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	������������������NÖOP©ª«¬¬®̄°Z±²®³́µ&���	����������	�������%���������������%�	
	���0��"����������������������������������	���	��
��	����#¶�
��	�����
��	�
��	�.�������
����	�����	�����������	�����	���%�
��	�#&���	�������������	�����	����� ������·̧ ¹º»̧¼½¾̧¼½¿̧¼½À̧Á#�����
��
��%��������������	�����	��������Â�	�� ¶��� Ã������������	�½¾̧������Â�	���½¿̧������¶������½À̧�����������
����	�����¶�	��#&����
����	������������ �(��	���	��
��	�����������·Ä ¹º»Ä¼½¾Ä¼½¿Ä¼½ÀÄÁ����	����
����	»Ä����
��������������	��Å	�%���,�Å-�������%�	
	���#&��%�
��	½¾Ä��������	��	��½¿Ä��������������	���������������%�	
	������½ÀÄ������������	���
�����º½¾Ä¼½¿Ä¼½ÀÄÁ
�����������	������������	������
��	�������	���,½ÀÄ ¹½¾ÄÆ½¿Ä-#&����	�
��������������(���	����	�����	���%�
��	�º½¾Ä¼½¿Ä¼½ÀÄÁ���������6���	�2#Ç�
������	������������	� Ã�����������%���
�����	� ��	����������
��	����������%�������#Ã����������%�	 
	���������	%���
�����È��������	��,��	��	�-�������,����	��-%���
�������É���Ê�	����
��%���#6	��6���	�2������%�	
	���������
�"������������	����
�����������Annual Conference of the Prognostics and Health Management Society 2013

4



�����������	��
������	�������
����������������������
����������� � ��� �  ! ��! ��!"���	�#$%�	�
�����������&�	
	���'���()���	����	*�����	���&�
��	�$()���	���+
��'���	�&����,-./0123415,/.6-015 7�8,0.93:;��	�2���������������	����	
�+9��������;������+4����������������&�	
	���+:��������	����������&�	*
	���7��������������	�;���	��<�
������<	��
�<���)��8+���5��������&����������������	'��
��$=>=>?@ABCDEFG@AHICJCECADKL@EM��NO+NP�����������	�����	
�������������	�������	�*�<�
��&���$Q������
����������������	����	
������;������;��������	����������;������	���&��'�������	���*��*�����<<���+������R29S.RT TU 6USRNPNOS 7�8;��	�U���<�	�����		������������������	�����
���	
�$Q���;�<	�<��������	�����	�<	���
��'��;�������*
�����������	��<�	����'�
���������	�$Q���������<�������������<	�
���������
��������<��(������������������	�$�	������'�������<��������
������	�������	��*����
������(
����������	
��<�	�������������������
������&���
��$Q��	���	��������	�
��'�	�<	�������'�������
����������������
�����$V�������
����;��	��������<	������������	�
���������
�����	$Q�����*���
����'��;�������������	��������	;���'���W�<��
�'�����������;�	�
	�<��X���Y����
�
���$%�����'�Z���&�������<<����������������	$Q���&��������������<���	�����
���	��������$"	��������	�	������+������
�	�
��<�	����������	�����
	�'��'���������;����[������\Z.]̂ _̂ 1Z̀^a 7�8;��	�]̂ ���������	
�		���+_̂ ���������
��&�����	��� ����		�������
����Z̀^a�����'�
W*���&�������������*��	$Q��'�
W���&����������&��'�Z̀^a.bcd 7#8;��	�d�����������	&���
������������	���bc ���<�����&�
�������$"	�������
����
��<�	����������	+���<	���
����	[������&��'�e.bf]̂ 6gd 7h8;��	�e�����<	���
����	[��+g������	�
����
���(
�������������	���bf�<�����&�
�������$"������+;��������������<	���
����	�����<	�<�	�����������������	&���
���d$i�����+;�������������		����������<���������	���<�	�����
���������j 2.bad 7k8;��	�ba���<�����&�
�������$bf���ba�	�������(����<�	������������V%����
�����$�$"	��7�8*7k8�����<��*���<�����
	�<�����������	����	�����&��'�2.lm_̂ nZ 7o8;��	� lm_̂ n. bfbag_̂ 1bfbc 7p8Q���&����'�������	�������	�������������	����������������������&���
��7-+/+08+����<<����&�����������
�����	7ZO+ZP8������<	���
��
�		����7]Ô+]P̂8$���
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ABSTRACT 

Maintenance planning plays an important role in assets 

management because it directly affects assets availability. In 

the aviation industry, maintenance planning becomes even 

more important due to the high availability expectations 

from aircraft operators and the high costs incurred when an 

aircraft becomes out of service. Gathering and combining 

all the relevant information to generate an optimized 

maintenance planning is not a simple task because the 

number of variables to be considered is high. The aim of 

this paper is to present a new model to plan maintenance 

interventions, using RUL (Remaining Useful Life) 

estimations obtained from a PHM (Prognostics and Health 

Monitoring) system. This information is used to verify 

whether spare parts will be available when the next failures 

are expected to occur. Since spare parts are finite resources, 

the goal of the proposed model is to reduce the probability 

that multiple similar components will fail in a short period 

of time because, when it happens, there is not enough time 

to repair all failed components and fleet availability is 

penalized. To avoid this situation, the model suggests the 

anticipation of some replacements. This paper presents a 

simulation comparing a situation in which PHM information 

is not available with the proposed model in terms of fleet 

availability and investment in spare parts. Life cycle cost 

considering a time horizon of 15 years was also computed in 

simulations. The results showed that the proposed model 

allowed an increase in fleet availability and a reduction in 

the lifecycle cost. 

1. INTRODUCTION 

In a previous work, the authors presented an algorithm that 

uses PHM information for non-repairable items spare parts 

inventory control (Rodrigues & Yoneyama, 2012). In this 

paper, repairable items are addressed. Mathematical models 

for optimizing the performance of repairable components 

based on maintenance interventions have been widely 

discussed in the literature. Dekker (1996) presented an 

overview of many maintenance models for repairable items. 

Planning maintenance interventions can be a complex task 

because there are many variables involved. An efficient 

maintenance plan must take into account information 

obtained from different sources. Gathering and combining 

all this information to generate an optimized maintenance 

planning is a challenge faced by maintenance planners. 

This work presents a maintenance planning algorithm to 

support maintenance planning optimization. The proposed 

algorithm combines PHM information and spare parts 

availability estimations in order to schedule maintenance 

intervention with minimum impact on fleet availability. 

2. SPARE PARTS INVENTORY SYSTEM FOR REPAIRABLE 

ITEMS 

Repairable items are components or assets that, after a 

failure, are submitted to a repair cycle to be used again 

instead of been discarded (Fritzsche & Lasch, 2012; Lee, 

Chew, Teng & Chen, 2008). It implies that a repairable item 

spare part inventory system must have a repair shop where 

failed components are repaired, as well as a warehouse 

where spare parts are stocked (Perlman & Levner, 2010). 

An example of a typical spare parts inventory system for 

repairable item is shown in Figure 1. 

 

__________________________________________ 

Rodrigues, L. R. et al. This is an open-access article distributed under the 

terms of the Creative Commons Attribution 3.0 United States License, 

which permits unrestricted use, distribution, and reproduction in any 

medium, provided the original author and source are credited. 
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Figure 1. Spare parts inventory system for repairable items 

 

In this inventory system, it is considered that spare parts are 

always bought from the same supplier and delivered at a 

single warehouse. When a component installed on an 

aircraft fails, it is removed and sent to the repair shop to be 

repaired. The faulty component is replaced by a new one 

from the warehouse. If there is no spare part in the 

warehouse, we assume that the aircraft is grounded until a 

new part is provided. 

Once a faulty component arrives in the repair shop, it is 

submitted to the repair process. If limitation on repair shop 

capacity is considered, then a priority policy must be 

established. When the repair process ends, the repaired 

component is sent to the warehouse and stays there until a 

new failure occurs in the field. The repair process can be 

considered to be perfect (if repaired components returns to 

an “as good as new” condition) or imperfect (if repaired 

components keep a residual degradation). Imperfect repair 

models were presented by Do Van, Voisin, Levrat & Iung 

(2012) and Doyen & Gaudoin (2004). In this work, we 

consider that the repair shop has infinite capacity and that 

the repair process is perfect. We also consider that no 

degradation occurs to spare parts while they are in the 

warehouse.  

2.1. Investment in Spare Parts versus Fleet Availability 

One important decision to be made by inventory managers 

is related to the number of spare parts that will be bought in 

order to support fleet operation. In most real applications, 

the inventory system comprises multiple items, and the 

number of spare parts of each component must be defined. 

The determination of how many spare parts of each 

component shall be bought must consider two conflicting 

variables: investment in spare parts and fleet availability. 

Sherbrooke (2004) described a methodology called marginal 

analysis that can be used in order to determine the optimum 

sequence of spare parts to be bought in order to maximize 

the expected fleet availability. 

3. MAINTENANCE PLANNING 

As a general rule, all assets demand maintenance 

interventions during their operational life. Maintenance 

planning plays an important role in assets management 

because it helps maintenance planners to schedule 

maintenance interventions with minimum impact in 

operation. 

3.1. PHM Information 

In order to identify the best moment to perform maintenance 

tasks, monitoring the health condition of assets can provide 

valuable information about how long an asset can operate 

before a failure occurs (Sandborn & Wilkinson, 2007). 

PHM (Prognostics and Health Monitoring) is the ability of 

assessing the health state, predicting impending failures and 

forecasting the expected RUL (Remaining Useful Life) of a 

component or system based on a set of measurements 

collected from the aircraft systems (Vachtsevanos, Lewis, 

Roemer, Hess & Wu, 2006). 

Based on measurements collected from the aircraft, a PHM 

system estimates the degradation level of monitored 

components. The degradation index is zero when the 

monitored component is new. During operation, degradation 

process starts and the degradation index increases. If the 

degradation index threshold that defines the failure is 

known, it is possible to extrapolate the curve generated by 

the evolution of the degradation index over time and 

estimate a time interval in which the failure is likely to 

occur (Leão, Yoneyama, Rocha & Fitzgibbon, 2008). This 

estimation is usually represented as a probability density 

function, as shown in Figure 2. 
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Figure 2. RUL estimation 
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3.2. Spare Parts Availability 

In order to plan maintenance interventions, maintenance 

planners must verify the availability of all required 

resources such as technicians, spare parts, tools, etc. In this 

work, PHM information will be used to estimate the 

availability of spare parts. We consider that all maintenance 

interventions require a spare part. We also consider that all 

other resources are always available. 

Spare parts in the repair shop are unavailable and can not be 

installed in an aircraft. They become available when the 

repair process ends and they are sent to the warehouse. Fleet 

availability is affected when a failure occurs and there are 

no spare parts in the warehouse. 

Suppose SX is the number of spare parts of component X and 

RX(t) is the number of components X in the repair shop at 

instant t. The number of aircraft grounded waiting for a 

component X at instant t, GX(t), can be calculated as a 

function of RX(t) and SX as follows (Sherbrooke, 2004). 
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In Eq. (1), we can observe that fleet availability is affected 

by component X only when there are more than SX 

components simultaneously in the repair shop. 

4. PROPOSED MODEL 

In the proposed model, PHM information is used to estimate 

when failures are likely to occur. Using the RUL  

estimations for the monitored components and their MTTR 

(Mean Time to Repair), it is possible to build an expected 

repair shop time schedule for each component type, as 

illustrated in Figure 3. 

Figure 3(A) shows an example of a repair shop time 

schedule for component X. Each bar in Figure 3 represents 

the repair cycle of one component. Let’s assume that the 

number of spare parts for component X, SX, is 1. PHM 

information is used to determine when a failure is expected 

to occur and, consequently, when a faulty component is 

expected to be sent to the repair shop. MTTR is used to 

determine how long the faulty components will stay in the 

repair shop. 

We can observe in Figure 3(A) that the third component is 

expected to arrive in the repair shop while the second 

component is still being repaired. In this situation, there will 

be two components simultaneously in the repair shop. 

During this time, RX(t) is 2, and according to Eq. (1), GX(t) 

is 1. In other words, there will be one aircraft grounded 

waiting for a component X. 

 

1

2

3

Time

1

2

3

Time

(A)

(B)

R
e

p
a

ir
 

S
c
h

e
d
u

le
R

e
p
a

ir
 

S
c
h

e
d
u

le

1

2

3

Time

11

22

33

Time

11

22

33

Time

(A)

(B)

R
e

p
a

ir
 

S
c
h

e
d
u

le
R

e
p
a

ir
 

S
c
h

e
d
u

le

 

Figure 3. Repair shop time schedule estimation 

 

In order to reduce the probability that multiple similar 

components will be simultaneously in the repair shop, some 

components can be replaced earlier. When some 

replacements are anticipated, the period of time in which 

aircraft are grounded can be reduced or even eliminated. In 

the example illustrated in Figure 3(A), if the replacement of 

component 2 is anticipated, we generate a new time 

schedule in which the maximum number of components in 

the repair shop never exceeds 1. This new time scheduled is 

shown in Figure 3(B). 

The identification of concentrations of failure events, as 

well as the preventive anticipation of maintenance 

interventions, is possible only when PHM information is 

available. In a situation without PHM, the effects of the 

concentrations of failure events can not be reduced. 

5. NUMERICAL EXAMPLE 

In order to analyze the potential increase in fleet availability 

provided by the anticipation of some replacements to avoid 

the concentration of similar components in the repair shop 

at the same time, a set of simulations were run. The spare 

parts inventory system shown in Figure 1 was used in this 

example. 

Two identical fleets were simulated. In the simulation of the 

first fleet, PHM information was not used. In the simulation 

of the second fleet, PHM information and spare parts 

availability estimations were used to anticipate maintenance 

tasks whenever a high concentration of similar spare parts in 

the repair shop was detected. 
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Four LRUs (Line Replaced Units) were considered in the 

simulation. Table 1 shows the price and the reliability data 

for each LRU. It is considered that an aircraft is available 

only if all its components are working properly. In other 

words, a failure of any LRU puts the aircraft to an AOG 

(Aircraft on Ground) condition. 

 

Table 1. LRU data 

LRU A B C D 

Price 

[Monetary Units] 
400 250 150 100 

MTTF [days] 300 150 200 120 

MTTR [days] 30 20 25 25 

 

The decision of anticipating a maintenance task or not is 

made based on a cost criteria. The cost parameters used in 

the simulation are shown in Table 2. 

 

Table 2. Cost data 

Parameter Value 

Holding Cost 30% of component price per year 

Repair Cost 30% of component price per repair 

Stockout Cost 3.3 M.U. per day per aircraft 

 

The PHM system estimates the RUL for all components 

installed in the fleet. The estimated RUL for each 

component is given as a normal distribution. In other words, 

for each component the PHM system informs the estimated 

RUL and a standard deviation. Table 3 shows the maximum 

and the minimum values for the error in the RUL estimation 

and for the standard deviation used in the simulation. 

 

Table 3. PHM system data 

Parameter Value 

Minimum RUL Error [days] 0 

Maximum RUL Error [days] 20 

Minimum RUL Standard Deviation [days] 5 

Maximum RUL Standard Deviation [days] 20 

 

 

 

Figure 4 illustrates the relation between the date of failure 

and the RUL estimation provided by the PHM system. 

 

 

Figure 4. Failure date and RUL estimation 

 

5.1. Scenario Description 

The spare parts inventory system shown in Figure 1 is used 

in this example. The two identical fleets simulated will be 

compared in terms of investment in spare parts and expected 

fleet availability. 

A spare part list must be defined in the beginning of each 

simulation. Once defined, we consider that all spare parts 

are bought from the supplier and are stored at the warehouse 

in the beginning of the simulation. When a failure occurs, a 

spare part is sent from the warehouse to replace the failed 

component, which is sent to the repair shop to be repaired. 

Once repaired, the component is sent to the warehouse and 

stays there until a new failure occurs in the field. In this 

work, we consider that components can always be repaired, 

and that repaired components are as good as new. 

Sherbrooke (2004) developed a methodology to determine 

the optimum sequence of spare parts to be added to the 

spare parts list in order to maximize the expected fleet 

availability. We applied this methodology and defined the 

sequence of spare part to be bought. For each new spare part 

list, we repeated the simulation. Table 4 shows the optimum 

sequence of spare parts. PHM information is not necessary 

to calculate the optimum sequence of spare parts to be 

acquired. 

The sequence of spare parts shown in Table 4 indicates that, 

for the group of LRUs considered in this example, if the 

inventory manager decided to support fleet operation with 

only one spare part, the best choice would be to have a spare 

part of LRU D. Another example: if inventory manager 

decides to invest 1,500 monetary units in spare parts, the 

optimum choice would be to buy the first eight spare parts 

listed in Table 4 (1 spare part of LRU A, 2 spare parts of 

LRU B, 2 spare parts of LRU C and 3 spare parts of LRU 

D). 
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Table 4. Optimum spare parts acquisition sequence 

Spare 

Part 
LRU 

Cumulative 

Investment 

Spare 

Part 
LRU 

Cumulative 

Investment 

1st D 100 9th D 1,600 

2nd D 200 10th C 1,750 

3rd C 350 11th A 2,150 

4th B 600 12th B 2,400 

5th D 700 13th D 2,500 

6th C 850 14th C 2,650 

7th A 1,250 15th A 3,050 

8th B 1,500 16th B 3,300 

 

5.2. Simulation Results 

After defining the optimum sequence of spare parts to be 

bought, a set of simulations without using PHM information 

were run, considering a fleet of 10 aircraft. The time horizon 

for each simulation was 15 years. 

First of all, fleet operation was simulated with no spare parts 

at all. In this simulation, every time a component failed, the 

aircraft stayed out of service until the repair was completed. 

After that, the spare part list was incremented, following the 

sequence presented in Table 4. For each spare part list, 20 

repetitions of the simulation were run. Figure 5 shows the 

average fleet availability obtained with each spare part list, 

including the first set of simulations with no spare parts. 

 

0 500 1,000 1,500 2,000 2,500 3,000 3,500

65%

70%

75%

80%

85%

90%

95%

100%

Investment in Spare Parts [M.U.]

F
le

e
t 

A
v

a
il

a
b

il
it

y

 

 

Not Considering PHM Information

 

Figure 5. Average fleet availability versus investment in 

spare parts not considering PHM information 

PHM information was then introduced in the simulation. 

The procedure of increasing the spare parts list according to 

Table 4 was repeated. Again, 20 repetitions of the 

simulation were run for each spare parts list. Figure 6 shows 

the average fleet availability obtained with each spare part 

list using PHM information and spare part availability (solid 

blue). For comparison purposes, the fleet availability curve 

obtained without PHM information − shown in Figure 5 − 

was also plotted in Figure 6 (dotted red). 

Cost information presented in Table 2 was used in each 

simulation to calculate the expected maintenance life cycle 

cost. Since fleet availability and operational cost are 

conflicting variables, the purpose of this simulation was to 

investigate whether the increase in fleet availability 

obtained by the use of PHM information did not cause an 

increase in the maintenance life cycle cost. 

Figure 7 shows the average life cycle cost computed during 

simulations. The investment in spare parts is shown in the 

horizontal axis, following the sequence presented in Table 

4. For each spare part list, the bar on the left is the life cycle 

cost obtained without using PHM data, while the bar on the 

right is the life cycle cost obtained considering PHM 

information. In Figure 7, total life cycle cost is broken into 

four terms: investment in spare parts (black), holding cost 

(dark gray), repair cost (light gray) and stockout cost 

(white). 
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Figure 6. Increase in fleet availability when PHM 

information and spare parts availability is considered 
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Figure 7. Average life cycle cost breakdown 

 

6. CONCLUSIONS 

We found that combining PHM data and spare parts 

availability estimations allowed us to improve fleet 

availability without additional investments in spare parts. 

RUL estimations provided by the PHM system were used in 

order to anticipate some maintenance actions. It avoided 

multiple similar components of being simultaneously in the 

repair shop and caused an increase in fleet availability. 

The proposed model presented the best results when the 

expected fleet availability was around 92%. In this situation, 

the proposed model allowed and increase of 2.4 percentage 

points (from 92.2% to 94.6%). In all other situations, the 

proposed model allowed to achieve a better fleet availability 

in comparison with the situation in which PHM data are not 

used. 

When maintenance tasks are anticipated, the number of 

maintenance interventions performed during fleet 

operational life is higher, and an increase in repair cost is 

expected. The computation of life cycle cost confirmed this 

expectation. However, the increase in fleet availability 

reduced the stockout cost, compensating the increase in 

repair cost. 

Although the numerical increase in the availability achieved 

by using PHM information is small, the result is relevant 

considering that in the aviation industry the cost of an AOG 

event is usually very high. Intangible aspects associated to 

AOG events such as company reputation and damage to 

customer relationship are also relevant for aircraft operators. 

Future research may extend the proposed model by 

considering the limitations associated with other resources 

such as technicians and tools. 
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ABSTRACT 

Vibration derived from the main rotor dynamics and 
imbalance causes premature wear to the aircraft 
components, and can cause pilot fatigue. While 
improvements have been made in rotor track and balance 
(RTB) techniques; there is room to enhance the quality of 
the recommended RTB adjustments.  

One aspect that limits the development of RTB algorithms 
is the difficulty in quantifying the performance of new 
algorithms. This is because there are limited data sets to 
work on, and no agreed upon metrics on which to measure 
RTB performance. 

This paper develops a methodology to simulate the vibration 
due to injecting a fault into the rotor system, and 
demonstrates metrics to evaluate the performance of a RTB 
algorithm. A new Bayes RTB method is evaluated against a 
standard least squares technique.  In addition, a technique is 
presented to automate the selection of active adjustments.  

1. INTRODUCTION TO ROTOR TRACK AND BALANCE  

Vibrations in helicopters result in:  

• Crew fatigue,  

• Increased fatigue of mechanical parts,  

• Higher probability of avionics malfunctions, 

• And potential limits on the operational envelope 
(Rosen and Ben-Ari, 1997).  

Failure rates for components in fixed-wing aircraft are lower 
than the rates for similar components installed in rotary-
wing aircraft. The impact of vibrations on overall aircraft 
health was demonstrated in a study conducted by Sikorsky 

for the U.S. Army Air Mobility Research and Development 
Laboratory (Veca, 1973). In the study a squadron of H-3 
helicopters were configured with rotor-mounted bifilar 
vibration absorbers and compared to a similar squadron that 
did not have the device. The two squadrons were similar in 
size and mission and flew approximately the same number 
of flight hours over the period of the study. The results were 
significant: overall helicopter failure rate and corrective 
maintenance requirements were reduced by 48% and 38.5%, 
respectively. Additionally, life-cycle cost showed a 
significant reduction of approximately 10% for the overall 
aircraft. 

Vibration in helicopters is divided three general categories:  

• High frequency vibration associated with the 
engine/gearbox and drivetrain. Typically, the 
frequencies are between 100 Hz to 10,000 Hz. 
Improvements to engine/transmission mounts and 
improved gear designs have greatly reduced this 
source of vibration. 

• Medium frequency vibration, associated with the 
tail rotor, and to a lesser extent, high harmonics of 
the main rotor, are the main source of these 
vibration. 

• Low frequency vibration, caused exclusively by the 
main rotor. This has the most severe effect on 
flight crew and equipment fatigue. 

Main rotor vibration can be characterized as either vibration 
that is inherent due to the asymmetric nature of rotor 
dynamics in forward flight (present even with identical 
blades), and vibration due to the non-uniformity of the 
blades. The non-uniformity is due to the variation in 
manufacturing, and uneven wear/fatigue of the blade as a 
result of usage. 

The vibration caused by non-uniformity results in ongoing 
maintenance and inspection by ground crews, and is the 

_____________________ 
Bechhoefer, E. This is an open-access article distributed under the terms of 
the Creative Commons Attribution 3.0 United States License, which 
permits unrestricted use, distribution, and reproduction in any medium, 
provided the original author and source are credited. 
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focus of the development of improved Rotor Track and 
Balance algorithms.   

2. ROTOR PHENOMENOLOGY  

A rotor blade rotates with a constant angular rate Ω, with 
the root of the blade attached to the hub. The blade position 
for the kth blade is: Ψk. The motion of the blade includes a 
flapping angle βk, a lead-lag angle ζ k, and a pitch angle θk, 
where k is the index of the blade. If elastic deformations are 
small, then βk practically determines the blade tip path 
(Figure 1).  

 
Figure 1 Blade Motion and Coordinates 

The loads from the blades are transferred to the hub. If the 
blades are articulated, then moments acting on the hub are 
theoretically negligible. The force of the kth blade on the hub 
is then:  

𝐹!! = 𝑋!𝑠𝑖𝑛 𝜓! + 𝑋!𝑐𝑜𝑠 𝜓!            (1) 

where Xα are the loads along the aircrafts x,y and z axis and 
the force due to blade k on the hub is Fk

H. In the case of 
identical blades, the sum of all forces on the hub would then 
be: 

𝐹! = 𝐹!!!!!
!!! = 0  (2) 

where b is the total number of blades in the rotor system.  
Deviation from a nominal blade will result in a non-zero 
force, which is measured as accelerations in the helicopter.  

The relationship between perturbations between blades and 
the resulting track deviation and vibration is complex. 
Consider the case where the mass balance of all blades is 
identical, but the flapping angle, βk, is different. By 
adjusting pitch of the kth blade, an identical track/flapping 
angle could be reached, for a given helicopter airspeed. 
However, a change in pitch of that blade would: 

• Affect that blade’s lift and drag,  

• Which would change the blade’s lead/lag,  

• That would in turn change the mass balance of the 
hub,    

• Resulting in accelerations that increased vibration. 

Initially, all efforts to decrease the non-uniformity of the 
blades started as an effort to reduce track split errors. But as 
many maintainers know, a flat track does not always result 
in a smooth helicopter. Since the primary goal of rotor track 
and balance is to reduce vibration, solving the problem 
efficiently is an underlying motivation. 

2.1. Modeling Helicopter Vibration 

The non-uniformity of the blades results in aerodynamic, 
mass imbalance, and track errors. To correct for these non-
uniformities, rotor blades are manufactured with devices to 
purposely induce non-uniformity to cancel the effect of the 
naturally occurring blade errors. These devices include:  

• Weights (WTS), which are attached at specific 
locations (hub and rotor tip) to change the blade 
moment, 

• Pitch control rod (PCR) setting, which by changing 
length of the pitch rod, changes the angle of attack 
of that blade relative to the other blades, and  

• Trailing edge tabs (TAB), which effectively change 
the blade’s camber when bent.  This in turn affects 
the aerodynamic loads/moments on the blade.  

The acceleration due to blade induced vibration is measured 
at specific points in the aircraft, such as the: 

• Pilot/Copilot vertical acceleration. These can be 
combined vectorially to derive cockpit vertical 
(A+B) or cockpit roll (A-B), 

• Cabin Vertical 

• Cabin Lateral 

or other location where vibration deleteriously effects 
equipment or passengers. The levels of vibration will also 
be affected by the regime (airspeed) of the helicopter. For 
example, there is no flapping motion (βk) when the 
helicopter is in ground or hover. Typical regimes for 
helicopter might be: Ground, Hover, 90 knots, 120 knots 
and 150 knots. The Fourier coefficients to describe the 
change in vibration then need to account for: adjustment 
type (a), sensor location (s), aircraft regime (r) and order 
(e.g. harmonic order, o).  

For b blades, the Fourier representation of an adjustment, 
Aa, is the multiplication of the time domain representation of 
the adjustment (e.g. blade k) multiplied by the discrete 
Fourier transform matrix Dk,o, 

𝑫!,! = 𝑒𝑥𝑝 −𝑖2𝜋×𝑘×𝑜 ∕ 𝑏   (3) 

And  

𝑨! = 𝑫!,!×𝒂   (3) 

⌦

�

⇣
✓
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For example, the Fourier representation of an adjustment of 
2 on blade 1, and 3 on blade 2, of a 3 bladed rotor is: 

2 + 1.73𝑖
2 − 1.73𝑖

5
=

−.5 − .86𝑖 −.5 + .86𝑖 1
−.5 + .86𝑖 −.5 − .86𝑖 1

1 1 1
×
0
2
3

    (5) 

The vector Ao, is indexed by order: the 1st index is first 
harmonic (e.g. shaft order 1), the 2nd index is the 2nd 
harmonic, while the 3rd index is DC (static value, which for 
WTS in the sum of all weights, while for PCR/TAB is the 
coning angle of the blades). However, Equation (1) is by a 
given order, for an adjustment type. Measured vibration is 
for a given order, over sensor and regime. This means that 
an adjustment vector, over adjustment type, is built by 
calculating the DFT adjustment for a given adjustment type, 
then building and adjustment vector for a given order.  

Consider a WTS adjustment of [1 1 0], a PCR adjustment of 
[0 2 3], and a TAB adjustment of [-5 5 0]. Then the DFT 
adjustment for order 1 is: 

𝑨𝟏 = −1 − 0𝑖 2 + 1.73𝑖 0 + 8.66𝑖       (6) 

In other words, the first term of each Ao vector calculated by 
multiplying 𝑫!,!  with each adjustment type vector, is 
combined into a new vector 𝑨!.   

The acceleration, for a given sensor location and regime for 
order 1, in the matrix representation of Equation (1), is 
expressed as: 

𝑭! = 𝑿!×𝑨!    (7) 

Note that this is a linear model. It is assumed that the 
perturbation induced by Ao, is small relative to the nominal 
blade, such that the Taylor series of Xo is dominated by the 
first derivative (e.g. slope). The concept that adjustment 
coefficients are linear has, been presented by other 
researchers (Ferrer, 2001., Dimarco, 1990). 

Equation (7) explicitly describes a system of equations that 
can generate vibration, for a given set of adjustment types, 
over a given order. This also suggest that: 

• Implicitly, this means that there is no control over 
the bth order vibration (e.g. forth harmonic of a 4-
blade rotor cannot be controlled passively). 

• That vibration is operated on by order (e.g. one 
cannot solve a system of equations for order 1 and 
order 2 simultaneously. Meaning, when 
implementing a 2 blade solution on a 4 bladed rotor 
for vibration on the 1st order, if the vibration 
coefficients are not zeros for the 2nd order, the 2 
blade solution affects the 2nd order vibration. 

2.2. Development of a Vibration Simulation 

Simulation provides a power tool to for RTB research. 
Because of restriction concerning software developed (FAA 
2008), it is difficult to develop, test and mature algorithms, 

such as RTB, on aircraft. By modeling the vibration 
associated with the rotor, it is possible to test algorithms 
without the large expenses associated with on-aircraft 
development. This allows for quicker deployment of new 
features, and reduces risk of associated with deviating from 
an existing practice. Additionally, it allows testing that 
would be deemed to risky for on aircraft use. 

Further, simulation will allow the development of metrics 
for algorithm performance evaluation. Consider a typical 
scenario to test a new RTB algorithm. Using Equation (3) 
and Equation (7), a known adjustment will derive a known 
vibration F, plus measurement process noise. The test 
algorithm generates a solution, from which a residual error 
is derived (e.g. input adjustment – calculated adjustment, or 
difference in measurements prior to the adjustment and after 
the adjustment). This experiment can be run in Monte Carlo 
fashion to derive performance statistics. Hence, one can 
now develop probabilistic models on how well one RTB 
algorithms perform against another algorithm. 

 
Figure 2. Simulated Pilot Sensor Vibration, 1st and 2nd 
Orders 

Of course, simulation is only as good as the data that drives 
it. In this study, rotorcraft data from a 4-blade helicopter 
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was used to model the vibration coefficients, X1, X2, with 
measured process noise. Process noise was modeled as a 
stochastic process, where a Gaussian random variable, N(0,
σs,r,o ) was added to the real and complex values of the 
vibration coefficients. These process noises where estimated 
from flight data. Figure 2 shows the simulated vibration for 
the pilot sensor at 90 knots, 120 knots and 140 knots, for 
orders 1, and 2. This is the estimated vibration as a result of 
injecting the these blade faults on a 4-blade rotor 

• WTS: [0 5 10 0]. Because this is Hub WTS, there 
is no effect on the 2nd order, hence only 2 blades. 

• PCR: [5 7 2 0] 

• TAB: [5 0 3 -3] 

3. ROTOR TRACK AND BALANCE SOLUTION STRATEGIES 

RTB solutions present an unusually difficult challenge in 
solving. While optimization on Equation (7) using least 
squares or some other methodology, the solution is in the 
Fourier domain. In the conversion from Fourier to “time 
domain” or “real solution”, the result has multiple 
equivalent solutions.  Consider an order 1 solution for a 4 
blade rotor of: -8 -4i. There are four possible real solutions: 

• [-8 -4 0 0], [0 -4 8 0], [-8 0 0 4] or [0 0 8 4] 

These four solutions are equivalent in the Fourier domain. 
The best solution would be based externalities, such as:  if 
an adjustment can be pulled off the blade, or an adjustment 
that minimizes track, or the preference of the maintainer.  

3.1. Details on Converting the Adjustment from Fourier 
to Time Domain 

For this discussion, the following convention for blade 
identification is used for a notional, 4 bladed rotor: 

Black  k = 0, Yellow  k = 1, Blue  k = 2, Red  k=3 

Expanding on the prior blade solution example, assume that 
the order 2 solution was: 2.0. From Equation (3), one should 
observe that the order 2 solution for a 4-blade solution is 
always real, and that the resulting time domain solution is: 
[2  -2  2  -2] . The implemented adjustments are the 
superposition of the order 1 and order 2 solutions: 

Black Yellow Blue Red 
-8 -4 0 0 
2 -2 2 -2 

Adj: 6          -6 2 -2 

However, no maintainer would implement this adjustment, 
as it is equivalent to an [8 -4 4 0] blade adjustment. Why 
touch 4 blades when 3 blades will do? In effect, the 4 blade 
solution captures DC in the Fourier domain, but in time, 
adds nothing to reducing the order 1 and order 2 vibrations, 
hence it should be removed. The DC component would, 

however, affect the helicopter rigging for such things as 
auto rotation, which is not a desired result of an RTB event. 

3.2. A Procedure to Develop Real Blade Adjustments 

Multiplying the inverse of Equation (3) to solve for the real 
blade adjustments results a solution with a DC component. 
In order to get a solution that would be implemented, an 
automated procedure must be used in order to provide 
appropriate adjustment solution. This will depend on the 
adjustment order and type. 

A balance solution (either vibration or track) requires 
solving for Equation (7) for the number of blades–1 orders 
(recall that in the DFT, only the number of blades–1 order 
are available, as kth blade is DC). Additionally, the solutions 
are conjugate (Ventres, 2000): the order 3 solution is the 
conjugate to the order 1 solution on a 4-blade rotor. For a 5-
blade rotor, order 1 and 4 are conjugate, just as order 2 and 
3 are conjugate. Thus, the RTB analysis calls the for the 
solution of Equation (7) for order 1 and order 2 (assuming a 
4 blade rotor) then sets order 3 as the conjugate of the order 
1 solution. 

For WTS solution, since there is no flapping motion, there is 
no order 2 solution. The real blade solution is the set of all 
possible 2-blade solutions. This is found by multiplying the 
DFT solution of Equation (7) by the partitioned inverse of 
(3). 

Set of possible 2-blade combinations:  

• B1 = [1 2], B2 = [1 4], B3 = [2 3], and B4=[3 4] 

Note that solutions such as [1 3] or [2 4] do not exist, as this 
is equivalent to adding weights on opposing blades. Since 
there is no order 2 solution, for each set (e.g. i = 1 through 
4), the real blade solution would be: 

𝒂 𝑩𝒊 ! = 𝑫 1
3 𝑩!!

!!
𝑨          (8) 

Recall that A[2] = A[1]* and that ai is a real valued vector, 
where the index  Bi is the blade adjustment value (say -8 on 
the black blade, and -4 on the yellow blade, for solution B1). 

For a three-blade solution, which is appropriate for 
adjustments that are affected by blade flapping in forward 
flight, the set of all possible solutions is: 

• B1 = [1 2 3], B2 = [1 2 4], B3 = [2 3 4], and  
B4  = [1 3 4] 

The order 2 solution is real: for each set (e.g. i = 1 through 
4), the real blade solution would be: 

𝒂 𝑩𝒊 ! = 𝑫
1
2
3

𝑩!!
!!

𝑨          (9) 

Here A[3] = A[1]* and that, again, ai is a real valued vector. 
A comment on the values of a in both Equation (8), and 
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Equation (9) is that generally, adjustments for weights are 
an integer values. Similarly for PCR (number of “clicks” or 
“notches”), TABS are in mils of bend against a jib or dial 
caliper fixture. Thus, it is implied in Equation (8) and 
Equation (9) that the values are rounded to the nearest 
integer.  

3.3.  The Least Square Solution 

The least squares solution (LSS) is a relatively simple 
solution strategy. The optimization object is to minimize the 
sum of squares residual error. In effect, this is the dual 
problem to the solution strategy implement by (Bechhoefer, 
2011), in which the objective function was to minimize the 
adjustment size given a constraint on allowable vibration 
after the adjustment.  

The LSS is a naïve implementation, in that is sensitive to 
outlier data, especially at the “end points”. For non-
Gaussian residuals (difference between the measured and 
predicted vibration), this could be problematic. That said, 
the solution to Equation (7) is simply implemented as:  

For	  Each	  Order,	  i:	  

𝑨! = 𝑿!!𝑿! !!𝑿!!𝑭!   (10) 

Then the set of real blade adjustments are calculated as per 
Section 3.2. 

3.4. The Bayes Least Square Solution 

One strategy to add robustness to Equation (10) is to weight 
the coefficients by some appropriate metric. One method 
would be to weight Fi by the Fisher’s information matrix, 
which is a measure of the information carried in Fi 
(Fukunaga, 1990). This becomes Bayes least squares 
solution, where: 

For	  Each	  Order,	  i:	  

𝑨! = 𝑿!!   Σ!!!𝑿! !!  Σ!!!𝑿!!𝑭!             (11) 

And Σ  is the measured covariance of Fi . 

3.5. Quantifying Solution Strategies 

Given these solutions strategies, Equation (10) or Equation 
(11), one can now determine, stochastically, which 
algorithm will give the best performance given some 
objective. For this experiment, the norm residual vibration 
for order 1 and order 2 will be used. The scenario consists of 
10 acquisitions for the 3 sensors, at 90 knots, 120 knots and 
140 knots. The experiment will be run for 500 trials, and the 
PDF of the norm residuals well be evaluated. The norm 
residual is calculated by estimating the vibration given a 
proposed adjustment solution. That solution will use integer 
value adjustments from Equation (8) or Equation (9), where 
the estimated vibration of the solution is calculated using 

Equation (3) and Equation (7).  The results are given in 
Figure 3. 

Clearly, the Bayes solution strategy provides a more robust 
solution, as both the order 1 and order 2 norm residual 
vibration error is approximately 40% smaller. 

3.6. Issues with Track 

Typically, the object of RTB is to reduce vibration, and as 
noted, a flat track does not mean low vibration. However, 
there are cases where minimizing Track split is a 
requirement. For example, after a blade change and prior to 
flight, a flat track maintenance event is performed. This is 
primarily the result of established procedures but also serves 
the purpose of providing a better field of view for the pilots.   

The solution strategy for track is identical to vibration. This 
is done by converting the track into its Fourier 
representation (T) using Equation (3), replacing a in 
Equation (3) with blade track height, then replacing F in 
Equations (10) and Equation (11) with T, and solving for 
the time domain adjustment per Section 3.2. Track is in fact 
a simpler solution. This is because for track, there is always 
only one sensor. Care must be taken in that, for one regime 
(ground), only one adjustment can be solved (typically a 
PCR adjustment). 

 
Figure 3. Comparison of LSS to Bayes LSS, for Order 1 
and Order 2 Norm Error 

4. IMPROVING USER EXPERIENCE  

In addition to reducing vibration, the RTB algorithm should 
present the maintainer with a solution that is easy to 
implement. Most commercial systems (Renzi, 2004) provide 
only a 2-blade solution (as they only solve for order 1 
vibration). For track, a 2-blade solution can introduce some 
additional complexity in attaining a flat track in 1 
adjustment (Keller, 2007). Additionally, order 2 or higher 
harmonics do occur and require maintenance adjustments to 
restore the helicopter into normal operational limits. Ideally, 
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the RTB algorithm should be able to determine the most 
appropriate solution based on the measured vibration or 
track.  

In (Bechhoefer, 2011), an expert system was developed in 
an attempt filter the options used by the RTB algorithm, 
based on the current set of measurements. The solution was 
not ideal in that it required an extensive library of a priori 
data. Essentially, configuration was needed to model to 
decision space, which selected the adjustment type (WTS, 
PCR, in board TAB, out board TAB), and adjustment order 
(1, or 1 and 2).  The decision space encompassed 27 sets of 
configuration items. 

An alternative method is proposed for the selection of 
adjustment type and adjustment order based on the 
estimated outcome of an adjustment. Because one can use 
Equation (7) to predict the vibration as a result of an 
adjustment, it is possible to estimate the residual vibration 
error post adjustment. This allows hypothesis testing for the 
adjustment/order options. 

Consider that a full adjustment (WTS, PCR, TAB) is 
selected, and vibration order 1 and 2 are solved for 
(assuming a 4-bladed rotor). The residual error variance is 
then calculated. Say that an alternative adjustment is 
selected, in which only an order 1 (2-blade solution) is 
selected. Then one can test the hypothesis that the error 
variances are the same. If the test fails to reject the null 
hypothesis, then the simpler (2-blade solution) is selected 
over the 3-blade solution. Formally, as per (Wackerly, 
1996), the test is derived as: 

𝐻!:  𝜎!! = 𝜎!! 

𝐻!:  𝜎!! < 𝜎!! 

where the test statistic is: 

𝐹 = 𝑆!!
𝑆!!

 

The rejection region of the test is: F > Fα, where Fα is 
chosen so that P(F> Fα) = α when F have v1 = n1-1 degrees 
of freedom in the denominator, and v2 = n2 - 1 degrees of 
freedom in the numerator. This test is easily performed 
online, and requires only the selection of the probability of 
false alarm, α, which was set at 0.05.  

Given the simulation capability developed in Section 2.0, 
and the vibration generated by the adjustments used in 
Figure 2, the probability distributions were calculated for 
order 1 norm error, order 2 norm error, and the track split. 
Multiple hypothesis test were conducted, where the null 
hypothesis was a full adjustment: [WTS/PCR/TAB], and the 
alternative hypothesis were reduced adjustment sets: 
[WTS/PCR], [WTS/TAB], [PCR/TAB] or WTS alone.  

 
Figure 4. Order 1 and Order 2 Residual Vibration for 
Different Adjustments 

The scenario assumed 10 acquisitions at 90 knots, 120 knots 
and 140 knots. Figure 4 shows that the algorithm selected 
between WTS/PCR/TAB (13% of the trials), WTS/PCR 
(75% of the trials) and PCR/TAB (12% of the trials). Figure 
5 shows the difference in Track Split between the different 
adjustment sets. 

 
Figure 5. Track Split for Different Adjustment Sets 
 
The algorithm did not select WTS alone, or a WTS/TAB 
solution, which as a general practice, reflects reality. We 
can note that the full adjustment results in a lower vibration 
in both vibration orders. The order 2 results are sensitive to 
the presence of a WTS solution. This is similar to the track 
performance issue – seeing as WTS has no effect on track, 
when the PCR or TAB adjustment is removed, the track 
split is larger. This is an important observation: improving 
Order 2 reduced the track split, even though optimization 
objective was vibration and not track. This suggests that a 2-
blade solution (no reduction in Order 2) will always result in 
larger track split than, as seen in Figure 6. 
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Figure 6. Effect of 2-Blade vs. 3-Blade Solution on Track 
Split 

Given how the adjustments are selected, when the estimate 
of vibration is poor (due to stochastic nature of vibration), 
adding an adjustment, statically, does not improve the 
results. This hypothesis was tested by increasing the number 
of acquisitions per trial to 50 (Figure 7), as increasing the 
sample size improves the estimate by sqrt(n). This suggests 
that increasing the number of acquisitions in give time 
period will improve the overall quality of the adjustment 
and lower overall vibration. 

 
Figure 7. Order 1 and 2 Vibration for 10 vs. 50 
Acquisitions per Trial 

In the 50 acquisitions per trial case, because the estimate of 
the vibration was improved, the calculated adjustment 
results in a lower residual vibration error. Additionally, 
because the information was better, adding an adjustment 
improved the solution. This was seen in that the full 
adjustment set was selected 97% of the time, vs. 13% when 
only 10 acquisitions were used. 

4.1. Methods to Reduce “Selection Fatigue”  

Because each adjustment type has a large number of 
equivalent adjustments (see example in Section 3.0), even a 
WTS/PCR adjustment presented too many options for most 
maintainers.  In some cases, it caused confusion and 
“selection fatigue”. Additionally, both the helicopter 
manufacturer and the operator may have preferences as to 
what is a good adjustment.  Subjectively, a good 
adjustment: 

• Touches as few blades as possible 

• Tries not to change the rigging of the helicopter 

• Does not recommend adjustments which are too 
small to implement (e.g. minimum TAB is greater 
than 3 mils) 

These preferences need to filter the adjustment such that the 
initial view to the maintainer is one set of WTS, PCR and 
TAB, which encompasses the rules or preference of the 
maintainer.  A proposed rule set would be: 

• Minimum DC offset on PCR. This ensures that, 
over time, the changes in PCR does not effect the 
helicopter rigging, and therefore the main rotor 
RPM during autorotation. 

• Minimum TAB of +/- 3 mils. If mathematical 
solutions are less than 1.5 mils, zero the 
adjustment, if greater than +/- 1.5 and less than +/- 
3 mils, round to 3 mils (sign appropriate).. 

• Only add WTS. For a 4-blade rotor, since adding 
weights on one blade is the same as removing 
weights on the opposing blades, it’s relatively easy 
for the maintainer to implement this. 

• If there are two equivalent sets for an adjustment 
type, pick the adjustment set that intersects with a 
set of another adjustment type. This attempts to 
minimize the number of on which maintenance is 
performed.  

Example: Generated Adjustments for WTS/PCR/TAB 

WTS Set 1 Set 2 Set 3 Set 4 

Black 8 8 0 0 

Yellow -4 0 -4 0 

Blue 0 0 -8 -8 

Red 0 4 0 4 

 

PCR Set 1 Set 2 Set 3 Set 4 

Black -6 -2 2 0 

Yellow -8 -4 0 -2 
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Blue -4 0 4 2 

Red 0 4 8 6 

 

TAB Set 1 Set 2 Set 3 Set 4 

Black -13 -2 -8 0 

Yellow -5 6 0 8 

Blue -11 0 -6 2 

Red 0 11 5 13 

 

For PCR, the DC Offset is the sum of blade adjustments by 
set: 

PCR Set 1 Set 2 Set 3 Set 4 

DC 
Offset 

-18 -2 14 6 

Set 2 for PCR affects the rigging the least, and touches the 
Black, Yellow and Red blades. For WTS, the positive 
adjustments are on the Black and Red blades. For TAB, 
corresponding adjustments are Black:  -2, Yellow: 6, and 
Red: 11. Because the Black is -2, and violates the minimum 
adjustment for TAB rule, it is rounded to -3 with little effect 
on the vibration. Thus, the “best” adjustment presented to 
the maintainer is: 

Adjustments Black Yellow Blue Red 

WTS 8 0 0 4 

PCR -2 -4 0 4 

TAB -3 6 0 -4 

 

5. CONCLUSION 

In the paper, we present a methodology to simulate 
vibration on a helicopter for the purpose of developing, 
testing and, ultimately, improving Rotor Track and Balance 
(RTB) performance. Low frequency (e.g. order 1 and order 
2, corresponding to the first and second harmonics of the 
main rotor) vibration is known increase the rate of 
component failure and to cause pilot fatigue. RTB 
maintenance is designed to reduce these vibrations. 
 
Two potential solver strategies were presented, and using 
simulation procedure that was developed: the Bayes Least 
Squares solution was found to be superior to the Ordinary 
Least Squares in reducing vibration. Techniques were 
presented to automatically select the best adjustments based 
on the measured vibration. Additionally, the relationship 

between 2nd order vibration (e.g. the second harmonic of the 
main rotor) and blade track split was observed.  

Most importantly, it was observed that increasing the 
number of acquisitions used in an adjustment reduced the 
post adjustment vibration. This could impact future RTB 
design requirements. Instead of sampling helicopter 
vibration once every 6 to 10 minutes (a limit imposed by the 
processing power of the onboard vibration monitoring 
system), the key to a rotor tuning may be sampling the 
helicopter once per minute. Simulation results showed that 
increasing the number of samples from 10 to 50 acquisitions 
reduced mean vibration error and track split by 45%. 

NOMENCLATURE 

Ω angular rate of the main rotor shaft 
β blade flapping angle 
ζ blade lead-lag angle 
θ blade pitch angle  
B blade tip path 
b number of blades in the rotor system 
FH force exerted on the rotor hub 
Dk,o Fourier transform matrix 
a time domain adjustment  
A Fourier domain adjustment  
X vibration adjustment coefficients 
F measured vibration over regimes and sensors 
DC  static load (sum of weights for WTS adjustment or 

conning angle for PCR/TAB adjustment). 
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        ABSTRACT    

 

Large and complex deep space platforms such as the Deep 

Space Habitat (DSH) being developed by NASA will 

require a robust, on-platform, Integrated System Health 

Management (ISHM) function. Currently the DSH is 

contemplated to be stationed at the L2 Lagrangian point 

outbound from the lunar orbit. This will provide a vantage 

point of the back side of the moon as well as to serve as a 

jumping off platform for manned trips to Mars, the Moon, 

or near Earth asteroids. The ISHM function includes the 

monitoring, diagnostics, prognostics, and failure mitigation 

strategies and capabilities for any viable failure modes of 

the DSH. To evaluate a prototype of this approach, NASA 

has assembled a full scale, ISS derived, DSH prototype at 

the Marshall Space Flight Center (MSFC), involving a 

wired ISHM sensor network of over 80 sensors located at 

various points where early system failure mechanisms may 

be detected and analyzed. However, it is anticipated that a 

wired, distributed architecture could involve many pounds 

of complex cable harnesses and connectors, along with the 

commonly encountered problems of accessibility, flexibility 

and maintainability. In the high likelihood that 

modifications or upgrades are needed, these complexities 

result in higher design and build cost along with increased 

operational costs as in-flight anomalies occur that could 

require the addition of different sensors or different sensor 

locations. To address these issues, the ISHM team at MSFC 

is studying a wireless, distributed architecture with on-

platform, advanced prognostic and diagnostic capabilities. 

The approach being considered is based on the X-33 ISHM 

system which consisted of hardware identical remote health 

nodes (RHN) and a central vehicle health management 

computer. Each RHN was very flexible and 

reprogrammable to enable it to interface directly with all the 

health monitoring sensors. For application on the DSH, 

modifications to the RHN are being considered. These 

changes and resulting upgraded capabilities are described in  

this paper. As ISHM sensor technology gets smaller, more 

robust, and includes wireless interfaces for communication 

and power, the approach will be to connect these wireless 

sensors by adding state-of-the-art wireless technology to the 

X-33 developed RHN. This wireless approach eliminates 

connectors and cables, thus reducing development, 

installation and life cycle costs while improving reliability 

and flexibility of the ISHM systems. 

 

1. DESCRIPTION OF ISHM ON THE DSH  

 

As we move into deep space and establish long life systems 

for human occupancy, the attributes of ISHM systems 

become more valuable and border on being an enabling 

capability. In the case of the DSH prototype being 

considered for long life at the L2 Lagrangian point, parked 

in Cis-Lunar space, a large amount of sensing, diagnosing, 

and prognostication will be required. The state of health 

data and the algorithms that drive ISHM functions will be 

crucial to the survivability of the crew and the assurance of 

mission success at the lowest life cycle cost. These ISHM 

algorithms will involve structural health monitoring 

including the effects of micrometeoroid and orbital debris 

(MMOD) hits, monitoring of accumulated radiation dosage, 

and air quality monitoring along with other human 

protective systems such as the Environmental Conditioning 

and Life Support Systems (ECLSS). To feed these 

algorithms with system states of health (SOH) information 

will require numerous types of sensing, analyzing, and 

prognosticating elements. Because of the large physical size 

of the facility, these elements will be separated at significant 

distances in a network that must be extremely reliable as 
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well as flexible and maintainable. This paper discusses the 

types of data needed to detect the onset of the several failure 

mechanisms, along with the diagnostic and prognostic 

algorithms that will assure the maintenance of a safe and 

functionally healthy system. The backbone of the ISHM 

system will be the sensors, along with several RHN boxes 

that enable end to end availability of all pertinent data 

needed to assess and control the overall state of health of the 

DSH facility. The specific design of the first DSH is still to 

be determined but will likely be based on heritage from the 

International Space Station (ISS) because much thought and 

investment has gone into that asset already and program re-

use will be highly desirable. Figure 1 shows the concept that 

NASA is considering that uses the ISS laboratory and the 

multipurpose logistics module (MPLM) connected by a 

tunnel to serve as living quarters with all the essential 

elements for habitation, including a capability to grow green 

leafy plants for salad-type food. On the other hand, Figure 2 

shows a futuristic structure that looks like the Star Trek 

science fiction version of a DSH. In either instance one 

thing is very clear; they both have a need for integrated 

system health management which will be critical for the 

long term support of human presence in deep space.  

 

      
 

  Figure 1.  ISS Derived        Figure 2.  Fiction Version 

 

The possibility of abort, or mission abandonment, from the 

L2 Lagrangian orbit in Cis-Lunar space is not a trivial 

matter, making time to criticality (TTC) of utmost 

importance. Therefore, accurate monitoring of individual, as 

well as integrated systems states of health, along with 

diagnostics and prognostics related thereto is paramount to 

the viability of such an endeavor. Assuring that the life 

support environment is monitored and maintained 

constitutes only part of the equation. The ability to 

prognosticate and deal with future changes in that 

environment is equally necessary. The ISS-derived 

prototype being evaluated by NASA is populated with 

sensors dealing with determining states of health (SOH) and 

state of health trends that drive preemptive fault mitigation 

strategies and algorithms. This is necessary to assure the 

total monitoring and SOH understanding of the afore 

mentioned structural, communication, thermal, air quality, 

space radiation attributes, and the complete environmental 

conditioning and life support hardware and software over its 

full, functional, cradle to grave life. This not only drives the 

overall safety and reliability of the DSH but is the primary 

factor determining its life cycle cost.  

 

To sense all the parameters that feed into the failure 

detection algorithms, the DSH prototype at MSFC presently 

consists of 84 various sensors that are highly distributed 

throughout the facility. These ISHM sensors are sampled by 

the data system on a two second sampling interval and data 

are analyzed according to the algorithm shown in Figure 3.  

 
 

                                     No 

 

       Start       Scan all ISHM               Anomaly 

  Data Points                Detected 
 

                                                     Yes 

 

         Up-Date   Yes                  No    Determine 

          Failure           Mitigation             Needed 

           Log(s)           Effective           Mitigation 

                                                                  Actions 

 

 
     Re-Check            Execute 

            Stop            Data Points        Mitigation 

                 Action(s) 

 
Figure 3.  Failure Detection and Analysis Algorithm 

 

The sub-tier algorithms noted in the diagnostic and 

prognostic boxes are specifically designed to accommodate 

the myriad of failure types and failure mechanisms that may 

arise. They are based on the failure modes and effects 

analyses (FMEAs) developed by the subsystem design 

engineers along with the fault management (FM) criteria 

established for the program. One basic assumption is that 

these algorithms are exhaustive and that all possible failures 

will be detected and mitigated in some fashion, including 

the possibility of mission abort and abandonment of the 

DSH if necessary.  A data log of all triggers of the fault 

detection and analysis algorithm will be maintained. The 

major life critical subsystems of the DSH are shown below.  

 

Critical elements of failure mechanisms are:  

 

• Pressure vessel temperature and heat distribution  

• Pressure vessel micrometeoroid and orbital debris hits  

• Attitude determination and/or control  

• Ability to communicate with Earth  

• Air quality including O2 and/or hazardous gases  

• Cabin temperature and rates of change  

• Cabin air pressure and rates of change  

• Aggregate of space radiation levels  

 

An obvious engineering concern, and a major motive for the 

writing of this paper, is the consideration for the complexity 

of the sensor networks and associated cable harness. One 

very valuable lesson learned on previous programs, 

including the X-33, is that complex sensor cable networks 
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are unreliable, heavy, intrusive, and expensive to modify. 

The application of a wireless system based on the X-33 

developed RHN and the more recently upgraded REU 

should significantly improve the system reliability and cost 

by eliminating unnecessary sensor cable harnesses and 

reduce complexity. The result will be a very flexible design 

that lends itself to easy changes made necessary through 

growth in system complexity, parts obsolescence, or 

subsystem failures. Even after the DSH is placed in service 

at a deep space location such as the L2 Lagrangian point, 

the ISHM system based on a wireless sensor network will 

easily accommodate architectural changes as needed.  

 

2. DESCRIPTION OF THE RHN 

  

2.1.  X-33 Generation 1 RHN Description  

 

In the 1990s, NASA began development of a reusable 

launch vehicle (RLV) called the X-33 space plane. The 

integrated vehicle health management (IVHM) system for 

the X-33 consisted of a pair of host processors and 50 

Generation 1 (Gen 1) Remote Health Nodes (RHN) 

distributed around the periphery of the X-33 to collect data 

from a variety of sensor types, (Garbos, Childers, & Jambor, 

1997, and Garbos, & Mouyos, 1998). The RHN’s interface 

to the health sensors and amplify, filter, and sample sensor 

signals before converting the data to digital format. Next, 

they analyze and perform some local prognostics decisions 

and store the data. The data is then packed with other 

information and tagged (e.g., ID and time sample) and 

transmitted to the vehicle health management (VHM) 

central processor.  

 

The DSH will require a considerable amount of sensing, 

diagnosing, and on-platform prognostication to predict and 

ensure facility availability and safety. Because of the DSH 

size and possibility of on-facility maintenance and 

upgrading, a distributed ISHM architecture is proposed 

using wireless remote electronic units (REU’s) derived from 

the RHN and shown in Figure 4 installed around the 

platform and interfacing to the state-of-health sensors. As 

discussed elsewhere in this paper, the wireless REU’s were 

developed by NASA under the Extreme Temperature SiGe 

ETDP program, (Cressler, 2008, and Berger, Garbos, & 

Cressler, 2008, and Garbos, 2011) and are therefore much 

more robust and reliable for deep space use than the original 

RHN units, shown in Figure 5, developed for the X-33 

program.  

 

             
 

             Figure 4.  REU               Figure 5.  RHN 

The Generation 1 RHN was an 11 kilogram box that 

dissipated 17 watts of power. The mixed-signal data 

acquisition unit was assembled from a combination of 

commercial integrated circuits and custom hybrids for the 

analog front-end arranged on three cards interconnected by 

ribbon cables. On one end of the box, a pair of large multi-

pin connectors provided the sensor interface. On the other 

end, a pair of optical connections provided a redundant 

interface to the host computers. The RHN communicated 

with the hosts via a token-ring network topology, and power 

was provided through a +28 VDC bus.  

 

The original RHN design sought modularity by combining 

multiple types of sensor interfaces into a single hardware 

implementation that was usable throughout a spacecraft or 

exploration vehicle to provide mission critical 

environmental and health data to engineers in an efficient, 

reliable manner. A key feature of the Gen 1 RHNs is the 

flexibility and re-programmability that enables one 

hardware design to interface with a wide variety of health 

sensors (e.g., temperature, strain, pressure, acceleration, 

vibration, acoustic, heat flux, position, rate and flow). 

Samples rates, gains, resolution, differential/single, full, half 

bridge inputs were all selectable for each sensor. In addition 

a programmable supply current was available. 

  

On X-33, these sensors serviced all the vehicle health 

management requirements of the different vehicle 

subsystems (Propulsion, Thermal Protection, Cryo Tanks, 

Structures and Landing Systems, etc.). For the X-33 IVHM 

system 50 hardware identical Gen 1 RHNs interfaced to 

over 1200 health sensors were developed, tested, qualified 

and delivered to the program. The DSH wireless REU will 

incorporate the same basic flexibility as the previous 

designs but add wireless interfaces to eliminate cables and 

connectors where appropriate. This will lower the life cycle 

cost, increase reliability, and add flexibility for maintenance 

and possible upgrades over the life of the facility. 

 

While the X-33 space plane program was terminated prior to 

flight, RHN box operation was demonstrated on an F/A-18 

aircraft. Over 50 missions were flown during 1999 and 2000 

with over 25 Gigabytes of information gathered which 

demonstrated the functionality and reliability of the box.  

 

2.2. SiGe Gen 2 RHN Description  

 

Whereas the X-33 Gen 1 RHN represented a significant 

improvement over the state-of the-art sensor networks of the 

day, there were obvious improvements that could be made 

in the miniaturization of the box. It was estimated that 

miniaturization would result in roughly two orders of 

magnitude improvement in volume, a 10x improvement in 

weight, and a 5x decrease in power dissipation. Extensive 

miniaturization as well as enhanced toughness led to the 

application of the more robust Gen 2 RHN (the REU) using 

SiGe technology which was funded by NASA under the 
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Extreme Temperature Development Program (ETDP) 

contract NNL06AA29C using mixed signal SiGe 

technology, (Cressler, 2008 and Berger, et. al., 2008, and 

Garbos, 2011). This development was led by a multi-center 

NASA ETDP team with support from multiple universities 

and demonstrated a Gen 2 SiGe System on a Chip (SOC) 

RHN based on the design of the X-33 Gen 1 Remote Health 

Node and implementing the same functionality. Two of the 

16 channel REU’s using mixed signal Application Specific 

Integrated Circuits (ASICs), are functionally equivalent to 

one X-33 thirty two channel unit.  

 

The focus of this work was on a monolithic 16-channel 

system with integrated data conversion. It occupied an area 

of 10 x 14 mm and consumed 0.5 W + 0.25 W per 

universal/high-speed channel. These metrics represent an 

approximate 10x reduction in power consumption and a 

100x reduction in form factor when compared to the Gen 1 

RHN described above. Individual blocks that comprise the 

Gen 2 RHN were also flown in space as part of a Materials 

International Space Station Experiment (MISSE) Project in 

an effort to validate total-dose hardness and wide-

temperature operability. The Gen 2 RHN was also radiation 

tested at cryogenic temperature under the ETDP program 
 

2.3. Wireless Gen 2 RHN Description  

 

As technology evolves, the power requirements for both 

sensors and health nodes will be greatly reduced. Also, a 

fully wireless sensor to Gen 2 RHN connection can be 

developed along with a fully wireless connection between 

RHNs and the central ISHM computer. The result will be 

that the need for connectors and cables for most of the 

distributed ISHM system will be eliminated and the entire 

system will be lighter and more reliable.  

 

Depending on the type of smart sensor and required sample 

rate, there are different techniques for developing the 

wireless sensors. Some sensors that are sampled at a very 

low rate can self-generate and temporarily store data by 

scavenging energy from the local environment (vibration, 

temperature, etc.) then wirelessly transmit the data to a Gen 

2 RHN. Also, these very low sampled sensors could be 

designed to respond to an RHN “ping” much like Radio 

Frequency Identification (RFID) tags operate today. These 

sensors could be easily interfaced to a wireless Gen 2 RHN.  

 

For sensors that require a high sample rate and therefore 

more power than can be self-generated, the wireless Gen 2 

RHN would be required to wirelessly transmit energy to the 

sensor. The sensor would then convert and store the energy 

within the device for response to the interrogation. Once the 

Gen 2 RHN is modified for a wireless interface and can 

provide energy to the ISHM sensors it can also be designed 

for wireless interface to the central ISHM computer. In 

some cases, however, the RHN may still require a wired 

power interface. However, this power would be a standard 

power that would be available around the platform and,  

therefore, not add much weight to the system. Since most of 

the technical solutions are already state-of-the-art in other 

applications, this would not be considered a high technical 

risk. Also, the Generation 2 RHN should be able to act as a 

relay station for other remotely located RHN’s.   

 

One big challenge will be to ensure that both ISHM wireless 

communication and wireless energy transmitting must not 

interfere with other subsystems, including other RHNs on 

the same platform. As the DSH ISHM work continues to 

define the sensor requirements, these issues can be 

addressed. Once these devices become available, the 

existing DSH prototype can be used to validate the 

approach. The benefits of eliminating most ISHM 

connectors and cables greatly exceed the risk.  

 

Since the Gen 2 RHNs will be distributed throughout the 

platform they can also serve as the host for sensors, such as 

those for air quality and cabin temperature, since these will 

also be highly distributed. These sensors can be mounted 

directly to the RHN hardware. 

 

3. CONCEPT OF OPERATONS FOR THE ISHM 

SYSTEM  

 

Being at least three days away from a rescue and/or a re-

supply from Earth, the crew of the deep space habitat will 

be totally reliant on the system’s on-board health 

management system for mitigation of any credible failure 

scenario. In addition to such consumables as food, water, 

and oxygen, the crew must have spare parts, repair 

procedures, and materials on hand to deal with life 

threatening situations, such as those discussed earlier in this 

paper. Each failure scenario will be accompanied with a 

time to criticality, and the needed failure mitigation 

strategies must be tailored to fit within that TTC window. 

This means that at the time of failure detection the crew 

must be alerted as to the type, location, and TTC of the 

particular failure mechanism and the location and mitigation 

procedure(s) of needed actions to prevent the failure from 

causing life threatening consequences. Normally the time to 

criticality will be sufficiently long as to allow for a more 

leisurely repair. This would be true of a communication 

failure or cabin temperature rise. However, the TTC for a 

more severe hazard such as an MMOD puncture of the 

pressure vessel would be very short and would require 

rapid, emergency procedures.  

 

In either case stated above, the crew would be notified 

initially by a caution and warning alarm consisting of both 

audible and on-screen annunciation(s). These would also 

appear in the personal hand held device(s) of each crew 

member. Once the caution and warning alert is received, the 

responsible crew member would use the touch screen 

techniques to drill down into the system diagrams and 

schematics to pinpoint the nature and location of the fault. 

One step further in the drill down procedure would bring the 

crew member to the mitigation procedure along with the 
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location of spares, materials, and procedures needed to fix 

the problem. A very severe failure such as MMOD puncture 

may require emergency donning of space suits to survive the 

declining atmospheric pressure until the proper repairs are 

completed and the system is re-pressurized. A warning of an 

oncoming solar storm that will inflict life threatening 

radiation levels would require the crew to gather in a 

radiation shielded room, such as the exercise room. The 

radiation shield may be a heavy metallic enclosure or 

perhaps a water barrier surrounding the safe haven. In either 

event, the ISHM system will give the “all clear” signal when 

the threat has passed and/or dropped to a safe level.  

 

The final action in all failure and/or life threatening 

situations that the ISHM system is responsible for is to 

update the event log and notify mission control back on 

Earth as to the nature of the event, the mitigation strategies 

employed, and the spares and materials used to fix the 

problem. The mission control personnel will then prepare 

the next supply vessel to carry replacements for all that was 

consumed during the failure event.  

 

4.  CONCLUSIONS 
 

Travel and exploration in deep space within the next decade 

is likely and providing a habitat for long stopover and 

rendezvous for trips to Mars, the Moon, or Asteroids are the 

most likely missions. Whatever the state of technology of 

materials, structures, communications, or avionics and 

power, one requirement is conspicuous: the need for an 

integrated system health management (ISHM) capability. 

The sensors needed to provide total health monitoring will 

constitute the equivalent of the human nervous system and 

their sensed information must be gathered in a diagnostic 

and prognostic location where caution and warning alerts 

and mitigation actions are determined. Desirable attributes 

of such a system will be flexibility, maintainability, and 

reliability, all of which point to a wireless network free of 

electrical harness complexities and problems experienced in 

systems of the past. To provide the technology base for such 

systems, the remote health nodes described in this paper will 

prove to be the backbone of the ISHM system. Marginal 

improvements in the RHN circuitry to add wireless 

capabilities and improve robustness will assure the 

availability of the technology needed as the deep space 

habitat and other deep space systems are developed.  

 

 

ACKNOWLEDGMENT 

 

The Gen 2 RHN (SiGe REU) work was supported by NASA 

ETDP under contract NNL06AA29C. The program was 

managed by a NASA Team - A. Keys, M. Watson, D. 

Frazier, M. Beatty, D. Hope, and C. Moore. The researchers 

and students who contributed to the NASA SiGe ETDP 

program were led by a world class Georgia Tech Team of 

university and industry partners includes: Auburn 

University, Vanderbilt University, University of Tennessee, 

University of Maryland, JPL, BAE Systems, Aura 

Instrumentation, Inc. (working under BAE Systems), 

Boeing, Lynguent, and IBM.  
 

 

REFERENCES 

 

Berger, R. W. , Garbos, R. J. , Cressler, J. D. , et.al. (2008).  

A Miniaturized Data Acquisition System for Extreme 

Temperature Environments in Space.  2008 IEEE 

Aerospace Conference, Montana, March 2008.  

Cressler, J. D.  (2008).  Silicon-Germanium as an Enabling 

IC Technology for Extreme Environment Electronics.  

Proceedings of the 2008 IEEE Aerospace Conference, 

pp. 1-7 (on CD ROM), 2008. 

Diestelhorst, R. M., England, T., Berger, R., Garbos, R., et. 

al. (2012).  A New Approach to Designing Electronic 

Systems for Operation in Extreme Environments: Part I 

– the SiGe Remote Sensor Interface.  IEEE Aerospace 

and Electronic Systems Magazine, vol. 27, no. 6, pp. 

25-34, 2012. 

England, T., Diestelhorst, R. M., Berger, R., Garbos, R., et. 

al.  (2012).  A New Approach to Designing Electronic 

Systems for Operation in Extreme Environments: Part 

II – the SiGe Remote Electronics Unit. IEEE Aerospace 

and Electronic Systems Magazine, vol. 27, no. 7, pp. 

29-41, 2012.  

Garbos, R. J., Childers, L., & Jambor, B.  (1997) System 

Health Management/ Vehicle Health Management for 

Future Manned Space Systems.  AIAA DASC 

Conference, SHM/VHM.  Oct. 1997.  

Garbos, R. J., & Mouyos, W.  (1998).  X-33/RLV System 

Health Management/ Vehicle Health Management. 

Proceedings of the IAA/ASME/ ASCE/ASC Thirty-ninth 

Structures, Structural Dynamics, and Materials 

Conference and Exhibit, Long Beach, California, April 

20–23, 1998. AIAA-98-1928.  

Garbos, R. J.  (2011).  Mixed Signal Silicon Germanium 

(SiGe): An Enabling Technology for Distributed 

Architectures in Extreme Environment Applications. 

GOMAC Session 30-22, Mar 2011.  

 

BIOGRAPHIES 

 

Jim Miller is a NASA Manager 

responsible for Integrated System Health 

Management (ISHM) in the Spacecraft and 

Vehicle Systems Department of the 

Marshall Space Flight Center. He holds a 

BSEE from Tennessee Technological 

University, an MSEE from the University 

of Alabama in Huntsville, and is a 1974 Sloan Fellow from 

Stanford University in Palo Alto, CA. He began his NASA 

career with the Langley Research Center in 1959 and later 

relocated to the Marshall Center following a three year tour 

of duty as a commissioned officer in the U. S. Army. During 

Annual Conference of the Prognostics and Health Management Society 2013

31



Annual Conference of the Prognostics and Health Management Society 2013 

6 

 

his time on active duty he taught radar and computer to 

NATO field grade officers in the Officer Training Division 

of the U. S. Army Ordnance Guided Missile School at 

Redstone Arsenal, AL. His entire career has been in the 

domain of avionic systems and advanced avionics 

technologies with special emphasis on ISHM and structural 

health management systems. He has served in team lead, 

Branch Chief, Division Manager, and Assistant Department 

Manager positions over the past several years. He has 

received several awards including the NASA Exceptional 

Service Medal, the Engineering Directorate’s Technology 

Achievement Award, the Director’s Commendation Award 

from the MSFC Center Director, Dr. Petrone, and the 

Award of Achievement from the MSFC Center Director, Dr. 

Werner Von Braun. Mr. Miller has authored  and/or co-

authored several technical papers in the domain of advanced 

avionics systems and ISHM. His most recent was presented 

at the International Workshop on Structural Health 

Monitoring (IWSHM) at Stanford University in September 

2011. He is currently working on the ISHM system for the 

ISS Derived Deep Space Habitat.   

 

 

Jon Patterson is a member of the 

Integrated Systems Health Management 

(ISHM) and Automation Branch, at the 

Marshall Space Flight Center.  He holds 

Bachelor and Master of Science degrees 

in Computer Science from the College of 

Engineering at Louisiana Tech University 

in 1983 and 1984. In addition, he completed the coursework 

in the PhD Computer Science program in 1992 in the 

College of Engineering at the University of Alabama in 

Huntsville with an emphasis on Artificial Intelligence.  Jon 

has worked in software development in industry with SCI, 

Inc. and General Electric prior to coming to NASA. He 

came to NASA, Marshall Space Flight Center in 1991 in the 

Avionics Department Simulation Division. Shortly after 

coming to NASA, he served as the chairperson for the 

MSFC Artificial Intelligence Working Group (AIWG).  In 

1995, he was selected as the Chief for the Design and 

Implementation Branch in the Software Division, where he 

provided technical software oversight for the Tethered 

Satellite System Re-Flight (TSS-R) Skip-rope Observer 

project and the Advanced X-Ray Astrophysics Facility 

(AXAF) Science Center (ASC). Jon has also served as a 

branch chief or team lead until he was selected to support 

NASA’s X-33 program in Palmdale, California, in 1999 as 

NASA’s X-33 Lead Software Engineer.  Following his 

return to Huntsville, he continued to provide technical 

leadership in the areas of software and ISHM for numerous 

NASA programs.  Throughout his 30 year career he has 

supported programs such as the Advanced X-Ray 

Astrophysics Facility for Spectroscopy (AXAF-S), the 

Atlas/Centaur Automated Diagnostic System (ACADS), the 

X-33 Health Management System, the Space Launch 

Initiative (SLI) Integrated Vehicle Health Management Task 

Area, and the Orbital Space Plane (OSP) program.  Jon has 

most recently served as the technical lead for the Ares I 

Failure Detection, Notification, and Response (FDNR) 

system. He is currently serving as the Space Launch System 

(SLS) Vehicle Management (VM) lead for the development 

of the SLS Mission and Fault Management (M&FM) 

capabilities.  He is deeply involved in the promotion and 

improvement of ISHM definition and development across 

the agency, including numerous collaborative  efforts with 

other NASA centers. 

 

Ray Garbos is an Engineering Fellow. He 

is responsible for the development of 

advanced Avionics/ISHM concepts, 

architectures and technologies for 

aerospace applications. He has over forty 

years of circuit and system architecture 

design experience. He was an Engineering 

Fellow for Sanders Associates (1984-85), Lockheed Martin 

(1986 -2000) and BAE Systems (2001-06). He was VP and 

Chief Engineer of Aura Instrumentation Inc. (1998-2010). 

He was the X-33 IVHM lead and the Reusable Launch 

Vehicle Avionic IPT lead for Lockheed Martin and has 

participated in many Advanced Space Avionics Studies 

supporting MSFC. He was the technical lead for the BAE 

Systems lead ARES I Avionics Proposal Team. Mr. Garbos 

was a charter member of the NASA initiated Strategic 

Avionics Technology Working Group (SATWG) circa 1988 

that evolved into the Aerospace Technology Working Group 

(ATWG) where he participated until 2008. He received a 

BSEE/MSEM degrees from Northeastern University, 

Boston, MA, in 1968/1971 and a Math (MAT) degree from 

Rivier College, Nashua, NH, in 2001. He was an Adjunct 

Assistant Professor at the University of New Hampshire. He 

has been involved with Science Technology Engineering 

and Mathematics (STEM) outreach for over 20 years. 

Annual Conference of the Prognostics and Health Management Society 2013

32



Processing for Improved Spectral Analysis  
Eric Bechhoefer1, Brandon Van Hecke2 and David He 2 

1Green Power Monitoring Systems, LLC, Vermont, 05753, USA 
eric@gpms-vt.com1 

 
2Dept of Mechanical and Industrial Engineering, The University of Illinois at Chicago, Illinois, 60607 USA 

bvanhe2@uic.edu2 
davidhe@uic.edu2 

 
ABSTRACT 

The Fast Fourier Transform (FFT) is the workhorse of 
condition monitoring analysis. The FFTs’ assumption of 
stationarity is often violated in rotating machinery. Even in 
a six second acquisition on a wind turbine, the shaft speed 
can change by 5%. For Shaft and Gear analysis, this is 
mitigated through the use of the time synchronous average. 
For general spectrum analysis, or bearing envelope analysis, 
there is no such mitigation: one hopes that the effect of 
variation in shaft speed is small.  Presented is a time 
synchronous resampling algorithm which corrects for 
variation in shaft speed, preserving the assumption of 
stationarity. This allows for improved spectral analysis, 
such as used in bearing fault detection. This is demonstrated 
on a real world-bearing fault.  

1. INTRODUCTION 

It would be hard to imagine the condition monitoring (CM) 
of rotating equipment without the use of the Fast Fourier 
Transform (FFT). Everything from simple spectrums (such 
as Welch’s method for power spectral density), to more 
advanced analysis (amplitude modulation and frequency 
modulation analysis (McFadden, 1985)) are dependent on 
the FFT.  

In using the FFT, the CM practitioner must understand the 
base assumptions of continually differentiable (Gibbs 
Effect), and stationarity. In general, window functions 
(Hann, Hamming, etc.) are used to control or mitigate Gibbs 
effect, while the time synchronous average (TSA, 
McFadden 1987, Bechhoefer, 2009a), is used to mitigate the 
effect of non-stationarity in rotating machinery for shaft and 
gear analysis.  

The issue of non-stationarity is not well addressed for the 

power spectral density (such as Welch’s method), or for 
bearing analysis (envelope/heterodyne methods included). It 
is assumed that the smearing of energy due to changing 
shaft speed is small. For bearing analysis, the energy 
associated with a fault frequency is trended. A poor measure 
of that energy will result in variance in the trend, or just an 
inaccurate estimate of component damage. 

Variance in shaft speed in rotating equipment is always 
present to varying degrees. The variation is due to: 

• Limits in the control system bandwidth,  
• Varying loads associated with the work the 

machine is producing,  
• Or in the case of wind turbines, varying wind 

speed and torque ripple 

 
Figure 1. Variation in High Speed Shaft over 6 Second 

Acquisition 

Wind turbines pose a particularly difficult environment. The 
wind, as noted, is time varying. Additionally, because the 
flow of wind is stalled in front of the tower, the lift on a 
blade as it passes in front the tower is reduced. This causes a 
3/revolution torque ripple/change in shaft rate (Figure 1). 

_____________________ 
Bechhoefer, E. el al. This is an open-access article distributed under the 
terms of the Creative Commons Attribution 3.0 United States License, 
which permits unrestricted use, distribution, and reproduction in any 
medium, provided the original author and source are credited. 
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Finally, because of wind shear, the wind speed at the top of 
the rotor arc is greater than the bottom of the arc. Figure 1 
shows the variance of a high-speed shaft on a wind turbine, 
over a 6 second acquisition. The instantaneous speed of the 
shaft is seen to range from 30.9 Hz to a maximum of 32.01 
Hz, or a change in speed of 3.6%. 

Consider the effect of this variation in speed on the spectral 
content of a bearing fault frequency, where the cage, ball, 
inner and outer race rates are: [0.42, 2.87, 9.46, 6.72]. The 
range of fault frequencies (Hz) during this acquisition are: 

Table 1. Bearing Rates 
Bearing\shaft Low: 30.9 High 32.01 
Cage (Hz) 12.98 13.44 
Ball (Hz) 88.69 91.88 
Inner Race (Hz) 292.3 302.8 
Outer Race (Hz) 207.7 215.1 
 
For the higher frequency bearing components, (inner/outer 
race), the frequency difference is significant: approximately 
10 Hz. For spectral analysis, it poses a problem. Not only is 
there the issue of the spectral content smeared across a 
number of bins, but also which shaft rate does one use for 
analysis (the mean shaft rate over the acquisition)? 
 
This issue of spectral spreading in the FFT is not academic. 
Consider the trend of an inner race fault on a high-speed 
shaft (Figure 2). The variance in the condition indicator is 
proportional to the inner race energy. While vibration 
measurements are stochastic, not all of the variation in 
Figure 2 is due to measurement noise. We will show that 
some portion of the condition indicator (CI) is a function 
measurement error due to variance in shaft speed. 

 
Figure 2. Trend of an inner race fault 

 
This increased variance affects both the threshold setting 
process and alerting. Clearly if one does not have the luxury 
of sampling under steady state, a process is needed to 
mitigate the change in shaft RPM. We will show that 

resampling is one method that can be used to reduce the 
variance in the measured bearing energy. 

1.1. Units of Measurement 

In this paper, the units are in G’s, where 1g is the earth 
standard gravitational acceleration. While the sensors output 
voltage, the accelerometer manufacture defines the scale 
value to convert for volts to G’s. The ISO (ISO 10816) has 
developed standards for vibration limits for rotating 
industrial machinery, these standards are limited for 
equipment running between 10-200 Hz. Additionally, the 
limits are directed at imbalance, and not bearing faults.  ISO 
vibration limits are inches/second, were the conversion from 
inches to G’s is. G = 0.0162 * V * f. In general, 1 inch/sec is 
considered damaging vibration levels. 

Many software packages output spectrum in power (G2/Hz), 
but prior research (Bechhoefer 2008) revealed that the 
correlation between damage and energy (G’s) was linear. 
For this reason, the units are in G’s. 

2. SYNCHRONOUS RESAMPLING 

The model for vibration in a shaft in a gear box was given in 
(McFadden 1987) as: 

 x(t) = Σi=1:K Xi(1+ ai(t))cos(2πi fm(t)+ Φi)+b(t)  (1) 

where: 

• Xi is the amplitude of the kth mesh harmonic 

• fm(t) is the average mesh frequency 

• ai(t) is the amplitude modulation function of the ith 
feature harmonic. 

• φi(t) is the phase modulation function of the ith 
feature harmonic. 

• Φi is the initial phase of harmonic k, and 

• b(t) is additive background noise.  

The mesh frequency is a function of the shaft rotational 
speed: fm = Nf(t), where N is the number of teeth on the 
gear and f(t) is the shaft speed as a function of time. For 
bearings, N is the component rate, which is a non-integer 
value based on the bearing geometry. As noted, because of 
the finite bandwidth of the feedback control, or due to the 
environment, there is some wander in the shaft speed. This 
change in speed will result in smearing of amplitude energy 
in the frequency domain.  

If a tachometer signal is present (such as a key phasor) and 
the ratio from the key phasor to the shaft under analysis, the 
vibration data can be resampled such that number of data 
points between one revolution and the next is the same. In 
the case of time synchronous averaging (TSA), the 
ensemble average of EQ(1) is calculated summing each 
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revolution of resampled data, then dividing by the number 
of revolutions during the acquisition. .  

Since the radix-2 FFT is most commonly used, the number 
of data points in one shaft revolution (rn) are interpolated 
into m number of data points, such that: 

• For all shaft revolutions n, m is larger than r, and 

• m = 2ceiling (log2 (r)) (again assuming Radix 2 DFT) 

Since some other analysis process will be done on the 
resampled signal (envelop analysis, for example) – a radix-2 
length is not necessary. However, for this example a Radix 
2 length was used to calculate the resample length m. The 
algorithm resamples index ri in m data points, the 
concatenates them into a new vector. Once all of the data is 
resampled, the envelope/spectrum is taken. Figure 3 
compares the TSA algorithm to the Resampling algorithm. 

 
Figure 3 TSA and Resample Algorithm Flow 

2.1. Example: Synchronous Resampling Algorithm 

For example, say the sample rate was 1000 samples per 
second, and the lowest shaft rate was 10 Hz, for a .5 second 
acquisitions. The resample length, m, is 128. The number of 
data points between each key phasor is: 87, 92, 100, 95, 89, 
37. For each shaft revolution, the data is resampled to length 
l.:  Rev 1: 87->128, Rev 2: 92->128, Rev 3: 100->128, Rev 
4: 95->128, Rev 5: 89->128. Note that for half of a second 
of data, there is 640 data points – the remaining 37 data 
were in the next, incomplete revolution, so the last 37 data 
points are dropped. The resample length is taken at the next 
largest power of 2 over the maximum length of all 
revolutions, again, assuming a radix 2 DFT. 

Because of interpolation, the sample rate for each revolution 
is now changed. To accurately determine the frequency 
associated with a DFT bin, an apparent sample rate is 
needed. The apparent sample rate is the original sample rate 

* length of the resampled data / length of the original data: 
1000 * 640/(463), or 1382.  

2.2. TSA for Bearing Analysis 

For shaft and gear analysis, existing TSA algorithms control 
for changes in shaft speed. For bearing, because they do not 
have integer number of shaft for a rate, the TSA is felt to be 
inappropriate for three reasons:  

• Bearings are quasi-stationary – there is always 
some slippage such that even with correct 
geometry, the rates are not exact. This will make 
the bearing component non-synchronous with the 
TSA algorithm and in fact may separate the 
bearing signal out of the TSA.  
 

• A bearing has rates for each component: cage, ball, 
inner and outer race. This would require the TSA 
to be run four separate times for each bearing, in 
order to capture the energy for each bearing 
component. While this may not be a problem for 
off line analysis, it may exceed the resources of an 
on-line analysis system. Considering that any given 
shaft is supported by 2 to 3 bearings, which would 
require 8 to 12 TSA analyses. 
 

• In the evaluation of bearing health, it is important 
to be able to observe the relationship between the 
shaft, cage, ball, inner and outer race fault features. 
For example, an inner race fault that is modulated 
by shaft (e.g. side bands that are 1 shaft rate off of 
the inner race fault) is a more serious fault than an 
inner race fault, as it indicates wear and clearance 
issues on the shaft. The ability to view modulation 
between bearing components and shaft is a 
powerful diagnostics tool that is not available if 
using the TSA for each bearing components 

That said, the structure of the TSA is the model for which 
this resample algorithm is based. 

3. HIGH SPEED SHAFT BEARING FAULT 

A commercial wind turbine with a 2 MW power output was 
installed with a condition monitoring system. Data was 
collected at 10-minute intervals. The data was sampled at 
97656 sps for 6 seconds. Bearing envelop analysis was 
performed by band passing the signal between 9 to 11 KHz. 
Welches spectrum was used on the heterodyned signal with 
a DFT length of 4096, and with an overlap of 2048 points. 
Increased inner race energy on the high-speed shaft bearing 
indicated a fault (Figure 2). An inspection of the bearing 
latter showed that the inner race was cracked. Using this 
data, the raw spectrum was compared to the resampled 
spectrum and the TSA (Figure 4). The spectrum length was 

For i = 1:N  
Revolutions

Resample r data 
points into M data 

points 

Set TSA Length
m = 2ceil(log2(r))

tsa = zero(m,1)

tsa = tsa + M

tsa = tsa/N

TSA Algorithm

TSA = DFT(tsa)

For i = 1:N  
Revolutions

Resample r data 
points into M data 

points 

Set Segment Length
m = 2ceil(log2(r))

samp = zero(m*N,1)

samp(indx) = M

Resample Algorithm

Spectrum = Welches(samp)

indx = i*m+1:m

Get Apparent Sample Rate
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the same as the TSA length, so that the plots have similar 
bin widths.  

 
Figure 4. Raw, resampled, and TSA spectrum 

The average shaft rate is 30.9 Hz. This shaft is driven by a 
20-tooth pinion. The first 6 harmonics of the pinion are 
clearly visible at 620, 1240, 1860, 2480, 3100 and 3720 Hz. 
The TSA ran 188 revolutions, so that the noise floor of the 
TSA is approximately 1/sqrt(188), or 0.073x that of the raw 
or resampled spectrums (Bechhoefer, 2009). 

In Figure 5, a detailed view of the spectrum is given from 
2200 to 4000 Hz, showing that the resampled spectrum has 
more spectral content than the raw spectrum or the TSA 
spectrum. In the 9000 to 10,500 Hz view, spectral peaks are 
visible 9220, 9510 9800 and 10,090 Hz.  

 
Figure 5. Detail of raw, resampled and TSA spectrum 

 

The 290 Hz difference is close to the modulation rate of an 
inner race fault, which was 292 Hz. The high, broadband 
spectrum is indicative of bearing resonance. Because 
resonance is non-synchronous, the TSA does not capture 
this bearing resonance. 

As an aside, plotting the TSA against the raw spectrum is a 
good way to identify bearing faults: Frequency content not 
present in the TSA which are present in the raw spectrum 
can only be gear mesh frequencies from other shafts in the 
gearbox, or a bearing fault. 
The envelope of the raw and resampled data was taken with 
a window from 9KHz to 11KHz. This “window” covers the 
spectrum where bearing resonance is present. This is 
essential for successful bearing analysis using the envelope 
technique (Bechhoefer, 2010), see Figure 4.  The raw and 
resampled envelope spectrum is seen in Figure 6. 

 
Figure 6. Envelope spectrum of raw and resampled data 
 
Note that the cage (13 Hz), shaft (31 Hz) and inner race 
fault feature (292 Hz) are overlaid on the spectrum. Clearly, 
the resampled envelope spectrum fault features have greater 
energy. This is not a scale issue, as the noise floor for both 
spectrums are the same. The increased energy is because 
there is less spreading of energy into neighboring FFT bins. 
Figure 7 gives a detail view of the spectrum. 

 
Figure 7. Detail view of inner race fault: envelope spectrum 
  
This view highlights the improvement in resolution of the 
resampled data over the raw data. Note that from Table 1, 
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the fault frequency range for the inner race was 292 to 303 
Hz, which is validated in Figure 7 in the raw envelope 
spectrum. Note that maximum value of the raw envelope 
spectrum was 0.17 Gs. As seen in the resampled spectrum, 
the true energy value is closer to .32 G’s or a 47% error in 
the original measurement. This smearing of measurement 
data, results in additional noise in the CI measurement 
(Figure 2). This noise in the measured CI is caused by the 
large variance in shaft speed. 

Both inner race modulated by cage and inner race 
modulated by shaft are also clearly present in the resampled 
envelope spectrum. This type of information gives a 
maintainer additional diagnostics, which are missing in the 
raw spectrum. 

3.1. Testing The Hypothesis on Shaft Speed as a Source 
of Variance  

It is hypothesized that at least some of the variance in trend 
of the inner race energy was due to non-constant shaft 
speed. As previously noted, it was shown variation in shaft 
speed smears the measured energy associated with a fault in 
the spectrum. A test of this hypothesis could be done if one 
could reprocess the vibration data in Figure 2. 
Unfortunately, raw data is collected only once per day (1 
our of 144 acquisitions). This subset or raw data was 
reprocessed using and the measured inner race energy was 
calculated for the raw envelop spectrum, and the resampled 
envelop spectrum, over 50 days, and compared in Figure 8.  

 
Figure 8. Raw and resampled inner race envelope energy 

over 50 days 

It is easily observed that the resampled envelope energy is 
higher than the raw envelop. This would be expected in that, 
because there is less smearing of energy, there is more 
energy associated with the fault. To formally test this 
hypothesis: H0 That resampling does not change the CI 
variance, vs. HA That the resampling reduces the CI 
variance.   

The sample variance was calculated from the de-trended 
data from day 25 to day 48. The sample variance for the raw 
envelop spectrum was 0.0047 (σ = 0.068), while for the 
resampled envelope, the variance was 0.002, (σ = 0.045), 
with an F statistic of 2.3 (approximately 57% reduction in 
variance). This is significant an alpha of 0.05 and 22 
degrees of freedom, reject the null hypothesis that resample 
does not effect CI variance. 

4. CONCLUSION 

Condition monitoring of rotating machinery is complicated 
by the fact that machines under analysis do not always run 
at a constant rate. While the time synchronous average can 
be used to control variance in machine speed for shafts and 
gears – there is not such standard practice or algorithm to 
control variance in shaft speed for bearing or other non-
synchronous analysis.  

In general, it is assumed that the effect of spectral smearing 
due to variance in shaft speed is small. However, variation 
in shaft speed is commonly observed in the field. This 
problem is especially great for wind turbines, in which there 
is variation due to: changing wind speed, a 3/revolution 
torque ripple due to tower shadow, and a 1/revolution effect 
from wind shear. It is not surprising to see a 4% change in 
shaft speed in a 6 second acquisition. 

In this paper, a resampling algorithm was developed in 
which raw data is synchronized by a key phasor to a shaft 
under analysis. The resampling process changes the 
effective sample rate and normalizes the data by removing 
the effect of changes in shaft speed. It allows both 
synchronous (shaft/gear) analysis and non-synchronous 
(bearing, bearing resonance) analysis.  

This is demonstrated on a wind turbine high speed shaft 
bearing with an inner race fault. It is shown that by 
resampling, the frequency content of the envelop spectrum, 
which is spread over a frequency of 292 to 303 Hz (14 FFT 
bin), with raw envelope spectrum of 0.17 Gs. For the 
resampled spectrum, the true energy value is closer to .32 
Gs. For this example, the raw energy spectrum had an error 
of 47% when compared to the resampled spectrum. 

The hypothesis was tested that the resampled envelope 
energy for a fault would have lower variance. This was 
tested by reprocessing vibration data for a known fault with 
50 samples. The reduction in variance was statistically 
significant at alpha of .05, or approximately a 55% 
reduction in variance. 

This is a significant improvement in performance. This 
indicates that variation in speed accounts for a large 
variance in condition indicator values. Fielding this 
improved analysis algorithm will result in: 

• Bearing faults will be easier to identify,  
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• That threshold setting will be simplified,  

• That trend analysis will be improved and finally,  

• That this will facilitate an improved prognostics 
capability. 

The resampling algorithm used linear interpolation, but 
spline or cubic interpolation could be used. 
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ABSTRACT 

Fault inception and growth in the components of a 

mechanical power drive are often heavily affected by the 

lubricant health. As a consequence, monitoring the lubricant 

health status and signaling a degradation of the lubricant 

properties could improve the reliability of the mechanical 

drive. A further merit of implementing a lubricant health 

monitoring system is  the possibility to move from a time-

based maintenance to a condition-based maintenance with 

the ensuing decrease of operating costs and reduction of the 

environmental impact.  This would be of a particular 

advantage for those applications in which loss of operation 

generated by poor lubrication could cause a service 

disruption or lead to a safety critical condition. The 

proposed paper presents the  initial part of an ongoing 

research activity on lubricants health monitoring.  The work 

so far performed consisted of the following activities: 

perform a critical review of the studies addressing the 

lubricants condition; determine which are the significant 

features of the lubricants used in the majority of mechanical 

systems, that need to be extracted to assess the lubricant 

health; which occurences affect the lubricant health and how 

the oil health status can be assessed by different techniques , 

whose relative merits will be discussed; define the 

progression of the degradation of the lubricant health status; 

present the initial study of  how different lubricant health 

monitoring techniques can be fused together to develop an 

efficient on-line lubricant health monitoring system. The 

paper thus presents the summary of the work performed to 

establish the fundamentals onto which a reliable PHM 

system for the lubricants of mechanical drives can be 

developed, that will be the final objective of the on-going 

research activity. 

 

1. PROBLEM  STATEMENT 

Several research activities in prognostics and health 

management have been performed to evaluate the health 

status of mechanical components by analyzing the condition 

of the lubricant used in their operation.  Optical and 

magnetic particle detectors have been proposed as sensors 

capable of providing useful information on the 

characteristics of the contamination particles entrained by 

the lubricant (Sjödin & Westin, 2013).  Oil debris 

monitoring seems in fact to be one of the most effective 

approaches for PHM of the components of a mechanical 

drive.   In fact, it seems logical that the gradual degradation 

of a component can lead to the accumulation of various 

types of particles in the lubricant.  Therefore,  monitoring 

such accumulation can provide an indication of the 

progression of the wear of the mechanical component and 

hence allow an estimate of its remaining useful life.  An 

example of this technique is the oil debris monitoring sensor 

developed for  the Pratt & Whitney F119, that relies upon 

sensing the disturbances to an electromagnetic field created 

by the passage of metallic particles.  The sensor is based on 

an inductive measurement technique which enables 

detection, count and classification of  wear metal particles 

by size and type. 

In all these applications the lubricant is actually used as a 

diagnostic tool able to provide useful information on the 

health status of the mechanical drive, while no specific 

attention is paid on the health of the lubricant itself.  

However, an ongoing research on  the failure mechanisms 

for the mechanical components of the electromechanical 

actuators for aerospace applications showed that fault 

inception and growth are often heavily affected by the 

lubricant health. Most of the faults of the components of 

mechanical drives, such as gears and bearings are in fact 

caused by insufficient lubrication (Stachowiak & Batchelor, 

2005).  Poor lubrication leads to a direct contact between the 

surfaces of the mating components in relative motion with 

an ensuing progressing wear.  The type and rate of the wear 

depends on several factors, such as component type, rubbing 

_____________________ 

G. Jacazio et al. This is an open-access article distributed under the terms 
of the Creative Commons Attribution 3.0 United States License, which 

permits unrestricted use, distribution, and reproduction in any medium, 

provided the original author and source are credited. 

Annual Conference of the Prognostics and Health Management Society 2013

39



Annual Conference of the Prognostics and Health Management Society 2013 

 

speed and contact pressure, but the root cause is normally 

poor lubrication.  Therefore, monitoring the lubricant health 

status, in particular the oil oxidation stability and not only 

the quantity of oil debris, and signaling a degradation of the 

lubricant properties could provide significant benefits and 

improve the overall reliability and availability of the 

actuator. 

Of course, a simple way of preventing poor lubrication due 

to a decay of the lubricant properties is to replace the 

lubricant at small time intervals.  Though this ensures good 

lubrication of the components throughout their life, it entails 

high operating costs.  The costs are not only determined by 

those of the lubricant, but also by those associated to the 

maintenance time and to the lubricant disposal.  It must be 

further emphasized  that scheduled maintenance most of the 

time leads to the replacement of a lubricant that is still in 

good conditions and could effectively perform its function 

for a much longer time (Bowman & Stachowiak, New 

criteria to assess the remaining useful life of industrial 

turbine oils. Lubrication Engineering, 1996).   Extending the 

time interval between two replacements of the lubricant is 

however a risky business unless a reliable information on 

the lubricant condition is available, since the operation of 

the mechanical components without proper lubrication leads 

to their premature failure. 

A possibility for optimizing the combination of the two 

issues: reducing the frequency of lubricant replacement and 

ensuring a good lubrication of the mechanical components, 

is to carry out periodical laboratory tests of the lubricant 

during an initial operational phase of the actuator.  By 

observing the evolution of the properties of the lubricant 

during the actuator operation an optimal time interval can be 

established between two consecutive replacements of the 

lubricant.  Although this procedure is logical, it falls short of 

providing meaningful results if the actuator can operate in 

highly variable conditions, as it is the case of the actuators 

used in the aerospace or mobile machinery applications.  In 

these cases the lubricant characteristics can evolve in a rapid 

and unpredicted way with the ensuing risk that the 

established replacement interval, that seemed to be 

acceptable during an initial test campaign, turns out to be 

inadequate.  This risk is further enhanced if no other 

monitoring is performed of the operational characteristics of 

the actuator, such as the alert of possible hot spots that could 

cause a breakdown of the lubricant properties. 

The development of a continuous and reliable method to 

evaluate the lubricant health status and its associated 

remaining useful life can thus provide a valuable 

contribution to the improvement of the availability of a 

mechanical actuator and to the reduction of its life cycle 

cost.  From a PHM perspective this leads to a paradigm 

shift: the lubricant is not any longer simply a tool for 

assessing the health status and the remaining useful life  

(RUL) of the mechanical components, but it becomes itself 

an element subjected to continuous health monitoring and 

whose remaining useful life is determined by appropriate 

algorithms based on processing the collected data. 

The development of an efficient and reliable PHM system 

for the lubricant goes through three logical steps: 

 Step #1 is to clearly identify the physical quantities that 

provide the most significant indication of the lubricant 

health status 

 Step #2 is to define the most appropriate sensors and 

measuring techniques that allow the extraction of the 

previously identified significant features  

 Step #3 is the development of the algorithms capable of 

performing a reliable assessment of the lubricant health 

status and its RUL starting from the collected data 

2. LUBRICATING ACTIONS  IN  MECHANICAL  COMPONENTS 

Relative motion between two solid bodies causes a series of 

complex interactions between the mating surfaces of the two 

bodies that are well described in tribology literature 

(Stachowiak & Batchelor, 2005).  These interactions 

eventually lead to a wear of the surfaces of the two bodies, 

which depends on a large number of factors.  When a 

lubricant, either liquid, solid, or gaseous is in contact with 

the surfaces of the two bodies in relative motion, the mutual 

interaction between the two surfaces is completely changed 

and can be even nil if a sufficiently deep layer of lubricant is 

created to physically separate the two surfaces.  The end 

result is a reduced wear of the bodies surfaces with an 

ensuing increase of their life and a reduction of the energy 

dissipation. 

Although several types of lubricants are used in mechanical 

components, the most common ones are oils and greases.  

Unless the system operational environment mandates 

special requirements, oil and grease are the preferred type of 

lubricant because they allow the development of a lubricant 

layer between the two solid surfaces with a relatively large 

thickness.  This entails a decrease of the interactions 

between the surface irregularities of the two bodies; the 

greater the thickness of the lubricant layer, the lower the 

interactions between the two surfaces and the ensuing wear.   

The lubricant layer thickness is strictly related to the 

physical properties of the lubricant.  As an approximation, 

the layer thickness is proportional to the lubricant viscosity; 

however, increasing the viscosity brings about an increase 

of the energy dissipation in the lubricant layer  with a 

consequent increase of the local temperature.  This leads to 

potentially negative effects, such as the oxidation of the 

lubricant which in turn causes an increase of the viscosity.  

The selection of the optimal lubricant viscosity is thus the 

result of a careful tradeoff among several different needs. 

The explanation of the lubrication mechanisms has been a 

long standing research subject that started at the end of the 
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th

 century.  In particular, most of the research studies 

addressed the physics of the formation of the lubricant layer 

as a function of the operating conditions.  Except for the 

case of hydrostatic lubrication that uses an external power 

source to create the lubricant pressure necessary to create a 

separation between the two facing bodies, in all other cases 

the development of the lubricant layer is tied to the lubricant 

viscosity, to the relative motion between the two bodies and 

to the loads acting on them. Three main types of lubrication 

can be identified: hydrodynamic, elastohydrodynamic and 

boundary lubrication. 

Hydrodynamic lubrication occurs in journal bearings in 

which two conformal bodies are in relative motion and is 

originated by the relative sliding velocity between the two 

bodies. 

Elastohydrodynamic lubrication takes place in case of non-

conformal contacts subjected to large loads, such as the case 

of gears teeth and rolling bearings.  In this case, a very thin 

film of lubricant is created, that is anyhow sufficient to 

greatly reduce friction and wear.  Three main factors play a 

role: hydrodynamics, elastic deformation of the solid bodies 

under load and the characteristic of the viscosity increase 

with pressure.  This entails that only those lubricants 

showing a large increase of viscosity with pressure are 

suitable for elastohydrodynamic lubrication. 

Boundary and extreme pressure lubrication is the prevailing 

type of lubrication in numerous mechanical applications, 

such as the metal cutting tools.  This lubrication type is 

different from the previous two.  An extremely thin film of 

lubricant is created on a very hard material, which leads to a 

reduction of the shear stresses with consequent low friction 

forces.  The formation of the lubricant film mainly depends 

on the chemical properties of both the lubricant and the 

solid material.  

The complex interactions among surfaces, lubricant, 

contaminats and environment conditions sometimes lead to 

a temporary reduction of the friction forces, even if severe 

wear occurs. However in the long term, whichever is the 

lubrication mechanisms, degradation of the lubricant 

properties generally leads to an increased wear of the solid 

surfaces and to greater friction forces. These increse the 

dissipation of mechanical energy and in consequence the 

lubricant temperature rises. Thereby the degradation of the 

lubricant properties is accelerated. 

The lubricant positive action is not only limited to adhesion 

wear, consisting of the loss of material due to the mutual 

contact between the irregularities of the two solid bodies.  

Good lubrication also reduces abrasive, corrosive and 

oxidation wear.  The physical properties of the lubricant 

must be such to prevent the development of chemical 

reactions on the surfaces of the two solid bodies.  These 

chemical reactions can in fact entail a rapid wear of the 

bodies surfaces, especially when the reaction product 

consists of an oxide that can be easily entrained by the 

relative motion between the two bodies.  Chemical reactions 

can be originated by different chemical agents.  Of a 

particular interest is the case of the corrosive action of the 

lubricant itself.  The proper selection of the lubricant is not 

only dependent on its viscosity characteristics and on the 

operating pressure and temperature, but also on the chemical 

reactivity of the lubricant with the bodies materials.   The 

lubricant must be selected to be non-reactive with the 

materials of the lubricated surfaces; improper or anomalous 

operating conditions, or a prolonged use can however bring 

about chemical modifications of the lubricant which can 

then become a source of corrosion for the wetted materials.    

3. DEFINITION  OF  THE  LUBRICANT  HEALTH  STATUS 

Whichever is the lubricant type, whether its base stock is 

mineral or synthetic oil, and whether the lubricant is oil or 

grease, its health status is defined by a few measurable 

properties.  With reference to the fundamentals of 

lubrication outlined in the previous section,  the most 

significant features describing the lubricant health and its 

ability of performing its function are: 

 Viscosity 

 Corrosive behavior 

 Contamination level 

 Oxidation stability 

Other characteristics of the lubricant, such as pour, flash and 

fire points are important for the initial selection of the most 

suitable lubricant for a given application, but are less critical 

for defining the lubricant condition during its life. 

Viscosity is the most important parameter  for determining 

the lubrication function since it directly affects the thickness 

of the lubricant layer and the energy dissipation along the 

sliding surfaces.   The viscosity of a given lubricant depends 

on several factors, among which the amount of lubricant 

oxidation and the presence of water.  Moreover, for a 

lubricant in optimal conditions, the viscosity decreases 

rapidly with increasing temperature while it increases with 

increasing pressure.  Appropriate equations can describe the 

variation of the lubricant viscosity with temperature and 

pressure (Stachowiak & Batchelor, 2005). 

The level of contamination affects both the lubricant 

behavior and its life.  Water is a very common contaminant 

in the lubricant and reduces its viscosity, while promoting 

corrosion and oxidation of the bodies surfaces.  Other 

typical contaminants are sulphur and chlorine which are 

present in different amount in the base stock and must be 

removed in the refinment process. Sulphur and chlorine 

make the lubricant highly corrosive, though they might 

improve its characteristics when they are present in a 

minimal amount.  Debris coming from the wear of the 

sliding surfaces are a further common contaminant and their 
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measurement can provide an indication of the condition of 

the bodies surfaces.   

Although all the above mentioned features globally define 

the lubricant health status, the individual feature that has 

been recognized as mostly significant for monitoring the 

lubricant health and defining its remaining useful life is the 

degree of lubricant oxidation (Bowman & Stachowiak, New 

criteria to assess the remaining useful life of industrial 

turbine oils. Lubrication Engineering, 1996).  The presence 

of oxygen causes the lubricant molecules to chemically 

react with oxygen created corrosive compounds which also 

normally increase the lubricant viscosity.  This process takes 

place at any operating condition, but is enhanced by high 

temperatures and by the possible presence of catalysts.  The 

compounds produced by the lubricant oxidation are highly 

corrosive limiting the lubricant life.   

Resistance to oxidation  can be improved by a prolonged 

refining process for removing aromatic fractions of the 

lubricant as well as molecules containing sulphur, oxygen 

and nitrogen.  However, this is an expensive process which 

also has the drawback of decreasing the performance for the 

case of boundary lubrication.  Therefore, the increase of the 

lubricant life is normally pursued by introducing special 

additives into the lubricant that counter the effect of free 

radicals and peroxides created by the oxidation process. 

The conclusion of the analysis performed on the degradation 

of the characteristics of a lubricant was that though there are 

different possible degradation patterns, there is a compelling 

evidence that the most important root cause of lubricant 

degradation is the oxidation process of its molecules.  

Therefore, the amount of lubricant oxidation can be taken as 

the most significant feature for establishing the lubricant 

health and for determining its remaining useful life.  The 

techniques for measuring the degree of lubricant oxidation, 

their reliability and their possible applicability to develop a  

lubricant PHM methodology are outlined in the following 

sections of this paper. 

4. TECHNIQUES  FOR  MEASURING  THE  DEGREE OF  

LUBRICANT  OXIDATION 

The techniques for measuring the degree of lubricant 

oxidation can be divided in two groups: conventional and 

non-conventional techniques, which are briefly described in 

the following paragraphs.    

4.1. Conventional techniques 

The  best known conventional techniques are those defined 

by ASTM specifications, namely: RBOT (ASTM D2272), 

TOST (ASTM D943) and TAN (ASTM D974). 

The RBOT (ASTM D2272 - 11, 2009) method consists of 

putting a given amount of lubricant in a sealed volume 

containing oxygen and copper, and measuring the time 

necessary for the oxidation process to cause a defined 

decrease of the pressure inside the container. 

The TOST method (ASTM D943, 2010) measures the time 

necessary for 300 ml of lubricant to react with oxygen in 

presence of a catalyst based on iron and copper.  The test is 

concluded when the lubricant acidity reaches the level of 2 

mg of KOH/g. 

The TAN (Total Acid Number) (ASTM D974 - 12, 2011) 

method enables to determine the quantity (mg) of potassium 

hydroxide (KOH) necessary to neutralize 1 g of lubricant.  

The measure is performed taking advantage of a pH 

indicator.  The greater the concentration of acid corrosive 

compounds in the lubricant, the greater the quantity of 

potassium hydroxide needed for neutralizing the lubricant. 

All the above described methods are off-line type methods 

and are hardly usable for a lubrication PHM system in 

which the characteristic feature extraction must be 

performed on a regular basis with an on-line device and 

without commands issued by an operator.  Moreover, the 

test times of these methods are very long: from 40 hours of 

the RBOT method to even 1500 hours for the TOST 

method.  Therefore, a lubricant PHM system must rely on 

innovative non-conventional  methods that are presented in 

the following paragraphs. 

4.2. Sealed capsule DSC and Pressurized DSC 

Differential scanning calorimetry (DSC) is a new technique  

for analyzing the thermal properties of a fluid.  The DSC 

enables the determination of the characteristics of a 

lubricant sample by measuring the differences between the 

thermal fluxes through the test sample and a reference 

sample (typically oxygen) when the two samples are heated 

or cooled according to a specified procedure.  The 

temperatures differences between the test and the reference 

samples are proportional to the heat fluxes and are 

originated by endothermal or exothermal reactions 

occurring in the test sample.   

If the fluid under test is a lubricant, it is then possible to 

estimate its oxidation degree by measuring the induction 

time, i.e. the time necessary to obtain an impending 

oxidizing reaction in the lubricant (Sharma & Stipanovic, 

2003). If the test sample has a limited oxidation degree, 

there is a relatively high concentration of antioxidant agents, 

hence there will be a large induction time before an 

oxidizing reaction starts.  On the contrary, if the oxidation 

degree of the test sample is high, the induction time will be 

reduced.   

The standard DSC technique is however not suitable for the 

objective of developing a lubricant PHM system. The high 

volatility of most lubricants causes an appreciable 

evaporation during the test leading  to a loss of the lubricant 

mass that greatly disturbs the measuring process (Bowman 

& Stachowiak, Determining the oxidation stability of 
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lubricating oils using sealed capsule differential scanning 

calorimetry (SCDSC), 1996).  Modified techniques were 

thus recently developed starting from the basic DSC with 

the specific purpose of measuring the oxidation degree of a 

lubricant.  These techniques are known as High Pressure 

DSC (PDSC) and Sealed Capsule DSC (SCDSC) .    

Both PDSC and SCDSC are based on the same operating 

principle of the standard DSC, albeit with some differences.   

The PDSC operates in a very high pressure environment in 

which the lubricant evaporation is extremely low, while in 

the SCDSC the test and the reference samples are placed in 

sealed capsule, and no evaporation thus occurs.  In both 

these techniques the greater oxygen concentration also 

speeds up the lubricant oxidation, thereby reducing the 

measurement time. The PDSC technique was standardized 

by the ASTM D6186 specification (ASTM D6186 - 08, 

2003), but has so far been used only for research and 

development since the correlation between the results 

provided by these tests and the actual behavior of the 

corresponding lubricant in service has yet to be proven.  

4.2.1. SCDSC 

Among the different instruments developed to measure the 

lubricant induction time (OIT), a scansion differential 

calorimeter with sealed capsules presents several merits, 

both economically and for the quality of the measure.  In 

these calorimeters, the capsules are hermetically sealed in an 

environment with purified oxygen.  An appropriate selection 

of the test parameters (Bowman & Stachowiak, Determining 

the oxidation stability of lubricating oils using sealed 

capsule differential scanning calorimetry (SCDSC), 1996) 

enables to perform the test in a maximum time of 35 

minutes, which is much lower than required by the 

conventional techniques. 

This technique for measuring the oxidation degree of a 

lubricant was tested on lubricants with very different 

composition.  In particular, tests were conducted on oil for 

transformers, for turbines (Bowman & Stachowiak, 1998), 

for ground vehicles and also for vegetable oils (Fox, 

Simpson, & Stachowiak, 2001).  It is important to point out 

that not all tests led to clear and satisfactory results.  For 

instance, for the case of lubricants for ground vehicles when 

the OITs are plotted versus the oxidation times, the 

corresponding diagram is not monotonous decreasing, 

therefore the measurement of the OIT alone is not sufficient 

to define the oxidation degree.  On the contrary, tests 

performed on turbine oils are very accurate and promising 

(Figure 1). 

It is interesting to correlate the results obtained from the 

SCDSC tests with the kinematic viscosity and composition  

of the same lubricant (Figure 2).   

 

Figure 1. Induction time vs. oxidation time measured for a 

turbine oil by SCDSC technique (Bowman & Stachowiak, 

Determining the oxidation stability of lubricating oils using 

sealed capsule differential scanning calorimetry (SCDSC), 

1996) 

 

Figure 2. Percentage variations of a turbine oil inhibitor, 

carbonyl and viscosity vs. oxidation time for a turbine oil 

(Bowman & Stachowiak, Determining the oxidation 

stability of lubricating oils using sealed capsule differential 

scanning calorimetry (SCDSC), 1996)  

The percentage change of the quantities  shown on the y-

axis of Figure 2 refers to the variations with respect to a new 

oil; as for the viscosity, the initial value of the kinematic 

viscosity was 68 cS. The chemical composition can be 

determined with the Fourier transform infrared spectroscopy 

(FTIR), that enables to monitor the concentration of the 

antioxidants and of the oxidation products.   

As an example, for the case of turbine lubricants a larg 

increase of viscosity is noticed after 175 hours of oxidation 

induced at 140 °C in a laboratory.  The viscosity increase is 
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due to the polymerization of the lubricant molecules which 

on its turn is generated by the lubricant oxidation.  The 

sharp viscosity increase occurs when the antioxidant 

concentration is only 15% of its initial value, and this is the 

condition for which the lubricant remaining useful life is 

considered  to be zero (Bowman & Stachowiak, New 

criteria to assess the remaining useful life of industrial 

turbine oils. Lubrication Engineering, 1996).   

Measuring the antioxidant concentration is by itself not 

always sufficient to determine the oxidation degree of a 

lubricant.  Cases were observed in which the oxidation 

products remain small also for small amount of 

antioxidants, and cases were also observed with presence of 

high amount of oxides and antioxidants at the same time.   

The oxidation induced in a laboratory keeping the lubricant 

at a constant high temperature allows for measuring the time 

necessary to bring the lubricant life to the end. This time is a 

function of the oil temperature and of its contamination 

level. It allows for identifying on the diagram induction time 

vs. oxidation time the induction time ti for which the 

lubricant remaining useful life is reduced to zero. This time 

is a characteristics of the lubricant and a map of ti versus 

RUL can be created (Figure 3). 

 

Figure 3. RUL vs. induction time map for a turbine oil 

analyzed by the SCDSC technique (Bowman & Stachowiak, 

1998) 

For the case of a specific turbine oil the map obtained from 

a linear approximation has a correlation coefficient of 99%  

with experimental data from lubricant oxidized in a 

laboratory and from lubricants spilled from industrial plants.  

Of course, such very high correlation coefficient is not 

obtained for all lubricants that have been tested.   

It is interesting to notice that for some types of lubricants 

there is a fairly good correlation for the evaluation of the 

oxidation degree obtained from the SCDSC technique and 

from standard techniques (RBOT, TAN); a correlation 

coefficient up to 0.94 is obtained between SCDSC and 

RBOT techniques.  It is thus apparent that SCDSC is a 

technique to be positively considered in the implementation 

of a lubricant PHM system since it greatly reduces the 

measurement time with respect to the conventional 

techniques.   

A research was performed to assess the reliability of 

SCDSC in case water and metal particles are present in the 

lubricant.  There could be a risk of wrong estimate of the 

oxidation degree of a lubricant taken from industrial 

applications for which the contamination degree is not 

known.  Measurements of the induction time for lubricants 

contaminated with water, solid copper, solid iron and 

soluble iron ions (Bowman & Stachowiak, Application of 

sealed capsule differential scanning calorimetry part I: 

Predicting the remaining useful life of industry-used turbine 

oils, 1998) showed that only iron ions appreciably affect the 

induction time, but they are released only in case of very 

high corrosion and if sludges are present in the lubricant. 

4.2.2. PDSC 

In Pressure Differential Scanning Calorimetry (PDSC) the 

oil volatility is decreased by the high pressure making 

sealed capsules unnecessary. The reference and the sample 

are in the same environment and oxidation is promoted by 

oxygen flow rate.   

The OIT can be measured in two different conditions: 

isothermal method and temperature ramp method. For some 

specific combinations of oil additives the temperature ramp 

method results fit very well oxidation measures obtained by 

D 943 method, while for other combinations the results may 

present some differences (Sharma & Stipanovic, 2003). The 

ASTM D6186 method is an isothermal method, but the 

results do not correlate well with those obtained by D943 

method. This is the reason why the ASTM D6186 method is 

not used to evaluate the oxidation stability of used industrial 

oils. Extensive studies were made in order to improve the 

repeatability and accuracy of the results of isothermal 

method. For this purpose, multiple tests were performed by 

varying one parameter at a time (Sharma & Stipanovic, 

2003). In addition, researches proved that soluble metal 

catalysts improve the results and shorten the OIT measuring 

time. In conclusion, the optimized PDSC isothermal method 

showed some improvements against the ASTM D6186: 

shorter OIT, better results than ASTM method and good 

correlation with D943 for a set of oil with the same additive 

package. 

In general, thermal methods based on the DSC show a fairly 

good correlation between the thermal properties of the 

lubricants and their oxidation stability, so in the future these 

methods could be used in order to evaluate the oxidation of 

used industrial oils. Moreover, the time required to measure 

the oxidation stability (10 – 40 min) is significantly shorter 

than the standard methods.  Nevertheless, it is hard to 
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believe that they could be integrated in online prognostics 

and health management systems. They could, however, be 

worthy instruments for offline health monitoring programs. 

4.3. Electrochemical impedance spectroscopy 

The Electrochemical Impedance Spectroscopy (EIS) is 

widely applied to determine some properties of materials.  It 

allows for measuring the impedance of a fluid sample by 

applying a sinusoidal voltage signal V(t) with small 

amplitude V0 and with a frequency f while measuring the 

current response I(t). The impedance Z is the ratio of V(t) 

and I(t), hence it depends on the frequency f which usually 

varies in a wide range during a test (from μHz to GHz) 

(Lvovich, 2012). 

For an ideal impedance consisting of a parallel combination 

of an ideal resistor and an ideal capacitor the Nyquist plot of 

the impedance is a semicircle. But for real lubricants the 

results are different and they depend on the test conditions 

and the properties of the lubricant. The analysis of the 

experimental results leads to the development of an 

equivalent circuit model of the oil which is characterized by 

a similar Nyquist plot. In this way any variation of the 

experimental data caused by the oxidation process may be 

related to one or more variations of the equivalent model 

parameters (resistances and capacitors). 

Assuming that the test conditions are constant, the Nyquist 

plots of a not oxidized oil and of an oxidized one show 

some differences (Figure 4) because of their different 

chemical composition. By analyzing them it is possible to 

estimate the oxidation stability of the oxidized oil (Lvovich 

& Smiechowski, 2006). 

 

Figure 4. EIS measures concerning a fresh and an oxidized 

oil in Nyquist plot form (Lvovich & Smiechowski, 2008) 

Recent researches coped with lots of lubricants conditions, 

focusing on the contamination and oxidation influences on 

EIS spectrum. In the low–frequencies range, where some 

ambiguous results were collected in the past, improvements 

were gained by the application of the Non-linear 

Electrochemical Impedance Spectroscopy NLEIS (Lvovich 

& Smiechowski, 2008). However, the development  of 

equivalent circuit models able to describe physical and 

chemical processes concerning the interaction among 

electrodes, lubricant and other agents is very complex and 

requires extensive validation. To overcome this issue, some 

researchers tried to correlate EIS experimental data with 

laboratory tribology results (viscosity, TAN, soot 

measurement, etc) by applying Symbolic Regression and 

taking notice of the chemical interactions (Byington, 

Mackos, Argenna, Palladino, Reimann, & Schmitigal, 

2012). They implemented an online EIS equipment on 

several trucks in order to collect lubricant data continuously 

and in the meanwhile laboratory tests were conducted on oil 

samples taken from the trucks. The researchers were able to 

find out numerical models providing good correlation 

between the features generated by the oil condition monitor 

and the laboratory tests results by applying symbolic 

regression. Furthermore, since the models predicted well the 

laboratory tests results, they argued that the EIS oil 

condition monitor could be useful for assessing the health 

and estimating the RUL of the oils in mechanical 

equipments. 

The EIS has surely a great potential in lubricants analysis, 

prognostics and health management, but there are some 

critical issues affecting this method: long measurement 

sessions to gather the complete impedance spectra and high 

instrumentation cost because of the requirement of high 

quality electronic equipment, even if cheaper EIS 

instrumentation was developed (Carullo, Ferraris, Parvis, 

Vallan, Angelini, & Spinelli, 2000). As a consequence, its 

implementation cannot be satisfatory for several mechanical 

applications. 

4.4. Viscosity and Dielectric constant 

The researchers in the field of lubricant prognostics and 

health management tried to correlate measures of some 

physical properties of oils with their contamination (water, 

metallic particles and soot) and oxidation status. Most of all, 

oil viscosity and dielectric constant were investigated 

because of their sensitivity to both the contamination and 

the oxidation (Zhu, Yoon, He, Qu, & Bechhoefer, 2013). In 

particular, the dielectric constant measurement of a lubricant 

was performed by comparing the capacitance of a thin 

lubricant layer with the capacitance of  an air layer of the 

same dimensions (Raadnui & Kleesuwan, 2005). 

Online oil monitoring systems using both a kinematic 

viscometer and a dielectric constant sensor for prognostics 

and health management purposes were hence developed. 

Some interesting results were gained addressing the water-

contaminated lubricants. Indeed, the technical literature 

offers several numerical models able to correlate well 

viscosity and dielectric constant variations to water 

contamination level. It is therefore possible to define the 

contamination level by measuring these oil properties. Some 
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tests were carried out for increasing water contamination 

from 0% to 5% while the measurements of viscosity and 

dielectric constant were performed. The particle filter 

technique eventually showed a good correlation between the 

oil RUL and its viscosity and dielectric constant measures. 

However, the effectiveness of the method was not proven 

for different kinds of contamination or in case of oxidation. 

Kinematic viscometers and dielectric constant sensors are 

affordable and commercially available sensors and 

comparing with other instruments they could be fairly easily 

integrated in online oil monitoring systems. In addition, 

integrated sensors were recently developed for vehicle and 

aerospace applications measuring density, viscosity, 

dielectric constant and temperature of the oil at the same.  

In the authors opinion, the estimation of the lubricant health 

taking advantage of cheap sensors could give a valuable 

contribution for the development of an effective and reliable 

lubricant prognostics and health management system. 

However, more studies need to be conducted in order to 

identify the actual causes of lubricant degradation.   

5. DEVELOPMENT OF AN EFFICIENT LUBRICANT  HEALTH  

MONITORING  SYSTEM  BASED  ON  DATA  FUSION   

It was outlined at the beginning of this paper that the main 

objectives of the initial phase of the research were to 

identify the characteristic feature for lubricant deterioration, 

to perform a critical review of all existing techniques used 

to measure different properties of a lubricant and to 

eventually define the structure of an effective and reliable 

lubricant PHM system.  In particular, a comprehensive 

review of the existing techniques that can contribute to 

estimate the health status of a lubricant was summarized in 

section 4. It was shown that all the techniques providing a 

direct measurement of the lubricant oxidation degree do not 

suit well for a PHM system since they require long 

measurement times and cannot be used as on-line measuring 

devices.  The technique based on viscometer and dielectric 

constant sensor has the advantage of  being implementable 

in an on-line device, but it does not provide a direct 

measurement of the lubricant oxidation degree, which was 

recognized as the characteristic feature defining the 

lubricant health status.  Actually, the lubricant viscosity is 

affected by its degree of oxidation, but it can also be 

affected by other factors, such the amount of contaminants.  

It was shown that viscosity is heavily affected by the oil 

oxidation and its value can rise up to 140% of the initial 

value for significantly oxidized oils, but viscosity variations 

can also be generated by other factors, such as the presence 

of water and metal particles. 

The basic idea for the development of an efficient lubricant 

PHM system is then to combine the information provided 

by the measurements of viscosity and dielectric strength 

with that obtained from a particle detection sensor.  Data 

fusion and processing by means of suitable algorithms will 

thus allow the necessary feature extraction and the 

assessment of the lubricant health status. 

A further advantage of data fusion from multiple sensors is 

the possibility to compare data provided by different sensors 

to detect the cause of the lubricant degradation. This is of a 

great merit for an oil monitoring system oriented to real 

industrial applications. In fact, engineers usually are aware 

of the main issues concerning the degradation of a specific 

mechanical equipment working in a well-known 

environment, hence they choose additive packages to make 

the lubricant life longer. However, an issue is to actually 

understand which is the deteriorating agent being 

responsible for the lubricant replacement. Furthermore, 

detecting the origin of deterioration allows for evaluating 

correctly the available data. As an example, the dielectric 

constant of a lubricant grows for different types of 

contamination: water, metal particles and dust (Raadnui & 

Kleesuwan, 2005). Obviously it does not represent an issue 

for laboratory-contaminated samples, while it is an 

important issue if the sample has just been spilled from a 

mechanical drive. In fact, some contamination agents affect 

lubricant deterioration and some mechanical equipments 

wear more than others. 

The authors thus positively came to the conclusion that a 

reliable lubricant PHM system can be developed by fusing 

the information obtainable from two sensors: 

 

Figure 5. Structure of the proposed lubricant PHM system  
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 One-piece sensor able to measure viscosity, dielectric 

constant and temperature of the lubricant at the same 

time 

 Magnetic and/or optical particle detection sensor 

These sensors provide necessary  and sufficient data for 

calculating the lubricant oxidation level, hence its health 

condition.  In fact, as it was previously described, the 

variation of the lubricant viscosity is strictly related to its 

oxidation level, but the viscosity measure requires 

compensation for oil temperature variation and water 

contamination.  However, temperature is also measured by 

the one-piece sensor and the water amount can be 

determined by fusing the information on the value of the 

dielectric constant measured by the the one-piece sensor and 

the data obtained from the particle detection sensor which 

allows the PHM system for determining if the dielectric 

constant variation is a consequence of only water 

contamination, only particle contamination or both. At the 

same time his sensor provides information about the health 

of the mechanical components. 

The described oil health monitoring system has then the 

following main features: 

 It is an on-line system, hence suitable for being used in 

an operating equipment such as an actuator, or a 

mechanical drive 

 Sensors are cheap and commercially available. In 

addition they could be easily integrated in an online 

monitoring system 

 Data fusion can lead not only to the evaluation of the 

oxidation degree, but also to the identification of the 

amount of water and particles contamination, thereby 

allowing to better define the lubricant degrading agent  

It is important to emphasize that the proposed PHM system 

is not intended as a possible replacement to standard 

measurement techniques, but as a system to be applied in 

operating mechanical equipment for a continuous 

assessment of the lubricant health status.  Its purpose is to 

perform a robust numerical correlation between multiple 

lubricant physical properties that are easily measurable, and 

its oxidation degree, thereby allowing the implementation of 

a lubricant PHM system suitable for industrial applications.  

Having defined the lubricant PHM philosophy and the 

associated sensors suite, the next step of the research will be 

focused on the development of the algorithms needed to 

perform data fusion and RUL estimate, as well as run 

simulations to assess the PHM system robustness. 

Following that, the final step will be the PHM system 

validation. 

Validation can be performed by testing laboratory-prepared 

samples characterized by different contaminating agents 

amount and different oxidation levels. The first step will 

concern the PHM system ability to detect and measure the 

contaminants and whether it is able to correctly estimate the 

water contamination level by simultaneously measuring the 

oil debris and the oil dielectric constant. 

Furthermore, numerical models performing the viscosity 

and the dielectric constant compensation that were already 

successfully validated for non-oxidized oils, need to be 

validated also for oxidized and contaminated oils. 

Last, after the PHM system proves its capability of 

calculating correctly the compensated-viscosity, it will be 

important to find out if the measurement of the dielectric 

constant could be used to further improve the estimate of the 

lubricant oxidation degree. 

6. CONCLUSIONS  AND  FURTHER  WORK 

The initial phase of a research activity being performed by 

the authors on health management and prognostics of 

lubricants was described, highlighting the most important 

causes of lubricant degradation and how it is possible to 

measure them by conventional and non-conventional 

techniques. 

Furthermore, an original and innovative PHM system for 

lubricants is proposed. It employs two commercially 

available sensors (a magnetic oil debris sensor and a multi-

purpose sensor) which can be easily integrated in an online 

lubricant monitoring system. It is the authors' opinion that 

this system enables to reliably detect type and amount of 

contaminating agents and the oxidation degree of the 

lubricant, thereby providing all necessary information to 

develop an industrially applicable PHM system for a 

lubricant. 

The next step of the research activity will address the 

process of  data fusion enabling to achieve robust and 

reliable estimation of the oil contaminants and of the 

oxidation degree. It will then be possible to move to the  

final goal of the research: the development and the 

validation of  effective algorithms for lubricants RUL 

evaluation. 
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ABSTRACT

One of the most evident characteristic of wear for a turbofan 
engine is the exhaust gas temperature (EGT). It seems clear 
that this temperature increases when some carbon deposits 
on the turbine, when the compressor efficiency diminishes
so the fuel flow should increase to produce the same amount 
of thrust, or even when some unbalance opens the spaces 
between the turbine and the casing. In any cases, an increase 
of the EGT should be analyzed because it is a wear 
symptom of the engine. It is mostly concluded by a water 
wash in the best case or a shop visit inspection and repair in 
the worst case. The engine manufacturer defines a schedule
plan with its customer based on consumption of the EGT 
margin. This margin is the amount of available increase of 
the exhaust temperature before an inspection. Contractually, 
the engine is restored with a minimum EGT margin after 
each repair. Thus it is up to the manufacturer to understand 
how this margin is used to plan shop visits and to the 
company to estimate the current state of its engine. However 
the EGT measurement is subject to a lot of noise and the 
company regularly washes their engines to increase 
randomly the margin and their capabilities. In this article we 
present a simple, automatic and embeddable algorithmic 
method to transform the successive EGT measurements in a 
delay indicator computed after each flight giving the amount 
of available use time. One challenge is to take care of the 
random wash or repair executed by the user. Finally this 
indicator may be transmitted automatically with the other 
data broadcasted by the aircraft computer (ACMS/ACARS) 
and it is used by the manufacturer to prepare his shop 
logistic.

1. INTRODUCTION

Snecma is an engine manufacturer and produces turbofan 
for most of the short and medium range applications. For 

medium range specific fleets, aircrafts is doing around 4
flights per day whereas most of short range aircrafts are 
doing around 10 flights per day. During each flight,
measurements are recorded on each engine. They are 
capitalized on the aircraft computer (ACMS) with other 
navigation observations such as the altitude, mach speed, 
etc. During each takeoff and a stable cruise phase a snapshot 
of measurement is broadcasted to the ground for monitoring.

Table 1. Short list of some snapshot measurements.

The ground operator follows each engine flight after flight.
In fact there are three phases in the ground monitoring 
process as pictured on Figure 1 next page. The first one is a 
fast answer mainly based on FADEC error detections (the 
engine control computer); the second one is the trend 
monitoring we are interested in this article and which deals

_____________________
Jérôme Lacaille et al. This is an open-access article distributed under the 
terms of the Creative Commons Attribution 3.0 United States License, 
which permits unrestricted use, distribution, and reproduction in any 
medium, provided the original author and source are credited.
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with successive flights of the same engine; and the last one 
is fleet monitoring (Lacaille & Come, 2011a) that compares 
engines to establish a prognostic on its internal state. 

Trend monitoring algorithms look at successive snapshots 
of observations to help the fleet manager analyzing the wear 
trend of the engine. Some algorithms detect sudden changes 
of the engine behavior (Lacaille & Come, 2011b; Lacaille & 
Nya Djiki, 2009; Lacaille, 2009a) and classify the type of 
change (Bellas, Bouveyron, Cottrell, & Lacaille, 2012, 
2013; Come, Cottrell, Verleysen, & Lacaille, 2010; Cottrell 
et al., 2009; Flandrois, Lacaille, Masse, & Ausloos, 2009; 
Lacaille, 2009b). 

The EGT margin algorithm just looks at the exhaust 
temperature to predict a given drop and anticipate the need 
for a potential water wash or shop visit if the margin is 
really small.

2. MEASUREMENTS

The EGT margin is the difference between a maximum 
admissible value for the specific engine application and the 
observed temperature measured just before the exhaust 
nozzle. This value is given in °C and decreases
progressively to zero. The maximum value corresponds to 
the certified maximal admissible temperature for an engine 
type. The value subtracted to this maximum threshold is an 
estimation of this maximal value for the current engine 
when measured at sea level with an external temperature 
equivalent to standard value plus 15°C during the most 
stressful moment of the takeoff. However, even if acquired
with lot of care this measurement still depends on actual 
external conditions, engine thrust, aircraft speed. A 
normalization procedure is applied to suppress these last 
dependencies. This normalization is an analytical certified 
computation and a mathematical analysis (Lacaille, 2010)
confirms the precision of this result.

For example, on Figure 2 the first plot shows the original 
measurement of an exhaust gas temperature during 300 
successive flights. These measurements highly depend on 
external conditions like the flight mission: altitude, speed 

gross weight, localization (sea, land or desert) instant of 
acquisition and external conditions: weather, wind… 

Figure 2. Normalization of the EGT measurement.

The two graphs have the same scale, they are centered on
the EGT mean value; the top one is the original acquired 
measurements and the bottom one is the normalized data. 
Green dashed lined corresponds to 3 bounds and red 
dashed lines to 6.

Figure 3. Plot of an exhaust gas temperature margin for an
example engine.

Figure 1. Three different diagnostic levels and a web service.
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A margin computation example is presented on Figure 3. It 
is based on normalized data. One observes that instead of 
continuously decreasing as we may have anticipated; the 
signal is subject to random oscillations. To deal with this 
behavior we tried two approaches. The first one directly 
captures this phenomenon with a dynamic model of the 
temporal evolution. This algorithm is detailed in the next 
section. The second approach assumes that if the margin 
grows, it is because the airline decides an intervention on 
the engine: a water-wash for example. Then it may not be so 
important to deal with increasing margin and we just try to 
analyze the downward trends. This second solution is much 
simpler and may be efficient for the airline but not for the 
MRO to improve the shop logistic.

The next plot (Figure 4) presents a weekly smoothed version 
of the preceding signal. This signal clearly presents the 
oscillations of the margin over time. It seems that the 
increasing steps appear regularly but with different effects.

Figure 4. Moving average of the EGT margin measurement 
over a week.

The goal of the study is to estimate the probability to cross a 
minimum threshold before a given horizon h. In general this 
horizon corresponds to the necessary notice before an 
engine maintenance operation. This is the real need for 
maintenance operators and it is schematized on Figure 5 by 
a computation of the probability of detection (POD) after 
time t+h. We will also produce lower bound of the time left 
before crossing this threshold.

It is sometime easier to think about an estimate of the 
remaining useful life (RUL) and eventually to produce an
indicator that corresponds to the probability that this RUL is 
less than a given delay. On Figure 5 we also introduce the 
probability of failure (POF) which is the probability that the 
remaining useful life is less than h.

Figure 5. We introduce two output indicators: the 
probability of failure (POF) directly linked to the remaining 

useful life (RUL) and the probability of detection (POD) 
used in the maintenance logistic.

3. ANTICIPATION ALGORITHM

A nice method to anticipate a continuous process is to 
model its behavior with an autoregressive model and then 
filter the signal with a Bayesian update of the state. The 
standard way to use dynamic filter for anticipation purpose 
is to throw particles with a sampling scheme (Liu, 2001). 
However the particle filters or other equivalent Bayesian 
derived algorithms (Kalman, extended or unscented filters) 
need an input about the dynamic model to follow (An, Choi, 
& Kim, 2012), (Saxena, Goebel, Field, & Filter, 2012). In 
our case, the evolution of the EGT margin is unknown and 
probably depends on the company process. We need for 
example to find if it is possible to anticipate the availability 
of airport technicians for water washes, and it probably 
depends on the airline politics and its financial stress. 
Anyway we may assume some regularity and try to find a 
good autoregressive model: one that predicts this behavior 
depending on the past observations.

The mathematics to retrieve a good autoregressive (ARMA) 
model from observations is given in (Lacaille, 1998) with 
possible adaptation to non linear neural models. But most of 
today’s algorithmic toolboxes are able to fit autoregressive 
models.

Hence it is possible to retrieve a hidden state (��) from 
observations (��) where

��� = ����� + ��
�� = �����

� (1)

with (��) a process noise, � the state transition matrix and �
the observation matrix that define the dynamic system. The 
main problem is to find the good rank of the system
(dimension of the transition matrix �), but a good guess is 
given using some information criterion like AIC (Akaike 
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information criterion) which was specifically built for this 
purpose). This model estimation is done after each new 
observation and for each different engine. The observation 
set taken into account for learning extends from six month 
to one year of observations (~1000 flights) in our study.

The second step, once the dynamic captured on the past 
observations, is to use a sampling algorithm to simulate 
particles (probable trajectories) and infer a probability to 
cross a threshold before a maximum time allowed by the 
company rules and the availability of a technical team to 
realize the maintenance operations.

Figure 6 presents the preceding curve where only the first 
75% of the first flights are used for learning the dynamic 
model. Then a sampling algorithms simulate this model, 
weights are given to each trajectory according to the filter 
relevance computed on the first “observed” 75% points. The 
blue-to-green curves at the end of the graph shows the 
results of the simulations (100 particles in this case). In fact 
the dynamic is not sufficiently regular to establish a real 
prediction. We don’t capture any regularity in time or in 
size, hence the probability density of the particles after three
months (~300 flights) is almost a Gaussian noise.

Figure 6. Estimation of the future of the margin at 75% of 
the available data. The blue-green color map shows the 

weight of the different particles. Green trajectories represent 
particles with higher weights.

However, three month anticipation is definitely too 
optimistic. Figure 7 is a zoom of the preceding graph near 
the anticipation point. One week corresponds roughly to 25
points and most of the repair procedures may be realized in 
two days (less than 10 flights) so even if this tool is not very 
efficient we should not be too hard with ourselves.

Figure 7. Zoom of the preceding estimation. The black 
curve presents the weighted mean of all trajectories.

4. SKIPPING THE AIRLINE INTERVENTIONS

In fact the underlying problem is much simpler if we don’t 
bother with the random increases of the margin. We 
understand that those phases are completely unnatural 
because an engine cannot repairs by itself. Margin increases 
are the result of company operations and the widths of those 
phases are only computation artifacts due to smoothing and 
variation of the acquisition context.

We suppose that the statistic model of the step process 
��� = ���� − �� behind our observations is an independent 
process decomposable into two independent parts:

��� = �� +	���� (2)

 a decreasing part ��~�(−�, ��) for example with a 
Gaussian distribution with a constant negative trend
– �;

 and a step function representing the airline maintenance 
operation build from a product of a binomial 
distribution and a positive gap ����
- where ��~�(�) with a small probability � to fire 

an maintenance operation;

- and a ��~��+�, ��� with also for example an 
Gaussian behavior and a gap of mean size � which 
is supposed positive and greater than normal trend  
�.

We are only interested in the decreasing part modeled by ��, 
hence the best way is to find a set of instants � where �� = 0
The probability to have a maintenance operation is � =
�(�� = 1) is supposed small, so we will detect big gaps and 
neglect measurement around those instants.

Figure 8 presents the result of such a detector. The graph 
shows points localized around wide separated instants as we 
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imagined. The smoothing process and previous 
normalization procedure may induce some artificial 
thickness but as the number of other (decreasing) points is 
great enough for a model, so we may just ignore all detected 
instants without much loss and no risk to pervert the 
estimation of � and �� by mixing other distributions.

Figure 8. Search of the decreasing phases of the EGT 
margin. The observations where the EGT margin decreases 

are concentrated on small periods. The duration of those 
intervals is only a computation artifact due to the trend 

estimation.

Once all maintenance intervals suppressed from our dataset 
we concatenate the decreasing phases by just adding the 
necessary bias at each phase to ensure to obtain a 
continuous curve (Figure 9).

Figure 9. Concatenation of decreasing EGT margin phases. 

Each small curve is added after the preceding, with 
corresponding bias to ensure continuity. In fact we begin 
with the last measurements (the last interval of data), then 
we concatenate to the left the preceding measurements’
interval and so on. This is done by progressively adding 

from right to left the values of the variations ���� = ���� −
��. The last values of the last packet correspond to the real 
observations (higher values have no meaning, just the 
general trend is important.)

With no surprise the resulting curve is almost linear. The 
prediction shown on Figure 10 is a lot simpler. This time no 
real need to learn the dynamic of the signal: only the main 
trend is enough. However the algorithm used is still a 
particle filter because on younger engines like the one 
plotted on Figure 11 the behavior is not strictly linear but 
has a slow decrease of its trend. 

Figure 10. Prediction of the linear trend with a particle filter. 
The dynamic filter is just used here for presentation so we 

can observe the variance of the trend coefficient.

Figure 11. A younger engine with a slow decrease of its 
margin trend.

Eventually the final algorithm should not use a dynamic 
filter if a simple regression is sufficient to estimate the trend 
which value follows a Student law easy to estimate (Besse, 
2003).
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5. VALIDATION RESULTS 

There are two required outputs of the algorithm. Those 
outputs are validated on an experiment set. A validation 
experiment is a selection of an engine at a given time with 
EGT margin computations for the 500 past flights for 
calibration and 200 next flights for confirmation. We used a 
set of � = 150 such experiments built on 50 different 
engines and 3 observation times per engine. We took wide 
intervals between each selected time instant in the engine’s 
lives to get rid of local dependencies. 

5.1. Estimation of the RUL for 10% of relative decrease 
of the margin

The requirement was to give an estimation of the RUL 
corresponding to a decrease of 10% of the last measure of 
the margin. This estimation should be given with a maximal
lower bound Δ�� set at 95% of the distribution of the RUL 
estimation.

��������% ≥ Δ��� = 0.95 (3)

where the ������% is the delay after current time t before the 
EGT margin �� cross a threshold that corresponds to a gap 
of 10% of its current value.

Figure 12 shows a distribution of the RUL on our set of 
experiments.

Figure 12. Distribution of the RUL computed on our 
experiment set.

This first output may be used as an alert indicator. Suppose 
we asked the client company to repair its engine at time 
� + Δ��. Then the main mistake is to miss the threshold and 
wait too long. Our quality indicator is the proportion of 
misdetections ����� on a set of �	experiments. We will also 
look at the distributions of the delay error (or misdetection 
error) because it can modulate our result.

����� =
1
��1{��� ����}

�

���
(4)

On a set of 150 experiments we obtain

����� = 22.1% ± 6.5% (5)

The 6.5% value after the proportion corresponds to a 
symmetric confidence interval computed by cross validation 
on the experiment set.

The next graph (Figure 13) shows a box plot of the 
misdetection errors.

Figure 13. The delays of misdetections.

We observe that the values for those misdetections are 
around 30 flights and less than 50 with a 95% probability.
This is less than two weeks of error for less than 25% of the 
estimations.

5.2. Probability to cross the 10% margin before one 
month (100 flights)

������% = �(�� − ������ ≥ �� ∗ 0.1) (6)

This second output is the probability that we cross a 
threshold before one month. The main goal of this algorithm 
is to space unnecessary interventions on the engine. The risk 
there is to prepare the shop when it was not really needed. 
Our quality indicator is a rate of unnecessary alerts ��� , 
which should be as small as possible. Figure 14 presents a 
plot of the probability computation according to the real 
observed RUL.
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Figure 14. The probability to cross the threshold after a 
horizon of one month according to the real observed RUL.

The problem appears for observations on the upper right 
corner of this plot: when the probability is high and the 
RUL far away (after the month horizon). Arbitrary setting a 
probability threshold of 50% one may compute the rate of 
unnecessary alerts as

��� =
1
��1{(���.�)&	(��� ����)}

�

���
(7)

This computation gives

��� = 6.5% ±3.7% (8)

The 50% threshold seems to be a logical choice for decision 
purpose when one observes a probability of degradation and 
want to decide if an alert should be emitted.

6. CONCLUSION

We built a really simple algorithm able to predict with good 
efficiency the evolution of the EGT margin. The risks 
associated with both output uses (time or probability) are 
well mastered and not too big. In the first case the prediction 
error is of at most two weeks for a really small number of 
cases when the RUL estimation for 10% of margin decrease 
is between one to two months. On the other hand, the 
probability of threshold crossing before one month 
generates less than 10% early interventions.

The next step is to build a general decision rule based on 
both outputs which will help us to better master the risks.

NOMENCLATURE

ACARS Aircraft Communications Addressing and 
Reporting System

ACMS Aircraft Condition Monitoring System
AIC Akaike Information Criterion
ARMA Auto Regressive and Moving Average
LASSO Least Absolute Shrinkage and Selection 

Operator
FADEC Full Authority Digital Engine Control
MRO Maintenance and Repair Overhaul
OSA-CBM Open Systems Architecture for Condition-based 

Maintenance
PFA Probability of False Alarm
POD Probability Of Detection
POF Probability Of Failure
RUL Remaining Useful Life
SAMANTA Snecma Algorithm Maturation And Test 

Application
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ABSTRACT 

The Electronic Return-less Fuel System (ERFS) manages the 

delivery of fuel from the fuel tank to the engine. The pressure 

in the fuel line is electronically controlled by the fuel system 

control module by speeding up or slowing down the fuel 

pump. This allows the system to efficiently control the 

amount of fuel provided to the engine when compared to 

vehicles equipped with a standard fuel system wherein the 

fuel pump continuously runs at full speed. A failure in the 

fuel system that impacts the ability to deliver fuel to the 

engine will have an immediate effect on system performance. 

Consequently, improved reliability and availability, and 

reduction in the number of walk-home situations require 

efficient fault detection, isolation and prognosis of the ERFS 

system. This paper develops and implements data-driven 

fault detection, isolation and severity estimation algorithms 

for the ERFS. The HIL Fuel System Rig and a Chevrolet 

Silverado truck were used to collect and analyze the fuel 

system behavior under different fault conditions. Several 

data-driven classifiers, such as support vector machines, K-

nearest Neighbor, Discriminant analysis, Bayes classifier, 

Partial- least squares, Quadratic and Linear classifiers, were 

implemented on a limited set of data for both training and 

testing. Regression techniques, such as Partial least squares 

regression and Principle component regression, are used to 

estimate the severity of faults. The resulting solution 

approach has the potential to be applicable to a wide variety 

of systems, ranging from automobiles to aerospace systems.  

1. INTRODUCTION 

Electronic Return-less Fuel Systems (ERFS) are fast 

replacing the traditional mechanical fuel delivery systems to 

transport fuel from the vehicle’s fuel tank to the fuel rails and 

fuel injectors. In the ERFS system, the Fuel System Control 

Module (FSCM) regulates the pressure on the fuel lines to a 

desired pressure command from the Engine Control Module 

(ECM) based on the required engine speed by varying the 

pulse-width-modulation (PWM) control of the fuel pump. A 

fuel filter and a pressure regulator may be positioned on the 

respective intake and outlet sides of the fuel pump. Filtered 

fuel is thus delivered to a fuel rail, where it is ultimately 

injected into the engine cylinders. An ERFS includes a sealed 

fuel tank and lacks a dedicated fuel return line. The regulation 

of the fuel rate to the injectors improves the fuel economy 

and eliminates liquid recirculation to the fuel tank. The fuel 

economy is improved by reducing the electrical load on the 

alternator and by reducing the rail pressure under most 

operating conditions. With return-less systems, there is no 

return line and no circulation of fuel back to the fuel tank 

from the engine. Consequently, there is no heating of the fuel 

in the tank and no increase in fuel vapor pressure from driving 

the vehicle. This reduces the risk of excessive pressure build 

up inside the fuel tank, vapor leaks, and potential 

improvements in air/fuel ratio control, and vehicle’s emission 

performance. 

Diagnostic and prognostic methods have mainly evolved 

upon three major paradigms, viz., model-based (Chiang, 

Russel, & Braatz, 2001), data-driven, and knowledge 

(experience)-based approaches. The model-based approach 

uses a mathematical representation of the system and thus 

incorporates a physical understanding of the system into the 

monitoring scheme. A major advantage of the physics-based 

_____________________ 

Bharath Pattipati et. al. This is an open-access article distributed under the 

terms of the Creative Commons Attribution 3.0 United States License, which 

permits unrestricted use, distribution, and reproduction in any medium, 

provided the original author and source are credited. 

Annual Conference of the Prognostics and Health Management Society 2013

57



Annual Conference of Prognostics and Health Management Society 2013 

 

2 

model is that the model bears certain behavioral resemblance 

to the actual system, which can be very useful in the design 

of a diagnostic procedure. However, models developed from 

first principles are seldom used for fault diagnosis in 

automotive industry mainly because of their complexity. In 

addition, automotive system dynamics are often nonlinear, 

Figure 2. GMT 900 based Hardware-in-the-loop rig 

Figure 1. Framework for real-time fault detection and diagnosis of fuel systems 
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which renders the design of fault diagnosis procedures 

difficult. However, with the advances in computing and an 

improved understanding of automotive systems, the design of 

model-based diagnosis schemes is expected to be integrated 

into the concurrent engineering design process. Model-based 

methods use statistical estimation techniques based on 

consistency checks (often termed residuals, “deltas”) 

generated using observers (e.g., Kalman filters, reduced-

order unknown input observers, interacting multiple models, 

particle filters) and parity relations (dynamic relations among 

measured variables) to track the component degradations. 

A data-driven approach to fault diagnosis and prognosis is 

preferred when system models are not available (e.g., when 

subsystem vendors do not share models for competitive 

reasons), but instead system monitoring data is available 

(Namburu, Azam, Luo, Choi, & Pattipati, 2007). Here, failure 

prognosis involves forecasting of system degradation and 

time-to-failure based on “state awareness” gleaned from 

monitored data. Neural network and statistical classification 

methods are illustrative of this approach. The fault scenarios 

must span the universe of system faults for data-driven 

approaches to be effective. Mathematical models may be 

derived (estimated or “identified”) from data as well. Data-

driven models include static models and dynamic models. 

Static models include linear and polynomial models, and 

look-up tables. Dynamic models include dynamic linear and 

nonlinear system models. 

Knowledge-based systems are based on the methods and 

techniques of artificial intelligence. The core components of 

these systems are the knowledge base and the inference 

mechanisms. Examples of knowledge-based systems are: 

rule-based systems, case-based reasoning systems, and 

graphical models (Luo, Tu, Pattipati, Qiao, & Chigusa, 

2005). Examples of graphical models include: signed 

directed graphs, multi-signal flow graphs, Petri nets, and 

Bayesian networks (Luo et. al., 2006). 

Conventional diagnostic techniques for a vehicle fuel system 

typically rely on knowledge of a prior failure condition.  For 

example, when servicing a vehicle, the maintenance 

technician may determine that the fuel pump requires repair 

or replacement by direct testing and/or review of a recorded 

diagnostic trouble (error) code. This reactive diagnosis may 

not occur until vehicle performance has already been 

compromised. A proactive approach which tracks 

degradations in a fuel system is more advantageous than a 

reactive approach, particularly when used with emerging 

vehicle designs utilizing an ERFS. 

In this paper, the fault detection and isolation problem of 

EFRS is characterized and some basic definitions are given. 

The main idea of fault diagnosis is to determine if there is any 

fault or abnormal behavior is present in the system, and to 

localize (isolate) the fault. In order to detect and localize the 

fault, a diagnosis system is needed. The diagnosis systems 

exploits the known signals, i.e. input signals such as control 

signals, and measured output signals from the system under 

diagnosis, to infer the fault. 

The problem of fault diagnosis can be divided into several 

sub-problems. Here, we focus on three: 

• Fault Detection: To determine if a fault is present in the 

system and usually the time when the fault has occurred. 

• Fault Isolation: Determination of the location of the fault, 

i.e. which component or components have failed. 

• Fault Severity (Estimation): Determination of the size and 

possibly time-varying behavior of a fault. 

The three sub-problems are closely nested, and many 

algorithms cover several of them. 

The focus of this paper is to develop data-driven fault 

isolation, and severity estimation algorithms based on neural 

network and statistical pattern recognition techniques 

exemplified by Support Vector Machines (SVM) (Vapnik, 

1995), (Ge, Du, Zhang, & Xu, 2004), (Smola, Bartlett, 

Scholkopf, & Schuurmans, 2000), k-Nearest Neighbor 

(KNN), Principal Component Analysis (PCA) (Jackson, 

1991), Partial Least Squares (PLS) (Bro, 1996), Gaussian 

Mixture Models (GMM), Discriminant Analysis, and so on 

(Bishop, 2006), (Duda, Hart, & Stork, 2001), and validate 

them based on fault injection in the HIL bench and the 

Chevrolet Silverado truck. We also estimate the severity of 

the isolated fault by PLS and principal component regression. 

The techniques chosen in the paper are based on popularity, 

range of complexity, robustness, data structure, and to assess 

the difficulty of the classification and regression problem. 

The paper is organized as follows. Section 2 presents the 

overall framework for real-time fault detection and diagnosis 

of fuel delivery systems. Section 3 presents the neural 

network and statistical pattern recognition techniques. 

Section 4 presents the results of these classification and 

regression techniques for fault isolation and severity 

estimation on real data collected from the Chevrolet 

Silverado truck and the HIL rig. In section 5, we present the 

implementation of these data-driven techniques, embedded 

software in Simulink®, which can be used for real-time fault 

isolation and severity estimation. Finally, section 6 concludes 

the paper with summary and future research directions. 

2. FRAMEWORK FOR REAL-TIME FAULT DETECTION, 

ISOLATION & SEVERITY ESTIMATION OF FUEL 

DELIVERY SYSTEMS 

The Fault Detection and Diagnosis (FDD) process consists of 

an offline training phase and an online testing phase. Figure 

1 depicts the block diagram of a real-time FDD scheme for 

the fuel delivery system.  

During the steady-state detection, a model-based detector 

based on residuals, parity equations, regression, and 

parameter estimation techniques is implemented on the ECU, 
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and detects the fault and estimates the state of health (SOH) 

during real-time operation of the vehicle. This model-based 

algorithm will be presented in a future paper. The nominal 

residuals for system operation are obtained during the offline 

phase via HIL rig experiments, and testing and validation is 

performed on the Chevrolet Silverado truck data collected at 

Milford Proving Grounds, and the faults detected in real-time 

conditions based on these nominal conditions. 

In the offline phase, steady-state sensor data from different 

fault classes is used to train two fault classifiers, the Support 

Vector Machines (SVM), and the k-Nearest Neighbor 

(KNN). Partial Least Squares (PLS), and Principal 

Component Regression (PCR) estimators were also trained to 

assess the fault severities after fault isolation. The trained 

classifiers and their corresponding parameters and/or weights 

are exported to the online module for real-time FDD. An 

optimal sensor selection block is used to select the significant 

sensor suite for maximum diagnosability.  

The online FDD phase consists of three steps: fault detection, 

fault isolation or classification, and fault identification or 

severity estimation. In the fault detection step, the steady-

state model based detector analyses the residuals generated 

from the steady-state measurements of faulty and nominal 

systems. Upon detection of a fault, trained classifiers (SVM 

and KNN) are used for the online categorization of faults. In 

the next step, the PLS and PCA estimators corresponding to 

the isolated fault are used to determine its severity. 

3. FAULT UNIVERSE 

The fuel pump is an electronically controlled closed-loop 

system that maintains a desired fuel system pressure (~ 400 

KPa for GMC 900 truck) and provides fuel flow on-demand 

to the engine under all operating conditions. The five critical 

fuel pump faults considered in this paper are listed in Tables 

1 and 2. The faults in Table I correspond to those in GMT 

900 truck and the faults in Table II are for the HIL Rig.  

Altogether, fault injection experiments were performed with 

a commonly occurring motor/fuel pump fault, 2 sensor faults 

(pressure and current sensors), a pump module fault, and a 

fuel line fault. The fuel pressure and current sensors are 

located anywhere between the fuel pump and fuel rail, and 

the pressure and current sensor bias faults are often difficult 

to isolate, especially between each other, as current bias 

shows up as pressure bias and vice-versa. As the fuel pump 

degrades with age, the motor winding resistance increases 

and consequently, the pump PWM increases to supply the 

same desired pressure. A positive and negative pressure 

sensor bias results in the pump drawing less and more current 

respectively to compensate for the sensor errors. The Filter 

plugged fault is a result of the pump filter being blocked or 

clogged, and the effect of a leakage in the fuel line is 

represented by the fuel leakage fault.  

The 2 faults in Table 1 were conducted at 2 different severity 

levels using a pressure and resistance box, respectively. 

However, since the HIL Rig allows for more flexibility, the 

winding fault was conducted at 10 different severity levels, 

and the pressure sensor bias fault, current sensor bias fault, 

filter plugged fault and fuel leakage faults were conducted at 

4 severity levels as summarized in Table 3. The severity 

levels experiments of the winding fault, pressure and current 

sensor bias faults were conducted by adding resistances 

(resistance box), adding (positive) and subtracting (negative) 

pressure (pressure box), and injecting current, to the pump 

resistance, pressure, and current correspondingly. The filter 

plugged and fuel leakage fault experiments were conducted 

by restricting the fuel flow using valves (flow restrictor in 

Figure 2). The severity levels were chosen to represent the 

degradation of a fuel pump from low (operating normally) to 

high (end-of-life).   

Table 1. Fault universe for GMT 900 truck 

Fault Fault Type 
Compo

nent 

F1.1 
Pressure Sensor Bias  

(Slew 9.3 on pressure box) 

Fuel 

Line 

F1.2 
Pressure Sensor Bias  

(Slew 9 on pressure box) 

Fuel 

Line 

F2.1 Winding Fault (1 Ω resistance added) 
Pump/

Motor 

F2.2 Winding Fault (0.66 Ω resistance added) 
Pump/

Motor 

 

Table 2. Fault universe for HIL rig 

Fault Fault Type Component 

F1 Winding/Commutator Fault Pump/Motor 

F2 Pressure Sensor Bias Fault Fuel Line 

F3 Current Sensor Bias Fault Fuel Line 

F4 Filter Plugged Pump Module Fault 

F5 Fuel Leakage Fault Fuel Line 

 

Table 3. Severity levels of each fault for HIL rig 

Winding 

Fault 

Pressure 

Sensor 

Bias 

Fault 

Current 

Sensor 

Bias 

Fault 

Filter 

Plugged 
Fuel Leakage Fault 
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0.3158 Ω 

0.4 Ω 

0.5 Ω 

0.66 Ω 

0.75 Ω 

1 Ω 

1.2 Ω 

1.5 Ω 

2 Ω 

3 Ω 

50 KPa 

100 KPa 

-50 KPa 

-100 KPa 

1 A 

1.5 A 

2 A 

3 A 

25% 

closed 

50% 

closed 

80% 

closed 

100% 

closed 

25% 

closed 

70% 

closed 

80% 

closed 

100% 

closed 

4. FUEL DELIVERY SYSTEM HARDWARE-IN-THE-LOOP 

RIG 

A HIL system was designed as a means for validating the 

diagnostic algorithms, analyze the fuel system behavior 

under different operating conditions, and compare the 

physics-based system models to the actual system. The HIL 

rig was controlled by a lab machine and its performance 

parameters were linked to a user-interface (display screen) 

via CAN, to warn customers of likely vehicle 

failure/breakdown. A schematic of the GMT 900 based HIL 

rig is shown in Figure 2.  

The fuel tank assembly houses two pumps, one for reference 

(for e.g. healthy pump) and the other (e.g. faulty pump) for 

applying different faults and subsequently, comparing the 

two pumps simultaneously under various diagnostic 

scenarios. Each pump has its own shut-off valve, when the 

other pump is in operation. The entire system has a control 

valve that enables fuel circulation in the loop, which comes 

in handy to study pump dynamics. Each pump is fitted with 

2 thermocouples which act as temperature sensors for 

monitoring the temperature and providing warning in case of 

overheating. 

Fault simulations were run on HIL Rig using a drive profile 

obtained from the GMT 900 test vehicle at Milford Proving 

Grounds. A Simulink®-dSpace model of the fuel system was 

used to extract the sensor and parameter identifier (PID) data 

(current, voltage, pressure, flow, and PWM) from the HIL 

Rig as shown in Figure 3. The desired engine speed and 

pressure profiles for the Milford Proving Ground (MPG) 

drive cycle are presented in Figures 4 and 5, respectively. 

 

Figure 4. Desired engine speed for MPG drive cycle 

Figure 3. Simulink®-dSpace ERFS model 
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Figure 5. Desired pressure for MPG drive cycle 

5. FAULT ISOLATION & SEVERITY ESTIMATION OF FUEL 

DELIVERY SYSTEM 

5.1 Fault Isolation on the GMT 900 Truck Data 

Parameter identifier (PID) data was collected from a GMT 

900 (Silverado) truck under idle and normal conditions by 

driving on Mound Road, Warren, Michigan. 

The PIDs collected are listed below. 

1. Current 

2. Pressure 

3. Flow 

4. PWM 

5. Current variance 

6. Desired Pressure 

7. Engine Speed 

8. Vehicle Speed 

9. Pump Pressure 

10. Pump Voltage 

11. Pump Efficiency 

12. Status 

The features used for fault isolation are presented in Table 4 

below. 

Table 4. Features for fault isolation 

Power Out 

(Pressure x 

Flow x 

Pump 

Efficiency) 

Power In 

(Voltage 

x Current 

x PWM) 

PWM Current Flow 
Pump 

Pressure 

The fault universe, listed in Table 1, was used to define the 

fault classes for the classification algorithms as follows: 

Class 1: No Fault 

Class 2: Pressure sensor bias (Slew9.3 on the pressure box) 

Class 3: Pressure sensor bias (Slew9 on the pressure box) 

Class 4: Winding Fault (1 ohm resistance added) 

Class 5: Winding Fault (0.66 ohm resistance added) 

The classification results under the two driving conditions of 

the truck are presented in Tables 5 and 6. 

Table 5. Classification/fault isolation accuracy (5x2 cross-

validation) under idle conditions 

Rank Classifier Accuracy 

1 SVM 100% 

2 QDA 100% 

3 

Fisher Discriminant Analysis 

1. Linear 

2. Quadratic 

 

99.9813% 

100% 

4 GMM 99.6747% 

5 PLS 92.3520% 

 

Table 6. Classification/fault isolation accuracy (5x2 cross-

validation) under normal driving conditions  

Rank Classifier Accuracy 

1 QDA 99.84% 

2 

Fisher Discriminant Analysis 

1. Linear 

2. Quadratic 

 

98.9711% 

99.8356% 

3 SVM 98.2556% 

4 GMM 95.1846% 

5 PLS 81.2649% 

The classification accuracies can be further improved using 

preprocessing techniques such as auto-scaling, mean-

centering, PCA and PLS. 

The classification task under idle conditions is much easier 

than the normal driving conditions. As seen in Table 5, both 

SVM and discriminant analysis (linear discriminant analysis 

and quadratic discriminant analysis) perform well while 

classifying faults under idling conditions (or steady-state 

operating conditions) of the truck. However, the 

classification is reasonably good even under normal 

operating conditions. SVM consistently performs well with 

no false alarms under both operating conditions of the truck 

and hence, was selected as one of the techniques for fault 

isolation in the data-driven software. 

5.2 Fault Isolation and Severity Estimation on the HIL 

Rig Data 
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The PIDs listed below were directly used as features for the 

data-driven fault isolation and severity estimation.  

1. Current 

2. Voltage 

3. Pressure 

4. Flow 

5. PWM  

The fault classes used for isolation are as follows. 

Class 1: No Fault 

Class 2: Current Bias Fault 

Class 3: Pressure Bias Fault 

Class 4: Winding Resistance Fault  

Class 5: Fuel Leak 

Class 6: Filter Plugged 

Table 7 presents the fault Isolation results for the HIL Rig. 

SVM, and KNN showed the highest accuracy of correct 

classification rate (> 99%). On the other hand, the Bayes and 

PLS classifiers showed the lowest accuracy. 

Table 7. Classification/fault isolation accuracy (5x2 cross-

validation) 

Rank Classifier 

Correct 

Classification 

Rate (%)* 

Overall False 

Alarm (%) 

1 SVM 99.7028% 0.2972% 

2 

k-Nearest Neighbor 

1. k=1 

2. k=2 

3. k=3 

 

1. 99.5218% 

2. 99.5218% 

3. 99.4565% 

 

1. 0.4782% 

2. 0.4782% 

3. 0.5435% 

3 

Discriminant Analysis 

1. Linear 

2. Diag Linear 

 

1. 85.2393% 

2. 81.3819% 

 

1. 14.761% 

2. 18.618% 

4 
Bayes Classifier with 

GMM Model 
82.0410% 17.959% 

5 PLS 81.2871% 18.713% 

After a fault is detected and isolated, the severity estimation 

of the fault is needed in some cases. We used partial least 

squares regression (PLSR) and principal component 

regression (PCR) to estimate the severity of the isolated fault.  

Simulations were run on the HIL Rig to collect data for each 

severity level. The Milford Proving Ground (MPG) drive 

cycle was run for each severity level of each failure model 

and PIDs were collected using the Simulink®-dSpace model 

of the ERFS system. Table 3 presented the different severity 

levels for each fault class.  

The average percent error for each severity level is computed 

as follows:

  
Actual severity level  Average estimated severity level

100
Actual severity level


  

(1) 

Figure 6. Data-driven fault isolation and severity estimation software 
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Tables 8 and 9 show the average percent error for each 

severity level for both PLSR and PCR. 

Table 8. Average errors for each severity level for PLSR 

Winding 

Fault 

Pressure 

Bias 

Current 

Bias 

Filter 

Plugged 

Fuel 

Leak 

8.9049% 

47.17% 

5.441% 

7.5665% 

5.224% 

27.978% 

6.645% 

16.962% 

6.55% 

15.5783% 

0.9262% 

4.2832% 

2.04771% 

0.12258% 

8.9693% 

3.3192% 

0.7428% 

3.5819% 

2.50146% 

8.25643% 

9.3655% 

11.4154% 

0.2821% 

0.4683% 

0.0952% 

0.1155% 

 

Table 9: Average errors for each severity level for PCR 

Winding 

Fault 

Pressure 

Bias 

Current 

Bias 

Filter 

Plugged 

Fuel 

Leak 

9.4538% 

47.4694% 

5.8208% 

7.6480% 

5.43909% 

28.0482% 

6.56998% 

16.864% 

6.573% 

15.5545% 

0.8987% 

4.117% 

2.338% 

0.4139% 

8.8356% 

3.2657% 

0.5541% 

3.3568% 

1.7446% 

8.7698% 

9.3293% 

11.6222% 

0.3537% 

0.4622% 

0.1133% 

0.1119% 

The R2 results are presented in Table 10. The fit accuracy 

doesn’t provide as good an insight into the problem of 

severity estimation as the average percentage errors due to 

the fact that it looks for strictly the same value as the truth 

and provides a comparison between the true (Y) and estimated 

values (Ŷ). 

2

2 2
2
2

ˆ

R (%) 1 100
( )

Y Y

Y mean Y

 
 

   
 

 

      (2) 

Table 10. R2 fit results for different regression methods 

Faults Regression Techniques 

PLSR PCR 

Current Bias 92.6863% 92.6285% 

Pressure Bias 98.1168% 98.1251% 

Winding Fault 91.9874% 91.99% 

Fuel Leak 99.9035% 99.9033% 

Filter Plugged 89.4918% 89.6038% 

The overall data-driven fault isolation and severity estimation 

software based on Figure 1 was implemented in 

Simulink®/MATLAB® environment using Embedded 

MATLAB® functions as shown in Figure 6. The Data 

Acquisition & Buffering Block simulates real-time data 

storage of the sensor and PID data (current, voltage, pressure, 

and flow). Once a preset number of samples (e.g. 1000) are 

stored in the database, the fault isolation block consisting of 

SVM and KNN is triggered. As soon as the fault is isolated, 

the severity estimation block consisting of regression 

techniques (PLS and PCA) are triggered, and the severity 

level of the fault is estimated. The parameters for SVM, 

KNN, PLS and PCA are obtained in the training phase 

offline. 

6. CONCLUSIONS & FUTURE WORK 

In this research, a data-driven fault detection and isolation 

(FDI) approach for automotive ERFS is presented based on 

data collected from a HIL fuel system rig and a GMT 900 

truck. In the Silverado truck, three fault classes (No fault, 

pressure bias, and resistance faults) were introduced for 

classification under idle and normal driving conditions. Both 

SVM and QDA perform with accuracies greater than 98% 

while classifying faults under idle and normal driving 

condition conditions.   

In the HIL rig, six fault classes (No fault, current bias, 

pressure bias, motor resistance, fuel leak, and fuel filter 

blocked faults) were introduced under a drive profile 

obtained from a GMT 900 test vehicle. SVM, and KNN 

showed the highest accuracy of correct classification rate (> 

99%). On the other hand the quadratic classifier and the linear 

classifier showed the lowest accuracy. 

Severity estimation levels for each fault using PLSR and PCR 

were performed using the data from the HIL with different 

severity levels. The results showed that fuel leak and pressure 

bias fault severity estimates have the highest accuracy, while 

the filter plugged fault severity estimate has the lowest 

accuracy. 

The future work will involve the following steps: 

1. Extensive real-time vehicle testing to validate the 

robustness of the data-driven fault isolation and severity 

estimation approach for the ERFS. 

