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Outline

» Definition: System-wide Heath Monitoring
» Theory of SHM

= Features

= Where does system level come from

= Types of Analysis

= Types of Evidences

= Associated Technologies/Technical Areas

»Example 1: Vehicle Level Reasoning System
»Example 2: Wind farm health management
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System - Defined

» What is a System?

= A system is defined as a collection of components, which work
together to provide a higher level function

“The whole is greater than the sum of |ts parts

\\

ikt ok

(Ref, Phil Scandura, http://www.nacet.org/wp-content/uploads/2011/04/Presentationl.pdf )
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System-Expanded

>t has

= Structure- made up of member systems
= Function(s)

= Inputs, outputs and states

= Interconnectivity

components % subsystems @m» enterprise
Subassemblies Navigation T .
Electronics Propulsion Vehicle Airline
Sensors Controls
Bearings
Actuators Power generation
Motors
Gearbox Wind Wind Farm Electrical
Pitch control Turbine Grid
| ] |\ )

I I
Integrated Distributed
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Why do it?
»Why? » Benefits

= Increased complexity
= Higher level of automation

« Easier/quicker to diagnose
* Fix it right the first time
* Lower cost repairs

»QObjectives:

= Safety

= Economics:
= Aftermarket services
= Availability

= Improve customer experience « Faster turn-around times
 Better fleet utilization
» Reduce unscheduled maintenance

(Ref, Phil Scandura, http://www.nacet.org/wp-content/uploads/2011/04/Presentation1.pdf)


http://video.google.com/videoplay?docid=6923163142748983272
http://www.nacet.org/wp-content/uploads/2011/04/Presentation1.pdf
http://www.nacet.org/wp-content/uploads/2011/04/Presentation1.pdf
http://www.nacet.org/wp-content/uploads/2011/04/Presentation1.pdf
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System-wide Health Monitoring

Subsvstent Knowledge s Leveraged to

» System-wide
health monitoring e ol Tk teali NMoasactg
(SHM) detects, |
Infers and

1ary Liglting viranlics
manages the PV e g
health state of the R i e Cockp
system from the —w—F— — b
E:: '1:::&:1011 l— anding Envirommental
member system - Contros

health.

System health monitoring is externally looking. It does not care
about individual faults instead has a collective focus.

(Figure, http://www.nacet.org/wp-content/uploads/2011/04/Presentation.pdf)



Honeywell - Honeywell.com

Analytical Models

» Analytical Models Steps:

e

= Plant model X |

= State estimation O pant 95 censors YO
= |nput-output model \ }

. . \ )
= FDI through residual generation ! Y
Model of the plant Model of the measurement
»Limitations

= Unavailability of models for plants and sensors

= Many variables that are available are binary in nature as they
represent expert knowledge in rules

= Model inaccuracies

(Ref, Ron J Patton et al., Issues of Fault Diagnosis for Dynamic Systems, Chapter 9)
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Structural Models

» Structural model and canonical decomposition

= Capture the interconnects and constraints graphically

= Structure of the model is a digraph whose incidence matrix represent

link between the variables and constraints

El E3 E4
FM1 1 0 0
FM2
FM3
FM4
FM5
FM6
FM7
FM8
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= Canonical decomposition to diagraph can be applied to simplify

= Boolean signature of the fault, binary word BS(e) indicates, the
constraints that are violated (BS(e)=1) and those that remain true
(BS(e)=0), in case of fault e;

BS(OK)=(0, ......,0)

(Ref, Ron J Patton et al., Issues of Fault Diagnosis for Dynamic Systems, Chapter 9)
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Honeywell

Model-Based Approach
%\ — /Diagnostic Model is Hierarchical e el NASA raton 200

P Al | ~—
Wl i e > o——{fz=1)
e u uad | pata CMC
s u > Table
DCT Tool

« Each expert is asked to describe only his/her subsystem behavior
- Honeywell modeling tool fits the pieces together and generates a System Reference Model
- The System Reference Model is used by the VIPR inference engine to diagnose aircraft faults

(evidence-failure mode relationship)
System Reference

Model
Inference Eault
Symptoms ——— (reasoning) ———> Conditions,
(observations) Engine likelihood

(the most plausible explanation)

A model-based approach allows one-time software certification &
pushes aircraft specific data to an externally loadable image
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How IS it done?

» Useful to view SHM as a series of layers, in which each layer supports
the next higher layer, providing a portion of the overall SHM function

Across the Enterprise
Subsystem Knowledge is
Leveraged to Assess
Overall System Health

Effective Lower Level
Condition Assessment
Enables Effective System
Health Management

System Health Management
Provides Decision Support
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SHM Provides Decision Support

SHM Looks Across All
Subsystems

Engines

Flight

Controls Lighting Avionics

Other
Systems

System-wide health monitoring is “designed in” not “added on”

10

(Ref, Phil Scandura, http://www.nacet.org/wp-content/uploads/2011/04/Presentation1.pdf )
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Connectivity

»Member systems are connected loosely

» The relationship is captured in a fixed structure
= Faults as roots of trees
= Monitors as leaves
= Limited Causality between Monitors

» The connectivity between layers
IS captured such that it enables
In isolating faults to a LRU SRR E

» Cascade effects are also
captured

Connectivity Is captured in a reference model

11
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Heterogeneous Evidence

»Heterogeneity in data
= Multiple aircraft
= Multiple flights under different conditions
= Failures and adverse events are few and far between

> Time series data

= Data collected at different rates, different types — have to be
merged into common timeline

= Temporal information has to be abstracted for learning
algorithms
»Noisy, uncertainty, and missing data
= Noisy sensors
= Unreliable recording/dropouts

12
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Evidence Abstraction

(crossed, 1) Suppli ide 0/1
upplier can provide 0
Threshold @ threshold crossing or
Crossing diagnostic monitor

{not crossed, 0) |
Supports prognostic

reasoning

A4

(0,1.0)
LF,_,- ‘‘‘‘ (t,.0.1) Time = v

Supplier can provide future

oa _ _
Probability of NOT @ Crossings or prognostic
crossingthe (t,. 0.0) monitor
threshold e
ok
A Time More IP exposure
Supports active query
Threshold| & v
T Supplier can provide time-
Cconditon |  Lo--- @ series Clalongwith a
Indicator M ------------- threshold or parameiric
. : monitor
90% confidence intervals (say)

W

Time =
T
(current)
Need to brings in more advanced heterogeneous evidence

13 13



Honeywell

- Honeywell.com

Simple (Subsystem) Reference Model ...

