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Outline 

Definition: System-wide Heath Monitoring 

Theory of SHM 
 Features 

 Where does system level come from 

 Types of Analysis 

 Types of Evidences 

 Associated Technologies/Technical  Areas 

Example 1: Vehicle Level Reasoning System 

Example 2: Wind farm health management 
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System - Defined 

What is a System? 

 A system is defined as a collection of components, which work 

together to provide a higher level function 

 ―The whole is greater than the sum of its parts‖ 

 

(Ref, Phil Scandura, http://www.nacet.org/wp-content/uploads/2011/04/Presentation1.pdf ) 

http://www.nacet.org/wp-content/uploads/2011/04/Presentation1.pdf
http://www.nacet.org/wp-content/uploads/2011/04/Presentation1.pdf
http://www.nacet.org/wp-content/uploads/2011/04/Presentation1.pdf
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System-Expanded 

It has 
 Structure- made up of member systems 

 Function(s) 

 Inputs, outputs and states 

 Interconnectivity 

components    subsystems   system      fleet     enterprise 

Subassemblies 
Electronics 
Sensors 
Bearings 
Actuators 
Motors    

Navigation 
Propulsion 
Controls 
 
Power generation 

Vehicle 
 

Gearbox 
 

 
Pitch control 
 

Wind 
Turbine 

 

Wind Farm 
 

Electrical 
Grid 
 

 
 

Airline 

Integrated Distributed 
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Why do it? 

Why?  
 Increased complexity      

 Higher level of automation  

 

 

 

 

Objectives: 
 Safety 

 Economics: 

 Aftermarket services 

 Availability 

 Improve customer experience 

 

• Faster turn-around times 

• Better fleet utilization 

• Reduce unscheduled maintenance 

• Easier/quicker to diagnose 

• Fix it right the first time 

• Lower cost repairs 

Benefits 

(Ref, Phil Scandura, http://www.nacet.org/wp-content/uploads/2011/04/Presentation1.pdf ) 

http://video.google.com/videoplay?docid=6923163142748983272
http://www.nacet.org/wp-content/uploads/2011/04/Presentation1.pdf
http://www.nacet.org/wp-content/uploads/2011/04/Presentation1.pdf
http://www.nacet.org/wp-content/uploads/2011/04/Presentation1.pdf
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System-wide Health Monitoring 

System-wide 

health monitoring 

(SHM) detects, 

infers and 

manages the 

health state of the 

system from the 

member system 

health. 

 
System health monitoring is externally looking. It does not care 

about individual faults instead has a collective focus. 

(Figure, http://www.nacet.org/wp-content/uploads/2011/04/Presentation1.pdf) 
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Analytical Models 

Analytical Models Steps: 
 Plant model 

 State estimation 

 Input-output model 

 FDI through residual generation 

 

 

Limitations 
 Unavailability of models for plants and sensors 

 Many variables that are available are binary in nature as they 

represent expert knowledge in rules 

 Model inaccuracies 

Plant Sensors 
u(t) x(t) y(t) 

Model  of the plant Model  of the measurement 

p s x0 

(Ref, Ron J Patton et al., Issues of Fault Diagnosis for Dynamic Systems, Chapter 9) 
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Structural Models 

Structural model and canonical decomposition 
 Capture the interconnects and constraints graphically 

 Structure of the model is a digraph whose incidence matrix represent 

link between the variables and constraints 

 

 

 

 

 

 Canonical decomposition to diagraph can be applied to simplify 

 Boolean signature of the fault, binary word BS(e) indicates, the 

constraints that are violated (BS(e)=1) and those that remain true 

(BS(e)=0), in case of fault e; 

  BS(OK)=(0,……,0) 

(Ref, Ron J Patton et al., Issues of Fault Diagnosis for Dynamic Systems, Chapter 9) 

 E1 E2 E3 E4 E5 E6 E7   

FM1  1 0 0 0 0 0 0  

FM2  0 1 0 0 0 0 0  

FM3 1 1 0 0 0 0 0  

FM4  0 0 1 1 1 0 0  

FM5 0 0 1 0 1 1 1  

FM6 0 0 0 1 1 0 1  

FM7  0 0 1 0 0 0 0  

FM8  0 1 0 0 1 0 0  



Honeywell.com  

9 

Model-Based Approach 

A model-based approach allows one-time software certification & 

pushes aircraft specific data to an externally loadable image  

Ack: Felke, NASA presentation 2009 
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How is it done? 

