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Prognostics Overview 

“It’s tough to make predictions, 
especially about the future.” 

Yogi Berra 



Benefits (Availability, Cost Savings, Maintenance Scheduling, …) 
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Evolution of Maintenance Practices 
From Reactive to Preemptive 

Repair / 
Replace When 

Broken 

Reliability 
Centered 

Maintenance 

Systematic approach 
to defining routine 
maintenance to 
preserve important 
functions 

Enhanced 
Diagnostics 

Process of 
determining the ability 
of a component to 
perform its function 

Condition 
Based 

Maintenance 

Predicting the future 
health of a component 
so that maintenance is 
done based on the 
actual material 
condition of the 
component 

Key Enabler: 
Prognostics! 



Prognostics & Health Management 
Putting the “P” in “PHM” 

Preprocessing 

Sensor Data 

• De-noising 
• Filtering 
• etc. 

Feature 
Extraction 

Preprocessed 
Data 

• Signal statistics 
• Estimated 
   parameters 
• etc. 

(Enhanced) 
Diagnostics 

Features 
• Fault status 
• System 
  capabilities 
• etc. 

Decision 
Management 

Diagnosis 

• Maintenance 
  planning 
• Mission 
  planning 
• etc. 

Remaining 
Useful Life 

Prognostics 

• Future 
  capabilities 
• Component 
  RUL 
• etc. 

System 

Decisions 



Definitions 

• prog∙nos∙tic  
– M-W.com – “Something that foretells” 

– PHM Community – “Estimation of the Remaining 
Useful Life of a component” 

 

• Remaining Useful Life (RUL) – The amount of time 
a component can be expected to continue 
operating within its given specifications. 
– Dependent on future operating conditions (input 

commands, environment, and loads) 

So what is “Prognostics” anyway? 

Not necessarily 
to failure! 



Some Different Perspectives 
I.e., who cares? 

Maintainers 

• Scheduling Mx 
• Opportunistic Mx 
• System Uptime 
• Min. unnecessary Mx 
• Training 
 

Logisticians 

• Spares Positioning 
• Reduced Spares  
  Count 
• Logistics Footprint 

Program Mgmt 

• Meeting customer 
  expectations 
• Proposals 

Mission Planners 

• Mission Capability 
• Mission Assignment 

Safety 

• Avoid Catastrophic 
  Failures 
• Min. impact to other 
  (healthy) systems 

Engineers 

• Requirements 
  Satisfaction 
• Improved Capabilities 
  for Future Programs 
• Robustness 

Not Just for Maintenance! 



An Example PHM System 
F-35 Lightning II PHM Vision 

Integrated  

Supply/ 

Engineering 

Info systems 

Govt/Industry/Depot Activities 

Return of  

Defective Item 

Automated Logistics 

Update 

Wholesale  

Stockpoint  

Replenishment of  

Ship Stock 

Automatic/JIT  

Re-Supply 

Operational 

 Requirement  Repair  

Required 

Replenishable  

Requirements 

Onboard 

Stock 

Repair Recommendation  

Aircraft Turn-round & 

Repair 

Just-in-Time 
Training 

Simulated World 

Haptic 

Maintenance Rehearsal 

Graphical Audio 

Aircraft 

 Available  

Lessons Learned/  

Failure Rates MX Training 

PHM 

 Download 

PHM 



F-35 Prognostic Candidates 
(Some of them, anyway) 



Prognostic Algorithm Categories 

• Type I: Reliability Data-based 
– Use population based statistical model 
– These methods consider historical time to failure data which are used to model the failure 

distribution.  They estimate the life of a typical component under nominal usage conditions. 
– Ex: Weibull Analysis 

 

• Type II: Stress-based 
– Use population based fault growth model – learned from accumulated knowledge 
– These methods also consider the environmental stresses (temperature, load, vibration, etc.) 

on the component.  They estimate the life of an average component under specific usage 
conditions. 

– Ex: Proportional Hazards Model 
 

• Type III: Condition-based 
– Individual component based data-driven model 
– These methods also consider the measured or inferred component degradation.  They 

estimate the life of a specific component under specific usage and degradation conditions. 
– Ex: Cumulative Damage Model, Filtering and State Estimation 



Trends, RUL, & Uncertainty 

“In theory there is no difference 
between theory and practice.  In 

practice, there is.” 
Yogi Berra 



Trends and Thresholds 
First, the basics … 

“Time” (t) 
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Failure Threshold 

tEOL 

RUL 

“Safety Margin” 

RUL 

Extrapolated Trend (based on a 
fault propagation model) 

What if the Fault 
Model is “wrong”?  

tEOL = ? 

What about 
other types of 
uncertainty? 

How much do you 
trust the Threshold? 



