method, etc.) i

« all parameters of the NN architecture (e.g., number of e
layers and hidden nodes, activation functions, o Mgmmm
initialization)

* aconcise description of the inputs and outputs (including
units and the expected and maximal range of values) and
acceptable errors and training set(s) for PTNN must be
provided.

__ System Vaiidation Plan____

Subsystem
Verification Plan
ubsystem Amspban‘;e)

« Software Detailed Design must include a description of precise code constructs
required to implement the NN, including all data structures and algorithms (e.g.,
libraries for matrix operations).

11 October 2010 PHM 2010 46

Machine learning

* Unit Testing must include both black and white
box testing for modularized NN code.

 Software Integration should verify that the NN
interfaces with other software including proper
inputs and outputs for the NN.

« Software Qualification Testing should ensure
that the requirements are sufficiently detailed to
adequately and accurately describe the NN.

« System Integration Testing should verify that the architectural design is detailed
enough so, when implemented, the NN can interface with system hardware and
software in various fidelity test-beds.

« System Qualification Testing should verify that the system requirements are
sufficient enough to ensure that, when implemented, the NN will interface properly
with the system in production.

11 October 2010 PHM 2010 47

Machine learning

o QOther V&V concerns coming from the numerical aspect of a
neural network:
— general numeric properties, like scaling, conditioning, or
sensitivity analysis,

— properties/issues specifically related to the training algorithm
(e.g., convergence, termination), and,

— Issues with respect to the actual implementation on a digital
computer (e.g., round-off errors, accuracy of library functions).

11 October 2010 PHM 2010 48

Machine learning V&V reference

 Guidance for the Verification and Validation of Neural Networks by Laura L.
Pullum, Brian J. Taylor, Marjorie A. Darrah

 Independent Verification and Validation of Neural Networks - Developing
Practitioner Assistance By Dr. Laura L. Pullum, Dr. Marjorie A. Darrah, and Mr.
Brian J. Taylor, Institute for Scientific Research, Inc., Software Tech New

« Toward V&V of neural network based controllers by Johann Schumann and
Stacy Nelson

 Validating A Neural Network-based Online Adaptive System by Yan Liu,
Dissertation submitted to the College of Engineering and Mineral Resources at
West Virginia University, 2005

 Verification and Validation of Adaptive and Intelligent Systems with Flight
Test Results by John Burken and Dick Larson, UCAUV 2009

 Validation and Regulation of Medical Neural Networks by David M. Rodvold.
Molecular Urology. December 2001, 5(4): 141-145.

11 October 2010 PHM 2010 49

Conclusion: need more research?

15 June 2010 S5 50

SSAT Project under Aviat

Level 2 — System Level

Goal -- Validated multidisciplinary tools and techniques to ensure system safety in NextGen and
enable proactive management of safety risk through predictive methods.

SSAA 2.1 Technical SSAA 2.2 Systems SSAA 2.3 Partnerships SSAA 2.4 Research
Challenges Analysis and Outreach Test and Integration
Level 3 — Themes
SSAA 3.1
Verification & SSAA 3.2 SSAA 3.3 SSAA 3.4
Validation Data Mining and Human Systems Prognostics and
of Flight Critical Knowledge Discovery Solutions Decision Making
Systems

Level 4 — Foundational

* SSAA 4.4.1: Decision
* SSAA 4.1.1: Argument- Making under
Based Safety Assurance Uncertainty
* SSAA 4.1.2: Authority and « SSAA4.4.2:
Autonomy V&V Of Diagnostics
» SSAA 4.1.3: Distributed . « SSAA 4.4.3:
Systems Prognostics Algos Prognostics
» SSAA 4.1.4: Software « SSAA 4.4.4:
Intensive Systems Software Health
Management

“Validated, proactive solutions for ensuring safety in flight and operations” 51

Technical Challenges: PDM

Prognostic Algorithm Design for Safety Assurance.

Explore designing new prognostics algorithms that are verifiable,
thus removing obstacles to their certification and enabling their
deployment by industry to take advantage of their safety benefits.
(FY 25)

Goal:
Remove obstacles to the certification of prognostic algorithms. The non-linear
and non-deterministic nature of prognostic algorithms requires industry to
perform more costly, intensive testing than on traditional technologies.

Benefits:
. New class of verifiable prognostic algorithm
. Reduced the cost to deploy prognostics algorithms

11 October 2010 PHM 2010 52