Useful to view SHM as a series of layers, in which each layer supports 

the next higher layer, providing a portion of the overall SHM function  

 

Engines Flight 

Controls 
Lighting Avionics 

Other 

Systems . . . 
Effective Lower Level 

Condition Assessment 

Enables Effective System 

Health Management 

SHM Looks Across All 

Subsystems 

Subsystem Knowledge is 

Leveraged to Assess 

Overall System Health 

SHM Provides Decision Support 
System Health Management 

Provides Decision Support 

Across the Enterprise 

L
a
y
e
re

d
 A

p
p
ro

a
c
h
 

(Ref, Phil Scandura, http://www.nacet.org/wp-content/uploads/2011/04/Presentation1.pdf ) 

System-wide health monitoring is “designed in” not “added on” 

http://www.nacet.org/wp-content/uploads/2011/04/Presentation1.pdf
http://www.nacet.org/wp-content/uploads/2011/04/Presentation1.pdf
http://www.nacet.org/wp-content/uploads/2011/04/Presentation1.pdf
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Connectivity 

Member systems are connected loosely 

The relationship is captured in a fixed structure 
 Faults as roots of trees 

 Monitors as leaves 

 Limited Causality between Monitors 

Connectivity is captured in a reference model 

The connectivity between layers 

is captured such that it enables 

in isolating faults to a LRU 

Cascade effects are also 

captured 
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Heterogeneous Evidence 

Heterogeneity in data 

 Multiple aircraft  

 Multiple flights under different conditions 

 Failures and adverse events are few and far between 

Time series data 

 Data collected at different rates, different types – have to be 

merged into common timeline 

 Temporal information has to be abstracted for learning 

algorithms 

Noisy, uncertainty, and missing data 

 Noisy sensors 

 Unreliable recording/dropouts 
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Evidence Abstraction 

Need to brings in more advanced heterogeneous evidence 

13 
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Simple (Subsystem) Reference Model …  

fmj ei 

Probability that the evidence will be present 

when the failure mode is present in the system 

absent is mode failure0

present is mode failure1

 modes, failure ofset 







j

j

j

fm

fm

FfmF

present NOT is Evidence0

present is Evidence1

 allFor  evidence. ofset  







i

i

i

e

e

EeE

)1|1(  jiij fmePd
Probability that the evidence will be present 

when the failure mode is present in the system 

)0|1(  jii fmeP

There is no notion of time delay in the reference model.  

}0|{)(  dijfmeAG ji
}0|{)(  dijefmMI ij
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System Reference Model 

System Reference Model (static) is a network that captures 
the specific aircraft configuration  

 Data is provided by individual member system (engines, avionics, landing, etc, …) 

suppliers and the aircraft model is assembled by an integrator 

 Accuracy and coverage depends on quality of evidence and completeness of 

interaction capture 
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Diagnostic Reasoning Approach 

Capture System relationships 
 Reference Model Database – Consists of two parts: 

 Static – Describes member systems; reusable per system type 

– Definitions, interconnections, failure modes, evidence, action requests, corrective actions 

 Dynamic – Track the current condition of  system instance 

 

At run time faults are tracked in ―Fault Condition‖ data structures 
 As evidence arrives, it is assigned to a Fault Condition 

 Fault Conditions group evidence as explained by possible fault hypotheses 

 Fault Conditions are closed after the fault has been corrected 

 Closed Fault Conditions are used to detect repeat and intermittent faults 

 

Fault Conditions track exactly one fault (―Islands of Single Fault 

Assumption‖) 
 If a Fault Condition is believed to be tracking more than fault, it is split into two 

 If two Fault Conditions are believed to be tracking the same fault, they are merged 
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Inclusion of Prognostics 

Extend the diagnostic machinery 

into prognostics 
 Fault Conditions can contain predicted 

failure modes and prognostic monitors 

 Prognostic monitors predict the occurrence 

of a particular diagnostic monitor and 

whether the DM indicts or exonerates 

 Prognostic monitors contain prognostic 

vectors (set of time, probability pairs <P, T> 

– P is probability of not failing by time T) 

 Failure modes from the indicated DM are 

added to the FC’s ambiguity set along with 

the PV 

 PV fusion occurs if the FM is already there 
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Communications Latency 

Reasoner places a load on the communications system 
 In the absence of faults, reasoner generates few messages 

