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i Background of Prognostics

Prognostics: predict the remaining useful life
(RUL) when a component/system will no
longer perform a particular function (failure)

= Approaches:
- Data-driven approach

- Model (physics)-based approach
- Hybrid approach
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Uncertainty management
iin prognostics - 1

= Both deterministic and probabilistic methods exist
for prognostics

= Huge uncertainties associated with some
engineering prognostics problems (e.q., fatigue
damage prognosis)

= Assist the risk assessment and decision making

= Rigorous information fusion and leveraging
different approaches

= Uncertainty reduction in prognostics
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Uncertainty management
in prognostics - 2
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- Verification and Validation

FEM and

Information
Uncertainty

Verification &
» Validation

Fatigue Bayesian
- Updating

Damage
Mechanism
Analysis




UNIVERSITY

i Outline

= Background and introduction

= Uncertainty management in prognostics
- Model-based fatigue damage prognosis
- Uncertainty quantification and propagation
- Information fusion and uncertainty updating
- Model comparison and validation

s Conclusions



Multi-scale model for fatigue damage ‘"":'flElf“s::?lv:l
‘ prognosis

| | | I Length (m)

da/dN

Stress amplitude
(MPa)

\/ Time
Delta K Fatigue life (N)
da/dt relationship
at a smaller time da/dN curve — SN curve —
scale Paris, 1960’s Wholer, 1860’s



UNIVERSITY
defy ¢ j

Small time scale model (11

ncremental crack growth model Current crack surface at £+

1 da 20 do
Cla dt 1-CAoc’ dt
Old crack surface at ¢

4
—— C and g-ZAK-AK,

y 2 2 K,—-AK,,

where i-=

_ctgb

General crack growth kinetics

2CA

a=H\c) - H\oc-o0 ., ) -0-0-a

( ) ( ref) 1—C/102
o=f() Z

g

1,if x>0 Z
H(x)= .

{O,IfXSO

[1] Zizi Lu, Yongming Liu, Small time scale fatigue crack growth analysis. International Journal of Fatigue. 2010, 32(8).Iime 8
1306-1321.



Hypothesis verification using in-situ m
fatigue testing

In-situ optical microscope In-situ SEM
fatigue testing fatigue testing
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Crack closure observation

Crack only starts to grow after a certain stress level (hypothesis 2)
Crack closure is directly observed (hypothesis 1)
Significant crack blunting is observed at the later stage of loading

Loading increases

Crack growth during loading

Fully close  Transition Fully open
to open

10



Multi-mechanism small m
time scale crack growth

= Multiple growth mechanisms within one cycle

= Cycle-based approaches focus on the average behavior per
cycle and is not capable of describing this

|

Crack growth

Crack closx{e rittle growth

Loading

1111
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Concurrent structural-
([ [ [
material fatigue prognosis
Structural dynamics
............................................. ) X, =X,
mx+nx+ke= f(t) Ly, = (—k(x,)/ m)x, +(=nlmyx, + £() I m
PasssssusssssuESSESEEEEEEEEEEEEEEEEEEEEEEEEEEE - E . 2CA
X3 = H(g(xz))H(g(xl) - O-ref) 1— Cﬂg(xl)z g(xz)x3
----------------------------------------------- y= q(xl’ xs)
: ) ) 2CA :
a:H(O')H(O'—O'mf)l_C/IO_ZO'a 1
{1, if x>0 : 08l
H(x)=<_" :
0, if x<0 : 06}
4 Pre.vigus E 0al
! o
_.Forward plastic zone = .08l
R Quring reloading ., 11 v vumennns : _1 | | | |
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i Life prediction methodology

= Life prediction can be performed by time/cycle
integration from the initial crack size to the
final crack size

= [ime-based approach

c'z:H(o")-H(O'—aref)-l_zéjj‘o_2 GO —— j:‘%da=fH(f'(t))-H(f(t)—amf)-%y'@).f@)dﬁ
o=f()
= Cycle-based approach
da__ — N=[" N =["g(6K)da=["——d
= FaK) Jy v =], sarida=["—or da
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Error analysis for experimental data
under variable amplitude loadings
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Benefits of the development
i of mechanism-based model

= Increase the mean/median prediction
accuracy

= Reduce the model calibration
requirements/uncertainties

= Enhance the predictability under unknown
loading conditions

= Reduce modeling uncertainties by gaining
knowledge about failure mechanisms

15
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Uncertainty quantification

Sources of uncertainties
= Physical variability

- Material properties

- Loading

- Structural geometries

- Initial conditions (damage size, residual stress, surface roughness, etc.)