2. Develop remaining useful life (RUL) prediction strategies 

for the ERFS. 
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3. Condition-based Maintenance (CBM) of fuel system 

comprising of early fault diagnosis, isolation, and RUL based 

on system state awareness to optimally plan and execute 

preventive maintenance decisions for individual and fleet of 

vehicles. 
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ABSTRACT

Elements of gas turbine degradation, such as compressor
fouling, are recoverable through maintenance actions like
compressor washing. These actions increase the usable en-
gine life and optimise the performance of the gas turbine.
However, these maintenance actions are performed by a sep-
arate organization to those undertaking fleet management op-
erations, leading to significant uncertainty in the maintenance
state of the asset. The uncertainty surrounding maintenance
actions impacts prognostic efficacy. In this paper, we adopt
Bayesian on-line change point detection to detect the com-
pressor washing events. Then, the event detection informa-
tion is used as an input to a prognostic algorithm, advising an
update to the estimation of remaining useful life. To illustrate
the capability of the approach, we demonstrated our on-line
Bayesian change detection algorithms on synthetic and real
aircraft engine service data, in order to identify the compres-
sor washing events for a gas turbine and thus provide demon-
strably improved prognosis.

1. INTRODUCTION

Gas turbine engines are subject to operational degradation
which, over time, will reduce their performance. For effec-
tive fleet management, the ability to predict this degrada-
tion through prognostics is seen as a vital part of modern
health monitoring. Prognostics enables forward predictions
of the time to failure, thus offering a route to increase time
in-service and reduced disruption for improved asset manage-
ment. For accurate prognosis, knowledge of maintenance ac-
tions which affect the rate and state of degradation is of prime
importance but is often difficult to obtain and incorporate.

Maintenance actions like compressor washing increase the
usable engine life and the performance of the gas turbine.
These actions are performed at geographically dispersed loca-
tions by organisations independent to those performing fleet
management, which lead to uncertainty in the maintenance

Zakwan Skaf et al. This is an open-access article distributed under the terms
of the Creative Commons Attribution 3.0 United States License, which per-
mits unrestricted use, distribution, and reproduction in any medium, provided
the original author and source are credited.

state of the asset. Organisational barriers do not permit the
feedback of whether an advised maintenance action is taken
or if maintenance is performed independent from fleet man-
agement advice. The uncertainty surrounding maintenance
actions impact the ability to accurately trend and extrapolate
the health degradation of a unit.

The solution proposed in this paper accurately detects mainte-
nance events directly from the measured service data through
a change detection algorithm. The event detection informa-
tion is subsequently used as an input to a prognostic algorithm
(Zaidan et al., 2013), advising the prognostic algorithm to up-
date the estimation of remaining useful life.

2. LITERATURE REVIEW

Prognosis seeks to estimate the future health state of an as-
set and this problem has been addressed through a num-
ber of approaches, such as particle filters (Schwabacher &
Goebel, 2007) and hidden Markov models (Tobon-Mejia et
al., 2011), which can capture uncertainty in the projection of
health state. Our work in Zaidan et al. (2013), provides a de-
terministic and efficient calculation which are then extended
in this paper to accommodate maintenance events.

The problem of change point detection or detecting abrupt
changes in time-series data has attracted a lot of research in
the statistics and data mining communities over the last three
decades (Basseville & Nikiforov, 1993; Brodsky & Dark-
hovsky, 1993; Gustafsson, 2000; Kawahara & Sugiyama,
2012). Change-point detection has been widely used in a
range of real-world problems such as signal segmentation of a
data stream (Tobon-Mejia et al., 2011), fraud detection in mo-
bile networks (Bolton & Hand, 2002), climate change detec-
tion (Reeves et al., 2007), motion detection in vision systems
(Ke et al., 2007), stock market prices (Chen & Gupta, 1997),
nuclear engineering (Fearnhead & Clifford, 2003), and the
aerospace domain (Fujimaki, 2005). These methods bring to
bear a selection of models, statistical techniques and thresh-
old selection policies to identify change events in data. It is
proposed in this work that a unified approach can be provided
with Bayesian change detection providing a rigorous means

1
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to utilise a statistic data model and incorporate expectations
about an impending change as a prior belief.

Generally, change-point detection methods can be classified
into two categories depending on the time of detection: ret-
rospective detection (batch processing), and on-line detection
(sequential processing). A retrospective change point detec-
tion method waits until the end of a fixed period of time, and
then uses all the data throughout the period of time to locate
the change points. For example, if we are going to detect
maintenance events with annual updating, we have to wait
until the end of the year to collect all the engine service data
before doing any analysis to locate temporarily the mainte-
nance actions. Although retrospective change point detection
requires longer reaction periods, it tends to give more robust
and accurate detection (Kawahara & Sugiyama, 2012). On
the other hand, on-line change point detection must detect
change points as soon as possible, this inevitably means act-
ing upon less information. To provide the most timely input
into the prognostic algorithms, on-line methods are the focus
of this paper.

Many of the previous Bayesian approaches to change point
detection have been retrospective (Barry & Hartigan, 1993;
Xuan & Murphy, 2007), and have demonstrated strong per-
formance for off-line datasets but are not suitable for mak-
ing instant decisions. A Bayesian on-line change point detec-
tion algorithm was recently introduced by Adams & MacKay
(2007), and in an alternative formulation by Fearnhead & Liu
(2007). While computational cost can be made to be approx-
imately linear in Fearnhead & Liu (2007) by applying resam-
pling strategies, a preferred recursive formulation by Adams
& MacKay (2007) provides a closed form solution that is lin-
ear and introduces no approximation errors. This closed-form
Bayesian algorithm, estimates the time since the last change
point, which is called the run-length. Adams and MacKay
used an underlying predictive model of the time series that is
updated at each sample point, to estimate the probability of
a new sample extending or resetting to zero the run-length.
Recently, the algorithm has been implemented to automatic
speech recognition systems to work in real-world environ-
ments (Chowdhury et al., 2012).

In this paper, we propose the integration of the on-line change
point detection algorithm (Adams & MacKay, 2007), with a
Bayesian-inference prognostic approach (Zaidan et al., 2013).
The prognostic algorithm is updated as new data is received
and outputs predictive probability distributions for the ex-
pected future health. The predictive distributions can be used
in the detection algorithm to incorporate step change dis-
covery into prognostic methodologies. The Bayesian meth-
ods employed effectively addresses the problems of novelty
threshold selection; the incorporation of prior knowledge;
and change detection with uncertain, noisy, and missing data.

To illustrate the capability of the approach, on-line Bayesian

change detection algorithm will be implemented on real air-
craft engine service data, in order to identify the compressor
washing events of a population for gas turbines.

3. MATHEMATICAL MODEL

3.1. Prognostic Model

The true degradation is unknown and we choose to model a
related health index of the asset which may be estimated from
noisy data collected from the system. The health index esti-
mate may in many systems be described as a probability dis-
tribution for a parametrically linear model which is projected
forward in time to give an anticipated future health index,
shown below in Equation (1):

x1:t = φ(t)Tw + ε (1)

where ε is a random error term that follows a normal distri-
bution ε ∼ N (0, σ2

n). In general, φ is a polynomial basis
function, w is a vector of weights and x1:t is the set of degra-
dation measurements. Here we choose φ(t) = (1, t)T as
an affine function form with t denoting time, but of course
variables other than time may be included such as variables
related to usage.

Data measured from the environment is modelled as a normal
distribution with mean φ(t)Tw and variance σ2. The like-
lihood distribution, p(x1:t|t,w, σ2) ∼ N (φ(t)Tw, σ2I),
is used with a prior distribution to calculate the parameters
of the posterior distribution. It is necessary to select an ap-
propriate prior distribution of our data in order to obtain an
analytically tractable posterior distribution, which is desir-
able for real-time, deterministic computation. We assume the
prior distribution is a normal-inverse gamma (NIG) distribu-
tion and written as p(w, σ2) ∼ NIG(w, V, a, b). The parame-
ters for the prior distribution (w, V, a, b) can be built from an
in-service database by way of ordinary least squares (OLS)
estimation.

The posterior distribution for the model parameters,
p(w, σ2|x1:t, t) ∝ p(x1:t|t,w, σ2)p(w|σ2)p(σ2), are
calculated based on a parametrised NIG distribution
(NIG(w∗, V ∗, a∗, b∗)) as detailed in Zaidan et al. (2013).

The predictive distribution (πt = p(xt+1|xt)), used to ex-
trapolate for prognosis, can be used to evaluate the belief that
a new data point belongs to the learnt mode by evaluating a
predictive student-t distribution populated from the posterior
updated model parameters. This distribution is constructed as
St(φ(t∗)Tw∗, b∗(1+φ(t∗)TV ∗φ(t∗)), a∗), and may be used
to calculate πt for data point xt+1.

3.2. Change-point Detection Technique

The detection of step change in engine performance data, is
performed to identify the compressor washing events of a gas
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turbine using a Bayesian on-line change point detection ap-
proach. This approach is based on Bayes’ theorem which
allows us to make some inference for event E from observed
data x. In other words, we can calculate the posterior proba-
bility P (E|x) of E given x by using the Bayes’ theorem:

p (E|x) ∝ p (x|E) p (E) = likelihood× prior (2)

In this work, our goal is to partition the engine data into seg-
ments, which each show a natural decline in performance,
separated by change events, where performance is recovered
through a maintenance action. The delineations between seg-
ments are called the change points.

To determine these change points, we use the run-length
method suggested by Adams & MacKay (2007), which is
based on the Bayes’ theorem. The data are independent and
identically distributed (i.i.d) between change points, and the
parameters are independent across the change points. The
positions of change-points are not specified in advance but
instead must be inferred from the data. The change point has
occurred if the run-length, rt, drops to zero; otherwise, the
run-length increases by one (rt = rt−1 + 1).

In this method, the predictions of the next data point should
consider all possible run-lengths and weigh them by the prob-
ability of the run-length given the data. By finding the most
probable run-length to be 0, i.e. an end to the current data
segment, we find a change point. Notationally, we write xt as
the data at time t and x1:t for the set of data {x1, x2, ....., xt},
in addition, x(r)

t is the set of most recent data corresponding
to run-length rt at time t.

The objective, for each time step t, is to estimate the run-
length distribution p (rt|x1:t) over the collected data. By ap-
plying a confidence threshold to the run-length distribution,
we can determine that the change point has occurred and then
setting rt = 0; or otherwise, conclude that it has not occurred
and increment run-length as rt = rt−1 + 1 . The probabil-
ity distribution for the run-length p (rt|x1:t) at time t can be
estimated sequentially to predict the change point.

The run-length distribution p (rt|x1:t) can be computed as

p (rt|x1:t) =
p (rt,x1:t)

p (x1:t)
(3)

with the probability of evidence calculable by marginalisa-
tion, p (x1:t) =

∑
rt
p (rt,x1:t).

The recursion relation for p (rt,x1:t) can then be derived
by writing as the marginal over rt−1, and noting x1:t =
{xt,x1:t−1}:

p (rt,x1:t) =
∑

rt−1

p (rt, rt−1, xt,x1:t−1) (4)

=
∑

rt−1

p (rt, xt|rt−1,x1:t−1) p (rt−1,x1:t−1) (5)

=
∑

rt−1

p (rt|rt−1) p
(
xt|rt−1,x

(r)
t

)
p (rt−1,x1:t−1) (6)

By exposing the previous time-step joint probability
p (rt−1,x1:t−1), a sequential estimate is possible.

The prior belief of change, p (rt|rt−1), only needs to con-
sider two possible states – the run-length increases or re-
sets to zero. By this binary condition, the method is made
tractable. Consequently, the joint distribution of p (rt,x1:t)
is computed for only these two cases: as a growth function
when rt = rt−1+1; or a change point function when rt = 0.

The expression p
(
xt|rt−1,x

(r)
t

)
is the predictive distribu-

tion given the only the previous data points to build models.
This is calculated by fitting probabilistic models to all possi-
ble rt−1 run-lengths of the data (x(r)

t ) using the model shown
in Equation (1), and assessing the probability of the data point
at xt given the predictive distribution for that model. The cal-
culated predictive distributions, which we label as π(r), for
the normally distributed data is calculated directly from the
student-t distribution, as outlined in Section 3.1. The detec-
tion of change point enables the model parameters to be reset
to some initial conditions.

Assuming that the prior probability of a change-point is given
by the pre-specified hazard rate (H) (which, for simplicity,
we assume to be independent of rt), then

p (rt|rt−1) =




1−H if rt = rt−1 + 1
H if rt = 0
0 otherwise

(7)

In this work we tuned the value of H empirically (to 0.02),
however the data could be used to select the value either by
a priori learning from fleet data or using on-line techniques
such as shown in Wilson et al. (2010), removing need for
heuristic tuning.

The proposed on-line change point detection algorithm ap-
plied to prognostics is summarised as follows:

1. Learn priors for degradation model parameters (using
OLS).

2. Initialise the run-length distribution p (rt−1) = 1.

3. Observe new datum xt.

4. Evaluate predictive probability using student-t distribu-
tions for all run-lengths π(r)

t

5. Evaluate the hazard function H (rt) (constant in this ex-
ample)

6. Evaluate the growth probabilities

3
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p (rt, x1:t) = p (rt−1,x1:t−1)π
(r)
t (1−H)

7. Calculate the change point probabilities
p (rt = 0, x1:t) =

∑
rt
p (rt−1,x1:t−1)π

(r)
t H

8. Calculate the evidence
p (x1:t) =

∑
rt−1

p (rt,x1:t)

9. Determine the run-length distribution
p (rt|x1:t) =

p(rt,x1:t)
p(x1:t)

10. Apply a threshold to the run-length distribution to de-
termine if a change point has been detected. Reset the
run-length as rt = 0, and goto step 2; or, increment
rt = rt−1 + 1

11. Update the degradation model parameters distribution
through the steps outlined in Section 3.1 to calculate the
predictive p(xt+1|rt−1,x

(r)
t ) for all possible run-lengths

12. Estimate the remaining useful life (RUL) by project-
ing forward the degradation model parameters using the
prognostic model (Zaidan et al., 2013)

13. Return to Step 3.

4. CASE STUDY

Gas turbine engines become fouled with airborne contami-
nants such as unburned fuel, oil, solids and pollen which en-
crust compressor components. Proper operation and mainte-
nance can be used to minimize the fouling type losses. For ex-
ample, compressor washing can be used as effective method
to maintain the compressor efficiency and prevent significant
fouling to occur. The washing of gas turbine compressors
maximize the power output, and fuel efficiency, as well as in-
crease the life time of the compressors components (Kurz &
Brun, 2001; Malinge & Courtenay, 2007; GE, 2008).

As engine degradation happens, the engine efficiency will de-
crease. Consequently, the fuel consumption will increase to
generate the required thrust. As a result the temperature of the
engine will increase, and therefore the global health of the en-
gines can be derived from the core flow temperature measured
at the turbine exit (Marinai et al., 2003). The temperature
is named either Exhaust Gas Temperature (EGT) or Turbine
Gas Temperature (TGT). An estimate of the difference be-
tween the certified TGT maximum (redline) and a projection
of TGT to full-rated take-off at reference conditions is named
TGT margin (Malinge & Courtenay, 2007). The TGT margin
is usually used to monitor the overall performance of the en-
gine through Engine Health Monitoring (EHM) to detect the
shifts performance for each engine, indicating the need for
inspection/maintenance, and to forecast the remaining useful
life of the engines.
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Figure 1. Example data of a single engine’s measured value of
TGT margin over a number of maintenance events, the time
region of which are shown with black rectangles. The solid
black line shows a regression fit of the linear model to the data
received by time index 0.2, and the dotted line the projection
of future values.

In general, the estimation of RUL is at the centre of system
prognostics and health management. RUL gives operators es-
timation for decision making by quantifying how much time
is left until functionality of engine is lost. RUL can be de-
fined as the difference between present time and the time
when the prediction of TGT margin crosses the zero TGT
margin. Figure 1 shows an example of the TGT margin sig-
nal with compressor washing events. The measured value of
TGT margin is presented as blue dots and suspected mainte-
nance action (detected visually by step changes in the data)
are highlighted to occur at some time within the rectangular
region. The model presented in Equation 1 is fitted to the
data received up until time index 0.2 (black line), from which
point a projection is made (the techniques of prognosis are
not the focus of this paper but those projections also incorpo-
rate uncertainty bounds not shown). It is clear that inclusion
of the effects of compressor washing is needed for accurate
estimation of RUL.

In the following section, we experimentally investigate the
performance of the proposed algorithm using synthetic and
real-world datasets.

4.1. Case study 1: Synthetic Dataset

In this first case study, the on-line Bayesian change point de-
tection algorithm will be tested on synthetic data. Technique
verification with synthetic data is an important method to
evaluate the performance prior to testing to real-world dataset
because the ground truth is available, in contrast to the real
data which is subject to uncertainty in the true event times
and the measured TGT margin. The synthetic data is gen-
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erated to have similar noise and shape characteristics to the
real data in Figure 1, and provides the true health index and
change point times corrupted by the artificial noise.
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Figure 2. Synthetic Data: The graph represents the degrada-
tion signal (blue dots) (segmented by two change events) and
the probabilities of zero run-length at each time instant for the
on-line technique validated against an off-line technique.

The graph in Figure 2 shows an artificial time-series signal
containing two change points, which can be visually identi-
fied at intervals spaced 30% along the time index axis. Super-
imposed on this figure are the probabilities of zero run-length
at each time point calculated from two different change de-
tection approaches. The on-line method described in Section
3.2 is validated against visual inspection and a widely cited
off-line (retrospective) technique (Ruggieri, 2013). The on-
line technique can clearly be thresholded to provide a change
detection indication, however the probabilities of zero-length
are lower in magnitude and time resolution compared to the
off-line technique, though sufficient for our application this
implies lower robustness.
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Figure 3. RUL estimation for synthetic data: The true RUL
(dotted blue line), the estimated RUL (red line) with change
detection, and the estimated RUL without change point de-
tection (dashed green line) are shown.

A possible enhancement to decision making is to exploit the
property of this on-line algorithm to calculate the probabil-
ity of all run-lengths at each time step, not only zero-length.

Because the confidence in a change detection increases as n
more data points are collected, the most probable run-length
after a true change time will occur at run-length n data points
after the true change. A simple strategy is thus to observe the
probability mass at low run-lengths (empirically it was found
0-5 points were sufficient, see Table ??) and compare this to
the probability of the run length increasing, this change in
probability mass around an event is an effective measure of
detection robustness. Enhancements can also be made com-
putationally by strategies such as not carrying very low run-
length probabilities to the next algorithm iteration, this is dis-
cussed in Turner et al. (2009).

Figure 3 shows the mean of the estimated RUL from the prog-
nostic algorithm with (red line) and without (green dashed
line) change detection. This estimate is made at every ob-
servation time over the asset life and compared against the
known true RUL. It is clear how the estimated RUL increased
after detecting a change point event through a reset of the
prognostic algorithm, whereas with no change detection the
estimate of RUL diverges to infinity. Due to the periodic na-
ture of synthetic signal, setting the model priors to the poste-
rior estimate before the change events means that the initial
model learning shown at the start of the training period is
avoided, this is only appropriate for perfect repair.
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Real TGT Margin Data

Figure 4. The TGT margin data is shown in the upper plot,
with the mean RUL estimate for the prognostic algorithm
with and without change detection in the lower plot

4.2. Case study 2: Real-World Dataset

Having validated the effectiveness of change detection and
prognostic strategy, we apply the proposed method to real-
world datasets, the results are shown in Figure 4. The x-axis
is the time index which is the normalised number of flights,
and the y-axis embodies the health index which is the nor-
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malised TGT margin, this is shown by the blue dots in the
upper plot. The lower plot shows the mean RUL estimate for
the prognostic algorithm with and without change detection.
The step changes in RUL can be shown to visually coincide
with significant events in the data at t=0.37 and 0.74, indica-
tive of a compressor wash.

As with many prognostic applications with real data, the lack
of ground true degradation for the real data makes an estimate
of performance problematic. In addition, there is right cen-
soring (asset removal) of the data before the crossing of the
functional failure TGT margin threshold of zero degrees. To
obtain an approximation of ground truth, the linear model was
first trained on all available data and the zero margin crossing
of this model used to generate the approximation to true RUL.
The lack of ground truth also extends to the unavailability of
true cause for the shift in TGT margin and the exact time.

Notwithstanding the difficulties in obtaining ground truth,
some confidence can be developed by testing the change
detection performance on synthetic data. Visual inspection
of 50 sets of engine data were used to estimate the log
ratio of step change magnitude (the signal of interest) to
noise (SNR) for various suspected events. This ratio was
found to be greater than one for the events in the data. By
generating synthetic data with a set of noise characteristics
and applying the change detection, Table ?? was created. As
SNR decreases the change in probability mass for run-length
around the change event decreased, the time accuracy can be
measured by the sample interval width. For the highest SNR
example, the probability mass shifted by 85 percent from
growth to run-length reset over 2 samples (0.85 detection
probability within 1 data point), whereas for at SNR of
-0.2 only 5 percent change in probability occurred over ±3
samples. These quantified results, and observations from
the real data, motivated the application to the full set of
real engine data. In these tests, observed suspected changes
were detected within a 5 observation interval at greater than
90% probability mass change, but the accuracy is difficult to
quantify with precision since the ground truth information is
not available.

Table 1. Change Detection Performance

Probability Mass Change
in sample interval

SNR ±1 ±3 ±5
5.1 0.85 1.00 1.00
2.8 0.80 1.00 1.00
1.2 0.40 0.95 1.00
0.5 0.20 0.95 1.00
-0.2 0.00 0.05 0.40
-0.9 0.00 0.01 0.05

Despite this unavoidable limitation of the data, the applica-
tion to the service data validates the principle of the approach,

with its performance verified with synthetic data.

5. CONCLUSIONS AND FUTURE PROSPECTS

Compressor washing increases the usable engine life and op-
timises the performance of the gas turbine. However, there
are uncertainties about the timing and true effect of mainte-
nance actions. These uncertainties surrounding maintenance
actions impact prognostic efficacy because there is no in-
formation when the prognostic algorithm should be adjusted
to accommodate performance changes arising from mainte-
nance action. A Bayesian change point detection method was
developed, to be illustrative of the possible prognostics fusion
approach, in this paper to detect these maintenance events
from the data.

The proposed method of on-line change point detection al-
gorithm was implemented on an example of real aircraft en-
gine service data, in order to identify the compressor washing
events of a gas turbine and thus demonstrate the possibility of
improved prognosis. Using synthetic data, the robustness of
the approach was evaluated for both the detection and impact
on underlying ground-truth prognosis. The event detection
information was used as an input to a prognostic algorithm,
advising the prognostic algorithm to update the estimation of
remaining useful life.

In future research work, the following areas could be consid-
ered: the hazard rate for maintenance events could be learnt
in advance from fleet datasets based on time and degradation,
and exploiting this prior parameter to improve sensitivity; and
issues regarding the computational efficiency of the change
detection approach should be studied. In addition, while the
change detection is effective at locating in time the change,
there is further analysis needed to incorporate how to handle
this event. The performance recovery is not perfect after each
event and events later in the life of the turbine recover less
performance, the data is to be mined to determine a distribu-
tion for expected recovery and this can be used to intelligently
inform the reset of the prognostic estimation. The algorithms
arising from this work are planned for integration into fleet
management software to allow access to a vast array of data
and thus facilitate robust testing.
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ABSTRACT 

Aircraft are highly valuable assets and large budgets are 

spent in predictive maintenance programs in order to 

maximize fleet availability. The application of PHM 

(Prognostics and Health Monitoring) technologies can be a 

powerful decision support tool to help maintenance 

planners. The estimated RUL (Remaining Useful Life) for 

each monitored component, obtained from a PHM system, 

can be used to plan in advance for the repair of components 

before a failure occurs. However, when system architecture 

is not taken into account, the use of PHM information may 

lead the operator to replace a component that would not 

immediately affect the availability of the system under 

consideration. In this paper, a methodology that combines 

fault tree information and individual components RUL 

estimations into a system level RUL (S-RUL) estimation is 

applied in a real life case study. The results showed that the 

methodology could have been successfully used in order to 

anticipate the failure of an aircraft ECS (Environmental 

Control System) and prevent an AOG (Aircraft on Ground) 

event from happening. 

1. INTRODUCTION 

PHM has been recognized by the members of the 

aeronautical sector such as aircraft operators, MRO 

(Maintenance, Repair and Overhaul) service providers and 

aircraft manufacturers as a technology that may lead to 

important competitive advantages such as reduction in 

operational cost and increase in fleet reliability (Rodrigues 

& Yoneyama, 2012). 

The main goal of a PHM system is to estimate the 

remaining useful life (RUL) and the health state of 

components and systems. It comprises a set of techniques 

which use analysis of measurements to assess health state 

and predict impending failures of monitored equipments. 

Many works proposed PHM solutions for a high diversity of 

aeronautical components such as valves (Moreira & 

Nascimento Jr, 2012), pumps (Gomes, Leão, Vianna, 

Galvão & Yoneyama, 2012), engines (Babbar, Ortiz, 

Syrmos & Arita, 2009) and electronic components 

(Sandborn, 2005). 

Methods for decision support using RUL estimations can be 

found in literature. Sandborn & Wilkinson (2007) and 

Rodrigues, Gomes, Bizarria, Galvão & Yoneyama (2010) 

presented examples of decision support methods using PHM 

information to improve maintenance planning. However, 

these works focused on the maintenance of one component, 

without considering that it is part of a system. 

Modern aircraft are a good example of a complex system. 

They comprise multiple subsystems, each of them 

composed by multiple components. For safety analysis 

purposes, aircraft system architecture is often represented by 

a fault tree. When multiple components in a system are 

monitored by a PHM method, multiple RUL distributions 

are available for the decision maker. Although this seems to 

be positive, dealing with this amount of information could 

turn maintenance planning into a challenging task. 

A possible solution for this problem is to calculate a system 

level RUL distribution based on the RUL distribution of 

each component. In this new framework, the decision maker 

does not have to deal with a set of component level RUL 

estimations. Instead, the S-RUL provides information 

related to the time when the whole system will stop working 

(i.e. when the combined failures of individual components 

will lead to a system failure). 

In this work, a methodology to calculate the S-RUL 

distribution using component level RULs and system 

architecture information embedded in fault tree 

representation is applied. This methodology was proposed 

by Ferri et al. (2013). A case study is presented to illustrate 

__________________________________________ 
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the application of the methodology. In this case study, a 

subsystem of an aircraft ECS (Environmental Control 

System) is considered. 

2. FAULT TREE REPRESENTATION 

Fault Tree Analysis (FTA) is a failure analysis technique 

that, due to its ease of use and effectiveness in discovering 

and representing the interaction of component failures in a 

system, was widely adopted since the seventies in industries 

such as nuclear power generation, aviation and automotive 

(SAE, 1996). 

During the FTA process, graphical diagrams called “fault 

trees” are produced in order to investigate what are the 

possible causes for a specific system failure, called the “top 

event”. Fault trees represent sequences of events that may 

lead to the undesired top event under consideration. These 

sequences usually start from faults originated in system 

components, which combine with other component faults in 

order to cause failures that will propagate through the 

system. 

The basic elements of a fault tree are the top event, the 

intermediate events and the basic events. Intermediate 

events represent failures propagated through the system and 

can be represented as a logical combination of basic events 

and other intermediate events. Basic events in a fault tree 

usually represent component faults. It is possible to attribute 

a probability of occurrence to each of the basic events in a 

given operating scenario. If the probabilities of all the basic 

events are known, it is possible to calculate the probability 

of the top event to occur using fault tree topology. Figure 1 

shows an example of a simple fault tree. 

 

 

Figure 1. Fault tree example 

 

Assuming that all basic events are independent, a 

convenient form of calculating the top event probability is 

by transforming the fault tree into its cut sets form. A cut set 

is a combination of basic events which, if they all occur 

simultaneously, will cause the occurrence of the top event. 

In the cut sets form, each cut set is represented by an AND 

logical gate containing in its inputs all basic events forming 

the cut set under consideration. An OR logical gate is then 

used, and the output of each AND logical gate is connected 

to one of its inputs. Figure 2 shows the same fault tree as in 

Figure 1 transformed to its cut sets form representation. In 

this example, one cut set is composed by only one basic 

event (Fault 1). In such a situation, the AND logical gate 

can be omitted for this cut set and the basic event can be 

directly connected to the OR logical gate. 

 

 

Figure 2. Fault tree in the cut sets form  

 

Each input of the top OR gate is by itself a sufficient cause 

for the top event. The probability of the top event can then 

be obtained by calculating the union probability of all cut 

sets. On the other hand, if the basic events are mutually 

independent, the probability of each cut set can be obtained 

by calculating the joint probability of the basic events that 

compose the cut set. If all the basic events are mutually 

independent, the joint probability of a cut set is just the 

product of all its basic events. 

3. SYSTEM LEVEL RUL 

The System Level RUL (S-RUL) is calculated using the 

system architecture represented by the system fault tree and 

the RUL distributions for each component obtained from a 

PHM system. The procedure to calculate the S-RUL is 

summarized in Figure 3 (Ferri et al., 2013). 

In step 1, the fault tree that represents the system under 

study is obtained. This information is commonly available 

for aircraft systems since fault trees are widely used in 

safety analysis. In step 2, system minimum cut sets 

representation is obtained based on the system fault tree. In 

step 3, the RUL estimation of each component is obtained 

from the PHM system. These estimations are commonly 

given as probability density functions. In step 4, the 

probability of each component to fail before instant k is 

calculated using the RUL predictions for each component. 
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Figure 3. SRUL calculation procedure 

 

Using the minimal cut sets representation, the probability of 

each cut set to occur before instant k can be calculated by 

Eq. (1): 

 

∏
=

=
n

j

ji ePcP
1

)()(                             (1) 

 

where P(ci) is the probability of the i-th cut set, P(ej) is the 

probability of the ej basic event and n is the number of basic 

events in the i-th cut set.  After calculating the probability of 

each cut set, the probability of the top event to occur before 

instant k can be calculated using Eq. (2): 
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where PT is the probability of the top event and m is the 

number of cut sets. It represents the probability of at least 

one cut set to occur, which is numerically equal to one 

minus the probability of no cut set to occur. 

Steps 5 and 6 are repeated for subsequent instants. This 

procedure will result in a CDF (Cumulative Distribution 

Function) representing the probability of a system failure to 

occur over time. 

4. CASE STUDY 

The system under study is a subsystem of an environmental 

control system (ECS) in an aircraft. This subsystem 

comprises two monitored components, a pressure control 

valve and a temperature control valve. A schematic view is 

presented in Figure 4. 

 

 
Figure 4. Aircraft environmental control system 

 

The pressure control valve (PCV) is a pneumatic valve that 

regulates the engine bleed air flow so that a desired set point 

of pressure is reached. This air is sent to a heat exchanger 

and cooled until a temperature set point is achieved. The 

flow of ram air that passes through the cooler is controlled 

by the temperature control valve (TCV). This flow 

influences directly the heat exchanged between ram air and 

engine bleed air. 

The aircraft used in this example has two of the subsystems 

presented (comprising PCV1, TCV1 and PCV2, TCV2), 

each of them located near one of the engines. For the correct 

operation of the ECS it is necessary that at least one of these 

subsystems is working properly and for that, both PCV and 

TCV need to be working. 

The fault tree presented in Figure 5 is used to represent the 

ECS architecture. 

The top event represented in the fault tree is related to the 

loss of the ECS. It is possible to see that this event only 

happens when both subsystems are defective. Each 

subsystem is considered defective if one of its components 

(PCV or TCV) is not working. The system in Figure 5 is 

presented in the minimal cut sets representation in Figure 6. 
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Figure 5. Environment system fault tree 

 

 

Figure 6. Minimum cut sets representation 

 

 

4.1 PHM System 

In the ECS system under consideration, the PCV and the 

TCV are the components with the highest failure rates 

observed on field, and this high number of failures leads to a 

high number of unscheduled component removals. For the 

purpose or reducing the number of unscheduled removals, 

PHM systems were developed for both the PCV and the 

TCV. 

4.1.1. Pressure Control Valve 

The pressure control valve is a pneumatic actuated valve. Its 

purpose is to keep the downstream pressure at a controlled 

set point value. The most common failure modes of this 

valve are related to wear of the spring or an increase in 

friction caused by the wear of the bearings. These failure 

modes affect the dynamic behavior of the valve. The 

performance of the pressure controller is also affected.  

Field observations indicate that pressure signals exhibit 

variation in amplitude before a failure event. Such 

variations motivated the PHM methodology proposed in this 

work.  Figure 7 shows an example of data collected from 

both a healthy valve and a degraded one. In Figure 7(A) a 

typical pressure signal for a healthy valve is shown. Figure 

7(B) shows the pressure signal collected from a degraded 

valve just before a failure event. 

The standard deviation of the pressure signal was then 

chosen as a degradation index (DI) for the PCV, as it can be 

related to a loss in regulation performance that may evolve 

to a failure, as described above. Figure 8 shows an example 

of how this degradation index changes over time. In this 

figure, the DI is normalized. Each cycle corresponds to one 

flight. 

 

 

 

Figure 7. Pressure signals collected from a healthy and a degraded valve 
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Figure 8. DI evolution for a pressure control valve 

 

For failure prognostics implementation, a Kalman filter was 

employed. Concerning the dynamic model necessary for 

filtering and extrapolation, no first principles model was 

used. The state space representation of a linear degradation 

evolution with unknown slope was used for this purpose. 

This model was empirically chosen based on the aspect of 

the DI evolution. An example of this aspect can be observed 

in Figure 8. The slope and the degradation were estimated, 

resulting in the following model: 

 

kkk

kkk

kkkk

wdDI

vaa

vdad

+=

+=

++=

+

+

2

1

1

1

                           (3) 

 

where d is the estimated degradation, a is the slope, v
1
, v

2
 

and w are gaussian noises, DI is the degradation index and k 

is the discrete time instant. In this case, k represents aircraft 

cycles. State noise v
1
 and observation noise w represent, 

respectively, the actual state and the observation noises 

present in the data, while v
2
 is an artificial noise added for 

the estimation of the fixed parameter a. 

In the Kalman filter, the information concerning the 

variance of the parameter estimates at instant k is contained 

in the covariance matrix Pk. Using this information, the 

variance 2
2
kv

σ  can be obtained. An adaptive noise estimation 

procedure was used. This procedure is described in details 

in Leão (2011). In this procedure, 2
2
kv

σ  is calculated 

according to Eq. (4): 
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where λ is a fixed positive value in the range [0.5 1). 

Using the d and a distributions estimated at a given instant 

and the model presented in Eq. (3), Monte Carlo simulations 

were performed until d reaches a failure threshold. Failure 

thresholds were chosen according to the concept of Hazard 

Zone (HZ) (Orchard & Vachtsevanos, 2009). 

The HZ defines a region, modeled by a bounded 

distribution, with high probability of failure occurrence. In 

this work, failure thresholds were sampled according to the 

chosen HZ distribution. The HZ was defined as a normal 

distribution with mean of 0.975 and standard deviation of 

0.008. The HZ was defined using a set of run-to-failure DI 

series. 

4.1.2. Temperature Control Valve 

The temperature control valve is a pneumatic valve designed 

to control the air flow that passes through the cooler in order 

to control the temperature of the air sent to the ECS pack. 

TCV failure reports showed that cabin temperature often 

presented variations few days before an event of failure. In 

an attempt to capture this behavior, the temperature standard 

deviation was chose as a DI. Figure 9 shows an example of 

the DI proposed. Each cycle corresponds to one flight. 
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Figure 9. DI evolution for a temperature control valve 

 

For degradation estimation and failure prognostics, a 

framework comprising a Kalman filter and a linear 

degradation progression model was used. This framework is 

similar to the presented for the PCV. 
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In this application, the HZ was defined as a normal 

distribution with mean of 0.99 and standard deviation of 

0.0034. 

4.2. Scenario Description and S-RUL Application 

The scenario described in this section consists of the 

operation of a real aircraft. Although PCVs and TCVs were 

monitored for systems 1 and 2, no maintenance action was 

taken using this information. Figure 10 and Figure 11 show 

the degradation index progressions for PCVs and TCVs. 

The degradation index increases until a failure occurs at the 

last data point presented. 

 

 
Figure 10. DI evolutions for two pressure control valves 

 

 
Figure 11. DI evolutions for two temperature control valves 
 

 

 

 

The sequence of events and the consequences of each event 

of this real life example can be summarized as follows: 

• On cycle 35, PCV 1 failed. Maintenance team removed 

the valve. The aircraft lost subsystem 1 but continued its 

normal operation. 

• On cycle 39, TCV 2 failed. Maintenance team removed 

the valve. The aircraft lost subsystem 2. With both 

systems inoperative, the aircraft was grounded. Flights 

were delayed and the company had to rearrange other 

aircraft and passengers.  

•  After this event, both PCV 1 and TCV 2 were replaced 

and the aircraft continued its normal operation.  

• On cycle 53 TCV 1 failed. Maintenance team removed 

the valve. The aircraft lost subsystem 1 but continued its 

normal operation. 

• On cycle 54, PCV 2 failed. Maintenance team removed 

the valve. The aircraft lost subsystem 2. With both 

systems inoperative, the aircraft was grounded. Flights 

were delayed and the company had to rearrange other 

aircraft and passengers.  

 

Analyzing the sequence of events presented and observing 

the degradation indexes in Figure 10 and Figure 11, it is 

possible to conclude that both AOG (aircraft on ground) 

events could be avoided by using the monitoring system. A 

prognostic system could be used to predict, with some 

degree of confidence, failure instants for all components 

thus allowing the maintenance plan to be modified to avoid 

the occurrences. 

Although this seems to be a reasonable task, the workload 

for the decision maker could be reduced by using the 

concept of S-RUL. In the situation presented herein, the 

decision maker would have to analyze four RUL predictions 

(PCV 1, PCV 2, TCV 1 and TCV 2) to take the necessary 

actions. Using the concept of S-RUL, these four RUL 

estimations could be transformed in one S-RUL related to 

the remaining useful life of the whole environmental control 

system. 

To illustrate this concept, consider a situation where the 

decision maker needs to analyze the data available up to 

cycle 25. Figure 12 and Figure 13 show, respectively, the 

RUL predictions for PCVs and TCVs at cycle 25. 

The S-RUL was calculated following steps 1-6, presented in 

section 3. Figure 14 shows the S-RUL thus obtained. 
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Figure 12. RUL estimations for the pressure control valves 
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Figure 13. RUL estimations for the temperature control 

valves 
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Figure 14. S-RUL estimation before any maintenance action 
 

 

Observing Figure 14, it can be noticed that the first AOG 

could be predicted and a maintenance action could be 

planned. After replacing PCV 1 and TCV 2, the new S-RUL 

is presented in Figure 15. 
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Figure 15. S-RUL estimation after replacing PCV 1 and 

TCV 2 
 

Figure 15 shows that the second AOG could also be 

avoided. It is important no notice that the variance of the S-

RUL presented in Figure 15 is greater than the variance of 

the S-RUL presented in Figure 14. This fact is explained by 

the fact that the second S-RUL prediction has a larger 

prognostic horizon, which leads to a greater uncertainty. 

5. CONCLUSIONS 

We found that the methodology discussed in this work could 

have been successfully used in a real life case study in order 

to estimate when a failure event would happen. This 

estimation could have been used to plan a maintenance 

intervention and prevent an AOG event from happening. 

The methodology combines individual components RUL 

estimations into a single system level RUL (S-RUL) 

estimation. This characteristic becomes more relevant when 

the number of components within the system increases. 

In complex systems, it may not be obvious to determine 

which component is the most critical for the system 

operability in a given scenario, even when RUL estimations 

for all components are available. The methodology 

discussed in this work is an alternative to evaluate the 

impact of each component in system operation by analyzing 

the changes in the S-RUL distribution. 
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The results presented in this paper were derived under the 

assumption that the failure events are independent. This 

assumption may not be realistic for some engineering 

systems. In many practical systems, the failure of one 

component may affect the condition or even cause a failure 

of other components. One relevant topic for future research 

is to consider the dependencies among all system 

components in the estimation of the system level RUL. 

Moreover, it would be of interest to investigate the 

computational complexity of the proposed method with 

respect to the number of components and the level of 

connectivity within the system. 

Future research could also investigate how to adapt the 

methodology for the situation in which RUL estimations are 

not available for all components. Combining multiple top 

events in one single analysis can also be an interesting topic 

for further research. 
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ABSTRACT 

This paper introduces a stochastic modeling approach for a 
quantized system for the purpose of fault detection and 
isolation in an automotive alternator system.  Three 
common alternator faults including belt slip, diode failure, 
and incorrect reference voltage for the voltage controller are 
considered and analyzed.  A continuous nonlinear model of 
the alternator system is quantized into discrete states in 
order to simplify diagnostic efforts.  The paper describes a 
stochastic modeling approach that creates a time-varying 
probability transition matrix that can be computed in real-
time without the need for Monte Carlo simulation.  Fault 
detection and isolation occurs through comparison of the 
most probable state from the transition matrix and the 
quantized output state. 

1. INTRODUCTION 

Today’s vehicles require higher electrical demands than 
ever before due to more mandated safety technology and 
popular consumer technology integrated within the vehicle.  
The purpose of the vehicle’s electrical power generation 
storage (EPGS) system is to maintain the necessary 
electrical power needed to start the vehicle and keep it 
running smoothly.  A healthy EPGS system is crucial for 
proper operation of a vehicle. 

Faults within the EPGS system do occur with age.  Typical 
faults include belt slippage between the engine crankshaft 
and alternator pulley, failure of a diode in the bridge diode 
rectifier, and change in reference voltage of the voltage 
controller.  These faults however can be detected and 
isolated with a carefully chosen diagnostic algorithm. 

Diagnostics of the EPGS system is important for the vehicle 
owner and mechanic.  Early diagnostics of a faulty EPGS 
system can warn the owner that the vehicle needs repair 

before more costly damage to other components occur.  
Early detection saves the owner further loss of time and 
money for repair.  Furthermore, diagnostics stored in a 
vehicle’s electronic control unit can be accessed by a 
mechanic to quickly and effectively determine the problem 
and steps needed to solve it. 

Scacchioli, Rizzoni, and Pisu (2006) proposed a fault 
isolation approach for an EPGS system using two equivalent 
alternator models.  One equivalent model for a healthy 
alternator and one equivalent model for an alternator with 
one broken diode.  Parity equations and three residuals with 
constant thresholds were used for fault isolation.  The 
approach assumed a 3000 second Federal Urban Driving 
Schedule (FUDS) cycle.   

Zhang, Uliyar, Farfan-Ramos, Zhang, and Salman (2010) 
proposed a fault isolation approach for an EPGS system 
using parity relations trained by Principal Component 
Analysis (PCA).  Three residuals with constant thresholds 
were used for isolation.  The approach assumed a staircase 
profile for both load current and alternator speed input, 
which is not a realistic scenario.   

Hashemi and Pisu (2011) proposed a fault isolation 
approach for an EPGS system using two observers and three 
residuals.  The approach assumed a staircase profile for load 
current and a portion of the FUDS cycle for alternator 
speed.  Adaptive thresholds were used for isolation.  In 
other similar work, Hashemi and Pisu (2011) showed the 
same approach but created a reduced order adaptive 
threshold model using Gaussian fit of data.  The second 
approach was less computationally intensive.   

Scacchioli, Rizzoni, Salman, Onori, and Zhang (2013) 
proposed a fault isolation approach for an EPGS system 
using one equivalent EPGS model that used parity equations 
to produce three residuals for fault isolation.  The approach 
used a staircase profile for both load current and alternator 
speed input. 

Sara Mohon et al. This is an open-access article distributed under the 
terms of the Creative Commons Attribution 3.0 United States License, 
which permits unrestricted use, distribution, and reproduction in any 
medium, provided the original author and source are credited. 
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As stated, previous work for fault isolation in an EPGS 
system has included observers and parity relations.  The 
approaches with observers were built for linear systems that 
approximate the nonlinear behavior of the EPGS system.  
These approaches cannot be extended for direct use on the 
nonlinear system itself.  At least three residuals are required 
for all previous approaches.  It is also concerning that some 
approaches were not validated using real driving situations.  
Therefore these approaches have limited scopes.   

In this paper, the EPGS system is modeled as a quantized 
system.  The motivation for using a quantized system stems 
from the qualitative change in system behavior during 
EPGS faults and the need for a simpler real-time diagnostic 
algorithm.  The approach in this paper uses a time-varying 
probability transition matrix and only one residual to detect 
and isolate faults.  The approach requires much less real-
time computational effort than previous works, which 
required at least 3 residuals. EPGS system data was created 
using a portion of the FUDS cycle to emulate a real-world 
situation.  This approach is shown here in the context of an 
EPGS system but could be used for diagnostics in other 
systems as well including nonlinear systems. 

The first section of this paper describes the EPGS model 
and an approximation of this model named the Equivalent 
EPGS model.  The second section discusses three common 
faults in the model and how each affects the model output.  
The third section introduces the general concept of a 
stochastic model of a quantized system for the purpose of 
fault detection.  The fourth section describes a new method 
to calculate the probability transition matrix for a quantized 
EPGS system.  The last section provides simulation 
assumptions and results for each of the three faults in the 
EPGS system. 

2. EPGS MODEL AND EQUIVALENT EPGS MODEL 

This paper analyzes the EPGS system shown in Figure 1 as 
modeled by Scacchioli et al. (2006).  It consists of a voltage 
controller, alternator, and battery.  The controller can be an 
electronic control unit or a voltage controller on the 
alternator itself.  In this paper, the controller is a part of the 
alternator to regulate field voltage.  The alternator model 
consists of an AC synchronous generator, three phase full 
bridge diode rectifier, voltage controller, and excitation 
field.   

The engine crankshaft mechanically spins the generator’s 
rotor by use of a belt and pulley.  The rotor is a ferrous 
metal wrapped with a single conductive winding.  When the 
controller applies a small field voltage to the winding, a 
small field current flows through the winding.  The flow of 
current through the winding produces a magnetic rotor with 
a north and south pole.  However, the stator is composed of 
three phase stationary windings.  As the magnetic rotor 
moves relative to the conductive stator windings, an 
electromotive force is induced in the stator windings.  If the 

stator windings are connected to an electrical load, then AC 
current will flow in each of the three stator windings.  The 
three currents are sent to a diode bridge rectifier to produce 
DC current for electrical loads or for recharging the battery.  
Therefore, the alternator takes mechanical energy of the 
engine and produces electrical energy for the battery or 
loads of the vehicle.  

 
Figure 1.  EPGS model 

 

The model for the EPGS system results in a complex 
nonlinear system but can be more easily modeled by an 
equivalent DC electric machine as described by Sacchioli et 
al. (2006).  The dashed line in Figure 1 encompasses the 
components represented by the DC model.  This 
approximation gives the equivalent EPGS model shown in 
Figure 2. 

 
Figure 2.  Equivalent EPGS model 

 

The DC electric machine is modeled by the state space 
system in Eq. (1) as shown by Hashemi (2011). 
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Equation (1) has two states z1 and z2 and inputs u1, u2, and 
u3.  The system inputs represent the alternator field voltage 
Vf, angular frequency of alternator ωe, and dc voltage of the 
battery Vdc also shown in Eq. (2).  The coefficients a12, a22 
and b11…b23 are functions of engine speed and were found 
using system identification by Hashemi (2011) using test 
data at different constant engine speeds. In this model, state 
z2 is the measurable quantity Idc which is the rectified output 
current of the alternator. 

 

y2 = Idc = z2
u1 =Vf

u2 =ω e

u3 =Vdc
 

(2) 

3. POSSIBLE FAULTS IN EPGS SYSTEM  

The EPGS system is important in every vehicle and faults in 
the system need to be detected and isolated as quickly as 
possible to prevent costlier damage.  This paper considers 
three common faults that occur in an EPGS system.  
Possible fault locations in EPGS system are bolded in 
Figure 3. 

1. Voltage controller fault:  This fault occurs when the 
reference voltage Vref is incorrectly raised or lowered 
by a percentage of the nominal Vref.  The fault can 
cause the alternator to overcharge or undercharge the 
battery. 

2. Open diode rectifier fault.  This fault occurs when a 
diode in the diode bridge rectifier breaks.  The fault 
results in a large ripple in battery voltage Vdc and 
alternator output current Idc thereby decreasing the 
efficiency of alternator output. 

3. Belt slip fault.  This input fault occurs when the belt 
between the engine crankshaft and alternator pulley 
slips due to insufficient tension.  The belt slip causes a 
decrease in alternator rotational speed ωe and a decrease 
in alternator output voltage.  To compensate, the 
voltage controller increases the field voltage and/or the 
battery must discharge more often to meet load 
demand.  This can age the battery prematurely.  Belt 
slip can signify the belt is worn and needs to be 
replaced. 

 
Figure 3.  Possible faults in EPGS model 

4. STOCHASTIC MODEL FOR QUANTIZED SYSTEM 

Equation 1 gives the continuous model of the DC electric 
machine.  A continuous system provides much more 
information than a discrete system for a diagnostic 
algorithm to sift through to find a fault.  If a continuous 
system could be simplified in a discrete manner without 
significant loss of information, the diagnostic algorithm will 
have a simpler task when searching for a fault.   

Suppose we diagnose a continuous system as a quantized 
system shown in Figure 4 (Blanke, Kinnaert, Lunze, and 
Staroswiecki, 2006).  Input u(t) is the continuous input at 
time t, f(t) is the amount of fault at time t, and y(t) is the 
output at time t.  The output y(t) passes through a quantizer 
and produces [y(t)].  The real valued signal y(t) is assigned a 
new name [y(t)] that corresponds to an interval of real 
valued signals given a set of real valued intervals.  For 
example, if y(t=10)=70 and the interval of real values 50 
through 75 is assigned the name [y(t=10)]=2, then y(t=10) 
will be assigned the quantized name of 2. 

 
Figure 4.  Diagnostics of quantized system 

 
Assuming output y(t) contains two observable outputs y1(t) 
and y2(t) that can be quantized, a plot of y2 vs y1 can be 
visualized as a set of rectangles as shown in Figure 5.  
Output y1(t) can be quantized into intervals a-e and output 
y2(t) can be quantized into intervals 1-5.  The grey section 
represents the system space.  As input u(t) continuously 
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changes over time, the discrete output [y(t)] will transition 
from one grey rectangle to another.  Some rectangles will be 
more favorable for a system to move into for a given input 
and a current rectangle.  The unfavorable rectangle 
transitions can be interpreted as having a low probability of 
occurrence.  Transition probabilities from one rectangle to 
another could be arranged in a probability transition matrix 
and could be very useful for diagnostics.  If a transition 
occurs that has very low probability, then a fault may be 
present. 

 
Figure 5. Example of quantizing two outputs 

 
A typical approach to obtain a static probability transition 
matrix entails using a healthy model of the plant and the use 
of Monte Carlo simulation as shown by Alam (1995).  In 
this paper, a new method for obtaining a time-varying 
probability transition matrix while monitoring the data for 
faults is introduced in the next section in application to the 
DC electric machine. 

5. NEW METHOD FOR PROBABILITY TRANSITION MATRIX 

Using Eq. (1) the DC electric machine system can be 
viewed as a 2D space with z1 and z2 axes.  The system 
output will be contained on this plane.  Since z2 is the only 
output, the user knows where the output is in relation to the 
z2 axis.  The user does not know where the output is in 
relation to the z1 axis except that it must exist between some 
minimum value z1

min and maximum value z1
max shown in 

Figure 6. 

 
Figure 6.  Graph of quantized DC electric machine system 

with flow definitions 

 
For the purpose of diagnostics, the system space is divided 
into quantized states across the z2 axis and assigned names 
such as 1, 2, 3, etc. as shown on right hand side in Figure 6. 
In this paper, the user assumes that with each event, in this 
case one time step, the current state z can only transition up 
or down to an adjacent state z’ or remain in the same state z.  
The state may not jump over other states to nonadjacent 
states. The state may not move left or right outside of the z1 
boundaries.  The selection of state boundaries will depend 
on the system being investigated to ensure only adjacent 
states are used by the system in healthy conditions. 

The objective is to calculate the probability of transitioning 
out of current state z and the probability of future state z’ = 
z.  The probabilities are calculated using a two-dimensional 
form of the divergence theorem.  The three-dimensional 
form of the divergence theorem is defined in Eq. (3).   We 
define V as a closed volume, A as the surface area of V, 𝑛 
as the outward pointing normal vector of the closed volume 
V, and 𝐹  as a continuously differentiable vector field in 
volume V.  A picture for a cubic volume is shown in Figure 
7. 

 ∇⋅F
( )dV

V
∫∫∫ = F


⋅n
( )dA

A
∫∫

 

(3) 

 
Figure 7.  Graph of 3D Divergence Theorem 

 
For the alternator problem, one can imagine multiple cubes 
stacked in the z direction and then collapsing the picture to 
only contain the x-z plane.  This yields the 2D space with 
desired upward and downward flow consistent with the 
alternator problem in Figure 6. 

A two-dimensional form of the divergence theorem is 
defined in Eq. (4).   We define C as a closed curve, A as the 
2D region in the plane enclosed by C, 𝑛 as the outward 
pointing normal vector of the closed curve C, and 𝐹 as a 
continuously differentiable vector field in region A.  A 
graph of the 2D divergence theorem for the alternator 
problem is shown in Figure 8.   

Annual Conference of the Prognostics and Health Management Society 2013

86



Annual Conference of the Prognostics and Health Management Society 2013 

5 

 ∇⋅F
( )dA = F


⋅n
( )dr

C
∫

A
∫∫

 

(4) 

 
Figure 8.  Graph of 2D Divergence Theorem for state z in 

DC electric machine state space 
 
We consider that the vector field 𝐹 describes transition flow 
in and out of the current state along the state boundaries.  
For the DC electric machine model, 𝐹 is defined as Eq. (5) 
where 𝚤 and 𝚥 are coordinates of vector field F and functions 
f1 and f2 are defined by states z1 and z2 from the state space 
model in Eq. (1).  

 

F

= f1 î + f2 ĵ
z1 = f1(z1, z2,u1,u2,u3)
z2 = f2 (z1, z2,u1,u2,u3)

 

(5) 

The flow through the left and right sides of the area A in 
Figure 8 will be assumed zero for the alternator problem. 
The line integrals along the state boundaries shown in 
Figure 6 will determine flow in and out of the state.  Flow 
out of state z is defined as a positive value φ+ and flow into 
state z is a negative value φ-.  Since each side may have 
flow in and flow out sections, the flow transition point z** 
or z* is found if necessary and the appropriate limits of 
integration for flow in and flow out are integrated for each 
side.  Transition points are shown in Figure 6.  Without loss 
of generality assume f2 < 0 if z1 < z*,z** and f2 > 0 if  z1 > 
z*,z** such that Eq. (6) holds.  The upward and downward 
flow through each side of state z is given by Eq. (7). 

 
f2 (z

*, z2
(1),u1,u2,u3) = 0

f2 (z
**, z2

(2),u1,u2,u3) = 0

 

(6) 

 

ϕ1
+ = − f2 (z1, z2

(1),u1,u2,u3)dz1
z1
min

z1
∗

∫ > 0

ϕ1
− = − f2 (z1, z2

(1),u1,u2,u3)dz1
z1
∗

z1
max

∫ < 0

ϕ2
− = f2 (z1, z2

(2),u1,u2,u3)dz1
z1
min

z1
∗∗

∫ < 0

ϕ2
+ = f2 (z1, z2

(2),u1,u2,u3)dz1
z1
∗∗

z1
max

∫ > 0

 

(7) 

Next we define φin, φout, and φtotal in Eq. (8) in order to build 
probabilities.  The sum of the absolute value of all inward 
flow in defined as φin.  The sum of all outward flow is 
defined as φout. The total flow φtotal is the sum of φin and φout. 

 

ϕin = ϕ1
− +ϕ2

−

ϕout =ϕ1
+ +ϕ2

+

ϕtotal =ϕ1
+ + ϕ1

− + ϕ2
_ +ϕ2

+

 

(8) 

The value φnet is the sum of all flows along the boundaries 
of state z without the use of absolute values.  A positive 
value of φnet represents a net outward flow out of state z.  A 
negative value of φnet represents a net inward flow into state 
z.  The sum of the flows along the boundary of state z is 
given by Eq. (9). 

 ϕnet =ϕ1
− +ϕ1

+ +ϕ2
+ +ϕ2

−

 

(9) 

While the sign of φnet is important to determining if current 
state z will transition to a new state, it does not contain 
information about which state it transitions to.  Instead, 
careful manipulation of Eq. (8) builds transition 
probabilities through each side.   

The notion of probability can be interpreted as counting 
types of occurrences and then normalizing the count of each 
type by the total occurrences.  Suppose the occurrences of 
outward and inward flow defined in Eq. (7) are normalized 
by the total flow defined in Eq. (8).  For example, the 
probability to transition up will be defined as the outward 
flow through side 2, φ2

+, divided by the total flow φtotal. We 
can then define z+ as the state above current state z and 
define z− as the state below current state z.  Equation (10) 
gives the probability to stay within the current state and the 
probability to transition up or transition down to an adjacent 
state.  Uniform probability distribution is assumed along the 
borders of each state. 
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1= ϕin

ϕtotal

+ ϕout

ϕtotal

1=
ϕ1

− +ϕ2
−

ϕtotal

+ ϕ2
+

ϕtotal

+ ϕ1
+

ϕtotal

1= Pr(z ' = z | z)+ Pr(z ' = z+ | z)
+ Pr(z ' = z− | z)

 

(10) 

At each time step the probability to stay or transition up or 
transition down is calculated using the current state 
boundaries and the current input.  This information builds a 
time-varying probability transition matrix named L that can 
be constructed as shown in Table 1 for the example of 
current state z=2 at time t. 

Table 1. Example of probability transition matrix L for 
current state z=2 at a time t 

 

6. SIMULATION RESULTS 

Previous work by Scacchioli et al. (2006) yielded a 
complete nonlinear EPGS model.  This nonlinear model 
uses ωe, Iload, and Vref as inputs and yields Vf, Vdc, and 
battery dc current Idc as output as shown in Figure 9. 

 
Figure 9.  Schematic of EPGS model 

 
Diagnostics for the belt fault case, diode fault case, and 
voltage controller fault case are accomplished by using the 
EPGS model and the new method for the probability 
transition matrix L.  The EPGS output Idc is quantized and 
sent to the flow calculator.  The flow calculator uses the 
outputs of EPGS model and the f2 equation from the DC 
electric machine model to calculate the flow φ through each 
side of the current quantized state.   The flow and current 
quantized state are used to construct the probability 
transition matrix L.  The quantized state and probability 

transition matrix L are used in diagnostics for fault detection 
and isolation.  The procedure is illustrated in Figure 10.  

 
Figure 10.  EPGS model with diagnostics 

 
The following parameters were used to craft the inputs for a 
nonlinear EPGS Simulink model. 

1. Simulate vehicle driving 289 seconds of FUDS cycle 
compressed to 72 seconds during simulation. 

2. Simulation time step is 1e-4 seconds. 
3. Tire radius of vehicle is 0.391 meters. 
4. Final drive gear ratio is 4.72:1. 
5. Belt ratio of 2.92 between engine crankshaft and 

alternator pulley. 
6. Reference battery voltage Vref is a constant 14.46 volts. 
7. Current load profile is a square wave shown in Figure 

11. 

 
Figure 11.  Current load profile 

 
Using the aforementioned assumptions, ωe can be easily 
calculated and is shown in Figure 12.  The Vdc and Vf 
outputs of the EPGS model are given in Figure 13 and 14 
respectively.  The Vdc and Vf data will be used as inputs for 
the DC electric machine model but were downsampled to 
time step of 0.1 seconds. 

  Future State z’ 
  1 2 3 4 

C
ur

re
nt

 S
ta

te
 z

 1 0 0 0 0 

2    0 

3 0 0 0 0 

4 0 0 0 0 
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Figure 12.  Alternator rotational speed input 

 

 
Figure 13.  Battery DC voltage input 

 
Figure 14.  Alternator field voltage input 

 
Figures 12, 13, and 14 represent the nominal inputs to the 
DC electric machine model to which faults will be injected.  

Table 2 details the selected injection time and magnitude of 
fault relative to nominal that were injected during 
simulation.  In other words, the nominal inputs were 
modified to simulate a fault. 

Table 2.  Fault injection time and magnitude 

 
Output z2 range for nominal and faulty cases must be 
quantized into rectangles to find the probability transition 
matrix over time.  Output z2 is quantized into 12 states with 
names 1-12.  The same boundaries and names will be used 
for faulty cases as well. 

The z1 range for this simulation is z1
min is -2.210e+06 and 

z1
max is 6.683e+06.  Given the z1 range, the quantized states, 

and u1, u2, and u3, the probability transition matrix can now 
be calculated using the f2 function from Eq. (1).   

The probability transition matrix L contains the prediction 
of the most likely quantized state z’ = zL and its probability 
P(z’ = zL) at the next time step.  The most likely probability 
and most likely predicted state can be compared with the 
quantized output state [Idc] that actually occurs.    If there is 
a relatively high probability of a particular state transition 
occurring and that state transition does not occur, then a 
fault may be present.  An example of the most likely 
transition probabilities, most likely states, and output states 
over time for belt fault case is shown in Figure 15. 

Fault 
Injection 

time 
(s) 

Modified 
Input 

Resulting % drop 
with respect to 

nominal 
Belt Slip 10 ωe 0.8 

Open Diode 10 Vdc one broken diode 
Voltage 

Controller 10 Vref 0.3 
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Figure 15.  Belt fault outputs 

 
Disagreement between predicted and output states are clear 
after calculating the difference of quantized output state [Idc] 
and the predicted state from probability transition matrix L.  
This difference is defined as the residual r in Eq. (11).  The 
residual results for each fault case are shown in Figures 16, 
17, and 18.  

 r = [Idc ]− zL

 

(11) 

 
Figure 16.  Belt fault residual 

 
Figure 17.  Diode fault residual 

 
Figure 18.  Voltage controller fault residual 

 
All three fault cases show a short-term disagreement r ≠ 0 
between predicted and output states at time t=0.2 seconds 
but returns to agreement r = 0 immediately at t=0.3 seconds.  
The disagreement occurs before a fault is injected at time 
t=10 seconds.  This disagreement at t=0.2 could trigger a 
false alarm during fault detection.  Similar rapid switching 
behavior also occurs in the diode fault residual in Figure 17.  
To distinguish between the similar switching behavior of 
false alarms with real faults and to build confidence in the 
diagnostic algorithm, a fault will only be detected if the 
residual shows disagreement for at least 0.2 seconds.  The 
belt fault will be detected at t=38.4 seconds.  The diode fault 
will be detected at t=10.7 seconds.  The controller fault will 
be detected at 10.2 seconds. 

Isolation of a detected fault will be achieved by monitoring 
the switching behavior during a finite time window 
following detection.  The belt fault appears in the residual 
when the load current increases or decreases.  Due to the 
quick duration of load current change, the belt fault is also 
present for a short time in the residual lasting between two 
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to four seconds.  The diode fault causes a large ripple in the 
alternator output current.  This ripple causes frequent and 
rapid switching behavior from agreement to disagreement in 
the residual.  The controller fault is the only fault case 
where there is residual disagreement for the entire duration 
of the fault.   Therefore, the mean 𝑟 of the absolute value of 
the residuals during a finite time window can be used to 
isolate each fault as defined in Eq. (12).  The time window 
is chosen based on data behavior.  For the data in this paper, 
a six second window was used.  Table 3 shows the mean 
value calculations for each fault using the six second 
window immediately after fault detection.  

 
r =

ri
i=1

n

∑
n

 

(12) 

 
Table 3.  Mean 𝑟 for six second window 

 
Appropriate constant thresholds for 𝑟 can isolate the fault.  
For this paper, if 𝑟 is between 0.5 and 1 the fault is due to 
belt slip.  If 𝑟  is 1 the fault is due to the controller.  
Otherwise, the fault is due to an open diode. 

Based on this approach, the belt fault will be isolated at 
t=44.4 seconds; the diode fault will be isolated at t=16.7 
seconds; the controller fault will be isolated at time t=16.3 
seconds. 

Different fault magnitudes might require different isolation 
thresholds.  This paper only considers three discrete fault 
modes. 

7. CONCLUSION 

This paper presents a novel method for calculating a time-
varying probability transition matrix L for a quantized 
nonlinear system with the purpose of fault detection and 
isolation.  Matrix L exploits the linear state space system 
that approximates the nonlinear system thereby reducing 
computational effort.  Simple comparison of most probable 
state transitions from L and the quantized output states over 
time leads to fault detection and isolation.  The merit of 
using matrix L for diagnostics is shown through the 
successful application of fault isolation in a 2D quantized 
alternator system.   
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NOMENCLATURE 

ωm engine rotational speed 
ωe alternator rotational speed 
Vdc battery DC voltage 
Vf field voltage 
Vref voltage controller reference 
Idc alternator output current 
Iload vehicle load current 
IB battery charging current 
z1 first state space state 
z2 second state space state and output 
u state space input 
a(ωe) state space parameter dependent on alternator 

rotational speed 
b(ωe) state space parameter dependent on alternator 

rotational speed 
z current state 
z’ possible future state 
z1

min minimum z1 value 
z1

max maximum z1 value 
z* flow transition point on z1 axis on side 1 of state z 
z** flow transition point on z1 axis on side 2 of state z 
z2

(1) upper boundary of state z 
z2

(2) lower boundary of state z 
φ+ flow up 
φ- flow down 
f general function 
𝐹 Field vector 
𝑛 normal vector 
C general closed curve 
A area within curve C 
r line integral direction along curve C 
φin total flow into state z 
φout total flow out of state z 
φnet net flow for given state z 
z+  state above state z 
z− state below state z 
L time varying probability transition matrix 
[Idc] quantized alternator output current 
zL predicted future state using L 
r residual 
𝑟 mean of absolute value of residual 
n number of data points 
 

Fault Mean �̅� 
Belt Slip 0.75 

Open Diode 0.08 
Voltage Controller 1 
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ABSTRACT 

Gas turbine health monitoring is a critical process in 

preventing costly unplanned maintenance and secondary 

damage. To monitor gas turbine health, control signals are 

typically collected and analyzed using anomaly detection 

rules and models to assess failure likelihood based on 

observed data patterns. An analytic designer will often deal 

with rule optimization tasks in order to maximize failure 

detection and reduce false alarms. Manual tradeoff analysis 

is typically time consuming and suboptimal. In this paper, 

we attempt to address this issue by introducing a strategy for 

automatic and efficient rule optimization. By focusing on 

optimizing rule parameters while keeping rule structure 

intact, we maximize the rule performance by integrating 

domain knowledge with data driven optimization 

techniques. Realizing that automated rule tuning can be 

computationally expensive and infeasible to complete in 

reasonable time, we will leverage our recently-developed 

scalable learning framework - iScale that allows for 

automatically distributing rule tuning tasks to a large 

number of cloud computers, which not only dramatically 

speeds up tuning process, but also enables us to handle big 

size of historical data for tuning. We also explore different 

search methods to make rule tuning more efficient and 

effective and finally demonstrate our rule optimization 

strategy by a real-world application. 

1. INTRODUCTION 

Today thousands of GE manufactured gas turbines are 

serving customers worldwide for a wide variety of industrial 

applications. Most customers are adopting a contractual 

service agreement (CSA) with GE and rely on GE’s OEM 

expertise for actively monitoring turbine health, i.e., to 

proactively detect anomalies and prevent costly unplanned 

maintenance. Aiming for more accurate and robust detection 

of incipient faults as early as possible, over the years we at 

GE have developed and fielded a spectrum of advanced 

analytics models (both rule-based and data-driven models as 

well).   

Pure data-driven modeling techniques work well if 

sufficient labeled data are available. However in real-world 

applications like in gas turbine monitoring, obtaining 

sufficient labeled data is labor-intensive, if ever possible. In 

particular, true positive cases might be sparse or noisy. 

Using small set of labeled data for data-driven modeling 

may cause model over-fitting or ill-formed model 

representation. In addition, pure data model may not have 

explicit knowledge structure or explainable reasoning logic 

that engineers prefer, which often hinders user acceptance of 

the model.  

 

Consequently, for gas turbine health monitoring 

applications, rule-based models are still dominantly used. In 

fact, most PHM systems make use of diagnostic rules in one 

form or another. For the sake of clarity, consider one of the 

simplest forms, which has the following form. 

IF	�	� < �	�	THEN	�	STATE = �	� 

What this rule basically says is that if a parameter (�) has a 

value that exceeds a limit (�), the system is in a specific 

state (�). Generally the state identified reflects a particular, 

degraded state. It is worth stressing that real-world rules in 

gas turbine monitoring are typically much more complex, 

not only consisting of a large number of such simple-form 

rules, but also having complex-form rules. 

 

Traditionally decision rules and their associated rule 

constants are determined by domain or engineering experts 

_____________________ 

W. Yan, et al. This is an open-access article distributed under the terms of 

the Creative Commons Attribution 3.0 United States License, which 

permits unrestricted use, distribution, and reproduction in any medium, 
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based on their understanding of the physical system.  The 

rules are continuously refined until each rule produces 

acceptable detection accuracy. Such manual refinement not 

only is labor-intensive, but also often fails to find true 

optimal values. 

 

To address the above-mentioned challenge, in this paper we 

take a different approach, that is, to maintain the existing 

rule knowledge forms, but leverage machine learning based 

optimization platform to improve rule performance. By 

maintaining the expert rule forms we ensure correct physics 

understanding is maintained in rule logic. Tunable 

parameters, or knobs, are selected to optimize rule 

performance using training and testing data sets. The 

derived analytics benefits from both domain knowledge 

capturing as well as data driven optimization. The impact of 

having such a capability is significant in that instead of 

requiring detailed "face time" of an expensive engineer, an 

analyst could use this process to learn from labeled data and 

the tuning could be done in an automated and even online 

manner. 

To that end a generic rule optimization platform has been 

developed, which is independent of specific rules or rule 

platforms. It allows a user to create a rule tuning job through 

a web-based configuration interface. A user has the 

flexibility to choose among unit level or fleet wise 

optimized rule.  

In the remainder of this paper, we will first present the 

architecture of cloud-based machine learning system - 

iScale, followed by a discussion of available optimization 

method available. A case study will then be presented using 

iScale to perform a specific rule tuning job, and then the 

conclusions summary will be provided in the last section. 

2. SCALABLE LEARNING FRAMEWORK - ISCALE 

Creating solutions for analytically hard problems is 

presently a time- and cost-intensive process. This is largely 

due to the fact that the design of advanced analytic solutions 

is largely manual, requiring involvement of one or more 

analysts. These analysts apply their specific knowledge and 

expertise within a given area of analytic problem-solving to 

create an acceptable solution. This process has resulted in a 

major bottleneck in the company’s ability to create 

advanced analytic solutions rapidly. Aiming at tackling this 

bottleneck, we at GE have been developing a cloud-enabled 

analytics framework (called iScale) [Yan et al (2011)]. 

 

iScale is primarily designed to be a distributed computing 

environment for creating, refining, deploying and 

maintaining analytic solutions. As shown in Figure 1, the 

core of the framework consists of several key components, 

including the job manager, the resource manager, the job 

scheduler, the executer, and the optimizer. These 

components serve as an “orchestrator” among users, 

compute machines and algorithms. Specifically it takes 

user’s inputs (data and performance requirements, etc.), 

picks a subset of algorithms in the library that are most 

relevant to the problem, intelligently distributes the search 

tasks to different computer resources, and outputs the best 

combination of models and associated model parameters 

that maximally meet user specified performance 

requirements. The framework provides a web-service that 

can be accessed from a laptop computer and other mobile 

devices as well. The framework also maximally leverages 

Figure 1: iScale Framework 
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heterogeneous compute machines (cloud machines and 

internal HPC/clusters) and is flexible in integrating different 

algorithms written in different languages, e.g., C/C++, Java, 

and R. More importantly, it is highly scalable, that is, it is 

capable of handling large size of data by leveraging 

distributed computing technology. 

A critical component of iScale involves automating a 

significant portion of the currently manual process involved 

in problem formulation, data preparation, model selection, 

model tuning, domain knowledge integration and ensemble 

creation. The larger aspiration of iScale is to move analytic 

development activity from a one-off, largely manual process 

to a one-click, largely automated process. This is expected 

to significantly increase the rate at, and the ease with, which 

a significantly larger employee population in the company 

will create analytic solutions. It will help to make the 

creation of analytics an increasingly pervasive activity 

across the entire company. iScale will be the ecosystem in 

which analytic modules are born, sustained and 

continuously improved. A by-product of having such an 

ecosystem is it can bring to bear a large number of diverse 

analytic approaches to a single problem, thereby increasing 

the likelihood of finding a solution of very high quality. As 

an ecosystem, it is also expected to release next generation 

innovation that is evident in other similar analogues in the 

market today, like the Apple AppStore. By harnessing the 

virtually infinite and elastic compute power of the cloud, 

iScale is able to conduct a comprehensive and iterative 

search for the optimal analytic solution to a problem from 

across a diverse array of applicable approaches. Thus iScale 

is well suited for rule tuning as well. 

3. OPTIMIZATION METHODS 

Rule tuning is considered as an optimization problem where 

design space is defined by the tunable variables and 

objective function is defined by the rule performance 

metrics, i.e., probability of detection (POD) and false alarm 

volume (FAV). The rule tuning optimization problem has an 

important feature, that is, its objective values are available, 

but the derivative of the objective function is not 

computable. Another feature associated with rule tuning 

optimization is that the objective function evaluation is 

computationally expensive. These two features call for 

derivative-free (also called zero-order based) optimization 

methods [Rao (2009)] for rule tuning. Also, since multiple 

objectives (performance metrics) are involved in rule 

tuning, rule tuning is characterized as a multi-objective 

optimization (MOO) problem [Marler & Arora (2004)]. 

In literature there are many different derivative-free 

optimization methods [Conn et al (1997)]. In this paper we 

employ two different optimization methods, grid search 

(GS) and differential evolution (DE), for rule tuning. While 

both GS and DE fall to the category of global optimization 

methods [Rao (2009)], GS is a deterministic optimization 

method and DE, on the other hand, is a stochastic (also 

called heuristic or meta-heuristic) optimization method. 

GS performs optimization as follows: dividing the n-

dimensional design space into a n-dimensional grid, 

evaluating the objective function at all of these grid points, 

and picking the grid point that gives the minimal (or 

maximum) objective function value. Grid search is a simple 

global optimization method and can be easily distributed to 

many computer nodes to speed up the search process. The 

main drawback is that it suffers from the curse of 

dimensionality, i.e., the number of objective function 

evaluations grows exponentially with the number of design 

parameters. 

Figure 2 – General procedure for differential evolution 

 

DE is a simple, but powerful at the same time, population-

based, stochastic optimization method [Storn & Price 

(1997)]. Like other population-based optimization methods 

(e.g., GA, PSO), DE optimization follows the general 

procedure as shown in Figure 2. Essentially, an initial 

population of solutions is randomly generated and 

evaluated; and those solutions are improved upon by 

applying mutation, crossover, and selection operators until a 

stopping criterion is met.  

Compared to other EA optimization methods, DE 

optimization has several advantages, including fast 

convergence, having fewer control parameters, and ease in 

programming. As a result, DE has been used to solve a wide 

range of real world optimization problems [Das & 

Suganthan (2011)]. 

For multi-objective optimization problems, since there 

rarely exists a single solution that optimizes all objectives 

simultaneously, the optimum is given by a set of solutions 

known as the Pareto optimal set. The elements in this set are 

said to be non-dominated since none of them is better than 

the others in terms of all objectives. Using DE for MOO 

problems involves changes to its operators, mutation, 

crossover, and selection. Many different design strategies 

have been proposed. For details, refer to [Xue, et al (2003) 

and Reyes-Sierra & Coello (2006)]. 

Figure 3 illustrates the flow diagram of using DE for 

optimizing rules. In the optimization process shown in the 

- Initialization 

- Evaluation 

- Repeat the followings 

o Mutation 

o Crossover 

o Selection 

o Evaluation 

- Until stopping criteria are met 
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diagram, the step where rule engine execution based on a 

specified parameter set and the data is the most 

computational expensive one. That is where iScale helps by 

distributing the rule engine execution tasks to many 

compute nodes so that rule evaluation can be performed 

simultaneously. In the diagram, GS and DE differ in that GS 

is a one-pass operation while DE involves many iterative 

steps until convergence condition is met. Another difference 

between GS and DE is that the parameter set is pre-defined 

grid in GS while in DE the initial parameter set is randomly 

generated. 

 

4. RULE TUNING CASE STUDY 

In this section we provide a use case study about performing 

a specific rule tuning job using iScale.  

We will first give a brief introduction to the rule to be tuned. 

We then provide details of rule tuning process (the critical 

steps and data sets, etc.). At the end of the section, rule 

tuning results will be discussed.    

4.1. The Vibration Rule for Turbine Vibration 

Monitoring 

The rule concerned in this paper is the gas turbine vibration 

rule. Most gas turbines are equipped with proximity probes 

and seismic sensors located on the bearing housings. They 

provide key indicators of gas turbine hot section system 

integrity, including bearing damage, rotor imbalance, 

sudden mass loss, etc. Figure 4 shows an example of 

proximity sensor signals with step shift resulted after turbine 

blade migration due to lock wire failure. Event occurred 

shortly after unit was restarted and reaching high load, when 

multiple sensors had a step shift with increased vibration 

level.  

 

Figure 4 - Vibration Step Change Due to Turbine Blade 

Migration 

 

The vibration rule is developed to examine probe signals to 

detect trend or step change.  Once significant change is 

detected, statistical test is performed to assess confidence of 

the change. Both seismic and proximity probes will be 

analyzed and fused to improve alarm confidence. 

 

Vibration signal alone may not be sufficient to determine 

system condition. Variation caused by operating condition 

change such as load shift or turbine speed change may also 

cause similar vibration signal shift. To separate true HGP 

failure from operation status change, more logic is added in 

the vibration to establish enabling criteria and stability 

criteria. 

Figure 3: Flow diagram for rule optimization 
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4.2. Vibration Rule Tuning Process 

Within iScale platform, performing a rule tuning job is 

standardized into a straightforward process as shown in 

Figure 5. These can be carried out during the initial 

analytics design and development phase, or during the life 

cycle management for rule improvement. On the high level 

there are four steps from end to end. 

 

Figure 5 - iScale Rule Tuning Process 

   

4.2.1. Data Preparation 

As in any data driven modeling work, high quality data with 

representative feature set is a key for gaining predictive 

capability of the underlying analytics. Data preparation is 

certainly important for rule optimization. 

Three different types of data set are required for rule tuning. 

First is historical event ground truth data. Since we focus on 

anomaly detection rules, these include both abnormal units 

and normal units, which are referred as POD cases and FAR 

cases, respectively.  

Secondly, time series of rule input data of each historical 

case are extracted from the data historian, which will be 

used in rule evaluation. One minute resolution is used for all 

vibration case data. A week or so before and after POD 

events are prepared, and five months of FAR data is used in 

the vibration case study. 

Thirdly, tunable rule parameters are identified and their 

valid ranges are also specified. In the vibration rule tuning 

case, there are thirty or so parameters can be adjusted 

outside the rule. Some values are set based on unit 

configuration or material properties. Among which four 

high sensitivity parameters are selected as the tuning target. 

For intellectual property protection, we are not allowed to 

give details of the four parameters. Valid ranges of each 

tunable parameter are also specified in the template, which 

defines the optimization search space.   

4.2.2. Job Submission 

iScale rule tuning is provided as a web service. A user can 

login to the web interface to create and monitor a tuning job. 

To create a new job, the need to provide information of the 

rule platform, rule executable package, training and testing 

data set, and evaluation criteria. The main interface screen is 

shown in Figure 6. 

iScale itself is rule platform independent. However, 

platform specific rule wrapper and rule analysis engine will 

be required to execute a rule tuning within iScale to perform 

evaluation. The vibration rule is implemented based on 

CCAP platform, a GE in-house developed platform 

originally developed for US NAVY, specialized in plant 

equipment monitoring and diagnostics. 

Performance evaluation criteria are also defined during rule 

tuning job creation, which can be multiple objectives. For 

anomaly detection rules, it is typically to maximize 

probability of detection (POD) and minimize false alarm 

volume (FAV). For vibration rule, an additional criterion is 

added to maximize rule enabling coverage. A weighting 

mechanism can be established to merge different criteria 

into an overall objective function.  

 

Figure 6 - iScale Rule Tuning Interface 

4.2.3. Tuning Execution 

Once a rule tuning job is submitted by user, iScale will 

create a unique job ID to trace a specific task. It will also 

manage job schedule, data file transfer, resource allocation, 

and configure rule execution and evaluation. Rule 

configuration search space will be traversed based on the 

optimization method selected by user. The execution of 

search is performed on a number of compute nodes 

simultaneously. 

Execution time varies depending on the data set size, search 

space size, and number of available nodes. A user may login 

to the iScale job status checking screen to monitor job 

execution progress, modify or abort submitted job. 

After search completed, iScale will aggregate results from 

different computing node to rank and summarize final 

result. Based on user configuration, optimization can be 

performed in either fleet level or unit level. Both summary 

result and detailed raw result are maintained for user review. 
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4.2.4. Rule Deployment 

The final result provided to user includes the optimized rule 

configuration parameters and the corresponding evaluation 

criteria metrics. iScale can be configured as a fully 

integrated component within analytics development system. 

The integration is fairly simple since only the optimized rule 

configuration parameters are required to be deployed. After 

user review, the validated rule configuration information 

can be directly deployed to production system.  

4.3. Rule Tuning Results 

The data: 6-month of historical data for 18 turbines of the 

7FA fleet were retrieved from our database and used for 

demonstrating iScale rule tuning. The data has a sample rate 

of once per minute, which leads to approximately 259k 

(6*30*24*60) data points per turbine unit. Out of the 18 

turbine units, eight of them are considered as POD cases, 

i.e., have valid events at some point of the 6-month period. 

The rest of the 10 turbines units have no valid events.  

The search grid for grid search: As discussed in Section 

4.2.1, four rule parameters were selected as the tunable 

parameters. Due to IP issue, we are not allowed to give 

details of the specific tunable parameters. Here we designate 

the four tunable parameters as v1, v2, v3, and v4. We use 3 

levels for each of the parameters and we arrive in grid with 

3
4
=81 grid points (or DOE experiments).  

The configuration for DE optimization: For DE 

optimization, we integrate the ECJ package 

(http://cs.gmu.edu/~eclab/projects/ecj/) into the iScale 

framework. The population size and number of generations 

are set to 50 and 20, respectively. Other DE parameters 

(e.g., mutation and crossover rates) are set to ECJ default 

values. 

 

Table 1: Rule tuning results 

  Original 

design 
After tuning 

design 

parameters 

[20,0.04, 

0.3,0.4] 

[10,0.04, 

0.5,0.4] 

POD 100% 100% 

FAV 255 12 

 

Rule tuning performance results: Table 1 shows rule 

tuning results using grid search. For comparison purpose, 

also shown in Table 1 are the performance metrics (POD 

and FAV) for the default setting. As seen from the table, 

rule tuning reduces the number of false alarms from 255 to 

12 for the 7FA fleet data concerned in the paper. The 

reduction of false alarms improves monitoring engineer’s 

productivity and prevents unnecessary inspection or 

troubleshooting. We have to point out that the DE 

optimization is still a work in progress, and we would like to 

share the results in a later time. 

5. CONCLUSIONS 

Gas turbine health monitoring is critical in preventing costly 

unplanned maintenance and in reducing life-cycle costs of 

power plant operations. Currently a great majority of 

anomaly detection engines are rule-based; and the rules and 

their associated thresholds/constants are initially designed 

based on domain and engineering knowledge and manually 

modified based on the rules’ performance in the field. To 

improve fault detection performance (accuracy and 

robustness), systematical and efficient approaches allowing 

for optimally determining rules (rule discovery) and their 

associated constants (rule tuning) are needed. This paper is 

our initial effort towards addressing the need. Specifically 

we propose a way to automatically find optimal rule 

constants based on historical data; that is, we attempt to 

address the rule tuning need.  Realizing that automated rule 

tuning can be computationally expensive and infeasible to 

complete in reasonable time, in this paper we leverage our 

recently-developed scalable learning framework - iScale 

that allows for automatically distributing rule tuning tasks to 

a large number of cloud computers. Such distribution not 

only dramatically speeds up tuning process, but also enables 

us to handle big size of historical data for tuning. In this 

paper we also explore different search methods to make rule 

tuning more efficient and effective.  

By tuning the vibration rule, a real-world gas turbine 

detection rule, we demonstrate that the proposed rule tuning 

can be effective and efficient. The iScale-enable rule 

optimization not only eliminates the needs for manual 

tweaking thus a productivity gain for rule development, but 

also enables fully automated rule deployment and future 

adaptation, reduces the overall rule life cycle maintenance 

cost.  

In future we would like to explore other optimization 

methods to further improve efficiency and effectiveness of 

rule tuning. It is also our great interest to extend our current 

automated rule tuning to automated rule discovery. 

 

NOMENCLATURE 

CSA contractual service agreement 

DE differential evolution 

EA evolutionary algorithm 

FAV false alarm volume 

POD probability of detection 

MOO     multi-objective optimization 

 

Annual Conference of the Prognostics and Health Management Society 2013

98



Annual Conference of Prognostics and Health Management Society 2013 

 

7 

REFERENCES 

Conn, K. Scheinberg, and P. L. Toint (1997), On the 

convergence of derivative-free methods for 

unconstrained optimization, in Approximation theory 

and optimization, M. D. Buhmann and A. Iserles, eds., 

Cambridge, 1997, Cambridge University Press, pp. 83-

108. 

Das, S. and Suganthan, P.N. (2011), "Differential Evolution: 

A Survey of the State-of-the-Art," IEEE Trans. On 

Evolutionary Computation, vol.15, no.1, pp.4-31, Feb. 

2011. 

Marler, R.T. and Arora, J.S. (2004), Survey of multi-

objective optimization methods for engineering, 

Structural and Multidisciplinary Optimization, 26 (6) 

(2004), pp. 369–395. 

Rao, S. (2009), Engineering Optimization: Theory and 

Practice. 4
th

 Edition, John Wiley & Sons, Inc., 

Hoboken, New Jersey. 

Reyes-Sierra, M. and Coello, C.A.C. (2006), Multi-

objective Particle Swarm Optimizers: A Survey of the 

State-of-the-Art, International Journal of Computational 

Intelligence Research, Vol.2, No.3, 2006, pp.287-308. 

Storn, R. and Price, K. (1997), “Differential Evolution, A 

Simple and efficient Heuristic Strategy for Global 

Optimization over Continuous Spaces", Journal of 

Global Optimization, Vol. 11, pp. 341-359. 

Xue, F., Sanderson, A. C., and Graves, R. J. (2003), 

“Pareto-based multiobjective differential evolution.” 

Proc., 2003 Congress on Evolutionary Computation 

(CEC’2003), Vol. 2, IEEE, New York, 862–869. 

Yan, W., Iyer, N., Bonissone, P. and Varma, A. (2011), 

"iScale – Next Generation Framework for Creating 

Machine Learning Models", GE Global Research 

Center Whitepaper 2011. 

 

 

 

 

Annual Conference of the Prognostics and Health Management Society 2013

99



Development of Virtual Sensor Networks to Support Accident 

Monitoring Systems 

Rizwan Ahmed
1
, Pak Sukyoung

1
, and Gyungyoung Heo

1
, Jung-Taek Kim

2
, Seop Hur

2
, Soo Yong Park

2
, Kwang-II Ahn

2
 

1
Department of Nuclear Engineering,Yongin-si,Gyeonggi-do, 446-701, South Korea 

rahmed.ne@gmail.com 

pak.sukyoung@gmail.com 

gheo@khu.ac.kr 

2
Korea Atomic Energy Research Institute,Yuseong-gu, Daejeon, 305-353, South Korea 

jtkim@kaeri.re.kr 

shur@kaeri.re.kr 

sypark@kaeri.re.kr 

kiahn@kaeri.re.kr 

 
ABSTRACT 

In a nuclear power plant (NPP), most of the systems are 

linked due to processes of fluid flow, heat transfer etc., and 

their natural tendency to respond to changes during accident 

conditions. These relationships can be utilized to develop 

smart applications for plant accident monitoring and 

management. In this research, the statistical relationships 

among the process parameters have been analyzed. It has 

been embarked that the characteristics of a safety system 

during a particular interval can be estimated by utilizing the 

other affected parameters, employing statistical correlation 

and regression models developed from the simulation data 

offline, when evaluated for the same set of conditions on 

accident sequence and safety systems. The proposed 

methodology has been demonstrated for a specific loss of 

coolant accident scenario using correlation coefficient and 

neural networks, for the time interval when containment 

spray system was initiated at the particular stage of accident 

progression and remained operational for some designed 

time. Virtual sensor networks were constructed for the 

estimation of reactor vessel level during that time period, 

which demonstrates the realization of methodology. The 

estimations from such virtual sensor networks are expected 

to improve by utilizing the importance measures and 

concepts to generalize the neural networks. Also, correlation 

voting index (CVI) provides a capability to select a set of 

related outputs, which would be used as a yardstick for 

comparing results in case, missing or uncertain inputs are 

present.  

 

1. INTRODUCTION 

Nuclear instrumentation and control (I&C) system is to 

provide reliable information on process parameters during 

normal and abnormal conditions. It should also have the 

capability to represent information regarding process and 

safety parameters in easily interpretable manner by 

numbers/displays. The display capabilities of I&C systems 

have been greatly improved after the TMI event 1979 where 

operators were failed to take right actions due to 

misinterpretation of available signals. Modern I&C systems 

are programmed with computers where they can 

simultaneously utilize the monitoring data for sensor or 

equipment fault diagnosis. Such intelligent systems have 

made online calibration and testing of sensors a reality. 

However, during the Fukushima accident in Japan, we could 

observe the modern I&C was again failed due to a 

combination of reasons that appeared to include: loss of 

power, evaporation of liquid in sensing lines, failure of 

sensors due to environmental conditions, instrument ranges 

that were not suitable for monitoring plant conditions, and 

lack of alternative data for use in validating instrument 

readings. Therefore, the capability of I&C systems is 

extremely important during severe accidents characterized 

by a combination of basic events and followed by failures of 

designed safety systems. 

Nuclear industry has launched exhaustive research projects 

to address safety challenges in the severe accidents. At a 

broader level, for a complete accident management and 

emergency planning the areas to be focused are transitional 

procedures, onsite and offsite interactions, design and 

equipment and, and human and organizational factors. It has 
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been suggested that the severe accident management 

guidelines (SAMG) could only be useful if the monitoring 

of critical parameters is somehow made available to the 

operator, even in station blackout condition as mentioned by 

(American Nuclear Society, 2012) and (US Nuclear 

Regulatory Commission, 1983). Loss of information on 

process parameters increases the chances of information 

misinterpretation at control room which may lead to wrong 

operator actions. 

This research was motivated as a method to resolve 

aforementioned challenges. Our strategy is based on the 

development of an indirect way that is, a method to assess 

the safety critical parameters from other statistically related 

parameters.  

2. MATERIALS AND METHODS 

US NRC’s Regulatory Guide 1.97 provides the basic 

requirements for human-machine interface systems 

including I&C systems and for the monitoring of 

radioactivity releases following an accident. The SAMG 

classifies the important parameters in classes A-E (referred 

as SAMG parameters herein). Type A parameters are to 

provide primary information for manual operation. Type B 

parameters to provide information regarding the 

accomplishment of safety functions such as reactivity 

control, core cooling, maintain reactor coolant integrity, 

maintaining reactor containment integrity. Type C 

parameters are to provide information regarding variables 

that have a potential for causing a containment breach such 

as core exit temperature (CET), reactor coolant system 

(RCS) pressure, hydrogen concentration, containment 

pressure, and so on. Type D parameters are to indicate the 

operation of safety systems such as residual heat removal 

system, safety injection systems, refueling water storage 

tank level, primary coolant system, condensate storage tank 

level, containment cooling systems, radwaste systems, 

ventilation systems, power supplies etc., and Type E 

parameters are to indicate the amount of radioactive 

material to be released in case of containment breach. IEEE 

has also developed standards to support the specification, 

design, and implementation of accident monitoring 

instrumentation of NPPs. The recent document IEEE Std-

497 (revision 2010) provides criteria for selection, 

performance, design, qualification, display and quality 

assurance of the nuclear I&C system (IEEE Power and 

Energy Society, 2010).Westinghouse has proposed an 

advanced system for post-accident monitoring (PAM) to 

implement the SAMG parameters (Westinghouse Electric 

Company, 2012). The representative parameters are CET, 

reactor vessel level, hot and cold leg temperatures, RCS 

pressure, and so on (referred as PAM parameters herein).  

The focus of this research was on the PAM and SAMG 

parameters which should be secured during a severe 

accident to see the working of safety functions and their 

influence on accident progression. In this study the 

methodology to improve the information availability, by 

utilizing the statistical correlations among the PAM and 

SAMG parameters has been presented with a case study. 

Accident simulation data generated from the MAAP code 

for a probable loss of coolant accident (LOCA) scenario that 

led to containment damage (Park, 2009). The MAAP code 

generates time series data for more than 800 parameters 

following an initiating event for 2 days. This study was 

initiated to explore the following technical areas (Ahmed, 

2013), 

1. The statistical correlation of a process parameter 

with other parameters provides a basis for securing 

PAM parameters from SAMG parameters. The 

correlations among the process parameters can be 

utilized to estimate one parameter from the others. 

This would increase the virtual redundancy of the 

critical information.  

2. The relationships among the process variables can 

be used to develop several virtual networks to 

generate an important parameter. Therefore, we 

can have capability of virtually supplying a safety-

related sensor’s information during normal 

operation of critical sensor and also this 

information will be available if the original signal 

is unavailable to the operator. 

3. DEVELOPMENT OF PAM-SAM  RELATIONSHIP 

Thousands of sensors are installed at an NPP to measure 

parameters that are important to draw metrics for its 

performance and safety condition. However, a smaller set of 

parameters is vital for safety management. US NRC has 

provided a SAMG on preferred process parameters be 

monitored during and following an accident. We 

hypothesized that the statistical relationships among the 

process parameters can be utilized to serve as virtual sensor 

networks where PAM parameters could be estimated by 

several sets of SAMG parameters. However, the sets of 

SAMG parameters used to estimate a PAM parameter are 

expected to differ due to the underlying boundary conditions 

and involved safety systems.  

 

 
Figure 1: Structure of virtual sensor network. 
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The methodology can be directly extended to develop 

virtual networks to estimate SAMG parameters from other 

non-SAMG parameters as well. A system of such virtual 

networks is shown in figure 1. The connecting lines mean 

the statistical correlation and not a physical connection by 

wire or other data transferring mean. The complete stages 

for developing virtual networks for estimating PAM 

parameters are shown in figure 2. The remaining 

subsections are to discuss major processing step in brief.  

3.1. Simulation Database 

Major initiating events (1) large loss of coolant accident 

(LBLOCA), (2) medium loss of coolant accident 

(MBLOCA), (3) small loss of coolant accident (SBLOCA), 

(4) station blackout accident (SBO), (5) loss of off-site 

power accident (LOOP), (6) steam generator tube rupture 

accident (SGTR), and (7) loss of feed-water accident 

(LOFW) were simulated by using the MAAP code for 

Korean standard NPP, OPR-1000 (Park, 2009). The 

database comprised of a total of 70 accident scenarios 

analyzed on the basis of probabilistic safety analysis of 

OPR-1000 and presents the data for more than 800 thermal 

hydraulic and source term parameters for 72 hours 

following an accident.  

3.2. Scenario Analysis 

Accident management strategies have been developed and 

safety systems are designed to initiate when certain set of 

conditions meet and work for a particular time interval. 

With the MAAP code, the generated accident scenarios 

were to represent severe accident conditions, where several 

safety systems were assumed to fail. A set of representative  

LOCA scenarios are shown in figure 3 via event tree 

diagram, where the working of safety systems such as high 

pressure safety injection system (HPSIS), low pressure 

safety injection system (LPSIS), containment spray system 

(CSS) and cavity flooding system are conceivable. 

Scenarios having end state marked by a prominent yellow 

colored circle represent that the final Plant Damage State 

(PDS) was containment damage. To develop a particular 

application for severe accident monitoring system, the time 

intervals associated with the working or failure of safety 

systems should be considered to identify relationship among 

the parameters. 

 

3.3. Groups Formation 

For the development of virtual sensor networks, statistical 

relationship among the process parameters was required 

during working or failure of a safety system. Correlation 

coefficient is the most widely used statistical measure and is 

being used in process industry as a basis for grouping 

related variables for online monitoring applications (Ahmed, 

et al., 2012; Heo, et al., 2012). Equation (1) defines the 

simple correlation for two variables ‘x’ and ‘y’ having ‘n’ 

values in each. 
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Where sx and sy are sample standard deviations for given x 

and y vectors, respectively. An algorithm was implemented 

to collect top correlated SAMG parameters with PAM 

parameters on the basis of absolute value of correlation 

coefficient.  

3.4. Construction of Virtual Networks 

A virtual sensor network is a group of statistically related 

physical sensors where some of the signals are taken as 

input to produce others employing a regression model. 

Possible input combinations for the estimation of a 

parameter Pn from three inputs S1, S2 and S3 are shown in 

figures 4 (a), 4 (b) and 4 (c) . Where the subscripts i, j and k 

of input signal ‘S’, can assume any values from the set (1, 2, 

3) for generating the same output Pn. Therefore, seven (7) 

virtual networks can be developed for a system having three 

inputs and one output. For each virtual sensor network to be 

operational a regression model is indispensible. Among 

several regression models, ANN is widely used to map 

between a set of inputs and a set of targets and is quite 

robust. An ANN is an information processing system 

characterized by its architecture, training algorithm and 

activation function. A two-layer feed-forward network with 

sigmoid hidden neurons and linear output neurons is mostly 

used (Fausett, 1994). For ANN training Levenberg-

Marquardt back propagation algorithm is generally 

preferred, in case there is not enough memory, the scaled 

 
 

Figure 2: Steps for the development of parameter 

estimation relationships. 
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Figure 3: Event tree for a LOCA scenario. 
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conjugate gradient back propagation is recommended (Beale, 

et al., 2012). 

3.5. Network Importance Measures 

The estimations from a virtual sensor network are subjected 

to changes depending upon characteristics of underlying 

regression model and sensors’ uncertainties. The 

characteristics of regression models are beyond the scope of 

this paper however, a concept of importance measures is 

introduced here to characterize the influence of sensors’ 

uncertainties on the accuracy of estimations computed from 

a regression model. It is therefore, quite conceivable that the 

importance measures will adhere to the characteristics of 

underlying regression model (Ahmed, 2013). In this study 

the outputs of virtual sensor networks are produced by using 

ANN therefore, a mean square error (mse) was used to 

define the importance measures, since it is the basic 

measure of neural network performance and is widely used 

due to its ease of computation and quick optimization 

(Masters, 1993). The mathematical relationship to calculate 

‘mse’ is given in equation (2). 

2

1

)ˆ(
1 N

i

ii yy
N

mse

             

         (2) 

Where  represents the actual value of ith member of 

output vector and is the corresponding value estimated 

value. Two importance measures, accuracy improvement 

factor (AIF) and accuracy reduction factor (ARF) have been 

proposed to characterize the importance of a particular 

sensor in the virtual network owing to input perturbations. 

AIF for a particular sensor is to reflect a sensor’s 

importance on network estimations when the signal from 

that particular sensor is correct and remaining sensors are 

uncertain. AIF can be computed from equation (3) 

)(

)()(
)(

n

ni
i

mse

msemse
AIF                         (3) 

Where mse
(i)

 and mse
(n)

 are the values of ‘mse’ when only 

the signal from ith sensor is correct and when signals from 

all other ‘n-1’ sensors are uncertain.  A lower value (close to 

zero) of AIF
(i)

 would indicate the higher importance to 

network estimations and a relatively lesser influence of  

uncertainties in the remaining members of the network. This 

means that the particular virtual sensor network would 

produce accurate results provided the signal at the sensor 

having smallest AIF is secured.  

Another metric to assess the importance of a sensor is ARF 

which is to represent a sensor importance when it is 

uncertain and the remaining sensors are correct. ARF can be 

computed from equation (4) 

)1,(

)(
)(

ni

n
i

mse

mse
ARF                           (4) 

 

Where mse
(i,n-1)

and mse
(n)

 are the values of ‘mse’ when only 

the signal from ith sensor is corrupted and all other signals 

from ‘n-1’ sensors are correct. The value of ARF for a 

particular sensor will always lie between zero and one. A 

value close to zero would indicate higher sensitivity of 

model estimation to the perturbations in a particular sensor, 

and a value close to unity would indicate otherwise. This 

means that the estimations from a particular virtual sensor 

network are quite sensitive to the perturbations in the signal 

of sensor having smallest ARF value.  

It should be noted that AIF and ARF are based on 

estimations computed from a regression model and would 

adhere to the characteristics of that regression model. 

Therefore, AIF and ARF reflect a sensor’s characteristics in 

a virtual sensor network, which is a group of sensors whose 

inputs are integrated using a regression model.  

4. ANALYSIS AND RESULTS 

This section describes the application of the presented 

methodology for developing system-specific relations for 

containment spray system during a specific LOCA scenario.  

The LOCA scenario was assumed to follow the sequence of 

events shown in table 1. We can recognize three important 

phases of this accident in time, 1) starting from pipe break 

in the primary system followed by success/failure of several 

systems till the start of containment sprays at 1,280 sec, 2) 

time interval during which containment spray system 

worked and eventually expired at 7,730.2 seconds and 

recirculation system came into play, and 3) time interval 

starting with the recirculation system’s action to the failure 

of containment.  

The first part within the first 1,280 seconds following the 

accident was marked by action and failure of several safety 

features which was quite rapid and therefore, an effort to 

apply proposed methodology would be quite uncertain and 

have limited applicability due to many influencing 

parameters in practical situation. 

 
Figure 4: Input combinations for generating similar 

output parameter from neural networks. 
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The second part (1,280 – 7,730 seconds) where only the 

containment spray systems was operational, the proposed 

methodology was implemented and correlations were 

computed for PAM parameter with the SAMG parameters. 

For this part, the explanation for reactor vessel level (RVL) 

is given. For other parameters the strategy can be directly 

extended. The parameter RVL was found to have correlation 

with containment (CNMT) water level measuring sensors, 

radioactive waste storage tank (RWT) level, containment 

gas temp, pressurizer (PZR) temperature, cold leg 

temperature, reactor vessel gas temperature, and 

temperature measuring devices installed in reactor core, at a 

correlation coefficient higher than 0.85.  

The third part (after 7,730 second), was marked by the 

build-up of pressure in the containment building which was 

not controlled by recirculation system and eventually led to 

the containment rupture.  

4.1. Estimations of PAM 

Since, many virtual sensor networks can be developed 

depending upon the number of correlated parameters. One 

representative example for RVL signal recovery in case of 

original sensor failure is presented here, where candidates 

for the input were three sensors CNMT water level (m), 

RWT level (m) and cold leg temperature (K). The variation 

of input and output parameters is shown in figure 5. The 

trained neural network was tested against an arbitrary 

sample taken from the data. The estimation of virtual 

network against the actual normalized value of RVL is 

shown in figure 6. The accuracy and sensitivity issues were 

explored by computing the network importance measures. 

 

4.2. Comparison of Importance Measures 

In our network importance measure calculations, AIF for 

each sensor was computed by assuming a uniform random 

noise of ±5% in other members of the network, while during 

the calculation of ARF the error was considered to be 

present only in that sensor whose ARF was required. AIF 

and ARF computed values for the network members are 

given in table 2. From AIF values the signals CNMT water 

level, RWT level and cold leg temperature are important to 

the correct estimations in descending order. 

On the basis of ARF values, the network estimations are 

less sensitive to perturbations (<±5%) to the CNMT water 

level and more sensitive to the perturbations in RWT level 

and cold leg temperature.  

4.3. Unavailability Problem 

A common problem of concern is the unavailability of all of 

instrumentation or a part of it. Of course, the problem of 

absolute loss of information cannot be resolved by methods 

relying upon information, therefore the problem of partial 

loss of information was considered.  

 

 
Figure 6: Estimation of RVL using neural network. 

 
Figure 5: Variation of few correlated parameters with 

reactor vessel level.  

Table1: Sequence of events following LOCA simulated 

in MAAP for OPR-1000.  

Action Time (seconds) 

PZR heaters on 1.2 

PZR heaters off 10.4 

HPI on 11.7 

Reactor scram 11.7 

Motor-driven Auxiliary feed-

water on 
11.7 

MSIV closed 11.7 

Main FW off 11.7 

Upper compartment spray on 1280.1 

Upper compartment sprays off 7730.2 

Recirculation system in 

operation 
7730.2 

Accumulator water depleted 247447.2 

Containment failed 247447.2 

 

 

 

 

 

Annual Conference of the Prognostics and Health Management Society 2013

104



Annual Conference of the Prognostics and Health Management Society, 2013 

6 

 

As mentioned in section 3.4, several virtual networks of 

varying size and combinations of inputs can be used to 

estimate the same parameter. A new measure, correlation 

voting index (CVI) helps to identify faulty sensor and to 

identify the outputs to be relied upon (Ahmed, 2013). The 

mathematical form of CVI is given by  

n

j

jiPcorriCVI
1

)),(()(                       (5) 

In equation (5) CVI(i) is correlation voting index for ith 

neural network, P is matrix of estimated outputs from ‘n’ 

neural networks and ‘corr(P(i,j))’is used here to represent 

function to calculate correlation coefficient between the ith 

and jth estimation of ‘n’ neural networks stored in matrix P. 

The small values (especially negative) of CVI indicate the 

outliers due to their poor correlation with the rest of the 

estimations. The highest values of CVI represent the set of 

outputs from networks with lesser uncertainty. 

For the RVL estimation, a set of neural networks like shown 

in figure 4 were developed. Three cases, representing 

failures of one signal, 1) S1: CNMT water level, 2) S2: RWT 

level and 3) S3: cold leg temperature, respectively were 

analyzed. The CVI values for each network for each case 

are given in table 3. The positive values represent the 

consistent set of outputs. For instance for case-I (S1 

unavailable), the acceptable outputs set are produced by 

networks S2, S3, S1S3, and S2S3. A unity value 1 for S1 

corresponds to the faulty sensor. The final estimation can be 

computed either by relying only upon the highest value of 

CVI, in this case for S2S3 network (Ahmed, 2013) or by 

using the mixing models techniques discussed by (Bishop, 

2006).  

 

5. CONCLUSIONS 

In this research, the statistical relationship among the 

process parameters has been analyzed. The proposed 

methodology has been demonstrated for a specific LOCA 

scenario for the time interval where containment spray 

system was initiated at a particular instant of accident 

propagation. Virtual sensor network constructed for the 

estimation of RVL demonstrates the realization of 

methodology and its improvement is expected by utilizing 

other networks and importance measures. The CVI performs 

to select a set of related outputs and gives a yardstick for 

comparing results in case exact values are not known. 

However, to extend this strategy for real power plant 

application requires the evaluation of system-specific 

relationships via neural networks at safety system’s 

operation set-points and for a set of conditions expected to 

occur at a power plant. There is a need to bring 

improvements and refinements to the proposed 

methodology in the areas of parameter grouping and 

generalization and optimization of neural networks. Also, 

the neural networks can also be replaced by other regression 

technique. The importance measures presented in this study 

can be defined on the basis of any other performance 

measures for a regression technique however, it should be 

remembered that these measures represent importance 

determined by the characteristics of underlying regression 

technique and not the importance in physical sense.  

The application of the proposed methodology has been 

demonstrated in the aspect of virtual redundancy of a 

sensor’s information, and unavailability problem. The first 

would lead to the capability of online validation of critical 

sensors without installing more physical sensors and the 

second would provide the capability of estimating critical 

parameters in case of partial loss of instrumentation along-

with the identification of faulty sensors.  
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NOMENCLATURE 

AIF accuracy improvement factor 

ANN       artificial neural network 

ARF accuracy reduction factor 

CNMT    containment 

Corr       function to compute correlation coefficient 

CSS        containment spray system 

CVI        correlation voting index 

FW         feed water 

HPI        high pressure injection 

HPSIS    high pressure safety injection system 

LPSIS     low pressure safety injection system 

mse        mean square error 

Table 3: CVI computed values for six neural network 

outputs. 

Neural network 
CVI 

(case I) 

CVI 

(case II) 

CVI 

(case III) 
S

1
 1.0000 0.7950 0.5826 

S
2
 1.4255 1.0000 1.2569 

S
3
 1.5624 0.8183 1.000 

S
1
S

2
 -1.2737 -0.6058 1.2781 

S
1
S

3
 1.0229 0.9360 -0.3763 

S
2
S

3
 2.0604 -0.6208 -0.3605 

 

Table 2: Network importance measures. 

Parameter AIF ARF 

CNMT water level 41.0685 0.0238 

RWT level 71.1913 0.0139 

Cold leg temperature 238.0302 0.0043 
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MSIV     main steam isolation valve 

PAM post-accident monitoring 

PZR       pressurizer 

RVL       reactor vessel level  

RWT      radioactive waste storage tank 

SA          severe accident 

SAM severe accident management 

SAMG    severe accident management guidelines 

REFERENCES 

Ahmed, R., (2013). Study on Process Parameters to 

Optimize the Monitoring System for Severe Accidents, 

PhD Thesis. Yongin-si, Giheung-gu: Kyung Hee 

University. 

Ahmed, R., Heo, G. & An, S. H., (2012). Intelligent 

Condition-based Maintenance using Plant Health Index. 

San Diego CA, s.n. 

Ahmed, R. et al., (2013). Study on Virtual Redundancy 

among Process Parameters for Accident Management 

Applications. Gwangju, s.n. 

American Nuclear Society, (2012). Fukushima Daiichi: 

ANS Committee Resport, s.l.: ANS. 

Beale, M. H., Hagan, M. T. & Demuth, H. B., (2012). 

Neural Network toolbox User's Guide 2012a. s.l.:The 

MathWorks Inc. . 

Bishop, C. M., (2006). Pattern Recognition and Machine 

Learning. LLC, USA: Springer Science + Business 

Media. 

Fausett, V. L., (1994). Fundamentals of Neural Networks: 

Architectures, Algorithms And Applications. 

s.l.:Prentice Hall International. 

IAEA, (2002). Accident Analysis of Nuclear Power Plants, 

Safety Reports Series No. 23, Vienna: International 

Atomic Energy Agency. 

IEEE Power and Energy Society, (2010). IEEE Standard 

Criteria for Accident Monitoring Instrumentation for 

Nuclear Power Generating Stations: IEEE Std 497 2010 

(Revision of IEEE Std 497-2002. New York: IEEE. 

Masters, T., (1993). Practical Neural Network Recipes in 

C++. San Diego, California: Academic Press, Inc.. 

Park, K. A. a. S., (2009). Development of a Risk-informed 

Accident Diagnosis System to Support Severe Accident 

Management. Nuclear Engineering and Design, 

Volume 239, pp. 2119-2133. 

US Nuclear Regulatory Commission, (1983). Regulatory 

Guide 1.97: Revision 3, Instrumentation for Light-water 

Cooled Nuclear Power Plants to Assess Plant and 

Environs Conditions During and Following an 

Accident, s.l.: USNRC. 

Westinghouse Electric Company, (2012). Nuclear 

Automation: Advanced Logic System Post-accident 

Monitoring System. [Online] Available at: 

www.westinghousenuclear.com 

[Accessed May 2013]. 

BIOGRAPHY 

Ahmed, Rizwan was born at Sialkot, Pakistan on January 

28th 1983. He graduated from M.Sc. (Geophysics) program 

in 2004 from Quaid-i-Azam University, Islamabad, Pakistan. 

He got fellowship in MS Nuclear Engineering at Pakistan 

Institute of Engineering and Applied Sciences (PIEAS), 

Islamabad, Pakistan in 2004 and graduated from the 

program in 2006. He joined Mainformatics Laboratory, 

Department of Nuclear Engineering at Kyung Hee 

University (KHU), South Korea in September 2009 and 

completed his Ph.D. in August 2013. Now, he works as a 

faculty member at Department of Nuclear Engineering, 

PIEAS in Pakistan. He has published several journal and 

conference papers on areas related to nuclear safety 

problems. His research interests include accident simulation, 

numerical computing, and PSA. He was awarded with best 

presentation and paper award by Japanese Society of 

Mechanical Engineers (JSME) for his publication in ICEM-

2010, Japan. He is a member of Korean Nuclear Society 

(KNS) Korea.  

  

Annual Conference of the Prognostics and Health Management Society 2013

106



Modeling localized bearing faults using inverse Gaussian mixtures
Pavle Boškoski, Ðani Juričić
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ABSTRACT

Localized bearing faults exhibit specific repetitive vibrational
patterns. Due to the constant angular distance between the
roller elements, the vibrational patterns occur on regular an-
gular intervals. Under constant operating conditions such pat-
terns become easily detectable as “periodic” events. Slippage
or small variation in rotational speed are commonly modeled
by introducing normally distributed time variations, which al-
lows for occurrence of “negative” time intervals. In this paper
we present an approach which models the occurrences of lo-
calized bearing fault patterns as a realization of random point
process whose inter-event time intervals are governed by in-
verse Gaussian mixture. Having support on (0,∞), the ran-
dom impact times can acquire strictly positive values. The ap-
plicability of the model was evaluated on vibrational signals
generated by bearing models with localized surface fault.

1. INTRODUCTION

Bearing faults are one of the most common causes for me-
chanical failures (MRWG, 1985; Albrecht, Appiarius, &
Shrama, 1986). Consequently, the majority of the proposed
fault detection methods address the issue of bearing fault de-
tection. Commonly, the well adopted methods focus on ex-
tracting and analyzing the behavior of a set of features that
describe bearing surface faults, so-called bearing fault fre-
quencies (Tandon & Choudhury, 1999). Inferring about bear-
ing condition using such a feature set is possible if the mon-
itored bearing is operating under constant rotational speed.
However, rotational speed fluctuations, which are quite com-
mon in real world, reduce the effectiveness of these features.
In this paper we model the vibrational patterns generated by
bearings with localized surface fault modeling as a point pro-
cess with inverse Gaussian mixture inter-event distribution.

From a practical point of view, condition monitoring of bear-
ings operating under variable regimes is the most plausible
real world scenario. As a result, recently many authors pro-

Pavle Boškoski et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

posed new approaches for condition monitoring of machinery
operating under non-stationary regimes (Zhan, Makis, & Jar-
dine, 2006; Combet & Zimroz, 2009; Wang, Makis, & Yang,
2010; Boškoski & Juričić, 2012a; Cocconcelli, Bassi, Sec-
chi, Fantuzzi, & Rubini, 2012; Boškoski & Juričić, 2012b;
Heyns, Godsill, Villiers, & Heyns, 2012). Despite the non-
stationarity of the generated vibrations, these approaches
manage to exploit the statistical properties of some specific
vibrational patterns, hence performing sufficiently accurate
condition monitoring. Focusing on bearing fault detection,
the main source of information are the time occurrences of
particular vibrational patterns. Based on the statistical prop-
erties of these time occurrences several effective fault detec-
tion methods have been developed (Antoni & Randall, 2003;
Borghesani, Ricci, Chatterton, & Pennacchi, 2013). In the
same manner we propose an approach that describes the im-
pacts generated by localized bearing surface damage as a re-
alization of a point process whose inter-event times are gov-
erned by pure or inverse Gaussian mixture.

Initially, inverse Gaussian distribution was developed by
Schrödinger (1915) as the distribution of the first passage
time of a Wiener process with positive drift and fixed thresh-
old. The first detailed in-depth analysis of the statistical prop-
erties of inverse Gaussian distribution was derived much later
by Tweedie (1957) and afterwards by Folks and Chhikara
(1978). Since then inverse Gaussian distribution has been ap-
plied in many different areas for instance: production mod-
eling (Desmond & Chapman, 1993), reliability (Lemeshko,
Lemeshko, Akushkina, Nikulin, & Saaidia, 2010), neural
spike train modeling (Vreeswijk, 2010), condition monitor-
ing (Boškoski & Juričić, 2011) etc. Although in many cases
the application of pure inverse Gaussian model suffices, in
this paper we show that under variable rotational speed in-
verse Gaussian mixture is more suitable model for describing
localized bearing faults.

The paper is organized as following. Section 2 contains the
definition and the basic statistical properties of the inverse
Gaussian distribution. The selection between models describ-
ing pure or mixture of inverse Gaussian distributions is pre-
sented in Section 3. The actual modeling of localized bearing

1
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faults with in the proposed framework is presented in Sec-
tion 4. Finally, the experimental validation of the models is
given in Section 5.

2. PURE AND MIXED INVERSE GAUSSIAN DISTRIBU-
TIONS

2.1. Pure inverse Gaussian distribution

Let a stochastic process α(t) be

α(t) = νt+ σ2W (t), ν > 0, (1)

where ν is the positive drift, σ2 is the variance and W (t) is
Wiener process (Matthews, Ellsworth, & Reasenberg, 2002).
Schrödinger (1915) showed that the first passage time of the
process (1) over a fixed threshold a follows the Inverse Gaus-
sian distribution (Folks & Chhikara, 1978):

f(t;µ, λ) =

√
λ

2πt3
exp

(
−λ(t− µ)2

2µ2t

)
,

t > 0, µ = a/ν > 0, λ = a2/σ2.

(2)

Since the parameters µ and λ in (2) are time invariant, the
resulting stochastic process is stationary. A simple realization
of such a process is shown in Figure 1.
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Figure 1. Simulated realization of the stochastic process (1).
The time intervals ti are distributed by inverse Gaussian dis-
tribution (2)

2.2. Mixed inverse Gaussian distribution

When modeling data generated by Wiener process (1) there
are many situations in which parameters µ and λ in (2)
should be considered as random variables. Under such cir-
cumstances, the distribution of the first passage time can be
described by inverse Gaussian mixtures (Whitmore, 1986).
Physically more sound is to allow the positive drift ν in (1)
to vary randomly according with some pre-defined distribu-
tion. In order to keep the relation with the positive drift
ν more clearly visible, Desmond and Chapman (1993) re-
parametrized (2) by setting δ = 1/µ:

f(t; δ, λ) =

√
λ

2πt3
exp

(
−λ(δt− 1)2

2t

)
, (3)

where t > 0, δ > 0, λ = a2/σ2.

In such a form the parameter δ is linearly related to the posi-
tive drift ν in (1). By allowing δ to be random variable with
distribution pδ(δ), the marginal distribution reads:

h(t; θ) =

∫

∆

f(t;λ|δ)pδ(δ) dδ, (4)

where θ is the vector comprising of λ and all hyper parame-
ters of pδ(δ).

3. MODEL SELECTION

The likelihood functions (2) and (4) specify two different
models M1 and M2 respectively that can be used for describ-
ing the time occurrences t. The selection of which model is
more appropriate can be performed by using Bayes’ factor.

The application of the Bayes’ factor incorporates the concepts
of parsimony, unlike the standard likelihood which suffers
from the problems of overfitting (MacKay, 2005; Berkes &
Fiser, 2011). For the observed data t the Bayes’ factor be-
tween two models M1 and M2 reads:

P (M1|t)
P (M2|t)

=
P (t|M1)

P (t|M2)︸ ︷︷ ︸
Bayesfactor

×P (M1)

P (M2)
, (5)

where P (M1) and P (M2) are prior distributions associated
with each model.

The two likelihoods entering the Bayes’ factor can be calcu-
lated by integrating over the complete set of parameters as:

P (t|M1) =

∫
f(t|θ1,M1)p(θ1|M1) dθ1

P (t|M2) =

∫
h(t|θ2,M2)p(θ2|M2) dθ2,

(6)

where f(t|θ1) is defined by (2), h(t|θ2) is defined by (4) and
θ1 and θ2 are their corresponding parameter sets.

3.1. Specification of the prior pδ(δ)

In order to complete the calculation of the Bayes’ factor (5),
one has to specify the distribution of the random positive drift
δ in (4). One possible model of the drift fluctuations, similar
to the one specified by Desmond and Yang (2011), reads:

δ = d+ ε, where ε ∼ N (0, σ2
δ ), d ≥ 0, δ > 0. (7)

For cases when the parameter σδ = 0, the drift parameter δ
becomes deterministic, thus the mixture inverse Gaussian (4)
reduces into its standard form (2).

The limitation δ > 0 imposes additional limitation on the
distribution of ε in (7). Consequently, one has to use Gaussian
distribution of ε truncated so that ε > −d.

2
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Using the model (7) with truncated Gaussian distribution as
a prior for the speed fluctuations, the marginal likelihood (4)
becomes:

ĥ(t;λ, σδ, d) =

√
λ

2πt3(1 + λσ2
δ t)

× exp

(
− λ(dt− 1)2

2t(1 + λσ2
δ t)

)

×
Φ

(
d+λσ2

δ

|σδ|
√

1+λσ2
δt

)

Φ
(
d
σδ

) ,

(8)

where Φ(·) is the cumulative function of the standard normal
distribution.

The proposed speed model (7) defines random and station-
ary speed profile. When necessary, an arbitrary speed profile
can be used instead. The only problem would be to spec-
ify a proper definition of the prior pδ(δ) and calculate new
marginal likelihood (8).

Finally, it has to be emphasized that the modeled parameter
in (7) is the standard deviation σδ instead of the variance. By
modeling through the variance an additional limitation will
be imposed i.e. σ2

δ ≥ 0. Such a parametrization introduces a
limitation since the parameter under null hypothesis σ2

δ = 0
lies on the limit of the acceptable region. Therefore standard
likelihood tests become inapplicable (Lehmann & Casella,
1998, Chapter 5).

4. BEARING FAULT DETECTION BY MEANS OF INVERSE
GAUSSIAN MODELS

Bearing faults are surface damages that occur on the bearing
elements. Each time when a rolling element passes over the
damaged surface, a specific vibrational pattern is generated
directly connected to one of the bearings eigenmodes. Usu-
ally, under constant operating conditions the generated vibra-
tions are modeled as (Randall, Antoni, & Chobsaard, 2001):

x(t) =
∑

i

Ais(t− iT − τi), (9)

where Ai is the amplitude of the ith impact, s(t) is the im-
pulse response of the excited eigenmode, T is the period of
rotation and τi is random fluctuation due to slippage. Gen-
erally, τi is modeled as zero mean normally distributed with
sufficiently small variance σ2

τ . Regardless of the variance σ2
τ ,

model (9) allows for τi to acquire sufficiently low negative
values. Consequently, the occurrence of the i + 1th impact
might be modeled as if it occurs before the ith one.

4.1. Using inverse Gaussian distribution

Avoiding the issues of negative time delays, present in model
(9), we propose the following model of generated vibrations:

x(t) =
∑

i

Ais(t− ti), (10)

where Ai is the amplitude of the ith impact, s(t) is the im-
pulse response of the excited eigenmode and ti is the time of
the occurrence modeled as inverse Gaussian random variable.
A typical vibrational pattern is shown in Figure 2.
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Figure 2. Simulated conceptual vibrational pattern generated
by damaged bearing

Due to the mechanical characteristics of the bearings, the an-
gular distance between the adjacent rolling elements is con-
stant. Therefore, the angular distance between two consec-
utive impacts can be regarded as constant too. So, one can
easily apply the stochastic process (1) to model the angular
distance traveled by a rolling element towards the damaged
surface. The threshold a in (1) is the actual angular distance
between the roller elements and ν is directly related to the
rotational speed. Consequently, the time intervals ti between
two adjacent excitations of s(t) can be modeled as a realiza-
tion of either pure or mixture inverse Gaussian, depending on
the statistical characteristics of the rotational speed.

Pure inverse Gaussian model (2) for the inter-impact times
ti should be regarded as a special case, valid when the bear-
ing rotational speed is “constant” i.e. there are no significant
speed fluctuations. Under such circumstances pure inverse
Gaussian model (2) is applicable for localized bearing sur-
face faults (Boškoski & Juričić, 2011).

A more realistic scenario is the one where the rotational speed
of a bearing varies randomly. Under such circumstances the
angle covered by a rolling element can be modeled as a real-
ization of the stochastic process (1) by allowing the positive
drift ν ∝ δ to vary randomly according to the random speed
fluctuations. Consequently, the observed time intervals ti be-
tween two consecutive impacts can be modeled as a realiza-
tion of an inverse Gaussian mixture (8).

3
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4.2. Multiple localized faults

The case of multiple localized surface faults can be also de-
scribed in the framework of point processes with inverse
Gaussian inter-event distribution. For that purpose one can
consider a Wiener process, similar to (1), with two barriers a
and b. Starting from an initial point the time required to reach
the barrier a is T1, and time to reach the barrier b from a is
T2. Chhikara and Folks (1989) showed that T1 and T2 are
independent inverse Gaussian random variables defined as:

T1 ∼ IG
(
a

ν
,
a2

σ2

)

T2 ∼ IG
(
b− a
ν

,
(b− a)2

σ2

) (11)

Measuring from the initial starting point reaching the thresh-
old b can be specified as time T3 = T1 + T2. Since the ratio

λi
µ2
i

=
ν2

σ2
= const., (12)

the time T3 is also inverse Gaussian random variable dis-
tributed as (Chhikara & Folks, 1989):

T3 ∼ IG
(
µ1 + µ2,

ν2(µ1 + µ2)2

σ2

)
. (13)

In the context of bearings, the threshold a is the angular dis-
tance of the first fault in the direction of rotation measured
from some initial point. The threshold b, on the other hand,
is the angular distance measured from the first fault in the
direction of rotation.

By extending the concept of two thresholds (13) to multiple
thresholds, one can model multiple localized bearing faults
by employing the generalized distribution of inter-event times
(Chhikara & Folks, 1989, Chapter 11).

5. EXPERIMENTS

The proposed model based on mixture of inverse Gaussian
distribution of the inter-event times was evaluated on sim-
ulated vibration signals. The signals were generated us-
ing the dynamic bearing model developed by Sawalhi, Ran-
dall, and Endo (2007) enhanced with the EHL (Elastohy-
drodynamic Lubrication) model developed by Sopanen and
Mikkola (2003a, 2003b). The simulated bearing had local-
ized surface fault on the outer ring. The fault was simulated
to be 2◦ wide and has average surface depth of 30µm.

Simulations were performed using several different speed
profiles according to the model (7) with mean value d =
38 Hz. The standard deviation σδ changed from 0% up to
10% of the mean speed d.

5.1. Detection of impacts times

The main information required for the application of pro-
posed inverse Gaussian based models are the time intervals
between two consecutive impacts. Therefore, the first step
in the analysis is the detection of impact times. In our ap-
proach, the detection of impact times was performed using
wavelet transform thresholding. The main parameter that has
to be selected is the mother wavelet. Schukin, Zamaraev, and
Schukin (2004) suggested that for signals containing repet-
itive impulse responses, an optimal detection of impacts can
be performed by using mother wavelet that will closely match
the underlying vibrational patterns. However, Unser and Tafti
(2010) provided thorough analysis that the crucial parameter
for sparse wavelet representation of signals containing repet-
itive impulse responses, is the number of vanishing moments
of the mother wavelet rather then the selection of the “op-
timal” mother wavelet that will closely match the underly-
ing signal. Therefore, by selecting a wavelet with sufficiently
high number of vanishing moments one can sufficiently accu-
rately analyze vibrational patterns containing the impulse re-
sponses from the excited eignemodes regardless of their vari-
able form due to the changes of the transmission path. The
schematic representation of the impact detection process is
shown in Figure 3.

System

Wf(u.s)

Input impulses Impulse responses

Wavelet transform

Wavelet coefficients

Figure 3. Detection of impact times using wavelet as differ-
ential operator

In our approach, the generated vibrations were analyzed using
Daubechies 10 mother wavelet (Daubechies, 1992). For our
particular system such a number of vanishing moments has
shown to be sufficient for accurate impulse detection.

5.2. Numerical calculation of the Bayes’ factor

Having the impact times ti the next step is to calculate the
Bayes’ factor by calculating the marginal distributions (6).
The marginal likelihoods were calculated using Monte Carlo
integration. Since the model selection depends on the stan-
dard deviation σδ (not the variance σ2

δ ), the selected prior was
so-called folded non-central t distribution (Gelman, 2006)

4
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which reads:

p(σδ) ∝
(

1 +
1

γ

(σδ
A

)2
)−(γ+1)/2

, (14)

where A is scale parameter and γ represents the degrees of
freedom. The prior for the mean value d in (7) was chosen
to be uniform in sufficiently wide interval. The prior for the
remaining parameter λ = 1/σ2 in (1) was also chosen to
be uniform in the interval that contains 2% of initial speed
fluctuations due to slippage (Randall et al., 2001).

5.3. Experimental results

One realization of the speed fluctuations, modeled according
to (7) with d = 38 Hz, is shown in Figure 4. The speed
fluctuations are smooth but sufficiently fast. Consequently
even during a single bearing revolution the rotational speed
varies.

Time [sec.]

R
o
ta

ti
o
n
a
l
sp

ee
d

[H
z]

0 0.5 1 1.5
35

36

37

38

39

40

41

Figure 4. A typical speed fluctuation profile

For small speed deviations σδ < 0.5% of the mean speed
value d, the Bayes’ factors (6) overwhelmingly favor sim-
pler model (2) i.e. pure inverse Gaussian distribution of the
inter-event times. For speed fluctuations with σδ > 0.5% the
Bayes’ factors favor mixture inverse Gaussian model for the
inter-event times. Changes of the Bayes’ factor with respect
to the changes in the speed fluctuations σδ are shown in Fig-
ure 5.

Such results are somewhat expected since under small speed
fluctuations pure inverse Gaussian distribution of the inter-
event times sufficiently well describes the observed impact
times. At the same time, due to the principle of parsimony,
the simpler model is preferred. The cost of more complex
model becomes justified when the speed fluctuations become
more intense.

5.4. Comments on results

The effectiveness of the proposed approach becomes appar-
ent if one compares it with other methods. Due to the random
speed fluctuations, the standard spectral methods are inappli-
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Figure 5. Changes of the Bayes’ factors for different σδ

cable and the only choice is time-frequency analysis of the
signal. Therefore, we calculated the wavelet transform of the
envelope of the generated vibrations, which is shown in Fig-
ure 6. One can easily notice that the envelope contains some
patterns in the vicinity of 90 Hz. However, the patterns ex-
hibit no particular structure and it is quite difficult to draw
any conclusions from such a time-frequency plot.
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Figure 6. Wavelet transform of the envelope of the generated
vibrations

The analysis of the impacts as a realization of a point process
with pure or inverse Gaussian mixture offers a framework
for proper statistical testing about the origin of the observed
events. Testing whether the observed impacts are related to
a specific angular position is fairly straightforward. Further-
more, the same analysis offers an insight about the possible
mixing distribution, i.e. the distribution of the variable rota-
tional speed.

6. CONCLUSION

The experimental results show that the specific vibrational
patterns generated by bearings with surface faults can be
treated as a realization of a point process whose inter-event
times are distributed according to either pure or inverse Gaus-
sian mixture. The pure inverse Gaussian distribution is appli-
cable for the special case when fault bearings operate under
constant rotational speed. The inverse Gaussian mixture, on

5
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the other hand, is a general solution applicable also for mod-
eling the inter-impact times of faulty bearings operating un-
der variable rotational speed. Finally, unlike the commonly
adopted models for bearing vibrations, the proposed model is
inline with the physical limitations by modeling random time
fluctuations with distribution with support on interval (0,∞).

The application of the proposed approach on acquired vibra-
tions starts by calculating the time intervals between adjacent
impacts through the wavelet coefficients calculated from the
generated vibration signals. When the observed impacts are
generated by a phenomenon that occurs on regular angular
intervals, the corresponding inverse Gaussian model can be
employed. Determining the validity of such a claim can be
performed by a straightforward calculation of the Bayes’ fac-
tors. This approach is applicable to both constant and variable
operating conditions.
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ABSTRACT 

Simulations serve as important tools throughout the design 

and operation of engineering systems. In the context of sys-

tems health management, simulations serve many uses. For 

one, the underlying physical models can be used by model-

based health management tools to develop diagnostic and 

prognostic models. These simulations should incorporate 

both nominal and faulty behavior with the ability to inject 

various faults into the system. Such simulations can there-

fore be used for operator training, for both nominal and 

faulty situations, as well as for developing and prototyping 

health management algorithms. In this paper, we describe a 

methodology for building such simulations. We discuss the 

design decisions and tools used to build a simulation of a 

cryogenic fluid test bed, and how it serves as a core tech-

nology for systems health management development and 

maturation. 

1. INTRODUCTION 

In modern systems engineering practices, modeling and 

simulation serve as foundational elements throughout the 

design process. Systems health management (SHM) tech-

nologies, which focus on monitoring system behavior, de-

tecting faults and other anomalies, isolating and identifying 

faults, and predicting component failures and other signifi-

cant events, all rely on some type of system model. System 

simulations capable of modeling both nominal and faulty 

behavior can help in developing these models and in testing 

and validating SHM algorithms, and have an additional ap-

plication for operator training with failure scenarios. 

Simulations can effectively serve as virtual testbeds. For 

development and validation of SHM algorithms, such simu-

lation testbeds are extremely useful since validation requires 

injecting faults, which is often difficult, costly, or unsafe to 

perform on real systems. In (Poll et al., 2007) an electrical 

power distribution system testbed and its corresponding 

simulation testbed are described. In (Balaban et al., 2013) a 

simulation testbed for a planetary rover is described. In 

(Goodrich et al., 2009) a simulation testbed for a cryogenic 

fluid system is discussed.  Each of these simulation testbeds 

have the ability to inject faults and are used for development 

and prototyping of health management algorithms.  Other 

examples of simulation-based SHM include (Agusmian, 

2013) and (Biswas, 2007). 

We describe in this paper the development of another simu-

lation package for a cryogenic fluid system, extending in 

many respects the preliminary work presented in (Goodrich 

et al., 2009). The simulation is being developed for a cryo-

genic testbed (CTB) that, through a network of pipes, 

valves, pumps, and filters, transfers liquid nitrogen from a 

storage tank to an external tank representing that of a space 

vehicle. The purpose of the CTB is to mature SHM technol-

ogies for ground systems operations. Developing a simula-

tion for this system presents many challenges, due to the 

large number of components, the large number of possible 

system modes, and complex two-phase physics. 

This paper focuses on the development of the CTB simula-

tion software, named CryoSim. We discuss the tools used to 

build the simulation model, and how the challenges of 

building such a simulation are addressed. The system archi-

tecture used for CryoSim is both model and domain agnos-

tic.  It can be easily adapted for use with other system mod-

els and simulation domains, thus serving as a general archi-

tecture for designing virtual testbeds for SHM purposes.   
Barber et al. This is an open-access article distributed under the terms of 
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In Section 2, we present a brief overview of the SHM sys-

tem and other factors that motivated the development of 

CryoSim.  In Section 3, we discuss the internal architecture 

of CryoSim and present the design methodology used to 

develop the model.  Section 4 details the external interfaces 

we have developed for CryoSim to facilitate its use as a 

virtual testbed.  We present a number of results in Section 5 

to illustrate the key features of CryoSim and its use in an 

SHM context. Section 6 concludes the paper. 

2. BACKGROUND 

CryoSim is one element of an integrated SHM system being 

developed for the CTB.  The SHM system architecture con-

sists of a set of health management tools connected via a 

message bus based on a publish/subscribe protocol.  During 

operation, the target system periodically publishes a set of 

messages containing system measurement data (pressures, 

temperatures, flow rates, etc.).  The health management 

tools receive this data, perform analysis, and then publish 

messages indicating the health status of the monitored sys-

tem.   

CryoSim was developed as a drop-in replacement data 

source for the CTB.  CryoSim uses a simulation to produce 

data which accurately represents a range of system behav-

iors, including fault scenarios.  This data is then published 

to the message bus using the same protocols as the CTB.  In 

this manner, CryoSim acts as a virtual testbed, enabling the 

development and testing of a suite of health management 

tools without large numbers of costly test runs on the CTB.   

The architecture and implementation of CryoSim described 

in this paper were primarily motivated by its intended use as 

a testbed for SHM systems.  This application drove the de-

velopment of features such as component-level fault simula-

tion and the message bus interface, which we discuss in later 

sections.  The possibility of using a simulator package like 

CryoSim as a data source for other systems dictated the 

modular, model-agnostic design approach that we followed.  

Additional considerations during development included its 

potential application as an operator training environment, 

and the ability to support varying levels of simulation fideli-

ty with the same model.  The remainder of this paper de-

scribes the methods we used to ensure that CryoSim could 

meet this set of objectives. 

3. CRYOSIM ARCHITECTURE 

This section describes the architecture of CryoSim, starting 

with an overview of its modular architecture.  We then dis-

cuss key elements of the approach we used to develop the 

system model.  Finally, we describe the operation of the 

initialization and control modules, and how they interact 

with the model and the external interfaces present in Cryo-

Sim. 

3.1. Overview 

The CryoSim software was developed to meet the following 

objectives: 

 Provide a medium-fidelity, multi-domain system 

model incorporating cryogenic fluid flow elements, 

a pneumatic actuation system, and an I/O and con-

trol system 

 Model both nominal system behavior and the ef-

fects of any of a discrete set of failure modes in-

jected at any location in the system 

 Publish model input and output signal values to a 

message bus interface using the same protocols as 

the CTB system 

 Allow user specification of input signals, model 

parameters and fault injection commands 

 Record all simulation data, including inputs, pa-

rameter values, outputs and status/warning mes-

sages to a file for offline analysis 

 Provide an interactive graphical interface allowing 

full control over the simulation environment, in-

cluding system inputs and fault injection 

In order to support the various use cases and configurations 

of CryoSim, the package was developed using a modular 

architecture.  The core consists of two required modules: the 

CTB system model which is implemented as a hierarchical 

Simulink® model, and an initialization and control module 

consisting of a set of MATLAB® functions.  If desired, the 

message bus and GUI modules can also be enabled for a 

simulation run or set of runs, but are not required to access 

any of the core functionality of CryoSim.  Figure 1 shows a 

block diagram of the CryoSim architecture. 
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Figure 1. CryoSim block diagram 

3.2.  System Model 

The CryoSim system model is a variable-fidelity, multi-

domain physics-based model of the CTB.  The model was 

developed using Simulink, without dependencies on addi-

tional toolboxes.  We developed a set of component libraries 

to represent the various physical domains included in the 

system.  Interaction between elements in different domains 

is incorporated in the component designs.  The current im-

plementation has libraries for cryogenic fluid flow, pneu-

matics, and electrical systems (including transducers and 

system I/O).  Library components are instantiated in the 

model and connected to match the topology of the physical 

system. Related sets of interconnected components are or-

ganized into subsystems, which are connected together to 

form the complete model.  

3.2.1. Component-based Design 

The CryoSim system model is composed of a set of compo-

nent models which are connected to match the CTB system 

topology.  The component models are parameterized repre-

sentations of a component’s behavior in both nominal and 

faulty operating regimes.  This methodology allows a single 

component model residing in a library to be used in the sys-

tem model to represent a number of similar physical com-

ponents, each having unique physical characteristics and 

behavior.  For example, the library component used to rep-

resent a pneumatically actuated control valve, shown in Fig-

ure 2, has parameters describing the orifice diameters and 

flow coefficients of both the fluid flow path and the pneu-

matic actuator.  Instances of this component are used in the 

model to represent valves with different geometries, simply 

by changing the parameters used for each component. 

 

 

Figure 2. Control valve (CV) component model 

 

3.2.2. Variable Model Fidelity 

A core feature of CryoSim is support for different levels of 

simulation fidelity without requiring a user to make changes 

to the system model.  We accomplish this by implementing 

multiple component or subcomponent-level models, each 

Annual Conference of the Prognostics and Health Management Society 2013

116



Annual Conference of the Prognostics and Health Management Society 2013 

4 

providing a different level of fidelity and corresponding 

computational burden.  The models can range from a non-

computing element such as a constant output or signal pass-

through, to a low-order model based on empirical behavior, 

to a high-fidelity model based on the underlying physics of 

the component being modeled.  Our approach uses the vari-

ant subsystem functionality in Simulink to implement this 

behavior.  When using variant subsystems, each component 

or subcomponent may have one or more variant instances, 

each representing a different model of the component’s be-

havior.  Before a simulation is run, one of the set of possible 

variants for each component is selected and made active for 

the simulation, while the remaining variant instances are 

disabled.  This implementation allows the end user to select 

the desired simulation fidelity at run time using a single 

parameter, without the possibility of errors introduced by 

editing the model.   

 

 

Figure 3. Internal block diagram of a variant subsystem 

 

Figure 3 shows the internal configuration of the variant sub-

system used in our model to compute fluid flow, which is 

representative of the cryogenic fluid domain in our model.  

The variant subsystem contains three variant instances: a 

standard fluid flow model, a two-phase fluid flow model, 

and a null model.  The standard fluid model is based on the 

Bernoulli equation for laminar, incompressible, inviscid 

flow (Granger, 1995).  This option provides a computation-

ally-efficient model which yields usable accuracy for our 

SHM system when used to simulate the post-chilldown 

phase of the CTB system’s operation, where the flowing 

fluid exists primarily in the liquid phase.  However, it is not 

accurate for operating regimes such as system chilldown, 

where the cryogenic fluid is in a mix of liquid and vapor 

phases.  

The two-phase fluid flow model is based on a stratified flow 

approximation that assumes the gas and liquid are split into 

two layers with gas on top and liquid on the bottom. The 

model considers heat transfer with the walls and between 

the layers, including evaporation/condensation and boiling. 

The two-phase model provides a much higher level of fideli-

ty, especially in the chilldown phase where there are large 

temperature variations in the system resulting in significant 

quantities of liquid being converted to vapor.  The tradeoff 

associated with the two-phase model is increased computa-

tion time for higher model fidelity compared to the standard 

flow model. 

The null component variants for the cryogenic fluid library 

consist of signal terminations on the input ports, and output 

ports set to constant values. The null variants are effectively 

empty blocks that require no computation during a simula-

tion. The use of null variants allows unneeded portions of 

the system model to be disabled for a given simulation run, 

resulting in significant increases in simulation speed.  In 

general, care must be taken when implementing the null 

variants in order to provide appropriate boundary conditions 

for the non-null portion of the system.  For example, the 

null variant for a fluid tank connected to a pipe network 

should provide output signals representing a static state 

(pressure, flow, temperature, etc.), rather than null or 

grounded signals.   

It should be noted that the effective use of variant subsys-

tems requires that each variant instance for a given compo-

nent have the same connectivity.  We implement this by 

using vector-based signals to connect component instances.  

For example, two scalar signals are needed for the variables 

representing cryogenic flow in the standard flow model, 

while four signals are needed for the two-phase model.  

Similarly, the variables needed to describe a fluid element 

require either two or seven scalar signals.  We combine the 

groups of scalar signals into vector signals, and use 

mux/demux blocks at the input and output ports of the vari-

ant instances to route the signals internally, as shown in 

Figure 4.  Signals that are not needed by a particular set of 

variants are grounded or terminated inside of the variant 

instances. To avoid problems associated with Simulink’s 

ability to propagate signal data types and dimensionality, it 

is good practice to explicitly specify signal properties at the 

input and output ports of each component variant.  When 

implemented in this way, changing from one set of variants 

to another does not require any changes to the model’s to-

pology.  This allows an end-user to safely change the mod-

el’s variants and simulation fidelity without the risk of alter-

ing connections within the model, and without requiring the 

model designer to maintain separate system models for each 

set of variants. 
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Figure 4. Block diagram for the Standard Fluid Flow variant  

 

The use of variant subsystems easily extends to mixed-

domain components.  The component model of a pneumati-

cally-actuated control valve shown in Figure 2 includes el-

ements from both the cryogenic fluid flow and pneumatics 

domains.  Because the variant subsystems are implemented 

as domain-specific sets of variant instances, the control 

valve model contains two variant subsystems, which can be 

changed independently.  

Our implementation allows the user to specify desired vari-

ants via a set of control parameters.  For each simulation 

domain, a global variant parameter determines the particular 

variant implementation for that domain.  Thus, a user desir-

ing a high-fidelity simulation of the cryogenic domain that 

does not require high fidelity in the pneumatics domain can 

simply specify the appropriate variant control parameters 

before running a simulation. 

A second group of variant controls in CryoSim allows par-

ticular segments of the system to be toggled between the 

usual domain-specific variant components and null compo-

nents.  If a particular segment is not required for a simula-

tion, the components in that segment can be set to use the 

null variant instances instead of the normal component 

models, reducing the computational load required to model 

the entire system.  Implementing this functionality in Cryo-

Sim approximately doubles the simulation speed in cases 

where all unneeded segments are disabled. 

3.2.3. Fault Modeling 

In order for the simulation data to accurately represent sys-

tem faults, the desired failure mechanisms must be incorpo-

rated into the component designs.  During a simulation, 

when a given fault is injected onto a particular component, 

the effects of the fault will automatically propagate through 

to the entire system in accordance with the underlying mod-

el behavior.  The fault mode, magnitude and injection time 

are implemented as parameters for each component, ena-

bling fine-grained control over fault behavior in the model. 

Faults can be injected or cleared either before a simulation 

is run, or during the run. 

In keeping with our system model’s design, the implementa-

tion of a specific fault mode will depend on the desired level 

of fidelity.  For many of our component models, a multiport 

switch is introduced in the path of a signal of interest, allow-

ing different transformations to be applied to the signal de-

pending on the selected fault mode.  An advantage of this 

approach is that new fault modes can be added to a compo-

nent without requiring any rework of the model or other 

library components.  Similarly, a higher fidelity representa-

tion of a particular fault can be incorporated into a compo-

nent if there is a specific need. 

The control valve component model, shown in Figure 2, 

illustrates this approach to fault modeling. The blocks used 

to implement the fault modes are shown with a hatched 

background.  This component model has four available fault 

modes: 

1. Nominal behavior:  when this mode is active, the actua-

tor position calculated by the “Pneumatic Valve Actua-

tor :: Variants” block is passed without modification to 

the “Flow :: Variants” block. 

2. Stuck pneumatic actuator: in this fault mode, the posi-

tion of the pneumatic valve actuator is set to a fixed 

value, regardless of the value of the controlling “Signal 

Pressure” input.  When this mode is active, the calcu-

lated actuator position is ignored.  A user-determined 

fault magnitude parameter is used instead, originating 

from the “Fault Magnitude1” block shown in the dia-

gram. 

3. Blockage: this fault mode models an obstruction in the 

fluid flow path of the valve.  The pneumatic actuator 

position is not affected by this fault mode, so it is 

passed through to the “Flow :: Variants” block.  To 

model the effects of the blockage, the nominal valve or-

ifice area is scaled down by multiplication with the us-

er-determined fault magnitude parameter. 

4. Frozen: this fault mode represents a condition where the 

pneumatic actuator does not respond to its controlling 

input signal, similar to the “Stuck” fault described 

above.  However, in the “Frozen” mode, the actuator 

position is held to its value immediately prior to the 

fault mode becoming active.  This can be seen in Figure 

2 as the “Memory” block at the bottom of the diagram. 

 

As noted earlier, the approach we have used for fault model-

ing allows the addition or modification of fault modes for a 

given component with no impact to the normal behavior of 

the component or overall system.  The complexity of any 

particular fault mode’s implementation is determined by the 

model designer.  A simple low-order approximation can be 

used for faults that do not require high-fidelity modeling, 

such as the “Stuck” and “Frozen” fault modes for the CV 
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component.  For these faults, we do not model the mechan-

ics of a failure within any particular type of pneumatic actu-

ator.  Instead, we approximate the behavior of the actuator 

in a manner that minimizes the computational resources 

needed for the fault models.  For fault modes where in-

creased fidelity is desired, the fault can be incorporated into 

the physics of the affected subsystem, such as the “Block-

age” fault for the CV component and the statistical wear 

model used for the filter component described in Section 

5.4. 

3.2.4. Extensibility 

It is anticipated that CryoSim will be required to provide 

simulation data representing different configurations of the 

CTB system.  For example, a valve replacement or re-

routing of pipes in some segment of the system would con-

stitute a modified configuration that would require corre-

sponding changes to the model.  The component-based de-

sign is well-suited to this requirement, as changes to a par-

ticular subsystem can be made by adding or removing that 

subsystem’s components and connecting them to match the 

new system topology.   

Additionally, the component libraries allow the rapid crea-

tion of models of other systems that utilize the same com-

ponent types.  The modular nature of the CryoSim system 

architecture, which separates the model from the initializa-

tion, control and external interfaces, allows virtually all of 

the supporting code to be reused for a new system model 

without modification.   

3.3. Initialization Module 

The initialization module is responsible for setting up the 

simulation environment and external interfaces before a 

simulation is run.  To support the multiple interfaces and 

use cases for CryoSim, the initialization module must pro-

vide a number of entry points while enforcing consistent 

behavior throughout the simulation process.  That is, a 

simulation controlled through the GUI must accept the same 

inputs and provide the same outputs as a standalone simula-

tion run or one controlled via the message bus.  Additional-

ly, the initialization module must validate user-supplied 

input signals and parameters, and ensure that the set of pa-

rameters and signals presented to the simulation module is 

complete and well-defined.  CryoSim uses the base 

MATLAB workspace to store and process initialization and 

simulation data, allowing both the initialization and control 

modules to interact with the system model (via internal 

MATLAB/Simulink system calls), and the external interfac-

es (via MATLAB/Java interaction, described later). 

3.3.1. Input Data 

To ensure that all signals and parameters are defined prior to 

a simulation run, the initialization module loads a default 

configuration file, which contains all of the required values.  

If desired, a user-defined input file can be loaded after the 

default data file.  The initialization module first validates the 

user-specified data for type, range and dimensionality.  The 

validated data is then merged into the default configuration, 

with user-specified values always taking precedence over 

the default values.  To avoid unexpected simulation results, 

the user is notified if the data in their input file is either in-

complete or contains invalid entries.   

3.3.2. Batch Mode 

One important use-case of the CryoSim package is running 

sets of simulations to generate data for parametric and Mon-

te Carlo analysis.  To spare a user from the effort needed to 

generate unique input files for each set of desired parameter 

values, the initialization module includes an interface to 

allow a user-supplied calling function to execute the full 

initialization procedure once and then run a set of simula-

tions.  For each simulation run within the set, the calling 

function passes an arbitrary set of parameter and signal val-

ues which are used to override the default values for that 

run.  This enables a simple user-supplied script to run a 

batch of simulations with a unique combination of parame-

ter and signal values for each run. 

3.4. Control Module 

The control module is implemented as an “Interpreted 

MATLAB function” block inside of the Simulink system 

model.  This function is executed at a predetermined rate as 

part of the simulation process, and has access to the model’s 

input and output signal values during the simulation.  Addi-

tionally, because it executes as a MATLAB function, the 

control function has access to both the base MATLAB 

workspace and the external GUI and message bus Java in-

terfaces.  

During each iteration of the control function, new values for 

the model’s control signals and fault status are read from 

tables in the base MATLAB workspace.  The module then 

queries the GUI and message bus interfaces (if present) for 

any user-generated control signals or fault commands, 

which are merged into the default tables.  Values received 

from these interfaces always take precedence over the de-

fault values generated by the initialization module using the 

input file.  The updated control signals and faults are then 

sent to the model, and the model’s current input and output 

values are published to the GUI and message bus interfaces. 

Another important function of the control module is the 

ability to control the real-world execution speed of the simu-

lation by comparing the simulation clock to a system clock, 

and introducing appropriate delays if necessary.  This func-

tionality allows the CryoSim module to act as a substitute 

data source for the actual CTB system, which publishes 

measurements and system input values at one second inter-

vals.  Correct behavior in this mode requires that the host 

computer can execute the simulation at a rate of at least one 
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simulation time step per real-world time step.  For simula-

tion runs used for offline data generation and model devel-

opment, the execution speed control can be disabled, allow-

ing the simulation to run as fast as possible in a given com-

puting environment.  

Upon termination of the model’s execution, a cleanup func-

tion is executed.  This function creates an output file which 

can be used for offline analysis and to meet data retention 

requirements.  The output file contains all of the data needed 

to reproduce the simulation run (model parameters, input 

signals and injected faults), as well as the simulation outputs 

and message log generated by the CryoSim module.  With 

the exception of the simulation outputs and message log, the 

data structure of the output file is identical to the input file.  

Thus, a particular simulation can be re-run simply by strip-

ping these tables from an output file, then using it as the 

input file for a new simulation. 

4. EXTERNAL INTERFACES 

4.1. Overview 

We have developed two external interfaces to integrate Cry-

oSim into our SHM system architecture.  First, we created 

an interactive GUI that enables full control of the simula-

tion, from starting and stopping a simulation, to injecting 

faults and changing model parameters and signals.   The 

second interface consists of an adapter used to connect to 

the message bus interface used by the SHM system.  This 

adapter allows CryoSim to publish simulation data onto the 

bus in a manner identical to the physical system it models, 

functioning as a virtual test bed for the SHM system. 

Both interfaces were implemented in Java®, making use of 

MATLAB’s ability to directly access Java objects and 

methods.  The use of Java provides two key advantages.  

First, by developing Java classes to handle the computations 

needed for the GUI and message bus, we reduce the compu-

tational burden on MATLAB, enabling faster simulation 

speeds.  This improvement in performance is primarily due 

to the greater control over threading available in Java.  The 

second advantage is the availability of commercial GUI 

toolkits for industrial controls and systems.  We used the 

GLG Toolkit (www.genlogic.com) for CryoSim, which 

minimized the effort needed to produce the GUI. 

4.2. Graphical User Interface 

The CryoSim GUI was designed to meet the following ob-

jectives: 

 The GUI can control simulation execution, including 

start/stop/pause commands and control of execution 

speed. 

 The GUI displays the current values of the simulation’s 

output signals, and also includes the ability to produce 

time-series plots of past values of these signals. 

 The GUI allows the user to specify input values (con-

trol signals), inject faults and modify other simulation 

parameters, both before a simulation run and during its 

execution. 

 The GUI has two operational modes: an interactive 

mode which runs a simulation and generates new output 

data, and a playback mode which replays data recorded 

from a prior simulation run, and thus does not require 

the use of the MATLAB/Simulink software. 

4.2.1. Java-MATLAB Interface 

As shown in Figure 1, the interface between CryoSim and 

the GUI includes a change from the MATLAB environment 

used in CryoSim to a Java-based GUI.  To enable full inter-

activity, user inputs to the GUI must be passed to the Cryo-

Sim initialization and control modules, and model outputs 

must be sent from the control module to the GUI, all with-

out stalling or otherwise interrupting the simulation.  As 

noted above, the use of Java for the GUI’s internal computa-

tions provides significantly more control over the threading 

and scheduling of these computations, compared to the sin-

gle-threaded Simulink environment of the simulation.  This 

is important because the CryoSim control module is part of 

the Simulink model, and any blocking or delay due to inter-

action with the GUI has the potential to significantly reduce 

simulation speed. 

Communication between MATLAB and Java can be im-

plemented in MATLAB via the built-in javaMethod() func-

tionality, and in Java using the third-party matlabcontrol 

API (http://code.google.com/p/matlabcontrol).  MATLAB 

access to Java objects and methods is well-documented and 

supported by Mathworks, Inc., and serves as the basis of 

most of our interface.  On the other hand, Java access to the 

MATLAB environment via matlabcontrol makes use of an 

undocumented interface, although some information is 

available through third parties (Altman, 2013 and Altman, 

2011).  Additionally, the matlabcontrol API provides only a 

limited feature set compared to the use of javaMethod(), 

providing further weight to our decision to use javaMeth-

od() calls whenever possible.   

As shown in Figure 5, the data flow between the GUI and 

CryoSim can be classified into initialization procedures, 

which take place before a simulation run, and interactive 

control during the simulation run.  The data exchanged be-

tween the GUI and CryoSim during initialization includes 

model parameters and input signals as well as a table con-

taining faults to be injected during the simulation.  During 

the initialization stage, CryoSim loads a user-specified input 

file which provides the parameters and signals used for a 

simulation run.  CryoSim then pushes this data to the GUI, 

where it is used to initialize the information presented to the 

user.  The user can then modify signals, parameter values, 

and the fault injection table.  When the user has created the 
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desired simulation scenario, the simulation can be started 

via the simulation controls available in the GUI. 

 

 
 

Figure 5. CryoSim-GUI interface 

 

During a simulation, the interaction between CryoSim and 

the GUI is handled through the use of javaMethod() calls in 

CryoSim’s control module.  The control module pushes a 

vector containing the current output signal values to the 

GUI, where they are used to update the GUI’s display of the 

model’s state.  The control module then queries the GUI for 

any updated input signals or faults that the user might have 

supplied, and provides them to the model.  In this imple-

mentation, all user inputs to the GUI are applied to the mod-

el at the next time step after the GUI has made them availa-

ble.  This mode of interaction, when coupled with the flexi-

ble threading available in Java, allows the simulation to run 

independently and without risk of blocking from the GUI.  

The only direct control the GUI has over CryoSim is the set 

of simulation commands (start, stop and close simulation), 

which use the matlabcontrol API and can thus execute as 

soon as activated by the user. 

4.2.2. CryoSim-GUI Interaction 

The GUI provides full interactive control of CryoSim using 

the controls shown in Figure 6.  This diagram shows the 

main GUI window, which consists of a number of panels 

and controls, numbered here for reference in the text.  The 

system shown has been simplified from the full CryoSim 

model in order to reduce its visual complexity for illustra-

tion purposes. 

As discussed earlier, CryoSim makes use of an input file to 

provide parameters, input signals and faults for a particular 

simulation run.  The GUI menu bar (#1) allows the user to 

select an input file, which is shown in the configuration 

panel (#2).   This panel also allows the user to specify the 

simulation length (#3), inject faults (#4) and modify input 

signals (#5).  The Simulation Status panel (#6) displays sta-

tus messages, simulation progress and the simulation clock.  

The Simulation Controls panel allows the user to start, stop 

or pause the simulation (#7) and control the simulation 

speed (#8). 

The System Schematic Panel (#9) contains a graphical rep-

resentation of the system model’s components and topology.  

Sensor components are included in the model in locations 

corresponding to CTB sensor locations.  Their outputs are 

shown using text boxes in the GUI (#10) and are updated 

during each iteration of the control module.  Additional ‘vir-

tual sensor’ outputs in the model provide simulation data for 

locations in which there is no corresponding sensor in the 

actual system.  The GUI makes use of these additional sig-

nals to provide more data to the user for exploratory data 

analysis, allowing for more detailed understanding of the 

system’s behavior. 

As mentioned earlier, the GUI graphics were developed 

using the GLG Toolkit, which provides an interface where-

by the visual appearance of an element can dynamically 

change based on a state variable’s value.   We use this func-

tionality to display valve positions (indicated by the color of 

the valve’s body, #11), pipe flow rates and system tempera-

tures. 

In addition to serving as a visual representation of the mod-

el’s state, the GUI allows interactive control of the model’s 

inputs and fault injection status.  The user can click on the 

text label for any component and bring up a component de-

tail window.  The contents of this window vary depending 

on the nature of the component, but can include a time-

series plot of the component’s input and output signals, con-

trols to allow the user to override the default input signals 

with a user-determined value, and the ability to inject a fault 

into the component, either immediately or at some future 

time during the simulation.  Additionally, clicking on a 

valve body in the main GUI window will toggle the valve’s 

position between fully open and fully closed.  All user-

supplied input signals are implemented as overrides to the 

signal values contained in the input file.  Thus, if a user sets 

a valve position using either the toggle functionality or the 

component detail window, the valve will remain under user 

control for the remainder of the simulation run, rather than 

respond to any pre-scheduled changes in the input file. 
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Figure 6. CryoSim GUI 

 

4.3. Message Bus Interface 

The primary objective of the CryoSim package is to act as a 

data source substitute for the CTB system.  This architecture 

makes use of a publish/subscribe message bus based on the 

Internet Communications Engine (Ice), a suite of communi-

cations middleware developed by ZeroC (www.zeroc.com).  

Using Ice, a message bus based on the publish/subscribe 

paradigm was developed as the core of the integrated health 

system.  In this configuration, a system being monitored 

will publish sensor readings indicating its current state to 

the message bus.  Health management modules then sub-

scribe to this published data, perform analysis, and publish 

messages based on this analysis. The same framework was 

used in (Poll et al., 2007) and (Balaban et al., 2013). 

During a simulation run, CryoSim publishes the values of 

the model’s output signals, which represent all of the avail-

able sensors and test points of the CTB system.  By control-

ling the simulation’s execution speed to match real-world 

time, the data published by CryoSim matches the real-world 

CTB data in timing and format.  This enables developers of 

health management modules to use CryoSim as a virtual 

testbed without modification.  Additionally, the pub-

lish/subscribe message bus architecture allows remote con-

trol over the CryoSim system through the same interface.  

Within CryoSim, the message bus interface is implemented 

as a hybrid MATLAB/Java construct.  The Ice software 

generates a Java class interface containing the user-defined 

message formats.  The message classes are then combined 

with Java code that implements the necessary publish and 

subscribe functionality.  The CryoSim initialization module 

then instantiates the Java classes, establishing communica-

tions with the message bus via calls to their methods. 

5. RESULTS 

In this section we present the results of several simulation 

runs  to demonstrate key aspects of CryoSim. We first pro-

vide some information on simulation accuracy and speed, 

followed by an example of component-level fault injection, 

followed by demonstration of the use of variant subsystems 

to trade simulation fidelity for speed.  Finally, we show an 

example of a prognostic health management algorithm in-

teracting with the simulation to produce an analysis. 

5.1. Simulation Accuracy and Speed 

CryoSim uses the Simulink environment for determining the 

time-varying solution to the set of ordinary differential 

equations (ODE) that constitute the system model.  The 

choice of solver algorithm and error tolerances affects both 

simulation speed and accuracy.  For our model, the variable 

step size ode45 solver works well with the “Standard” fluid 
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variants, while the increased stiffness of the two-phase 

model requires the use of the ode23s solver, also a variable-

step algorithm.  For the standard model, a typical simulation 

runs at approximately 3x speed on a 3.3 GHz workstation, 

although the time required for a given simulation can vary 

significantly depending on the dynamics of the model in-

puts.  We have obtained acceptable results using the default 

relative error tolerance of 1e-3, although some integration 

noise can be seen in the fluid flow rates.  This noise can be 

reduced by lowering the error tolerance at the cost of de-

creased simulation speed.  The two-phase model is still un-

der development, but is expected to run more slowly than 

the standard model due to the increased complexity of the 

underlying physics. 

We have validated the model against data recorded from the 

CTB in the post-chilldown state.  In this scenario, the simu-

lated pressures matched the measured data with a maximum 

error of 0.23%, while the fluid flow rate matched the meas-

ured rate to better than 0.1%, considerably less than the 

measurement noise.  Actuation times of the pneumatically-

controlled valves had lower fidelity, with a mean 10-90% 

rise-time error of 0.58 seconds in absolute terms, and 17.7% 

error relative to the observed actuation times.  However, the 

accuracy of the pneumatics domain components is adequate 

for most of the intended uses of CryoSim, which focus on 

system behavior in the cryogenic fluid domain. 

 

5.2. Fault Injection 

To demonstrate the fault injection capability of CryoSim, 

we ran a basic simulation with a single fault injected during 

the run.  This example used the standard flow variant rather 

than the two-phase flow.  The model was initialized in a 

post-chilldown state, where virtually all of the cryogenic 

fluid is in the liquid phase.  Figure 7(a) shows a schematic 

representation of a part of the system, including the control 

valve CV201.  This valve starts in the fully open position, 

and at t=30 seconds, a “Stuck” fault is injected with a mag-

nitude of 50%.   

Figure 7(b) shows the outputs of four pressure sensors in the 

model.  In the schematic PT134 is shown immediately up-

stream of the faulty valve, and PT147 is located at the end 

of the section shown in the schematic.  PT112 is not shown, 

but is located further upstream from the valve, while PT193 

is further downstream.  When the fault is injected at t=30, 

the upstream pressures increase slightly, while the down-

stream pressures experience a more significant decrease due 

to the increased drop at the valve.   

 

 

 

Figure 7. Fault injection example 

 

5.3. Variable Simulation Fidelity 

To show the use of variant subsystems to selectively control 

model fidelity in a specified domain, we simulated the actu-

ation speed of a pneumatically-actuated control valve com-

ponent, using the “Standard” pneumatics variant which 

computes gas pressures and flows and uses these values to 

determine the actuator’s position, and compared this run 

with the “Basic” pneumatics variant, which replaces the 

pneumatics-domain components with simple behavioral 

models.  For the pneumatically-actuated control valve, the 

“Basic” variant replaces two nonlinear pressure-computing 

elements with simple first-order lowpass filters.  The behav-

ior of these two variants compared to experimental data is 

shown in Figure 8.  Note that the “Standard” variant more 

accurately represents the observed data than the “Basic” 

variant.   
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Figure 8. Behavior of pneumatic valve actuator models 

 

The use of domain-specific variants to select appropriate 

levels of fidelity can significantly reduce simulation time.  

In this example, the use of the reduced-fidelity “Basic” vari-

ant for the pneumatics domain resulted in small differences 

in valve actuation speed that did not significantly affect the 

signals of interest in the cryogenic fluid domain.  The dif-

ference in simulation speed for a run with 1000 seconds of 

simulation time was dramatic, with the “Standard” variant 

requiring 676 seconds (1.48x) and the “Basic” variant re-

quiring 354 seconds (2.82x). 

5.4. Prognosis Example 

To demonstrate how the simulation interacts with a health 

management algorithm over the message bus, we select a 

prognosis example demonstrating prognostics of a cryogen-

ic filter. Filters are often periodically replaced on a time-

based maintenance schedule. Moving to a condition-based 

maintenance paradigm can prevent a healthy filter from be-

ing replaced and a damaged filter from being used. 

The purpose of the filter is to prevent particles contaminat-

ing the fluid from moving through to other parts of the sys-

tem. As fluid passes through a filter, particle matter will 

collect at the filter and decrease its effective area, thus in-

creasing the pressure drop across the filter for the same flow 

rate. This behavior is captured in the following equations. 

 

 ( )        ( )√
 |  ( )|

 
    (  ( )) (1) 

  ̇( )       (2) 

Here,   is the volumetric flow,   is the fluid density,   is 

the flow coefficient,   is the effective filter area,    is the 

pressure drop across the filter, and   is a wear parameter 

representing the percentage contamination per unit length of 

fluid (which is, in general, stochastic). The effective filter 

area decreases as a function of the contamination and the 

flow rate through the filter. 

In this model, the pressure difference is an input and the 

flow is an output. A model-based prognosis algorithm is 

used in which the health state of the filter (  and  ) is esti-

mated, and this estimate is then used as the initial state in 

predicting end of life (EOL) and remaining useful life 

(RUL) of the component (Daigle & Goebel, 2013). For the 

filter, EOL is defined as the time point at which the effec-

tive filter area drops below some specified limit, in this 

case, 50% of its nominal area. 

The prognostics module receives over the message bus the 

measured values of the differential pressure and the flow, 

and these serve as inputs to the estimation algorithm (an 

unscented Kalman filter, see (Julier & Uhlmann, 2004) and 

(Daigle et al., 2012) for details). The module makes periodic 

predictions for filter EOL and RUL, and publishes these 

back to the message bus. 

As a demonstration we consider a wear parameter value of 

      . Figure 9 shows the estimated filter area, wear 

parameter, predicted EOL, and predicted RUL. By 200 s the 

estimates and predictions begin to converge. 

 

(a) 

 

(b) 

 

0 50 100 150 200 250 300

7

7.2

7.4

7.6

7.8

8

x 10
-3

Time (s)

E
ff

ec
ti

v
e 

F
il

te
r 

A
re

a 
(m

2
)

0 50 100 150 200 250 300

0

1

2

3

x 10
-8

Time (s)

W
ea

r 
R

at
e 

(d
im

en
si

o
n
le

ss
)

0 50 100 150 200 250 300

1000

1200

1400

1600

1800

2000

2200

2400

E
O

L
 (

s)

Time (s)

Annual Conference of the Prognostics and Health Management Society 2013

124



Annual Conference of the Prognostics and Health Management Society 2013 

12 

(c) 

 

(d) 

Figure 9. Filter prognostics results. 

 

6. CONCLUSION 

In this paper, we have discussed the design and application 

of CryoSim, a simulation-based virtual testbed for SHM 

applications.  The core of CryoSim is a component-based 

multi-domain system model created in Simulink.  Our de-

sign includes component-level fault modeling and per-

simulation adjustment of model fidelity through the use of 

variant subsystems.   To facilitate the use of CryoSim, we 

created a Java-based GUI which allows full interactive con-

trol of the simulation.  Additionally, we have integrated an 

interface to an external publish/subscribe message bus, ena-

bling CryoSim to function as a drop-in replacement for the 

CTB system. 

We are currently in the process of converting the Simulink 

model to a standalone version written in C/C++, making use 

of the Simulink Coder™ software package.  This will ena-

ble users of CryoSim to run simulations without the need for 

a license for MATLAB and Simulink.   The two-phase cry-

ogenic fluid flow model is under development.  When com-

plete, it will be incorporated into CryoSim, taking advantage 

of the capability to update library components and domain-

specific variant subcomponents without impact to previous-

ly-available functionality.  Because of the model-agnostic 

design of the CryoSim framework, we anticipate that this 

architecture will be used for future SHM applications with 

other multi-domain system models. 
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ABSTRACT 

This paper introduces advances on the implementation of 

anomaly detection modules based on a combination of 

nonparametric models and multivariate analysis of residuals. 

The proposed anomaly detector utilizes similarity–based 

modeling (SBM) techniques to represent the process 

behavior and principal component analysis (PCA) for the 

study of model residuals; while partial least squares (PLS) is 

used to select an optimal subset of process variables to be 

included in the design of the detection module. In addition, 

the method considers a structured algorithm for the optimal 

inclusion of representative samples from the data set that is 

used to define the normal operation of the system. The 

method is validated using data that characterizes the 

operation of a compressor in a power generation plant. 

1. INTRODUCTION 

An anomaly detector (Orchard & Vachtsevanos, 2007) is 

basically a module that intends to recognize abnormal 

conditions within the operation of a monitored system. In 

this regard, the implementation of anomaly detectors is one 

of the first and most important steps needed to ensure 

operational continuity of the process, plant safety, as well as 

high quality standards. Conventional anomaly detection and 

fault diagnosis algorithms (Isermann, 1997) are typically 

designed to provide a solution for the supervision of a finite 

number of fault modes that are believed to be severe, 

frequent, and “testable”; fault modes that are selected on the 

basis of a Failure Modes, Effects, and Criticality Analysis 

(FMECA). This task needs to be performed while 

simultaneously minimizing the probability of false alarms 

and the detection time (time between the initiation of a fault 

and its detection), given a fixed threshold that represents the 

maximum risk (associated to the fault condition) that is 

allowed in the system. 

Classical fault detection and identification (FDI) methods 

rely on an accurate model of the system under consideration 

and the utility of an innovation or “discrepancy” between 

the actual plant output and the model output, for all possible 

operating conditions, to detect an unanticipated fault 

(Isermann, 1997; Isermann & Balle, 1997). The innovation 

(or residual) method captures the fault signature, and 

suggests which residuals are normal or which ones result 

from fault conditions. A variety of techniques have been 

proposed based on estimation theory, failure sensitive 

filters, multiple hypothesis filter detection, generalized 

likelihood ratio tests, model-based approach, statistical 

analysis, and information theory (Ayhan et al., 2008; Khan 

& Rahman, 2009; Lebaroud & Cleac, 2008). 