 The occurrence of a fault triggers a burst of activity 

In safety critical systems such as avionics 

communication using AFDX and ASCB are periodic and 

have statically defined schedules for communications 

Reasoner must be statically allocated a slice of 

communications bandwidth: 
 Narrow slice leads to long latency  

 Wide slice leads to inefficient use of the communications resource 

How much bandwidth does SHM need to provide 
acceptable performance? 
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Latency and Communication 

Typically Processing time is much shorter than communications 

time 

Communications time ―on the wire‖ is much shorter than time 

buffered to send 

 

Reasoner entity E has two cost parameters: 

 Pi : entity’s processing cost for processing an input stimulus and producing its 

output 

 Ci: entity’s communications cost factor 

For a message of size M bytes, the processing and 

communications cost for the transaction is: 

Goal: for any fault, communications latency should be less than X 
seconds 



Acknowledgment:  ―This material is based upon work supported by NASA  Award Number  NNL09AD44T and the Department of Energy under Award Number DE-EE0001368.‖ 
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Vehicle Integrated Prognostic Reasoner (VIPR) 
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NTSB Safety Incidents 

 Air France Flight 447 accident on 1st June, 2009 (Bureau d‟Enquêteset 

d‟AnalysesInterim Report f-cp090601ae) 

 Analysis of the series of 24 broadcast maintenance messages concluded that various 

monitoring processes were triggered, with many of them pointing to an inconsistency in 

speed measurement 

 In-flight upset 154 km west of Learmonth, WA, 7 October 2008 Airbus A330-303 

(ATSB Transport Safety Report AO-2008-070 Interim Factual) 

 While cruising at 37,000ft the aircraft autopilot disconnected, various aircraft system 

failures were indicated. Before the flight crew could deal with them, the aircraft abruptly 

pitched nose-down and descended 650 ft.  

 Loss of Pitch Control During Takeoff, Air Midwest Flight 5481, Raytheon 

(Beechcraft) 1900D, N233YV, Charlotte, North Carolina, January 8, 2003 

(NTSB/AAR-04/01) 

 Post event analysis showed  consistent differences in pitch control position values 10 

flights before the maintenance check, and the 9 flights after the D6 maintenance check.  

 

(Ref: Cooper et al., Av Safe Conference, 2009) 
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Data Driven VLRS+ 

Next Generation VLRS needs to support the following features 
 Support temporal and prognostic reasoning 

 Active role for fault isolation 

 Systematic updates to the reference model using operational data – continual learning 

Working with NASA to provide systematic extensions to the field-proven 

ADMS reasoner to handle next gen safety requirements – called VIPR  
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User Requirements 
Event Type Top Level requirements  

(Flight crew) 

Ti
m

e 

Ev
o

lu
ti

o
n

 Slow 1. Less important.  

2. Important, if and only if it will affect the current flight.  

Fast 1. Very important. Early detection of incipient conditions.  

2. Quickly identify mitigation (could be automatic control) actions 

Im
p

ac
t 

P
ro

p
ag

at
io

n
 Localized 1. Less important.  

2. Confirm and monitor if redundancy is working as designed 

Widespread 1. Minimize information overload to avoid confusion.  

2. Suppress information presentation, do not remove the evidence.  

Sy
m

p
to

m
 

P
er

si
st

en
ce

 Constant 1. Reduce false alarms.  

2. Minimize size of Ambiguity group and rank order.  

Intermittent 1. Accurate detection and establish that intermittency is true.  

2. Identifying a root cause may be less important  
Top Level requirements  

(VIPR Installer) 

Sc
al

ab
ili

ty
 1. Separate the reasoning algorithms from aircraft specific configurations. 

2. A common code base is easy to validate and makes is easier to certify. 

3. Finite set of operations, each of which is bounded computationally.  

D
ep

lo
ym

en
t 1. Reasoning function needs to fit on available onboard hardware. 

2. Support LRU’s that do not have computational resources for generating monitors.  

3. VIPR should work within the intellectual property boundaries of a monitor provider. 

4. Unambiguous definition of monitor types to avoid misinterpretation.  

A
cc

u
ra

cy
 

1. Ability to handle multiple timescales. Timestamp of evidence is important.  

2. Must include ‘states’ (necessary and sufficient description) that can be archived and 

used as initial conditions for analysis across successive flights. 