= Information uncertainty
- Insufficient data
- Measurement noise

= Model uncertainty
- Model form error
- FEM mesh error
- Surrogate modeling

- Statistical distribution and their covariance structure .
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i Surrogate modeling

= Surrogate model: approximate the
complex mechanism model by response
surface functions

= Different types of surrogate models
- Least-square curve fitting
- Gaussian Process regression
- Polynomial chaos regression
- Support vector machine
- Relevance vector machine

18



Case study: retardation effectm*‘ s
of fatigue crack growth

= Fatigue crack growth retardation happens when a large overload exists
in the loading history

= Cycle-by-cycle calculation for the tracking of this behavior
= Surrogate model of a retardation factor for fast simulation

= Procedure
- design of numerical experiments + STS simulation + response surface approximation

) Forward plastic zone
Reversed plastic zone

Ao;q =7nA o,

n :k(ROLaPOL)
""" - R, : Overload ratio
r P, : Probability of
pv >
. ()L _ overload cycles 19




Least-square curve fitting

77 . the coefficient for the load interaction effect
n=k(R, ,P,)=1+Alog(P, )R, —1)°

B=0.38

A=0.12,
& Overload Ratio 1.2
m Overload Ratio 1.5
1.2 ~ Overload Ratio 1.7
a2 1| — Fitting function .
= —_—
[7]
© 08 e % ﬁ—'
w
2 0.6 F
3 A
o
o 0.4
=
s
i 0.2
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Occurrence probability
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Fitting curve results

1.2 4 * Overload Ratio1.2
Overload Ratio1 5
14 4 Overload Rato1.7 .~
) - T
=+ = - ldentical prediction JoT 2
08 7 .AA’A
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0.6 - s
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Simulation res ults

1.2
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Gaussian Process Model

sic idea: model the output Y as a Gaussian process which is indexed
by the inputs x.

Training:  Given m training points X,,...,X, with corresponding outputs

Y=[Y(x,),....Y(x_ )], the joint distribution of Y is defined by
Y ~ N, [f" (x)B,AK]

fT — ¢ basis functions for the trend -- linear or quadratic

B — coefficients of the regression trend

A — process variance, A = G2

K — m by m matrix of correlations among the training points

Predicting: At untested location x*, the prediction Y* is given by
Y =Elrx)IY|=£" x*)p+r" (x*)R™ (Y —Fp)

F — m by g matrix, the trend basis functions at each of the training points;
r — the vector of correlations between x* and each of the training points. 5
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i GP regression results

> >

s1o2 L g12

E 3

S 2 1

c c

3 0.8 3 0.8
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£06 =06 |

L ! ‘

0 0.5 1 0 05 1

Occurrence probability, X Occurrence probability, X
Overload ratio 1.2 Overload ratio 1.5
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Comparison between two
surrogate models

1.2 + Overload Ratio 1.2 1.2 ¢ Overload Ratio12
= QOverload Ratio 1.5 ® Overload Ratio15
o 1 & Overload Ratio 1.7 - w 1- s Overload Rafio17 .
= B o g . o
208 ¢ o ER nF
%06 r AT e ’ g 06 7 "A ]
o ‘ 3
204 1 D 0.4 -
= £
wLo2 iL 0.2 1
0 - 0 ‘ : : : : ‘
0 0.2 0.4 0.6 0.8 1 1.2 0 0.2 0.4 0.6 0.8 1 1.2
Simulation results Simulation res ults
GP regression Least square regression
SSE 0.002653 SSE 0.031709
Mean Error 1.25% Mean Error 3.57%
Max. Error 4.39% Max. Error 10.71%
¢ GP model improves the fitting accuracy and reduces the modeling error
* Small modeling error will propagate through fatigue model and will be amplified (te )" -
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Impact on RUL prediction

& Experimental data (Rol=1.5, Pol=0.5)

- - - - Linear regression prediction (median and 90% CI)
50 - — GP model prediction (median and 90% CI)