If process/system dynamics are not well understood, then 

verification, calibration, and validation of parametric 

models may represent a difficult challenge. In contrast, 

nonparametric models offer a direct representation of 

nonlinear systems that requires the availability of historical 

data and a minimal comprehension of the relationships that 

exist between process variables. The definition of “normal” 

operation is done only by selecting an appropriate number 

of data samples that could illustrate moments where the 

process behaved accordingly to a particular set of 

requirements or standards; the need of a particular structure 

or linear/Gaussian assumptions is thus avoided. 

In this regard, this article shows the implementation of a 

monitoring scheme that identifies abnormal operating 

conditions in a compressor of a power generator plant, 
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of the Creative Commons Attribution 3.0 United States License, which 

permits unrestricted use, distribution, and reproduction in any medium, 
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utilizing a nonparametric modeling approach known as 

Similarity-based Modeling (SBM). Provided that the plant 

represents a multivariate nonlinear system, the use of SBM 

allows generating estimates of the system output that can be 

used to compute residuals, when compared with actual 

measurements. Partial least squares (PLS) is used to select 

an optimal subset of process variables to be included in the 

design of the detection module, considering to this end the 

impact that those variables may have in terms of the 

mean-squared error of model residuals for data associated to 

“normal” operation.  

The method also considers a structured algorithm for the 

optimal inclusion of representative samples from the data 

set that is used to define the normal operation of the system. 

This feature is critical since it is possible that the process 

model may exhibit problems simply because the database 

that is being considered for training purposes does not 

represent all possible operation conditions. Furthermore, in 

case of implementing a fault detection scheme, the addition 

of new samples to the database must be done with special 

attention of not incorporating samples corresponding to 

these abnormal conditions, since if this is done, the SBM 

algorithm will consider faulty conditions as known, and 

hence, normal. 

The assessment of the system behavior cannot be performed 

purely considering each variable residual, since the process 

is inherently multiple-input multiple-output; consequently, 

multivariate analysis techniques such as Principal 

Component Analysis (PCA) (Jackson, 1991; Fuente et al., 

2009) are employed in order to reduce the space dimension, 

while ensuring an adequate representation of the residual 

vector. Additionally, hypothesis testing procedures such as 

the Hotelling’s test (Beale & Kim 2002) are also considered 

to ensure that the modeling errors remain in a statistically 

acceptable region. 

This paper presents some extensions and results obtained 

after the implementation of the scheme that was presented in 

(Tobar, 2010) at facilities of a Chilean power generation 

company: Endesa-Chile. For confidentiality issues, process 

labels and time stamps have been discarded in all figures.   

This article is organized as follows. Section II presents the 

necessary theoretical resources to understand the 

implementation of the proposed system monitoring scheme; 

i.e., the fundamentals of SBM, partial least squares, 

principal component analysis, and the Hotelling’s test. 

Section III explains the considerations regarding the data 

preprocessing procedures, a justification for the 

implementation of the proposed schemes, and the results 

obtained for the anomaly detector when using two different 

sets of process variables as inputs/outputs of the SBM 

model for the compressor of a power generation plant. 

Finally, Section IV states the concluding remarks and 

suggests guidelines for future research work in this field. 

2. THEORETICAL BACKGROUND 

2.1 Similarity-based Modeling for System Monitoring 

One advantage of the nonparametric modeling techniques is 

that they do not require an a priori knowledge of the system, 

since its implementation is based on the identification of 

similarities and relationships between a given data set and 

online observations, instead of the construction of algebraic 

structures based upon these observed data. A particular case 

of such structures is the Similarity-based Model (SBM), 

which estimates the system output by comparing online 

measurements and a historical database which represents the 

system under study. SBM has proven to be a successful 

estimator when used in high dimension systems using 

considerably low number of training samples (Gong et al., 

2009). 

In order to understand the SBM basic concept for systems 

modeling, consider the static system defined by (1): 

pm RyRxxfy  ,),( ,        (1) 

where x and y are the system input and output respectively, 

and f () is an unknown function. 

When input and output measurements are available for the 

system described in (1), it is possible to define the following 

matrices to be used for model identification purposes (Di 

and D0 stand for input and output matrices, respectively): 

,],...,,[ 21

nm

ni RxxxD        (2.a) 

,],...,,[ 210

np

n RyyyD       (2.b) 

where yi = f(xi), i = 1, …, n, and the pairs 

niii yx ...1],[ 
 accurately represent the system behavior; i.e., 

they span the regions containing the system operations 

points. 

Hence, SBM assumes that for a given an input x*, it is 

possible to estimate y* = f (x*) by a linear combination of the 

columns of Do denoted by *ŷ . Consequently, the problem of 

estimating y* = f (x*) can be regarded as the determination of 

a vector w such that wDy 0
ˆ  . 

This vector can be computed as in (3): 

ˆ

ˆ1T

w
w

w



,       (3.a) 

)()(ˆ 1

i

T

ii

T

i xDDDw   ,      (3.b) 

where   is a similarity operator (Gong et al., 2009; Pivoso 

et al., 1994). SBM is not restricted to any particular 

similarity operator; however, according to the literature, the 

selected similarity operator must hold certain properties. For 

two elements A, B u, AB + must be symmetric, 
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reaching its maximum in A=B and monotonically decreasing 

with ||A - B||. 

Literature does not provide a framework for choosing a 

suitable similarity operator based on the available 

measurements. In this work, all similarity operators were 

based on saturated linear kernels. 

SBM is a nonparametric modeling technique that is mainly 

used to identify static systems (or at least, systems where 

the dominant time constant is negligible with respect to the 

data sampling period). In this regard, and especially when 

the process exhibits noticeable dynamics, the model 

structure requires some adjustments before its 

implementation. For example, past observations (both inputs 

and outputs) may be incorporated as regressors to estimate 

the system response in time. For this particular case study, 

though, system dynamics were neglected (thus the process 

was regarded as a static one). As it was mentioned above, 

this concept can only be applied when the data is acquired at 

a very low frequency with respect to the system dominant 

constant. 

SBM residuals can be computed simply using the difference 

between the model outputs (SBM estimates) and online 

measurements as in (4). If the estimates differ considerably 

from the actual measurements in the training data (w.r.t. a 

given criteria such as mean-squared error), it could be 

inferred that the associated operating point has not been 

incorporated yet into the SBM structure, and consequently 

the optimal database that ultimately defines the SBM model 

must be extended with samples representing the unknown 

condition. After the process of incorporating samples to the 

database is complete, i.e. once for every input x* the 

estimation error given by 

* *

1 *
*

0 1 *

ˆ

( ) ( )
( )

1 ( ) ( )

T T
pi i i

T T T

i i i

e y y

D D D x
f x D

D D D x





 

 
  

  

       (4) 

is acceptable under a specified criteria, the relationships 

between the measured variables should be assessed to 

ensure consistency with the operation conditions 

represented in the database. Due to the large number of 

variables that are present in industrial systems, multivariate-

processing algorithms should be implemented to verify 

these relationships. 

2.2 Partial Least Squares 

Partial least squares, also referred to as “projection to latent 

structures”, is a parametric modeling technique. This 

technique allows system modeling through a reduction of 

the problem dimensionality and the maximization of the 

covariance between projections of the input data matrix X 

and the output data matrix Y (Chiang et al., 2001). It uses a 

matrix X  nm and a matrix Y  np, where m is the 

number of variables predictors, n is the total number of 

observations of data and p is the number of observed 

variables in Y.  

First, the matrices X and Y must be centered on the mean 

and normalized by their variances. Then, the matrix X can 

be decomposed into an array called scores T  na and a 

loading matrix P  ma, where a is the reduced order of the 

data, the residue matrix E  nm. 

ETPX T            (5) 

The matrix TPT can be expressed as the sum of products of 

vectors scores tj and load vectors pj. 

EptX
a

j

T

jj  1
         (6) 

Similarly, the matrix Y is decomposed into matrices: 

FUQY T  = FquY
a

j

T

jj  1
        (7) 

If “a” is equal to min (m,n), then E and F are zero and this 

technique is reduced to the ordinary least squares. Choosing 

“a” smaller than min (m,n) noise is reduced. The objective 

is to determine the loading and scores vectors which 

maximize the correlation between X and Y. 

PLS estimates the scores vectors uj with scores vector tj as: 

T

jjj btu  , or equivalently TBU          (8) 

Finally, 

FTBQY T            (9) 

where F is the prediction error matrix. The matrix B is 

selected to minimize the norm of F. T and U scores matrices 

are calculated as to maximize the covariance between X and 

Y for each component “a”. 

Although PLS is typically used to generate a linear 

parametric Multiple-Input Multiple-Output (MIMO) model 

for the process, as a result of an appropriate selection for the 

number of projection components, there are other important 

complementing aspects that can also be studied. 

Particularly, this article uses an analysis of the coefficients 

in matrices B, T and U to assess the impact of each of the 

inputs variables X on each of the output variables Y. 

2.3 Principal Component Analysis 

Principal Component Analysis (PCA) is a dimensionality 

reduction technique for correlated variables; i.e. for a given 

a set of correlated variables, it aims at finding a set of 

uncorrelated indicators that can help to characterize the 

variability of the process in a smaller dimension. PCA 

performs a linear transformation of the data, which is 

optimal in terms of capturing its variability, and determines 

a new data set ordered by the level of representation of the 

entire process variance. 
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Theoretically, for the data matrix 
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,       (10) 

which comprises n observations for each one of the 

m variables, PCA finds a loading matrix P  ma, 

a  n which relates X to the first  principal components 

being contained in the score matrix: 

XPT  .        (11) 

Denoting the 
thi  column of T by ti, the transformation 

performed by PCA holds (Chiang et al., 2001) the following 

properties: 

1. )(...)()( 21 atVartVartVar  . 

2. itMean i  ,0)( . 

3. kitt k

T

i  ,0 . 

4. There is no other transformation of “a” 

components that captures more variations in the 

data. 

Additionally, the projection back on an a-dimensional space 

is given by (Wise et al., 1990): 

TTPX ˆ ,        (12) 

and hence, the difference between the original data stored at 

X and its projection is the residual matrix E: 

XXE ˆ ,         (13) 

which captures the variations of space generated by the 

remaining (m – a) components, and has typically low signal-

to-noise ratio. It has been formally justified (Golub et al., 

1983) that, when “a” is properly chosen, these remaining 

components represent the random noise of the 

measurements, whereas the first “a” components describe 

dynamic variations.  

The application of PCA in our system monitoring 

framework is to reduce the dimension of the error vector 

“e”, simplifying in that manner the anomaly detection 

procedure (in terms of the associated computational cost). 

Indeed, once the PCA linear transformation has been 

applied to the error vector, one can easily recognize if the 

system is behaving in an anomalous manner through the 

application of a hypothesis test formulated in terms of the 

main principal components. 

2.4 Hotelling’s Test 

The one sample Hotelling’s T2 index is typically used to test 

H0:  =  0 vs. HA:    0 in a 2-class classification 

problem. However, when applied to multivariate Gaussian 

residual vectors, it also provides the means to compute a 

scalar threshold that characterizes the maximum acceptable 

deviation of the model residual, for a given level of 

significance (Gonzalez et al., 2003). To properly introduce 

the Hotelling’s T2 test, consider the sample covariance of 

the data matrix X given by 

XX
n

S T

1

1


 .        (14) 

The Hotelling’s T2 test states that a particular observation 

x  m belongs to the same class as the data in X if the 

statistic 

xSxT T 12  ,         (15)  

is below the threshold 

),(
)(

)1)(1(2 mnmF
mnn

nnm
T 




 

,     (16) 

where Pr(Z  F (g, k)) = α if Z∼F (g, k), an F-distribution 

with degrees of freedom g and k. When the data matrix X 

characterizes the model residuals obtained when the process 

is healthy, then an anomaly may be detected by analyzing 

the time instants when the alternative hypothesis is 

accepted.  

3. ANOMALY DETECTION IN GAS TURBINE COMPRESSOR 

OF POWER GENERATION PLANT USING SIMILARITY-

BASED MODELING, PLS AND PCA 

A monitoring scheme for the detection of anomalies in the 

operation of the compressor of a Chilean natural-gas power 

generation plant was implemented using SBM to model the 

operation of the compressor at many different operating 

points (even including operation after the execution of 

maintenance procedures), and PCA for residual analysis. 

Selection of input/output variables within the structure of 

the SBM model considered the analysis of the coefficients 

in matrices associated to PLS models for the 

aforementioned plant. In this regard, all process variables 

that exhibited comparatively small weights in the PLS 

loading-plot (Chiang et al., 2001) were discarded.  

Training and validation data included 19,530 observations 

for each one of the main process variables. All 

measurements were acquired using OSIsoft PI software 

(OSIsoft 2013); including signals associated to pressures, 

temperatures, valves positions, voltages, speed of rotating 

parts, and other Boolean states that indicated if certain 

control loops were active. Data from all measured process 

variables were grouped in an “input” data matrix 

X  1953042 and an “output” data matrix Y  1953053; 

being 42 and 53 the number of input and output variables in 

the process, respectively. The ith rows of the matrices X and 

Y was respectively denoted by xi  42 and yi  53, and the 
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matrix containing all the acquired measurements was 

denoted as M=[X,Y] 1953095. For monitoring purposes, 

these data points were processed sequentially in order to 

emulate online observations, although an intermediate 

normalization step was used in order to avoid biased results 

due to the different variables magnitude. All the numerical 

implementations were performed in MATLAB® software. 

The implementation of a nonparametric monitoring scheme 

requires data bases with a comprehensive representation of 

different process operation conditions. Thus training data 

considered different operating points for healthy operation, 

as well as post-maintenance data and abnormal system 

operation. 

3.1 Data Pre-processing 

The use of nonparametric models and SBM can only be 

justified if the system exhibits nonlinearities and the 

existence of several operating points. PCA was used to 

quickly identify the existence of these operating points; 

using only four principal components of training data for 

this purpose. Figure 1 shows the results of the 

aforementioned analysis, which captures the 87% of the data 

variability, where it is evidenced that there are clustered 

regions for the operation of the compressor. Failure to 

characterize all these operating points using simply a 

collection of linear-in-the-parameters models (Gonzalez et 

al., 2003) inspired the use of a monitoring technique based 

on SBM. It must be noted that, for confidentiality reasons, 

data labels cannot be clearly indicated on this article. In 

addition it is important to mention that, for all practical 

purposes, the models only incorporated a static 

characterization of the system. The latter is based on the fact 

that all thermo-dynamical and mechanical subsystems were 

always controlled in closed loops that ensured dominant 

time constants smaller than the data sampling period. 

Although it is always possible to increase the sampling 

frequency to a point where the dynamics of the control 

loops are in evidence, the company explicitly decided to 

incorporate those features as part of future research 

activities. 

Being stated that the data admits the use of SBM 

techniques, and assuming that the system dynamics can be 

neglected, a suitable similarity operator should be defined 

with respect to the statistical properties of the 

measurements. After a preliminary study, the similarity 

operator that best captured the data variability was the 

saturated triangular operator defined in (17). 

|| ||, || ||

, || ||

d A B A B d
A B

A B d



 

    
  

  
   (17) 

where  > 0 is a small number that ensures AB > 0, and 

d > 0 is a threshold depending on the observations variance. 

The definition of these parameters heavily depends on the 

distribution of clusters and the distance between samples in 

the training data set. 

 
Figure 1. Principal component analysis (PCA) of data from 

power generation plant. Clusters are the first indication of 

the existence of several operating points within the data set. 

3.2 Database description and a first implementation of 

the proposed anomaly detection scheme 

A subset of data samples was selected from the acquired 

input/output data for purposes of SBM training and weight 

characterization. Training data was chosen to incorporate 

different modes of operation through a novel iterative 

method that focused on a two-objective optimization 

problem that minimized of the number of data samples to be 

included in the training set, while also minimizing the 

mean-squared error of the resulting SBM-based model 

residual. This is a critical procedure since, as Figure 2 

shows, many operating points are presents within the data 

that was acquired to characterize the operation of the turbine 

power and its compressor. In fact, some of the data depicted 

in Figures 2a, 2b, and 2c contain two different instances of 

faulty operation, as well as healthy turbine operation, one 

maintenance procedure, and operation after maintenance. 

After each fault, the plant always stopped its operation and, 

during maintenance, the plant was shut down for extended 

periods of time. 

 
Figure 2a. Illustration of a compressor fault from the 

standpoint of the power turbine operation. 
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Figure 2b. Normal operation in turbine. Last operating point 

corresponds to post- maintenance. 

 
Figure 2c. Data subset used to train the SBM-based anomaly 

detection algorithm. 

A first implementation of the proposed SBM-based anomaly 

detection scheme was performed for all process variables 

(i.e., the model had 42 input and 53 output variables), 

without the dimensionality reduction that some multivariate 

techniques such as PLS could suggest. Particularly in this 

case, the obtained mean-squared error (MSE) of the SBM-

based normalized power output estimate is presented in 

Figure 3. It can be seen that using the specified database, the 

MSE that is related to SBM estimates remains considerably 

low for the region that contain the training data, other 

normal operating regions, and even for the post-

maintenance data. As expected, the T2 index is greater than 

the threshold for data associated to faulty operation. In must 

be noted that the principal components of the error matrix 

YYE ˆ  (which statistically characterizes the training set, 

where Ŷ  represents the SBM-based estimate) were used to 

compute the T2 index threshold. Additionally, Hotelling’s 

test has been applied to find the 95% confidence ellipse; 

using for these purposes the software SCAN developed by 

the Chilean company CONTAC Engineers Ltda (SCAN 

2013). 

 
Figure 3. MSE associated to SBM-based estimates for 

output variables in power generation plant 

(MSE = 0.000594). 

As Figure 4 shows, the T2 index for the SBM-based residual 

of the process output variables is adequate to detect a fault 

in the compressor of the gas turbine. 

 
Figure 4. Anomaly detection using a detection threshold 

based on the Hotelling’s T2 index for training data. 

Hotelling’s T2 threshold is set in 150. 

3.3 Selection of variables and Second Implementation 

Utilizing PLS property to maximize the covariance between 

the input matrix X and the output matrix Y, a method of 

dimensionality reduction is proposed based on the analysis 

of correlations. A reduced set of variables is chosen in order 

to keep Hotelling’s test detecting system faults, while 

maximizing the correlation and variability between inputs 

and outputs. 

 
Figure 5. MSE associated to SBM-based estimates for 

output variables in power generation plant 

(MSE = 0.001586). 

In this case study, and using the proposed methodology, it is 

discovered that only 5 input and 3 output variables are 

sufficient for anomaly detection purposes, thus helping to 

define new matrices  X  195305 and Y  195303. Figure 5 

shows the square error for the normalized power output 

from a new SBM-based structure. It is appreciated that for 

this new set of variables the estimate exhibits a larger MSE 

in general, although the dimensionality reduction associated 

to it allows to perform all the necessary computations in 

real-time. It must be noted, though, that the model still 

maintains its capability of discriminating normal from 

abnormal behavior in the plant. 

 
Figure 6. Anomaly detection using a detection threshold 

based on the Hotelling’s T2 index for training data. 

Hotelling’s T2 threshold is set in 150. 
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Using the same methodology as above, a Hotelling’s T2 

index is constructed using projections on the space 

determined by the PCA of the model residuals, using the 

software SCAN. The results are depicted in Figure 6. As 

Figure 6 illustrates, and comparing with the results shown in 

Figure 4, the methodology allowed generating equivalent 

results for the anomaly detection module although the total 

number of variables included in the SBM model was 

reduced from 95 to 8; ensuring appropriate detection of 

faults in the compressor of the gas turbine. The 

computational cost was significantly lessened in the second 

implementation of the detector. 

4. CONCLUSION 

This article presents and validates a scheme to detect 

anomalies in the compressor of a gas turbine in a Chilean 

power generation plant, by comparing the process outputs 

with SBM-based estimates. The proposed scheme also 

provides the means to select the data samples that will be 

included in the training data set by an optimal procedure 

that minimizes the number of samples while also 

minimizing the MSE of the model residuals. The use of 

PCA and PLS techniques helped to dramatically reduce the 

dimension of the detection problem to a point where it was 

possible to build the SBM-based detector using only 8 

process variables as sources of  information. Once a 

representative training set is constructed, the proposed 

scheme estimate the system output, exhibiting a reduced 

MSE and also capturing the relationships between input and 

output variables even after maintenance procedures. Finally, 

it is important to know that the detector presented in this 

paper is monitoring the compressor (the same compressor 

with which the model was trained) online for more than a 

year ago. During this time, all anomalies have been 

confirmed by operators as true faulty conditions. 
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ABSTRACT

For modern systems, wear estimation plays an important role
in preventing failure, scheduling maintenance, and improving
utility. Wear estimation relies on a series of sensors, measur-
ing the state of the system. In some components, the sensors
used to estimate wear may not be fast enough to capture brief
transient states that are indicative of wear. For this reason
it is beneficial to be capable of detecting and estimating the
extent of component wear using steady-state measurements.
This paper details a method for estimating component wear
using steady-state measurements, and describes a case study
of a current/pressure (I/P) transducer. I/P Transducer nominal
and off-nominal behavior are characterized using a physics-
based model, and validated against expected component be-
havior. This model is used to determine steady state responses
to many common I/P Transducer wear modes, isolate the ac-
tive wear mode, and estimate its magnitude.

1. INTRODUCTION

As systems are becoming more complex, more expensive,
and are being sent to increasingly unreachable places, such
as space or the bottom of the ocean, wear detection and es-
timation become increasingly important. Wear detection and
estimation play a critical role in preventing failure, schedul-
ing maintenance, and improving system utility.

Many modern wear estimation techniques rely on measure-
ment of the system’s transient states (Daigle & Goebel, 2013;
Orchard & Vachtsevanos, 2009; Saha & Goebel, 2009; Luo,
Pattipati, Qiao, & Chigusa, 2008). However, in some compo-
nents, the available sensors may not be fast enough to capture
brief transient states that are indicative of wear. This can ei-
ther be a result of sensor technological limits, or budgetary

Christopher Teubert et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

constraints on sensor selection (as sensors with higher res-
olution and higher sampling frequencies are generally more
expensive). For this reason, it is beneficial to be capable of
detecting and estimating the extent of component wear using
only steady-state measurements. Previous work in prognos-
tics does not address this need, and a new methodology is
required.

This paper describes a method for estimating component
wear from steady-state conditions. This is accomplished uti-
lizing a physics-based model that accounts for system be-
havior in both nominal and degraded conditions, and that is
tuned utilizing physical specifications and knowledge of sys-
tem behavior. This model is then used to map the effect of
various modes of wear on steady-state behavior. Combined
with a particle filter-based estimation scheme, this model
can be used for prognostics, as described in previous work
by (Daigle & Goebel, 2011; Orchard & Vachtsevanos, 2009;
Saha & Goebel, 2009; Zio & Peloni, 2011).

As a case study, this method is applied to a current/pressure
transducer, henceforth referred to as an I/P Transducer or IPT.
I/P Transducers are effectively pressure regulators that vary
the output pressure depending on the supplied electrical cur-
rent signal. They operate by throttling a nozzle to create a
pressure difference across a diaphragm, which controls the
throttling of a valve. These are often used for supplying pre-
cise pressures to control pneumatic actuators and valves.

The paper is organized as follows. The development of the
IPT model is described in Section 2. Section 3 details the
process of mapping IPT wear from steady state conditions,
and using that mapping to detect and estimate wear in phys-
ical systems. The paper concludes with a discussion of the
implications of this research and a description of future work
in Section 4.

1
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Figure 1. Current/Pressure Transducer Schematic

Table 1. IPT Specifications

Name Type 1000 IPT
Manufacturer Marsh Bellofram
Supply Pressure Range 18-100 psig
Input Signal Range 4-20 mA
Output Pressure Range 3-15 psig

2. I/P TRANSDUCER MODELING

In this section, we develop a physics-based model of both
healthy and faulty IPT behavior. This is used to identify how
faulty behavior affects performance for development of the
wear detection and estimation methodology, and for possible
future prognostic applications. This model was created us-
ing domain knowledge of the system’s behavior and physical
make-up.

As a case study, we use a Marsh Bellofram Type 1000 IPT,
illustrated in Figures 1 and 2. This model was chosen be-
cause of its use in the pneumatic valve testbed at NASA Ames
Research Center (Kulkarni, Daigle, & Goebel, 2013). The
IPT is divided into three distinct control volumes (CVs), each
marked in a different color in the image. The IPT output pres-
sure varies with the current supplied to the magnet assembly.
When the current is high, the magnet assembly throttles the
flow out of the pilot nozzle, allowing less air to escape. With
a low input current more gas escapes from the nozzle, low-
ering the pilot pressure. The pressure difference across the
diaphragm moves the valve, which adjusts the gas flow be-
tween CV1 and CV2. Adjusting this flow changes the pres-
sure in CV2 and in the outlet. Some specifications for this
IPT are included in Table 1 (Marsh Bellofram, n.d.).

In this section we will describe development, configuration,
validation, and use of the IPT model for both the nominal and

Figure 2. Current/Pressure Transducer

wear conditions.

2.1. Problem Formulation

We assume the system may be described by

ẋ(t) = f(t,x(t),θ(t),u(t),v(t)) (1)
y(t) = h(t,x(t),θ(t),u(t),n(t)) (2)

where t ∈ R is the continuous time variable, x(t) ∈ Rnx

is the state vector, θ(t) ∈ Rnθ is the parameter vector,
u(t) ∈ Rnu is the input vector, v(t) ∈ Rnv is the process
noise vector, f is the state equation, y(t) ∈ Rny is the output
vector, n(t) ∈ Rnn is the measurement noise vector, and h is
the output equation.

Given a system defined in this way, the objective is to esti-
mate the wear parameter, θw ∈ θ, given a measured steady
state output, ySS , and a known input, u. For this architecture
it is assumed that only one mode of wear is occurring at a time
(single fault assumption). It may be possible to estimate wear
in the case of multiple simultaneous modes of wear, given ad-
ditional steady state output measurements at other input cur-
rents. This is not under the scope of the current research, but
will be explored in future research.

2.2. Nominal Model

The IPT model was developed using mass and energy bal-
ances. Each CV contains gas at a specific pressure, changing
depending on the gas in-flow and out-flow. The system’s state
is signified by the vector x(t), consisting of the pressures at
each control volume (p1(t), p2(t), ppilot(t)), the position and
velocity of the valve (xV (t) and vV (t), respectively), and the
flexure position and velocity (xF (t) and vF (t), respectively).

2
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The IPT performance is dependent on the supply pressure
provided at the inlet, pi(t), and the signal current sent to the
magnet assembly, i(t). These two values make up the input
vector, u(t). For the IPT being modeled, the signal current
is between 4 and 20 mA, which varies the outlet pressure,
pout(t), between 3–15 PSIG. Outlet pressure is considered to
be the only value in the output vector, y(t).

The input (u(t)), state (x(t)), state derivative (ẋ(t)) and out-
put (y(t)) vectors are summarized below:

u(t) =

[
pi(t)
i(t)

]
(3)

x(t) =




p1(t)
p2(t)
ppilot(t)
pout(t)
xV (t)
vV (t)
xF (t)
vF (t)




(4)

ẋ(t) =




ṗ1(t)
ṗ2(t)
ṗpilot(t)
ṗout(t)
vV (t)
aV (t)
vF (t)
aF (t)




(5)

y(t) = pout(t) (6)

Here velocity, v, and acceleration, a, are defined as the deriva-
tive of position, x, and velocity, respectively. Additionally
gas flow into a control volume from a bordering control vol-
ume is represented by q̇ij , where the subscript i represents
the first control volume and j the bordering one and q̇ij is the
fluid flow into i from j. The flow, q̇ij , is a function of the pres-
sure in the control volume, pi, pressure in the second control
volume, pj , and the area of the opening between them, Aij .
These equations are summarized below:

ẋ =v (7)
v̇ =a (8)

q̇ij =Aij

√
|pi − pj | ∗ sgn(pi − pj) (9)

Each of the ṗ terms are dependent on the bordering control
volumes. The sum over all the interactions with a given con-
trol volume gives the total pressure flux. Accounting for all

the bordering CVs the ṗ equations become

ṗ1 =(q̇12 + q̇10)
R ∗ T1
V1

(10)

ṗ2 =(q̇21 + q̇2p + q̇2Out)
R ∗ T2
V2

(11)

ṗp =(q̇p2 + q̇pNozzle)
R ∗ Tp
Vp

(12)

ṗout =q̇out2
R ∗ Tout
Vout

(13)

where R represents the gas constant, and T the temperature
in that control volume.

The signal current is supplied to the magnet assembly, which
reacts, applying pressure on the flexure. This pressure is
greater for greater signal currents. As the flexure stretches,
it throttles the airflow out of the nozzle. For low input sig-
nals, the flexure flexes less, allowing more air to escape from
the pilot volume, decreasing its pressure. The pilot volume
is supplied from CV2 by a small entry to the right of the di-
aphragm as seen in Figure 1. The net force on the flexure is
the sum of the magnet assembly force (FMag), the resistive
force of the Flexure (FFlex), and friction (FFriction):

FF = FMag + FFlex + FFriction. (14)

where the individual forces are

FMag =
i2

2
(Cmag − Cmag2 ∗ rmag) (15)

FFlex =− kFlex(xF − xF0) (16)
FFriction =CfvF (17)

Here the lumped parameters Cmag and Cmag2 include the
gap between the coils and the metal, the area of the metal, the
number of turns of the coil, and the magnetic constant. The
coil resistance is represented by rmag . Here the value Cf is
the coefficient of friction.

The pressure difference between CV2 and CVpilot produces
a closing force on the valve. The lower the input signal
the greater the closing force. The net force on the valve
(FV ) is the sum of the forces of the Valve Spring (FV S), the
force from the pressure difference across the valve (FPD),
the force created by the pressure difference across the Di-
aphragm (FDiaphragm), and the force of friction (FFriction).
The throttling of this valve changes the flow rate between
CV1 and CV2, affecting the output pressure Pout.

FV = FV S + FPD + FDiaphragm + FFriction (18)

3
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Figure 3. Outlet pressure for different currents

where the individual forces are

FV S =− kV ∗ (xV − xV 0) (19)
FFD =(p2 − p1) ∗AV (20)

FDiaphragm =(pPilot − p2) ∗AD (21)
FFriction =CfvV (22)

where AV and AD are the areas of the valve and the di-
aphragm, respectively, and kV is the valve spring coefficient.

Each of these relationships were then converted to be in terms
of acceleration using the following relationship

aV =
1

mV
FV (23)

aF =
1

mF
FF (24)

where mV and mF are the mass of the valve and flexure,
respectively.

The movement of both the flexure and the valve are derived
by integrating their respective acceleration equations. The
nominal output pressure response is illustrated in Figure 3a,
with its respective signal current in Figure 3b.

This IPT model was qualitatively validated by comparing
the simulated behavior with known behavior. This domain
knowledge was gathered from system documentation, con-

versations with the manufacturing company, and observations
of actual behavior.

2.3. Wear Model

Through discussions with the manufacturers and with users
of I/P transducers and similar components, five possible wear
modes were indicated. These wear modes are described be-
low:

1. Inlet Leak A leak where the supply pressure is provided
to CV1. Modeled by adding a leak of area Ain for fluid
flow between CV1 and the surrounding environment (at
1 atm). The resulting fluid flow is represented by

q̇in =Ain

√
|p1 − patm| ∗ sgn(p1 − patm) (25)

2. Valve Seat Leak A leak between CV1 and CV2. Mod-
eled by adding a leak of area AV S for fluid flow between
CV1 and CV2. A negative AV S models clogging of the
valve.

q̇V S =AV S

√
|p1 − p2| ∗ sgn(p1 − p2) (26)

3. Outlet Leak A leak at the outlet. Modeled by adding
a leak of area Aout for fluid flow between CV2 and the
surrounding environment (at 1 atm).

q̇out =Aout

√
|p2 − patm| ∗ sgn(p2 − patm) (27)

4. Valve Spring Weakening A weakening of the valve
spring. Modeled by decreasing the spring coefficient,
kV .

5. Magnet Assembly Weakening A weakening of the
magnet assembly. Modeled by increasing the resistance
in the magnet coils, rmag .

The wear parameters vector, θw, consisting of values repre-
senting the state of wear for each of the five wear modes, is
shown in the below equation

θw =




Ain

AV S

Aout

kV
rmag




(28)

3. WEAR ESTIMATION

Wear estimation is the process of estimating the current ex-
tent of wear on a system. This is important for prognostics
(predicting failure), scheduling maintenance, and triggering
automated mitigation actions. This is often done using meth-
ods such as a Kalman Filter or Particle Filter (Arulampalam,
Maskell, Gordon, & Clapp, 2002; Daigle, Saha, & Goebel,
2013).

4
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A lookup table method was used for fault estimation. This
method was chosen because of its fast, efficient nature and its
ability to be applied to both linear and non-linear systems. To
define this lookup table the I/P transducer was simulated at
various states of each wear mode and various input currents.
The steady state output pressure was recorded for each case.
The result was used as a reverse lookup table to estimate the
wear given a specific observed steady state output pressure
for a given input current. Values between data points were
linearly interpolated. This was found to be sufficiently accu-
rate given a high granularity lookup table. The granularity
of the lookup table can be adjusted to increase accuracy as
needed.

The resulting outlet pressure for each fault mode given a high
and low input current can be seen in Figure 4. Here the outlet
pressure given a high input current is indicated by the green
dashed line, while that based on a low current is indicated by
the blue solid line. All possible values for the IPT at a given
fault level fall between these two points. In this case it was
found that monitoring the steady state output pressure does
not allow for the estimation of the damage state in the case of
an inlet leak. This leak results in a decrease in the pressure in
CV1, which does not result in a change in the output pressure
until a much larger leak (around 0.2 m2). For this reason the
Inlet Leak case has not been included in the figures.

By contrast, the valve seat leak has a definite increasing effect
on the outlet pressure (Figure 4a). This change in output pres-
sure is a result of additional gas coming into CV2 from CV1
through the leak opening. For a leak of 0.005 m2 the outlet
pressure increased by 0.11 psig for a high signal current and
0.022 psig for a low current.

The outlet leak also has a definite and measurable effect on
the outlet pressure. As the leak grows in size, more gas es-
capes from CV2, resulting in a lower outlet pressure as seen
in Figure 4b. For a leak of 0.01 m2 the outlet pressure de-
creases by 0.05 psig for a high signal current and 0.0045 psig
for a low current.

The valve spring exerts a force on the valve system counter-
ing that of the diaphragm. As the spring wears, the spring
coefficient, k, decreases. This results in a lower counter force
against the diaphragm, causing an increased output pressure
as the spring coefficient decreases, as seen in Figure 4c. The
effect of this is much more prominent for high input current,
where the force of the diaphragm is higher. For a weakening
of 0.005 to a k of 3.212 N/m the outlet pressure increased by
0.29 psig for a high signal current and remained the same for
a low current.

Finally, wear in the magnet-coil assembly is simulated here
by increasing the coil resistance. This, in turn, reduces the
force of the magnet on the flexure proportionally with input
current. The decreased force results in a greater pressure dif-

ference across the diaphragm. This closes the valve, and re-
sults in a decreased output pressure as seen in Figure 4d. This
effect is much almost unseen for the low input current as a re-
sult of how the effect scales with current. For an increase of
0.1 Ω to a rMag of 180.1 Ω the outlet pressure decreased by
0.045 psig for a high signal current and remained the same
for a low current.

Each of these four wear modes resulted in a change in outlet
pressure. The results for single point wear have been summa-
rized in Table 2.

Table 2. Affect of Wear Modes on Outlet Pressure

Wear Mode Effect
Inlet Leak None

Valve Seat Leak Increased Outlet Pressure
Outlet Leak Decreased Outlet Pressure
Worn Spring Increased Outlet Pressure
Work Coil Decreased Outlet Pressure

Once the relationship between the fault parameter (θ), input
current (i), and the measured steady state output (ySS) has
been determined the resulting knowledge base can be used
for wear isolation and estimation.

Two measurements with two different input current levels are
required to completely isolate the fault cause. This is to dif-
ferentiate between two faults that result in the same effect
on output pressure. For example, if the outlet pressure is
measured to be higher than it should be, that could either
be indicative of a worn spring or a valve seat leak. Each
of these leaks has a different relationship with input current.
The second measurement allows for isolation between simi-
lar such faults. For systems with additional fault modes addi-
tional measurements may be needed to isolate between simi-
lar faults.

The following section details an example of this method.

3.1. Example

For this example let us assume we have a leak in the valve
seat of 0.001 m2.

The first measurement of steady state outlet pressure is
15.0215 psig at the maximum signal current of 20 mA. Using
the reverse lookup table there are two possible options: a leak
in the valve seat of 0.0098 m2, or worn spring with a spring
constant of 3.2167 N/m (down 0.0003).

To definitely isolate the wear mode a second measurement is
taken, this time with the minimum signal current of 4 mA.
The outlet pressure is measured to be 3.0044 psig. This can
either correspond to a leak in the valve seat of 0.0105 m2,
or worn spring with a spring constant of 3.173 N/m (down
0.044).

5
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(b) Outlet Pressure for Outlet Leak
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(d) Outlet Pressure for Worn Coil

Figure 4. Damaged Outlet Pressure

Both measurements result in a valve seat leak estimation that
is fairly similar, allowing the user to estimate that there is a
leak in the valve seat of around 0.01015 m2. This is calcu-
lated by taking the average of the two estimates. The differ-
ence in these measurements is due to measurement noise (n).
Additional measurements at different input currents could be
used to further refine the damage estimate, and filter out sys-
tem noise.

4. CONCLUSION

This paper details the development of a model-based wear
estimation approach using steady state measurements of the
outlet pressure of a current/pressure transducer. This ap-
proach was then applied for the wear modes of Inlet leaks,
Valve Seat Leaks, Outlet Leaks, Spring Wear, and Coil Wear,
which were determined to be the most likely modes of failure.

This method was shown to be effective in identifying wear in
simulations for a worn coil, worn spring, outlet leak, and leak
in the valve seat. With each of these wear modes the resulting
effect on the outlet pressure was different when considering
two different input currents. Measuring the outlet pressure at
two different input currents allows for the identification of the
failure mode. The lookup table created in this study can then
be used to estimate the severity of the wear. The results here
demonstrate the effectiveness of steady state wear estimation

for an I/P transducer.

This approach to wear estimation allows for wear estimation
for components where sensors may not be fast enough to cap-
ture brief transient states that are indicative of wear. The re-
sults from wear estimation routines such as this one can then
be used to create a prognostic model, schedule maintenance,
or trigger automated mitigation action.

This study relied on physics-based simulations of IPT behav-
ior validated against observations of actual system behavior.
We are currently in the process of constructing a testbed that
will include the IPT modeled for this study (Kulkarni et al.,
2013). Future work includes testing this method of wear esti-
mation in this testbed. Additionally, future work includes the
application of prognostics utilizing wear estimation, estima-
tion of multiple simultaneous wear modes, and uncertainty in
wear estimation from steady state conditions.
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NOMENCLATURE

a Acceleration
A Area
Cf Coefficient of Friction
Cmag Magnetic Lumped Parameter
f State Equation
F Force
h Output Equation
i Current
k Spring Constant
m Mass
n Sensor Noise Vector
p Pressure
rmag Magnetic Coil Resistance
R Gas Constant
t Time, continuous
T Temperature
u Input Vector
w Wear Parameter
w Wear Parameter Vector
x Position
x State Vector
v velocity
v Process Noise Vector
y Output Vector
θ Parameter Vector
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ABSTRACT 

In this paper, a framework for probabilistic delamination 

location and size detection is proposed. A delamination 

probability image using Lamb wave-based damage 

detection is constructed using the Bayesian updating 

technique. First, the algorithm for the probabilistic 

delamination detection framework using Bayesian updating 

(Bayesian Imaging Method - BIM) is presented. Following 

this, a fatigue testing setup for carbon-carbon composite 

coupons is introduced and the corresponding lamb wave 

based diagnostic signal is collected and interpreted. Next, 

the obtained signal features are incorporated in the Bayesian 

Imaging Method to detect delamination size and location, as 

along with corresponding uncertainty bounds. The damage 

detection results using the proposed methodology are 

compared with X-ray images for verification and validation. 

Finally, some conclusions and future works are drawn based 

on the proposed study. 

1. INTRODUCTION 

Composite materials are widely used in many applications, 

such as rotorcraft, aerospace, automobiles, and civil 

engineering structures because of their low weight and high 

strength properties. Delamination damage may happen 

within the composite plate due to impact loading or cyclic 

loadings. Because of the embedded nature of delamination 

damage, visual inspection is not able to easily detect it and, 

therefore, nondestructive evaluation (NDE) techniques are 

generally used and  extensively investigated for this type of 

diagnosis problems in composites. 

Currently, there are many deterministic non-destructive 

techniques (NDT) available for the delamination diagnosis, 

such as thermography (Koruk and Kilic 2009; Mielozyk, 

Krawczuk, Malinowski, Wandowski and Ostachowicz 

2012), ultrasonic (Kazys and Svilainis 1997), X-ray 

(Nicolleto and Hola 2010), and eddy currents (Grimberg, 

Premel, Savin, Le Bihan and Placko 2001; Sophian, Tian, 

Taylor and Rudlin 2001). A comprehensive review of these 

methods for delamination location and size detection is 

presented in (Cheng and Tian 2012). Most NDE methods 

require that the specimens to be maintained under certain 

strict experiment condition for ex-situ damage detection. 

Alternatively, with the development of Lamb wave-based 

damage detection methods, piezoelectric sensors have been 

widely used (Lemistre and Balageas 2001; Giurgiutiu, 

Zagrai and Bao 2002) for structural health monitoring 

because of their low cost and high efficiency (Constantin, 

Sorohan and Gavan 2011). Lamb waves can propagate in 

thin plate without significant dispersion in certain modes of 

wave propagation (Scalea, Francesco, Robinson, Tuzzeo 

and Bonomo 2002). Using proper mode selection, 

piezoelectric sensor networks can be used for damage 

inspection of composite plate structures (Wang, Rose and 

Chang 2004). The advantage of this method lies in that 

embedded or surface mounted PZTs can be used for in-situ 

monitoring of structure’s health condition. In this technique, 

damage features are extracted from the received Lamb wave 

signal using signal-processing algorithms. Several 

characteristics of the received signal (e.g., the attenuation, 
Tishun Peng et al. This is an open-access article distributed under the 
terms of the Creative Commons Attribution 3.0 United States License, 

which permits unrestricted use, distribution, and reproduction in any 

medium, provided the original author and source are credited. 
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phase shift, energy etc.) indicate changes from baseline i.e. 

damage features (Raghavan and Cesnik 2007). 

 
For Lamb wave detection methods, there are two common 

approaches (Raghavan and Cesnik 2007)- (a) pulse-echo, 

and (b) pitch-catch. Using pulse-echo based approach, 

damage position can be detected by methods like 

triangulation , (Su and Ye 2009; Zhou, Su and Cheng 2011) 

or using cumulative coefficient change (Zhao, Gao, Zhang, 

Ayhan, Yan, Chiman and Joseph 2007). Furthermore,  it 

also allows estimating detect the damage intensity if damage 

location is known (Peng, He, Liu, Saxena, Celaya and 

Goebel 2012).  However, most existing damage detection 

techniques based on Lamb waves are deterministic and 

cannot systematically include the uncertainties, such as 

measurement uncertainty and model parameter uncertainty 

in the damage diagnosis.  In view of the above mentioned 

difficulty, a probabilistic damage detection method for in-

situ applications is proposed in this study. This novel 

method is presented here to simultaneously detect the 

damage location and size, then provide their confidence 

information. The proposed method combines the Lamb 

wave-based damage detection technique and a novel 

Bayesian Imaging Method (BIM) to achieve this goal. 

This paper is organized as follows. First, the Bayesian 

theorem is introduced and a probabilistic delamination 

detection, localization, and size estimation framework 

(Bayesian Imaging Method) is developed. Then, a Lamb 

wave based test and signal analysis setup is presented for 

diagnostic feature extraction. Next, an example is presented 

to validate the proposed Bayesian Imaging method for 

delamination size and location detection. Damage diagnosis 

uncertainty bounds are simultaneously generated. Finally, 

some conclusions and future works are drawn based on the 

proposed study. 

2. DAMAGE DIAGNOSIS ALGORITHM  USING BAYESIAN 

IMAGING METHOD 

Bayes’ theorem is widely used in image processing, which 

combines the prior distribution of a realistic image and 

utilizes new measurement data to improve image resolution 

or segmentation (Li, Dong, Guan, Li and Zhou 2007; 

Pickup, Capel, Roberts and Zisserman 2009). It is also used 

to compress the information needed to reconstruct the image 

by optimizing the basis-function weights, which is a 

powerful tool to deal with the problem of limited 

measurements (Ji, Xue and Carin 2008). These methods are 

explained briefly next. 

2.1. Bayes’ Theorem 

Bayes’ theorem is commonly used for probabilistic 

inference or learning process. It can combine the prior belief 

about parameters and current system response to provide a 

reasonable prediction of parameters distribution. Let      

denote the prior distribution of parameter  . According to 

the Bayes’ theorem, the posterior distribution of   is given 

as 

              |   (1) 

where     |   is the likelihood function, which reflects the 

current system response    and       is the posterior 

distribution of updated parameters. Let    be an in-situ 

measurement,      is the prediction value based on a 

model. If there is no measurement noise or model 

uncertainty, the measurement would be identical with the 

model prediction, i.e.         . However, this is usually 

never the case. Therefore, it is necessary to account for 

measurement noise   and model uncertainties   and the 

relationship between    and      can be expressed as 

             (2) 

Assuming that the two error term         are independent 

zero mean normal variables (Bell 2001; Adam 2002), the 

sum of them can be expressed as a new random variable 

       ~N(0,   ). Therefore the likelihood function 

    |   can be expressed as 

    
    

     
 |   
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where   is the number of available measurements. 

Substituting Eq. (3) into Eq.(1), the posterior distribution of 

parameter   is expressed as 
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   ) (4) 

where the posterior distribution of the parameter   can be 

approximated by the samples drawn by the Markov chain 

Monte Carlo simulation. 

2.2. Damage Diagnosis and Bayesian Imaging 

Development 

In the damage detection problem, the sensor signal can be 

periodically accessed during the servicing operations of 

structures and signal features can be extracted using 

appropriate signal processing techniques.  To predict the 

damage size and location, a physics model      describing 

the relationship between the signal features and damage 

information should be developed first, which is developed 

using information extracted from available testing datasets. 

Next, a likelihood function for the updated parameters, i.e., 

delamination size and location is built considering the 

measurement and model uncertainties. Now, the posterior 

belief about damage can be estimated from the posterior 

distribution of the updated parameters. In this case the 

parameter vector    comprises of delamination geometric 

center coordinate (  ,  ) and delamination size  . Since no 

prior belief is available for any of these three parameters, 
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the prior distribution   ,    are assumed to be uniform 

distribution cover the whole possible region where the 

delamination may appear. The delamination size distribution 

is uniformly distributed from zero to a large size (e.g, the 

physical length of the specimen as the largest possible 

delamination size). A very small quantity (i.e., 0.001 mm) 

for the delamination distribution lower bound is used to 

avoid numerical difficulties. The overall diagnosis 

framework is shown in Fig. 1. 

 

Figure 1. Flowchart for the damage diagnosis method 

 

In Bayesian updating, it is nontrivial to derive an analytical 

solution if the posterior distribution is non-parametric or 

very complex, which is the case in this problem. Therefore, 

the Markov-Chain Monte-Carlo (MCMC) method is used to 

draw samples. Detailed discussion on MCMC method can 

be found in several references (Hasting 1970; Peskun 1973; 

Cowles and Carlin 1996; Fort, Moulines and Priouret 2012) 

and is, therefore, not discussed here. 

The key idea behind the proposed BIM is that the entire 

specimen is discretized into many small cells (e.g., with size  

1mm  1mm in the current study) and each cell is assigned 

an associated probability of damage. The probability of 

damage is updated based on measured signal features using 

the Bayesian technique. The updated posterior distribution 

at each cell can be used to construct an image that directly 

represents the damage location and size. 

3. DELAMINATION DIAGNOSIS EXPERIMENT USING 

PIEZOELECTRIC SENSOR 

In this section, the proposed BIM is demonstrated using an 

experimental study. The testing datasets are used to train the 

model      to get the likelihood function.  The Bayesian 

updating results are compared with X-ray images for model 

verification and validation. Details are presented next. 

3.1. Fatigue Cycling Experiment Setup 

In a separate effort run-to-failure fatigue experiments were 

conducted using composite coupons with 12 plies. Torayca 

T700G uni-directional carbon-prepreg material was used for 

this 15.24cm   35.56cm dog bone geometry coupons and a 

notch (5.08 mm   19.3mm) is introduced to induce stress 

concentration, as shown in Fig. 2.  

 

 
Figure 2. The geometry of the dog bone coupon (unit: cm) 

 

These experiments served several objectives - (i) collection 

of run-to-failure data with periodic system health data using 

PZT sensors, (ii) collection of ground-truth data for the 

delamination to validate the sensor measurement analysis, 

(iii) accounting for variations between samples of same 

internal structure (layup), and (iv) characterizing  variations 

between samples of different internal structures. Three 

symmetric layup configurations were chosen to account for 

the effect of the ply orientation: Layup 1: [      ]   Layup 

2: [                   ] , and Layup 3: [         
    ] . Two six-PZT sensor SMART Layers from Acellent 

Technologies, Inc (Fig. 3(a)) were attached to the surface of 

each sample. In Fig. 3(a), actuator 1 to 6 were used to 

actuate the PZT signal and sensors 7-12 collect the 

corresponding signal propagation through the plate. Each 

actuator and sensor acted as a diagnosis path to interrogate 

the damage information. A more detailed description about 

these experiments is given in (Saxena, Goebel, Larrosa, 

Janapati, Roy and Chang 2011). Fig. 3(a) shows such a path 

form actuator 5 to sensor 8, which is represented as path 

5 8.  The other paths follow the same rule as above in the 

following sections.  
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Figure 3. (a) Coupon specimen, SMART layers location, 

and diagnostic path from actuator 5 to sensor 8, 

 (b) Development of matrix cracks and delamination leading 

to fatigue failure, 

(c) Growth in delamination area during the increased 

loading cycles. 

Using this configuration of sensor network, all PZTS are 

used one by one as actuator to actuate the Lamb wave, 

which is received by other acting as sensors. It is expected 

that the growth in delamination size will be captured in the 

received signals from a particular diagnosis paths that cover 

delamination area (e.g. path 5 8), which was validated by 

the comparison between features and delamination size in 

literature (Saxena, Goebel, Larrosa, Janapati, Roy and 

Chang 2011). For diagnosis path 5 8, the signal received 

by sensor 8 at different loading cycles is plotted in Fig. 4. 

As illustrated in Fig. 4, an increase in delamination size can 

be captured by monotonic trends in features (amplitude, 

correlation coefficient, and phase change). Conceptually, a  

change (decrease) in normalized amplitude reflects the 

energy dissipation due to the damage. The phase angle 

change is attributed to the increased wave traveling distance 

induced by the damage. The correlation coefficient change 

reflects the signal perturbation due to the new waves 

generated at the damage surfaces due to reflections 

(Raghavan and Cesnik 2007). All of these features are 

computed by comparing the received signal from a pristine 

coupon, called baseline and the signals from damaged 

coupons. 

 
Figure 4. Changes in signal received at sensor 8 as a 

function increasing fatigue cycles.  

3.2. Data Processing 

Observation from x-ray images of the damaged coupons 

reveal that damage grows from the tip of the slit in a 

characteristic way extending as a half elliptical lobes. 

Therefore, damage shapes are modeled as half elliptical 

lobes. Using the sensor network and the analysis method 

described above, there are two parameters describing these 

half elliptical shapes that would possibly affect the received 

signal, which is shown in Fig. 5.  The green ellipse is the 

delamination area observed from the x-rays and the red 

envelope is introduced to cover the entire area, whose radius 

is used as a proxy for delamination size  . The distance 

from the delamination center to the diagnosis path is 

denoted by  .  Features extracted from measurements can 

be related to these two parameters. For instance, 

corresponding features for actuator  5 are given in Fig. 6.  

 

        

 
 

Figure 5. X-ray image and schematic representation 

delamination 
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(b) 

 

(c) 

Figure 6. Features related to actuator 5 for different 

delamination size and distance. (a). Normalized amplitude, 

(b). Correlation coefficient, (c). Phase change  

As shown in Fig. 6, the correlation coefficient and phase 

change features are more sensitive to the distance compared 

to the normalized amplitude.  For example for a fixed 

distance, these two features have monotonic relationship 

with the delamination size, which is consistent with the 

trend in Fig. 4. In order to use these two features in the BIM 

proposed earlier, a model is introduced to express the 

relationship between the features with the delamination size 

and position. A generic expression can be written as  

                 (5) 

where   is the delamination size,   is the distance from the 

delamination center to the direct diagnosis path. It should be 

noted that Eq. (5) is a generic expression and does not limit 

to a specific function type. In this study, a  polynomial 

regression model is used.  Using the trend in the datasets, 

the model used for these two features is given as  

                                 (6) 

where                      for correlation coefficient;  

    is regression coefficients, which can be obtained by 

learning from the training datasets. After tuning these 

coefficients, the testing and fitted results for features are 

shown in Fig. 7. The yellow dots are the validation data and 

the rest are used for the training. It is can be seen that the 

simple regression model above gives satisfactory results 

except for the regions where the delamination is far away 

from the diagnostic path. 

 
(a) 

 
(b) 

Figure 7. The testing data and curve fitting 

(a). Correlation coefficient, (b). Phase change 

The data analysis presented above is from a single actuator 

(actuator 5), but a similar trend is observed for data from 

other actuators. For a given delamination defect, damage 

information from different actuators and wave paths can be 

combined to provide a better estimation of the delamination 

size and location. The following section, presents an 

example of the BIM method application. 

4. DEMONSTRATION EXAMPLE 

As described in section 2, the physics model      is needed 

to show the relationship between damage information and 

signal features, which can be substituted by the fitting 

model shown in Eq. (6). The posterior belief about the 
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damage is estimated by the posterior distribution of the 

updated parameters. Parameter    represents the 

delamination center coordinate (  ,  ) and delamination 

size  . Since no prior belief is available for these three 

parameters, the prior distributions of location is assumed to 

be                 ,             , which covers all the 

possible location where delamination may appear. The 

coordinate definition of this specimen is given in Fig. 8. The 

delamination size distribution is assumed as 

             , where U means uniform distribution. The 

likelihood function is built based on the difference between 

fitting model and real experimental data.  The measurements 

from actuator 5 and 6 are utilized in Bayesian updating, as 

given in Table 1. It should be noted that each updating 

iteration incorporates one measurement in the BIM 

framework. The aspect ratio for these two dimensions are 

assumed to be 2.5 based on the experimental X-ray image. 

Table 1. The sensor measurements for given delamination 
Actuator 

 

Sensor 

5 6 

Correlation 

Coefficient 

Phase 

change 

Correlation 

Coefficient 

Phase 

change 

8 0.7142 10 0.6858 10 

9 0.8351 7 0.8279 7 

10 0.9595 3 0.9476 4 

The posterior distribution of           ) can be estimated by 

the samples drawn using the MCMC, which updates the 

belief about the delamination location and delamination size 

at each updating iteration. At the same time, corresponding 

median and uncertainty bound predictions are computed  to 

describe the accuracy of each updating result. The 

delamination location estimates after each updating iteration 

are shown in Fig. 9. 

 

Figure 8. The definition of the sample coordination and 

specific area to show the Bayesian image  

 

 

Figure 9. The delamination location updating 

As shown here, the estimated delamination location is 

approaching the true location as more data are used for the 

updating. Additionally, the uncertainty bounds narrow down 

as more measurements become available. Fig. 10 illustrates 

the Bayesian Imaging  of the damage probability at each cell  

of the specimen. It is obvious that the possible delamination  

area is narrowed down and the probability is increasing as 

applied more updating iterations. At last, the location with 

the highest probability is considered as the most probable 

delamination centers, which is almost the same with the true 

value as show in Fig. 10(d).  
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(b) Four updating iterations  

 

(c) Eight updating iterations 

 

(d) Twelve updating iterations 

Figure 10. The damage location probability updating at each 

cell of the plate.  

 

Simultaneously, delamination size is updated gradually, as 

shown in Fig. 11. By incorporating the location and size 

information, the estimated delamination area can be 

calculated. Fig. 12 gives the comparison between the true 

delamination from the X-ray images and the updated results 

using the proposed BIM. Satisfactory agreement is 

observed.  

 
Figure 11. The delamination size updating 
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(b) Four updating iterations 
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(c) Eight updating iterations 

 
(d)  Twelve updating iterations 

 

Figure 12. The comparison between the true value and 

updating result 

 

As given in Fig. 12, the predicted delamination is 

reconstructed based on the location and size prediction after 

each updating iteration.  More updating iterations  means 

more information is incorporated in the Bayesian updating. 

At the same time, the uncertainty bound is decreased as 

applied more updating iterations, which is consistent with 

the result given in Fig. 9 and Fig. 11.  

5. CONCLUSION 

In this paper, a probabilistic damage size and location 

updating algorithm is proposed, which incorporates the 

Lamb wave based signal features into the Bayesian updating 

framework.  The proposed method is validated by 

experimental measurements from X-ray images. Based on 

the results obtained above, several conclusions are drawn: 

1. The Lamb wave propagation based SHM method is able 

to capture the delamination size and location 

information  

2. The correlation coefficient and the phase change in the 

received signal are more sensitive to the damage 

location, but they are not very sensitive when the 

damage is far away from the sensor path.     

3. Bayesian updating can represent and manage the damage 

detection uncertainties, including both modeling 

uncertainty and measurement uncertainty. Probabilistic 

estimation of damage size and location can be obtained 

and the Bayesian image is constructed based on the 

probability of each cell. 

 

Currently, only two feature are utilized in the Bayesian 

updating. Further efforts are required to incorporate more 

features to give a better detection performance. 

Simultaneous, More parameters need to be found to 

characterize the delamination besides size and location. 

Other possible regression models needs further investigation 

to cancel the uncertainties between different specimens. 

Additionally, an irregular delamination shape needs further 

investigation, which can be done by attaching more sensors 

on the target region. 
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ABSTRACT 

One of the challenges in data-driven prognostics is the 
availability of degradation data for application to prognostic 
methods. In real process management settings, failure data 
are not often available due to the high costs of unplanned 
breakdowns. This research presents a data-driven 
(empirical) modeling approach for characterizing the 
degradation of a heat exchanger (HX) and to estimate the 
Remaining Useful Life (RUL) of its design operation. The 
Autoassociative Kernel Regression (AAKR) modeling was 
applied to predict the effect of fouling on the heat transfer 
resistance. The result indicates that AAKR model is an 
effective method to capture the HX fouling in the dynamic 
process. The AAKR residuals were fused to develop a 
prognostic parameter which was used to develop a General 
Path Model (GPM) with Bayesian updating. The results 
demonstrate the successful application of this approach for 
the heat exchanger RUL prediction.   

1. INTRODUCTION 

Fouling is defined as the formation of unwanted material 
deposition on the heat transfer surface. It occurs naturally in 
heat transfer processes across several types of industries. 
The fouling problem exists in more than 90 percent 
(Steinhagen R, 1993) of heat exchangers. The consequences 
of fouling accumulation include not only the economic loss, 
but heat transfer efficiency degradation, high flow resistance 
and pressure drops, and increased safety hazards, such as 
overheating of the HX surface. 

The fouling problem has been the topic of intensive research 
by several groups. Several methods on the fouling 
prediction of heat exchanger (HX) have been continuously 

proposed. Since the fouling progression is a complicated 
process, influenced by many parameters and not well 
understood, the available mathematical models do not cover 
all forms of fouling mechanisms. The lack of physical 
understanding of the fouling process dynamics is still a 
crucial issue that needs to be further investigated. 

In recent years, empirical modeling approaches such as the 
Artificial Neural Network (ANN), Support Vector Machine 
(SVM) and other statistical techniques have been widely 
applied in several types of industrial processes. With the 
ability to learn the different operating conditions of the data 
and to develop the model without any physical 
understanding of the process, the empirical modeling 
approaches have become more interesting and promising for 
the complicated fouling problem. Several publications, that 
address the issue of heat exchanger fouling prediction, are 
available (Vasilios, 2012; Lingfang, 2008; Upadhyaya et al., 
2004; Ingimundardόttir, 2009). In this project, an AAKR 
model is selected to develop the fouling prediction model. 
AAKR is a non-linear, non-parametric model that uses 
kernel regression to interpolate historical data stored in a 
memory matrix. The prediction results shows that an AAKR 
model can be applied appropriately to both dynamic and 
static heat exchanger processes.  

The fouling prediction using various types of empirical 
modeling has been successfully studied. However, 
calculating the Remaining Useful Life (RUL) of the HX 
when the fouling is first noticeable has not yet been fully 
explored. In this project, the General Path Model (GPM) 
(Hines and Coble, 2010) is introduced for the heat 
exchanger's RUL prediction.  

The GPM is developed using historical degradation 
measurements. The degradation path is expressed as the 
measure of degradation from the time when a fault first 
occurs to the end of life, which is usually indicated by 
exceeding a predetermined critical threshold. This threshold 

Tutpol Ardsomang et al. This is an open-access article distributed under the 
terms of the Creative Commons Attribution 3.0 United States License, which 
permits unrestricted use, distribution, and reproduction in any medium, 
provided the original author and source are credited. 

Annual Conference of the Prognostics and Health Management Society 2013

150



Annual Conference of Prognostics and Health Management Society 2013 
 

2 

can be defined by a performance specification or 
engineering judgment.  It is assumed that component 
degradation path can be described by some underlying 
parametric model and there is a unique degradation path for 
each individual component. The model parameters can be 
updated using new individual observations and applying 
Bayesian updating techniques, which allows both current 
observation and past knowledge to be considered in the 
model fitting.  

The RUL prediction of early-detected fouling in a heat 
exchanger is performed using the GPM with Bayesian 
updating techniques. The historical failed degradation paths 
which were simulated based on the asymptotic fouling 
behavior were used to develop the model. The unfailed 
degradation data were also simulated to test the performance 
and accuracy of the GPM predictions. The results show that 
the GPM with Bayesian updating gives an effective model 
to predict the RUL of the heat exchanger. 

All analysis in this study was performed using the 
MATLABTM software. The AAKR models were developed, 
tested and validated using the Process and Equipment 
Monitoring (PEM) toolbox (Hines and Garvey, 2006), 
developed by the University of Tennessee. The RUL 
predictions of heat exchanger were developed, using the 
MATLAB-based Process and Equipment Prognostic (PEP) 
toolbox (Hines and Garvey, 2011).  

2. BACKGROND 
This section introduces the basic mechanisms of heat 
excahnger fouling, HX physical model, AAKR and GPM 
with Bayesian updating. 

2.1 Heat Exchanger Fouling  

Fouling is the terminology generally used to describe the 
accumulation and formation of unwanted material on the 
material phase interface, which is the cause of the heat 
transfer capacity deterioration. Fouling is one of the most 
important problems of the heat transfer equipment such as 
heat exchangers, boilers, and steam generators. There is 
considerable interest in this subject because of the 
detrimental impact on the economy in various industries. 

The fouling process is a result of two processes: a 
deposition of contamination onto the tube walls and a 
removal of deposition from the tube walls. The rate of 
fouling deposition growth (fouling resistance or fouling 
factor, Rf) can be calculated as the difference between the 
deposition and removal rates as shown in Equation (1).
                

            Rf = Φd – Φr                                 (1)   

The fouling behavior is classified into four categories 
(Epstein, 1988), as indicated in Figure 1. The delay time td 
is the initial time period where no fouling occurs. The td is 
unpredictable since it appears to be random in nature. 

However, td is generally shorter after the first fouled surface 
is cleaned. The plots in Figure 1 represent four different 
types of fouling mechanisms. 

 

Figure 1. Fouling Curve (Epstein, 1988) 

• Linear fouling indicates the constant deposition rates 
which the difference between Φd and is Φr is constant.  

• Falling fouling curve indicates the mass of deposit 
increase with time but not linearly and does not reach the 
steady state. 

• Asymptotic fouling curve is the most common in the 
industrial process. The pure particulate fouling also falls 
into this mode. It indicates the rate of fouling gradually 
decreasing over time and reaching a steady state eventually, 
when Φd is equal to Φr. The fluid velocity causes a shear 
stress at the fouling layer that removes some of the 
particulates.  As the fouling layer becomes thick, the fluid 
velocity increases, thus increasing the rate of removal of the 
deposit.  The thickness of the final steady-state fouling layer 
is inversely proportional to the original velocity (Nesta, 
2004). 

• Sawtooth indicates generally increasing trend punctuated 
by short periods of decreasing trend due to periodic 
shedding of fouling deposits  

For the asymptotic fouling behavior, the fouling resistance, 
Rf, can be expressed by 

                                  Rf = Rf* (1- e-βcӨ)                             (2)               
 
where Rf* is the asymptotic fouling resistance which Φd is 
equal to Φr, βc is a decay rate and θ is the time or usage 
parameter. 
 
2.2 Heat Exchanger Physical Model 
 
The shell and tube design is one of the simplest and popular 
HX types, which can be found in most process plants. It 
consists of a series of tubes, called the tube bundle, which 
contain the fluid that must be either heated or cooled. The 
second fluid flows over the tube in the shell side which can 
either supply or remove the heat. Figure 2 is a diagram of a 
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simple shell and tube heat exchanger which was used in this 
study. 

 

Figure 2. Shell and Tube Heat Exchanger 

The traditional heat balance model is utilized based on the 
assumption that the amount of heat given up by the hot fluid 
is equal to the amount of heat received by the cold fluid, as 
shown in the Equation (3). 
   
                     ሶܳ= ṁh Ch ∆Th = ṁc Cc ∆Tc             (3)  

where	ṁ	is mass flow rate, Cp is specific heat capacity and  
∆T is temperature difference. In general, there are two 
physical models which represent the heat exchanger: the 
Log Mean Temperature Difference (LMTD) method and the 
Effectiveness-NTU method. 
 
The heat transfer can also be expressed by 
 
                                      ሶܳ= U A ∆TLMTD                          (4)  
 
Where U is the overall heat transfer coefficient, A is the heat 
transfer area, ∆TLMTD is the log-mean temperature difference 
for the heat exchanger, and is given by (Holman, 1981) 
 

                        LMTD = ∆TLMTD = 
∆ భ்ି	∆ మ்

	ሺ∆భ
∆మ

ሻ
         (5)  

 
If the heat exchanger is the concurrent flow type:  
 
                   ∆ ଵܶ = ܶ - ܶ  ,  ∆ ଶܶ = ܶೠ - ܶೠ           (6)                         
 
For the counter current flow heat exchanger: 
 
                      ∆ ଵܶ = ܶ - ܶೠ  ,  ∆ ଶܶ = ܶೠ - ܶ         (7)  

 
The reciprocal of UA is called the overall thermal 
resistance, which increases in proportion to the fouling 
deposition amount. From Equation (4), the overall thermal 
resistance can be derived as 

 

     ଵ


ൌ 	
∆ 	ܦܶܯܮ்

ሶ ∆்
	ൌ 	

∆ 	ܦܶܯܮ்

ሶ ∆ ்
          (8) 

  

The effectiveness-NTU (Holman 1981) method is used 
when the information is insufficient to calculate the log-
mean temperature (LMTD); for instance, when the fluid 
output temperatures are unknown. Based on the 
effectiveness of the heat exchanger, it can be defined as the 
rate between the actual heat transfer and the maximum 
possible heat transfer which can be hypothetically obtained 
in a counter-flow heat exchanger.  
 

                                 e = 
ொ

ொೌೣ
                         (9)  

It is noted that the fluid will experience the maximum 
possible temperature difference, which is the difference 
between inlet of primary side and the inlet of secondary side 
( ܶ- ܶ  ).  

                 	 ሶܳ௫ ൌ ሺ݉	ሶ ൈ ܿሶ ሻ൫ ܶ െ ܶ൯ 

                														ൌ ሶ݉ ൫	୫୧୬ܥ ܶ െ ܶ൯                    (10)             

	୫୧୬ܥ  is the heat capacity rate computed by the 
multiplication of mass flow rate and minimum specific heat, 
which is either of the hot or the cold fluid. From equations 
(5), (8) and (9), the effectiveness equation is 

݁ ൌ 	
ሺ்	–	்ೠሻ

ሺ்	ି	 ்ೠሻ
    or  ݁ ൌ 	

ሺ ்
	–	 ்ೠሻ

ሺ்ೠ	ି	 ்ሻ
       (11) 

Where Ch and Cc are the heat capacity rate of hot and cold 
side, respectively, and are computed from the multiplication 
of mass flow rate and specific heat capacity. The Number of 
Thermal Units (NTU) is expressed as 

         NTU = 



                              (12) 

    

2.3 Autoassociative Kernel Regression 

AAKR is a type of kernel regression modeling which is a 
non-parametric, empirical modeling technique that uses 
historical, fault-free observations to correct any errors 
present in current observations. The term "Autoassociative" 
means that the model inputs and outputs are the same 
variables. Autoassociative is the common empirical 
architecture, which all variables input to the model are 
estimated. It is useful for monitoring equipment or system 
with a high degree of correlation between variables.  
 
Basically, an AAKR is constructed by putting the non-faulty 
data into the memory matrix. An AAKR model will learn 
the relationships from all the variables. When the new data 
come in, the model will interpolate between those new data 
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and the memory matrix using kernel regression. If the inputs 
contain the error either by noise, instrument drift or process 
drift, the model is expected to predict what the normal value 
should be. The residual between the predicted and measured 
values can be monitored to detect anomalies in instrument 
channels and the process. 

In AAKR a set of new measurements and a set of 
prototypical measurements are compared based on distance 
operator. First, the exemplar or memory vectors used to 
develop the empirical model are stored in a matrix X, where 
Xij is the ith observation of the jth variable. For nm 
observations of p process variables, this matrix is expressed 
as 
 

  
(13) 

 
 
 
A query vector is the vector of process variable 
measurements represented by a 1xp vector   
                               
                                     x = [x1  x2 …. xp]                 (14) 
           
The distance between a query vector and each of the 
memory vectors is computed. The most common function is 
the Euclidian distance 

                                




n

i
iijj xXd

1

2
, )(                 (15) 

 
This calculation is repeated for each of the nm memory 
vectors, resulting in an nm x 1 matrix of distances (d). The 
distances are transformed to similarity measures used to 
determine weights by evaluating the Gaussian kernel with a 
bandwidth, h.  The bandwidth is optimized using a cross 
validation technique to minimize the prediction error. This 
regularization is necessary for ill-posed problems to 
minimize prediction noise and improve repeatability [Hines 
2005].  
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After achieving the optimal h bandwidth, the prediction ŷp is 
obtained by a weighted linear (Wi) combination of the 
similar memory vectors expressed by the equation  
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2.4 General Path Model with Bayesian Updating 

Since the degradation of the heat exchanger performance is 
measurable, the condition based prognostics is the most 
appropriate approach. The GPM is an example of 
degradation modeling developed by Lu and Meeker in 1993. 
GPM is based on the available degradation measurements to 
estimate Time to Failure (TTF) distribution. In fact, useful 
information underlying in degradation measurements may 
result in a better reliability prediction. The GPM analysis 
begins with the assumption that individual equipment will 
fall into the same underlying functional form of the 
degradation path under the specific failure mode.  

Basically, degradation measurements show the degradation 
paths (or degradation signals) to the end of life which is 
usually indicated by the crossing of a predetermined critical 
threshold.  However, it is not necessary that all units have to 
be run to failure, unfailed or right censored data also contain 
useful information for GPM prediction. Another assumption 
for GPM is that component degradation can be described by 
some underlying parametric model, based upon physical 
models or from historical degradation data, and there is a 
unique degradation path for each individual component. To 
estimate failure times using a GPM, degradation paths need 
to be extrapolated to the failure threshold. Then the 
observed degradation paths will form the TTF distribution. 
The degradation of the ith unit at time tj is expressed by 
equation 18. 

                    yij = Ƞ(tj,Φ,Өi) + εij        i = 1,2,3,….n         (18)   

where η is a GPM function, tj is time of the jth measurement 
or inspection, Φ is a vector of fixed-effect parameters, θi is a 
vector of random effects parameters for individual ith 
component, and εij is assumed the normal distribution with 
mean zero and the standard measurement error term 
N(0,σ=ε^2).  The model parameters are estimated from the 
historical data.  This degradation path model, yi, can be 
extrapolated to the failure threshold to estimate the 
component's time of failure.   

The Bayesian technique can be combined with a GPM 
model to predict the RUL. Bayesian updating is a method 
that allows the prior information to combines with the new 
observations to update model parameter predictions. This 
method will allow both current observation and past 
knowledge to be considered in model fitting        

A linear regression model, Y = βX, is considered to be the 
simplest approach to generate the model parameters. β is the 
vector of parameters: 
 
                               β = (XT∑௬

ିଵX)-1XT ∑௬
ିଵY                                      (19) 

 
Where X is matrix of time, Y is vector of degradation 
measure and ∑௬  is the variance-covariance noise matrix, 
which represents the accuracy of each entry in the Y-vector. 
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In fact, the linear regression model is linear-in-parameters 
which can be populated with any function of degradation 
measures such as quadratic, exponential, sinusoidal, etc.  
 
To include Bayesian updating, the prior information (model 
parameter) is treated as one additional data point to the 
Ordinary Least Square (OLS) solution, matrix X is appended 
with an identity matrix Ik and matrix Y is appended with a 
priori value of the model parameter. The variance-
covariance matrix is also added with a final row and column 
of zeros, with the variance of a priori information in the 
diagonal element, see the equation 20 
  

                                                                    (20)          
                                           

It is assumed that the noise in the degradation measurements 
is constant and uncorrelated across observations of y. This 
allows the variance-covariance matrix to be a diagonal 
matrix consisting of noise variance estimates and a priori 
knowledge variance estimates, which simplified computer 
implementation. After a priori knowledge is used in 
conjunction with n current data observation, the posterior 
estimated parameters become the new estimated parameters 
if more new data were obtained. The variance of the new 
data is estimated as 
                    

(21)   
 
 
There are two pieces of information, the prior and the data, 
used to form the posterior estimation. The weighting of 
these information depend on the variance of the prior such 
as the variance or uncertainty of the data and the amount of 
data. In other words, the prior b0 will have large weighting if 
the variance of the prior is small. However, the data will be 
weighted more heavily when new data are collected.  
 

3. EXPERIMENTAL SETUP 

The current experimental setup was designed based on the 
previous experiment (Upadhyaya et al., 2004). The heat 
exchanger test bed is a simple two sided loop system. The 
exchanger, API Basco HT, is a shell-and-tube type 
exchanger with brass shell, internal brass tube sheets, and 64 
x ¼"copper tubes. The hot fluid passes through the tube 
while cold fluid passes through the shell. A 15-gallon tank 
holds the contaminated water used to accelerate the fouling 
process. A drain system utilizing a ball valve is placed 
between the tank and pump inlet to facilitate draining the 
system for cleaning.  Three 1500 watt immersion heaters are 
inserted in the tank to generate heat up to 4,000 Watt into 
the water. A 0.5 HP centrifugal pump is used to pump water 
through the closed loop with the maximum flow rate of 40 
GPM at head pressure 20 ft and 5 GPM at 80 ft as the 

minimum. Figure 3 is a photograph of the heat exchanger 
test bed. 
 

 

Figure 3. Heat Exchanger Test Bed. 
 
Referring to the Piping and Instrument diagram (P&ID) in 
Figure 4, the hot water is first pumped to a T-connector to 
split the water flow. One is the bypass pathway. The main 
function is to control pressure by XV-2. The second 
pathway is the main line to the heat exchanger and return to 
the tank. The flow control valve FV-1, needle type, is 
installed to control the flow in the main line where the flow 
rate is measured by the turbine flow meter with F to V 
converter (Fhot). The water flow rate ranges between 0 to 
7.5 gallons per minute (GPM). Two thermocouples, type T, 
(Thot-1, Thot-2) and two pressure sensors (Phot-1, Phot-2) 
are installed at inlet and outlet of the heat exchanger to 
measure the temperature and pressure. XV-1 and XV-3 are 
utilized as an air vent to relieve any air bubbles initially 
developed in the system. The four thermocouples, type K, 
(TZ-1 to TZ-4) are placed along one of the tubes of the heat 
exchanger to extract more valuable information.  
 
The shell side of the system is an open loop system with the 
water supply varied between 0 to 7.5 GPM from the facility 
internal plumbing.  A hose transports the water to the shell 
side of the HX.  This water flow rate (Fcold) is measured by 
an identical flow meter. The inlet and outlet temperatures 
are measured by thermocouples Tcold-1 and Tcold-2, 
respectively, on the shell side of the heat exchanger.  

To increase the fouling rate naturally, Kaolin clay is added 
to the water in the tube side of the exchanger. Kaolin, 
produced by Thiele Kaolin Company, is appropriated for the 
small-scale shell and tube heat exchanger. The particle size 
is less than 2 micro millimeters with 98 percent of dry clay 
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tested at 20 percent solids and pH 6.8. The concentration of 
Kaolin in the heat exchanger is approximately 2,800 ppm.  
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Figure 4. P&ID of Heat Exchanger Test Bed 
 
4. RESULTS AND ANALYSIS 

The first part of this section presents the fouling prediction 
using AAKR models. The fouling data are then used to 
establish the HX degradation parameters in the GPM to 
predict the RUL 

4.1 Fouling prediction 

The heat exchanger was operated under accelerated fouling 
(due to Kaolin) until a steady-state is reached. The first 
experiment was run for 250 hours. After cleaning, the 
second experiment lasted 380 hours. In the second 
experiment, the process was disturbed by turning one heater 
off at the end of the data. The purpose is to test the ability of 
the model to detect any changes in the dynamic process. The 
fouling prediction is expected not to have this disturbance 
under normal operation. Figure 5 shows the plots of some of 
the process variables during accelerated fouling. 

Several models based on different variables were 
investigated. The best prediction was from the group of 
variables based on the physical model, the overall thermal 
resistance (Equation 8), which consists of 5 variables, 
dtcold, dthot, LMTD, Fhot and Fcold. Fcold was removed 
because of constant value which is useless for the model. 
Figure 6 illustrates fouling data for this variable group. 
 
In Figure 6, only one variable that is affected by the fouling 
is the LMTD which is used for fouling prediction. The 
process disturbance also has an influence on the LMTD.  

 

Figure 5. Fouling data 
 

 

Figure 6. Fouling data for AAKR model development. 
 

The results shown in Figure 7 indicate that the model can 
predict the fouling and has ability to detect the process 
disturbance at the end of fouling validation data. However, 
the prediction is not perfect since the fouling prediction is 
still under the influence of the process disturbance. The 
same experiment was run several times under the different 
operating condition and the prediction data will be then used 
in the next section. 

 

Figure 7. Prediction and Residual plot 
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4.2 Remaining Useful Life Prediction by GPM 
The fouling prediction data from the previous section are 
used as the degradation path in GPM. The degradation path 
is defined as the measure of fouling from the beginning to 
the steady state until the asymptotic behavior. In this study, 
degradation paths which were from the AAKR model 
prediction and also simulation were scaled from zero to one 
hundred percent. Figure 8 presents the degradation paths 
used in the GPM model for two different conditions. 

 

Figure 8. Degradation path from fouling prediction 
 
Figure 8 shows that there are two groups of degradation 
paths. The first group consisting of 9 paths was operated 
with 1 GPM flow rate at both primary and secondary side. 
Nine degradation paths in the second group were operated 
with 3 GPM flow rate at primary side and 1 GPM at 
secondary side. The failure threshold is defined as the 
steady state of the fouling deposition or at 100%. In fact, the 
experiments were not stopped immediately after fouling 
reached 100%, but were continued for a period of time to 
ensure that the fouling reached the steady state.  

The degradation measures were fit with the parametric 
models through the linear regression process. In this 
research, various models such as linear, exponential, 
quadratic were investigated. The model accuracy is defined 
by the average of Mean Square Error (MSE) of the model 
prediction for those degradation paths. Table 1 presents the 
result of the model fitting from both fouling condition.  

Table 1. Model Fitting and Mean Square Error 
 

Model 
MSE 

Condition 1 Condition 2 
Linear 48.9 67.5 

Quadratic  49.0 67.1 

Cubic  47.5 72.0 

Exponential  168.3 179.1 

 
 

Next, the GPM with Bayesian updating was applied for 
unfailed fouling data to determine the RUL. The critical 
failure threshold and essential parameters such as regression 
coefficient and noise estimation from the failed data were 
used to determine the time to failure (TTF). The TTF is the 
time that the degradation measure reaches the critical 
threshold and the RUL is the period between the current 
time to TTF. 
It is assumed that unfailed fouling data act like the prior 
degradation model. Those data will be used to generate the 
path and extrapolate to the failure threshold.  Since the 
actual failure times for these units are known, the accuracy 
of the model can be obtained. See Figure 9 for the example 
of unfailed fouling degradation paths from both conditions. 

 

Figure 9. Example of unfailed fouling degradation paths 

The RUL prediction was calculated using different 
parametric models such as linear, quadratic for each 
operating condition. The result was compared with the RUL 
prediction without reference to the operating condition. See 
Table 2 for a summary of results. 

Table 2. TTF Prediction and Error 
 

Unfail 
Path 

number 

Current 
time 

Actual 
TTF 

Predicted TTF [hours] 

With 
Stress 

concern 

Error 
W/O 
Stress 

concern 

Error 

1 45 150 129.8 13.5 200 33 

2 70 188 153.8 18.6 229 21 

3 83 206 193.7 5.9 262 27 

4 135 400 464.3 16.1 500 25 

5 172 414 404.5 2.3 425 3 

6 210 459 445.2 3.1 473 3 

Average Error  9.8  18.6 

 
The results in Table 2 show that the GPM with Bayesian 
updating works well for this application. The average error 
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is approximately 9.8 hours. However, it shows that 
knowledge of the stress or operating condition is important 
for improved prediction accuracy. The average error from 
the GPM with a separate operating condition half that of the 
GPM without knowledge of the operating condition. This 
example shows that understanding future operational 
stresses is extremely important for the accurate RUL 
predictive capabilities. Additional, understanding the 
relationship between the stresses and RUL estimates could 
be used to guide operations in order to survive to a 
maintenance opportunity. 

4. CONCLUDING REMARKS 
 
This research consists of two major parts: 1). monitoring the 
HX fouling using an AAKR model, and 2). predicting the 
RUL using a GPM with Bayesian updating. The data used 
in the analysis were collected from an experimental HX test 
bed which was operated with various operating conditions 
leading to different fouling rates.  
 
The AAKR model developments were used for fouling 
prediction. The process disturbance was put into the 
validation data in order to test its effect on fouling 
prediction performance. Several models based on different 
measured and calculated variables were tested. The best 
model, which had the least influence from the process 
change, was from the model developed by the group of 
variables based on the physical model using overall thermal 
resistance. 
 
A GPM with Bayesian updating, was developed and applied 
for the RUL prediction of fouling in the HX using the 
degradation data from the AAKR model. The result shows 
that this method is appropriate for use in the HX RUL 
application, which provides usable accuracy and errors of 
less than 10%. Furthermore, this research shows the 
importance of understanding future stress conditions to 
achieve high accuracy prognostic predictions. 
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NOMENCLATURE 

AAKR Autoassociative Kernel Regression   
GPM General Path Model   
HX heat exchanger  
LMTD Log Mean Temperature Difference  
Rf the rate of fouling, fouling resistance or fouling 

factor  
RUL Remaining Useful Life 
TTF Time to Failure  

U  Overall heat transfer coefficient 
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ABSTRACT 

Prognostics is to predict future damage/degradation of in-

service systems and the remaining useful life based on the 

damage data obtained at previous usage. The damage data is 

of great importance regardless of prognostics methods used, 

while it is very expensive to obtain the data because of time 

and cost. Instead, companies frequently use accelerated test 

data for the purpose of design, which is obtained under 

much severe operating conditions. This paper presents a 

method of utilizing accelerated test data for the purpose of 

prognostics. The uncertainty caused by mapping between 

nominal and accelerated operating conditions is taken into 

account using the Bayesian framework. As an example, 

crack growth data are synthetically generated under over-

loaded conditions, which are utilized for both of data-driven 

and physics-based approaches under different conditions. 

Using accelerated test data increases prediction accuracy in 

early stage of physics-based prognostics as well as it covers 

insufficient data problem of data-driven prognostics. 

1. INTRODUCTION 

Prognostics is to predict future damage/degradation of in-

service systems and the remaining useful life (RUL) based 

on the damage data obtained at previous usage, whose 

process is illustrated in Figure 1. Once damage model (black 

solid curve) is determined based on damage data at previous 

times under a given usage condition (black dots) or under 

the various usage conditions (grey dots), RUL which is 

remaining time/cycles before required maintenance can be 

predicted by progressing the damage state until it reaches 

the threshold. 

Even though prognostics facilitates condition-based 

maintenance (Jardine, Lin, & Banjevic, 2006) that is 

considered as a cost-effective maintenance strategy 

compared to periodical preventive maintenance, there are 

several challenges to be viable in practice. One of them to 

be considered in this paper is a limited number of damage 

data in-service systems since it is very expensive to obtain 

the data because of time and cost. Instead, it is easy to 

obtain accelerated test data since companies frequently use 

them for the purpose of design. Actually, most studies on 

prognostics have been conducted using accelerated testing 

data by considering accelerated conditions as field operation 

conditions even though the data are obtained under much 

severe operating conditions. This issue has been recognized 

by researchers in prognostics field (Celaya, Saxena, Saha, & 

Goebel, 2011). 

Even though the study on life estimation using accelerated 

test data is mature (Nelson, 1990; Park & Bae, 2010), it is 

different from prognostics viewpoint since in-service usage 

conditions are not reflected in their study. Therefore, if 

accelerated test data are utilized for the purpose of 

prognostics, more accurate prognostic results can be 

achieved. This paper presents a method of utilizing 

accelerated test data to compensate for the insufficient data 

problem based on a crack growth example. Different 

scenarios are considered according to presumable four 

different cases in terms of given information. 

 
Figure 1. Illustration of prognostics 

Dawn An et al. This is an open-access article distributed under the terms 

of the Creative Commons Attribution 3.0 United States License, which 
permits unrestricted use, distribution, and reproduction in any medium, 

provided the original author and source are credited. 
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The paper is organized as follows: in Sections 2, two 

prognostics approaches are introduced; and in Section 3 and 

Section 4, a crack growth example is addressed to suggest 

how accelerated condition data can be used under different 

scenarios, followed by conclusions in Section 4. 

2. PROGNOSTICS APPROACHES 

In general, prognostics methods can be categorized into 

physics-based (Luo, Pattipati, Qiao, & Chigusa, 2008), data-

driven (Schwabacher, 2005), and hybrid (Yan & Lee, 2007) 

approaches, based on the usage of information. The last 

approach combines the other two methods to improve the 

prediction performance. It, however, is not mature yet, and 

will not be considered in this paper. There are two main 

differences between data-driven and physics-based 

approaches; (1) availability of a physical model and (2) 

usage of training data to identify the characteristic of the 

damage state. More specific explanation for two approaches 

is introduced in the following subsections. 

2.1. Physics-Based Approaches 

Physics-based approaches assume that a physical model 

describing the behavior of damage is available, and combine 

the physical model with measured data to predict future 

behavior of damage and RUL. The process of physics-based 

prognostics is illustrated in Figure 2, in which the 

degradation model is expressed as a function of usage 

conditions U , elapsed cycle or time t , and model 

parameters  . The usage conditions and time are given, 

while the model parameters should be identified. Since 

behavior of damage depends on model parameters, 

identifying them is the most important issue to predict 

future damage state and RUL. In fact, parameter estimation 

algorithms become criteria to classify physics-based 

approaches. There are several algorithms such as Kalman 

filter (KF) (Kalman, 1960), extended Kalman filter (EKF) 

(Julier & Uhlmann, 2004), particle filter (PF) (Doucet, 

Freitas, & Gordon, 2001), and Bayesian method (BM) 

(Kramer & Sorenson, 1988), which are based on the 

Bayesian inference (Bayes, 1763). 

Bayesian inference is a statistical method in which 

observations are used to estimate and update unknown 

model parameters in the form of a probability density 

function (PDF). Bayesian inference is based on the 

following Bayes’ theorem (Bayes, 1763) : 

     | |p L pz z                           (1) 

where   is a vector of model parameters, z  a vector of 

observed data,  |L z   the likelihood,  p   the prior PDF 

of  , and  |p z  the posterior PDF of   conditional on 

z . The likelihood is the PDF value of z  conditional on 

given  , which depends on the observed data. The prior 

information can be given, assumed, or not considered. The 

posterior PDF is obtained by multiplying the likelihood and 

the prior PDF. The posterior PDF at previous time becomes 

prior PDF at current time as a new data is added, which is 

called Bayesian updating. The distribution of posterior PDF 

get narrow through Bayesian updating as shown in Figure 2, 

which gives more accurate and precise prediction results of 

damage and RUL. 

Among several algorithms, PF is commonly used for 

prognostics and is considered in this study. PF (a.k.a. 

sequential Monte Carlo method) estimates and sequentially 

updates the parameters, in which the posterior distribution is 

expressed as a number of particles and their weights. More 

specific explanations can be found in the literature (Doucet 

et al., 2001; Orchard & Vachtsevanos, 2007; DeCastro, 

Tang, Loparo, Goebel, & Vachtsevanos, 2009; An, Choi, & 

Kim, 2013). 

2.2. Data-Driven Approaches 

Data-driven approaches use information from collected data 

(training data) to identify the characteristics of damage state 

and predict the future state without using any specific 

physical model. There are many different types of algorithm 

for data-driven approaches, and they are divided into two 

categories: (1) the artificial intelligence approaches that 

include neural network (NN) (Chakraborty, Mehrotra, 

Mohan, & Ranka, 1992; Yao, 1999) and fuzzy logic (Zio & 

Maio, 2010), and (2) the statistical approaches that include 

gamma process (Dickson & Waters, 1993), hidden Markov 

model (HMM) (Rabiner, 1989), and regression-based model 

such as Gaussian process (GP) regression (Seeger, 2004; 

Mohanty, Teale, Chattopadhyay, Peralta, & Willhauck, 

2007), relevance vector machine (RVM) (Tipping, 2001), 

least square (LS) regression (Tran & Yang, 2009), etc. 

The process of data-driven approaches is illustrated in 

Figure 3, which are similar to extrapolation based on 

 
Figure 2. Illustration of physics-based prognostics 

 
Figure 3. Illustration of data-driven prognostics 
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regression that contains mathematical model ( f ), input 

variables ( p ), and parameters ( w ). First of all, 

mathematical models that represent the relation between 

input variables and damage state as the output should be 

determined instead of a physical model. The input variables 

are not only the parameters shown on x -axis, but also 

previous damage states. Using damage data themselves as 

input variables makes a relation between damage data 

without any other information such as physical model and 

loading conditions. The usage of input variables, however, 

is flexible, and loading information can be also added for 

input variables if it is available, which increase accuracy of 

prediction with a less number of damage data. Once the 

mathematical model is determined including input variables, 

mathematical parameters associated with the model are 

identified by combining damage data via optimization 

process. The damage data used for identifying the 

parameters are called training data, and are obtained under 

the various usage conditions as shown in grey dotted 

markers in Figure 1 or at previous times under a given usage 

condition as shown in black dotted markers in Figure 1. 

Lastly, the future damage state and RUL are predicted based 

on the identified parameters and the mathematical model. 

Uncertainty of prediction can be considered by providing a 

confidence bound based on the mean square error between 

training outputs and training data or adding Gaussian noise. 

Among several algorithms, NN is most commonly used and 

is considered in this study. Also, Bayesian NN is employed, 

which determines distributions of parameters based on 

Bayes’ theorem instead of deterministic values given by 

optimization process (Freitas, 2003; Neal, 1995). Also, the 

previous two damage data are used for input variables. In 

this paper, two types of prediction are considered: short-

term prediction and long-term prediction. Short term 

prediction is to predict just one step ahead; that is, damage 

cannot be progressed without currently measured data since 

the previous damage data are required for input variables. 

On the other hand, long term prediction is to predict multi-

step ahead by using the simulation results for the input 

instead of real measurement data. 

3. CRACK GROWTH EXAMPLE 

A crack growth problem in a fuselage panel under repeated 

pressurization loading is employed, which is based on Paris 

model (Paris & Erdogan, 1963):  

  ,
mda

C K K a
dN

                            (2) 

where a  is the half crack size, N  is the number of cycles, 

m  and C  are damage growth parameters, K  is the range 

of stress intensity factor, and   is the stress range due to 

the pressure differential. The synthetic measurement data 

are generated using Eq. (2) with true damage growth 

parameters 
true 3.5m  , 11

true 6.4 10C   , and the initial half 

crack size 
0 10mma  . These parameters are only used to 

generate synthetic data. Three over-loaded conditions, 
=145MPa, 140MPa, and 135MPa and one nominal 

condition,  =68MPa are, respectively, considered as 

accelerated and field operating conditions. Also, random 

noise is uniformly distributed between umm and u mm, 

and different levels of noise, 0.7mm and 1.5mm are, 

respectively, added to accelerated and field operating 

conditions. Figure 4 shows synthetic data, and three sets of 

accelerated test data in Figure 4(a) are considered as training 

data for data-driven approach or additional information for 

physics-based approach. In other words, these data are used 

to predict future damage growth of in-service system shown 

as star markers in Figure 4(b). The way to utilize accelerated 

test data can be roughly categorized into two. The first case 

is when other information such as physical model or field 

operating conditions are available in addition to accelerated 

test data, and another case is when only accelerated test data 

are available. These two cases are considered in the 

following subsections. 

4. UTILIZING ACCELERATED TEST DATA 

Methods of utilizing accelerated test data are presented in 

the following subsections. There are four different scenarios 

according to the availability of physical model and future 

loading conditions, as listed in Table 1. 

 
a) accelerated operating conditions 

 
b) field operating conditions 

Figure 4. Synthetic data under different loading conditions 
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4.1. Case 1: Physical Model and Loading Conditions are 

Given 

When a physical model and future operating conditions are 

available, the case is the same as physic-based prognostics 

using Paris model given in Eq. (2). In such a case, damage 

data under over-loaded loading conditions are not necessary 

for prognosis. The accelerated test data, however, can be 

used to improve prognostics results in terms of accuracy and 

reducing uncertainty in the early stage because the 

additional data can give prior information for the damage 

parameters.  

In order to illustrate the effect of accelerated test data, the 

initial distribution of damage parameters of the Paris model 

in Eq. (2) for generic Al 7075-T651 material (Newman, 

Phillips, & Swain, 1999) are assumed to be uniformly 

distributed; that is, m ~  3.3,4.3U  and log(C) ~ 

    11 10log 5 10 ,log 5 10U    , which are shown in  

Figure 5(a). The star mark in the figure represents the true 

value of the parameters, which needs to be found using 

crack growth measurement data. When accelerated test data 

are available, this distribution can be narrowed using the 

Particle Filter method based on Eq. (1). Figure 5(b) shows 

the narrowed distribution using the three accelerated test 

data in Figure 4(a). It is noted that the scatter of distribution 

is much narrower than that of the initial distribution. It is 

also noted that due to strong correlation between the two 

Paris parameters, the Bayesian process cannot converge to 

the true value of the parameters. However, as pointed out by 

An et al. (An, Choi, & Kim, 2012), the crack propagation 

behavior will be similar for different combinations of the 

two Paris parameters. The advantage of accelerated test data 

is to start with much better initial distribution as in Figure 

5(b). 

For the purpose of comparison, the two distributions in 

Figure 5 are used as an initial distribution in PF, and 

respective prediction results of RUL are shown in Figure 6(a) 

and (b). Figure 6(b) is the case when the prior information 

from accelerated test data applied, which shows fairly 

accurate and precise results even from an early stage. Also, 

Table 2 shows the difference between Figure 6(a) and (b) 

quantitatively based on prognostics metrics (Saxena, Celaya, 

Saha, Saha, & Goebel, 2009). Prognostics horizon (PH) is 

related to the time when the predicted RUL satisfies given 

accuracy band, -   accuracy is that whether the prediction 

result satisfies the accuracy zone at given cycle or not, and 

relative accuracy (RA) and cumulative relative accuracy 

(CRA) mean that how accurate the prediction results are, in 

which the performance is better when the values of 

prognostics metrics are larger. 

 

Table 1. Four scenarios 

 Case 1 Case 2 Case 3 Case 4 

Physical model O O X X 

Future loading O X O X 

Available 

method 
Physics-based (PF) Data-driven (NN) 

 

 
a) from the literature 

 
b) from accelerated test data 

Figure 5. Prior distribution 

 
a) based on prior information given in the literature 

 
b) based on prior information from accelerated test data 

Figure 6. RUL prediction of Case 1 
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4.2. Case 2: Physical Model is Given but Loading 

Conditions are Not 

When future loading is uncertain, it will make sense to 

assume its range roughly; let us assume uncertain loading 

condition is uniformly distributed between 50 MPa and 90 

MPa against true loading condition, 68 MPa, while a 

physical model is available. There are two ways to predict 

RUL in this case, updating parameters with given uncertain 

loading condition and updating loading condition with given 

distributions of parameters. 

Updated parameters converge to different distributions from 

true ones due to different loading conditions between 

uncertain and true conditions, but prediction results of 

damage and RUL can be accurate (An, Kim, & Choi, 2013). 

In this case, it is better not to utilize accelerated test data 

because the prior information from accelerated test data are 

not matched with field condition, and wrong prior 

information does not have a good effect on the prediction 

results (An, Choi, Schmitz, & Kim, 2011). RUL prediction 

shown in Figure 7(a) is obtained by updating parameters 

from the information given in the literature with given 

loading condition, whose median becomes close to the true 

RUL after 12000 cycles, but whose prediction interval is 

very wide due to wide distribution of loading condition.  

For the case of updating loading condition, accelerated test 

data are utilized to obtain prior distribution of parameters, as 

shown in Figure 5(b). The result is shown in Figure 7(b), in 

which convergence rate of median is similar to one of 

Figure 7(a), but prediction interval is much smaller because 

loading condition is updated as well as updated distributions 

of parameters are employed. Also, since prior distributions 

of parameters are obtained from correct conditions 

(accelerated test), true loading condition can be identified. 

4.3. Case 3: Physical Model is Not Given but Loading 

Conditions Are 

As the reverse of the previous condition, it is considered that 

the physical model is not available, but future loading 

conditions are. This case can be handled with NN by adding 

loading conditions to input variable. First of all, Figure 8 

shows damage prediction results without accelerated test 

data, that is, training data are available only from field 

operating condition. In this case, short-term prediction 

becomes valid after 13000 cycles, as shown in Figure 8(a), 

but long-term prediction are not effective even if data up to 

19000 cycles are used, as shown in Figure 8(b). In contrast, 

the case when the accelerated test data are used as training 

data gives good results in terms of short-term prediction at 

the very early cycles, as shown in Figure 9(a). Also, long-

term prediction becomes close to the true damage growth 

with narrow distribution at 19000 cycles, as shown in Figure 

9(b) compared to Figure 8(b). This results show that 

accelerated test data can be used as training data even 

though the difference between nominal and accelerated 

operating conditions is big. 

 
a) parameter update with give distributed loading 

 
b) loading update with given parameter from accelerated 

test data 

Figure 7. RUL prediction of Case 2 

 
a) current 13000 cycles 

 
b) current 19000 cycles 

Figure 8. Damage prediction without accelerated test data 
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4.4. Case 4: Physical Model and Loading Conditions are 

Not Given 

This case is also data-driven prognostics in common with 

Case 3, but loading condition is not available and cannot be 

updated since there is no physical model. Many training 

data under similar usage conditions to field operating 

conditions are required, but it is very expensive to obtain the 

data in terms of time and cost. In this context, the way of 

mapping damage data at accelerated operating conditions to 

nominal conditions can be a resolution. 

Inverse power model is employed for mapping between 

accelerated conditions data and field operation data, which 

is widely used to define the relation between loading 

conditions and system’s life in the problems such as an 

electric insulator, bearing, metal fatigue and has a linear 

relation between logarithm of life and load (Nelson, 1990): 

Life
Load 


 ,      log log logLife Load         (3) 

where Life  is lifespan of a system, and ,   are 

coefficients, which is be found using life data under at least 

two different over-loaded conditions. Once coefficients are 

identified, lifespan under field operating conditions can be 

calculated by using linear equation in Eq. (3). To apply 

inverse power model for prognosis, lifespan should be 

determined according to damage threshold, which is 

calculated based on a regression model shown as solid 

curves in Figure 10(a) that are obtained based on NN. In 

Figure 10(a), dashed-horizontal line illustrates threshold 

35mm, and lifespans of system under 145 MPa, 140 MPa, 

and 135 MPa are, respectively, 1460 cycles, 1650 cycles, 

and 1880 cycles. Coefficients in Eq. (3) are found by using 

these three data, and the linear relation is shown as dashed-

diagonal line with three different makers in Figure 10(b). 

Three damage data under similar conditions to field 

operating conditions are obtained by extrapolating the 

dashed-diagonal line to half loading of each overloaded 

conditions. Mapping is to repeat this process according to 

different thresholds, as many diagonal lines in Figure 10(b) 

to obtain damage growth data that are available as training 

data. 

By the way, noise in measured data, as shown in Figure 

10(a) has an effect on identifying coefficients, and very 

small changes of the coefficients yield tremendous 

difference in the mapping results due to logarithm equation. 

Therefore, uncertainty of coefficients is identified based on 

Bayesian approach like identifying model parameters and 

loading condition in Sections 4.1. and 4.2. Since the 

uncertainty of mapping grows serious when both 

coefficients are considered as uncertain parameters, only the 

uncertainty of intercept is taken into account. This is 

reasonable from two grounds; (1) the slope is the almost 

same shown in Figure 10(b), and (2) the slope and the 

intercept have strong linear relation. The deterministic slope 

is -3.4844 that is the mean value of total 21 slopes from the 

 
a) current 2000 cycles 

 
b) current 19000 cycles 

Figure 9. Damage prediction with accelerated test data 

 
a) accelerated test data 

 
b) inverse power model 

Figure 10. Linear relation between logarithm of life and 

load 
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threshold 20 mm to 50 mm, which is illustrated as solid-

diagonal line in Figure 10(b) at arbitrary intercept. 

Mapping into half magnitudes of three overloaded cases are 

shown in Figure 11, which is obtained with fixed slope and 

different intercepts according to different thresholds. The 

width of horizontal lines in Figure 11(a) represents 90% 

confidence intervals caused by uncertainties of intercepts. 

The intervals are very small at the crack size more than 

20mm due to deterministic slope and low noise level in 

accelerated test data. Figure 11(b) shows the median plot of 

Figure 11(a), and the mapping results at 67.5MPa are very 

close to the true damage data at 68MPa load. This results 

show that accelerated condition data can roughly show 

damage growth and RUL under field operation condition 

and can be utilized as the training data for nominal 

condition through proper mapping method. 

5. CONCLUSIONS 

This paper presents the way to utilize accelerated conditions 

data for the purpose of prognostics by paying attention that 

very limited number of damage data in-service is available. 

Four different cases are considered: (1) both physical model 

and loading conditions are given, (2 and 3) either physical 

model or loading conditions is given, and (4) neither 

physical model nor loading conditions is given. Using 

accelerated test data increases prediction accuracy in early 

stage in any cases. Especially, proper way for mapping 

between nominal and accelerated conditions data can cover 

insufficient data for the last case which is the most practical 

situation. This approach will be employed for real test data 

in the near future. 
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ABSTRACT 

In this paper, a methodology for probabilistic prognosis of a 
system using a dynamic Bayesian network (DBN) is 
proposed. Dynamic Bayesian networks are suitable for 
probabilistic prognosis because of their ability to integrate 
information in a variety of formats from various sources and 
give a probabilistic representation of a system. Further, 
DBNs provide a platform naturally suited for seamless 
integration of diagnosis, uncertainty quantification, and 
prediction. In the proposed methodology, a DBN is used for 
online diagnosis via particle filtering, providing a current 
estimate of the joint distribution over the system variables. 
From this state estimate, future states of the system are 
predicted using the DBN and sequential Monte Carlo 
sampling. Prediction in this manner provides the necessary 
information to estimate the distribution of remaining use life 
(RUL). The DBN-based recursive prediction procedure may 
be used to estimate the system state between available 
measurements, when filtering is not possible. The prognosis 
procedure, which is system specific, is validated using a 
suite of offline hierarchical metrics. The prognosis 
methodology is demonstrated on a hydraulic actuator 
subject to a progressive seal wear that results in internal 
leakage between the chambers of the actuator.  

1. INTRODUCTION 

1.1. Background 

The rise of complex and costly systems for use in extreme 
environments has resulted in new challenges in 
maintenance, planning, decision-making and monitoring for 
these systems. To reliably execute the missions they were 
designed for, these systems must be meticulously 
maintained. Traditional schedule-based maintenance results 
in unnecessary system downtime and the potential for 
serious problems to develop between routine maintenance. 
The alternative, condition-based maintenance (CBM) 
(Jardine, Lin, & Banjevic, 2006), monitors systems as they 

operate, alerting personnel when faults occur. Maintenance 
is performed on-demand, resulting in less downtime and 
lower costs. Further, online system measurements may 
occur on different time scales from one another or only be 
available in particular system configurations. This 
necessitates seamless integration of current state estimation 
and predictive techniques, which are part of a prognosis 
methodology. 
 
Prognosis is the process of predicting the future state of a 
system coupled with information about the implications of 
that estimate of the system health state. The quantitative 
prognosis of a system is commonly expressed through the 
remaining useful life (RUL). RUL quantifies the amount of 
time until a system reaches some failure criterion, e.g. fault 
magnitude or performance metric crosses a threshold or 
system is no longer operable.  Ideally, the uncertainty in 
RUL is quantified by estimating the distribution of RUL, 
resulting in a probabilistic prognosis. Importantly, 
probabilistic prognosis assesses the outlook for a specific 
instantiation of a system, or a particular unit under test 
(UUT). Measurement data updates the belief about the 
present state and RUL of the particular UUT.  In this way, 
probabilistic prognosis differs from probabilistic reliability 
analysis, which aggregates data to obtain probabilistic 
reliability data for a population as opposed to an individual. 
Such population statistics may be suitable for tasks such as 
system design, but less helpful for operational and 
maintenance decisions that focus on individual units, as is 
the case in CBM. 
 
A prognosis methodology should thus have several 
important characteristics. It should provide a distribution of 
RUL as opposed to a point estimate, thus accounting for the 
uncertainty coming from many sources (variability, 
information uncertainty, and model uncertainty). It should 
track the health of an individual unit. It should allow easy 
transition between situations when measurements are 
available and when they are unavailable. Finally, the 
methodology should survive rigorous validation. 
 Gregory Bartram et al. This is an open-access article distributed under 
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Prognosis methodologies may be divided into statistical, 
data-based, model-based, and hybrid approaches (see e.g. 
(Jardine et al., 2006; Tran & Yang, 2009)). Statistical 
approaches include statistical process control (Goode, 
Moore, & Roylance, 2000), logistic regression (Yan, Koç, 
& Lee, 2004), survival models (Banjevic & Jardine, 2006; 
Vlok, Wnek, & Zygmunt, 2004), and stochastic process 
models (Lin & Makis, 2004; W. Wang, Scarf, & Smith, 
2000; Wenbin Wang, 2002).  
 
Data-based approaches consist of machine learning methods 
(support vector machines (Farrar & Worden, 2012), relevant 
vector machines (Tipping, 2001), neural networks (Dong & 
Yang, 2008; Farrar & Worden, 2012; Vachtsevanos & 
Wang, 2001; W. Q. Wang, Golnaraghi, & Ismail, 2004; 
Yam, Tse, Li, & Tu, 2001; Zhang & Ganesan, 1997)) and 
graphical models such as dynamic Bayesian networks 
(DBNs) hidden Markov models (HMMs) (Chinnam & 
Baruah, 2003; Kwan, Zhang, Xu, & Haynes, 2003). Liu et 
al. (2010) use adaptive recurrent neural networks for the 
estimation of battery RUL. Goebel et al. (2008) compare 
relevance vector machines (RVMs), Gaussian process 
regression (GPR) and neural network (NN) methods for 
prognosis. Gebraeel & Lawley (2008) use NNs for 
degradation modeling and test the methodology on ball 
bearings. Saha et al. (2009) compare relevance vector 
machines (RVMs, a Bayesian implementation of support 
vector machines) and particle filtering to estimate RUL 
distributions for batteries. 
 
In model-based approaches, system models are used to 
estimate RUL or other relevant metrics. Such methods rely 
on accurate physics-based models for prediction. These 
include physical failure models (Kacprzynski, Sarlashkar, 
Roemer, Hess, & Hardman, 2004), filtering models 
(Orchard & Vachtsevanos, 2009, Lorton, Fouladirad, & 
Grall, 2013, B. Saha, Celaya, Wysocki, & Goebel, 2009, 
Khan, Udpa, & Udpa, 2011), and statistical models. Orchard 
and Vachtsevanos (Orchard & Vachtsevanos, 2009) use 
state estimation models combined with particle filtering for 
diagnosis and estimation of the RUL distribution of a 
planetary gear. Lorton et al. (Lorton et al., 2013) combine 
the differential equations of a system with system 
measurements via particle filtering for probabilistic model-
based prognosis.  
 
Hybrid methodologies combine multiple approaches, i.e., a 
combination of data-driven and model-based approaches. 
E.g. Kozlowski (2003) uses ARMA (autoregressive moving 
average) models (Box, Jenkins, & Reinsel, 2008), neural 
networks, and fuzzy logic for estimation of the state of 
health, state of charge, and state of life of batteries.  
 
DBNs are probabilistic graphical models with diagnostic 
and prognostic capabilities. They have shown promise in 
several recent applications. Dong and Yang (2008) use 

DBNs combined with particle filtering to estimate the RUL 
distribution of drill bits in a vertical drilling machine. While 
very useful, particle filtering is not the only inference 
method available for prognosis.  Jinlin and Zhengdao (2012) 
use DBNs modeling discrete variables and the Boyen-Koller 
algorithm for prognosis. Tobon-Mejia et al. (2012) use 
mixtures of Gaussian HMMs (a form of DBN) to estimate 
the RUL distributions for bearings. The junction tree 
algorithm is used for exact inference. The prognosis 
methodology is validated using the hierarchical metrics 
proposed by Saxena et al. (2010).  

1.2. Motivation 

While the preceding literature review represents a number 
of prognosis approaches, prognosis is still an emerging 
research area with room for much additional work. One 
promising approach that has received relatively little 
attention is based on DBNs. DBNs have many qualities that 
are attractive for prognosis.  
 

1) The graphical representation of a problem provided 
by DBNs aids understanding of interactions in a 
system.  

 
2) DBNs provide a probabilistic model of the system 
that accounts for uncertainty due to natural variability, 
measurement error, and modeling error.   

 
3) DBNs can integrate many types of information that 
may be encountered during prognosis (including expert 
opinion, reliability data, mathematical models, 
operational data, and laboratory data) into a unified 
system model.   

 
4) DBNs can update the distributions of all variables in 
the network when observations are obtained for any one 
or more variables. This allows the most recent system 
measurements to be accounted for in prognosis. 

 
 Additionally, many prognosis methodologies are 
application-specific. There is still a need for prognosis 
methodologies that can be applied to a wide range of 
problems. 

1.3. Contributions 

In this paper, a framework for probabilistic prognosis is 
proposed. The methodology advances the use of DBNs in 
prognosis by building upon previous work in system 
modeling under heterogeneous information (Bartram & 
Mahadevan, 2013). Further, the DBN-based methodology   
addresses the need for a general prognosis framework for 
developing validated prognosis methodologies for any 
system.  
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The DBN is constructed from prior information, including 
physics of failure models — a key function of a prognosis 
methodology. The DBN is a store of prior information, but 
also provides the means for integrating current 
measurements into a probabilistic estimate of the current 
state of a system. Particle-filter based inference is used for 
diagnosis, and forward sampling in the DBN is used for 
recursive prediction. The particle-based probabilistic state 
estimate of the system that results from particle filtering is 
ideal for diagnosis uncertainty quantification, and provides a 
seamless transition from diagnosis to future state prediction 
using sequential Monte Carlo sampling. The ability of the 
methodology to estimate RUL is validated using metrics 
from Saxena et al. (2010). In the second, online state 
estimation is desired, but measurements are not available or 
available periodically. The methodology is illustrated for a 
hydraulic actuator with a seal leak.  
 
The remainder of this paper is organized as follows. Section 
2 details the proposed prognosis methodology, including 
system modeling, diagnosis, prediction, and validation. In 
Section 3, the proposed methodology is demonstrated on a 
hydraulic actuator system with a progressive internal leak. 
Section 4 discusses conclusions and future work. 
 

2. PROPOSED PROGNOSIS FRAMEWORK 

The challenge of prognosis is to minimize the uncertainty in 
the estimated distribution of RUL given constraints on 
available information about the system, operating 
environment and loading conditions, computational 
resources, and time horizon. In this paper, a DBN-based 
prognosis framework is proposed. The prognosis framework 
first constructs a DBN-based system model using 
heterogeneous information sources. Expert opinion, 
reliability data, mathematical models, and operational and 
laboratory data are used in the construction of the DBN 
model. In particular, inclusion of physics of failure models 
is important in prognosis. The evolution of phenomena such 
as cracking, wear, and corrosion play a large role in 
determining the health of a system. The system model is 
used for diagnosis to obtain information about the current 
state of the system. A sequential Monte Carlo then predicts 
future system states and estimates the RUL distribution. 
Finally, the prognosis capability of the resulting system 
model, diagnostic, and predictive algorithms are validated 
using a four step hierarchical procedure. The prognosis 
procedure is shown in Fig. 1. 

2.1. Dynamic Bayesian Networks 

A dynamic Bayesian network is the temporal extension of a 
static BN. A static BN, also referred to as a belief network 
and directed acyclic graph (DAG), is a probabilistic  

 
Figure 1. Proposed Prognosis Methodology 

 
 graphical representation of a set of random variables and 
their conditional dependencies. Variables are represented by 
nodes (vertices) and conditional dependence is represented 
by directed edges. Unconnected nodes are conditionally 
independent of each other. The acyclic requirement means 
that no paths exist in the graph where, starting at node xi, it 
is possible to return to node xi. 
 
A DBN describes the joint distribution of a set of variables 
x on the interval [0, ∞). This is a complex distribution, but 
may be simplified by using the Markov assumption. The 
Markov assumption requires only the present state of the 
variables xt to estimate xt+1 , i.e. p(xt+1 | x0, …, xt) = p(xt+1 | 
xt) where p indicates a probability density function and bold 
letters indicate a vector quantity. Additionally, the process is 
assumed to be stationary, meaning that p(xt+1 | xt) is 
independent of t. This approach to modeling DBNs is 
developed by Friedman et al. (Friedman, Murphy, & 
Russell, 1998). 
 
A DBN may be composed of all discrete variables, all 
continuous variables, or hybrid set of discrete and 
continuous variables. A conditional probability distribution 
(CPD) is chosen for each variable, e.g. Gaussian, tabular 
(multinomial), softmax, deterministic, logic, etc. See Koller 
and Friedman (2009) for a detailed explanation of CPDs.  
For modeling systems with faults, it is advantageous to 
consider a hybrid system, typically with the continuous 
variables being modeled as continuous and the faults being 
discrete. Theory for networks with Gaussian continuous 
variables is developed in Heckerman and Geiger (1995) and 
Lauritzen (1992). 
 
DBNs provide a flexible modeling framework, allowing 
integration of expert opinion, reliability data, mathematical 
models  (including system state space, surrogate, and 
physics of failure models), existing databases of operational 
and laboratory data, and online measurement information. 
Bartram and Mahadevan (2013) have proposed a 
methodology for integration of such heterogeneous 
information into DBN system models. In the next section, 
that discussion is extended to consider physics of failure 
models, which are of particular importance in prognosis. 

DBN 
System 
Modeling 
• Physics of 

Failure 

Diagnosis  
• Particle 

Filtering 

Prediction 
• Sequential 

Monte Carlo Validation 
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2.2. Physics of Failure Models 

A key distinction between a system model capable of 
diagnosis and one capable of prognosis is that a prognostic 
model can estimate the evolution of damage in the future 
while a diagnosis model only needs the ability to infer the 
current state of damage. Diagnostic procedures based on 
fault signatures or pattern recognition are examples of this. 
While they may be able to detect and isolate damage, 
quantification can be done using least-squares based 
estimation, they do not necessarily have any ability to model 
progressive damage mechanisms such as crack growth, 
wear, and corrosion. One of the challenges of prognosis is 
developing accurate and comprehensive physics of failure 
models. These damage mechanisms are complex, varying 
with system design and dynamics, and can interact in many 
ways.  
 
For illustration, the example problem in this paper considers 
a dynamic seal in a hydraulic actuator. Seal failure is 
discussed in great detail in (Naval Surface Warfare Center, 
2011). A dynamic seal prevents leakage when there is 
relative motion between two surfaces. The seal under 
consideration prevents leakage between the two chambers of 
the actuator. Modeling the failure of a seal can become 
complicated very quickly, as a number of factors influence 
seal failure, including, material characteristics, amount of 
seal compression, surface irregularities, seal size, fluid 
pressure, pressure pulses, temperature, fluid viscosity, fluid 
contamination, fluid/material compatibility, allowable 
leakage levels, and assembly and quality control procedures. 
The failure symptoms include excessive leakage and slow 
mechanical response. Many mechanisms and causes of these 
symptoms are described in (Naval Surface Warfare Center, 
2011).  
 
In this paper, the wear mechanism is considered for a seal in 
a hydraulic actuator. Generally, seal leakage is due to wear 
caused by friction between the seal and piston, which 
removes seal material and allows fluid to pass between the 
chambers of the actuator. There are multiple wear 
mechanisms including adhesive wear, abrasive wear, 
surface fatigue, fretting wear, and erosive wear (Jones, 
1983). Lancaster (1969) explains many of the complexities 
of  abrasive wear while Briscoe and Sinha (2002) and 
Briscoe (1981) review wear of polymers. Due to the 
complexity of the mechanisms of wear, wear is typically 
modeled through the use of an experimentally determined 
wear rate.   
 
Nikas (2010) has written an extensive literature review on 
seal wear in actuators. The leakage area is the result of the 
removal of seal material — typically a 
polytetrafluoroethylene (PTFE) polymer — which is a 
function of load, distance traveled, material properties of the 
actuator and seal, geometry of the actuator, temperature, 

hydraulic fluid viscosity, and contaminants. Experimentally 
determined wear rates (mm3/m/N) are available for PTFE 
composites used in hydraulic actuators e.g. Sawyer et al. 
(2003) and Khedkar et al. (2002).  
 
The volume of material removed from the seal per cycle 
depends on the friction force and sliding distance per cycle 
and may be calculated by 
 

𝑉(𝑡) = 𝑤𝑠𝑒𝑎𝑙(𝑡)𝐹(𝑡)𝑑(𝑡)  (1) 

where 𝑤𝑠𝑒𝑎𝑙 is the wear rate of the seal in mm3/N/m, F 
is the frictional force on the seal, and d is the total 
sliding distance, and t refers to the load cycle. 
 
For the seal shown in Fig. 2, where L is the contact length of 
the seal and P is pressure, the leakage area (considered in 
Eqs. 16-29 as in (Thompson, Pruyn, & Shukla, 1999)) based 
on the volume of material removed is assumed to be 
𝑎𝑙𝑒𝑎𝑘 = 𝑉(𝑡) 𝐿⁄ . 
 
While wear is a continuous process, in this paper the 
occurrence of wear is modeled as a binary event, where 
modeling begins when the leakage area has reached a value 
that has detectable effects. The occurrence is modeled using 
an empirically derived seal failure rate, which modifies an 
experimentally determined base failure rate for the seal. 
Details of deriving the failure rate are available in (Naval 
Surface Warfare Center, 2011). 
 
The wear rate itself varies with factors such as the age of the 
seal, temperature, contaminants in the fluid. The load 
experienced by the seal also varies as does the velocity of 
the actuator. As a result the volume of material removed and 
leakage area are nonlinear functions. However, for the sake 

 
Figure 2. Hydraulic actuator diagram showing dynamic 
seals  
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of demonstration, it is assumed that the leakage area and 
volume of material removed vary linearly. This implies that 
the wear rate is steady, which is possible outside of the 
initial wear-in phase and under constant environmental 
conditions. Additionally, the load and velocity of the 
actuator are assumed to remain steady. 

2.3. Diagnosis 

Diagnosis is the process of detecting and isolating damage 
in a system and quantifying the magnitude of damage. 
When the probability of a fault occurring crosses the 
detection threshold, a fault isolation procedure finds fault set 
candidates to further analyze. To isolate candidate fault sets, 
statistical inference computes the probability of each fault 
set. The magnitude of the fault may then be estimated.  
 
In the context of prognosis, diagnosis (or more generally, 
filtering) provides the initial conditions for prognosis of a 
UUT. The initial condition for prognosis has a large impact 
on the accuracy and precision of the RUL distribution. As 
such, it is important to understand and account for diagnosis 
uncertainty. 
 
Uncertainty in diagnosis is due to natural variability, 
measurement error, model error, hypothesis testing error, 
error in inference, and any approximations in optimization 
or least squares procedures used for estimating fault 
magnitudes. Sankararaman and Mahadevan propose a 
methodology for quantifying the uncertainty in diagnosis. 
This is an integral part of the diagnosis procedure, and it is 
expanded in this paper to accommodate a particle filter (PF) 
based diagnosis procedure. 
 
Detection and isolation can be performed using a DBN 
model of the system to estimate the state of the system as 
measurements, zt, become available. The simplest procedure 
is to “unroll” the two time slice network and compute the 
states of all the unobserved variables in the system, xt

, 
including faults, using standard inference techniques such as 
the clique tree algorithm or Markov chain Monte Carlo 
(MCMC) (Koller & Friedman, 2009).  However, exact 
inference is generally a computationally intractable problem 
(Boyen & Koller, 1998). As a result, approximate inference 
based on Bayesian recursive filtering is pursued. 

2.3.1. Bayesian Recursive Filtering 

The procedure for updating the belief about the system state 
as new information becomes available is called Bayesian 
recursive filtering. Bayes’ theorem is the engine for 
performing the update. Diagnosis of a dynamic system may 
be achieved by maintaining the joint distribution over the 
system variables, parameters, and faults and as new noisy 
measurements become available via Bayesian recursive 
filtering. The joint distribution provides the best estimate of 
whether faults have occurred and what values system 

parameters and responses may have. This joint distribution 
is commonly called the belief state 𝜎𝑡 . 𝜎𝑡 = 𝑝(𝐱𝑡|𝐳1:𝑡) , 
where 𝑝(𝐱𝑡|𝐳1:𝑡)  is the distribution over the variables 𝐱𝑡 
estimate given all previous measurements 𝐳1:𝑡 .  The belief 
state estimate includes estimates of the states of faults and 
system parameters, whose states are otherwise unknown. 
Equation (2), derived from Bayes’ theorem (see Appendix 
1), is the engine for belief state updating. 
 

𝜎𝑡+1(𝐱𝑡+1) =
𝑝(𝐳𝑡+1|𝐱𝑡+1)𝑝(𝐱𝑡+1|𝐳1:𝑡)

𝑝(𝐳𝑡+1|𝐳1:𝑡)   (2) 

𝑝(𝐳𝑡+1|𝐱𝑡+1)  is the likelihood of the measurements, 
𝑝(𝐱𝑡+1|𝐳1:𝑡)  is the prior state estimate at time t, 
𝑝(𝐳𝑡+1|𝐳1:𝑡)  is a normalizing constant, and 𝜎𝑡+1(𝐱𝑡+1)  is 
the posterior state estimate at time t.  
 
Complete tutorials on Bayesian recursive filtering are 
available in Koller and Friedman (2009)  and Ristic and 
Arulampalam (2004).   

2.3.2. Particle Filtering 

Under certain assumptions, such as when the system is 
linear Gaussian, the belief state 𝜎𝑡+1(𝐱𝑡+1)  will be of a 
known parametric form and computationally efficient 
solutions to the filtering problem (e.g. Kalman filter, 
extended Kalman filter, unscented Kalman filter) are 
available. Outside such assumptions, a computationally 
feasible method for inference in the DBN is found in 
particle filtering, a form of sequential Monte Carlo based on 
Bayesian recursive filtering (see e.g. Chen (2003)).  
 
Particle filtering is a method for approximating the 
distribution of the belief state with a set of samples and 
weights. Common particle filtering method are based on 
sequential importance sampling (SIS), which improves upon 
the basic sequential MC by weighting point masses 
(particles) according to their importance sampling density, 
thus focusing on the samples that affect the posterior belief 
state the most. A comprehensive tutorial on particle filters is 
given by Ristic et al. (2004) and in Koller and Friedman 
(2009). 
 
A summary of the SIS algorithm for one time step is as 
follows. A previous (or initial if t = 1) set of Ns weights 𝑤𝑡𝑖  
and Ns corresponding particles 𝐱𝑡𝑖  are given initially or 
known from the previous time step, where i denotes the ith 
particle. These particles represent an approximation of the 
belief state by 
 𝜎𝑡+1(𝐱𝑡+1) = 𝑝(𝐱𝑡+1|𝐳1:𝑡+1) 

≈� 𝛿(𝐱 − 𝐱𝑖𝑡+1)𝑤𝑖𝑡+1
𝑁𝑠

𝑖=1
  (3) 

 Ns samples are drawn from the importance distribution, 
𝑞(𝐱𝑖𝑡+1|𝐱𝑖𝑡 , 𝐳𝑡+1), where 𝐳𝑡+1  are the measurements at the 
t+1th time step. In a DBN, sampling is performed in the 
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two-slice template after computing  𝐱𝑡  and zt+1. The values 
for the remaining 𝐱𝑡+1  are then sequentially sampled in 
topological order (parent then child).  
 
 A weight 𝑤𝑖𝑡+1 is then computed for each particle 𝐱𝑖𝑡+1 up 
to a normalizing constant based on the ratio of the belief 
state to the importance density, 
 

𝑤𝑖𝑡+1 ∝
𝜎(𝐱𝑖1:𝑡+1|𝐳1:𝑡+1)
𝑞(𝐱𝑖1:𝑡+1�𝐳1:𝑡+1)

  (4) 

using the weight update equation in Eq. (5), which is 
derived from the ratio of the pdf of the belief state to the pdf 
of the importance sampling density.  
 

𝑤𝑖𝑡+1 ∝
𝑝(𝐳𝑡+1|𝐱𝑖𝑡+1)𝑝(𝐱𝑖𝑡+1|𝐱𝑖𝑡)

𝑞(𝐱𝑖𝑡+1�𝐱𝑖𝑡 , 𝐳𝑡+1)
  (5) 

The weights 𝐰𝑡+1 are normalized so their sum is equal to 1. 
The normalized weights and points {𝐱𝑖𝑡+1}𝑖=1

𝑁2  form an 
approximation to the belief state estimate in  Eq. (3).  
 
The basic SIS algorithm suffers from the degeneracy 
phenomenon, wherein all but a few of the particles have 
negligible weight after only a few updates. This tends to 
waste computational effort on particles with practically zero 
probability. Two techniques to reduce this phenomenon are 
choosing an optimal importance density 𝑞(𝐱𝑖𝑡+1|𝐱𝑖𝑡 , 𝐳𝑡+1) 
and resampling. The optimal importance density may only 
be determined analytically when the system variables are 
discrete with a finite number of possible values or when the 
system variables are Gaussian. In other cases, suboptimal 
approximations based on local linearization (Doucet, 
Godsill, & Andrieu, 2000) or Gaussian approximations 
using the unscented transform (West & Harrison, 1997) may 
be used. Often, for convenience the importance density 
𝑞�𝐱𝑡+1�𝐱𝑖𝑡 , 𝐳𝑡+1�  is taken as the prior 𝑝(𝐱𝑖𝑡+1|𝐱𝑖𝑡)  or the 
likelihood 𝑝(𝐳𝑡+1|𝐱𝑖𝑡+1) . If the prior is used, 
𝑞�𝐱𝑡+1�𝐱𝑖𝑡 , 𝐳𝑡+1� = 𝑝�𝐱𝑡+1�𝐱𝑖𝑡� , and the weight update in 
Eq. (5) simplifies to 
 

𝑤𝑖𝑡+1 ∝ 𝑤𝑖𝑡𝑝(𝐳𝑡+1|𝐱𝑖𝑡+1)  (6) 

Resampling focuses the particle filter on the particles with 
the largest weights. An empirical CDF is constructed based 
on the weights wt.  Particles are sampled (with replacement), 
replicating the particles with the largest weights. The result 
is 𝑁𝑠  particles all with weight 1 𝑁𝑠⁄ . Resampling may be 
performed after every update or when a measure of 
degeneracy, the effective sample size, Neff , falls below a 
threshold. Neff  may be taken as (Ristic & Arulampalam, 
2004) 

 
𝑁𝑒𝑓𝑓 =

𝑁𝑠
∑ (𝑤𝑖𝑡+1)2𝑁𝑠
𝑖=1

  (7) 

Many variations of the SIS particle filter exist with different 
importance densities 𝑞�𝐱𝑡+1�𝐱𝑖𝑡 , 𝐳𝑡+1�  and resampling 
procedures (Ristic & Arulampalam, 2004). In this paper, an 
algorithm for systems with multiple operating modes 
(Andrieu, Davy, & Doucet, 2003) that extends the auxiliary 
particle filter (Pitt & Shephard, 1999) is used. 

2.4. Fault Diagnosis and Diagnosis Uncertainty 
Quantification 

When using a particle filter, the belief state itself provides 
the information necessary for fault detection, isolation, and 
damage quantification. The marginal distribution over 
combinations of the discrete fault indicator variables is a 
multinomial distribution, whose parameters are easily 
calculated from the particles representing the current belief 
state. Given m fault indicator variables that can take on 
values of true or false, there are 𝑛 = 2𝑚  combinations of 
faults, including the healthy condition.The 𝑖𝑡ℎ combination 
at the 𝑡𝑡ℎ  cycle has an expected probability 𝑝𝑖𝑡 =
∑𝑁𝑖𝑡𝑤𝑖𝑡 𝑁𝑠⁄ , where 𝑁𝑠  is the number of samples used in 
particle filtering, 𝑁𝑖𝑡 is the number of occurrences of the 𝑖𝑡ℎ 
fault combination, and 𝑤𝑡𝑖  are the normalized weights for 
those particles. 
 
The probability of any fault (detection probability) is then 
𝑝𝐹𝑡 = 1 − 𝑝0𝑡 , where 𝑝0𝑡  is the probability of the fault 
combination where no faults occur. When 𝑝0𝑡  is greater than 
some threshold, an alert may be issued to a decision maker 
and a prognosis procedure may be triggered. The remaining 
𝑝𝑖𝑡  (𝑖 ≠ 0)  are the isolation probabilities of each fault 
combination. From the belief state, 𝜎𝑡+1(𝐱𝑡+1) , the 
marginal distributions over damage parameters may be 
constructed from the particles and their weights.  
 
The probabilities pt that parameterize a multinomial 
distribution are themselves uncertain and follow a Dirichlet 
distribution. Based on the Dirichlet distribution, the 
variance of 𝑝𝑘𝑖  is  
 

𝑉𝑎𝑟�𝑝𝑡𝑖� =
𝑁𝑘𝑖�𝑁𝑠 − 𝑁𝑘𝑖�
𝑁𝑠2(𝑁𝑠 + 1)

  (8) 

The uncertainty in pt is directly dependent on the number of 
samples, 𝑁𝑠. With the detection and isolation probabilities 
and their corresponding uncertainties as well as estimates of 
the distributions of damage parameters known, a decision 
maker is better able to access the criticality of damage and 
the appropriate actions to make to balance safety and cost 
concerns. 
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2.4.1. Prediction 

In probabilistic prognosis, possible future states of the 
system are generated and the remaining useful life (RUL) 
distribution, 𝑟(𝑡), of the particular unit under test (UUT) is 
estimated. RUL is the amount of time a UUT is usable until 
corrective action is required and may be measured in hours, 
minutes, cycles, etc. Measurements are unavailable and the 
system model is assumed to be valid under future operating 
conditions. Prediction can be initiated at any time in the life 
of a system based on the last available state estimate. 
However, in this paper, the time of prognosis, tP, the first 
time point for which a prognosis estimate is obtained, is 
after the time of  fault detection, tD. Figure 3 illustrates these 
important prognosis time indices.  
 
One approach to prediction when performing particle 
filtering on a DBN is a basic sequential Monte Carlo. 
Starting with the last belief state estimate (with 
measurements available), particles are recursively sampled 
through the two time slice DBN until some termination 
criteria is met, such as 𝑃𝑟(𝑟(𝑡) = 0) is above some target 
threshold. Thus, there are 𝑁𝑠 trajectories of the variables of 
interest beginning at time t,  {𝚽(𝑡)}𝑖=1

𝑁𝑠 . Each trajectory 
consists of a series of predictions for the variables of 
interest,  𝚽(𝑡) = {𝝋(𝑡|𝑡),𝝋(𝑡 + 1|𝑡), …𝝋(𝐸𝑜𝑃|𝑡)} , where 
the end of prediction (EoP) is the time index of the last 
prediction before the end of life (EoL) is reached.  Particle 
weights are fixed from the last available measurement, as 
there is no basis for updating the weights (Eq. 5). This 
results in a particle-based approximation of RUL (similar to 
the belief state approximation), using the last available set 
of weights.  When a new measurement is obtained, a new 
RUL distribution is estimated.  
 
 
 

Figure 3. Prognosis time indices: r*(t) is the ground truth 
RUL, tEoUP is the end of useful prognosis, dashed line 
depicts mean r(t). 

 
 
To further tailor the prognosis to a particular UUT, the 
conditional probability distributions in the DBN may be 
updated as measurements become available. This may be 
performed via Bayesian updating of the distributions. If a 
conjugate prior is available, the update can be performed 
analytically. Otherwise, techniques such as Markov chain 
Monte Carlo (MCMC) may be required. 
 
The RUL distribution is sensitive to many aspects of the 
problem. The initial state estimate provided by the diagnosis 
algorithm must be accurate. As such, the filtering algorithm 
and number of particles are important algorithmic design 
decisions. These decisions also involve a tradeoff between 
accuracy and computational effort, which must be 
considered. Optimal sensor placement and improved sensor 
reliability also impact the accuracy of the diagnosis.  
 
The accuracy of predictive models, including those for 
inputs (loads) and physics of failure models, is another large 
source of uncertainty in the RUL estimate. Because the 
prediction is recursive with no measurements available to 
correct the prediction, errors in prediction compound 
quickly and must be minimized.  

2.4.2. Measurement Gaps 

Systems may experience periods of times where 
measurements are unavailable. This may be a result of the 
system configuration, availability of measurements, failure 
of sensing systems, or the desire to have system state 
estimates at a higher frequency than the available 
measurements. For example, offline inspection data may be 
available for an aircraft on the ground, while onboard 
sensing provides a steady stream of information about 
temperature, altitude, windspeed, pressure, etc. These 
onboard measurements may only be available for portions 
of a flight (perhaps during cruising but not takeoff or 
landing). 
 
Using the same recursive sampling used for RUL estimate, 
predictions may be produced and used to fill in the 
information gaps. When a measurement becomes available, 
the particle filtering algorithm is used to update the last 
predicted system state. The particle filter update may be 
performed as long as at least one measurement is available. 
The process is shown in Fig. 4. 

 
 

Figure 4. Handling measurement gaps 
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2.5. Prognosis Validation 

Prognosis validation is essential to establish confidence in 
the RUL estimate. Many sources of uncertainty, including 
modeling errors, sensor faults, data noise, and unpredictable 
loading conditions and operating environments, strongly 
affect prognosis. Therefore, validation of a prognosis 
procedure must be done using strong performance metrics. 
These metrics must be carefully chosen, as many issues 
arise when evaluating prognosis algorithms, such as time 
scales or the ability to improve accuracy as more 
measurements are obtained (Saxena et al., 2010). Saxena et 
al. (2010) propose a standard offline four metric hierarchical 
test to evaluate a prognosis algorithm. This hierarchical test 
assumes that prognosis improves as more measurements 
become available. Combined, these four metrics provide a 
means for testing and comparing prognostic algorithms.  
 
The first two metrics examine the accuracy of the RUL 
estimates by determining the probability p that the RUL 
estimate is between ±𝛼  of the ground truth RUL. This 
probability p is compared to a threshold value, β. It is 
desirable for p to be greater than β. The primary difference 
between the first two metrics is in how 𝛼  is determined, 
which results in a stricter test for the second metric than the 
first. 
 
In the first metric, prognostic horizon (PH) is considered. 
Prognostic horizon indicates the time at which RUL 
estimates using a particular prognostic algorithm for a 
particular system are within acceptable limits. The upper 
and lower limits are the ground truth RUL plus or minus a 
constant α, which is some percentage of the EoL value. PH 
is the difference between the true EoL time and the time 
when the prognostic algorithm attains this acceptable level 
of accuracy (𝑝 > 𝛽). As this is a validation metric, the true 
EoL is known. A longer PH is indicative of a better 
prognostic algorithm. Figure 5a provides a visual 
representation of prognostic horizon.  
 
Prognostic horizon maintains upper and lower bounds that 
are always the same distance from the true RUL. The 
second validation metric, 𝛼 − 𝜆 accuracy, utilizes a stricter 
criterion that gradually tightens the limits about the RUL 
estimate (Fig. 5b). Additionally, the accuracy of the RUL is 
considered at time 𝑡𝜆 , where 0 ≤ 𝜆 ≤ 1 , 𝑡𝜆 = 𝑡𝑃 +
𝜆(𝑡𝐸𝑜𝐿 − 𝑡𝑃) , and 𝑡𝑃 is the time at which a prognosis 
estimate is first obtained. This metric reflects the idea that, 
as more information is collected about the system, the RUL 
estimate is expected to improve, and thus the accuracy 
requirement for the RUL estimate should become more 
stringent. The 𝛼 − 𝜆 accuracy is equal to 1 when the  

a) 

 

b) 

 
Figure 5. a) Prognostic horizon with +/- α bounds about the 
ground truth RUL  
 b) +/- α bounds for evaluating α-λ accuracy 
 
increasingly stringent accuracy requirements are met, and 
zero otherwise.    
 
In step three, the relative accuracy (RA) of the prognostic 
algorithm is calculated. Instead of merely indicating that 
accuracy requirements have been met, the accuracy of the 
RUL estimates are quantified. At 𝑡𝜆 
 
 

𝑅𝐴𝜆 = 1 −
|𝑟∗(𝑡𝜆) − 𝑟(𝑡𝜆)|

𝑟∗(𝑡𝜆)
  (9) 

where 𝑟(𝑡𝜆) is a central tendency point such as the mean or 
median of the RUL estimate at 𝑡𝜆 and 𝑟∗(𝑡𝜆) is the ground 
truth RUL. The RA is computed separately for each time 
step at which RUL is estimated. RA is a value between 0 
and 1, and values closer to 1 indicate better accuracy. 
 
Finally, if the prognostic algorithm satisfies all the previous 
metrics, a final metric to compute is convergence. 
Convergence is a measure of how quickly a metric, such as 
RA, improves with time.   A high rate of convergence is 
desirable and leads to a larger PH. To estimate convergence 
of a prognosis algorithm based on some metric M, 
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𝐶𝑀 = [(𝑥𝑐 − 𝑡𝑃)2 + 𝑦𝑐2]1 2�   (10) 

where 
 

𝑥𝑐 =
1
2∑ (𝑡𝑖+12 − 𝑡𝑖2)𝑀(𝑡𝑖)𝐸𝑜𝑈𝑃

𝑖=𝑃

∑ (𝑡𝑖+1 − 𝑡𝑖)𝑀(𝑡𝑖)𝐸𝑜𝑈𝑃
𝑖=𝑃

  (11) 

and  
 

𝑦𝑐 =
1
2∑ (𝑡𝑖+12 − 𝑡𝑖2)𝑀(𝑡𝑖)2𝐸𝑜𝑈𝑃

𝑖=𝑃

∑ (𝑡𝑖+1 − 𝑡𝑖)𝑀(𝑡𝑖)𝐸𝑜𝑈𝑃
𝑖=𝑃

  (12) 

𝑀(ti) is the non-negative prediction accuracy, EoUP is the 
end of useful prediction, and P is the time at which the 
prognosis algorithm makes its first prediction. End of useful 
prediction is the time after which corrective action cannot be 
performed before EoL. A high rate of convergence is better 
and leads to a larger PH. 

2.6. Summary of Prognosis Framework 

This section presented a framework for probabilistic 
prognosis. DBNs are used as a system modeling paradigm 
due to their ability to handle uncertainty and to integrate 
many types of information, both in the offline model 
construction phase and the online belief state updating 
phase. For prognosis, it is of particular importance to model 
complex physics of failure phenomena and integrate such 
models into the DBN. After the DBN model is established, 
the model is used for tracking the state of a particular UUT. 
Particle filtering is used to update the belief state as new 
measurements are obtained. Uncertainty in the state estimate 
(diagnosis) is quantified, and when a fault is detected, 
estimation of RUL via recursive prediction begins. The 
result is an estimate of the distribution of RUL. Section 2.4 
considers the situation when there are gaps in the 
availability of measurements. 
 
When a prognosis procedure (DBN model of system 
combined with available measurements and filtering 
algorithm), is designed for a particular system, it is then 
validated using the 4 step hierarchical procedure outlined in 
Section 2.5. 

3. ILLUSTRATIVE EXAMPLE 

A hydraulic actuator system was considered to demonstrate 
the proposed methodology. Such a system is often used to 
manipulate the control surfaces of aircraft.  The system 
consists primarily of three subsystems: a hydraulic actuator, 
critical center spool valve, and an axial piston pump (Fig. 
6). The pump moves hydraulic fluid through the servovalve 
and into the actuator. The servovalve controls the flow of 
hydraulic fluid into the actuator, thus modulating the 
position of the actuator. Expert opinion, reliability data, 
mathematical models, operational data, and laboratory data 

were used to construct a DBN model of the spool valve and 
hydraulic subsystems. 
 
First, expert opinion is invoked to determine the scope of 
the problem, variables and faults to model, and establish the 
DBN structure. Next, reliability data is drawn upon to 
determine the conditional probabilities for the faults. The 
mathematical model of the system is used to generate 
predictions of the system variables. The predictions are 
treated similar to operational and laboratory data and used to 
train a regression model for estimating the reduction in seal 
orifice area, which is equivalent to the seal leakage area. 
Considering the actuator cross section in Fig. 7, the surface 
area of the seal is (𝑟22 − 𝑟12) , where r1 and r2 are the inner 
and outer radii of the seal, respectively. 

3.1. DBN Model Construction 

3.1.1. Expert Opinion 

Expert opinion was considered first to define the basic 
parameters of the problem. A DBN representation of the 
system was chosen because heterogeneous information 
  
 

 
Figure 6. Hydraulic actuator system 

 
 

 
Figure 7. Actuator cross section 
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sources were available, the intended use of the model is 
diagnosis and prognosis, and the system is dynamic. Seven 
state variables and six discrete faults were selected to model 
the behavior of the system. 
 
A generic initial structure for the DBN is first selected (Fig. 
8) based on expert opinion. This generic two time slice 
structure consists of the set of faults, F, model parameters, 
θ, system state, y, and measurements, z. In this structure, 
faults cause changes in system parameters, which then cause 
changes in system responses, which are observed. F 
contains the persistent variables in the DBN – their future 
values depend upon their present values. The observations, 
z, while not connected across time slices, are nonetheless 
not  independent across time slices, but correlated via  θ.  
 
 

 
 

Figure 8. Generic DBN structure. 
 

Table 1. List of faults and affected parameters. 
 

Fault Parameter Affected 

Seal Leak Leakage Area 

Water Leak into System Hydraulic Fluid Bulk 
Modulus 

Air Leak Into System Hydraulic Fluid Bulk 
Modulus 

Pressure Valve 
Malfunction Supply Pressure 

Pump Pressure Sensor 
Fault Supply Pressure 

Electrical Fault Control Signal 

 
Table 1 lists the faults considered in the actuator system and 
the parameter affected by that fault (the faults are described 
further in Section 3.1). For each fault, a binary variable is 

added to the network at time t and t + 1. Similarly, a 
Gaussian variable is added at time t and t + 1 for each 
affected parameter. Links are drawn pointing from faults to 
affected parameters. The parameters are assumed to have 
Gaussian distributions, whose mean and variance depend on 
the health state of the system. The leakage area parameter is 
a special case, as it is zero when no leakage exists. Upon 
instantiation of a leak, its value is assumed to follow a 
Gaussian distribution. Thereafter, the leak is assumed to 
grow according to a polynomial regression model (Section 
3.1, Mathematical Models), which is constructed using 
laboratory data.  

 
Parameters from the current time step and initial conditions 
from the previous time step are input into a physics-based 
model of the actuator, which estimates the system 
responses, assumed to be Gaussian variables. Measurements 
are then connected to the corresponding system response. 
Links are also drawn between like faults at time t and t + 1 
and like parameters at time t and t + 1. Finally, a Gaussian 
variable is added at time t and t + 1 for each measurement 
available. The resultant DBN is shown in Fig. 9 with 
parameters described in Table 2.  

3.1.2. Published Reliability Data  

The DBN model of the system should be able to simulate 
multiple faults and extrapolate system behavior multiple 
steps into the future for the model to be a useful diagnosis 
and prognosis tool. The overall failure rate for an actuator 
may be determined by estimating the base failure rate and 
making empirical corrections for temperature and fluid 
contamination (Naval Surface Warfare Center, 2011). The  
 

 
Figure 9. DBN structure as a result of expert opinion 
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Table 2. DBN variables. 
 

State 
Variable Symbol Unit Type Note 

Actuator 
position xact m continuous measured 

Actuator 
velocity vact m/s continuous measured 

Pressure in 
chamber 1 P1 Pa continuous measured 

Pressure in 
chamber 2 P2 Pa continuous measured 

Valve 
position xvalve m continuous measured 

Valve 
velocity vvalve m/s continuous measured 

Control 
signal u V continuous input 

Water leak W - binary inferred 

Air leak A - binary  
inferred 

Pump 
sensor 
fault 

P - binary inferred 

Valve fault V - binary inferred 
Seal leak S - binary inferred 
Fluid bulk 
modulus β MPa continuous inferred 

Supply 
pressure ps MPa continuous inferred 

Leakage 
area aleak mm2 continuous inferred 

 
RIAC Databook (2006) and the Handbook of Reliability 
Prediction Procedures for Mechanical Equipment (Naval 
Surface Warfare Center, 2011) give failure rates for many 
mechanical systems. For illustration of the methodology, a 
handful of the possible faults for the actuator system are 
considered in this paper. Table 3 lists the faults that have 
been considered, the subsystem where they are located, and 
the information source for that fault. 
 
The failure rates were then used to calculate the probability 
of each fault occurring. These probabilities correspond to 
parameters of the discrete fault indicator variables in the 
DBN. See Bartram and Mahadevan (Bartram & Mahadevan, 
2013) for details. 

3.1.3. Mathematical Behavior Models 

Several mathematical models are used in this example. A 
physics-based model of a hydraulic actuator, described by 
Kulakowski et al. (2007) and Thompson et al. (1999) (see 
Appendix), is integrated into the DBN as a deterministic 
conditional probability distribution  

 

Table 3. Faults Considered 
 

Fault Subsystem Information 
Source 

Seal Leak Actuator 

RIAC Databook 
(RIAC Automated 
Databook, 2006), 
Literature 
(Sepeheri, 
Karpenko, An, & 
Karam, 2005) 

Water Leak into 
System Piping/Fittings 

RIAC Databook 
(RIAC Automated 
Databook, 2006), 
Literature 
(Sepeheri et al., 
2005) 

Air Leak Into 
System Piping/Fittings 

RIAC Databook 
(RIAC Automated 
Databook, 2006), 
Literature 
(Sepeheri et al., 
2005) 

Pressure Valve 
Malfunction Pressure Valve 

RIAC Databook 
(RIAC Automated 
Databook, 2006), 
Literature 
(Sepeheri et al., 
2005) 

Pressure Sensor Piston Pump 

Mathematical 
Model (Zeiger & 
Akers, 1986), 
Literature 
(Zeliang, 2005) 

Electrical Fault Electrical 
RIAC Databook 
(RIAC Automated 
Databook, 2006) 

 
(Koller & Friedman, 2009). This model has been 
implemented in the Matlab Simulink environment. 
 
For demonstration of the prognosis methodology, the load is 
synthesized using an ARIMA (autoregressive integrated 
moving average) model, which is treated as a deterministic 
conditional probability distribution in the DBN. In reality 
the load on a flight control actuator is depends on many 
variables related to the dynamics of the aircraft and the 
desired flight path (for e.g. see Mahulkar et al. (2010), 
Karpenko and Sepeheri (2003), and McCormick (1995)).  
 
Finally, the physics of failure model for the seal leak is 
considered. The seal leakage area is modeled as in Section 
2.2. The leakage area is modeled from laboratory data using 
a polynomial regression of the form 𝑎𝑙𝑒𝑎𝑘𝑡 = 𝑐1 +
𝑐2(𝑎𝑙𝑒𝑎𝑘𝑡+1 )2. 
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3.1.4. Operational and Laboratory Data 

Operational and laboratory data appear as historical 
databases and online measurement data. Laboratory data are 
used to train the polynomial regression model to estimate 
wear rate. Online measurement data (of the load P) are used 
to estimate the parameters of the ARIMA model used in 
load estimation.   

3.2. Diagnosis 

The actuator was operated for 20 seconds with a leak 
occurring after 6 seconds. At this point, the system has 
already reached the steady state. Measurements were 
obtained and updating performed at 0.5 second intervals. 
The system responses and load were assumed to be 
measurable while the system parameters including wear rate 
and leakage area were assumed to be unobservable.  
Inference via particle filtering (Ns = 250) was performed on 
the DBN to obtain filtered estimates of the system state.  
 
After obtaining the state estimate at cycle t, the probability 
of detection was calculated as in Section 2.2. If the 
probability of detection exceeded 95%, an alarm was 
triggered. The fault was then isolated and quantified. Figure 
(10) shows maximum a posteriori (MAP) estimates of the 
system responses against their measured values. It is seen 
that the MAP system responses track the measured values 
closely. Figure 11 shows the MAP estimates of the system 
parameters, including the leakage area, and load against the 
ground truth values. This figure shows how the leakage area 
changes with time and how well the filtering procedure can 
infer the value of the leakage area. The system responses in 
Figure 11 are sensitive to changes in the supply pressure and 
leakage area, but insensitive to changes in the fluid bulk 
modulus. Changes in bulk modulus, however, may result in 
effects such as changes in wear rate that have not been  
 

 
 
Figure 10. MAP estimates and measured values of actuator 
position and velocity, servovalve position and velocity, and 
pressure in each actuator chamber. 
 

 
Figure 11. MAP estimate system parameters and load with 
ground truth and measured values. 
 
included in the ground truth model.  In both Fig. 10 and Fig. 
11, the good estimates may be attributed to the use of an 
accurate physics-based model, but also to the use of 
synthetic measurement data, which may favorably bias the 
performance of filtering. 
 

3.3. Diagnosis Uncertainty 

Diagnosis uncertainty was quantified after performing the 
diagnostic tasks of detection, isolation, and quantification. 
Figure 12 shows a kernel density estimate of the seal leak 
area from the particles at t = 6.5 seconds. Figure 13 shows 
the detection probability as it evolves with time. The 
detection probability passes the detection threshold soon 
after the fault occurs.  

 

 
Figure 12. Kernel density estimate of leakage area estimate 
from particle filtering 
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Figure 13. Fault detection probability with actual fault time 
 
 
 

 
Figure 14. RUL density estimate at t = 15 sec 
 

3.4. Prediction 

After diagnosing the leak, estimation of the RUL 
distribution was performed at the time of prognosis, tP, as 
per Section 2.3. The RUL distribution assumes a failure 
threshold for leakage area of 2E-6 m2. The resulting RUL 
distribution is shown in Fig. 14.  
 

3.5. Prognosis Validation 

By continuing to estimate the new RUL distribution as new 
measurements become available, the performance of the 
prognostic algorithm may be evaluated. In Fig. 15, median 
RUL estimates are plotted against the ground truth RUL 
with +/- α bounds. The +/- α bounds are selected to be +/-
10% of the ground truth EoL about the current ground truth 
RUL. Figure 16 indicates whether the probability of the 
RUL estimate being between the +/- α bounds at a particular  

 

 
Figure 15. Ground truth RUL, median RUL, and α bounds 
with α = 0.10 
 

 
Figure 16. Probability that RUL is within α bounds with α = 
0.10 
 
time is greater than a threshold value, taken as 0.8. From 
this information, it is also determined that the prognostic 
horizon is 10 seconds (or 20 time steps with a sampling 
frequency of 2 samples/sec) because the first time that 
0.8 ≤ 𝜋�𝑟�𝑡𝑗��−𝛼

+𝛼
 is at t = 7,  the EoL is t = 17. This is 10 

seconds before the EoL. 
 
+/- α bounds that narrow as the EoL approaches are 
considered in Fig. 17 for λ = 0.5 and α = 0.20. λ = 0.5 
considers the accuracy of the RUL estimate halfway 
between the time of prognosis and end of life, termed tλ. 
Figure 18 shows the λ-α accuracy, which is a binary value 
that indicates whether the probability of the RUL estimate 
being between the +/- α bounds at a particular time is 
greater than a threshold value, taken as 0.8 here. Although 
the median RUL estimate appears close to the ground truth  
 

Annual Conference of the Prognostics and Health Management Society 2013

179



Annual Conference of the Prognostics and Health Management Society 2013 

14 

 
Figure 17. Bounds used for calculating λ-α accuracy with α 
= 0.20 

 
Figure 18. Probability RUL is within α bounds with α = 
0.10 
 
RUL, the λ-α accuracy is generally zero, indicating that the 
RUL estimate is too diffuse to pass this test. This indicates 
that model error in the physics of failure model is the 
dominant source of error as opposed to other errors that may 
decrease as the EoL is approached, such as errors in load 
estimation. 
 
Based on the relative accuracy, the convergence is estimated 
to be 8.40. When comparing prognostic algorithms, larger 
convergence values are desirable. 
 
Figure 19 shows the relative accuracy of the RUL density 
estimate based on the median RUL value, and shows that 
the median values are accurate.  

3.6. Discussion 

The DBN-based methodology successfully integrates 
heterogeneous sources of information to diagnose the 
system and estimate RUL. Particle-filter based inference  

 

 
Figure 19. Relative accuracy based on median RUL estimate 
 
provides a seamless method for switching between 
probabilistic diagnosis and prediction while facilitating 
uncertainty quantification. 
 
The prognosis validation results indicate that the 
methodology provides reasonable median estimates of RUL, 
even as the RUL density estimates are diffuse. Additional 
measurements primarily affect the median RUL estimate, 
not the variance of RUL, primarily due to the simplifying 
assumptions that remove feedback from the actuator 
dynamic model into the leakage area model. Inclusion of 
inspection data may reduce the uncertainty in the leak area 
estimate and thus the RUL estimate. The accuracy of 
prognosis, of course, will vary depending on the system, 
available information, loading conditions, and 
environmental conditions. 
 
Computational effort is a persistent issue in particle-based 
methodologies, affected by the complexity of the system, 
models involved, simplifying assumptions, filtering 
algorithms, etc. The prognosis methodology described in 
this paper is flexible with respect to these decisions, so 
computational effort will vary. 
 
Thus far, the methodology has only been demonstrated 
using synthetic data, and needs to be tested further using 
real-world data. Further, more complex physics of failure 
models should be considered. 

4. CONCLUSION 

A methodology for DBN-based probabilistic prognosis is 
presented in this paper, considering heterogeneous 
information sources and diagnosis uncertainty. First, expert 
opinion is used to establish the system definition and basic 
assumptions. Reliability data is used to calculate conditional 
probabilities for fault indicator variables for damage at the 
support and a crack. Operational and laboratory data are 
organized in a database and used for estimating a 
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polynomial regression model.  This system model is used in 
online diagnosis via particle filter-based inference. The 
particles resulting from filtering integrate seamlessly into a 
sequential Monte Carlo predictive procedure, used for 
estimating RUL distribution. The prognosis results are 
validated using a four step hierarchical procedure. In the 
future, the methodology needs to be extended to systems of 
larger dimension, thus requiring feature selection, 
dimensional reduction, and more efficient inference.  
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APPENDIX 1: BAYESIAN RECURSIVE FILTERING 

Given the belief state 𝜎𝑡(𝐱𝑡) , before obtaining 𝐳𝑡+1 , the 
belief state at t + 1 is  

 𝜎𝑡+1(𝐱𝑡+1) = 𝑝(𝐱𝑡+1|𝐳1:𝑡)  (13) 

which may be expanded by summing over the states of 𝐱𝑡 as 
 

𝜎𝑡+1(𝐱𝑡+1) = �𝑝(𝐱𝑡+1|𝐱𝑡 , 𝐳1:𝑡)𝑝(𝐱𝑡|𝐳1:𝑡)
𝐱𝑡

  (14) 

Using the Markov assumption, which says that the future 
𝐱𝑡+1 is independent of all else given the previous state 𝐱𝑡, 
the term  𝐳1:𝑡  may be eliminated from 𝑝(𝐱𝑡+1|𝐱𝑡 , 𝐳1:𝑡) , 
resulting in 
 

𝜎𝑡+1(𝐱𝑡+1) = �𝑝(𝐱𝑡+1|𝐱𝑡)𝑝(𝐱𝑡|𝐳1:𝑡)
𝐱𝑡

  (15) 

where 𝑝(𝐱𝑡|𝐳1:𝑡) = 𝜎𝑡(𝐱𝑡) . Upon receiving the 
measurement at time t+1, Bayes’ rule may be used to update 
the belief state, and Eq. 3 becomes 
 

𝜎𝑡+1(𝐱𝑡+1) = 𝑝(𝐱𝑡+1|𝐳1:𝑡 , 𝐳𝑡+1)  (16) 

 By Bayes’ rule expansion of the right hand side of Eq. 4, 
 

𝜎𝑡+1(𝐱𝑡+1) =
𝑝(𝐳𝑡+1|𝐱𝑡+1, 𝐳1:𝑡)𝑝(𝐱𝑡+1|𝐳1:𝑡)

𝑝(𝐳𝑡+1|𝐳1:𝑡)   (17) 

Because the measurements 𝐳𝑡+1  and 𝐳1:𝑡  are conditionally 
independent given 𝐱𝑡+1  (Section 2.2 Fig. 2a), 
𝑝(𝐳𝑡+1|𝐱𝑡+1, 𝐳1:𝑡) = 𝑝(𝐳𝑡+1|𝐱𝑡+1), resulting in 

 
𝜎𝑡+1(𝐱𝑡+1) =

𝑝(𝐳𝑡+1|𝐱𝑡+1)𝑝(𝐱𝑡+1|𝐳1:𝑡)
𝑝(𝐳𝑡+1|𝐳1:𝑡)   (18) 

where 𝑝(𝐱𝑡+1|𝐳1:𝑡) is equivalent to Eq. 15. 

APPENDIX 2: HYDRAULIC ACTUATOR MODEL 

Parameters and variables for the system are given in Table 
1A.  
�̇�𝑎𝑐𝑡 = 𝑣𝑎𝑐𝑡  (19) 
�̇�𝑎𝑐𝑡
=

1
𝑚 �(𝑃1 − 𝑃2)𝐴𝑝𝑖𝑠𝑡 − 𝑏𝑎𝑐𝑡𝑣𝑎𝑐𝑡 − 𝑘𝑎𝑐𝑡𝑥𝑎𝑐𝑡 − 𝐹𝑒𝑥𝑡� 

(20) 

�̇�1 =
1
𝐶𝑓1

�𝑄1 − 𝐴𝑝𝑖𝑠𝑡𝑄2 + 𝑄𝑙𝑒𝑎𝑘� (21) 

�̇�2 =
1
𝐶𝑓2

(𝑉2𝑥𝑎𝑐𝑡 − 𝑄2 − 𝑄𝑙𝑒𝑎𝑘)  (22) 

�̇�𝑣𝑎𝑙𝑣𝑒 = 𝑣𝑣𝑎𝑙𝑣𝑒 (23) 
�̇�𝑣𝑎𝑙𝑣𝑒 = 𝑎1𝑣𝑣𝑎𝑙𝑣𝑒 + 𝑎0𝑥𝑣𝑎𝑙𝑣𝑒 + 𝑏0𝑒𝑐𝑜𝑚𝑚𝑎𝑛𝑑  (24) 

𝐶𝑓1 =
𝑉1(𝑥𝑎𝑐𝑡)

𝛽  (25) 

𝐶𝑓2 =
𝑉2(𝑥𝑎𝑐𝑡)

𝛽   (26) 

If  𝑥𝑣𝑎𝑙𝑣𝑒 > 0,

⎩
⎨

⎧𝑄1 = 𝐶𝑑𝑤𝑣𝑎𝑙𝑣𝑒𝑥𝑣𝑎𝑙𝑣𝑒𝑠𝑖𝑔𝑛(𝑃𝑠 − 𝑃1)�2
𝜌

|𝑃𝑠 − 𝑃1|

𝑄2 = 𝐶𝑑𝑤𝑣𝑎𝑙𝑣𝑒𝑥𝑣𝑎𝑙𝑣𝑒�
2
𝜌

(𝑃2)
 

(27) 
 

(28) 

If 𝑥𝑣𝑎𝑙𝑣𝑒 < 0,

⎩
⎨

⎧ 𝑄1 = 𝐶𝑑𝑤𝑣𝑎𝑙𝑣𝑒𝑥𝑣𝑎𝑙𝑣𝑒�
2
𝜌

(𝑃1)

𝑄2 = 𝐶𝑑𝑤𝑣𝑎𝑙𝑣𝑒𝑥𝑣𝑎𝑙𝑣𝑒𝑠𝑖𝑔𝑛(𝑃𝑠 − 𝑃2)�2
𝜌

|𝑃𝑠 − 𝑃2|
 

(29) 
 

(30) 

𝑄𝑙𝑒𝑎𝑘 = 𝐶𝑑𝑎𝑙𝑒𝑎𝑘�
2
𝜌

|𝑃2 − 𝑃1|𝑠𝑖𝑔𝑛(𝑃2 − 𝑃1) (31) 
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Table 1A. Model parameters and variables for a spool valve 
and a hydraulic actuator. 

Parameter/variable Symbol Nominal 
Value/ Unit 

Actuator position 𝑥𝑎𝑐𝑡  m 
Actuator velocity 𝑣𝑎𝑐𝑡  m/s 
Servovalve position 𝑥𝑣𝑎𝑙𝑣𝑒 m 
Servovalve velocity 𝑣𝑣𝑎𝑙𝑣𝑒  m/s 
Pressure in chamber 1 𝑃1 Pa 
Pressure in chamber 2 𝑃2 Pa 
Combined mass of 
actuator and load mact 40 kg 

Combined damping of 
actuator and load bact 800 Ns/m 

Combined stiffness of 
actuator and load kact 106 N/m 

Piston annulus area Apist 0.0075 m2 
Valve port width wvalve 0.0025 m 
Spool valve model 
coefficients 
 
 

b0 90 m/Vs2 
a0 360,000 1/s2 

a1 1/s 

Hydraulic fluid bulk 
modulus 𝛽 1000 MPa 

Hydraulic fluid density 𝜌 847 kg/m3 
Discharge coefficient 𝐶𝑑 0.7 
Supply pressure 𝑃𝑠𝑢𝑝𝑝𝑙𝑦  20 MPa 
Chamber 1 volume  V1 m3 
Chamber 2 volume  V2 m3 
Chamber 1 fluid 
capacitance Cf1 m3/(kg/s) 

Chamber 2 fluid 
capacitance Cf2 m3s/(kg/s) 

Volumetric flow rate into 
chamber 1 Q1 m3/s 

Volumetric flow rate out 
of chamber 2 Q2 m3/s 

Externally applied force Fext 0 N 
Input voltage ecommand Sin(2*pi*t) V 
Leakage volumetric flow 
rate Qleak 0 m3/s 

Leakage area aleak 0 m2 
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ABSTRACT

Autonomous precision airdrop systems are widely used to de-
liver supplies to remote locations. Payloads that are delivered
far from their intended targets or with high impact velocity
may be rendered unusable. Faults occurring during flight can
severely degrade vehicle performance, effectively nullifying
the value of the guided system, or worse. Quickly detecting
and identifying faults enables the choice of an appropriate re-
covery strategy, potentially mitigating the consequences of an
out-of-control vehicle and recovering performance. This pa-
per presents a multi-observer, multi-residual fault detection
and isolation (FDI) method for an autonomous parafoil sys-
tem. The detection and isolation processes use residual sig-
nals generated from observers and other system models. Sta-
tistical methods are applied to evaluate these residuals and
determine whether a fault has occurred, given a priori knowl-
edge of system uncertainty characteristics. Several examples
are used to illustrate the detection and isolation algorithm on-
line using available navigation and telemetry outputs. Tests
of this FDI method on a large number of high-fidelity simu-
lations indicate that it is possible to detect and isolate some
common faults with a high percentage of success and a very
small chance of raising a false alarm.

1. INTRODUCTION

Autonomous precision airdrop is used to deliver payloads to
areas that would be dangerous or difficult to reach through
more conventional means. Missions for guided parafoils
include military resupply of troops and humanitarian ef-
forts (Hattis & Tavan, 2007). As described in Hattis, Camp-
bell, Carter, McConley, and Tavan (2006), the goal of the sys-
tem is to land the payload as close as possible to the target

Matthew Stoeckle et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

while minimizing ground speed at impact. Flight testing has
shown that a variety of faults can occur (Tavan, 2006). These
faults increase target miss distances and landing speeds, po-
tentially rendering payloads unusable. In addition, the possi-
bility of an in-flight fault and resulting behavior could pre-
clude delivering supplies to more densely populated areas
where an out-of-control vehicle could pose a danger to per-
sons or property. Detecting, isolating, and responding to
faults can improve performance and expand the space of mis-
sions available for guided parafoils. This work designs and
implements a Fault Detection and Isolation (FDI) strategy
that is effective in the unique conditions under which the
parafoil operates.

Online systems for FDI fall into two categories: those that
exploit hardware redundancy and those that rely on analyti-
cal redundancy (Hwang, Kim, Kim, & Seah, 2010). Systems
with a large number of sensors, actuators, and measurements
employ hardware redundancy for FDI or system health man-
agement (Figueroa et al., 2009) (Figueroa, Schmalzel, Mor-
ris, Turowski, & Franzl, 2010). The parafoil has a minimal
number of sensors, and so analytical redundancy methods are
used.

Isermann and Ballé (1997) define FDI terminology. A fault
is defined as an unpermitted deviation of at least one charac-
teristic property or parameter of the system from the accept-
able/usual/standard condition. Fault detection is the determi-
nation of the faults present in a system and the time of detec-
tion. Fault isolation is the determination of the kind, location,
and time of detection of a fault. The process of isolation fol-
lows that of detection.

For FDI to be effective, 1) the effects of faults must be dis-
tinguishable from the effects of unknown inputs including
modeling errors, disturbances, and measurement uncertainty,
and 2) faults must be distinguishable from each other (Frank,
1994). This is typically accomplished by considering a resid-
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ual signal (Hwang et al., 2010). The residual signal cho-
sen has approximately zero mean when no fault is present
and nonzero mean when a fault has occurred. In this con-
text, a residual signal is the difference between a measurable
system output and the corresponding expected output. After
the residual has been generated, it is evaluated. The goal of
the evaluation process is to determine whether a fault alarm
should be raised based on the properties of the residual signal.

A large group of FDI methods are classified as observer-
based. These methods use an observer of the nominal system
to generate the expected system output. This output is used
along with measurements from the actual system to generate
the residual signal. Though a simulation of the system with
no feedback can also be used to generate the residual signal,
an observer is chosen to make the residual generation process
robust to differences in initial conditions.

A common method of residual generation that uses observers
is called the fault detection filter (FDF). This method gener-
ates a residual signal that is projected onto subspaces asso-
ciated with various faults, so that detection and isolation are
both possible (Beard, 1971) (Jones, 1973). See Douglas and
Speyer (1995) for a robust implementation of the FDF. For
isolation, the FDF requires that each fault under considera-
tion acts on the system in a known, unique way. This is not
the case for the parafoil system; many faults act on the control
lines and are not distinguishable from each other.

The eigenstructure assignment approach is used to de-couple
effects of disturbances from those of faults by nulling the
transfer function from the disturbances to the residual sig-
nal (Patton & Chen, 2000). A weighting matrix that is used
to assign eigenvectors to the closed-loop observer of the sys-
tem accomplishes this task. In order to construct this weight-
ing matrix, however, there must be more independent out-
puts of the system than independent disturbances (Patton &
Chen, 2000). The parafoil system is a single-output system,
so eigenstructure assignment is not possible.

The FDI method presented in this paper is observer-based,
but takes a different approach than the FDF. Many exist-
ing observer-based methods incorporate isolation into the de-
tection process by exploiting the system property that each
fault under consideration is distinguishable from all other
faults (Frank, 1994). However, this is not the case for many
faults that occur on the parafoil system. As a result, the de-
tection and isolation processes are separate for this work.

For detection, a residual signal is generated using observer-
based methods. This residual is evaluated using hypothe-
sis testing. If the magnitude of the residual signal crosses
above a predetermined detection threshold, a fault is declared.
Sargent et al. (2011) use hypothesis testing with thresholds
for FDI on the Orbital Cygnus vehicle. Rossi (2012) uses
hypothesis testing for health management of spacecraft.

If a fault is declared, isolation is performed. In this paper,
isolation is broken into two phases. The first phase uses a
residual signal from actuator data. If evaluation of this signal
indicates that an actuator fault has occurred, isolation is com-
plete. However, if the first phase of isolation does not declare
an actuator fault, phase two begins.

Phase two of isolation uses a bank of fault-specific observers
to differentiate between non-actuator faults. The purpose of
these observers is to determine when the system exhibits char-
acteristics of a particular fault (Willsky, 1976). Evaluating
residual signals from these observers indicates if a specific
non-actuator fault is present. Successful isolation will result
in the declaration of a fault on one of the actuators or the dec-
laration of a particular non-actuator fault.

Section 2 gives an overview of how the parafoil and payload
system operates. Section 3 describes common faults that have
been observed in flight tests. Sections 4 and 5 describe the
detection and isolation methods, respectively. Section 6 com-
bines detection and isolation into the full FDI algorithm. Sec-
tion 7 concludes the paper.

2. PARAFOIL SYSTEM OVERVIEW

A typical system consists of a canopy, airborne guidance unit
(AGU), and payload (Figure 1). An example of a parafoil
system, as well as some performance characteristics, is given
in Bergeron, Fejzic, and Tavan (2011).

Figure 1. Parafoil canopy, AGU, and payload.

Lateral control of the parafoil is accomplished using two con-
trol lines that attach to the left and right trailing edges of the
canopy. These lines are wound around two motors on the
AGU (Figure 2). Details of guidance, navigation, and control
(GN&C) implementation on the parafoil system are described
by Carter, George, Hattis, Singh, and Tavan (2005).