F =set of fallure modes, fm eF E =set of evidence. Forall e, e E

fm =1< failure mode is present e =1« Evidence is present
e =0 <« Evidence is NOT present

fmj =0 < failure mode is absent

d; < P(g =1| fm; =1) & < P(g =1 vim; =0)
Probability that the evidence will be present

Probability that the evidence will be present : . .
when the failure mode is present in the system when the failure mode Is present in the system

There is no notion of time delay in the reference model.

AG(e;) ={vfm, | dij = O} MI (fm ;) ={Ve, | dij = O}

14
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System Reference Model

Repair Action-._ A Sensor |
Repajrf analyze
Effects — Monitor

FailureMode[— Cascade | poiinreNMode | \

o _/ ‘j”N . Human Observation

inhibit has \ capture

Impacts
Operating Mode / / . \
\ Data ofInterest
Component
Function

» Data is provided by individual member system (engines, avionics, landing, eftc, ...)
suppliers and the aircraft model is assembled by an integrator

» Accuracy and coverage depends on quality of evidence and completeness of
interaction capture

System Reference Model (static) is a network that captures
the specific aircraft configuration

16
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Diagnostic Reasoning Approach

» Capture System relationships

= Reference Model Database — Consists of two parts:

= Static — Describes member systems; reusable per system type

— Definitions, interconnections, failure modes, evidence, action requests, corrective actions
= Dynamic — Track the current condition of system instance

> At run time faults are tracked in “Fault Condition” data structures
= As evidence arrives, it is assigned to a Fault Condition

Fault Conditions group evidence as explained by possible fault hypotheses
Fault Conditions are closed after the fault has been corrected

Closed Fault Conditions are used to detect repeat and intermittent faults

» Fault Conditions track exactly one fault (“Islands of Single Fault
Assumption”)

If a Fault Condition is believed to be tracking more than fault, it is split into two
If two Fault Conditions are believed to be tracking the same fault, they are merged

17
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Inclusion of Prognostics

» Extend the diagnostic machinery
Into prognostics

Fault Conditions can contain predicted
failure modes and prognostic monitors

Prognostic monitors predict the occurrence
of a particular diagnostic monitor and
whether the DM indicts or exonerates

Prognostic monitors contain prognostic
vectors (set of time, probability pairs <P, T>
— P is probability of not failing by time T)
Failure modes from the indicated DM are
added to the FC’s ambiguity set along with
the PV

PV fusion occurs if the FM is already there

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

- Honeywell.com

0

Fused prognostic vector
min(PV1, PV2)

18
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Communications Latency

»Reasoner places a load on the communications system
= In the absence of faults, reasoner generates few messages
= The occurrence of a fault triggers a burst of activity
»In safety critical systems such as avionics
communication using AFDX and ASCB are periodic and
have statically defined schedules for communications

»Reasoner must be statically allocated a slice of

communications bandwidth:

= Narrow slice leads to long latency
= \Wide slice leads to inefficient use of the communications resource

How much bandwidth does SHM need to provide
acceptable performance?

19
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Latency and Communication

» Typically Processing time is much shorter than communications
time

» Communications time “on the wire” is much shorter than time
buffered to send

I |
1 I
| I |

> Reasoner entity E has two cost paramett ,.j':

l
LLd

= Pi: entity’s processing cost for processing an input stimulus and producmg its
output

= Ci: entity’s communications cost factor
» For a message of size M bytes, the processing and
communications cost for the transaction is:

Psource + M = Csource N Pdestination + M = Cdestination
2 2

TransactionCost =

Goal: for any fault, communications latency should be less than X

seconds

20



Vehicle Integrated Prognostic Reasoner (VIPR)
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NTSB Safety Incidents

(Ref: Cooper et al., Av Safe Conference, 2009)

» Air France Flight 447 accident on 1st June, 2009 (Bureau d"Enquéteset
d“Analysesinterim Report f-cp090601ae)
= Analysis of the series of 24 broadcast maintenance messages concluded that various
monitoring processes were triggered, with many of them pointing to an inconsistency in
speed measurement
» In-flight upset 154 km west of Learmonth, WA, 7 October 2008 Airbus A330-303
(ATSB Transport Safety Report AO-2008-070 Interim Factual)

=  While cruising at 37,000ft the aircraft autopilot disconnected, various aircraft system
failures were indicated. Before the flight crew could deal with them, the aircraft abruptly
pitched nose-down and descended 650 ft.
» Loss of Pitch Control During Takeoff, Air Midwest Flight 5481, Raytheon
(Beechcraft) 1900D, N233YV, Charlotte, North Carolina, January 8, 2003
(NTSB/AAR-04/01)

= Post event analysis showed consistent differences in pitch control position values 10
flights before the maintenance check, and the 9 flights after the D6 maintenance check.