Types of Uncertainties 

• Model uncertainties – Epistemic  
– Numerical errors 
– Unmodeled phenomenon 
– System model and Fault propagation model 

• Input uncertainties – Aleatoric 
– Initial state (damage) estimate 
– Manufacturing variability 

• Measurement uncertainties – Prejudicial 
– Sensor noise 
– Sensor coverage 
– Loss of information during preprocessing 
– Approximations and simplifications 

• Operating environment uncertainties 
– Unforeseen future loads / environment 
– Variability in the usage history data 

You just had to go and make things difficult! 

Systematic uncertainties 
due to things we could 
know in principle, but 
don’t in practice. 

Statistical uncertainties 
that may change every 
time the system is run. 

Unknown uncertainties 
due to the way data is 
collected or processed. 

Can be a mix of any of the 
above. 



Trends and Thresholds Revisited 
… now things get interesting! 

Time (t) 
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Failure Threshold (aFT) 

Effects of Measurement Uncertainty 

Band of uncertainty 
around 

measurement points 

Many possible 
Models may “fit” the 

measurements 

Use statistics to 
extrapolate the 

uncertainty into the 
future 

)(tpEOL

End of Life pdf 

Resulting pdf can be 
used to determine 
the probability of 

EOL occurring 
between two future 

time points 

tDP 

Decision Point 

Probability of 
Failure (π) 


DP

now

t

t

EOL dttp )(

Risk vs POF 
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Higher POF but 

lower risk 



Trends and Thresholds Revisited 
… now things get interesting! 

Time (t) 
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Failure Threshold (aFT) 

Effects of Model & Input Uncertainties 

Can be represented 
by a pdf describing 

the initial conditions 

pdf is then 
propagated forward 

in time 

tDP 

Probability that 
the parameter will 
be less than aFT at 

the time tDP 

Decision Point 

 
FT

DP

a

DPat datap

0

|

Resulting pdf’s can 
be used to determine 
the probability that a 

parameter has 
reached a given value 

at a given point in 
the future 

Probability 
distribution of the 

trending parameter 
at a given time in the 

future 

)(apa



Trends and Thresholds Revisited 
… now things get interesting! 
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Failure Threshold (aFT) 

Effects of Model & Input Uncertainties 

Can be represented 
by a pdf describing 

the initial conditions 

pdf is then 
propagated forward 

in time 

Taking a “horizontal 
slice” of the resulting 
surface at aFT yields 

the pdf of EOL at that 
failure threshold 

EOL pdf for aFT 

tDP 

Decision Point 

 
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t
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Trends and Thresholds Revisited 
One last twist 
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Failure Threshold (aFT) 

Instead of a single 
value, the threshold 

could be defined as a 
distribution – 
“Hazard Zone’ 

tDP 

Decision Point 

Probability of 
damage is now taken 
as the integral of the 
product of the two 

pdf’s 

)(apHZ

Probability of 
damage given 
a hazard zone 

 




0

)(| daaptap HZDPatDP


Hazard Zone 

Note that “Risk” is 
now much more 

difficult to quantify 



Prognostic Methods 

Data-Based or Physics-Based 
Models? – That is the question! 



Sources of Knowledge 

• FMEA / FMECA 
– What the failure modes are 
– Effects (and Criticality) – which failure modes to go after 

• Fault Tree Analysis 
– Propagation Models 

• Designers / Reliability Engineers 
– System knowledge and insight 
– Expected / nominal behavior of the system 

• Seeded Failure Testing / Accelerated Life Testing 
– Data (and lots of it if you’re lucky) 
– Failure signatures 
– Effects of environmental conditions 

• Fielded Systems 
– Sensors measurements 
– Maintenance logs 

 

How we know the things we know 



Data-Driven Methods 

• Model is based solely on data collected from the system 
• Some system knowledge may still be handy: 

– What the system ‘is’ 
– What the failure modes are 
– What sensor information is available 
– Which sensors may contain indicators of fault progression (and how those 

signals may ‘grow’) 

• General steps: 
– Gather what information you can (if any) 
– Determine which sensors give good trends 
– Process the data to “clean it up” – try to get nice, monotonic trends 
– Determine threshold(s) either from experience (data) or requirements 
– Use the model to predict RUL 

• Regression / trending 
• Mapping (e.g., using a neural network) 
• Statistics 

When you want to give your PC a task all night 



Data-Driven Method Example 

• No knowledge of system (just a bunch of data) 
 

• 218 sets of data (“runs”) 
 

• 24 Signals 
– 3 described as “operational settings” 
– 21 described as “sensor measurement n” 

