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Outline

Prognostics Overview
— What is Prognostics?
— How does Prognostics fit into “PHM”?
— Types of Prognostic algorithms
Trends, Remaining Useful Life, & Uncertainty
— What does a prognostic algorithm tell you?
— How do you manage thresholds?
— How does uncertainty screw everything up?
Prognostics Methods
— Data-Driven Models
— Physics-Based Models
— Hybrid Approaches
Current Challenges in Prognostics

* Q&A
QQ phm
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Prognostics Overview

“It’s tough to make predictions,
especially about the future.”

Yogi Berra

Qa phmsociety
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Evolution of Maintenance Practices
From Reactive to Preemptive

)

Key Enabler:
Prognostics!

—  Systematic approach
to defining routine
maintenance to
preserve important
functions

2.

Condition
Based
Maintenance

Enhanced ‘/

Diagnostics

Reliability S

Centered
Maintenance

Predicting the future
health of a component
so that maintenance is
done based on the
actual material
condition of the
component

Repair /
Replace When
Broken

Process of
determining the ability

of a component to
perform its function

Complexity (Cost, Implementation, Infrastructure, ..

Benefits (Availability, Cost Savings, Maintenance Scheduling, ...)
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Prognostics & Health Managemen

* Maintenance
planning

* Mission
planning

* etc.

* Future
capabilities
* Component
RUL
* etc.
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Putting the “P” in “PHM”

* De-noising
* Filtering
* etc.

/)‘ ‘0
Decisions ) :’@i Sensor Data
P
K%stem
Decision '

Preprocessin
Management P &

Remaining Preprocessed * Signal statistics
Useful Life Data « Estimated
parameters
* etc.

Feature

Prognostics )
- Extraction

Diagnosis
* Fault status
(Enhanced) .

Diagnostics capabilities
* etc.
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Definitions

So what is “Prognostics” anyway?

* prog-nos-tic
— M-W.com — “Something that foretells”

— PHM Community — “Estimation of the Remaining
Useful Life of a component”

 Remaining Useful Life (RUL) — The amount of time
a component can be expected to continue

Not necessarily

operating|within its given specifications.| ., fiurer

— Dependent on future operating conditions (input
commands, environment, and loads)

QQ phm
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Some Different Perspectives
I.e.,'who cares?

* Scheduling Mx * Spares Positioning * Requirements
* Opportunistic Mx * Reduced Spares Satisfaction
 System Uptime Count * Improved Capabilities
* Min. unnecessary Mx * Logistics Footprint for Future Programs
* Training * Robustness

* Avoid Catastrophic * Mission Capability * Meeting customer
Failures * Mission Assignment expectations

* Min. impact to other * Proposals

(healthy) systems

ot Just for Maintenance

06_ phmsociety
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An Example PHM System

.
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F-35 Prognostic Candidates

(Some of them, anyway)

Power and Cooling
Turbo Machine Life, Oil Heat
Condition, Oil Servicing Exchangers

and Filter Condition

Actuator Leakage
and Wear

Generator Oil Level
Hydraulic Filters,
Pump, and Hydraulic
Fluid Level

Engine

Battery

ey -2 Oxygen
£ .‘V ' . Generator

Nitrogen
Generator
and Filter

Landing Gear and
Arresting Hook
Structure fatigue life

Rotary Actuator Wear

Landing Gear Strut —
QQ Pressure and Fluid Level Nose Wheel Stability
& P“'L'SUC'EW
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Prognostic Algorithm Categories

Type I: Reliability Data-based
— Use population based statistical model

— These methods consider historical time to failure data which are used to model the failure
distribution. They estimate the life of a typical component under nominal usage conditions.

— Ex: Weibull Analysis

Type I: Stress-based
Use population based fault growth model — learned from accumulated knowledge

— These methods also consider the environmental stresses (temperature, load, vibration, etc.)
on the component. They estimate the life of an average component under specific usage
conditions.

— Ex: Proportional Hazards Model

Type lIl: Condition-based
Individual component based data-driven model

— These methods also consider the measured or inferred component degradation. They
estimate the life of a specific component under specific usage and degradation conditions.

— Ex: Cumulative Damage Model, Filtering and State Estimation

QQ phm
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Trends, RUL, & Uncertainty

“In theory there is no difference
between theory and practice. In
practice, there is.”

Yogi Berra

Qa phmsociety
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Trends and Thresholds

First, the basics ...

How much do you
trust the Threshold?

Failure Threshold What if the Fault

* Model is “wrong”?