The motors retract and extend the control lines, deflecting the
trailing edges of the canopy and inducing a nonzero turn rate.
The motors on the AGU are equipped with encoders that mea-
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Figure 2. Parafoil AGU and control lines.

sure the deflections of the control lines. The resulting perfor-
mance of the parafoil is estimated using this information. A
payload is attached underneath the AGU by several support
lines.

Different dynamical models of varying complexity have been
developed for the parafoil and payload system (Barrows,
2009) (Ward, Montalvo, & Costello, 2010). The observer that
will be used for FDI is based on a linearized model of the lat-
eral dynamics, derived from nonlinear dynamics in Crimi
(1990). Lateral dynamics were chosen because they accu-
rately reflect the heading rate response of the system while
allowing for a straightforward linear model. A similar lin-
earized model of lateral parafoil dynamics is used in Slegers
and Costello (2004) for model predictive control, and is appli-
cable to observer-based FDI as well. The model used in this
paper is described by the linear, time-invariant (LTI) system,

ẋ(t) = (A+ ∆A)x(t) + (B + ∆B)u(t) +Wd(t) (1)

y(t) = Cx(t) + η(t) (2)

where A,∆A ∈ R4x4, B,∆B ∈ R4x2, C ∈ R1x4, and
W ∈ R4. A, B, and C are known dynamics, control, and
output matrices, respectively. The matrix B can be written as[
b1 −b1

]
, where b1 ∈ R4 (i.e., both motors affect the sys-

tem equally, but in opposite directions). The matrix W deter-
mines how the process noise acts on the system states. The
matrices ∆A and ∆B represent unknown modeling errors.
The matrices A and B are determined from known system
parameters. The example parafoil used for simulation in this
work has the following parameters: canopy weight 70 lbs,
canopy area 900 ft2, canopy span 50 ft, canopy chord length
16 ft, and nominal payload weight 1800 lbs. These parame-
ters are among many used to determine the linearized lateral
dynamics.

The states of the LTI system in Eqs. (1) and (2) are x(t) =[
β(t) φ̇(t) φ(t) ψ̇(t)

]T
, where β(t) is the sideslip an-

gle, φ̇(t) is the roll rate, φ(t) is the roll angle, and ψ̇(t) is
the yaw rate. The control input is u(t) =

[
δR(t) δL(t)

]T
,

where δR(t) and δL(t) are the right and left motor deflec-
tions, or motor toggles, respectively. Under healthy condi-
tions, the deflection at each motor will match the correspond-
ing deflection of the control line. This will not be the case
when some faults occur. The effects of these faults on the
system dynamics are discussed in Section 3. The disturbance
term d(t) ∈ R is the process noise of the system. The chosen
output y(t) ∈ R is the heading rate of the system, which is
subject to uncertainty that is captured in the navigation error
term η(t) ∈ R. Heading rate in the context of the parafoil
is defined as the rate at which the airspeed velocity vector of
the parafoil rotates with respect to the inertial North axis (see
Figure 3).

The effects of the uncertainty and noise terms, ∆A, ∆B, d(t),
and η(t), on the FDI process cause the residual signals to be
nonzero even when no fault has occurred. However, the size
of the residual during a healthy flight is small compared to the
size of the signal when a fault has occurred. In other words,
faults are still observable even if the noise and uncertainty
terms are neglected. Therefore, neglecting these four terms
and formulating the FDI problem using an observer-based
approach as opposed to a Kalman filter-based approach was
chosen to minimize the computational complexity.

After ignoring these terms, the lateral system dynamics re-
duce to,

ẋ(t) = Ax(t) +Bu(t) (3)

y(t) = Cx(t) (4)

This simpler linearized lateral dynamics model will be used
for residual generation.

The parafoil system has no sensors for measuring heading
rate directly; instead, this quantity is estimated using an Ex-
tended Kalman Filter (EKF). The only state information that
the parafoil software has access to is position and transla-
tional velocity data from the onboard GPS. The GPS mea-
sures the ground speed as well as the sink rate of the parafoil.
An EKF is used to estimate the wind velocity, and from this
information the airspeed velocity and the heading rate are es-
timated, similarly to work done in Ward et al. (2010). The
system states used in Eqs. (1-4) are not available from the
EKF and are unknown.

Figure 3 shows some parafoil states and provides insight into
the estimation of heading rate. The GPS measures the ground
velocity Vg . The EKF estimates the wind velocity Vw. The
airspeed Va is estimated using vector addition, and from that
an estimate of the heading angle χ is obtained. The EKF uses
this information to generate an estimate of the heading rate χ̇.
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Figure 3. Parafoil states and reference frame.

3. COMMON FAULTS

Flight testing of the parafoil system has shown that some
faults occur frequently (Tavan, 2006). A hierarchy of com-
mon faults is shown in Figure 4. Four of the faults shown in
the hierarchy are considered for FDI. These faults are chosen
because they have effects that are both well-defined and well-
understood. The faults are: stuck motor, severe saturation,
broken control line, and criss-crossed control lines.

Figure 4. Fault hierarchy.

A stuck motor fault occurs when one of the motors on the
AGU fails to respond to commands. When this fault occurs,
the line attached to the faulty motor is stuck at an unknown
position while the other control line is free to move as com-
manded. If detection fails, motor commands will be given
that the motor will not be able to respond to.

Under nominal conditions, a known motor saturation limit
exists. This limit is the maximum line deflection possible
for each motor. A severe saturation fault occurs when the
maximum possible line deflection is significantly less than
expected; a saturation limit of 0.65 meters is considered sig-
nificant for this work. If this fault is not detected, it is possible

that a large command will be given but the corresponding de-
flection will not occur. At that point, the system will likely
continue to command a large deflection to achieve a desired
heading rate that it can never attain.

A broken line fault occurs when one of the control lines that
are attached to the motors on the AGU breaks. In this case,
the motor is still free to turn, but there is no corresponding
response in line deflection. This prevents the parafoil from
turning in the direction of the side on which the line is broken.
This fault often occurs upon canopy deployment.

It is possible, while rigging the lines to the AGU, that the
control line attached to the left trailing edge of the parafoil
is spooled around the right motor, and vice versa. In this
case, a command to the right motor will yield a deflection in
the left control line, and a command to the left motor will
yield a deflection in the right control line. This fault is called
criss-crossed lines. This is an example of a fault that has a
straightforward recovery strategy. No change to the existing
guidance strategy is necessary; the controller need only re-
verse the commands given to each motor to achieve the de-
sired performance. However, this recovery approach cannot
be implemented unless FDI successfully detects and isolates
the fault.

The non-actuator faults are added to the linearized lateral
model of the parafoil dynamics in Eq. (3) as follows,

ẋ(t) = Ax(t) + (B + ∆Bf )u(t) (5)

where ∆Bf ∈ R4x2 are changes to the dynamics that occur
when either a broken control line or criss-crossed lines fault
is present. When a broken left line occurs, ∆Bf =

[
0 b1

]
.

When a broken right line occurs, ∆Bf =
[
−b1 0

]
. When a

criss-crossed lines fault occurs, ∆Bf =
[
−2b1 2b1

]
. When

any of these non-actuator faults occur, the deflections of the
left and right control lines will not match the motor toggles in
u(t).

Actuator faults enter the system in a different way. The motor
toggles u(t) result from passing commanded toggles ucmd(t)
into the motors on the AGU. Therefore, actuator faults (i.e.
stuck motor and severe saturation) are not modeled in Eq. (5)
but instead manifest themselves in a value of u(t) that is dif-
ferent from what is expected. Actuator faults are identified by
comparing u(t) to unom(t), the nominal, or expected, motor
toggle. This term is introduced in Section 4.

4. DETECTION

Fault detection is the process of determining the faults
present in a system and the time at which those faults oc-
curred (Isermann & Ballé, 1997). A detection alarm is raised
for any fault; it is not necessary during detection to know
which particular fault has occurred. Detection is accom-
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plished by comparing a known system output with an ex-
pected system output. The difference between these two
quantities is a residual signal. This signal should be chosen
such that it is large when a fault is present and small other-
wise (Frank, 1994). If the residual signal is large, a fault is
declared. This paper uses an observer-based fault detection
method, where the expected system output is generated using
an observer. This observer is designed to model the parafoil
and payload system when no faults are present.

Detection is broken into two phases: residual generation and
residual evaluation (Hwang et al., 2010). Residual generation
is the process of constructing the residual signal. Residual
evaluation is the process of taking this signal and using it to
either validate or reject a null hypothesis. The null hypothesis
is that the system is healthy; a rejection of this hypothesis
indicates a fault. Residual evaluation is performed using a
threshold, which is designed so that if the residual signal rises
above this threshold there is a reasonable probability that a
fault is present (Frank, 1994),

If r(t) ≤ λth, null hypothesis confirmed (6)

If r(t) > λth, null hypothesis rejected; fault (7)

where r(t) ∈ R is a time-varying residual signal, and λth ∈
R is a mission-specific constant threshold value. The FDI
method in this work uses the parafoil heading rate output for
residual generation (see Section 2). The parafoil guidance
system commands the parafoil by specifying a desired head-
ing rate. If the parafoil is not tracking the heading rate as
expected, the system is likely in a faulty condition.

4.1. Residual Generation

To generate the heading rate residual signal, an observer
is constructed based on the linearized lateral dynamics de-
scribed in Eqs. (3) and (4). Figure 5 shows that a motor tog-
gle command ucmd is passed through both the AGU motor,
which is subject to actuator faults, and a model of a healthy
motor.

The output of the AGU motor is the actual motor toggle u; the
output of the motor model is the nominal motor toggle unom.
The difference between these two signals is small when no
actuator faults are present. The nominal input unom is used
as the input to the observer, which is constructed as follows,

˙̂x(t) = Ax̂(t) +Bunom(t) + L(y(t)− ŷ(t)) (8)

ŷ(t) = Cx̂(t) (9)

where x̂(t) ∈ R4 is an estimate of the system states x(t),
ŷ(t) ∈ R is the observer estimate of the heading rate, and
A, B, and C are the matrices from the parafoil dynamics in
Eqs. (3) and (4). The feedback gain L ∈ R4 is designed to

Figure 5. Heading rate observer block diagram.

make A− LC stable. Error terms are defined as,

e(t) = x̂(t)− x(t) (10)

ė(t) = ˙̂x(t)− ẋ(t) (11)

ε(t) = ŷ(t)− y(t) = Ce(t) (12)

and the residual signal used for fault detection is chosen as,

r(t) = ε2(t) (13)

Squaring ε(t) ensures that the residual signal is non-negative.
This aids the residual evaluation process.

Error dynamics of the observer/plant system can yield insight
into the behavior of the residual signal. Though the error e(t)
is not measurable, Eq. (12) shows that ε(t) is a function of
e(t). By substituting Eqs. (5) and (8) into Eq. (11), the error
dynamics are shown as,

ė(t) = (A−LC)e(t)+B(unom(t)−u(t))−∆Bfu(t) (14)

Equation (14) shows that there are several instances where
ė(t) can become nonzero. The first term, (A− LC)e(t), will
decay to zero exponentially for a stabilizing L. The gain L
can always be chosen to stabilize A − LC if (A,C) is ob-
servable (Van de Vegte, 1994). The second term in Eq. (14)
will be nonzero when unom(t) is not equal to u(t). There are
two expected sources of error between unom(t) and u(t). The
first is modeling errors between the motor model and the ac-
tual motor. The second is an actuator fault, where u(t) is not
behaving as expected. If the motor model accurately models
behavior of the actual motor, only an actuator fault will cause
a noticeable increase in the magnitude of that term, and thus
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a significant increase in ė(t). The third term will be nonzero
when a broken line or criss-crossed lines fault has occurred.

4.2. Residual Evaluation

A threshold for detection is the main tool used in this work for
residual evaluation. This threshold is chosen such that there
is a high probability of a fault when the residual is above the
threshold and a low probability of a fault when the residual
signal is below the threshold. Statistical methods are used for
threshold determination. To improve detection statistics, the
residual signal at each time step is smoothed over the previ-
ous 25 seconds of flight using a moving average. The time
period over which smoothing occurs can be varied according
to design needs. A longer period better emphasizes the trend
of the signal while filtering out noise, but will cause a lag
between the occurrence of a fault and the response of the sig-
nal. This parameter was tuned numerically to achieve desired
detection characteristics.

When designing a threshold, the goal is to minimize two
quantities: probability of missed detection P (MD) and prob-
ability of false alarm P (FA) (Rossi, Breger, Benson, Sar-
gent, & Fesq, 2012) (Sturza, 1988). The probability of missed
detection is the probability that a fault has occurred and no
fault alarm is raised; the probability of false alarm is the prob-
ability that an alarm is raised when no fault has occurred.
These quantities are predicted by collecting data from simu-
lations of healthy flights and flights in which a fault has oc-
curred. Cumulative density functions (CDFs) of data from
simulated healthy flights and flights in which a fault oc-
curs are useful in visualizing how a chosen threshold affects
P (FA) and P (MD).

In order to collect the data used in the CDFs, a high-
fidelity, nonlinear, 6 degree-of-freedom (DOF) simulation
was used, similar to the model described in Ward et al. (2010).
Each simulation is generated with different initial conditions.
These conditions include not only three-dimensional position,
orientation, and velocity, but environmental conditions such
as wind profile and system irregularities. System irregulari-
ties are variations from parafoil-to-parafoil, turn bias and lift-
to-drag ratio for example, that change the flight characteris-
tics. The linearized lateral dynamics used for the observer
initialize the state vector to zero, and do not account for wind
or differences between each individual parafoil system.

To generate CDFs that will accurately show P (FA) and
P (MD) for various thresholds, large data sets were collected
that reflect the range of conditions a parafoil system experi-
ences during a healthy flight as well as flights in which faults
of varying type and severity have occurred. For the healthy
data set, 1000 Monte Carlo simulations were performed that
varied the following characteristics: initial position, initial al-
titude, initial velocity, initial attitude, payload weight, wind
conditions, and turn bias (i.e., nonzero heading rate in the

presence of zero control). No fault occurred during any of
these simulations. The data of interest from each Monte Carlo
run is the maximum value that the smoothed residual signal
reaches during the simulation. This maximum bounds the
smoothed residual signal expected from healthy flights.

Data collection from the fault cases was treated differently
than data collection from healthy flight simulations. Again,
1000 Monte Carlo simulations were performed, but for these
simulations random faults were inserted. The nature of each
fault was chosen with uniform probability from the four fault
cases discussed in Section 3. The time of the fault was cho-
sen with uniform probability to be an integer value between
0 and 500 seconds. This choice ensured sufficient time for
detection, because most simulated flights last longer than 600
seconds. The severity of the fault, if applicable, was random-
ized. For example, the broken line fault severity need only
be randomized as a left or right line break, but a stuck motor
fault occurs on either the left or right motor and has a par-
ticular value (e.g., 0.5 meters) at which the motor is stuck.
Multiple faults were not considered.

The relevant data collected from these flights is the maximum
value reached by the smoothed residual signal during the first
60 seconds after the fault occurs. In flight, there is a window
of time after a fault occurs at which point recovery from the
fault is either impossible or impractical. Thus, the detection
method is only given a predetermined amount of time to raise
an alarm. This time period is a design parameter that should
be set based on mission requirements and recovery techniques
in use. Using the collected data, CDFs were generated (Fig-
ure 6) and the performance of various thresholds were ana-
lyzed. The green circles shown on Figure 6 mark P (FA)
and P (MD) on the CDF. P (MD) is the intersection of the
threshold line with the fault data curve. The intersection of
the threshold line with the healthy curve is 1− P (FA).

Figure 6. CDFs for heading rate residual.
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The selection of an appropriate threshold given the data
in Figure 6 depends on the emphasis placed on minimiz-
ing P (FA) versus P (MD). The following figure of merit
(FOM) is used to penalize P (FA) and P (MD) as de-
sired (Rossi, Benson, Sargent, & Breger, 2012):

FOM = 1− c1P (FA) + c2P (MD)

c1 + c2
(15)

The weightings c1 and c2 can be varied according to design
needs, where a higher weighting on eitherP (FA) orP (MD)
indicates that it is more important to minimize that particu-
lar probability. Then, a threshold is determined that maxi-
mizes the chosen FOM. Table 1 shows thresholds, P (FA),
and P (MD) for different weightings. The threshold shown
on Figure 6, 0.0574 (rad/s)2, as a vertical dotted line was cho-
sen by placing an equal weighting on P (FA) and P (MD).

Table 1. Optimized thresholds for various FOMs.

c1 c2 Threshold ( rad
sec )

2 P(FA) P(MD) FOM

1.0 0.0 0.3995 0.000 0.733 1.000

0.8 0.2 0.0995 0.012 0.172 0.956

0.6 0.4 0.0607 0.032 0.127 0.927

0.5 0.5 0.0574 0.038 0.119 0.921

0.4 0.6 0.0574 0.038 0.119 0.913

0.2 0.8 0.0573 0.038 0.119 0.897

0.0 1.0 0.0017 0.999 0.017 0.983

The results presented are from simulations and not flight data.
However, the same procedure can be applied to actual sys-
tems. The detection threshold can be adjusted as needed to
achieve the desired performance given anticipated increases
in process noise and navigation error.

4.3. Detection Results

Performance evaluation of the detection method consists of
comparing predicted P (MD) and P (FA) (Table 1) with the
corresponding probabilities resulting from the implementa-
tion of the detection method in simulation. The fault de-
tection method presented in this paper was tested on 1000
Monte Carlo simulations of flights with randomized condi-
tions. Each flight was chosen with equal probability to have
no fault, a stuck motor fault, severe saturation, a broken line,
or criss-crossed lines. The severity of each fault was ran-
domized where applicable. Table 2 shows results from these
simulations as well as the predicted values of P (FA) and
P (MD) from Table 1.

Figure 7 plots P (MD) versus P (FA) for the data summa-
rized in Table 2. The closer the data are to the origin, the bet-
ter the performance (Rossi, Benson, et al., 2012). This plot

Table 2. Comparison of P (MD) and P (FA) between
predicted and simulated results for detection.

Threshold
( rad

sec )
2

P(FA)
Predicted

P(FA)
Sim

P(MD)
Predicted

P(MD)
Sim

0.3995 0.000 0.000 0.733 0.594

0.0995 0.012 0.005 0.172 0.201

0.0607 0.032 0.051 0.127 0.154

0.0574 0.038 0.058 0.119 0.149

0.0573 0.038 0.058 0.119 0.149

0.0017 0.999 0.796 0.017 0.064

also indicates an important point about fault detection: there
is always a tradeoff between false alarm and missed detec-
tion (Rossi, 2012). These quantities are minimized accord-
ing to design criteria by maximizing the figure of merit in
Eq. (15).

Figure 7. Comparison of predicted and simulated false alarm
and missed detection rates.

4.4. Detection Example

Figure 8 shows an example of the detection process on a sim-
ulated flight. The fault, a stuck right motor at 0.863 meters,
occurs 126 seconds into the flight. The top subplot of Fig-
ure 8 indicates nominal tracking of motor commands up until
the time of the fault. Once this occurs, there is a large dif-
ference between the command and the response in the right
motor. This difference is reflected in the smoothed residual
signal, which is shown in the bottom subplot. The thresh-
old chosen for detection during this flight is 0.0574 (rad/s)2,
which is the optimized value when equal weighting is placed
on P (FA) and P (MD) (Table 1). The smoothed residual
is below the threshold, but not zero, before the fault. How-
ever, once the fault occurs, the difference between u(t) and
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unom(t) is large enough to cause the smoothed residual sig-
nal to cross the chosen threshold. When the residual crosses
the threshold at 134 seconds a detection alarm is raised. After
the alarm is raised, the isolation procedure begins.

Figure 8. Detection example for stuck right motor fault.

5. ISOLATION

Once the detection algorithm has determined that a fault has
occurred, the isolation process attempts to determine which
particular fault is present. The data from the AGU motors
can be used to determine if the fault is actuator-related. The
first phase in the isolation process considers a motor residual
signal, similarly to how the heading rate residual was evalu-
ated during detection in Section 4. Each signal, one for each
motor, should be small when the motor is behaving well and
large when an actuator fault has occurred. These signals are
evaluated using hypothesis testing. Appropriate thresholds
must be selected such that P (FA) and P (MD) are mini-
mized.

If the results of the first phase indicate that the fault is not
actuator-related, phase two of isolation uses a bank of fault-
specific observers (Willsky, 1976) to attempt to declare that
a particular non-actuator fault has occurred. Some faults,
such as a stuck motor and severe saturation, are difficult to
model a priori because each of these faults is parameter-
dependent (e.g. a stuck left motor at 0.5 meters). Other faults,
such as criss-crossed lines and broken line, can be modeled
in a straightforward manner as the effects of the faults are
well-known. When a residual signal generated from a fault-
specific observer is small, it is likely that the system has ex-
perienced the fault associated with that particular observer.
Successful isolation will result in the declaration of a left mo-
tor fault, right motor fault, broken left line, broken right line,
or a criss-crossed lines fault.

5.1. Motor Residual

Each motor on the AGU is equipped with an encoder that
measures the corresponding control line deflection. This
measurement is used as the performance metric for the mo-
tors on the AGU. Outputs from a nominal motor model are
required to construct the motor residual signals used for iso-
lation. The motor model used in the heading rate observer
(Figure 5) is the nominal motor. The actual motor will out-
put the motor deflection as measured by the encoders, and the
nominal motor will output an expected motor deflection. The
absolute value of the difference between these two signals is
the motor residual signal,

rm,R(t) = |εm,R(t)| = |δR,nom(t)− δR(t)| (16)

rm,L(t) = |εm,L(t)| = |δL,nom(t)− δL(t)| (17)

where rm,R(t), rm,L(t) ∈ R are the right and left motor
residual signals, respectively. The residual generation pro-
cess is shown in Figure 9.

Figure 9. Motor residual block diagram.

Each motor residual is smoothed to emphasize the trend of
the signal, similarly to the way the heading rate residual was
smoothed in Section 4. Instead of the 25 second smoothing
period used for the heading rate residual, each motor residual
is smoothed over the previous 10 seconds at each time step.
The behavior of the motor residuals is not as erratic as that
of the heading rate residual and a longer smoothing period
is not necessary. Once each motor residual has been gener-
ated and smoothed, it is evaluated by choosing a threshold.
If a smoothed motor residual signal crosses above the chosen
threshold within 5 seconds after detection occurs, an actuator
fault in that particular motor is declared. This 5 second win-
dow is sufficient to detect most motor faults, as shown in the
results in Section 6.1. This short amount of time also helps to
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minimize total isolation time if the fault is not actuator-related
and fault-specific observers must be used.

Figure 10 shows CDF plots of healthy data and data from
flights in which an actuator fault has occurred. The healthy
data represents the maximum value of the smoothed motor
residual observed during the entire flight. All of this data
is for a left motor fault. Results for right motor faults are
almost identical and are not presented in this work. The fault
data, which randomizes the type, time, and severity of each
actuator fault, represents the maximum value of the smoothed
motor residual observed during the first 5 seconds after the
fault is declared.

Figure 10. CDFs for motor residual.

As with the heading rate residual in Section 4, weightings on
the FOM in Eq. (15) must be chosen for P (FA) and P (MD)
to determine an optimized threshold. For equal weightings
on each probability, the optimized threshold is 0.1237 me-
ters. This threshold is shown as a vertical dotted line in Fig-
ure 10. Table 3 shows optimized thresholds for several differ-
ent FOMs.

Table 3. Optimized thresholds for various FOMs (motor
residual).

c1 c2 Threshold (m) P(FA) P(MD) FOM

1.0 0.0 0.1363 0.000 0.094 1.000

0.8 0.2 0.1363 0.000 0.094 0.981

0.6 0.4 0.1238 0.000 0.093 0.962

0.5 0.5 0.1237 0.001 0.093 0.953

0.4 0.6 0.1198 0.002 0.092 0.944

0.2 0.8 0.1002 0.015 0.086 0.928

0.0 1.0 0.0074 0.999 0.040 0.960

5.2. Fault-Specific Observers

If the evaluation of the motor residual signals from Sec-
tion 5.1 indicates nominal performance, phase two of the iso-
lation procedure begins, which uses fault-specific observers.
As with the heading rate residual, the residuals for fault-
specific observers are constructed by differencing the EKF-
estimated heading rate from the actual system and the ex-
pected heading rate output from the system observer. How-
ever, the expected heading rate signal comes from an observer
that uses the dynamics of a system with a specific fault imple-
mented. A block diagram of the residual generation process
is shown in Figure 11. As with the heading rate and motor
residuals, each fault-specific observer residual is smoothed.
The residuals are smoothed at each time step over the previ-
ous 5 seconds of flight. This is to ensure that the residuals
respond quickly to faults in order to minimize total isolation
time. As with the heading rate residual, this smoothing pa-
rameter was tuned to achieve desired results from the fault-
specific observers.

Figure 11. Fault-specific observer block diagram.

Fault-specific observers are constructed for the broken left
line, broken right line, and criss-crossed lines faults. First,
consider the broken left line fault. A simple modification to
the nominal observer in Eq. (8) is required to construct this
observer. The broken left line fault-specific observer is,

˙̂xbl(t) = Ax̂bl(t) + b1δR(t) + L(y(t)− ŷbl(t)) (18)

ŷbl(t) = Cx̂bl(t) (19)

The observer for a broken right line is similar,

˙̂xbr(t) = Ax̂br(t)− b1δL(t) + L(y(t)− ŷbr(t)) (20)
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ŷbr(t) = Cx̂br(t) (21)

where x̂bl(t), x̂br(t) ∈ R4 are state estimates for the broken
left and right line observers, respectively, and ŷbl(t), ŷbr(t) ∈
R are the outputs from each observer. The only modification
needed to construct these observers is to remove either δL
or δR from unom in Eq. (8), depending upon which line has
broken. The corresponding residual signals for these fault-
specific observers are,

rbl(t) = (ŷbl(t)− y(t))2 (22)

rbr(t) = (ŷbr(t)− y(t))2 (23)

where rbl(t), rbr(t) ∈ R and y(t) is the EKF-estimated head-
ing rate for the system.

The observer for the criss-crossed lines fault is,

˙̂xcc(t) = Ax̂cc(t)−Bunom(t) + L(y(t)− ŷcc(t)) (24)

ŷcc(t) = Cx̂cc(t) (25)

where x̂cc(t) ∈ R4 is the state estimate for the criss-crossed
line observer, and ŷcc(t) ∈ R is the output from the observer.
The only modification to Eq. (8) needed to create the observer
is to reverse the effect of the input. The residual signal for the
criss-crossed lines observer is

rcc(t) = (ŷcc(t)− y(t))2 (26)

where rcc(t) ∈ R.

These residuals represent how well each observer models the
current condition of the system, and should be small only
when the fault that is modeled in the observer is present in
the actual system. Thresholds need to be designed such that
when the smoothed residual is above the threshold, it is likely
that the corresponding fault is not present. These thresholds
are used in the second isolation phase.

The second phase of isolation begins by assuming that all
three faults considered in this phase (i.e., broken left line,
broken right line, criss-crossed lines) are present in the sys-
tem. At each time step, the smoothed residual signals asso-
ciated with these three faults are evaluated. If a certain sig-
nal has crossed above its corresponding threshold, the fault
associated with the signal is eliminated from consideration.
Once two of the three signals have crossed their correspond-
ing thresholds, the fault associated with the residual that re-
mained below its threshold is declared and isolation is suc-
cessful. The FDI method is given 90 seconds after the fault
occurs to both detect and isolate the fault. As described in
Section 4.2, this time limit is imposed to force a successful

isolation to occur in a reasonable amount of time such that
there is sufficient time remaining in the flight for recovery.
This parameter can be changed according to mission require-
ments.

If, at the end of the 90 second isolation period, one or fewer
smoothed fault-specific observer residuals have crossed their
corresponding thresholds, a final check is performed to at-
tempt to isolate the correct fault. The relative size of each
smoothed residual signal that has not already crossed its
threshold is compared and the fault associated with the small-
est signal is declared. The relative size R of each smoothed
residual signal is given by

R = max(rs(t))/T (27)

where T is the chosen threshold for the fault-specific ob-
server, and the maximum of the corresponding smoothed
residual signal rs(t) ∈ R is computed over the 90 second
isolation period.

There are several instances where isolation can fail. The
first case occurs when all three of the smoothed fault-specific
observer residual signals cross above their corresponding
thresholds. This results in inconclusive isolation and no fur-
ther action is taken. The other category of failure during iso-
lation is called false isolation. This occurs when a fault is de-
clared that is different from the actual fault that has occurred.
This type of failure can occur during the motor observer phase
if a motor fault is incorrectly declared, or during the fault-
specific observer phase if the incorrect fault is declared. Sev-
eral probabilities are used to assess the effectiveness of the
isolation method. The probability that the correct fault is iso-
lated given successful detection is P (ISO). The probabilities
that, once detection occurs, the isolation phase is inconclu-
sive or declares an incorrect fault are given by P (INC) and
P (FI), respectively.

5.2.1. Broken Line

The results for both the broken left line and broken right line
faults are almost identical, so only the results from simula-
tions of a broken left line are presented in this paper. In order
to determine an appropriate threshold for the smoothed bro-
ken left line residual signal, the behavior of the signal was
analyzed under three conditions: a broken left line is present,
a broken right line is present, and a criss-crossed lines fault is
present. CDFs showing the maximum value of the smoothed
residual observed during the first 90 seconds after the occur-
rence of a fault for 1000 Monte Carlo simulations of all three
fault cases are shown in Figure 12. A threshold for the broken
line fault must be chosen so that the smoothed residual signal
remains under the threshold for a large percentage of flights
in which a broken left line fault occurs and crosses above the
threshold for a large percentage of flights in which a broken
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right line or criss-crossed lines fault occurs. The thresholds
for the broken line and criss-crossed lines faults were chosen
to provide a high rate of successful isolation while minimiz-
ing the time at which isolation completes. The threshold cho-
sen for the broken line fault is 0.07 (rad/s)2 and is shown as a
vertical dotted line on Figure 12.

Figure 12. CDFs for broken left line residual.

The data from the CDFs in Figure 12 indicate that, given
the chosen threshold, the probability that a broken left line is
present but the smoothed residual signal associated with the
broken left line still crosses the threshold is 2.9%. The prob-
ability that a broken right line is present but the smoothed
broken left line residual remains under the threshold for the
90 second isolation period is 0.1%. The probability that a
criss-crossed lines fault is present but the smoothed broken
left line residual remains under the threshold for the duration
of the isolation period is 2.9%. These probabilities can be
similarly obtained for the broken right line case.

5.2.2. Criss-Crossed Lines

Figure 13 shows CDFs of data collected from the smoothed
criss-crossed lines residual signal in the presence of a criss-
crossed lines fault as well as broken left and right line faults.
The CDFs show the maximum value reached during the first
90 seconds after the fault occurs for 1000 Monte Carlo simu-
lations of the three fault cases. The threshold chosen for the
smoothed criss-crossed lines residual signal is 0.13 (rad/s)2

and is shown as a vertical dotted line on Figure 13.

The data from the CDFs in Figure 13 indicate that, given
the chosen threshold, the probability that a criss-crossed lines
fault is present but the residual signal still crosses over the
threshold is 13.8%. The probability that a broken right or
left line is present but the residual remains under the thresh-
old for the isolation period is 5.9%. Isolation results for both

Figure 13. CDFs for criss-crossed lines residual.

the broken line and criss-crossed lines cases are presented in
Section 6.1.

6. FULL FDI IMPLEMENTATION AND RESULTS

Sections 4 and 5 outline methods for both detection and iso-
lation of faults for the parafoil and payload system. Figure 14
shows an overview of the integrated process.

The first step is fault detection. The heading rate signal is
monitored throughout the entire flight. If, at any point, the
smoothed residual signal rises above a predetermined thresh-
old, a fault is declared. Once the alarm is raised, the algorithm
progresses to the isolation method.

Isolation begins by evaluating the motor residual signal at the
time of fault detection. If the smoothed residual from either
the left or right motor is above the predetermined threshold,
a fault in the corresponding motor is declared. With the dec-
laration of an actuator fault, the FDI process ends.

Alternately, if the motor residual does not cross the thresh-
old within 5 seconds after detection, the isolation algorithm
progresses to the evaluation of residuals from a bank of fault-
specific observers. If the smoothed residual signal associated
with one of these observers is small, the algorithm declares
that the fault corresponding to that particular observer has
occurred. If none of the fault-specific observer residuals in-
dicate that the system is exhibiting the characteristics of any
known fault, then FDI has failed. In this case, it is likely that
a non-actuator fault that does not have an observer associated
with it has occurred. If more than one fault-specific observer
models the actual system well, FDI is unsuccessful. Multiple
faults occurring during the same flight are not considered in
this work.
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Figure 14. FDI Procedure.

6.1. Results

This section presents results of the full FDI implementation
for three different fault categories: motor fault (i.e. stuck mo-
tor and unexpected saturation), broken line, and criss-crossed
lines. This paper contains no comparison with parafoil FDIR
work in the literature, as no such work was identified at the
time of publication. Using the detection threshold for an
equal weighting on P (FA) and P (MD) from Table 1, the
motor residual threshold for an equal weighting on P (FA)
and P (MD) from Table 3, the broken line fault-specific ob-
server threshold chosen in Section 5.2.1, and the criss-crossed
lines fault-specific observer threshold chosen in Section 5.2.2,
the performance of the full FDI method was tested on 1000
Monte Carlo simulations in which a fault in one of the three
categories being considered occurred at a random integer time
during the first 500 seconds of flight. The performance of the
FDI method is evaluated in terms of the probability of detect-
ing the fault, P (DET ), as well as P (ISO), P (INC), and
P (FI). Table 4 shows FDI results for all three fault cate-
gories. The results compiled for motor faults and the broken
line fault are compiled for the left motor and control line, re-
spectively. Results from a right motor fault or a broken right
line are almost identical to those obtained from the left side
and are not presented in this work.

Table 4 indicates that a large portion of missed detections oc-
cur when attempting to detect motor faults. This is due in part
to severe saturation. It is possible that, during the 60 second
detection period, no motor command is given that is greater
than the severe saturation limit. In this case, the parafoil be-

Table 4. FDI results for three fault categories.

Fault P(DET) P(ISO) P(INC) P(FI)

Left Motor Fault 0.732 0.969 0.003 0.029

Broken Left Line 0.989 0.990 0.004 0.006

Criss-Crossed Lines 0.997 0.953 0.019 0.028

haves as if no fault has occurred. Cases like this, and other
scenarios in which the motor command and motor response
are very similar, generally result in unsuccessful detection.

Despite the detection issues for the motor fault, the rate of
isolation given a successful fault detection is high. The bro-
ken line and criss-crossed line faults have high isolation rates
as well, validating the use of both the motor observer and
fault-specific observers.

6.2. Examples

The first example of the full FDI implementation is for a stuck
left motor at 1.295 meters. Figure 15 shows the heading rate
residual and motor residual for a stuck left motor fault.

Figure 15. Stuck left motor fault: Heading rate and motor
residuals.

The top subplot in Figure 15 shows the heading rate resid-
ual for the stuck motor case. A fault alarm is raised at 167
seconds, 7 seconds after the fault occurs. After this alarm
is raised, the motor residual, shown in the bottom subplot, is
evaluated to determine if the fault is actuator-related. The plot
indicates that, at the time of detection, the left motor is show-
ing off-nominal behavior while the right motor is behaving
well. A left motor fault is declared and FDI is complete.

The second example demonstrates successful FDI for a bro-
ken left line fault. The heading rate and motor residuals are
shown in Figure 16, and the fault-specific observer residuals
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are shown in Figure 17 and Figure 18. The fault occurs at
193 seconds and a detection alarm is raised 15 seconds later.
The motor residual is examined next. This residual indicates
that both motors are behaving nominally, meaning that the
fault is not related to the actuators. The next step is to con-
sider the bank of fault-specific observers. Successful isolation
occurs at 213 seconds, when both the broken right line and
criss-crossed line residuals have crossed their corresponding
thresholds. The broken left line residual remains under its
threshold for the entire flight. The algorithm reports a bro-
ken left line 20 seconds after the fault occurs, successfully
completing the FDI procedure.

Figure 16. Broken left line fault: Heading rate and motor
residuals.

Figure 17. Broken left line fault: Broken line fault-specific
observer residuals.

Figure 18. Broken left line fault: Criss-crossed line
fault-specific observer residual.

7. CONCLUSION

This paper presented a fault detection and isolation method
for an autonomous parafoil system. The detection method
evaluates a residual signal generated from navigated head-
ing rate and an observer based on a nominal system model.
The isolation method uses separate residual signals generated
from motor telemetry to determine whether a given fault is
actuator-related. Other faults are isolated using fault-specific
observers. We combined these methods and evaluated the ap-
proach against four common faults using high-fidelity Monte
Carlo simulations. The results of these simulations showed
that choosing an appropriate detection threshold allows for a
high rate of detection with minimal false alarms. Choosing a
threshold of 0.0995 (rad/s)2 yielded an 82.8% success rate for
detecting faults with a 0.5% rate of false alarms. For a bro-
ken line fault, successful detection occurs 98.9% of the time.
Given successful detection, successful isolation of a broken
line fault occurs at a rate of 99.0%. This work introduced a
method for parafoil FDI that can detect and isolate common
faults in an effective, timely, and predictable manner.
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ABSTRACT 

Detecting and monitoring changes during the learning 

process are important areas of research in many industrial 

applications. The challenging issue is how to diagnose and 

analyze these changes so that the accuracy of the learning 

model can be preserved. Recently, ensemble classifiers have 

achieved good results when dealing with concept drifts. This 

paper presents two ensembles learning algorithms 

BagEDIST and BoostEDIST, which respectively combine 

the Online Bagging and the Online Boosting with the drift 

detection method EDIST. EDIST is a new drift detection 

method which monitors the distance between two 

consecutive errors of classification. The idea behind this 

combination is to develop an ensemble learning algorithm 

which explicitly handles concept drifts by providing useful 

descriptions about location, speed and severity of drifts. 

Moreover, this paper presents a new drift diversity measure 

in order to study the diversity of base classifiers and see 

how they cope with concept drifts. From various 

experiments, this new measure has provided a clearer vision 

about the ensemble’s behavior when dealing with concept 

drifts
1
. 

1. INTRODUCTION 

Recently, research in machine learning has shown its 

usefulness for automatic monitoring and diagnostics in 

industrial applications, especially when data is continuously 

generated and it is unpractical to store them all. Another 

issue is caused by the high speed of arrival of these data 

which require real time treatments and high computational 
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efforts. Hence, the learning model must be able to classify 

this huge amount of data when environments are non-

stationary; and the main challenge occurs when the 

underlying distribution that generates the data streams 

changes over time; which is known as “concept drift”. 

Formally, the term “concept” refers to the distribution of the 

joint probability        in a certain point of time, where   

represents the input attributes and   represents the class 

labels. A concept drift is a real or virtual change in this 

distribution. As stated by Tsymbal (2004), the real concept 

drift affects the posterior probability           which 

means that the target concept of the same values of 

attributes changes; we note       the set of   different 

class labels and      .The virtual concept drift affects 

the class-conditional probability P(      ) which means 

that the distribution of the underlying data within the same 

class changes. It is worth underlining that a drift can also 

affects the prior probability         of a particular class; 

this is known by “concept evolution”. This form of drift can 

be due to merging concepts which refer to the emergence of 

novel classes, or to crossing concepts which refer to the 

fusion of existing classes (Masud et al., 2011).  

Three steps are required to handle a concept drift: 

- Monitoring step: When data are considered as non-

stationary, methods with triggered mechanisms, namely 

informed methods (Ikonomovska et al., 2009), are used in 

order to provide descriptions about location, width and 

severity of the change. These methods can monitor the 

performance indicators of a learner, the estimators of data 

distributions or the learner’s structure and parameters. 

- Updating step: During this stage, the updating 

strategies differ according to the methods used to handle 

concept drifts. The blind methods implicitly adapt the 

learner to the current concept at regular intervals without 

any drift detection (Kolter and Maloof, 2007). Whereas, the 

informed methods can either relearn the model from scratch, 
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or update it using recent data when a change is detected. So 

the question is: how much data to remember or to forget? 

And what is the optimal size of the data-window in order to 

contain the most recent and significant data? In many 

studies (Sobhani and Beigy, 2011), the window size was a 

priori fixed. However, if the size is too small, we may not 

have enough data to train the leaner which risks being over 

fitted; and if the size is too large, the learner may keep 

outdated concepts which risks to reduce its accuracy. The 

fixed size window can work well if the width and severity of 

the change are known before or if we have rigorous 

instructions provided by an expert, but this is rarely the 

case. Recent studies have opted to windows with dynamic 

size which is reduced whenever a drift is detected and 

enlarged otherwise (Gama et al., 2004; Baena-García et al., 

2006). In other studies, Lazarescu et al. (2004) have used 

multiple windows with different sizes in order to 

progressively adapt and predict the change. 

- Diagnostic step: This step aims at interpreting the 

detected changes in concepts or in the learner parameters 

and structure.This interpretation can then be used as a short-

term prognosis about the future tendency of the current 

system situation. Notice that it is important to differentiate 

between noise in data and real changes (Sayed-Mouchaweh, 

2010; Lughofer and Angelov, 2011). Ideally, a trade-off 

between robustness against noise and flexibility in tracking 

concepts drifts must be reached. But unfortunately these two 

requirements seem to be contradictory.  

In the light of these challenges, we present two ensembles 

learning algorithms BagEDIST and BoostEDIST, which 

respectively combine the Online Bagging and the Online 

Boosting with the drift detection method EDIST. EDIST is a 

new drift detection method which monitors the distance (the 

number of instances) between two consecutive errors of 

classification, and tracks concept drifts through two 

adaptive data-windows    and   . EDIST makes use of a 

statistical hypothesis test in order to compare    and    

error distance distributions and checks whether the averages 

differ by more than the adjusted threshold   . 

The idea behind BagEDIST and BoostEDIST is to develop 

an ensemble learning algorithm which explicitly handles 

concept drifts by providing useful descriptions about 

location, speed and severity of drifts.  

Moreover, this paper presents a new Drift Diversity 

Measure (D) in order to study the diversity of base 

classifiers and see how they cope with concept drifts. From 

various experiments, this new measure has provided a 

clearer vision about the ensemble’s behavior when dealing 

with concept drifts. 

The rest of the paper is organized as follows. In Section 2, 

we briefly discuss related work. In Section 3, we describe 

the drift detection method EDIST. In Section 4, BagEDIST 

and BoostEDIST are presented. In Section 5, the Drift 

Diversity Measure is decribed. In Sections 6 and 7, we 

explain the experimental setup, the results and the analysis 

of the different improvement stages of our method. Finally, 

conclusions and some ideas for future work are discussed in 

Section 8. 

2. DISCUSSION AND RELATED WORK  

In this section, the blind and the informed methods are 

discussed. The blind methods handle concept drifts 

implicitly, while the informed methods detect drifts by 

monitoring some performance indicators of the model (See 

Figure 1). 

2.1. Informed Methods  

These methods are useful when we expect to provide 

descriptions about the occurrence, the severity and the width 

of the encountered drifts. They proceed by monitoring and 

diagnosing these changes so that the accuracy of the learner 

can be conserved whatever the nature of the encountered 

drifts. These methods can make use of single classifier 

based on instance selection or batch collection; or an 

ensemble of classifiers with change detector. 

2.1.1. Single classifier with performance monitoring 

This kind of methods monitors the indicators of 

performance of the model such as accuracy, precision and 

recall (Klinkenberg, 2001). These indicators are monitored 

constantly and compared to a confidence level or an 

adjusted threshold. Two well-known performance-based 

methods can be cited: Drift Detection Method (DDM) 

proposed by Gama et al. (2004); and Early Drift Detection 

Method (EDDM) proposed by Baena-García et al. (2006).  

a. DDM: Drift Detection Method 

The Drift Detection Method (DDM) monitors the number of 

errors produced by the learner and considers that the error 

rate follows the binomial distribution.  In a sample of n 

instances, the distribution gives the probability of 

misclassification    with standard deviation 

               for each instance i of the sampled 

sequence. According to probability approximately correct 

leaning model (PAC) used by Mitchell (1997), if the 

distribution of instances is stationary, the error rate 

decreases as the number of instances increases, thus a 

significant increase in the error rate during the training 

implies a change in the distribution. DDM stores      and 

    which correspond respectively to the minimum 

probability and the minimum standard deviation, and then it 

defines two levels as follows: 

- The Warning level when             +2      ; 

beyond this level, instances are stored for a possible 

change of distribution. 

- The Drift level when            +3     ; beyond 

this level, the drift is confirmed and the learner is reset 

using instances stored since the Warning level. Note that 

     and      are reset too. 
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Figure 1. General scheme of classification methods 

handling concept drift 

 

DDM has good ability to detect abrupt and global drifts 

which affect the whole dataset. However, it presents low 

adaptability to gradual and local drifts which slowly affect 

some parts of the dataset. 

b. EDDM: Early Drift Detection Method 

The idea behind the Early Drift Detection Method (EDDM) 

is to consider the distance between two consecutive errors of 

classification. Notice that the error distance is represented 

by the numbers of instances between two consecutive 

classification errors. This approach assumes that if the 

distribution of the instances is stationary, the learning model 

will improve its prediction and the error distance will 

increase as the number of instances increases. Thus, a 

significant decrease in the error distance implies a drift. 

EDDM calculates the average distance between two errors 

  
   and its standard deviation   

   for each instance   of the 

sampled sequence and compare them to     
  and     

  

reached before, and then defines two levels as follows: 

- The Warning level when    
      

        
        

    ; 

beyond this level, instances are stored for a possible 

change of distribution. 

- The Drift level when     
      

        
        

    ; 

beyond this level, the drift is confirmed and the learner is 

reset using instances stored since the Warning level. Note 

that     
  and     

  are reset too.   and   are respectively 

set to 0.95 and 0.9 after some experiments. The method 

considers the thresholds for detecting concept drifts when 

a minimum of 30 errors occur; then estimates the current 

error distance distribution and compares it with future 

ones.  

 

EDDM is more suited to detect gradual and local drifts than 

DDM, but it presents sensitivity to the values of   and   in 

the sense that bigger values are suited to detect gradual 

drifts whereas smaller values are more suited to detect 

abrupt drifts. Hence, a trade-off between these values and 

different types of drifts is required to reach good results. 

2.1.2. Single classifier with data distribution monitoring 

This kind of methods detects changes by measuring 

differences between consecutive batches of data. Sobhani 

and Beigy (2011) present a method which process chunk by 

chunk and measures differences between two consecutive 

batches of data. The idea is to find nearest neighbor in 

previous batch of data for each instance in current batch, 

then compare their corresponding class labels. The authors 

use the heom distance to quantify the similarity between 

data batches and the drift alarm is launched when there is a 

significant increase of the degree of drift (DoF) value (for 

more details please refer to Sobhani and Beigy (2011)). 

2.1.3. Ensemble classifiers with change detector 

The ensemble classifiers with change detector explicitly 

handle concept drifts by providing useful description about 

the change. This new kind of technique is becoming an 

interesting area of research, because: 

- it combines the flexibility of the ensemble classifier 

to cope with different types of drifts and, 

- it can provide useful descriptions about location, 

width and severity of the drift. 

ADWIN bagging method (Bifet et al. 2009) combines the 

online version of bagging for data streams developed by 

Oza and Russell (2001) with ADWIN which represents a 

change detector (Bifet et al. 2007). The idea behind ADWIN 

is to track the average of a stream of bits or real-valued 

numbers and keep a dynamic sliding window of recently 

seen instances, with the property that the window has the 

maximal length statistically consistent with the hypothesis 

“there has been no change in the average value inside the 

window". 

These approached have achieved good accuracy when 

dealing with different kind of drifts, but they present two 

main issues; the first is how to maintain the diversity of the 

classifiers overall the learning process? and the second is 

how can we improve the run time and the memory 

consumption when resources are scarce? 

2.2. Blind methods 

The ensemble classifiers approaches are considered as blind 

methods when they are implicitly adapted to changes 

without any drift detection tool (Minku et al. 2010).  

2.2.1. Structure-updating ensemble classifiers 

In the dynamic ensemble classifiers the structure of the 

ensemble evolves to deal with the concept drifts. A possible 

strategy is “replace the loser”: the individual classifiers are 
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re-evaluated and the worst one is replaced by a new one 

trained on recent data (Kuncheva, 2004). 

The Dynamic online Ensemble Learning Algorithm 

(DELA) is characterized by dynamic and continuous 

structural update of the ensemble classifiers as soon as the 

global accuracy decreases. DELA makes use of distinct and 

incremental base learners which handle drift detection by 

their nature, and then updates the structural in two ways: 

 - The addition of classifiers is made when (i) the 

ensemble fails to predict the correct label or when (ii) 

it makes as many as errors as half of a window of 

length Q. 

 - The removal of classifiers is made when (i) the 

ensemble fails to predict the correct label or when (ii) 

the base learner makes an error on each step over the 

last window of length Q. 

2.2.2. Weight-updating ensemble classifiers 

In the weight-updating ensemble classifiers the structure of 

the ensemble is fixed, whereas the weights of the base 

classifiers or of the instances may evolve. 

a. Weight-updating base classifiers 

This kind of approach makes use of ensemble classifiers 

where each component classifier is evaluated and receives a 

weight reflecting its performance on the most recent batch 

of data. 

In the Accuracy Weighted Ensemble (AWE), Kolter and 

Maloof (2007) propose to train a new offline learning 

classifier on each incoming data batch, then use that batch to 

evaluate all the existing classifiers in the ensemble. To 

evaluate each classifier, they propose to derive weights by 

estimating the error rate on the most recent data batch. For 

the first k data chunks, AWE takes a set of all available 

classifiers, but it selects only the k best components to form 

an ensemble. The predictions of components are aggregated 

by a weighted voting rule. However, the main problem of 

AWE is the tuning of the batch size of the most recent data 

used to evaluate all the existing classifiers. 

The Accuracy Updated Ensemble (AUE) is another 

ensemble approach which proceed by updating each 

classifier features as new instances are available. Brzezinski 

and Stefanowski (2011) use online learning classifiers 

updated with recent instances, then adjust their weights. 

During the weighting process AUE preserves only the k best 

classifiers according to a simple weighting function. When 

no concept drift occurs, each base classifiers can be trained 

on more instances as if it was built on bigger batch of data; 

and should update its features to become more accurate. 

Good results have been achieved; however AUE has to 

ensure additional diversity of the ensemble components. 

b. Instance-updating ensemble classifiers  

This kind of approach makes use of ensemble classifiers 

where the weights of the instances are modified in order to 

preserve diversity when dealing with concept drift. 

The Leveraging bagging approach (Bifet et al. 2010a) is an 

ensemble approach that makes use of a modified bagging 

approach by adding more randomization on the weights of 

the instances of the input stream in order to improve the 

accuracy of the ensemble classifier. 

3. EDIST: ERROR DISTANCE BASED APPROACH FOR 

DRIFT DETECTION AND MONITORING  

In this section, a new drift detection method EDIST is 

described. Then its performance is evaluated using datasets 

presenting concepts drifts of several width, severity and 

time change. 

We consider the online learning framework where the 

instances arrive one at the time and we assume that the 

learning model is able to make a prediction as an instance is 

available. Once the prediction is made, the system can learn 

from instances and incorporate them to the learning model. 

Each instance is in the form of pairs (   ,  ) where     is the 

vector values of different attributes and    is the class label. 

The model prediction   
  is correct when   

    , false 

otherwise. 

The idea behind EDIST draws its inspiration from the 

popular drift detection method EDDM which studies the 

distance between two consecutive errors of classification. 

Note that the distance is represented by the numbers of 

instances between two consecutive errors of classification. 

In EDIST, we track the concept drift through two data-

windows. The first represents the global sliding window    

which is adaptively adjusted by containing the recent read 

instances. The second   represents the batch of current 

collected instances. Note that    is constructed from a fixed 

number of consecutive errors of classification, thus it could 

contain a variable amount of instances at each step. In 

EDIST, we want to estimate the error distance distribution 

of    and    and make a comparison between their error 

distance averages in order to check a difference. 

In EDIST, we employ the same hypothesis used in EDDM 

and which assumes that if the distribution of the instances is 

stationary, the learning model will improve its prediction 

and the error distance will increase as the number of 

instances increases. Thus, a significant decrease in the error 

distance implies a change in the instances distribution and 

suggests that the learning model is not appropriate. Unlike 

EDDM which compares the current average of error 

distance and its standard deviation with the maximum 

average and standard deviation stored from previous 

instances, EDIST makes use of a statistical hypothesis test 

in order to compare    and    error distance distributions 

and check whether the averages differ by more than the 

threshold  . The novelty of our method is that there is no a 

priori definition of the threshold  , in the sense that it does 
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not require any a priori adjusting related to the expected 

width or severity of the change.   is adaptively adjusting 

itself according to the statistical test used. 

3.1. Statistical hypothesis test 

Let             ...       be the sequence of the error distance 

values where each value    is available only at time t and 

independently generated from an error distance 

distribution   . 

Let   and    be the random variables of the two error 

distance distribution    and   of respectively    and    , 

we assume that         
  

  
             

  

  
 are 

normally distributed where   and   are the numbers of 

errors of classification respectively occurred in     and   . 

We pose   =   -    and define: 

- The null hypothesis (H0):   =0 which states that 

there is no change between the two distributions 

averages. 

- The alternative hypothesis (  ):   > 0 which states 

that there is a decrease in   ’s average, hence we detect 

a change. 

3.2. Region of acceptance 

We suppose that H0 is true, thus the random variable 

            is normally distributed with      and 

  =  
  

  
 

  

  
; and let α=0.05 be the test's probability 

of incorrectly rejecting H0. 

 

We want to calculate    such that: 

                               (1) 

Let   
     

  
  be a random variable following the standard 

normal distribution           

    
 

  
                                (2) 

so,  the cumulative distribution function of the normal 

distribution is defined as follows: 

      φ 
 

  
                                (3) 

and thus, according to the table of standard normal 

distribution, we can write:  

               
 

  
=                              (4) 

 

 

Finally,                                  

                                        (5) 

 

with          = 
  

  
 

  

  
   and                   

3.3. Decision rule 

If      then we accept the null hypothesis    with a risk 

of 5% to be wrong, else we accept   . 

As in DDM and EDDM, our method defines three 

thresholds (see Fig.2): 

- The In-Control level:       beyond this level we 

affirm that there is no change between the two 

distributions, so we enlarge     by adding     ‘s 

instances, and then we reset it in order to collect new 

ones. 

- The Warning level:      + r    ; beyond this level, 

the instances are stored for an expected change. 

However, if the similarity between the two distributions 

increases, i.e. the drift is not confirmed after the 

Warning level, we consider that there is a false alarm 

and we remove the instances stored during this stage. 

- The Drift level:       s   ; beyond this level, the 

drift is confirmed and     is reset by only containing the 

instances stored since the Warning level, then the 

learning model is reconstructed from the new    . 

 

Note that   and   are integer values which represent the 

amounts of change for defining respectively the Warning 

and Drift levels; where    . 

 

In static context, when we consider that      , it means 

that    has a variance smaller than      with 95% of 

confidence; and when we consider that     , it means that 

   have a variance smaller than      with 99.7% of 

confidence. In practice, we have varied    and   values from 

0 to 3 in order to study the relationship between those 

values and different types of drifts in non-stationary context. 
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Figure 2. The three levels for drift detection and monitoring in EDIST 
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4. BAGEDIST AND BOOSTEDIST 

In this section we describe the two ensembles learning 

algorithms BagEDIST and BoostEDIST, which respectively 

combine the Online Bagging and the Online Boosting with 

the drift detection method EDIST.   

4.1. Online Bagging 

The Off-line Bagging (Oza and Russell, 2001) builds a set 

of   base classifiers, training each classifier with a 

bootstrap sample of size N created by drawing random 

samples with replacement from the original training set. 

Each base classifier's training set contains each of the 

original training example   times where   is drawn from a 

           distribution for large values of  .  

In Online Bagging (Oza and Russell, 2001), each example is 

given a weight   drawn from a            distribution, in 

order to be represented   times for each base classifier   . 

The ensemble prediction is done by unweighted majority 

vote (see Algorithm 1). 

Algorithm 1:  Online Bagging Algorithm 
For all training examples       do 

      For each base model                  do 

 1. Set k  Poisson(1) 

  2. Do   times  

                         
       end For 
                                                         

 
      

 end For 

 

 

4.2. BagEDIST 

BagEDIST is an ensemble learning algorithm which 

combines the Online Bagging algorithm with the drift 

detection method EDIST. The idea behind this combination 

is to develop an ensemble learning algorithm which 

explicitly handles concept drifts by providing useful 

descriptions about location, speed and severity of the 

changes. Unlike Online Bagging which assures the diversity 

by only weighting the training examples, BagEDIST 

proceeds by weighting the training examples and the base 

classifiers in the same time. As presented in algorithm 2, the 

weighting process of each classifier depends on its 

prediction performance and its ability to detect drifts. The 

accuracy      of the classifier    represents the correct 

prediction rate, and           is the number of drifts 

detected by   . Notice that every classifier is equipped by 

EDIST as drift detection mechanism and when a drift is 

confirmed the classifier is relearned from the examples 

stored during the warning level of EDIST (more details are 

presented in section 2). The weight    is used to promote 

the classifier which presents good accuracy and high 

number of detected drifts. The parameter   is set to 2 to give 

more importance to classifier that achieved the best 

accuracy. The final ensemble prediction is done by weighted 

majority vote (see Algorithm 2). 

Algorithm 2:  BagEDIST Algorithm 

For all training examples       do 

      For each base model                  do 

 1. Set k  Poisson(1) 

  2. Do   times  

                         
                 3. If                         then 

                          
   4.  If                          then 

                                               

  reset    using examples stored since the 

                                                   defined by        
         end If 

                  5.                                            
        end For 
      
                                                         

      

 end For 

 

 

                                         
        If               then  

                        

        else If               then 

                     If                   then  

              

                     else 

             

       end If 

        else 

       If                   then  

                            
        else 

                           

        end If 

        end If 

 Return (    
 

 

4.3. Online Boosting 

The Off-line Boosting (Oza and Russell, 2001) builds a set 

of   classifiers sequentially           such that the 

training examples misclassified by classifier      are given 

more weight for the next classifier   . Hence, the idea 

behind Boosting algorithms is to combine multiple base 

classifiers to obtain a small generalization error. 

In Online Boosting (Oza and Russell, 2001) each example is 

given a weight   drawn from a             distribution, 

where    is increased when the training example is 

misclassified by the previous classifier; and decreased 

otherwise.   
   and   

   are the sum of    values scaled by 

the half of the total weight   for respectively corrected and 

uncorrected examples. At final stage, each classifier    is 

weighted according to its   
   and   

   parameters then the 

final classification is done by weighted majority vote (see 

Algorithm 3). 
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Algorithm 3: Online Boosting Algorithm 

 For all training examples       do 

     1 

    For each base model                  do 

  1. Set k  Poisson(  ) 

   2. Do   times  

                              
                  3. If                         then 

           
  
  

      

          
 

    
   

              else 

       
  
  

       

          
 

    
   

       end If    

     4.  

                            
     

    
    end For 
                                                   

   

                 
 end For 

 

                        
     

    
Calculate  

    
  
  

  
      

   

    
  

     
 

       
 

   
  

    Return (    

 

4.4. BoostEDIST 

BoostEDIST is an ensemble learning algorithm which 

combines the Online Boosting algorithm with the drift 

detection method EDIST. The first originality of 

BoostEDIST is that the training examples misclassified by 

classifier     and which triggered a drift are given more 

weight for the next classifier   . Hence, a new parameter 

  
      is used to compute the sum of    values when a drift is 

detected, and it is scaled by the total number of drifts 

              detected by the ensemble. Like in BagEDIST, 

every classifier is equipped by EDIST as drift detection 

mechanism and when a drift is confirmed the classifier is 

relearned from the examples stored during the warning level 

of EDIST. The second originality of BoostEDIST is that the 

weighting process of base classifier depends on its 

prediction performance and its ability to detect drifts. The 

weight    is computed such that the classifier which 

presents high   
   and   

      values is promoted. The final 

ensemble prediction is done by weighted majority vote (see 

Algorithm 4). 

 

 

 

 

 

 

Algorithm 4:  BoostEDIST Algorithm 

For all training examples       do 

           1 

      For each base model                  do 

 1. Set k  Poisson(  ) 

  2. Do   times  

                          
               3. If                         then 

      
  
  

      

         
 

    
   

                     else 

      
  
  

       

          
 

    
   

                     end If 

    
   4.  If                          then 

         
     

  
     

    

            
           

  
      

                         reset     using examples stored since the 

Warning level defined by       

          end If 

     5.  

                            
     

     
     

  
       end For   

   
                                                         

 
     

 end For 

 

 

                          
     

     
     

  

Calculate  

    
  
  

  
      

         
     

  
 

    
  

     
 

       
 

   
  

    Return (    
 

 

5. DRIFT DIVERSITY MEASURE 

Diversity in ensemble learning algorithms is an issue that 

has received lots of attention in the literature. In off-line and 

online ensemble classifiers, the diversity could be expected 

to be one of the features that help to achieve good accuracy. 

Only some empirical studies have highlighted this 

hypothesis and have revealed that there could be a positive 

correlation between the accuracy of the ensembles and the 

diversity of its base classifiers (Kuncheva and Whitaker, 

2003; Minku et al., 2010) However, there are still not 

theoretical explanations of how the diversity can enhance 

the performance of ensemble classifiers. Moreover, some 

results in the studies of Kuncheva and Whitaker (2003) have 

raised some doubts about the relationship between diversity 
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and accuracy and the authors have concluded that large 

diversity may not always correspond to better ensemble 

results.   

In this investigation, we intuitively ought to study the 

diversity of the base classifiers in BagEDIST and 

BoostEDIST algorithms, and see how they cope with 

concept drifts. For this purpose, a new diversity measure, 

namely Drift Diversity Measure, is proposed. Unlike the 

most existing diversity measures, which are often related to 

the accuracy of base classifiers, the Drift Diversity Measure 

takes into consideration the performance of each base 

classifier and its ability to detect drifts. This new measure 

may help us to have a clearer vision about the ensemble’s 

behavior when dealing with concept drifts. 

The formulation of Drift Diversity Measure (D), which is 

inspired from the Entropy Diversity Measure (E) 

(Cunningham and Carney, 2000) is as follows: 

  
 

 
        

     
        

     
                

 

   

 

   

 

Where   is the number of examples,   is the number of 

class labels and    
      is the ratio of base classifiers that 

have classified the example   as class   and detected a drift. 

Let assume the number of base classifiers is  . If three base 

classifiers classify the first example as class   and only two 

classifiers have detected a drift,    
     

 
 

 
. 

The Drift Diversity Measure (D)         and larger value 

means larger diversity of base classifiers. 

6. EXPERIMENTAL EVALUATION  

BagEDIST and BoostEDIST were implemented in the java 

programming language by extending the Massive Online 

Analysis (MOA) software (Bifet et al., 2010) MOA is an 

online learning framework for evolving data streams. It 

derives from the well-known WEKA framework, and 

supports a collection of offline and online machine learning 

methods for both classification and clustering.  

To evaluate EDIST, we have used the Hoeffding Tree (HT) 

learning algorithm. HT is an incremental decision tree 

induction algorithm that is able to learn from a massive data 

streams. (for more details please refer to (Hulten et al., 

2001)). We have used HT implemented in MOA with 

information gain split criterion and Adaptive Naive Bayes 

classification at leaves. 

6.1. Parameter Settings 

To evaluate BagEDIST and BoostEDIST algorithms, we 

have used the Prequential Evaluation method presented by 

Gama et al. (2009). This method evaluates a classifier on a 

stream by testing then training with each example in 

sequence and may use a sliding window or a fading factor 

forgetting mechanism. We have used the Prequential 

Evaluation method implemented in MOA with sliding 

window of size 5000. 

The number of base classifiers for BagEDIST and 

BoostEDIST was fixed to 10, and each classifier used the 

Hoeffding Tree (HT) as learning algorithm and EDIST as a 

drift detection method.  

The parameter settings of the drift detection method EDIST 

are as follows: 

-     represents the minimum number of examples to 

initialise the learning algorithm and it is set to 30 

- n  represents the number of errors of classification 

occurred in    and it is set to 90 

-    represents the amount of change for the warning level 

and it varies from 0 to 1 and, 

-    represents the amount of change for the drift level and 

it varies from 1 to 3;  with the constraint s>r.  

For the comparison, we have developped BagDDM, 

BoostDDM, BagEDDM and BoostEDDM which use the 

same BagEDIST and BoostEDIST algorithms with 

changing EDIST by the two well-known drift detection 

methods DDM and EDDM. We have also compared our 

approaches to BagADWIN and BoostADWIN proposed by 

Bifet et al. (2009) and which use ADWIN (Bifet et al. 2007) 

as a change detector in the original version of Online 

Bagging and Online Boosting developed by Oza and Russell 

(2001). 

6.2. Synthetic data sets 

Synthetic data sets are primordial for studying the behaviour 

of the proposed algorithms where severity, width and time 

of change of concept drifts are known.  

Rotating Hyperplane has been widely used to simulate a 

changing concept based on moving hyperplane (Hulten et al. 

2001). A hyperplane in d-dimensional space is represented 

by:         
 
   . The examples which satisfy 

        
 
    are labelled as positive, otherwise negative. 

The concept drift is simulated either by the orientation or 

the position of the hyperplane which can be changed by 

varying the relative size of the weights. 

Agrawal Generator was introduced by Agrawal et al. 

(1993). It generates one of ten different pre-defined loan 

functions. The generator produces a stream containing nine 

attributes, six numeric and three categorical. This generator 

is based on ten functions defined for generating binary class 

labels from the attributes in order to determine whether the 

loan should be approved. 
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6.3. Real world datasets 

Hereafter, the real world datasets used for evaluating our 

method. 

Electricity dataset is a real world dataset from the 

Australian New South Wales Electricity Market. This 

dataset was first described by Harries (1999). In this 

electricity market, the prices are not fixed and may be 

affected by demand and supply. This dataset contains 45312 

instances, dated from May 1996 to December 1998.  

Forest Covertype contains the forest cover type for 30 x 30 

meter cells obtained from US Forest Service (USFS) Region 

2 Resource Information System (RIS) data. It contains 

581012 instances and 54 attributes, and the task is to predict 

the specific forest cover types. 

Poker-Hand consists of 1000000 instances and 11 

attributes. Each record of the Poker-Hand dataset is an 

instance of a hand consisting of five playing cards drawn 

from a standard deck of 52. Each card is described using 

two attributes (suit and rank), for a total of 10 predictive 

attributes; and one class attribute that describes the “Poker 

Hand”. 

AirlinesDataset consists of a large amount of records, 

containing flight arrival and departure details for all the 

commercial flights within the USA, from October 1987 to 

April 2008. It contains 13 attributes and the task is to predict 

whether a given flight will be delayed or not. 

7. RESULTS 

In this section, the performance of BagEDIST and 

BoostEDIS is evaluated using data sets presenting concepts 

drifts of several severity, width and time change.  

7.1.  The diversity of base classifiers in BagEDIST and 

BoostEDIST algorithms 

In this subsection, we use the Drift Diversity Measure to 

study the diversity evolution of base classifiers in 

BagEDIST and BoostEDIST algorithms on the Agrawal 

dataset of 300000 examples. 

In Figure 3, the scatter plots correspond to detected drifts of 

every base classifier, the curves correspond to the evolution 

of diversity measure of the ensemble; and vertical dotted 

lines represent the occurrence positions of concept drifts.  

From this experiment, it is noticeable that (i) some base 

classifiers make early detection of drifts where others detect 

drifts with acceptable delay. This implies that there is a good 

combination of base classifiers in the ensemble, in the sense 

that a classifier’s early detection can make up for the delay 

of another. This confirms that the ensemble proceeds through 

an effective cooperation between base classifiers in order to 

optimally detect drifts. (ii) When we observe the diversity 

measure curves, we remark that the diversity increases as 

soon as a drift is encountered and stabilizes when it ends. 

This confirms that the Drift Diversity Measure is an 

adequate measure for ensembles that handle drifts and can 

provide effective information about width and time change 

of drifts. 

7.2. The Drift Diversity Measure Vs. accuracy 

For Hyperplane datasets, we have added two concept drifts 

at t0=50000 and t0=150000 and varied the widths from 5000 

to 100000 by generating 300000 examples. Results are 

exposed in tables 1 and 2 where columns represent the 

Prequential accuracies (Acc), the Drift Diversity Measure 

(D) and the total number of drifts detected by the ensemble 

(num Drifts). 

As shown, BagEDIST and BoostEDIST have found the best 

accuracy for both abrupt and gradual drifts; and presented 

more robustness to noise than the others methods. In the 

same time, it is worth underlining that there is no clear 

correlation between the accuracy and the diversity for 

different methods, in the sense that best accuracies may not 

correspond to highest amounts of diversity. Another 

important point is that the diversity measures obtained are 

positively correlated with the total number of detected drifts. 

Hence, we can define the Drift Diversity Measure as the 

degree of base classifiers disagreement about detecting 

drifts, in the sense that the Drift Diversity Measure increases 

as much as classifiers disagree about the detected drifts. 

This definition has two interpretations. The first is that the 

Drift Diversity Measure is an adequate measure for drift 

handling ensembles because it is obvious that a set of base 

classifiers that identically detect drifts does not bring any 

advantages. The second is that when the ensemble presents 

high diversity and low accuracy, it may be explained by its 

overreacting to concept drifts or to its sensitivity to false 

alarms. Once again, we are facing the issue of how 

quantifying the ensemble diversity in order to enhance the 

overall accuracy. 

7.3. Results on real world data sets 

For the comparison, we have developped BagDDM, 

BoostDDM, BagEDDM and BoostEDDM which use the 

same BagEDIST and BoostEDIST algorithms with 

changing EDIST by the two well-known drift detection 

methods DDM and EDDM. 

BagEDIST and BoostEDIST have also been tested through 

real world data sets widely used in similar studies. Despite 

the different features of each real data set, encouraging 

results have been found comparing to BagADWIN, 

BoostADWIN, and to the original version of Online 

Bagging and Online Boosting (OzaBag and OzaBoost). 

These results reaffirm the effectiveness of the adaptation of 

the original version of Bagging and Boosting for drift 

handling with the use of any drift detection method DDM, 

EDDM or EDIST (see tables 3 and 4). 
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Figure 3. The diversity of base classifiers for repectively BagEDIST (a) and BoostEDIST (b) algorithms in 

Agrawal dataset containing 300000 examples, 2 concept drifts at   =50000 and   =150000  with width=50000. 

 

 

Table 1. Prequential accuracy (Acc), the Drift Diversity Measure (D) and the total number of drifts detected by the 

ensemble (num Drifts) in Hyperplane datasets containing 300000 examples, 2 concept drifts at t0=50000 and 

t0=150000, 20% then 40% of severity and 30% of noise. 

  
Drift width 

  
5000 10000 50000 100000 

  
acc (D) 

num 
drifts acc (D) 

num 
drifts acc (D) 

num 
drifts acc (D) num drifts 

BagEDIST  68,400 8,969E-05 81 68,800 8,083E-05 73 68,700 5,979E-05 54 67,100 5,426E-05 49 

BagDDM  67,800 7,308E-05 66 68,400 6,312E-05 37 68,100 6,422E-05 58 66,000 2,215E-05 20 

BagEDDM  67,800 1,484E-04 134 68,300 1,440E-04 130 68,400 1,583E-04 143 67,200 1,532E-04 139 

 

 

Table 2. Prequential accuracy (Acc) , the Drift Diversity Measure (D) and the total number of drifts detected by the 

ensemble (num Drifts) in Hyperplane datasets containing 300000 examples, 2 concept drifts at t0=50000 and 

t0=150000, 20% then 40% of severity and 30% of noise. 

  
Drift width 

  
5000 10000 50000 100000 

  
acc (D) num drifts acc (D) num drifts acc (D) num drifts acc (D) num drifts 

BoostEDIST  69,900 7,530E-05 68 68,400 8,083E-05 73 68,800 1,882E-05 17 66,200 3,986E-05 36 

BoostDDM  68,000 3,100E-05 28 68,400 3,322E-05 30 68,000 1,661E-05 15 65,900 1,107E-05 10 

BoostEDDM  67,200 8,637E-05 78 67,100 1,207E-04 109 66,900 1,008E-04 91 66,100 6,755E-05 61 
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Table 3. Prequential accuracy of different Bagging 

ensemble algorithms in real world data sets. 

 

 
     ELEC2 Covtyp Poker Airline 

BagEDIST  91,800 96,800 67,600 63,500 

BagDDM  87,000 97,400 64,300 62,100 

BagEDDM  81,400 97,200 78,000 63,300 

BagADWIN 75,300 97,100 65,500 61,600 

OzaBag 88,500 91,000 63,300 64,200 

 

Table 4.  Prequential accuracy of different Boosting 

ensemble algorithms in real world data sets. 

 
     ELEC2 Covtyp Poker Airline 

BoostEDIST  89,800 96,500 80,000 59,900 

BoostDDM 89,300 96,400 81,100 60,100 

BoostEDDM  88,400 97,100 90,800 62,800 

BoostAdwin 88,000 97,200 85,800 58,200 

OzaBoost 87,400 91,500 88,800 61,300 

 

8. CONCLUSION 

This paper has presented two ensembles learning algorithms 

BagEDIST and BoostEDIST, which respectively combine 

the Online Bagging and the Online Boosting with the drift 

detection method EDIST. EDIST is a new drift detection 

method which monitors the distance between two 

consecutive errors of classification, and tracks concept drifts 

through two adaptive data-windows    and   . EDIST 

makes use of a statistical hypothesis test in order to compare 

   and    error distance distributions and checks whether 

the averages differ by more than the adjusted threshold   . 

BagEDIST and BoostEDIST are two ensemble learning 

algorithms which explicitly handle concept drifts by 

providing useful description about severity, width and time 

of change of drift. The originality behind these approaches 

is that the weighting process of each base classifier depends 

on its prediction performance and its ability to detect drifts. 

Moreover, in BoostEDIST, the instances which trigger drifts 

are given more importance for next base classifiers. During 

the experiments we have noticed that there is an effective 

cooperation between base classifiers to optimally cope with 

concept drifts, in the sense that a classifier’s early detection 

can make up for the delay of another. 

This paper has also presented a new Drift Diversity Measure 

in order to study the diversity of base classifiers and see 

how they cope with concept drifts. Unlike the existing 

diversity measures, which are often related to the accuracy 

of base classifiers, the Drift Diversity Measure takes into 

consideration the performance of each base classifier and its 

ability to detect drifts. Through previous experiments, this 

new measure has helped us to have a clearer vision about 

the ensemble’s behavior when dealing with concept drifts. 
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ABSTRACT

Remaining useful life (RUL) prediction is an important com-
ponent for system health monitoring and prognosis. Ideally,
one expects the prediction algorithm to provide the complete
distribution of the RUL prediction over time taking various
uncertainties into account. However, the dynamic model be-
ing used to characterize state estimation and future loading
uncertainties is often simplified through various approxima-
tions, leading to non-credible predicted distribution. Never-
theless, certain algorithm may only provide a point estimate
of the RUL, making it difficult to quantify the uncertainty of
the prediction. In this paper, we focus on interval prediction
with high probability that guarantees finite sample validity
without the knowledge of statistical distribution of the noise.
The key idea is to leverage the newly proposed conformal pre-
diction framework with non-parametric conditional density
estimation. Under certain regularity conditions, the proposed
interval estimator converges to an oracle band at a minimax
optimal rate. In addition, we apply a data driven method to
automatically select the bandwidth in the kernel density esti-
mator. We discuss practical approximations to speed up the
computation. The proposed method can be used to predict the
RUL interval with physics-based model in a distribution free
manner. It can also be applied to assess the validity of other
prognostic algorithms from experimental data. We demon-
strate the effectiveness of the RUL prediction for Li-Ion bat-
teries using both simulated and experimental data.

1. INTRODUCTION

Remaining useful life (RUL) prediction is an important com-
ponent for prognosis and system health monitoring. Ideally,
one expects the prediction algorithm to provide the complete
distribution of the RUL prediction over time taking various
uncertainties into account. However, the dynamic model
being used to characterize state estimation and future load-
ing uncertainties is often simplified with various approxima-

Huimin Chen et al. This is an open-access article distributed under the terms
of the Creative Commons Attribution 3.0 United States License, which per-
mits unrestricted use, distribution, and reproduction in any medium, provided
the original author and source are credited.

tions, resulting in non-credible predicted distribution. Nev-
ertheless, certain algorithms often provide point estimates of
the RUL, making it difficult to quantify the uncertainty of
the prediction. Existing efforts for uncertainty quantification
can be largely classified into two categories: point-based and
density-based credibility tests. In point-based tests, one wants
to find the probability that the RUL is longer than the estimate
so that the critical component can be replaced before its fail-
ure. In many cases, one has to ensure that the probability is
above a certain confidence level, say 0.95, in order to declare
that the point estimate of the RUL is valid. Among all the
valid RUL predictions, it is desirable to find the least con-
servative one, i.e., the largest RUL prediction for decision-
making. However, a prediction point with a desirable confi-
dence level does not fully characterize the uncertainty of the
RUL estimate. The complete description requires the poste-
rior probability density function of the RUL, which is hard
to be fully specified when one has the uncertainty of future
loading that will affect the system dynamics during the pre-
dicted time horizon. Density-based tests address whether the
posterior distribution of the RUL provided by a prognostic al-
gorithm is valid in certain desirable notions. For example, one
can check wether the whole distribution is valid with a desir-
able significance level by Kolmogorov-Smirnov test (Justel,
Pena, & Zamar, 1997). This may require a large number of
samples for any statistically meaningful result. Alternatively,
one may test the statistical significance at some value of the
cumulative distribution function of the RUL estimate using
Fisher’s exact test (Fisher, 1954). However, the method only
ensures validity of a point estimate in the RUL and throws
away other useful information contained in the probability
density function.

It is clear that a point estimate of the RUL seems to be inad-
equate to quantify the uncertainty. However, the whole pos-
terior density of the RUL is hard to come by. Nevertheless,
density-based prognostic methods have been used by people
engaged in various density-based state estimation techniques,
e.g., particle filters (Saha & Goebel, 2011). Note that the pos-
terior density is valid only when the assumed process noise
distribution is true across the entire RUL prediction horizon.

1
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In practice, the prediction interval of the RUL with high prob-
ability is often useful for monitoring a mission critical com-
ponent. The lower limit serves as the valid point estimate
of the RUL while the upper limit shows the full potential
of the component in account for the future loading uncer-
tainty. For a given confidence level, one seeks the smallest
interval to contain the RUL with a probability no less than
the desired confidence level. This boils down to the prob-
lem of interval prediction with high probability that guaran-
tees finite sample validity without the knowledge of statis-
tical distribution of the noise. The key idea is to leverage
the newly proposed conformal prediction framework (Shafer
& Vovk, 2008) with non-parametric conditional density es-
timation (Rosenblatt, 1956). Under certain regularity con-
ditions, the proposed interval estimator converges to an or-
acle band at a minimax optimal rate. In addition, we apply
a data driven method to automatically select the bandwidth
in the kernel density estimator and discuss practical approx-
imations to speed up the computation. The method can be
used to predict the RUL interval with physics-based model in
a distribution free manner. It can also be applied to assess
the validity of any point-based prognostic algorithm from the
experimental data. We demonstrate the effectiveness of the
RUL prediction for Li-Ion batteries using both simulated and
experimental data.

The rest of the paper is organized as follows. Section 2 for-
mulates the RUL prediction problem. Section 3 presents the
distribution free interval estimation of the component’s end-
of-life and discusses its asymptotic properties. Section 4 pro-
vides the experimental study on the state-of-charge estima-
tion of Li-Ion battery using the predicted RUL intervals of
a desired confidence level. Concluding summary is in Sec-
tion 5.

2. THE FORMULATION OF RUL PREDICTION PROB-
LEM

State space model has been commonly used to describe the
dynamics of a component such as the aging process during
repeated usage (Luo et al., 2003). In general, one can apply
the principle of physics to model the dynamics of a compo-
nent by

ẋ(t) = f(t,x(t),p(t),u(t),v(t)) (1)

where x(t) is the state vector, p(t) is the parameter vector
that may change over time but not governed by the differential
equation as the state x(t), u(t) is the input vector, and v(t)
is the process noise vector. The state and parameter can be
observed through a generic continuous time model

y(t) = h(t,x(t),p(t),u(t),w(t)) (2)

where w(t) is the measurement noise vector. In practice,
measurements are made at discrete time time instants t1, ...,

tk, ... and the measurement model becomes

yk = h(xk,pk,uk,wk) (3)

where the subscript k indicates that the measurement yk is
obtained at time tk. Denote by Yk the measurement se-
quence y1, ...., yk. The state estimation problem is to ob-
tain the posterior distribution p(xk|Yk) at any time tk us-
ing the prior knowledge p(x0) and the measurements Yk.
The desired performance of the component can be char-
acterized by a set of constraints from the state, parameter
and input space to some set that fully characterizes the nor-
mal condition (Sankararaman & Goebel, 2013). Specifi-
cally, we let ci(T ) = 1 if the constraint is satisfied, i.e.,
gi(x(t),p(t),u(t)) ∈ Bi for t ∈ [0, T ], where gi is a known
mapping and Bi is the set of acceptable values. Otherwise,
ci(T ) = 0. The end-of-life (EOL) of a component is defined
as the earliest time that one of the n-constraints is violated.
Denote by tEOL the end-of-life of the component given the
state, parameter and input vectors, i.e.,

tEOL = inf
t

{
t

∣∣∣∣∣
n∏

i=1

ci(t) = 0

}
(4)

The remaining useful life (RUL) of the component at time
tP is given by tEOL − tP . Owing to the uncertainty in the
state dynamics, the state x(t) is a random process. Thus the
constraints have to be assessed in a probabilistic sense. Let
α ∈ [0, 1] be the significance level and we define the EOL as
a function of α by

tEOL(α) = inf
t

{
t

∣∣∣∣∣P
(

n∏

i=1

ci(t) = 0

)
≤ α

}
(5)

where the constraint ci is evaluated by gi(x̂(t), p̂(t),u(t))
using the state and parameter estimates with the measure-
ments up to time tP . Note that one can propagate the state,
parameter and input uncertainties into the future and assess
the constraint satisfaction ci probabilistically. For small α,
tEOL(α) may be conservative especially when the uncertainty
of the state dynamics is large initially with limited number of
measurements. The RUL prediction becomes a density es-
timation problem if one wants to fully characterize tEOL(α)
at any time tP . It is computationally demanding and does
not have a closed form expression for a problem with either
nonlinear dynamics or nonlinear constraint.

3. DISTRIBUTION FREE PREDICTION INTERVAL

Consider a generic RUL prediction problem where one ob-
serves Yk and Uk up to time tk and applies state estima-
tion algorithm to obtain x̂k with the associated error covari-
ance Pk. In order to estimate tEOL, one has to propagate
the dynamic model (1) from tk with either known (deter-
ministic) future input or random future input with the antic-
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ipated uncertainty given by a probabilistic model. Clearly,
exact characterization of (5) is computationally challenging
and one may only have a point estimate of the component’s
EOL, namely, t̂kEOL at time tk. In principle, the estimate of
tEOL can be based on the maximum a posteriori (MAP) cri-
terion, which does not necessarily need the complete knowl-
edge of the posterior distribution. However, a prediction in-
terval [tkmin, tkmax] of the tEOL conditioned on Yk and Uk

with a guaranteed confidence level α is often desirable. Ex-
isting criterion to evaluate an RUL prediction algorithm us-
ing the prediction interval such as the α-λ metric (Saxena,
Celaya, Saha, Saha, & Goebel, 2009) requires the complete
distribution from the prediction algorithm, which is often un-
available from the point-based estimators. Nevertheless, the
performance assessment can be misleading when the predic-
tive distribution is not credible. To circumvent the above chal-
lenge, we take an alternative route to generate distribution
free prediction interval using only the point estimate t̂kEOL.
The main idea is to generate conformal prediction interval so
that

P (tEOL ∈ [tkmin, tkmax]) ≥ α

for any distribution of the state and future input. The usual
way to obtain a non-parametric prediction interval leads to
the form
[
t̂kEOL − Zα/2

√
σ̂2
k + s2, t̂kEOL + Zα/2

√
σ̂2
k + s2

]

where t̂kEOL is the point estimate from the prediction algo-
rithm, Zα/2 is the normal quantile, σ̂2

k is the estimated con-
ditional variance, and s2 is the estimated error of the pre-
diction algorithm using bootstrapping (Efron & Tibshirani,
1993). However, such a prediction interval does not have dis-
tribution free finite sample validity.

3.1. Constructing Valid Prediction Interval

We apply the recently proposed conformal prediction method
(Shafer & Vovk, 2008) to ensure the finite sample validity.
Specifically, let t̂1EOL, ..., t̂kEOL be a random sequence fol-
lowing an unknown distribution. We can estimate the density
of the prediction sequence and denote the estimated density
by p̂k(tEOL). The p-value from k samples is given by

πk(t) =
1

k + 1

k+1∑

i=1

1 (p̂i(t) ≤ p̂k(t)) (6)

where 1(·) is the indicator function. The prediction interval
for the (k + 1)-th sample with confidence level α can be ob-
tained by

Ck+1(α) = {t : πk(t) ≥ 1 − α} (7)

Intuitively, we want to test the hypothesis H0 : t̂k+1EOL = t
for arbitrary value t and use the height of the density estimate

as a test statistic. Since the vector (p̂1, ..., p̂k) is exchange-
able, πk(t) is uniformly distributed in [0, 1] and is a valid p-
value for the significance test of H0. The set Ck(α) contains
all values t that are not rejected by the test, thus

P (t̂k+1EOL ∈ Ck+1) ≥ α

for any distribution.

Computing Ck+1(α) is expensive since one has to find the p-
value πk(t) for every t. An approximation is made assuming
that p̂k(t) can be well estimated by a kernel density estimator
as the number of samples increases. With the exchangeability
assumption, we can order the predictions t̂1EOL, ..., t̂kEOL

increasingly such that p̂k(t̂1EOL) ≤ ... ≤ p̂k(t̂kEOL). Let
j = ⌊kα⌋ and define

C+
k+1(α) =

{
t : p̂k(t) ≥ p̂k(tkEOL) − K(0)

kh

}
(8)

where K(·) is the kernel function used to estimate p̂k and h is
the bandwidth of the kernel density estimator. It can be shown
that C+

k+1(α) also has finite sample validity and it has the
same efficiency as Ck+1(α) asymptotically if the bandwidth
h is chosen appropriately (Lei, Robins, & Wasserman, 2011).

3.2. Asymptotic Properties

Let p̂k(t) be the kernel density estimate conditioned on
t̂1EOL, ..., t̂kEOL. We can recursively update the estimate by

p̂k+1(t) =
k

k + 1
p̂k(t) +

1

(k + 1)h
K

(
t̂k+1EOL − t

h

)

with some smooth kernel K(·). The p-value at an arbitrary
time is estimated by

πi =
1

k + 1

k+1∑

j=1

1 (p̂j ≤ p̂k) , 1 ≤ i ≤ n + 1

where we dropped the time argument for simplicity. We have
the distribution free prediction interval satisfying

P (tEOL ∈ C+
k+1) ≥ α

for any chosen α ∈ (0, 1). However, such a prediction in-
terval is not unique and we would hope to shrink the interval
without losing the validity conditioned on the input and ob-
servation.

Consider a partition A = {Aj , j ≥ 1} of length sk. Let
nj =

∑k
i=1 1(t̂iEOL ∈ Aj) be the histogram counts. A local

marginal kernel density estimate is

p̂(t|Aj) =
1

njhk

k∑

i=1

1(t̂iEOL ∈ Aj)K

(
t̂iEOL − t

hk

)

where hk is the kernel bandwidth. The local conditional den-
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sity rank can be defined as

πk,j =
1

nj + 1

k+1∑

i=1

1(t̂iEOL ∈ Aj) ·

1(p̂(t̂iEOL|Aj) ≤ p̂(t̂k+1EOL|Aj))

and the prediction interval with confidence α is

Ck,j(α) = {t : πk,j(t) ≤ 1 − α}.

We can see that the density estimate changes very little when
t varies inside Aj . When Aj has a small diameter and the
kernel function is smooth enough, the local sample approx-
imates independent observations drawn inside the partition
Aj . Thus we can optimize the kernel bandwidth hk adap-
tively to achieve the smallest valid prediction interval asymp-
totically. The tuning of the partition size sk and kernel band-
width hk depends on the smoothness of the conditional den-
sity. It can be trained by using a subset of the samples to
construct a local conformal prediction interval and then in-
creasing the bandwidth until Ck+1 can not be further reduced.

Next, we argue that the convergence rate of the optimized lo-
cal conformal prediction interval is asymptotically minimax
optimal compared with the oracle prediction interval. As-
sume that the density of tEOL satisfies 0 < c0 ≤ ptEOL(t) ≤
c1 ≤ +∞ for any input and observation sequences. In ad-
dition, we assume that ptEOL(t) is β times differentiable and
uniformly bounded by L. In particular, the conditional den-
sity is Lipschitz in t, i.e.,

||ptEOL(·|t1) − ptEOL(·|t2)||∞ ≤ L|t1 − t2|

to ensure that the kernel function K(·) is a smooth approxi-
mation of ptEOL(t) of order β. Let C∗(α) be the oracle pre-
diction interval given by

C∗(α) = {t : ptEOL(t|Y∞,U∞) ≥ t(α)}

where t(α) is the appropriately chosen threshold to achieve
P (tEOL ∈ C∗(α)) = α. If we choose sk ∼ rk and hk ∼
r
1/β
k , then the prediction interval C+

k (α)) satisfies

P

(
sup
t

µ
(
C+

k (α)
⋂

¬C∗(α)
)
≥ cλrk

)
∼ O(k−λ)

for any α ∈ (0, 1), λ > 0 and some constant cλ being inde-
pendent of k. The measure µ shows the difference between
the kernel density estimate and the oracle prediction intervals
while the critical rate rk is

rk =

(
log k

k

) β
2β+1

.

As the sample size increases, the prediction interval by kernel
density estimate converges to the oracle prediction interval

and the rate can not be improved in the minimax sense, i.e.,

inf
C+

k (α)
sup
ptEOL

EptEOL

[
µ
(
C+

k (α)
⋂

¬C∗(α)
)]

≥ crk

for some constant c > 0. The proof invokes generalized
Fano’s lemma (Tsybakov, 2009) where the supremum is over
all distribution ptEOL such that ptEOL(·|x) is Lipschitz in x
in the sup-norm sense and ptEOL(t) is smooth enough, i.e., β
times differentiable. The kernel bandwidth h = crk with a
small enough constant c will converge to the oracle predic-
tion interval and guarantee the finite sample validity simulta-
neously.

4. BATTERY STATE-OF-CHARGE ESTIMATION

Lithium-ion battery is the core of new plug-in hybrid-
electrical vehicles as well as considered in many 2nd gen-
eration hybrid electric vehicles. The lithium-ion battery per-
formance plays an important role for the energy management
of these vehicles as high-rate transient power source cycling
around a relatively fixed state of charge (SOC). The estima-
tion of state-of-charge and state-of-health of the battery cell
has drawn significant attention in battery health management
(Charkhgard & Farrokhi, 2010; Chiasson & Vairamohan,
2005; Kim & Cho, 2011; Klein et al., 2013; Saha, Goebel,
& Christophersen, 2009).

4.1. Battery Dynamic and Measurement Models

We adopt the enhanced self-correcting cell model (Plett,
2004a) which contains both state and unknown parameters.
The model is simplified from the detailed electro-chemical
model (Klein et al., 2013) and it includes open-circuit volt-
age, internal resistance, voltage time constant, and hysteresis.
Assume the sampling interval is Ts. At time k, the current ik
is nearly a constant. The state-of-charge (SoC) ck is governed
by

ck+1 = ck −
(

ηTs

C

)
ik

where η is the Coulombic efficiency factor at current level
ik and C is the cell capacity in Ampere-seconds. The time
constants of the cell voltage response are captured by several
internal states. Let zk be the internal state vector at time k. A
linear model was suggested in (Plett, 2004a) given by

zk+1 = Azzk + Bzik

where Az is a diagonal matrix with real valued entries and Bz

is chosen to have all 1s. The hysteresis level is modeled by

hk+1 = e
−
∣∣∣ ηikγTs

C

∣∣∣
hk +

[
1 − e

−
∣∣∣ηikγTs

C

∣∣∣
]

sgn(ik)

where γ is the hysteresis rate constant. The voltage is

vk = OCV(ck) + Gzk − Rik + Mhk
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Figure 1. Empirical function of open circuit voltage vs. state-
of-charge of Li-Ion battery sets

where OCV(·) is an empirical function found by battery cell
testing; G is a vector of unknown parameters related to the
battery aging status; R is the internal resistance; and M is
the maximum hysteresis level. Thus the overall state vector
is xk = [ck zk hk]

T . The dynamic model contains unknown
parameters η, γ, and G. The measurements are voltage vk
and current ik. The primary goal is to accurately estimate the
state-of-charge ck during the battery usage with variable load.

4.2. Experimental Results

The Li-Ion battery cells used for experimental study were di-
vided into three sets. Set 1 of two batteries was used to tune
the cell model parameters (e.g., OCV(·) function). Set 2 and
Set 3 of four batteries were used in evaluating the joint state
and parameter estimation to see how well the filters perform
under different dynamics. The sampling interval Ts=1s. The
voltage measurement accuracy is ±5mV and the current mea-
surement accuracy is ±100mA.

The open-circuit voltage as a function of the state-of-charge
(SoC) for three sets of the Li-Ion battery cells is plotted in
Fig. 1. First, the cell was fully charged to 4.2 V with a con-
stant current. Then, the cell was discharged at at a constant
rate until 3.0V. The cell voltage as a function of the SoC un-
der discharge and under charge were averaged to compute the
OCV. This has the effect of eliminating, to the greatest extent,
the presence of hysteresis and Ohmic resistance in the OCV
function. In Set 1, the batteries were put in a chamber with
controlled temperature of 25◦C. In Set 2, the batteries were
put on an open table with an electronic fan turned on. In Set 3,
the batteries were put on an open table with the fan turned off.
We can see that Set 2 has a closer empirical OCV function to
Set 1 than Set 3 to Set 1.

The real test comprised a sequence of 40 charge and discharge
cycles for each battery in three sets. The battery was con-

Table 1. Comparison of SoC Estimation Accuracy

Method Test Set RMS error (%) Maximum error (%)
dual EKF 1 0.32 1.33

adaptive CKF 1 0.29 1.34
dual EKF 2 2.14 9.8

adaptive CKF 2 1.33 3.2
dual EKF 3 7.42 13.3

adaptive CKF 3 2.53 5.2

nected to a potentiometer load, separated by 2A discharge
pulses and 10-min rests, and spread over the 20%-90% SoC
range. Set 1 was used to estimate the OCV function and cal-
ibrate the 4th order model of Az. Sets 2 and 3 were used
to evaluate the SoC estimation accuracy with the model state
and parameters initialized from the same conditions as in Set
1. We compare the adaptive cubature Kalman filter (CKF)
(Chen, 2012) with the dual extended Kalman filter (EKF)
(Plett, 2004b) in terms of the root mean square (RMS) er-
ror and maximum error over the whole duration with approx-
imately 5000s for each cycle. The adaptive CKF and dual
EKF have the same initial condition. In adaptive CKF, the
forgetting factor sequence was chosen by

λk = 1 − 0.05 · 0.95k.

The SoC estimation results are listed in Tab. 1. The dual EKF
has similar SoC estimation accuracy to the adaptive CKF on
Set 1 batteries since the model parameters have been well
calibrated. The slight increase of the error by the dual EKF
is mainly due to linearization of the dynamic model. It is in-
teresting to note that the adaptive CKF performs much better
in Set 2 and Set 3 where the OCV functions and unknown
parameters are different from those in Set 1. In Set 3, η has
more than 20% of variation from the nominal value in Set 1.
The dual EKF yields more than twice of the SoC estimation
error made by the adaptive CKF.

Next, we apply the SoC estimation to estimate the end-of-life
(EOL) and remaining useful life (RUL) of the battery during a
discharge cycle based on the proposed conformal interval es-
timation using a Gaussian kernel. For convenience, we chose
α = 0.99 and calculated the true tEOF when the cell voltage
dropped below 3.0V. The adaptive CKF was used to jointly
estimate the state and parameter and the resulting prediction
interval of the EOL is shown in Fig. 2. We can see that more
than 99% of the predicted intervals cover the true EOL, indi-
cating the validity of the prediction. Note that the predicted
EOL interval does not always decrease over time owing to
the future loading uncertainty as well as the evolvement of
the dynamic state. Note also that the lower and upper limit
of the prediction EOL may not be symmetric around the best
point estimate, indicating possibly an asymmetric posterior
distribution. Nevertheless, the predicted interval reduces to
less than 20s fairly quickly. Fig. 3 shows the RUL prediction
interval from 100s to 700s with α = 0.99. We can see that
the prediction interval covers the true RUL nearly all the time
with the upper limit being close to the true RUL. Thus the

5

Annual Conference of the Prognostics and Health Management Society 2013

217



Annual Conference of the Prognostics and Health Management Society 2013

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
4820

4825

4830

4835

4840

4845

4850

time (sec)

pr
ed

ic
tio

n 
in

te
rv

al
 o

f  
t E

O
L (

se
c)

Figure 2. The end-of-life (EOL) prediction interval with α =
0.99 using CKF for one discharge cycle of Set 2.
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Figure 3. The remaining useful life (RUL) prediction interval
with α = 0.99 using CKF for one discharge cycle of Set 2.

algorithm seems to be practical for monitoring the battery’s
SoC and fully utilizing its capacity.

5. CONCLUSION

We presented a generic framework for distribution free inter-
val estimation to quantify the uncertainty of the end-of-life or
the remaining useful life (RUL) prediction of a system com-
ponent. The method combines the conformal prediction and
non-parametric density estimation to ensure the finite sam-
ple validity with arbitrarily chosen confidence level. Under
certain regularity conditions, the proposed interval estimator
converges to an oracle band at a minimax optimal rate. In ad-
dition, we used a data driven method to automatically select
the bandwidth in the kernel density estimation and worked
out a practical approximation to speed up the computation.
The proposed method was used to predict the RUL interval
for Li-Ion batteries with the joint state and parameter esti-
mation using nonlinear filtering methods. The results reveal

that the 99% confidence interval shrinks quickly when the dy-
namic model captures the discharge cycle fairly accurately. In
addition, the lower and upper limit of the RUL prediction in-
terval is often non-symmetric of the true RUL indicating the
asymmetric nature of the posterior distribution.
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ABSTRACT

The goal of prognostics and health management (PHM) sys-
tems is to ensure system safety, and reduce downtime and
maintenance costs. It is important that a PHM system is ver-
ified and validated before it can be successfully deployed.
Prognostics algorithms are integral parts of PHM systems.
This paper investigates a systematic process of verification
of such prognostics algorithms. To this end, first, this paper
distinguishes between technology maturation and product de-
velopment. Then, the paper describes the verification process
for a prognostics algorithm as it moves up to higher maturity
levels. This process is shown to be an iterative process where
verification activities are interleaved with validation activities
at each maturation level. In this work, we adopt the concept
of technology readiness levels (TRLs) to represent the differ-
ent maturity levels of a prognostics algorithm. It is shown that
at each TRL, the verification of a prognostics algorithm de-
pends on verifying the different components of the algorithm
according to the requirements laid out by the PHM system
that adopts this prognostics algorithm. Finally, using simpli-
fied examples, the systematic process for verifying a prognos-
tics algorithm is demonstrated as the prognostics algorithm
moves up TRLs.

1. INTRODUCTION

Prognostics and health management (PHM) systems are im-
portant to ensure safe and correct operation of real-world en-
gineered systems, reduce their downtime, and reduce main-
tenance costs. Integral components of PHM systems include
diagnostics and prognostics algorithms, the associated diag-
nostics and prognostics models, sensors, and other hardware,

Indranil Roychoudhury et al. This is an open-access article distributed un-
der the terms of the Creative Commons Attribution 3.0 United States Li-
cense, which permits unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are credited.

and interfaces between these different components. Diagnos-
tics algorithms involve fault detection, isolation, and iden-
tification capabilities; and contribute towards system safety
by enabling fault mitigation steps. prognostics algorithms in-
volve prediction of how the system will evolve in the future,
thereby contributing towards system safety. Prognostics al-
gorithms also enable reduction of downtime and maintenance
costs by providing decision makers with predictions of future
system behavior so that decision makers can use this infor-
mation to either take preventative, fault mitigating, or main-
tenance actions, or modify mission operations to prolong sys-
tem use, and maximize mission utility.

Before a PHM system can be deployed in real-world scenar-
ios, it is critical that the PHM system undergoes verification
and validation. At the most general level, verification of a
product is the process where stakeholders answer the query
“are we building it right?”, while validation of a product is the
process where stakeholders answer the query “are we build-
ing the right thing?” Intuitively, verification is the quality
control process of evaluating whether or not a product, ser-
vice, or system complies with testable constraints imposed by
requirements at the start of the development process. In con-
trast, validation is the quality assurance process of evaluating
whether or not a product, service, or a system accomplishes
its intended function when fielded in the target application
domain.

A PHM system may include several hardware and software
components, including software implementations of diagnos-
tics and prognostics algorithms. While many publications
discuss the verification of hardware (Gupta, 1993; McMillan,
2000) and software verification (Bérard et al., 2010; Wallace
& Fujii, 1989) only, this paper focuses on the verification of
all the different components that constitute prognostics algo-
rithms. To this end, first, this paper distinguishes between
technology maturation and product development contexts to
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characterize various PHM verification and validation scenar-
ios often discussed in the literature, and then, proposes a pro-
cess that identifies specific steps that can facilitate verifica-
tion of prognostics algorithms. Specifically, the contributions
of this paper are as follows:

1. This paper describes the verification process for a prog-
nostics algorithm as it moves up to higher maturity lev-
els. In this work, the concept of technology readiness
levels (TRLs) is adopted to represent the different matu-
rity levels of a prognostics algorithm.

2. Next, it is shown that at each TRL, the verification of a
prognostics algorithm depends on verifying the different
components of the algorithm according to the require-
ments laid out by the PHM system that adopts this prog-
nostics algorithm.

3. Finally, using simplified examples, the systematic pro-
cess for verifying a prognostics algorithm is demon-
strated as the prognostics algorithm moves up TRLs.

2. VERIFICATION AND VALIDATION OF WHAT - A
PRODUCT OR A TECHNOLOGY?

In order to put our proposed view of the maturation process
into context, first we distinguish between developing a sys-
tem or a product1 versus maturing a technology2. The devel-
opment of a system/product is driven by the high level need
to accomplish a certain goal in a specific application, whereas
technology is understood to be more general and applicable
to more than one system when matured.

Examples of systems or products include PHM systems, such
as a health and usage monitoring system (HUMS) (Romero,
Summers, & Cronkhite, 1996), battery health management
system (BHMS) for an electric unmanned aerial vehicle (e-
UAV) (Saha et al., 2011), health management system for a
water recycling system (WRS) (Roychoudhury, Hafiychuk, &
Goebel, 2013), and so on. As shown in Figure 1, a PHM sys-
tem generally consists of several components, such as sensors
(including data acquisition (DAQ), signal conditioner, etc.),
technologies such as diagnostics and prognostics algorithms,
diagnostics and prognostics models, and other hardware (e.g.
communication channels, decision making, interfaces, data
storage, and displays, among others). Some of these com-
ponents, such as sensors, DAQ, etc., are often already ma-
tured technologies used in commercial off-the-shelf (COTS)
products while others such as prognostics algorithms may be
viewed as technologies that need to be matured before they
can be used in the PHM systems.

An example of a prognostics algorithm or technology is the
ComputeRUL algorithm, whose flowchart is shown in Fig-
ure 2. ComputeRUL consists of three main functions: (i)
current state estimation, (ii) future state prediction, and (iii)
1In this paper, we use the terms ‘system’ and ‘product’ interchangeably.
2We use the terms ‘algorithm’ and ‘technology’ interchangeably.

Diagnostics Model

Prognostics 

Algorithms

Prognostics Model

Diagnostics 

Algorithms

Other HardwareSensors

PHM System

Figure 1. Typical components of a PHM System.
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Hypothesized 

Input Data

Input Data

Start

Stop
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Readings
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(RUL) Computation 

using Thresholding

Prognostics 

Model

Figure 2. Flowchart of ComputeRUL, an example prognos-
tics algorithm.

remaining useful life (RUL) computation. The current state
estimation function takes as inputs the sensor readings and the
system input data and estimates the current state of the sys-
tem using a particle filtering scheme (Arulampalam, Maskell,
Gordon, & Clapp, 2002) that uses a prognostics model of the
system. The future state prediction function takes, as inputs,
estimated future operational and environmental profiles and
uses a Monte Carlo technique (Kalos & Whitlock, 2008) to
predict future system state using the prognostics model. Fi-
nally, the RUL computation function compares the predicted
values of system state to a predefined threshold and computes
RUL as the time remaining before the predicted system state
values cross this threshold (Daigle & Goebel, 2011).

Verification and validation are key steps in maturing both
products and technologies; however the specifics for each
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For real systems, a technology usually gets adopted at TRL 6 or higher

Figure 3. The technology maturation and product development paths.

case may differ. It is important to understand these dif-
ferences in order to clearly identify what involves verifi-
cation and validation of a prognostics technology. In the
PHM literature we identified that there are several efforts that
report verification and validation activities in their respec-
tive applications or products, however it was very confus-
ing to get a consistent understanding of what activities are
geared towards verification, and what activities enable vali-
dation, separately (Tang et al., 2007; Feather & Markosian,
2008). Many efforts combine verification and validation as
one task (Aguilar, Luu, Santi, & Sowers, 2005; Byington,
Roemer, Kalgren, & Vachtsevanos, 2005), while others use
similar methods but sometime refer to them by verification
and sometime by validation. Further, most of these reported
developments represent different levels of technical maturity,
or in other cases, different levels of system integration. Here
we attempt to describe a systematic process that allows us to
put most of these efforts into a common context and clearly
identify the nature of distinct verification and validation ac-
tivities.

But first, we distinguish between two related but different
contexts that influence the nature of verification and valida-
tion activities but often get confused with each other, i.e.
product development versus technology maturation (Hicks,
Larsson, Culley, & Larsson, 2009). While the steps for both
activities look similar there are some differences that are im-
portant to understand verification and validation for PHM
system development versus for prognostics technology matu-
ration.

Product development typically starts from a top level need
for a product (such as a PHM system) for which several ideas
may be evaluated at the concept stage. Based on a selection
process some ideas move forward with development. At that
point a system gets broken into its subsystems and compo-
nents and requirements flow down (Saxena et al., 2012) for in-
dividual component development and system integration. At
the lowest level some of these components may already ex-
ist as COTS components based on mature technologies. But
if there are gaps identified, new components may be devel-
oped using new technologies. It must be noted that in this
scenario the new technology is developed and matured with
an end product in mind and, therefore, most of the testing is
driven by the requirements flowed down from the top level
product. Once developed, these components are first tested
individually (quality control process) and then integrated into
a subsystem, which undergoes quality control again at the in-
tegrated level. At each level tests are designed to help ful-
fill higher level requirements. This process continues itera-
tively until the entire system has been integrated and tested as
a whole. The product can then be further certified for specific
use by domain-relevant certifying agencies.

The technology maturation, on the other hand, typically starts
at the very low level where a technological concept is consid-
ered potentially useful. Prototypes and simulations are de-
veloped and tested on simpler cases. Feedback is used to re-
fine the implementation and retest. It is desirable to apply
and demonstrate the technology to a variety of applications
for establishing its generality. This is often accomplished by
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proof-of-concept developments for various use cases. Note
that each of these proof-of-concept use cases can be con-
sidered as a product with its own product development cy-
cle, and a successful development of each of these products
helps in placing increased trust in the new technology as a
whole (see Figure 3), consequently also increasing the ma-
turity level. Conversely, the technology can also be matured
without any specific product in mind, or rather with several
potential products in mind. As a technology matures through
demonstrations and testing it may be adopted for a specific
use case for which a directed and dedicated product devel-
opment cycle is usually followed. Specific verification and
validation activities, may be pursued in order to integrate this
technology into that product. Note that although the tech-
nology at this point can be claimed as matured to be used
in that particular product, the generality of technology may
allow it to be usable for other products, often with required
customization.

2.1. Technology Maturation

We realize that from our research-perspective, maturation of a
prognostics algorithm as a technology falls under the general
technology maturation category. There are several efforts,
currently undergoing, to integrate prognostics algorithms into
specific PHM system products such as BHMS for an e-UAV,
health management of a WRS, and so on. Therefore, from
here on we will describe what prognostics technology mat-
uration would look like and what the verification and vali-
dation specific steps are for this maturation. In this work,
we adopt NASA’s Technology Readiness Level (TRL) con-
cept (Mankins, 1995) to describe various maturity levels for a
prognostics technology with no particular preference. Other
similar concepts can be used just as well. With this un-
derstanding, a technology moves up the TRL as it matures,
whereas a product moves up a system integration ladder as it
gets developed.

NASA TRLs are defined from TRL 1 through 9 (Mankins,
1995). TRL 1 describes a technology at its very concept
or first level of maturation, where only basic principles are
observed and reported. TRL 2 describes the stage when a
technology concept and/or application is formulated. At TRL
3, analytical and experimental critical function and/or char-
acteristic proof of concept of the technology has been per-
formed. Component and/or breadboard validation in labo-
ratory environment is performed in TRL 4. TRL 5 repre-
sents the stage when the component and/or breadboard val-
idation is performed in a relevant environment, while TRL
6 indicates the maturation stage when the system/subsystem
model or prototype demonstration is performed in a relevant
environment (either ground or space). When the technology
reaches TRL 7, the system prototype demonstrations are per-
formed in a space environment. TRL 8 represents the stage
when the actual system gets completed and flight qualified

through test and demonstration (either ground or space), and
finally, TRL 9 represents the stage when the actual system is
‘flight proven’ through successful mission operations. Note
that while an OEM component has reached TRL 8 or 9, it
may be integrated into a larger system (product) which is at a
lower integration level, i.e. not a full system on its own.

From the technology’s point of view, Figure 4 illustrates that
at each TRL of a technology, such as prognostics, both ver-
ification and validation activities must be performed. It is
expected that at low TRLs (TRL 1-2), more effort would be
on validation of the concepts than verification because the
goal at these TRLs is to ensure that the prognostics technol-
ogy is indeed useful in accomplishing system level perfor-
mance, safety, and cost goals. In these stages, the technology
is still being developed and is adopted in less mature proto-
types and products. At middle TRLs (TRL 3-7), more effort
is expected on verification activities than validation, since at
these TRLs, the emphasis is on adopting and implementing a
particular prognostics technology (already verified and vali-
dated at lower TRLs) in different PHM systems (at different
maturation levels). At high TRLs (TRL 8-9), relatively more
effort is again on validation than verification, since by now
it is established that the implementations of the prognostics
technology (in middle TRLs) are verified and validated to be
‘working’, and the emphasis at higher TRLs is to ensure that
the intended functions of the target PHM system that adopts
this prognostics algorithm is fulfilled successfully. As we can
see in the above description, it is clear that verification and
validation of a prognostics technology at any TRL assumes
completion of verification and validation at previous TRLs.

Figure 4 also points out that the scope of the products (e.g.
PHM systems) that adopt this technology gets more focused
as the prognostics technology development proceeds from
low TRLs to high TRLs, e.g., from less-mature PHM systems
implemented on breadboards to mature BHMS for the partic-
ular Lithium-Ion batteries used in the e-UAV. Moreover, as
the prognostics technology matures to higher TRLs, they get
integrated into PHM systems that are part of progressively
larger systems.

2.2. Product Development

From a products point of view, verification and validation
steps are performed for the product (PHM system in our case)
by verifying and validating each of its components, the inter-
faces between these components, and their interactions. The
individual components of a product, however, follow their
own maturation cycle and integrate into the main product
life-cycle when they have matured to a certain degree within
their own maturation scale. For example, the prognostics al-
gorithm, like other components of the PHM system, follows
its own maturation (TRL development) stages and gets inte-
grated into a product when a minimum TRL is achieved. Typ-
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Figure 4. Verification and validation activities across different
TRLs.

ically technologies demonstrated to be at TRL 6 or higher are
considered a candidate to be integrated into a product ready
for use. Once integrated into a product, the prognostics al-
gorithm gets verified and validated together with other inte-
grated components, as a subsystem for that product. Note that
other components of the PHM system, e.g. original equip-
ment manufacturer (OEM) components such as sensors may
be at very high maturation level, but the product, i.e., the
PHM system, as a whole may not be considered fully mature.

In the remainder of this paper, we focus our attention specifi-
cally on the verification of the prognostics algorithms, which
is the main topic in this paper. The validation of prognos-
tics algorithms is beyond the scope of this work, and will be
investigated as part of future work. However, for the sake
of highlighting how both verification and validation activities
are performed at different TRLs (shown in Figure 4), we will
describe some specific validation activities while discussing
the case study (in Section 4). The illustrated examples of
validation activities also help in drawing a contrast with spe-
cific verification activities at various TRLs, especially since,
in literature, these validation activities are often included as
verification that leads to confusion.

3. VERIFICATION OF PROGNOSTICS ALGORITHMS

Before we describe the verification process for prognostics
algorithms, we first have to define what constitutes a prog-
nostics algorithm. Figure 5 shows the different components
of a prognostics algorithm when adopted by a product, such
as a PHM system. The components of a prognostics algo-
rithm, according to our understanding, are:

• The core prognostics algorithm (CPA) is a high-level ab-
straction of the prognostics approach which can be rep-
resented in terms of a system block diagram, a flowchart,

or pseudocode. It is not implemented code. Figure 2
presents an example of the CPA for the ComputeRUL
prognostics algorithm.

• The implementation specific aspects (ISA) relate to a
particular implementation of the core prognostics algo-
rithm (denoted by CPA) in a particular coding language
and a particular computational processing architecture
and hardware.

• The domain specific entities (DSEs) of a prognostics al-
gorithm when the prognostics algorithm gets adopted in
a particular product. The DSE will typically include
domain-specific models. We note that every diagnos-
tics and prognostics algorithm is based on a correspond-
ing underlying model. For instance, in classical model-
based prognostics algorithms, the models may be state-
space models or some other mathematical construct or
abstraction that represent or describe physical behavior
of the system under consideration. These models can be
built upon the use of physics first principles or empiri-
cally by observing the physical behavior. For data-driven
prognostics algorithms, DSEs consists of domain spe-
cific feature extraction methods along with structures for
different mathematical abstractions. These abstractions
are typically built by observing and extracting the infor-
mation available in the data often without explicit use of
physical phenomena knowledge. As a result, in the data-
driven prognostics context, features and abstractions as
part of the DSEs are typically equivalent to the concept of
features and models in statistical learning. For example,
in case of data driven diagnostics and prognostics algo-
rithms, mathematical constructs such as Artificial Neu-
ral Network (Yegnanarayana, 2004), Gaussian Process
Regression (GPR) (Seo, Wallat, Graepel, & Obermayer,
2000), etc. are trained using data by learning parame-
ters and fixing a structure (topology, covariance struc-
ture, etc.) to develop models that can be regressed to
make predictions.

• The data sources (DS) consist of sensor measurements
of physical variables. These data are typically assumed
to be part of a modern instrumentation system in which
a transducer is used to measure a physical quantity and
its output is processed through a signal conditioner and
DAQ in order to obtain a digital representation of such
measurement that can be logged for future usage, or use
immediately by the algorithm. There are cases in which
a physical quantity is not directly measured by a physical
sensor but it is estimated from other physical sensors.

By making distinctions between the different components, we
identify separate pieces of a prognostics technology that can
be verified in parts. This decomposition, to our understand-
ing, makes it easier to verify if something changes, since, in
this way, whoever makes a change to a particular component
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Figure 5. Components of a prognostics algorithm adopted by
a PHM System.

must also verify that (updated) component at that level. Typ-
ically, low TRL technologies get developed by different con-
tractors and do not get adopted in a product until verified and
validated at that level. So from a high TRL, system integra-
tors’ point of view, they are not tasked with the verification of
low-level components. But, if a component changes at a high
TRL, the component will have to undergo verification at that
high TRL again.

As an example, consider the ComputeRUL algorithm whose
CPA is described using the flowchart in Figure 2. It is possible
that ISA, DSE, and DS may all change at different maturation
levels of ComputeRUL, but the CPA may remain the same.
The ISA, DSE, and DS change because through the course of
maturation of the CPA, several systems or products employ-
ing such technology are going to be developed at different
points in time and likely by different parties with different
target application domains.

For example, at TRL 4, the ISA could be in Matlab on a labo-
ratory computer, while at a higher TRL (say, TRL 8), perhaps
the ISA would be an assembly language implementation run-
ning on embedded processors onboard the e-UAV. Similarly,
at TRL 3, DS could be a simulated data, while at TRL 8, the
DS could be the actual system sensors onboard the e-UAV as
its data sources. Similarly the DSE for TRLs 3 and 8 could be
the model of a generic COTS battery cell, and a high fidelity
model of the specific Lithium-Ion battery used on board the
e-UAV, respectively.

At each TRL, the verification of the prognostics technology
implies the verification of ISA with respect to requirements

defined using the corresponding DSE and DS. As the prog-
nostics technology moves from one TRL to the next, if any
of the DSE, DS, or ISA of the prognostics algorithm at the
higher TRL differs from those at the lower TRL, all three
components need to be verified again at the higher TRL. Typ-
ically, at higher TRLs, the ISA and corresponding DSE may
be the same from one TRL to the other, but the DS usually
changes.

Recall that verification is the quality control process of eval-
uating whether or not a product, service, or system complies
with testable constraints imposed by requirements at the start
of the development process. Therefore, requirements play
an integral part in verification efforts, and, verification, in a
way, can only be as good as the requirements (Saxena et al.,
2012; Rajamani et al., 2013; Saxena, Roychoudhury, Lin, &
Goebel, 2013). Several publications list various attributes that
characterize the goodness of individual requirements, as well
as the set of requirements (Firesmith, 2003; Sommerville &
Sawyer, 1997). For the sake of brevity, we will discuss here
only the most important of these attributes good requirements
must fulfill to enable verification:

1. Each requirement must be verifiable, i.e., a finite, cost-
effective process has been defined to check that the re-
quirement has been attained.

2. Each requirement must be attainable (or, feasible), i.e,
solutions exist within performance, cost, and schedule
constraints and the requirement can be satisfied within
the constraints of the project.

3. Each requirement must be unambiguous (or, understand-
able), i.e., it expresses objective facts, not subjective
opinions, and it is subject to one and only one interpreta-
tion.

4. Each requirement must be design independent, i.e., each
requirement does not specify a particular solution or a
portion of a particular solution. Stating implementation
instead of requirements can lead to major issues, such as
forcing a design where it is not intended, or leading the
authors of these requirements to believe that all require-
ments are covered.

5. Each requirement must be traceable to an originating
high-level requirement. Traceability refers to relation-
ships between parent and child requirements, and be-
tween requirements and other design goals. Every re-
quirement should be traceable to the needs, goals, objec-
tives, and constraints of the target application.

6. The set of requirements must be complete, i.e., every-
thing the system is required to do throughout the systems
life cycle is included. Completeness is a desired property
but cannot be proven at the time of requirements devel-
opment, or perhaps ever.
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The property of traceability is very important. This is be-
cause, a PHM system by design is almost always a part of a
larger target system, and typically, PHM system requirements
are derived from high level performance, cost, and schedule
requirements of these target systems (Saxena et al., 2012).
Such high level requirements are typically generated by the
customer (the stakeholder who concerns with getting the sys-
tem built), and often times, the vendor (the stakeholder who
concerns with building the system to the customer’s satisfac-
tion) must flow down the requirements from the high level
customer-requirements to low-level testable requirements.

As part of previous work, in (Saxena et al., 2012), we devel-
oped a process to flow down high level functional require-
ments to low level prognostics performance metrics parame-
ters and illustrated this process using an e-UAV scenario. The
low level prognostics metrics take into account several per-
formance factors such as precision, timeliness, accuracy, and
prediction confidence, e.g. the α-λ and β metrics developed
in (Saxena et al., 2012).

4. CASE STUDY: VERIFICATION OF COMPUTERUL

This section presents a procedure for verification of the prog-
nostics algorithm ComputeRUL. As mentioned in Section 3
above, a prognostics algorithm consists of four distinct com-
ponents, namely CPA, ISA, DS, and DSE based on the prod-
uct that has adopted the prognostics technology at a particu-
lar TRL. For this particular example, as the prognostics algo-
rithm moves to a higher TRL, the CPA is assumed to remain
unchanged, although this is not always the case. However, the
other three components, i.e., ISA, DS, and DSE, may change
as the prognostics algorithm moves to higher TRLs, requiring
that the prognostics algorithm is verified again.

Table 1 presents the four components of a prognostics algo-
rithm at different TRLs along with a list of verification and
validation testing activities at each TRL. At TRL 1, the prog-
nostics algorithm ComputeRUL is in a concept form, and ex-
ists as a flowchart (shown in Figure 2). Recall that verification
tests involve checking the implementation correctness while
validation tests involve checking for functional correctness.
Since there is no ‘real’ implementation, there are no DSE and
DS for this algorithm at this TRL, and the testing activities in-
volve evaluation of the applicability of the ComputeRUL to-
wards predictive life estimation towards health management.
At such a low TRL, therefore, the nature of the testing of this
algorithm is more of validation than verification.

In TRL 2, ComputeRUL is implemented on paper us-
ing the detailed mathematical abstractions for particle fil-
ter (Arulampalam et al., 2002) and Monte Carlo meth-
ods (Kalos & Whitlock, 2008). The DSE at this stage in-
volves representative nonlinear state-space equations of bat-
teries, and the DS involved ‘made-up’ synthesized data from
general battery dataset. The goal of testing activities at this

stage is still more validation-oriented, and involves determin-
ing if the ComputeRUL algorithm can be applied to battery
discharge prediction using current and voltage data. It is also
important to study the battery data and ensure that features
are available that correlate monotonically to measure fault
growth in batteries.

At TRL 3, ComputeRUL is implemented using C++ on a
generic computer. The DSE include equations of battery of
arbitrary chemistry, and the DS used involve damage progres-
sion battery data obtained from simulations. The test activi-
ties at this stage include both verification and validation activ-
ities. The verification activities involve ensuring that uncer-
tainty quantification error, modeling and discretization errors
are within allowed limits. Validation activities involve ensur-
ing that α-λ performance, prediction horizon, convergence,
confidence interval, statistical hypothesis testing, reliability
metric etc. are within allowed limits.

At TRL 4, ComputeRUL is implemented in C++ on the
computer in the battery testbed in the laboratory. The DSE
includes equations of Lithium-Ion batteries similar to those
on-board the e-UAV. The DS at this TRL involves data from
Lithium-Ion batteries in the environmental chamber (in lab-
oratory setting) with constant load profiles. Both verifica-
tion and validation activities make up the test activities at
this TRL. The verification activities involve ensuring that
measurement errors are within allowed limits; the algorithm
works correctly in the presence of manufacturing variability;
the channel biases are kept at a minimum; and that the algo-
rithm works for constant load profiles. Validation activities
involve ensuring that α-λ performance, prediction horizon,
convergence, confidence interval, statistical hypothesis test-
ing, reliability metric etc. are within allowed limits.

At TRL 5, the ISA and DSE of ComputeRUL remains the
same as in TRL 4. However the DS now involves data from
Lithium-Ion batteries in the environmental chamber (in lab-
oratory setting) with varying load profiles, and hence the
prognostics technology will have to be verified and validated
again. The verification and validation testing activities at
TRL 5 are similar to that of TRL 4.

The ISA for ComputeRUL at TRL 6 involves MATLAB im-
plementation of the CPA running on computers similar to
those on-board the e-UAV. The DSE include equations of
exact type of Lithium-Ion batteries used on-board e-UAV.
The DS at this TRL includes played-back data from ac-
tual Lithium-Ion batteries onboard the e-UAV from multi-
ple ground tests. Verification tests at this TRL include en-
suring that the no coding errors are made; discretization and
sampling rate errors are avoided; and no communication er-
rors occur. Validation tests include ensuring that prognostic
horizon, computation time, α-λ performance, robustness to
system noise, prediction update rate, etc. are within require-
ments.
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At TRL 7, ComputeRUL is implemented in MATLAB run-
ning on the actual computers on-board the e-UAV. The DSE
are equations of exact type of Lithium-Ion batteries used on-
board the e-UAV and the DS consists of real-time data from
actual Lithium-Ion battery sensors onboard the e-UAV from
multiple flight tests with simplistic (safe) flight profiles.

Since the CPA, ISA and DSE of ComputeRUL does not
change from TRL 7 - 9, once the ISA, DSE, and the inter-
faces are verified in TRL 7, they do not need to be re-verified
in TRL 8 and 9. But, since DS changes from real-time data
from actual Lithium-Ion batteries onboard the e-UAV from
multiple flight tests with complex flight profiles in TRL 8 to
real-time data from actual Lithium-Ion batteries onboard the
e-UAV from actual science flight missions, validation activ-
ities are performed again at both TRL 8 and 9, and involve
ensuring that prognostic horizon, computation time, α-λ per-
formance, robustness to system noise, prediction update rate,
etc. are still within requirements.

In our case study, we use an example that used BHMS prod-
ucts at each TRL to demonstrate how the prognostics algo-
rithm matures to higher TRLs. But, as is shown in Figure 3,
maturation can also be done through different products or sys-
tems (e.g., PHM of Water Recycling System, HUMS of rotor-
crafts, etc.) with necessary customization and testing.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a systematic process of verifica-
tion of prognostics algorithms. We distinguished between
technology maturation and product development processes,
and described the systematic process of verification of a prog-
nostics algorithm as it moves up to higher maturity levels.
This process is iterative where verification activities are in-
terleaved with validation activities at each maturation level.
It was shown that at each maturation level, verification of
a prognostics algorithm depends on verifying the different
components of the algorithm according to the requirements
laid out by the PHM system that adopts this prognostics al-
gorithm. Finally, using simplified examples (mostly from the
battery health management domain), the systematic process
for verifying a prognostics algorithm was demonstrated.

In reality, verification and validation of prognostics technol-
ogy is not trivial. These challenges arise from use of non-
deterministic approaches to account for uncertainty in prog-
nostics and the self-evolving nature of these algorithms ex-
hibiting learning behaviors both of which result in an infinite
testing space from an exhaustive verification point of view,
which is practically impossible to cover. Apart from mathe-
matical or theoretical limitations, prognostics methods suffer
from acausality limitations towards their validation as they re-
quire ground truth information about actual time of failure for
failures that have not happened yet. As part of future work,
we will investigate how to address these challenges. We will

also investigate the process for validation of PHM systems.
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Table 1. Verification of ComputeRUL prognostics technology: an example.

TRL CPA ISA DSE DS Testing Activities

1 ComputeRUL Flowchart N/A N/A Evaluate applicability of predictive life esti-
mation towards health management (Valida-
tion)

2 ComputeRUL Mathematically
instantiating the dif-
ferent components in
CPA and simulating
these analytically

Representative nonlin-
ear equations

Synthesized data 1. Determine that battery discharge can be
predicted using available current and voltage
data. (Validation)
2. Verify that features are available that cor-
relate monotonically to measure fault growth
in batteries (Validation)
3. Quantify errors and confidence in com-
puted features correlated to fault ground truth
data (Validation)

3 ComputeRUL CPA implemented in
C++ on a generic lap-
top

Equations of battery
of any arbitrary chem-
istry

Damage progression
data obtained from
simulations

1. Ensure that uncertainty quantification er-
ror, modeling error, discretization error are
within allowed limits (Verification)
2. Ensure that α-λ Performance, prediction
horizon, convergence, etc. metrics from the
ISA are within allowed limits (Validation)

4 ComputeRUL CPA implemented in
C++ on the computer
in the battery testbed
in the laboratory

Equations of battery of
Lithium-Ion chemistry
similar to those on-
board the e-UAV

Data from Lithium-
Ion batteries in the
environmental cham-
ber (in laboratory
setting) with constant
load profiles

1. Ensure that measurement errors, manufac-
turing variability, channel biases, load pro-
files are all within allowed limits. (Verifica-
tion)
2. Ensure that α-λ Performance, predic-
tion horizon, convergence, confidence inter-
val, statistical hypothesis testing, reliability
metric etc. are within allowed limits. (Val-
idation)

5 ComputeRUL CPA implemented in
C++ on the computer
in the battery testbed
in the laboratory

Equations of battery of
Lithium-Ion chemistry
similar to those on-
board the e-UAV

Data from Lithium-
Ion batteries in the en-
vironmental chamber
(in laboratory setting)
with varying load pro-
files

1. Ensure that measurement errors, manufac-
turing variability, channel biases, load pro-
files are all within allowed limits. (Verifica-
tion)
2. Ensure that α-λ performance, predic-
tion horizon, convergence, confidence inter-
val, statistical hypothesis testing, reliability
metric etc. are within allowed limits. (Val-
idation)

6 ComputeRUL CPA implemented in
MATLAB running on
the computers similar
to that on-board the e-
UAV

Equations of exact
type of batteries of
Lithium-Ion chem-
istry on-board the
e-UAV

Played-back data from
actual Lithium-Ion
battery sensors on-
board the e-UAV from
multiple ground tests

1. Ensure no coding errors; discretization and
sampling rate errors; and communication er-
rors occur. (Verification)
2. Ensure that prognostic horizon, compu-
tation time, α-λ performance, robustness to
system noise, prediction update rate, etc. are
within requirements. (Validation)

7 ComputeRUL CPA implemented in
MATLAB running on
the actual computers
on-board the e-UAV

Equations of exact
type of batteries of
Lithium-Ion chem-
istry on-board the
e-UAV

Real-time data from
actual Lithium-Ion
battery sensors on-
board the e-UAV from
multiple flight tests
with simplistic (safe)
flight profiles

1. Ensure that communication errors and de-
lays, code verification, race conditions are all
within allowed limits. (Verification)
2. Ensure that prognostic horizon, compu-
tation time, α-λ performance, robustness to
system noise, prediction update rate, etc. are
within requirements. (Validation)

8 ComputeRUL CPA implemented in
MATLAB running on
the actual computers
on-board the e-UAV

Equations of exact
type of batteries of
Lithium-Ion chem-
istry on-board the
e-UAV

Real-time data from
actual Lithium-Ion
battery sensors on-
board the e-UAV from
multiple flight tests
with complex flight
profiles and different
operating conditions

1. Ensure that prognostic horizon, compu-
tation time, α-λ performance, robustness to
system noise, prediction update rate, etc. are
within requirements. (Validation)

9 ComputeRUL CPA implemented in
MATLAB running on
the actual computers
on-board the e-UAV

Equations of exact
type of batteries of
Lithium-Ion chem-
istry on-board the
e-UAV

Real-time data from
actual Lithium-Ion
battery sensors on-
board the e-UAV
during multiple actual
science missions

1. Ensure that prognostic horizon, compu-
tation time, α-λ performance, robustness to
system noise, prediction update rate, etc. are
within requirements. (Validation)
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ABSTRACT 

Vibration signatures contain information regarding the 
health status of the machine components. One approach to 
assess the health of the components is to search 
systematically for a list of specific failure patterns, based on 
the physical specifications of the known components (e.g. 
the physical specifications of the bearings, the gearwheels or 
the shafts). It is possible to do so, since the manifestation of 
the possible failures in the vibration signature is known a 
priory. The problem is that such a list is not comprehensive, 
and may not cover all possible failures. The manifestation of 
some failure modes in the vibration signature may be less 
investigated or even unknown. In addition, when more than 
one component is malfunctioning, unexpected patterns may 
be generated. Anomaly detection tackles the more general 
problem: How can one determine that the vibration 
signatures indicate abnormal functioning when the specifics 
of the abnormal functioning or its manifestation in the 
vibration signatures are not known a priori?  In essence, 
anomaly detection completes the diagnostics of the 
predefined failure modes. In many complex machines (e.g. 
turbofan engines), the task of anomaly detection is further 
complicated by the fact that changes in operating conditions 
influence the vibration sources and change the frequency 
and amplitude characteristics of the signals, making them 
non-stationary. Because of that, joint time-frequency 
representations of the signals are desired. This is different 
from other vibration based diagnostic techniques, which are 
designated for stationary signals, and often focus on either 
the time domain or the frequency domain.  

For the purpose of this article, we will refer as TFR (time-
frequency representation) to all 3D representations which 
employ on one axis either time, or cycles, or RPM, and on 
the other axis either frequency, or order. The proposed 
method suggests a solution for anomaly detection by 
analysis of various TFRs of the vibration signals (primarily 

the RPM-order domain).  

In the first stage, TFRs of healthy machines are used to 
create a baseline. The TFRs can be obtained using various 
methods (Wigner-Ville, wavelets, STFT, etc). In the next 
stage, the distance TFR between the inspected recording and 
the baseline is computed. In the third stage, the distance 
TFR is analyzed and the exceptional regions in the TFR are 
found and characterized. A basic classification of the 
anomaly type is suggested. The different stages of analysis: 
creating baselines, computing the distance TFR, identifying 
the exception regions, are illustrated with actual data. 

1. INTRODUCTION 

Monitoring of vibrations can be used to detect machine 
faults, including roller bearing degradation, gearwheels 
degradation, eccentricity, mechanical looseness, unbalance, 
misalignment, oil film bearing instabilities, structural 
resonance, and cracked rotors. In most methods, the 
detection is based on comparison of vibration levels at 
specific frequencies to reference or “baseline” values, 
representing the healthy cases. The specific frequencies 
used for tracking are defined separately for each failure 
mode of each component. Detection of all the possible 
failure modes of a machine implies definition of all the 
possible failure modes of all components including all the 
relevant combinations of failure modes such that all the 
frequencies of interest will be covered. In spite of the fact 
that many failure modes can be pre-defined with their 
associated patterns, the definition and listing of all the 
frequencies of interest is a very complex task, often 
impossible. In order to complete the diagnostic process 
when only a part of the frequencies of interest can be 
predefined, an anomaly detection algorithm is required. 

Diagnostics of rotating machinery during regular operation 
involves in many cases analysis of non-stationary signals. 
This is because rotating speeds, loads, and environmental 
conditions vary (in some cases rapidly) with time. Often, 
even the assumption of quasi-stationarity may not be 
appropriate. In such an environment, an efficient way to 
evaluate condition indicators may be based on time-
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frequency or time-order representations that reveal the 
evolution of the spectra with time. The time-frequency or 
time-order representations (TFR) can be computed using 
different techniques of signal processing such as Short Time 
Fourier Transform (STFT), Wavelets decomposition or 
Wigner-Ville representations (see Polyshchuk et al 2002, 
Juluri & Swarnamani 2003, Yang & Ren 2004, Bradford 
2006, Klein et al 2011).  

Usually the TFRs are representations of the vibration signal 
or its derivatives (synchronic average, envelope, pre-
whitened signals, etc.) in the RPM-frequency or RPM-order 
domains (see Antoni & Randall 2002, Antoni et al 2004, 
Sawalhi & Randall 2008, Klein et al 2012). TFRs are widely 
used in scientific and industrial applications for visual 
inspection of vibrations. The primary problem of the visual 
inspection is that in complex machinery, the TFR contains a 
huge amount of information and it is difficult to sort out and 
focus on the relevant information manually.  

Some methods of anomaly detection in TFRs have been 
proposed using different approaches (see below). In general, 
a statistical analysis of the spectrogram values or the over 
threshold values is used for detection of anomalies. This 
requires a definition of the probability density function 
(PDF) and an evaluation of the PDF parameters (differently 
for different zones of the TFR). There were different 
assumptions regarding the nature of the probability density 
function for spectrum or spectrogram values; Huillery et al 
(2008) show that for spectrograms and STFTs, when using 
Hanning windowing, the χ2 PDF (central or non-central for 
deterministic peaks) is adequate for detection of exceptions. 
Bechhoefer et al (2011) discussed Rayleigh PDFs for 
spectrum values and Nakagami PDFs for sums of Rayleigh 
distributed values. Clifton & Tarassenko (2009) showed that 
the PDF in spectrogram bins is approximately Gamma and 
that its tail can be described by a Gumbel distribution 
representing extremum values distribution. Hazan et al 
(2012 and 2013) proposed Peak Over Threshold (POT) and 
Frequency Dependent Peak Over Threshold (FDPOT) 
methods which were based on the assumption that the 
values exceeding a threshold can be approximated by a 
Generalized Pareto distribution. 

The current paper proposes an automatic procedure for 
anomaly detection which is adequate for all types of TFRs. 
The analysis algorithm emphasizes only the exceptions 
relative to the “baseline” or the reference TFR, allowing 
effective masking of huge amounts of less relevant 
information.  

The “baseline” is a statistical characterization of the TFRs 
derived from a set of healthy machines. The exceptions 
relative to the baseline are then examined to detect relevant 
regions corresponding to significant anomalies. In the first 
section of the article, we will describe the statistical 
characterization stage, or the baseline generation. Then we 
will show the algorithm for emphasizing the exceptions in 

the analyzed TFR (relative to the baseline). Next, we will 
explain the algorithm for automatic detection and 
classification of the exceptional regions. The algorithm is 
demonstrated with an example of a seeded test data, in 
which the presented algorithm was able to detect the fault 
without using any prior knowledge on the nature of the fault 
or the physical dimensions of the faulty part.  

2. BASELINE GENERATION 

The baseline is generated from a set of TFRs recorded in a 
set of healthy machines. In essence, the baseline is a 
statistical characterization of the data distribution in each 
cell of the TFR matrix: 

 ∑∑
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where: µi,j  is the average of values in cell i,j , σi,j  is the 
standard deviation of the values in cell i,j , N is the number 
of TFRs in the baseline, and Pi,j,n is the value of the 
spectrum n in cell i,j . 

It is highly advisable to use similar operating conditions for 
baseline generation. This allows a better representation of 
the healthy population, hence a higher reliability in 
detecting anomalies. To illustrate that, let us consider slow 
acceleration versus fast acceleration in a jet engine. In our 
experience, the two cases differ significantly in their 
vibration patterns even at the same RPM. Evidently, loads 
vary significantly, some of the resonances that are excited 
during a slow acceleration may not be present at a fast 
acceleration, and there are also differences in the amplitude 
of peaks at characteristic frequencies. Combining both cases 
of fast and slow accelerations in the same baseline model 
may lead to a significant reduction in discrimination 
abilities of the condition indicators.  

Thus, it is essential to decide which operating conditions 
can be combined in the same baseline. This can be achieved 
by a relatively simple statistical hypothesis testing 
procedure, combined with a physical understanding of the 
load variations in the different operating conditions. 

Various other technical issues should be addressed during 
the implementation of the baseline algorithm.  

First, all the TFRs need to have the same scale. This can be 
achieved either by interpolation of the existing TFRs to a 
new common scale, or by calculation of the TFRs using a 
predefined common scale. The predefined common scale is 
achieved by calculating the TFRs at predefined ranges of 
rotating speeds and similar frequency/order resolution.  

If interpolation is used, one should be careful not to 
introduce artifacts to the data when the time scale does not 
fit the variation rate of the load. For example, when the time 
resolution or RPM resolution is too low compared to the 
acceleration rate, and adjacent spectra differ abruptly in 
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amplitude, the interpolated spectrum may generate an 
erroneous baseline TFR with high variances. 

Another issue is how to set a correct scale. A higher 
resolution in time or RPM will provide better detection 
capabilities, but setting the resolution too high may leave 
some time segments of the TFR too short for a reliable 
spectrum calculation. The scale should be adapted to the 
operating modes of the inspected machinery so that most of 
the TFR will be calculated correctly. 

3. DISTANCE TFR 

When a new data is available, the TFR is interpolated to 
obtain the same scale as the scale that was used during 
baseline generation. A new representation, the distance 
TFR, is calculated, where each cell represents the 
corresponding distance from the model of healthy machines.  

The distance TFR emphasizes the cells that deviate from the 
distribution of healthy machines (see Figure 1 and Figure 2).  

Mahalanobis distance is used for comparison (Eq. 2). 
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where: Di,j  is cell i,j  in the distance TFR, Pi,j is the 
corresponding cell in the TFR of the new data, µi,j  is the 
mean of i,j  cell in the baseline, and σi,j is the baseline 
standard deviation of the corresponding cell. 

 

Figure 1. Comparison between baseline and a newly 
obtained TFR in the RPS-order domain (RPS – Rotation Per 
Second). The white surface represents the baseline (µ+3σ) 
and the dark green surface represents the inspected TFR. 

 

The distance TFR represents the distance of the actual TFR 
from the healthy population in terms/units of standard 
deviations, i.e. it contains data that is statistically 
normalized. The way the distance is calculated does not 
imply a specific probability distribution. 

Faults of mechanical components generate specific known 
vibration patterns such as characteristic frequencies with 
sidebands due to modulation. Appropriate algorithms 
allowing diagnostics of components based on TFRs can 
recognize these patterns automatically (such an algorithm 
operating on the distance TFR was proposed for detection of 
faulty bearings in Klein et al 2012). 

In other cases where the exceptions do not follow a specific 
pattern it will not be possible to associate the failure with 
one of the mechanical components. Nevertheless, automatic 
diagnostics of abnormal behavior can be performed with 
good reliability and detection capabilities. 

 

Figure 2. Illustration of the distance TFR 

4. DETECTION OF EXCEPTIONAL REGIONS 

The goal of the algorithm is to identify continuous regions 
of exceptional cells. The algorithm flowchart is described 
schematically in Figure 3. 

First a surface defining the threshold for each cell is defined. 
Then the exceptional cells exceeding the local threshold are 
found. The exceptional cells are grouped into continuous 
regions. The number of cells and volume of each 
exceptional region are calculated and compared to the 
criteria defined for identification of anomalies. 

Searching for over threshold values as an only criterion was 
found to be insufficient. To avoid false alarms, there was a 
need to screen out noise phenomena in single cells, and 
highlight exceptions only if they belong to continuous and 
sizeable regions. To accomplish that, the algorithm is 
searching for exceptional regions satisfying the following 
additional criteria: 

• The number of cells Nk, in a continuous region k, 
should exceed a minimum value – to avoid 
consideration of spurious peaks. 

• The volume Vk (�� = ∑ ��,�∀�,�∈� ) of an exceptional 
region k should exceed a minimum value. The volume 
represents a measure of the number of cells and their 
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values. We want to guarantee that at least one of these 
is large enough to be considered as significant. 

• The total volume of exceptions ∑ ���   should exceed a 
minimum value. The total volume represents the 
number of exceptional regions and their mean volume 
giving the option to define at what level we will 
consider the TFR as exceptional. 

These criteria allow sufficient flexibility to tune the 
detection algorithm and adapt it to different needs. For 
example, if we suspect that the distance of peaks (from the 
baseline of healthy machines) maybe of low amplitude, we 
may want to set the threshold to a low value (e.g. Ti,j = 3σ), 
and to compensate it by setting a large threshold for the 
number of cells in a region and/or the minimum volume of a 
region. 

jiTD jiji ,,, ∀>

 

Figure 3. Algorithm flowchart 
 

It is important to note that the proposed solution for general 
anomaly detection should attempt to cover several types of 
TFRs. For example, when a fault exists in a rotating 
component like a bearing or a gearwheel, we would expect 
to detect several exceptional regions, each related to a 
specific harmonic or a sideband (each region will contain 
several cells covering different rotating speeds). The 
exceptional regions can be detected in the order domain, but 
they can be better emphasized in the order domain of the 
dephased signal or in the order domain of the envelope (see 
Antoni & Randall 2002, Antoni et al 2004, Sawalhi & 
Randall 2008, Klein et al 2009, Bechhoefer et al 2011).  

4.1. Definition of the threshold surface 

The selection of threshold values is important and 
influences the reliability of anomaly detection. The 
threshold can be constant for all the cells of the TFR, 
defining a plane parallel to the time frequency plane, or can 
vary defining any positive surface. 

Several considerations affect the selection of the threshold 
surface:  

First, it is possible to use the threshold surface for masking 
out effects of faults discoverable by the direct search 
algorithms. For example, faults in specific gearwheels are 
discoverable in some specific frequencies/orders. We may 
want to set very high threshold values to the corresponding 
frequencies/orders to mask out these effects. 

The second consideration for selection of the threshold 
surface is the type of the probability distribution function 
(PDF) of the healthy population belonging to the baseline. It 
is also possible that the PDF parameters differ from one cell 
to another. The determination of these parameters for each 
cell may require a large data set of healthy TFRs. 

Because we are using the distance TFR, which is already 
normalized, the threshold for several types of PDFs can be 
constant and generic. This is true for Rayleigh, χ2, and 
Gamma PDFs.  

One last word on threshold selection: Because thresholds 
are not the sole parameter used (the algorithm also uses the 
criteria of area and volume, i.e. number of exception cells 
and accumulated sum of values), the proposed method is 
relatively tolerant to imperfections in selecting the 
thresholds. The algorithm was applied on several TFRs of 
healthy machines, using relatively low thresholds, without 
triggering false alarms. 

4.2. Classification of anomalies 

The algorithm for anomaly detection targets faults which are 
not covered in the direct search algorithms. It can be used as 
a start point to learn about and define new patterns to search 
for, thus enlarging the knowledge about faults in a specific 
machine. The detection of anomalies should be amended 
with an examination of experts and field feedback on the 
status of the machine. 

The classification of anomalies should allow as much as 
possible hints on their origin and nature. The hints can be 
based on the type of TFR in which the anomaly was 
detected (e.g. TFR of the raw vibration signal, TFR of the 
synchronous average, TFR of the resampled signal, TFR of 
the dephased signal, etc.), as well as the range of 
frequencies or orders. 

The simplicity of the algorithm and the fact that only the 
threshold surface depends on the assumed PDF makes it 
useful and easy to apply in different TFRs and different 
configurations. 

5. EXAMPLE OF ALGORITHM PERFORMANCE 

The example is based on data recorded during a seeded fault 
back to back test in a turbofan engine. The fault was 
introduced on the outer race of a bearing in which the inner 
race rotates at a speed proportional to shaft A rotating speed. 
The example demonstrates that the algorithm was able to 
detect the fault, without using any prior knowledge on the 
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nature of the fault or the physical dimensions of the faulty 
bearing. 

The presented method was applied to TFRs consisting of 
RPM-orders spectrograms. The spectrograms used were 
based on PSDs. The PSDs were calculated in consecutive 
periods of fixed length, during accelerations and 
decelerations of a turbofan engine with similar rotating 
speed gradients. 

The presented results were based on spectrograms 
calculated with similar order resolution and varying RPM 
resolution. A study of the variations of the spectra levels in 
the healthy records revealed that the variations of the peak 
levels did not exceed the random error of the PSDs in bins 
of 5 Hz. Therefore, the periods for each PSD calculation 
were defined such that the rotating speed variations will be 
of maximum 5 Hz and the interpolation of the RPM axis 
was applied in bins of 3Hz.  

The statistics of the baseline were calculated on 28 
spectrograms from healthy runs. 

Figure 4 shows a part of the RPM-order spectrogram of the 
vibration signal from a run with the faulty bearing. Some 
energetic ridges corresponding to the shaft A harmonics and 
background noise can be observed (the highest ridges can be 
observed at orders above 35). As well, some harmonics of 
shaft B rotating speed can be observed. 

Figure 5 shows the distance TFR (based on the RPM-order 
spectrogram and corresponding baseline) calculated on the 
same data as in Figure 4. A pattern that was not visible in 
the regular spectrogram becomes evident after distance 
calculation. The shaft harmonics that are clearly observable 
at orders above 35 in Figure 4 are not seen in Figure 5. This 
means that the vibration levels corresponding to both shafts 
harmonics were close to the baseline of healthy systems and 
not exceptional. 

As one can see from comparison of Figure 4 and Figure 5, 
the distance TFR is a helpful tool for visual inspection of 
TFRs.  It emphasizes only the suspicious locations and 
allows a significant reduction of information for manual 
scan. 

 

Figure 4. RPM-Order spectrogram 

 

Figure 5. Distance TFR of the RPM-Order spectrogram 

 

Figure 6. Exceptions found in the distance-TFR of the 
RPM-Order spectrogram 
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Figure 7. Exceptions confirmed in the distance-TFR of the 
RPM-Order spectrogram 

 
Figure 6 shows the contours of the exceptional continuous 
regions found after the comparison with the threshold 
surface. Figure 7 shows the contours of the confirmed 
regions after application of all the criteria (i.e. the number of 
cells and the volume). It can be easily observed that in 
Figure 7 only the peaks related to the faulty bearing remain, 
and that their location indicates a very clear pattern that is 
easy to identify and diagnose.  

6. SUMMARY AND CONCLUSIONS 

A method for analysis and diagnosis of non-stationary TFRs 
of vibro-acoustic data was proposed. 

The method can be applied on any type of TFR, regardless 
of the analyzed signal or the method of the TFR calculation. 
The key idea of the method is the detection of the 
exceptional regions in the distance TFR (deviation from the 
baseline TFR).  

The method was demonstrated, using RPM-order 
spectrograms, for diagnosis of a damaged bearing in a 
seeded fault test of a turbofan engine (without relying on the 
specific physical information of the bearing). The method of 
extracting the exceptional regions was described. It was 
shown that the proposed method is effective for detection of 
the abnormal behavior resulting from a faulty bearing. 

It seems that the distance TFR is a powerful tool in 
detecting anomalies and emphasizing abnormal behavior.  

The distance TFR proved effective in emphasizing 
exceptions in a noisy environment, including unknown 
damage or anomalies of any kind. 

Last, the distance TFR can be used efficiently by experts for 
visual inspection and diagnostics of exceptions. Since the 
distance TFR emphasizes only the ridges or regions that 
deviate from the baseline population statistics, masking out 
the irrelevant data, it is easier and a more focused tool for 

visual inspection compared to the original time frequency 
representation. 

ABBREVIATIONS  

RPM Rotations Per Minute 
TFR Time-Frequency Representation 
STFT Short Time Fourier Transform 
PDF Probability Density Function 
PSD Power Spectral Density 
POT Peak Over Threshold 
FDPOT Frequency Dependent Peak Over Threshold 

REFERENCES 

Antoni, J. & Randall, R. B., (2002). Differential Diagnosis 
of Gear and Bearing Faults, Journal of Vibration and 
Acoustics, Vol. 124 pp165-171, April 2002. 

Polyshchuk, V. V., Choy, F. K. & Braun, M. J., (2002). 
Gear Fault Detection with Time-Frequency Based 
Parameter NP4, International Journal of Rotating 
Machinery, 8(1), 57-70, 2002. 

Juluri, N. & Swarnamani, S., (2003). Improved accuracy of 
Fault Diagnosis of Rotating Machinery using Wavelet 
De-noising and Feature Selection, Proceedings of 
ASME Turbo Expo 2003, Power for Land, Sea and Air, 
June 16-19, 2003, Atlanta, Georgia, USA. 

Antoni, J., Bonnardot, F., Raad, A. & El Badaoui, M., 
(2004). Cyclostationary modeling of rotating machine 
vibration signals, Mechanical Systems and Signal 
Processing 18 (6), pp. 1285-1314, 2004. 

Yang, W. X. & Ren, X. M., (2004)., Detecting Impulses in 
Mechanical Signals by Wavelets, EURASIP journal on 
Applied Signal Processing, pp 1156-1162, 2004. 

Bradford, S. C., (2006). Time-Frequency Analysis of 
Systems with Changing Dynamic Properties, Ph.D. 
Thesis, California Institute of Technology, Pasadena, 
California, 2006. 

Huillery, J., Millioz, F. & Martin, N., (2008). On the 
description of spectrogram Probabilities with a Chi-
Squared Law, IEEE Transactions on Signal Processing 
56, 6 (2008) pp. 2249-2258. 

Sawalhi, N. & Randall, R. B., (2008). Localised fault 
diagnosis in rolling element bearings in gearboxes, 
Proceedings of The Fifth International Conference on 
Condition Monitoring and Machinery Failure 
Prevention Technologies – CM/MFPT, 2008. 

Clifton, D. A. & Tarassenko, L., (2009). Novelty detection 
in jet engine vibration spectra, Proceedings of the 6th 
International Conference on Condition Monitoring and 
Machine Failure Prevention Technologies, 2009. 

Klein, R., Rudyk, E., Masad, E. & Issacharoff, M., (2009). 
Emphasizing bearing tones for prognostics, The Sixth 
International Conference on Condition Monitoring and 
Machinery Failure Prevention Technologies, pp. 578-
587, 2009. 

Annual Conference of the Prognostics and Health Management Society 2013

235



Annual Conference of the Prognostics and Health Management Society, 2013 

7 

Bechhoefer, E., He, D. & Dempsey, P., (2011). Gear health 
threshold setting based on probability of false alarm, 
Proceedings of the Annual Conference of the 
Prognostics and Health Management Society, 2011. 

Klein, R., Masad, E., Rudyk, E. & Winkler, I. (2011). 
Bearing diagnostics using image processing methods, 
Proceedings of Surveillance 6, Compiegne, October 
2011. 

Klein, R., Rudyk, E. & Masad, E. (2012). Bearing 
diagnostics in non-stationary environment, 
International Journal of Condition Monitoring, March 
2012. 

Hazan, A., Verleysen, M., Cottrell, M., Lacaille, J. & 
Madani, K. (2012). Probabilistic outlier detection in 
vibration spectra with small learning dataset, 
Mechanical Systems and Signal Processing, 2012. 

Hazan, A. & Madani, K., (2013). Frequency-Dependent 
Peak-Over-Threshold algorithm for fault detection in 
the spectral domain, ESANN 2013, Bruges: Belgium, 
2013. 

BIOGRAPHY 

Renata Klein received her B.Sc. in Physics and Ph.D. in the 
field of Signal Processing from the Technion, Israel Institute 
of Technology. In the first 17 years of her professional 
career, she worked in ADA-Rafael, the Israeli Armament 
Development Authority, where she managed the Vibration 
Analysis department. In the decade that followed, she 
focused on development of vibration based health 
management systems for machinery.  She invented and 
managed the development of vibration based diagnostics 
and prognostics systems that are used successfully in 
combat helicopters of the Israeli Air Force, in UAV’s and in 
jet engines. Renata is a lecturer in the faculty of Aerospace 
Engineering of the Technion, and in the faculty of 
Mechanical Engineering in Ben Gurion University of the 
Negev. In the recent years, Renata is the CEO and owner of 
“R.K. Diagnostics”, providing R&D services and algorithms 
to companies who wish to integrate Machinery health 
management and prognostics capabilities in their products. 

 

Annual Conference of the Prognostics and Health Management Society 2013

236



 1 

Online Monitoring of Plant Assets in the Nuclear Industry 

Vivek Agarwal1, Nancy J. Lybeck1, Binh T. Pham1, Richard Rusaw2, and Randall Bickford3 

1Idaho National Laboratory, Idaho Falls, ID, 83415, USA 
vivek.agarwal@inl.gov 
nancy.lybeck@inl.gov 
binh.pham@inl.gov 

2Electric Power Research Institute, Charlotte, NC, 28262, USA 
rrusaw@epri.com 

3Expert Microsystems, Orangevale, CA, 95662, USA 
rbickford@expmicrosys.com 

 
ABSTRACT 

Today’s online monitoring technologies provide 
opportunities to perform predictive and proactive health 
management of assets within many different industries, in 
particular the defense and aerospace industries. The nuclear 
industry can leverage these technologies to enhance safety, 
productivity, and reliability of the aging fleet of existing 
nuclear power plants. The U.S. Department of Energy’s 
Light Water Reactor Sustainability Program is collaborating 
with the Electric Power Research Institute’s (EPRI’s) Long-
Term Operations program to implement online monitoring 
in existing nuclear power plants.  

Proactive online monitoring in the nuclear industry is being 
explored using EPRI’s Fleet-Wide Prognostic and Health 
Management (FW-PHM) Suite software, a set of web-based 
diagnostic and prognostic tools and databases that serves as 
an integrated health monitoring architecture. This paper 
focuses on development of asset fault signatures used to 
assess the health status of generator step-up transformers 
and emergency diesel generators in nuclear power plants. 
Asset fault signatures describe the distinctive features based 
on technical examinations that can be used to detect a 
specific fault type. Fault signatures are developed based on 
the results of detailed technical research and on the 
knowledge and experience of technical experts. The 
Diagnostic Advisor of the FW-PHM Suite software matches 
developed fault signatures with operational data to provide 
early identification of critical faults and troubleshooting 
advice that could be used to distinguish between faults with 
similar symptoms. This research is important as it will 
support the automation of predictive online monitoring 

techniques in nuclear power plants to diagnose incipient 
faults, perform proactive maintenance, and estimate the 
remaining useful life of assets. 

1. INTRODUCTION 

The average age of existing commercial nuclear power 
plants (NPPs) in the United States is around 34 years. As 
these plants continue to age and their components degrade, 
it is important to understand their condition and be proactive 
in maintenance and replacement. The current periodic and 
condition-based maintenance practices at NPPs result in 
high maintenance costs and increased likelihood of human 
error. Additionally, the inability to identify developing 
faults can lead to either disabling component failure or 
forced plant outage. Implementation of advanced predictive 
online monitoring would minimize these limitations and 
enhance plant safety by enabling systems and maintenance 
engineers to diagnose incipient faults and estimate the 
remaining useful life (RUL) of their assets, thereby reducing 
operational costs by optimizing maintenance activities. 
Predictive online monitoring techniques include advanced 
diagnostic and prognostic techniques.  

The U.S. Department of Energy, Office of Nuclear Energy 
funds the Light Water Reactor Sustainability (LWRS) 
program to develop the scientific basis to extend the 
operation of commercial light water reactors beyond the 
current 60-year licensing period. The Advanced 
Instrumentation, Information, and Control Systems pathway 
under the LWRS program is collaborating with the Electric 
Power Research Institute’s (EPRI’s) Long-Term Operations 
(LTO) program to conduct research and development on 
technologies that can be used to enhance long-term 
reliability, productivity, and safety of aging light water 
reactors. One of the primary areas of focus for the LWRS 
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and LTO programs is online monitoring (OLM) of active 
assets in the nuclear industry.  

An important objective of the online monitoring of active 
assets research is to implement predictive online monitoring 
for the existing fleet of NPPs. EPRI’s Fleet-Wide 
Prognostic and Health Management (FW-PHM) Suite 
software was selected for use as a demonstration platform. 
The FW-PHM Suite was specifically developed by EPRI for 
use in the commercial power industry (both nuclear and 
fossil fuel). EPRI and Idaho National Laboratory (INL) are 
working with nuclear utility partners to develop diagnostic 
models in the FW-PHM Suite software for Generator Step-
Up Transformers (GSUs) and Emergency Diesel Generators 
(EDGs). The nuclear utility partners include Shearon Harris 
Nuclear Generating Station (owned by Duke Progress 
Energy) for GSUs and Braidwood Generating Station 
(owned by Exelon Nuclear) for EDGs.  

This paper presents the research and development 
performed to date with the GSU and EDG content 
development in the FW-PHM Suite and initial diagnoses. 
The paper is organized as follows. Section 2 summarizes 
some of the relevant works associated with fleet-wide 
monitoring. The FW-PHM Suite software architecture is 
briefly described in Section 3. Section 4 discusses the 
content development for GSUs and EDGs. Assessments of 
the diagnoses based on fault signatures entered in the FW-
PHM Suite software are presented in Section 5. Finally, 
conclusions and future research are presented in Section 6. 

2. RELATED WORKS 

Fleet-wide diagnosis, prognosis, and knowledge 
management have gained significant interest across different 
industries. Review of some of the myriad of fleet-wide 
diagnosis and prognosis architectures, knowledge structures, 
and associated issues reported in literature is presented.  

Deployment of a fleet-wide health management solution is 
challenging and requires a systematic approach (Johnson, 
2012). The approach suggested in (Johnson, 2012) includes 
identifying assets and business needs, identifying critical 
components within assets, selecting sensory sources, and 
selecting prognostic methods.  

Managing relevant knowledge arising both from modeling 
and monitoring of a fleet is essential (Monnin, Voisin, 
Leger, & Lung, 2011). A knowledge-structuring scheme 
based on ontologies for fleet-wide application of PHM in a 
marine domain was presented in (Medina-Oliva et al., 
2012). In the case of fleets with heterogeneous assets, the 
knowledge-structure based on ontologies was utilized to 
search for assets based on similar characteristics (Monnin et 
al., 2011).  Similarly, predictive maintenance of a fleet with 
homogeneous assets using an ontology based modeling 
approach was suggested by (Umiliacchi, Lane, & Romano, 
2011).  

In (Patrick et al., 2010) authors demonstrate that the 
threshold values indicating different fault conditions for a 
homogeneous fleet could be derived from statistical studies 
of fleet-wide behaviors of identical assets and known cases 
of faults. A similarity-based approach for estimating the 
remaining useful life of a fleet composed of similar assets 
was proposed by (Wang et al., 2008). 

3. FLEET-WIDE PROGNOSTIC AND HEALTH 
MANAGEMENT SUITE 

The FW-PHM Suite software is an integrated suite of web-
based diagnostic and prognostic tools and databases, 
developed for EPRI by Expert Microsystems, specifically 
designed for use in the commercial power industry (for both 
nuclear and fossil fuel generating plants). The FW-PHM 
Suite serves as an integrated health management framework, 
as shown in Figure 1, managing the functionality needed for 
a complete implementation of diagnostics and prognostics 
(Electrical Power Research Institute, 2012). The FW-PHM 
Suite consists of four main modules: the Diagnostic 
Advisor, the Asset Fault Signature (AFS) Database, the 
Remaining Useful Life Advisor, and the Remaining Useful 
Life Database. The FW-PHM Suite has the capability to 
perform diagnosis and prognosis at different hierarchical 
levels, from the component level to the plant level, across a 
fleet of power units. 

 
Figure 1. Data flow in the EPRI FW-PHM Suite software 
architecture (Electrical Power Research Institute, 2012). 

The FW-PHM Suite uses fault signatures as a structured 
representation of the information that an expert would use to 
first detect and then verify the occurrence of a specific type 
of fault (Electrical Power Research Institute, 2012). A fault 
describes a particular mode of degradation that can be 
detected by analysis of plant information before the asset 
condition reaches the point of failure to meet a service 
requirement. Implied is an assumption that the fault is 
detectable by analysis of plant information and that the 
analysis can be performed in time to prevent or otherwise 
remedy the fault condition before it becomes a failure. 

Fault signatures are developed for application to a specific 
type of asset and are therefore organized with reference to 
that type of asset. However, it is desirable to specify fault 
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signatures as broadly as possible to be used in the entire 
industry. Many of the fault signatures defined in this paper 
can be applied to comparable assets used in similar service 
environments. 

3.1. Asset Fault Signature Database 

The Asset Fault Signature database organizes fault 
signatures collected from the many EPRI member utilities. 
At the most basic level, fault signatures are comprised of an 
asset type, a fault type, and a set of one or more fault 
features (symptoms) that are indicative of the specified 
fault. Each installation of the software has two separate 
database schemas: the master database maintained and 
distributed by EPRI, and a local database containing data 
developed at the plants or fleet monitoring center. Locally 
developed information can be exported and sent to EPRI for 
evaluation and possible inclusion in the master database that 
is shared amongst EPRI members. The AFS Database is 
populated via a content development exercise that is 
described in the following section. 

3.2. Diagnostic Advisor 

The Diagnostic Advisor identifies possible faults by 
comparing asset fault signatures with operating data. The 
Diagnostic Advisor is expected to be used on a daily or 
other periodic basis by technicians who are monitoring the 
health of a specific asset in the plant. Using either online 
data sources or information that is input manually, the 
Diagnostic Advisor presents the likely faults (if any), and, 
when appropriate, recommends additional tests that might 
be used to discriminate amongst the possible faults. The 
Diagnostic Advisor is expected to streamline the diagnosis 
process by helping the technician focus his/her efforts on the 
most likely faults and possible causes based on the 
operating behavior of the system. 

3.3. Remaining Useful Life Advisor 

The Remaining Useful Life Advisor calculates remaining 
useful life for an asset based on the model type, model 
parameters, input process parameters, and diagnostic 
information (from the Diagnostic Advisor). The RUL 
Advisor is expected to be used on a periodic basis by 
technicians who are monitoring the health of a specific asset 
in the plant. 

3.4. Remaining Useful Life Database 

The RUL Database organizes asset RUL signatures (i.e., 
models) collected from across the industry. At the most 
basic level, a RUL signature is comprised of an asset type, a 
model type, and model calibration parameters. The model 
type definition includes the definition of the input variables 
needed to run the model. Subject matter experts from the 
power industry, EPRI, and EPRI’s partners/subcontractors 

will most likely develop RUL signatures. Figure 2 shows 
the modules available in the FW-PHM Suite software. 

4. CONTENT DEVELOPMENT FOR THE ASSET FAULT 
SIGNATURE DATABASE 

INL is working with subject matter experts from industry, 
EPRI, and EPRI’s partners/subcontractors to develop 
content in the AFS Database for GSUs and EDGs. 
Currently, troubleshooting is typically a manual process that 
predominantly relies on expert knowledge and written 
documentation. The goal of content development is to 
capture this rich operating knowledge, creating a set of asset 
fault signatures organized in a standardized structure. The 
Diagnostic Advisor for automatic asset health monitoring 
uses these fault signatures and associated fault features. 
Content management for the asset fault signatures will be 
provided by EPRI. 

Fault signatures for a specified asset must include, at a 
minimum, a fault description and associated fault features. 
Fault features represent a unique state of one or more 
parameters indicating a faulty condition; these parameters 
come from technical examinations of the asset. Therefore, 
identification of different technical examinations for a target 
asset is a critical step in the development of fault signatures. 
Some of the most common technical examination for GSUs 
and EDGs are presented in the following sections. 

4.1. Technical Examinations of Generator Step-Up 
Transformers 

The technical examinations listed below are commonly used 
to monitor the operation of GSUs (Lybeck et al., 2011). 
These examinations allow assessment of winding insulation 
degradation, loss of dielectric strength of insulating oil, 
cooling system effectiveness, and bushing degradation.  

1. Temperature analysis. The top oil temperature reflects 
the effectiveness of a cooling system. 

2. Insulating Oil Analysis (online or offline). Performing 
oil analysis allows assessment of the electrical property 
(e.g. dielectric strength), chemical properties (e.g., 
water content, acidity), and the physical property (e.g. 
interfacial tension (IFT)). Insulating oil loses its 
dielectric strength either due to increase in the moisture 
content or due to thermal aging. Acidity of insulating 
oil needs to be monitored, as an increase in acidity is 
harmful because if the oil becomes acidic, the solubility 
of the water in the oil increases and also deteriorates the 
winding paper insulation strength. Acidity is measured 
in terms of milligrams of potassium hydroxide present 
in one gram of oil. IFT measures molecular attractive 
forces between oil and water. A decrease in the IFT 
indicates the presence of contaminants in the oil and is 
measured in Dyne/cm. 

Annual Conference of the Prognostics and Health Management Society 2013

239



 4 

 
Figure 2. The FW-PHM Suite main page. 

3. Dissolved gas analysis. Another important chemical 
property of transformer insulating oil to be analyzed is 
the dissolved gas concentration. Thermal or electrical 
faults occurring inside the transformer decompose the 
hydrocarbon bonds, resulting in generation of gases 
within the transformer. One of the most important 
aspects of oil analysis is to measure the concentration 
of key dissolved gases, which include hydrogen (H2), 
methane (CH4), acetylene (C2H2), ethylene (C2H4), and 
ethane (C2H6). In addition to the key gases, carbon 
monoxide (CO), carbon dioxide (CO2), oxygen (O2), 
and nitrogen (N2) are also generated, even under normal 
operating conditions. The gas ratios such as O2/N2, 
CO2/CO, C2H2/H2, Doernenberg Ratios, Duval triangle 
(Duval, 2002), and Rogers Ratios indicate different 
types of degradation inside transformers. 

4. Doble Capacitance Test. Measuring bushing 
capacitance is a standard technique used to determine 
bushing condition. The main capacitance (C1) test is 
conducted in the ungrounded specimen mode, i.e., the 
ground lead is not used for measurement, but instead 
the selected low voltage leads are used. The outcome of 
the C1 test allows assessment of contamination in the 
main body of the bushing. The tap capacitance (C2) test 
is conducted in the grounded specimen mode, i.e., at 
least part of the test current is measured through the 
grounded lead; the rest is measured through the low 
voltage leads, if used and not guarded. The outcome of 

the C2 test allows assessment of contamination in the 
oil and tap area. 

5. Sweep Frequency Response Test. The frequency 
responses measured during a sweep frequency response 
test reflect the measured winding capacitance. These 
responses are compared to the reference sweep 
frequency responses. Any deviation in the measured 
responses from the reference indicates capacitance 
change that might be due to winding movement or core 
displacement. 

4.2. Technical Examinations for Emergency Diesel 
Generators 

The technical exams listed below are commonly used to 
monitor diesel engine operation (Pham, Lybeck, & Agarwal, 
2012). These examinations allow assessment of degradation 
of valves, fuel injectors, seals, and piston rings as well as 
the overall health of the EDG engine. 
1. Temperature analysis. Component temperatures (e.g., 

engine cylinders or exhaust manifold) indicate engine 
performance. Cooling water temperatures and 
lubricating oil temperatures (inlet, outlet, and their 
difference) are used to monitor the thermodynamic 
efficiency of the engine (Banks, 2001). 

2. Pressure and flow rate analysis. Deviation of engine 
cylinder pressure (measured by a pressure transducer 
mounted on the cylinder head) from baseline pressure-
time curves for each of the cylinders indicates a variety 
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of abnormal engine operating conditions. The key 
reference points in time are peak firing pressure, peak 
firing pressure crank angle, maximum pressure rise 
rate, start of injection, and start of combustion (Banks 
et al., 2001). Pressure and fluid volume measurements 
(inlet and outlet) from engine support systems such as 
the fuel oil system, lubricating oil system, cooling water 
system, and starting air system are used to identify 
leakage and component failure of the corresponding 
system. Abnormally low pressure in these systems 
usually indicates either system leakage of fuel, oil, 
water, or air or pump failure. 

3. Vibration analysis. Vibration data from various engine 
components as a function of run time (or crankshaft 
angle) can be used to assess the condition of the 
bearing, the crankshaft, and other moving parts without 
physical examinations. The existence of peaks at 
frequencies higher than 2-times the line frequency in 
the engine vibration spectrum can indicate liner 
scuffing and blow by. 

4. Engine oil analysis (or lubricating oil analysis, online 
or offline): Oil analysis is used to detect metal particles 
(e.g., particle count according to size), fuel oil, water, 
or combustion products in the lubricating oil, indicating 
problems in the diesel engine, including mechanical 
wear of components, bearing failure, and leaking seals 
(Banks et al., 2001). There are three basic technical 
examination methods for oil analysis. 

Ferrography (International Standards Organization, 
1999): Ferromagnetic particles in the lubricating oil are 
counted using a magnetic field to separate the particles 
according to size. The ferrography oil analysis includes 
the following operations: collection of wear particles 
according to size on a transparent substrate; selection 
and separation of significant particles; inspection and 
evaluation of the particles and their morphology and 
nature; and identification of particles (i.e., type of 
material).  