23
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Data Driven VLRS+

& @
o ‘ e
: msmwm "
e, « = Operating Flest of Aircraft
¥ : Interpret 2 |«
Memsure | IS . | = i -
e | HealthAssossmont | | ; = ~ A updates
o DamAcqusition o Extract [ g 0
1 |E ~~ —
™
Dats Manipelstion  |——a | Z B
o——  Data Manipulation - @ﬂ—'— Prognostic Assessmant r E L . FDAMNS,
o . : | DFADU data
Stato Estmation | —o : E _____ Swstematic PR :
| ©——| Advisory Generation | | E Data Mining
P = Y
0 T I \
e, T EES—— SR REASONER
External Systems Tee . @

AL FNS, Displays |

Ground Station |

Next Generation VLRS needs to support the following features
» Support temporal and prognostic reasoning
» Active role for fault isolation

» Systematic updates to the reference model using operational data — continual learning

Working with NASA to provide systematic extensions to the field-proven
ADMS reasoner to handle next gen safety requirements — called VIPR

25
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User Requirements

JEETCTT Event Type | Top Level requirements

(Flight crew)

Time
Evolution

Monitor
Provider

VIPR
Installer
VIPR
Maintainer

Top Level requirements
(VIPR Installer)

1. Detect events in real time.

2. If impact is localized, confirm
that backup is working as
designed

3. Keep track of intermittents

Impact
Propagation

ptom
stence

Scalability

1.Allow member systems to
encode proprietary knowledge.

2.Common code base to reduce
certification efforts.

3.Work within aircraft HW/SW
constraints

Deployment

Accuracy

Honeywell @ V
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VIPR Inputs: Monitors

»Monitor is an observation regarding the presence or
absence of evidence e,

m, =1< e, =1(indicte), m, =0« e, =0(exonerate), m, =-1< e =unknown

» There are several ways of “expressing this

observation” at time t:
Simplest Diagnostic Monitor: P(m, =1) @t,.Often P(m, =0) @t, <—— Stateoftheart

Prognostic Monitor: P(mi=0) @ t,,t,,t,,... ¢~ VIPR Standardizes this

»In later slides we discuss how to generate prognostic
monitors ...

» VIPR accomplishment: 4 mechanism for generating and expressing complex evidence to
enable “active participation” to detect incipient events.

29
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Prognostic monitor generation

Receive Condition

Indicator CI
A 4
Maintain rolling buffers —l
Perform trending
Y
Future projection
_,—" v
mmmTTTTTTTIITITTT ARINC encoding
There are several methods for doing this based on @
data (non domain model-based approaches)
. Prognostic Monitor

S~
~o

» VIPR accomplishment: Defines four mechanisms for handling progressive, slow and
intermittent evolution of an underlying adverse event. VIPR needs to know how to
interpret the CI, and NOT how the CI was generated

31
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Layered Computation Architecture

________________________________________

Inhibits

(o1WeUAp 9 211B1S) [BPOY 29UaID)aY WBISAS

Temporal fusion

Cascade reasoning

Fault Isolation

Active Querying

Monitors Generation

Off-Vehicle
Services

Vehicle Health
Manager (VHM)

ARINC 624 based
messaging

Area Health
Manager (AHM)

ARINC 624 based
messaging

LRU Health
Manager

» In an aircraft:

= A LRU may not be capable of
generating monitors

= VIPR needs to provide computational
resource to generate these monitors based on
sensor data

= Hence the need for a LRU health manager
tier to support these intensive calculations

= Area Health Manager does most of the fault
isolation

= Vehicle health manager does inhibits,
temporal and functional capability assessment

» Practically:

= VIPR like any other CBM system needs to
buy itself. Customer may only choose one or
more functions, rather than the entire thing!

A distributed reasoning architecture allows VLRS to operate within aircraft
computation constraints

33
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Three Steps (phase)

»Phase 2: detailed design, implementation and

validation
= Demonstration in a simulation environment, tools & methods

- Honeywell.com
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The Reasoner theory

Failure modes (causes) Monitors (symptoms)

No Lightoff < P(m; =1 no failure)
P(m; =1]fm;=1)

/ Slow Start
Fuel metering fault <(/// Low stall margin for HPC P(fm;=1)
&

i . » Low stall margipfe™LPC
Fuel drain fault AV/" /
Igniter assy fault ~ I 6t Start
Z
Inlet Fan foulin / Z / OverSpeed
RSN :

HP Compressor fault <<=

pdtdown

7 Temp Margin at TKO

’ e s "\ : - . It ” .
HP turbine fault <‘2‘>'\?,,\ High inlet pressure loss As n?w monltors ﬁre i they get asszgned
bt /"}7\/‘\\ Low Temp Margin at CRU a 1 (indict) and O (exonerate) state.
ozzle clogging /,‘/"\\\ 2O Net result: calculate joint probability of a
Conlgilarfau /A‘\ failure mode occurring and observing

L tall in for f - H H
\\\‘ ERIEEN various monitors. That is,
\ Controller Ch A open P(fmj =1, m;= 1, m, = 1, my = 0, )

™ QOverTemp Shutdown

Use a noisy-or (Naive Bayesian update) to calculate the joint probability
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Reasoner Engine: States & Operators

Fault Condition FC — VIPR state

Initiating Monitor ------

Failure modes that could trigger
this monitor AG(FC)

Monitors expected to fire if any of the
failure mode is active, Eol(FC)

» Represents a “diagnostic conclusion within
VIPR”

» Contains an ambiguity set of failure modes

» Tracks a single fault i.e. makes a single fault
assumption hypothesis

> VIPR can contain several fault conditions at any
time

VIPR “state update operators”

Probability update: P(fm; =1, m=1,m,=1,m; =0, ...)

Isolate: P(fm; = 1, ...) > &;+P(fm =1, ...), ...