= i}
Lo T |

| T 1% ]
[ R |

Craclklength (mm)

—
—

—

0 20 40 60 80 100
Fatigue life (kilo cycles)

» Differences are observed for mean prediction and one confidence bound

e GP model has a smaller confidence bounds due to smaller modeling errors
(24% reduction in confidence bounds)

e Modeling uncertainty is critical for some prognostics problems
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Covariance structure of
random variables

= Crack growth representation

— Mean curve — Mean curve
e Test data ---- Realization of
z o z da/dN curve .
E =
= =
> AK >
a) da/dN vsAK curve of b) white noise da/dN vsAK
experiments curve
A '
— Mean curve — Mean curve
--- Realization of ---- Realization of
7z da/dN curve .- z da/dN curve
<) g =
= =
= =
AK i AK -
c) percentile da/dN vsAK curve b) stochastic da/dN vs 2K curve
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Importance of covariance Ls

i structure

= Example of crack growth during two stress cycles

da da
Aamml =Aa1 +A612 :(E)AK] X]+(E)AK2 X 1

mean( Aa,,, )= mean( Aa, )+ mean( Aa, )

Var( 4a,,, )=Var( da, )+Var( Aa, )+2,0\/Var( Aa, Var( 4a, )

Covariance structure of crack growth curve will not
affect deterministic prediction much but affect the
uncertainty/reliability prediction

26
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Random process
representation of crack growth

= Probabilistic crack growth prediction needs to consider the
covariance/correlation among the basic input random variables

= Crack growth process is treated as a random process using
Karhunen-Loeve random process expansion technique

0(6)=0(x)+ ¥\7E (0)1
T —l_ _I: eigenfu_nction

Random variable

Random process mean
— Eigenvalues

\al‘az\

Ca,.a,)= O'e_T covariance function
1°>%2/ —

b —0 C=0, independent variables b — o C=1, fully correlated variablezc,7



Case study for Al-2024-T3
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i Summary

= Case study for fatigue crack growth analysis
indicates a highly correlated crack growth
process

= Percentile crack growth approach is a good
approximation

= Other prognostics problems may have
different covariance structures

= A flexible approach to handle the covariance
structure of random variables

29
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Uncertainty propagation -1

= Evaluate the uncertainty of response variables (RUL, crack size,
stiffness degradation, etc.) by propagating quantified
uncertainties through multiscale mechanism model

I Uncertainty _ Uncertainty propagation_| Uncertainty

I quantification — quantification |
at lower level at higher level I

[ —

?
|
|
|
|
|
|
|
|
|
|
|
5
[
|
|
|

New uncertainty:

y—

IS

o0

<

HE ="

=y

i&i modeling error m
2 =2
=

(=

]

Q

=

5

inspection error

? Vi

assessment at
system level

iUncertainty propagatidn

Risk
mitigation
plans
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i Uncertainty propagation -2

= Mathematically, uncertainty propagation evaluates
the multidimensional integral in the random variable
space

= Different approximation methods

- simulation-based approach: direct Monte Carlo (MC) simulation; MC
with importance sampling; particle filter, subset simulation

- analytical approach: first-order reliability method (FORM); second-
order reliability method (SORM)

- moment matching: univariate approximation; bivariate and
multivariate approximation

31



Simulation-based approach m
for uncertainty propagation

Input/quantified Output/propagated
uncertainties uncertainties

/ | Probabilistic RUL |

Estimation

ssssssssss
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>

random number generator + model simulation + estimate probabilistic RUL

Time consuming for complex models

Samples are not efficient in direct MC simulation and sampling techniques
can improve the computational efficiency 32



Sample efficiency of m
i direct MC simulation

Response

" Y(@)=b [ Y
\/—\

°o ° . o, ° ° °oo° °
e * o o
O o N ® o o 4
® a o o° ®00
O °
o ° oo,
° °e %o,
. .. System o
° O ° ° . .
) o analysis
o o ° O °
° o O A 0% o Bg
o o
I

0 1
Uncertain Parameter Space & Estimate for P(Y(0) = y)
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i Subset Simulation - Basic Idea

= Express a small failure probability as a product of larger
conditional failure probabilities

P(Y>3) =  P(Y>3|Y>2) X P(Y>2|Y>1) X P(Y>1)
0.001 = 0.1 X 0.1 X 0.1
rare frequent frequent frequent
# samples: 10,000 ?7? ?7? ??7?