Spectroscopy (American Society for Test and Materials, 
2009): The frequency and intensity of light emitted 
from electrically excited particles are measured using a 
spectrometer to detect particles in the lubricating oil.  

Particle count: Particles are counted in the engine lube 
oil using a particle counter. The nature of particle 
counting is based on light scattering, light obscuration, 
or direct imaging when the particle passes through a 
high-energy light beam.  

5. Power analysis. Voltage and frequency measurements 
at the outlets of an EDG potential transformer can be 
used to assess its performance and detect faults when 
these parameters are not within specified ranges. 

 

4.3. Fault Signatures 

A step-by-step procedure for developing and implementing 
an asset fault signature in the AFS Database is described in 
EPRI (2012) and shown in Figure 3. Several fault signatures 
have been developed and implemented in the AFS Database 
as part of a knowledge transfer exercise with utility partners 
for GSUs and EDGs. Two representative fault signatures are 
described below. 

Primary winding paper insulation degradation is one of the 
common faults in transformers (Bartley, 2003). The two 
most common modes of primary winding paper insulation 
degradation are electrical and thermal.  

Paper insulation degradation due to electrical discharges 
represents the occurrence of either a partial discharge 
phenomenon or an arcing phenomenon. A steep increase in 
the H2 concentration level compared to other dissolved 
gases in the transformer insulating oil is an indication of 
partial discharge. Similarly, an increase in the H2 and C2H2 
concentration levels combined compared to other dissolved 
gases is an indication of arcing. 

Paper insulation degradation due to thermal phenomenon 
can be diagnosed when a steep increase in the carbon 
monoxide concentration level is observed. As a result, a 
decrease in the CO2/CO ratio is observed. Therefore, a 
decrease in the CO2/CO ratio also indicates thermal 
degradation of primary winding paper insulation. 

EDGs are safety-related assets that are required to operate 
reliably if the external grid power supply to a plant is 
interrupted. It is required to start, run, and take the basic 
load that is essential for safe shutdown of the plant. There 
are many faults that could lead to EDG failure. One of the 
faults is improper valve timing (alternately referred as 
ignition timing) for the diesel engine cylinder. An increase 
or decrease or both in cylinder temperature may be due to 
improper value timing. Lower and upper threshold limits are 
defined to monitor the change in cylinder temperature. 

In Appendix A, the currently implemented fault signatures 
for GSUs and EDGs are summarized in Tables A1 and A2 
respectively. The last column of Tables A1 and A2 (i.e., the 
5th column) lists the effectiveness of each technical 
examination. Effectiveness is used in ranking possible 
diagnosis of the Diagnostic Advisor, especially in a 
situation where the same technical examination is used to 
diagnose different fault types. These fault signatures 
represent the initial effort to create useful fault signatures 
for GSUs and EDGs, but do not create a complete 
diagnostic system for GSUs and EDGs. 

5. DIAGNOSIS PROCESS 

In this section, the ability of the Diagnostic Advisor to 
diagnose a developing fault in a GSU and an EDG is 
presented. The Diagnostic Advisor compares the simulated
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Figure 3. Steps involved in gathering asset fault signatures (EPRI, 2012). 

operating data with the established fault signatures in the 
AFS Database, to assess the health of a plant asset. The 
diagnosis of primary winding paper insulation degradation 
in a GSU and of improper valve timing in an EDG is 
discussed. 

5.1. GSU Primary Winding Paper Insulation Diagnosis 

The Diagnostic Advisor’s ability to diagnose the primary 
winding paper insulation degradation is discussed in detail 
in Agarwal et al. (2013). For the purpose of testing, the 
Diagnostic Advisor is connected to a simulated data stream 
in which an initial increase in the acetylene concentration 
level is followed by an increase in the carbon monoxide 
concentration level and a decrease in the CO2/CO ratio. The 
threshold limits in the Diagnostic Advisor for each 
monitored gas level are mapped to 3-out-of-4 classification 
criteria (Condition 1 through Condition 3) developed by the 
Institute of Electrical and Electronics Engineers (IEEE) to 
classify risk to transformers (IEEE, 2008). Table 1 in IEEE 
(2008) lists the dissolved gas concentration for the 
individual gases for Condition 1 through Condition 4.  

During simulation, when the acetylene concentration enters 
Condition 2, the Diagnostic Advisor identifies the change 
and generates a possible diagnosis result. It identifies 
primary winding paper insulation degradation due to 
electrical phenomena, as shown in Figure 4, as the most 
likely fault (as expected based on technical examinations 
and fault signatures implemented in the AFS Database). As 
the simulation continues, the carbon monoxide gas level 
enters Condition 2 and soon enters Condition 3. As the 
carbon monoxide gas level increases to Condition 3, the 
CO2/CO ratio reduces below 3 (i.e., below the 

recommended level (IEEE, 2008)). The Diagnostic Advisor 
records these changes and updates its previous possible 
diagnosis results. Based on the updated diagnoses, as shown 
in Figure 5, primary winding paper insulation degradation 
due to thermal phenomena is now the most likely fault.  

The key observation is that the Diagnostic Advisor updates 
its possible diagnosis outcomes as new information 
becomes available. 

5.2. EDG Improper Valve Timing Diagnosis 

A 20 cylinder EDG is considered in this diagnosis example. 
As stated earlier, improper valve timing in a diesel engine 
can lead to either an increase or decrease in cylinder 
temperature, or both. To mimic improper valve timing, a 
positive drift and a negative drift are simulated in two 
randomly selected cylinders. During simulation, when the 
cylinder temperature and the cylinder temperature 
differential (i.e., difference between the maximum and the 
minimum temperature) exceed the user-defined threshold 
limits, the Diagnostic Advisor recognizes the change and 
diagnoses the possible fault. Figure 6 shows the possible 
diagnosis result. Observe that the two possible diagnoses are 
close in terms of pattern score (i.e., the percentage 
indicating the relative likelihood of the fault based on the 
current information) and further evidence is required to 
identify the most likely fault type. 

One of the additional evidences that can be used to update 
the diagnosis result is the information on recent 
maintenance. The Diagnostic Advisor provides an option to 
manually update the previous diagnosis result. By utilizing 
the option, recent maintenance information was manually

Annual Conference of the Prognostics and Health Management Society 2013

242



 7 

 
Figure 4. New Diagnosis Result page created by the Diagnostic Advisor when the acetylene level reaches IEEE Condition 2. 

 
Figure 5. Updated New Diagnosis Result page indicating paper insulation degradation: thermal as the most likely fault. 

entered and the previous diagnosis result was updated. 
Based on the updated result, as shown in Figure 7, it can be 
observed that the pattern score for improper valve timing 
has increased to 56.52% compared to the previous score of 
52.94% (Figure 6).  

This example demonstrates that same technical examination 
can be used to diagnose different fault types. In such 
situation, additional evidence can be included manually (if 
available) to clearly identify the most likely fault type. 

6. CONCLUSIONS AND FUTURE RESEARCH 

The paper presented research and development performed to 
date towards implementation of predictive online 
monitoring for existing nuclear power plants using the FW-
PHM Suite software. Several fault signatures were 
developed for common faults observed in GSUs and EDGs 
based on the results of technical research and on the 
knowledge and experience of technical experts. After a 
thorough verification and validation process, these fault 
signatures will serve as a foundation for implementation of 
automated online monitoring for GSUs and EDGs in the 
nuclear industry. The discussion of diagnosis results 
highlights the ability of the Diagnostic Advisor to identify 
the most likely fault type based on the currently 
implemented fault signatures.  

In the future, EPRI and INL will continue to work with 
nuclear utility partners to develop and verify a full set of 
fault signatures covering a wide range of recognized faults 
for GSUs and EDGs, enabling implementation in NPPs. 
Ultimately, prognostic models based on physics of failure 
will be developed and implemented in the FW-PHM Suite 
to predict the remaining useful life of GSUs and EDGs. 
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Figure 6. New Diagnosis Result page created by the Diagnostic Advisor when the cylinder temperature and the cylinder 

temperature differential exceed threshold limits. 

 
Figure 7. Updated Diagnosis Result page after manual entry of recent maintenance information. 
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reflect those of the U.S. Government or any agency thereof. 

REFERENCES 

Agarwal, V., Lybeck, N., Matacia, L., & Pham, B. (2013). 
Demonstration of Online Monitoring for Generator 
Step-Up Transformers and Emergency Diesel 
Generators. Report INL/EXT-13-30155. Idaho 
National Laboratory, Idaho Falls, ID.  

American Society for Test and Materials (ASTM) (2009). 
Standard Test Method for In-Service Monitoring of 
Lubricating Oil for Auxiliary Power Plant Equipment. 
In ASTM, ASTM D6224-09, West Conshohocken, PA, 
USA: ASTM International. 

Banks, J., Hines, J., Lebold, M., & Campbell, R. (2001). 
Failure modes and predictive diagnostics considerations 
for diesel engines. Proceedings of the 55th Meeting of 
the Society for Machinery Failure Prevention 
Technology, April 2–5, Virginia Beach, VA. 

Bartley, W. H. (2003). Analysis of Transformer Failures. 
Proceedings of the 36th Annual Conference on 
International Association of Engineering Insurers. 

Duval, M. (2002). A review of fault detectable by gas-in-oil 
analysis in transformers. IEEE Electrical Insulation 
Magazine, vol. 18, no. 3, pp. 8-17. 

Electric Power Research Institute (EPRI) (2012). Fleet-Wide 
Prognostics and Health Management Application 
Research. Report EPRI 1026712. Electric Power 
Research Institute, Charlotte, NC. 

Electrical Power Research Institute (EPRI) (2012). Asset 
Fault Signature Requirements. Software manual.  
Electric Power Research Institute, Charlotte, NC. 

Institute of Electrical and Electronics Engineers (IEEE) 
(2008). IEEE Guide for Interpretation of Gases 
Generated in Oil-Immersed Transformers. In IEEE, 
IEEE Std C57.104: 2008. New York, USA. 

International Standards Organization (ISO) (1999). 
Hydraulic fluid power—Fluids—Method for coding the 
level of contamination by solid particles. In ISO, 
ISO4406:1999. Genève, Switzerland: International 
Standards Organization. 

Johnson, P. (2012). Fleet wide asset monitoring: Sensory 
Data to Signal Processing to Prognostics. Proceedings 
of the Annual Conference of the Prognostics and Health 
Management Society, September 23-27, Minneapolis, 
MN. ISBN-978-1-036263-05-9. 

Lybeck, N., Agarwal, V., Pham, B., Medema, H., & 
Fitzgerald, K., (2012). Online Monitoring Technical 
Basis and Analysis Framework for Large Power 
Transformers: Interim Report for FY 2012. Report 

Annual Conference of the Prognostics and Health Management Society 2013

244



Annual Conference of the Prognostics and Health Management Society 2013 

9 

INL/EXT-12-27181. Idaho National Laboratory, Idaho 
Falls, ID. 

Monnin, M., Voisin, A., Leger, J., & Lung, B. (2011). Fleet-
Wide Health Management Architecture. Proceedings of 
the Annual Conference of the Prognostics and Health 
Management Society, September 25-29, Montreal, 
Quebec, Canada. ISBN-978-1-936263-03-5. 

Monnin, M., Abichou, B., Voisin, A., & Mozzati, C. (2011). 
Fleet Historical Case for Predictive Maintenance. 
Proceedings of the International Conference on 
Surveillance 6, October 25-26, Compiegne, France.  

Medina-Oliva, G., Voisin, A., Monnin, M., Peysson, F., & 
Leger, J. B. (2012). Prognostic Assessment using Fleet-
Wide Ontology.  Proceedings of the Annual Conference 
of the Prognostics and Health Management Society, 
September 23-27, Minneapolis, MN. ISBN-978-1-
036263-05-9 

Patrick, R., Smith, M. J., Byington, C. S., Vachtsevanos, G. 
J., Tom, K., & Ly, C. (2010). Integrated Software 
Platform for Fleet Data Analysis, Enhanced 
Diagnostics, and Safe Transition to Prognostics for 
Helicopter Component CBM. Proceedings of the 
Annual Conference of the Prognostics and Health 
Management Society, October 13-16, Portland, OR. 
ISBN-978-1-936263-01-1. 

Pham, B., Lybeck, N., & Agarwal, V. (2012). Online 
Monitoring Technical Basis and Analysis Framework 
for Emergency Diesel Generators: Interim Report for 
FY 2013. Report INL/EXT-12-27754. Idaho National 
Laboratory, Idaho Falls, ID. 

Umiliacchi, P., Lane, D., & Romano, F. (2011). Predictive 
Maintenance of Railway Subsystem using an Ontology 
based Modeling Approach. Proceedings of 9th World 
Conference on Railway Research, May 22-26, Lille, 
France. 

Wang, T., Yu, J., Siegel, D., & Lee, J. (2008). A Similarity-
based Prognostics Approach for Remaining Useful Life 
Estimation of Engineered Systems. Proceedings of the 
International Conference on Prognostics and Health 
Management, October 06-09, Denver, CO. 

BIOGRAPHIES 

Vivek Agarwal is a Research Scientist at the Idaho 
National Laboratory, Idaho Falls, ID. He holds a Ph.D. in 
nuclear engineering from Purdue University. He also 
worked as a research associate at Hewlett Packard 

Laboratories, Palo Alto, CA. His research interests include 
signal processing, machine learning, battery modeling, 
wireless sensor networks, instrumentation and controls, 
diagnostics and prognostics. He is a Section Editor for the 
Journal of Pattern Recognition Research. 

Nancy J. Lybeck is a Data Analyst at the National 
Laboratory, Idaho Falls, ID. She holds a Ph.D. in 
mathematics from Montana State University. Her research 
interests include numerical analysis, applied mathematics, 
diagnostics and prognostics. 

Binh T. Pham is a Research Scientist at the Idaho National 
Laboratory, Idaho Falls, ID. She received her Ph.D. and 
M.S. in electronics engineering from Moscow Power 
Engineering Institute, Russia in 1993 and 1986 respectively. 
Her research interests include quantitative modeling, 
statistical modeling, programming and computer simulation. 

Richard Rusaw is a Senior Project Manager in the nuclear 
sector at the Electric Power Research Institute. He received 
his B.S. in nuclear engineering from University of Michigan 
in 1979, his MBA from University of North Carolina – 
Charlotte in 1983. He is a registered PE in the state of South 
Carolina. At EPRI, his responsibilities are focused on 
instrumentation and control (I&C) with a high degree of 
specialization in monitoring technologies and system 
reliability. Prior to joining EPRI, he spent 25 years at Duke 
Power as an I&C engineer with a wide range of 
responsibilities supporting Oconee, McGuire, and Catawba 
nuclear power plants. His current research interests include 
diagnostic and prognostics software, development of 
advanced sensors for nuclear applications, advanced 
information technologies for plant productivity, reliability, 
and Long-Term Operation. 

Randall Bickford is Expert Microsystems’ President and 
Chief Technology Officer. He holds a B. S. in chemical 
engineering from University of California, Davis. He is a 
recognized worldwide expert in Prognostic and Health 
Management technology. He is one of the industry’s 
pioneers and holds multiple patents in the areas of pattern 
recognition, fault detection, diagnostics, and prognostics. 
Prior to founding Expert Microsystems, he worked in the 
aerospace industry where he developed advanced diagnostic 
and digital control technologies for space propulsion 
systems. 

 

 

 

 

 

 

Annual Conference of the Prognostics and Health Management Society 2013

245



Annual Conference of the Prognostics and Health Management Society 2013 

10 

APPENDIX A: TECHNICAL EXAMS AND FAULT SIGNATURES ADDED TO AFS DATABASE FOR GSUS AND EDGS 

Table A1. GSU fault signatures developed and implemented into the AFS Database (Lybeck et al., 2012). 
Equipment 
or 
Component 

Fault Type Technical Exam and Location Fault Feature Effectiveness 

Winding 
insulation 

Paper 
insulation 
degradation 

Dissolved gas analysis: levels of H2 and 
C2H2 gas in insulating oil 

High levels of H2 and C2H2 High 

Dissolved gas analysis: levels of C2H2 
gas in insulating oil 

High levels of C2H2 Very High 

Dissolved gas analysis: CO2/CO ratio in 
insulating oil 

High ratio of CO2/CO High 

Temperature analysis: time at excess 
temperature at transformer winding 

Long time at excessive 
temperature  

Medium 

Insulating oil analysis: Acid number of 
insulating oil 

High acid number Medium 

Dissolved gas analysis: levels of H2 gas 
in insulating oil 

High levels of H2 Very High 

Insulating 
Oil 

High acidity 
 

Insulating oil analysis: level of KOH per 
gram of oil 

High value of KOH Very High 

Contamination 
 

Insulating oil analysis: the value of IFT 
measured in Dynes/cm or in mN/m 

Low IFT value Very High 

Insulating oil analysis: color variation Distinct color change High 

Low dielectric 
strength 

Insulating oil analysis: to measure the 
dielectric breakdown voltage (ASTM 
D877-02) 

Low value of breakdown 
voltage 

Very High 

Insulating oil analysis: measure the 
moisture content in the oil 

High value of moisture High 

Insulating oil analysis: the value of IFT 
measured in Dynes/cm or in mN/m 

High value of KOH Medium 

Dielectric strength: measure the power 
factor of the oil in the bushing 

High value of power factor  Very High 

Bushing Low dielectric 
strength 

Dielectric strength: measure the main 
capacitance 

High value of main 
capacitance 

High 

Dielectric strength: measure the tap 
capacitance 

High value of tap 
capacitance 

High 

Dielectric strength: measure the power 
factor of the oil in the bushing 

High value of power factor  High 

Inspection: measure the oil level Low level of oil High 

Core Displaced 
winding core 

Sweep frequency response analysis:  
captures the core capacitance across 
different frequencies 

Change in the capacitance 
across different frequencies 

Very High 
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Equipment 
or 
Component 

Fault Type Technical Exam and Location Fault Feature Effectiveness 

Insulating 
oil pump 
motor 

Loss of 
performance 

Insulating oil motor pump: measure 
electric voltage 

High value of electric 
voltage 

High 

Insulating oil motor pump: measure 
electric current 

High value of electric 
current 

Very High 

Insulating oil motor pump: measure 
electric resistance 

High value of electric 
resistance 

High 

 

Table A2. EDG fault signatures developed and implemented into the AFS Database (Pham, Lybeck, & Agarwal, 2012). 
Equipment or 
Component 

Fault Type Technical Exam and Location Fault Feature Effectiveness 

Diesel engine 
fuel injector 

Improper fuel 
injection 

Temperature analysis: temperature at the 
exhaust manifold 

Abnormal temperature 
(too high or too low) 

High 

Temperature analysis: temperature at the 
exhaust manifolds 

High temperature 
differential between 
exhaust manifolds 

High 

Inspection: unpleasant odor of fuel Unpleasant smell of fuel Very High 

Diesel engine 
piston 

Excessive 
wear 

Lubricating oil analysis: evaluate 
chromium and aluminum content in lube 
oil sampled from the sump 

High value of chromium 
and aluminum 

Very High 

Temperature analysis: temperature at the 
cylinder neck 

Low value of temperature High 

Fuel oil supply 
pump 

Fuel pump 
failure 

Temperature analysis: temperature at the 
cylinder neck 

High value of temperature Medium 

Temperature analysis: temperature at the 
cylinder neck 

Low value of the 
temperature 

Medium 

Temperature analysis: temperature at the 
cylinder neck 

High temperature 
differential between 
cylinder necks 

High 

Inspection: position of fuel metering rod  Displacement in the 
position 

High 

Pressure analysis: of fuel line Abnormal value of 
pressure 

Very High 

Diesel engine 
exhaust valve 

Improper 
valve timing 

Temperature analysis: temperature at the 
cylinder neck 

High value of temperature High 

Temperature differential: between the 
cylinder necks 

High temperature 
differential 

Very High 

Maintenance activity: on the diesel 
engine 

Time from maintenance High 
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Equipment 
or 
Component 

Fault Type Technical Exam and Location Fault Feature Effectiveness 

Governor Unresponsive 
governor 

Power analysis: power (KW) at Potential 
Transformer inlets 

KW power unchanged in 
response to demand change 

High 

Power analysis: power frequency at 
potential Transformer inlets  

Frequency fluctuating in 
response to demand change 

High 

Inspection: position of fuel rack linkage  Position unchanged in 
response to demand change 

High 

Power analysis: Voltage across governor 
outlets 

Voltage unchanged in 
response to demand change 

High 

Power Analysis: Voltage at Magnetic 
Pickup Unit 

Voltage changed with 
demand change 

Medium 

Temperature analysis: Temperature at 
the Exhaust Manifold  

Temperature does not 
change in response to 
demand change 

Very High 

 Intermittent 
control signal 

Power analysis: power (KW) at Potential 
Transformer inlets 

KW power profile 
fluctuating  

High 

Power analysis: power frequency at 
potential Transformer inlets  

Frequency profile 
fluctuating  

High 

Power analysis: Voltage across governor 
outlets 

Voltage profile fluctuating  Very High 

Temperature analysis: temperature at the 
exhaust manifold 

Temperature profile 
fluctuating  

High 

Inspection: position of fuel rack linkage Position profile fluctuating  High 

Power Analysis: Voltage at Magnetic 
Pickup Unit 

Voltage profile fluctuating  High 

 Intermittent 
MPU signal 

Power analysis: power (KW) at Potential 
Transformer inlets 

KW power profile 
fluctuating  

Medium 

Power analysis: power frequency at 
potential Transformer inlets  

Frequency profile 
fluctuating  

Low 

Power analysis: Voltage across governor 
outlets 

Voltage profile fluctuating  High 

Temperature analysis: temperature at the 
exhaust manifold 

Temperature profile 
fluctuating  

High 

Inspection: position of fuel rack linkage Position profile fluctuating  High 

Power Analysis: Voltage at Magnetic 
Pickup Unit 

Voltage profile fluctuating  Very High 

 

 

 

 

 

 

 

 

Annual Conference of the Prognostics and Health Management Society 2013

248



Electrochemistry-based Battery Modeling for Prognostics
Matthew Daigle1 and Chetan S. Kulkarni2

1 NASA Ames Research Center, Moffett Field, CA, 94035, USA
matthew.j.daigle@nasa.gov

2 SGT, Inc., NASA Ames Research Center, Moffett Field, CA, 94035, USA
chetan.s.kulkarni@nasa.gov

ABSTRACT

Batteries are used in a wide variety of applications. In recent
years, they have become popular as a source of power for
electric vehicles such as cars, unmanned aerial vehicles, and
commericial passenger aircraft. In such application domains,
it becomes crucial to both monitor battery health and perfor-
mance and to predict end of discharge (EOD) and end of use-
ful life (EOL) events. To implement such technologies, it is
crucial to understand how batteries work and to capture that
knowledge in the form of models that can be used by moni-
toring, diagnosis, and prognosis algorithms. In this work, we
develop electrochemistry-based models of lithium-ion batter-
ies that capture the significant electrochemical processes, are
computationally efficient, capture the effects of aging, and are
of suitable accuracy for reliable EOD prediction in a variety
of usage profiles. This paper reports on the progress of such
a model, with results demonstrating the model validity and
accurate EOD predictions.

1. INTRODUCTION

With electric unmanned aerial vehicles, electric/hybrid cars,
and commercial passenger aircraft, we are witnessing a dras-
tic increase in the usage of batteries to power vehicles. These
vehicles are being deployed in military, civilian and scien-
tific applications all over the world. However, for battery-
powered vehicles to operate at maximum efficiency and reli-
ability, it becomes crucial to both monitor battery health and
performance and to predict end of discharge (EOD) and end
of useful life (EOL) events.

For example, NASA’s Mars Global Surveyor stopped oper-
ating in late 2006 due to battery overheating caused by the
raditor being oriented directly towards the sun, resulting in a
significant loss of capacity (Saha & Goebel, 2009). Both the
AFRL ARGOS satellite and the Viking 2 Mars Lander also

Matthew Daigle et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

suffered battery failures. More recently, problems have arisen
in the Boeing Dreamliner aircraft, which utilize lithium-ion
(Li-ion) batteries for auxiliary power (Ross, 2013). Bat-
tery monitoring failed to capture thermal runaway conditions,
leading to fire. With advanced health monitoring and predic-
tive capabilities, such problems can be prevented.

To implement such technologies, it is crucial to understand
how batteries work and to capture that knowledge in the
form of models that can be used by monitoring, diagnosis,
and prognosis algorithms. Several battery modeling method-
ologies have been developed in the literature. The models
can generally be classified as empirical models, electrochem-
ical engineering models, multi-physics models, and molec-
ular/atomist models (Ramadesigan et al., 2012). Emprical
models (e.g., (Saha & Goebel, 2009)), are based on fitting cer-
tain functions to past experimental data, without making use
of any physicochemical principles. Electrical circuit equiv-
alent models are popular forms of empirical models, e.g.,
(Ceraolo, 2000; Chen & Rincon-Mora, 2006; Daigle, Sax-
ena, & Goebel, 2012). Electrochemical engineering models
are typically continuum models that include electrochemical
kinetics and transport phenomena, e.g. (Karthikeyan, Sikha,
& White, 2008; Rong & Pedram, 2006; Ning & Popov, 2004;
Doyle, Fuller, & Newman, 1993; Newman & Tiedemann,
1975). The former type of model has the advantage of be-
ing computationally efficient, but the disadvantage of lim-
ited accuracy and robustness, due to the approximations in
battery behavior that are made, and as a result of such ap-
proximations, cannot represent aging well. The latter type of
model has the advantage of being very accurate, but are often
computationally inefficient, having to solve complex sets of
partial differential equations, and thus being ill-suited to on-
line application of prognostics. Similarly, multi-physics (Lee,
Smith, Pesaran, & Kim, 2013) and atomist models are even
less suited to online application.

In this work, we develop an electrochemistry-based model of
Li-ion batteries, that (i) capture the significant electrochemi-
cal processes, (ii) are computationally efficient, (iii) capture
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the effects of aging, and (iv) are of suitable accuracy for reli-
able EOD prediction in a variety of usage profiles. The model
can be considered an electrochemical engineering model, but
unlike most such models found in the literature, we make cer-
tain approximations that allow us to retain computational effi-
ciency. Although we focus here on Li-ion batteries, the model
is quite general and can be applied to different chemistries
through a change of model parameter values. This paper re-
ports on the progress of such a model, providing model vali-
dation results and EOD prediction results.

The paper is organized as follows. Section 2 provides
background material on batteries. Section 3 describes the
model-based prognostics framework. Section 4 develops the
electrochemistry-based battery model. Section 5 provides
model validation and battery prognosis results. Section 6 con-
cludes the paper.

2. BACKGROUND

A battery converts chemical energy into electrical energy, and
often consists of many cells. A cell consists of a positive elec-
trode and a negative electrode with electrolyte in which the
ions can migrate. For Li-ion, a common chemistry is a pos-
itive electrode consisting of lithium cobalt oxide (LixCoO2)
and negative electrode of lithiated carbon (LixC). These ac-
tive materials are bonded to metal-foil current collectors at
both ends of the cell and electrically isolated by a microp-
orous polymer separator film that is permeable to Li ions. The
electrolyte enables lithium ions (Li+) to diffuse between the
positive and negative electrodes. The lithium ions insert or
deinsert from the active material (known as intercalation and
deintercalation) depending upon the electrode and whether
the active process is charging or discharging.

A schematic of the battery during the discharge process is
shown in Fig. 1. When fully charged, the active (mobile) Li
ions reside in the negative electrode. Upon connecting a load
to the battery, current is allowed to flow from the positive
to the negative electrode. This is supported by the oxidation
reaction (loss of electrons) in the negative electrode (acting
as the anode):

LixC
discharge−−−−−−→ C + xLi+ + xe−,

which results in the liberation of Li ions and electrons. The
electrons move through the load from the negative to positive
electrode, and the Li ions move in the same direction from
the negative to the positive electrode through the separator.
In the positive electrode (acting as the cathode), the reduction
reaction (gain of electrons) takes place:

Li1− xCoO2 + xLi+ + xe−
discharge−−−−−−→ LiCoO2

During charging, a current source forces current to move from

Figure 1. Li-ion battery during discharge.

Figure 2. Li-ion battery during charge.

the negative to the positive electrode, as shown in Fig. 2. The
active material in the positive electrode (acting as the anode)
is oxidized and Li ions are de-intercalated with the corre-
sponding reaction:

LiCoO2

charge−−−−→ Li1− xCoO2 + xLi+ + xe−

that results in the loss of Li ions and electrons, which can then
move to the negative electrode (acting as the cathode). The
reduction reaction takes place in the negative electrode:

C + xLi+ + xe−
charge−−−−→ LixC

Theoretically the cell has a voltage of around 4.2 V when
fully charged. The terminal voltage of the battery rises/falls
with a charge/discharge cycle, respectively. At the end of
the charging/discharging period the battery voltage settles to
a steady-state value that is a function of its state of charge
(SOC). SOC is conventionally defined to be 1 when the bat-
tery is fully charged and 0 when the battery is fully dis-
charged. Hence even in a degraded battery the SOC for max-
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imum charge is always 1 by definition.

The charge/discharge dynamics of batteries can be character-
ized by taking voltage measurements under constant current
charge/discharge conditions. The rate of charge/discharge is
measured relative to the battery capacity C. For example, a
0.1C discharge rate for a 5 Ah battery is 0.5 A.

Charging typically consists of periods of constant current
(CC) and/or constant voltage (CV) charging. At lower SOC,
a CC charge is applied to bring the battery voltage to the CV
level. Once the desired voltage level is achieved, the charger
switches to CV mode and current decreases until 100% SOC
is reached. The charger is not operated in CV mode at lower
SOC levels since this will increase the amount of current
flowing throught the battery while charging, leading to ad-
ditional heat generation and side reactions taking place that
may affect the battery life. The charge acceptance is the max-
imum permissible rate at which batteries can be charged. For
Li-ion batteries the recommended charge acceptance is C/3.

The end of life of a battery depends on the chemistry,
discharge-charge cycling, temperature, and storage condi-
tions, among other factors. Atmospheric temperature affects
the operating performance of the batteries. At low temper-
atures, ionic diffusion and migration could be hindered and
also damaging side reactions like lithium plating may take
place. High temperatures cause corrosion and generation of
gases leading to an increase in internal pressure. As the bat-
tery ages, degradation results in the decrease in the observed
battery capacity. This is primarily due to a loss of mobile ions
due to parasitic or side reactions and an increase in the inter-
nal resistance. Internal resistance leads to ohmic losses that
generate heat and accelerate the aging process. Some relevant
physical aging mechanisms in the electrodes are:

1. Solid-electrolyte interface (SEI) layer growth: The neg-
ative electrode degrades with the growth of the SEI layer
leading to an increase in the impedance. The layers are
formed during cycling and storage at high temperatures
and entrains the lithium.

2. Lithium corrosion: Lithium in the active carbon material
of the negative electrode corrodes over time leading to
degradation. This causes a decrease in the capacity due
to irreversible loss of mobile lithium ions.

3. Lithium plating: At low temperatures, high charge rates
and low cell voltages forms a plating layer on the nega-
tive electrode which leads to irreversible loss of lithium.

4. Contact loss: SEI layer disconnects from the negative
electrode which leads to contact loss and an increase in
impedance.

3. BATTERY PROGNOSTICS

In this section we describe the general model-based prog-
nostics problem and an implementation architecture, and de-

scribe how it applies to batteries.

3.1. Problem Formulation

We assume the system model may be generally defined as

x(k + 1) = f(k,x(k),θ(k),u(k),v(k)), (1)
y(k) = h(k,x(k),θ(k),u(k),n(k)), (2)

where k is the discrete time variable, x(k) ∈ Rnx is the
state vector, θ(k) ∈ Rnθ is the unknown parameter vector,
u(k) ∈ Rnu is the input vector, v(k) ∈ Rnv is the process
noise vector, f is the state equation, y(k) ∈ Rny is the output
vector, n(k) ∈ Rnn is the measurement noise vector, and h
is the output equation.1

In prognostics, we are interested in predicting the occurrence
of some event E that is defined with respect to the states,
parameters, and inputs of the system. We define the event
as the earliest instant that some event threshold TE : Rnx ×
Rnθ × Rnu → B, where B , {0, 1} changes from the value
0 to 1. That is, the time of the event kE at some time of
prediction kP is defined as

kE(kP ) , inf{k ∈ N : k ≥ kP ∧ TE(x(k),θ(k),u(k)) = 1}.
(3)

The time remaining until that event, ∆kE , is defined as

∆kE(kP ) , kE(kP )− kP . (4)

In the context of systems health management, TE is defined
via a set of performance constraints that define what the ac-
ceptable states of the system are, based on x(k), θ(k), and
u(k) (Daigle & Goebel, 2013). For batteries, there are two
types of predictions that we are interested in. The first is
EOD, defined by a voltage threshold VEOD. In this case, TE
is defined by V < VEOD, that is, when the battery voltage
is less than the cutoff voltage, EOD is reached and TE eval-
uates to 1. The second type of prediction is EOL, which is
typically defined by a lower bound on the effective battery
capacity (Saha & Goebel, 2009). In this case, TE is defined
by C < CEOL, where C is the measured battery capacity and
CEOL is the lower bound on capacity.

3.2. Prognostics Architecture

We adopt a model-based prognostics architecture (Daigle
& Goebel, 2013), in which there are two sequential prob-
lems, (i) the estimation problem, which requires determin-
ing a joint state-parameter estimate p(x(k),θ(k)|y(k0:k))
based on the history of observations up to time k, y(k0:k),
and (ii) the prediction problem, which determines at
kP , using p(x(k),θ(k)|y(k0:k)), a probability distribution

1Here, we use bold typeface to denote vectors, and use na to denote the
length of a vector a.
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Figure 3. Prognostics architecture.

p(kE(kP )|y(k0:kP )). The distribution for ∆kE can be triv-
ially computed from p(kE(kP )|y(k0:kP )) by subtracting kP .
Both steps require a dynamic model in the form of equations 1
and 2.

The prognostics architecture is shown in Fig. 3. In discrete
time k, the system is provided with inputs uk and provides
measured outputs yk. The estimation module uses this infor-
mation, along with the system model, to compute an estimate
p(x(k),θ(k)|y(k0:k)). The prediction module uses the joint
state-parameter distribution and the system model, along with
hypothesized future inputs, to compute the probability distri-
bution p(kE(kP )|y(k0:kP )) at given prediction times kP .

In the application of prognostics in this example, we do not
account for any uncertainty except for that provided in the
state estimate, as our focus is on determining how accurate
the model can predict EOD given precise information about
the future. A more general prognostics architecure that ac-
counts for these additional sources of uncertainty is described
in (Daigle, Saxena, & Goebel, 2012; Sankararaman, Daigle,
Saxena, & Goebel, 2013).

4. BATTERY MODELING

In order to predict end-of-discharge as defined by a voltage
cutoff, the battery model must compute the voltage as a func-
tion of time given the current drawn from the battery. There
are several electrochemical processes that contribute to the
cell’s potential that make this a difficult problem. We fo-
cus here on a lumped-parameter ordinary differential equa-
tions form, so it is efficient and usable for on-line prognos-
tics, yet still considers the main electrochemical processes.
We focus here specifically on Li-ion 18650 batteries with an
average nominal voltage of 3.7V and nominal capacity of
2200mAh, however, the model is still general enough that
with some modifications it may be applied to different bat-
tery chemistries.

The voltages of a battery are summarized in Fig. 4 (adapted
from (Rahn & Wang, 2013)). The overall battery voltage
V (t) is the difference between the potential at the positive
current collector, φs(0, t), and the negative current collector,
φs(L, t), minus resistance losses at the current collectors (not
shown in the diagram). As shown in the figure, the potentials
vary with the distance d ∈ [0, L], because the loss varies with
distance from the current collectors.

Figure 4. Battery voltages.

The potentials at the current collectors are described by sev-
eral voltage terms. At the positive current collector is the
equilibrium potential VU,p. This voltage is then reduced by
Vs,p, due to the solid-phase ohmic resistance, and Vη,p, the
surface overpotential. The electrolyte ohmic resistance then
causes another drop Ve. At the negative electrode, there is a
drop Vη,n due to the surface overpotential, and a drop Vs,n
due to the solid-phase resistance. The voltage drops again
due to the equilibrium potential at the negative current col-
lector VU,n. We describe each of these voltage terms in turn.

4.1. Equilibrium Potential

In an ideal battery, the equilibrium potential of an electrode
is described by the Nernst equation:

VU,i = U0 +
RT

nF
ln

(
γβ,ixβ,i
γα,ixα,i

)
, (5)

or, equivalently,

VU,i = U0 +
RT

nF
ln

(
xβ,i
xα,i

)
+
RT

nF
ln

(
γβ,i
γα,i

)
, (6)

where i refers to the electrode (n for negative or p for posi-
tive), U0 is a reference potential, R is the universal gas con-
stant, T is the electrode temperature, n is the number of elec-
trons transferred in the reaction (n = 1 for Li-ion), F is Fara-
day’s constant, x is the mole fraction, where α refers to the
lithium-intercalated host material and β to the unoccupied
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host material, and γ is the activity coefficient (Karthikeyan
et al., 2008). When discharging, Li ions move out of the
negative electrode and into the positive electrode, so xα,n
and xβ,p decrease while xβ,n and xα,p increase. As a result,
VU,p − VU,n will decrease. In an ideal condition the activity
coefficients are unity and so the last term disappears, resulting
in the classical form of the Nernst equation.

In the case of a Li-ion battery, xβ,i = 1 − xα,i, so we can
rewrite the equation making this substitution. We then define
xi as xα,i and drop the α subscript:

VU,i = U0 +
RT

nF
ln

(
1− xi
xi

)
+ VINT,i, (7)

where VINT,i is the activity correction term (0 in the ideal con-
dition). For LixCoO2, x must be at least 0.4; Li cannot be
reversibly removed beyond that (Karthikeyan et al., 2008).

We let qi represent the amount of Li ions in electrode i, as
measured in Coulombs. Recall that the flow of Li ions moves
opposite to the flow of current. Therefore qi changes in the
same direction as xi, and we may define xi based on qi using

xi =
qi
qmax , (8)

where qmax = qp + qn refers to the total amount of avail-
able (i.e., mobile) Li ions. It follows then that xp + xn = 1.
When fully charged, xp = 0.4 and xn = 0.6. When fully
discharged, xp = 1 and xn = 0.

Batteries are nonideal and therefore the assumption of unity
activity coefficients is not applicable. As a result, battery
models often resort to curve-fitting for modeling the equilib-
rium potential. The equilibrium potential can be obtained by
discharging the battery at a very slow rate, such that a con-
centration gradient will not build up, temperature is steady,
and voltage drops due to internal resistances and other over-
potentials are negligible. Fig. 5 shows the measured voltage
(VU,p − VU,n) as a function of mole fraction against that pre-
dicted by the Nernst equation. Clearly, the Nernst equation
cannot fit this case so it must be nonideal.

The activity coefficient terms are related to excess Gibbs free
energy and can be captured using the Redlich-Kister expan-
sion (Karthikeyan et al., 2008). We then have

VINT,i =
RT

nF
ln

(
γβ,i
γα,i

)
(9)

=
1

nF

(
Ni∑

k=0

Ai,k

(
(2xi − 1)k+1 − 2xik(1− xi)

(2xi − 1)1−k

))
.

(10)

The number of termsNi in the above expansion and the fitting
parameters Ai,k must be identified. Fig. 6 shows the modi-
fied equation fitted to the measured equilibrium potential for
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Figure 5. Measured and Nernst-predicted open-circuit poten-
tial.
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Figure 6. Measured and Redlich-Kister-predicted open-
circuit potential.

Np = 12 and Nn = 0. Clearly, the modified equation much
more realistically reflects the true voltage curve. The iden-
tified parameters are given in Table 1 and were determined
using the Nelder-Mead simplex method. The identified pa-
rameters represent those achieving a least-squares (local) er-
ror minimum, which is satisfactory for our purposes.

4.2. Concentration Overpotential

When a battery is discharged, the reactions take place at the
surface of the electrode and this results in a concentration gra-
dient. The concept is shown in Fig. 7. In the bulk volume, the
concentration is nearly even, but close to the electrode the
concentration changes drastically. To accommodate this, one
may split the total volume into two individual control vol-
umes (CVs), one for the bulk (with subscript b) and one for
the surface (with subscript s).

For the volumes, the concentration of Li ions is computed as

cb,i =
qb,i
vb,i

(11)

cs,i =
qs,i
vs,i

, (12)

5

Annual Conference of the Prognostics and Health Management Society 2013

253



Annual Conference of the Prognostics and Health Management Society 2013

Table 1. Battery Model Parameters

Parameter Value
U0,p 4.03 V
Ap,0 −33642.23 J/mol
Ap,1 0.11 J/mol
Ap,2 23506.89 J/mol
Ap,3 −74679.26 J/mol
Ap,4 14359.34 J/mol
Ap,5 307849.79 J/mol
Ap,6 85053.13 J/mol
Ap,7 −1075148.06 J/mol
Ap,8 2173.62 J/mol
Ap,9 991586.68 J/mol
Ap,10 283423.47 J/mol
Ap,11 −163020.34 J/mol
Ap,12 −470297.35 J/mol
U0,n 0.01 V
An,0 86.19 J/mol

Figure 7. Concentration gradient.

where, for CV v in electrode i, cv,i is the concentration and
vv,i is the volume. We define vi = vb,i + vs,i. Note now that
the following relations hold:

qp = qs,p + qb,p (13)
qn = qs,n + qb,n (14)

qmax = qs,p + qb,p + qs,n + qb,n. (15)

As the battery discharges, Li ions must move out of the sur-
face layer at the negative electrode, through the bulk, and to
the surface layer at the positive electrode, in order to match
the flow of electrons. Li ions also move from the bulk CV to
the surface due to the concentration gradient. The diffusion
rate from the bulk to the surface is expressed as

q̇bs,i =
1

D
(cb,i − cs,i), (16)

where D is the diffusion constant.

The q variables are described as

q̇s,p = iapp + q̇bs,p (17)
q̇b,p = −q̇bs,p + iapp − iapp (18)
q̇b,n = −q̇bs,n + iapp − iapp (19)
q̇s,n = −iapp + q̇bs,n, (20)

where iapp is the applied electric current. Initially, cs,i = cb,i
and so diffusion is zero. Once discharge begins, ions move
from the surface layer of the negative electrode to the bulk
volume of the negative electrode, through the separator to the
bulk volume of the positive electrode and then on to the sur-
face layer of the positive electrode. If the applied current is
larger than the diffusion rate, then a concentration gradient
will build up between the surface and bulk volumes. Once
discharge stops, then only diffusion is active, and the concen-
trations will even out, causing a rise in voltage (because the
concentration lowers in the surface layer of the positive elec-
trode, raising the voltage, and the concentration rises in the
surface layer of the negative electrode, raising the voltage).

The concentration overpotential is the difference in voltage
between the two CVs due to the difference in concentration.
Using the expression for equilibrium potential, we can com-
pute the potential for the bulk volume and the potential for
the surface layer; the difference between them is the concen-
tration overpotential. We can explicitly account for the con-
centration overpotential simply by using as the expression for
equilibrium potential, the equilibrium potential of the surface
layer, i.e.,

VU,i = U0 +
RT

nF
ln

(
1− xs,i
xs,i

)
+ VINT,i, (21)

where xs,i is computed using

xs,i =
qs,i
qmax
s,i

, (22)

and

qmax
s,i = qmax vs,i

vi
(23)

The mole fraction in the surface changes faster than the mole
fraction at the bulk, causing a larger concentration gradient
for larger applied current and smaller diffusion rates. The
observed voltage depends only on what is happening in the
surface layer, not the bulk. When discharge stops, the surface
layer becomes like the bulk, accounting for the recovery in
voltage. The battery may then be discharged further since the
surface layers were replenished with ions (from the bulk) in
the negative electrode.
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4.3. Ohmic Overpotential

The voltage drops due to the solid-phase ohmic resistances,
the electrolyte ohmic resistance, and the resistances at the
current collectors can be treated as constant resistances and
lumped together:

Vo = Vs,p + Vs,n + Ve + Vcc,p + Vcc,n (24)
= iapp(Rs,p +Rs,n +Re +Rcc,p +Rcc,n) (25)
= iappRo, (26)

where Vcc is the voltage drop over the current collectors,Rcc,i
is the resistance at the current collector for electrode i.

4.4. Surface Overpotential

The overpotentials due to charge transfer resistance and SEI
kinetics are described by the Butler-Volmer equation. For
small currents the overpotential is linear with current and for
larger currents it is proportional to the log of the current, and
these two characteristics are combined in the Butler-Volmer
equation. The equation is given as

Ji = Ji0

(
exp

(
(1− α)F

RT
Vη,i

)
− exp

(
−αF
RT

Vη,i

))
,

(27)

where α is the symmetry factor, Ji is the current density, and
Ji0 is the exchange current density. The current densities are
defined as

Ji =
i

Si
(28)

Ji0 = ki(1− xs,i)α(xs,i)
1−α, (29)

where ki is a lumped parameter of several constants includ-
ing a rate coefficient, electrolyte concentration, and maxi-
mum ion concentration. The voltage drop takes place at the
electrode surface, so xs,i is used in computing the exchange
current density.

In the case of Li ions, the symmetry factor is 0.5, so the
Butler-Volmer equation can be simplified and written in terms
of voltage as

Vη,i =
RT

Fα
arcsinh

(
Ji

2Ji0

)
. (30)

4.5. State of Charge

As discussed in Section 2, the SOC of a battery is convention-
ally defined to be 1 when the battery is fully charged and 0
when the battery is fully discharged. In this model, it is anal-
ogous to the mole fraction xn, but scaled from 0 to 1. There is
a difference here between nominal SOC and apparent SOC.
Nominal SOC would be computed based on the combination
of the bulk and surface layer CVs in the negative electrode,

whereas apparent SOC would be computed based only on the
surface layer. That is, a battery can be discharged at a given
rate, and reach the voltage cutoff, i.e., apparent SOC is then
0. But, once the concentration gradient settles out, the surface
layer will be partially replenished and the battery can be dis-
charged further, i.e, apparent SOC increases whereas nominal
SOC remains the same.

Nominal (n) and apparent (a) SOC can then be defined using

SOCn =
qn

0.6qmax (31)

SOCa =
qs,n

0.6qmaxs,n
, (32)

where qmaxs,n = qmax vs,n
vn

. The factor 1/0.6 comes from the
fact that the mole fraction at the positive electrode cannot go
below 0.4 (as described in Section 4.1), therefore SOC of 1
corresponds to the point where qn = 0.6qmaxs,n .

4.6. Battery Voltage

Now that each of the voltage drops in Fig. 4 have been de-
fined, battery voltage can be expressed as follows.

V = VU,p − VU,n − Vo − Vη,p − Vη,n. (33)

Voltages in the battery are not observed to change instanta-
neously, i.e., the voltage changes occur smoothly. When dis-
charge completes, for example, the voltage rises slowly as
the surface layers move to the concentrations of the bulk vol-
umes, as caused by diffusion. In addition to this, there are
transients associated with Vo and the Vη,i terms. To take this
into account in a simple way, we compute voltage using

V = VU,p − VU,n − V ′o − V ′η,p − V ′η,n, (34)

where

V̇ ′o = (Vo − V ′o)/τo (35)

V̇ ′η,p = (Vη,p − V ′η,p)/τη,p (36)

V̇ ′η,n = (Vη,n − V ′η,n)/τη,n, (37)

where the τ parameters are empirical time constants.

The model contains as states x, qs,p, qb,p, qb,n, qs,n, V ′o , V ′η,p,
and V ′η,n. The single model output is V .

Identified model parameters are given in Table 2. Some pa-
rameters are defined by the battery dimensions and chemistry.
The remaining parameters are estimated based on data, as
with the parameters in Table 1.

The measured and predicted discharge curves for a constant
2 A discharge are shown in Fig. 8. The model fits very well
to the measured values. The accuracy towards the end of dis-
charge is most sensitive to the Redlich-Kister parameters, the
diffusion constant, and the volume of the surface layer. The
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Table 2. Battery Model Parameters

Parameter Value
qmax 1.32× 104 C
R 8.314 J/mol/K
T 292 K
F 96487 C/mol
n 1
D 7.0× 106 mol s/C/m3

τo 10 s
α 0.5
Ro 0.085 Ω

Sp 2× 10−4 m2

kp 2× 104 A/m2

vs,p 2× 10−6 m3

vb,p 2× 10−5 m3

τη,p 90 s
Sn 2× 10−4 m2

kn 2× 104 A/m2

vs,n 2× 10−6 m3

vb,n 2× 10−5 m3

τη,n 90 s
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Figure 8. Measured and predicted 2 A discharge curves.

predicted end-of-discharge time can be finely tuned most eas-
ily by adjusting the time at which the amount of Li ions in the
surface layer of the negative electrode hits zero and the sur-
face layer of the postive electrode becomes full, because this
is when the equilibrium voltage of these layers nears a com-
bined 2.5 V. This is accomplished by adjusting the diffusion
constant.

Model validation for a variable loading scenario is shown in
Fig. 9. As shown in Fig. 9a, the load changes every 2 minutes,
resulting in corresponding changes in voltage. Fig. 9b shows
that the voltage predictions are fairly accurate in response to
changes in load. Some errors are still present that may possi-
bly be accounted for by including temperature effects.

4.7. Battery Aging

As described in Section 2, battery aging manifests in two ma-
jor ways. The first is a loss of capacity due to parasitic and

800 1000 1200 1400 1600 1800 2000 2200
0

1

2

3

4

5

6

Time (s)

C
ur

re
nt

 (
A

)

(a) Current.

800 1000 1200 1400 1600 1800 2000 2200

3.4

3.5

3.6

3.7

3.8

3.9

4

4.1

Time (s)

V
ol

ta
ge

 (
V

)

 

 
Measured
Predicted

(b) Measured and predicted variable loading discharge curves.

Figure 9. Model validation for variable loading.

side reactions that result in a loss of active (mobile) Li ions.
The second is an increase in internal resistance due to SEI
layer growth and other factors. Capacity is typically mea-
sured with respect to a reference current and the associated
EOD point as defined by a voltage cutoff. A decreased ca-
pacity will result in the voltage hitting the cutoff earlier. An
increase in resistance will lower the voltage overall, so also
result in hitting the cutoff earler. Therefore both these aging
mechanisms result in a loss of measured capacity.

Fig. 10 shows 2 A discharge curves with the battery at dif-
ferent ages. The arrows in the figure illustrate the direction
the curves move as the battery ages. The EOD point moves
earlier in time due to diminished capacity. The voltage drops
down during discharge due to increased resistance. Steady-
state voltage after discharge increases because the battery is
not discharged as fully due to the increased resistance and the
battery reaching EOD before then.

In the battery model, the total available charge in the battery is
represented through qmax. Therefore, the loss of active mate-
rial can be represented in the model through a change in qmax.
Fig. 11a shows how the discharge curve changes as qmax is de-
creased by 1% with each new discharge. We can see a slight
decrease in voltage, which is due to the Butler-Volmer term,
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Figure 10. Measured 2 A discharge curves with battery aging.

which is dependent on mole fraction that is computed using
qmax. The EOD point moves earlier due to the discharge point
being reached with less charge extracted. Steady-state volt-
age after discharge increases since the cutoff is reached with
less relative charge extracted.

One way to validate this is by looking at the equilbrium po-
tential plots as the battery ages, because the resistances are
negligible. Fig. 12 shows the measured equilibrium poten-
tial of the battery (VU,p − VU,n) after 10 discharge cycles and
after 30 discharge cycles. The curves are exactly the same,
only the time scale changes; there is a 20 minute difference in
EOD. Since equilibrium potential is a function only of mole
fraction, and mole fraction is computed as q/qmax, then de-
creasing qmax would change the time scale in this way.

Increase in internal resistance can be captured through an in-
crease in theRo parameter. Fig. 11b shows how the discharge
curve changes as Ro is increased by 5% with each new dis-
charge. The voltage drops, but the change in EOD is not
significant, because the dynamics near EOD are dominated
mainly by the equilibrium potential contribution with some
contribution from the Butler-Volmer dynamics. The change
in charge extracted is thereby also not significant so changes
in steady-state voltage after discharge are very small.

From Figs. 11a and 11b, it is clear that changes in both
qmax and Ro are required to capture how the discharge curve
changes with aging. Fig. 11c shows the combined effects,
with qmax decreasing by 1% and Ro increasing by 5% with
each new discharge. The qualitative changes observed in
Fig. 10 are now reproduced.

5. APPLICATION TO PROGNOSTICS

With an accurate model and known future inputs to a system,
prognostics should in turn be very accurate. In this section
we demonstrate battery prognostics with the new model de-
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(c) Decreasing qmax and Ro.

Figure 11. Simulated 2 A discharge curves with aging.
Curves for later cycles are shown in lighter colors.

veloped in this paper. We use the architecture described in
Section 3. As an estimation algorithm, we use the unscented
Kalman filter (UKF) with the battery model; see (Julier &
Uhlmann, 1997, 2004) for details on the filter and (Daigle,
Saha, & Goebel, 2012; Daigle, Saxena, & Goebel, 2012)
for its application to prognostics. The UKF operates on a
set of determinstically selected samples, called sigma points,
that are used to represent the joint state-parameter distribution
p(x(k),θ(k)|y(k0:k)).

For the prediction algorithm, we perform a simple simulation

9

Annual Conference of the Prognostics and Health Management Society 2013

257



Annual Conference of the Prognostics and Health Management Society 2013

0 2 4 6 8 10 12 14 16
2.5

3

3.5

4

Time (s)

V
ol

ta
ge

 (
V

)

 

 
Equilibrium Potential at Cycle 10
Equilibrium Potential at Cycle 30

Figure 12. Shifting of equilibrium potentials due to aging.

as described in (Daigle & Goebel, 2013). Each sigma point
is simulated forward using the model until EOD is reached;
from the corresponding EODs for each sigma point we can
construct the EOD distribution. In this work, we assume that
the future inputs (iapp) are known, so the only uncertainty
present in the prediction is that related to the model. We use
VEOD = 2.6 V as the voltage cutoff defining EOD.

As performance metrics, we use percent root mean square
error (PRMSE) for estimation accuracy, and for prediction
we use relative accuracy (RA) and relative standard deviation
(RSD). We plot results in α-λ plots, where α (e.g. 10%) de-
fines an accuracy cone around the ground truth, and λ is a
time point (Saxena, Celaya, Saha, Saha, & Goebel, 2010).

Fig. 13 shows prognosis results from a 2 A discharge, assum-
ing the future inputs (iapp) are known. As shown in Fig. 13a,
the UKF tracks very well the measured voltage, since the un-
derlying model is very accurate. Prediction results are, in
turn, also very accurate and with very little uncertainty (the
only uncertainty is related to the state estimation uncertainty),
as shown in Fig. 13b. Overall, RA averages over all predic-
tion points (every 100 s) to 99.38%, and RSD to 0.75%. Since
the spread is so small, the 5%–25% and 75%–95% ranges
cannot be seen on the plot.

Fig. 14 shows prognosis results from a 3 A discharge. In the
open loop, the model slightly underestimates EOD, as shown
in Fig. 14b. Even though the UKF tracks well, once a pre-
diction is made the model is in the open loop, and since the
model predicts an earlier EOD for the given load there is a
bias in the predictions. The UKF helps keep the state esti-
mate accurate and so reduces the error compared to using the
model itself.

Fig. 15 shows prognosis results from a variable loading dis-
charge, with EOD being defined in this case as 3.35 V. In the
open loop, the model slightly overestimates EOD, as shown
in Fig. 15b. The UKF tracks well and corrects for some of
the model errors (see Fig. 9b). The model is more accurate
at predicting EOD when defined towards the end of a dis-
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Figure 13. Prognostics results for 2 A discharge.

charge rather than in the middle of a discharge, so if the volt-
age threshold is defined to be higher, the predictions will be
less accurate. In this case RA averages to 88.41%, and RSD
to 2.13%. RSD is larger because the UKF needs to account
for the additional model uncertainty since the model is less
accurate in variable-loading scenarios.

Additional results are shown in Table 3. PRMSE is very low
as the UKF is able to track the voltage well in all cases. The
predictions are also very accurate, with average RA above
90%, and precise, with RSD around 1% or lower. Although
overall very good, the results are best around the 2 A dis-
charge, suggesting that further model improvements (e.g., in-
cluding temperature effects) may be necessary.

It is also worth mentioning that the model is not computation-
ally intensive. The model is implemented with a fixed-step
discrete-time simulation with a step size of 1 s. It takes on
the order of 1× 10−4 s to simulate 1 s of real time.

6. CONCLUSIONS

In this paper, we presented a new model for battery prognos-
tics based on the underlying physics. Using equations based
in electrochemistry, we developed a model that is both accu-
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Figure 14. Prognostics results for 3 A discharge.

Table 3. Prognostics Performance

iapp PRMSE RA RMADRUL
1.0 0.19 92.77 1.07
1.5 0.17 96.02 0.88
2.0 0.17 99.38 0.75
2.5 0.26 97.75 0.82
3.0 0.41 96.08 0.92

rate and efficient. As a result, prognostics results for EOD
prediction are very accurate, with the uncertainty associated
with the model remaining very small. Such a model has uses
in other areas as well, such as control.

The model described here can also be applied to prognostics
of battery packs. There are two approaches here: either each
battery is modeled individually, or the batteries of the pack
are lumped into an equivalent single-cell model. In the latter
case, the prognostics framework as described here applies di-
rectly. In the former case, TE must be redefined on a system-
level (Daigle, Bregon, & Roychoudhury, 2012), such that the
battery pack is said to be at EOD (or EOL) when any single
battery in the pack is at EOD (or EOL).

The current model is limited in several ways that provide the
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Figure 15. Prognostics results for variable loading discharge.

basis for future work. For one, we have not described how
the internal battery temperature changes over time. This is
important because many of the potentials in the battery are
functions of temperature. Further, diffusion rates should be
impacted by temperature. Although we have described how
aging can be represented within the model, we do not yet have
descriptions of how these age-related parameters change over
time, i.e., we require damage progression equations. Much
work has already been done in this area but not with prog-
nostics requirements and applications in mind. With such
models, accurate end-of-life predictions can be made. Upon
adding these missing elements, application of this modeling
framework to different battery chemistries is also of interest.
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ABSTRACT

Prognostics is centered on predicting the time of and time un-
til adverse events in components, subsystems, and systems.
It typically involves both a state estimation phase, in which
the current health state of a system is identified, and a pre-
diction phase, in which the state is projected forward in time.
Since prognostics is mainly a prediction problem, prognos-
tic approaches cannot avoid uncertainty, which arises due to
several sources. Prognostics algorithms must both character-
ize this uncertainty and incorporate it into the predictions so
that informed decisions can be made about the system. In this
paper, we describe three methods to solve these problems, in-
cluding Monte Carlo-, unscented transform-, and first-order
reliability-based methods. Using a planetary rover as a case
study, we demonstrate and compare the different methods in
simulation for battery end-of-discharge prediction.

1. INTRODUCTION

Prognostics focuses on predicting the time of and time un-
til adverse events in components, subsystems, and systems.
Model-based methods consist of an estimation phase, in
which the current health state of a system is identified, fol-
lowed by a prediction phase, in which the state is simulated
until the adverse event. Because prognostics is mainly a pre-
diction problem, uncertainty, which manifests due to many
sources, cannot be avoided. This uncertainty will determine
how the system evolves in time, i.e., the system evolution is
a random process. To approach this problem in a system-
atic way, there are two problems to solve: (i) characteriz-
ing the sources of uncertainty, and (ii) quantifying the com-
bined effect of the different sources of uncertainty within the
prediction. With proper estimation of the prediction uncer-
tainty, predictions can then be used to make informed deci-

Matthew Daigle et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

sions about the system.

In many applications, the largest source of uncertainty is that
associated with the future inputs, and so most work in uncer-
tainty quantification for prognostics has focused in that area.
In the context of fatigue damage prognosis, different types of
methods (Ling et al., 2011) such as rainflow counting tech-
niques, auto-regressive moving-average models, and Markov
processes have been used for constructing future loading tra-
jectories. In (Sankararaman, Ling, Shantz, & Mahadevan,
2011), the authors construct future input trajectories as se-
quential blocks of constant-amplitude loading, and such tra-
jectories are sampled in the prediction algorithm. In (Saha,
Quach, & Goebel, 2012) the authors characterize the future
inputs by determining statistics of the battery loading for typ-
ical unmanned aerial vehicle maneuvers based on past flight
data, and construct future input trajectories as constrained se-
quences of flight maneuvers. Constant loading is assumed
in (Luo, Pattipati, Qiao, & Chigusa, 2008) for a vehicle sus-
pension system, and predictions are made for a weighted set
of three different loading values.

Once each source of uncertainty has been characterized, it
must be accounted for within the prediction, and thereby their
combined effect on the overall prediction must be quanti-
fied. In previous work (Daigle, Saxena, & Goebel, 2012),
we investigated methods for accouting for future input uncer-
tainty in the predictions and introduced the unscented trans-
form (UT) method for efficiently estimating the future input
uncertainty, however, methods for future input characteriza-
tion were not discussed and only constant-amplitude loading
was considered. In other work (Sankararaman, Daigle, Sax-
ena, & Goebel, 2013; Sankararaman & Goebel, 2013), we
investigated the use of analytical methods, namely, first-order
reliability (FORM) based methods for propagating the future
input uncertainty, however it also was limited to constant-
amplitude loading, and the methods were applied only for
offline analysis and not within online prognostic algorithms.
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In this paper, we adopt a model-based prognostics approach
(Orchard & Vachtsevanos, 2009; Daigle & Goebel, 2013;
Luo et al., 2008). We discuss the uncertainty representa-
tion and quantification problem, and develop a novel gen-
eralized framework using the notion of surrogate variables,
allowing the representation of state uncertainty, parame-
ter uncertainty, future input uncertainty, and process noise
in a common framework that allows consideration of both
constant- and variable-amplitude loading situations. We ex-
plore three methods for prediction with uncertainty quantifi-
cation, namely, Monte Carlo sampling, UT sampling, and in-
verse FORM. Using a rover battery system as a case study, we
describe two methods for future input uncertainty characteri-
zation, implement the prediction methods, and compare their
performance for battery end-of-discharge prediction in simu-
lated constant- and variable-amplitude loading scenarios.

The paper is organized as follows. In Section 2, we define the
prognostics problem and develop the uncertainty representa-
tion framework. In Section 3, we describe methods for han-
dling uncertainty within the prediction process. In Section 4,
we introduce the rover case study and present several exam-
ples in simulation demonstrating the methods and comparing
their performance. Section 5 concludes the paper.

2. MODEL-BASED PROGNOSTICS

We first formulate the prognostics problem, and develop the
uncertainty representation framework. We then provide an
architecture for model-based prognostics.

2.1. Problem Formulation

We assume the system model may be generally defined as

x(k + 1) = f(k,x(k),θ(k),u(k),v(k)), (1)
y(k) = h(k,x(k),θ(k),u(k),n(k)), (2)

where k is the discrete time variable, x(k) ∈ Rnx is the
state vector, θ(k) ∈ Rnθ is the unknown parameter vector,
u(k) ∈ Rnu is the input vector, v(k) ∈ Rnv is the process
noise vector, f is the state equation, y(k) ∈ Rny is the output
vector, n(k) ∈ Rnn is the measurement noise vector, and h
is the output equation.1 The unknown parameter vector θ(k)
is used to capture explicit model parameters whose values are
unknown and time-varying stochastically.

In prognostics, we are interested in predicting the occurrence
of some (desirable or undesirable) eventE that is defined with
respect to the states, parameters, and inputs of the system.
We define the event as the earliest instant that some event
threshold TE : Rnx × Rnθ × Rnu → B, where B , {0, 1}
changes from the value 0 to 1. That is, the time of the event

1Here, we use bold typeface to denote vectors, and use na to denote the
length of a vector a.

kE at some time of prediction kP is defined as

kE(kP ) , inf{k ∈ N : k ≥ kP ∧ TE(x(k),θ(k),u(k)) = 1}.
(3)

The time remaining until that event, ∆kE , is defined as

∆kE(kP ) , kE(kP )− kP . (4)

In the context of systems health management, the event E
corresponds to some undesirable event such as the failure of
a system, some process variable out-of-range, or a similar
type of situation. TE is defined via a set of performance con-
straints that define what the acceptable states of the system
are, based on x(k), θ(k), and u(k) (Daigle & Goebel, 2013).
In this case, kE is then conventionally called end of life, while
∆kE is conventionally called remaining useful life.

The system evolution is a random process due to the pro-
cess noise v(k) and nondeterministic inputs u(k). Since the
system evolution is a random process, at time kP , the sys-
tem takes some trajectory out of many possible trajectories,
therefore, kE and ∆kE are random variables. So, the prog-
nostics problem is to predict the probability distribution of
kE (Daigle, Saxena, & Goebel, 2012; Sankararaman et al.,
2013).
Problem (Prognostics). The prognostics problem is to, at
prediction time kP , compute p(kE(kP )|y(k0:kP )) and/or
p(∆kE(kP )|y(k0:kP )).

In practice, obtaining this distribution is difficult because the
state at kP , system model, process noise distribution, and fu-
ture input distribution may not be known precisely.

2.2. Representing Uncertainty

In order to predict kE , four sources of uncertainty must be
dealt with: (i) the initial state at time kP , x(kp); (ii) the pa-
rameter values θ(k) for all k ≥ kP , denoted as ΘkP (the
subscript kP indicates the start time of the trajectory); (iii)
the inputs u(k) for all k ≥ kP , denoted as UkP ; and (iv) the
process noise v(k) for all k ≥ kP , denoted as VkP . In or-
der to make a prediction that accounts for this uncertainty, we
require the probability distributions p(x), p(ΘkP ), p(UkP ),
and p(VkP ).

For describing the probability distribution of a generic trajec-
tory Ak, we introduce a set of surrogate random variables
λa = [λ1aλ

2
a . . .]. We describe a trajectory using λa and in-

stead define p(λa), which in turn defines p(Ak). These sur-
rogate variables can be used to describe trajectories in a vari-
ety of ways. For example, we can associate Ak(k) with λ1a,
Ak(k+ 1) with λ2a, etc. Or, we can describe a trajectory with
a parameterized function, where the parameters are the ran-
dom variables, e.g., Ak(k) = λ1a + λ2a sin k. The use of the
surrogate variables provides flexibility to the user in defining
the distribution of trajectories. So, for the parameter, input,
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Figure 1. Prognostics architecture.

and process noise trajectories we introduce the surrogate vari-
ables λθ, λu, and λv .

In the model-based prognostics paradigm, the probability
distribution for the initial state at the time of prediction
kP , p(x(kP ),θ(kP )), is specified by an estimator, such as
the Kalman filter, unscented Kalman filter (UKF) (Julier &
Uhlmann, 1997), or particle filter (Arulampalam, Maskell,
Gordon, & Clapp, 2002). The distribution may be represented
by a set of statistical moments like a mean vector and covari-
ance matrix (as in the Kalman filter), or a set of weighted
samples (as in the UKF and particle filter). This defines only
the parameter vector at kP and not for future time steps. For
the future values of θ, these are drawn from a distribution
specified by λθ. In the simplest case, λ1θ can define θ(kP ),
λ2θ can define θ(kP + 1), etc, where the distribution of each
λiθ is the same and specified by p(θ(kp)) as determined by the
estimator. Alternatively, it can be assumed that θ(k) is con-
stant, in which case only one surrogate variable is required,
with the distribution specified by the estimator.

For process noise, we define p(Vk) using λv . It is often as-
sumed in practice that, at each time instant, there is a single
probability distribution from which the process noise values
are drawn. The distribution is defined a priori based on the
understanding of the system and its model. In the simplest
case, there is a random variable for every time step, i.e, λ1v
defines v(kP ), λ2v defines v(kP + 1), etc. Since the num-
ber of random variables depends on the number of time steps,
such a treatment potentially leads to dimensionality issues.
Sankararaman and Goebel (Sankararaman & Goebel, 2013)
have demonstrated that it is possible to approximate the effect
of this process noise using an equivalent time-invariant pro-
cess noise, i.e., a single random variable that defines a con-
stant value of process noise for all k. In this case, λv would
contain only that single random variable, whose probability
distribution will be constructed by matching the likelihood of
occurrence of the original time-varying process noise.

For the future input trajectories, the distribution depends on
the particular system being prognosed and the environment
it is operating within. As with the other trajectories, we de-
scribe p(UkP ) using λu. Often, there is some knowledge
about what the future input will be and only a few random
variables are needed in λu. For example, in a constant-

loading scenario, the inputs can be defined with u(k) = λ1u
for k ≥ kP . Any arbitrary function parameterized by a
set of random variables may be used to define u(k), e.g.,
u(k) = λ1u · sin(k), or u(k) = λ1u + λ2u · k. The variables in
λθ may or may not be independent.

To predict kE at time kP , we require the initial state,
x(kP ); the parameter trajectory up to kE , ΘkP =
[θ(kP ), . . . ,θ(kE)]; the process noise trajectory up to kE ,
VkP = [v(kP ), . . . ,v(kE)]; and the input trajectory up to
kE , UkP = [u(kP ), . . . ,u(kE)]. With this information, kE
can be computed simply by simulating the state forward in
time, using the state equation f , until TE evaluates to 1, at
which point the current time is kE . Because we have only
probability distributions, we need to propagate the uncer-
tainty through this procedure in order to obtain the distri-
bution for kE (Sankararaman et al., 2013; Sankararaman &
Goebel, 2013). Methods to do such uncertainty propagation
will be described in Section 3.

2.3. Prognostics Architecture

We adopt a model-based prognostics architecture (Daigle &
Goebel, 2013), in which there are two sequential problems,
(i) the estimation problem, which requires determining a
joint state-parameter estimate p(x(k),θ(k)|y(k0:kP )) based
on the history of observations up to time k, y(k0:kP ), and
(ii) the prediction problem, which determines at kP , using
p(x(k),θ(k)|y(k0:kP )), p(λθ), p(λu), and p(λv), a proba-
bility distribution p(kE(kP )|y(k0:kP )). The distribution for
∆kE can be trivially computed from p(kE(kP )|y(k0:kP )) by
subtracting kP from kE(kP ).

The prognostics architecture is shown in Fig. 1. In discrete
time k, the system is provided with inputs uk and provides
measured outputs yk. The estimation module uses this in-
formation, along with the system model, to compute an es-
timate p(x(k),θ(k)|y(k0:k)). The prediction module uses
the joint state-parameter distribution and the system model,
along with the distributions for the surrogate variables, p(λθ),
p(λu), and p(λv), to compute the probability distribution
p(kE(kP )|y(k0:kP )) at given prediction times kP .
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Algorithm 1 kE(kP )← P(x(kP ),ΘkP ,UkP ,VkP )

1: k ← kP
2: x(k)← x(kP )
3: while TE(x(k),ΘkP (k),UkP (k)) = 0 do
4: x(k + 1)← f(k,x(k),ΘkP (k),UkP (k),VkP (k))
5: k ← k + 1
6: x(k)← x(k + 1)
7: end while
8: kE(kP )← k

3. PREDICTION

Prediction is initiated at a given time kP using the current
joint state-parameter estimate, p(x(kP ),θ(kP )|y(k0:kP )).
Approaches to determine this estimate are reviewed
in (Daigle, Saha, & Goebel, 2012) and are not described here.
The goal is to compute p(kE(kP )|y(k0:kP )) using the state-
parameter estimates and assumptions about uncertainty re-
garding the future parameter, input, and process noise values.

Consider one realization of each of the uncertain quantities at
prediction time kP : the state x(kP ), the parameter trajectory
ΘkP , the input trajectory UkP , and the process noise trajec-
tory VkP . Then, the corresponding realization of kE can be
computed with the system model as shown in Algorithm 1. In
Algorithm 1, the function P simulates the system model until
the threshold TE evaluates to 1.

This algorithm requires computing first realizations of the
state-parameter distribution, the parameter trajectory, the in-
put trajectory, and the process noise trajectory. As described
in Section 2, the distribution for the state comes from an es-
timator, and the distributions for the parameter, input, and
process noise trajectories are defined indirectly by a set of
surrogate variables. At the higher level, we are interested in
computing the distribution for kE from the distributions for
p(x(kP ),θ(kP )), p(λθ), p(λu), and p(λv).

The function that takes these surrogate variables and com-
putes a distribution for kE , which we refer to as G,
is the real function we are interested in, i.e., p(kE) =
G(p(x(kP )), p(θ(kP )), p(λθ), p(λu), p(λv)). To compute
p(kE), we must propagate the uncertainty through this func-
tion. That is, predicting p(kE(kP )|y(k0:kP )) is an uncer-
tainty propagation problem. In the following subsections,
we describe three different methods with which to solve this
problem. They each compute realizations of the state, param-
eter trajectory, input trajectory, and process noise trajectory,
and call the P function to obtain a realization of kE . They dif-
fer in how they compute these realizations and how they con-
struct p(kE(kP )|y(k0:kP )) from them, and, consequently, in
their computational complexity.

3.1. Monte Carlo Sampling

To account for uncertainty in the prediction step, the simplest
method is Monte Carlo sampling. Several realizations of the

Algorithm 2 {k(i)E }Ni=1 = MC(p(x(kP ),θ(kP )|y(k0:kP )),
p(λθ), p(λu), p(λv),N)

1: for i = 1 to N do
2: (x(i)(kP ),θ(i)(kP )) ∼ p(x(kP ),θ(kP )|y(k0:kP ))

3: λ
(i)
θ ∼ p(λθ)

4: Θ
(i)
kP
← constructΘ(λ

(i)
θ ,θ(i)(kP ))

5: λ
(i)
u ∼ p(λu)

6: U
(i)
kP
← constructU(λ

(i)
u )

7: λ
(i)
v ∼ p(λv)

8: V
(i)
kP
← constructV(λ

(i)
v )

9: k
(i)
E ← P(x(i)(kP ),Θ

(i)
kP
,U

(i)
kP
,V

(i)
kP

)
10: end for

state, parameter trajectory, input trajectory, and process noise
trajectory are sampled from their corresponding distributions.
For each realization, kE is computed. The resulting set of kE
values characterizes its distribution.

Algorithm 2 shows the Monte Carlo prediction algorithm.
The algorithm is given as input the joint state-parameter
distribution, and the distributions of the λθ, λu, and λv
variables, along with the number of samples to take, N .
For N times, the algorithm samples from the distributions,
constructs the parameter, input, and process noise trajecto-
ries, and calls the P function to compute kE . To construct
the trajectories from the λ variables, the constructΘ
constructU and constructV functions must be pro-
vided by the user, as they depend on the chosen surro-
gate variables and how they are to be interpreted. Note
that the constructΘ function requires an additional in-
put, θ(i)(kP ), which is a sample from the estimator-computed
joint parameter estimate at time kP .

In any prediction algorithm, computational complexity is
driven by two factors: the number of evaluations of P, and the
length of time each sample takes to simulate to kE (Daigle &
Goebel, 2010). Assuming a fair comparison for the second
factor, we can compare algorithms mainly by the first factor.
In the case of Monte Carlo sampling, the number of samples
N is arbitrary and determines the efficiency. In most cases, a
very large value of N is required in order to reproduce accu-
rately the important characteristics of the kE distribution.

3.2. Unscented Transform Sampling

A more complex method that can improve the efficiency
of prediction over the Monte Carlo method is to use the
unscented transform (UT) to sample from the distribu-
tions (Daigle, Saxena, & Goebel, 2012). We present here
an extended and generalized version of the method originally
presented in (Daigle, Saxena, & Goebel, 2012) in order to
accommodate the λ variable formulation.

The UT takes a random variable a ∈ Rna , with mean ā and
covariance Paa, that is related to a second random variable

4
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b ∈ Rnb by some function b = g(a), and computes the
mean b̄ and covariance Pbb with high accuracy using a mini-
mal set of deterministically selected weighted samples, called
sigma points (Julier & Uhlmann, 1997). The number of sigma
points is linear in the dimension of the random variable, and
so the statistics (mean and covariance) of the transformed ran-
dom variable can be computed more efficiently than Monte
Carlo sampling.

Here, Ai denotes the ith sigma point from a and wi denotes
its weight. The sigma points are always chosen such that the
mean and covariance match those of the original distribution,
ā and Paa. Each sigma point is passed through g to obtain
new sigma points B, i.e.,

Bi = g(Ai)

with mean and covariance calculated as

b̄ =
∑

i

wiBi

Pbb =
∑

i

wi(Bi − b̄)(Bi − b̄)T .

In this paper, we use the symmetric unscented transform
(SUT), in which 2na + 1 sigma points are symmetrically se-
lected about the mean according to (Julier & Uhlmann, 2004):

wi =





κ

(na + κ)
, i = 0

1

2(na + κ)
, i = 1, . . . , 2na

Ai =





ā, i = 0

ā+
(√

(na+κ)Paa

)i
,i = 1, . . . , na

ā−
(√

(na+κ)Paa

)i
,i = na+1, . . . , 2na,

where
(√

(na + κ)Paa

)i
refers to the ith column of the ma-

trix square root of (na + κ)Paa, and κ is a free parameter
that can be used to tune higher order moments of the distribu-
tion. When a is assumed to be Gaussian, (Julier & Uhlmann,
1997) recommends setting κ = 3 − na. Note that with the
UT, weights may be negative, and are not to be directly inter-
preted as probabilities.

For prediction, the G function serves as g in the above for-
mulation, where a corresponds to the joint distribution of the
state and λ variables, and b corresponds to kE . The pre-
diction algorithm in this case is shown as Algorithm 3. The
algorithm first uses the symmetric unscented transform to
compute sigma points for the given probability distributions
(treated together as a joint distribution), where each sigma
point consists of a sample for the state-parameter vector and
the λ variables. For each sigma point, the parameter, input,
and process noise trajectories are constructed and the P func-

Algorithm 3 {k(i)E , w(i)}Ni=1 = UT(p(x(kP ), θ(kP )
|y(k0:kP )), p(λθ), p(λu), p(λv))

1: N ← 2(nx + nθ + nλθ + nλu + nλv ) + 1

2: {x(i)(kP ),θ(i)(kP ),λθ,λu,λv, w
(i)}Ni=1 ←

SUT((p(x(kP ),θ(kP )|y(k0:kP )), p(λθ), p(λu), p(λv)))
3: for i = 1 to N do
4: Θ

(i)
kP
← constructΘ(λ

(i)
θ ,θ(i)(kP ))

5: U
(i)
kP
← constructU(λ

(i)
u )

6: V
(i)
kP
← constructV(λ

(i)
v )

7: k
(i)
E ← P(x(i)(kP ),Θ

(i)
kP
,U

(i)
kP
,V

(i)
kP

)
8: end for

tion is called to compute the corresponding kE . The mean
and variance for kE can be computed from its sigma points.

This prediction method will often require a smaller number of
samples than with Monte Carlo sampling, since the number
of sigma points grows only linearly with the problem dimen-
sion. This is partly due to the fact that the UT method pro-
vides only mean and covariance information, whereas addi-
tional higher-order moments can be computed with the Monte
Carlo method. Extended versions of the UT are also available
that compute higher-order statistical moments (Julier, 1998).

3.3. Inverse First-Order Reliability Method

The Monte Carlo and UT approaches are sampling-based
techniques to predict the uncertainty in the kE . Here we
briefly explain an optimization-based method, the inverse
first-order reliability method, for this purpose. The First-
order Reliability Method (FORM) and the Inverse First-Order
Reliability Method (inverse FORM) were originally devel-
oped by structural engineers to evaluate the probability of
failure of a given structure (Haldar & Mahadevan, 2000). In
an earlier publication (Sankararaman et al., 2013), we have
extended these two approaches for uncertainty quantification
in the context of remaining useful life estimation, i.e., prop-
agate the uncertainty in present estimates of states and pa-
rameters, future loading, future process noise, and future pa-
rameter values through P (defined earlier in Algorithm 1) to
calculate the uncertainty in kE . In the present paper, we use
the inverse FORM methodology to calculate the entire prob-
ability distribution of kE in terms of the cumulative distribu-
tion function. Calculating the cumulative distribution func-
tion (CDF) is equivalent to calculating the probability density
function p(kE(kP )|y(k0:kP )), since the density function can
easily be obtained by differentiating the cumulative distribu-
tion function.

For a generic random variable Z, the cumulative distribution
function is a mapping from a realization z of the random vari-
able to the set [0, 1], and is denoted by FZ(z). If FZ(z) = η,
then the probability that the random variable Z is less than
a given value z is equal to η. In the context of prognostics,
the goal is to compute the uncertainty in kE . Typically, the
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Algorithm 4 kE(kP )← Pλ(ω)

1: [x(kP ), θ(kP ), λθ , λu, λv]← ω
2: ΘkP ← constructΘ(λθ,θ(kP ))
3: UkP ← constructU(λu)
4: VkP ← constructV(λv)
5: kE(kP )← P(x(kP ),ΘkP ,UkP ,VkP )

quantities x(kP ), θ(kP ), λθ, λu, and λv are vectors, and
now, consider a new vector which is the concatenation of all
these vectors as ω = [x(kP ), θ(kP ), λθ, λu, λv]. Based on
the probability distributions of x(kP ), θ(kP ) λθ, λu, λv , the
joint probability density of ω, denoted as fΩ(ω), can be easily
calculated. Note that ω is a realization of the random variable
that is denoted by Ω.

In order to implement the inverse FORM, it is necessary to
construct a function whose inputs are ω = [x(kP ), θ(kP ), λθ,
λu, λv] and the output is kE . This function similar to P, with
one difference; while P takes realizations of entire trajecto-
ries, i.e., ΘkP ,UkP , and VkP as input arguments, the new
function needs to consider realizations of the corresponding
surrogate variables as input arguments. This new function,
denoted by Pλ, is indicated in Algorithm 4.

The inverse FORM approach is now explained using the func-
tion kE = Pλ(ω). The reason for such vectorized represen-
tation using ω is not only to facilitate easy explanation of the
FORM and inverse FORM algorithms but also demonstrate
that these algorithms do not differentiate amongst state es-
timate values, parameter values, future loading trajectories,
and process noise trajectories but treat them similarly.

Let the CDF of kE be denoted as FKe(kE) = η. Using
kE = Pλ(ω), the FORM approach can be used to calculate
the value of η corresponding to a given value of kE . Con-
versely, the inverse FORM approach can be used to calculate
the value of kE corresponding to a given value of η. By re-
peating the FORM procedure for multiple values of kE , or by
repeating the inverse FORM procedure for multiple values of
η, the entire CDF FKe(kE) can be calculated. In a practical
scenario, it is not reasonable to know what values of kE need
to be selected to implement the FORM procedure, since the
goal is actually to compute the uncertainty in kE . However,
it is easier to select values of η (say, 0.1, 0.2, 0.3 and so on
until 0.9) which span the entire probability range and imple-
ment the inverse FORM procedure for each of these η values.
Therefore, we use the inverse FORM approach to quantify
the uncertainty in kE . The authors have explained the inverse
FORM algorithm in detail in previous work (Sankararaman
et al., 2013); in this section, the overall approach is briefly
summarized and the algorithm is provided.

Both FORM and inverse FORM approaches linearize the
curve represented by the equation kE = Pλ(ω) and transform
all the variables in Ω to standard normal variables (Gaussian
distribution with zero mean and unit variance) using well-

Algorithm 5 {k(i)E , η(i)}Ni=1 ← InverseFORM(fΩ(ω),Pλ)
1: N ← Number of η values to consider.
2: M ← Number of elements in ω
3: {Example: N = 9, η(i) = 0.1× i, i = 1 to N . }
4: for i = 1 to N (For every η value) do
5: β(i) ← −Φ−1(η(i))
6: ω0 ← Select initial guess for optimization
7: Convergence = 0
8: j = 0 {Iteration number}
9: while Convergence← 0 do

10: φj ← T (ωj) {Transformation to Std. Normal Space}
11: φj ← [φjk; k = 1 to M ]

12: αj ← [αjk; k = 1 to M ] where αjk = ∂Pλ
∂φjk

13: φj+1 ← − αj
|αj | × β

(i)

14: ωj+1 ← T−1(φj+1) {Transformation to Original Space}
15: if ωj+1 ≈ ωj then
16: Convergence← 1
17: end if
18: j ← j + 1
19: end while
20: k

(i)
E ← Pλ(ωj)

21: end for

defined, popular transformation functions. Thus, kE can be
expressed as a linear sum of Gaussian variables, and therefore
the probability distribution of kE can be computed easily. The
key point in these algorithms is that the point of linearization
is chosen to be the Most Probable Point (MPP), i.e., the point
of maximum likelihood value. For example, in a Gaussian
distribution, the MPP is at the mean. Since each uncertain
quantity in Ω may have its own distribution, the MPP is com-
puted in the standard normal space, where the origin has the
highest likelihood of occurrence. However, the origin may
not satisfy the equation kE = Pλ(ω), and the point of liner-
ization needs to lie on the curve represented by the equation
kE = Pλ(ω). Therefore, the problem reduces to estimat-
ing the minimum distance (measured from the origin, in the
standard normal space) point on the curve represented by the
equation kE = Pλ(ω). This is posed as a constrained min-
imization problem, and solved using a well-known gradient-
based optimization technique, as described in Algorithm 5.
Once the minimum distance (denoted by β) has been evalu-
ated, then it can be proved that FKE (kE) = Φ(−β), where
Φ(.) represents the standard normal distribution function. Al-
gorithm 5 explains the numerical implementation of the in-
verse FORM approach.

In the above algorithm, note that the user needs to specify
functions T and T−1 for transforming original space to stan-
dard normal space and from standard normal space to origi-
nal space respectively. There are several types of transforma-
tion available in the literature (Haldar & Mahadevan, 2000)
and any valid transformation may be used. Further, note that
the gradient α needs to be calculated in the standard normal
space. This depends on (i) the gradient in the original space;
and (ii) the chosen transformation T .

Using the algorithm, the values of kE corresponding to the
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chosen values of η are first obtained, and then an interpolation
technique can be used to obtain the entire CDF. Also, if the
goal is to quickly obtain bounds on kE , then we may consider
two η values in either tail of the probability distribution (say,
for example, η values of 0.1 and 0.9), and the corresponding
probability bounds of kE can be obtained.

4. CASE STUDY

As a case study, we perform battery prognostics on a plan-
etary rover and present simulation-based results. The rover
and its simulation are described in detail in (Balaban et al.,
2011). The rover battery system consists of two parallel sets
of 12 batteries in series to provide around 48 V. We are inter-
ested in predicting end-of-discharge (EOD), which is defined
as the point when the voltage of a single battery drops below
2.5 V.

We consider two different scenarios for the rover. In both
scenarios, the rover is provided a sequence of waypoints that
must be visited. The rover travels through the waypoints in
order until the batteries discharge. In the first scenario, the
desired forward speed of the rover is the same when moving
to each waypoint. In the second scenario, the desired forward
speed is different depending on which waypoint is being ap-
proached. Since the needed power draw from the batteries
depends on speed, the first scenario resembles a constant-
amplitude loading situation, and the second scenario resem-
bles a variable-amplitide loading scenario.

The battery prognostics architecture works as follows. The
rover provides voltage measurements on all batteries, and the
current going into the batteries. Because there are two sets of
batteries in parallel, each battery sees only half the measured
current. The measured current and voltage are fed into the
battery prognoser. The battery prognoser uses an unscented
Kalman filter (UKF) to perform state estimation (see (Julier
& Uhlmann, 1997, 2004; Daigle, Saha, & Goebel, 2012) for
details on the UKF). The state estimate is then fed into the
predictor, which makes EOD predictions every 100 seconds.

In the remainder of the section, we describe the details of the
underlying battery model used by the rover simulation and the
battery prognoser, and provide simulation-based experimen-
tal results for different scenarios and comparing the different
methods presented in Section 3.

4.1. Battery Model

The battery model is extended from that presented in (Daigle,
Saxena, & Goebel, 2012). The model is based on an electrical
circuit equivalent as shown in Fig. 2, following similar mod-
eling approaches to (Chen & Rincon-Mora, 2006; Ceraolo,
2000). The large capacitance Cb holds the charge qb of the
battery. The nonlinear Cb captures the open-circuit poten-
tial and concentration overpotential. The Rsp-Csp pair cap-

Figure 2. Battery equivalent circuit.

tures the major nonlinear voltage drop due to surface overpo-
tential, Rs captures the so-called Ohmic drop, and Rp mod-
els the parasitic resistance that accounts for self-discharge.
This empirical battery model is sufficient to capture the ma-
jor dynamics of the battery while ignoring temperature effects
and additional minor processes. The governing equations for
the battery model are presented in continuous time below.
The implementation of the proposed methodology considers
a discrete-time version with a discrete time-step of 1 s.

The state-of-charge, SOC, is computed as

SOC = 1− qmax − qb
Cmax

, (5)

where qb is the current charge in the battery (related to Cb),
qmax is the maximum possible charge, and Cmax is the max-
imum possible capacity. The resistance related to surface
overpotential is a nonlinear function of SOC:

Rsp = Rsp0 +Rsp1 exp (Rsp2(1− SOC)), (6)

where Rsp0 , Rsp1 , and Rsp2 are empirical parameters. The
resistance, and, hence, the voltage drop, increases exponen-
tially as SOC decreases.

Voltage drops across the individual circuit elements are given
by

Vb =
qb
Cb
, (7)

Vsp =
qsp
Csp

, (8)

Vs =
qs
Cs
, (9)

Vp = Vb − Vsp − Vs, (10)

where qsp is the charge associated with the capacitance Csp,
and qs is the charge associated with Cs. The voltage Vb is
also the open-circuit voltage of the battery, which is a nonlin-
ear function of SOC (Chen & Rincon-Mora, 2006). This is
captured by expressing Cb as a third-order polynomial func-
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Table 1. Battery Model Parameters

Parameter Value
Cb0 19.80 F
Cb1 1745.00 F
Cb2 −1.50 F
Cb3 −200.20 F
Rs 0.0067 Ω
Cs 115.28 F
Rp 1× 104 Ω
Csp 316.69 F
Rsp0 0.0272 Ω
Rsp1 1.087× 10−16 Ω
Rsp2 34.64
qmax 3.11× 104 C
Cmax 30807 C

tion of SOC:

Cb = Cb0 + Cb1SOC + Cb2SOC
2 + Cb3SOC

3 (11)

The terminal voltage of the battery is

V = Vb − Vsp − Vs. (12)

Currents associated with the individual circuit elements are
given by

ip =
Vp
Rp

, (13)

ib = ip + i, (14)

isp = ib −
Vsp
Rsp

, (15)

is = ib −
Vs
Rs

. (16)

The charges are then governed by

q̇b = −ib, (17)
q̇sp = isp, (18)
q̇s = is. (19)

In the case of the battery, the event E we are interested in
predicting is EOD. TE is specified as V < VEOD, where
VEOD = 2.5 V.

The parameter values of the battery model are given in Ta-
ble 1. All voltages are measured in Volts, resistances are
measured in Ohms, charges are measured in Coulombs, and
capacitances are measured in Coulombs per Volt (or Farads).
Note thatCb0 ,Cb1 ,Cb2 , andCb3 are simply fitting parameters
in Eq. 11 and do not have physical meaning.

For the battery model, x = [qb qsp qs], θ = ∅ (i.e., all pa-
rameters are assumed constant and no parameters will be es-
timated online), and y = [V ]. We consider power P to be
the input to the battery, so i = P/V , i.e, u = [P ]. Here, we
choose power as the input, rather than current as in previous
battery prognostics works, because it is simpler to describe

battery load in terms of power. For the same power demands
from the rover onto the battery, current will increase as bat-
tery voltage decreases; it is necessary to capture this current-
voltage relationship in order to use current as input. There-
fore, it is much easier to predict future power usage than to
predict future current draw, and hence, power is used as input.

4.2. Future Input Characterization

In the experiments presented in this section, we will consider
only uncertainty in the state and in the future inputs (meth-
ods for dealing with process noise are described in (Daigle,
Saxena, & Goebel, 2012; Sankararaman & Goebel, 2013)).
Therefore we need to define p(λu) and the constructU
function. We explore three methods that differ in complexity
and the amount of system knowledge used.

The future input trajectory to a battery model depends on how
the rover will be used. When moving from one waypoint to
the next, the rover must turn towards the next waypoint while
maintaining its foward speed (that is how the locomotion con-
troller is designed to work). For the same forward speed,
turning actually requires more power than going straight, be-
cause the rover must also move against the ground torques
produced while turning in addition to the opposing forces pro-
duced when moving forwards. Further, because of the turn-
ing, the actual distance traveled between two waypoints is
greater than the straight-line distance between them because
the rover actually takes a curved path.

To correctly account for all these details, a system-level ap-
proach is required (Daigle, Bregon, & Roychoudhury, 2012).
In this case, the whole rover and its locomotion controller
would be considered as the system under prognosis. Thus, the
whole rover would be simulated moving through the different
waypoints, and this would define very precisely (depending
on model fidelity) the power drawn from the batteries as a
function of time. However, such an approach is more com-
putationally expensive than considering only a single battery
model.

A simpler approach is to assume that, in the current opera-
tion of the system, the future inputs to the system will look
like the past inputs. That is, we can assume that the future
power requirements will be constant with the mean and vari-
ance defined by the past power requirements over some time
window. If the window size is large enough, then the differ-
ences in power that arise may be represented well enough in
the statistics of the past behavior. Although simple, such an
approach may work well in some circumstances.

As a middle ground, we can incorporate some system-level
knowledge into predicting the future power requirements
without resorting to a system-level simulation. We can do this
by computing the mean and variance of the power draw and
distance traveled between waypoint pairs for each forward
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speed setting. Then, knowing the current rover location and
the remaining waypoints, given a realization of each distance
and power variable for the remaining waypoints and the de-
sired forward speed when heading to each waypoint, we can
compute the future power as a function of time based on the
expected path the rover is going to take. This approach uses
system knowledge, i.e., knowledge beyond the battery model,
in order to compute useful predictions of the future inputs to
the battery, and therefore makes useful EOD predictions for
the battery, but without resorting to a system-level simulation.

4.3. Results

In the simulation experiments considered in this section, all
parameters are considered known exactly and no process
noise is added. The two potential sources of uncertainty are
related to the state estimate obtained by the UKF and the fu-
ture input assumptions. Predictions are made every 100 s un-
til EOD, and the accuracy and precision metrics are averaged
over all these predictions. We use the relative accuracy (RA)
metric as defined in (Saxena, Celaya, Saha, Saha, & Goebel,
2010) as a measure of accuracy and relative standard devia-
tion (RSD) as a measure of spread. In the following plots, the
∗ superscript indicates the ground truth values.

4.3.1. Constant-Loading Scenario

We consider first the scenario where the rover must move be-
tween equidistant waypoints at the same forward speed, re-
sembling a constant-loading situation. Let us first assume that
the future inputs (the battery power) are known exactly. There
are 3 states in the battery model, so 7 sigma points are used
by the UKF, and these are directly simulated forward to com-
pute the kE distribution using the sigma point weights. In
this case, since uncertainty is limited only to that in the state
estimate, predictions are both very accurate and precise, with
RA averaging to 99.65% and RSD to 0.64%.

Now assume that the past power requirements are statistically
representative of the future power requirements. Here, we
consider Monte Carlo sampling with 3500 samples. We con-
sider window sizes of 100 s, 500 s, and unlimited size. The
results are shown in Fig. 3. In all three cases, the uncertainty
starts initially very large, because the window is not large
enough to accurately capture the statistics of the power usage.
With a small window size (Fig. 3a), the statistics of the power
usage averaged over the window fluctuate. The variance is
larger when both turns and forward movements appear in the
same window, and smaller when only forward movements are
in the window. With a larger window size the variance will
average to a larger value that accounts for both turns and for-
ward movements, as seen in Figs. 3b and 3c. Since the past
power usage turns out to be a good indicator of future power
usage in this scenario, the results are fairly accurate, with RAs
of 98.14%, 98.47%, and 97.53% for 100 s, 500 s, and un-
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(a) Window size of 100 s.
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(b) Window size of 500 s.
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(c) Unlimited window size.

Figure 3. ∆kE predictions using Monte Carlo sampling.

limited window sizes, respectively. Corresponding RSDs are
3.83%, 5.57%, and 7.61%. The spread increases as window
size increases since more variation is accounted for in larger
windows.

Using a window size of 500 s, the results using the UT are
shown in Fig. 4. Here, the results are comparable to using
Monte Carlo sampling with the same window size, with an
average RA of 98.69% and RSD of 5.24%. The UT method,
however, needs only 9 total samples, with there being only
3 states and one surrogate input variable to consider. This
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Figure 4. ∆kE predictions with a window size of 500 seconds
using UT sampling.
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Figure 5. ∆kE predictions with a window size of 500 seconds
using inverse FORM.

results in a substantial decrease in computational cost com-
pared to the Monte Carlo approach. Fig. 5 shows the results
using inverse FORM. The results are similar to using both
Monte Carlo and UT sampling, and RA averages to 98.46%
and RSD to 3.43%.

Using knowledge about the future waypoints to be visited, we
can improve over using a window of past data to determine
future inputs to the system. Fig. 6 shows the improved future
input characterization method using Monte Carlo sampling
with 3500 samples. The plots look the same for UT sam-
pling and inverse FORM. The accuracy is comparable to the
previous approach, with an average RA of 98.29% for Monte
Carlo sampling, 98.32% for UT sampling, and 98.30% for in-
verse FORM. RSDs, however, are lower now since the future
inputs are known with more precision than could be derived
from a window of past samples. RSD averages to 1.61% for
both Monte Carlo and UT sampling and 4.67% for inverse
FORM.

4.3.2. Variable-Loading Scenario

We now consider the second scenario that uses the same way-
points as the previous scenario, but the rover is commanded

Time (s)

∆ 
k E

 (
s)

 

 

0 1000 2000 3000 4000 5000 6000 7000
0

2000

4000

6000

8000

10000
∆k∗E
[(1− α)∆k∗E , (1 + α)∆k∗E ]
Median ∆kE Prediction
5-25% and 75-95% Ranges

Figure 6. ∆kE predictions with improved future input char-
acterization using Monte Carlo sampling.

to go different speeds depending on which waypoint is being
headed towards, resembling a variable-loading situation. As-
suming the future inputs are known exactly, the average RA is
99.50% and the average RSD is 0.70%. The only uncertainty
is in the state estimate.

Because the speed of the rover will change with each new
waypoint, it is no longer correct to assume that past power re-
quirements are representative of future power requirements.
Fig. 7a shows the results when we incorrectly make this as-
sumption for Monte Carlo sampling with 3500 samples, us-
ing a window size of 500 s. Clearly, the predictions are very
inaccurate. RA averages to 90.53% and RSD to 13.74%. Us-
ing UT sampling we find similar results, with RA averaging
to 90.12% and RSD to 13.54%. Using inverse FORM, RA
averages to 90.59% and RSD to 9.24%. When the average
speed of the rover in the future is greater than what is as-
sumed based on the window of past samples, then ∆kE is
overestimated. When the average speed is less than what is
assumed, ∆kE is underestimated. Because the average speed
over the window changes based on the previous waypoints
within that window, the predictions fluctuate above and be-
low ground truth. If the window size is increased, such that
it accounts for all possible speed settings, then accuracy can
be improved because the assumed average speed based on
past samples will match the future average speed, however,
spread will also increase since multiple speeds are consid-
ered in the window. Predictions with an unlimited window
size are shown in Fig. 7b. The predictions initially fluctuate
as the window begins to fill up, but by 2000 s the predictions
have smoothed out. The spread is clearly larger than with the
smaller window size, but predictions are more accurate once
the window contains all potential future speeds. In this case,
RA improves to 96.62% but RSD increases to 17.47%.

Predictions can be improved by using system knowledge to
help characterize the future inputs. In this case, the future
power as a function of time is computed based on the rover’s
current location, the remaining waypoints, and the desired
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(a) Window size of 500 s.
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(b) Unlimited window size.

Figure 7. ∆kE predictions using Monte Carlo sampling.

speeds when heading to each waypoint, and measured statis-
tics on average power between waypoints and average dis-
tance traveled (to account for turns). Fig. 8 shows the results
using Monte Carlo sampling. The plots for UT sampling and
inverse FORM look the same. All three methods are now
clearly very accurate and precise. RA averages to 98.85%
and RSD to 1.95% for Monte Carlo sampling, 98.82% and
1.91% for UT sampling, and 97.77% and 2.72% for inverse
FORM. Unlike when using a window, here knowledge of the
future waypoints and desired speeds allows accurate predic-
tions to be made from the start of the scenario, and with very
little spread. That is, the future inputs are well-known and so
predictions are very close to the optimal.

In the case above, for UT sampling, there are 3 states to con-
sider and at most 100 surrogate input variables. For the in-
put variables, there are two variables associated with each re-
maining waypoint, one for the power that will be consumed
heading towards the waypoint and one for the distance to
travel to a waypoint from the previous waypoint (due to turn-
ing while moving forward, the distance is more than the linear
distance between the waypoints). Since there are 50 way-
points, there are 100 random variables needed. This yields
2(103) + 1 = 207 samples, which is relatively small com-
pared to what Monte Carlo sampling would require to achieve

Time (s)

∆ 
k E

 (
s)

 

 

0 2000 4000 6000 8000
0

2000

4000

6000

8000

10000
∆k∗E
[(1− α)∆k∗E , (1 + α)∆k∗E ]
Median ∆kE Prediction
5-25% and 75-95% Ranges

Figure 8. ∆kE predictions with improved future input char-
acterization using Monte Carlo sampling.

the same performance. As the rover visits waypoints, the
number is reduced, so 207 samples is only the maximum.
When only a single waypoint is left, only 2(5) + 1 = 11
sigma points are needed.

4.4. Discussion

The two scenarios demonstrate the importance of the future
input characterization problem. Even though the rover is a
complex system, in the first scenario, the simple assumption
that the future inputs will look like the past inputs was suf-
ficient for accurate and precise predictions. The additional
power required by turns was captured using the statistics
of a window of past samples, so that they did not have to
be explicitly accounted for and assuming constant future in-
puts was sufficient. Using system-level information about the
waypoints the rover would visit improved significantly on the
uncertainty associated with the future inputs but did not sig-
nificantly impact accuracy.

In the second scenario, the assumption that the future inputs
look like the past inputs did not provide as accurate or pre-
cise results as with the first scenario. Performance could
have been potentially worse if the rover did not cycle through
different speed settings and instead, for example, always in-
creased the speed for the next waypoint. In this scenario, truly
accurate predictions could be made only when system-level
knowledge was utilized to predict the battery inputs. This ap-
proach still made some simplifying assumptions allowing a
component-level prognostics approach to still be used.

Given a particular method for future input characterization,
Monte Carlo sampling, UT sampling, and inverse FORM all
had comparable accuracy and precision. With Monte Carlo
sampling, a large number of samples were used and with
smaller numbers of samples, performance decreases, so the
number of samples required depends on the prognostics per-
formance requirements. In this sense Monte Carlo sampling
has an advantage because its computational complexity can
be tuned. In addition it is the relatively simplest approach
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to implement of the three methods. A disadvantage is that
it is a stochastic algorithm, which can be problematic for
verification and certification procedures (Daigle, Saxena, &
Goebel, 2012). UT sampling, in contrast, is a determinstic
algorithm, and it selects only the minimal number of sam-
ples and this number grows only linearly with the number
of random variables. A disavdvantage though is that it com-
putes only mean and variance of the predictions, which may
not be enough information in some cases. Inverse FORM,
on the other hand, is not only deterministic but also allows
control of both computational complexity and accuracy by
selecting desired CDF values and computing the correspond-
ing percentile values of kE . The probability distribution of
kE can be reconstructed from that information and any de-
sired statistical moments may be calculated. For each inverse
CDF calculation, three to four iterations are usually required
for optimization convergence. If the number of random vari-
ables is denoted by n (length of vector ω), each iteration of
Inverse-FORM requires n+1 sample evaluations of G, where
one evaluation is required for computing kE and n evalua-
tions for computing the gradient vector of kE . Therefore, if it
is desired to repeat inverse FORM for k different CDF values,
then k× 4× (n+ 1) evaluations of P are required. Thus, the
computational complexity linearly increases with the number
of random variables and results in increased information re-
garding uncertainty.

5. CONCLUSIONS

In this paper, we provided a general formulation of the prog-
nostics problem and its uncertainty. Given descriptions of
the sources of uncertainty, i.e., state uncertainty, parameter
uncertainty, future input uncertainty, and process noise, we
provided an algorithmic framework for incorporating this un-
certainty into the predictions. With the novel concept of sur-
rogate variables, we presented three methods for propagating
the uncertainty: Monte Carlo sampling, unscented transform
sampling, and the inverse first-order reliability method. Using
battery prognostics on a planetary rover as a case study, we
proposed two future input characterization methods and com-
pared the performance of the different prediction algorithms
for these methods for different scenarios in simulation. All
approaches had similar performance, yet each offer different
advantages and disadvantages that suggest when one would
be preferred over another.

In future work, we will further investigate these ideas on other
systems, and further develop the uncertainty quantification
framework. While the proposed methods are promising for
estimating uncertainty in prognostics, their applicability to
multi-modal probability distributions, particular in the con-
text of remaining useful life estimation, needs to be investi-
gated. Further, we will also focus on model uncertainty quan-
tification and develop methods for estimating model errors
and model parameter uncertainty separately, instead of sim-

ply using lumped process noise terms.
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Abstract

This work studies potential ways of integration of two
techniques for fault detection, isolation, and identifica-
tion in dynamic systems: Lydia-NG suite of diagnosis
algorithms and Consistency-based Diagnosis with Pos-
sible Conflicts. By integrating both techniques, Lydia-
NG will benefit from a more efficient fault detection and
isolation task, and Possible Conflicts will benefit from
the identification capabilities of Lydia-NG. In this pa-
per, we define a common framework that integrates both
techniques, and then we apply the proposed integrated
approach to a three-tank system, and draw some conclu-
sions about potential ways of integration.

1. Introduction

The need for safety and reliability in engineering systems
provides the motivation for developing Integrated Sys-
tems Health Management (ISHM) methodologies that
include efficient fault diagnosis mechanisms. In this work
we focus on model-based approaches to on-line fault di-
agnosis of dynamic systems. Online methods for model-
based diagnosis require the use of quick and robust fault
detection methods to establish discrepancies between ob-
served and expected system behavior. Discrepancies due
to faults trigger fault isolation processes that are re-
sponsible for determining the root cause of the fault.
However, accurate and timely online fault diagnosis of
complex dynamic systems is difficult and can be com-
putationally expensive (Pouliezos & Stavrakakis, 1994;
Isermann, 2006; Gertler, 1998).

Anibal Bregon et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution 3.0 United
States License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original author and
source are credited.

In this work we have used the Lydia-NG modeling lan-
guage and the Lydia-NG suite of algorithms (Feldman,
Provan, & Gemund, 2010). The main idea of Lydia-NG
is to perform multiple simulations for various hypoth-
esized health states of the plant. The output of these
multiple simulations is then processed and combined into
single diagnostic output. Lydia-NG implements several
strategies for the generation of fault candidates and a
number of algorithms for active testing. These algo-
rithms are based on AI search and include best-first, and
bottom-up greedy search. Lydia-NG has been success-
fully used for complex applications like space satellites
(Feldman, Castro, Gemund, & Provan, 2013). However,
when applied to online fault diagnosis of large dynamic
systems, running all the hypothesized health states be-
comes a quite difficult and time consuming task.

Several approaches have been proposed in recent years
to deal with the complexity issue. System decomposition
methods, have been proposed to reduce the complexity
in the fault diagnosis task (Bregon, Biswas, & Pulido,
2012) by generating smaller simulation submodels which
can run in parallel and provide independent diagnosis de-
cisions. The Possible Conflict, PC, approach (Pulido &
Alonso-González, 2004), is an off-line dependency compi-
lation technique from the DX community, which decom-
poses the global system model into minimal submodels,
and performs on-line behavior estimation using simula-
tion (Bregon, Alonso, Biswas, Pulido, & Moya, 2012),
state observers (Daigle, Bregon, & Roychoudhury, 2012),
dynamic Bayesian networks (Alonso-González, Moya, &
Biswas, 2011), or state-based neural networks (Pulido,
Zamarreño, Merino, & Bregon, 2012). If a discrepancy
is found, a set of fault candidates is generated by a mini-
mal hitting-set algorithm of the triggered PCs. However,
additional techniques must be used to refine the set of
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fault candidates.

The goal of this work consists of integrating PCs within
the Lydia-NG diagnosis framework. First, PCs will de-
compose the global simulation model into a set of smaller
simulation submodels. Then, PCs will be used for effi-
cient online fault detection and fault localization, pro-
viding a subset of fault candidates from the minimal
hitting-set of the deviated PC residuals. The subset
of fault candidates is then used as input to Lydia-NG,
where simulations are run only for each one of the fault
candidates, and its result is processed and combined to
provide the diagnosis output.

We have tested the proposed diagnosis framework by us-
ing a three-tank system. Theoretical study on the in-
tegration proposal shows that the complexity of Lydia-
NG is highly reduced by the inclusion of PCs in the
framework. The experimental results present a partic-
ular diagnosis scenario where the proposed integration
framework is used.

The rest of the paper is organized as follows. Section 2
presents the basic definitions and running example used
in this work. Section 3.1 briefly introduces Lydia-NG,
and section 3.2 describes basic ideas of system decom-
position using PCs. Section 4 presents our proposal to
integrate PCs within the Lydia-NG diagnosis framework.
Section 5 describes the experimental results obtained for
a three-tank system. Section 6 presents related work.
And, finally, section 7 presents the discussion and con-
clusions.

2. Concepts and Definitions

In this section we present our basic definitions and a
running example that we use to illustrate the significant
concepts of this paper.

Since both Lydia-NG and PCs are model-based diag-
nosis approaches, we provide a set of definitions about
models and faults that will enable us to further explain
both techniques using the same framework.

2.1. Definitions

For the purpose of this work we will focus our descrip-
tion on continuous systems diagnosis, with only one
nominal state, and whose behavior can be described as
a set Σ of Ordinary Differential Equations (ODEs). The
model of our system will be the basic system description
to perform diagnosis:

Definition 1 (Model). The system model can be defined
as M(Σ, U, Y,X,Θ), where: Σ is a set of ODEs, defined
over a collection of known and unknown variables: U is
a set of inputs, Y a set of outputs, X a set of state and

intermediate i.e., unknown) variables, and Θ is the set
of Model Parameters.

Definition 2 (System Description). SD is made up of
(M,H, σ,Π), where,

• H is the health-vector defined by means of
(h1, . . . , hk), health variables, that allow us to char-
acterize the set of states in the system, i.e. each
hi ∈ H is a potential mode for the system. either
nominal or faulty.

• σ is a mapping function: σ(M,Hc) →
MHc(ΣHc, UHc, YHc, XHc,ΘHc), that given the
system description, M , and the current health sta-
tus, Hc, provides the model for behavior estimation
for the current mode (or current system description
MHc): ΣHc ⊆ Σ, UHc ⊆ U , YHc ⊆ Y , XHc ⊆ X,
and ΘHc ⊆ Θ).

• Π is a mapping function Π(θcc) → {Hc | Hc ⊆ H}
that, given a set of parameters, provides the set of
health statuses that relate to the set of model pa-
rameters: θcc ⊆ Θcc.

For consistency-based diagnosis using PCs, we only use
σ(M,Hn) with Hn corresponding to a nominal mode.
Since we are dealing with a continuous system working
in one nominal mode, we can compute offline the set
of PCs for MHn(ΣHn, UHn, YHn, XHn,ΘHn), as will be
described later.

An implicit assumption in our modeling approach is that
we can use the same set of equations for both the nominal
behavior estimation and the faulty behavior estimation,
just changing the value of θi in equation ci ∈ Θ.

Consistency Based Diagnosis (CBD) performs fault
detection and fault isolation using only models of cor-
rect behavior in a two stage process. First, we identify
if there exists a discrepancy between the observed
behavior (obtained via sensor outputs yi) and the
expected behavior (estimated by the Possible Conflict,
ŷipc). We define a discrepancy in terms of a residual.

Definition 3 (Residual). A residual is a real-valued
measure R(yi, ŷipc) of the difference between real and
simulated system output at time t.

Corresponding to each residual is a conflict (Reiter,
1987). Hence, fault detection consists of computing ev-
ery conflict.

The second step is fault isolation. Fault isolation con-
sists of computing the minimal hitting sets of the con-
flicts. Conflicts are important since the set of minimal
diagnoses of a system is given by the minimal hitting
set of the set of minimal conflicts (Reiter, 1987). Intu-
itively, a conflict is a set of components that cannot be-
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have properly simultaneously, given the system descrip-
tion and current observations of abnormal behavior. In
other words, given a system description and some current
observations, they entail that at least one component of
the conflict must be faulty, in the sense that it departs
from the behavior described by its model of correct be-
havior.

There is no general framework for CBD of dynamic sys-
tems. Nevertheless, most existing approaches rely upon
an iterative process of behavior estimation, conflict de-
tection, and fault candidate generation (i.e. fault isola-
tion). In this work we use the Possible Conflicts (PCs)
approach to avoid the on-line computation of conflicts
and speed up overall fault isolation. PCs are designed to
compute off-line those subsystems capable of becoming
conflicts online.

The output of the consistency-based diagnosis using PCs
is a set of fault candidates C defined in the lattice pro-
vided by Θ∗.

2.2. Running Example

In this paper, we use the three-tank system shown in
figure 1 as the running example. The three tanks are
denoted as T1, T2, and T3. They all have the same area
A1 = A2 = A3 = 3 [m2]. The experiments are performed
assuming the gravity g = 10 and the liquid with density
ρ = 1.

T1 T2 T3
R1 R2 R3

p2

q0

p3
p1

q1 q2 q3

h1 h2 h3

Figure 1. Diagram of the three-tank system.

Tank T1 gets filled from a pipe q0 with a constant flow
of 1.5 [m3/s]. It drains into T2 via a pipe q1. The liquid
level is denoted as h1. There is a pressure sensor p1 con-
nected to T1 that measures the pressure in Pascals [Pa].
Starting from the Newton’s (and Bernoulli’s) equations
and manipulating them (the actual derivation is trivial
and irrelevant in this paper) we derive the following Or-
dinary Differential Equation (ODE) that gives the level
of the liquid in T1:

dh1
dt

=
q0 − k1

√
h1 − h2

A1
(1)

In eq. 1, the coefficient k1 is used to model the area of the
drainage hole and its friction factor. We emphasize the
use of k1 because, later, we will be “diagnosing” our sys-
tem in term of changes in k1. Consider a physical valve
R1 between T1 and T2 that constraints the flow between
the two tanks. We can say that the valve changes pro-
portionally the cross-sectional drainage area of q1 and
hence k1. The diagnostic task will be to compute the
true value of k1, given p1, and from k1 we can compute
the actual position of the valve R1. The water levels of
T2 and T3, denoted as h2 and h3 respectively, are given
by:

dh2
dt

=
k1
√
h1 − h2 − k2

√
h2 − h3

A2
, (2)

dh3
dt

=
k2
√
h2 − h3 − k3

√
h3

A3
. (3)

Values k1, k2, and k3, are constant values with no phys-
ical meaning, and we have set them with a value of 0.75.
Finally, we turn the water level into pressure:

pi =
g hiAi

Ai
= g hi (4)

where i is the tank index (i ∈ {1, 2, 3}). Hence, there are
three equations relating the pressure in the tank with
the level in the tank. To observe the behavior of the
system we have an observational model, that allows us
to know or read each value pi. We use p∗i to distinguish
the measured variable from the model output pi:

p∗i = pi (5)

It is assumed that the initial water level in the three
tanks is zero. Additionally, we make explicit the relation
between the state variables, hi in our example, and their
derivatives, dhi:

hi =

∫
dhi · dt (6)

These equations allow us to select an integral or differen-
tial approach for behavior simulation, depending on the
selected causality. These equations make no influence in
the diagnosis results, because they will have no θi, and
consequently no health status.

3. Algorithms

This section presents the fundamental ideas of the
Lydia-NG diagnosis framework and the structural
model decomposition approach with PCs.

3
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3.1. Lydia-NG

We next show an algorithmic framework for computing
diagnoses. The basic idea of the Lydia-NG diagnostic
library (shown in Fig. 2) is to perform multiple simula-
tions for various hypothesized health states of the plant.
The output of these multiple simulations is then pro-
cessed and combined into single diagnostic output.

Figure 2. Overview of the Lydia-NG diagnostic method

The Lydia-NG diagnostic library consists of the follow-
ing building blocks:

Generator of Diagnostic Assumptions: A di-
agnostic assumption is a set of hypothetical
assignments for the health or fault state of each
component in the system. The “all nominal” diag-
nostic assumption assigns healthy status to each
component. Lydia-NG allows one nominal and one
or more faulty states per component.

Simulation Engine: Given a diagnostic assumption,
Lydia-NG can construct a simulation model of the
system. This simulation model consists of equations.
By solving this system of equations Lydia-NG com-
putes values for one or more observable variables.
The values of these observable variables is also re-
ferred to as a prediction.

Residual Analysis Engine: A prediction is com-
pared to the sensor data by a residual analysis en-
gine. This engine combines the individual discrep-
ancies in each sensor data/predicted variable pair
to produce a single real value that indicates how
close is the prediction of the simulation engine to the
sensor data obtained from the plant. A simulation

that results in all predicted values coincide with the
measured ones will result in the residual being close
to zero. The data structure containing predictions,
their corresponding sensor data and the computed
residual is called a diagnostic candidate or simply
candidate.

Candidate Selection Algorithm: Not all candi-
dates generated by the residual analysis engine
are used for computing the final system health.
The candidate selection algorithm discards each
candidate whose residual is larger than the residual
of the “all nominal” candidate.

System State Estimation Algorithm: Lydia-NG
uses the set of candidates that is computed by
the candidate selection algorithm to compute an
estimate for the health of each component. This is
done by the system state estimation algorithm.

Algorithm 1 shows the top-level diagnostic process. The
inputs to Alg. 1 are a model and a scenario, and the
result is a diagnosis.

Algorithm 1 supports a large variety of simulation meth-
ods that may or may not use time as an independent
variable. The only requirement toward the simulation
engine is to predict a number of variables whose types
can be mapped to Lydia-NG and to be relatively fast.

Algorithm 1 Diagnosis framework

1: function Diagnose(SCN) returns a diagnosis
inputs: SCN, diagnostic scenario
local variables: h, FDI vector, health assignment

p, real vector, prediction
Ω, a set of diagnostic candidates
DIAG, diagnosis, result

2: while h← NextHealthAssignment() do
3: p← Simulate(M , γ,h)
4: r ← ComputeResidual(p, α)
5: Ω← Ω ∪ 〈h, r〉
6: end while
7: DIAG← CombineCandidates(Ω)
8: return DIAG
9: end function

The basic idea of Alg. 1 is to simulate for various health
assignments and to compare the predictions with the ob-
served sensor data (i.e., telemetry). There are several im-
portant aspects of this algorithms that ultimately affect
the diagnostic accuracy as measured by various perfor-
mance metrics.

The first algorithmic property that determines many of
the diagnostic performances is the order in which health-
assignments are generated. In Alg. 1 this is implemented
in the NextHealthAssignment function. The latter
subroutine also determines when to stop the search and

4
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should be properly parametrized depending on the model
and the user requirements. In the standard Lydia-NG
diagnostic library we provide the following diagnostic
search policies:

Breadth-First Search (BFS): This policy first gen-
erates the nominal health assignment, then single-
faults, double-faults, etc.

Depth-First Search (DFS): This search policy
starts with the nominal health assignment, then
adds a single-fault, continues with a double fault in-
cluding the first, and so on, until all components are
failed. After the all-faulty assignment is generated,
the algorithm backtracks one step and generates a
sibling assignment and continues traversing down
and backtracking in the same manner until no more
backtracking is possible.

Backwards Greedy Stochastic Search (BGSS):
In this mode, the search start from the all-faulty
assignment. A random health variable is then
flipped and the flip is retained iff the flip leads to
a decrease in the residual. The order of health
variables is arbitrary. As the whole search process is
stochastic, it needs to be run multiple iterations in
order to achieve the desired completeness. A formal
description of this method for Boolean circuit
models can be found in (Feldman et al., 2010).

Each simulation produces what we call a candidate: a set
of predicted values for a given health-assignment. The
second important property of Alg. 1 is the comparison
and ordering of the diagnostic candidates. This is done
by mapping the predicted and observed variables into a
single real-number, called a residual.

Residual generation functions in Lydia-NG bear resem-
blance to loss functions in decision theory. For example,
residuals may be squared or absolute residuals (Feldman
et al., 2013). A disadvantage of the squared residuals
function Rsq is that it adds a lot weight to outliers. In
decision theory, the absolute loss function that corre-
sponds to the Rabs function is discontinuous. The latter,
however, is not a problem for the algorithms described
in this paper and we prefer Rabs over Rsq.

3.2. Consistency-based diagnosis with PCs

3.2.1. Model decomposition with PCs

The Possible Conflicts (PCs) approach (Pulido &
Alonso-González, 2004) is a model decomposition
method that finds (off-line) every subset of equations ca-
pable of generating conflicts. PCs provide the structural
and causal model of a subsystem with minimal redun-
dancy. The set of equations in a PC can be used to
simulate the correct behavior of the subsystem. Hence,

PCs can be used in CBD of dynamic systems (PULI01,
2001). For the sake of self-containment, we summarize
here the proposal for PCs computation given in (Pulido
& Alonso-González, 2004).

To compute PCs, we need the structural model of the
system under study, which can be obtained from the set
of equations in the system description, once we select a
given working mode, tailored for our new problem formu-
lation, instead of the original process which was suitable
for system descriptions provided as hypergraphs (Pulido
& Alonso-González, 2004).

We will illustrate the process using the three-tank sys-
tem in Fig. 1, and the set of equations in its model as
described in Section 2.2.

We need an abstraction of our model description
SD = (M,H, σ,Π). Let’s assume we compute
the set of PC for a given nominal mode character-
ized by Hn. Using σ(M,Hn), we obtain MHn

=
(ΣHn

, UHn
, YHn

, XHn
,ΘHn

). For the structural model,
we only need the information about the measured and
unknown variables in each model equation. Thus each
equation in ΣHni

will provide one structural constraint
(ci, Si, Xi), where Si accounts for the measured vari-
ables from UHn

, YHn
in ci, and Xi accounts for the un-

known (state or intermediate variables in ci).

For the three tank system the structural model is made
up of the following constraints:

Constraint Sensors Unknowns
c1 {q0} {dh1, h1, h2}
c2 {} {dh2, h1, h2, h3}
c3 {} {dh3, h2, h3}
c4 {} {p1, h1}
c5 {} {p2, h2}
c6 {} {p3, h3}
c7 {p∗1} {p1}
c8 {p∗2} {p2}
c9 {p∗3} {p3}
c10 {} {h1, dh1}
c11 {} {h2, dh2}
c12 {} {h3, dh3}

where constraints c1 to c3 are related to equations (1) to
(3); constraints c4 to c6 are related to the equation (4) for
each one of the tanks; constraints c7 to c9 make explicit
the diagnosis observational model, relating the output
variable pi and its associated sensor p∗i ; and constraints
c10 to c12 make explicit the dynamic in the system: re-
lation between the derivative of the state variables and
the state variable itself.

The first step in PC computation is to look for the
complete set of minimally redundant subsets of equa-
tions. The redundancy is related to the set of unknown
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variables in the equations.

Definition 4 (Minimal Evaluation Chain (MEC)). A
subset of equations that represents a potential source
of discrepancy if the set of equations could be actually
solved1.

A MEC represents a strictly overdetermined2 set of equa-
tions that can potentially be solved using local propaga-
tion (elimination method): each MEC will have n con-
straints and n − 1 unknowns. MECs are computed to
guarantee that there is a complete matching in its asso-
ciated bipartite graph (made up of unknowns as nodes
and equations as edges). This is a necessary condition
to obtain a causal assignment and potentially provide a
computational model.

A summary of the algorithms used to compute MECs in
a system can be found in Appendix A. The set of MECs
in the system in Fig. 1 is:

• mec1 = {c7, c4, c10, c1, c5, c8}
• mec2 = {c8, c5, c11, c2, c4, c6, c7, c9}
• mec3 = {c9, c6, c12, c3, c5, c8}

We need to know the different ways an equation can
be solved, because we can deal with non-linear models.
These ways are usually called the set of possible causal
assignments for the variables in an equation. Using this
set of causal assignments, we can define the set of pos-
sible causal assignments for every unknown variable in
the bipartite graph. We assume that the set of possible
causal assignments is known for the system model, and
we build the complete set of valid causal assignments
for the set of MECs, using exhaustive search (Pulido
& Alonso-González, 2004). We call each valid causal
assignment Minimal Evaluation Model (MEM), because
each MEM represent the precise order to solve or to
evaluate the overdetermined set of equations in a MEC.
Given the equations and the evaluation order provided
by a MEM, they can be used to build simulation models3.

Definition 5 (Minimal Evaluation Model (MEM)). A
MEM is a MEC with a valid global causal assignment
for every unknown in the MEC.

For the three tank system, we assume that the causality
is given by the expression in equations (1) to (6), except

1A MEC is equivalent to the structure of an Analytical Redun-
dancy Relation, ARR, or a Minimally Structurally Overdeter-
mined set, MSO, in works by Staroswiecki and co-workers and
Nyberg and co-workers, respectively.

2A redundant set of equations would be an Evaluation Chain.
Since we are interested only on minimal conflicts, we just focus on
the set of MECs that are by definition minimally overdetermined.

3A MEM is equivalent to the analytical expression of an ARR, an
R-Conflict in the work by Cordier and the HIMALAYA group,
and also is the set of formulas used to compute a conflict in GDE.

for the observational model (in this case we allow solv-
ing constraints ec7 to ec9 in both directions because we
need to convert some system measurements Y in MEM
inputs). The set of MEMs for the three-tank system and
their discrepancy nodes are shown in Table 1.

3.2.2. Fault detection and isolation using PCs

In the MEM there is a special node called discrepancy
node (representing the only variable that is estimated by
two different ways). Therefore, that node is the potential
source of a discrepancy using only the values of measured
variables as inputs, and the past value of state-variables.

In CBD (Reiter, 1987; Kleer & Williams, 1987) a
conflict arises given a discrepancy between observed and
predicted values for a variable. Under fault conditions,
conflicts are observed when the model described by
a MEM is evaluated with available observations and
produce a discrepancy, because the model equations
and the input/measured values are inconsistent (Reiter,
1987; Kleer & Williams, 1987). This notion of possible
discrepancy generation leads to the definition of Possible
Conflict:

Definition 6 (Possible Conflict). The set of constraints
in a MEC that give rise to at least one MEM.

Every MEC in the three-tank system has one MEM.
Then, there are three PCs in the system, one for each
MEC.

Each MEM is the computational model for a PC, and
each equation in a MEM contains zero or more param-
eters that can be the source of potential faults (θcc in
our model description). The set of parameters related
to each PC is also shown in the fourth column in Ta-
ble 1. Given a non-zero residual, we then isolate the
fault parameters involved in the pc structural model:
Θpc. This information is the basis for the integration
of Consistency-based diagnosis of dynamic systems with
Possible Conflicts and Lydia-NG.

4. On-line Fault diagnosis with Lydia-NG and
PCs

In CBD, diagnosis must discriminate among 2N behav-
ioral mode assignments when just correct, ok(·), and in-
correct modes, ¬ok(·), are present for N components.
When B behavioral models are allowed, diagnosis must
discriminate among BN mode assignments. This is the
problem faced by any model-based diagnosis proposal
which attempts fault identification (DRES96, 1996), and
it is also present in Lydia-NG. In this section, we present
an integration proposal, where the system model is parti-
tioned using PCs. As explained in Section 2, the output
of the consistency-based diagnosis using PCs is a set of
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Table 1. MEMs for the three-tank system and their discrepancy nodes.
MEM Associated MEC Discrepancy node Fault Parameters

{c7, c4, c10, c1, c5, c8} mec1 p∗1 k1, A1

{c8, c5, c11, c2, c4, c6, c7, c9} mec2 p∗2 k1, k2, A2

{c9, c6, c12, c3, c5, c8} mec3 p∗3 k2, k3, A3

fault candidates C defined in the lattice provided by Θ∗.
Then, this set of diagnosis candidates is used as input
to Lydia-NG, thus reducing the number of health state
simulations that needs to be considered by Lydia-NG.
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Figure 3. Lydia-NG and PCs integration framework.

Fig. 3 shows the basic idea of our integration proposal.
The simulation model for each PC uses some of the sys-
tem measurements as input, and provides an estima-
tion for exactly one variable (the potential discrepancy).
Then, an executable model, SDpci for each pci, is built.
This executable model can be a simulation model, a state
observer, or even a neural network (Bregon, Biswas, &
Pulido, 2012; Pulido et al., 2012). Summarizing, the in-

tegration of Lydia-NG and CBD with PCs is possible
given the set of candidates, C: each candidate Ci is a
subset of Θpc. Then invoking Π(Ci), Lydia-NG can ob-
tain the set of health statuses, Hc related to Ci, and
use them as input for its search. Given the current im-
plementation of Lydia-NG, we can obtain the system
description (system model) imposed by Hc : σ(M,Hc),
which is enough to characterize the current model and
perform simulation of the Hc health status.

Algorithm 2 shows the algorithm for our integrated di-
agnosis framework. Ypci denotes the set of input ob-
servations available for the executable model of a PC,
SDpci ; and Ŷpci represents the set of predictions ob-
tained from SDpci . The function ObtainObservations
obtains from the diagnostic scenario the observations
which have to be used as input for each PC. Function
EstimateBehavior provides an estimation of a mea-
sured variable by using the executable model of each PC
(either a simulation model, a state observer model, or a
neural network).

For the detection part, to determine significant devia-
tions from the PC residuals (PC residuals are computed
by using an absolute residual function). We use the Z-
test for robust fault detection using a set of sliding win-
dows as detailed in (Daigle et al., 2010). A small win-
dow, N2, is used to estimate the current mean of the
residual signal, µr. The variance of the nominal residual
signal is computed using a large window N1 preceding
N2, by a buffer Ndelay, which ensures that N1 does not
contain any samples after fault occurrence. The vari-
ance and the confidence level determined by the user are
then used to dynamically compute the detection thresh-
olds ε−r and ε+r . Other approaches can be used to deter-
mine significant deviations from the residuals, such as
the Dynamic Time Warping distance, DTW (Keogh &
Ratanamahatana, 2005).

Once the initial set of fault candidates has been iso-
lated, the Lydia-NG part of the algorithm is run
(as shown in algorithm 2). The algorithm takes the
set of isolated fault candidates as input, and the
NextHealthAssignment function only considers the
health assignments related to the fault candidates. In
this version of the integrated framework, the global sys-
tem model is used as the simulation model, instead of
the PC submodels, thus providing a more direct way
to integrate both approaches. In future versions of the
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Algorithm 2 Integrated PCs and Lydia-NG diagnosis approach.

1: function PCs-Lydia-diagnosis(SCN) returns a diagnosis
inputs: SCN, diagnostic scenario
local variables: Ypci , set of input observations

Ŷpci , estimation from the PC
Θpci , fault parameters involved in the PC
h, FDI vector, health assignment
p, real vector, prediction
Ω, a set of diagnostic candidates
DIAG, diagnosis, result

2: repeat
3: Ypci ← ObtainObservations(SCN)

4: Ŷpci ← EstimateBehavior(SDpci , Ypci)

5: rpci ← ComputeResidual(Ŷpci , Ypci)
6: if rpci < ε−r or rpci > ε+r then
7: Θpci = confirm pci as a real conflict
8: C ←MHS(C,Θpci)
9: end if

10: until Every pci is activated or time elapsed or a unique fault candidate has been isolated
11: while h← NextHealthAssignment(Π, C) do
12: p← Simulate(M,γ,h)
13: r ← ComputeResidual(p, α)
14: Ω← Ω ∪ 〈h, r〉
15: end while
16: DIAG← CombineCandidates(Ω)
17: return DIAG
18: end function

framework, the PC submodels will also be used as the
simulation model in Lydia-NG, thus providing faster
simulation results.

5. Results

In this section we show some diagnosis results for our
integrated framework. We present an on-line fault di-
agnosis scenario for a particular fault in the three-tank
system and discuss the results obtained with and with-
out our integrated framework.

5.1. Fault Diagnosis Scenarios

This section describes the scenario of nominal conditions
for the system, and the fault scenario of partial blockage
of valve R1 at time 100 s.

Nominal Scenario: Figure 4 shows a simulation exper-
iment for the three-tank model. It is intuitive from the
tanks equations that the pressure in Tank 1, p1, is larger
than the pressure in Tank 2, p2, which is larger than the
pressure in Tank 3, p3. This is confirmed by the plot
in fig. 4. For this nominal scenario, none of the three
PCs found for the system is triggered. The advantage
of including PCs within the Lydia-NG framework is ev-
ident for this case. Since none of the PCs is triggered,
Lydia-NG is not run, thus avoiding the time-consuming
simulations for the different health states when no actual

fault has occurred in the system. Fault Scenario: Now
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Figure 4. Simulation results for the three-tank model.

consider we introduce a 40% blockage fault in valve R1

occurring at time 100 s. Figure 5 shows the plots of the
three-tank system simulation for this fault, and Figure 6
shows the plots for the PCs for such a fault. The left
column in Figure 6 shows the measured and estimated
pressure for each one of the PCs, while the right column
shows the residual signal computed for each PC.
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Figure 6. Simulation results for a 40% blockage fault at time 100 s in valve R1.

5.2. On-line fault diagnosis

This section briefly describes how Lydia-NG runs with
and without the use of PCs. The first phase is resid-
ual analysis, where Lydia-NG runs a set of simulations
such that a residual is computed for each simulation:
see Figure 2. Because Lydia-NG uses real-value health
variables, the space of potential diagnostic assumptions,
and the corresponding set of simulations, is enormous,
and infinite in the worst case. The heuristics used for
generation of diagnostic assumptions are critical to the
success and efficiency of Lydia-NG.

Lydia-NG ranks the residual outputs, discarding those
candidates whose residual value is larger than the resid-
ual of the “all nominal” candidate. The remaining can-
didates are assigned probabilities of occurrence, using a

method described in (Feldman et al., 2013). The fault
isolation process assigns probabilities of failure to system
components, and these are reported as ranked diagnoses.

In the following we compare the results for running
Lydia-NG with and without PCs. Without PCs,
Lydia-NG uses the global system model described ear-
lier; with PCs (i.e., using Algorithm 2), the generation
of diagnostic assumptions is governed by the PC-based
algorithm.

For the diagnosis scenario with a 40% blockage fault in
valve R1 occurring at time 100 s, our results are as fol-
lows.

Non-PC-based Approach: Lydia-NG computes
residuals based on the difference between the pressures
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Figure 5. Simulation results for a 40% blockage fault at
time 100 s in valve R1.

shown in Figures 4 and 5. The non-zero residual at time
104 s creates a set of simulations in which Lydia-NG
analyzes several valve %-blockage cases for R1, R2 and
R3. Lydia-NG estimates the valve positions by “guess-
ing” the true valve positions and computes the health
probability by subtracting the commanded valve posi-
tion from the estimated one. Lydia-NG is able to isolate
the most-likely fault as (R1, 40%).

PC-based Approach: When computing diagnoses for
this fault, at time 104 s, an increase in the residual of
PC2 is detected, and consequently k1, k2, and A2 are
selected as the initial set of fault candidates. At the
next time step, at time 105 s, PC1 is triggered, thus
selecting k1 and A1 as possible fault candidates. A min-
imal hitting set algorithm is run, determining that the
only single fault candidate in the system is k1. At this
point, the fault identification for k1 is triggered by using
Lydia-NG.

Running this diagnosis scenario with a (trivial) input of
R1 (as derived from the candidate k1), as opposed to R1,
R2 and R3, results in an 80× speedup of Lydia-NG as
compared to the non-PC approach. This is a result of
reducing the diagnosis assumption space.

6. Related work

LYDIA-NG belongs to a class of MBD methods that
use continuous-valued models and sensor data, and use
entropy based methods for test selection to disambiguate
diagnoses. It is a generalization of LYDIA, which used
discrete-value models.

In terms of diagnostics solvers, LYDIA-NG is re-
lated to the HyDE (Hybrid Diagnosis Engine) solver

(Narasimhan & Brownston, 2007). The HyDE-S vari-
ant accepts as input interval-valued hybrid models and
continuous-valued sensor data. Another solver, FACT
(Daigle et al., 2010), can also use continuous-valued
models and sensor data, but requires that the model be
represented as a hybrid bond graph. Given an anomaly,
FACT first uses an observer-based approach (adopted
from the FDI community) with statistical techniques for
robust fault detection. Fault isolation is performed using
qualitative inference, i.e., by matching qualitative devi-
ations caused by fault transients to those predicted by
the model.

Recent works have demonstrated the similarities between
model-based diagnosis approaches from the DX and the
FDI communities (Cordier et al., 2004). In such frame-
work, it has been demonstrated the equivalence of several
structural model decomposition techniques such as PCs,
minimal ARRs and Minimally Structurally Overdeter-
mined sets (Armengol et al., 2009). As a consequence,
the proposal in this work can be easily extended to other
structural methods.

Using CBD we need to generate the set of candidates C
and wait for every pc to be confirmed. An FDI approach
would use exoneration using the structural information
in the set of PCs. In CBD we wait for additional obser-
vations in order to reject modes that are not consistent
with available information. Combining our results with
Lydia-NG provides an additional boost for candidate
discrimination by including fault models through health
statuses.

The approach can be further refined using qualitative in-
formation (for instance residual qualitative signatures),
or add a quantitative parameter estimation (Bregon,
Biswas, & Pulido, 2012). Additionally, different method-
ologies can be coupled to estimate correct and/or faulty
behavior (Alonso-González et al., 2011).

This work is clearly a first step to combine both tech-
niques for hybrid non-linear systems. PCs has been ex-
tended to work with hybrid systems (Bregon, Alonso,
et al., 2012), and can greatly benefit from Lydia-NG
state estimation capabilities. The approach then would
be similar to coupling different techniques for continu-
ous/discrete state estimation as in (Hofbaur & Williams,
2004; Bayoudh, Travé-Massuyès, & Olivé, 2008).

7. Conclusions

This work has presented an integrated framework for on
line fault detection, isolation and identification of dy-
namic systems.

Two different approaches have been integrated: The
Lydia-NG suite of diagnosis algorithms and the Pos-
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sible Conflicts framework for on-line consistency based
diagnosis. Lydia-NG is a simulation based diagnosis
system that filters out diagnosis candidates discarding
those of them that generates residuals larger than the
all-nominal assumption, i.e., fault free and nominal sys-
tem configuration. Although the system incorporates
important facilities, such as diagnostic test generation
based on entropy measure, its main drawback is the lack
of focus for the initial set of candidates, which may be
large, and the cost of simulating the complete system for
every considered candidate. On the contrary, the set of
Possible Conflicts identifies minimal computational sub-
systems that decompose the complete system and that
can be simulated independently. PCs are based on Re-
iter’s theory of diagnosis from first principles and are able
to generate fault isolation candidates from model of cor-
rect behavior without hypothesizing an initial set of can-
didates. Hence, using consistency-based diagnosis with
PCs candidate generation is rather efficient, although
additional techniques are required to further refine fault
candidates for fault isolation and identification. They
also lack some of the facilities incorporated in Lydia-
NG like generation of diagnostic tests.

In this paper we have combined both approaches, com-
plementing each other, looking to preserve the best of
each approximation. This integration can be tackled in
different ways. We have opted for a simple integration
approach that still is able to improve any of them. PCs
are used to generate the initial set of isolation candidates
a la Reiter. These candidates are later refined by Lydia-
NG, which simulates the complete system in the modes
–potential health statuses– defined by the candidates.
In this way, we exploit PCs ability to generate isolation
candidates with Lydia-NG ability to reject fault candi-
dates that do not comply with current observations and
diagnosis assumptions.

Our three tank system running example shows the po-
tential of this approach. First, when the system is fault
free, no PC becomes a real conflict and no candidate is
generated. This avoids running Lydia-NG for fault de-
tection, which is performed by the PCs approach, thus
potentially providing a significant saving on computing
time, depending on the size of the complete system and
on the number and overlapping degree of the PCs. Sec-
ond, when a fault is detected, PCs may generate a low
number of fault candidates, depending on the number
of PCs and its overlapping degree but also on the real
faulty parameter, thus providing an automatic focus for
Lydia-NG fault candidate search.
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(DXâĂŹ07), Nashville, USA (pp. 162–169).

Pouliezos, A., & Stavrakakis, G. (1994). Real Time
Fault Monitoring of Industrial Processes. Kluwer
Academic Publishers.

Pulido, B., & Alonso, C. (2001). Dealing with cyclical
configurations in MORDRED. In IX Conferencia
Nacional de la Asociacion Española de Inteligen-
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A. Possible Conflicts Computation algorithms

Each PC is a set of overdetermined set of equations, de-
rived from the model, that can be solved. The algorithm
to compute PCs finds recursively every combination of
model equations that are strictly overdetermined using
depth first search (i.e. we find any possible overdeter-
mined system of equations for every equation). The al-
gorithm proceeds finding one new equation potentially
solving one of the remaining unknowns.

Algorithm 3 Step 1: Find every strictly overdetermined
sub-system, PC, in MH for each equation c in ΣH

1: function find every pc(MH) returns SPCs
2: for all equation c in ΣH do
3: find pc (MH\ {c}, {c}, cunknowns, SPCs)
4: end for
5: end function

A similar algorithm should analyze the set of equations
and unknown variables in each pc, and find out if its asso-
ciated set of equations have a globally consistent causal
assignment, i.e. we can obtain a solution for the model
and generate a simulation model, for instance. This is
the basic algorithm that pays no attention to potential
cyclical configurations – algebraic loops or loops contain-
ing differential equations–. These checks can be done
later, and depend on the kind of equations in the model,
the simulation language used, and the presence of appro-
priate equation solvers for loops (Pulido & Alonso, 2001;
Pulido, Bregon, & Alonso-González, 2010).
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Algorithm 4 Step 1.2: Find possible conflict, pc, from
available equations in the model, RM : find a new equa-
tion for each remaining unknown variable, unknowns, in
the pc

1: function find pc(RM , pc, unknowns, SPCs)
2: if unknowns == {} then
3: if pc is minimal w.r.t. SPCs then
4: remove every superset of pc in SPCs
5: insert pc in SPCs
6: end if
7: else
8: for all equation c′ ∈ RM do
9: for all y ∈ (c′unknowns ∩ unknowns) do

10: find pc(RM \ {c′}, pc ∪ {c′},
unknowns ∪ {c′unknowns} \ {y}, SPCs)

11: end for
12: end for
13: end if
14: end function
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ABSTRACT

Hybrid systems diagnosis requires different sets of equations
for each operation mode in order to estimate the continuous
system behaviour. In this work we rely upon Hybrid Possible
Conflicts (HPCs), which are an extension of Possible Con-
flicts (PCs) for hybrid systems, that introduce the informa-
tion about potential system modes as control specifications
that activate/deactivate different sets of equations. We also
introduce the concept of Hybrid Minimal Evaluation Models
(H-MEMs) to represent the set of globally consistent causal
assignments in an HPC for any potential mode.

H-MEMs can be explored for a specific operation mode, and
its computational model automatically generated. In this
work, the selected computational models are minimal Dy-
namic Bayesian Networks (DBNs). Since DBNs can be di-
rectly generated from PCs, and can be used for fault detec-
tion and isolation, we propose to efficiently generate Mini-
mal DBNs models on-line using the H-MEM structure. By
introducing fault parameters in the DBN model, we can also
perform fault identification, providing an unifying framework
for fault diagnosis, under single fault assumption. We test the
approach in a simulation four-tank system.

1. INTRODUCTION

Dynamic systems with hybrid behaviour are present in almost
every field in our society. Fault diagnosis for these systems is
of capital importance to prevent malfunctions or breakdowns,
and to increase the security and the quality of the final prod-
ucts. However, it is difficult to provide accurate and timely
online fault diagnosis. because their behaviour is made up of
continuous behaviour commanded by discrete events.

For the last 15 years two research communities: the Con-
trol Theory, known as the FDI1 approach, and Artificial
Intelligence, known as the DX approach, have worked

Belarmino Pulido et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.
1Acronym for Fault Detection and Isolation.

on hybrid systems modelling and diagnosis (Cocquempot,
El Mezyani, & Staroswiecki, 2004; Hofbaur & Williams,
2004; Narasimhan & Biswas, 2007; Narasimhan & Brown-
ston, 2007). Current research activities are focused on two
main issues: full or approximate estimation of the set of pos-
sible states, and tracking of nominal and faulty system be-
haviour (Rienmüller, Bayoudh, Hofbaur, & Travé-Massuyès,
2009). To tackle the first issue, different kinds of automata
have been used to model the complete set of modes, and tran-
sitions between them, which introduces the need to enumer-
ate all the set of modes (states) and transitions, and to track
the entire set of consistent modes. Both issues do not scale
well for complex systems. To avoid the pre-enumeration
of modes, we have followed the proposal by Narasimhan et
al. (Narasimhan & Biswas, 2007), which uses Hybrid Bond-
Graphs (HBGs) to model the whole system, and depending on
the value of the switching junctions, used to model the hybrid
behaviour, it is able to generate on-line new models for track-
ing the new system mode. That work has been recently ex-
tended to efficiently generate simulation models using model
block diagrams based on HBGs properties (Roychoudhury,
Daigle, Biswas, & Koutsoukos, 2011), and to efficiently gen-
erate state observers (Podgursky, B., & Koutsoukos, 2010).

Bregon et al. (Bregon, Alonso, Biswas, Pulido, & Moya,
2012) introduced Hybrid Possible Conflicts (HPCs) as an
extension of Possible Conflicts (Pulido & Alonso-González,
2004) using HBGs (Narasimhan & Biswas, 2007), and Block
Diagrams (Roychoudhury et al., 2011). HPCs can track hy-
brid systems behaviour, efficiently changing on-line for each
mode the PC simulation model, and performing diagnosis
without pre-enumerating the set of modes in the system. But
HPCs do not provided a unified diagnosis framework using
one technique.

In this work we propose to use minimal Dynamic Bayesian
Networks, DBNs, derived from HPCs as a unique modelling
framework for hybrid systems fault detection, isolation, and
identification, together with new algorithms to automatically
generate on-line the DBN computational model, and then us-
ing that model to track the system. To automatically generate
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on-line the computational model we introduce the concept of
H-MEM, that provides the potential set of equations that can
appear in any HPC. The approach has been tested on a four-
tank laboratory plant with satisfactory results.

The rest of the paper is organized as follows. Section 2
presents the case study used along the paper and introduces
HBG modelling technique. Section 3 summarizes the HPCs
background. Section 4 describes our new diagnosis frame-
work with DBNs computed from HBGs. Section 5 presents
some results obtained applying our proposal to the case study.
Section 6 describes some related work and Section 7 draws
some conclusions and future work.

2. CASE STUDY

The hybrid four-tank system in Figure 1 will be used along
the paper. It has one input flow to tanks 1 and 3, that can
be sent to both tanks or only to one of them. Tanks 2 and 4
are connected to tanks 1 and 3, respectively, through a pipe
placed at a distance h above their bases. Sources of discrete
behaviour are: commanded valves at the input of tanks 1 and
3, and the pipes connecting tanks 1 and 2, and between tanks
3 and 4, at a given height hi > 0. There are four measure-
ments in the system: pressure sensors at the bottom of every
tank.

Figure 1. Schematics of the four-tank system

We used HBGs, an extension of Bond-Graphs
(BGs) (Karnopp, Margolis, & Rosenberg, 2006), to model
our system. BGs is a domain-independent energy-based
topological modelling language for physical systems. BGs
rely upon primitive elements: storage (capacitances, C, and
inductances, I), dissipative (resistors, R) and energy transfor-
mation (transformers, TF, and gyrators, GY) elements. There
are also effort and flow sources (Se and Sf) to define interac-
tions between the system and the environment. Elements in
a BG are connected by 0 or 1 junctions (representing ideal
parallel or series connections between components). Each
bond has two associated variables (effort and flow). The rate
of energy is defined as effort × flow for each bond. The
SCAP algorithm (Karnopp et al., 2006) is used to assign

causality automatically to the BG.

Related to the primitive elements, sources and junctions there
is a set of well-established equations relating flow and effort
variables. The exact expression of each equation depends on
the assigned causality. For instance, for a resistance, R, ele-
ment with effort and flow variables, e1, f1, the correspond-
ing equation would be e1 = R × f1 or f1 = R × e1.
Energy storage elements, such as a capacitor C, provide
the following equation e2 = 1

C

∫
f2dt, for variables effort

and flow, e2, f2, in integral causality. Finally, 0-junctions
and 1-junctions model ideal common effort or common flow
connections, where efforts (equivalently flows) are all equal
(e1 = e2 = e3), while sum of flows (correspondingly efforts)
must equal zero (f1−f2+f3 = 0). Additionally, there are ef-
fort and flow detectors, De and Df respectively, that provide
measurements of system magnitudes.

To model hybrid systems we need to use some kind
of connections which allow changes in their state.
HBGs (Narasimhan & Biswas, 2007) extend BGs by includ-
ing those connections. If a switching junction is set to ON,
it behaves as a regular junction. When it changes to OFF,
all bonds incident on the junction are deactivated forcing 0
flow (or effort) for 1 (or 0) junctions. A finite state machine
control specification (CSPEC) implements those junctions.
Transitions between the CSPEC states can be triggered by
endogenous or exogenous variables, called guards. CSPECs
capture controlled and autonomous changes as described in
(Roychoudhury et al., 2011).

Figure 2 shows the HBG model of the four tanks system,
where there are four measurements for diagnosis: the level
of the four tanks by means of pressure sensors, pi related
to capacitances Ci, that are represented as effort detectors
De : pi, i = 1..4 in the BG.

Figure 2. Bond graph model of the plant.

Regarding the hybrid behaviour, it has four switching junc-
tions: SW1, SW2, SW3 and SW4. SW1 and SW3 are con-
trolled ON/OFF transitions, while SW2 and SW4 are au-
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tonomous transitions related to water level of tanks 1 and 3
surpassing the height h and overflowing to tanks 2, and 4 re-
spectively. Both kind of transitions are represented using a
finite state machine. Figure 3 shows: a) the automaton asso-
ciated with switching SW1 and b) the automaton representing
the autonomous transition in SW2 (since the system is sym-
metric, automata for SW3 and SW4 will be equivalent).

ON 
OFF 

sw1 

! sw1 

ON 
OFF 

hT1 > h 

hT1 ≤ h 

a)  b) 

Figure 3. a) Automaton associated with the ON/OFF
switching junction SW1; b) Automaton representing the au-
tonomous transition in SW2.

3. HYBRID PCS AND MINIMAL DBNS BACKGROUND

3.1. Hybrid Possible Conflicts (HPCs)

The Possible Conflict, PC, approach is a dependency-
compilation technique from the DX community (Pulido &
Alonso-González, 2004), that have been successfully used
for system model decomposition in consistency-based diag-
nosis of continuous systems. PCs define minimal structurally
overdetermined subsets of equations with sufficient analytical
redundancy to generate fault hypotheses from observed mea-
surement deviations. In the original approach, only structural
and causal information from the system model is used. PCs
are computed using a hypergraph abstracting the structural
model of the system. Recently, we have proposed an exten-
sion that allows to compute PCs directly from bond graph
models (Bregon, Biswas, & Pulido, 2012).

The PC approach has been recently extended to cope
with hybrid system dynamics, using Hybrid Bond-
Graphs (Roychoudhury et al., 2011; Narasimhan &
Biswas, 2007) as the modelling approach. The extension
is called Hybrid Possible Conflicts (Bregon, Alonso, et
al., 2012). Main advantage of HBG modelling technique
is that pre-enumeration of the modes in the system is not
necessary. However, its main concern when applied to
fault diagnosis of hybrid systems (Narasimhan & Biswas,
2007) is related to the task of causality reassignment for
the entire bond graph model, because during this causality
reassignment process, the diagnosis system needs to stop
tracking the behaviour of the system, making it sensitive to
miss faults that occur during (or immediately after) such
reassignment process. However, recent proposals for fast
causality reassignment in HBGs can be used to speed up this
process for efficient on-line simulation (Roychoudhury et
al., 2011). Typically, changes in causality do not propagate

within the model, or only a small part of the model causality
needs to be reassigned. Moreover, when causality needs to
be reassigned, changes will be typically local to the hybrid
junction. HPCs incorporate the proposal by Roychoudhury
et al. (Roychoudhury et al., 2011) to generate new causality
assignments for HPCs once a mode change is observed.
Currently, our main assumption is that we are able to track
the current system mode.

For the case study we have found four HPCs. Each one of
them estimates one of the measured variables (p1, p2, p3, or
p4). Figure 4 shows the HBG fragments of these four HPCs.

In this example, we first computed HPCs assuming that all
switching junctions are set to ON, but when any of these junc-
tions is switched to OFF, causality in the system needs to be
reassigned. Even though causality may change, the HPC gen-
eration process does not need to be restarted again (Bregon,
Alonso, et al., 2012).

There are two basic possibilities for the existing HPCs de-
pending on whether the change in the switching junction in-
duces a change in causality or not. First, the change in the
switching junction induces a change in causality which af-
fects the HPC. A new causality will be assigned to the HPC
and it will be updated. If there is not a valid causal assign-
ment, the HPC will disappear. Second, as a result of the
change in the switching junction there is no change in causal-
ity. In this case, either a PC can remain the same, or a part
of the PC can be affected by the switch and disappear or the
whole PC can disappear (the discrepancy node disappears).

HBGs main advantage is that the complete set of modes do
not need to be known or enumerated in advance. However,
many times there is no such HBG model available. In this
work we propose to compute HPCs for a generic set of ODEs,
given that some of them are only valid under given system
configurations, thus it is needed to extend original algorithms
to compute PCS by introducing the information about dis-
crete dynamics. To show our approach we have used as sys-
tem model the set of equations that can be derived from an
HBG model, as explained above in order to ease the compar-
ison of this approach with the previous one. But in general,
any set of ODEs can be our system model because for com-
puting our HPC models we work mainly at the structural and
causal level.

Figure 5 represent one possible MEM for PC2 in Figure 4.
The MEM provides a computational model that can be imple-
mented as a simulation or state-observer model (Pulido, Bre-
gon, & Alonso-González, 2010). In this work we propose to
implement our PCs as a set of Dynamic Bayesian Networks,
providing a framework capable to perform not only fault de-
tection and isolation but fault identification using the same
computational model.

3
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Figure 4. Hybrid Bond graphs of the four HPCs found for the four-tank system.

Figure 5. MEM for PC2 subsystem in Figure 4. The effort
and flow variables in the graph correspond to pressures and
flows in PC2 in Figure 4.

3.2. Minimal Dynamic Bayesian Networks(DBNs)

Dynamic Bayesian Networks (DBNs) are a probabilistic tem-
poral model representation of a dynamic system. Basically, a
DBN is a two slices Bayes Network (BN). Assuming that the
system is time invariant and a First Order Markov process,
two static and identical BN connected by inter slice arcs are
enough to model the system (Murphy, 2002). Inter slice arcs
model system dynamics. Intra slice arcs model instantaneous
(algebraic) relations.

The system variables (X,Z,U, Y ) represented in a DBN are
the inputs (U ), the state variables (X), the observed or mea-
sured variables (Y ) and, in some cases, other hidden variables
(Z) . Once we have the nodes, we need to define the arcs

and the parameters in the model, the state transition model
(graphically represented by the inter slice arcs) and the ob-
servational model (represented by intra slice arcs).

Figure 6 represent the DBN for MEM2 in Figure 5. Blue
arrows represent the inter slice arcs modelling system dy-
namics. Orange arrows represent the intra slice or instanta-
neous relations among system variables. Alonso-Gonzalez
et al (Alonso-Gonzalez, Moya, & Biswas, 2011) provided
the method to automatically transform a MEM from a PC to
a DBN model. Following the method we obtain the DBN
model in Figure 6.

Figure 6. DBN for the PC2 subsystem in Figure 5. Input
node is measured pressure e5 = De:p1, state variable is the
pressure in tank 2, e10, and the output node is the measured
pressure in tank 2 De:p2.

Exact inference in DBNs is not computationally tractable.
Hence, Monte Carlo simulation methods are used for approx-
imate inference, particularly Particle Filter algorithm (Koller
& Lerner, 2001). The unknown continuous stochastic dis-
tribution of the state is approximated by a discrete distribu-
tion obtained by weighted samples. After propagation of the
state, the weights are updated with current observations. In

4

Annual Conference of the Prognostics and Health Management Society 2013

291



Annual Conference of the Prognostics and Health Management Society 2013

this work, we assume a Gaussian distribution.

DBNs can be used along all the stages in the diagnosis pro-
cess. They provide a unified framework for fault diagno-
sis. DBNs can be generated from a PC derived from a
BG model (Alonso-Gonzalez et al., 2011) and have been
successfully applied for fault diagnosis of continuous sys-
tems (Roychoudhury, Biswas, & Koutsoukos, 2008; Alonso-
Gonzalez et al., 2011) .

In this work, we propose to integrate DBNs to monitor the
continuous behaviour of the system, and to use HPCs to gen-
erate different DBNs for each new mode. We propose to build
a different DBN for each mode, instead of using a hybrid
DBN able to track the complete set of modes related with
the HPC.

4. EFFICIENTLY COMPUTING HYBRID PCS

In (Pulido & Alonso-González, 2004) PCs were computed
for a unique mode. The computation was made in two steps:
first, we obtained the set of minimally overdetermined sets
of equations, which are called Minimal Evaluation Chains,
MECs –equivalent to minimal ARRs (Analytical Redundancy
Relations) or MSO (Minimal Structurally Overdetermined)
sets of equations (Armengol et al., 2009)–. Second, introduc-
ing causal information in the model2, for each MEC we ob-
tained the complete set of globally consistent causal assign-
ments, each one called Minimal Evaluation Model or MEM.
Each MEM provides the computational model required to
build a simulation or a state-observer model (Pulido et al.,
2010).

In previous works we have demonstrated that the structural
and causal models can be automatically obtained from Bond-
Graph models, deriving a Temporal Causal Graph, TCG, that
represent a consistent causal assignment for the system in
one mode. And we can compute the set of Possible Con-
flicts from the TCG (Bregon, Pulido, Biswas, & Koutsoukos,
2009). But in this section we propose to extend the approach
to any causal model (we always can start from a system model
made up of a set of ODEs, and then to abstract the structural
and causal information in them to generate a causal model
where only the presence of measured and unknown variables
in an equation is relevant). In (Bregon, Alonso, et al., 2012)
we proposed how to obtain HPCs from HBGs, using HSCAP
(Roychoudhury et al., 2011) to avoid computing a new causal
assignment in the HBG whenever there is a mode change.

In this work we propose to compute the HPCs directly from a
set of labelled equations, obtained as an abstraction of the set
of ODEs which is our model. In order to efficiently generate
computational models as minimal DBN factors, we need to
extend the algorithms computing HPCs in two ways. First,

2We made difference between static and dynamic relations, called differen-
tial equations. Different causal assignments for differential equations pro-
vide integral or derivative approaches for behaviour estimation.

we need to compute the set of HPCs, i.e. PCs with labelled
equations related to discrete dynamics. Second, we need
to automatically and efficiently build the DBN behavioural
models from the computational model provided by a MEM.

4.1. Inclusion of constraints to represent discrete dynam-
ics

To fulfill the first requirement we first introduce information
about discrete dynamics in the model, and later on we modify
the original algorithms to compute PCs. In this work we as-
sume that each equation in the system model is valid in a set
of configurations, and these configurations can be character-
ized as constraints: one constraint is a well-formed formula,
WFF, in propositional logic. The propositions in the WFF
will represent the control specifications related to the switch-
ing junction automata (as shown in Figure 3) because they
will have only boolean values related to the ON/OFF state of
the switching junction.

These modifications can be summarized as follows:

• first, we add the information about constraints in the
equations as WFF. Each switching junction introduces
an atomic proposition, whose values true or false will be
function of the switching junction control specifications
being ON or OFF.

• Second, the automaton representing the switching junc-
tion is explicitly modelled as a set of constraints in adja-
cent equations, forcing different causal assignments.

For 1-junctions (and 0-junctions have a corresponding dual
version):

• when the switch is ON: flows must be equal fi = fj =
fk, and effort variables must sum up to 0:

∑
el = 0

• when the switch is OFF: there is no effort related to the
junction, and each flow is transformed into a zero flow
source: Sf : fi = 0, Sf : fj = 0, and Sf : fk = 0.

As an example, the behaviour of switching junction SW1 in
Figure 2 will provide the set of equations in Table ??, and
their corresponding evaluation forms3.

Table 1. Equations with no causality, their associated eval-
uation form (with some possible causality assignments), and
constraints for the equations in the four tank system model.

Equation Evaluation form Constraint
(ec3 : e2, e3, e4) ec31 : e3 := e2 − e4 sw1

(ec2 : f2, f3, f4) ec21 : f2 := f3; f2 := f4; f3 := f4 sw1

(ec4 : f3, e3) ec41 : f3 := e3/R01 sw1

(ec4 : f3, e3) ec42 : f3 := 0 ¬sw1

It must be noticed that there is no valid evaluation form for
(ec3 : e2 e3 e4) when ¬sw1 is true. Then, even if ec3
3HBGs provide a systematic way to derive the ODEs. But we can start the
process from any kind of modelling language.
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and ec4 share the unknown variable e3, they can only be used
together when sw1 is evaluated to true. Those equations with
no contraints represent equations that are valid in any working
mode.

Using this new system model, we only need to introduce
slight modifications in the algorithms developed to compute
PCs as described in (Pulido & Alonso-González, 2004); we
just need to include the information about the constraints
modelling discrete behaviour while building the set of MEMs
for a given HPC.

The algorithm for computing MECs is the same. Only those
MECs with a valid switching configuration will provide a
valid MEM, i.e., those MECs will be PCs. We consider a
switching configuration as valid if its associated WWF is sat-
isfiable, that is, there is at least one configuration where it is
consistent.

Algorithms for computing PCs can be easily extended to in-
troduce constraints related to mode changes: when building
each MEM, in each step we try to justify or remove one un-
known variable using known values. Now, we impose the
additional requirement that the set of constraints in the MEM
and the constraint in the new equation, if any, provide a satis-
fiable formula (i.e., it contains no contradiction). For any ex-
pression or equation where there is more than one constraint,
we must explore in parallel every potential solution. Hence,
for a given MEC we can obtain a collection of MEMs, and
each MEM will be valid in a limited set of operation modes,
determined by satisfiable WWFs.

For instance, we can use ec31 to estimate the value of e3, then
use e3 and equation ec41 to estimate the value of f3 under the
constraint sw1, i.e. when switching junction SW1 is set to
ON. However, when switching junction SW1 is set to OFF,
¬sw1 is true and we can not use both equations ec31 and
ec41 . We can only use ec42 that fixes the value of f3 to zero.

Hence, each extended MEM represent now a global consis-
tent causal assignment for the equations in a HPC, together
with a WFF in propositional logic made up of the conjunc-
tion of every constraint. For instance, both sw1 ∧ sw2 ∧ sw3

and sw1∧¬sw2∧sw3 are satisfiable formula, but sw1∧¬sw1

is not. We term label of a MEM to its WFF.

The complete set of MEMs plus their associated constraints
represent all the consistent causal assignments for the equa-
tions in a HPC, i.e. they represent the evaluation form for
all the possible behavioural models in a HPC. Each MEM in
a HPC will have one discrepancy node4, but will have dif-
ferent sets of equations depending of the current mode on
the system. For any given MEM, the hyperarcs represent
the equations used to compute the head of the hyperarc us-

4The only variable estimated and measured, which can be the origin of a real
conflict. The discrepancy node is equivalent to a residual in FDI terminol-
ogy.

ing the variables in the tail of the hyperarc. Leaf nodes in
the hypergraph are either measured variables or previously
estimated unknown variables, i.e. potential cyclical configu-
rations. In the hypergraph differential constraints are repre-
sented as dashed hyperarcs, and they do not introduce loops.

We call that complete collection of extended MEMs for any
HPC, Hybrid MEM (H-MEM). In Figure 7 we show the H-
MEM for HPC1, in our case study. Labels in the right hand
side of the hyperarcs as {swj} or {¬swj} represent the con-
straints related to the original switching junction CSPECs.
Remainder labels represent either the name of the equation,
eck, or the faulty parameter related with the equation: either
Rx, or Cx for faults in resistance or capacitance elements in
the original BG model. This H-MEM represents the most
complex configuration in our case study, since the models for
HPC1 in different modes require different causality assign-
ments. For a given mode, we will use only those paths from
the leaf nodes to the discrepancy node (to compute a residual)
whose constraints are consistent.

f5 

e3 

ec1 

MEM3 
residual 

e5 

f3  f6  f8 

f1* e8 

e5  e10* 

{sw2} 

{!sw2} {sw2} 
e5 f12 

() 

RO3 {!sw3} 

e2 

RO1 {sw1} 

RO1 
{!sw1} 

() 

e13  e15* 

f12 

f3 f1* 

ec1 

RO3 {sw3} 

{sw3} 

R1 
R12 

() 

R12 

e5 

ec7 

C1 

e5* 
HMEM for HPC1{sw1, sw2, sw3} 

ec6 

ec10 

ec4 

ec3 

Figure 7. Hybrid Minimal Evaluation Model for HPC1. We
use dashed arcs for differential equations, and solid arcs for
instantaneous equations. Observed variables are marked with
an asterisk. Different arcs entering in a node represent differ-
ent paths.

We do not compute the complete H-MEM. We only need to
know the set of constraints contained in the HPC, because
each mode is defined by a WFF involving just the atomic
propositions for switching-junctions involved in the HPC.
Once we know the For instance, the H-MEM for HPC1 in
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Figure 75 has consistent MEMs in the following configura-
tions, among others:

sw1 ∧ sw2 ∧ sw3

¬sw1 ∧ sw2 ∧ sw3

sw1 ∧ ¬sw2 ∧ sw3

It must be noticed that in engineering systems, not every pos-
sible configuration is feasible for security reasons. For in-
stance, in our system is not possible to have both switches,
sw1 and sw3 both off at the same time. Hence, those models
will never be generated.

In fact, we do not need to know all these configurations. Once
a new mode is suspected, if one H-MEM contains constraints
related to that mode, we build its actual MEM, just using the
expressions of the equations that are valid under the current
mode, depending on the actual values of the switches. We
depth-first traverse, dft, the hypergraph from the discrepancy
node to the leaf nodes:

FUNCTION mem = create-MEM(hmen: H-MEM, m: mode)
begin
dft(hmem.discrepancy_node, hmem, m, mem);

return mem;
end FUNCTION

FUNCTION dft (c: node, hmen: H-MEM, m: mode, mem: MEM)
begin
insert(c) in mem; // c is current node
for y = each node in hmem | (c,y) is an edge in hmem
AND (c,y).label is compatible with m
do
if y was not visited yet then
insert(c, y) in mem;
insert(c,y).label in mem.label;
dft(y, hmem, m, mem);

end
end
end FUNCTION

The model described by that MEM can be implemented in
many different ways. In this work we opted for DBNs imple-
mented as Particle Filters.

4.2. From H-MEMs to minimal DBNs

In (Alonso-Gonzalez et al., 2011) it was described how to de-
rive the transition and the observational model of a DBN-PC
factor from a MEM. The transition model estimates the next
state(s) value(s) in the DBN from the inputs, and the current
state(s) value(s); the observational model computes the value
of the system output (only one output in a MEM because it is
minimal) given the state(s). In that work the model was built
manually. In this section we explain how to efficiently and
automatically derive the model for the DBN-PC factor from
the MEM; that model will be later implemented as a particle
filter in Matlab( c©MathWorks).

5To make the H-MEM more readable, we have collapsed every effort or
flow variable of the same junction with a unique index. For instance
e4=e5=e6=e7 or f2=f3=f4

While building a MEM it is trivial to identify the discrepancy
node, input and output variables (measurements), and state
variables: first, we are using integral causality to build the
DBN-PC factor, then it is straightforward to determine the
state variables that will be the nodes computed by the set of
differential constraints, i.e. those modeling dynamics. In our
case study, we have only one state variable for each HPC,
and they correspond to the capacitor elements in the original
Hybrid Bond-Graph: e5, e10, e15, and e20. Second, in the
HBG framework, only measured outputs can be the origin of
a discrepancy. Hence, there will be only one output variable
in each H-MEM, and that will be the discrepancy node.

Once we identify those elements, we implement the proposal
by Alonso-González et al. (Alonso-Gonzalez et al., 2011).
We assume that the analytical expression for each equation
in the MEM is known. Then, we just need to find the transi-
tion model and the observational model for the DBN factor.

Obtaining the observational model is simple: we depth-first
search in the MEM from the discrepancy node to state vari-
ables and inputs, just using instantaneous constraints. That
sequence of equations in reverse order is the analytical ex-
pression of the observational model.

FUNCTION get_observational_model (mem: MEM,
om: observational_model)
begin

return dfs(MEM.discrepancy_node, mem, om);
end FUNCTION

FUNCTION om = dfs (n: node, mem: MEM,
om: observational_model)
begin
for y = each node in mem | (n,y) is an edge in mem
do
add (n,y) at the beginning of om;
if (n,y) is a differential edge then
mark n as mem.observed-state-variable;

else
dfs (y, mem, om);

end
end
end FUNCTION

The transition model can be obtained searching depth first the
MEM from the state variables to state variables and inputs,
following the requirements in (Alonso-Gonzalez et al., 2011).
The analytical model is obtained from the transcription of that
sequence of equations in reverse order.

FUNCTION get_transition_model (mem: MEM,
tm: transition_model, om: observational_model)

begin
for st = each state-variable
in mem.observed-state-variable
do
dfs2 (st, mem, tm, om);

end
end FUNCTION

function dfs2 (st: node, mem: MEM,
tm: transition_model, om: observational_model)
begin
for y= each node | (n, y) is an edge in mem
AND (n,y) is not an edge in om

7

Annual Conference of the Prognostics and Health Management Society 2013

294



Annual Conference of the Prognostics and Health Management Society 2013

do
if (st,y) has not yet been visited then

mark (st,y) as visited;
insert (st,y) at the beginning of tm;
tm= dfs2 (y, mem, tm, om);

end
end

end FUNCTION

Different proposals have been made to improve the algo-
rithms computing the set of PCs. One of them is able to find
any cyclical configuration (Pulido & Alonso, 2001). Those
configurations can introduce algebraic loops in the model.
Those loops containing differential constraints are no longer
loops; in fact, they represent the integration step in the sim-
ulation model. Those loops containing just algebraic loops
can be solved if there is a direct path from observed variables
to an unknown variable in the loop. Otherwise, we need to
create a subset of equations that need to be solved using a nu-
meric solver (Pulido et al., 2010). In this case, there could be
efficiency problems for the DBN-PC factor. All these analy-
sis must be done before we build either the observational or
the transition model.