 
• At the start of each run, the system is healthy 

 
• At some point during each run, a fault develops and grows 

to ‘failure’ at the end of the run 
 

PHM2008 Data Challenge 



Data-Driven Method Example 
PHM2008 Data Challenge Operational 

Settings 

Raw Data Plots for a Single Run 

Use Op 
Settings to 
determine 
different 
modes of 
operation 



Data-Driven Method Example 
PHM2008 Data Challenge 

Modes Parsed and Highlighted 

Consider 
a single 
mode 



Data-Driven Method Example 
PHM2008 Data Challenge 

Raw Data Plots for a Single Unit & Mode 

Let’s look 
at a single 

sensor 



Data-Driven Method Example 
PHM2008 Data Challenge 

Raw Data Plots for a Single Sensor 

Different 
sensors show 

different 
trends – Op 
mode and 

Failure mode 
dependent 



Data-Driven Method Example 
PHM2008 Data Challenge 

Observations  Fault Modes  Reasoner 

Sensor Observations 

1 
Single-valued for each operational setting across all units. 

No useful information. 

2 All operational settings tend to show slight “up” trend as failure progresses. 

3 All operational settings tend to show slight “up” trend as failure progresses. 

4 All operational settings tend to show slight “up” trend as failure progresses. 

5 
Single-valued for each operational setting across all units. 

No useful information. 

6 
Dual-valued for each operational setting across all units. 

The lower value (in each operational setting) appears to be confined to the earlier cycles of each unit. 

7 All operational settings tend to show slight “down” trend as failure progresses, perhaps slightly more pronounced in operational setting 1. 

8 

Operational settings 1, 2, and 3 show “up” trend as failure progresses for all units. 

Operational settings 4, 5, and 6 show a mix of “up” and “down” trends as failure progresses. 

Many curves appear to be rather pronounced (i.e., sharp up or down trend as failure progresses). 

9 
All operational settings show “up” trend as failure progresses for most units, though some units appear flat. 

Many curves appear to be rather pronounced (i.e., sharp up or down trend as failure progresses). 

10 
Operational settings 1 and 2 are single-value across all units. 

Operational settings 3, 4, 5, and 6 are dual-valued across all units. 

11 All operational settings tend to show slight “up” trend as failure progresses. 

12 All operational settings tend to show slight “down” trend as failure progresses, perhaps slightly more pronounced in operational setting 1. 

13 

Operational settings 1, 2, and 3 show “up” trend as failure progresses for all units. 

Operational settings 4, 5, and 6 show a mix of “up” and “down” trends as failure progresses. 

Many curves appear to be rather pronounced (i.e., sharp up or down trend as failure progresses). 

14 
All operational settings show “up” trend as failure progresses for most units, though some units appear flat. 

Many curves appear to be rather pronounced (i.e., sharp up or down trend as failure progresses). 

15 All operational settings tend to show slight “up” trend as failure progresses. 

16 
Operational settings 1, 2, 4, 5, and 6 are single-valued across all units. 

Operational setting 3 is dual-valued across all units with the lower value confined to the earlier cycles of each unit. 

17 
All operational settings tend to show slight “up” trend as failure progresses. 

Signals are discrete valued (no fractional values, only integral). 

18 
Single-valued for each operational setting across all units. 

No useful information. 

19 
Single-valued for each operational setting across all units. 

No useful information. 

20 All operational settings tend to show very slight “down” trend as failure progresses, perhaps slightly more pronounced in operational setting 1. 

21 All operational settings tend to show very slight “down” trend as failure progresses, perhaps slightly more pronounced in operational setting 1. 



Data-Driven Method Example 
PHM2008 Data Challenge 

Observations 

Sensor Data Fault Mode 

Learned Trends 

Reasoner 
RUL 

Estimator 
RUL Estimate 

offset # points in test unit RUL estimate

# points in training unit



Data-Driven Methods 

• Pros 
– Easy and Fast to implement 

• Several off-the-shelf packages are available for data mining 

– May identify relationships that were not previously considered 
• Can consider all relationships without prejudice 

 

• Cons 
– Requires lots of data and a “balanced” approach 

• Very real risk of “over-learning” the data 
• Conversely, there’s also a risk of “over-generalizing” 

– Results may be counter- (or even un-)intuitive 
• Correlation does not always imply causality! 