Splitting: P(fm; =1, fm, = 1, ...) > & + P(fm; = [, ...), PAm, =1, ...)
Merging: Eol(FC,) = Eol(FC,)

FM Addition: AG(FC) € AG(FC) + fm,

FM Removal: AG(FC) < AG(FC) - fm,

Active Query: ? m; m; in Eol(FC)

Closing: P(fm; = 1, ...) < &,

Ranking: sort(P(fm; = 7, ...) )

Deletion: time(P(fm; = 1, ...)) > NTE

» Reasoner can track multiple simultaneous faults

» Update is “event driven” — triggered by arrival of
new monitor

» A finite (deterministic) set of operators per update
cycle

» Contains several user-tunable knobs or constants
to trade-off sensitivity (highlighted in bold)

37
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VIPR States: Fault Condition

Ambiguity Group of failure modes

Initiating event AG(FC) NOtation: FC
im(FC)

- ~

TNy Sy __ Evidence of Interest
’ BN / A\ 7 MIFC)

........

e Fault Condition FC
» FC is a data structure with the following elements:
= A fault condition has one and only one initiating evidence; it is merely an element of set E

= The fault condition contains an ambiguity group of failure modes. The ambiguity group
contains elements from the set F.

= The fault condition has a property called evidence of interest.

» VIPR accomplishment: FC is a necessary and sufficient “data packet” to support
hierarchical reasoning. An ARINC 624 protocol to communicate a compact conclusion
to the CAS and Maintainer.

38
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Interpretation of FC

» A given FC represents a hypothesis that any of failure mode in the
AG(FC) is occurring within the system.

= Depending on how many failure modes may be occurring, an FC can

assert several hypothesis regarding failure modes occurring in the
system.

Given fault condition FC such that AG(FC) = {fmy,fmy, fm3}.
FC Null Hypothesis: A (fmy = 0,fmz = 0,fm3 = 0)

FC Single Fault Hypothesis: ¥ (fmy =1,fmy = 1,fm3 = 1) YIPR aims for “islat}ds of
single fault assumptions”.
FC Two Fault Hypothesis: ¥ (fmy =1Afmy =1, fmy =1/ fmz =1, <@ Hence it splits a 2-fault
fms=1Afmy = 1) hypothesis into two FC each

with one 1 fault hypothesis.
FC Three Fault Hypothesis: fm1 =1/Afmy =1/ fmz =1

39
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Reasoner Main Loop

Firing or occurrence of monitors drives the reasoner process (event
driven).
The state update step is a sequence of four steps:

1. Evidence allocation.

2. Probability and Likelihood update. Updating the log
likelihood for all fault hypothesis asserted by FC € X(n).

3. Apply Tests. Application of tests for fault isolation and false
alarm suppression.

4. Message Passing. The net outcome from the above steps is a
new heath state or X(n+1).

40
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Likelihood calculation: naive Bayesian update

We define the evidence function of a fault condition Ev(FC) as
follows:

FC evidence:Ev(FC) = {Tr, Q} |
FC evidence(indicting): Tr & m; = 1,¥ile; € Eol(FC) |

FC evidence (exonerating): Q < m; = 0,7i|e; € Eol(FC)

P(hp, Tr, Q)

Relative likelihood L(hp) = m

hy € O(FC)  (6)

Applying the chain rule and using fact that FC evidence Tr and @
are independent of each other, we get:

P(hp) P(Trlhy) P(Qlhy)

L) = BNE) B(T7INE) P(QINF)"

h, € ©(FC) (7)

P(Trhp) (P(mszuhp))*———-: -----------
P = =)D h, € O(FC
P(Tr|NF) ”Hl . - hp € O(FC)
eeEol(FC) ae==T
P(Q|ho(FC)) _ P(m; = 0[h)\* "
&/€Eol(FC)

-
-
-
-
-
-

Evidence Set supporting various hypothesis
in a given fault condition, Ev(FC)

¥

_ “Exonerating evidence”
/" Provided by monitors such thatm; = 0

. “Unknown evidence”
1" Provided by monitors such thatm; = -1

“Indicting evidence”
Provided by monitors such thatm; = 1

The DELTA increment
each time a new

__________________ monitor associated

with the i th evidence
occurs or fires

» VIPR accomplishment: A O(N?) algorithm for updating the likelihood. N = number of
elements in each FC.
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HIL Integrated Demo-ADS Safety Incidence

ATV

Playback —*
\_/.

ATV IRU Monitor VIPR ADS /_,
Playback Generator GUI H — UL—
_— Data \/Y
Engine I
i Monitors _\l N ﬂ é ADIRU bad data
Primary Monitor
R
Files

Detection

Engine

— Fault
Avionics Simulator
SN '
APU Monitor Functional
Flaps Generator impact
ADS1 undetected Flault d
measurement gears
Take-off fault Touch-down
i—) — >

* Multiple data streams are integrated in the VIPR demo
» Lref6-ATV demo shows need capture subsystem relationships within the reference
model to fault prevents cascade
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Goals of the Data Mining Work

»Demonstrate a systematic approach for continual
Improvement in the VIPR performance
= Exploit data from past adverse event occurrences and known

fault situations

= Semi-automated data-driven processes

= Selective Data mining operations

TCollectionJ\

[Selectionl ’

\[Cleaning Jj

curation

4 N\

Data
[Transformation} ‘
. J

/[ Training

J\

[ Integratio

)
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Aircraft Data

»We instrumented aircrafts to record 180+ parameters at
1, 2,4, 8 and 16 Hz over the entire the flight cycle

= Fleet consisted of 30+ identical airplanes and flies 2—3 flights each day
= Access to 3000+ consecutive flights

P P - P
Event Date | Safety Incident Date Safety Incident
X

Loss of oil and engine shutdown Pilot error

Vibration, engine shutdown, Turbine damaged Hydraulic leak, smoke in the cabin 7
Over speed temperature and engine shutdown Incipient ice formation