Regarding the efficiency of this proposal, there will be al-
ways a trade-off in terms of space and computation time. De-
pending on the system under study, different heuristics can be
applied to customize the algorithms performance. For small
systems with a limited number of modes, most of the compu-
tation can be done off-line and cached to speed up the on-line
code generation. In the H-MEM there will be a number of
equations that will always appear in the system because they
are causality independent. These could be also pre-compiled,
since they will always provide the same analytical expression
in any MEM in any mode.

5. RESULTS

The four-tank hybrid system in Figure 1 has been used to
show the applicability of our proposal.

Simulated data has been generated with 5% level of noise,
during 1000 s with a sample period of 0.1. We run several
experiments with different mode configurations and different
faults, varying the size and time of fault occurrence. Results
for all these situations were equivalent to the example pre-
sented next.

5.1. Tracking and fault isolation results

For the four tank system we computed the set of four HPCs
and their corresponding H-MEMs, using the new algorithms.
Since our models were provided by the HBG of the whole
system when every switching-junction was set to ON, we ob-
tained the same results.

Figure 8 shows the results obtained for one of the experiments
run. First row (Figure 8) compares the three measurements
and its estimation by the DBN-PC, while second row shows

the residual obtained for each DBN-PC. DBN from HPC4
has not been included in the figure as this PC is always deac-
tivated during the experiment. The results of the experiments
have 10000 time stamps. The graphs built with those signals
were difficult to read due to its size. Some time intervals dur-
ing stationary state have been ommited to avoid that problem.
Because of that, the time stamps that are mentioned below
will not match with the time stamps in Figure 8, but the com-
ments about the real time stamps are correct.

Initially, water tanks are empty, and start to fill in at constant
rate. Hence, the initial configuration of the system is SW1

and SW3 set to ON, and SW2 and SW4 set to OFF. Tanks
1 and 3 start to fill in, and approximately at instant 500 sam-
pling periods both tanks reach stationary state. At this time,
the level in tank 1, hT1, and the level in tank 3, hT3, are lower
than the height of the connecting pipes, h, and consequently,
there is no flow through the connecting pipes.

At instant 2000 sampling steps, controlled junction SW3 is
set to OFF, so the system mode changes. Simultaneously,
HPC1 and HPC3, which contain constraints related to
SW3, must change their models to accommodate the new op-
eration mode. It is necessary to reassign causality in our H-
MEMs. Once the new computational expression for the HPCs
have been generated, the corresponding DBNs are built. As
shown in Figure 8, DBN-PC1 and DBN-PC3 are able to cor-
rectly estimate the level of tank 1 and 3, respectivley, im-
mediately after the mode change. Regarding HPC2 and
HPC4, since both HPCs do not contain constraints related
to the switching junction SW3, none of them is affected by
the mode change so their DBNs do not need to be generated.

SW3 has been set to OFF, so the level of tank 3 decreases
until it becomes zero, while the level of tank 1 increases. At
instant 2100 sampling periods, the level of tank 1 reaches the
height of the connecting pipe between tanks 1 and 2. At this
point, the equations related to autonomous transition in SW2

are set to ON and water begins to fill in tank 2. HPC1 and
HPC2 are affected by this mode change. In both cases, the
models of their H-MEMs are updated and the DBNs are gen-
erated quickly. Both of them are able to correctly estimate the
measurements for the new mode.

At instant 7000 sampling periods a 20% leak in tank 1 occurs.
As a consequence, the level of tank 1 decreases, while the
estimation of HPC1 does not. Hence, residual of HPC1,
which is the only one containing C1 as a fault candidate, ac-
tivates, triggering the fault isolation procedure. Regarding
HPC2, since the level of tank 1 decreases due to the fault, at
instant 7050 sampling periods the autonomous junction SW2

transitions again to OFF mode, and HPC2 changes mode
again. The H-MEM for HPC2 is updated immediately and
DBN-PC2 is built; it is able to correctly estimate the level of
tank 2 for the new mode.
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Figure 8. Experiment for the four-tank system.

For the case study, the average time for updating the H-MEM
to generate the current MEM, and to generate the analytical
model for the DBN is less than 1 ms. The algorithms were
built in Java and they were run in a Intel Core i3 processor
with RAM of 4GB.

5.2. Fault identification results

A 20% leak in tank 1, which is related to parameter C1 in the
models, was introduced at instant 7000 sampling periods and
9 sampling periods later (0.9 seconds) DBN for HPC1, DBN-
PC1, detects a fault. According to the Fault Signature Matrix,
FSM, in Table 2, the set of fault candidates is {C1, R1, R01,
R03, R12}. The FSM describes the relation between the set
of faulty parameters in the model and the set of HPCs.

Table 2. Fault Signature Matrix for the four tank system. The
parameters in row are directly obtained from the BG model,
and their corresponding constituent equations.

HPC1 HPC2 HPC3 HPC4
C1 1
C2 1
C3 1
C4 1
R01 1 1
R03 1 1
R1 1
R2 1
R3 1
R4 1
R12 1 1
R34 1 1

DBN-PC1 can be extended with a node for the faulty param-
eter which needs to be identified as explained in (Alonso-
Gonzalez et al., 2011). In this scenario, five DBNs were
built, one for each fault candidate. Figure 9 shows the re-
sults obtained using the DBN-PC1 to estimate C1. The DBN

is able to track the system behavior and to obtain an estima-
tion for the parameter quickly converging to a 19.3% fault in
C1. DBN-PCs to estimate the remaining faults were not able
to converge. Hence, the candidates were discarded.

6. RELATED WORK

In our approach we do not need to enumerate the complete
set of modes, as required by other works using parameterized
ARRs (Cocquempot et al., 2004; Bayoudh, Travé-Massuyès,
& Olivé, 2009), or using pure discrete models. We just need
to provide the constraints for the equations. Later on, for each
HPC, its model will be generated for a specific working mode.
However, in the general case, we would need to compute the
set of HPCs at least for the configuration where every switch
is on. But we don’t need to instantiate them. We just need to
check what HPC has a valid causal assignment for the current
operation mode. In that set we build a superset of parame-
terized ARRs. Our main assumption to do so is that every
structural model is a subset of the structural model where ev-
ery switch is ON.

Using DBNs derived from HPCs for fault detection, iso-
lation and identification avoids using several techniques as
in (Narasimhan & Biswas, 2007; Rienmüller et al., 2009).
But the mode must be observed, thus requiring an hybrid state
estimation (Hofbaur & Williams, 2004; Koutsoukos, Kurien,
& Zhao, 2003).

Using minimal DBN-PCs as a unified model, we do not pro-
vide general solutions for hybrid systems diagnosis such as
HyDe (Narasimhan & Brownston, 2007). But we combine
continuous estimation with discrete changes, and we do not
restrict our solution to pure discrete systems as in HyDe or
probabilistic approaches. Moreover, interleaving different
DBN continuous models we avoid the usage of hybrid DBNs.
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Figure 9. Identifiying the fault in parameter C1.

Our work is closely related to efficient generation of simu-
lation (Roychoudhury et al., 2011) and state observer mod-
els (Podgursky et al., 2010) in TRANSCEND (Narasimhan
& Biswas, 2007), because we assume that changes in model
causality will be mostly local, but we do not rely upon the
Hybrid SCAP algorithm to generate a valid HBG model for
the entire system. Instead, we need to know every feasible
causal assignment in the system description, and perform on-
line local search in the H-MEMs. Finally, (Bregon, Alonso, et
al., 2012) proposed to obtain the set of HPCs from block dia-
grams derived from HBGs (Roychoudhury et al., 2011). We
improve that proposal by directly generating DBN computa-
tional models instead of simulation models, thus improving
fault detection capabilities, and the process can be performed
for any structural and causal model conform with our defini-
tions in section 4.

7. CONCLUSIONS

This work proposes an efficient and unified solution for hy-
brid systems fault detection, isolation and identification, as-
suming that it is possible to identify the current system state.

Efficiency is obtained by avoiding the explicit consideration
of every possible mode configuration. HPCs, avoid comput-
ing PCs from scratch for every new configuration. Finally, a
new algorithm is proposed for efficient on-line computation
of minimal DBN-PCs.

Implementing HPCs as minimal DBNs provides a unified so-
lution, because DBNs naturally allow fault detection, fault
isolation and fault identification of continuous systems. Us-
ing HPCs we transform a hybrid diagnosis problem in a se-
quence of continuous diagnosis problems, avoiding the use of
hybrid DBNs. An additional effect of using HPCs to generate
DBNs is that we must not simulate the complete system DBN
model, thus improving on-line computational efficiency.

As further work, we plan to integrate this proposal in a
common framework including both discrete and parametric
faults (Moya, Bregon, Alonso-González, Pulido, & Biswas,
2012; Moya, Bregon, Alonso-González, & Pulido, 2013).
Besides, we want to incrementally generate the MEM in new
modes from the MEM in the previous one; and to test the

approach in a more demanding scenario with larger set of
modes, and faster dynamics. Finally, we will couple this
framework with a reliable hybrid state estimator.

ACKNOWLEDGMENTS

This work has been partially supported by the Spanish MCI
TIN2009-11326 grant.

REFERENCES

Alonso-Gonzalez, C., Moya, N., & Biswas, G. (2011). Dy-
namic Bayesian network factors from possible con-
flicts for continuous system diagnosis. In Proc.
of the 14th Intl. Conf. on Advances in AI (pp.
223–232). Berlin: Springer-Verlag. Available
from http://dl.acm.org/citation.cfm?-
id=2075561.2075588

Armengol, J., Bregón, A., Escobet, T., Gelso, E., Krysander,
M., Nyberg, M., et al. (2009). Minimal Structurally
Overdetermined sets for residual generation: A com-
parison of alternative approaches. In Proceedings of the
7th IFAC Symposium on Fault Detection, Supervision
and Safety of Technical Processes, SAFEPROCESS09
(pp. 1480–1485).
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alyzing the influence of differential constraints in Pos-
sible Conflicts and ARR Computation. In P. Meseguer,
L. Mandow, & R. Gasca (Eds.), Current Topics in Ar-
tificial Intelligence (Vol. 5988, p. 11-21). Springer
Berlin.

Rienmüller, T., Bayoudh, M., Hofbaur, M., & Travé-
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Abstract

Complex hybrid systems are present in a large range of
engineering applications, like mechanical systems, elec-
trical circuits, and embedded computation systems. The
behavior of these systems is made up of continuous and
discrete event dynamics that increase the difficulties for
accurate and timely online fault diagnosis. The Hy-
brid Diagnosis Engine (HyDE) architecture offers flexi-
bility to the diagnosis application designer to choose the
modeling paradigm and the reasoning algorithms. The
HyDE architecture supports the use of multiple model-
ing paradigms at the component and system level. How-
ever, HyDE faces some problems regarding performance
in terms of time and space complexity. This paper fo-
cuses on developing efficient model-based methodologies
for online fault diagnosis in complex hybrid systems.
To do this, we propose a diagnosis framework where
structural model decomposition is integrated within the
HyDE diagnosis framework to reduce the computational
complexity associated with the fault diagnosis of hybrid
systems. As a case study, we apply our approach to a di-
agnostic benchmark problem, the Advanced Diagnostics
and Prognostics Testbed (ADAPT), using real data.

Anibal Bregon et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution 3.0 United
States License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original author and
source are credited.

1. Introduction

Nowadays, complex hybrid systems are present in many
engineering applications, from electrical circuits to em-
bedded computation systems. Their behavior is made
up of continuous and discrete event dynamics, making
accurate and timely online fault diagnosis more difficult.
This paper focuses on developing efficient model-based
methodologies for online fault diagnosis in complex hy-
brid systems. Hybrid systems modeling and diagnosis
have been approached by the DX community, and sev-
eral proposals have been made based on hybrid model-
ing (Mosterman & Biswas, 1999), hybrid state estima-
tion (Hofbaur & Williams, 2004), or a combination of
on-line state tracking and residual evaluation (Benazera
& Travé-Massuyès, 2009; Bayoudh et al., 2008). In all
cases, the solution requires to somehow model and even-
tually fully or approximately estimate the set of possi-
ble states, and to diagnose the current set of consistent
modes. A major restriction, however, is that each tech-
nique uses its own modeling paradigm and the reasoning
algorithms implement a single strategy. This does not fa-
cilitate the generation of flexible, integrated, reasoning
solutions by the inclusion of additional diagnosis strate-
gies, thus restricting the diagnostic capabilities of the
hybrid diagnoser.

In (Narasimhan & Brownston, 2007), the authors pro-
posed a general framework for stochastic and hybrid
model-based diagnosis called Hybrid Diagnosis Engine
(HyDE). HyDE offers flexibility to the diagnosis appli-
cation designer to choose the modeling paradigm and the
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reasoning algorithms. The HyDE architecture supports
the use of multiple modeling paradigms at the compo-
nent and system level. Several alternative algorithms
are available for the various steps in diagnostic reason-
ing. This approach is extensible, with support for the
addition of new modeling paradigms as well as diagnos-
tic reasoning algorithms for existing or new modeling
paradigms. However, HyDE faces some problems regard-
ing performance in terms of space and time complexity.

Recently, we have proposed to use structural model de-
composition for efficient fault diagnosis and prognosis
in continuous systems (Bregon, Biswas, & Pulido, 2012;
Daigle et al., 2011a, 2012). In (Roychoudhury et al.,
2013), we generalized those ideas and proposed a com-
mon model decomposition framework, where we solve
the model decomposition problems for three separate
system health management tasks, namely, estimation
(used for residual generation that is usually required for
fault detection and fault identification), fault isolation,
and prediction (used for fault prognostics). The basic
idea of the approach is to partition the global system
model into submodels based on the set of measurements.
This way, we will have submodels that are smaller than
the global system model, leading to efficiency improve-
ments and potential for concurrent computation.

In this paper, we integrate structural model decomposi-
tion as in (Roychoudhury et al., 2013) within the HyDE
diagnosis framework. Structural model decomposition is
used to decompose the HyDE models, thus reducing the
computational complexity associated with the fault di-
agnosis of hybrid systems. This work contributes in two
different aspects. First, we propose an online diagnosis
approach for hybrid systems where the system model is
partitioned into submodels, which are implemented us-
ing the HyDE modeling framework. Then, the global
diagnosis result is provided by the combination of the
local diagnosis results corresponding to the submodels.
Second, we apply our approach to a real system, the Ad-
vanced Diagnostics and Prognostics Testbed (ADAPT)
with satisfactory results.

The rest of the paper is organized as follows. Section 2
presents the HyDE diagnosis framework. Section 3 dis-
cusses the basic ideas of structural model decomposition.
Section 4 proposes an integrated framework where struc-
tural model decomposition is used to reduce HyDE’s
computational burden. Section 5 shows results for the
case study. Section 6 reviews the related work and cur-
rent approaches for hybrid systems fault diagnosis and
structural model decomposition. Finally, Section 7 con-
cludes the paper.

2. HyDE

HyDE (Hybrid Diagnosis Engine) (Narasimhan &
Brownston, 2007) combines ideas from consistency-
based, control-theory-based and stochastic diagnosis ap-
proaches to provide a general, flexible and extensible ar-
chitecture for stochastic and hybrid diagnosis. HyDE
supports the use of multiple modeling paradigms and is
extensible to support new paradigms. HyDE also offers
a library of algorithms to be used in the various steps
of the diagnostic reasoning process. The key features of
HyDE are:

• Diagnosis of multiple discrete faults.

• Support for hybrid models, including autonomous
and commanded discrete switching.

• Support for stochastic models and stochastic reason-
ing.

• Capability for handling time delay in the propaga-
tion of fault effects.

Next we present the HyDE modeling approach and rea-
soning procedure.

2.1. HyDE Models

HyDE models have two parts, the transition model and
the behavior model. The transition model describes
the components that make up the system, the various
operating modes of the system (including faulty ones),
and the conditions for transitions between the operating
modes. The behavior model specifies the behavior evo-
lution and has three parts: the propagation model, inte-
gration model, and dependency model. The information
in the propagation model allows the estimation of un-
known variable values from known variable values. The
dependency model captures information about the de-
pendencies between variables, models, and components.
The integration model describes how the variables’ val-
ues are propagated across time steps. HyDE supports
the representation of each of the behavior models in more
than one paradigm.

2.2. HyDE Reasoning

HyDE reasoning is the maintenance of a set K of
weighted candidates (ki, wi). A candidate represents the
hypothesized trajectory of the system inferred from the
transition and behavior models, knowledge of the ini-
tial operating modes of all components and initial val-
ues of all variables, and the sensor observations reported
to HyDE. The candidates’ weights are a way of rank-
ing them and depend on several factors, including prior
probabilities of transitions and the degree of fit between
model predictions and observations. Although weights
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are in the range [0, 1], weight is not a probability mea-
sure.

Each candidate contains a possible trajectory of system
behavior evolution represented in the form of a hybrid
state history and transition history. The hybrid state is a
snapshot of the entire system state at any single instant.
It associates all components with their current operating
modes and all variables with their current values. Appli-
cations run HyDE at discrete time steps, typically but
not necessarily when observations are available. Time
steps need not be periodic. For each time step that
HyDE reasons about, a candidate contains two hybrid
states, one at the beginning of the time step and one at
the end, as well as the set of transitions taken by the
system between the previous and current time steps.

At time step 0, the candidate set is initialized with can-
didate(s) derived from the initial hybrid state of the sys-
tem. Once the initial candidate set has been created,
HyDE’s reasoning process uses the same sequence of op-
erations for each time step. The reasoning process can be
divided into three categories of operations (Narasimhan
& Brownston, 2007):

1. Candidate Set Management maintains the candidate
set. The operations include updating the weights of
all candidates, pruning candidates that do not sat-
isfy minimum weight requirements, adding new can-
didates (the next best ones from the candidate gen-
erator) when necessary, and optionally re-sampling
or normalizing the distribution of weights.

2. Candidate Testing deals with operations on a single
candidate. The operations include determining the
occurrence of any transitions, estimating the hybrid
states at the beginning and end of a time step, com-
paring against observations to update weight of the
candidate as well as reporting inconsistencies.

3. Candidate Generation creates candidate generators
from inconsistencies reported by Candidate Test-
ing and supplies the next-best potential (untested)
candidate to Candidate Set Management when re-
quested. This is achieved using a conflict directed
search. First reported inconsistencies are used to
generate conflicts, i.e., the subset of operating modes
that cannot all be true at the same time. The con-
flicts are then used to guide a search for new candi-
dates by optimizing some candidate property (typi-
cally weight or size).

As we have mentioned, the size of the system model
(HyDE uses the global model of the complete system)
directly affects the computational complexity for each
one of the steps in the reasoning process. Our proposal
on this work is to use structural model decomposition to

divide the global system model into minimal submodels
such that the complexity in the reasoning process is re-
duced. The next section describes our structural model
decomposition approach to compute minimal submodels.
Then, in Section 4 we will show in detail how these min-
imal submodels are integrated within the HyDE frame-
work.

3. Structural Model Decomposition

In this section, we briefly present our structural model
decomposition framework (Roychoudhury et al., 2013).
We begin with the definition of a model.

Definition 1 (Model). A model M is a tuple M =
(V,C), where V is a set of variables, and C is set of
constraints. V consists of five disjoint sets, namely, the
set of state variables, X; the set of parameters, Θ; the
set of inputs, U ; the set of outputs, Y ; and the set of
auxiliary variables, A. Each constraint c = (εc, Vc) ∈ C
consists of an equation εc involving variables Vc ∈ V .

Input variables u ∈ U are known/measured; and the
output variables y ∈ Y correspond to (measured) sen-
sor signals. Parameters θ ∈ Θ include explicit model
parameters that are used in the model constraints. Θ
does not need to include all parameters in the equations,
only those that must be included explicitly (e.g., for joint
state-parameter estimation or fault isolation). These pa-
rameters, by definition, are not computed in terms of
any other variables, and, in this way, appear as inputs.
Since the state variables X are, by definition, enough to
describe the future behavior of the system, the auxiliary
variables a ∈ A are not strictly needed, however, they
make the model easier to parse, develop, and implement.

As shown in Defn. 1, a constraint c = (εc, Vc) includes
an equation εc over the set of variables Vc. Note that
c does not impose any computational causality on the
variables Vc, i.e., although εc captures the information
about how to compute a variable v ∈ Vc in terms of
all other variables in Vc, the constraint does not specify
which v ∈ Vc is the dependent variable in equation εc.
We write a constraint c1 = (εc1 , Vc1) by its equation,
e.g., as follows:

a+ b = c+ d (c1)

where Vc1 = {a, b, c, d}.
In order to define for a constraint c which variable
v ∈ Vc is the dependent variable that is computed by
the others using the constraint, we require the notion of
a causal assignment.

Definition 2 (Causal Assignment). A causal assign-
ment α to a constraint c = (εc, Vc) is a tuple α =
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(c, voutc ), where voutc ∈ Vc is assigned as the dependent
variable in equation εc.

Unlike a constraint, a causal assignment defines a com-
putational causality (or computational direction) to a
particular variable voutc ∈ Vc in the constraint in which
it can be computed in terms of all other variables in Vc.
We write a causal assignment of a constraint using the
constraint’s equation in a causal form. For example, for
constraint c1 above choosing voutc1 = d:

d := a+ b− c (α1)

where Constraint c1 is rewritten with a := symbol to
explicitly denote that the direction of computation is
from variables a, b, and c to d.

We say that a set of causal assignments A, for a model
M is valid if

• For all v ∈ U ∪Θ, A does not contain any α such that
α = (c, v), i.e., U and Θ are not computed in terms of
any other variables.

• For all v ∈ Y , A does not contain any α = (c, voutc )
where v ∈ Vc − {voutc }, i.e., no variable is computed in
terms of any y ∈ Y .

• For all v ∈ V−U−Θ, A contains exactly one α = (c, v),
i.e., other than the variables in U and Θ, every variable
must have exactly one constraint to compute it.

A causal model is a model extended with a valid set of
causal assignments.

Definition 3 (Causal Model). Given a model M∗ =
(V,C), a causal model forM∗ is a tupleM = (V,C,A),
where A is a set of valid causal assignments.

Given a model, we generate submodels that allow for
the computation of a given set of variables using only
local inputs. Given a definition of the local inputs (in
general, selected from V ) and the set of variables we
wish to be computed by the submodel (selected from
V − U −Θ), we create from a causal model M a causal
submodel Mi. We obtain a submodel in which only a
subset of the variables in V are computed using only
a subset of the constraints in C. In this way, each
submodel computes its variable values independently
from all other submodels. A submodel can be defined
as follows.

Definition 4 (Causal Submodel). A causal submodel
Mi of a causal model M = (V,C,A) is a tuple Mi =
(Vi, Ci,Ai), where Vi ⊆ V , Ci ⊆ C, and Ai is a set of
(valid) causal assignments for Mi.

Note that, in general, Ai is not a subset of A, because
since we allow to select local inputs from Y , these vari-
ables become local inputs, i.e., appear in Ui, and the

causal assignment in A that computes these variables is
changed to a form where some other variable in the cor-
responding constraint is selected as the dependent vari-
able. As a result, these causal assignments will be dif-
ferent, but the rest of the causal assignments in Ai will
still be found in A.

The procedure for generating a submodel from a causal
model is given as Algorithm 1 (Roychoudhury et al.,
2013). Given a causal model M, a set of variables
U∗ ⊇ U that includes the input variables inM as well as
some other variables previously not in U that are consid-
ered as local inputs, and a set of variables to be computed
V ∗, and a preferences list, P (explained below), the Gen-
erateSubmodel algorithm derives a causal submodelMi

that computes V ∗ using a subset of U∗.

In the following we briefly describe the algorithm, see
(Roychoudhury et al., 2013) for additional details. In
Algorithm 1, the queue, variables, represents the set of
variables that have been added to the submodel but have
not yet been resolved, i.e., they cannot yet be computed
by the submodel. This queue is initialized to V ∗, the
set of variables that must be computed by the submodel.
The algorithm then loops until this queue has been emp-
tied, i.e., the submodel can compute all variables in V ∗

using only variables in U∗. Within the loop, the next
variable v is popped off the queue. We then determine
the best constraint to use to resolve this variable with
the GetBestConstraint subroutine (Subroutine 2). We
add the constraint to the submodel and the causal as-
signment for the constraint in the form that computes v.
We then need to resolve all the variables being used to
compute v, i.e., all its predecessors in the causal graph.
Each of these variables that have not already been vis-
ited (not already in Vi), are not parameters (not in Θ),
and are not local inputs (not in U∗) must be resolved
and so are added to the queue. Then the variables are
added to the submodel and the loop continues until the
queue is emptied.

The goal of the GetBestConstraint subroutine is to
find the best constraint to resolve v. The subroutine
constructs a set C that is the set of constraints that
can completely resolve the variable, i.e., resolves v with-
out further backward propagation (all other variables in-
volved in the constraint are in Vi ∪ Θ ∪ U∗), and then
chooses the best according to a preferences list P . If
no such constraint exists, then the constraint that com-
putes v in the current causal assignment is chosen, and
further backward propagation will be necessary. Here,
we are preferring minimal resolutions of v, i.e., those
that do not require backward propagation, because then
the submodel will be minimal in the number of variables
and constraints needed to compute V ∗.
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Algorithm 1 Mi = GenerateSubmodel(M, U∗, V ∗, P )

1: Vi ← V ∗

2: Ci ← ∅
3: Ai ← ∅
4: variables← V ∗

5: while variables 6= ∅ do
6: v ← pop(variables)
7: c← GetBestConstraint(v, Vi, U

∗,A, P )
8: Ci ← Ci ∪ {c}
9: Ai ← Ai ∪ {(c, v)}

10: for all v′ ∈ Vc do
11: if v′ /∈ Vi and v′ /∈ Θ and v′ /∈ U∗ then
12: variables← variables ∪ {v′}
13: end if
14: Vi ← Vi ∪ {v′}
15: end for
16: end while
17: Mi ← (Vi, Ci,Ai)

In general, a variable v is involved in many constraints,
however, exactly one of these constraints, in the given
causal assignment, computes v. If this constraint does
not completely resolve v, we find the constraints in which
v is used to compute some output variable y ∈ Y ∩ U∗.
We consider modifying the causal assignment so that
such a y (used now as an input) is used to compute v,
instead of v being used to compute y. This can only
be performed if, for the causal assignment in which y
is being used to compute v, all other variables involved
in the constraint are in Vi ∪ Θ ∪ U∗, in which case this
constraint in this new causal assignment can completely
resolve v. If no constraint can be found that completely
resolves v, then the constraint that in the current causal
assignment computes v will have to be used, and back-
ward propagation will be necessary. Otherwise, we select
the most preferable constraint that completely resolves
v. Preference among constraints (in which an output
would be transformed to an input) is computed using
a preferences list P , that contains a partial ordering of
all the outputs in the model of the form yi / yj , mean-
ing that yj is preferred over yi. The subroutine goes
through every pair of constraints and removes from the
list of most preferable constraints, C ′, any constraint
that uses a measured variable that is less preferable to
one involved in another constraint. Of those remaining,
an arbitrary choice is made. The preferences list can be
used to prefer measured variables with less noise over
those with more noise.

In the following sections, we show how this model decom-
position approach can be integrated within the HyDE
diagnosis framework to reduce the computational com-
plexity associated with the diagnosis of faults in hybrid
systems.

Subroutine 2 c = GetBestConstraint(v, Vi, U
∗,A, P )

1: C ← ∅
2: cv ← find c where (c, v) ∈ A
3: if (Vcv − v) ⊆ Vi ∪ U∗ then
4: C ← C ∪ {cv}
5: end if
6: for all y ∈ Y ∩ U∗ do
7: cy ← find c where (c, y) ∈ A
8: if v ∈ Vcy and (Vcy − v) ⊆ Vi ∪ U∗ then
9: C ← C ∪ {cy}

10: end if
11: end for
12: if C = ∅ then
13: c← cv
14: else if cv ∈ C then
15: c← cv
16: else
17: C′ ← C
18: for all c1, c2 ∈ C where c1 6= c2 do
19: y1 ← find y where (c1, y1) ∈ A
20: y2 ← find y where (c2, y2) ∈ A
21: if (y1 / y2) ∈ P then
22: C′ ← C′ − {c1}
23: end if
24: end for
25: c← first(C′)
26: end if

4. Integration Proposal

The three main steps in the reasoning process of HyDE
are simulation, comparison and candidate generation.
These steps are performed for each currently consistent
candidate in the candidate set. In this section, we show
how the inclusion of structural model decomposition af-
fects each one of these steps, thus proposing a framework
where decomposed models can be implemented within
HyDE.

In the simulation step, the behavior of the system is sim-
ulated using the global model of the system. The goal
of the simulation step is to predict expected values of
variables in the model that correspond to sensed obser-
vations. The main problem regarding this simulation
step in HyDE is related to the time and memory perfor-
mance of HyDE. Our proposal here is to use structural
model decomposition so several smaller simulation tasks
can be run. The advantage of using minimal submod-
els for simulation is its smaller size when compared to
the size of the global model. However, as we will explain
later, computing HyDE models from minimal submodels
will affect the comparison and the candidate generation
steps in the reasoning process of HyDE as well.

In order to implement minimal submodels in HyDE, we
have to look at the models used by HyDE, which are sim-
ilar to simulation models. They describe the expected
behavior of the system under nominal and fault condi-
tions. The model can be constructed in modular and
hierarchical fashion by building component subsystem
models (which may themselves contain component sub-
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system models) and linking them through shared vari-
ables/parameters. The component model is expressed
as operating modes of the component and conditions
for transitions between these various modes. Faults are
modeled as transitions whose conditions for transitions
are unknown (and have to be inferred through the rea-
soning process). Finally, the behavior of the components
is expressed as a set of variables/parameters and rela-
tions governing the interaction among them (for exam-
ple, equations). The relation between HyDE components
and our structural decomposition framework is summa-
rized as follows:

• HyDE model variables are related to variables V in
our model.

• The propagation model is specified as constraint
predicates over model variables. Constraints may
be Boolean expressions if the variables are Boolean;
algebraic and ordinary differential equations for
interval- and real-valued variables, and equality or
inequality for all variables. These are related to the
constraints, C, and causal assignments, A, in our
model description.

• Candidates ki in HyDE are related to parameters θi
in our model.

• The integration model in HyDE is related to vari-
ables X in our model.

The comparison step then takes the predictions from the
simulation step and the sensed observations and deter-
mines if they are consistent with each other or not. This
step is performed only for those variables specified to
be output variables (some sensed variables are desig-
nated inputs and will not be involved in the comparison
step). Typically the percentage difference is compared to
a threshold defined in the noise characteristics for each
sensor specified when building the HyDE model. When
HyDE is run without model decomposition only a sub-
set of the sensed variables (those designated as output)
are used in comparisons, while with minimal submodels
all sensed variables will be used in comparisons. How-
ever this overhead is quite insignificant when compared
to computational complexity of the simulation and can-
didate generation steps.

The third and final step is candidate generation, which is
typically the most computationally intensive step. When
the comparison step results in inconsistencies, a best
first search is performed over the unknown transition
space to identify potential candidates. When predicted
values and sensed observations for a set of variables
do not match, then all unknown transitions that could
have influenced those inconsistent variables are consid-
ered suspects. There are two such flavors of dependen-
cies. A component may have behavioral constraints in

the current mode that affect the inconsistent variables
and unknown transitions take the component to a differ-
ent mode that influences the inconsistent variables in a
different way. For this a dependency graph that maps de-
pendencies between variables of the system through cur-
rently active behavioral constraints is generated. Back
propagation through this graph starting from the incon-
sistent variable, identifies all suspected components. For
each suspected component, all unknown transitions from
the current mode of that component are selected as po-
tential candidates. Among these transitions those that
lead to component modes that influence the inconsistent
variable(s) in the same way as the current component
mode are eliminated.

The second flavor of influences are from components that
do not affect the inconsistent variables in the current
mode but have unknown transitions to modes that do
influence the inconsistent variables. To identify such
components a global dependency graph is generated that
maps all dependencies in all modes of all components.
Back propagation through this graph would then iden-
tify additional potential candidates that could possibly
fix the inconsistencies.

When HyDE is used without model decomposition, the
dependency graphs and candidate generation represent
the entire model, which results in complexity that is ex-
ponential in the total number of unknown transitions
that influence in the model. After model decomposition
the HyDE model is decomposed into independent sub-
models each of which has its own dependency graph that
is not connected to the other submodels. As a result, the
candidate state space is significantly reduced. While this
approach works for nonsensor faults, sensor faults pose a
problem when using a decomposed model. Since a sensed
observation can be used as input in other submodels a
sensor fault would result in inconsistent variables in all
of the submodels involving the sensor as an input or an
output. In such cases we need a mechanism to report a
single sensor fault instead of a fault from each submodel.

Such a mechanism is implemented in HyDE by rep-
resenting the sensor as a single component. However
inside the component there will be a variable for each
submodel that the sensor appears in. When the sensor
is used as an observation then its corresponding variable
in the HyDE model is marked as an output variable,
whereas if the observation is used as an input in the
decomposition the corresponding variable is marked as
an input variable in the HyDE model. The modes of the
sensor component (that include nominal faulty modes)
are shared by all of these variables. In other words these
variables are connected to the rest of the variables in
their submodels through independent behavioral con-
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straints in the sensor component’s modes. This would
result in nonconnected dependency graphs but referring
to shared component modes. As a result the back propa-
gation would identify the shared component as a suspect.

Example 1. Consider a sensor component S1 with an
associated variable v1 that appears in two submodels
M1 and M2. In M1 it appears as an output variable
v1o and in M2 it appears as input variable v1i. Let the
output variable associated with M2 be v2. When S1 is
faulty then we will notice an inconsistency in the output
M1 (the predicted value for v1o would be nominal, but
because of the sensor fault, the observed value for v10
will not be consistent) as well as M2 (since we will sim-
ulate a faulty v1 value through M2, the predicted value
for v2 will not match the observed value). The depen-
dency graph associated with M1 will have edges going
back from v1o to other variables represented in relations
in M1. The edge to v10 (going back from v1) will be
labeled as depending on S1 being in the nominal node
(which is the current operating mode of S1). The de-
pendency graph for M2 will go backwards from v2 and
will ultimately reach v1i through relations represented in
M2. In this case the edge out of v1i (going back into v1i)
would be labeled as depending on S1 too. In this case
when we see v1o and v2 inconsistent, S1 will be selected
as the most likely common explanation (unless there is
another double fault with one component fault in M1
and another component fault in M2 that is more proba-
ble as defined by prior probabilities in the model). This
example sensor component is illustrated in Fig. 1. The
model inside sensor v1 is displayed below the v1 compo-
nent for convenience. In the nominal and faulty modes of
operation, there will be independent constraints relating
v1predictedo with v10 and v1i with v1predictedi. This will
break the propagation path from M1 at v1o and start
an independent propagation path from v1i to M2.

This approach allows us to gain the benefits of reduced
computational complexity of the model decomposition
without adding an additional diagnostic fusion step that
might have been necessary if each submodel was com-
pletely independent.

5. Case Study

In this section we present our case study, a subset
of the Advanced Diagnostics and Prognostics Testbed
(ADAPT) (Poll et al., 2007), called ADAPT-Lite, which
is an electrical power distribution system. We first
briefly present the ADAPT-Lite system and then we
show results that we obtained by using our integration
approach.

5.1. ADAPT-Lite

A schematic of ADAPT-Lite is given in Fig. 2. Sensors
prefixed with an “E” are voltage sensors, those with an
“IT” are current sensors, and those with “ISH” or “ESH”
are for states of circuit breakers and relays, respectively.
TE228 is the battery temperature sensor, and ST516 is
the fan speed sensor. Note that the inverter converts DC
power to AC, and E265 and IT267 provide rms values
of the AC waveforms. Here, vB and iB are the battery
voltage and current, v0 is the voltage across C0, vs is
the voltage across Cs, e is the inverter efficiency, vinv
is the inverter voltage on the DC side, Rinv is the DC
resistance of the inverter, Rdc is the DC load resistance,
Jfan is the fan inertia, and Bfan is a damping param-
eter. Additional details on ADAPT-Lite may be found
in (Daigle & Roychoudhury, 2010).

5.2. Diagnosis Results

For the case study we used test scenarios generated for
the Diagnostic Competition 2011 (DXC 2011) (Poll et
al., 2011). Specifically we used all of the 30 nominal
scenarios and picked 66 fault scenarios that considered
only discrete, abrupt and persistent faults. For these
scenarios we ran the full HyDE model (we will call it
HyDE) and the decomposed HyDE model (we will call
it HyDE+SMD).1. Equations for the ADAPT model and
its submodels can be found in (Daigle et al., 2011b). We
then compared the diagnosis as well as the number of
candidates that were tested before arriving at the diag-
nosis. For the nominal scenarios both models performed
about the same with HyDE+SMD using less computa-
tional time. However this time saving was very insignif-
icant (order of milliseconds). One of the reasons for this
is that the full ADAPT model is relatively small and
behavioral constraints were mostly algebraic.

Both models were tuned to not generate any false pos-
itives when run on the nominal scenarios. The results
of running the faulty scenarios are presented in Table
1. Each row in the table represents a fault in ADAPT.
Regarding the columns, the first column identifies the
faulty component and the kind of fault; the second and
third columns indicate the time of fault injection and its
magnitude; the fourth (resp. seventh) column shows the
HyDE (resp. HyDE+SMD) diagnosis result; the fifth
(resp. eighth) column indicates the number of candi-
dates that HyDE (resp. HyDE+SMD) needs to explore
immediately after the fault detection; the sixth (resp.
ninth) column shows the HyDE (resp. HyDE+SMD)
classification errors (either a false positive or a false neg-
ative); finally, the tenth column shows the difference in
the number of fault candidates considered for each one

1SMD stands for Structural Model Decomposition.

7

Annual Conference of the Prognostics and Health Management Society 2013

318



Annual Conference of the Prognostics and Health Management Society 2013

Figure 1. HyDE PC Sensor Model.

Figure 2. ADAPT-Lite schematic.

of the approaches. For an easier evaluation of the results
obtained, Table 2 summarizes these results by giving the
total number of candidates tried and classification er-
rors for both of the approaches. Table 2 distinguishes
between sensor and nonsensor faults.

Since the candidate generation takes a significant
amount of time (order of seconds), the computational
time can be considered to be directly proportional to
the number of candidates tested. From the results we
can see that there are two main advantages from com-
bining HyDE with structural model decomposition.

First we see that the number of errors is reduced from 19
to 11. The reason for this will be apparent when we see
how the simulation step is performed in the two cases.
When only HyDE is used, the full model is simulated
and any errors introduced because of model approxi-
mations (parameters in the model are estimated from
data and are based on the best fit available and hence
are approximate) get propagated through the model and
accumulate. As a result at the comparison step some

variables are incorrectly determined to be inconsistent
when they are not (false positives). This problem can be
addressed by increasing the threshold used for compar-
ison but that would lead to some valid inconsistencies
to not be detected at all (false negatives). When using
HyDE+SMD this problem is substantially mitigated by
the fact that simulation results (and any associated er-
rors) do not get propagated to other submodels (instead
the actual sensed input values are used). This results in
more accurate predictions (assuming sensor values used
as inputs are not too noisy) which leads to better diag-
nostic accuracy.

The second advantage is that fewer candidates are tested
in the candidate generation step. As shown in the re-
sults, a total of 277 candidates for sensor faults and 44
candidates for nonsensor faults are tested when using
HyDE. On the other hand, when HyDE+SMD is used,
a total number of 54 candidates are tested for sensor
faults and 20 for candidate faults. The reason for this
is that the candidate generation step does not have to
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Table 1. Diagnosis Results

Fault At
Time Magnitude HyDE

Diagnosis

HyDE
Candidates

Tried

HyDE
errors

HyDE+SMD
Diagnosis

HyDE+SMD
Candidates

Tried

HyDE+SMD
errors

Difference in
Candidates

Tried
IT240.Offset 72.00 5.40 IT240.Offset 14 0 IT240.Offset 1 0 13
IT240.Offset 101.00 0.30 NONE 0 1 IT240.Offset 1 0 0
E242.Offset 158.00 −2.00 NONE 0 1 E242.Offset 1 0 0
IT240.Stuck 83.00 16.88 IT240.Stuck 15 0 IT240.Stuck 2 0 13
IT267.Offset 192.00 −0.20 NONE 0 1 NONE 0 1 0
IT281.Offset 101.00 1.80 IT281.Offset 7 0 IT281.Offset 1 0 6
ESH244A.Stuck 49.00 0.00 ESH244A.Stuck 2 0 ESH244A.Stuck 2 0 0
IT267.Offset 104.00 0.70 IT267.Offset 11 0 IT267.Offset 1 0 10
IT281.Offset 47.00 0.20 NONE 0 1 NONE 0 1 0
ST516.Offset 168.00 90.00 ST516.Offset 9 0 ST516.Offset 1 0 8
ST516.Offset 121.00 −30.00 NONE 0 1 NONE 0 1 0
ST516.Stuck 58.00 0.00 ST516.Stuck 10 0 ST516.Stuck 2 0 8
ISH236.Stuck 41.00 0.00 ISH236.Stuck 2 0 ISH236.Stuck 2 0 0
ST516.Offset 203.00 −300.00 ST516.Offset 9 0 ST516.Offset 1 0 8
E240.Stuck 102.00 23.90 NONE 0 1 E240.Offset 1 1 0
E242.Stuck 173.00 0.00 E242.Stuck 4 0 E242.Stuck 2 0 2
E265.Stuck 41.00 0.00 E265.Stuck 7 0 E265.Stuck 2 0 5
IT281.Offset 101.00 −0.70 NONE 0 1 IT281.Offset 1 0 0
ST516.Offset 112.00 240.00 ST516.Offset 9 0 ST516.Offset 1 0 8
IT267.Offset 174.00 0.10 NONE 0 1 NONE 0 1 0
E240.Offset 138.00 −5.10 E240.Offset 2 0 E240.Offset 1 0 1
IT267.Offset 187.00 −1.40 IT267.Offset 11 0 ERROR 3 1 8
IT267.Stuck 49.00 2.38 IT267.Stuck 12 0 IT267.Stuck 2 0 10
IT240.Offset 199.00 −1.70 IT240.Offset 14 0 IT240.Offset 1 0 13
IT281.Offset 132.00 −0.05 NONE 0 1 NONE 0 1 0
E281.Stuck 80.00 21.38 ERROR 6 1 E281.Stuck 2 0 4
IT240.Offset 69.00 −4.20 IT240.Offset 14 0 IT240.Offset 1 0 13
IT281.Stuck 152.00 0.00 ERROR 8 1 IT281.Stuck 1 0 7
TE228.Offset 175.00 5.00 TE228.Offset 1 0 TE228.Offset 1 0 0
E265.Offset 39.00 8.00 E265.Offset 6 0 E265.Offset 1 0 5
AC483.FailedOff 79.88 N/A EY272.StuckOpen 1 1 EY272.StuckOpen 1 1 0
DC485.FailedOff 51.73 N/A EY284.StuckOpen 1 1 EY284.StuckOpen 1 1 0
FAN416.FailedOff 87.92 N/A FAN416.FailedOff 1 0 FAN416.FailedOff 1 0 0
INV2.FailedOff 167.99 N/A INV2.FailedOff 1 0 INV2.FailedOff 1 0 0
CB236.FailedOpen 170.97 N/A CB236.FailedOpen 1 0 CB236.FailedOpen 1 0 0
CB262.FailedOpen 188.72 N/A CB262.FailedOpen 1 0 CB262.FailedOpen 1 0 0
CB266.FailedOpen 129.80 N/A ERROR 13 1 CB266.FailedOpen 1 0 12
CB280.FailedOpen 135.03 N/A CB280.FailedOpen 1 0 CB280.FailedOpen 1 0 0
EY244.StuckOpen 35.35 N/A EY244.StuckOpen 1 0 EY244.StuckOpen 1 0 0
EY260.StuckOpen 176.83 N/A EY260.StuckOpen 1 0 EY260.StuckOpen 1 0 0
EY272.StuckOpen 62.87 N/A EY272.StuckOpen 1 0 EY272.StuckOpen 1 0 0
EY275.StuckOpen 141.90 N/A EY275.StuckOpen 1 0 EY275.StuckOpen 1 0 0
EY284.StuckOpen 83.83 N/A EY284.StuckOpen 1 0 EY284.StuckOpen 1 0 0
DC485.FailedOff 59.08 N/A EY284.StuckOpen 1 1 EY284.StuckOpen 1 1 0
FAN416.FailedOff 105.22 N/A FAN416.FailedOff 1 0 FAN416.FailedOff 1 0 0
INV2.FailedOff 120.70 N/A INV2.FailedOff 1 0 INV2.FailedOff 1 0 0
CB236.FailedOpen 35.66 N/A CB236.FailedOpen 1 0 CB236.FailedOpen 1 0 0
CB266.FailedOpen 60.89 N/A ERROR 13 1 CB266.FailedOpen 1 0 12
EY260.StuckOpen 80.06 N/A EY260.StuckOpen 1 0 EY260.StuckOpen 1 0 0
EY272.StuckOpen 39.27 N/A EY272.StuckOpen 1 0 EY272.StuckOpen 1 0 0
ISH236.Stuck 46.00 0.00 ISH236.Stuck 2 0 ISH236.Stuck 2 0 0
ST516.Offset 187.00 −243.00 ST516.Offset 9 0 ST516.Offset 1 0 8
TE228.Offset 101.00 21.00 TE228.Offset 1 0 TE228.Offset 1 0 0
IT240.Offset 203.00 −2.30 IT240.Offset 14 0 IT240.Offset 1 0 13
ST516.Offset 188.00 420.00 ST516.Offset 9 0 ST516.Offset 1 0 8
IT281.Offset 99.00 1.70 IT281.Offset 7 0 IT281.Offset 1 0 6
IT267.Offset 163.00 0.20 NONE 0 1 IT267.Offset 1 0 0
IT267.Offset 146.00 −0.30 IT267.Offset 11 0 IT267.Offset 1 0 10
IT281.Stuck 140.00 0.00 ERROR 8 1 ERROR 2 1 6
IT240.Stuck 95.00 18.26 IT240.Stuck 15 0 IT240.Stuck 2 0 13
E242.Offset 138.00 −3.00 E242.Offset 3 0 E242.Offset 1 0 2
E281.Stuck 83.00 23.42 E281.Stuck 5 0 E281.Stuck 2 0 3
IT240.Offset 178.00 1.50 NONE 0 1 IT240.Offset 1 0 0
IT267.Offset 172.00 −2.00 IT267.Offset 11 0 IT267.Offset 1 0 10
ST516.Offset 131.00 −300.00 ST516.Offset 9 0 ST516.Offset 1 0 8

Table 2. Summary of Diagnosis Results

Kind of
Fault

Sum of HyDE
Candidates

Tried

Sum of HyDE
errors

Sum of HyDE+SMD
Candidates

Tried

Sum of HyDE+SMD
errors

Nonsensor faults 44 5 20 3
Sensor faults 277 14 54 8
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back propagate past submodel boundaries when using
HyDE+SMD. To understand this further first we look at
how the unknown transition probabilities are set up. All
nonsensor faults are considered to have the same prob-
ability and have higher probabilities than sensor faults.
Among sensor faults (we consider only offset and stuck)
the offset fault is considered more probable than stuck
fault. In the full HyDE model when we see some incon-
sistent variables all components upstream of the sensors
have to be considered suspect. However in the case of
HyDE+SMD all components upstream of the sensor only
in that submodel have to be considered suspect. For sen-
sor faults we see an even more marked improvement in
performance because of the special mechanism used to
represent sensors in HyDE+SMD. In this case when we
see two submodels to have inconsistent variables, the first
explanation is the sensor that appears as output in one
and input in the other. In the HyDE case all nonsensor
faults upstream have to be considered before the sensor
fault is considered, resulting in more candidates being
tested. For HyDE+SMD we notice that we always test
1 (if actual fault is offset) or 2 (if actual fault is stuck
then offset is tested first and then stuck is selected) can-
didates only.

As examples we will consider one nonsensor fault (DC485
Failed) and one sensor fault (IT281 Offset). The HyDE
and HyDE+SMD model fragments containing these two
components are illustrated in Fig. 3 and Fig. 4. For
the DC485 Failed scenario using only HyDE we see that
IT281 and IT240 are inconsistent and HyDE identifies
EY284, DC485, CB280, EY260, EY244 and CB236 as
possible suspects (based on the intersection of what is
upstream of IT240 and IT281). When EY284 is tested
it is consistent (EY284 and DC485 failures cannot be
distinguished because they do not have any sensors in
between them). When using HyDE+SMD only IT281
is detected to be inconsistent and now only EY284 and
DC485 are picked as suspects since only those 2 compo-
nents are present in the submodel that contains IT281 as
output. In this case also EY284 is tested first and found
to be consistent (resulting in the same diagnostic error
due to lack of diagnosability).

When we consider the IT281 Offset scenario, HyDE gen-
erates EY284, DC485, CB280, EY260, EY244, CB236
and IT281 as suspects. Since nonsensor faults have
higher probability, it considers the 6 nonsensor faults
first, but they do not provide consistent predictions. Fi-
nally IT281 Offset is selected as a candidate which re-
sults in consistency. When HyDE+SMD model is used,
IT281 and IT240 are found to be inconsistent. In this
case the only intersection when searching for suspects
is the IT281 component. Testing the IT281 Offset (be-
cause it has higher probability than IT281 Stuck) results

in consistency.

6. Related work

Hybrid systems diagnosis has been tackled in different
ways. Approaches based in a pure DES following the
proposition by (Sampath et al., 1995) model the system
as a set of automata, one for each working mode, that
tries to track the discrete state, while performing diag-
nosis as a state-estimation process (Hofbaur & Williams,
2004; Benazera & Travé-Massuyès, 2009). The obvious
difference and advantage with HyDE is that it does not
need to pre-enumerate modes because they are generated
on the fly. Moreover it is not required to generate, track
and confirm any potential new discrete state given the
ability to track continuous behavior.

Decompositional approaches for continuous systems
diagnosis, such as PCs (Pulido & Alonso-González,
2004), ARRs (Staroswiecki & Declerck, 1989), and
MSOs (Krysander et al., 2008), have been extended
for hybrid systems following somewhat the proposal
by (Cocquempot et al., 2004), and their concept of pa-
rameterized ARRs (Bayoudh et al., 2009; Moya et al.,
2012). The set of ARRs or PCs for any mode must be
generated off-line, and the active PCs or ARRs must be
derived on-line. The obvious disadvantage is the need
to model every potential transition in terms of known or
estimated system variables.

There is also the option to combine ARRs and hybrid
mode tracking as in (Rienmuller et al., 2013). This work
combines hybrid estate estimation which is based on ac-
tivated or non-activated residuals derived from ARRs for
the current system. As in previous approaches, the set
of potential states must be taken into account and two
different diagnosis processes must be done at the same
time to avoid tracking multiple discrete modes.

To avoid enumeration of potential modes, approaches
based on Hybrid Bond Graphs, HBGs, adapt the
model of the current continuous state by activat-
ing/deactivating switching junctions in a Bond-Graph
model, and quickly providing a valid causal assign-
ment (Narasimhan & Biswas, 2007). That approach
can be combined with system model decomposition such
as PCs, in the Hybrid PCs approach, providing a set
of subsystems that can track the continuous behavior,
while adapting to mode changes thanks to the underly-
ing hybrid bond-graph modeling (Bregon, Alonso, et al.,
2012). These HBG based approaches avoid enumeration
of modes, but are still linked to one kind of diagnosis
algorithm.

Summarizing a main difference between HyDE and the
mentioned approaches is that all of them are linked to
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Figure 3. HyDE SMD Sensor Model.

Figure 4. HyDE SMD Sensor Model.

one (or at most two) modeling paradigms, and integrates
one diagnosis algorithm.

An implicit assumption in the integration of HyDE and
structural model decomposition, due to the potential
presence of output sensors as input in the submodels is
that sensor noise should not be too high. This is an issue
with all model decomposition approaches, because the
additional introduction of noisy sensor values as input.
This fact provokes sometimes a delay in the detection
time, needing a longer period to be sure that the differ-
ence in the residual is not related to noise. But this is a
common problem in almost any approach to model-based
diagnosis, including those without model decomposition.

7. Conclusions

In this paper we presented a method of combining HyDE
and structural model decomposition that lets us im-
prove the performance of HyDE under assumptions that
sensor noise is not too high. The combined approach
results it better diagnosis accuracy as well as reduced
computational complexity. We demonstrated this on an
electrical testbed at NASA Ames Research Center that
has published nominal and faulty data sets as part of
the Diagnostic Competition series. In future work we
would like to apply this method to other systems, more
datasets, and further characterize the improvement in
performance. Of particular interest would be multiple
fault and increased sensor noise scenarios.
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ABSTRACT

Software-in-the-loop and hardware-in-the-loop testing of
failure prognostics and decision making tools for aircraft sys-
tems will facilitate more comprehensive and cost-effective
testing than what is practical to conduct with flight tests. A
framework is described for the offline recreation of dynamic
loads on simulated or physical aircraft powertrain compo-
nents based on a real-time simulation of airframe dynamics
running on a flight simulator, an inner-loop flight control pol-
icy executed by either an autopilot routine or a human pilot,
and a supervisory fault management control policy. The of-
fline testing framework is described for the example of bat-
tery charge depletion failure scenarios onboard a prototype
electric unmanned aerial vehicle.

Brian Bole et al. This is an open-access article distributed under the terms of
the Creative Commons Attribution 3.0 United States License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

1. INTRODUCTION

An early investment of resources into the development of an
offline verification and validation (V&V) testing infrastruc-
ture for prognostics and supervisory health management al-
gorithms is easily justified for complex systems in which on-
line testing is substantially more time consuming and costly
than offline testing. The V&V process is used to confirm that
algorithms meet requirements and perform in a way that is
consistent with stakeholder expectations. Flight tests prior to
algorithm V&V can be dangerous to the vehicle, pilot, and
ground crew. Offline tests to V&V algorithms in a labora-
tory setting prior to flight tests will not only improve flight
test safety, but, as many issues can be resolved during offline
tests, it reduces the number of real flight tests required for
V&V, therefore reducing cost and development time.

Offline V&V tests of supervisory failure prognosis and de-
cision making routines will allow developed supervisory al-
gorithms to interact with onboard flight controllers and mea-
sured flight data exactly as they would during flight tests. The
offline testing of health management algorithms may be con-
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ducted using software-in-the-loop (SIL) or hardware-in-the-
loop (HIL) procedures. SIL testing refers to tests conducted
using only software simulations of system physics and em-
bedded control routines. HIL testing refers to tests that in-
clude some hardware components from the target system.

The SIL/HIL testing framework described in this paper uses
the X-Plane1 flight simulator package and an X-Plane Tool-
box for MATLAB to facilitate prognostic based control al-
gorithm V&V over a range of potential operating conduc-
tions. Examples of other offline testbeds making use of X-
Plane for aerodynamics simulation and Matlab/Simulink soft-
wares for simulation of control routines are found in (Ibeiro
& Oliveira, 2010; Brown & Garcia, 2009; Sagoo et al., 2010).
The SIL/HIL testbed presented in this paper improves present
capabilities for performing offline testing with X-Plane aero-
dynamics simulations, by including a structure for simulat-
ing internal aircraft dynamics and component fault scenarios.
The communications architecture developed to interface su-
pervisory control routines running in MATLAB to SIL/HIL
tests and an aerodynamics simulation running in X-Plane is
intended to be distributed open-source in the near future.

When conducting V&V of supervisory control algorithms,
injecting faults and testing to failure can provide valuable
knowledge of the algorithm’s behavior during potential fail-
ure scenarios. It is often not feasible to test to failure during
flight tests without compromising the safety of the vehicle,
onboard crew (for manned aircraft), or the ground crew. It
is therefore valuable to have a method for the offline V&V
of algorithm performance during failure scenarios. The of-
fline V&V framework will also facilitate testing over a wide
range of potential environmental conditions, including ex-
treme conditions that are rarely encountered in practice. That
said however, offline V&V testing is limited by the accuracy
of SIL and HIL replications of nominal and off-nominal sys-
tem dynamics, and flight testing is still a necessary part of the
algorithm development and V&V process.

The general framework for SIL/HIL testing is described in
Section 2. The development of an SIL/HIL simulation struc-
ture for the offline testing of battery charge management al-
gorithms onboard an Edge-540T flight vehicle is presented in
Section 3.

2. GENERAL FRAMEWORK

This section introduces an SIL/HIL framework for testing
component failure prognostics and real-time supervisory de-
cision making algorithms that are intended to run onboard
a flight vehicle. Block diagrams illustrating the structure of
control loops used for online and offline flight testing are
shown in Figure 1. The symbols used in Figure 1 and else-
where in the paper are defined in the Nomenclature table at
the end of the paper. An inner-loop controller is assumed to
1www.x-plane.com/
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Figure 1. Inner and outer control loops for online and offline
controls testing

update flight control inputs based on a known flight plan and
observations of the system state. The inner-loop controller is
denoted by the ‘Pilot/Autopilot’ blocks in Figures 1(a) and
1(b). Failure prognostics and supervisory decision making
operations are performed by an outer-loop process, denoted
by the ‘State Estimation’, ‘Failure State Prediction’, and ‘De-
cision Making’ blocks in the figure. Both the inner-loop and
outer-loop controllers would be unchanged in either online or
offline flight testing.

2.1. Inner-Loop Control Dynamics

Inner-loop control of the aircraft is assumed to be provided
by either a human pilot or a pre-programmed autopilot. Both
human pilot and autopilot will henceforth be referred to as
just ‘the pilot’, for convenience. The pilot will update the
control vector, u, based on the observed states of the aircraft
and a desired system state directed by a given flight plan.

The ‘Flight Control Mechanisms’ block shown in Figures
1(a) and 1(b) represents the internal electrical and mechan-
ical dynamics of the vehicle’s powertrain. The inner-loop
control signals sent by the pilot, and the aerodynamic forces
exerted on the vehicle’s control surfaces by the surrounding
environment, FCS , are inputs to this block. The FCS vector
consists of forces like the drag on the aircraft propeller, or
the torque on control flaps. These inputs result in the load-
ing of powertrian components, represented by the vector ν,
which in turn determine the dynamics of powertrain compo-
nent states, ẋPT , and the dynamics of potential fault modes.
The magnitudes of potential fault modes are represented here
by the fault mode vector, γ, where fault modes are assumed
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to be measurable indicators of component degradation such
as crack length, spall width, or pitting depth.

The loads exerted by the vehicle’s active components at a
given time index, k, are expressed as a function of control in-
put signals, the current states of powertrain components, and
the states of component fault modes that may reduce compo-
nent effectiveness,

ν (k) = fPT
(
u (k) ,xPT (k) ,γ (k) , ξ (k)

)
(1)

where the additional ξ term is used to represent a vector of
unknown or uncertain model parameters.

The ‘Airframe Dynamics’ block shown in Figure 1(a) repre-
sents the aerodynamic interactions between the vehicle air-
frame, vehicle control surfaces, and the operating environ-
ment. The inputs to this block are the current states of aircraft
control surfaces, xCS , and the current state of the operating
environment,w. Environmental states represented byw may
include atmospheric pressure, air temperature, wind speed,
and turbulence. The current state of the airframe is repre-
sented by, xAF ; it includes the position, heading, linear and
rotational speed, and linear and rotational acceleration of the
airframe in a set coordinate system.

Vehicle control surfaces are mechanically connected to pow-
ertrain components, so they should be a known function of
xPT ,

xCS = fCS
(
xPT

)
(2)

The forces exerted on the vehicle’s control surfaces due to
their motion through surrounding air is represented here as a
generic non-linear function of the airframe state, the states of
vehicle control surfaces, and current environmental states,

FCS (k) = fF
CS (

xAF (k) ,xCS (k) ,w (k) , ξ (k)
)

(3)

where the additional ξ term is used to represent a vector of
unknown or uncertain model parameters.

Powertrain state dynamics and airframe dynamics are gener-
ically expressed in terms of the loading vectors ν and FCS

as:

ẋPT (k) = fPT
(
xPT (k) ,ν (k) ,FCS (k) , ξ (k)

)
(4)

yPT (k) = hPT
(
xPT (k) ,φ (k)

)
(5)

ẋAF (k) = fAF
(
xAF (k) ,xCS (k) ,w (k) , ξ (k)

)
(6)

yAF (k) = hAF
(
xAF (k) ,φ (k)

)
(7)

The progression of component health degradation is repre-
sented as:

γ̇ (k) = fγ
(
xPT (k) ,γ (k) ,ν (k) , ξ (k)

)
(8)

where component failure is considered to occur when fault
magnitudes exceed a defined threshold that renders the com-

ponent ineffective. The deterioration of control surfaces and
electromechanical components in aircraft powertrains as a
function mechanical loading forces has been a topic of study
for some time; examples include: electromechanical actu-
ators (Balaban et al., 2010) and composite wing structures
(Gobbato et al., 2012), to name a few. The degradation and
failure of electrical components as a function of electrical
power loading has also been examined for aircraft compo-
nents such as batteries (Saha et al., 2009) and power elec-
tronics (Celaya et al., 2011).

Measurements from simulated vehicle powertrain compo-
nents, yPT , are generated in offline testing using models
for both the underlying component dynamics, and sensor re-
sponse dynamics. Data from actual system hardware is ob-
tained in offline testing by applying mechanical loads to hard-
ware components in real-time, in accordance with the envi-
ronmental loads, FCS , reported in by the X-Plane simulator.

A hardware-only recreation of the ‘Flight Control Mecha-
nisms’ portion of the inner-loop vehicle dynamics, illustrated
in Figure 1(b), could be accomplished in a laboratory set-
ting using an aircraft battery pack, power electronic mo-
tor/actuator drivers, electromechanical components, and as-
sociated interconnection cabling. Pilot controls could be sent
directly to an electrical power distribution system assembled
in the laboratory, and additional loading hardware could be
used to apply mechanical loads to the electromechanical com-
ponents of the powertrain in order to recreate the environ-
mental loads estimated by the aircraft simulator. This ap-
proach is similar in nature to dynamometer testing commonly
performed in the testing of automotive systems (Kelly et al.,
2002; Tsang et al., 1985). Software models may be switched
in for some or all of the hardware components in this setup;
however, small errors in modeling the behavior of a given
component may have outsized effects in observed system be-
havior over long time periods.

Measurements of the airframe states are represented by the
vector, yAF . The X-Plane simulator, used in offline testing,
includes sensor models to generate yAF , with the possibility
of injecting sensor error and sensor noise. Communication
between an autopilot board and the framework is facilitated
by the open-source program APM Mission Planner2. The X-
Plane Toolbox for MATLAB was used to communicate with
APM Mission Planner, X-Plane, and outer-loop supervisory
control routines running in MATLAB. The toolbox, currently
being developed at NASA Ames Research Center, provides
various MATLAB functions that allow for UDP communica-
tion with an associated X-Plane plug-in and APM Mission
Planner. The team developing the toolbox intends to release
it open-source upon completion.

Adequate control of aircraft does not in most cases require
a pilot to understand environmental dynamics or the inter-
2http://code.google.com/p/ardupilot-mega/wiki/Mission

3

Annual Conference of the Prognostics and Health Management Society 2013

327



Annual Conference of the Prognostics and Health Management Society 2013

nal dynamics of the flight vehicle in great detail. Pilots are
autopilots are considered here to make decisions based on
an internal decision making policy that maps observations of
yAF (k) and yPT (k) at time-index k to appropriate control
outputs, u (k). An autopilot will use an embedded control
policy to map

(
yAF (k) ,yPT (k)

)
→ u. For human pilots,

the mapping
(
yAF (k) ,yPT (k)

)
→ u will be determined

by the pilot’s situational awareness and judgment. The mech-
anism for interaction between an autopilot and supervisory
failure prognostics and decision making routines can be for
the decision making routines to directly update the autopi-
lot’s control policy. Policy updates for human pilots could
be prompted indirectly by presenting the pilot with system
health information and suggested risk mitigating actions, as
described in (Bukov, Chernyshov, Kirk, & Schagaev, 2007).

2.2. Outer-loop Failure Prognostics and Decision Making

Supervisory outer-loop control routines make use of sensor
measurements to estimate current and future system states
given approximations of system state dynamics and physics
of failure models. Probability distributions for belief in the
current states of xPT , xAF , and γ, based on a history of ob-
servations of yPT , yAF , and uAF are generically represented
in Figure 1 as:

p
(
xPT ,xAF γ|yPT (0 : k) ,yAF (0 : k) ,u (0 : k)

)
(9)

Many Bayesian and machine learning methods have been
published for the estimation of such probability distributions
in the aviation domain (Lopez & Sarigul-Klijn, 2010; Napoli-
tano et al., 1998).

Prediction of the evolution of future system states may be per-
formed by propagating input uncertainty, model uncertainty,
and state uncertainty forward in time. Estimates of compo-
nent remaining useful life (RUL) are generated by extending
predictions of the evolution of component loads and corre-
sponding predictions of fault state evolution into the future
until there is sufficient confidence in the occurrence of ei-
ther component failure or completion of a prescribed flight
plan. Particle filtering (Arulampalam et al., 2002), extended
Kalman filtering (Ray & Tangirala, 1996), and Markov mod-
eling (Guidaa & Pulcini, 2011) are examples of predictive
filtering techniques used to propagate current state and model
uncertainties forward in time.

Because inner-loop control policies may be modified by
outer-loop supervisory control actions, the outer-loop prog-
nostics and decision making routines could also be factored
into the computation of future component load estimates.
(Bole et al., 2012) describes the incorporation of outer-loop
control policies into inner-loop fault growth predictions. The
role of stochastic estimates of future loading in prognostic
predictions is described in (Sankararaman et al., 2013; Tang
et al., 2009). Stochastic beliefs about the manner in which

Figure 2. Edge-540T on runway

the environment or system will evolve over time may be vali-
dated in offline simulations against repeated randomized sim-
ulations of flight scenarios.

3. A CASE STUDY: UAV BATTERY CHARGE DEPLE-
TION MODELING

The implementation of the proposed SIL/HIL framework for
the offline simulation of battery charge depletion onboard a
prototype electric UAV platform is discussed here. The air-
craft platform used for this case study is a commercial-off-
the-shelf (COTS) 33% scale model of the Zivko Edge 540T
airplane, pictured in Figure 2. The wingspan of the Edge
540T is 87 inches. The mass of the instrumented vehicle is
approximately 44lbs. The propeller of the UAV is driven by
two tandem mounted outrunner brushless DC motors that are
each powered by a series connection of two lithium polymer
battery packs. Each of the battery packs consist of five series
connections of two 4.2V 3900mAh lithium polymer pouch
cells wired in parallel.

The electrical and mechanical connections in the UAV pow-
ertrain are illustrated in Figure 3. Power flow from the battery
packs to the driving motors is controlled by a Jeti 90 Pro Opto
electric speed controller (ESC). The ESC sends synchronized
voltages to the propeller motors at a duty cycle determined
by a throttle input. The throttle input is either sent by remote
control from a pilot, or by an onboard autopilot.

During both remote control and autonomous flight, a human
pilot will maintain line of sight with the aircraft, and stand
ready to execute a landing maneuver when the command is
given by other operators on the ground. The gound opera-
tors assissting the pilot monitor the battery end-of-discharge
prognostic estimates and decision making outputs generated
in real-time by outer loop supervisory routines.

Charge estimation and end of charge prediction for UAV pow-
ertrain batteries have previously been examined in several
publications by Bhaskar Saha at NASA ARC, Quach Chong
Chi at NASA LaRC, and others (Saha, Quach, & Goebel,
2011; Saha, Koshimoto, et al., 2011). A separate battery sys-
tem is used to power the data acquisition and other flight com-
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Figure 3. Electrical and mechanical connections of an Edge-
540T UAV powertrain

munications and control hardware. The two battery systems
are sized such that it is very likely that the batteries powering
the propeller motors will be the first to be depleted. For that
reason, onboard battery discharge prognostic algorithms and
supervisory decision making actions are considered to only
be concerned with the propeller driving batteries.

The offline replication of Edge 540T powertrain dynamics is
described in three parts: inner-loop controls, battery demand
modeling, and equivalent circuit battery modeling.

3.1. The Inner-Loop Controller

Vehicle flight plans are considered to be given in terms of an
ordered set of 3D coordinates to be visited by the UAV, and
a desired airspeed for making the translation from one way-
point to the next. Autonomous control of the Edge 540T is
performed using an ArduPilot board. The ArduPilot sends
control commands to the aircraft ESCs and flight control sur-
faces based on a set of proportional integral derivative (PID)
control parameters that are tuned prior to flight, and periodic
measurements of vehicle airspeed, heading, and position.

As was described in Section 2.1, the X-Plane simulator is
used to simulate vehicle aerodynamics in offline simulations.
Plane Maker, a design tool within the X-Plane package, was
used to specify the aircraft mass, balance, and geometry for
use in X-Plane aerodynamic simulations. There is some un-
avoidable error between the actual geometry, drag, and mass
distribution of the aircraft and that used in the X-Plane aero-
dynamics models; however, because the control system is
closed-loop small errors in simulating aircraft aerodynamics
will not typically accumulate into large errors.

X-Plane can simulate various weather conditions and hard-
ware configurations, and the ArduPilot can be tested with var-
ious flight plans. This configuration allows for the thorough
testing of algorithm performance and safety before conduct-
ing flight tests.

3.2. Battery Demand Modeling

The proposed SIL/HIL testbed separates the simulation of
aerodynamics and powertrain dynamics into two functional
blocks. Connecting these two blocks requires that the air-
frame loads reported by the aerodynamics simulation be
translated into loads on the system’s powertrain components.
It is difficult to collect direct measurements of airframe loads
such as component forces and torques in flight. This mea-
surement difficulty makes validating the load mapping used
in offline simulations a complex proposition.

The tuning and validation of a propeller load mapping func-
tion is separated into two steps in this paper. First, a series
of characterization experiments are performed in X-Plane to
identify a nonlinear mapping between propeller output power
and aircraft angle of climb, speed, and acceleration. Second,
the modeled propeller power is mapped to a required battery
power using a fixed power conversion efficiency coefficient
and a proportional drag correction coefficient.

The nonlinear relationship between propeller output power
and aircraft angel of climb, speed, and acceleration is ob-
served for a flight simulator representation of an aircraft, by
simulating a series of climbing and descending maneuvers at
various angle of climb and throttle setpoints. Unlike actual
flight tests, there is no difficulty in observing the precise loads
on aircraft components in simulated flight tests. The results of
repeated experiments at different throttle and angel of climb
setpoints are used to fit a general set of aircraft aerodynamics
and energy conservation equations, presented below.

The equations below are developed using the following as-
sumptions: 1) the propeller is mounted on the aircraft nose;
2) the angle between the thrust vector generated by the pro-
peller and the velocity vector of the aircraft is small; 3) Air-
craft turning forces are small in comparison to the thrust and
drag forces on the aircraft in its direction of travel.

The sum of the forces acting in the aircraft direction of travel
is:

Txw
= D(v) +m · g · sin (α) +m · v̇ (10)

where Txw
represents the thrust produced by the aircraft in the

direction of travel, D represents the drag force acting in the
opposite direction of aircraft motion, v represents the aircraft
speed, v̇ represents acceleration, α represents angle of climb,
m represents the vehicle mass, and g represents the earth’s
gravity.

The drag force on the airframe is represented by the following
polynomial function of airspeed and angle of climb.

D(v, γ) = c1 + c2 · v + c3 · v2 + c4 · α (11)

Figure 4(a) shows a fit of the drag model to the averaged drag
force reported by the X-Plane simulator over several steady
speed climbing and descending maneuvers. The fitted param-
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eter values are: c1 = 13.47, c2 = −0.6, c3 = 0.019, c4 =
0.14. During take-off and landing maneuvers when the air-
craft speed is less than 15m/s the drag force is approximated
as D = 3 · v.

The measured and estimated propeller thrust versus airspeed
is shown in Figure 4(b). The plot was generated using the
thrust model given in Eq. (10), and the drag model given in
Eq. (11).

The aircraft ESC throttle command is fit as a linear function
of thrust and airspeed,

Throttle = a1 + a2 · Txw
(v, v̇, γ) + a3 · v (12)

where the fitted parameter values are: a1 = −19.64, a2 =
0.95, a3 = 1.

Figure 4(c) shows the measured and estimated steady state
ESC throttle commands observed in X-Plane simulations of
various steady state climbing and descending maneuvers.

The product of thrust and airspeed gives the motive power
exerted by the aircraft,

Pp =
1

ηp
· Txw

· v (13)

where Pp represents propeller output power and ηp repre-
sents the approximate propeller output power conversion ef-
ficiency.

Figure 4(d) shows the modeled propeller power and that re-
ported by the X-Plane simulator for several steady speed
climbing and descending maneuvers. The ηp parameter for
the modeled aircraft is fit to ηp = 0.7652.

A fixed battery power conversion efficiency is assumed here
for the aircraft motors and power electronics. Conversion be-
tween the net propeller output power and the net battery out-
put power required to maintain a particular airspeed and angle
of climb setpoint is achieved by applying a fixed power factor,

Pb = ηe · Pp (14)

where ηe represents power conversion efficiency and Pb rep-
resents net battery output power.

A proportional factor is also introduced here to correct for
discrepancies between the drag model given in Eqn. 11, and
the drag forces estimated for the actual aircraft. The correc-
tive factor is expressed as:

DA(v, γ) = λD ·DM (v, α) (15)

where DA and DM represent the drag force estimated for
the actual aircraft and drag force estimated for the X-Plane
model respectively. λD represents a constant corrective factor
that may be fitted by comparing modeled and actual aircraft
powertrain load dynamics over sample flights.
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Figure 4. Model fitting results for X-Plane flight load charac-
terization tests
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Figure 5. Approximate aircraft airspeed, acceleration, and
angle of climb measurements derived from GPS samples

A roughly proportional deviation between the modeled and
actual drag force is attributed to slight errors in modeling
the aircraft geometry and surface aberrations. Small errors
in modeling aircraft drag will cause only small effects on the
aircraft handling from the perspective of a pilot or an autopi-
lot, thus the drag correction need not necessarily be made for
the SIL testing of inner-loop controllers. However, small er-
rors in approximating loads on onboard energy storage de-
vices will accumulate into large errors over a simulated flight.

Substitution of Eqns. (14) and (15) into Eqns. (10)-(13) yield
the approximate battery power required to fly at a particular
airspeed and angle of climb.

PB = 1
ηeηp
· Txw

· v
PB = v

ηeηp
· (DA(v, α) +mg · sin (α) +mv̇)

PB = v
ηeηp
· (λDDM (v, α) +mg · sin (α) +mv̇)

(16)

Figure 5 shows approximate aircraft airspeed, acceleration,
and angle of climb measurements derived from GPS samples,
taken at 1 second intervals, over a sample aircraft flight. Fig-
ure 6 shows the predicted and measured battery power draw
over the recoreded aircraft flight, using the average airspeed,
acceleration, and angle of climb values falling within fifteen
second intervals over the flight. The proportional constants ηe
and λD used in Eq. 16 were fitted to ηe = 0.85 and λD = 0.9
to obtain the model fit shown in Figure 6.

The battery power predictions shown in Figure 6 are seen to
lay on top of the observed power draw over the sample flight,
aside from an apparent under prediction of battery power re-
quired during takeoff, which occurs from about 50 seconds
to 100 seconds in the plots given. The under prediction of
power required during takeoff could arise in part from the
assumption that the angle between the trust vector and the ve-
locity vector is small, which is not necessarily the case during
takeoff. The battery power demand modeling used here also
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Figure 6. Measured and modeled battery power output

does not account for the fact that motor power conversion ef-
ficiency is typically very low during initial spin up.

The net battery power, PB , input to aircraft ESCs is given
by the summation of battery power input to ESC1 and ESC2.
The proportion of the net battery output powers that goes to
each ESC is represented by:

λESC =
P1 + P2

P3 + P4
(17)

where λESC represents the ratio of battery power drawn by
each of the onboard ESCs.

The power output from the two strings of series connected
battery packs is equal to the product of current and voltage,

PB = I1,2 · (VB1 + VB2) + I3,4 · (VB3 + VB4) (18)

where VBi represents the terminal voltage of battery i, I1,2
and I3,4 represents the current flowing through the two sets
of series connected batteries.

Substitution of Eq. (18) into Eq. (17), and solving for I gives:

I1,2 = λESCPb

(λESC+1)·(VB1+VB2)

I3,4 = Pb

(λESC+1)·(VB3+VB4)

(19)

Figure 7 shows the observed ratio of battery power drawn
from each of the onboard ESCs over a sample flight. The ra-
tio of ESC power draw is currently uncontrolled, and it is seen
to drift around a value of λESC ≈ 0.7 over the sample flight.
The approximation for λESC to be used in SIL and HIL test-
ing of the vehicle powertrain may be improved in future work
by incorporating possible dependencies on time, battery pack
voltage, throttle command, and other inputs control inputs.

3.3. An Equivalent Circuit Battery Model

Battery voltage-current dynamics may be recreated over sim-
ulated flights in a laboratory by loading real or simulated bat-
teries with a current indicative of flight loads. It should be
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Figure 7. Measured battery power input to ESCs (Top) and
observed ESC power ratio over a sample flight (bottom)

noted however that battery dynamics will vary substantially
as a function battery health and temperature (Jossen, 2006).
Differences in state of health and thermal loading of real and
simulated batteries may cause results from SIL/HIL cycling
of batteries in a laboratory to diverge from the observed bat-
tery dynamics in flight test.

Aircraft powertrain batteries are simulated in SIL testing us-
ing the equivalent circuit model shown in Figure 8. The
equivalent circuit model used here is an extended version of
the model explained in (Daigle, Saxena, & Goebel, 2012).
This battery model uses six electrical components that are
tuned to recreate the observed current-voltage dynamics of
Edge 540T powertrain batteries. Battery charge is stored in
the capacitor, Cb. The Rs, Cs and Rcp, Ccp circuit element
pairs capture battery internal resistance drops and concen-
tration polarization effects, respectively. The resistor Rp ac-
counts for the slow battery self-discharge that is seen to occur
over weeks or months of storage.

The current and voltage dynamics of the equivalent circuit
model are defined as:

xB =
[
qb qcp qCs

]T
(20)
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 (21)

yB = Vp =
[

1
Cb

1
Ccp

1
Cs

]
· x (22)

where qb, qcp, and qcs represent the charge stored in capac-
itors Cb, Ccp, and Ccs respectively. The total voltage drop
across the battery terminals, Vp, is given by the sum of the

Figure 8. Equivalent circuit battery model

voltage drops across the each of the three capacitors in the
equivalent circuit model.

Because battery current-voltage dynamics are known to vary
as a function of battery SOC, some of the resistive and capaci-
tive (RC) components in the equivalent circuit model must be
parameterized as functions of battery state of charge (SOC)
(Zhang & Chow, 2010). It was decided based on qualita-
tive observation that defining Cb, Ccp, and Rcp as parame-
terized functions of battery SOC gave an acceptable trade-off
between the number of parameters to be identified and model
error.

Battery SOC is defined as:

SOC = 1− qmax − qb
Cmax

(23)

where qb is the charge stored in the battery, qmax is the maxi-
mum charge of the battery, and Cmax is the maximum charge
that can be drawn from the battery. The term coulombic effi-
ciency is used to refer to the portion of stored charge that can
be withdrawn over repeated charge and discharge cycling of
a battery. Resting a battery can temporarily unlock some of
its lost charge storage capacity, however the overall trend is
inevitably downward.

The Cb, Ccp and Rcp terms in the equivalent circuit battery
model are parameterized as:

Cb = CCb0+CCb1 ·SOC+CCb2 ·SOC2+CCb3 ·SOC3 (24)

Ccp = Ccp0 + Ccp1 · exp (Ccp2 (1− SOC)) (25)

Rcp = Rcp0 +Rcp1 · exp (Rcp2 (1− SOC)) (26)

Each battery pack used in Edge 540T flight tests should be
characterized individually prior to testing, in order to account
for any manufacturing and SOH variations. Two battery char-
acterization experiments are used to identify the RC parame-
ters in the battery equivalent circuit model.

The first experiment is a low current discharge of a battery
from a fully charged state until a cutoff voltage of 17.5V is
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Figure 9. Measured and fitted profiles forCb and battery volt-
age

reached. This type of discharge is mostly affected by the Cb,
qb, qmax, and Cmax parameters in the model. Figure 9 shows
a polynomial fit of Cb as a function of SOC, and the battery
voltage fit for the tuned parameter values for CCb0, CCb1,
CCb2, CCb3, qmax, and Cmax.

Next, a pulsed loading experiment is used to fit the remain-
ing parameters in the equivalent circuit model to the observed
changes in battery hysteresis behavior as a function of SOC.
A gradient descent search is used to identify the remaining
model coefficients using the pulsed loading data. Figure 10
shows the battery voltage fit over a pulsed loading profile,
using the tuned parameters identified in the low current ex-
periment and the newly tuned values of Rs, Cs, Rcp0, Rcp1,
Rcp2, Ccp0, Ccp1, and Ccp2. Values for all of the RC compo-
nents and parameterization coefficients used in the equivalent
circuit model of an Edge battery are defined in Table 1.

Observed battery loading over a piloted flight of the Edge
540T is shown in Figure 11. An asymmetric loading of the
two propeller motors over the sample flight is apparent from
the battery loads given in Figure 11. Motor M2 is known to
consistently draw more current than motor M1 on the Edge
540, due to unregulated coupling of the two motor ESCs. Pre-
dicted and measured voltage profiles for batteries B1 and B3
using the recorded battery current profiles are shown in Fig-
ure 11. The close match between observed battery voltages
and open-loop predictions over a given loading profile pro-
vides a measure of the validity of the software model.

The tuned battery model may be used to estimate the internal
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Figure 10. Measured and fitted profiles for battery voltage
during pulsed loading
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Figure 11. Modeled and measured voltages of batteries B1
and B3 for a sample flight loading profile

SOC of powertrain batteries based on sampled voltage and
current data. The output of model based filtering approaches
such as Kalman filtering will be much less susceptible to ini-
tialization and measurement errors than the Coulomb count-
ing method currently used in many battery monitoring sys-
tems (Dai, Wei, & Sun, 2006).
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Table 1. Parameter values used in equivalent circuit model

Parameter Value Parameter Value
qmax 2.88× 104 C Cs 89.3 F
Cmax 2.85× 104 C Rcp0 1.60× 10−3 Ω
CCb0 19.4 F Rcp1 8.45
CCb1 1576 F Rcp2 −61.9
CCb2 41.7 F Ccp0 2689 F
CCb3 −203 F Ccp1 −2285 F
Rs 2.77× 10−2 Ccp2 −0.73 F

4. CONCLUSIONS

A framework is described for the offline recreation of dy-
namic loads on simulated or physical aircraft powertrain com-
ponents based on a real-time simulation of airframe dynam-
ics, an inner-loop flight control policy executed by either an
autopilot routine or a human pilot, and a supervisory outer-
loop control policy. The creation of an offline framework for
verifying and validating supervisory outer-loop prognostics
and decision making routines is described for the example
of battery charge depletion failure scenarios onboard a proto-
type Edge 540T UAV with electric propulsion. The SIL/HIL
testbed described in this paper is intended to be used to per-
form much more comprehensive and cost-effective testing
of aircraft fault prognostics and decision making tools than
would be practical to conduct in flight testing.
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NOMENCLATURE

xAF airframe state vector
yAF observation of airframe state vector
xPT electrical power dist. system state vector
yPT observation of xPT states
u pilot or autopilot control output vector
ν mechanical loads on electromechanical components
FCS net mechanical loads exerted by airframe
w environmental state parameter vector
γ magnutude state vector for potential faults modes
ξ captures uncertainties in physics of failure models
φ captures noise in sensor measurements
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ABSTRACT

This paper discusses the significance and interpretation of
uncertainty in the remaining useful life (RUL) prediction of
components used in several types of engineering applications,
and answers certain fundamental questions such as “Why is
the RUL prediction uncertain?”, “How to interpret the uncer-
tainty in the RUL prediction?”, and “How to compute the un-
certainty in the RUL prediction?”. Prognostics and RUL pre-
diction are affected by various sources of uncertainty. In or-
der to make meaningful prognostics-based decision-making,
it is important to analyze how these sources of uncertainty
affect the remaining useful life prediction, and thereby, com-
pute the overall uncertainty in the remaining useful life pre-
diction. The classical (frequentist) and Bayesian (subjective)
interpretations of uncertainty and their implications on prog-
nostics are explained, and it is argued that the Bayesian inter-
pretation of uncertainty is more suitable for remaining useful
life prediction in the context of condition-based monitoring.
Finally, it is demonstrated that the calculation of uncertainty
in remaining useful life can be posed as an uncertainty propa-
gation problem, and the practical challenges involved in com-
puting the uncertainty in the remaining useful life prediction
are discussed.

1. INTRODUCTION

The prediction of remaining useful life (RUL) is an important
functional aspect of an efficient prognostics and health man-
agement (PHM) system. The RUL prediction is not only nec-
essary to verify if the mission goal(s) can be accomplished
but also important to aid in online decision-making activi-
ties such as fault mitigation, mission replanning, etc. Since
the prediction of RUL is critical to operations and decision-
making, it is imperative that the RUL be estimated accurately.

Shankar Sankararaman et al. This is an open-access article distributed un-
der the terms of the Creative Commons Attribution 3.0 United States Li-
cense, which permits unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are credited.

Since prognostics deals with predicting the future behavior of
engineering systems, there are several sources of uncertainty
which influence such future prediction, and therefore, it is
rarely feasible to obtain an estimate of the RUL with com-
plete precision. In fact, it is not even meaningful to make
such predictions without computing the uncertainty associ-
ated with RUL. As a result, researchers have been developing
different types of approaches for quantifying the uncertainty
associated with the RUL prediction and prognostics in gen-
eral.

Existing methods for quantifying uncertainty in prognostics
and remaining useful life prediction can be broadly classified
as being applicable to two different types of situations: of-
fline prognostics and online prognostics. Methods for offline
prognostics are based on rigorous testing before and/or after
operating an engineering system, whereas methods for online
prognostics are based on monitoring the performance of the
engineering system during operation. For example, there are
several research papers which discuss uncertainty quantifica-
tion in crack growth analysis (Sankararaman, Ling, Shantz,
& Mahadevan, 2011; Sankararaman, Ling, & Mahadevan,
2011), structural damage prognosis (Farrar & Lieven, 2007;
Coppe, Haftka, Kim, & Yuan, 2010), electronics (Gu, Barker,
& Pecht, 2007), and mechanical bearings (Liao, Zhao, &
Guo, 2006), primarily in the context of offline testing. En-
gel et. al (Engel, Gilmartin, Bongort, & Hess, 2000) discuss
several issues involved in the estimation of remaining useful
life in online prognostics and health monitoring. While some
of the initial studies on remaining useful life prediction lacked
uncertainty measures (Celaya, Saxena, Kulkarni, Saha, &
Goebel, 2012), researchers have recently started investigating
the impact of uncertainty on estimating the remaining useful
life. For example, there have been several efforts to quantify
the uncertainty in remaining useful life of batteries (Saha &
Goebel, 2008) and pneumatic valves (Daigle & Goebel, 2010)
in the context of online health monitoring. Different types
of sampling techniques (Daigle, Saxena, & Goebel, 2012)
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and analytical methods (Sankararaman, Daigle, Saxena, &
Goebel, 2013) have been proposed to predict the uncertainty
in the remaining useful life.

While the importance of uncertainty quantification in prog-
nostics and RUL estimation have been widely understood,
there have been few efforts to understand and appropriately
interpret such uncertainty. Celaya et al. (Celaya, Saxena, &
Goebel, 2012) discussed the interpretation of RUL in the con-
text of Kalman filtering-based prognostics techniques, and
explained that it is not approriate to arbitrarily force the vari-
ance of RUL to be small. It is necessary to further delve into
this topic in order to completely analyze the importance and
impact of uncertainty in prognostics.

This paper poses three fundamental questions in order to un-
derstand uncertainty in prognostics, particular in the context
of remaining useful life (RUL) prediction:

1. Why is the RUL prediction uncertain?

2. How do we interpret the uncertainty in RUL?

3. How do we calculate the uncertainty in RUL?

The answers to the above questions are sought from multiple
points of view. First, the topic of uncertainty in prognostics
is discussed from a qualitative point of view in Section 2; the
various sources of uncertainty in prognostics are discussed
and the different activities related to uncertainty quantifica-
tion and management are outlined. Second, the interpretation
of uncertainty is discussed from a statistical point of view in
Section 3. While statistics and probability methods have been
in existence for over 200 years, there has always been a dis-
agreement (amongst mathematicians and statisticians alike)
regarding the interpretation of probability. It is important to
understand this disagreement before attempting to interpret
uncertainty in prognostics. Third, the interpretation of un-
certainty in prognostics and RUL prediction is analyzed in
detail in Section 4, and it is explained all different interpre-
tations of probability may not be suitable for prognostics and
health monitoring purposes. Fourth, it is demonstrated that
calculating the uncertainty in RUL is, fundamentally, an un-
certainty propagation problem and the challenges in this re-
gard are outlined in Section 5. In this context, it is examined
whether it is possible to analytically construct the probability
distribution of remaining useful life prediction in certain sim-
ple example problems (consisting of linear models and Gaus-
sian variables) and it is demonstrated that it is impossible to
estimate closed-form analytical solutions without rigourous
mathematical considerations even for such simple example
problems.

2. UNCERTAINTY IN PROGNOSTICS

Prognostics is the art of predicting future component/system
behavior, identifying possible failure models, and thereby
computing the remaining useful life of the compo-

nent/system. There are several sources of uncertainty which
affect the prediction of future behavior, and in turn, the re-
maining useful life prediction. As a result of these sources
of uncertainty, it is practically impossible to precisely esti-
mate the remaining useful life prediction. In order to make
meaningful prognostics-based decision-making, it is impor-
tant to analyze how the various sources of uncertainty affect
the remaining useful life prediction and compute the overall
uncertainty in the remaining useful life prediction.

2.1. Activities Related to Uncertainty in PHM

In the context of prognostics and health management, un-
certainties have been discussed from representation, quan-
tification, and management points of view (deNeufville, R.,
2004; Hastings, D. and McManus, H., 2004; Ng & Abram-
son, 1990; Orchard, Kacprzynski, Goebel, Saha, & Vachtse-
vanos, 2008; Tang, Kacprzynski, Goebel, & Vachtsevanos,
2009). While these three are different processes, they are of-
ten confused with each other and interchangeably used. In
this paper, the various tasks related to uncertainty quantifi-
cation and management are classified into four, as explained
below. These four tasks need to performed in order to ac-
curately estimate the uncertainty in the RUL prediction and
inform the decision-maker regarding such uncertainty.

1. Uncertainty Representation and Interpretation: The
first step is uncertainty representation and interpretation,
which in many practical applications, is guided by the
choice of modeling and simulation frameworks. There
are several methods for uncertainty representation that
vary in the level of granularity and detail. Some common
theories include classical set theory, probability theory,
fuzzy set theory, fuzzy measure (plausibility and belief)
theory, rough set (upper and lower approximations) the-
ory, etc. Amongst these theories, probability theory has
been widely used in the PHM domain (Celaya, Saxena,
& Goebel, 2012); even within the context of probabilistic
methods, uncertainty can be interpreted and perceived in
two different ways: frequentist (classical) versus subjec-
tivist (Bayesian). Sections 3 and 4 outline the differences
between these two schools of thought and argues that the
Bayesian approach provides a more suitable interpreta-
tion for uncertainty in PHM.

2. Uncertainty Quantification: The second step is uncer-
tainty quantification, that deals with identifying and char-
acterizing the various sources of uncertainty that may af-
fect prognostics and RUL estimation. It is important that
these sources of uncertainty are incorporated into models
and simulations as accurately as possible. The common
sources of uncertainty in a typical PHM application in-
clude modeling errors, model parameters, sensor noise
and measurement errors, state estimates (at the time at
which prediction needs to be performed), future loading,
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operating and environmental conditions, etc. The goal
in this step is to address each of these uncertainties sep-
arately and quantify them using probabilistic/statistical
methods. The Kalman filter is essentially a Bayesian tool
for uncertainty quantification, where the uncertainty in
the states is estimated continuously as a function of time,
based on data which is also typically available continu-
ously as a function of time.

3. Uncertainty Propagation: The third step is uncertainty
propagation and is most relevant to prognostics, since
it accounts for all the previously quantified uncertain-
ties and uses this information to predict (1) future states
and the associated uncertainty; and (2) remaining useful
life and the associated uncertainty. The former is com-
puted by propagating the various sources of uncertainty
through the prediction model. The latter is computed us-
ing the estimated uncertainty in the future states along
with a Boolean threshold function which is used to in-
dicate end-of-life. In this step, it is important to under-
stand that the future states and remaining useful life pre-
dictions are simply dependent upon the various uncer-
tainties characterized in the previous step, and therefore,
the distribution type and distribution parameters of future
states and remaining useful life should not be arbitrar-
ily chosen. Sometimes, a normal (Gaussian) distribution
has been assigned to the remaining useful life prediction;
such an assignment is erroneous and the true probability
distribution of RUL needs to be estimated though rig-
orous uncertainty propagation of the various sources of
uncertainty through the state space model and the EOL
threshold function, both of which may be non-linear in
practice.

4. Uncertainty Management: The fourth and final step is
uncertainty management, and it is unfortunate that, in
several articles, the term “Uncertainty Management” has
been used instead of uncertainty quantification and/or
propagation. Uncertainty management is a general term
used to refer to different activities which aid in managing
uncertainty in condition-based maintenance during real-
time operation. There are several aspects of uncertainty
management. One aspect of uncertainty management at-
tempts to answer the question: “Is it possible to improve
the uncertainty estimates?” The answer to this question
lies in identifying which sources of uncertainty are sig-
nificant contributors to the uncertainty in the RUL pre-
diction. For example, if the quality of the sensors can be
improved, then it may be possible to obtain a better state
estimate (with lesser uncertainty) during Kalman filter-
ing, which may in turn lead to a less uncertain RUL pre-
diction. Another aspect of uncertainty management deals
with how uncertainty-related information can be used in
the decision-making process.

Most of the research in the PHM community pertains to the
topics of uncertainty quantification and propagation; few ar-
ticles have directly addressed the topic of uncertainty man-
agement. Even within the realm of uncertainty quantification
and propagation, the estimates of uncertainty have sometimes
been misinterpreted. For example, when statistical principles
are used to estimate a parameter, there is an emphasis on cal-
culating the estimate with the minimum variance. When this
principle is applied to RUL estimation, it is important not
to arbitrarily reduce the variance of RUL itself. Celaya et
al. (Celaya, Saxena, & Goebel, 2012) explored this idea and
explained that the variance of RUL needs to be carefully cal-
culated by accounting for the different sources of uncertainty.

2.2. Sources of Uncertainty

In many practical applications, it may even be challenging
to identify and quantify the different sources of uncertainty
that affect prognostics. Some researchers have classified the
different sources of uncertainty into different categories in
order facilitate uncertainty quantification and management.
While it has been customary to classify the different sources
of uncertainty into aleatory (physical variability) and epis-
temic (lack of knowledge), such a classification may not be
suitable for condition-based monitoring purposes; this point
will be explained in detail in the next section. A completely
different approach for classification, particularly applicable
to condition-based monitoring, is outlined below:

1. Present uncertainty: Prior to prognosis, it is important
to be able to precisely estimate the condition/state of the
component/system at the time at which RUL needs to be
computed. This is related to state estimation commonly
achieved using filtering. Output data (usually collected
through sensors) is used to estimate the state and many
filtering approaches are able to provide an estimate of the
uncertainty in the state. Practically, it is possible to im-
prove the estimate of the states and thereby reduce the
uncertainty, by using better sensors and improved filter-
ing approaches.

2. Future uncertainty: The most important source of un-
certainty in the context of prognostics is due to the fact
that the future is unknown, i.e. both the loading and
operating conditions are not known precisely, and it is
important to assess the uncertainty in loading and envi-
ronmental conditions before performing prognostics. If
these quantities were known precisely (without any un-
certainty), then there would be no uncertainty regarding
the true remaining useful life of the component/system.
However, this true RUL needs to be estimated using a
model; the usage of a model imparts additional uncer-
tainty as explained below.

3. Modeling uncertainty: It is necessary to use a func-
tional model in order to predict future state behavior.

3
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Further, as mentioned before, the end-of-life is also de-
fined using a Boolean threshold function which indicates
end-of-life by checking whether failure has occurred or
not. These two models are combinedly used to predict
the RUL, and may either be physics-based or data-driven.
It may be practically impossible develop models which
accurately predict reality. Modeling uncertainty repre-
sents the difference between the predicted response and
the true response (which can neither be known nor mea-
sured accurately), and comprises of several parts: model
parameters, model form, and process noise. While it may
be possible to quantify these terms until the time of pre-
diction, it is practically challenging to know their values
at future time instants.

4. Prediction method uncertainty: Even if all the above
sources of uncertainty can be quantified accurately, it is
necessary to quantify their combined effect on the RUL
prediction, and thereby, quantify the overall uncertainty
in the RUL prediction. It may not be possible to do this
accurately in practice and leads to additional uncertainty.
This topic will be revisited again, later in Section 5.

While the different sources of uncertainty and the various
uncertainty-related activities have been explained in detail, it
is important to understand how to interpret this uncertainty.
This topic is detailed in the next section.

3. INTERPRETING UNCERTAINTY

A probabilistic approach to uncertainty representation and
quantification has been most commonly used in the prognos-
tics and health management domain. Though probabilistic
methods, mathematical axioms and theorems of probability
have been well-established in the literature, there is consid-
erable disagreement among researchers on the interpretation
of probability. There are two major interpretations based on
physical and subjective probabilities, respectively. It is essen-
tial to understand the difference between these two interpre-
tations before attempting to interpret the uncertainty in RUL
prediction.

3.1. Physical Probability

Physical probabilities (Szabó, 2007), also referred to objec-
tive or frequentist probabilities, are related to random phys-
ical experiments such as rolling dice, tossing coins, roulette
wheels, etc. Each trial of the experiment leads to an event
(which is a subset of the sample space), and in the long run of
repeated trials, each event tends to occur at a persistent rate,
and this rate is referred to as the relative frequency. These
relative frequencies are expressed and explained in terms of
physical probabilities. Thus, physical probabilities are de-
fined only in the context of random experiments. The the-
ory of classical statistics is based on physical probabilities.
Within the realm of physical probabilities, there are two types

of interpretations: von Mises’ frequentist (Von Mises, 1981)
and Popper’s propensity (Popper, 1959); the former is more
easily understood and widely used.

In the context of physical probabilities, randomness arises
only due to the presence of physical probabilities. If the true
value of any particular quantity is deterministic, then it is not
possible to associate physical probabilities to that quantity.
In other words, when a quantity is not random but unknown,
then tools of probability cannot be used to represent this type
of uncertainty. For example, the mean of a random variable,
sometimes referred to as the population mean, is determinis-
tic. It is meaningless to talk about its probability distribution.
In fact, for any type of parameter estimation, the underlying
parameter is assumed to be deterministic and only an esti-
mate of this parameter is obtained. The uncertainty in the
parameter estimate is addressed through confidence intervals.
The interpretation of confidence intervals, as explained in the
forthcoming subsection, is sometimes confusing and mislead-
ing. Further, the uncertainty in the parameter estimate cannot
be used for further uncertainty quantification. For example,
if the model parameters of a battery model are estimated un-
der a particular loading condition, then this uncertainty can-
not be used for quantifying the battery-response for a similar
loading condition. This is a serious limitation, since it is not
possible to propagate uncertainty after parameter estimation,
which is often necessary in system-level uncertainty quantifi-
cation (Sankararaman, 2012).

Clearly, there are two limitations of the frequentist interpre-
tation of probability. First, a truly deterministic but unknown
quantity cannot be assigned a probability distribution. Sec-
ond, uncertainty represented using confidence intervals can-
not be used for further uncertainty propagation. The second
interpretation of probability, i.e. the subjective interpretation,
overcomes these limitations.

3.2. Subjective Probability

Subjective probabilities (de Finetti, 1977) can be assigned
to any “statement”. It is not necessary that the concerned
statement is in regard to an event which is a possible out-
come of a random experiment. In fact, subjective probabil-
ities can be assigned even in the absence of random exper-
iments. The Bayesian methodology is based on subjective
probabilities, which are simply considered to be degrees of
belief and quantify the extent to which the “statement” is
supported by existing knowledge and available evidence. In
recent times, the terms “subjectivist” and “Bayesian” have
become synonymous with one another. Calvetti and Som-
ersalo (Calvetti & Somersalo, 2007) explain that “random-
ness” in the context of physical probabilities is equivalent to
“lack of information” in the context of subjective probabil-
ities. In this approach, even deterministic quantities can be
represented using probability distributions which reflect the
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subjective degree of the analysts belief regarding such quan-
tities. As a result, probability distributions can be assigned to
parameters that need to be estimated, and therefore, this in-
terpretation facilitates uncertainty propagation after parame-
ter estimation. Interestingly, subjective probabilities can also
be applied in situations where physical probabilities are in-
volved (Sankararaman, 2012).

The concept of likelihood and its use in Bayes’ theorem are
key to the theory of subjectvive probability. The numerical
implementation of Bayes’ theorem may be complicated in
some practical cases, and several sampling techniques have
been developed by researchers to address this issue. Today,
Bayesian methods are used to solve a variety of problems in
engineering. Filtering techinques such as particle filtering,
Kalman filtering, etc. are also primarily based on the use of
Bayes theorem, and sequential sampling.

3.3. Summary

Both the frequentist and subjectivist approaches have been
well-established in the literature, in order to aid uncertainty
quantification. In fact, both the approaches may yield sim-
ilar results (but different interpretations) for a few standard
problems involving Gaussian variables. Sometimes, both ap-
proaches may be suitable for a given problem at hand; for
example, Kalman filtering has a purely frequentist interpreta-
tion based on least squares minimization as well as a purely
Bayesian interpretation which relies on continuously updat-
ing the uncertainty in the state estimates using Bayes theo-
rem. It is acceptable to interpret uncertainty using the fre-
quentist approach or the Bayesian approach, provided the in-
terpretation is suitable for the problem at hand. The following
section further explores this idea in the context of PHM and
RUL estimation.

4. UNDERSTANDING UNCERTAINTY IN RUL

Consider the problem of estimating the remaining useful life
prediction, in the context of prognostics and health man-
agement. Researchers have pursued two different classes of
methods for this purpose; while the first method is based on
reliability-testing, the second method is based on condition-
monitoring and future behavior prediction. There is a sig-
nificant difference in the interpretation of uncertainty, when
RUL is estimated using these two different approaches. Un-
derstanding this difference is important for prognostics and
decision-making, and this is focus of the present section.

4.1. Testing-Based Prognostics

Consider a simple numerical example where the remaining
useful life needs to be calculated at a given time instant. As-
sume that a set of run to failure experiments have been per-
formed with high level of control, ensuring same usage and
operating conditions. The time to failure for all the n sam-

ples (ri; i = 1 to n) are measured. It is important to under-
stand that different RUL values are obtained due to inherent
variability across the n different specimens, thereby confirm-
ing the presence of physical probabilities. Assume that these
random samples belong to an underlying probability density
function (PDF) fR(r), with expected value E(R) = µ and
variance V ar(R) = σ2. The goal of uncertainty quantifica-
tion is to characterize this probability density function based
on the available n data. Theoretically, an infinite amount of
data is necessary to accurately estimate this PDF; however,
due to the presence limited data, the estimated PDF is not ac-
curate. As a result, both frequentists and subjectivists express
uncertainty regarding the estimate itself. However, frequen-
tists and subjectivists quantify and express this uncertainty in
completely different ways.

For the sake of illustration, assume that the entire PDF can be
equivalently represented using its mean and variance; in other
words, assume that the random variable R follows a two-
parameter distribution. Therefore, estimating the parameters
µ and σ is equivalent to estimating the PDF. In the context of
physical probabilities (frequentist approach), the “true” un-
derlying parameters µ and σ are referred to as “population
mean” and “population standard deviation” respectively. Let
θ and s denote the mean and the standard deviation of the
available n data. As stated earlier, due to the presence of lim-
ited data, the sample parameters (θ and s) will not be equal
to the corresponding population parameters (µ and σ). The
fundamental assumption in this approach is that, since there
are true but unknown population parameters, it is meaning-
less to talk about the probability distribution of any popula-
tion parameter. Instead, the sample parameters are treated as
random variables, i.e., if another set of n data were available,
then another realization of θ and s would have been obtained.
Using the sample parameters (µ and σ) and the number of
data available (n), frequentists construct confidence intervals
on the population parameters.

Confidence intervals can be constructed for both µ and
σ (Haldar & Mahadevan, 2000). It is important that these
intervals be interpreted correctly. As stated earlier, the inter-
pretation of confidence intervals may be confusing and mis-
leading. A 95% confidence interval on µ does not imply that
“the probability that µ lies in the interval is equal to 95%”;
such a statement is wrong because µ is purely deterministic
and physical probabilities cannot be associated with it. The
random variable here is in fact θ, and the interval calculated
using θ. Therefore, the correct implication is that “the proba-
bility that the estimated confidence interval contains the true
population mean is equal to 95%”.

Alternatively, it is also possible to address the problem of
computing fR(r) purely from a subjective (Bayesian) point of
view. One important difference now is that the Bayesian ap-
proach does not clearly differentiate between “sample param-
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eters” and “population parameters”. The probability distribu-
tion of µ is directly computed using the available data (recall
that this was impossible in the frequentist approach since µ
is the true parameter and precise but unknown), and this un-
certainty is referred to as the analyst’s degree of belief for the
underlying true parameter µ. Similarly, the probability distri-
bution of σ can also be computed. Recall that one realization
of the parameters (µ and σ) uniquely define the PDF fR(r).
However, since the parameters are themselves uncertain, R is
now represented by a family of distributions (Sankararaman
& Mahadevan, 2011), reflective of the fact that there is lim-
ited data. This family of distributions will shrink to the true
underlying PDF as the number of available data increases.

4.2. Condition-Based Prognostics

Most of the discussion pertaining to testing-based prognostics
is not applicable to condition-based monitoring and prognos-
tics. The distinctive feature of condition-based monitoring
is that each component/subsystem/system is considered by
itself, and therefore, “variability across specimens” is non-
existent. Any such “variability” is spurious and must not be
considered. At any generic time instant tP at which prognos-
tics needs to be performed, the component/subsystem/system
is at a specific state. The actual state of the system is purely
deterministic, i.e., the true value is completely precise, how-
ever unknown. Therefore, if a probability distribution is as-
signed for this state, then this distribution is simply reflective
of the analyst’s knowledge regarding this state and cannot be
interpreted from a frequentist point of view. Thus, by virtue
of definition of condition-based monitoring, physical proba-
bilities are not present here, and a subjective (Bayesian) ap-
proach is only suitable for uncertainty quantification.

The goal in condition-based prognostics is, at any generic
time instant tP , to predict the remaining useful life of the
component/subsystem/system as condition-based estimate of
the usage time left until failure. First, measurements until
time tP are used to estimate the state at time tP . Then,
using a forecasting method (which may be model-based or
data-driven), future state values (corresponding to time in-
stants greater than tP ) are computed. In order to forecast fu-
ture state values, it is also necessary to assume future loading
conditions (and operating conditions) which is a major chal-
lenge in condition-based prognostics. Typically, the analyst
subjectively assumes statistics for future loading conditions
based on past experience and existing knowledge; thus, the
subjective interpretation of uncertainty is clearly consistent
across the entire condition-based monitoring procedure, and
therefore, inferences made out of condition-based monitor-
ing also need to be interpreted subjectively. This forecast-
ing is stopped when failure is reached, as indicated by the
aforementioned boolean threshold function. This indicates
the end-of-life (EOL) and the EOL can be directly used to
compute the remaining useful life (RUL) prediction. Note

that it is important to interpret the uncertainty in EOL and
RUL subjectively.

4.3. Why is the RUL Prediction Uncertain?

In light of the above discussion, it is necessary to revisit the
question “Why is the RUL uncertain?” from a new perspec-
tive. While Section 2 explained that RUL is uncertain be-
cause there are several sources of uncertainty which influ-
ence RUL estimation, now it is clear that the uncertainty in
RUL could arise due to variability across multiple specimens
(testing-based prognostics scenario) or simply due to subjec-
tive uncertainty regarding a single specimen (condition-based
prognostics). The following section discusses the computa-
tion of RUL in detail by presenting a detailed framework for
uncertainty quantification in prognostics, and explains how to
calculate the uncertainty in remaining useful life prediction.

5. UNCERTAINTY QUANTIFICATION IN RUL

First, a general computational framework for uncertainty
quantification in prognostics and remaining useful life pre-
diction in presented. Second, it is illustrated as to how the
problem of computing uncertainty in the remaining useful life
prediction can be viewed as an uncertainty propagation prob-
lem. Third, the need of rigorous mathematical algorithms for
uncertainty quantification in RUL is demonstrated using cer-
tain numerical examples. Finally, the challenges involved in
computing RUL uncertainty are discussed in detail.

5.1. Computational Framework for Prognostics

Suppose that it is desired to perform prognostics and pre-
dict the RUL at a generic time-instant tP . Daigle and
Goebel (Daigle & Goebel, 2011) explain that it is important to
develop an architecture for model-based prognostics for prac-
tical engineering purposes. This paper considers the architec-
ture in Fig. 1, where the whole problem of prognostics can be
considered to consist of the following three sub-problems:

1. Present state estimation
2. Future state prediction
3. RUL computation

5.1.1. State Estimation

The first step of estimating the state at tP serves as the pre-
cursor to prognosis and RUL computation. Consider the state
space model which is used to continuously predict the state
of the system, as:

ẋ(t) = f(t,x(t),θ(t),u(t),v(t)) (1)

where x(t) ∈ Rnx is the state vector, θ(t) ∈ Rnθ is the
parameter vector, u(t) ∈ Rnu is the input vector, v(t) ∈ Rnv

is the process noise vector, and f is the state equation.

The state vector at time tP , i.e., x(t) (and the parameters θ(t),
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u(t) y(t) x(tP )
System Check for failure1. Estimation 2. Prediction

3. RUL Computation

Continue future state prediction until failure

x(t)

t > tP

Figure 1. Model-Based Prognostics Architecture

if they are unknown) is (are) estimated using output data col-
lected until tP . Let y(t) ∈ Rny , n(t) ∈ Rnn , and h de-
note the output vector, measurement noise vector, and output
equation respectively. Then,

y(t) = h(t,x(t),θ(t),u(t),n(t)) (2)

Typically, filtering approaches such as Kalman filtering, par-
ticle filtering, etc. may be used for such state estimation. It
must be recalled that these filtering methods are collectively
known as Bayesian tracking methods, not only because they
use Bayes theorem for state estimation but also are based on
the subjective interpretation of uncertainty. In other words,
any time instant, there is nothing uncertain regarding the true
states. However, the true states are not known precisely, and
therefore, the probability distributions of these state variables
are estimated through filtering. The estimated probability dis-
tributions are simply reflective of the subjective knowledge
regarding those state variables.

5.1.2. State Prediction

Having estimated the state at time tP , Eq. 1 is used to predict
the future states of the component/system. This differential
equation can be discretized and used to predict x(t + 1) as a
function of x(t). Therefore, using this recursive relation, the
state at any future time instant t > tP can be calculated.

5.1.3. RUL Computation

RUL computation is concerned with the performance of the
component that lies outside a given region of acceptable be-
havior. The desired performance is expressed through a set of
nc constraints, CEOL = {ci}nc

i=1, where ci : Rnx × Rnθ ×
Rnu → B maps a given point in the joint state-parameter
space given the current inputs, (x(t),θ(t),u(t)), to the
Boolean domain B , [0, 1], where ci(x(t),θ(t),u(t)) = 1 if
the constraint is satisfied, and 0 otherwise (Daigle & Goebel,
2013).

These individual constraints may be combined into a single
threshold function TEOL : Rnx × Rnθ × Rnu → B, defined
as:

TEOL(x(t),θ(t),u(t)) =

{
1, 0 ∈ {ci(x(t),θ(t),u(t))}nc

i=1

0, otherwise.
(3)

TEOL is equal to 1 when any of the constraints are violated.
Then, the End of Life (EOL, denoted by E) at any time instant
tP is then defined as the earliest time point at which the value
of TEOL becomes equal to one. Therefore,

E(tP ) , inf{t ∈ R : t ≥ tP ∧ TEOL(x(t),θ(t),u(t)) = 1}. (4)

The Remaining Useful Life (RUL, denoted by R) at time in-
stant tP is expressed as:

R(tP ) , E(tP ) − tP . (5)

Note that the output equation (Eq. 2) or output data (y(t)) is
not used in the prediction stage, and EOL and RUL are depen-
dent only on the state estimates at time tP ; though these state
estimates are obtained using the output data, the output data
is not used for EOL/RUL calculation after state estimation.

For the purpose of implentation, f in Eq. 1 is transformed into
the corresponding discrete-time version.

5.2. RUL Estimation through Uncertainty Propagation

Thus, it is clear that RUL predicted at time tP , i.e., R(tP )
depends on

1. Present state estimate (x(tP )); using the present state es-
timate and the state space equations in Eq. 1, the future
states (x(tP ), x(tP + 1), x(tP + 2), ..., x(tP + R(tP )))
can be calculated.

2. Future loading (u(tP ), u(tP +1), u(tP +2), ..., u(tP +
R(tP ))); these values are needed to calculate the future
state values using the state space equations.

3. Parameter values from time tP until time tP + R(tP )
(denoted by θ(tP ), θ(tP + 1), ..., θ(tP + R(tP ))).

4. Process noise (v(tP ), v(tP + 1), v(tP + 2), ..., v(tP +
R(tP ))).

For the purpose of RUL prediction, all of the above quan-
tities are independent quantities and hence, RUL becomes a
dependent quantity. Let X = {X1, X2, ...Xi, ...Xn} denote
the vector of all the above dependent quantities, where n is
the length of the vector X , and therefore the number of un-
certain quantities that influence the RUL prediction. Then the
calculation of RUL (denoted by R) can be expressed in terms
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of a function, as:
R = G(X) (6)

The above functional relation in Eq. 6 can be graphically ex-
plained, as shown in Fig. 2.

For example, consider the case where the component/system
is subjected to uniform loading (characterized by one vari-
able, the amplitude which remains constant with time), mod-
eled using one parameter (which is time-invariant), and char-
acterized using two states (the state estimates at time tP and
Eq. 1 can be used to predict the state values at any future time
instant). Then, excluding the effect of process noise, there
are n = 4 quantities that affect the RUL prediction. Note
that there are R(tP ) + 1 process noise terms for each state;
therefore, the inclusion of process noise increases the value
of n, and therefore the dimensionality of the problem. This
raises a practical concern and has been addressed in an earlier
publication by replacing the time-variant process noise using
an equivalent time-invariant process noise (Sankararaman &
Goebel, 2013). In the rest of the paper, a generalized frame-
work is presented without using this equivalent time-invariant
process noise concept.

Knowing the values of X , it is possible to compute the value
of R, using Fig. 2 that is equivalently represented by Eq. 6.
The quantities contained in X are uncertain, and the focus in
prognostics to compute their combined effect on the RUL pre-
diction, and thereby compute the probability distribution of
R. The problem of estimating the uncertainty in R is equiva-
lent to propagating the uncertainty in X through G, and it is
necessary to use computational methods for this purpose.

5.3. Need for Computational Approaches

The problem of estimating the uncertainty in R using uncer-
tainty propagation techniques is a non-trivial problem, and
needs rigorous computational approaches. This involves es-
timating the probability density function of R (PDF, denoted
by fR(r)) or equivalently the cumulative distribution func-
tion of R (CDF, denoted by FR(r)). In some rare cases, it is
possible to analytically obtain the distribution of R. Some of
such special cases are listed below:

1. Each and every quantity contained in X follows a nor-
mal (Gaussian) distribution, and the function G can be
expressed as a weighted linear combination of the quan-
tities in X . In this case, R also follows a normal distri-
bution, and its statistics can be calculated analytically.

2. Each and every quantity contained in X follows a log-
normal distribution, and if the logarithm of the function
G can be expressed as a weighted combination of the
quantities in X , then log(R) follows a normal distribu-
tion whose statistics can be estimated analytically. In
other words, R also follows a lognormal distribution.

While Gaussian distributions and linear state space models
(linear f in Eq. 1) may be commonly used in the prognostics
and health management domain, it is important to understand
that using linear state space models is not equivalent to G
being linear. In other words, the use of the threshold function
along with the linear state models automatically renders G
non-linear.

In order to illustrate this important point, and to empha-
size the importance of using rigorous computational meth-
ods, consider a simple example where the state state equation
is given by:

x(t + 1) = a.x(t) + b. (7)

Assume that a suitable time-discretization has been chosen
for the purpose of implementation. It is desired to predict fu-
ture behavior and compute RUL at tP = 0, and state value at
this time is denoted by x(0) which is a Gaussian random vari-
able. Further a and b are constants (i.e., not random) which
are used to predict future states. It can be easily demonstrated
that the state value at any future time instant can be expressed
as a function of x(0).

x(n) = an.x(0) +

j=n−1∑

j=0

ajb (8)

It is clear from Eq. 8 that the state value at any future time
instant is a linear function of x(0), and therefore is also Gaus-
sian. In order to compute the remaining useful life, it is neces-
sary to chose a threshold function. Depending on the choices
of a and b, x(n) may either be an increasing function or a
decreasing function. If x(n) is a decreasing function, then
the threshold function will indicate that failure occurs when
the state value x becomes smaller than a critical lower bound
(l). Alternatively, if x(n) is an increasing function, then the
threshold function will indicate that failure occurs when the
state value x becomes greater than a critical upper bound u.
Without loss of generality, any of the two cases may be cho-
sen for illustrative purposes. For example, consider that x(n)
is decreasing and failure happens when x < l. Therefore, the
remaining useful life (r, an instance of the random variable
R) is equal to the smallest n such that x(n) < l. Therefore
RUL can be calculated as

r = inf{n : an.x(0) +

j=n−1∑

j=0

ajb < l}, (9)

Assuming that the chosen time-discretization level is in-
finitesimally small, it is possible to directly estimate the RUL
by solving the equation:

ar.x(0) +

j=r−1∑

j=0

aj .b = l. (10)

8

Annual Conference of the Prognostics and Health Management Society 2013

344



Annual Conference of the Prognostics and Health Management Society 2013

Compute x(t+ 1)

Discretize Eq. 1

x(tP )

Present State

u(tP ), u(tP + 1),

... u(tP +R(tP )

Future Loading

θ(tP ), θ(tP + 1),

... θ(tP +R(tP ))

Future Parameters

v(tP ), v(tP + 1),

...v(tP +R(tP ))

Future Process Noise

TEOL

Using
x(t)

t = tP

Assign t = t+ 1

if TEOL = 1

if TEOL = 0

R = t− tP

R = G(X)

Figure 2. Definition of G

The above equation calculates the RUL (r) as a function of the
initial state (x(0)). Hence, the above equation is similar to G
defined earlier in Fig. 2. The difference now is that the only
considered source of uncertainty is the state estimate x(0);
model uncertainty, future loading uncertainty, etc. are not
considered here. The RUL R follows a Gaussian distribution
if and only if it is linearly dependent on x(0). In other words,
R follows a Gaussian distribution if and only if Eq. 10 can be
rewritten as:

α.r + β.x(0) + γ = 0 (11)

for some arbitrary values of α, β, and γ. If it were possible to
estimate such values for α, β, and γ, the distribution of RUL
can be obtained analytically.

In order to examine if this is possible, rewrite Eq. 10 as:

x(0) =
1

ar
(l −

j=r−1∑

j=0

aj .b) (12)

While x(0) is completely on the left hand side of this equa-
tion, r appears not only as an exponent in the denominator
but is also indicative of the number of terms in the summa-
tion on the right hand side of the above equation. Therefore,
it is clear that the relationship between r and x(0) is not lin-
ear. Therefore, even if the initial state (x(0), a realization of
X(0)) follows a Gaussian distribution, the RUL (r, a real-
ization of R) does not follow a Gaussian distribution. Thus,
it is clear that even for a simple problem consisting of lin-
ear state models, an extremely simple threshold function, and
only one uncertain variable that is Gaussian, the calculation of
the probability distribution of R is neither trivial nor straight-

forward.

Practical problems in the prognostics and health management
domain may consist of:

1. Several non-Gaussian random variables which affect the
RUL prediction,

2. A non-linear multi-dimensional state space model,
3. Uncertain future loading conditions,
4. A complicated threshold function which may be defined

in multi-dimensional space.

The fact that the distribution of RUL simply depends on the
quantities indicated in Fig. 2 implies that it is technically in-
accurate to artifically assign the probability distribution type
(or any statistic such as the mean or variance) to RUL.

5.4. Illustrations

Sometimes, the probability distribution of RUL may be ex-
tremely skewed; for example, the RUL of a lithium-ion bat-
tery used to power an unmanned aerial vehicle was predicted
by Sankararaman et al. (Sankararaman et al., 2013) and it
was observed that the probability distribution was particu-
larly skewed near failure. The PDFs of the End-of-Discharge
(EOD) prediction at various time instants (T = 0 seconds
through T = 4000) are shown in Fig. 3 and then the PDF
of End-of-Discharge predicted at T = 5000 seconds (which
corresponds to near-failure) is indicated in Fig. 4. The RUL
can be calculated by simply subtracting the prediction time-
instant from the EOD prediction. Note the significant change
in the shape of the PDF near failure. It is extremely important
to be able to accurately predict the RUL particularly as failure
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is approaching, and it is clear from Fig. 4 that assuming a nor-
mal distribution or an arbitrary standard deviation would not
be able to achieve this goal; only a theoretically accurate un-
certainty quantification method can reproduce this probabil-
ity distribution, whose mode almost coincides with its lower
bound (left-hand-side tail).
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Figure 3. EOD Prediction at Multiple Time Instants
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Figure 4. EOD Prediction at T = 5000 seconds (near failure)

Sometimes, depending on the chosen statistics of future load-
ing conditions, the distribution of EOD may even be multi-
modal. For example, Saha et al. (Saha & Goebel, 2008) calcu-
lated future loading statistics that lead to a multi-modal PDF
for the EOD, as shown in Fig. 5.

It is important to capture such characteristics of the RUL
(which is equivalent to the end-of-discharge in Fig 3-5) prob-
ability distribution, and this can be accomplished only by us-
ing accurate uncertainty quantification methodologies with-
out making critical assumptions regarding the shape of the
PDF of the RUL, its mean, median, mode, standard devia-
tion, etc. Therefore, the goal must be to accurately calcuate
the probability distribution of R by propagating the different
sources of uncertainty through G as indicated in Fig. 2.
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Figure 5. A Multi-Modal PDF

5.5. Uncertainty Propagation Methods

In order to answer the obvious question: “How to calculate
the uncertainty in R and estimate the PDF of R?”, it is neces-
sary to resort to rigorous computational methodologies which
have been developed by statisticians and researchers in the
field of uncertainty quantification in order to solve a typical
uncertainty propagation problem. There are different types of
sampling methods such as Monte Carlo sampling (Caflisch,
1998), Latin hypercube sampling (Loh, 1996), adaptive sam-
pling (Bucher, 1988), importance sampling (Glynn & Igle-
hart, 1989), unscented transform sampling (Van Zandt, 2001),
etc. Alternatively, there are analytical methods such as the
first-order second moment method (Dolinski, 1983), first-
order reliability method (Hohenbichler & Rackwitz, 1983),
second-order reliability method (Der Kiureghian, Lin, &
Hwang, 1987), etc. In addition, there are also methods such
as the efficient global reliability analysis (Bichon, Eldred,
Swiler, Mahadevan, & McFarland, 2008) method which in-
volve both sampling and the use of analytical techniques. All
of these methods empirically calculate the probability distri-
bution of RUL; while some of these methods calculate the
PDF (fR(r)) of RUL, some other methods calculate the CDF
(FR(r)), and some other methods directly generate samples
from the target probability density function (fR(r)). Due to
some limitations of each of these methods, it may not be pos-
sible to accurately calculate the actual probability distribution
of R. Accurate calculation is possible only by using infinite
samples for Monte Carlo sampling. Any other method (for
example, the use of a limited, finite number of samples) will
lead to uncertainty in the estimated probability distribution,
and this additional uncertainty is referred to as prediction-
method uncertainty. It is possible to decrease (and maybe
eventually eliminate) this type of uncertainty either by us-
ing advanced probability techniques or powerful computing
power.

It is necessary to further investigate the aforementioned un-
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certainty propagation methods, and identify whether they can
be applied to prognostics health monitoring. Some earlier
publications have investigated the use of certain methods
such as Monte Carlo sampling, unscented transform sam-
pling, first-order reliability methods, etc. in this regard.

5.6. Challenges

There are several challenges in using different uncertainty
quantification methods for prognostics, health management
and decision-making. It is not only important to understand
these challenges but also necessary to understand the require-
ments of PHM systems in order to integrate efficient un-
certainty quantification along with prognostics and aid risk-
informed decision-making. Some of the issues involved in
such integration are outlined below:

1. An uncertainty quantification methodology for prognos-
tics needs to be computationally feasible for implementa-
tion in online health monitoring. This requires quick cal-
culations, while uncertainty quantification methods have
been traditionally known to be time-consuming and com-
putationally intensive.

2. Sometimes, the probability distribution of RUL may be
multi-modal and the uncertainty quantification method-
ology needs to be able to accurately capture such distri-
butions.

3. Existing verification, validation, and certification proto-
cols require algorithms to produce deterministic, i.e., re-
peatable calculations. Several uncertainty quantification
methods are non-deterministic, i.e. produce different (al-
beit, only slightly if implemented well) results on repeti-
tion.

4. The uncertainty quantification method needs to be accu-
rate, i.e., the entire probability distribution of X needs
to be correctly accounted for, and the functional relation-
ship defined by G in Fig. 2. Some methods use only
a few statistics (usually, mean and variance) of X and
some methods make approximations (say for example,
linear) of G. Finally, it is important to correctly prop-
agate the uncertainty to compute the entire probability
distribution of RUL.

5. While it is important to be able to calculate the entire
probability distribution of RUL, it is also important to
be able to quickly obtain bounds on RUL which can be
useful for online decision-making.

Each uncertainty quantification method may address one or
more of the above issues, and therefore, it may even be
necessary to resort to different methods to achieve different
goals. Future research needs to continue this investigation,
analyze different types of uncertainty quantification methods
and study their applicability to prognostics before these meth-
ods can be applied in practice.

6. CONCLUSION

This paper discussed the significance and interpretation of un-
certainty the context of prognostics and health management.
The prediction of remaining useful life in engineering sys-
tems is affected by several sources of uncertainty, and it is
important to correctly interpret this uncertainty in order to
facilitate meaningful decision-making. Uncertainty can be
interpreted in two ways, either in terms of physical proba-
bilities from a frequentist point of view or in terms of sub-
jective probabilities from a Bayesian point of view. While
a frequentist interpretation may be suitable for testing-based
prognostics, there are no physical probabilities in the context
of condition-based prognostics. Therefore, uncertainty in the
context of condition-based monitoring needs to be interpreted
subjectively, and hence, a Bayesian approach is more suitable
for this purpose. It was also explained that Bayesian tracking
methods for state estimation are so-called not only because
they use Bayes theorem but are also based on the principle of
subjective probability.

This paper also emphasized the importance of accurately
computing the uncertainty in the remaining useful life predic-
tion. It was illustrated that it may not be analytically possible
to calculate the uncertainty in the remaining useful life pre-
diction even for certain simple problems involving Gaussian
random variables and linear state-prediction models. There-
fore, it is necessary to resort to computational methodologies
for such uncertainty quantification and compute the proba-
bility distribution of remaining useful life prediction. In this
process, it is important not to make assumptions regarding the
shape of the probability distribution of the remaining useful
life prediction or any of its statistics such as the mean, me-
dian, standard deviation, etc.

Finally, it was explained that the problem of estimating the
probability distribution of remaining useful life can be viewed
as an uncertainty propagation problem which can be solved
using different types of computational approaches. Sev-
eral sampling-based methods, analytical methods and hybrid
methods have been developed by researchers in the field of
uncertainty quantification and it is necessary to investigate
the applicability of these methods to prognostics and health
management. Further, several challenges involved in integrat-
ing uncertainty quantification techniques into prognostics and
health management were outlined. It is clear that further re-
search is necessary to address these challenges and develop
a comprehensive framework for uncertainty quantification in
prognostics and health management.
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ABSTRACT

This paper develops a novel computational approach to quan-
tify the uncertainty in prognostics in the context of condition-
based monitoring. Prognostics consists of two major steps;
first, it is necessary to estimate the state of health at any time
instant, and then, it is required to predict the remaining useful
life of the engineering component/system of interest. While
the topic of estimation has been addressed through different
types of Bayesian tracking techniques, this paper primarily
focuses on the second aspect of future prediction and remain-
ing useful life computation, which is influenced by several
sources of uncertainty. Therefore, it is important to identify
these sources of uncertainty, and quantify their combined ef-
fect on the remaining useful life prediction. The computation
of uncertainty in remaining useful life can be treated as an
uncertainty propagation problem which can be solved using
probabilistic techniques. This paper investigates the use of
the Most Probable Point approach (which was originally de-
veloped to estimate the failure probability of structural sys-
tems) for calculating the probability distribution of the re-
maining useful life prediction. The proposed methodology
is illustrated using a battery which is used to power an un-
manned aerial vehicle.

1. INTRODUCTION

Research in the past few years has been advocating the use
of an onboard health management system in engineering sys-
tems used for time-critical, safety-critical, and cost-critical
missions. An accurate health management system constantly
monitors the performance of the engineering system, per-
forms diagnosis (fault detection, isolation, and estimation),
prognosis (predict possible failures in the future and estimate

Shankar Sankararaman et al. This is an open-access article distributed un-
der the terms of the Creative Commons Attribution 3.0 United States Li-
cense, which permits unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are credited.

remaining useful life) and aid online decision-making (fault
mitigation, fault recovery, mission replanning, etc.). The pre-
diction of remaining useful life is an important aspect of prog-
nostics, and is directly useful in different types of decision-
making. This paper focuses on the calculation of remain-
ing useful life in the context of model-based prognostics and
condition-based monitoring.

In practical applications, there are several sources of uncer-
tainty which affect the performance of both the engineering
system and the health management system. For example, the
loading conditions and operating conditions of the engineer-
ing system may be random in nature. The sensors, which
are part of the health management system, may not be ac-
curate due to measurement errors, and this may prevent ac-
curate estimation of the system state. The system models
which are used by the health management system for esti-
mation and prediction may have certain errors. As a result
of the presence of such uncertianties, it is important to rig-
orously account for the sources of uncertainty during diag-
nosis, prognosis, and decision-making. While the topic of
uncertainty quantification in diagnosis has gained attention
in literature (Sankararaman & Mahadevan, 2011b, 2013), the
importance of uncertainty significantly increases in the con-
text of prognosis, since the focus is on predicting future be-
havior, which is far more challenging and uncertain than fault
diagnosis. The primary objective of this paper is to develop
a computational methodology which can quantify the com-
bined effect of the various sources of uncertainty on prog-
nostics, and estimate the overall uncertainty in the remaining
useful life (RUL) prediction.

In the past, several researchers have used different types
of methods to quantify uncertainty in prognostics. Tang
et al. (Tang, Kacprzynski, Goebel, & Vachtsevanos, 2009)
discuss the use of Bayesian tracking algorithms for uncer-
tainty quantification and management in prognostics for In-
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tegrated Vehicle Health Management (IVHM) systems. The
“Damage Prognosis Project” at Los Alamos National Labo-
ratory (C. R. Farrar, Lieven, & Bement, 2005; Inman, Far-
rar, Junior, & Junior, 2005) exclusively dealt with prognosis
and uncertainty quantification applied to structual compos-
ites. Several researchers worked on this project and pub-
lished articles that deal with model development, verifica-
tion, validation, prediction, and uncertainty quantification;
the conclusions of this project have been documented by
Farrar et al (C. Farrar & Lieven, 2007). Sankararaman et
al. (Sankararaman, Ling, Shantz, & Mahadevan, 2009, 2011)
quantified the uncertainty in fatigue crack growth prognosis
in metals, by using finite element models (for structural anal-
ysis), crack growth models (to predict future crack growth),
and Monte Carlo simulation (for uncertainty quantification).
Gu et al. (Gu, Barker, & Pecht, 2007) also used Monte Carlo
simulation in order to compute the uncertainty in damage in
electronics subjected to random vibration. In some practical
applications, Monte Carlo simulation using exhaustive sam-
pling may be computationally expensive, and this challenge
has inspired the development of intelligent sampling-based
algorithms (DeCastro, 2009; Orchard, Kacprzynski, Goebel,
Saha, & Vachtsevanos, 2008; Daigle, Saxena, & Goebel,
2012) and mathematical techniques such as relevance vector
machines (Saha & Goebel, 2008) and principle component
analysis (Usynin & Hines, 2007), that can reasonably approx-
imate the uncertainty in the prognostic predictions. Further,
Bayesian and maximum relative entropy methods (Guan et
al., 2011) have also been used for estimating uncertainty in
prognostics.

The above described methods for uncertainty quantification
are mainly based on sampling techniques, and may require
several thousands of samples to accurately calculate the un-
certainty in RUL prediction. This may be computationally
expensive for online monitoring, and therefore, Sankarara-
man et al. (Sankararaman, Daigle, Saxena, & Goebel, 2013)
discussed analytical approaches for predicting the uncertainty
quantification. These analytical methods are based on first-
order Taylor’s series expansion, and in particular, one method
known as the Inverse First-order Reliability Method was im-
plemented for calculating the uncertianty in RUL prediction.
This method was originally developed by structural engineers
for calculating the failure probability of structural engineer-
ing applications. This method is based on the concept of Most
Probable Point (MPP) Estimation, and this paper further in-
vestigates the applicability of this approach to different types
of loading conditions and RUL calculation. Note that the term
“reliability method” is avoided in the rest of the present paper
in order to avoid confusion with “reliability testing” methods
for prognostics, since the proposed methodology is primarily
applicable to condition-based online monitoring.

The rest of the paper is organized as follows. Section 2 dis-
cusses a framework for uncertainty quantification in prognos-

tics, and explains that the problem of estimating the uncer-
tainty in the RUL prediction can be viewed as an uncertainty
propagation problem. Section 3 discusses the importance of
future loading conditions, and describes three different types
of future loading scenarios for prognostics. Section 4 ex-
plains the proposed computational methodology for quanti-
fying prognostics uncertainty and estimating the uncertainty
in the remaining useful life prediction; this methodology is
illustrated using a numerical example in Section 5. Finally,
conclusions are drawn in Section 6.

2. UNCERTAINTY QUANTIFICATION IN CONDITION-
BASED MONITORING AND PROGNOSTICS

This section discusses the need for uncertainty quantification
in prognostics and health monitoring. First, a model-based
framework for prognostics is presented, and then, the vari-
ous sources of uncertainty are discussed with reference to this
framework. Finally, it is illustrated that uncertainty quantifi-
cation in prognostics can be viewed as an uncertainty propa-
gation problem.

2.1. Model-based Framework for Prognostics

The goal of prognostics is to predict the future behavior of
a component/system at any generic instant of prediction, de-
noted by tP . This is accomplished by estimating the states of
the systems at all time instants t > tP . The inputs (u(t)) and
outputs (y(t)) to the system are known until the prediction
time t = tP , and in order to perform prediction, the future
inputs i.e., u(t) ∀ t > tP also need to be available. A gener-
alized prognostics architecture is showed in Fig. 1.

The first step in prognostics is to estimate the state at time
tP . Using the estimated state, the second step is to predict
future states until failure; thereby, the end-of-life (EOL) and
the remaining useful life (RUL) can be predicted.

State-space models are used for both estimation and predic-
tion. Consider a generic state space model which is used to
continuously predict the state of the system, as:

ẋ(t) = f(t,x(t),θ(t),u(t),v(t)) (1)

where x(t) ∈ Rnx is the state vector, θ(t) ∈ Rnθ is the
parameter vector, u(t) ∈ Rnu is the input vector, v(t) ∈
Rnv is the process noise vector, and f is the state equation.
This state equation can be constructed using physics-based
principles, or using data-driven techniques.

While Eq. 1 is used for state prediction, actual sensor mea-
surements (which are available until time t = tP ) are used
for state estimation. The sensor measurements are modeled
using a generic output equation, such as:

y(t) = h(t,x(t),θ(t),u(t),n(t)) (2)

where y(t) ∈ Rny , n(t) ∈ Rnn , and h denote the output vec-
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u(t) y(t) x(tP )
System Check for failure1. Estimation 2. Prediction

3. Estimate End-of-Life

Continue future state prediction until failure

x(t)

t > tP

Figure 1. Model-Based Prognostics Architecture

tor, measurement noise vector, and output equation respec-
tively. Note that output measurements are available only until
time t = tP . Therefore, the output equation is used only in
the estimation stage, and not in the prediction stage.

(Note: While the above framework for state-space represen-
tation is general, some practical systems are time-invariant.
Therefore, f and h may not depend on t. Sometimes, the
output equation h may depend only on the states x(t) and
not the inputs u(t). While the proposed methodology is pre-
sented using the general framework, simplifications and as-
sumptions may be included depending on the physical system
under consideration.)

2.2. State Estimation

Bayesian tracking approaches as Kalman filtering, particle fil-
tering, etc. can be used for state estimation. These methods
use Bayes theorem to update the uncertainty in the states con-
tinuously as a function of time, as and when new measure-
ments are available. While particle filtering is the most gen-
eral method that can account for different distribution types
and account for non-linearity, Kalman filtering can be used
only when Eq. 1 is linear and all the uncertain quantities are
Gaussian. When the uncertain quantities are Gaussian, the
extended Kalman filter can be applied by linearizing Eq. 1.
Similarly, the unscented Kalman filter (Daigle et al., 2012)
can be used to approximate the mean and variance of response
quantities (future states and remanining useful life predic-
tion), even for non-linear models.

2.3. Prognostics: Future Prediction

Prognostics consists of predicting future behavior of engi-
neering systems, identifying possible failure modes, and es-
timating the remaining useful life. Estimating system state is
an essential precursor to prognostics, because damage and/or
system faults can be represented using state variables or a
collection of state variables. Therefore, predicting how the
damage will progress or how the fault will grow is equivalent
to estimating future states of the systems, based on the infor-
mation available at the prediction time instant tP . In order
predict future behavior and thereby perform prognosis until
end-of-life (denoted by E(tP ) = t + R(tP ), where R(tP ) is
the remaining useful life), the following pieces of information

are necessary:

1. State prediction model, as in Eq. 1.
2. Present state estimate (x(tP )); using the present state es-

timate and the state space equations in Eq. 1, the future
states (x(tP ), x(tP + 1), x(tP + 2), ..., x(tP + R(tP )))
can be calculated.

3. Future loading (u(tP ), u(tP +1), u(tP +2), ..., u(tP +
R(tP ))); these values are needed to calculate the future
state values using the state space equations.

4. Parameter values from time tP until time tP + R(tP )
(denoted by θ(tP ), θ(tP + 1), ..., θ(tP + R(tP ))).

5. Process noise (v(tP ), v(tP + 1), v(tP + 2), ..., v(tP +
R(tP ))).

While writing “θ(tP ), θ(tP + 1), ..., θ(tP + R(tP ))”,
note that unit time discretization has been used for the sake
of illustration. During implementation, appropriate time-
discretization values need to be selected.

During prognosis, all the future states can be predicted as a
function of the above quantities, and in a practical engineer-
ing system, all of them may be potentially uncertain. First, the
state-prediction model is prone to have modeling errors. Sec-
ond, the state estimate at time tP is uncertain as a result of the
Bayesian tracking method used for estimation. Third, future
loading cannot be precisely known in many applications, and
therefore, uncertainty regarding future loading needs to be
considered. Fourth, model parameters are usually estimated
using filtering; but it is challenging to know future parameter
values. In this paper, model parameter values are assumed
to be constant over time and precisely known (without un-
certainty). Fifth, process noise is conventionally assumed to
follow a probability distribution (usually, Gaussian with zero
mean and a specified variance), and needs to be accounted for
in prognostics.

Since prognostics needs to be performed until failure, a
boolean function (Sankararaman et al., 2013) of the states
is necessary to define end-of-life of the engineering system.
Such a boolean function can be defined as:

TEOL(x(t),θ(t),u(t)) =

{
1, c(x(t),θ(t),u(t)) ≤ 0

0, otherwise,
(3)

3
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where c(x(t),θ(t),u(t)) ≤ 0 represents failure criterion.
There may be multiple failure criteria too (Daigle et al., 2012;
Sankararaman et al., 2013) in some cases, and therefore, the
definition of TEOL needs to account for all such failure crite-
ria.

In fact, it can be easily shown that TEOL is a function of the
above list of quantities, and this functional relationship can be
expressed through a graphical flowchart, as shown in Fig. 2.

As seen in Fig. 2, both the End-of-life (EOL, denoted by
E(tP )) and the remaining useful life (RUL, denoted by
R(tP )) can be calculated as a function of the above list of
quantities. Let the function, which predicts the RUL, be de-
noted as:

R = G(X), (4)

where X represents the concatenated vector of quantities
contained in (1) present state estimates (x(tP )); (2) future
loading values (u(tP ), u(tP + 1), u(tP + 2), ..., u(tP +
R(tP ))); and (3) future process noise values. Again, note that
unit time discretization has been used for illustration. Since
these quantities are uncertain, the problem of estimating the
uncertainty in prognostics, and thereby computing the uncer-
tainty in EOL and RUL can be viewed as propagating the un-
certainty in X through G (Sankararaman & Goebel, 2013a).

3. FUTURE LOADING CONDITIONS

In order to perform efficient prognosis, it is necessary to know
what loading conditions the system will experience in the
future. However, in many practical applications, it is chal-
lenging to be able to precisely predict future loading. There-
fore, it is essential to estimate the uncertainty in future load-
ing conditions and incorporate this information in prognos-
tics. Time-series analysis techniques and signal processing
methods can be used to represent future loading conditions,
continuously as a function of time. Further, different types of
engineering application may require different types of tech-
niques for loading characterization and uncertainty represen-
tation. Therefore, a good prediction methodology should be
able to account for different types of representation.

Three different types of future loading conditions - constant
amplitude loading, white noise loading, variable amplitude
loading - are discussed in this paper. Uncertainty represen-
tation for each of the above types of loading conditions are
explained in the remainder of this section. Sample loading
trajectories are graphically explained through appropriate il-
lustrations.

3.1. Type I: Constant Amplitude Loading

This is the simplest form of loading, where the value of u
is constant at all time instants. However, the constant value
is assumed to be random, and one random variable is suf-
ficient to represent uncertainty in this type of loading con-

dition. Multiple realizations of constant amplitude loading
conditions are shown in Fig. 3.
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Figure 3. Type-I Loading: Multiple Realizations

3.2. Type II: White Noise Loading

Now, the probability distribution of u(t) is assumed to be
known. For the sake of simplicity, this probability distribu-
tion is assumed to be constant at all time instants. Therefore,
at any time instant, the loading value is selected by sampling
from this probability distribution. Let fU(t)(u(t)) denote the
probability density function (PDF) of this distribution. Load-
ing values at multiple time instants are independently sam-
pled from this distribution. A typical realization of this type
of loading condition is shown in Fig. 4.
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Figure 4. Type-II Loading: One Realization

The number of random variables necessary to represent
such a type of loading condition depends on the number of
time steps from prediction time tP until end-of-life E(tP ),
which in turn depends on the chosen time-discretization level.
Therefore, the number of variables may range from a few tens
to several thousands, and this poses a computational chal-
lenge for uncertainty propagation. Therefore, a new method-
ology is proposed in this paper to overcome this challenge.

Note that the value of loading varies from time to time, since
it is sampled individually at every time instant. Suppose that
the time-variant process is replaced with a time-invariant con-
stant value denoted by uE . In other words,

u(t) = uE ∀ t ∈ [tP , tP + R(tP )] (5)

4
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Compute x(t+ 1)
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Future Loading

v(tP ), v(tP + 1),

...v(tP +R(tP ))
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TEOL
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x(t)
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if TEOL = 1

if TEOL = 0

R(tP ) = t− tP

E(tP ) = t

R = G(X)

Figure 2. Uncertainty in Prognostics: An Uncertainty Propagation Problem

The above equation means that the same realization of load-
ing will be used for prediction at every future time instant. In
order for this to be valid, it is important to choose a suitable
probability distribution for uE , so that the effect of propa-
gating this distribution through G is equivalent to propagat-
ing the original distribution of u(t) through G. This can be
accomplished by computing the likelihood of uE such that
Eq. 5 is satisfied. In other words, any value of uE has an
associated probability with which Eq. 5 is satisfied; the like-
lihood of uE is proportional to this probability. The proba-
bility distribution of the true loading distribution can be used
to calculate this likelihood, as:

L(uE |R(tP )) ∝
t=tP +R(tP )∏

t=tP

fU(t)(u(t) = uE) (6)

where fU(t)(v(t)) is the probability density function of the
true loading u(t). Also note that the likelihood function is
conditioned on the RUL and written as R(tP ). Further, the
above equation assumes that the loading values at two dif-
ferent times are independent of each other. If any statisti-
cal dependence is unknown, then it can be easily included
in the above equation by conditioning appropriately. Having
calculated the likelihood, the PDF of uE can be calculated
as (Sankararaman & Mahadevan, 2011a):

fUE (uE |R(tP )) =
L(uE |R(tP ))∫

D
L(uE |R(tP ))duE

(7)

In Eq. 7, the domain of integration D is chosen such that
uE ∈ D if and only if L(uE) 6= 0. Now, propagating the
uncertainty in uE through G is equivalent to propagating the

uncertainty in u(t) through G. Therefore, uE is referred to
as equivalent time-invariant loading and its distribution is re-
ferred to as the equivalent time-invariant loading distribution.

The use of the equivalent time-invariant loading variable re-
duces the number of variables to the same number as the con-
stant loading case, and therefore facilitates computation for
uncertainty propagation. Now, the time-invariant equivalent
variable uE is used in X in Eq. 4, instead of the true loading
values. The corresponding probability distribution (which is
actually a function of R(tP )) will be used in uncertainty prop-
agation to calculate uncertainty in RUL, as explained later in
Section 4.

Note that the above equivalent time-invariant concept can
be used to address process noise (Sankararaman & Goebel,
2013b), since the process noise is also treated as white noise
(Gaussian, in several models) in many practical applications.

3.3. Type III: Variable Amplitude Loading

In this type loading, multiple time-windows of varying
lengths are considered, and within each time-window, the
loading is assumed to be a constant. The number of time-
windows is assumed to be known; the length of each time
window is assumed to be a random variable, and the constant
amplitude for each time window is also considered to be a
random variable. Therefore, if there are five time-windows,
then ten random variables are needed to represent the en-
tire loading trajectory. Each realization of the set of random
variables will correspond to one particular loading trajectory.
Multiple realizations of a variable amplitude loading scenario
are depicted in Fig. 5.
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Figure 5. Type-III Loading: Multiple Realizations

Since the number of random variables is small (linear func-
tion of number of windows), the proposed uncertainty quan-
tification methodology can be directly applied for this type of
loading condition.

4. MOST PROBABLE POINT APPROACH FOR UNCER-
TAINTY QUANTIFICATION

This section develops the proposed methodology for quanti-
fying prognostics uncertainty and estimating the uncertainty
in the remaining useful life prediction. A generic method-
ology is presented using the functional relationship R =
G(X), explained earlier in Eq. 4 in Section 2. It is also ex-
plained as to how the methodology can be adapted for the
different types of loading conditions discussed in the previ-
ous section.

4.1. Most Probable Point Concept

The Most Probable Point (MPP) concept was originally de-
veloped by structural engineers to predict the failure proba-
bility of structural engineering applications. In this paper, this
concept is used for uncertainty quantification in prognostics
and remaining useful life prediction.

Consider the functional relationship R = G(X). The goal
of uncertainty propagation is to compute the uncertainty in
R, given the uncertainty in X . In order words, the goal is to
compute the probability density function (PDF) or cumulative
distribution function (CDF) of R, based on the probability
distribution of X . Let fX(x) and FX(x) denote the PDF and
CDF of X respectively. Note that an upper case letter is used
to represent the random variable and a corresponding lower
case letter to represent a generic realization of that random
variable.

If all the variables X are Gaussian (i.e., normal) and if G
is linear, then it can be easily proved that R is also Gaus-
sian, and the statistics of R can be calculated analytically.
In the context of prognostics, even if the state-space mod-
els and the EOL threshold function are linear, their combi-
nation renders G non-linear. Therefore, it is necessary to es-
timate the distribution of R by considering non-linear func-

tions and non-normal variables since the uncertain quantities
may not necessarily follow Gaussian distributions. This is
accomplished through a two-step procedure; first, all the un-
certain quantities are transformed into Gaussian variables us-
ing well-known standard normal transformations, and then,
the non-linear function is linearized using first-order Taylor’s
series expansion, as explained below.

1. Standard normal transformation: First, it is necessary
to transform all the variables in X to equivalent normal
distributions. For the sake of uniformity, all the vari-
ables are transformed to the standard normal distribution.
There are several two-parameter and three-parameter
transformations discussed in the literature (Haldar & Ma-
hadevan, 2000). This paper uses a simple one-parameter
transformation. Consider a single random variable Xi

(instead of the vector denoted by X) with PDF fXi
(xi)

and CDF FXi
(xi). Then, based on the probability inte-

gral transform concept, every xi can be transformed into
a corresponding ui using the equation:

ui = Φ−1(FXi
(Xi = xi)) (8)

where Φ−1(.) refers to the inverse of the standard nor-
mal distribution function (Haldar & Mahadevan, 2000).
Now, ui is function of xi, and for any chosen distri-
bution for Xi, the corresponding Ui follows the stan-
dard normal distribution N(0, 1). Eq. 8 first calculates
the CDF which is equivalent to transforming the origi-
nal variable to the standard uniform distribution (upper
and lower bounds of 0 and 1 respectively), and then cal-
culates the inverse CDF of the standard normal distribu-
tion, thereby transforming to the standard normal distri-
bution. Note that the above transformation is performed
for each variable Xi individually, and hence it is not di-
rectly applicable if the variables X are statistically de-
pendent or correlated. In such cases, it is necessary to
transform X into an uncorrelated standard normal space.
Such a transformation can be generically represented as
U = T (X), and the corresponding inverse transforma-
tion can be written as X = T−1(U). Several mathe-
matical transforms have been discussed in the literature
for this purpose; for example, refer to Liu and Der Ki-
ureghian (Liu & Der Kiureghian, 1986) for details re-
garding the Morgenstern transform (Morgenstern, 1956)
and the Nataf transform (Nataf, 1962).

2. Linearize “G” using Taylor’s Series: Now that all the
variables X have been transformed into equivalent stan-
dard normal variables U , the next task is to linearize
G(X) using Taylor’s series methodology. Obviously, the
point or location of linearization will affect the estimate
of the statistics of R, and hence needs to be chosen care-
fully. The Most Probable Point (MPP) concept guides in
choosing the point of linearization, as explained below.
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Figure 6. Most Probable Point Estimation

Instead of trying to estimate the complete statistics of R
by choosing one “global” linearization point, the concept of
MPP advocates to solve a “local” problem by focusing on
the CDF value at a particular realization of R, i.e., P (R ≤
r) = FR(r) = η. Then, the method linearizes the curve
represented by the equation G(x) − r = 0, by choosing an
appropriate point of linearization. It is evident that an arbi-
trary location (say, mean of X) cannot be chosen as the loca-
tion of linearization, since it may not even satisfy the above
equation for a generic value of r. Therefore, the first con-
dition the point of localization must satisfy is the equation
G(x) − r = 0. Of the several points that lie on the curve
represented by the equation G(x) − r = 0, the point which
has the highest likelihood of occurrence is chosen and there-
fore, the point of linearization is called as the Most Probable
Point (MPP). The likelihood of occurrence is proportional to
the PDF value and the joint PDF needs to be maximized; in
practice, this maximization can be easily performed in the
standard normal space. In the standard normal space U , the
closer any point is to the origin, the higher is its likelihood
of occurrence. Therefore, the MPP is estimated through an
optimization problem by estimating the point on the curve
G(x) − r = 0 which is closest the origin in the standard
normal space, as shown in Fig. 6.

4.2. Calculating the CDF of RUL

The MPP can also be described as the minimum distance
(measured from the origin in the standard normal space) point
on the curve represented by the equation G(x)−r = 0. Let β
denote this minimum distance, i.e., the distance of MPP from
the origin in the standard normal space. Then, it can be easily
proved (Haldar & Mahadevan, 2000) that:

FR(r) = P (R ≤ r) = η = Φ(−β) (9)

where Φ(.) represents the standard normal distribution func-
tion. Thus, estimation of MPP directly leads to the calcula-

tion of the CDF FR(r), only locally at R = r. In a practical
problem, the goal is to compute the uncertainty in R, and
therefore, it may not be possible to choose a suitable value
for r. Inversely, given the value of η, it is also possible to cal-
culate the value of r which satisfies Eq. 9, using optimization.
An iterative, numerical procedure for such an optimization is
outlined below:

1. Given a value of η, compute β such that η = Φ(−β).
2. Initialize counter j = 0 and start with an initial guess

for the MPP, i.e., xj = {xj
1, x

j
2, ... xj

i , ...x
j
n}, and a cor-

responding initial guess for r is obtained.
3. Transform into uncorrelated standard normal space u =

T (x) and calculate uj = {uj
1, u

j
2, ... uj

i , ...u
j
n}. During

this transformation, the original distributions of the vari-
ables are used. In the case of process noise, the equiv-
alent time-invariant process noise distribution is used.
If Gaussian white process loading is considered, then,
the equivalent time-invariant loading distribution is used.
Recall that the time-invariant distribution is a function of
r, which was calculated in the previous step.

4. Compute the gradient vector in the standard normal
space, i.e., α = {α1, α2, ...αn}, a column vector where

αi =
∂G

∂ui
=

∂G

∂xi
× ∂xi

∂ui
(10)

The above derivatives depends both on G, and the chosen
transformation T .

5. In the iterative procedure, the next point uj+1 is calcu-
lated as:

uj+1 = − α

|α|β (11)

6. Transform back into the original space using X =
T−1(U). In other words, compute xj+1, and continue
starting from Step 3 until the iterative procedure con-
verges. Using tolerance limits δ1 and δ2, convergence
can be verified if the following two criteria are satis-
fied: (i) the point lies on the curve of demarcation, i.e.,
|G(xj) − r| ≤ δ1; and (2) the solution does not change
between two iterations, i.e., |xj+1 − xj | ≤ δ2.

Note that the above iterative algorithm relies on the existence
of a unique minimum distance point. If G is non-convex
or if there are multiple local minima, then the above algo-
rithm may not be able to identify the optimal MPP. This may
happen when the probability distribution of RUL is multi-
modal. The applicability of the inverse-FORM approach to
such cases needs to be investigated in future research. In this
paper, it is assumed that the MPP can be identified using the
above algorithm, usually within four or five iterations.

Hence, given a value of η, the value of FR(r) can be calcu-
lated using the above algorithm. Note that η denotes a prob-
ability level, and by choosing multiple values of η such as
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Figure 7. Battery equivalent circuit

0.01, 0.1, 0.2, ... 0.9, 0.99, it is possible to estimate the en-
tire CDF of R. In the context of condition-based monitor-
ing, this procedure is repeated at every time instant prognosis
needs to be performed. Note that the proposed methodology
is an analytical procedure and can produce repeatable (deter-
ministic) calculations as against Monte Carlo sampling-based
approaches. This is an important criteria for existing verifica-
tion, validation, and certification protocols in the aerospace
domain. Further, this methodology requires a few tens of
prognostic evaluations (in contrast with several hundreds of
evaluations required by sampling-based methods), and there-
fore, directly aids in real-time, online prognosis.

5. CASE STUDY: BATTERY PROGNOSTICS

The proposed methods are illustrated using a lithium-ion bat-
tery that powers an unmanned aerial vehicle (Saha, Quach,
& Goebel, 2012) at NASA Langley Research Center. This
unmanned aerial vehicle is being used as a test-bed for prog-
nostics and decision-making at NASA Ames Research Center
and NASA Langley Research Center.

5.1. Description of the Model

The battery model, extended from that used by Daigle et
al. (Daigle et al., 2012) for prognosis, is similar to the models
presented by Chen and Rincon-Mora (Chen & Rincon-Mora,
2006). The model is based on an electrical circuit equivalent
as shown in Fig. 7, where the large capacitance Cb holds the
charge qb of the battery. The nonlinear Cb captures the open-
circuit potential and concentration overpotential. The Rsp-
Csp pair captures the major nonlinear voltage drop due to
surface overpotential, Rs captures the so-called Ohmic drop,
and Rp models the parasitic resistance that accounts for self-
discharge. This empirical battery model is sufficient to cap-
ture the major dynamics of the battery, but ignores tempera-
ture effects and other minor battery processes. The governing
equations for the battery model are presented in continuous
time below. The implementation of the proposed methodol-
ogy considers a discrete-time version with a discrete time-
step of 1 second.

The state-of-charge, SOC, is computed as

SOC = 1 − qmax − qb
Cmax

, (12)

where qb is the current charge in the battery (related to Cb),
qmax is the maximum possible charge, and Cmax is the max-
imum possible capacity. The resistance related to surface
overpotential is a nonlinear function of SOC:

Rsp = Rsp0
+ Rsp1

exp (Rsp2
(1 − SOC)), (13)

where Rsp0
, Rsp1

, and Rsp2
are empirical parameters. The

resistance, and, hence, the voltage drop, increases exponen-
tially as SOC decreases.

Voltage drops across the individual circuit elements are given
by

Vb =
qb
Cb

, (14)

Vsp =
qsp
Csp

, (15)

Vs =
qs
Cs

, (16)

Vp = Vb − Vsp − Vs, (17)

where qsp is the charge associated with the capacitance Csp,
and qs is the charge associated with Cs. The voltage Vb is
also the open-circuit voltage of the battery, which is a nonlin-
ear function of SOC (Chen & Rincon-Mora, 2006). This is
captured by expressing Cb as a third-order polynomial func-
tion of SOC:

Cb = Cb0 + Cb1SOC + Cb2SOC2 + Cb3SOC3 (18)

The terminal voltage of the battery is

V = Vb − Vsp − Vs. (19)

Currents associated with the individual circuit elements are
given by

ip =
Vp

Rp
, (20)

ib = ip + i, (21)

isp = ib −
Vsp

Rsp
, (22)

is = ib −
Vs

Rs
. (23)

The charges are then governed by

q̇b = −ib, (24)
q̇sp = isp, (25)
q̇s = is. (26)

It is of interest to predict the end-of-discharge as defined by
a voltage threshold VEOD (16 V, in this example). So, CEOL

consists of only one constraint:

c1 : V > VEOD. (27)
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The parameters of the battery model are assumed to be deter-
ministic and are shown in Table 1. If the parameters are un-
certain, and described through probability distributions, then
parameter uncertainty can also be easily included, as indi-
cated in Fig. 2.

In Table 1, all voltages are measured in Volts, resistances are
measured in Ohms, charges are measured in Coulombs, and
capacitances are measured in Coulombs per Volt (or Farads).
Note that Cb0 , Cb1 , Cb2 , and Cb3 are simply fitting parameters
in Eq. 18 and do not have physical meaning.

Table 1. Battery Model Parameters

Parameter Value Unit
Cb0 19.80 Farad (F)
Cb1 1745.00 Farad (F)
Cb2 −1.50 Farad (F)
Cb3 −200.20 Farad (F)
Rs 0.0067 Ohm (Ω)
Cs 115.28 Farad (F)
Rp 1× 104 Ohm (Ω)
Csp 316.69 Farad (F)
Rsp0 0.0272 Ohm (Ω)
Rsp1 1.087× 10−16 Ohm (Ω)
Rsp2 34.64 (No unit)
qmax 3.11× 104 Coulomb (C)
Cmax 30807 Coulomb (C)

The following sections deal with the different sources of un-
certainty that affect the RUL prediction, and implement the
proposed MPP-based methodology.

5.2. Future Loading Uncertainty

As explained earlier in Section 3, three types of future load-
ing uncertainty are discussed in this paper, and uncertainty
quantification results are presented for each type. In this nu-
merical example, loading refers to the current drawn by the
battery.

1. Type-I: The first type of future loading condition is con-
stant amplitude loading condition. The constant ampli-
tude (in Amps) is considered to be normally distributed
(N(35, 5)), and this distribution is truncated at a speci-
fied lower bound (5.0) and upper bound (80).

2. Type-II: The second type of future loading condition is
white noise, i.e., at every future time instant the load-
ing value is drawn from a particular distribution. In this
paper, the distribution is chosen to be truncated normal
(N(35, 5)) with a specified lower bound (5.0) and up-
per bound (80), and the loading values at multiple time
instants are considered to be independent of each other.
Note that the statistics are identical to that of Type-I load-
ing scenario, but the actual loading trajectory is com-
pletely different.

3. Type-III: The third type of future loading condition is
chosen to be variable amplitude loading with 6 different
segments. The time-length (T ) of each segment is chosen

at random and within each time-segment, the amplitude
is considered to be constant; further, the constant ampli-
tude (I) is also chosen randomly. Therefore, there are
12 random variables each of which is assumed to follow
a truncated normal distribution. This truncated normal
distribution is represented using the mean (µ), standard
deviation (σ), lower bound (l) and upper bound (u) of
random variable, and the statistics of the 12 random vari-
ables are tabulated in Table 2. The six segments in Ta-
ble 2 correspond to multiple flight segments such as take-
off, climb, cruise, landing, etc. Note that the statistics for
the amplitude are identical to that of Type-I and Type-II
loading, but the actual loading trajectory is completely
different.

Such statistics are chosen in order to enable comparison be-
tween the three types of loading condition; since the actual
amplitudes are similar, it is expected that that overall uncer-
tainty in RUL prediction for each loading scenario should not
be wholly different from another.

Table 2. Variable Amplitude Loading: Statistics

Segment Iµ Iσ Il Iu Tµ Tσ Tl Tu
I 35 5 5 80 60 10 50 75
II 35 5 5 80 120 10 90 140
III 35 5 5 80 90 10 70 115
IV 35 5 5 80 120 10 100 145
V 35 5 5 80 90 10 75 120
VI 35 5 5 80 60 10 40 80

5.3. Process Noise Uncertainty

At any time instant, there are three states, and hence three pro-
cess noise terms. Typically, the statistics of process noise are
calculated as a result of the parameter estimationg procedure.
In this study, all the three process noise terms were deter-
mined to have zero mean and variances equal to 1, 1 × 10−4,
and 1 × 10−6 respectively. For the sake of illustration, it is
assumed that the three process noise terms are statistically in-
dependent, and further, these process noise values at two dif-
ferent time instants are also statistically independent of each
other. In this case, it can be shown that, if the true distribution
of the process noise follows a normal distribution with mean
0 and standard deviation σ, then the equivalent time-invariant
process noise follows a normal distribution with mean 0 and
standard deviation σ√

R
, where R is the remaining useful life

prediction calculated using G.

5.4. State Uncertainty

Typically, the state estimation, which is an inverse problem,
is addressed using a filtering technique that can continuously
estimate the uncertainty in the state when measurements are
continuously available as a function of time. In this paper, the
focus is on prognostic uncertainty, and the state estimation is
not explicitly carried out. The state values are assumed to be
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available, and the uncertainty in the states are predetermined
based on the authors’ past experiences with the use of filter-
ing techniques for the above described problem. There are
three state variables ((1) charge in Cb; (2) charge in Csp; and
(3) charge in Cs) in this example and at any time instant, they
are assumed to be normally distributed with a specified mean.
First, the mean of the initial states are chosen to be 3.1×104,
0, and 0 respectively, and the mean values of the states at other
time instants are provided in Fig. 8—10. The standard devia-
tion of the states is chosen to 0.1 times the mean of the states;
if the mean is zero, then the standard deviation is chosen to
be equal to 0.1.
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Figure 8. State No. 1: Charge in Cb
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Figure 9. State No. 2: Charge in Csp
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Figure 10. State No. 3: Charge in Cs

5.5. Prognostics Uncertainty Quantification

The results of prognostics uncertainty quantification are dis-
cussed in this section. As explained through Fig. 2, the afore-
mentioned sources of uncertainty affect future state predic-
tion and therefore, the remaining useful life prediction. The
proposed MPP-based methodology is used to calculate the
uncertainty in RUL, and the 90% probability bounds (esti-
mated by repeating the iterative algorithm for η = 0.05 and
η = 0.95) of RUL corresponding to the three different load-
ing types are plotted in Fig. 11—13.
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Figure 11. Type-I Loading: 90% Bounds of RUL
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Figure 12. Type-II Loading: 90% Bounds of RUL
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Figure 13. Type-III Loading: 90% Bounds of RUL

Note that the uncertainty is high at initial time instants, and
then gradually decreases near the end-of-life of the battery.
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Initially, the uncertainty in RUL is high because it is neces-
sary to predict at a farther time instant; future loading and the
associated uncertainty need to be considered for a longer pe-
riod of time. However, at a latter time instant, future loading
needs to be assumed for a reduced period of time and hence,
the uncertainty in the RUL decreases. In fact, any good prog-
nostic algorithm should depict this behavior, i.e., the predic-
tion of RUL at a later time instant must have lower uncertainty
than the prediction at an earlier time instant. From Fig. 11 -
13, it can be seen that the uncertainty in the RUL prediction is
similar for three loading cases; particularly, the uncertainty in
the case of Type-III loading was observed to be significantly
smaller than the other two loading scenarios. For example,
the 90% RUL bounds for Type-I, Type-II, and Type-III load-
ing scenarios at the initial time instant (tP = 0 seconds) are
[586 1137], [593 1154], and [667 967] respectively. Further,
in this example, the RUL prediction was found to be the most
sensitive to the first state variable, i.e., charge in Cb. That is
why the RUL prediction in Fig. 11 - 13 is similar to the state
evolution in Fig. 8.

For the sake of verification, the computation of RUL was also
performed using Monte Carlo sampling and the solutions in
Fig. 11—13 were compared. While Fig. 11—13 show the
RUL values corresponding to η = 0.05, η = 0.50, and
η = 0.95, all computations were actually peformed for 13
different η values (0.01, 0.05, 0.1, 0.2 ... 0.9, 0.95, 0.99) in or-
der to construct the entire CDF of RUL. This CDF was com-
pared with the Monte Carlo estimate and the solution from
the proposed method was in good agreement with the Monte
Carlo estimate. For example, the comparison between Monte
Carlo sampling and MPP-based method in the case of the
three loading scenarios (at selected time instants) is shown in
Fig. 14—16. As seen from these figures, the error in the pro-
posed methodology is very small, with respect to the Monte
Carlo solution. Further, while the Monte Carlo solution re-
quired thousand evaluations of G, the proposed MPP-based
method required much fewer evaluations. The precise num-
ber of evaluations for the MPP-based method depends on the
selected number of η values and dimension of X; typically,
favourable results are obtained by using about one-tenth of
the number of samples required for Monte Carlo sampling.
Considering that the proposed method requires much less
computational power than Monte Carlo, and that it may be
computationally infeasible to perform Monte Carlo sampling
at every time instant, it is evident that the MPP-based proce-
dure provides a good alternative for uncertainty quantification
in prognostics.

6. CONCLUSION

This paper presented a new computational methodology for
quantifying uncertainty in prognostics, in the context of
condition-based monitoring. First, a model-based computa-
tional framework for prognostics was discussed, and the dif-
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Figure 14. Comparison at Time = 400 s: Type-I Loading
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Figure 15. Comparison at Initial Time: Type-II Loading

ferent sources of uncertainty were analyzed in the context
of this framework. It was demonstrated that the problem
of quantifying uncertainty in prognostics and predicting the
end-of-life can be posed as an uncertainty propagation prob-
lem. An analytical methodology, based on the Most Proba-
ble Point (MPP) concept, was proposed to estimate the un-
certainty in end-of-life prediction and thereby the remaining
useful life prediction. The Most Probable Point concept was
originally developed by structural engineers to compute the
failure probability of structural engineering applications, and
in this paper, this approach has been extended to quantify
prognostics uncertainty.

Further, different types of future loading conditions were dis-
cussed for prognostics, and it was explained that the overall
prediction methodology may need to be adapted to suit each
type of loading condition. In this paper, uncertainty quantifi-
cation methodology was developed for three types of load-
ing conditions: constant amplitude loading, Gaussian white
noise loading, and variable amplitude loading, and demon-
strated using a numerical example of a battery used to power
an unmanned aerial vehicle. In this paper, it was assumed
that the information regarding future loading uncertainty was
available. Future work may address the characterization of
future loading uncertainty based on possible maneuvers and
trajectories, and characterization of model uncertainty. Fur-
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Figure 16. Comparison at Initial Time: Type-III Loading

ther, the applicability of the proposed methodology may also
be investigated to practical situations where the probability
distribution of the remaining useful life prediction may be
multi-modal in nature.
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ABSTRACT

In this work, a prognostics framework to predict the evolu-
tion of damage in fiber-reinforced composites materials un-
der fatigue loads is proposed. The assessment of internal
damage thresholds is a challenge for fatigue prognostics in
composites due to inherent uncertainties, existence of mul-
tiple damage modes, and their complex interactions. Our
framework, considers predicting the balance of release strain
energies from competing damage modes to establish a refer-
ence threshold for prognostics. The approach is demonstrated
on data collected from a run-to-failure tension-tension fa-
tigue experiment measuring the evolution of fatigue damage
in carbon-fiber-reinforced polymer (CFRP) cross-ply lami-
nates. Results are presented for the prediction of expected
degradation by micro-cracks for a given panel with the asso-
ciated uncertainty estimates.

1. INTRODUCTION

Composites are high-performance materials with a wide
range of engineering applications like aerospace, automo-
tive, and construction because of their high specific stiffness
and strength in relation to their weight. Most of these ap-
plications involve components subject to cyclic loadings that
make them susceptible to fatigue degradation. Unlike met-
als, fatigue damage degradation in composites is a complex
multi-scale process driven by several internal fracture mech-
anisms such as matrix-cracks, local and global delaminations,
fiber breakage, etc. The progression of these damage modes

Juan Chiachı́o et.al. This is an open-access article distributed under the terms
of the Creative Commons Attribution 3.0 United States License, which per-
mits unrestricted use, distribution, and reproduction in any medium, provided
the original author and source are credited.

and their interactions are significantly influenced by the ma-
terial properties, stacking sequence, stress level and other
loading conditions (Reifsnider & Talug, 1980; R. D. Jami-
son, Schulte, Reifsnider, & Stinchcomb, 1984; Beaumont,
Dimant, & Shercliff, 2006). Among them, transverse matrix
cracking1 holds a central position as a precursor of other dam-
age modes in adjacent plies, such us local delaminations2 and
fiber breakage (Lee, Allen, & Harris, 1989; Beaumont et al.,
2006). It is generally accepted that the matrix crack density in
off-axis plies tends asymptotically to an upper bounded value
corresponding to a spacing of aspect ratio unity3, termed
as Characteristic Damage State (CDS) (Reifsnider & Talug,
1980). This state is usually concomitant with more severe
damage scenarios that may lead to a subsequent catastrophic
failure.