Require efficient simulation of conditional samples

T
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Subset Simulation - Procedure

Response
level bly
Markov chain X
Monte Carlo F ®
> O
® o o O
- € - '.'..'
1 @ @ |System 0.
onte\Carlo Simulatiol”  |analysis %
® ) (% € -7 -—- ®
o ¢ @ o F [ %,
@ System ®
o ° analysis ‘..
@) @) O
o0 ©© O o o

Uncertain parameter space Failure Probability estimate 35



Case study: fatigue |

prediction

UNIVERSITY

e

Stress Range (MPa)

500 + a  Experimental data R=0
450 | —— Median prediction by MCS
— - - 95% boundaries by MCS

400 7 —e— Median prediction by SS
350 - —0 - 95% boundaries by SS
300 + O~ — .

e e @
250 AA A A
200 + o 0
150 +
100 1 1 | |

1.E+04 1.E+05 1.E+06 1.E+07 1.E+08

Fatigue Life(Log N)

Stress Range (Mpa)

Experimental data R = -1
Median Prediction by MCS
— - -95% boundaries by MCS
—o— Median Prediction by SS
—G -95% boundaries by SS

900 T °

800 g

700

600 -

500 -

400 ~

el TR,

300

200 t t } } {
1.E+03 1.E+04 1.E+05 1.E+06
Fatigue Life(Log N)

Al 7075-T6

Al 2024-T3

Computational time

Average relative error Maximum relative error

Direct MCS (one ~ 1.5 hour - -
million samples)
Subset Simulation ~ 3 seconds 8.57 % 8.97 %
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Analytical approach for
uncertainty propagation

X2

Input/quantified ‘
uncertainties

Output/propagated
uncertainties

ssssssssss

\ X4

L4
a

Probabilistic RUL
Estimation

s
ssssssssss

= Key steps in the analytical approach
- Linear approximation of limit state function
- Iteration to the convergence of a specified reliability/confidence

- Estimate probabilistic RUL
= Applicable to linear/weakly nonlinear problems
= Transformation to standard normal space is required 37
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Analytical approach - 1

e Fatigue reliability vs. probabilistic life prediction
- Forward problem: reliability at a specified life
- Inverse problem: life at a specified reliability level (prognosis)

e Governing equations and constraints
[(a): g(x,y)=0

B) | = Brarger

(©:p; =P(L )

e

| (1)x+Lng(x, =0 (P, <50%)
@ V. g(x,y)|

(2) My =0 (P, 250%)

X ‘V o (x y)” L8(x,y) = 2

x: vector of random variables (material properties, initial crack length, etc.)
y: vector of index variables (time and spatial coordinates)

[1] Xiang, Y. and Liu, Y., Application of Inverse first-order reliability method for probabilistic fatigue life prediction, Probabilistic Engineering Mechanics, 2010. (in revision) 38
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Analytical approach - 2
First order Taylor’'s series expansion
« Considering x is varying and y is fixed
g, y)+(x—)-V gu,y)=0 Vgl y)

IV.g@u, )|

{x: IV.g(u.y)-ul-g(u.y)
y=Yy

2

[V g(x,y)ex]-g(x,y)
| dx = > V. g(x,y)—x e
dk{d}: V.gx,y)| Flayy=t klx_[vxg(x,y) x] f(x’y)vxg(x,y) L kog(r.y)’
1o 2 [V.g(xy)| 2
» Considering both x and y are varying
_ V. g(x,y)
X IBtarget ||ng(x’ y)”
806,y =gl 1)+ V (o ) (x= L) +V (U 1) (= )+ O(ph, f1,) =0 [V.e(xa)ex]-g(xy)+ B |V.e(xy)
AT %y
—_‘x—ﬂtarget ng(x,Y) ay
i V. gCx, y)
de =|:dy:| B [ng(x,y).X]_g(x’ y)+ﬁtﬂfgft||vxg(x’ y)"
9g(x.y) fixa)= 11«3 (o= Brasger)?
dy | 2
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Application to fatigue problems

e Limit state function

g0 =log([" ———

ABR [AK—AKth]m

da)—1log(N)

e Derivatives and searching algorithm in crack growth-based
life prediction

1
A
\% ,IN -g(x,N \% ,N
\V 1 Xk +a1[[ xg(xv ).X] f(x )ng(st)_ij-i'az(_Xk _ﬂta:gez Hvxgii N;H]
86 N) = B ABR[AK—AK,h]m Xy H 8, )’)H <80
1 N, [V_g(x,N)ex|-g(x,N) +,BtargetHng(x, N)H
J —da N, +a, 5
“ AB®[AK —AK | 8 (x,N)
dg(x.N) _ 1 ON
oN N
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i Case study: life prediction