S l “Safety Margin” /|

~ e e Y N N A—

- A

QE-’ Extrapolated Trend (based on a /

© fault propagation model) \7/

= i

% What about

c

= other types of

c -

o uncertainty?

|_

> “Time” (t)

OQ th teo = ;
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Types of Uncertainties -

You just had to go and make things difficult!

 Model uncertainties — Epistemic = Systematic uncertainties
— Numerical errors irl:svtvﬁ;h;;:iscxfecgﬂltd
— Unmodeled phenomenon don’t in practice.
— System model and Fault propagation model

* Input uncertainties — Aleatoric + Statistical uncertainties
— Initial state (damage) estimate that may change every

. T time the system is run.
— Manufacturing variability

 Measurement uncertainties — Prejudicial *————— | unknown uncertainties

— Sensor noise due to the way data is
collected or processed.

— Sensor coverage
— Loss of information during preprocessing
— Approximations and simplifications

* QOperating environment uncertainties
— Unforeseen future loads / environment
— Variability in the usage history data

Can be a mix of any of the
above.

QQ phm
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Trends and Thresholds Revisited

... TOW th|ngs get |nterest|ng| Band of uncertainty

around
End of Life pdf .
measurement points

Probability of

Peo (1)

Failure (m)

Many possible
Models may “fit” the

t
A DP

= _[ Peo (H)dt
tno

Failure Threshold (a;) - " measurements
— ~ |5 -
S 2 s . Use statistics to
R S~ S extrapolate the
% ' uncertainty into the
c Higher POF but future
© lower risk /7, // .
S ﬁ > Resulting pdf can be
00 used to determine
= the probability of
-8 EOL occurring
L between two future
= time points
Risk vs POF
. . > Time (t)
now DP

Decision Point /

Vol
s
=
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Trends and Thresholds Revisited

... NOW th|ngs get |nte ( St|ng| Can be represented

by a pdf describing
the initial conditions

Probability pdf is then
4 distribution of the propagated forward
Failure Threshold (a,) U G -
ik at a given time in the — In time
- future
S Resulting pdf’s can
S [T s e e . o ————- be used to determine
0 the probability that a
& parameter has
o . reached a given value
& k’ i, = | Pa@ltop)da | at a given point in
0
=y | the future
o] [ 2
GCJ Probability that
|: the parameter will
be less than a,; at
the time t,,
> Time (t)

tnow tDP

Decision Point /

¢
i
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Trends and Thresholds Revisited

... NOW th]ﬂgs get |nte ia St|ng| Can be represented

by a pdf describing
the initial conditions

pdf is then
propagated forward
in time

top

E Tag: =tf Peor (t | agr )t Taking a “horizontal
T R bl ' . slice” of the resulting
£ surface at a,; yields
e the pdf of EOL at that
o failure threshold
© ’
(a¥
w k
= !
ge) >
c
)
| -
|_
. e e

> Time (t)

tnow tDP




Trending Parameter (a)

Hazard Zone

One last twist
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Trends and Thresholds Revisited

Instead of a single
value, the threshold
could be defined as a

distribution —
“Hazard Zone’

Probability of
damage is now taken
as the integral of the

product of the two
pdf’s

Note that “Risk” is
now much more
difficult to quantify

Probability of
damage given
a hazard zone

o

- -
>

tnow tDP

Decision Point /

Tt = J Pa(a | tDP)‘ prz (2)da
0

> Time (t)
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Prognostic Methods

Data-Based or Physics-Based
Models? — That is the question!

Qa phmsociety



A
LOCKHEED MARTIN%
Sources of Knowledge

How we know the things we know

« FMEA /FMECA
— What the failure modes are
— Effects (and Criticality) — which failure modes to go after
* Fault Tree Analysis
— Propagation Models
* Designers / Reliability Engineers
— System knowledge and insight
— Expected / nominal behavior of the system
* Seeded Failure Testing / Accelerated Life Testing
— Data (and lots of it if you’re lucky)
— Failure signatures
— Effects of environmental conditions
* Fielded Systems
— Sensors measurements
— Maintenance logs

QQ phm
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Data-Driven Methods
When you want to give your PC a task all night

* Modelis based solely on data collected from the system

* Some system knowledge may still be handy:
— What the system ‘is’
— What the failure modes are
— What sensor information is available
— Which sensors may contain indicators of fault progression (and how those
signals may ‘grow’)
* General steps:
— Gather what information you can (if any)
— Determine which sensors give good trends
— Process the data to “clean it up” — try to get nice, monotonic trends
— Determine threshold(s) either from experience (data) or requirements

— Use the model to predict RUL
* Regression / trending
* Mapping (e.g., using a neural network)
* Statistics

