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Prognostics Center of Excellence

How can the information from multiple uncertainty 
sources be properly represented and processed?

What is the best prediction algorithm for a 
particular application?

How should prognostic requirements be expressed and 
how should prognostic performance be measured

How should prognostic information from different, 
interacting subsystems be combined and processed?

How should prognostic information be incorporated in  decision 
making to ensure safety and satisfy mission objectives?

How can the proper operation of prognostic algorithms be 

verified and validated, especially on new systems?

Mission: Advance state-of-the-art in prognostics technology development

• Investigate algorithms for estimation of remaining life 

– Investigate physics-of-failure 

– Model damage initiation and propagation 

– Investigate uncertainty management

• Validate research findings in hardware testbeds

– Hardware-in-the-loop experiments

– Accelerated aging testbeds

– HIL demonstration platforms

• Disseminate research findings
– Public data repository for run-to-failure data

– Actively publish research results

• Engage research community

• Prognostics Center of Excellence, NASA Ames Research Center, CA [http://www.prognostics.nasa.gov]

NASA Ames Research Center, CA
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Today we will discuss…

• What is prognostics?

– It’s relation to health management

– Significance to the decision making process

• How is prognostics used?

– Reliability

– Scheduled maintenance – based on reliability

– Kinds of prognostics – interpretation & applications

• Type I, Type II, and Type III prognostics

• Various application domains 

• Condition based view of Prognostics

• Prognostic Framework
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Also…

• What are the key ingredients for prognostics

– Requirements specifications – Purpose

• Cost-benefit-risk

– Condition Monitoring Data – sensor measurements

• Collect relevant data

– Prognostic algorithm

• Tons of them - examples

– Fault growth model (physics based or model based)

– Run-to-failure data

• Challenges in Validation & Verification

– Performance evaluation

– Uncertainty 

• representation, quantification, propagation, and management
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The Perspective

Prognostics and Health Management
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• Schematic adapted from: A. Saxena, Knowledge-Based Architecture for Integrated Condition Based Maintenance of Engineering Systems , PhD Thesis, Electrical and Computer Engineering, Georgia Institute of 

Technology, Atlanta May 2007.

• Liang Tang, Gregory J. Kacprzynski, Kai Goebel, Johan Reimann, Marcos E. Orchard, Abhinav Saxena, and Bhaskar Saha, Prognostics in the Control Loop, Proceedings of the 2007 AAAI Fall Symposium on 

Artificial Intelligence for Prognostics, November 9-11, 2007, Arlington, VA.
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Data Analysis & Decision Making

• Adapted from presentations and publications from Intelligent Control Systems Lab, Georgia Institute of Technology, Atlanta [http://icsl.gatech.edu/]
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Prognostics

• Dictionary definition – “foretelling” or “prophecy”

• PHM definition –

“Estimation of remaining life of a component or subsystem”

• Prognostics evaluates the current health of a component and, 

conditional on future load and environmental exposure, estimates at 

what time the component (or subsystem) will no longer operate within 

its stated specifications. 

• These predictions are based on 

– Analysis of failure modes (FMECA, FMEA, etc.) 

– Detection of early signs of wear, aging, and fault conditions and an assessment of 

current damage state

– Correlation of aging symptoms with a description of how the damage is expected 

to increase (“damage propagation model”)

– Effects of operating conditions and loads on the system

• Prognostics Center of Excellence, NASA Ames Research Center, CA [http://www.prognostics.nasa.gov]

• Prognostics [http://en.wikipedia.org/wiki/Prognostics]



P R O G N O S T I C S  C E N T E R  O F  E X C E L L E N C E

Ames Research Center

10

Maintenance Management ViewContingency Management View

Goals for Prognostics 

• Prognostics goals should be defined from users’ perspectives

• Different solutions and approaches apply for different users

Increase Safety 
and Mission 
Reliability

Improved mission 
planning

Ability to reassess 
mission feasibility

Decrease 
Collateral Damage

Avoid cascading 
effects onto healthy 

subsystems

Maintain consumer 
confidence, 

product reputation

Decrease 
Logistics Costs

More efficient 
maintenance 

planning

Reduced spares

Decrease 
Unnecessary 

Servicing

Service only 
specific aircraft 

which need 
servicing

Service only when 
it is needed

What does prognostics aim to achieve?
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User Centric View on Prognostics Goals

Category End User Goals Metrics

Operations

Program 

Manager

Assess the economic viability of 
prognosis technology for specific 

applications before it can be approved 

and funded

Cost-benefit type metrics that translate prognostics 
performance in terms of tangible and intangible cost 

savings

Plant 

Manager

Resource allocation and mission 
planning based on available prognostic 

information

Accuracy and precision based metrics that compute 
RUL estimates for specific UUTs. Such predictions 

are based on degradation or damage accumulation 

models

Operator
Take appropriate action and carry out 
re-planning in the event of contingency 

during mission

Accuracy and precision based metrics that compute 
RUL estimates for specific UUTs. These predictions 

are based on fault growth models for critical failures

Maintainer
Plan maintenance in advance to reduce 
UUT downtime and maximize 

availability

Accuracy and precision based metrics that compute 
RUL estimates based on damage accumulation 

models

Engineering

Designer

Implement the prognostic system within 
the constraints of user specifications. 