Stress Range (MPa)

500 + °, a  Experimental data R=0
450 1% A —— Median prediction by MCS
400 | .\ A — - - 95% boundaries by MCS
\ A e Inverse FORM
350 A Bya ¢ Subset Simulation
e

300 +

________ DU
250 + ’Kﬂéé R A A A
200 | A N S S el
150 +
100 1 1 1 |

1.E+04 1.E+05 1.E+06 1.E+07 1.E+08

Fatigue Life(Log N)

Al 7075-T6

A Experimental data R = -1
—— Median Prediction by MCS
— - - 95% boundaries by MCS

S @ Inverse FORM

£ ¢ Subset Simulation

o

c

©

[

[7/]

[7,]

9

n

A . el

200 f f f f !
1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08

Fatigue Life(Log N)

Al 2024-T3

Computational effort Average relative error Maximum relative error
Direct MCS (one ~ 1.5 hour - -
million samples)
Inverse FORM < 1 second 5.06 % 9.18 %
Subset Simulation ~ 3 seconds 8.57 % 8.97 %
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Moment matching approach
* for uncertainty propagation

Input/quantified
uncertainties

Output/propagated
uncertainties

'
12
'
08
08
04
02

/
/

=

.

-

\ El 05
sssssssss

Probabilistic RUL
Estimation

= Key steps in the moment matching approach
- Calculate the statistical moments of input/quantified random variables
- Estimate the statistical moments of output random variables
- Approximate probability density function of output variables using moment information

- Estimate probabilistic RUL
= Gradient and transformation free
= Most suitable for problems with less coupling among input variables 47
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Limit state function
approximation

o Decomposition of limit state function

g(x) =&, (x) gﬁzg Z -1-2(xi1,xi2)+“-+. Z .g,-l...,-s(x,-l,---,xis)
/ f i =130 <i, 1 sl =L30 <. < r

I Mean value I I Univariate function I I Bivariate function I IMultivariate functionl

8 =8ty 14,) 8(%) =8 (fhs oo s X P 1)

8ii, (xil X, ) = g(M""’ﬂil—l’xil’ﬂil+1""’luiz—l’xiz’luizﬂ""’Iun)

= [runcated terms can be used to save the
computational cost

- no strong coupling among multiple terms
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Moment estimation - 1

= Raw moment of response variable

. ﬂgzml
n—s+l—1j >

i
— 2
O, =+m,—m,

3

_my = 3mm, +2m,
3
O-g

=i ] £[2 (] - 31
X il,...,i,\.,.;:‘f<.‘.<,}i E[é?f (xil X, )]

_my— dmm, + 6m’m, —3m’

4
O-g

= Integration is required to calculate the
expected value of ¢ ®

uo=E(X") = / " dF(x)
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i Moment estimation - 2

= Gauss-type quadrature is used for fast
estimation of integrations

0.6 0.6
Z 04 2 04
5 /| =
= ) “—
0.2 /I/ \1\ 0.2
L~ 0
OO 5 10 0 5 10
X X
normal distribution ¢z = 5.0 =1 uniform distribution 0 < x< 10
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Approximation of probability
i density function

Fitting classical distribution functions from
calculated statistical moments in a least
square sense

= Use a series expansion of Gaussian
distribution to approximate the target
cumulative distribution function (Edgeworth
expansion)

F(g)ch 8§~ H, _a3gq)(3) 8§~ MU, +a4g_3q)(4) 8§~ H,
o 3! o 41 o
g g g
2
+10a3g¢(6) g_lllg +...
6! o,

D (j)(x) is the j-th derivative of @ (-) at point x

46
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Case study: fatigue crack growth

predictions

Eight sets of experimental data
under different spectrum loading
(Al 7075-T6)

