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1. PROBLEM BEING ADDRESSED 

Electronics-rich systems perform important societal 
functions in diverse fields. Failures in such systems can 
cause loss of revenue and lives, e.g., the Xian MA-60 
propeller plane that crashed into sea leaving 27 people 
dead in May 2011, or the failure in a point-of-sale 
information verification system that can result in loss of 
sales worth $5,000,000/min. These failures and 
unplanned downtime could be prevented if these 
systems could be made self-cognizant, i.e., if they 
could self-assess performance, estimate their remaining 
useful life (RUL), and adaptively make decisions for 
mitigating risks. However, this has been difficult to 
achieve because of a lack of understanding of the 
interactions between system parameters and application 
environments and their effect on system degradation.  

In order to address these issues, Pecht (Pecht, 2010; 
Cheng & Pecht, 2009) introduced the fusion 
prognostics approach. This approach first defines a 
degradation model that takes into account the presence 
of multiple failure mechanisms, varying environmental 
conditions, unit-to-unit uncertainty, and the uncertainty 
(temporal) associated with the progression of 
degradation. Existing degradation models for electronic 
systems simply aggregate the degradation of critical 
components and fail to consider the unit-to-unit 
variability. In these models environmental effects are 
mostly addressed from an accelerated testing 
perspective, which helps to analyze only a specific type 
of degradation (Gu, 2009; Alam, 2010; Kwon, 2010). 
Recent variants of these models that account for unit-
to-unit uncertainty and the time-varying environmental 
effects have failed to account for temporal uncertainty 
(Gebraeel, 2008 & 2009). And few of the reported 
models consider degradation as a result of both wearout 
and overstress mechanisms (Kharoufeh, 2006; Shetty, 
2008; Rangan, 2008).  

Another challenge has been the identification of 
appropriate RUL estimation techniques. Recently, 
Unscented Kalman (Tian, 2011) and Particle Filters 
(Orchard 2007; Zio, 2011) have been receiving a lot of 
attention for this purpose (Saha, 2009). However, 
degradation is a continuous process, and these 
techniques require the degradation to be a discrete 
process. It is generally assumed that the degradation is 

Gaussian in nature and there exists a predetermined 
failure threshold. However, it has been proven that the 
degradation process can have a skewed distribution 
and that there does not always exist a predetermined 
threshold. Thus, modeling errors and assumptions 
about the degradation process contribute to uncertainty 
in estimation.  Thus, there is a need for new techniques 
to improve the confidence level of RUL estimates. 
Also, it is desirable to make the RUL estimates in a 
recursive manner and identify the possible failure 
mechanisms from the predicted degradation state. 

In this work, the focus is on developing a generic 
fusion prognostics approach that will allow systems to 
self-assess performance and recursively estimate RUL. 
For this generic fusion prognostics approach we have 
the following goals:  
a) To define a mathematical model that best describes 

the dynamic nature of system degradation and   
b) To construct a recursive algorithm for the defined 

model that uses only the previous estimate of the 
RUL and the latest observations to make a new 
estimate of the RUL. 

Initially, we investigate the use of stochastic 
differential equations (SDEs) for modeling system 
degradation. The states of the model are defined using 
the parameters reflecting system response and their 
behavior with respect to time and usage. The effects of 
wearout and overstress mechanisms are included by 
decomposing the degradation process into two sub-
processes. Based on the investigation, the algebraic and 
geometric structure of the SDE representing system 
degradation will be defined. For the autonomous 
functioning of the system, recursive and optimal 
nonlinear filtering equations are derived to estimate 
future health states. For computational feasibility, the 
finite dimensional form of the filtering equations will 
be derived from optimal filtering equations by using 
concepts from nonlinear systems, the theory of Lie 
algebra, and recent insights gained from particle filters.  

2. EXPECTED CONTRIBUTIONS 

2.1 Modeling System Degradation 
One goal of this research work is to construct and 

evaluate a degradation model whose state, n
X ℜ∈ , is 

defined using the system parameters and their behavior 
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( x∂ and x
2∂ ) with respect to time and usage. SDEs 

arise when physical processes evolve as an ordinary 
differential equation is subjected to environmental 
fluctuations. We propose to model system degradation 
in two stages. In the first stage, we describe degradation 
as an SDE driven simultaneously by a jump and Wiener 
process. Defining degradation as a stochastic process 
accounts for the temporal uncertainty. Modeling the 
degradation as a jump-diffusion model allows us to 
decompose the degradation into two sub-processes: a 
continuous diffusion process and a discrete jump 
process. The continuous diffusion process represents 
the degradation due to wearout mechanisms, and the 
discrete jump process accounts for the degradation 
caused by overstress mechanisms, respectively. 
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In the second stage, this model is transformed into a 
random coefficient model consisting of deterministic 
and stochastic coefficients. The deterministic 
coefficients will capture degradation characteristics that 
are fixed across a population of components, thereby 
allowing us to incorporate the knowledge of physical 
degradation. The stochastic coefficients that are 
estimated from condition monitoring will account for 
the degradation due to the time-varying nature of the 
prevailing environment.  