Improve performance by modifying 

design

Reliability based metrics to evaluate a design and 
identify performance bottlenecks. Computational 

performance  metrics to meet resource constraints

Researcher
Develop and implement robust 
performance assessment algorithms 

with desired confidence levels

Accuracy and precision based metrics that employ 
uncertainty management and output probabilistic 

predictions in presence of uncertain conditions

Regulatory Policy Makers
To assess potential hazards (safety, 
economic, and social) and establish 

policies to minimize their effects

Cost-benefit-risk measures, accuracy and precision 
based measures to establish guidelines & timelines 

for phasing out of aging fleet and/or resource 

allocation for future projects

• Saxena, A., Celaya, J., Saha, B., Saha, S., Goebel, K., “Metrics for Offline Evaluation of Prognostics Performance”, Internat ional Journal of Prognostics and Health Management (IJPHM), vol.1(1) 2010

• Wheeler, K. R., Kurtoglu, T., & Poll, S. (2009). A Survey of Health Management User Objectives Related to Diagnostic and Prognostic Metrics. ASME 2009 International Design Engineering Technical 

Conferences and Computers and Information in Engineering Conference (IDETC/CIE), San Diego, CA
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Prognostics Categories

• Type I: Reliability Data-based 

– Use population based statistical model

– These methods consider historical time to failure data which are used to model 

the failure distribution. They estimate the life of a typical component under

nominal usage conditions

– Example: Weibull Analysis

• Type II: Stress-based

– Use population based fault growth model – learnt from accumulated knowledge

– These methods also consider the environmental stresses (temperature, load, 

vibration, etc.) on the component. They estimate the life of an average 

component under specific usage conditions

– Example: Proportional Hazards Model

• Type III: Condition-based

– Individual component based data-driven model

– These methods also consider the measured or inferred component  degradation. 

They estimate the life of a specific component under specific usage and 

degradation conditions

– Example: Cumulative Damage Model, Filtering and State Estimation
• For more details please refer to last year’s PHM09 tutorial on Prognostics by Dr. J. W. Hines : [http://www.phmsociety.org/events/conference/phm/09/tutorials]
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Forecasting Applications

Predictions

Event predictions Decay predictions

History data No/Little history data

Nominal data Nominal & failure data

RUL Prediction Trajectory Prediction

Statistics can be applied Model-based + Data-driven

Medicine

Mechanical systems

Electronics

Aerospace

Aerospace, Nuclear

Discrete predictions Continuous predictions

Weather, Finance

Quantitative Qualitative

Predict values Predict trends 

Increase/decrease

Economics, Supply Chain

• Saxena, A., Celaya, J., Saha, B., Saha, S., Goebel, K., “Metrics for Offline Evaluation of Prognostics Performance”, Internat ional Journal of Prognostics and Health Management (IJPHM), vol.1(1) 2010. 

• Saxena, A., Celaya, J., Balaban, E., Goebel, K., Saha, B., Saha, S., and Schwabacher, M., “Metrics for Evaluating Performance of Prognostics Techniques”, 1st International Conference on 

Prognostics and Health Management (PHM08), Denver CO, pp. 1-17, Oct 2008.

End-of-Life predictions Future behavior predictions

A prediction threshold exists

Use monotonic decay models
Non-monotonic models

No thresholds
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Understanding the Prognostic Process

Predicting Remaining Useful Life
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Prognostics Framework
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Prognostics Framework
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No Ground Truth

Ground truth measurements 

are hard to come by

Noisy Data

Measurement noise leads 

to more uncertainty!

Decision Risk

How soon is too soon and 

how late is too late?

Model Uncertainty

Which model to trust? No 

Model is perfect !

We hardly have access to ground truth

Instead we have measurements, appropriate features of which may correlate 

to damage. such data are usually noisy!

We use these data to learn the model, which may be noisy

Noise may have a significant effect on the learnt model…
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Uncertainties in Prognostics

• Uncertainties arise from a variety of sources

– Modeling uncertainties – Epistemic

• Numerical errors

• Unmodeled phenomenon

• System model & Fault propagation model

– Input data uncertainties – Aleatoric

• Initial state (damage) estimate

• Variability in the material

• Manufacturing variability

– Measurement uncertainties – Prejudicial

• Sensor noise

• Sensor coverage

• Loss of information during preprocessing 

• Approximations and simplifications

– Operating environment uncertainties – Combination

• Unforeseen future loads

• Unforeseen future environments

• Variability in the usage history data

Unknown level of 

uncertainties arising due 
lack of knowledge or 

information

Unknown level of 

uncertainties arising due 
to the way data are 

collected or processed

Inherent statistical 

variability in the process 
that may be characterized 

by experiments
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Prognostics Framework

Time (t)

F
a
u
lt
 D

im
e
n
s
io

n
 (

a
)

t0

Failure Threshold (aFT)

EoL

The Horizontal slice tells us when the system can be expected to reach a specified failure threshold given “all” uncertainties 

considered

RUL pdf can be useful 

when planning a mission 
(usage) profile

Answers how long can the 

mission duration be?