Direct MC simulation, univariate
approximation, and bivariate
approximation are used for
prediction

Lognormal fitting and Edgeworth
expansion are used to estimate
crack length CDF

(=) 8] £ =) [e)
T T T T

Schematic illustration of the two blocks loading
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Parametric study for
relative error analysis

251

Relative error (%)
- n
(%) o
|

o
L

3
L

o

UDR (Lognormal)

——p=0.95

—5-p=0.50
| ——p=0.05

o

Relative error (%)
o
>

Relative error (%)
3

UDR (Edgeworth)

] ——p=095
| —=—p=0.50
—+—p=0.05

Crack length (mm)

M 81
6
44
M 24 M
T T T T T T 0 - T T T T T
15 25 35 45 55 65 5 15 25 35 45 55 65
Crack length (mm) Crack length (mm)
BDR (Lognormal) BDR (Edgeworth)
|~ p=0.95 17 —~—p=095
—o—p=0.50
0.8 1
<
£ 061
g
]
2
% 0.4 4
[
0.2 4
T T T T T T 0 T T T T T T
5 15 25 35 45 55 65 5 15 25 35 45 55 65

Crack length (mm)

UDR method has large error and smallest computation time
BDR method has the best balance of computational efficiency and accuracy
Computational time for BDR is two magnitudes less than that of direct MC
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Model predictions vs.
experimental data -1
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Model predictions vs.
experimental data -2
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i Summary

= Three different uncertainty propagation
methodologies

= All of them are very efficient compared
to direct MC method

= Great potential for real-time prognosis
of large systems

= Applicability of different methods
depends on the specific problem
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i Outline

= Background and introduction

= Uncertainty management in prognostics
- Model-based fatigue damage prognosis
- Uncertainty quantification and propagation
- Information fusion and uncertainty updating
- Model comparison and validation

s Conclusions
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i Information fusion

= Above discussion focuses on the prognosis
with “existing knowledge”

= “New information” from health and usage
monitoring system and nondestructive
inspection can help the prognostics

= Question? — how to fuse “existing knowledge”
and “new information” for the model-based
prognostics?
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Bayesian updating

= Bayesian updating: update the belief of
“existing knowledge” given “new information”

pf EE N EEEEEEEEEEEEEEEEEESR

Likelihood Prior

Posterior

\P(mx') _P(x IH)‘P(H)/

’
Normalizing :
- constant -
FeEeEEEEEEEEEEEEEEEEENN
0.8/ 5
— prior — prior
A 1 measure 4t 1 measure
0.6r D P 2measures| || 2measures| /7
< BAN VoN e 3 measures| || 3 measures| K /%
§ \ 5 E 3’ i ’ i \
= 0.4 é
£ 2
0.2} |
| Thomas Bayes
30 28 26 24 82 26 28 3 32 34 36 54
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Maximum relative entropy L
‘L (MRE) updating

e Relative entropy

S[P, Poig] = —/dxd@P(X,H)Iog% (1)
o Prior:
Poid = Poia(?) Poia(x|0) (2)
e Constraints: Data and Moment,
/ dxdfP(x.0) = 1 (3)
G 1 P(x) = fdQP(x.H) = §(x — x') (4)
C - /dxdap(x,e)f(e): (F(0)) = F (5)

[1] A. Giffin and A. Caticha (2007). Updating probabilities with data and moments. In K. Knuth (Ed.), Bayesian Inference and
Maximum Entropy Methods in Science and Engineering, AIP Conference Proceedings, 954:74 55
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Comparison of Bayesian L
and MRE updating

= Maximum relative entropy (MRE) updating provides
a generalized framework [1-2]
- Classical Bayesian updating Z?=#)-#x19 |
- Generalized Bayesian updating 7€) #(€)-#(x16)lZ

= Classical Bayesian updating handles point
observations

= MRE updating can handle both point observations
and other types of information

- population information in terms of moments
- interval information comes from physical limits and experts’ opinion