QQ phm
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Data-Driven Method Example
PHM2008 Data Challenge

No knowledge of system (just a bunch of data)

e 218 sets of data (“runs”

e 24 Signals
— 3 described as “operational settings”
— 21 described as “sensor measurement n”

e At the start of each run, the system is healthy

* At some point during each run, a fault develops and grows
to ‘failure’ at the end of the run

QQ phm
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Data-Driven Method Example
oo PHM2008 Data Challenge
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Data-Driven Method Example

PHM2008 Data Challenge
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Data-Driven Method Example
PHM2008 Data Challenge
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Data-Driven Method Example
PHM2008 Data Challenge

Mode 2 Sensor 9

Mode 3
Mode 4

Sensor 48 Sensor #

Mode 6

SENSOr value
sensor value

ensors sho
different
trends — Op
mode and

sensor value
sensor value

sensor value
sensor value

L8 phmsociety

Raw Data Plots for a Single Sensor
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Data-Driven Method Example

PHM?2008 Data Challenge

Sensor Observations
1 Single-valued for each operational setting across all units.
No useful information.
2 All operational settings tend to show slight “up” trend as failure progresses.
3 All operational settings tend to show slight “up” trend as failure progresses.
4 All operational settings tend to show slight “up” trend as failure progresses.
5 Single-valued for each operational setting across all units.
No useful information.
6 Dual-valued for each operational setting across all units.
The lower value (in each operational setting) appears to be confined to the earlier cycles of each unit.
7 All operational settings tend to show slight “down” trend as failure progresses, perhaps slightly more pronounced in operational setting 1.
Operational settings 1, 2, and 3 show “up” trend as failure progresses for all units.
8 Operational settings 4, 5, and 6 show a mix of “up” and “down” trends as failure progresses.
Many curves appear to be rather pronounced (i.e., sharp up or down trend as failure progresses).
All operational settings show “up” trend as failure progresses for most units, though some units appear flat.
9 Many curves appear to be rather pronounced (i.e., sharp up or down trend as failure progresses).
Operational settings 1 and 2 are single-value across all units.
10 . . .
Operational settings 3, 4, 5, and 6 are dual-valued across all units.
11 All operational settings tend to show slight “up” trend as failure progresses.
12 All operational settings tend to show slight “down” trend as failure progresses, perhaps slightly more pronounced in operational setting 1.
Operational settings 1, 2, and 3 show “up” trend as failure progresses for all units.
13 Operational settings 4, 5, and 6 show a mix of “up” and “down” trends as failure progresses.
Many curves appear to be rather pronounced (i.e., sharp up or down trend as failure progresses).
All operational settings show “up” trend as failure progresses for most units, though some units appear flat.
14 Many curves appear to be rather pronounced (i.e., sharp up or down trend as failure progresses).
15 All operational settings tend to show slight “up” trend as failure progresses.
Operational settings 1, 2, 4, 5, and 6 are single-valued across all units.
16 Operational setting 3 is dual-valued across all units with the lower value confined to the earlier cycles of each unit.
17 All operational settings tend to show slight “up” trend as failure progresses.
Signals are discrete valued (no fractional values, only integral).
18 Single-valued for each operational setting across all units.
No useful information.
19 Single-valued for each operational setting across all units.
No useful information.
20 All operational settings tend to show very slight “down” trend as failure progresses, perhaps slightly more pronounced in operational setting 1.
21 All operational settings tend to show very slight “down” trend as failure progresses, perhaps slightly more pronounced in operational setting 1.

Observations = Fault Modes = Reasoner
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Data-Driven Method Example
PHM2008 Data Challenge

Observations

\

Learned Trends

\

RUL

Sensor Data Fault Mode

Reasoner )
Estimator
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Data-Driven Methods

Pros & Cons

* Pros
— Easy and Fast to implement
* Several off-the-shelf packages are available for data mining
— May identify relationships that were not previously considered
* Can consider all relationships without prejudice

e Cons

— Requires lots of data and a “balanced” approach
* Very real risk of “over-learning” the data
* Conversely, there’s also a risk of “over-generalizing”

— Results may be counter- (or even un-)intuitive
* Correlation does not always imply causality!