Modeling the state using performance parameters and 
their behavior (derivatives) with respect to time and 
usage will help us in defining the subspace (in the 
entire state space) occupied by the failure states 
(corresponding to a failure mechanism) using the 
information obtained from degradation testing. Here, 
the state space includes all possible values taken by the 
performance parameters and their derivatives during 
both system failure and normal operation. This 
knowledge will help in identifying the possible failure 
mechanisms based on the evolution of degradation. 

Based on the investigation, the algebraic and 
geometric structure of the SDE representing system 
degradation will be defined. Parameter estimation 
techniques will be investigated for re-estimating the 
model parameters once new observations are available. 

2.2 Recursive Nonlinear Filtering 

In order to predict, detect, and localize failure, it is 
critical to forecast the health state of a system. Thus, 
the second goal is to address the nonlinear filtering 
problem, which concerns the Bayesian estimation of a 

health-state process, { }x(t) , based on discrete 

observations, { })y(tk . It is preferable to perform 

computations recursively in terms of a statistic, )( tθθ =  

that can be updated using the latest observations. By 
doing so, we can make the system function 

autonomously. Generally, this statistic, )( tθθ = , is 

related to the conditional distribution of { }x(t) , given 

the past observations. Thus, we require computations of 
the form 
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where, β represents a nonlinear function of the previous 
RUL estimate and the latest observations. 

However, the presence of the jump process makes 
the optimal filtering equations infinite in dimensions. 
Thus, the third goal is to define a finite dimensional 
sub-optimal recursive filter based on the optimal 
filtering equations. The structure of a recursive 
nonlinear filtering problem leads naturally to the use of 
methods from nonlinear system theory and the theory 
of Lie algebras (Marcus, 1978; Marcus 1984). The 
application of these methods to nonlinear filtering 
problems has led to a number of results related to finite 
dimensional filters. Hence, necessary generalization 
will be proved and coupled with the theory of Lie 
algebra to obtain finite dimensional filters. Also, the 
use of particle filters will be investigated for projecting 
and estimating the probability density function (PDF) 
of the RUL. This is because the particle filtering 
framework can prove transformative in understanding 
the evolution of the RUL PDF based on Kolmogrov 
equations. 

2.3 Approach Validation  

In order to validate the proposed approach, we will 
demonstrate the approach on power systems using 
Insulated Gate Bipolar Transistors (IGBTs). Power 
systems using IGBTs are often used in aerospace 
applications where high operational and environmental 
stresses can cause rapid failure of critical components. 
A physics of failure approach will be used to identify 
the state of the degradation model. The subspace 
occupied by different failure mechanisms will be 
obtained from life-cycle testing. For conformance of 
theoretical results to experimentation, power systems 
will also be subjected to field operation, and condition 
monitoring will be performed. The in-situ degradation 
attributes and the environmental conditions monitored 
will be used to estimate the stochastic coefficients of 
the model. Finally, the recursive filter will aid in 
determining the RUL of the system. 

3. PROPOSED PLAN 

After an initial literature review, a feasibility study of 
the degradation models considered was carried out. 
Recursive and optimal filtering equations for the SDE 
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containing only the stochastic coefficients were 
derived. Our current work involves the validation of 
these filtering equations through simulations based on 
Euler’s approximation method. Future work involves 
the derivation of finite dimensional filtering equations.  
Then, an SDE model with a defined algebraic and 
geometric structure has to be constructed. Appropriate 
parameter estimation techniques have to be investigated 
to estimate model parameters in real time. Further, 
optimal and sub-optimal filtering equations will be 
derived for predicting system degradation. 
Simultaneously, at each stage the approach will be 
validated using the power system. 

4. PRELIMINARY RESULT 

We have simulated a one-dimensional SDE subjected 
to diffusion to represent the degradation path of a 
component. The estimation is obtained using nonlinear 
optimal filtering equations. The simulations are 
performed using Euler’s approximation method. 
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Figure 1: Simulation of degradation path using a one-dimensional 
SDE subjected to normal wearout mechanisms alone and the 
estimation of the same using Euler’s approximation method. 
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