In addition to the CDS, damage progression may exceed
other “subcritical damage states” before ultimate failure, cor-
responding for instance with the onset of local delaminations
or global delaminations respectively. These damage states de-
fine tolerance limits that can be used as thresholds for prog-
nostics. However, establishing a deterministic damage pro-
gression path to these subcritical states is not an easy task
because of the uncertainties in the growth and interactions of
internal fracture modes. It is exactly in this context, where the
benefits of the proposed prognostic framework can be fully
exploited to deal with the uncertainty of the damage accumu-
lation process during fatigue conditions. This framework al-

1The terms matrix micro-cracks, transverse cracks or intralaminar cracks can
be invariably used to refer to the cracks growing along fiber directions in
off-axis plies.

2Local delaminations are small inter-laminar fractures growing from the tips
of matrix cracks.

3Ratio between average crack spacing (2l) and ply thickness, t.
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lows us to sequentially update the information about the exist-
ing damage modes by fusing probabilistic information from
sensors and models and, ultimately, redefining the path to the
subsequent subcritical damage states.

Prognostics is concerned with determining the health of sys-
tem components and making end of life (EOL) predictions
based on meeting specific critical thresholds, given an evo-
lutionary damage model. As with diagnostics, prognostics
methods are typically categorized as either model-based or
data-driven, depending on whether the damage evolution
model is based on physical first principles, or, alternatively
uses run-to-failure data to capture trends of degradation. In
the recent decades, a large number of articles have been re-
ported to cover data-driven approaches for damage evolution
under the topics of stochastic modeling of fatigue damage
growth for several applications (Wu & Ni, 2004). First at-
tempts involve modeling the damage evolution as a Markov
process (Lin & Yang, 1983). Rowatt and Spanos (1998);
Ganesan (2000); Wei, Johnson, and Haj-Ali (2010) pro-
posed Markov chain models to describe the progression of
fatigue degradation in composites from laminate compliance
measurements, as an extension of the pioneering work of
Bogdanoff and Kozin (1985). More recently Chiachio, Chi-
achio, and Rus (2011) proposed an enhancement of (Rowatt
& Spanos, 1998) by a model parameterization that allows ac-
counting for the non-stationarity of the damage process.

On the other hand, model-based approaches provide EOL es-
timates that are more accurate and precise than data-driven
approaches, if good models are available (M. Daigle &
Goebel, 2010). Specifically, these models have the ability
to adapt to different systems (specimen, materials, condi-
tions, etc.) without much training, they are transparent to
human understanding, and furthermore, they can incorporate
monitoring data in a Structural Health Monitoring (SHM)
context. Particularly in composites, where multiple fracture
modes may co-exist, a model-based prognostics framework
allows dynamically assessing the dominant damage mode and
establishing the thresholds of each of the competing damage
modes, by means of a comparison of the energy spent by each
single mode (Nairn & Hu, 1992).

In this work, a model-based prognostic framework is formu-
lated to predict in real time the accumulation of damage in
composites under fatigue conditions. A tension-tension fa-
tigue experiment in a cross-ply CFRP laminate is used for
case study, measuring the evolution of matrix-cracks den-
sity. Damage thresholds for remaining useful life (RUL) pre-
diction are sequentially updated by means of a model parame-
terization of the energy release rate due to microcracking. To
this end, a particle filter algorithm (Arulampalam, Maskell,
Gordon, & Clapp, 2002; Cappé, Godsill, & Moulines, 2007),
is used for the joint state-parameter sequential estimation.

The rest of the paper is organized as follows. Section 2 de-

scribes the model of damage propagation and introduces the
basis for establishing damage thresholds based on energy re-
lease. The transformation of the physics-based evolutionary
model into a probabilistic state space model is covered in Sec-
tion 3. Section 4 formally defines the prognostics problem
and describes the algorithmic architecture. Section 5 presents
the demonstration of the approach on real data of fatigue con-
sidering a cross-ply CFRP laminate. Finally, some conclud-
ing remarks are presented in Section 6.

2. DAMAGE PROPAGATION MODELS

Behind the versatility of the Markov chain models and other
stochastic models for fatigue damage evolution, their lack of
physical meaning has been the main source of criticism. In-
stead, the Paris’ law4 (Paris, Gomez, & Anderson, 1961),
which relates the crack growth rate to the range in applied
stress intensity factor, has been widely used for being bet-
ter associated with the physics of the damage growth process.
However in contrast to metals, there is no observation of a sin-
gle crack growth in composites under fatigue loadings but a
densification of multiple interlaminar and intralaminar micro-
cracks. The crack tip stress intensity factor is therefore mean-
ingless, instead, the range in microcracking energy release
rate (∆G) can be incorporated within the “traditional” power
law formulation, leading to the modified Paris’ Law (Nairn &
Hu, 1992):

dρ
dn

= A(∆G)α (1)

In the equation above, ρ is the crack density which increases
with the fatigue cycles n, and A and α are fitting parame-
ters. The energy release rate ∆G represents the energy re-
leased due to the formation of a new crack between two ex-
isting cracks for a specific stress amplitude: ∆G = G|σmax−
G|σmin . This energy is intimately connected with the effective
laminate stiffness, i.e. the stiffness due to the current damage
state, which requires a number of theoretical assumptions to
be made for composite materials and needs the hard to get
information about the geometrical crack pattern per ply, dam-
age extension, etc (Talreja & Singh, 2012). See the next sec-
tion for further information. It follows that analytical expres-
sions for ∆G are quiet complex, hence a closed-form solution
for the modified Paris’ Law is difficult to obtain. To overcome
this drawback, the resulting differential equation is solved by
approximating the derivative by finite differences as:

∆ρ

∆n
=
ρn − ρn−1

1
= A (∆G(ρn−1))

α (2)

hence
ρn = ρn−1 +A (∆G(ρn−1))

α (3)

4 dl
dn = A(∆K)α, where l: crack length, A and α: fitting parameters, and
∆K: stress intensity factor.
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2.1. Energy release rate

Several families of models can be found in the composites
literature addressing the relation between the (macro-scale)
effective stiffness E, and the (micro-scale) matrix-crack den-
sity ρ, which essentially forms the basis for the underlying
physics behind the energy release rate, ∆G. Therefore, there
is a closed connection between micro-scale damage prop-
agation models (i.e., the modified Paris’ Law) and macro-
scale stiffness models. These models are generally classi-
fied as 1) computational methods, 2) semi-analytical meth-
ods and 3) analytical methods. The recent work of Talreja
and Singh (2012) provides a thorough review on this topic.
The computational models are mostly based on the finite ele-
ment method (FEM), the finite difference method (FDM), and
the boundary element method (BEM). In all these models, a
homogenization approach is needed to incorporate the micro-
structure of damage within the formulation of the numerical
element, which requires several assumptions to be adopted.
The main drawback of this kind of models from the prog-
nostic point of view, is that they are very demanding compu-
tationally. Surrogate models may alleviate that problem by
adopting data-driven techniques but are beyond the scope of
this work. The aim of semi-analytical methods relies on im-
proving the numerical predictions of the former by means of
adding experimentally-fitted parameters, or by using numeri-
cal expansion of some of the model coefficients (Aboudi, Lee,
& Herakovich, 1988; Lee & Hong, 1993). However, these ap-
proaches are mostly extensions of the previously developed
ideas (Talreja & Singh, 2012), and also, the computational
cost is still high. The details of these methods are not relevant
to the discussions in this paper and the readers are referred to
the cited articles and in particular to the critical review pro-
vided in Talreja and Singh (2012) and Talreja (2008).

The analytical models are expressed through closed-form re-
lations grounded in the physics of the stress-strain relation-
ships in the presence of damage. Some assumptions about
damage distribution are used such as crack pattern, inter-
action between plies and the presence of local delamina-
tion among others. Depending on the level of assumptions,
the body of literature classifies them into shear-lag models
(1D), variational models (2D), and crack opening displace-
ment models (3D). Among them the variational models are
presumably the most referred ones in the literature, because
of their efficiency in accounting for the complexity of damage
in relation to the assumptions adopted, compared to the rest
of cited analytical models. Additionally, this class of models
allows considering the interaction between different damage
modes, such as matrix cracks, local and global delaminations.
Therefore, they are adopted in this work to study the energy
release rate term in the Paris’ Law, ∆G.

Originally proposed by Hashin (1985), these models estab-
lish the relationship between stresses and strains consider-

ing a two-dimensional damage pattern of matrix cracks, local
delamination, and global delamination (Nairn & Hu, 1992).
The released energy is further obtained by integrating the
stresses and strains fields over the laminate volume. Equa-
tions 4a and 4b provide analytical expressions for the energy
release rate for (a) the formation of a new microcrack between
two cracks separated an average dimensionless distance of l̄,
and (b) the growth of local delamination with a dimension-
less length δ between two existing microcracks separated by
a distance l̄.

∆GTC = C3t90

(
E

(90)
x

E0
∆σ0

)2 (
2χ (l̄/2)− χ

(
l̄
))

(4a)

∆GLD = C3t90

(
E

(90)
x

E0
∆σ0

)2(
χ′(0)− χ′(l̄ − δ)

2

)

(4b)

For the case of global delamination, the model for the energy
release rate is adopted from Nairn and Hu (1992) and (Hosoi,
Takamura, Sato, & Kawada, 2011):

∆GGD = h

(
∆σ0

Eeff

)2 (
E(center)
x − E(edge)

x

)
(5)

See a detailed description of all the terms in these equations
in the Nomenclature section. The functions χ, χ′ and C3 are
defined in the Appendix. Notice that ∆GLD depends on the
magnitude (l̄ − δ), which expresses the separation between
the tips of two growing delaminations starting from the tips of
the matrix micro-cracks. Without lack of generality, thermal
stresses are not considered in Eq. 4 and 5, given that the data
used in this paper were collected in a temperature controlled
environment.

2.2. Competing damage modes

Due to the dependency upon the laminate stacking sequence,
ply properties and experimental conditions for the damage
progression, an energy-based framework is used to establish
thresholds of damage without much previous experimental
evidences. Matrix microcracks are the most plausible dam-
age mode in the first stages of fatigue damage for angle-ply,
quasi-isotropic and cross-ply laminates (R. Jamison, 1985).
Hence, we focus on predicting the saturation of matrix micro-
cracks and the onset of the subsequent damage mode, which
is a priori unknown.

Based on a balance of energies between different plausible
damage modes by Eq. 4 and 5, one can address the question
of whether the next increment in damage will be through an-
other transverse crack or a different damage mode (i.e., local
delamination, global delamination, etc) induced by the exist-
ing microcracks (Nairn & Hu, 1992). Figure 1 illustrates this
concept through a case study for a cross-ply laminate. See the
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Table 1. Ply properties used in the calculations.

Long. Modulus Trans. Modulus In-plane Poisson Out-of-plane Poisson Shear modulus Out-of-plane-Shear modulus Thickness
Ex [GPa] Ey [GPa] νxy νyz Gxy [GPa] Gyz [GPa] t [mm]
137.5 8.4 0.309 0.5 6.2 3.092 0.132

material parameters used for this exercise in Table 1. Observe
that initially, the energy release for transverse cracks is larger
than the rest of damage modes. Therefore, matrix microc-
racks are expected to accumulate at a faster rate at earlier cy-
cles. Results also show that until the final stage of the process,
the local delamination mode of damage releases more strain
energy than the global delamination mode. Therefore, local
delaminations are expected much earlier than global delami-
nations along the fatigue damage process. These conclusions
agree with the experimental evidence obtained for cross-ply
laminates (R. Jamison, 1985). Observe also that the point
where TC and LD curves intersect defines a critical value for
the matrix-crack density. At this point local delaminations are
more likely to appear than another matrix crack. This point
can be computed from Equation 4b using δ = 0. Another
important reference-point is the intersection of the LD and
GD curves, where local delaminations are supposed to cease
starting a global delamination process. Notice that global de-
lamination is unlikely to appear since the energy release rate
associated to its growth is too small. Therefore, the required
damage for global delamination onset is so severe, that the
specimen usually fail before that point.

Based on this reasoning, prognostic thresholds can be estab-
lish by predicting the position of these reference points as
the fatigue process continues. It is important to remark that
the energy term ∆G depends on model parameters which are
sequentially updated as new data arrives. Hence, the inter-
section points defining the thresholds dynamically shift their
position until a convergence stage. All these aspects are cov-
ered in the next sections.

3. STOCHASTIC EMBEDDING

Let assume a physical system that may be idealized by an I/O
model as:

xn = g(xn−1,un,θn) + vn (6a)
yn = h(xn) + wn (6b)

where g and h are the state equation and observation equa-
tion, respectively; xn ∈ Rnx is the state vector, un ∈ Rnu
is the input vector and θ ∈ Rnθ is the model parameter vec-
tor. vn and wn are the process noise vector and measure-
ment noise vector, which can be defined5 as zero mean Gaus-

5A rational way to define a probability model for the error term could be
to select it such that it produces the most uncertainty (largest Shannon en-
tropy). The maximum-entropy PDF for an unbounded variable given its
mean and variance is a Gaussian distribution.
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Figure 1. Energy release rate term as a function of the ma-
trix crack density. TC, LD and GD are referring to transverse
cracks, local delamination and global delamination, respec-
tively. The two markers correspond to the points where a
change in the dominant fracture mode is expected.

sians, N (0, σvn) and N (0, σwn) respectively.

The model g is dependent upon a set θ of model parame-
ters that can be updated to sequentially improve the model
predictability as more experimental data are available. In
this context, standard Sequential Monte Carlo (SMC) meth-
ods (Doucet, De Freitas, & Gordon, 2001) fail and it is neces-
sary to rely on more sophisticated algorithms. Although this
problem is still open in the specific literature (Liu & West,
2001; Storvik, 2002; Kantas, Doucet, Singh, & Maciejowski,
2009; Patwardhan, Narasimhan, Jagadeesan, Gopaluni, &
Shah, 2012), here we choose the “artificial dynamics” ap-
proach (Liu & West, 2001) due to its pragmatism and sim-
plicity, by which model parameters performs a random walk
by introducing a small (and decreasing with n) artificial noise
term, ξn, as:

θn = θn−1 + ξn (7)

To sequentially reduce the variance of this artificial error se-
quence ξn, there are many alternative methods (Kantas et al.,
2009), however the recent method proposed by (M. Daigle &
Goebel, 2010; M. J. Daigle & Goebel, 2013) is chosen by its
efficiency. In our problem, the damage state variable is de-
fined as: xn = ρn, where ρn is the matrix crack density at

4
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cycle n, i.e, ρn = 1/2ln, being ln the half-separation between
cracks at cycle n, expressed in millimeters. Hence Eq. 6 can
be rewritten as:

ρn = g(ρn−1,un,θn) + vn (8a)
ρ̂n = ρn + wn (8b)

where g(ρn−1,un,θn) is the modified Paris’ law. Given that
for a particular cycle n the error term vn is a Gaussian PDF,
the probability model for the state transition equation (Eq. 8a)
will be also a Gaussian:

p(ρn|ρn−1,un,θn) = N (g(ρn−1,un,θn), σvn) (9a)

Similarly, the expression for measurement equation (8b) and
the artificial evolution of parameters are obtained as follows:

p(ρ̂n|ρn) = N (ρn, σwn) (10a)
p(θn|θn−1) = N (θn−1, ξn) (10b)

Finally, to select the set of most sensitive model parameters θ
among the set of parameters that defines the modified Paris’
law, a global sensitivity analysis was done following the
methodology proposed by (Saltelli et al., 2008). By means
of this study, the ply properties {Ex, Ey, t} together with the
Paris’ law fitting parameters {A,α} emerged as the key pa-
rameters in terms of model output uncertainty. Then the set
of updatable parameters was defined by adding the standard
deviation of the model error and measurement error to the last
choice, i.e., θ = {A,α,Ex, Ey, t, σv, σw}. The rest mechan-
ical and geometrical parameters act as static non-updatable
input parameters, i.e., u = {σ0, B,Gxy, Gyz, νxy, νyz}.

4. DAMAGE PROGNOSTICS

For predicting remaining useful life (RUL) of a compos-
ite structure, we are interested in predicting the time when
the damage grows beyond a predefined acceptable thresh-
old (Saxena, Celaya, Saha, Saha, & Goebel, 2010). The
time at which it occurs is known as the expected end of
life (EOL). Using the most current knowledge of the system
state at cycle n estimated by particle filters (Eq. 11), the goal
now is to estimate the EOLn, as probability: p(EOLn|yn).
The particle filter computes the joint state-parameter distribu-
tion p(ρn,θn|yn,un), which can be approximated by a set of
N discrete weighted particles, {

(
ρin,θ

i
n

)
, ωin}Ni=1, as

p(ρn,θn|yn) ≈
N∑

i=1

ωinδ(ρn − ρin)δ(θn − θin) (11)

In our problem, we consider a sequence of measurements,
yn = ρ̂0:n, where ρ̂0:n = {ρ̂0, ρ̂1, . . . , ρ̂n}. Hence, Eq. 11
can be rewritten as:

p(ρn,θn|ρ̂0:n) ≈
N∑

i=1

ωinδ(ρn − ρin)δ(θn − θin) (12)

For simpler notation the conditioning on the model input un
is dropped from Eq. 11. Applying Bayes’ Theorem, the im-
portance weights ωin can be updated as:

ωin ∝ p(ρ̂n|ρn)ωin−1 (13)

Here we assume that the system model is Markovian of order
one and that the observations are conditionally independents
of the state. To this end, we use the sampling importance
resampling (SIR) particle filter, using systematic resampling
(M. Daigle & Goebel, 2010).

4.1. Prognostics threshold

The damage space itself may be defined by means of a set
of thresholds C = {C1, . . . , Cc} on more than one critical
parameters. In such cases, these thresholds can be com-
bined into a threshold function TEOL = TEOL(ρ,θ), that
maps a given point in the joint state-parameter space to the
Boolean domain {0, 1} (M. Daigle & Goebel, 2011). For
instance, when a given particle i starting from cycle n per-
forms a random walk and hits any of the thresholds in C,
then T iEOL = 1, otherwise T iEOL = 0. The time n′ > n at
which that happens defines the EOLn for that particle. Math-
ematically:

EOLin = inf{n′ ∈ N : n′ > n∧T iEOL(xin′ ,θin′) = 1} (14)

Using the updated weights at the starting time n, a probabilis-
tic estimation of the EOL is given as:

p(EOLn|ρ̂0:n) ≈
N∑

i=1

ωinδ(EOLn − EOLin) (15)

Once EOLn is estimated, the remaining useful life can be
simply obtained as RULn = EOLn − n. An algorithmic
description of the prognostic procedure is provided as Algo-
rithm 1.

Algorithm 1 RUL prediction

1: Requires: {
(
ρin,θ

i
n

)
, ωin}Ni=1, C = {C1, . . . , Cc}

2: Output: {EOLin, ωin}Ni=1
3: for i = 1→ N do
4: Calculate: T iEOL

(
ρin,θ

i
n

)

5: while T iEOL = 0 do
6: Simulate: θin+1 ∼ p(·|θin); ρin+1 ∼ p(.|ρin,θin+1)
7: n← n+ 1
8:

(
ρin,θ

i
n

)
←
(
ρin+1,θ

i
n+1

)

9: end while
10: EOLin ← n
11: RULin = EOLin − n
12: end for
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5. RESULTS

The proposed framework is applied to fatigue cycling data
for cross-ply graphite-epoxy laminates. Torayca T700G uni-
directional carbon-prepreg material was used for 15.24 [cm] x
25.4 [cm] coupons with dogbone geometry. See the laminate
ply properties in Table 1.

The tests, as reported in (Saxena et al., 2011), were conducted
under load-controlled tension-tension fatigue loading with a
frequency of f = 5 [Hz], a maximum stress of 80% of their
ultimate stress, and a stress ratio R = 0.14. Lamb wave sig-
nals were periodically recorded using a PZT sensor network
to estimate internal micro-crack density. A mapping between
PZT raw data and micro-crack density was developed follow-
ing the methodology proposed in Larrosa and Chang (2012).

Results for sequential damage state estimation and prognos-
tics are presented in Figure 2. Based on the reasoning pro-
vided in Section 2.1, we initially expect for this laminate that
the matrix cracks should saturate around the value of 0.427
[mm]−1 (see Figure 1). Observe in Figure 2a that the thresh-
old of matrix cracks density converges from its initial value
to 0.419 [mm]−1, as model parameters θ are sequentially up-
dated with new data.

Figures 2b shows the filtered-estimation of matrix micro-
cracks together with the sequence of collected data. Every
time new data arrive, a damage magnitude is estimated and
the updated model is further used to propagate the damage
into the future to compute the RUL, calculated as: RULn =
EOLn − n, using the methodology described in Section 4.
These predictions are plotted against time in Figure 2c. Ob-
serve in Figure 2c that the RUL prediction is appreciably in-
accurate within the first stage of fatigue before the threshold
reaches its convergence value. In view of Figure 2a, this stage
corresponds to the interval of cycles required for data to train
model parameters. From this period, the prediction precision
clearly improves with time. We use the two shaded cones of
accuracy at 10% and 20% of true RUL, denoted as RUL∗ to
help evaluating the prediction accuracy and precision. Notice
also in Figure 2a that accuracy seems to depart from true RUL
at the final stage, which indicates that the model and its vari-
ance structure do not fully capture the damage dynamics to-
wards the end. Such behavior have been previously reported
in (Saxena et al., 2010) and may be related with the asymp-
totic behavior of the micro-crack evolution, which requires
more efficient algorithms for prognostics in such cases.

6. CONCLUSIONS

A model-based prognostics framework to predict the fatigue
damage evolution in composites is proposed. We consider
a stochastically embedded modified Paris’ law, as a phe-
nomenological model of damage evolution due to the benefits
of the physical meaning of ∆G for estimating the RUL. We

demonstrate the validity of this framework on data collected
from a tension-tension fatigue experiment using CFRP cross-
ply laminate. The following general concluding remarks are
extracted:

• By means of balance of energies between different dam-
age modes computed by ∆G, the more plausible damage
mode can be elucidate together with the threshold for this
mode.

• Due to the model parameterization, the threshold of dam-
age dynamically changes as new data arrives. Hence this
approach requires an initial period of cycles before the
predictions reach an acceptable accuracy.

• More research effort is need to achieve more efficient
prognostic algorithms to improve the accuracy at the final
stage of the process, where most of the damage modes in
composites typically accumulate in an asymptotic man-
ner.

APPENDIX

The function χ(l̄) in the equations 4a and 4b accounts the
change in the effective x-direction modulus caused by the for-
mation of a new micro-crack midway between two existing
micro-cracks. Expressions for χ(l̄) and its first derivate are
given by:

χ(l̄) = 2α1α2(α2
1 + α2

2)
cosh(2α1 l̄)− cos(2α2 l̄)

α2 sinh(2α1 l̄)− sin(2α2 l̄)

χ′(l̄) = 4α1α2(α2
1 + α2

2)2 sinh(2α1 l̄) sin(2α2 l̄)

α2 sinh(2α1 l̄) + α1 sin(2α2 l̄)
(16a)

χ(l̄) = α1α2(α2
1 − α2

2)
tanh(α2 l̄) tanh(α1 l̄)

α2 tanh(α2 l̄)− α1 tanh(α1 l̄)

χ′(l̄) = α2
1α

2
2(α2

1 − α2
2)

tanh(α2 l̄)

cosh2(α1 l̄)
− tanh(α1 l̄)

cosh2(α2 l̄)(
α2 tanh(α2 l̄)− α1 tanh(α1 l̄)

)2
(17a)

where α1 =

√
−p
2 +

√
p2

4 − q and α2 =

√
−p
2 −

√
p2

4 − q.

The Eq. 16a applies for the case of 4q
p2 > 1. Other-

wise, Eq. 17a should be consider. p and q are relations
of the ply properties and the stacking sequence defined by
p = (C2 − C4)/C3, q = C1/C3. The terms Ci, i : {1, . . . , 4},
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Figure 2. (a): Trace of the threshold value for crack density saturation over cycles. (b): Sequential estate estimation of micro-
crack density by the particle filter. At each cycle n, the estimation is calculated using the data available up to that cycle. (c):
Remaining useful life (RUL) prediction.

are known functions of the laminate properties defined as:

C1 =
1

Ex
+

1

λEy
(18a)

C2 =

(
λ+

2

3

)
νyz
Ey
− λνxy

3Ex
(18b)

C3 = (1 + λ)
(
3λ2 + 12λ+ 8

) 1

60Ey
(18c)

C4 =
1

3

(
1

Gyz
+

λ

Gxy

)
(18d)

The reader is referred to the Nomenclature section for infor-
mation of laminate constants involved in the last equations.
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NOMENCLATURE

h Laminate half-thickness
tS [S] sublaminate thickness
t90 [90n] sublaminate half-thickness

λ Ply thickness ratio λ = t0/t90
l̄ average dimensionless half spacing of cracks, l̄ = l

t90
B Laminate half-width
δ Average local delamination length, δ = d

t90
E90
x Undamaged x-direction [90n] sublaminate modulus

E0 Undamaged laminate Young’s modulus
Eeff Damaged x-direction laminate Young’s modulus
E

(center)
x Damaged Young modulus of sublaminate

from the center side.
E

(edge)
x Damaged Young modulus of sublaminate

from the edge side.
σ0 Applied stress
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ABSTRACT 

Recent progress in development of new functional materials 

that are flexible and can be processed at very low 

temperatures (below 100 °C) opens a new opportunity for 

applications, such as non-destructive evaluation (NDE), or 

structural health monitoring (SHM) by applying active 

materials directly on the structures made out of a variety of 

materials, e.g. metals (aluminium), plastics, and polymers, 

including CFRP (Carbon Fibre Reinforced Polymer). This 

paper presents sensor arrays based on a flexible 

piezoelectric material – PiezoPaint™. The newly developed 

material exhibits relatively high sensitivity (d33 coefficient 

up to 45 pC/N), extremely low processing temperatures (< 

120 °C), and high compliance in the cured state, enabling 

direct deposition of acoustic/vibration sensor arrays on 

structures to be monitored by means of screen- or pad-

printing. The printed sensors have been applied for impact 

detection where four-element arrays and a fully integrated 

wiring system has been deposited directly on aluminium as 

well as CFRP plates. The presented results show very good 

performance in terms of sensitivity, flexibility of usage, and 

ultra-low weight, making PiezoPaint™ technology an 

attractive alternative for SHM particularly in aerospace 

applications. 

1. INTRODUCTION 

With the potential of replacing scheduled maintenance with 

as-needed maintenance, increasing vehicle lifetimes, 

discovering unpredicted damages, and increasing safety, the 

awareness on prognostics and health management has 

increased significantly in recent years (Raghavan & Cesnik 

2007).  

An essential part of prognostics and health management is 

structural health monitoring (SHM) which has been 

extensively studied in recent years (Raghavan & Cesnik 

2007). The SHM field can be divided into two sub fields, 

passive and active SHM. Active SHM involves the use of 

actuators and sensors while passive SHM only applies 

sensors. Different sensing techniques are applied for SHM 

including fiber Bragg gratings, accelerometers and 

piezoelectric transducers (Liu & Nayak, 2012). In 

aerospace,  the most useful SHM techniques are vibration-

based approaches and guided wave based approaches (Liu 

& Nayak, 2012). The biggest challenges for SHM in 

aerospace in particular, are weight, wiring, and space 

availability. 

Ultrasonic techniques are known to be very powerful and 

versatile for non-destructive testing of structural 

components and in the case of plate-like structures they 

generally rely on Lamb waves (Ringgaard, Zawada, 

Porchez, Bencheikh & Claeyssen, 2011). The full ultrasonic 

analysis needed to detect relevant defects is quite complex, 

since the various modes of the Lamb waves are dispersive 

and for example an extensive mode conversion may take 

place at interfaces between the various layers of a sandwich 

composite structure. In recent years the use of composite 

materials based on CFRP (carbon-fibre reinforced polymer) 

has increased dramatically in the aerospace industry. 

CFRP/honeycomb sandwich structures are characterised by 

a very high specific strength and stiffness compared to 

aluminium and other conventional structural materials. An 

additional advantage is that these materials are damage 

tolerant within certain limits (Hillger, Szewieczek, Schmidt, 

Sinapius, Aldave, Bosom, & Gonzalez, 2012). However, 

from the point of view of structural health monitoring, there 

are a number of issues complicating the matter. To begin 

with, such sandwich structures are sensitive to impacts of 

relatively low energy, and furthermore the resulting damage 

in the core is generally much more severe than the skin 

damage. 

Typically, bulk piezoelectric materials are used for 

ultrasound-based NDT and SHM applications, however, 

such an approach has a number of limitations and 

drawbacks, such as high weight of the system, difficulties 

with integration of the sensor system into the structures, low 

compliance, and limited flexibility of application (Schäfer & 
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Janovsky, 2007). There has been an effort to use other 

classes of piezoelectric materials in order to address some of 

the above mentioned challenges, e.g. by using 

polyvinylidene fluoride (PVDF) family materials (Rao, 

Bhat, Murthy, Madhav, & Asokan, 2006). They are 

lightweight and can be applied to large areas. However, 

these polymer materials typically show low piezoelectric 

activity, are difficult to integrate with the structures, and 

pose several practical limitations in terms of wiring and 

processing, such as limited suitability for commercially 

available printing techniques. A noticeable degradation of 

dielectric- and piezoelectric properties of PVDF type films 

with the time, when the film is exposed to elevated 

temperatures (50-60 °C) has also been reported recently by 

Silva, Costa, Sencadas, Paleo, and Lanceros-Méndez 

(2011), which in turn limits the application of such films in 

aerospace industry. 

In this work the functionality of a novel acoustic sensor 

array based on a flexible, printable piezoelectric material 

PiezoPaint
TM

 is demonstrated. PiezoPaint
TM

 technology 

alleviates or completely eliminates the drawbacks of bulk 

impact detection systems such as weight, complicated 

wiring and wave coupling, while offering higher 

piezoelectric response than PVDF. In addition it is 

compatible with commercially available printing techniques 

such as screen-printing and pad-printing. In essence the 

material is a 0-3 composite consisting of PZT particles and a 

polymer matrix. 

In order to illustrate in practise the unique advantages of 

directly printed acoustic sensors the four-element sensor 

array based on PiezoPaint™ printed on an aluminium plate 

has been used for impact detection. A time difference of 

arrival (TDOA) algorithm has been applied for processing. 

Due to the direct integration of the sensors with the structure 

a very good sensitivity has been obtained, enabling accurate 

impact detection together with estimation of the impact 

energy. Kim, DeFrancisci, Chen, Rhymer, Funai, Delaney, 

Fung, Le, & White (2012) work with three sources of 

impacts on aircrafts. Impacts from ground service 

equipment which is usually high energy (10
2
 – 10

3
 J) high 

contact area impacts, high velocity ice e.g. hail impacts at 

in-flight speeds, and low velocity impacts from generic 

sources e.g. dropped equipment. In this study low velocity 

impacts were generated to test the demonstrators. 

Preliminary test results on a CFRP multilayer plate are 

presented as well. 

2. PRINTABLE PIEZOELECTRICS  

In recent years, a number of attempts have been made to 

combine piezoelectric bulk materials and polymers, 

developing ceramic-polymer composite materials (Payo & 

Hale, 2010), however, in most cases such materials 

represent bulk composite materials that are not suitable for 

printing techniques, require high curing temperatures, are 

rigid in a cured state, and therefore cannot be applied to a 

variety of substrates, including CFRPs. 

In order to keep the advantages of both bulk and polymer 

piezoelectric materials a new flexible piezoelectric material, 

PiezoPaint™, has been developed by Meggitt A/S
1
. It has 

been developed primarily with the aim of keeping high 

piezoelectric activity while making it compatible with 

different substrates and structures, including textiles, 

plastics, metals, composites, paper, etc., and the ability to be 

applied to large areas by using commercially available 

printing techniques, including but not limited to pad-, 

screen-, or stencil printing. An important goal that has been 

targeted when developing PiezoPaint™ material was also to 

keep as low a processing temperature as possible, limiting it 

to 120 °C, making the PiezoPaint
TM

 compatible with more 

materials including CFRP. 

PiezoPaint™ represents a composite material that consists 

of an organic vehicle (polymer matrix) and a piezoelectric 

powder, manufactured on the basis of commercially 

available piezoceramic. Typically, hard PZT materials (e.g. 

Meggitt’s Ferroperm™ Piezoceramics Pz24 or Pz26 

piezoceramics) are used for manufacturing PiezoPaint™, 

with a different volume content of the piezoelectric powder 

in the polymer matrix, depending on the final application. 

However, lead-free piezoelectric materials have also been 

demonstrated, showing reasonable performance of 

PiezoPaint™ material, manufactured on the basis of these 

materials (see Table 1).  

Normally, PiezoPaint™ is prepared in the form of a paste, 

which could be applied to a number of different structures 

by using pad-, screen-, and stencil printing techniques. The 

viscosity and overall fluidity of the paste can be adjusted, 

depending on the deposition technique. 

Typical properties of different PiezoPaint™ materials, in 

comparison with PVDF based co-polymer material is shown 

in Table 1. 

Table 1 shows that in comparison with PVDF type co-

polymers, PiezoPaint™ materials exhibit higher 

piezoelectric activity (more sensitive in the case of sensor 

application), have a higher dielectric constant that can be 

tuned (by using different ratio between polymer matrix and 

piezoelectric powder, or by utilizing different type of 

piezoelectric powder with either high or low dielectric 

constant), and can be utilized at higher temperatures. 

As it has already been mentioned above, the properties of 

PiezoPaint™ materials can be tuned, depending on the final 

application, e.g. the dielectric constant or compliance can be 

adjusted to simplify the impedance matching or feasibility 

of integration with different structures, where the sensor on 

the basis of PiezoPaint™ material is to be applied. 

                                                           
1
 Patent pending 
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The microstructure of PiezoPaint™ material screen-printed 

on alumina substrate and silver bottom electrode is shown in 

Figure 1. It is shown that PiezoPaint™ material in a cured 

state has a relatively dense structure, with very low porosity 

and very fine grain structure (comparing with other similar 

composite structures, see e.g. work by Arlt K., and Wegener 

M., (2010)). 

An example of PiezoPaint™ materials deposited onto 

different substrates (polymer, PCB, fabric) by using 

commercial screen printing technique is shown in Figure 2. 

These structures are relatively simple. The PiezoPaint™ is 

sandwiched between the top and the bottom electrodes. The 

electrodes are based on a commercially available silver 

paste that can be applied by using the same printing 

techniques. However, when the material is deposited onto 

very rough substrates such as textile, an additional interface 

layer is necessary. 

 

 

Figure 1. Microstructure (SEM image) of PiezoPaint™ 

material printed on alumina substrate. 

 

 

Figure 2. Examples of PiezoPaint™ materials deposited on 

different substrates: a) – polymer, b) –PCB, and c) – fabric. 

3. SENSOR ARRAYS 

The test structure consists of circular sensors forming a 

square array on an aluminium plate. The sensors have been 

placed at the corners of the plate. The sensor positions can 

be optimized for impact estimation as in (Staszewski, 

Worden, Wardle, & Tomlinson, 2000). However, a simpler 

configuration of the sensors has been chosen as a proof of 

concept approach. By principle only 3 sensors are needed 

for simple triangulation but for this demonstration 4 sensors 

were used. This allows 4 location estimations to be carried 

out for each impact instead of only 1, making the system 

more reliable. 

3.1. Screen Printing 

Screen printing is a well-known pattern transfer technique 

where a viscous medium is pressed through a woven mesh 

with a squeegee to generate a sharp edged pattern. The 

technique is widely used in many branches of industry, e.g. 

fabric printing industry, but it has also found its way into the 

electronics industry (hybrid electronics). In this study screen 

printing was used to print the PiezoPaint
TM

 and the top 

electrodes, forming the structure of the sensor. The basic 

process is shown in Figure 3. 

 

Figure 3. Basic screen printing process. 

 
a) b) c) 

 

Squeegee 

Screen  

Paste 
Screen Mesh 

Substrate 

Table 1. Properties of PiezoPaint
TM

 (PP) materials in 

comparison with piezoelectric polymer material (Omote 

et al, 1997) 

Material PVDF PiezoPaint
TM

PP-50B 

PiezoPaint
TM

PP-50LF 

Type Co-

polymer 

PZT 

Composite 

Lead-Free 

Composite 

ρ, g/cm3 1.8 5.2 < 4 

Top, °C < 90 < 150 < 150 

ε 10 – 12 125 250 

tan δ, % - 3.0 4.0 

d33, pC/N -38 45 25 

 

10 mm 10 mm 10 mm 
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3.2. Fabrication of demonstrator on aluminium plate 

The impact detection demonstrator has been fabricated by 

printing PiezoPaint
TM

 based sensors at the corners of an 

aluminium plate (20 cm x 30 cm x 0.5 cm), 2.5 cm from 

either side. 

The sensors have been made as sandwiched structures with 

the aluminium plate serving as bottom electrode, and a 

commercial silver paste (Dupont Ag 5028) printed on top of 

an active layer serving as the top electrode. The diameters of 

the sensor patches were 12 mm while the top electrode 

diameters were 10 mm making the active transducer 

diameter 10 mm. A cross section of the deposited 

transducers is shown in Figure 4. 

The following procedure has been used to fabricate the 

demonstrator. 

 The PiezoPaint
TM

 has been deposited using a 

commercial screen printer.  

 Dupont Ag 5028 has been deposited on top of the 

PiezoPaint
TM

 patches also using the screen printer. 

 Poling has been carried out using a high electrical field 

(above 1.5. kV/mm) between the top and bottom 

electrode at an elevated temperature (above 60 °C). 

 Wiring has been made at each location using an 

intermediate printed circuit board (PCB), and 

conductive epoxy. 

The demonstrator with the PCB connectors is shown in 

Figure 5. 

 

Figure 4. Cross section view of the PiezoPaint
TM

 sensor. 

 

 

Figure 5. a) The aluminium impact detection demonstrator. 

b) The PCB used to connect the sensor to a coaxial cable. 

4. EXPERIMENTAL PROCEDURE 

To evaluate the functionality of the PiezoPaint
TM

 based 

sensors impact detection experiments have been performed. 

The experiments have been conducted by connecting the 

sensor output signal directly to a four-channel oscilloscope 

(Agilent Infiniium Oscilloscope DSO8064A). Time 

difference of arrival (TDOA) method has been used to 

estimate the impact locations. 

4.1. Test setup 

Impact detection tests were carried out using the setup 

shown in Figure 6 and Figure 7. Each sensor was connected 

to a port of the oscilloscope and the oscilloscope was set to 

take a single waveform acquisition with the trigger set up on 

channel 1. The impact detection location was estimated after 

data collection; however, a continuous impact monitoring is 

possible in real application. In order to control the location 

and the magnitude of the impacts the following setup was 

used. A tube with an array of small holes with 1 cm spacing 

was secured 1 cm above the plate. A pin was used to hold a 

steel ball in place inside the tube. When the pin was released 

the ball dropped at a chosen location from a certain height. 

This setup is shown in Figure 7. The impact energy is 

estimated by calculating the potential energy of the ball at a 

certain height and assuming that half of the energy is 

transferred into the plate at impact, causing deformation and 

propagating waves. 

 

Figure 6. Measurement setup for impact detection 

experiments. 

 

 

Figure 7. Setup for generating controlled impacts in known 

locations. 

 

100 µm 

12 mm 

Aluminium – Bottom electrode 

10 mm 

PZT 

Top electrode 

 
a) b) 

 

Test plate 
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4.2. Time Difference of Arrival 

Time difference of arrival (TDOA) is widely used in source 

localization and finds applications in GPS and cellular 

location (Patwari, Ash, Kyperountas, Hero III, Moses, & 

Correal, 2005). It employs three or more receivers to 

accurately compute the position of an emitter. In this study 

TDOA is used to estimate the location of an impact. An 

impact on any surface generates ultrasonic waves that 

propagate through the medium. The time difference of 

arrival of these waves at the sensor locations can be used to 

estimate the impact location. Knowing the speed of sound in 

the substrate the time differences can be used to calculate 

distance differences Eq. (1). 

       |    |   (1) 

 

Where Δt21 is the time difference of arrival between sensor 1 

and 2, v is the speed of sound in the substrate and Δr21 is the 

difference in distance between the two sensors and the 

impact. 

Eq. (2) shows how the locations of sensor 1, sensor 2 and 

the impact relate to the distance difference.  

|    |  |  |  |  | ⇔  

 |    |   √(      )
  (      )

   

√(      )
  (      )

  (2) 

Where |r1| and |r2| are the distances between the impact and 

sensors 1 and 2 respectively, and x1, y1, x2, y2, xim, yim are the 

x-y components of the sensors and the impact location 

respectively. Depending on the number of applied sensors a 

set of equations like Eq. (2) can be created. These equations 

represent non-linear hyperbolas; however the impact 

locations can be estimated by applying numerical methods 

such as the least-squares method (Yang, An, Xu (2008)). 

Figure 8 shows the distance between the impact and the 

sensor and the hyperbolas represented by Eq. (2). 

 

Figure 8. a) 3 receivers and emitter where r1, r2 and r3 are 

the distances between the emission and the receivers. b) 

Hyperbolas intersect at the emission location marked by the 

red x. 

4.3. Data Analysis 

The TDOA algorithm has been implemented using Octave. 

The program first estimated the arrival times of the 

propagating waves generated by the impact, at the four 

sensor locations. To determine when a wave arrived at a 

sensor a threshold voltage was chosen. The threshold was 

set to 25 % of the maximum amplitude. This threshold value 

was chosen based on the best results from impact 

localization tests. This choice sets a lower limit on the signal 

to noise ratio required to achieve a useable signal. 

    (
       

      
)
 

 ( )      or 

             ( )           

The amplitude of the noise was around 15 mV during the 

measurements which, with a 25 % threshold implied a 

minimum detectable voltage amplitude at the level of 60 

mV. For comparison a 4 g steel ball dropping at the corner 

furthest away from sensor 1 lead to a maximum voltage 

amplitude of 100 mV as shown in Figure 9. This 

corresponds to a signal to noise ratio of 16.48 dB. 

After estimating the time of arrival, the script applied the 

estimated time differences to solve the nonlinear equations 

numerically and plot the estimated locations with the actual 

locations.  

 

Figure 9. The voltage output at sensor one for a 2 cm drop. 

The maximum amplitude is 100 mV. 

4.4. Experimental Results 

4.4.1. Impact Energy 

In order to assess the sensitivity of the printed sensors as 

well as the correlation of the output signal with the impact 

energy a steel ball with a mass of 4 g was dropped from 

fixed heights as close to sensor one as possible without 

landing on top of it. A voltage amplitude reading is shown 

 

Vmax 
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in Figure 10 and the results from various drop heights are 

plotted in Figure 11. 

Figure 11 shows that a linear fit can be made between the 

transferred momentum and the voltage amplitude for this 

specific case with R
2
=0.97. The drop height can also be used 

to estimate the impact energy. 

 

Figure 10. The measured voltage signal (9 cm drop). 

 
Figure 11. Output voltage amplitude as a function of 

transferred momentum. 

4.4.2. Impact Localisation 

In total, 153 impacts were captured across the plate. Results 

from the initial tests are shown in Figure 13. In Table 2 the 

average estimation error as a measure of accuracy is shown. 

More than 90 % of the impacts were located with an error 

smaller than 5 cm. For comparison Schäfer & Janovsky 

(2007) work with an impact location accuracy requirement 

of ~5 cm for hypervelocity impacts on spacecraft. Only 1 

impact was discarded as it was completely off the plate.  

Table 3 shows the error depending on impact positions and 

drop height. From Table 3 it is noted that the accuracy tends 

to depend on the position of the impact. Along the bottom 

edge of the plate (b in Figure 12) the location estimation is 

less accurate. Drop height does not seem to affect the 

accuracy in this specific case. However, the sample size is 

small and all impact velocities can be considered low (Kim, 

H. et al., (2012)).  

The results bode well for future application, and with 

optimization of the impact estimation algorithms it is 

believed that the errors can be reduced significantly.  

 

 

Figure 12. Impact positions used in the drop tests. 

 

Voltage amplitude 

reading 

 

Lin. Reg. 

Data 

       

R
2
=0.97 

a 

b 

c 

Table 3. Accuracy of impact location estimations 

depending on drop height and impact positions. Impact 

positions are illustrated in Figure 12. “Forced” means 

the plate was hit by hand with the steel ball. 

 

Positions Drop 

Height 

[cm] 

Error < 5 

cm [%] 

Error < 7 

cm [%] 

Along line a 3 96  (23/24) 100  (24/24) 

Along line b 3 93  (13/14) 93    (13/14) 

Along line c 3 86  (12/14) 100  (14/14) 

Along line a 7 92  (22/24) 100  (24/24) 

Along line b 7 86  (12/14) 86    (12/14) 

Along line c 7 86  (12/14) 100  (14/14) 

Along line a 15 96  (23/24) 100  (24/24) 

Random 15 88  (15/17) 94    (16/17) 

Random Forced 75  (6/8) 100  (8/8) 

 

Table 2. Accuracy of impact location estimations. 

 

 
Error 

<5 cm 

Error 

<7.5 cm 

Error 

<10 cm 

Error 

<12.5 cm 
 All 

# 138 149 151 153 153 

% 90.2 97.4 98.9 99.3 100 
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Figure 13. Results from impact localisation of random 

forced impacts. The dotted cylinders indicate which actual –

and estimated location pairs belong together. 

4.4.3. CFRP - Preliminary Results 

In addition to the aluminium demonstrator a CFRP impact 

detection demonstrator has been fabricated. The composite 

plate (40 cm x 40 cm x 1.35 cm) consists of an anti-

symmetric honeycomb sandwich structure with a skin 

thickness of 1 mm and 0.5 mm respectively, and an 

integrated bronze mesh for lightning protection. 

The sensor size and placements are shown in Figure 14. The 

sensors are placed in the corners of the CFRP plate 4 cm 

from each side. Instead of connecting at each sensor node 

electrical connections were painted with Dupont Ag 5028, 

and wiring was done at a single location as shown in Figure 

14. The setup for preliminary impact location tests is shown 

in Figure 14. Tests have been carried out similarly to the 

tests of the aluminium demonstrator.  

The preliminary results based on 14 impacts with the light 

hammer are listed in Table 4 and an example of an impact 

localisation is shown in Figure 15. 

Near-future work with this includes energy estimation and 

the effect on localisation accuracy, effect of impact surface, 

and effect of impact position on accuracy. 

 
Figure 14. Setup for impact testing on the CFRP plate.  

 

 

 
Figure 15. Location estimation on the CFRP plate. The 

dotted cylinders indicate which actual –and estimated 

location pairs belong together. 

5. DISCUSSION 

For an impact detection system to be a viable SHM solution 

energy estimation is critical. It will enable the system to 

supply the users with information on the damage extent after 

impacts, and whether maintenance is needed. 

In this study it was shown that the energy can be estimated 

when the impacts are from a 4 g steel ball at low velocities. 

However, different geometries and material properties of the 

impacting objects will influence the generated waves, and 

thereby the estimated energy.  

Thorough studies of impacts from plausible objects and 

materials e.g. hail, are needed, and should be held up to 

studies of the damages generated in composites from 

impacts. 

6. CONCLUSIONS 

 A sensor array based on PiezoPaint™ technology has 

been successfully developed and demonstrated. 

 The sensor system has been directly deposited on 

aluminium as well as CFRP honeycomb structure, 

overcoming the typical problems of sensor integration.  

 Due to the high sensitivity of the piezoelectric material 

as well a as the direct contact between the sensing 

material and the structure the measured output voltage 

 

Actual Location 

Estimated Location 

x 

 

Actual  

Location 

Estimated  

location 

x 

Table 4. Accuracy of impact localisation on CFRP 

based on the preliminary tests. 

 

 Error < 2.5 cm Error < 5 cm All 

# 5 14 14 

% 35.7 100 100 
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signal is relatively strong (in the range of volts) and can 

be directly used for impact detection and localisation 

without additional signal conditioning.  

 According to the experimental data the average 

detection error was not exceeding 5 cm in the case of an 

aluminium plate of 20 cm x 30 cm x 0.5 cm and a 4 g 

steel ball.  

 The near–linear dependence of the maximal signal 

amplitude on the transferred momentum suggests that 

the printed sensor array can be successfully applied in 

impact energy estimation, as well.  

 Printing of the whole wiring system is a natural 

extension of the presented technology. The preliminary 

tests of CFRP sensor array with printed conductors 

show very good performance. 

 It has been shown that the weight and the complexity of 

SHM system based on acoustical sensors can be 

significantly reduced by using printed piezoelectric 

material (PiezoPaint™), while keeping the high 

sensitivity of the sensors. 
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ABSTRACT

Unmanned aerial systems (UASs) can only be deployed if
they can effectively complete their missions and respond to
failures and uncertain environmental conditions while main-
taining safety with respect to other aircraft as well as hu-
mans and property on the ground. In this paper, we design
a real-time, on-board system health management (SHM) ca-
pability to continuously monitor sensors, software, and hard-
ware components for detection and diagnosis of failures and
violations of safety or performance rules during the flight
of a UAS. Our approach to SHM is three-pronged, provid-
ing: (1) real-time monitoring of sensor and/or software sig-
nals; (2) signal analysis, preprocessing, and advanced on-
the-fly temporal and Bayesian probabilistic fault diagnosis;
(3) an unobtrusive, lightweight, read-only, low-power real-
ization using Field Programmable Gate Arrays (FPGAs) that
avoids overburdening limited computing resources or cost-
ly re-certification of flight software due to instrumentation.

Johann Schumann et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

Our implementation provides a novel approach of combin-
ing modular building blocks, integrating responsive runtime
monitoring of temporal logic system safety requirements with
model-based diagnosis and Bayesian network-based proba-
bilistic analysis. We demonstrate this approach using actual
data from the NASA Swift UAS, an experimental all-electric
aircraft.

1. INTRODUCTION

Modern unmanned aerial systems (UASs) are highly com-
plex pieces of machinery combining mechanical and electri-
cal subsystems with complex software systems and controls,
such as the autopilot. Rigorous requirements for safety, both
in the air and on the ground, must be met so as to avoid endan-
gering other aircraft, people, or property. Even after thor-
ough pre-flight certification, mission-time diagnostics and
prognostics capabilities are required to react to unforesee-
able events during operation. In case of problems and faults
in components, sensors, or the flight software, the on-board
diagnosis capability must be able to detect and diagnose the
failure(s) and respond in a timely manner, possibly by trigger-
ing mitigation actions. These actions can range from a simple

1
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mode change to following a pre-programmed flight path (in
case of minor problems, such as a lost communications link)
to a controlled emergency landing in a remote and safe area
(in case of more severe problems).

Most current UAS systems, however, only have very rudi-
mentary fault detection systems. There is a need for advanced
health management systems that, in case of anomalies, can
quickly and reliably pinpoint failures, carry out accurate diag-
nosis of unexpected scenarios, and, based upon the deter-
mined root causes, make informed decisions that maximize
capabilities to meet mission objectives while maintaining
safety requirements and avoiding safety hazards.

In this paper, we describe a novel framework for the design
and realization of a powerful, real-time, on-board sensor and
software health management system that can (a) dynamically
monitor a multitude of sensor and software signals; (b) per-
form substantial reasoning for fault diagnosis; and (c) avoid
interfering in any way with the flight software or hardware or
impeding on scarce on-board computing resources.

To this end, we have developed a three-pronged approach that
combines the capabilities of temporal logic runtime moni-
tors, model-based analysis, and powerful probabilistic rea-
soning using Bayesian networks (BNs) (Pearl, 1988; Dar-
wiche, 2009). Models are designed using a number of dif-
ferent building blocks for advanced temporal monitoring,
model-based filtering, signal processing, prognostics, and
Bayesian reasoning. Figure 1 shows a high-level represen-
tation of such a model. In this example, raw sensor or soft-
ware signals are first fed into a smoothing block to weed out
sensor noise. Then, one signal is fed into a temporal moni-
tor, which produces a value indicating whether the temporal
formula is valid, not valid, or unknown at this point in time.
The other signal is fed as a measurement into a Kalman filter.
The outputs of both blocks are fed into a Bayesian network
block, which performs statistical reasoning and produces pos-
terior probabilities of a fault mode (see also Mengshoel et al.,
2008; Ricks & Mengshoel, 2009a, 2009b, 2010; Mengshoel
et al., 2010).

The simple example in Figure 1 shows how an SHM capabil-
ity can be constructed in a scalable, modular, and hierarchi-
cal manner and highlights the potential benefit of our three-
pronged approach. It separates temporal properties, model-
specific properties, and the (time and memory-free) proba-
bilistic reasoning into separate components that are easy to
model and efficient to execute. Our framework encourages
this separation of concerns.

In this paper, we discuss in detail the three major building
blocks and describe a novel method to implement such a
health management system on a Field Programmable Gate
Array (FPGA) for highly efficient processing and minimal
intrusiveness. We detail how to instrument NASA’s Swift
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Figure 1. An example instantiation of an SHM model,
illustrating one possible interconnection between signal pro-
cessing, temporal monitoring, model-based processing, and
Bayesian reasoning blocks.

UAS with this new SHM capability.

Monitoring Sensors and Software. On-board sensor read-
ings are used by on-board software during flight; any flight-
time sensor failures should be detected and diagnosed. How-
ever, there can be dangerous interactions between the sensors
and the software. Perfectly working sensors can trigger soft-
ware faults, when, for example, operating in an unexpected
environment. Alternatively, a faulty sensor can cause unex-
pected software behavior, e.g., originating from a dormant
software bug. Finally, sensor and software failures can trigger
issues in entirely different subsystems. For example, a soft-
ware failure in the navigation system can cause the communi-
cation system to fail, as happened when F-22 Raptors crossed
the international date-line on their deployment to Kadena in
2007 (Johnson, 2007).1

Although pre-deployment verification and validation (V&V)
can be very effective in minimizing bugs in on-board soft-
ware, it is impossible to eliminate all software bugs due to the
size and complexity of the software as well as unanticipated,
and therefore unmodelled, environmental conditions. The
need to catch fault scenarios not detected by pre-deployment
V&V is even more pressing when considering software in
unmanned systems, since these systems often do not have to
undergo the same highly rigorous and costly V&V processes
required for manned systems (e.g., according to DO-178C
(RTCA, 2012) for commercial transports).

It is therefore mandatory for both sensor and software moni-
toring to be performed during flight, for failure and faults to
be detected and diagnosed reliably, and for root-cause anal-
ysis to be performed in real time. Only then can appropriate
mitigation strategies be activated to recover the UAS or return
it to the ground in the safest possible manner.

Temporal and Model-based Data Processing. The collec-
tion of all readings of sensors and software state comprises
a high-dimensional and fast (around 20Hz or more) real-time
data stream that needs to be processed by our health man-
agement system. On a high level, our approach to coordi-
nated, multilevel system-wide sensor and software monitor-

1See Section 8.3 for a more detailed discussion.
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ing transforms this fast, high-dimensional data stream into
an informed basis for making intelligent decisions. We dis-
cuss a new method for runtime monitoring of temporal logic
system safety requirements, in order to enable better prob-
abilistic reasoning compared to what was previously possi-
ble. Model-based data processing components include, for
example, Kalman filters, Fast Fourier Transforms, or a model-
based prognostics component. We can thus reason about sen-
sors, software, and the outputs of prognostics components
(e.g., end of useful component life) in a single framework.

Bayesian Reasoning. Our framework uses a Bayesian net-
work to perform diagnostic reasoning and root cause analysis.
Although dynamic BNs (DBNs) have, in theory, the capabil-
ity to directly process high-dimensional time-series data, such
an approach may not be realistic in many applications due to
scalability limitations and high computational requirements.
We therefore separate the processing of temporal and model-
based aspects of the data from the actual statistical reasoning
part.

In order to address practical considerations including sensor-
software interdependencies, the demands of real-time tempo-
ral and model-based data processing, and Bayesian reason-
ing for decision making, we present a novel modeling frame-
work for sensor and software health monitoring. The frame-
work separates model-based analysis, temporal monitoring,
and statistical reasoning, thus making SHM more efficient,
easier to model, and more robust. To enable its application
in real-time systems, e.g., on-board of unmanned aerial sys-
tems, we will demonstrate how this framework, using tem-
poral logic monitors, model-based preprocessing units, and
static Bayesian networks, facilitates modular model design
and can be executed highly efficiently on FPGA hardware.

The rest of this paper is structured as follows. After dis-
cussing related approaches in Section 2, we introduce our
problem domain in Section 3, including the architecture of
NASA’s Swift UAS and the requirements that must be met
for its safe operation. In Section 4, we discuss major design
requirements for our approach and present an overview of the
building blocks comprising our SHM framework. In the fol-
lowing sections, we give further details of the major com-
ponents of this framework, namely monitors using temporal
logic in Section 5, model-based monitors in Section 6, and
Bayesian reasoning components in Section 7. We then pro-
vide further details on our implementation of all these com-
ponents, and discuss experimental results for flight test data
from the Swift UAS in Section 8. Section 9 discusses future
work and concludes.

2. RELATED WORK

2.1. System Health Management

Vehicle health management performs similar tasks to Fault
Detection, Diagnosis, and Recovery (FDDR). There exist
many FDDR approaches and (commercial) tools that are
being actively used in the aerospace industry. For exam-
ple, TEAMS2 is a model-based tool used for diagnosis and
test planning. It enables hierarchical, multi-signal diagno-
sis, but does not model temporal or probabilistic relation-
ships. The underlying paradigm of FACT3 is fault propa-
gation with temporal constraints. More complex diagnosis
systems like HyDE4 execute simplified dynamical models on
various abstraction levels and compare model results against
signal values for fault detection and diagnosis. Livingston5 is
a NASA open-source diagnosis and recovery engine that uses
a set of high-level qualitative models; the behaviors are spec-
ified in temporal logic. Formal V&V for such models have
been carried out using the SMV model checker (Lindsey &
Pecheur, 2004).

Bayesian networks are also useful for fault detection, diagno-
sis, and decision making because of their ability to perform
deep reasoning using probabilistic models. Likelihood of
failures, for example, expressed as mean-time between fail-
ure (MTBF), can be cleanly integrated. Whereas there are
a number of tools for Bayesian reasoning (e.g., SamIam6 or
Hugin Expert7), they have not been used extensively for sys-
tem health management, in part because of computationally
intensive reasoning algorithms.

Fortunately, this situation has started to change. A testbed
for electrical power systems in aerospace vehicles, the NASA
ADAPT testbed (Poll et al., 2007), has been used to bench-
mark several system health management techniques. One
of them is ProADAPT, a system health management algo-
rithm using Bayesian networks (Ricks & Mengshoel, 2009a,
2009b, 2010). ProADAPT uses compilation of Bayesian net-
works into arithmetic circuits (Darwiche, 2003; J. Huang,
Chavira, & Darwiche, 2006; Chavira & Darwiche, 2007) for
efficient sub-millisecond computation. In addition, ProAD-
APT demonstrates how to diagnose a comprehensive set of
faults, including faults of a continuous and dynamic nature,
by means of discrete and static Bayesian networks. This work
also shows how Bayesian system health models can be gener-
ated automatically from electrical power system wiring dia-
grams (Mengshoel et al., 2008, 2010).

2http://www.teamqsi.com/products/teams-designer/
3http://w3.isis.vanderbilt.edu/Projects/Fact/Fact.htm
4http://ti.arc.nasa.gov/tech/dash/diagnostics-and-prognostics/hyde
-diagnostics/

5http://ti.arc.nasa.gov/opensource/projects/livingstone2/
6http://reasoning.cs.ucla.edu/samiam/
7http://www.hugin.com/
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2.2. Runtime Verification

Existing methods for Runtime Verification (RV) (Barringer
et al., 2010) assess system status by automatically generat-
ing (mainly software-based) observers to check the state of
the system against a formal specification. Observations in
RV are usually made accessible via software instrumentation
(Havelund, 2008); they report only when a specification has
passed or failed, e.g., through adding hooks in the code base
to detect changes in the state of the system being monitored.
Such instrumentation may make re-certification of the sys-
tem onerous, alter the original timing behavior, or increase
resource consumption (Pike, Niller, & Wegmann, 2011); we
seek to avoid this problem. Also, reporting only the outcomes
of specifications does not provide the real-time responsive-
ness we require for our SHM framework.

Systems in our applications domain often need to adhere
to timing-related flight rules like: after receiving the com-
mand “takeoff” reach an altitude of 600 ft within five min-
utes. These flight rules can be easily expressed in tempo-
ral logics; often in some flavor of Linear Temporal Logic
(LTL) (Bauer, Leucker, & Schallhart, 2010). To reduce run-
time overhead, restrictions of LTL to its past-time fragment
have been used for RV applications previously, mainly due to
promising complexity results (Basin, Klaedtke, & Zălinescu,
2011; Divakaran, D’Souza, & Mohan, 2010). Though specifi-
cations including past time operators may be natural for some
other domains (Lichtenstein, Pnueli, & Zuck, 1985), flight
rules like those we must monitor for the Swift UAS require
future-time reasoning. To enable more intuitive specifica-
tions, others have studied monitoring of future-time claims;
see (Maler, Nickovic, & Pnueli, 2008) for a survey and
(Geilen, 2003; Thati & Roşu, 2005; Divakaran et al., 2010;
Maler, Nickovic, & Pnueli, 2005, 2007; Basin, Klaedtke,
Müller, & Pfitzmann, 2008) for algorithms and frameworks.
Most of these RV algorithms, however, were designed with a
software implementation in mind and require powerful com-
puters that would far exceed the weight, size, power, band-
width, and other limits of the Swift UAS.

2.3. Hardware Architectures

The above approaches to system health management are typi-
cally implemented in software executing on traditional CPUs.
However, with the recent developments in parallel comput-
ing hardware, including in many-core graphics processing
units (GPUs), Bayesian inference can be performed more effi-
ciently (Kozlov & Singh, 1994; Namasivayam & Prasanna,
2006; Xia & Prasanna, 2007; Silberstein, Schuster, Geiger,
Patney, & Owens, 2008; Kask, Dechter, & Gelfand, 2010;
Linderman et al., 2010; Jeon, Xia, & Prasanna, 2010; Low et
al., 2010; Bekkerman, Bilenko, & Langford, 2011; Zheng,
Mengshoel, & Chong, 2011; Zheng & Mengshoel, 2013).
Several of the recent many-core algorithms are based on the

junction tree data structure, which can be compiled from a BN
(Lauritzen & Spiegelhalter, 1988; Dawid, 1992; C. Huang &
Darwiche, 1994; Jensen, Lauritzen, & Olesen, 1990). Junc-
tion trees can be used for both marginal and most probable
explanation (MPE) inference in BNs. A data parallel imple-
mentation for junction tree inference was developed already
in the mid-1990s (Kozlov & Singh, 1994), and the basic sum-
product computation has been implemented in a parallel fash-
ion on GPUs (Silberstein et al., 2008). Based on the cluster-
sepset mapping method (C. Huang & Darwiche, 1994), node-
level parallel computing techniques have recently been devel-
oped for GPUs (Zheng et al., 2011; Zheng & Mengshoel,
2013), resulting in as much as a 20-fold speed-up in process-
ing compared to sequential techniques.

Other authors have used the benefits of a hardware archi-
tecture to natively answer statistical queries on BNs. For
example, Lin, Lebedev, and Wawrzynek (2010) discuss a
BN computing machine with a focus on high throughput.
Their architecture contains two switching crossbars to inter-
connect process units with memory. Their implementation,
however, targets a resource intensive grid of FPGAs, making
this approach unsuitable for our purposes. Kulesza and Tyl-
man (2006) present another approach to evaluate Bayesian
networks on reconfigurable hardware. Their approach targets
embedded systems as execution platforms and is based on
evaluating Bayesian networks through elimination trees. The
major drawback of their approach is that the hardware struc-
ture is tightly coupled with the elimination tree and requires
that the hardware be re-synthesized with every change in the
BN.

3. SYSTEM BACKGROUND

Due to the increasing interest in using unmanned aircraft for
different military, civilian, and scientific applications, NASA
has been engaged in UAS research since its inception. The
Swift aircraft was designed to support NASA’s research inter-
ests in aeronautics and earth science—particularly in auton-
omy, intelligent flight control, and green aviation. For safe
operation, the UAS must meet a large number of require-
ments that in large part come from NASA and FAA processes
and standards. In the following, we will briefly describe the
characteristics of the Swift UAS and discuss types of safety
requirements and flight rules.

3.1. The NASA Swift UAS

For full scale flight testing of new UAS concepts, the
NASA Ames Research Center has developed the Swift
UAS (Ippolito, Espinosa, & Weston, 2010), a 13 meter
wingspan all-electric experimental platform based upon a
high-performance sailplane (Figure 2). Swift has a full-
featured flight computer and control for sensor payloads. The
individual components are connected via a common bus inter-
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face and running a C/C++ reflection architecture, which pro-
vides a component-based plug-and-play infrastructure. Typi-
cal sensors include barometric altitude sensor, airspeed indi-
cator, GPS, and a laser altimeter to measure the altitude above
ground.

Figure 2. The Swift all-electric UAS.

3.2. Requirements and Flight Rules

The system safety requirements we want to monitor during
operation of the Swift UAS can be categorized into these
three types: value checks, relationships, and flight rules.

Value Checks test whether data values are plausible. Exam-
ples in this category include range checks, e.g., the maximal
safe climb or descent rate. For safe operation, the values
must always stay within certain ranges. Such checks can be
combined with additional conditions (e.g., during the flight
phase or above a minimal altitude) or temporal ranges (e.g.,
the maximal current drawn from the battery must not exceed
50A for more than 60 seconds to avoid overheating).

Relationships encode dependencies among sensor data that
may originate from different subsystems. For example, alti-
tude readings obtained by GPS and barometric altitude should
be highly correlated. For another example, whenever the
Swift UAS is in the air, its indicated airspeed reading should
be greater than its stall speed; if not there is certainly a prob-
lem.

Finally, Flight Rules are defined by national or international
institutions (e.g., part 91 of the Federal Aviation Regulations
(FAR) in the USA (Federal Aviation Administration, 2013))
or by mission/system constraints that govern flights. For
example, a common flight rule defines the minimum altitude
an aircraft needs to climb to after takeoff: reach an altitude
of 600ft within five minutes after takeoff. In a similar way,
we can specify a timeout for the landing procedure of the
Swift UAS: after receiving the landing command, touchdown
needs to take place within three minutes. We discuss in detail

how these requirements and flight rules can be specified in
our framework and how they can be translated into efficient
hardware.

4. SYSTEM HEALTH MANAGEMENT FRAMEWORK

Our modeling framework for sensor and software health man-
agement separates signal processing and model-based analy-
sis, temporal monitoring, and statistical reasoning with BNs.
We first discuss the overarching design requirements before
we focus on the description of the design framework. Each of
the framework’s three prongs will then be described in detail
in the subsequent sections.

4.1. Design Requirements

For autonomous systems running on ultra-portable hardware
such as the Swift UAS, the following properties are required
for a deployable SHM framework.

UNOBTRUSIVENESS The SHM framework must not alter
crucial properties of the Swift UAS, such as: function-
ality (not change its behavior), certifiability (avoid re-
certification of, e.g., autopilot flight software or certi-
fied hardware), timing (not interfere with timing guaran-
tees), and tolerances (not exhaust size, weight, power, or
telemetry bandwidth constraints). The framework must
be able to run and perform analysis externally to the (pre-
viously developed and tested) Swift architecture.

RESPONSIVENESS The framework must continuously
and in real time monitor adherence to the safety require-
ments of the Swift UAS. Changes in the validity of mon-
itored requirements must be detected within tight and a
priori known time bounds. Responsive monitoring of
specifications enables responsive input to the BN-based
probabilistic reasoner. In turn, the BN reasoner must
efficiently support decision-making to mitigate any prob-
lems encountered (e.g., for the Swift UAS an emergency
landing in case the flight computer fails) to avoid damage
to the UAS and its environment.

REALIZABILITY The framework must operate in a plug-
and-play manner by connecting via a read-only interface
to existing communication interfaces of the Swift UAS.
The framework must be usable by test-engineers with-
out assuming in-depth knowledge of hardware design
and must be able to operate on-board existing UAS com-
ponents without requiring significant re-configuration or
additional components. The framework must be recon-
figurable so that health models can be updated without
a lengthy re-compilation process and can be used both
during testing of the UAS and after deployment.

Considering these requirements, it seems natural to imple-
ment our SHM framework in hardware. This allows us to
build a self-contained unit, operating externally to the estab-
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lished Swift UAS architecture, thereby complying with the
UNOBTRUSIVENESS requirement. Multiple safety require-
ments can be monitored in parallel, with status updates
delivered at every tick of the system clock, establishing the
RESPONSIVENESS requirement. Previous implementations
of system monitors in hardware, however, have often violated
the REALIZABILITY requirement as a reconfiguration, e.g.,
due to changes in the SHM model, necessitates a redesign of
the framework’s hardware.8 To provide greater flexibility in
this regard, we design an efficient, highly parallel hardware
architecture that runs on the Swift UAS’ native FPGA hard-
ware, yet keep it programmable and modular to quickly adapt
to changes in our SHM models.

4.2. Design Framework

Our SHM model is constructed hierarchically in a graphical
manner out of powerful building blocks. In contrast to most
existing systems, we do not separate between an (informal)
signal preprocessing step and the proper health management
model. Rather, we elevate all processing steps to first class
status and model them all in the same framework. With that
approach, we can, in a principled way, deal with all tempo-
ral, probabilistic, and model-based aspects of our health man-
agement model. This uniform way of describing the health
model not only enables more powerful techniques for V&V
but it also directly leads to efficient implementations in pro-
grammable FPGA hardware.

All signals considered in our SHM model are streams of data,
which are processed at fixed time stamps. At each tick of the
system clock, a component reads the input values and calcu-
lates the output values. The order of execution is defined by
a model graph. In this paper, we assume that there exists one
fixed update rate for all of the building blocks of the model.9

Such a stream of individual elements of type T is denoted by
T ⋆; vectors are defined naturally. Table 1 shows the different
data types that are used. Please note that Boolean data types
are implicitly converted into a {0,1} discrete representation.

All data blocks have a number of inputs Ij of a given stream
type, and will produce a number of outputs, again as elements
of a stream. Table 2 shows a list of selected blocks. Only
the current values of the signals are presented to the model.
Depending on its functionality, a block can be memory-less
(e.g., a Boolean function or a Bayesian reasoning block),
or it can contain internal memory (of fixed length) to deal
with previous signal values. Blocks with internal memory
include the Linear Temporal Logic (LTL) processing blocks
and blocks for data smoothing, integration, or model-based

8Or at least a run of a logic synthesis tool, which can easily take tens of
minutes to complete.

9If signals are to be considered with different rates, rate conversion blocks or
sample and hold blocks can be defined and used as needed. Note also that
Bayesian networks handle missing data in a natural way and do not need
conversion, sample, or hold blocks.

Kalman filters (Table 2).

Table 1. Data types for SHM components.

Signal Data Type
Symbol Description
R floating point number, e.g., sensor reading
D discrete set {1, . . . , n}
B Boolean
B+ true, false, maybe
p probability
P probability density

Table 2. Typical SHM building blocks.

Name Function Memory Description
BF Bn → Bm Boolean function
LTLs Bn → B+m synchronous LTL

observer
LTLa Bn → Bm ○ asynchronous LTL

observer
THR Rn →Dm discretizer/threshold
FLT Rn → Rn ○ smoothing filter
KF Rn → R2m+n ○ Kalman filter with

x̂, residual and
diag(P −)

BN Dn → Rm discrete Bayes rea-
soner

BNp Rl → R2m Bayes reasoner with
evidence inputs and
posterior outputs

P Rl → R2 Prognostics unit

For example, a block to discretize sensor readings would take
a floating-point number and calculate its discretized value or
a Boolean value for a simple threshold. A smoothing filter,
calculating a moving average, would have the functionality
Rn → Rn and obviously require internal memory. A tempo-
ral monitoring component has Boolean inputs and produces a
2 or 3-valued logical output that indicates whether the mon-
itored requirement is true, false, or unknown given the
inputs. In Section 5 we will discuss such monitors in detail.
Our BN (see Section 7 for details) takes discrete values as
inputs, called evidence, and produces a posterior probabil-
ity. Model-based prognostics units, which take sensor signals
as inputs and output estimates of remaining useful life for
specific components, can substantially increase the modeling
power and reasoning capabilities of our SHM framework. For
example, a loss in propeller RPM might be diagnosed differ-
ently if it is known that the battery might already be fairly
weak.

Beyond the building blocks shown in Table 2, additional fil-
ters, Fourier transforms, or model-based components can eas-
ily be added to improve the modeling capabilities of our SHM
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framework. For most of the components, efficient designs for
programmable hardware are available; for our temporal mon-
itors and Bayesian reasoning building blocks, our hardware
implementations will be discussed in the sections below.

The main goal of our SHM framework is to provide a mod-
eling paradigm that allows the modeler to separate tempo-
ral, functional, model-based, and probabilistic reasoning in a
clear way while retaining the expressive power of the various
formalisms. This framework also avoids powerful but com-
plex modeling mechanisms, like dynamic Bayesian networks
(DBNs).

5. MONITORING OF TEMPORAL SENSOR DATA USING
TEMPORAL LOGIC

In order to encapsulate the safety requirements of the Swift
UAS in a precise and unambiguous form that can be analyzed
and monitored automatically, we write them in temporal
logic. Specifically, we use a Linear Temporal Logic (LTL),
which allows the expression of requirements over timelines
and also pairs naturally with the original English expression
of the requirements.10 For requirements that express spe-
cific time bounds, we use a variant of LTL that adds these
time bounds, called Metric Temporal Logic (MTL). We can
automatically generate runtime monitors for requirements
expressed in these logics, enabling real-time analysis of sen-
sor data as well as system health assessment.

Linear temporal formulas consist of:

1. Variables representing system state: We include vari-
ables representing the data streaming from each sensor
aboard the Swift UAS.

2. Propositional logic operators: These include the stan-
dard operators, logical AND (∧), logical OR (∨), negation
(¬), and implication (→).

3. Temporal operators: These operators express temporal
relationships between events including ALWAYS, EVEN-
TUALLY, NEXTTIME, UNTIL, and RELEASE where the
following hold for example system Boolean variables p
and q.

• ALWAYS p (◻p) means that p must be true at all
times along the timeline.

• EVENTUALLY p (◇p) means that p must be true at
some time, either now or in the future.

• NEXTTIME p (Xp) means that p must be true in the
next time step; in this paper a time step is a tick of
the system clock aboard the Swift UAS.

10In the temporal logic formulas of this paper, we follow the standard syn-
tax for evaluating temporal properties where = means assignment and ==
means equality comparison. For example, (a == b) returns true if a and b
are equal and false otherwise. At the same time, we follow the tradition in
probability, where = means equality and not assignment. It should be clear
from the context whether we are dealing with a temporal logic expression
or a probability expression.

• p UNTIL q (pU q) signifies that either q is true now,
at the current time, or else p is true now and p will
remain true consistently until a future time when q
must be true. Note that q must be true sometime; p
cannot simply be true forever.

• p RELEASES q (pR q) signifies that either both p
and q are true now or q is true now and remains
true unless there comes a time in the future when
p is also true. Note that in this case there is no
requirement that p will ever become true; q could
simply be true forever. The RELEASE operator is
often thought of as a “button push” operator: push-
ing button p triggers event ¬q.

For MTL, each of these temporal operators are accompa-
nied by upper and lower time bounds that express the time
period during which the operator must hold. Specifically,
MTL includes the operators ◻[i,j] p, ◇[i,j] p, p U[i,j] q, and
p R[i,j] q where the temporal operator applies in the time
between time i and time j, inclusive. Additionally, we use a
mission bounded variant of LTL where these time bounds are
implied to be the start and end of the mission of the UAS. In
all cases, time steps refer to ticks of the system clock. So, a
time bound of [3,8] would designate the time bound between
3 and 8 ticks of the system clock from now. Note that this
bound is relative to “now” so that continuously monitoring a
formula ◇[3,8] p would produce true at every time step t for
which p holds anytime between 3 and 8 time steps after t, and
false otherwise.

Figures 3 and 4 give pictorial representations of how these
logics (mission-bounded LTL and MTL) enable the precise
specification of temporal safety requirements in terms of
timelines.

Examples of System Requirements in Temporal Logic.
Due to their intuitive nature and a wealth of tools and algo-
rithms for analysis of LTL and MTL formulas, these logics
are frequently used for expressing avionics system require-
ments (Zhao & Rozier, 2012; Gan, Dubrovin, & Heljanko,
2011; Bolton & Bass, 2013; Alur & Henzinger, 1990). Recall
the example system safety requirements from Section 3.2. We
can straightforwardly encode each of value checks, relation-
ship requirements, and flight rules as temporal logic formulas
to enable runtime monitoring:11

Value Checks:

• The maximal safe climb and descent rate Vz of the Swift
UAS is limited by its design and engine characteristics.

◻(−200
ft

min
≤ Vz ≤ 150

ft
min

)

11The numbers given below are for illustration purpose only and do not
reflect the actual properties of the Swift UAS.
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Symbol Operator Timeline

Xp NEXTTIME p

◻p ALWAYS p p p ppp p p p

◇p EVENTUALLY p

pUq UNTIL p pp p q

pRq RELEASE p,qq qq q

Figure 3. Pictorial representation of LTL temporal operators. For a formal definition of LTL, see for example (Rozier, 2011).

Symbol Operator Timeline

◻[2,6]p ALWAYS[2,6] 0 1 2 3 4 5 6 7 8
p p p p p

◇[0,7]p EVENTUALLY[0,7] 0 1 2 3 4 5 6 7 8
p

pU[1,5]q UNTIL[1,5] 0 1 2 3 4 5 6 7 8
p p q

pR[3,8]q RELEASE[3,8]
p,q

0 1 2 3 4 5 6 7 8
qqq

Figure 4. Pictorial representation of MTL temporal operators. For a formal definition of MTL, see for example (Alur & Hen-
zinger, 1990).

• The maximal angle of attack α is limited by design char-
acteristics.

◻(α ≤ 15○)

• The Swift roll (p), pitch (q), and yaw rates (r) are for safe
operation limited to remain below maximum bounds.

◻(p < 0.99
rad
s
∧ q < 4.0

rad
s
∧ r < 2.2

rad
s

)

• The battery voltage Ubatt and the current Ibatt must
remain within certain bounds during the entire flight.
Furthermore, no more than 50A should be drawn from
the battery for more than 30 consecutive seconds in order
to avoid battery overheating.

◻( (20V ≤ Ubatt ≤ 26.5V ) ∧
(Ibatt ≤ 75A) ∧
((Ibatt > 50A)U[0,29s](Ibatt ≤ 50A)))

Relationships:

• Pitching up (i.e., increasing α) for a sustained period of
time (more than 20 seconds) should result in a positive
change in altitude, measured by a positive vertical speed
Vz . This increase in vertical speed should occur within

two seconds after pitch-up.

◻(◻[0,20s](α > α0)→◇[0,2s]Vz > 0)

This relationship can be refined to only hold if the engine
has enough power (as measured by the electrical current
to the engine Ieng) to cause the aircraft to actually climb.

◻(◻[0,20s]((α > α0) ∧ Ieng > 30A)→◇[0,2s]Vz > 0)

Similarly, a rule for the descending can also be defined.

◻(◻[0,20s]((α < α0) ∨ Ieng < 10A)→◇[0,2s]Vz < 0)

• Whenever the Swift UAS is in the air, its indicated air-
speed (VIAS) must be greater than its stall speed VS . The
UAS is considered to be air-bound when its altitude alt
is larger than that of the runway alt0.

◻((alt > alt0)→ (VIAS > VS))

• The sensor readings for the vertical velocity Vz and the
barometric altimeter altb are correlated, because Vz cor-
responds to the changes in the altitude. This means that
whenever the vertical speed is positive, we should mea-
sure a certain increase of altitude ∆altb within 2 seconds.

◻(Vz > 0→◇[0,2s]∆altb > θ)

• The precision of the position reading PGPS from the
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GPS subsystem depends on the number of visible GPS
satellites Nsat.

◻(
◻(Nsat == 1) → PGPS ≤ P 1

GPS ∧
◻(Nsat == 2) → PGPS ≤ P 2

GPS ∧
◻(Nsat == 3) → PGPS ≤ P 3

GPS ∧
◻(Nsat ≥ 4) → PGPS ≤ P +

GPS)

Flight Rules:

• After receiving a command (cmd) for takeoff, the Swift
UAS must reach an altitude of 600ft within 40 seconds.

◻((cmd == takeoff)→◇[0,40s](alt ≥ 600 ft))

• After receiving the landing command, touchdown needs
to take place within 40 seconds, unless the link (lnk) is
lost. Otherwise, the aircraft should reach a loitering alti-
tude around 425ft within 20 seconds.

◻((cmd == landing)→
((slnk == ok)→◇[0,40s](alt < 10 ft)∨
(slnk == lost)→◇[0,20s](400ft ≤ alt ≤ 450ft)))

• The Swift default mode is to stay on the move; it should
not loiter in one place for more than a minute unless it
receives the loiter command (which may not ever hap-
pen during a mission). Let sector crossing represent a
Boolean variable, which is true if the UAS crosses the
boundary between the small subdivision of the airspace
in which the UAS is currently located, as determined by
the GPS, and another subdivision. After receiving the
loiter command, the UAS should stay in the same sec-
tor, at an altitude between 400 and 450ft until it receives
a landing command. The UAS has 30 seconds to reach
loitering position.

◻([(cmd == loiter)R (◇[0,60s] sector crossing)]∧
[(cmd == loiter)→

(◻[30s,end]((¬sector crossing)∧
(400ft ≤ alt ≤ 450ft))

U (cmd == landing))
])

• All messages sent from the guidance, navigation and
control (GN&C) component to the Swift actuators must
be logged into the on-board file system (FS). Logging
has to occur before the message is removed from the
queue. In contrast to the requirements stated above, this
flight rule specifically concerns properties of the flight
software.

◻((addToQueueGN&C ∧◇removeFromQueueSwift) →
¬removeFromQueueSwift U writeToFS)

Advantages of Temporal Logic Requirements. Encoding
the set of system requirements in temporal logic offers sev-
eral significant advantages. It yields a very precise, unam-
biguous list of the system requirements that aids in project
planning and organization. It enables us to automatically
synthesize runtime monitors to track these requirements on-
board the Swift UAS directly from the temporal logic spec-
ifications. It also enables other types of automatic checks,
such as automatic requirements debugging (i.e., satisfiabil-
ity checking (Rozier & Vardi, 2010)) and design-time V&V
techniques such as model checking (Rozier, 2011).

5.1. Monitoring Approach

From each temporal logic requirement, we automatically gen-
erate two kinds of monitors, which we call synchronous and
asynchronous monitors, working in coordination to provide
real-time system health updates. A synchronous monitor pro-
vides an update on the requirement with every update of the
system clock. This is important because it provides blocks
such as the Bayesian reasoner with better real-time infor-
mation and therefore improves prognostics capabilities by
enabling monitoring input to be considered by the reasoner.
Our synchronous runtime monitors keep up-to-date informa-
tion on how much time is left until a requirement must pass.
An asynchronous monitor provides an update on the final
outcome of the requirement at an a priori known time. Our
asynchronous monitors report if a requirement is satisfied or
fails earlier than expected or yield the final result (pass or
fail) of the requirement when its time bound has elapsed.
For details on the construction of these monitors, and for-
mal proofs that our constructions are correct, see (Reinbacher,
Rozier, & Schumann, 2013).

This dual-monitor construction is a key element of our SHM
framework, because it enables our runtime monitors to be
used as building blocks in combination with the other blocks
described in this paper. Traditional runtime monitoring tech-
niques only operate asynchronously and only report when a
monitored property fails. Our monitors provide much more
useful output. For example, it can be important in comput-
ing prognostics to know that a requirement that must hap-
pen within a specified time bound has not yet been satisfied
and that the time bound is almost up. This allows mitigat-
ing actions to be considered in time. For another example,
if a requirement states that (EVENTUALLY[3,2005] p) and p
occurs at time 5 it is important to utilize this information for
real-time calculations of system health. Traditional monitor-
ing techniques do not yield any output in this case, either at
time 5 or 2005 since no property failure occurred. Finally,
it is key that our runtime monitors can provide this informa-
tion without any modifications to certified flight software or
hardware, operating in isolation aboard an FPGA with a read-
only interface, whereas most runtime monitoring techniques
utilize more obtrusive techniques for gathering system data.
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6. MODEL-BASED MONITORING OF TEMPORAL SEN-
SOR DATA

Highly accurate and detailed information about system health
could be obtained if the actual system is compared with
a high-fidelity simulation model. Model complexity and
resource limitations make such an approach infeasible in
most cases. However, a comparison of system behavior with
an abstracted dynamical model is an attractive option. HyDE,
for example, performs health management using simplified
and abstracted system models.

For our framework, we provide the capability to use model-
based monitoring components to various degrees of abstrac-
tion. The most common of such components is a Kalman
filter. Here, a linearized model of the (sub-)system dynamics
is used to predict the system state from past sensor readings.
Besides this state prediction, the residual of the Kalman fil-
ter is of importance for our purposes, as it reflects how well
the model represents the actual behavior (Brown & Hwang,
1997). A sudden increase of the filter residual, for example,
can give an indication of a malfunctioning sensor. For imple-
mentation, we use our tool AUTOFILTER (Whittle & Schu-
mann, 2004) to automatically generate customized Kalman
filter algorithms from high-level requirements. As we refine
our configuration to handle more complex SHM capabili-
ties needed for future flight tests of the Swift UAS, we are
planning to extend the AUTOFILTER tool in order to directly
produce corresponding FPGA designs (see, e.g., Pasricha
& Sharma, 2009). In a similar manner, non-linear models
could be handled using Particle Filters (Ristic, Arulampalam,
& Gordon, 2004), though these require more computational
efforts.

A very simple temporal monitoring technique is the use of
FFT in order to obtain an estimate of the frequency spec-
trum of the monitored signals. This information is, for exam-
ple, important to detect oscillations of the aircraft (see Sec-
tion 8.3), or to detect unexpected software behavior, like a
reboot loop.

Though our implementation at this time is limited to stan-
dard filtering monitors, we envision creating more powerful
model-based monitors using prognostics models to produce
statistical distributions for the end-of-life of system compo-
nents based upon sensor readings. For example, a prognos-
tics model to estimate the remaining useful life of the laser
altimeter could be used to effectively encode a dynamical
MTBF into our health management system. Again, both the
mean remaining life as well as information about its probabil-
ity distribution can be directly used for reasoning. Although
such model-based health management components can be
very powerful, a number of issues still need to be addressed,
including model validity, implementation in efficient hard-
ware, and possible model adaptation to better detect and han-
dle certain kinds of failures.

7. BAYESIAN HEALTH MANAGEMENT REASONING

The major reasoning component in our SHM framework is a
Bayesian network (BN) used to perform diagnostic reasoning
and root causes analysis. A BN is a multivariate probability
distribution that enables reasoning and learning under uncer-
tainty (Pearl, 1988; Darwiche, 2009). In a BN, random vari-
ables are represented as nodes in a Directed Acyclic Graph
(DAG), while conditional dependencies and independencies
between variables are induced by graph edges (see Figure 5
for an example). A BN’s graphical structure often represents
a domain’s causal structure, and is typically a compact repre-
sentation of a joint probability table. Each node in the BN’s
graphical structure is associated with a corresponding condi-
tional probability table (CPT) that captures its (causal) rela-
tionship with parent nodes.

S

C

H_S

H_U

U

Figure 5. Simple Bayesian network.

In our framework, the BN inputs are comprised of discrete
or discretized values (e.g., low, high), and reasoning is per-
formed at each tick of the system clock. We are using dis-
crete and static BNs, which do not perform any reasoning
in the temporal domain. All temporal reasoning, as well as
other processing, has been cleanly separated out within our
modeling framework. Although, in general, multiple differ-
ent probabilistic queries can be formulated, our framework
aims to compute marginal posterior probabilities of selected
nodes, which then give an indication (probability) of compo-
nent or system health. Thus our Bayesian reasoning compo-
nents compute a posteriori probabilities as their output. Dif-
ferent BN inference algorithms can be used to compute a pos-
teriori probabilities. These algorithms include junction tree
propagation (Lauritzen & Spiegelhalter, 1988; Jensen et al.,
1990; Shenoy, 1989), conditioning (Darwiche, 2001), vari-
able elimination (Li & D’Ambrosio, 1994; Zhang & Poole,
1996), stochastic local search (Park & Darwiche, 2004;
Mengshoel, Roth, & Wilkins, 2011; Mengshoel, Wilkins, &
Roth, 2011), and arithmetic circuit evaluation (Darwiche,
2003; Chavira & Darwiche, 2007).

7.1. Bayesian Health Models

For the Bayesian models, we follow an approach that “glues
together” Bayesian network fragments (Schumann, Meng-
shoel, & Mbaya, 2011; Schumann et al., 2013). For exam-
ple, consider the Bayesian network in Figure 5. It consists of
four different types of interconnected nodes, namely: com-
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mand node C, health node H , sensor node S, and status node
U . The health node H has subtypes H S for sensor nodes
and H U for status nodes. Inputs to a BN is provided by
connecting an input signal to the state of a node (“clamp-
ing”). Command nodes C are handled as ground truth and
used to indicate commands, actions, or other known states.
Command nodes do not have incoming edges. Sensor nodes
S are also input nodes, but the input signal is not necessar-
ily correct (e.g., it could result from a failed sensor). This
behavior is modeled by connecting S to a health node H that
reflects the health of the input to S. Note that inputs to the BN
can be outputs of any block in our framework, for example,
a smoothed and discretized sensor reading, the result (binary
or ternary) of a temporal monitor, or the output of another
reasoning block.

Status nodes U , and similar behavior nodes B, are inter-
nal nodes and reflect the (latent) status of the subsystem or
component, or recognize a specific behavior, such as pilot-
induced oscillation. Typically, health nodesH are attached to
status nodes, but not to behavior nodes. Associated with each
node is a Conditional Probability Table (CPT), which defines
the conditional probability of node X , given the states of the
parent nodes of X .

For modeling the edges of the BN, we follow the rule that
an edge from node X to node Y indicates that the state of
X has a (causal) influence on the state of Y . Table 3 gives
an overview of the different kinds of edges in our modeling
framework.

Table 3. Types of edges typically used in BN models for the
SHM reasoning blocks.

edge E E represents how . . .

{H,C} E→ U status U , with health H , is controlled
through unreliable command C

{C} E→ U status U is controlled through unreliable
command C

{H,U} E→ S status U influences sensor S, which may
fail as reflected in health H

{H} E→ S health H directly influences sensor S
without modeling of status

{U} E→ S status U influences sensor S

7.2. Compilation to Arithmetic Circuits

We select arithmetic circuit evaluation as the inference algo-
rithm used in our framework, and therefore compile our
Bayesian network into an arithmetic circuit. In real-time
avionics systems, where there is a strong need to align
the resource consumption of diagnostic computation with
resource bounds (Musliner et al., 1995; Mengshoel, 2007),
algorithms based upon arithmetic circuit evaluation are pow-

erful, as they provide predictable real-time performance
(Chavira & Darwiche, 2005; Mengshoel et al., 2010).

An arithmetic circuit (AC) is a DAG in which leaf nodes λ
represent parameters and indicators while other nodes repre-
sent addition and multiplication operators.

Posterior marginals in a Bayesian network can be computed
from the joint distribution over all variables Xi ∈ X :

p(X1,X2, . . .) = ∏
λx

λx∏
θx∣u

θx∣u

where θx∣u are the parameters of the Bayesian network, i.e.,
the conditional probabilities that a variable X is in state x
given that its parents U are in the joint state u, i.e., p(X =
x ∣ U = u). Further, λx indicate whether or not state x is
consistent with the observations. For efficient calculation, we
rewrite the joint distribution into the corresponding network
polynomial f (Darwiche, 2003):

f = ∑
x
∏
λx

λx∏
θx∣u

θx∣u

An arithmetic circuit is a compact representation of a net-
work polynomial (Darwiche, 2009) which, in its uncompact
form, is exponential in size and thus unrealistic in the gen-
eral case. Hence, answers to probabilistic queries, includ-
ing marginals and MPEs, are computed using algorithms that
operate directly on the arithmetic circuit. The marginal prob-
ability (see Corollary 1 in (Darwiche, 2003)) for x given evi-
dence e is calculated as

Pr(x ∣ e) = 1

Pr(e) ⋅
∂f

∂λx
(e) (1)

where Pr(e) is the probability of the evidence. In a bottom-up
pass over the circuit, the probability of a particular evidence
setting (or clamping of λ parameters) is evaluated. A sub-
sequent top-down pass over the circuit computes the partial
derivatives ∂f

∂λx
. This mechanism can also be used to pro-

vide information about how change in a specific node affects
the whole network (sensitivity analysis), and to perform MPE
computation (Darwiche, 2003, 2009).

7.3. Efficient Hardware Realization

Bayesian reasoning blocks in our framework are provided
with values produced by other blocks, as input to C and S
nodes. In our BN hardware implementation, these evidence
values are used to calculate posterior marginals for the health
nodes H of the Bayesian SHM model. For efficient hard-
ware realization of this kind of BN reasoning, we note that
posterior marginals are evaluated in the arithmetic circuit by
traversing the nodes of the circuit in a bottom-up and a sub-
sequent top-down manner.

We make the following observations regarding the structure
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Figure 6. Screenshot of our GUI-based BN synthesis tool. There is a textual description of the altimeter health model Bayesian
network (top), a compiled arithmetic circuit of the network (bottom left), and a binary configuration for our µBayes unit (bottom
right).

of arithmetic circuits:

(i) The structure alternates between addition and multiplica-
tion nodes. Nodes labeled with “+” are addition nodes;
those labeled with “×” are multiplication nodes.

(ii) Each multiplication node has a single parent.

(iii) Input nodes (i.e., leaf nodes) are always children of mul-
tiplication nodes.

Hardware Architecture of µBayes. The above observa-
tions, concerning the structure of arithmetic circuits, led us
to a hardware architecture that evolves around parallel units
called computing blocks. A computing block, as shown in
Figure 7, is designed to match the structural properties (i-iii)
of an arithmetic circuit. A single computing block supports

computing
block

mode a)

×/+

×/+ ×/+

i1 i2 i3 i4

mode b)

×/+

×/+

i1 i3 i4

mode c)

×/+

i1 i4
i1 i2 i3 i4

result

mode

Figure 7. A computing block and its three modes of opera-
tion.

three basic modes to process the different shapes found in
subtrees of arithmetic circuits. Re-arrangement of the arith-
metic circuit using commutativity properties of the operators
enables us to tile the entire AC with instances of these three
modes in Figure 7.

These computing blocks are the building blocks of our
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bus interface
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memory interface / multiplexer

network
parameter (θ)

memory

evidence
indicator (λ)
memory

instruction
memory

scratchpad
memory

ALU

×/+

×/+ ×/+

i1 i2 i3 i4

Figure 8. Internals of a computing block.

Bayesian SHM hardware unit, which we call µBayes.

Figure 8 shows the internals of a computing block. The unit
is loaded with network parameters from the CPT of the health
model at configuration time. At each SHM update cycle,
inputs are provided as evidence indicators and stored in a sep-
arate evidence indicator memory. An offline compiler trans-
lates the structure of the arithmetic circuit into native instruc-
tions for the µBayes unit. Instructions encode the oper-
ation (either addition or multiplication) of each individual
node of the Arithmetic Logic Unit (ALU), control the mul-
tiplexer to load/store operands from/to memory, trigger trans-
fers of results, and coordinate loads of inputs. Instructions
are decoded and forwarded by the control unit. Each comput-
ing block manages a scratchpad memory to save intermediate
local results, computed during the bottom-up traversal, which
can be reused during the top-down traversal. The memory
blocks of the µBayes unit are mapped to block RAMs of the
FPGA.

Figure 9 shows the architecture of our Bayesian health man-
agement hardware unit. It interconnects and controls multiple
computing blocks to process arithmetic circuits in parallel.

The master unit manages bus accesses, stores intermediate
global results, and computes posterior marginals according
to Equation 1. The inverse of the probability of the evi-
dence, 1

Pr(e) , in this equation can be computed within the
master in parallel to the top-down traversal of the arithmetic
circuit once the bottom-up traversal is completed. Posterior
marginals can then be computed efficiently by multiplying
the partial derivatives ∂f

∂λx
obtained by the top-down traversal

with the cached value of 1
Pr(e) .

For our implementation, we designed the µBayes unit in
the hardware description language VHDL and use the logic-
synthesis tool ALTERA QUARTUS II12 to synthesize the
design onto an Altera Cyclone IV EP4CE115 FPGA. In our
implementation, we chose to represent fractional values in a
12Available at http://www.altera.com. We used v11.1 in our experiments.

fixed-point representation. This decision avoids the consider-
able blow-up in hardware requirements that we would incur
if all of the computing blocks had to be equipped with a full-
fledged floating-point unit. Instead, we instantiate fixed-point
multipliers, available on our target FPGA, to realize the arith-
metic operations within the computing blocks. Modern-day
FPGAs provide several hundred of such multiplier units.

Synthesizing an Arithmetic Circuit into a µBayes Pro-
gram. A (GUI-based) application (see Figure 6) on a host
computer compiles an arithmetic circuit into a tuple ⟨Π,C⟩,
where Π is a native program for the µBayes unit and C is a
configuration for the network parameter memory. The syn-
thesis of ⟨Π,C⟩ from an arithmetic circuit involves the fol-
lowing steps:

(1) Parse the circuit into a DAG and use compile-time infor-
mation from the Ace package13 to relate nodes in the
DAG to evidence indicators and network parameters.
Assemble network parameter values according to the
CPTs and add them to C. Perform equivalence transfor-
mations on the DAG to ensure that the available modes
of a computing block are able to cover all parts of the
arithmetic circuit.

(2) Apply a variant of the Bellman-Ford algorithm (Bellman,
1958) to the DAG to determine the distance of each node
to the root node. Based on the distances and the width of
the arithmetic circuit, determine the number of required
computing blocks. Rearrange computing blocks to opti-
mize the number of results that can be reloaded from the
same computing block in the next computation cycle.

(3) For each computing block c: generate an instruction π
for each node in the arithmetic circuit that is computed
by c. Finally, add π to Π.

To configure the µBayes unit, the tuple ⟨Π,C⟩ is transferred
at configuration time, i.e., before deployment, to the master
unit, which then programs the individual computing blocks.
During operation, the entries for the evidence indicator mem-
ory are broadcast by the master unit at each tick of the system
clock when new input values are available.

Hardware Resource Consumption. We synthesized the
hardware design of the µBayes unit for various target FPGAs
using the industrial logic synthesis tool ALTERA QUARTUS
II. To study the hardware resource consumption of our design
we synthesized the design several times with varying num-
bers of computing blocks. For our implementation, we used
a fixed-point number representation with 18 bits to internally
represent probabilities. We have chosen this representation

13http://reasoning.cs.ucla.edu/ace/
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Figure 9. Architecture of the µBayes unit with parallel computing blocks.

mainly because our target FPGA provides fixed point multi-
pliers that support vectors of up to 18 bits.

For example, an instantiation of the µBayes unit with 7 paral-
lel computing blocks accounts for a total of 25,719 logic ele-
ments (22.5 % of the total logic elements) and 20,160 mem-
ory bits (2.5 kByte, 0.5 % of the total memory bits) and allows
for a maximum operating frequency fmax of 115 MHz (for
the slow timing model at 85 ○C) on an Altera Cyclone IV
EP4CE115 FPGA. We note that the operating frequency can
easily be increased by moving to a more powerful FPGA. Fig-
ure 10 shows the influence of the number of computing blocks
on maximum operating frequency, number of logic elements,
and the number of memory bits.

8. EXPERIMENTS AND RESULTS

In this section, we present results of experiments. In order to
illustrate our three-pronged approach, we first discuss moni-
toring of requirements using examples of temporal logic mon-
itors as presented in Section 5. In all of the examples, actual
sensor and signal values are prefixed by “s ”, e.g., s baroAlt
comprises a stream of sensor readings of the barometric alti-
tude. We next discuss an example of how to determinate the
health of sensors using BNs and show results using actual
flight data, where the laser altimeter failed. The final part of
this section is devoted to an example of how our framework
can be used for reasoning about software.

8.1. Monitoring of Requirements

Recall from Section 3.2 and Figure 1 that our SHM frame-
work operates on a set of requirements, which are interpreted
via paths through a network of building blocks to achieve
our diagnostics and prognostics goals. We create model-
based monitors (Section 6) and Bayesian reasoning compo-
nents (Section 7) to support monitoring these requirements.
We create synchronous and asynchronous runtime monitors
in hardware, aboard FPGAs, from our temporal logic trans-
lations of the requirements (Section 5). In this way, require-
ments form the backbone of our SHM framework.

Here, we exemplify the monitoring process for our temporal
logic-based runtime monitors, including how they take input

from and pass input to other blocks in our SHM framework.
We demonstrate the power of generating monitors from tem-
poral logic requirements.

For example, consider the requirement ◻((s cmd ==
takeoff) → ◇[0,40s](s baroAlt ≥ 600 ft)) from Section 3.2
that states, “After takeoff, the Swift UAS must reach an alti-
tude of 600ft within 40 seconds.” Recall that we encoded this
requirement in MTL in Section 5 and discussed creating a
pair of runtime monitors that yield both a synchronous mon-
itor that updates with each tick of the system clock and an
asynchronous monitor that determines the satisfaction of the
requirement as soon as there is enough information to do so.

takeoff

s_baroAlt

s_cmd

LTL

Discrete

>= 600ft ?

s baroAlt / ft
300

600

900

s cmd

ta
ke

off

la
n

d

s baroAlt ≥ 600ft

s cmd = takeoff

ϕF1 = ◻((s cmd = takeoff)→◇[0,40s](s baroAlt ≥ 600 ft)) ✓

Figure 11. Top panel: SHM block diagram for monitoring
requirement ◻((s cmd == takeoff) → ◇[0,40s](s baroAlt ≥
600 ft)). Middle two panels: flight data collected from the
Swift UAS. Bottom three panels: output of our runtime mon-
itors for flight rules.
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Figure 10. Logic synthesis results of our µBayes unit for an Altera Cyclone IV EP4CE115 FPGA: maximum operating fre-
quency fmax, number of logic elements (LE), and required memory bits versus number of parallel computing blocks

Figure 11 breaks down how we monitor this requirement.
First, the raw data from the barometric altimeter is passed
through one of our smoothing filter blocks, as described in
Section 4, to take out sensor noise that might serve to obscure
the altimeter readings. The data stream from this smoothing
filter and the raw data from the flight command data stream
are the two inputs to our pair of temporal logic monitors for
this requirement. These two inputs are shown in blue in Fig-
ure 11. In the bottom three panels, in red, are the output
data streams from the asynchronous monitor. The top line is
the result of monitoring the subformula (s baroAlt ≥ 600 ft)
and the middle line is the result of monitoring the subfor-
mula (s cmd == takeoff). These two signals are combined
inside our compositional monitor construction to form the
result illustrated in the bottom panel. The panel’s straight
red line shows that the requirement holds at every time point
during the flight. This bottom line is the output from our
asynchronous monitor and can be used as the input to another
block in our SHM framework, such as a Bayesian reasoning
block.

During UAS flight, this output data stream will not be pro-
vided in real time, but will experience delays as there is not
enough data at every time point of flight to determine that this
requirement always holds. Therefore, any blocks in our SHM
framework making real-time decisions could utilize the out-
put from the paired synchronous monitor for this formula. It
would differentiate, in real time, when we know that the flight
rule holds and when we do not have enough information, at
the present time, to know.

For another example, consider the requirement

◻(◻[0,5s](v vel > 0)→◇[0,2s]∆s baroAlt > θ)

stating that a significant positive vertical velocity needs to be
followed by a climb in altitude. Figure 12 breaks down how
we monitor this requirement.

Again, we take the raw data from the barometric altimeter,
pass it through one of our smoothing filter blocks to reduce
the sensor noise, and feed this stream as an input to our tem-
poral monitor. (Again, the smoothed barometric altimeter
data stream appears in blue.) We also need to reason about
the vertical velocity reading; we show the raw data stream in

red. We feed this sensor data stream through a moving aver-
age filter; the result is shown in blue.

These two filtered data streams are then processed by compo-
nents of our asynchronous runtime monitor; results are shown
in the bottom three panels of Figure 12. The red line at the
top, our vertical velocity monitor, checks for a “significant
positive vertical velocity.” System designers equate this to a
steady positive reading of the filtered vertical velocity reading
for five seconds. The red line in the middle, our barometric
altimeter monitor, flags time points that fall within a two sec-
ond time interval when the change in altitude is above the
threshold θ. These components comprise our runtime moni-
tor, which continuously verifies that “every occurrence of sig-
nificant positive vertical velocity is indeed followed by a cor-
responding positive change in altitude.” This is reflected by
the straight red line in the bottom-most panel of Figure 12.

8.2. Sensor Health Management

The continuous monitoring of the UAS’s flight-critical sen-
sors is very important. Faulty, iced, or clogged pitot tubes for
measuring speed of the aircraft has caused several catastro-
phes. For example, the crash of Birgenair Flight 301, which
claimed 189 lives, was caused by a pitot tube being blocked
by wasp nests14. Similarly, faults in the determination of the
aircraft’s altitude can lead to dangerous situations. In many
cases, however, the health of a sensor cannot be established
independently. Only by taking into account information from
other sources can a reliable result be obtained. However,
these other sources of information are also not independently
reliable, thus creating a non-trivial SHM problem.

In the following example, we use information from a baro-
metric altimeter measuring altitude above sea level, a laser
altimeter measuring altitude above ground level (AGL), and
information about the vertical velocity and the pitch angle
provided by the Inertial Measurement Unit (IMU). Table 4
lists the signals and their intended meanings. Our correspond-
ing SHM framework instantiation is shown in Figure 13. The
input signals are smoothed and the current vertical velocity
is estimated from the laser and barometric altimeters by cal-
culating xt − xt−1 using a single delay block. Then, the val-

14http://en.wikipedia.org/wiki/Birgenair Flight 301
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ϕ ∶= ◻(◻[0,5s](v vel > 0)→◇[0,2s]∆s baroAlt > θ) ✓

Figure 12. Top panel: SHM block diagram for monitoring
a requirement. Middle three panels: Smoothed barometric
altimeter (blue) and vertical velocity readings, raw (red) and
smoothed (blue), as collected from the Swift UAS. Bottom
three panels: outputs of temporal logic monitors.

ues are discretized into increasing (inc) and decreasing (dec),
before the information is fed into the reasoning component.

Table 4. Signals and their intended meanings.

Signal name Description
s baroAlt altitude reading from barometric altimeter
s laserAlt altitude reading from laser altimeter
s velUp vertical velocity reading from IMU
s pitch Euler pitch reading from IMU

Figure 14 shows the BN model for reasoning about altime-
ter failures. Sensor nodes (inputs) for each of the different
sensor types are at the bottom. The latent state UA, describ-
ing whether the altitude of the UAS is increasing or decreas-
ing, obviously influences the sensor readings, hence there are
edges from UA to SL, SS , and SB . The laser altimeter can
fail. Therefore, the sensor node SL is connected with a node
HL, reflecting the health of the laser altimeter. A similar
structure can be found for the barometric altimeter. Because
the laser altimeter is prone to errors, its probability of being
healthy is only 0.7, compared to the more reliable baromet-
ric altitude with a probability of being healthy of 0.9. For

inc/dec

Smoothing

Filter inc/dec

Smoothing

Filter inc/dec

Disc

Disc
s_laserAlt

s_baroAlt

Bayesian

Network
s_velUp

s_pitch Threshold

Disc

Figure 13. SHM framework instantiation: model for altimeter
health.

simplicity, the health of the IMU is not modeled here.

S BaroAlt
(SB)

H BaroAlt
(HB)

S LaserAlt
(SL)

H LaserAlt
(HL)

S Sensors
(SS)

U Altimeter
(UA) HB ΘHB

healthy 0.9
bad 0.1

HL ΘHL

healthy 0.7
bad 0.3

UA ΘUA

inc 0.5
dec 0.5

UA SS ΘSS

inc
inc 0.7
dec 0.1
maybe 0.2

dec
inc 0.1
dec 0.7
maybe 0.2

UA HB SB ΘSB

inc
healthy inc 1.0

dec 0.0

bad inc 0.5
dec 0.5

dec
healthy inc 0.0

dec 1.0

bad inc 0.5
dec 0.5

UA HL SL ΘSL

inc
healthy inc 1.0

dec 0.0

bad inc 0.5
dec 0.5

dec
healthy inc 0.0

dec 1.0

bad inc 0.5
dec 0.5

Figure 14. Bayesian network and CPT tables for reasoning
about altimeter failure.

The CPT tables for the sensors are read as follows: if the
(latent) status UA is increasing and the laser altimeter is
healthy, then the probability that it is reading an increasing
value is 1; no decreasing measurement is reported (p = 0). In
the case of a failing laser altimeter, no result can be obtained;
hence p = 0.5. The same model is used for the barometric
altitude. The IMU sensors are modeled somewhat differently.
If they report an upward velocity, it is likely (p = 0.7) that
this has been caused by an upward movement of the UAS
(UA = inc). Due to high sensor and integration noise, the
results are not unique and UA = maybe indicates a value
within a zero-centered deadband. Figure 15 breaks down how
we evaluate this Bayesian network and how our architecture
automatically detected a temporary outage of the laser altime-
ter.

With our current implementation of the µBayes unit and a
configuration as shown in Figure 13, running at a system
clock frequency of 115 MHz, the unit is able to evaluate the
Altimeter Health Model 660 times per second.
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Figure 15. Flight data collected from the Swift UAS (top
three panels) and output of our Bayesian SHM model, given
as probabilities (bottom two panels).

8.3. Reasoning about Software

In principle, SHM models for software components are struc-
tured in a similar way to those for sensor monitoring. Signals
are extracted from a communications bus between compo-
nents, from specific memory locations using shared variables,
or from the operating system. No specific instrumentation
of the safety-critical control code is necessary. Compared to
hardware and sensor management, the complexity of software
health models is usually higher, because of the often sub-
stantial functionality of the code including the existence of
modes. Furthermore, substantial reasoning can be required,
because individual failures (due to dormant software bugs
or problematic hardware-software interaction) might pervade
large portions of the software system and can cause seem-
ingly unrelated failures in other components. Such a situation
occurred when a group of six F-22 Raptors was first deployed
to the Kadena Air Base in Okinawa, Japan (Johnson, 2007).
When crossing the international dateline (180○ longitude), a
dormant software bug caused multiple computer crashes. Not
only was the navigation completely lost, but also the seem-
ingly unrelated communications computer crashed. “The
fighters were able to return to Hawaii by following their
tankers in good weather. The error was fixed within 48 hours
and the F-22s continued their journey to Kadena” (Johnson,
2007).

We now consider how such an unfortunate interplay between
software design and poor implementation could cause
adverse effects on the flight hardware. Figure 16 shows a
mock-up of a flawed architecture for a flight-control com-
puter. In this architecture, all components, like GN&C, the
drivers for the aircraft sensors and actuators, as well as pay-
load components including a science camera and the trans-

mitter for the video stream, communicate via a message
queue. The message queue is fast enough to push through all
messages at the required speed. However, for debugging and
logging purposes, all message headers are written (in block-
ing mode) into an on-board file system. A corresponding
requirement appears as an example flight rule in Section 5:

◻((addToQueueGN&C ∧◇removeFromQueueSwift) →
¬removeFromQueueSwift U writeToFS).

Software

Queue

System
File

GN&C

Transmitter

Antenna

Camera
Science

Message

Figure 16. Flawed system architecture for file system-related
scenario.

This architecture works perfectly when the system is started
and the file system is empty or near empty. However, after
some time of operation, as the file system becomes increas-
ingly populated (but writes can still occur), sudden aircraft
oscillations, similar to pilot-induced-oscillations (PIO), take
place. No software error whatsoever (e.g., overfull file sys-
tem or overfull message queue) is reported and the situation
worsens if the science camera, which also uses this message
queue, is in operation.

The underlying root cause is that writes into the file system
take an increasing amount of time as the file system fills up
(due to long searches for free blocks). This situation accounts
for longer delays in the message queue, which cause delays
in the seemingly unrelated control loop, ultimately causing
oscillations of the entire UAS. For a software health model,
therefore, non-trivial reasoning is important, because such
failures can manifest themselves in seemingly unrelated com-
ponents of the aircraft.

Table 5 and Figure 17 show details of our model. All signals
except the barometric altitude are extracted from the operat-
ing system running on the flight computer. In the diagram in
Figure 17, discrete signals are fed directly into the Bayesian
networks; continuous signals like the length of the message
queue or the amount of data in the file system are catego-
rized to enable discretization into threshold blocks, e.g., the
file system is empty, filled to more than 50%, filled to more
than 90%, or full. The barometric altitude is fed through a
Fast Fourier Transform (FFT) in order to obtain the frequency
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Table 5. Signals and their intended meanings.

Signal name Description
s FS Error error in file system
s W FS writing into file system
s FS “df” of file system
s Queue lng length of message queue
s baroAlt barometric altitude
s delta q dynamic queue behavior (derived)
s osc UAS oscillation (derived)

> 50%

s_FS_Error

s_baroAlt

s_FS

s_Queue_lng

s_W_FS

Threshold

Threshold

Discrete

FFT

Network

Bayesian

empty

> 90%

Figure 17. Structure of the SHM model for the file system
scenario.

spectrum. Again, a threshold block is used to determine if
amplitudes are above a certain threshold indicating oscilla-
tion (low frequency) or strong vibrations (higher frequency).

Figure 18 shows the relevant excerpt from our Bayesian SHM
model for this scenario, including the file system and the
message queue. The software-related sensor nodes for this
model are located on the left-hand side of the network: a
sensor to detect writes to the file system and a sensor pro-
viding information on storage capacity in the file system
(with states: empty, medium, almost- full, and full). Simi-
larly, S Queue length provides information about the length
of the message queue. Finally, S Delta queue senses whether
the length of the message queue is increasing or decreasing.
Nodes for the internal status of components, such as the file
system and the message queue, are connected via sensor and
health nodes. The behavior nodes for system oscillation and
delay build the foundation for reasoning about this and simi-
lar scenarios.

Figure 19 shows the temporal traces of a file system-induced
fault scenario (Schumann, Morris, Mbaya, Mengshoel, &
Darwiche, 2011) in simulation. The flight controller’s pitch-
up and pitch-down commands to the actuators (top panel) are
impacted by faults originating from the file system, causing
the aircraft to oscillate up and down rather than maintaining
the desired altitude. For the purpose of this experiment, we
set the file system to almost full at the start of the simulation
run; no other faults or errors occur. After about 30 seconds,
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S_

S_

U_ H_

H_
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Figure 18. Relevant nodes from Bayesian system health
model for oscillation detection.

the delays caused by the message queue have accumulated in
such a way that flight-control induced oscillations of the air-
craft occur, indicated by recurrent climbs and descends (mid-
dle panel). Eventually, these altitude oscillations are detected
and picked up by the Fast Fourier Transform, and a signal is
sent to S Oscillation. The bottom panel of Figure 19 shows
the posteriors for selected health nodes. It indicates that the
actual aircraft sensors and actuators are healthy. However, the
health status of the software (blue) decreases substantially a
little after 100 seconds, indicating a problem in the on-board
software. In this scenario, the health of the file system and
of the message queue, when considered individually, do not
drop significantly. Also, the software itself does not flag any
error.

9. CONCLUSIONS

We presented a three-pronged approach to sensor and soft-
ware health management in real time, on-board a UAS.
Health models are constructed in a modular and scalable man-
ner using a number of different building blocks. Major block
types provide advanced capabilities of temporal logic runtime
monitors, model-based analysis and signal processing, and
powerful probabilistic reasoning using Bayesian networks.
For our overarching design requirements of unobtrusiveness,
responsiveness, and realizability, we automatically transform
the health model into efficient FPGA hardware designs. We
demonstrated the capabilities of this approach on a set of
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Figure 19. Traces of simulation experiment with file-system
related failure scenario. Top panel: actuator messages sent
through the message queue. Middle panel: vertical speed and
altitude of the aircraft showing oscillations. Bottom panel:
posterior probabilities of selected health nodes.

requirements and flight rules, both for sensor and software
health management. We presented experimental results for
this approach using actual data from the NASA Swift UAS.

Our approach enables the designer to build complex
models and reasoning modes. For example, tempo-
ral reasoning over the results of probabilistic health out-
puts can be formulated easily: (alt < 1000ft) →
◇[0,10s](P (H laserAlt = healthy) > 0.8) would require a
working laser altimeter at altitudes of less than 1000ft. In
a similar manner, results of prognostics components can be
smoothly integrated into our framework.

However, the results shown here are only the first steps
towards a real-time on-board sensor and software health man-
agement system. For the proof of concept demonstration in
this paper, we analyzed recorded data streams from the Swift
UAS on the ground as if they were happening in real time.
There are two clear options for reading this data on-board the
Swift UAS instead: reading sensor data passed on the com-
mon bus or having sensor data sent to our framework by the
flight computer. In the near future, we plan to define and
build unobtrusive read-only interfaces that will enable us to
get real-time sensor and software data from the common bus
or flight computer while providing the guarantee that under
no circumstances would our framework disturb the bus or any
other UAS component. This is a major requirement for certi-
fication and carrying out actual flight tests on the Swift UAS.

On a broader level, research needs to be performed on how to
automatically generate advanced system health management
models from requirements, designs, and architectural arti-
facts. In particular for monitoring the health of a complex and

large software system, automatic model generation is essen-
tial. We are confident that our approach, which allows us
to combine monitoring of sensors, prognostics, and software
while separating out (model-based) signal processing, tem-
poral, and probabilistic reasoning will substantially facilitate
the development of improved and powerful on-board health
management systems for unmanned aerial systems.
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ABSTRACT

Prognostic and remaining useful life (RUL) predictions for
electrolytic capacitors under thermal overstress condition are
investigated in this paper. In the first step, the degradation
process is modeled as a physics of failure process. All of the
relevant parameters and states of the capacitor are considered
during the degradation process. A particle filter approach is
utilized to derive the dynamic form of the degradation model
and estimate the current state of capacitor health. This model
is then used to get more accurate estimation of the Remain-
ing Useful Life (RUL) of the capacitors as they are subjected
to the thermal stress conditions. The paper includes an ex-
perimental study, where the degradation of a set of identical
capacitors under thermal overstress conditions is studied to
demonstrate and validate the performance of the degradation
modeling approach.

1. INTRODUCTION

Prognostic and Remaining Useful Life (RUL) prediction is
essential for determining the safety and reliability of critical
systems. In the cases where the operators have access to the
system RUL prediction, it becomes easier for them to estab-
lish condition-based maintenance schedules, and thus avoid
failures and expensive system downtime. For autonomous
systems, RUL prediction provides necessary information for
the system to schedule future tasks and missions in an effec-

Hamed Khorasgani et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

tive manner.

Electronic systems need reliable power supplies. Failure
in the power supplies can damage other system elements
through a cascading process. Many electronic modules are
sensitive to the potential level of the supplied voltage and un-
desired change in this level can cause failure in these modules
as well. Also unpredicted voltage variations can damage pro-
cessors and make control modules in the systems unreliable.
Switch mode power supplies (SMPS) can provide different
voltage levels from a single power source by changing the
duty cycle of switching. They are also efficient, light and have
a small size. However the small size affects heat dissipation,
and reliability becomes an important issue in these systems.
Consequently RUL predictions for different elements of these
systems are becoming increasingly important (Goebel et al.,
2008; Celaya et al., 2010; Kulkarni et al., 2009). One of the
key elements in power supply modules and dc-dc converters
are electrolytic capacitors. Failures in these elements is one of
main reasons for the module failures (Goodman et al., 2005).
For the prognostic and RUL prediction of electrolytic capac-
itors like any other element in addition to the current state of
the element, it is necessary to predict its future behavior. If
we can determine and model the main reasons for the degra-
dation of the capacitors, future behavior prediction becomes
a feasible task.

Evaporation of the electrolyte is a main reason for the degra-
dation and finally complete failure of the capacitor. In fact
evaporation of the electrolyte decreases the effective surface
area of the capacitors and consequently their capacitance.
One of the complexities of this problem is that the evaporation
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of the electrolyte in the closed can of the capacitor causes in-
ternal pressure increase, which affects the evaporation rate. It
is also possible that due to the internal pressure the capacitor
body pops exposing the electrolyte to the atmosphere. Un-
der these circumstances, the capacitor electrolyte first shows
abrupt increase in evaporation rate, but after its top pops, the
evaporation rate becomes constant. Work on capacitor degra-
dation modeling in (Celaya et al., 2012) considered the evap-
oration rate to be constant and derived the degradation model
for electrolytic capacitors under electrical overstress condi-
tion. With this simplification, the derived model is linear and
the authors could apply the Kalman filter scheme to estimate
the current state of health of the system. In this paper, the
evaporation rate is not held to a constant value. Two differ-
ent degradation trajectories are considered: one for the situa-
tion where the capacitor casing remains perfect, therefore, the
evaporation rate decreases with time, and a second when the
casing cracks, therefore, the evaporation rate for the capaci-
tor electrolyte remains constant. A general model is derived
by combining these two models. Since the general derived
degradation model is nonlinear, unlike (Celaya et al., 2012),
we adopt the particle filter approaches (Arulampalam et al.,
2002) for state estimation of the nonlinear dynamic system.
The particle filter approach is also utilized to estimate param-
eters of the model for each capacitor. To determine the ef-
fectiveness and performance of the particle filter approach,
we used experimental data generated in (Kulkarni et al., Sep
2012) to validate our approach.

The paper is structured as follows. Section 2 discusses the
degradation processes and the physics of failure model cor-
responding to the degradation processes. Section 3 discusses
the particle filter approach for state estimation in the prog-
nostic algorithm. Particle filtering method for parameter es-
timation is discussed in this section as well. An algorithm
for computing the RUL of the capacitor is presented as the
last part of this section. Section 4 is about the experimental
setup and parameter estimation. 15 electrolytic capacitors are
studied under thermal over stress condition. The leave one
out method is utilized to validate the parameters of the model
and the derived model is used to make prognostic predictions.
Section 5 demonstrates RUL prediction results and the con-
clusions are presented in Section 6.

2. DEGRADATION MODELING

Prognostics approaches start with the current state of a com-
ponent or device and employ systematic methods to predict
future system behavior. Having an accurate model of the
degradation process provides a methodology for predicting
future component behavior. In this section, the degradation
model of the electrolytic capacitor is discussed and devel-
oped. We start with the structure of electrolytic capacitors
and then discuss the degradation process. Last, a discretized
form of the continuous degradation model is derived.

2.1. Electrolytic Capacitors Structure and Capacitance

If we open the aluminium can of an electrolytic capacitor we
see the anode and cathode foils, and the electrolyte soaked
in the separator paper all wrapped up together as shown in
Figure 1. In the electrolytic capacitors that we study, ethyl
glycol is the chosen electrolyte. The cathode and anode foils
are aluminium. Also, the oxide layer on the surface of the
anode acts as the dielectric. This oxide layer in contact with
the electrolyte acts as a perfect insulator. By wrapping up the
papers high capacitance is achieved in the minimum space.

Anode Foil

Cathode Foil

Connecting Leads 

Aluminum Tabs

Electrolyte Paper

Figure 1. Cylindrical Electrolytic Capacitor Structure
(Kulkarni et al., Sep 2012).

The capacity of the capacitance is defined in terms of its ge-
ometric structure. From the first principles of electromag-
netism the total lumped capacitance of a flat plate electrolytic
capacitor is:

C =
εA

do
, (1)

where ε is dielectric constant of the electrolyte, A is the ef-
fective surface of the electrolyte and do is the oxide thickness.
Rolling the plates of electrolytic capacitors double the capac-
itance of these capacitors (Tasca, 1981). This improvement
achieves due to utilizing both sides of foils in the new struc-
ture. Consequently the capacitance of the presented structure
in Figure 1 can be expressed as follows.

C =
2εA

do
. (2)

Assuming that the separator paper thickness is negligible and
the space between anode and cathode is completely filled by
the electrolyte the volume of the electrolyte can be computed
as:

V = A ∗ d, (3)

where d is the distance between anode and cathode foils.
Therefore, the capacitance can be expressed based on elec-
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trolyte volume by:

C =
2εV

dod
. (4)

Equation (4) demonstrates how the evaporation of the elec-
trolyte decreases the capacitance of the electrolytic capaci-
tors. The electrolytic capacitor capacitance, C decreases di-
rectly in proportion to electrolyte volume, V, as it evaporates
due to raised ambient temperatures. In the next section, we
study the evaporation process for the electrolyte in greater de-
tail.

2.2. Modeling Electrolyte Evaporation

The rate of evaporation and consequent decrease in the liquid
volume depends on the surface area of the liquid, its molecu-
lar volume, and the evaporation rate (Rdner et al., 2002). So
we can write:

dV

dt
= −AJω, (5)

whereA is the surface of electrolyte, J is the evaporation rate
and ω is the volume of electrolyte (ethyl glycol) molecule. If
we substitute A by V

d in (5) we have:

dV

dt
= −JωV

d
(6)

An important parameter in the derived equation is the evap-
oration rate. Typically the evaporation rate is not a constant
parameter; it increases as the ambient temperature increases,
therefore, the temperature at the capacitor core increases. In
fact, if the molecules of electrolyte have more kinetic energy
the probability that they leave the surface increases and con-
sequently the evaporation rate increases. In our study, the am-
bient temperature in the experimental chamber is maintained
constant. The other factor which affects the evaporation rate
is pressure. Increasing the pressure at the surface of the liq-
uid decreases the probability that molecules leave the surface,
which means that the evaporation rate decreases. Further, a
large pressure increase has other consequences, e.g., the top
of the capacitor casing may pop. This releases all of the built
up gases, bringing the surface pressure on the electrolyte sur-
face back to the atmospheric pressure levels. We discuss the
evaporation rates for two different scenarios: (1) capacitor
casing not pierced, implying the inside of the capacitor is a
closed system and (2) capacitor casing damaged and popped.
Capacitor as Closed System: As long as the capacitor cas-
ing is not pierced the capacitor is a closed system. In this
situation, by evaporation the escaped molecules accumulate
in the can and increase the pressure on the electrolyte sur-
face. The increase in the pressure decreases the evaporation
rate. The decrease in the evaporation rate continues and after
some time it becomes so small that practically the evaporation
stops. At this point the numbers of molecules which leave the
liquid and return to it are almost the same and the vapor is

said to be saturated. In the enclosed system, we use the expo-
nential function to model the evaporation rate, i.e:

J = J0e
−βt, (7)

where J0 is the initial value of the evaporation rate
which is function of temperature and density of the liq-
uid. β determines how fast the evaporation rate de-
creases and depends on the volume of the enclosed space.
Open System with Capacitor Casing P ierced: The pri-
mary reason to covering the capacitors with an aluminum can
is to protect the electrolyte from evaporation (Kulkarni et al.,
Jun 2012). However it is possible that a large increase in
the internal pressure can pop or crack the cover in some way
and the electrolyte escapes into to the atmosphere. When this
happens, the evaporation rate after an initial increase becomes
constant because the capacitor can is not a closed space any-
more. In this case the evaporation rate is:

J = Jopen, (8)

where Jopen depends on the temperature, atmosphere pres-
sure and liquid concentration. As a next step we discuss the
capacitor degradation model next.

2.3. State Space Model for Capacitance Degradation

To model capacitor degradation, a state space model with ca-
pacitance and evaporation rate as the state variables is consid-
ered. Using (4) one can write:

dC

dt
=

2ε

dod

dV

dt
. (9)

And by substituting (6) in (9) we have:

dC

dt
= −2Jωε V

dod2
. (10)

Using (4) and doing some algebraic manipulations we can
write:

dC

dt
= −JωC

d
. (11)

For the enclosed case J can derived from (7) as:

dJ

dt
= −βJ0e−βt. (12)

By substituting (7) in (12) we have:

dJ

dt
= −βJ. (13)

If the can cracks or pops up the evaporation rate is constant
and the capacitance dynamic is:

dC

dt
= −Jopenω

C

d
. (14)
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2.4. Converting to Discrete-Time Model

Since measurements are sampled in discrete times we derive
a discrete time model of the state space representation. Using
a first-order approximation:

dC

dt
(tk) =

C(tk+1)− C(tk)
tk+1 − tk

. (15)

Consequently from (11) for the enclosed case we have:

C(tk+1) = C(tk)− J(tk)ω
C(tk)

d
(tk+1 − tk). (16)

Similarly, using (13) the dynamic equation for J in enclosed
space is derived as:

J(tk+1) = J(tk)− βJ(tk)(tk+1 − tk). (17)

Considering (14) for the capacitor case popped open we have:

C(tk+1) = C(tk)− Jopenω
C(tk)

d
(tk+1 − tk) (18)

2.5. General Model for the Degradation

An accurate model of capacitor degradation would use the
enclosed degradation equation till the capacitor encasing
popped, and at the popping time switch to the open model
where the evaporation rate becomes constant. Since we do
not know the exact time that the switch from the closed to
open situation occurs, we employ a blended model that com-
bines the enclosed and open degradation models, i.e.,

C = α(tk)Cclosed + (1− α(tk))Copen. (19)

α(tk) starts at a value close to 1.0 for tk small, and gradually
decrease as time advances. How the parameter α changes
with time may be unknown, for the sake of simplicity we as-
sume α decreases linearly with slope of c over time as repre-
sented by (20) . The value of c may be determined by empir-
ical studies, or based on expert-supplied knowledge.

α(tk+1) =

{α(tk)− c(tk+1 − tk) tk+1 ≤ 1
c

α(tk) tk+1 >
1
c .
(20)

Therefore, an approximation of the capacitor degradation
model can be expressed as:

C(tk+1) = α(tk) ∗ [C(tk)− J(tk)ω
C(tk)

d
(tk+1 − tk)]+

(1− α(tk)) ∗ [C(tk)− Jopenω
C(tk)

d
(tk+1 − tk)]

J(tk+1) = J(tk)− βJ(tk)(tk+1 − tk)

α(tk+1) =

{α(tk)− c(tk+1 − tk) tk+1 ≤ 1
c

α(tk) tk+1 >
1
c .

(21)

3. PROGNOSTICS ALGORITHM

Using the degradation model we can design a filter to esti-
mate the current state of health of the system. Using this
estimated state of health and degradation model, we can pre-
dict the future behaviour of the capacitor and using end of
life threshold we can estimate the remaining useful life. As
discussed earlier, the degradation model includes three state
variables that change with time, capacitance, C, evaporation
rate, J and combination factor, α. Since we have run ex-
periments and collected degradation data on a set of identi-
cal electrolytic capacitors, we can use our filter model in a
predict-estimate-update loop to refine the degradation model
as new measurements on the system become available. Ap-
plying the predict-estimate-update loop, we hypothesize that
the estimation of RUL becomes more accurate as more data
is obtained on capacitor degradation. Therefore, a combina-
tion of a model- and data-driven approach to prognostics will
likely result in more accurate and general degradation models
than if we employed pure data-driven methods (which don’t
generalize easily) and pure model-based approaches (which
are hard to tune accurately without the availability of data).

Kalman filters have been proven to be optimal state estima-
tors and predictors for linear time-invariant systems (Arulam-
palam et al., 2002). However, the state equations for capac-
itor degradation are nonlinear, therefore a Kalman filter ap-
proach will have to be approximated by extended Kalman fil-
ters (EKF). (Julier & Uhlmann , 1997) used EKF framework
to develop unscented Kalman filters (UKF) which is another
approximation of Kalman filters for state estimation in non-
linear systems. This method assume Gaussian distribution for
the system states and utilizes a set of carefully chosen sam-
ple points, propagate them through the non-linear dynamic
and uses the result to re-estimate the parameters of the Gaus-
sian distribution in each step. These samples are chosen in a
way to capture the exact mean and covariance of the Gaus-
sian distribution completely and when propagate through the
nonlinear dynamic capture the mean and covariance of the
posterior distribution to the 3rd order Taylor series expansion
approximation accurately. Since EKF uses first order Taylor
series approximation it is expected that UKF exhibits better
performance in the state estimation of nonlinear systems with
Gaussian inputs (Wan & Van Der Merwe, 2000). In previ-
ous work, we have used unscented Kalman filters for state
estimation and obtained fairly accurate degradation models
and RUL estimates for both Electrical and Thermal overstress
test conditions (Kulkarni, 2013). In this paper we adopt a
more powerful approach to modeling and tracking non linear
behavior evolution: the Particle filter that uses a sequential
Monte Carlo approach for state estimation and does not as-
sume Gaussian inputs for the system. Similar to EKF and
UKF, Particle filter provides a suboptimal solution for the
state estimation in nonlinear systems, however it is proved
that by increasing the number of samples (particles) its so-
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lution approaches the optimal Bayesian estimation (Arulam-
palam et al., 2002).

3.1. Particle Filter

In order to estimate the probability density distribution (pdf)
of the state variables of a nonlinear system, the particle filter
approach uses a set of particles (samples) and a set of as-
sociated weights representing the discrete probability masses
of the particles. Particle Filter updates these particles and
weights in each step to follow the evolution of the states of
the dynamic system. In fact, particle filters use Monte Carlo
method to implement a recursive Bayesian filter to estimate
the pdf of the state variables. To implement particle filters,
it is assumed that the dynamic system can be presented as a
first order Markov process:

xk = f(xk−1) + ωk

yk = h(xk) + υk,
(22)

where xk is the system states in step time k, yk is the mea-
surement and ωk and υk represent system and sensor noises
respectively.

Sequential Importance Sampling (SIS): SIS is an al-
gorithm for implementing recursive filtering based on Monte
Carlo method. The main idea is to approximate posterior den-
sity function p(xk|y1:k) by a set of random samples or parti-
cles {xik}Pi=1 and their associated weights {ωik}Pi=1. As men-
tioned earlier as the number of these particles become very
large the Monte Carlo characterization approaches to the pos-
terior density function and SIS algorithm solution approaches
the optimal Bayesian estimation.

p(xk|y1:k) ≈
P∑

i=1

wikδ(xk − xik)

P∑

i=1

wik = 1,

(23)

where xik are the particles and wik are the normalized weights
associated with them. These weights update based on im-
portance distribution function π(xk|x0:k−1, y1:k) in each step
(Arulampalam et al., 2002) as follows :

wik ∝ wik−1

p(yk|xik)p(xik|xik−1)

π(xik|xi0:k−1, y1:k)
. (24)

Degeneracy Problem and Resampling: Degeneracy
problem happens when the variance of importance weights
keep increasing over time and consequently after a certain
number of step times most of the particles will have negligi-
ble importance weights. In this situation a fairly large per-
centage of computational effort would be devoted to update
the weights associated with particles which have no mean-
ingful contribution to the result. The degeneracy problem is

not avoidable in SIS algorithm (Ristic et al., 2004). To over-
come to this problem a resampling process is considered in
each step time to replace the particles with low importance
weight with particles which have higher importance weights.
Resampling is a mapping from {xik, ωik}Pi=1 to {xi∗k , 1

P }Pi=1

where new particles xi∗k are chosen from the set of previous
particles randomly with the probability equal to the impor-
tance weight of the particle so we have:

P{xi∗k = xjk} = ωjk. (25)

Sampling Importance Resampling (SIR): By choosing
importance distribution function equal to p(xk|xk−1), one
can rewrite equation (24) as:

wik ∝ wik−1p(yk|xik). (26)

Also considering resampling procedure at each step time we
assign wk−1 = 1

P for all the particle weights so we have:

wik ∝ p(yk|xik). (27)

This filter is proposed by (Gordon et al., 1993) and is called
SIR or bootstrap filter. To implement SIR filter we only
need to know states space dynamic, measurements and noise
model (22) and the likelihood function p(yk|xk).
Particle F ilters for Parameter Estimation: State esti-
mation by particle filters is discussed in this section. Particle
filters can be used for parameter estimation in nonlinear sys-
tems as well. The parameters do not change over time sig-
nificantly so its dynamic in state space representation can be
written as:

ρk = ρk−1 + ωk

yk = h(ρk, xk) + υk,
(28)

where ρ represents system parameters and x is system states.
ω and υ represents parameters uncertainty and sensor noise
models respectively and y is the measurements. Based on
our knowledge about the variance and expected value of the
parameters we design ωk and consider proper initial values
for the parameters and the rest of the process is quit similar
with state estimation procedure. Parameter estimation can be
done simultaneously with state estimation or off line. In the
off line scenario, we assume that the system states in different
time steps are already measured and saved and we feed them
as the inputs to equation (28) during the parameter estimation
process. In the cases that states and parameters should be
estimated simultaneously, parameters will be considered as
the new states for the system and to calculate the value of the
new states (which are the combination of original states and
unknown parameters) in each time step we use the estimated
value of them in previous time step as it was done in state
estimation.

3.2. Remaining Useful Life Prediction

The particle filter estimates the current value of the capaci-
tance considering the measurement values and the degrada-
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tion model. It also updates the degradation model by provid-
ing a new value for evaporation rate and combination factor
based on the measurement and the degradation model. To
calculate the remaining useful life we use the current value of
the capacitance as the initial value and the updated degrada-
tion model to predict the future behavior of the capacitor. Re-
maining useful life threshold is value provided by the factory
which determines after a specific percentage of degradation
in the capacitor the capacitor cant perform its normal func-
tion in the circuit. Having this value we can compare it with
predicted capacitance of the electrolytic capacitor in future to
estimate remaining useful life. The procedure is presented in
figure 2.

Particle Filter 

Measurements 

System State Model Parameter 

Future Behavior 

Prediction 
Failure Threshold 

RUL 

Figure 2. Prognostic flowchart.

4. SETUP AND MODEL ESTIMATION

In the first part of this section the experimental setup and
the test conditions are presented. Then the parameters of
the degradation method are estimated. Finally the remaining
useful life prediction results are demonstrated and the perfor-
mance of the algorithm is discussed.

4.1. Experimental Setup and Test Conditions

In order to present the performance of the proposed strategy
for RUL prediction of the electrolytic capacitors 15 identical
capacitors with 2200uF capacitance are utilized. The nom-
inal working condition of the capacitance is 10V and 85oC.
The thermal over stress condition is provided by a tempera-
ture controlled chamber presented in figure 3. The capacitors
were in 105oC with 3.4% humidity factor for 3400 hours.
And the capacitances of the capacitors were measured during
the test regularly [13].

Figure 3. Thermal Chamber.

4.2. Parameters of the Degradation Model

In the derived degradation model for the electrolytic capac-
itor, thickness of electrolyte paper, d, can be measured for
each class of capacitors after removing the cover. Volume of
the electrolyte molecule is also a constant value that need to
be determined based on the material used as the electrolyte.
These parameters for the 15 identical capacitors that used in
our case study are presented in Table 1. Dielectric constant, ε,
was used in the modeling too, however since it did not appear
in the final model for the degradation (21) we don’t need to
use it for RUL predictions.

There are also some other parameters in the degradation
model which need to be determined in the prognostic de-
sign procedure. These unknown parameters as one can see
in equation (21) are Jopen , β and c. Also three initial condi-
tions C0 , J0 and α0 need to be determined. C0 is considered
equal to the nominal capacitance of each capacitor and J0 is
assumed equal to Jopen. This approximation is not far away
from reality because the internal pressure due to the evapora-
tion is the main reason for decreasing J in the closed space
and in the beginning there should not be significant evapora-
tion. Finally α0 is considered 1 because we assumed in the
beginning of the thermal overstress test all the capacitors are
healthy and non of the cans is not popped up. To estimate
Jopen , β and c for each capacitor the data associated with
other 14 capacitors is considered and since the model is not
linear, the particle filter scheme is applied for the estimation.
The derived value for each capacitor is presented in Table
2. Figure 4 represents real degradation process and its corre-
sponding degradation model for the first capacitor. It can be
seen that the degradation model tracks real degradation pro-
cess within an acceptable range of error. Mean square error
between each capacitor’s model derived by the parameters of
Table 2 and its real degradation process is calculated by (29)
and is presented in Table 3.

MSE =
1

n

n∑

k=1

(Ctk − C
′
tk)

2, (29)

where Ctk is the capacitance of the capacitor measured at
time sample tk and C

′
tk is the value of capacitor obtained
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Table 1. Parameter values of the degradation model

Parameter Description Value
d Thickness of the electrolyte paper 2.22 ∗ 10−5cm
ω Volume of ethyl glycol molecule 5.66 ∗ 10−9cm3

Table 2. Parameter values of the degradation models

Capacitor Jopen β c
C1 0.2167hr−1cm−2 0.0041 0.0003
C2 0.2213 hr−1cm−2 0.0039 0.0003
C3 0.2183 hr−1cm−2 0.0029 0.0003
C4 0.1936 hr−1cm−2 0.0020 0.0003
C5 0.2232 hr−1cm−2 0.0029 0.0003
C6 0.2242 hr−1cm−2 0.0020 0.0003
C7 0.2177 hr−1cm−2 0.0042 0.0003
C8 0.2101 hr−1cm−2 0.0029 0.0003
C9 0.2076 hr−1cm−2 0.0033 0.0003
C10 0.2226 hr−1cm−2 0.0024 0.0003
C11 0.2186 hr−1cm−2 0.0028 0.0003
C12 0.2199 hr−1cm−2 0.0037 0.0003
C13 0.2211 hr−1cm−2 0.0038 0.0003
C14 0.2034 hr−1cm−2 0.0027 0.0003
C15 0.2180 hr−1cm−2 0.0026 0.0003

from its degradation model at the same time. It should be
mentioned here that in the prognostic procedure system states
like J and α update during the process as the system measure
the capacitance of the capacitor in each step. So it is expected
that in the prognostic simulation the model demonstrates even
better tracking performance.
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Figure 4. Degradation models.

5. EXPERIMENTAL RESULTS

Using the proposed degradation model and the estimated vari-
ables, the remained useful life prediction for the capacitors
are done according to the proposed methodology in section 3.
The remaining useful life is considered when the capacitance

Table 3. Mean square errors for the capacitors models

Capacitor mse
C1 1.0e-08 * 0.0637
C2 1.0e-08 *0.1069
C3 1.0e-08 *0.0149
C4 1.0e-08 *0.0379
C5 1.0e-08 *0.0732
C6 1.0e-08 *0.0482
C7 1.0e-08 *0.0968
C8 1.0e-08 *0.2286
C9 1.0e-08 *0.0476
C10 1.0e-08 * 0.0649
C11 1.0e-08 *0.1447
C12 1.0e-08 * 0.0258
C13 1.0e-08 *0.1237
C14 1.0e-08 *0.0204
C15 1.0e-08 * 0.1958

of the capacitor decreases below 90% of its nominal value
(Kulkarni et al., Sep 2012). Also in designing the particle fil-
ter 300000 sample points were considered. Figure 5 shows
the actual remaining useful life and the estimated remaining
useful life of the first capacitor from the beginning of the ther-
mal overstress test to the end of its useful life. One can see
from the this figure that by getting closer to the end of life of
the capacitor the error of the prediction decreases and the pre-
dicted value converges to the real value of RUL. To explain
this observation we can say as the system gets more data and
the particle filter updates the degradation model, the degrada-
tion model becomes closer to the real degradation procedure
and the predicted RUL based on the degradation model be-
comes more exact.

The RUL prediction relative accuracy (RA) is defined as:

RA = 100(1− | RUL−RULe |
RUL

) (30)

where RUL is the remained useful life and RULe is the esti-
mated remaining useful life. relative accuracy of the predic-
tion of remaining useful life for each capacitor in each step
time is presented in Table 3. The results show the predic-
tion method is completely reliable and relative accuracy is
improved in comparison with the previous works.
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Table 4. Relative Accuracy

time(hr) C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15

87.7 91.14 79.98 98.72 98.1 90.89 86.46 93.15 78.9 98.1 82.41 85.99 86.17 98.45 95.25 67.41
181.7 87.14 84.49 96.51 95.15 91.2 79.88 92.48 74.61 96.88 81.4 84.32 87.58 96.13 94.36 70.96
295.4 78.56 90.57 95.76 94.58 94.51 81.62 99.23 85.42 93.33 82.68 86.34 86.55 97.88 92.7 74.9
384.5 89.59 90.58 94.44 96.03 95.56 79.59 96.76 85.42 91.19 83.45 91.34 88.02 92.54 95.92 73.55
450.9 89.46 87.17 95.35 95.70 95.15 82.4 99.42 88.12 94.31 85.11 91.92 87.69 94.2 99.63 75.82
540.8 91.79 83.73 92.48 98.22 95.36 84.57 99.61 84.95 93.29 84.72 88.54 87.04 96.84 99.8 76.97
607.1 94.94 88.82 95.37 95.82 93.65 85.16 97.69 84.12 94.46 83.56 87.36 89.41 94.58 99.7 77.12
701.6 96.5 86.47 94.29 92.43 97.66 87.59 99.34 82.25 93.08 85.29 90.63 86.59 93.78 97.73 74.4
766.8 97.76 81.34 93.27 96.55 93.27 85.19 95.1 81.34 98.65 79.03 88.56 89.11 96.21 98.35 72.66
860.4 94.93 79.47 96.22 91.42 99.06 92.53 94.66 85.86 90.66 87.55 94.66 83.86 92.75 93.11 77.81
950.1 99.22 89.18 97.09 90.73 98.94 93.07 92.98 83.44 87.02 93.3 92.98 84.68 92.57 91.01 76.84
1019 94.49 95.01 97.1 87.82 96.38 94.11 91.37 85.04 86.83 94.16 91.28 83.24 92.64 91.56 71.56

1084.5 89.63 98.09 94.7 87.89 95.91 93.34 92.1 85.02 87.3 93.68 89.03 80.07 92.69 90.76 71.41
1179.5 86.15 89.25 95.8 87.05 98.76 92.28 92.52 81.8 86.69 93.87 88.7 79.27 94.67 93.54 73.36
1244.8 96.77 94.21 98.08 85.77 96.62 91.39 92.65 82.21 87.92 92.9 90.8 76.86 92.06 92 72.16
1338.2 94.96 97.24 97.22 82.98 93 90.33 92.45 82.48 87.16 91.78 87.94 74.74 92.73 92.39 73.24
1404.5 83.71 98.63 92.53 84.53 95.56 86.48 93.62 81.84 92.1 85.95 84.89 78.55 95.44 93.68 75.86
1495.4 75.2 92.83 92.79 76.24 88.31 93.07 86.67 91 82.64 93.81 94.78 68.98 84.53 82.58 86.43
1560.5 93.04 97.17 99.08 71.81 85.98 95.19 84.65 93.48 77.15 95.77 95.26 65.9 85.09 81.28 91.19
1626.5 86.49 91 90.16 79.74 89.58 93.01 90.39 93.69 79.81 93.28 90.52 67.07 87.83 83.72 89.1
1716.6 96.27 92 94.62 71.14 84.71 97.12 87.07 90.8 75.95 97.34 97.19 65.61 84.49 78.32 90.37
1807.0 86.95 96 93.79 76.18 86.19 89.94 88.83 93.47 77.61 98.29 95.43 67.3 86.79 82.88 87.98
1871.6 91.48 83.05 99.78 72.04 84.6 93.04 89.32 98.89 76.17 95.28 94.24 64.3 85.37 81.41 80.92
2036.9 78.98 82.07 99.89 79.16 89.64 87.98 94.79 93.13 82.81 95.75 91.07 68.31 92.82 82.06 82.56
2131.3 86.56 84.77 97.01 77.79 88.35 91.02 90.04 93.71 79.98 98.39 93.51 64.94 87.35 75 82.55
2196.1 87.15 95.84 92.53 77.04 92.21 97.15 95.39 87.45 87.59 92.4 84.38 67.92 96.49 81.98 73.49
2290.1 97.75 85.9 96.9 72.62 94.42 92.17 98.69 90.64 82.22 91.35 85.31 69.42 93 81.63 81.63
2356 88.42 79.3 79 74.92 90.73 80.19 98.96 93.56 82.51 95.87 99.21 65.41 88.42 65.28 87.28

2421.9 95 63 89.81 72.42 88.42 77.28 98.28 86.71 78.28 88.42 87.14 51.57 80.28 60.28 92.57
2500 94.55 61 84.75 75.27 90.72 74.72 96.54 83.81 78.36 91.09 82.72 44.9 81.63 59.81 99.09
2650 97.5 69.25 59.5 81.5 83.5 67.75 93.5 85 68.5 88.75 78.25 60.5 82.5 48.75 96.75
2800 100 97 100 64.5 86 74.5 84 80 87.5 88 76.5 86 84 54 93
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Figure 5. RUL Estimation.

6. CONCLUSION

In this paper a general model with three state variables is
considered to represent the degradation process of the elec-
trolytic capacitors. There is no doubt that degradation process
is a nonlinear complex phenomenon. To perform prognostics
with high performance and acceptable range of error we had
to take in to account these nonlinearities in the degradation
model. The results of experimental study shows acceptable
performance in relative accuracy of RUL predictions. How-
ever, by adding these complexities to the model the number
of parameters we have to estimate for the model increased
as well. This can be a potential problem in designing a re-
maining useful life predictor model. In the estimation of each
capacitor’s model parameters we did not use that capacitor’s
data. In fact we considered 14 other capacitors to estimate
its parameters. So we can claim that derived values for the
system parameters can be used for any similar capacitor and
we expect to get acceptable results as well. One of the advan-
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tages of this work is as the system comes close to the failure,
the performance of RUL prediction improves. The reason of
this observation is discussed in the paper but it has an im-
portant practical value. In fact from the safety and mission
critical point of view it is much more important for the oper-
ators to have an exact estimation of RUL when we are close
to the end of life or failure.

In this paper degradation of the electrolytic capacitors under
thermal over stress condition is studied. However, the sug-
gested degradation model and prognostic algorithm can be
applied for RUL prediction of a capacitor under electrical
overstress condition as well. In fact, in electrical overstress
condition because of additional chemical reactions in the ca-
pacitors (Gmez-Aleixandre et al., 1986), capacitor popping is
more likely, making this model more relevant. In future work,
we will apply the suggested degradation model and prognos-
tic method for RUL prediction of electrolytic capacitors under
electrical overstress condition.

REFERENCES

Arulampalam, M. S., Maskell, S., Gordon, N., Clapp,
T. (2002). A tutorial on particle filters for online
nonlinear/non-Gaussian Bayesian tracking. Signal Pro-
cessing, IEEE Transactions on, 50(2), 174-188.

Celaya, J. R., Wysocki, P., Vashchenko, V., Saha, S., Goebel,
K. (2010, September). Accelerated aging system for
prognostics of power semiconductor devices. In AU-
TOTESTCON, 2010 IEEE (pp. 1-6). IEEE.

Celaya, J. R., Kulkarni, C. S., Biswas, G., Goebel, K. (2012).
Towards A Model-based Prognostics Methodology for
Electrolytic Capacitors: A Case Study Based on Elec-
trical Overstress Accelerated Aging. International Jour-
nal of Prognostics and Health Management.

Gmez-Aleixandre, C., Albella, J. M., Martnez-Duart, J. M.
(1986). Pressure build-up in aluminium electrolytic ca-
pacitors under stressed voltage conditions. Journal of
applied electrochemistry, 16(1), 109-115.

Goebel, K., Saha, B., Saxena, A., Celaya, J., Christophersen,
J. (2008). Prognostics in battery health management.
Instrumentation and Measurement Magazine, IEEE,
11(4), 33-40.

Goodman, D. L., Vermeire, B., Spuhler, P., Venka-
tramani, H. (2005, March). Practical application
of PHM/prognostics to COTS power converters. In
Aerospace Conference, 2005 IEEE (pp. 3573-3578).
IEEE.

Gordon, N. J., Salmond, D. J., Smith, A. F. (1993). Novel
approach to nonlinear/non-Gaussian Bayesian state es-
timation. In IEE Proceedings F (Radar and Signal Pro-
cessing) (Vol. 140, No. 2, pp. 107-113). IET Digital
Library.

Julier, S. J., Uhlmann, J. K. (1997, July). New exten-

sion of the Kalman filter to nonlinear systems. In
AeroSense’97 (pp. 182-193). International Society for
Optics and Photonics.

Kulkarni, C., Biswas, G., Koutsoukos, X. (2009, October). A
prognosis case study for electrolytic capacitor degrada-
tion in DC-DC converters. In PHM Conference.

Kulkarni, C. S., Celaya, J. R., Biswas, G., Goebel, K.
(2012, June). Physics based Modeling and Prognos-
tics of Electrolytic Capacitors. Aerospace 2012, 19-21
June, Garden Grove, California.

Kulkarni, C. S., Celaya, J. R., Goebel, K., Biswas, G. (2012,
September). Bayesian Framework Approach for Prog-
nostic Studies in Electrolytic Capacitor under Thermal
Overstress Conditions.

Kulkarni, C. S. (2013). A Physics-based Degradation Model-
ing Framework for Diagnostic and Prognostic Studies
in Electrolytic Capacitors (Doctoral dissertation, Van-
derbilt University).

Rdner, S. C., Wedin, P., Bergstrm, L. (2002). Effect of elec-
trolyte and evaporation rate on the structural features of
dried silica monolayer films. Langmuir, 18(24), 9327-
9333.

Ristic, B., Arulampalm, S., Gordon, N. J. (2004). Beyond the
Kalman filter: Particle filters for tracking applications.
Artech House Publishers.

Tasca, D. M. (1981, September). Pulse power response
and damage characteristics of capacitors. In EOS/ESD
Symposium Proceedings. Las Vegas: ESD Assn,
Rome, NY (pp. 174-91).

Wan, E. A., Van Der Merwe, R. (2000). The unscented
Kalman filter for nonlinear estimation. In Adaptive
Systems for Signal Processing, Communications, and
Control Symposium 2000. AS-SPCC. The IEEE 2000
(pp. 153-158). IEEE.

Hamed Khorasgani is a Ph.D candidate at ISIS, Vanderbilt
University, Nashville, TN. He received the M.S.c degree in
Mechatronics Engineering, in 2012 from Amirkabir Univer-
sity of Technology, Iran and a B. Sc. in Electronics and Elec-
trical Engineering in 2009 from Isfahan University of Tech-
nology, Iran.

Chetan S. Kulkarni received the B.E. (Bachelor of Engi-
neering) degree in Electronics and Electrical Engineering
from University of Pune, India in 2002 and the M.S. and
Ph.D. degrees in Electrical Engineering from Vanderbilt Uni-
versity, Nashville, TN, in 2009 and 2013, respectively. In
2002 he joined Honeywell Automation India Limited (HAIL)
as a Project Engineer. From May 2006 to August 2007 he
was a Research Fellow at the Indian Institute of Technology
(IIT) Bombay with the Department of Electrical Engineering.
From Aug 2007 to Dec 2012, he was a Graduate Research As-
sistant with the Institute for Software Integrated Systems and
Department of Electrical Engineering and Computer Science,
Vanderbilt University, Nashville, TN. Since Jan 2013 he is

9

Annual Conference of the Prognostics and Health Management Society 2013

410



Annual Conference of the Prognostics and Health Management Society 2013

Research Engineer II with SGT Inc. at the Prognostics Cen-
ter of Excellence, NASA Ames Research Center. His current
research interests include physics-based modeling, model-
based diagnosis and prognosis focused towards electrical and
electronic devices and systems. Dr. Kulkarni is a member
of the Prognostics and Health Management (PHM) Society,
AIAA and the IEEE.

Gautam Biswas received the Ph.D. degree in computer sci-
ence from Michigan State University, East Lansing. He is
a Professor of Computer Science and Computer Engineering
in the Department of Electrical Engineering and Computer
Science, Vanderbilt University, Nashville, TN. His primary
research interests are in modeling and simulation of com-
plex, hybrid systems, fault diagnosis and prognostics, and
fault-adaptive control. His research has been supported by
DARPA, NASA, and NSF. He has over 400 refereed publica-
tions.
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Kai Goebel received the degree of Diplom-Ingenieur from
the Technische Universitt Mnchen, Germany in 1990. He re-
ceived the M.S. and Ph.D. from the University of California
at Berkeley in 1993 and 1996, respectively. Dr. Goebel is
a senior scientist at NASA Ames Research Center where he
leads the Diagnostics and Prognostics groups in the Intelli-
gent Systems division. In addition, he directs the Prognostics
Center of Excellence and he is the technical lead for Prog-
nostics and Decision Making of NASAs System-wide Safety
and Assurance Technologies Program. He worked at Gen-
eral Electrics Corporate Research Center in Niskayuna, NY
from 1997 to 2006 as a senior research scientist. He has car-
ried out applied research in the areas of artificial intelligence,
soft computing, and information fusion. His research interest
lies in advancing these techniques for real time monitoring,
diagnostics, and prognostics. He holds 15 patents and has
published more than 200 papers in the area of systems health
management.

10

Annual Conference of the Prognostics and Health Management Society 2013

411



A Framework to Debug Diagnostic Matrices 

Anuradha Kodali1, Peter Robinson2, and Ann Patterson-Hine2 

1SGT Inc., NASA Ames Research Center, Moffett Field, CA, 94035, USA 

anuradha.kodali@nasa.gov 

2NASA Ames Research Center, Moffett Field, CA, 94035, USA 

peter.i.robinson@nasa.gov 

ann.patterson-hine@nasa.gov 

 
ABSTRACT 

Diagnostics is an important concept in system health and 

monitoring of space operations. Many of the existing 

diagnostic algorithms utilize system knowledge in the form 

of diagnostic matrix (D-matrix, also popularly known as 

diagnostic dictionary, fault signature matrix or reachability 

matrix). The D-matrix maps tests on observed conditions to 

failures. This matrix is mostly gleaned from physical 

models during system development. But, sometimes, this 

may not be enough to obtain high diagnostic performance 

during operation due to system modifications and lag and 

noise in sensor measurements. In such a case, it is important 

to modify this D-matrix based on knowledge obtained from 

sources such as time-series data stream (simulated or 

maintenance data) within a framework that includes the 

diagnostic/inference algorithm. A systematic and sequential 

update procedure, diagnostic modeling evaluator (DME) is 

proposed to modify D-matrix and wrapper/test logic 

considering the least expensive update first. The user sets 

the diagnostic performance criteria. This iterative procedure 

includes conditions ranging from modifying 0’s and 1’s in 

the matrix, adding/removing the rows (failure 

sources)/columns (tests), or modifying test/wrapper logic 

used to determine test results. We will experiment this 

framework on ADAPT datasets from DX challenge 2009. 

1. INTRODUCTION 

Traditionally, diagnostics is performed in the following 

way: System modeling → List failure causes (faults) → 

Design tests → Generate D-matrix → diagnosis via 

inference algorithm (Luo & Pattipati, 2007). Here, the 

process from system modeling to generate D-matrix is 

independent of the diagnoser. But, when the diagnostic 

algorithm based on D-matrix (Singh, Kodali, Choi, Pattipati, 

Namburu, Chigusa, Prokhorov, & Qiao, 2009) is applied 

during operations, and the performance is not robust, it is 

important to reexamine the system model (D-matrix) in 

terms of its correctness and utility towards diagnosability. 

Thus, we propose a debugging architecture, termed 

diagnostic modeling evaluator (DME) that includes the 

diagnoser and repairs the system model (D-matrix) to suit 

better diagnostic performance based on new/updated 

information. This updated information is mostly available 

after system development or during operation.  

D-matrix can be developed from physical models, historical 

field failure data, service documents, engineering 

schematics, and Failure Modes, Effects and Criticality 

Analysis (FMECA) data (Singh, Holland, & 

Bandyopadhyay, 2011) by establishing causal relationship 

between faults and tests (Luo, Tu, Pattipati, Qiao, & 

Chigusa, 2006). Initially, D-matrix is generated from any of 

these sources (e.g., physical model). The initial model, when 

developed during system development, ignores lag and 

noise in sensor measurements during operation and other 

system advancements during deployment. Then other 

sources (e.g., operations data (time-series)) that contain 

these critical changes can be used as reference material in 

DME framework to repair the initial D-matrix. This 

provides a debugging environment to the initial model. This 

also provides an effective platform to represent information 

from different sources (model-based, data-driven, or 

knowledge-based) in a unified D-matrix concept. 

Diagnostic modeling evaluator (DME) is developed as an 

automated debugging process to update/repair D-matrix that 

best suits user-defined performance requirements. This 

includes assessing the level of fault definitions (component 

or failure mode level), number of tests required, test logic 

by considering the thresholds for faulty behavior, and most 

importantly the fault-test relationships. Conditions (repairs) 

ranging from modifying 0’s and 1’s in the matrix, or 

modifying the rows to accommodate lower-level fault 

modeling with failure modes, or adding or removing tests, 

or changing their test logic are identified to experiment for  

Anuradha Kodali et al. This is an open-access article distributed under 

the terms of the Creative Commons Attribution 3.0 United States 

License, which permits unrestricted use, distribution, and reproduction 
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Figure 1. Framework to debug D-matrix

better performance in terms of diagnostics (detection + 

isolation). This is implemented as an iterative feedback 

process by tuning D-matrix at every step with repair 

conditions. Sometimes, more than one repair is applicable 

on a given iteration. Those repairs are accepted/declined by 

the user/decision maker based upon their diagnostic 

performance and also, most importantly, mission directives. 

The user-defined performance criteria are quantified based 

on the following metrics: diagnostic efficiency, false 

positive/false negative rate, diagnostic time and cost. This is 

again communicated to update procedure and the iterations 

go on until there are no further changes (shown in Figure 1). 

In this paper, section 2 focuses on explaining DME 

procedure as a debugger and the conditions required to 

update D-matrix. In section 3, the process of updating D 

matrix is shown with examples. Two example systems, 

rover and ADAPT (from DX challenge 2009) are included 

in this paper. 

2. DEBUGGING FRAMEWORK 

Conventionally, system model doesn't consider diagnostic 

utility when developing D-matrix. While developing a 

robust diagnostic system, it is important for both system 

modeling and diagnostic process to interact coherently 

resulting in high detection and isolability performance 

during operation. To make this idea possible, DME acts as a 

debugger to the initial D-matrix using the available 

operational or simulations data. It plays the data in batch 

mode in order to determine which repairs to make. No 

single time step decisions are made, though this would be 

required to utilize these techniques during runtime operation 

(other data sources can also be used to repair D-matrix). 

These repairs to D-matrix can be translated back to the 

initial system model. This is pursued as future work. Here, 

we will explain the modules and process of DME 

framework as shown in Figure 1: 

2.1. Information Sources 

The diagnostic modeling, firstly, starts with building the 

model from the system information, viz., physical model, 

historical field failure data, service documents, spreadsheets, 

engineering schematics, FMECA, sensor/commands list, 

and simulations data (Singh et al., 2011). D-matrix, in DME 

context, is built from one source initially and then 

updated/repaired with the other available sources. These 

sources can be model-based, data-driven, or knowledge-

based informative sources. This repair process can be 

performed during system development or operational phase. 

The data collected during real-time operations 

accommodates lags and noise ignored during system 

development, thus providing operational information about 

the relationship between faults and tests. But, sometimes, 

the information from different sources can be counter-

explanative and this needs to be dealt carefully during 

corrective actions to the D-matrix. 

2.2. Generating D-matrix (preliminary) 

Here, the initial D-matrix is generated from any of the 

available sources listed above. For this purpose, it is 

important to determine the level at which fault modeling is 

performed for diagnosis. This can be done at sub-system, or 

component, or failure mode level depending on the system 

properties and requirements. Also, the testing criterion for 

each test is formulated based on sensor measurements. 

These tests can either be threshold, trending, or statistical 

tests. Subsequently, D-matrix is generated either by hand or 

by automated software methods like TEAMS Designer 

(Qualtech Systems Inc.). The D-matrix generated in this 

step is preliminary and is modified in the next step. 
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Figure 2. Top-level iterative loop identifying progression of repairs for DME framework  

2.3. Diagnostic Modeling Evaluator (DME) 

In the process of repairing D-matrix for better performance, 

an iterative loop (DME) consists of a sequential procedure 

with low-cost repairs considered first (as shown in Figure 

2). The updates in the D-matrix are made in accordance to 

the new information from another source. After each 

iteration, the performance of the updated matrix is 

determined and the changes are accepted/declined 

accordingly based on mission directives. Here, the 

performance can be defined as combination of the required 

metrics, viz., false-positive, or false-negative rate, accuracy, 

time to diagnose, or cost involved for test and diagnoser 

implementation. Sometimes, improvement in one metric can 

affect others. Thus, balance should be maintained given the 

mission directives. This process is continued until there can 

be no further improvement. The necessary steps involved in 

the iterative updating DME procedure of the D-matrix are 

listed below: 

2.3.1. Repair Cases for Updating D-matrix 

1.  Address row/column redundancy  

Faults/test corresponding to rows and columns of D-matrix 

are assessed for redundancy in terms of two or more rows or 

columns having exactly the same signature. Duplicate rows 

or columns can result in ambiguous/masking faults and 

bad/duplicate tests, respectively (Simpson & Sheppard, 

1992). In such a case, to decrease computational complexity 

and simplify representation, those faults/tests are grouped in 

to one. It is better to keep track of this change to avoid 

ignoring the subsequent repairs and also when they are 

required for mission critical functions or in other system 

mode. 

2. Modify Fault Modeling (Change Rows of D-matrix)  

In general, faults are modeled at component level. But, 

sometimes, components can be faulty with different severity 

levels based on their root-cause resulting in different fault 

signatures in D-matrix. In this case, new rows are added to 

the D-matrix when failure modes need to be refined. We add 

a row for each addition of a new component. Similarly, 

when the diagnosis is required at higher level (e.g Line 

Replaceable Unit (LRU) or Orbital Replaceable Unit 

(ORU)) or when components are removed, we remove the 

corresponding rows in D-matrix. 

Table 1. List of tests
1 

Tests Symbols 

Voltage sensors V1, V2, V3, V4 

Battery temp. sensor TB1, TB2, TB3, TB4 

Battery current sensor i 

Position sensors xFL, xFR, xBL, xBR 

Velocity sensors wFL, wFR, wBL, wBR 

Current sensors iFL, iFR, iBL, iBR 

Temperature sensors TFL, TFR, TBL, TBR 

 

                                                           
1 FL, FR, BL, BR represents front left, front right, back left, back 

right wheels, respectively. 
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Table 2. D-matrix and the corresponding delays (in seconds) of each test for the rover system 

 
V1 TB1 V2 TB2 V3 TB3 V4 TB4 I xBL wBL iBL TBL 

Motor 

Friction 

Fault BL 

1/0.55 1/25.75 1/0.55 1/22.6 1/0.55 1/19.55 1/0.55 1/23.6 1/0.4 1/0.9 1/0.2 1/0.4 1/30.95 

Parasitic 

Load 
1/0.2 1/28.8 1/0.2 1/26.85 1/0.2 1/26.1 1/0.2 1/31.9 1/0.15 0 0 0 0 

Voltage 

Sensor 1 

Bias 

1/0.15 0 0 0 0 0 0 0 0 0 0 0 0 

3. Change Test Logic/Wrapper Code 

We modify the test logic to attain better detection for each 

test. The test criteria, especially when defined by thresholds, 

may not hold during operation or with degradation of 

component’s performance over time. This necessitates 

changing the logic subsequently either to trending or 

statistical tests. Additionally, refinement of abstraction of 

failure modes may in turn require test logic/wrapper code to 

be refined as well. Changes in test logic should be properly 

monitored, sometimes, for increased false positive or false 

negative detection rate with respect to the user defined 

expected performance measures for the D-matrix. 

4. Repair False positives/negatives (Change the Entries 

of D-matrix) 

The most important correction to the D-matrix is updating 

its entries, i.e., changing 1 to 0 or vice-versa, thus 

decreasing false positive or false negative isolation rate, 

correspondingly. This can be reflected as system (physical 

model) change. This means that a 1 in the D-matrix means 

two conditions are true: that a path exists between the fault 

and the test and that a set of signals propagate from the 

failure are detected at the test. A change in fault test 

relationships means that change for the paths and signals are 

applied. Note that both false positives and false negative 

isolation rates cannot be improved concurrently. This is 

because, to improve false negative isolation rate, we need to 

expand the threshold logic (red lines) which will increase 

false positives. Thus, the required acceptable metric is 

obtained from the mission directives. 

5. Add/remove Tests (Change Columns of D-matrix) 

Adding tests incurs additional cost, so we restrict this repair 

strategy to be done at last. We have to design new tests if 

some faults are not adequately detected or if they are not 

isolatable. Tests also can be broken into finer levels, similar 

to the component to failure mode representation, to be able 

to detect different fault modes with different severities. On 

the other hand, sometimes, low reliable and delayed tests 

hinder the overall diagnostic performance efficiency. Such 

tests when not detecting critical faults in any other system 

mode can be removed. 

2.3.2. Diagnostic Algorithm 

Here, any standard diagnostic procedure based on D-matrix 

can be applied as a diagnoser. We have applied diagnostic 

algorithms Dynamic Multiple Fault Diagnosis (DMFD) 

algorithms based on primal-dual optimization framework 

that can detect multiple, delay, and intermittent faults over 

time. Our problem is to determine the time evolution of fault 

states based on imperfect/perfect test outcomes observed 

over time and is formulated as one of finding the maximum 

a posteriori configuration to evaluate fault state evolution 

over time (which is why the time series is process in batch 

mode) that best explains the observed test outcome 

sequence. More details of these algorithms can be found in 

(Singh et al., 2009), (Kodali, Singh, & Pattipati, 2013), 

(Kodali, Pattipati, & Singh, 2013). 

2.3.3. Performance Evaluation 

Performance metrics can be overall diagnostic efficiency, 

false-positive rate, false-negative rate, diagnostic time and 

cost. The choice of metrics is dependent on the user-set 

criteria based on mission directives. As an example, user 

can determine to have less false positives (this may increase 

false negatives). 

3. SIMULATIONS AND RESULTS 

We demonstrate DME framework on two example systems, 

viz., rover and ADAPT systems. We do not provide the 

description for these systems. More details can be found in 

(Narasimhan, Balaban, Daigle, Roychoudhury, Sweet, 

Celaya, & Goebel, 2012) and (Poll, Patterson-Hine, Camisa, 

Garcia, Hall, Lee, Mengshoel, Neukom, Nishikawa, 

Ossenfort, Sweet, Yentus, Roychoudhury, Daigle, Biswas & 

Koutsoukos, 2007) for rover and ADAPT systems, 
respectively. 