– Can be computationally intensive, both for analysis and implementation 
 

• Example techniques 
– Regression analysis 
– Neural Networks (NN) 
– Bayesian updates 
– Relevance vector machines (RVM) 

Pros & Cons 



Physics-Based Methods 

• What is a “Physics-Based” Model? 
Some examples: 
– Model derived from “First Principles” 

• PDEs 
• Euler-Lagrange Equations 

– Empirical model chosen based on an understanding of the dynamics of 
a system 
• Lumped Parameter Model 
• Classical 1st (or higher) order response curves 

– Mappings of stressors onto damage accumulation 
• Finite Element Model 
• High-fidelity Simulation Model 

 
• Something in the model correlates to the failure mode(s) of interest 

 

For those who prefer the “pen and paper” approach 



Physics-Based Method Example 
Lithium Ion Battery 

Metal 
Resistance 

Double-Layer 
Capacitance 

Charge Transfer 
Resistance 

Warburg 
(Diffusion) 
Resistance 

Electrolyte 
Resistance 

Randles Equivalent 
Impedance Model 
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Oxidation reaction yields:
Free electrons (negative)
Positive ions

Reduction reaction yields:
Electron “holes” (positive)

Negative ions

Separator

1st Order Lumped Parameter Model 

E(t) 

R1 R2 

C 

v(t) 

i(t) 

RL 

vc(t) 



Physics-Based Method Example 
Lithium Ion Battery 

E(t) 

R1 R2 

C 

v(t) 

i(t) 

RL 

vc(t) 

Discharge Curves 
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Physics-Based Method Example 

• As the battery ages, changes in the electro-chemical 
properties manifest in changes to R1, R2, and C 
 

• Usage and/or BIT data is used to continuously estimate 
the impedance values 
 

• Regression analysis is used to correlate the impedance 
values to battery capacity (State of Health) 

Lithium Ion Battery 

E(t) 

R1 R2 

C 

v(t) 

i(t) 

RL 

vc(t) 



Physics-Based Models 

• Pros 
– Results tend to be intuitive 

• Based on modeled phenomenon 
• And when they’re not, they’re still instructive (e.g., identifying needs for more fidelity or unmodeled 

effects) 

– Models can be reused 
• Tuning of parameters can be used to account for differences in design 

– If incorporated early enough in the design process, can drive sensor requirements (adding or 
removing) 

– Computationally efficient to implement 
 

• Cons 
– Model development requires a thorough understanding of the system 
– High-fidelity models can be computationally intensive 

 

• Examples 
– Population Growth Models 
– Paris-Erdogan Crack Growth Model 

 

Pros & Cons 



Hybrid Models 

• In practice, many implementations pull from both 
Data-Driven and Physics-Based Model methods 
– Use data to learn model parameters 

– Use knowledge about the physical process to 
determine the type of regression analysis to apply 
(linear, polynomial, exponential, etc.) 

– Data-Driven System Model in conjunction with a 
Physics-Based Fault Model (or vice-versa) 

– Identify potential correlations physics model and 
correlate using a data-based approach 

– Data fusion – have one of each! 

The best of both worlds 



Hybrid Example 

• Regression analysis used to trend circuit parameters (R1, R2, C) 
• Battery State of Health (SOH) Model 

– Correlates total charge capacity to SOH 

• Battery State of Charge (SOC) Model 
– Correlates voltage, current, and temperature to SOC 

• Together they can yield both the life remaining on the current 
charge as well as when the battery will need to be replaced 

 

Lithium Ion Battery Revisited 
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V
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Battery SOC Model Battery SOH Model 

Total Capacity 

Remaining 

Charge 



Hybrid Models 

• Pros 
– Combines the strengths of each approach 
– Robustness in design 

• Use data where system knowledge is lacking 
• Use physics where data is lacking 

– Results are both intuitive and match observations 
– Can “mix and match” approaches to customize for the current situation 

 

• Cons 
– Though the goal of a hybrid approach is to pull the best from each approach, where each 

approach is used, it still carries its disadvantages 
• Need for data 
• Portions may still be computationally intensive 
• Need for in-depth system knowledge 

 

• Examples 
– Particle Filters, Kalman Filters, etc. 
– Be creative and clever - The sky’s the limit! 

Pros & Cons 



Current Challenges in 
Prognostics 

Where do we go from here? 



Some Open Questions 

• Requirements Specification 
– With all of the pdf’s floating around, how do you write a meaningful 

requirements statement? 
• Confidence, RUL, Risk avoidance 

• Validation and Verification (V&V) 
– In order for a requirement statement to be valid (or at least realistic), you 

must be able to apply a rigorous V&V methodology to show that the 
requirement is being met 

– However, in a perfect prognostic system, parts are always replaced before they 
fail 

– Though limited post-mortem analyses may be made, it is infeasible to 
determine the actual SOH of all pulled components 

– Even if you did know the actual SOH of all pulled components, its difficult to 
know the RUL pdf of the pulled component 

• Uncertainty Management 
– Quantification, representation, propagation, and management 

• We’ve come a long way, but there’s still more to be achieved! 
 

 

Stick around for a few more days and see! 



Questions? 

Thank you! 