Hydraulic leak. Take off aborted Runway incident. Hit a pole X
Intermittent engine on fire. Traced to fuel x
problems Runway incident, hit a catering truck

False alarm of engine on fire. Fuel leakages

ASIAS (FAA’s safety reporting website) incidents and 1—16 Hz aircraft
parametric data surrounding these incidents

46
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Anomaly Detection

» Offline Analysis
= Derive nominal model using entire flight data
B} - - . o Clay) — min{C(x),C(y)}
Method: K-complexity measure: NCD(zx,y) = maz{C(z),C(y)}
& 4, N du o o, o, HierarC_hica|
' Flight . Clustering

Dissimilarity @
- Matrix —>
d nomalies
Euclidean Metric R

» ONitieg Analysis

= On line detection for ACMF Function: Compare Individual Flight Data to Nominal

A | Find Bad - ’
anaXrQA% O ACtO I's 000 &0

Nominal
Cluster

Flight

s H ¥

= Anomalies that show a trend

0

linked to faults/safety incidents can be incorporated into the VIPR reference model. |
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[ Actuator fault }

k.

r

{ Sluggish start ]

R

[ Aggressive controller }

k.

y

{ Controller

saturation ]

h

r

[ Idling speed drop }

k.

[ Overtemp condition }

3

r

[ Auto sh

utdown }
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Impact on Safety

_)[ LiteOff monitors ‘

* VIPR

S SRR, { Peak EGT monitors 1

~ 40-50 flights

Early indication
This reasoning can be done
onboard and the early indication
can “eliminate” the root cause
that caused the safety incident.

)[ Idle speed Monitor J

~ 20-30 flights

\Odafs VYLRS

{ R44 Report J

¥
[ 119/2005 incident J

~ 10 flights
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Safety Incidence Avoidance

Fuelmetering Blade break/nozzle Fuel manifold
fault damage rupture

i
A\

—
—t P

Data mining | discovery of prognostic monitors

Lightoff evidence argin temp evidenc Lightoff evidence
g

[ Peak EGT evidence

s

[ Peak EGT evidence ] [ Start Time evidence ]

i

[ Idle speed evidence [Sln pe margin eviden ce} Peak evidence ]

- .,

Accuracy: > 95%, FP < 1% Accuracy: > 90%, FP < 3% Accuracy: > 90%, FP ~22%
Opportunity | _ i 5 : .
window 30 fiights 20 flights l ~4-5 flights
: Chwertemp evidence il High 'VIB evidence E : Fire evidence
W, ~30 seconds | 10 seconds W, ~10 minutes
--------- Yoo Safety -.----...*‘!".---.._-_-._I e

ilnflighteng ine shutdown;

. . 'Inflightengine shutdown! engine shutdown
Incident I ; |

« Demonstrated VIPR capabilities wrt diagnostic, and prognostic reasoning

« Demonstrate VIPR capability for safety incidence avoidance by incorporating
monitors discovered through data mining.

VIPR detect impending in-flight engine shutdown
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Closing Remarks

> Vehicle level reasoner is aimed at:

= |Improving aircraft safety due to enhanced monitoring and reasoning
about the aircraft’ s health state

= Operational cost savings by enabling Condition Based Maintenance
(CBM)

»In this talk, we outlined the next gen VLRS — namely
VIPR

= Trade space: user requirements and safety drivers, delta-increments
from baseline to realize the advanced functions of VLRS

= Reasoning steps: defined the steps for evidence aggregation, fault
hypothesis management, using an abductive reasoning framework

= Role of Data mining: defined algorithmic approach to update the
capture new information

- Honeywell.com
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Need for Data Analysis and Monitoring

» Wind turbines operate continuously in severe
environments; in remote locations; need frequent
scheduled maintenance

» High cost of un-detected failure and repair, and lost
production time

» Tremendous growth in the wind industry — large
growth in number of older wind turbines
» Performance issues with aging
= Availability can decrease 1% per year after year 5
= O&M costs rise with age

= Performance degradation reduces capacity factor
« Monitoring and data analysis

= Enables condition based maintenance and
performance tune-up

= Catches failures before reaching catastrophic, or
secondary damage stage

= Extends asset life
= Keeping assets working at initial capacity factors

= Increasing availability by reducing routine
maintenance, and predicting failures for optimum
repair planning

J_.&JJ__J

Slane for Man Aot Socthe . .mm-dmmkﬂ
Cemperent [Fas

Condition Based Rather than Hours Based Maintenance Reduces O&M costs
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SCADA data based Performance Monitoring

SCADA

N

Data

Wind Speed,
Power Output,
Rotor Speed

Wind Speed,
Power Output,
Gearbox Temps,
Generator
Temps, Currents

Performance
Monitoring

Single Turbine

—> Anomaly

Detection

PCA Outputs,

Performance Model

Residuals

Multiple Turbine

I

Wind Speed,
Power Output

> Anomaly

Detection

aration (%)

Deteri

L o1 — ko

“ation (%)

£
I'CI IUIIIIClI IL:U

ool . = . | ueuracxatlon
1250 1300 1350 1400 1450 WSDD $ 1550 WBDD
SAMPLE NUMBER B-10-03
» Performance degradation
* Rotor faults
 Yaw/pitch control system
—  Faults

Bearing faults
Drivetrain faults
Generator faults

~ Drivetrain
Faults

- Normal

- Generator

| Faults

Under-analyzed SCADA data is valuable in performance and fault monitoring
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Large wind farm data set

» One example used in the project — SCADA data procured from a large wind farm
operator

» This data was obtained using a OPC connection to the existing turbines, and
pushing the data into a historian