3. States are tracked using probabilities and well-defined ‘update’ operations 

4. Capable of proposing and working with multiple fault hypotheses. 

1. Detect events in real time.  

2. If impact is localized, confirm 

that backup is working as 

designed 

3. Keep track of intermittents 

1.Allow member systems to 

encode proprietary knowledge. 

2.Common code base to reduce 

certification efforts. 

3.Work within aircraft HW/SW 

constraints 
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VIPR Inputs: Monitors 

Monitor is an observation regarding the presence or 

absence of evidence ei 

 

There are several ways of ―expressing this 

observation‖ at time t0:  
 

 

In later slides we discuss how to generate prognostic 

monitors … 

 

unknownemexonerateemindicteem iiiiii  1),(00),(11

 VIPR accomplishment: 4 mechanism for generating and expressing complex evidence to 

enable “active participation” to detect incipient events.  

,...,,@)0(:Monitor  Prognostic 210 tttmiP 

00 @)0(:.@)1(:Monitor  DiagnosticSimplest tmPOftentmP ii  State of the art 

VIPR Standardizes this 
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Prognostic monitor generation 

Receive Condition 

Indicator CI 

Maintain rolling buffers 

Perform trending 

Future projection 

Prognostic Monitor  

There are several methods for doing this based on 

data (non domain model-based approaches)  

 VIPR accomplishment: Defines four mechanisms for handling progressive, slow  and 

intermittent evolution of an underlying adverse event. VIPR needs to know how to 

interpret the CI, and NOT how the CI was generated 

ARINC encoding 
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Layered Computation Architecture 

 In an aircraft:  

 A LRU may not be capable of 

generating monitors 

 VIPR needs to provide computational 

resource to generate these monitors based on 

sensor data 

 Hence the need for a LRU health manager 

tier to support these intensive calculations 

 Area Health Manager does most of the fault 

isolation 

 Vehicle health manager does inhibits, 

temporal and functional capability assessment 

 

 Practically: 

 VIPR like any other CBM system needs to 

buy itself. Customer may only choose one or 

more functions, rather than the entire thing! 

A distributed reasoning architecture allows VLRS to operate within aircraft 
computation constraints 
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Three Steps (phase)  

Phase 1: concepts, design, concept of operations 
 Establish initial design and pathway for acceptance within the 

community, availability of historic data  

 

Phase 2: detailed design, implementation and 

validation 
 Demonstration in a simulation environment, tools & methods 

 

Phase 3: metrics collection 

 Scenario-based cost, prognostic benefit and safety impact 

metrics calculation 
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The Reasoner theory 

P(mj =1 | no failure)  

P(mj =1 | fmi=1)  

P(fmi=1) 

 

As new monitors “fire”, they get assigned 

a 1 (indict) and 0 (exonerate) state.  

Net result: calculate joint probability of a 

failure mode occurring and observing 

various monitors. That is,  

P(fmj = 1, m1= 1, m2 = 1, m3 = 0, …) 

Use a noisy-or (Naïve Bayesian update) to calculate the joint probability 

Failure modes (causes) 
Monitors (symptoms) 
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Reasoner Engine: States & Operators 

 Represents a “diagnostic conclusion within 

VIPR”  

 Contains an ambiguity set of failure modes 

 Tracks a single fault i.e. makes a single fault 

assumption hypothesis 

 VIPR can contain several fault conditions at any 

time 

Fault Condition FC – VIPR state VIPR “state update operators” 

Initiating Monitor 

Failure modes that could trigger 

this monitor AG(FC) 

Monitors expected to fire if any of the 

failure mode is active, EoI(FC) 

Probability update: P(fmj = 1, m1= 1, m2 = 1, m3 = 0, …) 

Isolate: P(fmj = 1, …) > dI + P(fmk = 1, …), …  

Splitting: P(fmj = 1, fmk = 1, …) > dS +  P(fmj = 1, …), P(fmk = 1, …) 

Merging: EoI(FC1) = EoI(FC2)  

FM Addition: AG(FC)  AG(FC) + fmj,  

FM Removal: AG(FC)  AG(FC) - fmj,  

Active Query: ? mi, mi in EoI(FC) 

Closing: P(fmj = 1, …) < d0 

Ranking: sort(P(fmj = 1, …) ) 

Deletion: time(P(fmj = 1, …)) > NTE 

 Reasoner can track multiple simultaneous faults 

 Update is “event driven” – triggered by arrival of 

new monitor 

 A finite (deterministic) set of operators per update 

cycle 

 Contains several user-tunable knobs or constants 

to trade-off sensitivity (highlighted in bold) 
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VIPR States: Fault Condition 

 FC is a data structure with the following elements: 

 A fault condition has one and only one initiating evidence; it is merely an element of set E 

 The fault condition contains an ambiguity group of failure modes. The ambiguity group 

contains elements from the set F. 