Decision 

Point (tDecision)

Make decisions based on 

risks estimated from 
probability of failure (PoF)

These uncertainties can be represented as a probability distribution on the initial state. 
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Prognostics Framework
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Prognostics Framework
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Prognostics Framework
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Power Storage Systems

• Objective: Predict when the battery voltage will dip below 2.7 volts

• Example: when to recharge laptop or cell phone batteries

Predicting Battery Discharge

• Data Source: NASA PCoE Data Repository [http://ti.arc.nasa.gov/tech/dash/pcoe/prognostic-data-repository/]

• B. Saha, K. Goebel, Modeling Li-ion Battery Capacity Depletion in a Particle Filtering Framework , Proceedings of Annual Conference of the PHM Society 2009
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• Complexity: Non-linear failure growth characteristics
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Power Storage Systems

• Objective: Predict when Li-ion battery capacity will fade by 30% indicating 

life (EOL)

• Example:  when to replace batteries

• Data Source: NASA PCoE Data Repository [http://ti.arc.nasa.gov/tech/dash/pcoe/prognostic-data-repository/]

• B. Saha, K. Goebel, Modeling Li-ion Battery Capacity Depletion in a Particle Filtering Framework, Proceedings of Annual Conference of the PHM Society 2009

Predicting Battery Capacity – Long Term

Charge Cycles
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a
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A

h
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• Complexity: Self-healing characteristics make them highly non-linear
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Structural Integrity
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• Zhang, W. and Liu, Y., In-Situ Optical Microscopy/SEM Fatigue Crack Growth Testing of Al7075-T6” Aircraft Airworthiness & Sustainment 2010. 11 May-14 May. Austin, TX.

Predicting crack size in metallic structures
• Objective: Predict when the crack size will exceed a critical length

• Example:  aircraft structures, bridges, buildings, etc.

• Complexity: Effects of load spectrum, uncertain future loads
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Structural Integrity

• Keller, J., Grabill, P., Vibration Monitoring of a UH-60A Main Transmission Planetary Carrier Fault , the American Helicopter Society 59thAnnual Forum, Phoenix, Arizona, May 6 –8, 2003

• Sahrmann, G. J., Determination of the crack propagation life of a planetary gear carrier, 60th Annual Forum Proceedings, Baltimore, MD, Jun. 7-10 2004, American Helicopter Society

• Intelligent Control Systems Group at Georgia Tech [http://icsl.gatech.edu/icsl/Research_Groups#Fault_Diagnosis_and_Failure_Prognosis_for_Engineering_Systems]

Predicting crack size in a gearbox
• Objective: Predict when the crack size will exceed a critical length

• Example:  planetary gearbox for UH-60A

• Complexity: 
• Lack of run-to-failure data

• Expensive and risky tests

• Varying load levels
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Electronics Failure

• Objective: predict abnormal functioning of electronic devices

• Example: thermal degradation of die attach in power MOSFETS 

• Celaya, J., Saxena, A., Wysocki, P., Saha, S., Goebel, K., “Towards Prognostics of Power MOSFETs: Accelerated Aging and Precursors of Failure” Annual conference of the PHM Society, Portland OR, 

October 2010.

• Complexity: 
• Manufacturing variability

• Competing degradation mechanisms

• Environmental conditions

Device 8
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NASA Repository

• Collection of run-to-failure data 

from a variety of domains

– Rotating mechanical systems

– Power storage systems – batteries

– Electronics

– EMAs

– Turbofan engine simulation dataset
• PHM08 challenge data

• Allows benchmarking the 

algorithms

• Explore challenges associated 

with different application 

domains

• Make hard to come by run-to-

failure data to the research 

community

• NASA PCoE Data Repository [http://ti.arc.nasa.gov/tech/dash/pcoe/prognostic-data-repository/]
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Prognostics Modeling

Setting up the Problem
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Data-Driven Prognostic Methods

Primarily use data obtained from the system for predicting failures

• What kind of data?

– Something that indicates a fault and fault growth or is expected to influence fault 

growth
• Sensor measurement to assess system state

• Sensor measurements and communication logs to identify operational modes and operational 

environment

– Process data to extract features that “clearly” indicate fault growth
• Preferably monotonically changing since faults are expected to grow monotonically

– Predictions can be made in many ways
• Use raw measurement data to map onto RULs

• Use processed data to trend in feature domain, health index domain, or fault dimension domain against 

a set threshold

• How?

– Learn a mathematical model to fit changing observations
• Regression or trending 

• Learnt model may not be transparent to our understanding but explains observed data

– Use statistics if volumes of run-to-failure data is available
• Map remaining useful life to various faulty states of the system

• Reliability type RUL estimates
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• Operational conditions

– Indicate level of stress on the system

• Ground truth measurements

– Ground truth measurements are less frequent
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Operational conditions seem to make an impact on how fast the damage grows !