[1] A. Giffin and A. Caticha (2007). Updating probabilities with data and moments. In K. Knuth (Ed.), Bayesian Inference and Maximum Entropy Methods in Science and
Engineering, AIP Conference Proceedings, 954:74
[2] Guan, X., Jha, R., Liu, Y., “Probabilistic fatigue damage prognosis using maximum entropy approach”, Journal of Intelligent Manufacturing, 2009. (accepted)
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Information fusion in fatigue m
* damage prognostics

Model and parameters" prior
waons
Crack measuremen ts
Bayesian updating Prognosis
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Flow chart of generalized L.
i Bayesian updating

d;, [.

l

Crack Usage
M( l e) measurements measurements Prognosis
X
Mechanism- 1 1
based Model MCMC
) ) Parameter
(o) o) gl 35 MO s T samples
O-T i= O-f
Prior 1

Compute g Moments <9>

[1] Guan, X., Liu, Y., Saxena, A., Celaya, J., Goebel, K., "Entropy-based probabilistic fatigue damage prognosis and algorithmic performance
comparison”, annual conference of the prognostics and health management society, San Diego, CA, 2009.
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Uncertainty reduction via Lex
i Bayesian updating

Median prediction with prior PDF /
/
L4
— = Confidence of using prior PDF / ‘.,
"
E 2 .7 :
£ | S / o7
Z = = Confidence of prediction with loading / o,/ v
5 updating , ’/ .
5" "
- — - Confidence of prediction with both / j 7.°
o loading crack size updating P ‘Y’
g 10 7z
o '
5 4
O T T T T T 1
0 50000 100000 150000 200000 250000 300000

Time (cycle)

General idea:

Sequential Bayesian updating to reduce loading uncertainty and

material uncertainty 59
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Case study 1 — constant amplitude
loading

— actual 50 _ ac{ual
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Case study 2 — Al 7075-T6 under
random spectrum loadings

24 ‘
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Constant amplitude loading data for calibration
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Effect of sequential updating usin
both loading and crack size measure

Validation: exp curve #1 Validation: exp curve #1
updated with crack measure only updated with loading and crack measure

25 ‘ 25
prior est —— prior est
e obs(crack) | obs ‘

Tonl - eXp . T onll ¢ EXp

£ 20 — median £ 20 — median

o 99% Cl o 99% Cl

z 95% Cl 2 95% Cl

§ 15 90% ClI § 15 90% Cl

(&) (&)

0 0.5 1 1.5 2 25 0 0.5 1 1.5 2 25
# of cycles x 10* # of cycles x 10*

= Significant reduction of median bias and confidence bounds is observed

= Information fusion is very effective and both uncertain loading and material properties are
included

= Modeling error and measurement noise are also included
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i Summary

s Bayesian/MRE updating provides a rigorous way
to fuse “existing knowledge” (prior) and “new
information” (observations)

s Both damage measure and loading measure can be
included 1n the fusion process

= Very effective in uncertainty reduction of
prognostics

n Effect of prior distribution may be significant
when the number of observations i1s not sufficient
large
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i Outline

= Background and introduction

= Uncertainty management in prognostics
- Model-based fatigue damage prognosis
- Uncertainty quantification and propagation
- Information fusion and uncertainty updating
- Model comparison and validation

s Conclusions
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i Verification and validation

Visual graphical comparison 1s useful but does not provide
quantitative judgment of the investigated prognostic
algorithms

V & V provides a rigorous way to evaluate the model
performance and uncertainty management methodology

- Metrics to evaluate the “absolute” prognostics algorithms’
performance (Prognostics Metrics)

- Metrics to evaluate the “relative” prognostics algorithms’
performance (Bayes Factor)
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i Prognostics metrics - 1

- Classical metrics
- Based on statistical analysis, a large number of
samples are required

= Difficult to describe the prognosis performance
over time

- Prognostics-based metrics [1]
= Designed to describe how well an algorithm
improve over time

= Not based on statistics, no sample required

= 4 metrics: Prognostic Horizon (PH), « -4 accuracy, Relative
Accuracy (RA), Convergence

[1] A. Saxena, J. Celaya, B. Saha, S. Saha, and K. Goebel (2009). Evaluating algorithm performance metrics tailored for
prognostics. IEEE Aerospace conference, 7-14 March 2009, pp. 1-13. 66
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‘L Prognostics metrics - 2