 The fault condition has a property called evidence of interest.  

Notation: FC 

 VIPR accomplishment: FC is a necessary and sufficient “data packet” to support 

hierarchical reasoning. An ARINC 624 protocol to communicate a compact conclusion 

to the CAS and Maintainer.  
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Interpretation of FC 

A given FC represents a hypothesis that any of failure mode in the 

AG(FC) is occurring within the system. 

 Depending on how many failure modes may be occurring, an FC can 

assert several hypothesis regarding failure modes occurring in the 

system.  

VIPR aims for “islands of 

single fault assumptions”. 

Hence it splits a 2-fault 

hypothesis into two FC each 

with one 1 fault hypothesis.  
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Reasoner Main Loop 
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Likelihood calculation: naïve Bayesian update 

The DELTA increment 

each time a new 

monitor associated 

with the i’th evidence 

occurs or fires 

 VIPR accomplishment: A O(N2) algorithm for updating the likelihood. N = number of 

elements in each FC.   
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HIL Integrated Demo-ADS Safety Incidence  

43 

• Multiple data streams are integrated in the VIPR demo 
• Lref6-ATV demo shows need capture subsystem relationships within the reference 

model to fault prevents cascade 
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Goals of the Data Mining Work 

Demonstrate a systematic approach for continual 

improvement in the VIPR performance 

 Exploit data from past adverse event occurrences and known 

fault situations  

 Semi-automated data-driven processes 

 Selective Data mining operations 

 

curation 
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Aircraft Data 

We instrumented aircrafts to record 180+ parameters at 

1, 2, 4, 8 and 16 Hz over the entire the flight cycle 
 Fleet consisted of 30+ identical airplanes and flies 2—3 flights each day 

 Access to 3000+ consecutive flights 

Event Date Safety Incident 

Event 

Date Safety Incident 

Loss of oil and engine shutdown Pilot error 

Vibration, engine shutdown, Turbine damaged Hydraulic leak, smoke in the cabin 

Over speed temperature and engine shutdown Incipient ice formation 

Hydraulic leak. Take off aborted Runway incident. Hit a pole 

Intermittent engine on fire. Traced to fuel 

problems Runway incident, hit a catering truck 

False alarm of engine on fire. Fuel leakages 

ASIAS (FAA’s safety reporting website) incidents and 1—16 Hz aircraft 
parametric data surrounding these incidents  

 

 

 

? 
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Anomaly Detection 

47 

Flight 

Dissimilarity 

Matrix 

Dii Dij Din … 
Hierarchical 

Clustering 

Euclidean Metric 
NCD Metric 

max(dAN) 
Anomalous 

Find Bad  

Actors 

Current 

Flight 

Offline Analysis 

 Derive nominal model using entire flight data 

 Method: K-complexity measure:   

 

 

 

 

 

Online Analysis 

 On line detection for ACMF Function: Compare Individual Flight Data to Nominal 

 

 

 

 

 

 

 Anomalies that show a trend  

linked to faults/safety incidents can be incorporated into the VIPR reference model. 
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Impact on Safety 

Early indication 

This reasoning can be done 

onboard and the early indication 

can “eliminate” the root cause 

that caused the safety incident.   
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Safety Incidence Avoidance 

52 

VIPR detect impending in-flight engine shutdown 

• Demonstrated VIPR capabilities wrt diagnostic, and prognostic reasoning  

• Demonstrate VIPR capability for safety incidence avoidance  by incorporating 

monitors discovered through data mining. 