Example - Data-Driven Prognostics Model
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Example - Data-Driven Prognostics Model

• Sensor Measurements

– Features are extracted form sensor data

– Depending on what is measured 
features will have noise w.r.t. damage 

growth

– All run-to-failure units follow their own 

track

0 2000 4000 6000 8000 10000 12000
0

20

40

60

80

100
Feature 3

Time

F
e
a
tu

re
 3

0 2000 4000 6000 8000 10000 12000
-20

0

20

40

60

80
Feature 1

Time

F
e
a
tu

re
 1

0 2000 4000 6000 8000 10000 12000
0

20

40

60

80
Feature 2

Time

F
e
a
tu

re
 2

0 2000 4000 6000 8000 10000 12000
0

20

40

60

80

100
Feature 4

Time

F
e
a
tu

re
 4

0 2000 4000 6000 8000 10000 12000
0

10

20

30

40

50

60

70

80

90

100
Ground Truth Measurement

Time

D
a
m

a
g
e
 L

e
v
e
l

 

 

Generally speaking features indicate the level of damage at any given time
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Approach

• Learning/training

– Learn a mapping (M1) between 

features and the damage state

– Learn a mapping (M2) between 

operational conditions and 

damage growth rate

• Prediction

– At any given time use M1 & 

latest measurements to estimate 

damage state

– Assuming a future load profile (if 

unknown) estimate damage 

accumulation for all future 

instants using M2

• Goebel, K., Saha, B., and Saxena, A., “A Comparison of Three Data-Driven Techniques for Prognostics”, Proceedings of the 62nd Meeting of the Society For Machinery Failure Prevention Technology 

(MFPT), pp. 119-131, Virginia Beach VA, May 2008
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Data-Driven Prognostic Methods

• Advantages

– Relatively Simple to implement and faster 
• Variety of generic data-mining and machine learning techniques are available

– Helps gain understanding of physical behaviors from large amounts of data
• These represent facts about what actually happened all of which may not be apparent from theory

• Disadvantages

– Physical cause-effect relationships are not utilized
• E.g. different fault growth regimes, effects of overloads or changing environmental conditions

– Difficult to balance between generalization and learning specific trends in data
• Learning what happened to several units on average may not be good enough to predict for a specific 

unit under test

– Requires large amounts of data
• We never know if we have enough data or even how much is enough

• Examples

– Regression 

– Neural Networks (NN)

• RNN, ARNN, RNF

– Gaussian process regression (GPR)

– Bayesian updates

– Relevance vector machines (RVM)
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Physics-Based Models for Prognostics

Use fault propagation models to estimate time of failure

• What kind of models?

– A model that explains the failure mode of interest

– A model that maps the effects of stressors onto accumulation of damage –

Physics of failure driven
• e.g. fatigue cycling increases the crack length, or continuous usage reduces the battery capacity over a 

long term can be modeled in a variety of ways

• Finite Element Models

• Empirical models

• High fidelity simulation models, etc.

– Modeled cause-effect phenomenon may be directly observable as a fault or not
• Structural cracks are observable faults

• Internal resistance changes in a battery causing capacity decay are not directly observable

• How?

– Given the current state of the system simulate future states using the model
• Recursive one step ahead prediction to obtain k-steps ahead prediction

– Propagate fault until a predefined threshold is met to declare failure and compute 

RUL
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Physics-Based Models for Prognostics

• Advantages

– Prediction results are intuitive based on modeled case-effect relationships
• Any deviations may indicate the need to add more fidelity for unmodeled effects or methods to handle 

noise

– Once a model is established, only calibration may be needed for different cases

– Clearly drives sensing requirements
• Based on model inputs, its easy to determine what needs to be monitored

• Disadvantages

– Developing models is not trivial
• Requires assumptions regarding complete knowledge of the physical processes

• Parameter tuning may still require expert knowledge or learning from field data

– High fidelity models may be computationally expensive to run, i.e. impractical for 

real-time applications

• Examples

– Population growth models like Arrhenius, Paris, Eyring, etc.

– Coffin-Manson Mechanical crack growth model

• Engineering Statistics Handbook [http://www.itl.nist.gov/div898/handbook/apr/section1/apr15.htm]
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Hybrid Approaches

Use knowledge about the physical process and information from 

observed data together

• How?

– Learn/fine-tune parameters in the model to fit data

– Use model to make prediction and make adjustment based on observed 

data

– Learn current damage state from data and propagate using model

– Use knowledge about the physical behavior to guide learning process 

from the data
• Improve initialization parameters for learning

• Decide on the form for a regression model

– Use understanding from data analysis to develop models

• Discover the form of the fault growth model

– Fuse estimates from two different approaches 

– or any other creative way you can think of…
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Example1 – Physics Model Tuned with Data

• Objective: Predict when Li-ion battery voltage will dip below 2.7 volts

• Hybrid approach using Particle Filter

– Model non-linear electro-chemical phenomena that explain the discharge process

– Learn model parameters from training data 

– Let the PF framework fine tune the model during the tracking phase

– Use the tuned model to predict EOD
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Predicting Battery Discharge – Short Term

• Data Source: NASA PCoE Data Repository [http://ti.arc.nasa.gov/tech/dash/pcoe/prognostic-data-repository/]