— Can be computationally intensive, both for analysis and implementation

 Example techniques
— Regression analysis
— Neural Networks (NN)
— Bayesian updates
— Relevance vector machines (RVM)

QQ phm
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Physics-Based Methods

For those who prefer the “pen and paper” approach

 Whatis a “Physics-Based” Model?
Some examples:
— Model derived from “First Principles”

* PDEs
e Euler-Lagrange Equations

— Empirical model chosen based on an understanding of the dynamics of
a system

* Lumped Parameter Model
» Classical 15t (or higher) order response curves

— Mappings of stressors onto damage accumulation
* Finite Element Model
* High-fidelity Simulation Model

 Something in the model correlates to the failure mode(s) of interest

QQ phm
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Physics-Based Method Example
Lithium lon Battery

Cathode
(positive)

Reductionreaction yields:
Electron “holes” (positive)
Negative ions

Oxidation reaction yields:
|-Free electrons (negative)
/Positive ions

00 ° LN Ce ©
Randles Equivalent \Separator
Impedance Model
C
Cathode Anode | |
. Metal | | _
Resistance + v () —| ()
—>

— AN

m +
AN\, | [t~ Double-Layer | Ry R,
Re Capacitance EQ) 4 v(t) R

/ | N ¢
Electrolyte Warburg Charge Transfer 1St Order Lumped Parameter MOdel
Resistance (Diffusion) Resistance

Resistance
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Physics-Based Method Example
Lithium lon Battery

— AN,

i,
@¢
+
E(t) 7_1 R R v(t) § R,
po

D|Scharge Curves i Battery Pulse Data
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Physics-Based Method Example
Lithium lon Battery
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* Asthe battery ages, changes in the electro-chemical
properties manifest in changes to R, R,, and C

* Usage and/or BIT data is used to continuously estimate
the impedance values

* Regression analysis is used to correlate the impedance
values to battery capacity (State of Health)
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Physics-Based Models

Pros & Cons

* Pros

— Results tend to be intuitive
* Based on modeled phenomenon

* And when they’re not, they’re still instructive (e.g., identifying needs for more fidelity or unmodeled
effects)

— Models can be reused
* Tuning of parameters can be used to account for differences in design

— Ifincorporated early enough in the design process, can drive sensor requirements (adding or
removing)

— Computationally efficient to implement

* Cons
— Model development requires a thorough understanding of the system
— High-fidelity models can be computationally intensive

 Examples
— Population Growth Models
— Paris-Erdogan Crack Growth Model
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Hybrid Models
The best of both worlds

* |n practice, many implementations pull from both
Data-Driven and Physics-Based Model methods
— Use data to learn model parameters

— Use knowledge about the physical process to
determine the type of regression analysis to apply
(linear, polynomial, exponential, etc.)

— Data-Driven System Model in conjunction with a
Physics-Based Fault Model (or vice-versa)

— ldentify potential correlations physics model and
correlate using a data-based approach

— Data fusion — have one of each!
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Hybrid Example

Lithium lon Battery Revisited

* Regression analysis used to trend circuit parameters (R, R,, C)
e Battery State of Health (SOH) Model
— Correlates total charge capacity to SOH

e Battery State of Charge (SOC) Model
— Correlates voltage, current, and temperature to SOC

* Together they can yield both the life remaining on the current
charge as well as when the battery will need to be replaced

V— . sSOC ‘/X\:I'otal Capacity [&
I —> >&g j/ +/\><(})\/;—.
Y _1 5 R; :;t)

E(t)7

Remaining

Battery SOC Model Charge
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Hybrid Models

Pros & Cons

* Pros
— Combines the strengths of each approach

— Robustness in design
* Use data where system knowledge is lacking
* Use physics where data is lacking

— Results are both intuitive and match observations
— Can “mix and match” approaches to customize for the current situation

e Cons

— Though the goal of a hybrid approach is to pull the best from each approach, where each
approach is used, it still carries its disadvantages

* Need for data
* Portions may still be computationally intensive
* Need for in-depth system knowledge

 Examples
— Particle Filters, Kalman Filters, etc.
— Becreative and clever - The sky’s the limit!
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Current Challenges in
Prognostics

Where do we go from here?
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Some Open Questions

Stick around for a few more days and see!

* Requirements Specification

— With all of the pdf’s floating around, how do you write a meaningful
requirements statement?
* Confidence, RUL, Risk avoidance

* Validation and Verification (V&V)

— In order for a requirement statement to be valid (or at least realistic), you
must be able to apply a rigorous V&V methodology to show that the
requirement is being met

— However, in a perfect prognostic system, parts are always replaced before they
fail

— Though limited post-mortem analyses may be made, it is infeasible to
determine the actual SOH of all pulled components

— Even if you did know the actual SOH of all pulled components, its difficult to
know the RUL pdf of the pulled component

* Uncertainty Management

— Quantification, representation, propagation, and management
* We’'ve come a long way, but there’s still more to be achieved!
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Questions?

Thank you!
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