Fuel metering 

fault
Blade break/nozzle 

damage

Fuel manifold 

rupture

Accuracy: > 95%, FP < 1% Accuracy: > 90%, FP < 3% Accuracy: > 90%, FP ~22% 

~4-5 flights 
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Closing Remarks 

Vehicle level reasoner is aimed at: 
 Improving aircraft safety due to enhanced monitoring and reasoning 

about the aircraft’ s health state 

 Operational cost savings by enabling Condition Based Maintenance 

(CBM) 

In this talk, we outlined the next gen VLRS – namely 

VIPR 
 Trade space: user requirements and safety drivers, delta-increments 

from baseline to realize the advanced functions of VLRS 

 Reasoning steps: defined the steps for evidence aggregation, fault 

hypothesis management, using an abductive reasoning framework 

 Role of Data mining: defined algorithmic approach to update the 

capture new information 
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Wind Farm Health Management 

Onder Uluyol 
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Need for Data Analysis and Monitoring 

Wind turbines operate continuously in severe 

environments; in remote locations; need frequent 

scheduled maintenance 

High cost of un-detected failure and repair, and lost 

production time 

Tremendous growth in the wind industry – large 

growth in number of older wind turbines  

Performance issues with aging 

 Availability can decrease 1% per year after year 5 

 O&M costs rise with age 

 Performance degradation reduces capacity factor 

• Monitoring and data analysis 

 Enables condition based maintenance and 

performance tune-up 

 Catches failures before reaching catastrophic, or 

secondary damage stage 

 Extends asset life 

 Keeping assets working at initial capacity factors 

 Increasing availability by reducing routine 

maintenance, and predicting failures for optimum 

repair planning 

Condition Based Rather than Hours Based Maintenance Reduces O&M costs 
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SCADA data based Performance Monitoring 

Under-analyzed SCADA data is valuable in performance and fault monitoring 

Multiple Turbine 

Anomaly 

Detection

Performance 

Monitoring

SCADA 
Data

Wind Speed, 

Power Output, 

Rotor Speed

Wind Speed, 

Power Output, 

Gearbox Temps, 

Generator 

Temps, Currents

Wind Speed, 

Power Output

Single Turbine 

Anomaly 

Detection

• Performance degradation

• Rotor faults

• Yaw/pitch control system 

Faults

• Bearing faults

• Drivetrain faults

• Generator faultsPCA Outputs, 

Performance Model 

Residuals

Normal

Drivetrain

Faults

Generator 

Faults

Performance 

Degradation
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Large wind farm data set 
 One example used in the project – SCADA data procured from a large wind farm 

operator 

 This data was obtained using a OPC connection to the existing turbines, and 
pushing the data into a historian 

 Wind turbine SCADA data in the OPC historian is from three different wind parks, 
with different wind turbine manufacturers, differing numbers of parameters & 
varying naming conventions across the parks 

 Organization of these points is flat – several thousand points in a single farm, 
without hierarchy, e.g. using a naming convention: 

 

 

 The problem of mapping from a flat hierarchy to a standard set of meta data is 
common to other domains (e.g. building control systems) 
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Example Meta Data Generated  

PointType is 

derived from the 

[Description], but is 

not identical to the 

[Description]  

Parent-Child 

relationships 

derived from [Tag 

Name]  
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Other Data Sets 

 Data Set II 

 a mid-power wind turbine  

 supplies power to a university campus 

 recently came out of 5-year warranty 

 SCADA data is available in 10 minute and hourly intervals for 2006-2010. 

 

 Data Set III 

 collected from a small, reconditioned wind turbine 

 provides power to the operator’s office building in an urban setting 

 data is available at 1-min sampling rate. 

 

 Data Set IV 

 a mid-power wind turbine  

 Installed to test new control schemes 

- CART-2 : 2 blade turbine. Data collected at 100 Hz 

- CART-3 : 3 blade turbine. Data collected at 400 Hz 

 88 measurements stored in 10 minutes block  
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Single Turbine Anomaly Detection 

Successful application of anomaly detection algorithms to SCADA data 
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Normalization of Temperature - Difference 
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Parallel Coordinate Plot 

possible abnormal ones 

•12-Apr-2011 21:05:31 

•12-Apr-2011 21:15:35 

•12-Apr-2011 21:25:40 

•12-Apr-2011 21:35:48 

possible abnormal ones 

•07-Jun-2011 18:46:47 

•07-Jun-2011 19:56:48 

•07-Jun-2011 20:17:04 
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Test Set – baseline and abnormal 
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Power Curve Analytic 

Simple analytic detected anomaly >20 days in advance of semi-annual maintenance 
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Multi-turbine Analytic 

 Obtained archived data from 3 large wind parks 

• the wind parks were equipped with 

Honeywell–Matrikon data connectivity and 

historian solutions  

• Very large set of data set with ~16000 

tags, 1 year worth of data and 300+ 

turbines 

 GE, Mitsubishi and Micon wind turbines 

 Organized data by mapping the tags from a flat 

layer to a multi-layer meta-data structure 

 Matlab OPC Toolbox to connect to the OPC 

historian 
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Turbines in the 502 group 

98 

81 

75 

118 

104 

115 

127 

502 

• 49 turbines are 

associated with MET-

502 

• No windspeed data 

from T149-T154 

• Select seven turbines to 

establish a baseline: T75, 

T81, T98, T104, T115, 

T118, T127. 