» Wind turbine SCADA data in the OPC historian is from three different wind parks,
with different wind turbine manufacturers, differing numbers of parameters &
varying naming conventions across the parks

» Organization of these points is flat — several thousand points in a single farm,
without hierarchy, e.g. using a naming convention:

X002 Il P2 TO83 T GEAR BEAR TO83 Temperature Gear Bearing

» The problem of mapping from a flat hierarchy to a standard set of meta data is
common to other domains (e.g. building control systems)

\
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Example Meta Data Generated

LParle [T‘TurhinelD [fPointTvpe [T'Tag Name [T'
¥O02_II_P2 T078 Active Pawer Warning ¥002_11_P2 TO7E_P_ACT_WARNING
/ aintenance Time End of Last Manth HOO02Z_|I_P2_TO7E_FMT_ULM
/ aintenance Time Total Since Commisioning XOO02_|1_P2 TO7E_MTT
P Chld — Blada 1 Actual X002 |1_P2 _TO78_BL1_ACT
arent-Chi 002.1)_P2 Y078 8L
. . aather Out Time Total Since Commissioning 02 _11_P2 TO72_WOTT
relatlonshlps Frequency X002 |I_P2_TOT72_FREQ,
H Hydraulic Pressure ¥002_|1_P2 TO78_HYD_PRES
derived from [Ta‘g | phase A X002 11_P2 TOTE_|_A
Name] | phase B (002 11_P2 TO72_|_B
| phase C 02 |1_P2 7078 1_C
Operating {includez in calculations and warnings) 102_|1_P2_TO78_OPERATING

Power Actual

Power Factor

Resetable Fault Condition

State Fault

Temperature Ambient
Temperaturs Bearing A
Temperaturs Bearing AWarning
Temperature Bearing B
Temperaturs Bearing B Warning
Temperature Bearing Shaft
Temperature Bearing Shaft Warning
Temperature Gear

POlntType |S Temperature Gear Bearing
derlved fl’0m the Temperature Gear Bearing Warning

Temperature Gear Warning

[DESCFIptIOH], but |S Temperature Gen L
Temperature Gen L Warning

nOt Identlcal to the Temperature Gen 2
[Descrlptlon] Temperature Gen Cooling

Torgue actual

rer acceleration
Tower Acceleration Warning 02 _|1_P2_TO72_A_TOWER_WARNING
Woltage AN 102 |1_P2 TO78_U_A N

Woltage B N KO02_|1_P2 TO78_U_B_N

Woltage CH KO02_ |1 _P2 TO78 U _C N

Weather Qut Time End of Last Menth
Windspeed

Windspeed Warning KOO02Z_|I_P2 TO78_W

NIN_WARNING
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Other Data Sets

» Data Set |l
= a mid-power wind turbine
= supplies power to a university campus
= recently came out of 5-year warranty
= SCADA data is available in 10 minute and hourly intervals for 2006-2010.

» Data Set Il
= collected from a small, reconditioned wind turbine
= provides power to the operator’s office building in an urban setting
= data is available at 1-min sampling rate.

» Data Set IV
= a mid-power wind turbine

= |nstalled to test new control schemes
- CART-2 : 2 blade turbine. Data collected at 100 Hz
- CART-3: 3 blade turbine. Data collected at 400 Hz

= 88 measurements stored in 10 minutes block

- Honeywell.com
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Single Turbine Anomaly Detection

. Result from Fault Data
Region 2
24 0.02 . . . - — '
22t % Prior to Fail 4 0015 x * 3;
Normal - 10242008 2 X XX x
x © » x
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: I x N x x
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i
151
Observed Fault « 10} e
indications 2 g T * ¥
¥ %
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: 200 250 300 350 400 450 500 550 600
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Time (min)
e
T— S— Fault detection Fault detection
aw Output from trainin s . .
5 ; s ; ',' b ; using Clustering using PCA
X o x x 000 W WK 00 MK 20 19000K XXX Xx%® X
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» x = X 00X WO 0 0C x
25hx x X X0 ocHmXE XX x

XM XN ONEHK X M OHE M B MK X N X MK K

HMWOOS R X O WK X XK WK XN XX 0K Alarms from three indicators for fault case
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X x
o HEExEEE
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PR ST

P 0 x 000 00K MOCIE O e xx x x =
alarm from 3
20k = ox x x 0K XIOOON XX 6 XNC N OO XK X MK H000C B . .
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000 X MWEIC NEDC0CC WEL M K X x % 0C000M0000 I i @O
X X X JMKX X KX X M XM XX X x X 00k XX X xxxxx @O
X 0000 000K X MKW XK X 30 M WX X x o ommomx X OO
XD X JEOONKIE MO X X X XX o ox eoox xx x O
5+ 30¢ 00 MM WX XX WK X x XM 36NN MOTCHOCM KX X E
X O0CKEK XOMOKX K XX X X XM 000K MDOOKX 2 X e PO
XWX CRENO. WOCCES WX XK X% woowmecome e X O SOFM =
- WO WOCIC WX K t 3 X X ocemEX XX mxx O
W0 POE X WX X * ¥ 0 d X X 000
0 4 L L L . L s s s L N s
0 10 20 30 40 50 60 0 05 1 15 2 25 3
Time (min) Time (min)

Successful application of anomaly detection algorithms to SCADA data
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Normalization of Temperature - Difference

Temperature Readings are substracted by Rover Temperature

A0

Hss Aft
an k- — Hao Fwd |
Int Shaft
zen Fuwd
B0 | («

20

Delta Temperature

W'WW '