• B. Saha, K. Goebel, Modeling Li-ion Battery Capacity Depletion in a Particle Filtering Framework , Proceedings of Annual Conference of the PHM Society 2009
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Example2 – Develop Empirical Model from Data
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Example2 – Data-driven Regression

• Use a regression algorithm to make predictions

– Gaussian Process Regression
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Hybrid Approaches

• Advantages

– Does not necessarily require high fidelity models or large 

volumes of data – works in a complementary fashion

– Retains intuitiveness of a model but explains observed data

– Helps in uncertainty management

– Flexibility

• Disadvantages

– Needs both data and the models

– An incorrect model or noisy data may bias each other’s 

approach

Otherwise, it’s a compromise to get the best out of both so any 

disadvantage may be alleviated

• Examples

– Particle Filters, Kalman Filters, etc.

– or any clever combination of different approaches…
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Prognostics Metrics

Prognostic Performance Evaluation
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Prognostic Performance Metrics

• Prognostics horizon

• α-λ performance

• Relative accuracy

• Cumulative relative accuracy

• Convergence

• New metrics were proposed specific to prognostics for PHM

• These metrics were applied to 
• A combination of different algorithms and different datasets

• Metrics were evaluated and refined
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Prognostic Performance Metrics

• Metrics Hierarchy

I. Prognostic Horizon
• Does the algorithm predict within desired accuracy around EoL and sufficiently in 

advance?

II. α-λ Performance
• Further does the algorithm stay within desired performance levels relative to RUL at a 

given time?

III. Relative Accuracy
• Quantify how well an algorithm does at a 

given time relative to RUL

IV. Convergence Rate
• If the performance converges (i.e. satisfies above 

metrics) quantify how fast does it converge

EoL

α*EoL

r*(tλ)

α*r*(tλ)
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Prognostic Horizon (PH)
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α-λ Accuracy

• α-λ Accuracy determines whether at given point in time (specified by λ) prediction 

accuracy is within desired accuracy levels (specified by α). Desired accuracy levels 

for ant time t are expressed a percentage of true RUL at time t.
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Comparing Various Algorithms
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Prognostics Challenges

Improving State-of-the-Art
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Challenge Areas in Prognostics

• Requirements Specification
– How can a requirement be framed for prognostics considering 

uncertainty?  

– How to define and achieve desired prognostics fidelity

• Uncertainty in prognostics
– Quantification, representation, propagation and management

– To what extent the probability distribution of a prediction represent reality

• Validation and Verification
– How can a system be tested to determine if it satisfies specified 

requirements?  

– If a prediction is acted upon and an operational component is removed 

from service, how can its failure prediction be validated since the failure 

didn’t happen?  

– Prognostics performance evaluation – offline and online? 

– Verifiability of prognostics algorithms
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Prognostic Fidelity – What does it mean?

• Definition of fidelity not clearly identified 
– Baseline assessment for prognostics techniques (NASA IVHM 3.3.1)

– Baseline assessment for uncertainty management (NASA IVHM 1.2.3.7)

• What is “good” is defined by
– Time-scales involved in the system under consideration

• Time needed for problem mitigation

– Criticality of the system

• Can afford run-to-failure but  cannot accept false positives

• Cannot afford run-to-failure or accept false negatives

– What is done post prognosis

– Costs and risks involved with action/inaction 

– Confidence in the prognostics system itself

• Uncertainty management still an issue

• V&V methods not  well developed for prognosis yet
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Cost-Benefit Analysis

Imposing Requirements on Prognostics Algorithms
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Prognostic Fidelity: One Interpretation

Prognostic SpecificationsRequirementsCost-Benefit-Risk

Integrate from various levels

• Mission planning level
• Maintenance level

• Operation (runtime) level

• Fleet vs. system levels
• …

Objectives

• Cost-value proposition of PHM
• PHM Design

• Optimal maintenance policy

• Comparison of PHM approaches
• Determine tolerance limits on input 

uncertainty for desired performance
• Optimal life cycle cost

Inputs

• Mission goals and objectives
• Constraints on resources and time

• Cost function

Process

• Requirement gathering 
• Requirement analysis & conflict 

resolution

• Requirement prioritization
• Requirement flow down

Methods

• Simulation techniques
• Cost-value optimization

• Sensitivity & Pareto frontiers

• Use of prognostics metrics
• Requirements flow down methodology 

suitably adapted for PHM
• Techniques for uncertainty

• representation 

• management
• quantification

Feedback and fine tuning

Source: Saxena, A., Celaya, J., Saha, B., Saha, H., Roychoudhury, I., Goebel, K., “Requirements Specification for Prognostics Perform ance – An Overview”, AIAA Infotech @ Aerospace, Atlanta GA, Apr. 2010
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Cost Benefit Analysis (CBA)

• Various CBA approaches in literature differ in  

– cost function definition

– identifying different pros and cons of PHM

– assigning different cost metrics to these pros and cons

• Main goals for conducting CBA

1) Optimize planning, scheduling and decision making for maintenance
- For maintenance scheduling by operators of the PHM enabled system

- For a contract based service provider that relies on PHM to guarantee uptime

Note: mostly from aircraft (military and commercial) domain. 