• The selected turbines 

are geographically well 

distributed and have 

more consistent data. 
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Power average versus nominal power curve 
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Anomalous WT 

Data from a Wti may look anomalous in a group of WTs for a number of 

reasons. In some cases, the cause of anomaly can be detected using 

simple statistics, in other cases using associative models to capture 

dynamic dependencies is needed. 

 

 

 

 

 

Case No Wti Remaining WTs Action 

1 Down Normal Use simple stats 

2 Curtailed Normal Use simple stats 

3 Normal Down Use simple stats 

4 Normal Curtailed Use simple stats 

5 Location effect Location effect Capture in associative model 

6 Park-wide control 

effect 

Park-wide control 

effect 

Capture in associative model 

7 Performance 

degradation due 

to fault 

Normal Detect using associative 

models 
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Parameters to Filter Data for Baseline 
 Tag: ―Sum_Maintenance‖ at Park Level 

 Tag: ―Sum_Repair‖ at Park Level 

 Tag: ―Sum_Manual_Stop‖ at Park Level 

 

At any given time, up to 10 turbines (except the 

outlier in Sep10) are stopped manually and 

maintenance or repair performed. 
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Data filtering – Power profile 

Exclude points that lay outside of 250 kW and 1250 kW. In these 

startup and max high power regions, the operation of WT is 

highly non-linear. 

~35000 
points 

excluded 

~22000 
points 

excluded 

~31000 

points used 

for analysis 
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MET 2 – Wind Direction 1 & 2 

• Seek periods of stable wind 
direction 

• Compute wind direction ave and 
std 

• Scan 3 min around each sample 

• Require at least 20 samples (usually 
there is about 30 points) 

 

 

 

 

• Variation in wind direction is generally limited to 
less than std=20 deg within 3 min. 

• Cut-off at std=10, filters 55% of data in Direction 
1 and 65% of data in Direction 2.  
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Hierarchical Monitoring of Wind Turbines 
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Associative Model Approach 

Approach 

 Employ multivariate analysis for analytical redundancy to capture non-linear 

correlations among wind turbines in a park 

 a multi-layered neural network architecture  
o Include a small bottleneck layer to ensure good generalization and prevent the network from forming a look-up 

table. 

Goal 

 If no fault present, reproduce the input data at the output as closely as possible  

 If there is fault, isolate the faulty wind turbine and estimate the power loss 

 

 

Mapping

Layer

Demapping

Layer

AutoAssociative Neural Network

. .
 .

Bottleneck Layer

. .
 .

Input Output
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Generic Wind Turbine CBM System 

 Algorithms alone will not determine the 
success of CBM 
 System design and usability are key 

 Significant factor in the success of 
Honeywell’s HUMS deployment 

 Honeywell’s HUMS software defines 
configurations that are setup once and 
duplicated 
 Setup tool capability allows diverse aircraft to 

be configured without source code changes 

 Flexibility enables rapid configuration and 
tuning of HUMS algorithms  

 Beginning the path toward wind turbine 
CBM configurability  
 Gather equipment specifications, SCADA data 

configuration across multiple wind turbine 
models  

 Use this information to define an information 
model for wind applications using a structure 
similar to Honeywell’s HUMS data model 
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Conclusions 

Objectives: 
 Safety 

 Economics: 

 Aftermarket services 

 Availability 

 Improve customer experience 

It has to be designed in- 

collaborative 
 Member systems need work together 

 Minimize resource utilization and maximize availability 

 Have small computation and communication footprint 

 Distributable 

System level conclusions shall support the objectives 
 

System-wide health monitoring is “designed in” not “added on” 

(Ref: www.public.navy.mil/navsafecen #426Teamwork) 

http://www.public.navy.mil/navsafecen
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