1 | 1 1
03,20 0327 0403 04,10

-20
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Parallel Coordinate Plot

possible abnormal ones
+07-Jun-2011 18:46:47

*07-Jun-2011 19:56:48
/ *07-Jun-2011 20:17:04
T T T

40}

20

Delta

=20+

i i i
HSS At HSS Fwd  Int Shaft  Gen Fwd

Gen Aft
possible abnormal ones
*12-Apr-2011 21:05:31

*12-Apr-2011 21:15:35
*12-Apr-2011 21:25:40
*12-Apr-2011 21:35:48
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1 stat

T2

20

10

Test Set — baseline and abnormal

Result from Baseline Data

B R s AP

0 200 400 B0 800 1000 1200 1400

- T T S TR VI, %65 7o e ——
0 200 400 B00 ao0 1000 1200 1400
Samples

T2

i Y N Y A o N o T |

20

10

Fesult from Possible Abnormal Data

- Honeywell.com

L = ® 4
F k3 % & ! !
2 3 4 g B 7 3
L y |
H
- &+ &+ + 1 |
2 3 4 o B 7 g
Samples
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Power Curve Analytic

- Honeywell.com

Data from 7/22/09 to 10/22/09 — Baseline
150 T T r T - . . - 22-Aug-2009
T gggﬂ-m: Fault evolution
100} ey "*‘"05-02::2009 via Kurtosis
-=+- 10.0¢t-2009
» 2 2?7°‘?‘399?
_ § 100 Al
2 R ] . < ey e s SR g Fault evolution
& sol 020 TRONEERREacte .. e | gl g NS A N R _ seenvia
- : Skewness
N L A N R e o I )| P i
2 SR I T - Eh, S 4
e ) 1 i 1 1 i Ko Baseline
+ residual data R T * 5 10 15 - dzg 4 25 30 35 N : R gz.}s\ug:oo::
E v 'S y nd Speed = L. A PETRRs Rsvaoscy g .Sep-:
200 baseline avg N VR s 03:0¢62000
250 current data avg Observed power Lerte : b - 06.0¢t:2009
—p—— 2 H ==#-=10-Oct-2009
upper & lower bounds residuals 2 ' 0 22.0¢t:2009
5 10 15 20 25 30 35 40 45 g B Sd
Windspeed ® v
| TR S——. G
| g |
kurtosis at wind 3 i i i i i
i ¥ 5 10 15 20 25 30 35
| speed with largest Wind Speed
/ F\ deviation
: 10
o
g- 8
| 2 N
| % ol
: Pl
o
U of MN : : ::: 2 - — —
Msitis Vestis NEG Micon wind T "
i g turbine at Great
wind turbine S ﬁp vv"’q .,\w"@ &“’p ,\*“Q .,\"9& ‘fp 0)"9
River Energy Rl I G A S

Simple analytic detected anomaly >20 days in advance of semi-annual maintenance
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Multi-turbine Analytic

SCADA

Data
Wind Speed.
Power Output,
Rotor Speed

Performance
Monitoring

L

Wind Speed v
Power Output Single Turbine
Gearbox Temps, "— Anomaly
\ Generator Detection
\ Temps, Currents
\

PCA Outputs.
Performance Model
Residuals

1 Multiple Turbine
H——— Anomaly
Wind Speed Detection
Power Output

Obtained archived data from 3 large wind parks
+ the wind parks were equipped with
Honeywell-Matrikon data connectivity and
historian solutions
* Very large set of data set with ~16000
tags, 1 year worth of data and 300+
turbines
GE, Mitsubishi and Micon wind turbines

Organized data by mapping the tags from a flat
layer to a multi-layer meta-data structure

Matlab OPC Toolbox to connect to the OPC
historian

—f

e~ e o g o

Performance
Degradation

= Performance degradation

« Rotor faults

= Yaw/pitch control system

Faults
« Bearing faults
« Drivetrain faults
= Generator faults

g%

e N ,‘*«,

e

i¢-

Drivetrain
Faults

+Normal

- +Generator
Faults

3583000+
3582000+
3581000+

3580000
0001

Norssing )

35780004

357700

3576000

|
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Turbines in the 502 group

* 49 turbines are
o associated with MET-
‘ Scoler 1'=1000 502

» No windspeed data
from T149-T154

* Select seven turbines to
establish a baseline: T75,
T81, T98, T104, T115,
T118, T127.

* The selected turbines
are geographically well
distributed and have
more consistent data.
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Power average versus nominal power curve

DDDDDDDDDDD

01-0ct-2009 15-Dec-2009 09-Jar-2010 03-Feb-2010 28-Feb-2010
q /J m
1000 //—_ /_ / /‘ /_ /—
. /—’-\ —
- // / / / / /
0 7N
1000 / / / / f /
0 el
- P / / / /_ /_
0 /J
o L
- / / / / / /
0 7
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Anomalous WT

» Data from a Wt; may look anomalous in a group of WTs for a number of
reasons. In some cases, the cause of anomaly can be detected using
simple statistics, in other cases using associative models to capture
dynamic dependencies is needed.

Remaining WTs

Down Normal Use simple stats

2 Curtailed Normal Use simple stats

3 Normal Down Use simple stats

4 Normal Curtailed Use simple stats

5 Location effect Location effect Capture in associative model

6 Park-wide control Park-wide control Capture in associative model
effect effect

7 Performance Normal Detect using associative
degradation due models

to fault
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Sum_Maintenance

pair
[ay]

Surn_Re

Parameters to Filter Data for Baseline

#002_ii

-
T

o
T

a2}
T

.
T

)
T

Oct

+ 4 - 4+ 4+ 4

4 e e

Feb  Mar Apr May  Jun
Date

*002_ii

Jul

Aug

Sep

Oct

~d
T

o

i

L

Oct

Feb  Mar Apr May  Jun
Date

Jul

Aug

Sep

Oct

Mo

P

Sum_Manual_Sto

» Tag: “Sum_Maintenance” at Park Level
» Tag: “Sum_Repair” at Park Level
» Tag: “Sum_Manual_Stop” at Park Level

- Honeywell.com

) o=} 3%} a5} = =
= 351 = faz} = i

=2

At any given time, up to 10 turbines (except the
outlier in Sep10) are stopped manually and
maintenance or repair performed.
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~35000
points
excluded

Col

% 10

35

4

~31000
points used

1]
-200

0

200

400

for analysis

GO0 a0
Foweer

1000

1200

1400

1600

Data filtering — Power profile

~22000
points
excluded

Exclude points that lay outside of 250 kW and 1250 kW. In these
startup and max high power regions, the operation of WT is

highly non-linear.