2) Generate a set of alternative solutions given user's flexibility in relaxing various constraints
- Sensitivity analysis to figure out most critical components

- Break even curves w.r.t. various input parameters

- Policy design for contract based service providers to assess which components is PHM most profitable for

3) PHM Design – for integrating into a legacy system or incorporating into the new system
- Sensor selection and placement

- Determine detection thresholds (e.g. on a RoC curve) for a cost effective PHM

- Down select and prioritize list of faults/subsystems/components for PHM capability

4) Assess effectiveness of PHM to reduce costs and improve reliability
- Evaluate the economic promise of PHM compared to the cost (value) of the system itself

- Assess safety and reliability benefits of PHM

- Assess savings in the overall Life Cycle Costs for an asset

5) Compare various PHM approaches
- Compare based on ROI in a given period of performance

- Compare payback periods for various alternatives

Source: Saxena, A., Celaya, J., Saha, B., Saha, H., Roychoudhury, I., Goebel, K., “Requirements Specification for Prognostics Perform ance – An Overview”, AIAA Infotech @ Aerospace, Atlanta GA, Apr. 2010
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Cost Benefit Analysis (CBA)

• Two main ideas for CBA

– Return on Investment (ROI)

• ROI = (Return – Investment) / Investment

– Cost Savings by Implementing PHM

• SavingsPHM = Costwithout PHM – Costwith PHM

– Cost assignments based on past maintenance records, account logs 

etc.

• Cost incurred due to similar components in legacy systems

• Cost of man hours based on data on direct/indirect staffing requirements in 

the past

• Inflation adjustments, etc.

• CBA should be formulated into a multi-objective optimization problem

• One factor usually not considered is “when to take an action”

– Cost of early replacement – a function of Prediction Horizon

– Confidence in prognostic algorithm – a function of uncertainty 

management

– Risk absorbing capacity – a function of criticality & confidence in 

prognostic algorithm
Source: Saxena, A., Celaya, J., Saha, B., Saha, H., Roychoudhury, I., Goebel, K., “Requirements Specification for Prognostics Perform ance – An Overview”, AIAA Infotech @ Aerospace, Atlanta GA, Apr. 2010
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Cost Benefit Analysis: Review Summary

Savings due to reduced

• Spare components
• Manpower (direct/indirect)

• Training costs

• Rate of major accidents
• Footprints

• System downtime
• …

Non-recurring cost factors

• Algorithm development
• Hardware/Software design

• Engineering

• V&V and testing
• Qualification/certification

• …

Cost of Extra 

Inventory

Loss of 

system/life

Downtime

Cascaded 

Contingencies

Cost of 

Contingencies

Cost incurred 

due to PHM

Cost of PHM 

Implementation

Cost w/o 

PHM

Cost with 

PHM

Savings due to 

PHM

Deployment

(recurring)

Development

(non-recurring)

Recurring cost factors

• Support and maintenance
• Equipment and personnel

• …

Cons of PHM

• Unused component life
• False positives

Situational Cost Factors

• Usage profile
• Type of system

• Type of mission

• Operational environment
• Maintenance structure

• …

Size and Time Scalability

• Fleet size
• Period of monitoring

• Capital discount rates

• …

Computation Basis

• Cost per unit
• Cost for fleet

• Life Cycle Cost

• Cost per contract period
• Annual cost

• Cost per operational hour
• …

Cost /

Savings

Prognostic Performance

• Prediction horizon
• Prediction accuracy

• Prediction precision

• Algorithm coverage
• Misdiagnosis rate

• …

Risk and Uncertainty

• Failure rates
• Future loading 

conditions

• Logistics efficiency
• …

Other Contextual Factors

PHM Attributes

Source: Saxena, A., Celaya, J., Saha, B., Saha, H., Roychoudhury, I., Goebel, K., “Requirements Specification for Prognostics Perform ance – An Overview”, AIAA Infotech @ Aerospace, Atlanta GA, Apr. 2010
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Requirements Engineering and Flowdown
1.Requirement definition and gathering

2.Requirement prioritization

3.Requirement flowdown
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Requirements

• Requirement definition & gathering

– Interactively determine what customer wants

1. Scope of the health management system by defining needs, goals, mission, 

constraints, schedules, budgets, and responsibility

2. Operational concepts that cover scenarios for how the health management 

system might behave and be used

3. Interfaces between the health management system and rest of the world

4. Health management design requirements

5. Rationale for each requirement

6. Assignment of requirements to the right levels

7. Verifying each requirement

8. Provide proper documentation for all requirements

9. Check requirements for completeness and correctness

• Requirement analysis
– Determine if requirements are unclear, incomplete, ambiguous, or 

contradictory

– Resolve above issues by further customer interaction

Source: Ivy F. Hooks; Kristin A. Farry ,“Customer Centered Products: Creating Successful Products Through Smart Requirements Management”, AMACOM American Management Association, 2000
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Requirement Prioritization