Prediction Horizon (5% error) }:: (Z) -4 Accuracy

95% accuracy zone
| E—— actual RUL
@ EndotLife (EOL)
| —®— RVMRUL
| —O—GPRRUL
| —@—NNRUL
| —@—PaRUL

50

RUL

—_—

i A1=0 A=05 A=
50 55

Time (weeks) Ip Time Index (i) leor

45

35 40

Prognostic Horizon (PH) a -\ Accuracy (a- 1))

Ip X, Time Index (7) Irop

Relative Accuracy (RA) Convergence

PH:

Length of time before end-of-life (EOL)
when predictions are within specified
£ a % accuracy limits

a->A:

Determines whether predictions are
within & a % accuracy cone at a time
instant specified by A

RA:

Quantify accuracy w.r.t. the actual
remaining useful life (RUL) at a given
time instant specified by A

Convergence:

Quantify the rate at which any metric of
interest improves to reach its desired
value as time passes by
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Case study: RUL prediction ™=
of fatigue crack growth

PH a-A RA
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Model performance
comparison

= Competing models exist for many engineering
problems

- mechanism is not clear

- each model represents a part of underlying physics/population
behavior

- hybrid data-driven and model-based approaches

s Automatic model selection and model fusion
based on new observations

= Include uncertainties in the model
performance comparison

= Protect against overfitting
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Bayes factor-based model
i selection and fusion

= Bayes factor is the likelihood ratio of different
models
B :p(XlMi)/p(X le)

= A value of B> 1 indicates that M is more
strongly supported by the data under
consideration than M

= A decisive model selection can be made if B
IS very large or model averaging/fusion if not
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i Problem formulation

= A finite set of model candidates
[Ur, 0 ar} = {(60) ). (60 2. (60 s ) )

s [reat models as random variables with
associated probabilities

P(M,)P(X 1M,)
P(X)

P(M 1X)=

= An event X, total probability

P(X) =Y P(MI)P(X|M™) =3 PO™) /@ PO px 0 Mt )do
=1 i=1 i

/1
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M C M C Markov chain

= Trans-dimensional e @ e
across models N 0 F 1 0.5

- Different models are 3 20
associated with different T
model structures (e.g., .
number of parameters) I

- Multiple runs are required Markov chain
using the classical MCMC within models

- Trans-dimensional MCMC P l
finds a mapping >

transformation and only need
one MCMC simulation
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Case study: competing models for
i fatigue crack growth analysis

da
dN

= Paris’ model — C(AK)"

= Forman’s model

da
— =C(AK)" ((1-R)K, —AK
= CLAK)" (A= R)K. ~AK)
= McEvily’s model
4 _c(ak-ak, Pa+—25

dN KC o Kmax
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Case study: Al 2024-T3 data and
prior distribution

50— \ \ 50 ‘ ‘ 3 | [
—«— Validation data ~* Validation data /
40/l Prior data 400 Paris'
£ B — Forman's
E 30! = ~— MckEvily's
o o)
) N
' L wn
g 20 % 20/ i
b E ,gsgfﬁf‘!‘;;‘%w
1 O L © _.‘,gzﬂ"‘?"'zzi'ﬁ;"‘g’si&iﬁ
O I I I I I I
O 05 1 1 5 2 25 3 0 | | | | | |
# of cycles x10° 0 0.5 1 1.5 2 2.5 3
(a) # of cycles x10°
(b)
Raw data Point estimate

using prior fitting
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i Results

Bayes factors

15% update : <

274 ypdate : {

(B = (P(M,))/(P(My)) = 12.046
B ¢ = (P(M))/{P(M})) = 23.689
By = (P(Mp))/(P(M,)) = 1.967

\

[ By = (P(Mp))/(P(My)) = 40.413
Bom.g = (P(Mp))/{P(M;y)) = 80.702

| By = (P(M,))/(P(M,)) = 1.907

Current data strongly support McEvily’s/Paris’s
model over Forman’s model

Slight preference of McEvily’s model over Paris’

law

Above statement is only valid for the investigated

data
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i Conclusions

= General uncertainty management framework is
presented

= Small time scale mechanism-based crack growth
model

= Modeling uncertainty and covariance structure in
uncertainty quantification

= Three efficient algorithms for uncertainty propagation

= Generalized Bayesian methodology for uncertainty
updating

= Metrics-based model selection and validation
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Thanks!
Questions?
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