- Honeywell.com
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MET 2 — Wind Direction 1 & 2

Park 2, MET 2, Dir 1

« Seek periods of stable wind
direction

« Compute wind direction ave and
std
« Scan 3 min around each sample

* Require at least 20 samples (usually
there is about 30 points)

| —— Actual [H
| —=— Average
—5— 5t Dev [

350

Wind Direction

BT Park 2, MET 2, Dir 2

-50

1 1 1
38 385 39 395 4
Time {min) «10°

« Variation in wind direction is generally limited to
less than std=20 deg within 3 min.

« Cut-off at std=10, filters 55% of data in Direction
1 and 65% of data in Direction 2.

0 20 40 B0 a0 o0 120 140 1e0 180 200
YWind Direction
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Hierarchical Monitoring of Wind Turbines

Individual WT down

Multiple WTs down

Multiple WTs curtailed
Individual WT starting up or
near peak [saturated) power

WT Data filtering @

Ensura data is
available from all WTs
and within the
ronitored band.

L 4

MET Data filtering é) r'e'gim'”m”'“”‘ wind

Ensure wind
direction is stable

.| Multi-Turbine .
* inomaly D ion I% Al WTs are in sync

One or more WTs
are showing
anomalous
behaviour

.| Power-curve Anomaly is isolated to
" Analytic an individuzl WT.
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Associative Model Approach

AutoAssociative Neural Network

4

Mapping Demapping

Layer Layer

Bottleneck Layer

Input

» Approach

= Employ multivariate analysis for analytical redundancy to capture non-linear
correlations among wind turbines in a park

= a multi-layered neural network architecture

o Include a small bottleneck layer to ensure good generalization and prevent the network from forming a look-up
table.

» Goal
= |f no fault present, reproduce the input data at the output as closely as possible
= If there is fault, isolate the faulty wind turbine and estimate the power loss
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Generic Wind Turbine CBM System

» Algorithms alone will not determine the
success of CBM

= System design and usability are key
= Significant factor in the success of
Honeywell’s HUMS deployment
» Honeywell's HUMS software defines
configurations that are setup once and
duplicated
= Setup tool capability allows diverse aircraft to
be configured without source code changes
= Flexibility enables rapid configuration and
tuning of HUMS algorithms
» Beginning the path toward wind turbine
CBM configurability
= Gather equipment specifications, SCADA data

configuration across multiple wind turbine
models

= Use this information to define an information
model for wind applications using a structure
similar to Honeywell’'s HUMS data model

Vibration Wind Speed
Qil Temperature  Rotor Speed
Current Ambient Conditions

“ —‘ Generatar -——’ g’en’eratnr
| I |

A

Controllerf
Data Caollection

e

Accelerometer
Tachometer ;
~o ¥ L. Future integration

Environmental/ ’

Additional Senso |AC-1044

@ uhl

Tower 1
Main Rotor Bearing
Gearbox
Generator

High Speed Shaft
Brake
Yaw Drive
——@ Tower 2
@ Tower 3
in Nacelie
Remote Internet

Future integration

 [AC-1047
iMDS Server
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Conclusions

» Objectives:
= Safety

= Economics:
= Aftermarket services
= Availability
= Improve customer experience

>t has to be designed in-

collaborative ,
= Member systems need work together Sa
= Minimize resource utilization and maximize availability
= Have small computation and communication footprint
= Distributable

» System level conclusions shall support the objectives

System-wide health monitoring is “designed in” not “added on”

(Ref: www.public.navy.mil/navsafecen #426Teamwork)
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References

» Read the standards for your industry
= Aerospace
= Aeronautical Radio, Inc. (ARINC) www.arinc.com/amc
= ARINC Report 604-1: Guidance for Design and Use of Built-In Test Equipment
= ARINC Specification 624-1: Design Guidance for Onboard Maintenance System

= Computer Networking / Communications
= Open Systems Architecture for Condition-Based Maintenance (OSA-CBM)
*  Www.mimosa.org/?g=resources/specs/osa-cbm-v330

=  Automotive
= www.epa.gov/otag/regs/im/obd/
= www.obdii.com
= OBD-l “On-Board Diagnostics, version 1” 1985
= OBD-Il “On-Board Diagnostics, version 21994

=  Alternative Energy (wind, solar, hydro, etc.)
=  Building Automation

=  Factory Production Lines

= Medical Devices

= Rail Transportation

» “System Health Management: with Aerospace Applications” published by John Wiley & Sons

» D. Mylaraswamy, “Addressing Aviation Safety using Vehicle Level Reasoning,” 1st Indo-US Workshop on IVHM and Aviation Safety (WIAS),
NAL Bangalore, 2012.

> Srivastava, D. Mylaraswamy, R.W. Mah, E.G. Cooper, “Vehicle-level Reasoning Systems” in IVHM Perspectives on an Emerging Field, Ed. I.K.
Jennions. Publisher: SAE International. 2011.

» Ron J Patton et al., Issues of Fault Diagnosis for Dynamic Systems, Chapter 9
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