Source:   [a] J. Karlsson, and K. Ryan, “A Cost-Value Approach for Prioritizing Requirements,” IEEE Software, vol. 14, no. 5, pp. 67-74, 1997

[b] T.L. Saaty, The Analytic Hierarchy Process, McGraw-Hill, New York, 1980

Cost-Value Plot

• Resolve conflicting requirements

• Mostly based on cost-benefit analysis

• Requirement attributes[a]

– Type (Functional vs. non-Functional, primary vs. secondary)

– Estimated benefit to customer

– Estimated size of software that embeds the requirement

– Estimated cost of building what embeds it

– Priority

– Requirement dependencies

• Analytic Hierarchy Process (AHP)[b]

– Pair wise comparison among all requirements according to a standard scale

– Obtain normalized aggregates to indicate relative order of priority (value)
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Requirement Flowdown
Translate broad customer requirements into more easily quantified requirements

• Customer oriented view

– E.g. CTQ and QFD

• Designer/developer oriented view

– E.g. “Vee” Model and NASA’s System Engineering Engine

• Most popular methods

– CTQ Tree: Critical-to-Quality tree for quality focused methodology e.g. 

six-sigma

– QFD: Quality Function Deployment to translate customer requirement 
into engineering specifications

QFD Tools
• Affinity diagrams
• Relations diagrams
• Hierarchy trees
• Process decision program diagrams
• Analytic hierarchy process
• Blueprinting
• House of quality

House of Quality
• Customer requirements
• Technical requirements
• Planning matrix
• Interrelationship matrix
• Technical correlation (roof) matrix
• Technical priorities, benchmarks, and targets
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Requirement Flowdown

• “Vee” Model for PHM system design

Integrated System 

Demonstration & 
Validation

Component 

domain

System

domain

FMECA,
HAZOP

Define Sensor
Requirements

Develop Fault Models

Component Level 

Test and Validation

System Health 

Requirements & 
Constraints

Specifications 
for Metrics

Choice of 
Algorithms

Choice of 
Metrics

Higher Level Specifications

Performance 
Parameters

User Requirements for 

System Safety, 
Availability, & Costs

Component Health 

Requirements for 
selected components 

and failure modes

Customer Acceptance Tests

System 
Validation Tests

Software/Hardware 
Validation Tests

Software/Hardware 
Integration 

Tests
PHM Architecture

Prognostics & 
Uncertainty Management 

Algorithms

System Level 

Integration and Test

Source: Saxena, A., Celaya, J., Saha, B., Saha, H., Roychoudhury, I., Goebel, K., “Requirements Specification for Prognostics Perform ance – An Overview”, AIAA Infotech @ Aerospace, Atlanta GA, Apr. 2010
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Simulation Approaches to Derive Performance Parameters

Discrete Event Simulation Examples
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Discrete Event Simulation – Example 1
• Case: Spare supplier for  a fleet network

– A maintenance, repair, and overhaul (MRO) network for helicopter engines

– Engines are swapped between fleets (varying size) of different operators 
• Task: Forecast demand to strike Lean-Agile balance in the MRO network

– Strike a cost-effective balance between inventory level and prognostic horizon

• Long term PH – helps in scaling the resources in a network of aging fleet or incorporating 
any changes in the operating environment

• Short term PH – forecasting maintenance demand and allocate resources accordingly

F
le

e
t A

v
a
il
a
b
il
ity

 (
m

is
s
e
d
 fl

ig
h
t.
 H

rs
.)

Inventory Level (# engines)

Impact of PHM on Fleet Availability

No Prognostics

PH = 40 Hrs

PH = 20 Hrs

Source: Pipe, K. "Practical Prognostics for Condition Based Maintenance," International Conference on Prognostics and Health Management . Denver, CO,  2008.

Stock 

Level

Prognostic

Horizon

Flight 

Hrs.

Fleet

Size

Cost

Incurred

Cost

Savings

PHM

Perspective

DES inputs
• Helicopter Usage 

(probabilistic)

• HUMS data 
(Monitoring data)

• LRU reliability data
(weibull distribution)

• LRU MTTR

(log normal)
• Production capacities
• Prediction horizon
• Inventory size
• Fleet availability

• Fleet size
• Network structure
• …
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• A DES to evaluate 

– Improvement in over scheduled maintenance due to perfect prognosis

– Limits on prognostics performance to break even 

• with scheduled maintenance – minimum desirable performance for cost effectiveness

• with run-to-failure maintenance – maximum limit on prognostic errors

• Black box model for a single component system considered

Discrete Event Simulation – Example 2

DES inputs considered
• Length of mission

(probabilistic)
• Number of Missions 

(requirement)
• Failure Distribution

weibull distribution f(β,η)
• LRU MTTR

log normal distribution
• Time between scheduled 

maintenance
• Prognostic Error on RUL 

(ε)
• Standard deviation of RUL 

error (α)
• …

Exptt.
Factors

Factor levels

β 1.25, 1.50, …, 3.25, 3.50

m 10, 15, …, 50, 55

tm/m (%) 5, 10, …, 45, 50

α 0, 10, …, 140, 150

Improvement 
(%)

min 1.23

median 8.71

mean 8.63

max 14.55

α
PHM > 

PM
PHM < 

PM
PHM = 

PM

10 971 22 7

20 910 79 11

30 860 123 17

40 814 171 15

50 737 232 31

60 651 322 27

70 569 395 36

80 502 459 39

90 437 518 45

100 388 575 37

110 340 617 43

120 301 661 38

130 259 699 42

140 233 733 34

150 208 753 39

Source: Carrasco, M.; Cassady, C.R., “A study of the impact of prognostic errors on system performance”, 

Annual Reliability and Maintainability Symposium, RAMS06, pp.1 - 6, 23-26 Jan. 2006 
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Uncertainty Management and Representation

Establishing Confidence in Prognostic Estimates
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Dealing with Uncertainties

• Uncertainties 

– arise from a variety of sources

– are injected at different steps of the prognostic process

– combine and get filtered through complex non-linear system 

dynamics

– often do not exhibit known distribution characteristics

• Uncertainty Representations

– Interval mathematics

• Deals with error bounds only

– Fuzzy theory
• Incorporates uncertainties due to vagueness in addition to uncertainties due 

to randomness

– Probability theory

• Most widely used

• Deals with distributions

Reference: http://www.ccl.rutgers.edu/~ssi/thesis/thesis-node13.html
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Uncertainty Management Methods
• Risk Sensitive Particle Filter (RSPF) approach

– RSPF for uncertainty representation

– Outer correction loop for uncertainty management
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Management Society (PHM09). San Diego, CA, p. 0 2009.
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Uncertainty Management Methods
• Uncertainty Quantification

– Loading uncertainty

• Current and future load uncertainty

– Initial state estimation uncertainty – diagnostic uncertainty

• EIFS~LN(λ,ζ)

– Data uncertainty – assumptions about distributions 

• Loading: µ1, σ1, µ2, σ2 - uniform random variables

• EIFS: λ, ζ - normal random variables

– Crack growth model uncertainty: 

• Modified Paris Law with wheeler model

• C, ∆Kth and εcg are lognormal random variables

– Prediction algorithm uncertainty

• Gaussian process or particle filters

– FEA discretization error

• Global sensitivity analysis

– Decomposition of variance

• Total Variance = estimate of variance + variance of estimates

– Standardized regression coefficients (β) as a robust measure of 

sensitivity

• Applicable to non-linear models

• Measure of linearity of sensitivity w.r.t. input parameters in a non-linear model

• Multi-dimension averaged measure

• Explores entire domain of input

• Statistical significance tests available

cg

mthnr

K

K
KC

dN

da
 )1()(






No. Load 

Cycles
EIFS (θ)

Model 

(C)

Material 

(ΔKth)
Load (σ) Linearity

100 0.9922 0.0044 - 0.0018 0.0197 98.5 %

500 0.9661 0.2430 - 0.0180 0.0810 99.2 %

1000 0.8512 0.4985 - 0.0203 0.1806 99.3 %

5000 0.6071 0.6387 -0.2659 0.3915 99.9 %

Source: Sankararaman, S., Ling, Y., Shantz, C., and Mahadevan, S. "Uncertainty Quantification in Fatigue Damage 

Prognosis," Annual Conference of the Prognostics and Health Management Society (PHM09). San Diego, CA, p. 13 

2009 

Modified Paris’ Law
Fault Propagation Model
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Research Activities and Results

5

Validation: exp curve #1
updated with loading data only
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Validation: exp curve #1
updated with crack measure only
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Validation: exp curve #1
updated with loading and crack measure
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Results
1. Accuracy measured 

halfway is better than 25% 

in all cases

2. Improvement in 

uncertainty bounds is 
more than 10% from initial 

prediction to the end of life

Accounting for 

High-Risk Low-
Probability events

Risk Sensitive Particle 

Filter (RSPF)

Impact Technologies, 

ARC

Future Load 

Uncertainties

Equivalent Stress model

GPR model

Rainflow counting

Markov chain method

ARMA model
DSI: dispersion sensitivity

CSI: confidence interval

Impact Technologies

Vanderbilt University

Algorithm 

Mathematics
Uncertainty representation 
and propagation methods

Bayesian – Particle filters, 

Sequential Bayesian 

update – load, material

Max Relative Entropy

GPR, Monte-Carlo
Trans-Dimension MCMC 

for model fusion/selection

IFORM – reliability based
Impact Technologies

Clarkson University

ARC

Fault-Growth 

Model 
uncertaintiesParis’ Model + retardation

Small Time Scale model

Surrogate model

Finite Element model

Impact Technologies

Vanderbilt University

Measurement 

uncertainties

Intrinsic mode 

decomposition method

Vanderbilt University

Validation Data

Experiments Simulation models Monte-Carlo Simulation

2024-T351 Al – lit.

7075-T6 Al – expt.

4340 Steel – expt.

CCComposites–expt.

Semiconductor 
devices – expt.

FEM

NASTRAN

Benes Model

Impact Technologies, Clarkson University, 

Vanderbilt University, ARC

Improving 

Prognostic 

Uncertainties

Note: All results are reported at a confidence level of 95%
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