3.1. Example System 1: Rover 

The initial D-matrix of the rover system is generated via 

simulations with three faults and thirteen tests (see Table 1 

and Table 2). Three fault scenarios viz., battery parasitic 

load, motor friction fault, and voltage sensor fault are 

simulated (Narasimhan et al., 2012) by injecting them in the 

rover test bed and altering the corresponding measurements  
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Table 4. List of faults in ADAPT-Lite 

No. Fault ID Fault modes Test ID Sensor description 

1 ISH266 Stuck E235 DC voltage 

2 TE228 Stuck, offset E240 DC voltage 

3 IT267 Stuck, offset E242 DC voltage 

4 E267 Stuck, offset E261 DC voltage 

5 IT240 Stuck, offset E265 AC voltage 

6 ESH260A Stuck E267 AC voltage 

7 E242 Stuck, offset ESH244A Actuator position 

8 ESH275 Stuck ESH260A Actuator position 

9 IT261 Stuck, offset ESH275 Actuator position 

10 E261 Stuck, offset ISH236 Actuator position 

11 E240 Stuck, offset ISH262 Actuator position 

12 E235 Stuck, offset ISH266  Actuator position 

13 E265 Stuck, offset IT240 DC current transmitter (50A Max) 

14 TE229 Stuck, offset IT261 DC current transmitter (50A Max) 

15 ISH262 Stuck IT267 AC current transmitter (12A Max) 

16 ST516 Stuck, Offset ST265 AC frequency transmitter 

17, 18, 19 FAN416 FailedOff, under speed, over speed ST516 Speed (RPM) transmitter 

20 EY275 Stuckopen, stuckclosed TE228 Temperature 

21 CB266 Tripped, failedopen TE229 Temperature 

22 INV2 FailedOff XT267 Phase angle transducer 

23 CB262 Tripped, failedopen   

24 EY260 Stuckopen, stuckclosed   

25 EY244 Stuckopen, stuckclosed   

26 CB236 Tripped, failedopen, stuckclosed   

27 ISH236 Stuck   

28 XT267 Stuck, offset   

29 ST265 Stuck, offset   

30 ESH244A Stuck   

Table 3. Diagnosis time for each fault (fault injected at 50s) 

 
HyDe QED 

D-matrix 

diagnoser 

Motor Friction Fault BL 50.2s 50.25s 50.2s 

Parasitic Load 50.05s 51.2s 50.05s 

Voltage Sensor 1 Bias 50.1s 50.3s 50.15s 

with erroneous values. All these faults are injected at 50s. 

Temperature sensors have high detection delays (see Table 

2), therefore, the corresponding diagnostic delays will also 

be longer. The DMFD algorithm with delays (Kodali et al., 

2013) delivers intermediate diagnosis at each time-step with 

partial test information and updates it as the test information 

becomes available.  

The inputs to DME framework are initial D-matrix and 

delay metrics in Table 2. Then, at iteration 1, the time to 

diagnosis is high due to detection delays of temperature 

sensors. There can be 2 repair actions for this case. Either, 

the test logic can be changed for the temperature sensors or 

they can be removed. But, changing test logic cannot avoid 

detection delays. Thus, the tests relating to temperature 

sensors are removed. This improves the time to diagnosis 

with out compromising the isolability for the listed fault  

universe2. The results with updated D-matrix are 

comparable with other diagnostic algorithms (HyDe, QED 

(Narasimhan et al., 2012) in Table 3 (the faults are injected 

at 50s). 
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Figure 3. E235 sensor measurement when fault is injected  

3.2. Example System 2: ADAPT-Lite 

Here, we used the dataset generated from ADAPT-Lite 

system for DX workshop tier 1 competition 2009 (Kurtoglu, 

Narasimhan, Poll, Garcia, Kuhn, de Kleer, van Gemund, &  

                                                           
2 This strategy may not hold if we expand the fault universe. Here, 

this is demonstrated as an example.  
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Figure 4. E235 sensor measurement: (a) nominal case (b) when fault 19 is injected (red line indicates the fault injection time) 

Figure 5. DME process to generate modified D-matrix from initial D-matrix (ADAPT system) 

Feldman, 2009). This dataset has 2 parts: sample and 

competition data. Data (sensor measurements) is collected 

for 238.5s with a sampling rate of 0.5s, thus the data 

contains a total of 478 time steps for both nominal case and 

when faults are injected. Each fault is injected and the 

corresponding continuous sensor measurements over time 

are noted (see Table 4 for list of faults and tests). Initially, 

D-matrix is generated by visualizing the sensor 

measurements in sample data. As seen in Figure 3, there is a 

clear change in the mean value of the sensor E235 when 

fault E235 is injected. Then, the corresponding row-column 

entry in D-matrix is depicted as 1 in the D-matrix. The 

corresponding test logic in terms of threshold logic is also 

generated to suit fault detection.  

In DME framework, at iteration 1 using sample data, rows 

17-19 corresponding to different fault modes, viz., failed 

off, under speed, and over speed for the component FAN 

have similar fault signature. These are identified as 

ambiguous rows. Also, when faults 18 and 19 occur, they 

are misdiagnosed as fault 3 (IT 267 sensor fault). This is 

identified as either incorrect test logic or D-matrix entries in 

DME framework. But, most of the tests connected to faults  
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Table 5. Competition data results 

(in %) 
Initial D-

matrix 

Modified entries of D-

matrix 

False positive rate 4.85 6.94 

False negative rate 2.39 2.41 

Classification 

accuracy 
94.57 96.15 

18 and 19 didn't fail. Thus, the former repair is rejected. 

Therefore, the D-matrix entries are changed to generate new 

fault signatures for faults 18 and 19 (shown in Figure 5). 

The entries corresponding to voltage and current sensors are 

changed to 0. This is because, the effect of these faults on 

the corresponding sensor values is very low, i.e., the change 

in the measurement values is minimal. This is evident in 

Figure 4. Even though there is a clear indication of shift in 

the measurement value when fault is injected in Figure 4(b), 

those faulty values are overlapping with the values in the 

nominal case (24.3-24.36V). The repaired D-matrix is 

shown in Figure 5. These D-matrix repairs are verified on 

competition data using DMFD algorithm (Singh et al., 

2009) (see Table 5). Classification accuracy is the 

percentage number of events that are correctly diagnosed 

(both nominal and faulty cases over 478 time-steps). 

Evidently, the diagnostic performance with modified D-

matrix is better; thus, the corresponding repair strategy is 

accepted. Note that, the false positive and false negative 

rates are increased with modified D-matrix. But, here, the 

classification accuracy is considered as the decisive 

performance metric. There are no further changes in 

subsequent iterations. 

4. SUMMARY AND FUTURE DIRECTIONS 

Traditionally, diagnostics is viewed as an open-loop 

cascading process with the D-matrix as the input to the 

inference algorithm. In this context, DME is proposed to 

allow feedback from the diagnoser to the initial model via 

D-matrix repairs. Here, most importantly, the D-matrix can 

be updated to account for noise, lag and other effects by 

validating it through a time-series data stream or any other 

information that comes along during or after system 

development and operational deployment. Thus, in this 

iterative process, DME updates D-matrix and the 

corresponding test logic through a sequential procedure in 

the order of cost-effective repairs using the time-series data 

stream.  

In our future research, DME framework will be updated and 

implemented as an automatic process. We will also 

experiment with systems that can accommodate the other 

repair strategies. We will also define user's role to validate 

the repair recommendation based on performance and 

mission directives and experiment with different metrics as 

the performance criteria. Most importantly, we will provide 

user-computer interface to communicate repair actions and 

provide necessary feedback. A systematic process to 

transverse the repairs back to the system model will also be 

investigated. 
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ABSTRACT 

A rigorous methodology is presented for both specification 
and verification of prognostic algorithm performance.  The 
prognostic algorithm specification statement takes the 
form, “The prognostic algorithm shall provide a minimum of 
<TTM> hours time-to-maintenance such that between 
<Lower>% and <Upper>% of failures of component ABC 
will be avoided with <Confidence>% confidence.” The 
methodology is developed first for a single failure mode case 
and then extended to the multiple failure mode case.  The case 
of non-prognosable failure modes is also considered.  Finally, 
implications of this approach are presented, including pre-
tabulation of confidence bounds, estimation of the minimum 
amount of data required to reach a given verification 
confidence, and a method for using a minimum confidence 
growth curve to account for initial low confidence in a 
prognostic algorithm. 

1. INTRODUCTION 

The goal of prognostics is to predict the time to failure (or 
similar measures, such as remaining useful life or time to 
maintenance) of a component or system.  These predictions, 
when incorporated into an overall maintenance concept of 
operation, may provide several benefits, such as increased 
mission reliability and system availability, optimized spares 
positioning, and enhanced reliability centered maintenance 
(Massam & McQuillan, 2002). 

At the earliest stages of design, these goals are documented 
as requirements.  Typically, requirements statements are first 
developed at a higher (system) level, then flowed down to 
lower sub-systems and, potentially, individual components.  
As the requirements are developed at the lower tiers, they 
tend to become more specific and, thus, independently 
verifiable.  Early work in writing requirements for prognostic 
algorithms relied on basic measurements such as the 
confidence interval at standard mean time to failure 
prediction (Kacprzynski et al., 2004), average bias and 
precision (Roemer, Dzakowic, Orsagh, Byington, & 

Vachtsevanos, 2005), and minimum time to prediction and 
minimum improvement of the service interval over legacy 
methods (Line and Clements, 2006). 

More recently, several performance criteria for Prognostics 
and Health Management (PHM) have been developed, as 
documented in (Saxena et al., 2008), (Leao, Yoneyama, 
Rocha, & Fitzgibbon, 2008), and (Wheeler, Kurtoglu, & Poll, 
2010). These criteria, though, are usually used as a means of 
measuring the performance of a prognostic algorithm, often 
in relation to other algorithms (say, for example, to determine 
the ‘best-performing’ algorithm out of a set).  While these 
performance measures could, potentially, be used as the basis 
for a requirement (Tang, Orchard, Goebel, & Vachtsevanos, 
2011), there are two issues with this approach.  First, there 
are not currently accepted performance thresholds related to 
these measures (particularly for fielded systems).  Second, 
most of these measures require knowing the true state of 
health of the component being analyzed, or at least the true 
time of failure.  In many fielded systems, it is not acceptable 
to let a component run to failure, and not cost effective or 
accurate to determine the remaining life of a component 
removed before failure. 

Often, the data that will be available for verification will be 
(1) how many instances of a component (across a fleet, for 
instance) were replaced and (2) of those, how many failed 
before they were replaced (as opposed to how many were 
replaced based on a time-to-maintenance prediction).   

Due to the inherent uncertainties associated with prognostic 
algorithms, the remaining useful life prediction is typically 
given as a probability distribution around a mean predicted 
time to failure.  Instead of trying to characterize and verify 
the shape of the predicted failure pdf, this paper uses a 
threshold requirement (i.e., “capture 95% of all failures”) as 
a starting point for verification. 

This document addresses two main issues of verification of 
prognostic algorithms. First, Section 2 discusses what a 
meaningful and verifiable prognostic requirement statement 
must include.  Then, Section 3 provides a statistical approach 
to verifying such a requirement by considering the case of a 
single failure mode.  Section 4 extends the analysis presented 

Clements et al.  This is an open-access article distributed under the terms
of the Creative Commons Attribution 3.0 United States License, which
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in Section 3 to the case of multiple failure modes, both 
prognosable and non-prognosable.  Finally, Section 5 
discusses some of the real-world implications of this 
verification approach. 

2. PROGNOSTIC REQUIREMENT STATEMENTS 

A primary issue with verifying prognostics algorithms is 
formulating a proper prognostic requirement statement.  
“Proper” in this sense means that the requirement is 
verifiable, which implies that the data needed to verify it can 
realistically be acquired.  Unfortunately, the data most likely 
to be available is rather limited.  In the normal course of 
developing a component, the design, analysis, and perhaps 
“lab data” will be useful for determining such things as 
average failure distributions, failure modes and probabilities, 
and potential precursor signals of failures.  While helpful in 
designing the prognostic algorithm itself, this type of data 
will usually not be useful in verifying the algorithm.  In 
practice, the data available for verification will be 
maintenance data, such as how long a component has been in 
service, how many times a component has been replaced, 
how many times it has failed, etc. 

Consider the example of a flight control surface actuator such 
as an electro-mechanical actuator (EMA).  Suppose a 
prognostic technique has been developed for this EMA that 
gives a time-to-maintenance (TTM) indication based on 
measured performance.  Further, assume that maintenance is 
planned based on the prognostic indication.  That is, the part 
is replaced when indicated, even if it has not failed.  In an 
ideal world, once removed, the part would be analyzed to 
determine how much useful life remained in the component.  
Although the component could conceivably be placed in a 
test bench and operated until failure, doing so would not be 
economically feasible (not to mention issues such as 
recreating realistic flight conditions and load profiles).  
Instead, the part will most likely be repaired, recertified and 
placed back in the supply chain (or discarded).  However, as 
mentioned before, there is some data available for 
verification:  the number of times that EMA has been 
removed and whether or not it had failed in place before being 
removed (i.e., when the prognostic algorithm fails to give a 
maintenance time before failure).  Note that these counts can 
be aggregated across all aircraft in a squadron (for example) 
to provide a statistically significant sample. 

In addition to having reasonable access to the requisite data, 
the prognostic requirement statement must be written in such 
a way that it has an interpretation that is not ambiguous.  To 
demonstrate some of the ambiguities that can arise with 
interpretation, an initial attempt at a prognostic requirement 
will be given and then refined as needed. 

1st attempt: The prognostic algorithm shall provide a time-to-
maintenance such that at least 95% of failures of component 
XYZ will be avoided. 

As will be shown, there are several problems with this 
statement.  First, there is no minimum bound on the time to 
failure of the prediction.  Simply declaring “Component XYZ 
will fail in five minutes” (or some other arbitrarily short time) 
technically satisfies the requirement, but is practically 
useless.  This minimum time to failure declaration 
requirement often stems from an analysis of the minimum 
useful notification, based on factors such as the lead time to 
procure a replacement component and how often the 
prognostic algorithm will be run.  So, a second attempt is 
made:  

2nd attempt: The prognostic algorithm shall provide a 
minimum of 20 hours time-to-maintenance such that at least 
95% of failures of component XYZ will be avoided. 

This attempt at a requirement statement at first glance may 
appear adequate (and, indeed, it is close), but as will be 
shown more clearly in the next section, there are still two 
problems with it – the confidence in the prediction and 
protection against ‘overly conservative’ predictions.  In the 
next section, the verification approach will be presented as 
well as further refinements on the requirement statement to 
address these issues. 

3. VERIFICATION APPROACH 

It is important to understand that this verification technique 
is not trying to determine how well the prognostic algorithm 
is determining the actual remaining useful life distribution of 
a component.  In fact, the prognostic algorithm does not even 
need to explicitly calculate the remaining life distribution.  
Rather, this approach to verification is based off the “avoid 
95% of failures” portion of the requirement statement.  
Specifically, this approach evaluates whether the time-to-
maintenance value (which the prognostic algorithm does 
provide) is adequately avoiding the specified percentage of 
failures. 

The basic idea behind this approach is the expectation that the 
prognostic algorithm is, in fact, expected to “miss” a small 
percentage of failures.  In the example requirement 
statements given in Section 2, an algorithm that satisfies the 
requirement will avoid at least 95% of failures; conversely, it 
will miss at most 5% of failures.  So out of 100 replacements, 
the component can be expected to fail about 5 times.  If the 
maintenance records indicate that there were actually 25 
failures, the algorithm is probably not meeting the 
requirement.  The rest of this section attempts to apply 
statistical theory to this approach to better quantify the 
confidence that the algorithm is meeting the stated 
requirement. 

3.1. Assumptions 

The following assumptions are made throughout the rest of 
this section. 
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1. The prognostic algorithm being verified provides a 
minimum time-to-maintenance that satisfies the 
minimum time constraint of the requirement statement. 

2. Maintenance actions are planned based on the time-to-
maintenance measures (that is, the part is replaced when 
indicated, even if it has not failed). 

3. The number of times the component has been replaced 
(both due to failure or prognostic indication) is available. 

4. The number of times the component failed before being 
replaced is available. 

5. If a component is removed either due to a failure or based 
on a prognostic indication of imminent failure, then it 
will be replaced or serviced to a ‘like new’ condition 
before re-entering the supply chain. 

There are several measures that may be output from a 
prognostic algorithm, including a best estimate of the 
remaining useful life, the shape of the remaining life 
distribution, and a best estimate of the time-to-maintenance 
for a given failure avoidance percentage.  The first 
assumption is simply that the TTM value is made available 
(other measures may or may not be output as well). 

The other three assumptions concern maintenance 
operations.  The second assumption is that the time-to-
maintenance measure is actually used.  As will be discussed 
in Section 5.3, this assumption can be relaxed a little to 
provide for a “confidence building” period during which the 
prognostic algorithm is verified without the risk of excessive 
failures or unnecessarily maintenance actions.  Finally, the 
last two assumptions provide the data needed for the 
verification calculations. 

3.2. Single Failure Mode Construction 

To start the derivation, assume that the prognostic algorithm 
is perfectly accurate.  That is, the algorithm provides a 
consistent time-to-maintenance measure, which divides the 
failure rate pdf (whatever its shape) as shown in Figure 1.  In 
this figure, t0 is the time at which the prediction is made, tM is 
the maintenance time, and f is the percentage of failures that 
would be avoided by performing maintenance at the indicated 
time.   

 

Figure 1. Prognostic Algorithm Time-To-Maintenance 
Prediction 

The following two definitions are now made.  Let n be the 
number of components replaced (failed and not failed) and x 
be the number of those replaced components that failed 
before being replaced. With these definitions, the probability 

of missing exactly x component failures is given by the 
standard binomial distribution: 
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This expression characterizes the distribution of x given 
values for n and f.  Figure 2 shows the probability mass 
function (pmf) of this binomial distribution for n = 50 and f = 
0.8.  As expected, the highest probability of failure occurs at 

10)8.01(50)1(  fnx .  Note that this is a 

discrete distribution – it is only defined on integer values of 
x.  However, a different distribution can be calculated for 
every possible value of f between zero and one.  For example, 
Figure 3 shows the binomial distributions for eleven different 
values of f.  The distribution corresponding to Figure 2 (f = 
0.8) is highlighted in blue.  Further, since f can take on any 
value in the range from zero to one, Figure 3 can be filled in, 
yielding Figure 4. 

 

Figure 2. Binomial Distribution for n = 50 and f = 0.80 

 

Figure 3. Binomial Distribution for n = 50 and Various 
Values of f 
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Figure 4. Binomial Distribution for n = 50 and All Values of 
f 

Up to now, the values for f and n have been considered 
known.  Now consider a slightly different problem: given 
values for n and x, what is the best guess for the value of f?  
For example, suppose that n = 50 and x = 20, as highlighted 
by the red line in Figure 4.  This red line is the marginalization 
of the joint distribution of f.  Note that this line is continuous 
in f and only defined over the range 0 ≤ f ≤ 1. Before using 
this marginalization to develop a confidence measure, it must 
first be normalized to form a proper pdf.  This results in a pdf 
for the marginalization of the joint distribution of f given by  
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As an example, the graph of the pdf of f for n = 50 and x = 20 
is given in Figure 5.  This corresponds to the red line shown 
in Figure 4.   

 

Figure 5. pdf of f for n = 50 and x = 20 

Given the pdf for the distribution of f for a given set of values 
n and x, the confidence (i.e., probability) that the actual value 
of f is a given value (or, more accurately, that the actual value 
is within a range of values) can be found by calculating the 
area under the distribution for that range.  Written as a 
formula, the confidence that the actual value of f is between 
two values a and b (where bfa  ) is given as follows: 
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For example, suppose that the flight control surface EMA had 
been replaced 50 times, and 20 of those times were due to a 
failure of the EMA, the confidence that the prognostic 
algorithm was avoiding at least 95% of the failures would be 
equal to the area under the curve in Figure 5 from 0.95 to 1.00 
(or 95% to 100%).  Obviously, for this curve the confidence 
would be very close to zero, which intuitively makes sense 
given the number of failures that were incurred. 

However, suppose there had only been one failure out of 50 
replacements.  The distribution for f in that scenario is shown 
in Figure 6.  In this case the confidence that the failure 
avoidance is at least 95% is much higher (73.56%): 
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Figure 6. pdf of f for n = 50 and x = 1 

3.3. Prognostic Requirement Statement Refinements 

In Section 2, the requirement statement was left with two 
remaining issues.  Now that a method of determining the 
confidence has been shown, the prognostic requirement can 
be further refined. 

3rd attempt: The prognostic algorithm shall provide a 
minimum of 20 hours time-to-maintenance such that at least 
95% of failures of component XYZ will be avoided with 90% 
confidence. 

With the addition of the confidence measure, the requirement 
statement can be verified in a statistically meaningful 
manner.  However, there is no protection against ‘overly 
conservative’ predictions.  For example, a prognostic 
algorithm that claims 20 hours time-to-maintenance every 
time it is run (even if there were actually hundreds or more 
hours of remaining useful life), would meet the requirement, 
as it would definitely catch 95% of all failures of that 
component.  Realistically (for components that are not so 
critical that they should never be allowed to fail in place), 
there is an expectation that an accurately tuned prognostic 
algorithm would ‘miss’ some (small) percentage of failures.  
Thus, instead of saying “… at least 95% of failures …” 
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(which implies between 95% and 100%), the upper bound is 
slightly reduced. 

4th attempt: The prognostic algorithm shall provide a 
minimum of 20 hours time-to-maintenance such that between 
95% and 99% of failures of component XYZ will be avoided 
with 90% confidence. 

Figure 7 shows a grid plot of the confidence calculation for 
various values of x and n.  Grid coordinates (i.e., 
combinations of x and n) that meet or exceed 90% confidence 
(per the example requirement statement above) are colored 
green.  Similarly (for illustrative purposes), yellow indicates 
a confidence between 70% and 90%, and blue indicates less 
than 70% confidence.  As can be seen, for some values of x, 
there is no value of n that will satisfy the requirement.  
Moreover, consider the case where x = 4.  The requirement is 
satisfied only if n is between 168 and 237.  Thus, if the 
prognostic algorithm is too conservative (and there have been 
more than 237 replacements for 4 failures), the confidence 
will drop below the threshold.  Thus, a prognostic 
requirement written as shown above is not only verifiable 
from maintenance record data, but it also provides a means of 
identifying algorithms that are potentially too conservative in 
their time-to-maintenance predictions. 

 

Figure 7. Prediction Confidence Regions 

4. EXTENSION TO MULTIPLE FAILURE MODES 

The verification approach developed in Section 3 assumed 
that the component under analysis had a single failure mode.  
In reality, that is rarely the case, as components often have 
many failure modes and prognostic algorithms to cover only 
a few of them (typically, the most severe or frequent one(s)).  
This section extends the previous approach to verification of 
multiple failure modes. 

As a start, it should be pointed out that the previous (single 
failure mode) approach still has applicability when 
considering the total prognostic requirement for a 
component.  That is, if the goal is to determine how well a 

given component is meeting a goal of, say, between 90% and 
99% coverage of all failure modes given whatever prognostic 
algorithm(s) are implemented, the single failure mode 
verification approach can be used.  If, however, the desire is 
to see how well the individual algorithms (for a single 
component) are meeting individual goals, a new approach is 
warranted. 

This extension to multiple failure modes is presented in three 
steps.  First, Section 4.1 extends the previous approach to the 
case of two failure modes for a single component, each of 
which has its own prognostic algorithm.  An overall 
confidence algorithm is then constructed from probabilistic 
principles for this two failure mode case.  Section 4.2 then 
further extends this construction to the case of an arbitrary 
number of failure modes (again, where each has its own 
prognostic algorithm).  Finally, Section 4.3 addresses the 
situation where one or more failure modes do not have 
associated prognostic algorithms. 

4.1. Two Failure Mode Construction 

To describe the approach taken in this extension, consider the 
case of a component with two failure modes.  Further, assume 
that the component has been replaced four times (n = 4) of 
which two were due to component failure (x = 2).  There are 
several scenarios that could lead to this result, as shown in 
Table 1.  The first column of the table (n1) is the number of 
times the component was replaced due to failure mode m1.  
This includes both preemptive replacements based on 
prognostic indications and replacements required due to a 
failure of the component due to failure mode m1.  The second 
column (x1) is the number of times the component failed due 
to failure mode m1 before being replaced (that is, it was not 
replaced preemptively based on a prognostic indication).  The 
next two columns (n2 and x2) represent the corresponding 
values for failure mode m2. 

Table 1. Possible Scenarios for Two Failure Mode Example 

n1 x1 n2 x2 n = n1 + n2 x = x1 + x2 
0 0 4 2 4 2 
1 0 3 2 4 2 
2 0 2 2 4 2 
1 1 3 1 4 2 
2 1 2 1 4 2 
3 1 1 1 4 2 
2 2 2 0 4 2 
3 2 1 0 4 2 
4 2 0 0 4 2 

 

There are several things to note in this table.  First, the total 
number of replacements (n) for each scenario must equal the 
(known) total number of replacements for the component (n1 
+ n2).  Similarly, the total number of failures (x) for each 
scenario must equal the (known) total number of failures for 
the component (x1 + x2).  Also, for each failure mode, the 
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number of replacements due to that failure mode cannot be 
less than the number of actual failures due to that failure 
mode (or, algebraically, ni ≥ xi).  Finally, the individual values 
of n1, x1, n2, and x2 may not be known. 

As shown in the derivation for a single failure mode, the 
probability of missing xi out of ni failures given that the 
failure mode is mi (with corresponding value fi) is given by: 
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The total probability, P(x,n), can then be found as 
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where the summation is taken over all possible scenarios (as 
given in Table 1).  The last term in the above summation, 
P((m1,n1),(m2,n2)), is the probability that m1 occurred n1 times 
and m2 occurred n2 times and is given by 
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The term 
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generalization of the binomial coefficient).  In general, the 
multinomial coefficient is given by 
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This coefficient can be thought of as the number of ways that 
n objects can be placed in k bins with n1 objects in the first 
bin, n2 objects in the second bin, etc.   

The term P(mi) is the a priori known relative probability that 
a failure is due to failure mode mi.  This term can be 
determined from standard reliability data, such as Mean Time 
Between Failure (MTBF).  If the MTBF for failure mode mi 
is given by MTBFi, the relative probability for failure mode 
mi is given by 
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Returning to the example of two failure modes (Table 1) with 
n = 4, x = 2, f1 = 0.8, f2 = 0.9, MTBF1 = 5000 hours, and 
MTBF2 = 2000 hours, evaluating Equation 7 yields 
P(2,4) = 0.07532.  This value is interpreted to mean that there 
is a 7.53% probability that there will be 2 missed failures out 
of 4 total replacements, given two failure modes with the 
given MTBF values and prognostic algorithms with the given 
fi values.  Figure 8 is a 3-D stem plot of this total probability 
calculated for values of x between 0 and 10 and values of n 

between 0 and 50.  The example calculated previously is 
highlighted on this plot.   

In Figure 8 the values of f1 and f2 are held constant while x 
and n are varied.  In application, the values of x and n will be 
known and the issue will be to determine the most probable 
ranges of f1 and f2.  To address this question, we can plot the 
probability P(x,n) for various values of f1 and f2 for given 
values of x and n.  Figure 9 shows such a plot for the previous 
example (x = 2 and n = 4).  The point highlighted on the plot 
(with f1 = 0.9 and f2 = 0.8) corresponds to the same point 
highlighted in Figure 8. 

 

Figure 8. Plot of Total Probabilities for Various Values of x 
and n with Fixed f1 and f2 

 

Figure 9. Plot of Total Probabilities for All Values of f1 and 
f2 with x = 2 and n = 4 

Several observations can be made of Figure 9.  First, the 
values f1 and f2 are continuous and bounded (0 ≤ fi ≤ 1).  Thus, 
the plot is a true surface and not discrete values.  Second, the 
values of f1 and f2 that have the highest total probability 
(depicted as red in Figure 9) form a skewed line.  This trend 
is more easily seen when the total probability plot is viewed 
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“straight down”, as shown in Figure 10.  Such a 2-
dimensional plot is called a “heat map”, as the 3rd dimension 
is depicted purely as a gradient color (typically from blue to 
red).  Recall that this example assumes we have “missed” 2 
out of 4 failure events (x = 2 and n = 4).  Thus the probability 
that both prognostic algorithms have fi values of 50% (f1 = 0.5 
and f2 = 0.5) should be high.  As shown most readily in the 
heat map of Figure 10, this is indeed the case.  However, since 
it is not presumed known how the values of x and n break 
down in relation to each failure mode, there are other 
scenarios that are just as probable.  For example, the 
algorithm associated with failure mode m1 may have a better 
(higher) value of f1 that is compensated by a worse (lower) 
value of f2.  This tradeoff is evidenced by the straight banding 
of colors shown in Figure 10.  If the failure rates (or MTBFs) 
of the two failure modes were equal, this line would be at a 
45° angle to the f-axes.  In this example, however, failure 
mode m2 has a higher failure rate (or, equivalently, a lower 
MTBF) than failure mode m1.  Thus, a change in the value of 
f2 will have a more pronounced effect on the total probability 
than a change in the value of f1.  This is illustrated by the 
skewing of the bands of the heat map to the f2 = 0.5 line (or 
“to the vertical”). 

 

Figure 10. Heat Map of Total Probabilities for All Values of 
f1 and f2 with x = 2 and n = 4 

Continuing with the generalization of the approach outlined 
for the single failure mode case, the total probability surface 
shown in Figure 9 is the marginalization of the joint 
distribution of the values of f1 and f2.  Thus, if the surface is 
normalized such that the total volume under the surface is 1.0, 
the resulting surface will be the joint probability distribution 
function (pdf) of the values f1 and f2.  Note that this joint pdf 
surface is the same shape as that of Figure 9 with the only 
difference being the scaling of the z-axis. 

Having calculated the joint pdf, determining the confidence 
that the fi values of the two prognostic algorithms are in given 
ranges is simply a matter of integrating the joint pdf over the 
ranges of interest.  For example, to determine the probability 

that 0.45 ≤ f1 ≤ 0.55 and 0.4 ≤ f2 ≤ 0.6, the following double 
integral would be evaluated: 

  
6.0

4.0 2

55.0

45.0 121 ),( dfdfffp ,  (11) 

where p(f1, f2) is the joint pdf.  For the case of x = 2 and n = 4, 
the integration will yield the following: 

 %87.2),(
6.0

4.0 2

55.0

45.0 121   dfdfffp . (12) 

This confidence value is rather small, but recall that the total 
number of replacements (n) in this example is just four.  If 
the number of replacements is increased to n = 100 and the 
number of missed failures kept at 50% (x = 50), the resulting 
pdf is shown in Figure 11.  Compared to Figure 9, this pdf 
has much sharper roll-offs on either side of the “high-
probability” line.  The resulting confidence is also higher: 

 %46.8),(
6.0

4.0 2

55.0

45.0 121   dfdfffp  . (13) 

 

 

Figure 11. Joint pdf of f1 and f2 with Fixed x = 50 and n = 
100 

Even with the sharper roll-off from a higher number of 
replacements (n), the confidence for this example is still only 
8.46%.  This is primarily due to the large number of 
combinations of failure modes that will yield around 50% 
prediction (i.e., f1 ≈ 0.5 and f2 ≈ 0.5).  A perhaps more realistic 
example, shown in Figure 12, represents five missed failures 
(x = 5) out of 100 replacements (n = 100).  Calculating the 
confidence that 0.8 ≤ f1 ≤ 0.99 and 0.9 ≤ f2 ≤ 0.99 yields a 
value of 64.31%: 

 %31.64),(
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Figure 12. Joint pdf of f1 and f2 with Fixed x = 5 and n = 100 

4.2. Generalization to k Failure Modes 

The generalization from two failure modes to an arbitrary 
number of failure modes is straightforward.  However, the 
process quickly turns into an exercise in proper indexing.  
The two primary points to keep in mind are the following.  
First, all combinations of P(xi, ni) must be accounted for and 
weighted based on their frequency and relative failure rate.  
Second, for each scenario (i.e., set of values {xi} and {ni}), 
the following must be true: 

 xxi
k
i  1 , (15) 

 nni
k
i  1 , and (16) 

 ii xn  . (17) 

Equation 15 through 17 are simple generalizations of the two-
failure mode construction (Section 4.1) to k failure modes.  
Although the derivation is quite involved (and omitted from 
this paper for space), one solution is presented below. 
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with: 

 

iii xn
i

x
i

i

i
iii

i
k
ik

i
k
ik

iii

ff
x

n
mnxP

nxn

xxx

xns

xns


























)1(),|(

1
1

1
1  (19) 

The k-dimensional joint pdf is then found by normalizing the 
k-dimensional integral of P(x,n) to one: 
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Finally, the confidence that ai ≤ fi ≤ bi for i = 1,…,k is given 
by: 

   
k

k

b

a k

b

a

b

a k dfdfdffffp  2121
2

2

1

1

),,,( . (21) 

4.3. Non-Prognosable Failure Modes 

Finally, the case of non-prognosable failure modes is 
considered.  A non-prognosable failure mode is simply a 
failure mode for which there is no prognostic algorithm in 
place to predict remaining useful life.  Note that the lack of a 
prognostic algorithm need not imply that such an algorithm 
could not be developed, only that it isn’t in place for the 
component being analyzed.  Further, it is reasonable that 
many failure modes of a component will not have prognostic 
algorithms (due to the relative infrequency of occurrence of 
the failure modes or a lack of technical understanding to 
develop such algorithms).  All of these non-prognosable 
failure modes can, for the purposes of this analysis, be 
combined into a single non-prognosable failure mode with a 
composite MTBF given by: 

   11 
  MTBFMTBF eprognosablnon , (22) 

where the summation is taken over all non-prognosable 
failure modes. 

A non-prognosable failure mode can then be characterized as 
a failure mode where f = 0.  That is, there is zero probability 
that the failure mode will be predicted before that failure 
mode occurs.  Further, this value of f is not probabilistic (it is 
deterministic with value zero), so it should not be included as 
a variable in the joint pdf.  The effect of this characterization 
is to alter the calculation of the total probability function, 
P(x,n).  Without loss of generality, let the non-prognosable 
failure mode be listed as the last (or kth) failure mode.  Thus, 
fk = 0.  Now consider the term P(xk|nk,mk) that occurs in the 
calculation of P(x,n).  This term is given by: 

 

 

.0
!)!(

!

0)01(
!)!(

!

1),|(

kk

kkk

kkk

xn

kkk

k

xnx

kkk

k

xn
k

x
k

k

k
kkk

xxn

n

xxn

n

ff
x

n
mnxP

























 (23) 

0
0.5

1

0

0.5

1

0

20

40

60

80

f
2

Joint pdf for All Values of f
1
 and f

2

f
1

p(
f 1

,f
2
)

Annual Conference of the Prognostics and Health Management Society 2013

426



Annual Conference of the Prognostics and Health Management Society 2013 
 

 9 

From the constraints mentioned in Section 4.2, nk must be 
greater than or equal to xk, so consider the two cases nk = xk 
and nk > xk (recalling that 0! = 00 = 1): 

 .
,0

,1
),|(









kk

kk
kkk xn

xn
mnxP  (24) 

This is consistent with the earlier characterization that a non-
prognosable failure mode misses all occurrences of that 
failure mode (that is, when nk = xk the probability is one).  And 
for any case where fewer than all of the non-prognosable 
failure modes are missed (nk > xk), the probability is zero. 

5. IMPLICATIONS 

5.1. Tabulation 

As discussed in Section 4, the overall confidence equation 
(Eq. 4) can be used when considering the verification of an 
overall requirement for a given component (as opposed to the 
multiple failure mode confidence equation given as Eq. 21).  
The evaluation of the integral in the overall confidence 
equation does have a closed-form solution. This closed form 
of the solution, though unwieldy to write down, is generally 
quicker (and more accurate) to calculate than to evaluate the 
integral using numerical techniques.  Tabulations can be pre-
calculated and stored instead of performing the complex 
calculation every time a value is needed.   

5.2. Minimum Amount of Data Required for 
Verification 

It is often desirable to know how much data will be required 
to verify a requirement.  Such knowledge can be useful when 
scheduling and allocating resources to the verification task.  
To show how this information can be derived from this 
verification technique, consider an electro-mechanical 
actuator with the following prognostic requirement. 

The prognostic algorithm shall provide a minimum of 20 
hours time-to-maintenance such that between 95% and 99% 
of failures of the EMA will be avoided with 90% confidence. 

The more failures that occur, the more replacements must 
have been performed to meet the requirement.  Also, as 
mentioned in Section 3.3, for some numbers of failures, there 
is no number of replacements that will satisfy the 
requirement.  For example, the least number of replacements 
that can conceivably be used to verify the requirement is 168, 
but only if there have been four failures in those 168 
replacements.  Table 2 shows the minimum number of 
replacements required for verification for a given number of 
failure occurrences. 

These numbers, combined with the predicted reliability 
failure rate, can give a minimum value for the amount of data 
required and the time required to verify a prognostic 

algorithm.  Unfortunately, these values are only minimum 
values.  A more practical approach is given next. 

Table 2. Minimum Number of Replacements Required For 
Verification 

No. of 
Failures 

Minimum No. of 
Replacements Required 

0 - 3 N/A 
4 168 
5 187 
6 210 
7 234 
8 257 
9 281 

10 > 300 

5.3. Confidence Growth Curves 

The blue line in Figure 13 shows a typical confidence growth 
curve for a prognostic algorithm.  The black asterisks indicate 
‘missed’ failures (i.e., failures that occurred before the 
indicated TTM).  All other replacements were scheduled in 
accordance with a prognostic algorithm time-to-maintenance 
prediction.  

 

Figure 13. Confidence Growth Curve 

As can be seen, the confidence starts out low and tends to 
increase as more data points are acquired.  When a failure 
event occurs (and the associated un-predicted maintenance 
replacement), the confidence drops, particularly in the 
beginning when there are few data points.  However, as the 
number of replacements increases, the effect of a failure 
event on the confidence curve is dampened. 

The confidence growth curve, along with a baseline 
confidence curve, can be used to bound the time and data 
required for verification, as well as to provide a means of 
declaring a verification as failed.  The baseline confidence 
curve is a minimum confidence threshold for the actual 
confidence curve.  The shape of the baseline curve would be 
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specified based on specific knowledge of the algorithm being 
verified.  In general, though, it would tend to be pessimistic 
initially to allow for large swings in the confidence.  An 
example of a baseline confidence curve is shown in Figure 13 
in red. 

In order for a prognostic algorithm to be verified, it would not 
only have to reach the desired confidence, but also do so 
without going below the baseline curve.  If the actual 
confidence does dip below the baseline curve, the verification 
could be considered failed.  An added benefit of the approach 
is that the baseline curve can constrain how much time is 
available for an algorithm to reach verification.  For example, 
in Figure 13, the baseline confidence requires that the 
algorithm reaches verification (90% confidence) no later than 
by the 400th replacement. 

The confidence growth curve can also be used to determine 
when to start relying on a prognostic algorithm.  Often, 
particularly for a new prognostic technique, there can be 
reluctance to schedule maintenance on a part based on the 
prognostic prediction.  In these cases, traditional maintenance 
concepts can initially be employed while a hypothetical 
confidence curve is tracked on the side.  The hypothetical 
curve would assume that the prognostic prediction was acted 
upon.  Similarly, if a failure occurred that the algorithm did 
not predict, the hypothetical confidence curve would be 
penalized accordingly.  When and if the hypothetical 
confidence reaches a pre-determined threshold of acceptance, 
maintenance can start being scheduled based on the 
prognostic prediction instead of the traditional means. 

6. CONCLUSION 

This paper has addressed two of the central issues concerning 
verification of prognostic algorithms.  First, the question of 
how to write a meaningful and verifiable prognostic 
algorithm requirement statement was considered.  Through 
the course of the paper, it was shown that the following 
requirement statement template is both statistically 
meaningful and verifiable using available field data. 

The prognostic algorithm shall provide a minimum of 
<TTM> hours time-to-maintenance such that between 
<LOWER>% and <UPPER>% of failures of component 
<COMPONENT> will be avoided with <CONFIDENCE>% 
confidence.  

Second, a statistical approach to verifying such a statement 
was presented.  The approach requires very few assumptions 
and can be easily pre-tabulated for a given requirement’s 
failure threshold.  Furthermore, implications of the approach 
can be used to bound the time and data necessary for 
verification as well as provide a means of building confidence 
in an un-tested algorithm. 

 

 

NOMENCLATURE 

k Number of failure modes 
n Total number of components replaced (failed 

and not failed) 
ni Total number of components replaced (failed 

and not failed) due to failure mode mi 
P(mi) Relative probability of failure mode mi 
P(xi,ni|mi) Probability of missing xi out of ni failures given 

the failure mode is mi 
P(x,n) Probability of missing x out of n failures of any 

combination of failure modes, 
x Total number of components that failed before 

being replaced 
xi Total number of components that failed due to 

failure mode mi before being replaced 
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Abstract

This work evaluates the uncertainty of impact force and
location estimates using an entropy-based impact identi-
fication algorithm applied to a commercial wind turbine
blade. The effects of sensor placement, measurement
directions and distance between impacts and sensor loca-
tions are studied. Results show that impacts to a 35m
long wind turbine blade can be accurately located using a
single tri-axial accelerometer regardless of sensor location.
Uncertainties in impact force estimates are consistent
across sensor locations. When omitting acceleration in-
formation in the spanwise direction, the bias and variance
of force estimates is consistent, but when a single chan-
nel of acceleration data is used, both increase somewhat.
Impact force identification error was found to be uncor-
related with the distance between the impact and sensor
location. The entropy of the estimated force time history,
an indicator of the impulsivity of the estimate, was found
to be a good indicator of the quality of force estimate.
The bias and variance of impact force estimation error
was found to be directly correlated with the entropy of the
impact force estimate. When considering validation test
data from all possible sensor configurations, the entropy
of the recreated force estimates was a better indicator
of the force magnitude prediction interval than was the
specific sensor configuration. By classifying impact force
estimates based upon entropy values, impact force predic-
tion intervals were more precisely determined than when
all validation impact data were considered at once.

1. Introduction

Impact damage is a significant concern for most large
composite structures because this type of damage is often

Raymond Bond et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution 3.0 United
States License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original author and
source are credited.

below the surface and not evident from visual inspection.
Composite damage mechanisms such as delaminations,
substructure disbonds and core crushing can substantially
reduce the strength of the structure without providing a
clear visual indication. Inspection for this type of damage
is often very time consuming and requires multiple inspec-
tion techniques to accurately identify the location and
extent of these numerous damage mechanisms (Hayman,
Wedel-Heinen, & Brondsted, 2008). Inspection of large
rotor blades is particularly expensive and challenging,
due to the size and inaccessibility of these blades. The
inspection burden could be significantly alleviated by
identifying the location and magnitude of applied impact
loads. However, in order to make an informed mainte-
nance decision based on these types of impact estimates,
the associated uncertainty must be well understood. To
this end, this work applies an entropy-based impact iden-
tification technique to a commercial wind turbine blade,
and then evaluates the performance and uncertainty of
impact location and force estimates.

Damaging impact loads are a concern for wind turbine
blades both while in operation and during transport
(Cripps, 2011; Veritas, 2006). Some examples of impact
loads in operation are hail, bird strikes, or ice shedding
from other blades. One study found that 7% of unfore-
seen malfunctions in 1.5MW wind turbines operating in
Germany have been attributed to rotor blade problems,
with an average down time of four days per failure(Hahn,
Durstewitz, & Rohrig, 2007). Unforeseen repairs on
wind turbines are especially costly, as these repairs are
around 500% more expensive than regularly scheduled
maintenance(Adams, White, Rumsey, & Farrar, 2011).
An impact load estimation technique such as the one
presented here has the potential to provide maintainers
the information they need to limit the progression of
damage by way of prompt repairs, schedule maintenance
in advance, and track the loading history of blades to
identify problematic trends.

1
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Impact identification methods have been widely stud-
ied (see, for example, (H. Inoue & Reid, 2001; Inoue,
Kishimoto, Shibuya, & Koizumi, 1992; Hu, Matsumoto,
Nishi, & Fukunaga, 2007; Stites, 2007; Yoder & Adams,
2008; Wang & Chiù, 2003)). These techniques are gener-
ally categorized as model-based techniques, based on an
underlying model of the system, and artificial neural net-
work based techniques, which are based on representative
response training data and computational algorithms. Al-
though neural network based techniques can be effective
at locating impacts using a large array of sensors, model-
based techniques are better suited to load estimation,
even in sparse sensing configurations. For instance, other
work from our research group (Budde, Yoder, Adams,
Meckl, & Koester, 2009; Budde, 2010; Stites, Escobar,
White, Adams, & Triplett, 2007; Stites, 2007; Yoder &
Adams, 2008) has shown the ability to estimate impact
load and position using a single sensor on filament-wound
rocket motor casings and helicopter blades. This work
builds on these previous efforts by developing an impact
identification algorithm capable of monitoring very large
and/or non-uniform structures with a single sensor.

2. Theory

This impact identification algorithm consists of two major
steps: (1) estimating a set of potential impact forces
assuming each of the possible input degrees of freedom,
and (2) determining which of these force estimates most
likely corresponds to the actual forcing location. The
first step of this process is the same as that presented
in (Yoder & Adams, 2008; Stites, 2007; Stites et al.,
2007; Budde et al., 2009); the distinction between this
algorithm and these other works is the method used to
determine the likely impact location.

Estimated impact loads at each potential input degree of
freedom are found by formulating and solving an overde-
termined inverse problem based on experimentally es-
timated frequency response functions and measured re-
sponses. Given Ni input degrees of freedom and No

output degrees of freedom, the response, {X(jω)}, can
be expressed in terms of the frequency response func-
tion matrix, [H(jω)], and forcing function, {F (jω)}, as
follows:

{X(jω)}(N0x1) = [H(jω)](NoxNi){F (jω)}(Nix1) (1)

For practical implementations, the number of response
channels would be significantly fewer than the number
of input degrees of freedom, that is, N0 � Ni. With
this constraint on the system configuration, the inverse
problem of solving for F (jω) based on H(jω), X(jω)
and the relationship given in (1) is underdetermined with
an infinite number of solutions. To reliably estimate the

impact forces based on measured data, an overdetermined
inverse problem is ideal in order to minimize the effects of
measurement noise and error in the estimated frequency
response functions. By assuming that the forcing function
acts at a single degree of freedom, k, (1) can be re-written
as follows:

{
X(jω)

}
(N0x1)

=
{

Hk(jω)
}

(Nox1)
Fk(jω) (2)

With the force-response relationship in this form, the
force can be determined given the frequency response
function and any (non-zero) number of response channels.
This inverse problem is overdetermined when more than
one response channel is available. The linear least squares
estimate of the forcing function at a particular frequency,
Fk(jω), is found by pre-multiplying 2 by the pseudoin-
verse of the frequency response function matrix at that
frequency, {Hk(jω)}+. Other numerical methods could
also be used to solve for the least squares solution, but
the pseudoinverse approach is advantageous for real-time
impact monitoring because the computationally intensive
portion of the solution procedure, calculating the pseu-
doinverse, is done prior to monitoring the structure for
impacts, leaving only matrix multiplication to be done
in real time.

Because the actual location of impact is unknown, the
impact force must be estimated at each of the possible
input degrees of freedom, and then the force estimates
are analyzed to determine which of these force estimates
most likely corresponds to the actual impact location.
To determine which force estimate corresponds to the
true location, the estimated force time histories for each
location are analyzed to find which best matches the
assumption of an impulsive impact force. The impulsiv-
ity of the recreated force time histories is quantified by
evaluating the entropy of the impact force time histories.

Entropy in the context of information theory, is a measure
of the average quantity of information contained in each
event, in this case, in each sample of signal. The total
information of a signal is defined as the minimum number
of bits required to completely describe the signal. A
purely random signal has the highest possible entry, and
a completely uniform signal has zero entropy. For the
correct impact location, the estimated force time history
will closely resemble the actual impact force, which is very
concentrated and ordered. In comparison, the estimated
force time history at other locations will be much less
ordered, more dispersed, and more random. Therefore,
the estimated force time history with the lowest entropy
most likely corresponds to the actual location of impact.

The mathematical definition of entropy is based on a set
of N possible outcomes, xi, with probabilities p(xi). In
this case, the probability distribution used is a categorical

2
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distribution with the N possible outcomes corresponding
to the signal amplitude falling into one of N possible
ranges. The entropy, h, is computed as follows:

h =
N∑

i

−p(xi)log2(p(xi)) (3)

The maximum value that the entropy may take is log2(N),
corresponding to a uniform random distribution, and the
lowest value is zero, corresponding to a constant signal.
In this application, N was chosen to be 200, but the
impact identification algorithm was found to be fairly
insensitive to the choice of N .

The most important use of the entropy value is selecting
the most likely impact location, but the minimum entropy
value is also useful in evaluating how well the impact
force estimate meets the assumed impulsive shape. The
lower the minimum entropy value is, the better the force
estimate matches expectations of a simple impulsive load.
The relationship between the minimum entropy value
and the quality of the force estimate will be evaluated
with the experimental results of this study.

3. Experimental Setup

This impact identification technique was tested on a
commercial wind turbine blade from a 1.6MW turbine.
The blade was damaged in a lightning strike, and was
delaminated at the tip with a portion of the tip missing.
The blade was fastened at the root of the blade to a steel
fixture, and supported towards the end of the blade with
nylon straps. Figure 1 shows the blade and boundary
conditions.

Five tri-axial accelerometers were mounted to the blade to
test the influence of sensor placement on the accuracy of
impact identification. Accelerometer 1 is a PCB 356T18,
an ICP triaxial accelerometer with nominal sensitivity
of 1000mV/g. Accelerometers 2-5 are Silicon Designs
2460-050 DC coupled peizoresistive triaxial accelerom-
eters with nominal sensitivities of 80mV/g. A grid of
130 impact locations was marked on the section of the
blade between the root and the support. The vertical
spacing between points was approximately 0.36m, and
the horizontal spacing was roughly 0.91m. The sensor
and impact locations are shown in Figure 2.

To create the frequency response function model of the
blade, modal impact testing was carried out using a
5.5kg modal sledge hammer, model PCB 086D50. Peak
force amplitude for these impacts ranged from 542.2lbf to
2469.3lbf, with a mean value of 1205.4lbf and a standard
deviation of 371.5lbf. The bandwidth of excitation, as
measured by the first frequency where the amplitude
of the force spectrum drops to one tenth the maximum

(a)

(b)

Figure 1. Photographs of test specimen, showing (a)
attachment at the blade root, and (b) second blade

support

amplitude, ranged from 101.5Hz to 281.5Hz, with a mean
bandwidth of 174Hz, and a standard deviation of 31.5Hz.
Testing was conducted with ten impacts per point, sam-
pled at 2560Hz for a duration of 2 seconds per impact.
Frequency response functions were estimated with the
H1 estimator.

To test impact identification accuracy, a validation data
set was collected with two impacts per point. The impact
identification algorithm was applied to response data,
and the estimated location and impact magnitude were
compared to the known values to evaluate performance.

4. Results

In order to test the performance of the impact identifi-
cation algorithm on the blade, the response data from
each validation impact was passed through the algorithm,
and the estimated location and maximum force level was
recorded. Two key metrics will be used to evaluate the

3
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5

4
321

26m

1.91m

Figure 2. Illustration of the blade with approximate dimensions, sensor locations (enumerated in red), and impact
locations (marked in black)

accuracy of the estimate: 1) the location identification
accuracy, that is, how many of the validation impacts
were correctly located, and 2) the magnitude of the peak
force error, that is, the absolute value of the difference
between the estimated and measured peak force relative
to the measured peak force value.

To evaluate how sensor configurations affected the impact
identification accuracy, the data from each of the five
accelerometers was used individually to perform these
validation simulations. Although the data for these sen-
sors was collected simultaneously, only one sensor is used
at a time in these validation tests. Accuracy is evalu-
ated when data from all three measurement directions are
used, when data from two of the three measurement direc-
tions are used, and when data from a single measurement
direction are used.

The results of the validation simulation using all three
response channels per sensor are summarized in Table
1. Regardless of the sensor location, 100% of impacts
were accuracy located. The accuracy of the impact force
magnitude estimates was also fairly consistent between
sensor locations. The peak force identification error was
biased towards underestimating the peak magnitude of
the impact force by an average of 0.68%. The fifth sensor,
which was placed the furthest towards the blade tip and
closest to the trailing edge, performed the best of the
tested locations. The force estimates using the fifth sensor
had a median error of 3.3%, with 75% of the impact forces
estimated within 5.6% of the true peak force value, and
a maximum error of 21.2%. The sensor with the lowest
force accuracy was the fourth sensor, which was located
closer to the root of the blade and close to the leading
edge of the blade. The force estimation error for the
fourth sensor had a median value of 4% and a maximum
error of 35.8%.

From these results, the force accuracy shows no significant
dependence on the distance from the sensor. Figure 3 is
a scatter plot of the force error plotted against distance
from the sensor, showing the results of validation tests
using each of the available sensors. This plot illustrates
the independence of the force accuracy on the distance
from the sensor, even for very large distances. Most of
the largest force estimation errors that were observed

Table 1. Impact Identification Performance Using Each
Triaxial Accelerometer

Sensor
Force Estimation Error (%)

Quartile
Mean Max

1 2 3

1 1.7 4.1 6.4 4.8 27.9

2 1.7 3.8 6.4 4.9 30.7

3 1.8 4.2 6.6 4.8 25.6

4 2.0 4.0 6.8 5.0 35.8

5 1.6 3.3 5.6 4.2 21.2
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Figure 3. Force estimation error vs. distance from
sensors for all combinations of sensor and impact

location

were at locations relatively close to the sensor, but this
fact is probably in part due to the larger number of points
that are an intermediate distance from the sensor than
those very distant. Other impact force identification
techniques have shown a linear increase in error with
distance from the sensor (Seydel & Chang, 2001), so the
fact that distance and accuracy are largely uncorrelated
in this instance is significant.

The same type of validation test was repeated with only
two of the three response directions used, with the re-
sponse data in the axial direction ignored. Using this
subset of the data produces results very similar to those
when all three response channels per sensor are used.
The results are detailed in Table 2. Most of the mean
errors are marginally higher than when using all three
channels, but the median errors and maximum errors
are mostly lower. Based on these results, a bi-axial ac-
celerometer could be used just as effectively as a tri-axial
accelerometer, even on very large structures.
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Table 2. Impact Identification Performance Omitting
Data in the Axial Direction

Sensor
Force Estimation Error (%)

Quartile
Mean Max

1 2 3

1 1.9 3.9 6.6 4.8 28.1

2 1.6 3.8 6.4 4.8 30.3

3 1.8 4.2 6.6 4.9 25.4

4 2.0 4.0 6.7 4.9 35.7

5 1.6 3.3 5.5 4.2 21.1

The validation simulation results show that entropy of
the estimated force time histories is an effective measure
to discriminate between the force at the actual impact
location and the other erroneous force estimates. When
using two or three response channels, every impact was
correctly located, so the entropy value corresponding
to the impact location was always the least. To bet-
ter evaluate how effective the recreated force entropy
is in discriminating between correct and incorrect loca-
tions, the recreated force entropy is compared between
the actual impact locations and the other incorrect im-
pact locations. The results from all of the three channel
validation response simulations were considered, and his-
tograms of the recreated force entropy values for correct
and incorrect locations are shown in Figure 4. For this
comparison and the following entropy discussion, the sig-
nals were discretized to 200 amplitude values. Therefore,
a purely random signal would have log2(200) = 7.64 bits
of entropy. This comparison of entropy value distribu-
tions shows that the recreated force entropy is a very
effective discriminator between the correct and incorrect
locations. There is very little overlap between the two
distributions, the entropy of the incorrect locations is
tightly distributed, and the values of the correct location
entropy are much lower than those from the correspond-
ing incorrect locations. When entropy values from one
impact were considered, the value corresponding to the
correct location was always more than 1.5 times the in-
terquartile range of the other entropies, with some values
more than 10 times the interquartile range below the
other entropy values. This measure indicates that for
this set of data, not only is the entropy for the correct
location always lowest, it is always a clear outlier of the
distribution.

Entropy of the recreated force time histories effectively
locates impacts because the value characterizes how well
the force estimate meets the assumption of an impulsive
load. Therefore, noise and error in the force estimate
that alters the shape of the recreated force signal would
generally contribute to an increase in the entropy of the
force estimate. To evaluate the extent that the entropy

of the recreated force time history is related to error in
the force estimate, the force estimates were split into
seven categories according to entropy value. Boxplots
of the magnitude of force estimation error were plotted
for each of these entropy ranges in Figure 5, along with
a histogram showing the frequency of estimates within
each of these entropy ranges. Statistical measures corre-
sponding to each of these entropy ranges are detailed in
Table 3.

Both the average bias and variance of the force estimation
error are monotonically increasing with the entropy value
of the estimated force. Both the mean error and standard
deviation for the force estimates with entropy greater
than four are more than three times the corresponding
values for estimates with entropy less than 2.5. This
result is important because with an understanding of how
the recreated force entropy and force error are related,
the uncertainty in a force estimate can be characterized
based on the entropy value for that estimate.

To further investigate the quantification of impact load
uncertainty based on estimated force entropy, empirical
cumulative distributions of the magnitude of impact force
estimation error were investigated. These distributions,
shown in Figure 6, indicate the increasing uncertainty
and higher force estimation error for higher entropy forces.
Another important feature of these distributions is that
the distribution based on all force estimates is a poor
indicator of the uncertainty of force estimates with high
or low entropy values. Categorizing force estimates based
on recreated force entropy better characterizes the uncer-
tainty in that force estimate.

When considering all force estimates, 95% of validation
tests showed a peak force estimation error of less than
12.6%. In contrast, 95% of estimates with entropy of less
than 2.5 bits were accurate within 5.5%, while the 95th

percentile level was 22% for force estimates with more
than 4 bits of entropy. Therefore, the uncertainty for force
estimates in the lowest entropy range was significantly
overstated by the distribution of all estimates, and the
uncertainty for force estimates with the highest entropy
was significantly understated by the distribution of all
estimates.

5. Conclusions

The entropy-based impact identification technique ap-
plied here was able to identify the location and magnitude
of impact loads applied to a commercial wind turbine
blade using a single sensor regardless of sensor location.
Impact force identification accuracy was independent of
the proximity to the sensor, enabling even very large
structures like this one to be monitored with very few
sensors.
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Figure 4. Histograms showing the distribution of entropy values for force estimates corresponding to incorrect
locations (top) and correct locations (bottom)

Table 3. Peak force estimation error statistics corresponding to estimated force entropy

Entropy
Count

Magnitude of Peak Force Error (%)

Range Quartile
Mean

Standard

(bits) 1 2 3 Deviation

0 - 2.5 21 0.38 1.54 3.06 2.04 1.93

2.5 - 2.8 114 1.56 2.80 4.76 3.51 2.88

2.8 - 3.1 307 1.38 3.22 5.30 3.97 3.32

3.1 - 3.4 443 1.89 4.09 6.22 4.72 3.64

3.4 - 3.7 275 2.04 4.27 7.13 5.28 4.86

3.7 - 4 93 3.40 5.19 7.56 6.43 5.05

>4 47 3.03 4.3 8.87 6.97 6.19

The measure of recreated force entropy discriminates be-
tween force estimates from correct and incorrect locations
very well, with the entropy at the correct location always
being a statistical outlier. The value of the minimum
recreated force entropy was shown to be a good indication
of the uncertainty of that estimate. When categorizing
the impact force estimates based on entropy values, the
bias and variance of the peak force estimation errors
monotonically increased with increasing entropy values.
Comparing the 95th percentile force estimation accuracy
levels between these entropy ranges showed that the un-
certainty in force accuracy was more precisely identified
when force estimates were categorized by entropy.

Identifying impact loads on large composite structures
could significantly lower the associated inspection and
repair costs by enabling condition based maintenance

rather than scheduled wide area inspections and unsched-
uled repairs when damage progresses unexpectedly. This
impact identification technique allows for minimal sensing
configurations, and the method of characterizing the un-
certainty of these estimates allows these condition based
maintenance decisions to be well informed.
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Figure 5. Relationship between impact force identification error and entropy of the force estimate
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Wang, B., & Chiù, C. (2003). Determination of unknown
impact force acting on a simply supported beam.
Mechanical Systems and Signal Processing , 17 (3),
683–704.

Yoder, N., & Adams, D. (2008). Multidimensional sens-
ing for impact load and damage evaluation in a
carbon filament wound canister. Smart Materials
and Structures, Vol. 66 (7), 756-763.

8

Annual Conference of the Prognostics and Health Management Society 2013

437



A Model-Based Approach for Predicting the Remaining Driving
Range in Electric Vehicles

Javier A. Oliva1, Christoph Weihrauch1, Torsten Bertram1

1 Institute of Control Theory and Systems Engineering, Technische Universität Dortmund, Germany
javier.oliva@tu-dortmund.de

christoph.weihrauch@tu-dortmund.de
torsten.bertram@tu-dortmund.de

ABSTRACT

The limited driving range has been pointed out as one of
the main technical factors affecting the acceptance of elec-
tric vehicles. Offering the driver accurate information about
the remaining driving range (RDR) reduces the range anxiety
and increases the acceptance of the driver. The integration of
electric vehicles into future transportation systems demands
advanced driving assistance systems that offer reliable infor-
mation regarding the RDR. Unfortunately the RDR is, due to
many sources of uncertainty, difficult to predict. The driving
style, the road conditions or the traffic situation are some of
these uncertain factors. A model-based approach for predict-
ing the RDR by combining unscented filtering and Markov
chains is introduced in this paper. Detailed models are im-
plemented for representing the electric vehicle and its energy
storage system. The RDR prediction is validated by a set of
simulation based experiments for different driving scenarios.
Whereas traditional approaches consider the RDR as a deter-
ministic quantity, to our knowledge, this approach is the first
to represent the RDR by a probability density function. We
aim to provide initial steps towards a solution for generating
reliable information regarding the RDR which can be used by
driving assistance systems in electric vehicles.

1. INTRODUCTION

Electric vehicles have emerged as a promising solution for re-
ducing the oil dependence in transportation systems. Never-
theless, their integration into modern transportation systems
is largely limited by the higher cost and the long charging
times, on the one hand, and by the low driving range, on
the other hand. The limited driving range has been consid-
ered as one of the major factors that affect the acceptance of
electric vehicles. However, it has been shown (Franke, Neu-
mann, Bühler, Cocron, & Krems, 2012) that reliable informa-

Javier A. Oliva et al. This is an open-access article distributed under the terms
of the Creative Commons Attribution 3.0 United States License, which per-
mits unrestricted use, distribution, and reproduction in any medium, provided
the original author and source are credited.

tion regarding the remaining driving range (RDR) may help
to overcome the range anxiety, i.e., the fear that the range of
the vehicle is insufficient to reach the desired destination. Un-
fortunately the RDR is not easy predictable. Many stochas-
tic factors such as the driving style, the traffic situation, the
road conditions or the weather largely influence the RDR. It
is therefore necessary to take these factors into account in
order to meaningfully predict the RDR. To the best of our
knowledge, few studies have addressed the RDR prediction.
An approach that predicts the driving load of an electric ve-
hicle based on driving pattern identification has been intro-
duced by Yu, Tseng, and McGee (2012). To this aim, a li-
brary of identified driving patterns is used. Other approaches
address the RDR prediction from a technological point of
view. Conradi and Hanssen (2011) introduced an approach
that combines a web server, a digital map and a mobile ap-
plication. The mobile device sends the position of the vehicle
and the current state of charge (SOC) of the battery to the web
server, which first estimates the energy consumption along all
possible routes and then, based on the SOC, calculates the
maximum driving range. The main drawback presented in
these approaches is that the RDR is treated as a deterministic
quantity.

We introduce an approach that predicts the RDR under a
stochastic framework. The basic theoretical foundation of
this work is based on the work introduced by Daigle and
Goebel (2011), where a model-based approach is applied to
predict the remaining useful life (RUL) of pneumatic valves.
The remainder of this paper is organized as follows. Sec-
tion 2 introduces the proposed RDR prediction methodology.
In section 3 the model of the electric vehicle is presented.
Section 4 briefly discusses the algorithm for the state estima-
tion. Section 5 explains the steps needed to predict the RDR.
Section 6 presents simulation results for validating the pro-
posed approach. Finally, section 7 concludes the findings of
this paper and provides an outlook on the future work.
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Figure 1. RDR prediction architecture.

2. RDR PREDICTION METHODOLOGY

This section formulates the RDR prediction problem in elec-
tric vehicles and introduces the proposed prediction architec-
ture.

2.1. Problem Statement

The RDR is defined as the distance that an electric vehicle can
drive, with the energy stored in its battery, before recharging
is required. Analogous to the Remaining Useful Life (RUL)
calculation problem (Daigle, Saxena, & Goebel, 2012), the
RDR prediction problem is formally formulated by consider-
ing the electric vehicle as a nonlinear system represented, in
a discrete-time form, by

xk = f (xk−1,uk,vk,wk)
yk = h (xk,uk,nk,wk) ,

(1)

where xk is the state vector, wk is the parameter vector, vk
is the process noise vector, uk is the input vector, yk is the
output vector and nk is the measurement noise vector. f(·)
and h(·) represent the state and output function respectively.
The RDR prediction problem is concerned with predicting
the power demand of the electric vehicle, at a given time kp,
and identifying the distance between the position skp and the
location at which the electric vehicle must be recharged. By
defining a threshold in the form

T (·) =

{
1
0

(2)

it is possible to mathematically determine the recharging
point and therefore the RDR. The challenge lies in determin-

ing the variables on which T (·) depends. This work considers
the battery state of charge (SOC) to be the indicator that de-
termines the threshold condition. Accordingly, the threshold
is expressed as T (SOC). Thus, T (SOC) = 1 if SOCmin is
reached and T (SOC) = 0 otherwise. The SOCmin is usu-
ally dictated by the battery management system (BMS) of the
electric vehicle in order to protect the battery cells from a
possible total charge depletion.

2.2. Prediction Architecture

The RDR is a random variable that is influenced by many
sources of uncertainty. This causes the RDR to be difficult
to predict. For example, the lack of knowledge about the
state variables, such as the SOC, the noise presented in the
measurements or the ignorance regarding the future power
demand, are some of the factors that largely contribute to
the uncertainty of the RDR. Therefore, properly predicting
the RDR requires accounting for these sources of uncertainty.
To this aim we adopt a model-based methodology, as shown
in Fig. 1. The approach proceeds basically in two phases,
namely the state estimation (I) and the RDR prediction (II).

In the first phase, the states are recursively estimated. The
posterior state estimate is computed in two steps. First, a pre-
diction is made to obtain a prior state estimate p (xk|y0:k−1).
In the second step, as new measurements yk become avail-
able, the predicted states are updated to compute p (xk|y0:k).
This estimate establishes the starting point for the RDR pre-
diction phase.

In the second phase, at given time kp, the RDR is predicted

2
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in two steps. First, future values of the driving profile1 are
predicted by means of Markov chains. In this way the driv-
ing profile is generated as a sequence of random variables{
ukp ,ukp+1, ...,uhl

}
which representatively capture driving

patterns that occur in real-world driving situations. The index
hl denotes the horizon length of the driving profile predic-
tion. In the second step, the uncertainty represented by the
posterior state estimate p

(
xkp |y0:kp

)
is propagated through

the predicted driving profile until the SOCmin is reached.

To carry out such an uncertainty propagation a sample-
based approach in terms of a Monte Carlo simulation is em-
ployed. In this approach the probability density function
p
(
xkp |y0:kp

)
is approximated by a set of samples. Each sam-

ple is independently propagated through the predicted driving
profile until the SOCmin is reached. Once this happens, the
RDR of all samples is identified and used to approximate the
posterior p

(
RDRkp |y0:kp

)
.

3. ELECTRIC VEHICLE MODELING

From a physical standpoint, an electric vehicle can be mod-
eled by a forward-facing (dynamic) or by a backward-facing
(quasi-static) approach (Guzzella & Sciarretta, 2005). In the
forward-facing approach the vehicle is controlled to follow
a desired speed. This approach considers the physical prop-
erties of each component of the powertrain and the dynamic
interaction between them. Although this approach accurately
describes the behavior of the electric vehicle, it requires high
computational effort to solve the differential equations of the
model.

The backward-facing approach overcomes this issue by as-
suming that the vehicle reaches the reference speed. With an
imposed speed profile, the model calculates the forces act-
ing on the wheels and processes them backwards through the
powertrain. The calculation of the power demand depends
only on algebraic equations, which decreases the computa-
tional burden of the model.

Nevertheless, the battery of the electric vehicle cannot be
modeled using this approach since, as already mentioned, the
SOC represents the indicator that determines the threshold
condition of the prediction algorithm. Since this value is de-
termined in the state estimation step, it cannot be represented
by a quasi-static model. For this reason a dynamic model
describes the behavior of the battery. The electric vehicle is
modeled by combining these two approaches, as shown in
Fig. 2.

In the following two sections both parts of the model are ex-
plained in detail. For the sake of better understanding, we
omit expressing the variables of the quasi-static model as time
dependent, since this model is described by a set of algebraic

1The driving profile is characterized by the speed (v) and acceleration (a) of
the vehicle and by the slope (α) of the road.
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Figure 2. Combined quasi-static/dynamic model of the elec-
tric vehicle.

equations. The differential equations of the dynamic model
are expressed in a discrete time form, since both, the state es-
timation and the RDR prediction modules, require a discrete-
time representation of the battery model.

3.1. Quasi-static Model

An electric vehicle is composed by many components which,
for simplification purposes, can be considered to move uni-
formly. Thus, the electric vehicle can be represented as a sin-
gle lumped mass. As shown in Fig. 3, the force Fx required
by the vehicle is given by

Fx = Fair + Fg + Fr + Fi. (3)

The forces affecting the motion of the electric vehicle are:

• Fair = 1
2ρaircwAv

2 is the aerodynamic drag force,

• Fg = mg sin (α) is the hill climbing force,

• Fr = mgKr is the rolling resistance,

• Fi = ma is the force needed to accelerate/decelerate the
electric vehicle,

where ρair is the density of air, cw is the aerodynamic drag
coefficient, A and m are the frontal area and the mass of the
vehicle, g is the gravitational acceleration, Kr is the rolling
resistance coefficient, α is the inclination (slope) of the road
segment and v is the speed of the vehicle.

v

Fair

Fi, Fg

mg

1
2
Fr

1
2
Fr

Fx

α

Figure 3. Forces acting during the motion of a vehicle.
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The mechanical power Pmec demanded by the electric motor
is easily calculated by means of a polynomial power require-
ment model (Kim, Lee, & Shin, 2013) as follows

Pmec = Fxv =
1

2
ρaircwAv

3 +mg sin (α) v +

+mgKrv +mav. (4)

This model accurately calculates the mechanical power de-
mand of a vehicle with a very low computational cost. The
electrical power demand Pele of the electric motor is then
computed by

Pele =
Pmec

η(ωm, Tm)
, (5)

where η represents the electric motor’s efficiency, ωm = vid
rtire

is the rotational speed of the rotor and Tm = Fxrtire
id

is the
torque demand of the motor. Here rtire and id are the tire’s
radius and the gear ratio of the driveline respectively.

Modern electric vehicles are able to recover a certain amount
of the kinetic energy by means of regenerative braking. Such
systems operate the electric motor in generator mode for de-
livering back the recovered energy to the battery. It is worth
mentioning that η depends on whether the electric drive oper-
ates in motor or in generator mode. Accordingly,

η =

{
ηm (ωm, Tm) ≤ 1, motor mode
ηg (ωm, Tm) > 1, generator mode.

(6)

As shown in Fig. 2, the total electrical power PT of the elec-
tric vehicle is composed of the electrical power demanded by
the electric motor Pele and by the sum of the power Pi con-
sumed by each of the auxiliary components

PT = Pele +

n∑

i=1

Pi. (7)

For the sake of simplicity, the power consumed by each of the
auxiliary components is assumed to be constant.

3.1.1. Input Variables of the Quasi-static Model

To properly employ Eq.(4) in the RDR prediction algorithm,
we need to differentiate between input variables and param-
eters. The input variables of the quasi-static model must be
easily acquirable and should be highly dynamic, so that they
cannot be considered as constant. Table 1 summarizes the dy-
namics and the dependency of the quasi-static model param-
eters. The parameters g and ρair, even though they can be
easily determined, depend on the altitude and rarely change
drastically during a trip. Also m, cw and A are easily ob-
served. They also change slowly since they depend on the
vehicle design. The friction coefficient Kr, despite its high
dynamic, cannot be easily determined. For this reason it is

Table 1. Dynamics and dependency of the quasi-static model
parameters.

Parameter Dynamics Dependency
a
(
m/s2

)
Very high Driver, road, traffic

v (m/s) High Driver, road, traffic
m (kg) Very low Vehicle design
g
(
m/s2

)
Very low Altitude

Kr High Road
α (◦) High Road
ρair

(
kg/m3) Low Altitude

cw Very low Vehicle design
A

(
m2

)
Very low Vehicle design

considered as a constant under the assumption that the road
conditions do not change during the trip.

Our approach considers a, v and α as the input variables for
the quasi-static model, since they meet the requirements pre-
viously mentioned. Accordingly, the input vector is given by

u =
[
v a α

]T
. (8)

3.2. Battery Model

Our approach employs the model of a Li-ion cell shown
in Fig. 4. The model combines the Kinetic Battery Model
(KiBaM) (Manwell & McGowan, 1994) for capturing the
nonlinear effects in the battery capacity, such as the recovery
and the rate capacity effect, with a second order equivalent
circuit based model which captures the dynamic response of
the Li-ion cell. Furthermore, the combined model demands
low computational effort, which makes it suitable for real-
time applications.

ik

Ro(·)

Rs(·) Rl(·)

Cs(·) Cl(·)

VOC(SOC)

Kinetic Battery Model Circuit-based Battery Model

ik SOC
−
+

Vbatt

1− c c

w2 w1d
h1h2

ik

Figure 4. Combined battery model.

Even though the KiBaM was initially developed for lead acid
batteries, it has been shown to be suitable for modeling the
capacity behavior of Li-ion cells (Jongerden & Haverkort,
2009).

The Kinetic Battery Model abstracts the chemical processes
of the battery discharge to its kinetic properties. The model
assumes that the total charge of the battery is distributed with
a capacity ratio 0 < c < 1 between two charge wells. The
first well contains the available charge and delivers it directly
to the load. The second well supplies charge only to the first
well by means of the parameter d. The rate of charge that
flows from the second to the first well depends on both d and

4
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on the height difference between the wells (h2 − h1). If the
first well is empty, then the battery is considered to be fully
discharged.

By applying load to the battery, the charge in the first well is
reduced, which leads to an increment in the height difference
between both wells. After removing the load, certain amount
of charge flows from the second well to the first well until
the height of both wells is the same. In this way the recovery
effect is taken into account by the model. The rate capacity
effect is also considered in this model. For high discharge
currents, the charge in the first well is delivered faster to the
load in comparison to the charge that flows from the second
well. In this scenario there is an amount of charge that re-
mains unused. The consideration of this effect is especially
important for applications in electric vehicles, since the un-
used charge might eventually increase the driving range.

The KiBaM yields two difference equations which describe
the change of capacity in both wells in dependence of the
load ik, the conductance d and the capacity ratio c:

w1,k+1 = a1w1,k + a2w2,k + b1ik, (9)

w2,k+1 = a3w1,k + a4w2,k + b2ik, (10)

where

(
a1 a2

a3 a4

)
= e


 −

d
c

d
1−c

d
c − d

1−c


∆t

(
b1
b2

)
=

∆t∫
0

e


 −

d
c

d
1−c

d
c − d

1−c


ϑ

dϑ

(
1
0

)
.

The term ∆t is the sampling time used in the discretization of
the model. The battery SOC is given by

SOCk =
w1,k

cCn3600
, (11)

where Cn is the nominal capacity of the battery. The right-
hand-side equivalent circuit of Fig. 4 is compounded of three
parts, namely, the open circuit voltage VOC, a resistance Ro
and two RC networks.

The voltage VOC changes at different SOC levels, and is given
by the following empirical equation

VOC(SOC) = a1 −
a2

SOC
− a3SOC + a4 ln(SOC) +

+a5e(
−a6

1−SOC ) + a7SOC2 + a8SOC4 +

+a9 ln(1− SOC) + a10 sin(a11SOC).

(12)

The ohmic resistance Ro captures the I-R drop, i.e., the in-
stantaneous voltage drop due to a step load current event. The
RsCs andRlCl networks capture the voltage drops due to the

electrochemical and the concentration polarization, respec-
tively. In Fig. 4 the dependency of these parameters on the
temperature and on the SOC is represented by the term (·).
This part of the model yields two difference equations which
describe the transient response of the battery:

vs,k+1 = e−
∆t

RsCs vs,k +
(
−Rse−

∆t
RsCs +Rs

)
ik, (13)

vl,k+1 = e
− ∆t

RlCl vl,k +
(
−Rle−

∆t
RlCl +Rl

)
ik. (14)

Accordingly, the state vector of the battery model is given by

xk =
[
w1,k w2,k vs,k vl,k

]T
. (15)

The output yk of the system, represented by the terminal volt-
age Vbatt,k, is then computed as follows

yk = Vbatt,k(SOC) = VOC(SOC)+Roik+vl,k+vs,k. (16)

As presented in the previous section, the quasi-static model
computes the total electrical power demand PT . Neverthe-
less, the battery model requires the load current ik as the in-
put variable. Therefore, it is necessary to express ik in terms
of PT . The load current ik can be obtained from the defini-
tion of electrical power P = IV . Considering P = PT and
V = Vbatt the terminal voltage can be expressed as

Vbatt =
PT
i
. (17)

By substituting Eq. (17) into Eq. (16) and solving for i, the
current at time k is given by

ik = −C −
√
C2 − 4PT (uk)Ro

2Ro
, (18)

with
C = (VOC(SOC) + vs,k + vl,k) .

PT (uk) expresses the dependence of the total electrical
power demand on the input vector given by Eq. (8). The
solution with the positive part in the square root term of Eq.
(18) is neglected, since its consideration would cause some
current to be supplied by the battery when PT = 0, which in
practice is not possible.

4. STATE ESTIMATION

At the beginning of the estimation and prediction steps the
system states, and especially the initial SOC, are unknown.
To obtain an accurate prediction of the RDR, the prediction
module needs an initial starting point that is as accurate as
possible. For that reason the state estimation has to converge
to the true value before the prediction is carried out. In the
prediction framework shown in Fig. 1 the task of the estima-
tion step is to compute p(xk|y0:k), i.e., to represent the most
up-to-date knowledge of the state variables at given time k

5
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based on the history of measurements of the system.

For state estimation in nonlinear systems Bayesian tracking
algorithms such as the particle filter (PF) (Rigatos, 2009), the
extended Kalman filter (EKF) or the unscented Kalman fil-
ter (UKF) (Julier & Uhlmann, 2004) are the most established
ones. This study uses the UKF as suggested by Daigle et al.
(2012), because of the smaller number of sampling points and
reduced computational complexity compared to the PF. The
next section briefly describes the framework of the unscented
Kalman filter that was implemented in this work.

4.1. Unscented Kalman Filter

The UKF applies the so-called Unscented Transform (UT) to
approximate the distribution of the state variables. The UT
considers each variable x as a random variable with mean
x̄ and covariance Px and computes the mean ȳ and covari-
ance Py of the output variable. This computation is carried
out by choosing a set of deterministically weighted points
Si = {wi,Xi}, which are sampled from the distribution of
x and are known as sigma points (Julier & Uhlmann, 2004).
The sigma points are then propagated through a nonlinear
function Yi = g(Xi) that relates both the sigma points and
the transformed sigma points. The posterior mean and covari-
ance of the output variable can be recovered by

ȳ ≈
2L∑

i=0

wiYi (19)

Py ≈
2L∑

i=0

wi (Yi − ȳ) (Yi − ȳ)
T
. (20)

Many methods have been developed for selecting sigma
points and these methods along with the choice of their pa-
rameters play an important role for the accuracy of the state
estimation (Daigle & Goebel, 2010). In this study, the sym-
metric unscented transform is used. Here the set of 2L+1
sigma points are selected as:

X0 = x̄ i = 0

Xi = x̄ +
(
γ
√

(L+ λ) Px

)
i

i = 1, ..., L

Xi = x̄−
(
γ
√

(L+ λ) Px

)
i

i = L+ 1, ..., 2L,

(21)

with the weights given by

w
(m)
0 = λ

L+λ i = 0

w
(c)
0 = λ

L+λ + (1− α2 + β) i = 0

w
(c)
i = λ

2(L+λ) i = 1, ..., 2L,

(22)

where L refers to the number of states in the state vector
and

(√
(L+ λ) Px

)
i

is the ith column of the square root
of the weighted covariance matrix. The parameters λ, α, β

and γ serve for scaling the sigma points in the state space and
are chosen according to the (heuristic) recommendations of
Julier and Uhlmann (2004). The algorithm 1 summarizes the
main steps for state estimation using the unscented Kalman
Filter.

Algorithm 1 Unscented Kalman Filter for State Estimation

Initialize:
x̂0 = E [x0] ,P0 = E

[
(x0 − x̂0) (x0 − x̂0)

T
]

For k = 1...,∞
1. Calcualte sigma points:
Xk−1 =

[
x̂k−1 x̂k−1 ± γ

√
Pxk−1

]

2. State prediction:
a. Propagate the sigma points through the system model:
Xk|k−1 = f (Xk−1,uk−1)

b. Calculate the propagated mean and covariance:

x̂−k =
2L∑
i=0

w
(m)
i Xi,k|k−1

P−xk
=

2L∑
i=0

w
(c)
i

(Xi,k|k−1 − x̂−k
) (Xi,k|k−1 − x̂−k

)T
+Rv

c. Sigma point propagation through the output model:
Yk|k−1 = h (Xk−1)

d. Calculate the propagated mean:

ŷ−k =
2L∑
i=0

w
(m)
i Yi,k|k−1

3. Measurement update:
a. Calculate the estimated covariance:

Pyk =
2L∑
i=0

w
(c)
i

(Yi,k|k−1 − ŷ−k
) (Yi,k|k−1 − ŷ−k

)T
+Rn

Pxkyk =
2L∑
i=0

w
(c)
i

(Xi,k|k−1 − x̂−k
) (Yi,k|k−1 − ŷ−k

)T

b. Calculate the Kalman gain K:
Kk = PxkykP−1

yk
c. Update the state estimation and covariance:

x̂k = x̂−k + Kk

(
yk − ŷ−k

)

Pxk
= P−xk

−KkPykKT
k

The UKF estimate of xk =
[
w1,k w2,k vs,k vl,k

]T
is used to calculate the output yk = Vbatt,k(SOC) by using
Eq. (16). The output voltage yk depends on the SOC which
is not part of the state vector. Therefore the SOC has to be
calculated from the states in the algebraic Eq. (11). As fur-
ther explained in the following section, if a RDR prediction is
desired at given time kp, the prediction module uses the last
estimation x̂kp , from which a new set of sigma points is gen-
erated. The set of new sigma points is then used as the initial
condition for the prediction step.

5. RDR PREDICTION

A prediction starts at given time kp. Here, the posterior es-
timate p (xkp|y0:kp) serves as the starting point for the pre-
diction. As already mentioned in section 2, a sample-based
approach for predicting the RDR is used. Therefore, the set
of sigma points Sikp = {X i

kp, w
i
kp}, calculated by the UKF

6
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in the state estimation step, is used and propagated forward
in time through simulation. All sigma points are propagated
independently by following the predicted driving profile until
T ikp = 1, i.e., until each sigma point reaches the SOCmin.
The posterior mean RDRkp and its covariance PRDRkp

can
be recovered, in a similar fashion as in Eq. (19) and Eq. (20),
by

RDRkp ≈
2L∑

i=0

wikpRDRi
kp , (23)

PRDRkp
≈

2L∑

i=0

wikp(RDRi
kp − RDRkp)(RDRi

kp − RDRkp)T

(24)

As stated above, the propagation of all sigma points requires
an hypothesized future driving profile. This work employs
a stochastic approach based on Markov chains to predict the
driving profile. The predictions are generated in such a way,
that characteristic driving patterns of real-world driving situ-
ations are captured.

5.1. Driving Profile Prediction

Driving profiles can be modeled as a discrete-time Markov
chain (T. Lee & Filipi, 2011). In this work two Markov chains
are used. First, future values of speed and acceleration are
generated by a 2D chain. Second, the slope profile is pre-
dicted by means of a 1D Markov chain independent of the
speed and the acceleration. To apply a Markov chain the in-
put space is quantized, for the speed/acceleration pair and for
the slope, in such a way that each input variable takes a finite
number of values. The inputs are given by {u1,u2, ...,uhl

},
with uk =

[
uvak uαk

]T
. Here uavk =

[
vk ak

]
and

uαk = αk represent parts of the input space given by the
speed/acceleration pair and by the slope respectively, with hl
as the horizon length of the predicted profiles.

The Markov chain assumes that the transition probability
from uk to uk+1 only depends on the current state and not
on the history of previous states.

The transition probabilities among the states are grouped in a
transition probability matrix (TPM) Φ such that

pij = Φ (uk+1 = j|uk = i) , (25)

where pij is the ijth element of Φ.

In this paper two transition probability matrices are used,
namely Φva and Φα. The transition probabilities of Φva are
estimated from historical driving data and from standard driv-
ing cycles. The resolution of Φva for the speed is 1 km/h in
the interval [0, 130]km/h and for the acceleration it is 0.2
m/s2 in the interval [−3, 3]m/s2. Φα is estimated from real
road height profiles and has a resolution of 0.5◦ in the interval

[−10, 10]◦. These resolutions offer a good trade-off between
computational effort and accuracy in the prediction.

For estimating both TPMs the maximum likelihood estima-
tion method (T. C. Lee, Judge, & Zellner, 1970) is applied.
The transition probability pij is computed by

pij =
nij
s∑
j=1

nij

=
nij
ni
, (26)

where nij is the number of times a transition from ui to uj
has occurred, and ni is the total number of occurrences of ui.
Algorithm 2 summarizes the steps required for the prediction
of a driving profile.

Algorithm 2 Driving Profile Prediction

Require: Φva,Φα, vkp , akp , αkp , hl
Ensure: {uk,uk+1, ...,uhl

}
Initialize:
i← 0
k ← kp
vi ← vkp , ai ← akp , αi ← αkp
for l = 1 to hl do

Randomly draw uavj = [ vj aj ] for the next state ac-
cording to Φva

(
uvak+1 = uvaj |uvak = uvai

)
vk+1 ← vj
ak+1 ← aj
uavk+1 ← [ vk+1 ak+1 ]
Randomly draw uαj = αj for the next state according to
Φα
(
uαk+1 = uαj |uαk = uαi

)
αk+1 ← αj
uαk+1 ← αk+1

Create the driving profile
uk+1 ← [ uavk+1 uαk+1 ]

T

i← j
k ← k + 1

end for

The prediction is initialized with the current values vkp , akp
and αkp . Both Markov chains are generated separately in an
iterative manner, until the desired length hl of the profile is
reached.

5.2. RDR Characterization

Until now the prediction of the RDR, as computed by Eq.
(23), requires propagating the set of sigma points through
a single predicted driving profile. Nevertheless, this proce-
dure only accounts for the uncertainty related to the state es-
timation. Therefore, the uncertainty presented in the driv-
ing profile prediction is not taken into account. This issue is
approached by generating multiple hypotheses about the fu-
ture driving profile and by propagating the set of sigma points
through each of them. In this way the uncertainty of the driv-
ing profile is accounted making the prediction of the RDR
more meaningful.
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After all sigma points, along all predicted driving pro-
files, reach the SOCmin, i.e., T ijkp = 1, the posterior
p
(
RDRkp |y0:kp

)
is approximated by means of the kernel

density estimation (Bowman & Azzalini, 1997)

p
(
RDRkp |y0:kp

)
≈ 1

Nuh

Nu∑

j=1

K


RDRkp − RDR

j

kp

h


,

(27)

whereNu is the number of predicted driving profiles, K (·) is
the kernel, which in this work is Gaussian, and h is a smooth-
ing factor known as bandwidth. It must be noted that the esti-
mate kernel density estimate is based only on the set of mean

posteriors
{

RDR
j

kp

}Nu

j=1
calculated with Eq. (23), as shown

in Fig. 5. This implies that the covariances
{

Pj
RDRkp

}Nu

j=1

are not taken into account. In our case this is justified since
the uncertainty added by driving profile prediction is consid-
ered to be large in comparison to the uncertainty related to the
state estimation. For the sake of better understanding, Fig. 5
shows the propagation of only one sigma point through all
predicted driving profiles.

T ij
kp = 1

{
RDR

j
kp

}Nu

j=1

p
(

RDRkp |y0:kp

)

S
O

C

qlow

skp

sigma point propagation

Multiple driving profile

Estimated kernel density

RDRkp

qhigh

Traveled distance

Figure 5. Propagation of one sigma point through multiple
driving profiles.

Since p
(
RDRkp |y0:kp

)
is usually non Gaussian, we rely on

the median for estimating the RDR and on quantiles, here rep-
resented by qlow and qhigh, as the measure of spread (Hoaglin,
Moesteller, & Tukey, 1983).

6. RESULTS AND DISCUSSIONS

This section demonstrates and validates the proposed ap-
proach for predicting the RDR. The performance and the ac-
curacy of the proposed approach for different driving scenar-
ios, namely the city, rural areas and the highway, is inves-

tigated. Accordingly, the standard driving cycles shown in
Fig. 6 are used in the simulations.
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Figure 6. Standard drive cycles used in the simulation.

The parameters of both, the quasi-static and the battery
model, are presented in table 2. The parameter of the quasi-
static model are obtained from manufacturer’s data sheets of
the Nissan Leaf (Hayes, Oliveira, Vaughan, & Egan, 2011).
The rolling resistance coefficient Kr is chosen to represent a
dry road. It must be noted that the parameters of the battery
model, correspond to those of one cell. These parameters
are identified with the help of experimental data from a Li-
ion cell. Since the parameters of the equivalent-circuit based
model depend on both, the temperature and the battery SOC,
they can not be considered as constant. Therefore, lookup ta-
bles are used to store them. To properly simulate the behavior
of the entire battery pack, the cell capacity and the nominal
voltage are scaled up to 24 kWh and 403.2 V respectively.
For all experiments a temperature of 25 ◦C is assumed.

Table 2. Parameters of the quasi-static and the battery model.

Quasi-static Model Battery Model
Parameter Value Parameter Value

A 2.29 m2 Cn 2.15 Ah
cw 0.28 Vnom 4.2 V
m 1520 kg Vlim 2.8 V
Kr 0.7 d 1.4× 10−5

Tm,max 280 Nm c 0.96
Pele,max 80 kW
rtire 0.3 m
ρair 1.226 kg/m3

g 9.81 m/s2
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Each experiment is carried out as follows. First, for each
driving scenario a sufficiently large drive cycle is created, so
that the electric vehicle can drive until it reaches the SOCmin.
During the simulation both the current and the terminal volt-
age of the battery are measured, which are then used by the
UKF for estimating the states of the battery. The RDR is
predicted every 1000 seconds for the city scenario and every
500 seconds for both, the simulation in rural areas and on the
highway. The reason for this is that the time needed for sim-
ulating each scenario largely depends on the speed range of
the drive cycle. The higher the speed of the drive cycle, the
shorter the time it takes to finish the simulation and therefore
the lower the amount of RDR predictions that can be done.

For the sake of demonstration, Figs. 7, 8 and 9 depict the RDR
prediction process at prediction time kp = 2, i.e., after 1000
seconds for the city scenario and after 500 seconds for the
rural and highway scenarios. In all cases, the initial battery
SOC is approximately 0.9. Multiple simulations are carried
out simultaneously based on the predicted driving profiles.
We have set SOCmin = 0.1 for all experiments. As it can
be seen, the SOC curves evolve tighter during the simulation
of the highway scenario than in the first two scenarios. This
causes the uncertainty related to the predicted driving profiles
to be lower and therefore the estimated RDR kernel density
is narrower.
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Figure 7. Predicted RDR represented by a kernel density in
the city scenario.

6.1. Performance of the RDR Prediction

To evaluate the performance of the RDR prediction, the rela-
tive accuracy (RA) and the alpha-lambda (α− λ) metrics are
employed (Saexena, Celaya, Saha, Saha, & Goebel, 2009).

The relative accuracy measures the error in the RDR predic-
tion relative to the true RDR. The RA is given by

RAkp = 100


1−

∣∣∣RDR∗kp − RDRkp

∣∣∣
RDR∗kp


 , (28)
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Figure 8. Predicted RDR represented by a kernel density in
the rural scenario.
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Figure 9. Predicted RDR represented by a kernel density in
the highway scenario.

where RDR∗kp represents the ground truth RDR at time kp
and RDRkp is the predicted RDR at that time. The α−λmet-
ric serves to evaluate whether the predicted RDR’s lie with-
ing specified bounds. These bounds are usually calculated as
a fraction of the true RDR. We set a value α = 0.15. Ta-
ble 3 summarizes the calculated RA for each driving cycle at
different prediction times.

As it can be seen in Figs. 10, 11 and 12, the proposed ap-
proach performs similar for each driving scenario. The sim-
ulation for the city scenario was done based on the UDDS
drive cycle. The predicted RDR falls near the true RDR for
the entire simulation. Also quantiles q5 and q95 fall within the
bounds of the α metric for most part of the simulation. The
second scenario, namely the rural areas, is simulated base on
the ARTEMIS rural drive cycle (Andre, 2004). The results
also show an acceptable accuracy. Nevertheless, in this case
the RDR is overestimated for most part of the simulation and
the area between q5 and q95 doesn’t fall withing the bounds.
The reason for this is, that the transition probability matrix
used for the prediction of the driving profiles in this sce-
nario combines information of both, the city and the highway.
For this reason, the predicted profiles don’t always properly
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Table 3. RDR prediction performance.

kp RAUDDS RARURAL RAHWFET

1 96.67 88.90 98.39
3 99.17 90.81 97.01
5 99.48 91.89 97.59
7 98.64 92.22 92.65
9 98.69 91.63 96.25

11 96.48 92.40 86.01
13 98.11 99.70 42.68
15 85.47 97.41 −−
17 91.92 53.47 −−
19 73.17 −− −−
21 90.56 −− −−

represent this driving scenario. The third scenario is repre-
sented by the HWFET driving cycle. As it can be observed in
Fig. 12, the predicted RDR’s during the simulation are very
close to the true values. Moreover, the uncertainty band given
by the quantiles lies very tightly withing the α bounds. The
deviation presented towards the end for both the rural and the
highway scenario is due to the acceleration phase at the begin-
ning of each prediction, since it always starts from the stand-
ing position. This makes the predicted energy consumption
at the beginning of the prediction to be larger in comparison
to the real one, where such acceleration phase is not present.
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Figure 10. RDR predictions for the UDDS drive cycle.

7. CONCLUSIONS AND FUTURE WORK

This work presents a model-based approach for predicting the
RDR in electric vehicles. The proposed approach proceeds in
two steps, namely the state estimation and the prediction step.
Detailed models for determining the power demand of elec-
tric vehicles and for describing the dynamic behavior of the
battery are also presented. Our approach takes into account
the sources of uncertainty that influence the RDR. First, a
Bayesian tracking algorithm, namely the unscented Kalman
filter was implemented to estimate the SOC of the battery.
In the second step, this estimate is used as the starting point
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Figure 11. RDR predictions for the ARTEMIS rural drive
cycle.
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Figure 12. RDR predictions for the HWFET drive cycle.

for the RDR prediction. Here, the set of sigma points, ob-
tained from the state estimation, is propagated forward in
time by letting them follow multiple predicted driving pro-
files. A stochastic approach based on Markov chains for pre-
dicting the driving profiles is employed. The RDR is then
computed as a probability density function approximated by
the distribution of the propagated sigma points. The proposed
approach is demonstrated and validated by means of a series
of simulation experiments. The experiments allowed to pre-
dict the RDR under different driving situations. The obtained
results have shown that the RDR can be accurately predicted
for given scenarios with our approach. Nevertheless, the ef-
ficiency of the algorithm still largely depends on the number
of evaluated driving profiles. An aspect we aim to investi-
gate in the future is therefore to describe the driving profile
parametrically. In this way the uncertainty, i.e., the proba-
bility distribution of the parameters can be incorporated in
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the unscented transform. Other aspect that we plan to inves-
tigate is the adaption of the driving profile prediction to the
driving style, which may increase the accuracy of the RDR
prediction. To this aim it would be necessary to update Φva

according to new observed driving data.
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ABSTRACT

The goal of prognostic decision making (PDM) is to utilize
information on anticipated system health changes in select-
ing future actions. One of the key challenges in PDM is find-
ing a sufficiently expressive yet compact mathematical rep-
resentation of the system for use with decision optimization
algorithms. In this paper we describe a general modeling ap-
proach for a class of PDM problems with non-linear system
degradation processes and uncertainties in state estimation,
action effects, and future operating conditions. The approach
is based on continuous Partially Observable Markov Deci-
sion Processes (POMDPs) used in conjunction with ’black
box’ system simulations. The proposed modeling framework
can be cast into simpler representations, depending on which
sources of uncertainty are being included. The approach is il-
lustrated with a mission planning case study for an unmanned
aerial vehicle (UAV). In the case study a PDM system is
tasked with optimizing the vehicle route after an in-flight
component fault is detected. A stochastic algorithm (based
on particle filtering) is used for decision optimization, with
a second, deterministic algorithm providing a performance
evaluation baseline. Both algorithms utilize a UAV physics
simulator for generating predictions of future vehicle states.
Performance benchmarking is done on a set of mission sce-
narios of increasing complexity.

1. INTRODUCTION

Decision-making in complex aerospace applications (our area
of interest) encompasses the selection of actions at numer-
ous levels of system abstraction. At the lower levels decision
making can mean selecting controller gain values in a sub-
system or defining the allowable movement range for a con-
trol device. At the mission level decision making can involve

Edward Balaban et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

modifications to the vehicle route. At the highest levels, de-
cision making can extend to allocating assets for a mission
from a fleet of vehicles or even reorganizing a logistics chain.

Prognostic Decision Making (PDM) can be defined as the
process of selecting system actions informed by predictions
of the future system health state. While in many respects
PDM is similar to other planning and decision optimization
problems (such as those from the fields of optimal control or
path planning), there are two key reasons, in our opinion, to
consider it as a distinct problem type. First, incorporating
information, however imperfect, about the evolution of the
system health parameters may help increase decision quality
and reduce the state estimation uncertainty. Doing that may
prove to be a non-trivial task, as health degradation processes
in aircraft or spacecraft components often have complex de-
pendencies on operating conditions, environmental factors,
and the degradation processes occurring in the other parts of
the system. Second, selecting actions appropriately may, in
turn, help improve subsequent prognostic estimates. In nomi-
nal operations, incorporation of prognostics into the decision-
making could help optimize vehicle performance and min-
imize maintenance costs. In situations where the vehicle
is experiencing in-flight malfunctions, having the additional
source of information provided by prognostic methods could
be crucial to ensuring a safe mission outcome.

In order to make the prognostic decision making problem
tractable for an aerospace application, it may need to be sub-
divided into smaller sub-problems, with the information ex-
change organized for overall decision coherency (Balaban
& Alonso, 2012). The goal of the work described in this
paper is to further develop modeling techniques and algo-
rithms for solving the types of sub-problems that require
representation of uncertainties in state estimation (including
in payoffs/rewards), action outcomes, and future operating
conditions. Our modeling approach is based on continuous
Partially Observable Markov Decision Processes (Bertsekas,
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1995). As a generalization of the more traditional state-space
representations and Markov Decision Processes (Bellman,
1957b), the same POMDP framework can be used to describe
problems with some or all of the aforementioned sources of
uncertainty absent.

A mission replanning case study for an unmanned aerial ve-
hicle is used as an illustrative example. It is extended from
a mission replanning study for a ground vehicle (Balaban &
Alonso, 2012). While the general ideas for the two studies
are similar, additional challenges present themselves when
implementing PDM for a flight vehicle. With motion now
conducted in three dimensions (six degrees of freedom), the
task of estimating a future vehicle state is inherently more
complex. In addition, the system needs to produce its ac-
tion recommendations as quickly as possible since, unlike a
ground vehicle, an airplane cannot simply stop, enter a safe
mode, and wait for the decision-making process to complete.
The longer the process takes, the worse the fault condition
may become and the further from the optimal flight path the
vehicle may end up.

Exact solutions of problems formulated as POMDPs are gen-
erally not achievable (Pineau, Gordon, & Thrun, 2006), there-
fore some type of an approximate algorithm needs to be uti-
lized. In this work an algorithm based on particle filtering
(Gordon, Salmond, & Smith, 1993) is implemented, with a
second, deterministic algorithm used for validation and per-
formance assessment purposes. The latter algorithm is based
on backtracking search (Knuth, 1968).

In the near term, the case study described in this work is
meant to pave the way for PDM flight demonstrations on
the Edge 540 electric UAV (Hogge, Quach, Vazquez, & Hill,
2011). The Swift electric UAV (Denney, Pai, & Habli, 2012),
being developed at NASA Ames Research Center, is under
consideration as an advanced follow-up test platform. The
Swift is significantly larger than the Edge 540 (13.0 meter vs
2.45 meter wingspan) and can fly longer missions (7-8 hours
aloft projected vs. approximately 0.3 hours for the Edge 540).
The longer flight endurance is expected to allow for a greater
variety of gradually developing fault modes to be introduced
into the test scenarios.

The rest of the paper is organized as follows. Related research
efforts are briefly reviewed in the next section. Section 3 de-
scribes our modeling methodology. The mission replanning
case study is defined in Section 4. The prototype vehicle
health management architecture used to implement the case
study is described in Section 5. A UAV physics simulator
(Section 6) is one of the components of this architecture. The
simulator includes prognostic degradation models for some of
the vehicle components. Section 7 presents the two decision-
making algorithms (deterministic and stochastic), which are
tested on a set of simulated missions of varying complexity

(Section 8). Section 9 provides a summary of the work per-
formed and outlines our plans for future research.

2. RELATED WORK

This section highlights some of the research efforts that, we
believe, form a representative sample of the current state of
the art in PDM. Most of the PDM research to-date has been
done for low-level component control, with a few projects us-
ing prognostics in solving higher-level planning and schedul-
ing problems.

Pereira, Galvao, and Yoneyama (2010) developed a Model
Predictive Control (MPC) system that distributes control ef-
fort among several redundant actuators based on prognos-
tic health information. Damage accumulation is assumed
to be linearly dependent on the exerted control effort. The
approach is tested in simulation on a tank level regulation
problem. Brown and Vachtsevanos (2011) also incorporate
prognostic information into a model-predictive controller and
apply it to optimizing performance (in simulation) of an
electro-mechanical actuator. The work includes recommen-
dations for error analysis and for estimation of uncertainty
bounds in long-term Remaining Useful Life (RUL) predic-
tions. Bogdanov, Chiu, Gokdere, and Vian (2006) investigate
coupling of a prognostic lifetime model for servo motors with
a family of LQR controllers.

Edwards, Orchard, Tang, Goebel, and Vachtsevanos (2010)
propose a set of metrics to quantify the impact of input
uncertainty on non-linear prognostic systems. The met-
rics are incorporated into a feedback correction loop in or-
der to demonstrate RUL extension for a non-linear, non-
Gaussian system (a helicopter gear plate experiencing a fa-
tigue crack fault). An algorithm based on particle filtering
is used for uncertainty estimation. The work done by Tang,
Hettler, Zhang, and Decastro (2011) contains elements of
prognostics-enhanced control, but also extends into prognos-
tic path planning for an unmanned ground vehicle. RUL esti-
mates were used either as a constraint or as an additional ele-
ment in the cost function of the path-planning algorithm, with
the algorithm based on Field D* search (Ferguson & Stentz,
2006). Methods for estimating and managing prediction un-
certainty were also developed.

In our work we aim to build on the above efforts by explor-
ing the benefits and the challenges of performing prognostic
decision making in a more general framework, where the sys-
tem model is treated as a ’black box’. Our approach to doing
this is described next.

3. MODELING APPROACH

The mathematical modeling approach adapted for this work
is meant to be general and applicable to a wide variety of
systems with degradation processes. A POMDP formulation
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was chosen as the basis since it allows for transition costs,
rewards, and action outcomes to be expressed in probabilistic
terms. The main elements of a model are described below:

State space: S ⊆ Rn

Action space: A ⊆ Rm

Observations: Z ⊆ Rp

Transition
function:

T (s, a, s′) = pdf(s′|s, a) : S ×A× S →
[0,∞)

Observation
function:

O(z′, a, s′) = pdf(z′|s′, a) : S×A×Z →
[0,∞)

Belief state: b(s) = pdf(s)

Belief space: B - the set of all belief states

Initial belief: b0

Belief
update:

baz(s′) ∝
O(z′, a, s′)

∫
S

T (s, a, s′)b(s)ds

Policy: π(a, b) = pdf(a|b) : A × B → [0,∞), Π
is the set of all policies

Costs: C = {c1(s, a), ..., c|C|(s, a)} ⊆ R|C|

Cost
functions:

ci(s, a, c) = pdf(c|s, a) : S × A × R →
[0,∞), where c is a specific real value,
i ∈ {1, . . . , |C|}

Rewards: R = {r1(s), ..., r|R|(s)} ⊆ R|R|

Reward
functions:

ri(s, r) = pdf(r|s) : S × R →
[0,∞), where r is a specific real value,
i ∈ {1, . . . , |R|}

Features: X = {x1(s), . . . , x|X |(s)} : S → R|X |

Constraints: G = {g1(s), . . . , g|G|(s)} : S → B|G|

Objective
function:

Jπ(b0) : Π×B → R

System states in S are not defined explicitly, but rather ob-
tained through a ’black box’ simulator, such as the one de-
scribed in Section 6. The simulator takes an estimate of the
current state and the desired action as inputs and generates
a state estimate for the next time step as the output. Com-
pared to discretized state representations, this approach helps
to avoid the ‘curse of dimensionality’ (Bellman, 1957a), re-
sulting from the exponential growth in the size of the state
space with the number of state vector components. It also
mitigates discretization errors. While a discretized formula-
tion does not require a system simulator, we believe that em-
ploying such a formulation would quickly become impracti-
cal for all but the simplest PDM problems.

The concept of a continuously valued action space A allows
us, in conjunction with the simulator, to represent not only the
system actions, but the loads and environmental conditions
imposed onto the system as well. Observations Z most often

come from sensor readings, but can also be manual measure-
ments of a quantity such as the length of a crack. The tran-
sition probability function T (s, a, s′) allows us to model the
uncertainty in estimating the future loading conditions and
their effects on the system state (s denotes the current state, a
the action taken in the current state, and s′ is the next state).
The observation function O(z′, a, s′) describes the probabil-
ity of seeing an observation z′ if a state s′ is achieved as a
result of an action a.

Since in real life it is often not possible to know the exact
state the system is in, the belief state b(s) is defined as the
probability density of being in a particular state s. A policy
π(a, b) is then defined as the probability density of taking a
specific action a given a belief state b. In practical terms, a
policy allows us to define what actions the system should take
given the belief distribution over possible states.

A cost is defined probabilistically as a value dependent on the
current system state and the action taken in it. A cost can be
the amount of energy needed to transition to the next system
state or the corresponding measure of component wear. Re-
wards, on the other hand, depend only on the system state
achieved. Reward functions define the desirability of a state
as a probability density over the real domain. Features are
also functions defined over state variables that enable reason-
ing over the various properties of a state. Unlike rewards,
feature values are not meant to be used in an additive manner
directly and are thus defined as point estimates.

Constraints are defined as inequalities of the form gi(s) ≥ 0
on the components of the state of the system. Strict equality
constraints can be defined as well, although they are less use-
ful in the current context. Constraints can be used to define
regions of nominal and off-nominal system behavior, as will
be done shortly for system health.

Finally, features, costs, and rewards are combined into an ob-
jective function Jπ that, given an initial belief state b0 and
a policy π, can compute a single evaluation metric of that
policy. Several objective functions can be defined for multi-
criteria reasoning. Given the predominantly non-negative
transition costs in a typical PDM application, a separate dis-
count factor (often used in value and objective functions to
guarantee convergence and encourage shorter solutions) is
likely unnecessary. Negative costs correspond to self-healing
or commanded recovery events and, while certainly valid,
should not dominate the non-negative costs (e.g. energy con-
sumption or component wear), given a properly designed ob-
jective function. Terminal states are defined through the con-
straints in G, including (but not limited to) constraints on ve-
hicle health parameters or position.

Now that the modeling framework has been described, the
key system health management concepts can be defined
within it:
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• Health parameters: H = {h1, . . . , hH} is a subset of
state vector elements that describes the health state of the
system.

• Fault: A subset of constraints Gfault ∈ G defines sig-
nificant deviations from the expected nominal behav-
ior (with respect to vehicle health). A fault occurs if
∃i, gi(s) = false, gi ∈ Gfault. At least some of the
health parameters H are expected to be included in the
constraints of Gfault.

• Failure: Another subset Gfailure ∈ G defines states where
the system loses its functional capability with respect to
a health parameter h ∈ H .

• System failure: System failure is defined through a
boolean function F : B → B, which indicates when the
entire system is believed to be effectively non-functional
(F is defined via the Gfailure set). System failure can
be indicated when a single gi ∈ Gfailure is believed to
be violated, for example, or a larger subset of them.
More generally, the function could also be defined as
F : B → [0, 1], mapping the belief space to a proba-
bility of system failure.

• End of Life (EoL): End of Life in this set of definitions is
synonymous with system failure. Time of EoL is defined
similarly to (Daigle, Bregon, & Roychoudhury, 2012) as
tEoL , inf{t ∈ R : (t ≥ tp) ∧ (F(b) = true)}, where
tp is the time of prediction (or, alternatively, the present
time).

• Remaining Useful Life (RUL): RUL = tEoL − tp

The diagnostic problem then becomes the process of deter-
mining the current belief state, bt. The prognostic problem
can be stated as the process of determining, at time t, the be-
lief state b(t+∆t), given the current policy π (with ∆t > 0).
The prognostic decision making problem is then the process
of finding (or approximating) π∗, such that

π∗ = arg max
π∈Π

Jπ(bt),

where Jπ(bt) is an objective function computed using a pol-
icy π given a state of belief bt at time t. Time (or an alterna-
tive index) can be discretized.

Given this general framework for describing the system, its
actions, and the state of system health, we can recast it de-
pending upon the problem at hand. While in some cir-
cumstances representation and quantification of uncertainty
is necessary to increase the decision accuracy, in others the
downsides of having a random process present in the rea-
soning system outweigh the benefits. When in real-time use
aboard an air vehicle, for example, running the simulation in
the deterministic mode (supplying the expected value of the
next state) may often be preferable. For the purposes of devel-
opment and verification, it may also be beneficial to start with
a deterministic state transition system. Enabling uncertainty

in the effects of an action would turn the system into a con-
tinuous Markov Decision Process (MDP) (Bertsekas, 1995).
Adding uncertainty in state estimation would turn it into a
continuous POMDP.

While exact solutions for problems posed as deterministic
state-space representations can be produced using a variety
of search techniques, as the amount of uncertainty increases
computing exact solutions becomes more and more challeng-
ing. In certain cases (linear system model, quadratic objec-
tive function) continuous MDP problems can be solved ex-
actly using Differential Dynamic Programming (Jacobson &
Mayne, 1970). In other cases approximate methods are re-
quired. The two algorithms described in Section 7, back-
tracking search and Particle Filter, can be used with both de-
terministic and stochastic next-state representations. The for-
mer will produce an exact solution if the states are defined
deterministically, while the latter will generate approximate
solutions in both cases.

4. MISSION REPLANNING CASE STUDY

Our case study is based on a UAV mission scenario where
the vehicle is tasked with visiting a set of waypoints and re-
turning back to the point of origin. Such a mission profile
is typical of reconnaissance or geophysical survey missions,
for example. For tasks of this type the order of visiting the
waypoints is often less important than which waypoints were
actually reached. Further scenario details are listed below.

Given:

• The waypoint set is defined as wp = {wpi}Ni=1, where
a waypoint wpi = {(xi, yi, zi),Gi, ri} is specified by
its Cartesian coordinate vector (xi, yi, zi), waypoint-
specific constraints subset Gi (e.g. on airspeed or bank
angle), and a reward value ri.

• A path p = (wpj)
M
j=1 is defined as an ordered subset of

wp (i.e. M ≤ N ). P is the set of all possible paths.
• The aircraft starts its mission at waypoint wp1 (home

runway) and is required to return there for a mission to
be considered a full or a partial success.

• An initial path p0 is specified (p0 is not necessarily opti-
mized).

• hh ∈ [0, 1] is the normalized system health index (1 is
full health and 0 indicates failure). The constraint on sys-
tem health is defined as gh(s) = hh ≥ 0.

• he ∈ [0, 1] is the normalized remaining energy index (1
is full charge and 0 indicates depleted energy). The con-
straint on energy is defined as ge(s) = he ≥ 0.

• A healthy vehicle is able to complete p0 within the en-
ergy and component health constraints (before either
reaches 0).

• Energy and health transition costs between a pair
of waypoints a and b are defined as ce(wpa, wpb)
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and ch(wpa, wpb), respectively (the costs are history-
dependent). Ce(p) and Ch(p) are the corresponding cu-
mulative costs for a path. Similarly, the cumulative path
reward is denoted byR(p).

• A fault f occurs at a time tf , that makes it impossible
to complete p0 before EoL. The fault magnitude changes
with time, loading conditions, and environmental factors.

Find:
p∗ = arg max

p∈P
R(p),

where p∗ is a path that maximizes cumulative reward.

A waypoint wpi is considered to be reached if the vehicle
achieves a position (xi ± εx, yi ± εy, zi ± εz), with all of the
applicable constraints satisfied. Here εx, εy , and εz are the
predefined maximum position error values.

5. PHM REASONING ARCHITECTURE

The reasoning architecture used in this work consists of the
four main components: the diagnoser (DX, for diagnostics),
the decision maker (DM), the vehicle simulator (VS), and the
vehicle itself (Figure 1).

The execution process is initiated with an input route p0 and
an initial fault set F0 supplied to the decision maker. This
can be done at the beginning of a mission (in that case the
fault set may be empty) or if a fault is diagnosed in flight. A
fault set F is one or more fault descriptors. A fault descriptor
fi consists of a fault type d and a fault magnitude m. Fault
magnitude m is generally normalized to the interval [0, 1].

DM utilizes VS to evaluate and, optionally, optimize the input
route (according to the criteria in Section 4). An initial opti-
mization can be performed if a successful completion of the
input route is deemed unlikely. Alternative routes sent to VS
consist of an ordered set of waypoints (with vectors Γ of spe-
cific values for waypoint parameters). DM also informs VS
of the relevant fault modes. VS simulates the candidate path,
pc, and returns the reward and cost estimates for it. Once DM
finalizes the route recommendation p∗, it is sent to the vehicle
for execution.

As the mission proceeds, DX continues to monitor observa-
tions Z (e.g. sensor readings) generated by the vehicle to
detect any new fault conditions. The current prototype im-
plementation, meant to primarily test the PDM algorithms,
includes only a minimal diagnostic functionality. Future
versions will incorporate a fully-featured diagnoser, such as
HyDE (Narasimhan & Brownston, 2007) or QED (Daigle &
Roychoudhury, 2010). One of our long-term goals is to unify
diagnostic and decision making processes around a single,
comprehensive system model. For the near future, however,
if the diagnoser utilized is model-based (as is the case for both
HyDE and QED), a separate diagnostic model would need to
be constructed.

A new fault condition triggers a reevaluation of the vehicle
route by DM. Another event type that triggers a reevaluation
is a significant deviation of the predicted component degra-
dation rates from the rates observed as the flight progresses
further. This mechanism is implemented by storing the pre-
dicted component degradation curves for the proposed route
(p∗) before it is sent to the vehicle for execution.

6. VEHICLE SIMULATOR

Given an estimate of the current vehicle state and the desired
action, the simulator is used to generate an estimate of the
next state in its innermost loop. The state vector includes
the aircraft position, velocity, acceleration, orientation, lift,
drag, thrust, battery voltage, battery charge remaining, com-
ponent temperatures, and other data. When an entire path p
is provided, the simulator can generate reward and cost esti-
mates R(p), Ch(p), and Ce(p). For that, the route is divided
into segments where the key elements of vehicle dynamics
can be considered constant (i.e. acceleration, bank angle, an-
gle of climb/descent, etc). The segments are further divided
into time steps. The size of a time step, dt, can be specified
as one of the simulation parameters (it is adjusted automati-
cally for segments where higher precision in position control
is required, such as during take-offs and landings). As the
simulator is primarily intended to provide estimates of transi-
tion costs and rewards for DM in a computationally efficient
manner, it does not employ a closed loop controller to achieve
precise trajectory following.

The aerodynamic forces are calculated in a right-handed,
velocity-oriented, local-level frame of reference, with the ori-
gin at the center of mass of the aircraft. The position of the
center of mass {x(t), y(t), z(t)} is computed in an inertial
right-handed Cartesian frame of reference, with the origin at
the take-off/touch-down end of the runway. There are cur-
rently three elements of the vehicle model with non-linear,
action-dependent degradation aspects: battery voltage, bat-
tery temperature, and motor temperature (subsections 6.5 and
6.6). The simulator is implemented in MATLAB (MATLAB
version 7.11.0.584 (2010b), 2010). The rest of the section
provides further details of the simulator, describing the key
equations and assumptions.

6.1. Lift and drag

Lift L and drag D are calculated as

L =
1

2
ρ∞v

2
∞SCL, (1)

D =
1

2
ρ∞v

2
∞SCD, (2)

CD = CD,p + CD,i, (3)

where L is lift, ρ∞ is the freestream density, v∞ is the
freestream velocity, CD,iis the coefficient of induced drag,
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Figure 1. Reasoning architecture

and CD,p is the coefficient of profile drag. Using Prandtl’s
Lifting Line theory:

CD,i =
C2
l

πeAR
, (4)

where AR is the planform aspect ratio and e is the span effi-
ciency factor. From (3) and (4):

CD = CD,p +
C2
l

πeAR
, (5)

CD,p(α,Re) is obtained from experimental wind tunnel data
for a similar airfoil (Miller, 2008; Lewis, 1984), with α de-
noting the angle of attack (in radians) and Re the Reynold’s
number. The thin airfoil assumption is made, thus

Cl = 2πα. (6)

6.2. Equations of motion for straight, accelerated flight

Force balance equations in x and z directions give

ẍ =
1

m
(T −D)− g sin γ, (7)

z̈ =
1

m
L− g cos γ, (8)

where γ is the flight path angle, g is the acceleration of grav-
ity, and m is the mass of the aircraft.

6.3. Equations of motion for turning flight

Assume a constant airspeed (i.e. dv/dt = 0, v here equivalent
to the freestream velocity), balanced flight (no skidding or
slipping) during turns. From the equation of equilibrium in
the horizontal direction:

Fc = L sinφ cos γ =
v2

r
m, (9)

where φ is the bank angle, r is the turn radius, and Fc is the
centrifugal force. Then

r =
v2

L sinφ cos γ
m. (10)

From the vertical equation of equilibrium, the lift required is
now

L = mg
cos γ

cosφ
, (11)

Considering the trajectory of a generalized climbing (or de-
scending) turn to be a helix, the x, y, z coordinates are
parametrized as follows:

x(t) = r cos(t), (12)
y(t) = r sin(t), (13)
z(t) = 2r sin(γ)t. (14)

6.4. Power and current

The power P required to generate the desired thrust T is ex-
pressed as

P =
1

ηp
Tv and (15)

P =ηmE
dq

dt
, (16)

where q is the battery charge required, E is the battery volt-
age, and ηp and ηm are the propeller and motor efficiency
coefficients, respectively. Charge q can then be expressed as

dq =
1

ηtηmηp

Tv

E
dt, (17)

The electrical transmission efficiency coefficient is denoted
by ηt. Propeller efficiency for a specific airspeed is currently
approximated as a quadratic function, with the maximum ef-
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ficiency achieved at cruise airspeed vc is

ηp = ηp,max

(
−
(
v

vc

)2

+ 2
v

vc

)
. (18)

In the future versions of the simulator equation 18 will be re-
placed with experimentally-derived curves for the propellers
used.

6.5. Battery charge and voltage at the terminals

The battery model is adapted from the work described by
Daigle, Saxena, and Goebel (2012), which, in turn, is based
on battery models by Barsali and Ceraolo (2002), M. Chen
and Rincon-Mora (2006), and Saha, Quach, and Goebel
(2012). Three main processes are captured in the model: the
ohmic drop (also known as the I-R drop), the parasitic resis-
tance (accounting for self-discharge), and the concentration
polarization. Out of the three, the concentration polarization
resistance is the primary contributor to the non-linearity of
the battery output voltage as a function of its state of charge.
The state of charge (SoC) is defined as

SoC = 1− qmax − qb
Cmax

, (19)

where qb is the current charge in the battery (assumed to
be held by capacitance Cb), qmax is the maximum possible
charge, and Cmax is the maximum possible capacity. The
concentration polarization resistance is expressed as:

RCP = RCP0 +RCP1 exp (RCP2(1− SoC)), (20)

where RCP0, RCP1, and RCP2 are empirical parameters.
The resistance (and, consequently, the voltage drop at the
battery terminals) increases exponentially as SoC decreases
(Saha et al., 2012). End of discharge is considered to have
occurred when the voltage drops below a predefined thresh-
old. Further details of the model can be found in (Daigle,
Saxena, & Goebel, 2012).

6.6. Battery and motor temperatures

Being able to predict battery temperatures is important for
the following reasons: (a) temperature influences the inter-
nal battery resistance (although this effect is, at present, not
included into the model) and (b) excessive temperatures can
lead to premature capacity degradation and, beyond a certain
point, to thermal runaway and battery failure (Y. Chen, Song,
& Evans, 1996). In an electric motor overheating can also
result in failure due to stator winding insulation damage or
rotor magnet delamination (Milanfar & Lang, 1996). Battery
and motor temperatures are currently estimated with the fol-
lowing simple model:

dT =
1

Ct
(RI2 + h(Ta − T ))dt, (21)

where R is the electrical resistance of the component, Ct is
the thermal inertia coefficient, h is the thermal transfer coef-
ficient, I is the current, T is the component temperature, and
Ta is the ambient temperature.

The thermal transfer coefficient h is estimated using the as-
sumption that the motor and battery cooling systems are de-
signed to keep these components operating at some nominal
temperatures To in straight and level cruise flight, with Ic cur-
rent being drawn from the batteries. Given these conditions,
dT ≈ 0, thus

h =
RI2

c

To − Ts
, (22)

where Ts is the standard ambient temperature for which the
cooling system was calibrated. Ct is estimated empirically.

7. ALGORITHMS

For the case study described in Section 4, the model is recast
as a constraint-satisfaction problem, with states under consid-
eration concentrated in multi-dimensional clusters represent-
ing the waypoint coordinate vicinities, acceptable airspeed
and bank angle ranges, possible system health conditions, etc.

7.1. Backtracking Search

Backtracking Search (BT) is a recursive, depth-first algorithm
that, in our case, attempts to sequentially build up a path p
from a set of waypoints {wpi}Ni=1 until one or more of the
constraints in G are violated (Algorithm 1). When that hap-
pens, the algorithm will back up to the last known nominal
state and attempt to build the rest of the path through a dif-
ferent set of waypoints. The algorithm keeps track of the best
objective function value found, J∗, and the path that produced
it, p∗, returning them after the search is complete (for this al-
gorithm J = R). If the system simulator is used in the de-
terministic mode, then the algorithm is guaranteed to find the
optimal solution (or solutions). For the purposes of bench-
marking, the deterministic mode is used, with specific values
assigned to waypoint parameters. With this the worst case
computational complexity is O(N !), where N is the number
of waypoints. Unlike an exhaustive search algorithm, how-
ever, BT is capable of skipping regions of search space where
constraints are violated, which, in practice, results in a signif-
icant execution speed up.

7.2. Particle Filter

Particle Filter algorithms (also known as Sequential Monte
Carlo algorithms) are a family of non-Gaussian/non-linear
methods for approximating posterior distributions in partially
observable, controllable Markov Chains (where time is dis-
cretized). While often used for system state estimation and
prediction (Orchard, 2007), the general approach is suitable
for other appropriately formulated problems and in our case
is applied to vehicle path selection.
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Algorithm 1 BT

1: inputs: p, p∗, J∗, {wpi}Ni=1
2: outputs: p∗, J∗
3: if |p| > N then
4: return
5: end if
6: {b,R, Ch, Cp} ← simulate(ptest)
7: if F(b) = false then
8: J ← R,
9: if J > J∗ then

10: J∗ ← J
11: p∗ ← p
12: else
13: return
14: end if
15: end if

. recurse through the remaining waypoints
16: for i← 1, N do
17: if wpi /∈ p then
18: BT(b, {p, wpi}, p∗, {wpi}Ni=1)
19: end if
20: end for

The PF algorithm (Algorithm 2) is initialized with a set of
k particles, each particle pi containing the starting waypoint
wp1 and assigned the weight of wi = 1/k . During each
of the iterations of the algorithm (and for each particle), the
path associated with a particle is sampled randomly out of the
set of unvisited waypoints up to the maximum length of N .
Each sample is tested in the simulator and the particle weight
updated proportionally to the objective function value (now
incorporating costs in addition to rewards). Unless system
failure is believed to be likely for even the shortest path ex-
tensions, the particle path is extended by one waypoint (the
first one in the randomized remaining waypoints set τ ).

The number of algorithm iterations, D, is equal to N for the
deterministic simulator mode and can be set to D > N oth-
erwise, to help prevent potentially promising particles from
being ruled out too early. The highest weight particle is iden-
tified and stored after each iteration, to enable interruptibil-
ity. Particle weights are then normalized and the particles are
resampled. The overall computational complexity of the al-
gorithm is O(N2).

8. EXPERIMENTS

For the experiments described, the physics simulator (Sec-
tion 6) was used with the parameters for the Edge 540 electric
UAV (Figure 2). The Edge 540 is 2.44 m long, with a 2.54
m wingspan (Hogge et al., 2011). It is powered by two elec-
tric motors connected in series through a single drive shaft.
The motors drive a 0.66 m two-bladed propeller. The current
for the motors is supplied by a set of four Li-Poly recharge-
able batteries, which can store a total of 43200 coulomb. The
average flight time is approximately 20 minutes.

Algorithm 2 PF

1: inputs: {wpi}Ni=1,K
2: outputs: p∗
3: p1, . . . , pK ← {wp1}
4: w1, . . . , wK ← 1/k
5: for d← 1, D do
6: for k ← 1,K do
7: τ ← permute({wpi}Ni=1 − pk)
8: l← −1
9: repeat

10: l← l + 1
11: ptest = {pk, {wp1, . . . , wpl}}
12: {b,R, Ch, Cp} ← simulate(ptest)
13: wk ← ΘT · {R,−Ch,−Cp},
14: until F(b) = true
15: if l ≥ 1 then
16: pk ← {pk, {wp1}τ}
17: end if
18: end for
19: j ← arg max

j
wj

20: p∗ ← pj
21: {w1, ..., wK} ← {w1, ..., wK}/

∑K
i=1 wi

22: {p1, ..., pK} ← resample({p1, ..., pK}, {w1, ..., wK})
23: end for

8.1. Setup

A set W of ten sequentially numbered waypoints is created,
with each waypoint associated with a reward value (Table 1
and Figure 3). Test scenarios with progressively increasing
numbers of waypoints are then created (the 7-waypoint sce-
nario contains waypoints 1 through 7, the 8-waypoint sce-
nario contains waypoints 1 through 8, and so on). As the
UAV transitions between waypoints 2 and 3 (in the original,
unoptimized order), a fault is injected into one of the motors,
m2. The motor loses power, however the rotor can still spin.
The fault has the following consequences on the aircraft per-
formance:

Figure 2. Edge 540 UAV (courtesy of NASA LARC)
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• The available maximum thrust is reduced;
• There is now a parasitic mechanical load on the remain-

ing motor, m1, which not only has to provide propul-
sion, but also spin the rotor of m2 (there is no disconnect
mechanism);

• As a consequence, m1 draws more current in order to
execute the intended flight path;

• Increase in current results in heat build-up inside the mo-
tor housing which is not sufficiently dissipated by normal
cooling mechanisms;

• The heat, if allowed to build up, will eventually raise the
internal temperature of m1 to the level where the motor
windings insulation begins to melt and a short circuit can
occur, irreversibly damaging the motor (assumed to be
70◦C, as measured on the motor housing);

• The increased amount of current required to drive the re-
maining motor also means a higher rate of battery dis-
charge and a higher rate of heat build-up inside the bat-
tery;

• Reducing the airspeed to decrease the motor current
would increase the traverse time and, below a certain
threshold, result in an aerodynamic stall;

The fault is injected by changing the motor efficiency coeffi-
cient ηm1

(nominally 0.85, reduced to 0.4). The waypoints are
selected in such a way as to make it impossible for the UAV
to visit all of them in the original order before either energy
depletion or vehicle health deterioration beyond the point of
failure. DM is then expected to rearrange and/or reduce the
set of waypoints to maximize the mission payoff (i.e. find
an optimal path), while remaining within the constraints on
energy consumption and vehicle health degradation:

p∗ = arg max
p∈P

R(p), s.t. Ce(p) ≥ 0, Ch(p) ≥ 0

The waypoint ordering matters because load profiles associ-
ated with the different routes may affect the degrading com-
ponent and the energy consumption differently. Scenarios
with greater numbers of waypoints offer the algorithms more
choices on how to maximize mission payoff, but with the
choices comes an increase in computational time.

Note that for this case study alternative strategies of handling
the fault (such as switching between powered and gliding
flight to let the motor cool down) are not considered.

Experiments were conducted by running the two algorithms
on the same set of scenarios and recording the reward values
achieved and the number of simulation calls made. BT search
was executed once for each scenario, while PF was run 30
times per scenario. The results for the latter were averaged
and the standard deviation of them was computed. The vehi-
cle simulator was used in the deterministic mode, in order to
enable comparison between the two algorithms.

Table 1. Waypoint parameters

x(m) y(m) z(m) V (m/s) φ(deg) r

1 0 0 0 30 20 41

2 500 2500 450 30 10 52

3 4500 4200 900 35 20 60

4 3800 1440 550 35 10 71

5 500 −1500 750 45 25 39

6 −2300 −500 850 40 30 46

7 1100 4000 400 30 20 33

8 1800 −700 700 30 25 95

9 1200 6200 500 25 30 85

10 150 5200 600 40 15 30
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Figure 3. Waypoint locations and reward values

8.2. Results

In the result tables below (Tables 2-5), R is the path reward
and n is the number of simulator calls made during a partic-
ular scenario. The number of simulator calls, rather than the
actual algorithm runtime, is used as a platform-independent
metric∗. In the case of PF, mean and standard deviation val-
ues are provided for R and n. Ratios R/n and µR/µn are
used as metrics of algorithm efficiency.

Backtracking Search

As can be seen in Table 2, BT search starts becoming imprac-
tical for the more complex scenarios, as the number of sim-
ulation calls grows exponentially. Still, the results serve as
a useful evaluation baseline for PF, providing the maximum
reward values achievable for a scenario.

∗As a point of reference, a simulator call during a 10-waypoint scenario
(dt = 5 seconds) typically took on the order of 0.005− 0.010 seconds to
complete on a system with an Intel i7-2620M dual core CPU (2.70 GHz),
with 8 Gb of RAM, running Windows 7 Professional (64-bit).
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Table 2. Backtracking search results

scenario R n R/n
7 waypoints 236 57 4.14

8 waypoints 298 241 1.23

9 waypoints 383 1598 0.24

10 waypoints 413 10117 0.04

Particle Filter

Since PF is stochastic, the algorithm was executed 30 times
for each scenario and each K (number of particles) setting.
The results were then averaged. Three K settings were used:
10, 20, and 30 (tables 3, 4, and 5, respectively). The average
reward performance of the algorithm (and its standard devia-
tion) steadily improve as the number of particles is increased
(second column). The performance increase obviously comes
at an additional computational cost (third column).

Table 3. Particle Filter results (K=10)

scenario µR(σR) µn(σn) µR/µn
7 waypoints 230.2(12.8) 145.6(8.4) 1.58

8 waypoints 285.5(17.4) 199.2(13.8) 1.43

9 waypoints 368.6(21.7) 292.0(18.7) 1.26

10 waypoints 382.9(39.9) 331.2(20.5) 1.16

Table 4. Particle Filter results (K=20)

scenario µR(σR) µn(σn) µR/µn
7 waypoints 232.4(2.5) 288.4(10.2) 0.80

8 waypoints 291.3(8.3) 391.2(15.8) 0.74

9 waypoints 372.3(14.6) 585.9(20.2) 0.63

10 waypoints 393.2(21.5) 670.2(29.6) 0.59

Table 5. Particle Filter results (K=30)

scenario µR(σR) µn(σn) µR/µn
7 waypoints 234.0(1.1) 440.7(11.5) 0.53

8 waypoints 293.8(5.7) 603.8(21.6) 0.49

9 waypoints 375.2(10.2) 855.4(35.8) 0.44

10 waypoints 399.3(15.6) 1012.6(60.1) 0.39

8.3. Analysis

A comparison of algorithm performance with respect to re-
ward values is provided in Figure 4. The dashed lines rep-
resent the reward benchmark set by BT, the dots depict the
average PF rewards, and the error bars show the correspond-
ing standard deviations. The algorithm, in general, performed
well in approximating the results of the exact BT algorithm,
but at a fraction of its number of simulation calls during the
more complex scenarios. Even with K = 10 PF on average
achieved over 92% of the maximum possible rewards.

Figure 5 shows a comparison with respect to the number of
simulation calls. The dashed lines, again, correspond to the

BT performance benchmark, the dots are the average num-
bers of calls for the PF algorithm, and the error bars show the
standard deviations of the latter.
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Figure 5. Number of simulation calls comparison

Even when using a fairly coarse 5-second time step in the
simulator, executing BT on scenarios larger than ten way-
points became impractical. PF, on the other hand, showed
the potential to be suitable for far more complex scenarios
(informal tests performed on 25-waypoint scenarios still re-
sulted in acceptable execution times, although the quality of
the solutions could not be independently verified at this time).
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9. CONCLUDING REMARKS

The main goal of this work is to describe a modeling frame-
work suitable for a class of aerospace prognostic decision
making (PDM) problems with complex dynamics, non-linear
degradation processes, and uncertainties present in state es-
timation, action outcomes, and future operating conditions.
Continuous Partially Observable Markov Decision Processes
(POMDPs) are chosen as the foundation for the framework,
with the paper providing the details on how the concepts
needed for implementation of PDM are represented within
it. The framework can be recast (simplified) depending on
which sources of uncertainty are desired to be included. A
case study serving as an illustration of the approach involves
replanning a UAV mission after an in-flight fault is detected.
A prototype PDM system takes into account the dependency
of energy consumption and component degradation rates on
the route chosen and attempts to maximize the value of the
mission, while prioritizing the safe return of the aircraft. The
system is demonstrated with a deterministic decision-making
algorithm based on backtracking search (BT) and a stochas-
tic algorithm based on particle filtering (PF). While likely too
computationally expensive for practical applications, the BT
algorithm is used to establish a performance baseline. The
PF algorithm serves as an example of how a stochastic algo-
rithm can be structured to utilize a continuous POMDP PDM
model and that, potentially, such an algorithm can achieve a
level of performance approaching that of an exact method,
but at a fraction of its computational cost. On a set of test
scenarios, the PF algorithm on average achieved over 92% of
BT reward values. As the scenario complexity increased, the
efficiency advantage of a stochastic algorithm became more
pronounced. On the 10-waypoint scenario the PF algorithm
achieved the above results while making an order of magni-
tude fewer calls to the vehicle simulator compared to BT.

In the near future we plan to incorporate measures of prog-
nostic uncertainty associated with a particular policy into the
policy selection process. This could be useful in situations
where reduction of prognostics uncertainty over a period of
time is desired or where limits on it are defined. Methods for
performance evaluation of algorithms using such measures
will need to be identified, as comparison against determinis-
tic algorithms may not be meaningful. Other directions of fu-
ture research include development of multi-fidelity reasoning
(where system model complexity is adjusted depending upon
the requirements and the circumstances) and further work on
methods for PDM problem decomposition.
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NOMENCLATURE

α angle of attack
ηm motor efficiency coefficient
ηp propeller efficiency coefficient
ηt power transmission efficiency coefficient
φ bank angle
ρ∞ freestream density
AR planform aspect ratio
CD coefficient of drag (total)
Ct thermal inertia coefficient
CD,i coefficient of induced drag
CD,p profile (airfoil) drag coefficient
D drag
E battery voltage
e span efficiency factor
h thermal transfer coefficient
I current
L lift
m mass
P power produced by the motor
q battery charge required
R component electrical resistance
r radius of turn
Re Reynolds number
S planform area
T thrust
Ta ambient temperature
T[c] component temperature
v airspeed
vc cruise airspeed
v∞ freestream velocity
DM Decision Maker
DX Diagnostics (or Diagnoser)
EoL End of Life
MDP Markov Decision Process
PDM Prognostic Decision Making
POMDP Partially Observable Markov Decision Process
RUL Remaining Useful Life
SoC State of Charge (battery)
VS Vehicle Simulation
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ABSTRACT 

A powerful continuous wavelet transform based signal 

processing tool named Synchro-squeezing transform (SST) 

has recently emerged in the context of non-stationary signal 

processing. Founded upon the premise of time-frequency 

(TF) reassignment, its basic objective is to provide a sharper 

representation of signals in the TF plane. Additionally, it 

can also extract the individual components of a non-

stationary multi-component signal, which makes it attractive 

for rotating machinery signals. This work utilizes the 

decomposing power of SST transform to extract useful 

components from gear-motor signals in relevant sub-bands, 

followed by the application of standard rotating machinery 

condition indicators. For timely detection of faults in airport 

baggage conveyor gear-motors, a novelty detection 

technique based on the recently developed concepts of self-

organizing maps (SOM) is applied on the condition 

indicators. This approach promises improved anomaly 

detection power than that can be achieved by applying 

condition indicators and SOM directly to the inherently 

complex raw-data. Data collected from the airport baggage 

conveyor gear-motors provides the test bed to demonstrate 

the efficacy of the proposed approach. 

1. INTRODUCTION 

Faults in gearmotors can lead to catastrophic failures in 

airport baggage handling system (BHS) infrastructure 

leading to substantial downtime, significant monetary losses 

and expensive replacement scheduling. Ensuring their 

smooth operation requires maintenance, so that any change 

in the condition such as deterioration or damage can be 

detected in a timely manner. This can be accomplished 

through a combination of signal processing of gear motor 

vibration signatures to detect faults and novelty detection to 

classify a healthy from a faulty state without the historical 

knowledge of faults. In this study, we propose a novelty 

detection algorithm for condition assessment of gearmotors. 

The algorithm utilizes the recently developed concepts of 

synchro-squeezing transform (Daubechies, Lu & Wu, 2011) 

and integrates it with the traditional condition monitoring 

indicators (Vecer, Kreidl & Smid, 2005) and self-organized 

map (SOM) (Kohonen, 1990 ) based novelty detector (Lee 

& Cho, 2005) to monitor the healthy and faulty states of the 

BHS gearmotors. 

In order to accomplish accurate fault diagnosis, it is 

important that the acquired rotating machinery vibration 

signals have good signal to noise ratio and less complexity. 

The complexity of rotating machinery signals are attributed 

to individual contributions from different sources like gears, 

bearings, rotors, and motors etc. to the overall vibration 

response. The problem is compounded further in presence of 

noise and transients from faulty machine components. This 

can be addressed by considering the extraction of 

meaningful components from the mixed signals. The other 

alternative is to consider the signals directly as they evolve 

and avoid decomposing them into different components and 

instead make use of a spectral techniques (Jardine, Lin & 

Banjevic, 2006) to diagnose faults. 

     Traditional signal processing methods towards gear fault 

diagnosis comprises of non-parametric spectral analysis 

methods like the Fourier transform, Cepstrum analysis 

(Jardine et. al, 2006) and Envelope spectrum analysis 

(Antoni & Randall, 2011). Recent trends in fault diagnosis 

have witnessed a shift towards the application of time-

frequency representation (TFR) methods like short-time 

Fourier transform (Cohen, 1996), wavelet transforms (Wang 

& Mcfadden, 1995) and Wigner-Ville distribution (Cohen, 

1996) to accommodate the innate non-stationarity in the 

gear vibration signals. Time series based techniques like 

auto-regressive moving average models and their variants, 

applied using time-invariant coefficients (Zhan & Jardine, 

2005); have provided attractive options in the family of 
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parametric spectral approaches. Since gearbox signals 

comprise mainly of time-varying frequency components and 

amplitudes, the use of Kalman filtering based techniques for 

modeling time varying ARMA models is worth mentioning 

(Zhan & Jardine, 2005). But all of the parametric models 

suffer from the problem of model order selection which is 

again an impeding factor as far as dealing with complex and 

noisy rotating machinery signals is concerned. 

In the alternative approach of component extraction 

methods, blind source separation (BSS), requiring multiple 

channels of data, has been applied on numerous cases of 

machinery fault detection (Ypma, Leshem, & Duin, 2002). 

The families of signal decomposition methods like empirical 

mode decomposition (EMD) (Lei, Lin, He, & Zuo, 2013) 

and synchro-squeezing transform (SST) (Daubechies et. al, 

2011), applied to single channel measurements holds 

significant promise in this regard. EMD is a powerful and 

robust signal processing technique that requires only one 

signal measurement. However, its robustness is sometimes 

encumbered by its poor performance in noise and 

requirement of intermittency criterion. Moreover, it is 

essentially an empirical method lacking in rigorous 

mathematical construct. Synchro-squeezing transform 

(Daubechies et. al, 2011) is a relatively new and promising 

signal processing tool based on the concepts of CWT. It can 

decompose noisy and non-stationary signals into its 

components without the restrictive requirement of 

intermittency criterion and provides a more robust 

alternative to EMD for gearbox signals (Liang & Li, 2012).  

Signal processing alone is not adequate to address the 

complete problem of condition monitoring of gear boxes. It 

merely generates some diagnostic patterns. These patterns 

need to be processed through inference tools like pattern 

recognition, pattern classification, novelty detection etc. 

(Timusk, Lipsett & Mechefske, 2008). Novelty detection 

(also called anomaly/outlier detection) is the process of 

finding an unusual behavior in machinery that has not been 

observed before. It is essentially a two-stage process when 

applied in the context of condition monitoring of machines. 

The first stage entails learning or training, in which the 

novelty detector learns by utilizing the data from a machine 

in normal condition. After the training stage, the detector is 

fed with data from the machine in a running condition to get 

a novelty score. If data is similar to the training data in some 

sense, the novelty detector shows a similair trend and the 

novelty score is low. Novelty score increases when there is a 

deviation in the operating performance of the machine or an 

anomaly. Higher the novelty score, higher is the level of 

fault in the machinery (Worden, Manson & Fieller, 2000).  

A self-organizing map (SOM) is a type of artificial neural 

network (ANN) trained using unsupervised learning to 

produce a low-dimensional, discretized representation of the 

input space called a map (Kohonen, 1990). SOM is based on 

nonlinear projection of the input space to some (usually 

lower dimensional) output space like Principal Component 

Analysis. Two properties of SOM widely applicable to 

condition monitoring are vector projection (VP) and vector 

quantization (VQ). Vector projection essentially involves 

projecting the multidimensional data to a lower dimensional 

space. VQ reduces the number of samples or substitutes 

them with representative centroids. The accuracy of the 

representation of the input data in a two-dimensional map 

can be used as the novelty score.  

This paper is based on the application of SST to identify 

useful signal components and then apply condition 

indicators (Vecer et. al, 2005) and a SOM based novelty 

detector to detect faulty states in a BHS gearmotor. SST 

(Daubechies et. al, 2011) belongs to the family of time-

frequency reassignment methods that not only provide a 

sharp TFR but also allows extraction of the individual 

components (intrinsic mode functions or IMFs) of a general 

multicomponent non-stationary signal like EMD, yet in a 

much more mathematically structured manner free of 

restrictive requirements of intermittency. The extracted 

IMFs are then utilized to assess the machine health 

condition by subsequent application of standard condition 

indicators and novelty detection, in keeping with the recent 

trends where better diagnosis results are reported when 

signal processing algorithms are used in conjunction with 

condition indicators (Hazra & Narasimhan, 2013) and 

novelty detectors (Timusk, Lipsett & Mechefske, 2008).  

2. SYNCHRO-SQUEEZING TRANSFORM 

Since its introduction in the context of speech signals SST 

has evolved into an EMD-like tool (Daubechies et. al, 2011) 

capable of decomposing a multi-component non-stationary 

signal into AM-FM components that resemble intrinsic 

mode functions (IMFs). It is in fact a type of time-frequency 

reassignment algorithm that works by reallocating the 

continuous wavelet transform (CWT) coefficients based on 

the frequency information, to obtain a sharper representation 

in the time-frequency plane. 

To understand the basic idea of SST, it is instructive to 

review some of the concepts of CWT. CWT of a signal      

can be mathematically defined as an inner product: 

        
 

 
       

   

 
 

            
  

 

 

 (1) 

where,      is the mother wavelet, a and b are scale and 

shift parameters, respectively. In the context of 

synchrosqueezing, an essential requirement for the mother 

wavelet is that it must have a unique peak frequency 

(Oberlin, Meignen, & Perrier, 2012). For such a wavelet, let 

us denote its central frequency as    and let     be the 

extremal value so that   is supported compactly in the 

interval       -         
      . As an example (Oberlin, 
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Meignen, & Perrier, 2012), for bump wavelet 

where          
 

 -      -     
  ,       and      . 

Let us consider an example (Daubechies et. al, 2011) of a 

purely harmonic sinusoidal signal to illustrate the working 

principle of SST. The wavelet transform of the signal 

        should in principle be concentrated around the 

frequency of the signal as a line of constant magnitude. 

However, in practice, it is observed that the wavelet 

transform is always smeared out around the horizontal line 

corresponding to the sinusoid frequency in the T-F plane. 

This problem can be addressed by estimating instantaneous 

frequency        for all values of (a, b), which is given by 

the following formula (Daubechies et. al, 2011): 

        
  

         

 

  
          (2) 

The primary objective for calculating the instantaneous 

frequency        is that if the signal s(t) possesses an IMF 

like characteristic, or is of the form                  ( i.e. 

Hilbert transform is                   ),  then        

calculated using Eq. (2) is approximately equal to       . 

This suggests that, for asymptotic signals, synchrosqueezing 

will give a single line on the time-frequency plane, at the 

value corresponding to the instantaneous frequency of an 

IMF. Implementation-wise the wavelet coefficients in 

        are computed only at discrete scales    and its 

synchrosqueezed counterpart          is determined at the 

centers    of the successive bins [   
 

 
      

 

 
   , 

by the following formula (Daubechies et. al, 2011): 

          
 

  
             

    

                
  
 

    
(3) 

where,             and               

The next step in the SST entails extraction of the IMFs. This 

 nvolv     tr  t on of on  “r dg ” from      by finding the 

curve       with the largest energy subject to some 

optimization criterion (Oberlin, Meignen, & Perrier, 2012). 

Once the curve c(t) is known, the associated mode h can be 

estimated by summing the SST coefficients near that curve: 

at time t, according to the following equation: 

  t           t d 

 

    t 

 (4) 

The main problem in this approach is stability of curve 

extraction. Deviations of IMFs from their asymptotic 

behavior or contamination by noise make the extraction 

unstable (Oberlin, Meignen, & Perrier, 2012). In the present 

work, the authors follow the approach proposed by Oberlin 

et. al (2012). The method is based on utilizing a ridge near 

the frequency peak instead of using   as suggested by some 

authors (Daubechies et. al, 2011). The ridge is defined by a 

set of coefficients as per the following equation (Oberlin et. 

al, 2012): 

 t        
       

  t 
       

       

  t 
  (5) 

The details of the procedure are beyond the purview of this 

work and the readers are referred elsewhere (Oberlin et. al, 

2012). 

2.1. Numerical example 

Let us consider a mixture of one pure sinusoid and 2 AM-

FM type signals. A gearbox in its pristine state can be 

represented by a pure sinusoid (Hazra & Narasimhan, 2013) 

whose frequency matches with the meshing frequency (shaft 

rotation frequency times the number of gear teeth of the 

gear). Meshing defects in gear are manifested by the 

appearance of the sidebands around the meshing harmonic 

which can be typically represented by amplitude modulating 

and frequency modulating (AM-FM) signal. Thus the signal 

can be written as: 

 

s (t) =           ) +               )] sin (        + 

2sin (     )) +               )] sin (         + 2sin 

(     )) + 0.7randn (1, length (t)).                                    (6) 

Fig. 1 shows the plots of the signal s (t) and its Fourier 

spectrum and the also the spectra of its pure sinusoidal and 

AM-FM components. Fig 2 shows plots of recovered IMFs. 

It can be observed that the synchro-squeezing transform is 

able to extract all the 3 components with good accuracy.  

 

 Figure 1: Signal and its components 

We further consider the case of real data obtained from one 

of the accelerometers placed on the airport BHS gear motor 

(Fig. 6). The description of the BHS measurement program 

is mentioned in details in section. 5. Fig. 3 shows the 

acceleration and its synchro-squeezed time frequency 

representation. It is clear from Fig. 4 that SST is able to 
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extract the key significant energy IMFs from the gearbox 

signal. Furthermore, it can be noted that the extracted IMFs 

are consistent with the time frequency representation of the 

signal. 

 

Figure 2: Recovered IMFs  

 

 
Figure 3: Acceleration data of a BHS gearmotor & its 

Synchro-squeezing transform  

 

 

Figure 4: Recovered IMFs from the BHS data 

 

To compare the performance of CWT and SST, we consider 

the same signal with added noise of SNR=20. It can be 

clearly observed from Fig. 5, that SST significantly reduces 

noise and is clearly able to delineate the AM-FM and the 

sinusoidal components. This property is particularly useful 

in dealing with noisy data. Thus, SST serves two important 

purposes; reduces noise and is able to decompose a non-

stationary signal into its components. 

 

 
Figure 5: Comparative performance of SST and CWT in 

noisy data (SNR=20) 

 

3. NOVELTY DETECTION 

Self-Organizing Map (Kohonen, 1990), is used as the 

novelty detector in the present work. Majority of its 

applications are in the visualization of nonlinear relations of 

multidimensional data. It has also been applied in rotating 

machinery diagnostics (Timusk, Lipsett & Mechefske, 

2008). SOM is a two-dimensional array containing neurons. 

A prototype vector (also called model or codebook vector), 

having same dimension as the input data set is associated 

with each neuron. This prototype vector approximates a 

subset of the sample vectors. During the training phase, 

sample vectors are assigned to the most similar prototype 

vector, also called best-matching unit (BMU). The 

algorithm trains itself in such a manner that similar input 

samples are mapped to the relatively close BMUs. The 

prototype vectors are updated iteratively during the training 

steps by selecting the sample randomly.  The neighborhood 

kernel, whose radius decreases with training steps, 

determines the influence on the neighboring codebook 

vectors. Learning starts with rough learning phase having a 

big influence area and fast-changing codebook vectors, 

shifting gradually to a fine-tuning phase with small 

influence area and slowly adapting codebook vectors. This 

algorithm is referred to as sequential training or basic SOM. 

SOM has also been applied to novelty detection (Lee & 

Cho, 2005). Given training set  , containing   normal 

patterns, SOM is trained to generate a set of codebook 

vectors                     . The codebook 

vector      of an input vector   and the Voronoi region    

of each codebook vector    are defined as follows, 
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if,                      (7) 

Given a test pattern  , the Euclidean distance (quantization 

error)      between   and      is calculated as:  

               (8) 

If this is greater than a threshold value, then it is considered 

to be novel. To identify the threshold value, the quantization 

errors corresponding to the training patterns are computed.  

In the present problem, SOM is trained using condition 

indicators (CI) estimated using the first IMF and sum of first 

3 IMFs obtained from the application of SST to the 

acceleration data of a gearmotor in relatively new health 

state. The codebook vectors and quantization errors are 

computed to set a threshold value. Data from gearmotor in 

non-normal state are fed to the algorithm to compute 

quantization errors. The quantization errors are calculated 

pointwise and the average of the quantization errors over a 

fixed size data window is considered in this study. If the test 

pattern has a mean quantization error more than the 

threshold, then the test pattern is identified to be novel. 

Mean quantization error, computed using the test set from 

machines in non-normal conditions is used as novelty score. 

Higher the novelty score, higher is the level of fault in the 

machine. 

3.1. Condition indicators (CI) 

To detect the condition of the gears and bearings, 4 

condition indicators (Vecer et. al, 2005) which have been 

widely used in the literature, are chosen, namely: variance, 

kurtosis, crest factor and the energy operator. Only a brief 

description of the performance indicators is provided here.  

 Variance: The variance of a signal is defined as: 

v r    
 

 
     t      

 

 

   

 (9.1) 

where,   is the mean of the signal      and N is the                            

number of samples. 

 Kurtosis: The kurtosis of a signal is the normalized 

fourth moment and is defined as: 

  rt    
 

 
 

    t      
 

  

 

   

 (9.2) 

where,      the standard deviation of the signal 

 Energy operator: The energy operator for a signal s(t) is 

defined as [15]: 

                             (9.3) 

where, and          is the mean value of     vector. 

 EOP variance and EOP kurtosis are calculated in the 

same manner using the formulas (7.1) and (7.2) 

 Crest factor: The crest factor (CF) for a signal s(t) is 

defined as: 

   
                   

 
 (9.4) 

4. PROPOSED ALGORITHM 

The main steps of the proposed algorithm are as follows: 

 Calculate the CWT         of       

 Calculate the instantaneous frequency ω(a, b) 

 Calculate the SST            over the TF plane 

 Extract dominant curves from c(t) from               
 Reconstruct the signal as a sum of components, one for 

each extracted dominant curve 
 Apply the CI on the most dominant IMFs 

 Apply SOM to the CI, treating the data from the 

new healthy state as the training set 

 Calculate the mean quantization errors between the 

codebook vector and the subsequent windows of data 

5.  RESULTS FROM FIELD EXPERIMENTATION PROGRAM 

Recently the authors have engaged in condition based 

maintenance program aimed at detecting faults in the 

Toronto Pearson airport baggage handling system (BHS) 

gearboxes. The main idea is to gather acceleration data from 

the BHS system gearboxes and develop sophisticated 

algorithms towards automated diagnostics and prognostics 

of the gearboxes. As a part of the field instrumentation and 

data acquisition programme, vibration data was collected for 

a few minutes on a particular day of every week starting 

from May-2013.  The schematic of a typical gearmotor and 

the data-acquisition set-up is shown in Fig. 5. The sampling 

frequency was kept at 4000 Hz. The fundamental meshing 

frequency is approximately close to 80Hz depending upon 

the conveyer belt rpm which varies between 170 to 200 rpm. 

Data were collected from a selected gearmotor at its new 

and old health stages. Fourier spectra (Fig. 6) of the 

gearmotor data shows the presence of sidebands with 

significant energy in the data at the old health state 

compared to the new one. 

 

Figure 6: Schematic of the gearmotor and the 

instrumentation set-up  
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Figure 7: Fourier spectra of the gearmotor at old and new 

health states 

 

The raw data from new healthy state gearmotor is 

concatenated to the data from the old state. The condition 

indicators (CI) are applied on the concatenated raw data, 

IMF-1 and the sum of first 3-IMFs obtained using SST. SST 

is applied on sub-windows of 4096 samples of data and 

concatenated to form the IMF vectors. The main idea of 

extracting first 3 IMFs and summing them up is that the first 

3-IMF   ontr   t  to mo t of t     gn l’   n rgy  ont nt. 

The higher order IMFs contains contributions mostly from 

the noise. The condition indicators are estimated recursively 

considering every sample of the data. Fig. 8 shows the 

condition indicator for the raw data, IMF-1 and the sum of 

first 3 IMFs. It can be observed that there is a considerable 

jump in the CI values after approximately first 70000 

samples of data. These samples represent the data obtained 

from the gearbox at the new state of health. The remaining 

part of CIs represents data at old health state. 

 

 The trend in the values of recursive variance, kurtosis and 

energy kurtosis for raw data is not as clear as it is for the 

corresponding CI values for IMF-1 and sum of the first 3 

IMFs, indicating thereby that the combination of SST and 

CIs provides a better indication of comparative health states 

than the combination of raw data and CIs. The uncertainties 

associated in the estimates of the condition indicators by 

using raw data and the sum of IMFs 1, 2 & 3 is shown in 

Fig. 9. From Fig. 9, it can be observed that the variance-

ratio (ratio of variances between the CIs corresponding to 

the old stage data and that corresponding to the new stage of 

data) of the condition indicators using raw data is much 

more compared to the same when estimated using the sum 

of IMFs. This clearly points towards more uncertainties 

associated with the use of condition indicators on the raw 

 data.

 
Figure 8: Recursive condition indicators applied on the raw 

data and IMFs 

 

 
Figure 9: Uncertainties in the condition indicator estimates 

 

Novelty detection is applied as mentioned in the previous 

sections. First 70,000 samples of the raw data and also the 

IMF-1 is treated as the training set and the mean of the 

quantization error as given by Eq. 8 is estimated for the 

successive windows of test data. Fig. 10 shows the plot of 

the average quantization error. It can be clearly observed 

that the novelty score increases for the successive windows 

of data. This implies that the data from the successive 

windows represent a more novel or an anomalous state of 

data compared to the first window (training window). A 

health state is typically indicated by approximately constant 

values of Qavg over successive windows. Novelty detection 

applied on the sum of the IMFs (1, 2 & 3) obtained using 

SST shows best and most consistent performance. It is 

closely followed by the performance of the sum of 3-IMFs 

extracted using SST with 10% added noise and the case 

with IMF-1 only. The performance of novelty detection 

applied on raw data degrades significantly. This is clear 

from the trend of the Qavg values for the raw data in Fig. 10, 

which fails to establish health states or values that are nearly 

constant over successive windows or 3 consecutive 

windows. The performance of novelty detection is worst for 

raw data with 10% noise. Thus, it can be concluded that the 
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SOM novelty indicator is clearly able to distinguish between 

the relatively older and newer health states. Superior 

performance of SST even with added levels of noise is the 

key result. 

 

 

Figure 10: Average quantization error for the SOM based 

novelty detector 

6. CONCLUSIONS 

A new novelty detection algorithm towards fault diagnosis 

of airport baggage handling system gearmotors using a 

combination of synchro-squeezing transform, traditional 

rotating machine condition features and self-organized maps 

is presented. The reassignment property of synchro-

squeezing transform allows for a better resolution of the 

signal features in the presence of noise. Subsequent 

application of curve extraction techniques along the ridges 

allowed EMD like decomposition of the signal into IMFs. 

Application of condition indicators recursively to the IMFs 

clearly shows the trend indicative of health degradation in 

the experimental data from the gearmotor. Application of 

SOM based novelty detector further delineated the new and 

the degraded health states of the airport baggage handling 

system gearmotor. 
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ABSTRACT 

In the UK, there is the desire to extend the operation of the 
Advanced Gas-cooled Reactor (AGR) power plants beyond 
their initial design lifetimes of 35 years.  As part of the 
justification of extended operation, an increased 
understanding of the current and future health of the 
graphite reactor cores is required.  One measure of the 
health of the AGR power plants is the axial height of the 
graphite core, which can be determined through 
measurements undertaken during statutory outages.   These 
measurements are currently used to manually make 
predictions about the future height of the core, through 
identifying the relevant data sources, extracting the relevant 
parameters and generating the predictions is time-
consuming and onerous.  This paper explores an online 
prognostic approach to support these manual predictions, 
which provides benefits in terms of rapid, updated 
predictions as soon as new data becomes available.  Though 
the approach is described with reference to a case study of 
the UK’s AGR design of power plant, similar challenges of 
predicting passive structure health also exist in other designs 
of power plant with planned license extensions. 

1. INTRODUCTION 

The condition of the graphite core of an AGR power plant is 
a major life-limiting factor.  The graphite core provides 
moderation of the nuclear fission process and provides the 
structure in which to house the uranium fuel and provides 
pathways for both the gas coolant and for control rods.  
Three underlying processes govern the degradation of the 
graphite.  Firstly, the neutron moderation process causes 
dimensional change to the graphite when fission neutrons 
collide with the nuclei of the carbon atoms. In parallel, the 
strength of the graphite is altered by both the neutron 
irradiation, which increases the strength and radiolytic 

oxidation, which reduces it (Shennan, 1993). The 
dimensional change in the graphite provides a useful 
measure of the degradation of the core, and is easier to 
measure in-situ than the strength of the graphite.  Unlike 
most other components of nuclear power plants (NPP) (for 
example PWR Reactor Vessel heads and internals and the 
core pressure tubes in CANDU reactors (IAEA technical 
report, 2008) the graphite bricks, which comprise the core of 
an AGR, are irreplaceable.  Therefore, predictions of 
Remaining Useful Life (RUL) for the graphite bricks also 
dictate to a large extent the remaining useful life of the 
power plant. 
 
Making predictions about the dimensional change of 
graphite in AGR stations is not new.  For example, Shennan 
(1983) describes predictions relating to dimensional change 
made about the graphite in Hinkley Point B power plant in 
1979 (Hinkley Point B began generating electricity in 
February 1976).  When the power plants were built, 
predictions were made based on theoretical and 
experimental data (as no operational data was available).  A 
lifetime of operation has produced vast quantities of data, 
and data capture and storage equipment has advanced 
significantly, first with electronic loggers replacing pen and 
plotter devices, and then these first generation electronic 
loggers in turn being replaced by newer models. However, 
the original plant components being monitored, such as 
boilers, graphite bricks and pressure vessels have not been 
replaced.  Managing and interpreting this increased volume 
of data necessitates the introduction of automated analysis 
techniques to support a limited number of experts in the 
field, as traditional manual approaches do not scale well.  
The remainder of the paper is organized as follows – the 
next section discusses the drivers for prognostics in nuclear 
power plants, followed by a section discussing the approach 
adopted within AGR power plants, including the manual 
method of prediction currently adopted.  To investigate the 
possible use of an online prognostic system to replace this 
manual approach, three case studies are then presented.  The 
results of these case studies are discussed along with a 
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terms of the Creative Commons Attribution 3.0 United States License, 
which permits unrestricted use, distribution, and reproduction in any 
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proposed system development for such an online system, as 
the next stage of this work. 

2. DRIVERS FOR NUCLEAR PROGNOSTICS 

In general, the nuclear industry is cautious in the adoption of 
new technologies for reasons of safety, preferring to utilize 
existing proven techniques, unless there is no viable 
alternative.   For example, the use of wireless technologies 
to transmit data is used in many applications, but has yet to 
find significant use within the nuclear domain (though 
progress is being made towards this, as reported in 
Hashemian, 2011). The field of prognostics faces similar 
challenges, where there are very few examples of deployed 
prognostics systems in use within nuclear power plants.  
Varde and Pecht (2012) provide a tabulated summary of the 
current state of prognostics, grouped by component/system 
type, and provides information for both online and offline 
prognostics.  The paper indicates that rotating plant 
prognostics is the most mature area, and that online 
prognostics is, at best, still in the R&D stages for NPP 
components.  For general reviews of prognostics applied to 
rotating plant, but not constrained to nuclear applications 
Jardine, Lin and Banjevic (2006), and Heng et al (2009) 
both provide useful summaries. In other non-nuclear 
domains there has been significant work undertaken.  For 
example, Goh (2006) and Kothamasu, Huang and VerDuin 
(2006) both provide reviews of the application of 
prognostics to manufacturing.  Prognostics in electronic 
systems is another area with significant progress in 
prognostics, with Goebel et al (2008) describing an 
application to battery health and Pecht (2008) providing 
wider coverage of the domain.  Though lagging other 
industries, there is the recognition that prognostics could 
provide significant benefits to the nuclear industry, 
illustrated by projects such as the US light-water reactor 
sustainability program (US Department of Energy, 2013). 
Prognostics could be applied to both passive components, 
such as pipework, pressure vessels and graphite moderator 
bricks and active components, such as turbine generators 
and reactor coolant pumps.  The first structural degradation 
prognostic system for nuclear power plants is mentioned in 
Bond, et al (2011), but this is still at the demonstration, 
rather than deployment stage.  Coble, Humberstone and 
Hines (2010) have investigated prognostics for simulated 
data for the new IRIS power plant, and again this is at the 
technology demonstration stage. 

3. APPROACH 

The usefulness of prognostic systems depends on the 
predictive accuracy of the model used and the availability of 
data to generate RUL estimates from the model. For large 
fleets of similar assets, models can be based largely or 
entirely on statistical behavior, if the assumption is made 
that the future components will degrade in the same manner 
and the operating conditions are fixed (Coble and Hines, 

2008). This is termed Type 1 prognostics.  If information 
relating to the operating environment, which influences the 
degradation process, then Type II may be applicable (e.g. 
proportional hazards models, shock models).  However 
where there are a limited number of assets, there is also 
often a limited quantity of data available across the lifetime 
of the asset. Commonly where prognostics is applied to high 
criticality assets, such as a component of a nuclear reactor, it 
is impractical from either a safety or financial perspective to 
allow a component to run to failure, and therefore gather 
sufficient data to create these statistical models. 
 
For this reason, prognostic models for such components 
often include a physical model of the state of the 
component, based on material, chemical or some other 
understanding of the physical processes causing degradation 
in the asset. These models typically describe a macroscopic 
behavior of a material (structural strength, dimensional 
change, etc) based on experimental data or on a microscopic 
model of the physical processes. Since it is not practical to 
model microscopic behaviors of the entire asset, the most 
common approach to overcoming these limitations is to use 
the physical model as the basis for a prognostic model, 
estimating macro scale behavior of the asset based on some 
dominant characteristic of the physical model. The 
prognostic estimates based purely on the use of such a 
model are likely to be of limited usefulness, given that the 
material of which the asset is constructed and the 
environment is located are unlikely to be identical to those 
in the experiments used to derive the model. 
 
1.1 Combining Model Based and Data Driven 
Prognostics 
 
An alternative approach is to use a physical model as the 
basis of prognostic analysis, but to fuse this with a data 
driven approach (Pecht and Jaai, 2010) as it becomes 
available. It is argued that where a general model is 
applicable, there may be unknown parameters within a 
particular asset that cause the measured data to diverge from 
the general model, as in Figure 1. An automated, iterative 
approach, whereby a revised estimate of the model is 
generated every time new data is available allows a 
prognostic model to evolve as the knowledge of the asset 
increases. The rapid assessment of new data may revise a 
prognostic model such that a pre-defined limitation will be 
reached sooner than anticipated based on existing models. It 
can be seen therefore that such an approach has clear safety 
benefits.  
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Figure 1. Generalized model of graphite dimensional change 
 
For the graphite core used in the AGR, a model of 
dimensional change reported in Brocklehurst and Kelly 
(1993) has been adopted to estimate the evolution of 
dimensional change in the graphite bricks as they degrade 
with exposure to radiation. This model is generalized in 
Figure 1 and is based on previous experimental work and 
can provide at best a general model of the evolution of 
graphite under comparable parameters. A large volume of 
data is available describing various features of AGR cores, 
from inspection and monitoring activities and it is proposed 
that this data can supplement existing models of core 
evolution.  Previous work by West, et. Al (2010) explored 
the possibility of using fuel grab load trace data, a set of 
monitoring measurements gathered during refuellling 
operations, to trend the shrinkage of the core.  Though this 
work is related, this paper focuses solely on the use of 
inspection data gathered during routine outages. 
 
2.2 An evolving prognostic system for the AGR 
 
Based on existing data collection and condition monitoring 
analyses, it is possible to trend certain characteristics of the 
AGR core, such as brick heights and channel bore 
diameters, in order to calculate geometric changes in the 
structure of the components within the core. Using a 
statistical sample of different components within the reactor, 
a core-wide estimate of shrinkage can be derived and 
compared to existing predictions. Should the shrinkage be 
significantly smaller or larger than forecast, the prognostic 
model can be revised, using the most conservative data 
available so as to maximize safety margins.  The estimation 
of shrinkage is used to support strategic decisions about the 
health of the core, and whether it can still fulfill its role as 
fast neutron moderator, and maintain the necessary physical 
structure to permit the un-impeded movement of fuel and 
control rods and to allow the passage of coolant gas. 

3.1. Existing analysis 

During statutory outages of the AGR nuclear power plants, 
a few fuel channels (typically 20-30) are assessed to 
determine the current health of the graphite bricks in these 
fuel channels, which in turn is extrapolated to provide an 
indication of the state of the whole core.  This provides a 
short-term view of the health of the core and assessment of 
the data gathered during inspection needs to be assessed 
before the plant is returned to service.  Formal 
documentation is produced which provides a clear statement 
of the current condition of each channel inspected.  The raw 
inspection data is retained, though not in a database, but as 
analysis files containing both the raw data and results of 
analysis performed on the data. 
 
For a longer-term view of the core, some of this data is 
collated and trended to provide an indication of the overall 
degradation in the core and to support statements that on 
given target dates the core is predicted to be in good health.  
However, gathering and filtering this data is a labor-
intensive task, as suitable channels need to be identified, the 
associated data files located and the relevant information 
extracted. 
 
There are two sources of data used to make the predictions.  
The first set of data is accurate measures of the internal bore 
of the graphite bricks throughout the height of the fuel 
channel.  This data is gathered through specialist inspection 
equipment and is made available to the engineers as a raw 
data file.   From this data three parameters are extracted 
which provide a representation of the shrinkage in the core: 
 

1. A direct measurement of height 
2. An average measure of brick shrinkage taken from 

the mid-points of each brick 
3. An average measure of the full channel diameter 

shrinkage. 
 

The second source of data required is to make the prediction 
is a measure of the cumulative irradiation the bricks have 
been subject to.  Time is not a suitable measure, as the 
graphite only degrades while the plant is in use, so when 
predictions of RUL are made, the duty cycle of the station 
needs to be factored in.  To ensure maximum conservatism, 
it can be assumed that the station is run at a constant rate, 
thus ensuring an under-prediction in the RUL.  This 
cumulative irradiation measure is obtained from operational 
plant data, and is not recorded directly during inspection. 
 
Values for the three measures of shrinkage are plotted 
against cumulative irradiation.  For each set of data both a 
linear and a second order polynomial line are fitted to the 
data to provide predictions of future shrinkage.  An example 
of such a manually produce prediction is shown in figure 2.  
 

Prognostic
Metric

Time

Theoretical Model
Revised Model
Data
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Figure 2. An example of an existing manual prediction of 
core shrinkage 

 
From all the predictions, the most conservative estimate is 
used to inform other activities that require the use of these 
shrinkage predictions. These predictions are necessarily 
conservative and though first and second order polynomial 
models are simplified representations, they do provide 
suitably useful results. 
 
Currently, the existing data management strategy for this 
inspection data creates a significant barrier for deploying 
this as an online system, as the primary use for the 
inspection data is to provide confidence that the channels 
inspected are in suitable condition to allow the power plant 
to be returned to service following an outage, and the 
management of the data is tailored to optimally fulfill this 
role.  However, there is a project currently underway to 
improve accessibility to the raw, verified data for use by 
other functions, such as possible online predictions of core 
degradation.  In order to test proposed prognostic 
approaches before the live station data is made available, 
simulated data can be used.  This has the advantage that the 
input data and model of core degradation can be tightly 
controlled and the state of the core simulated at any given 
level of irradiation, unlike the operational data which can 
only provide data up to the current level of irradiation.  
Using simulated data can provide confidence that robust 
predictions of future state can be made, provided of course 
that the degradation model is suitably representative of the 
actual core degradation. 
 
A series of case studies have been developed to demonstrate 
the possible online prognostic capability that could be 
achieved if validated inspection data were made available.  
It is recognized that several assumptions and simplifications 
have been made in these case studies, and that the resulting 
predictions of core shrinkage should not be taken literally, 
but instead as a means of demonstrating the techniques.  
Furthermore, the approach has been adopted to mimic the 
existing manual approach in the first instance, though 

recognizing that future work could see other prognostic 
approaches applied. 

4. CASE STUDIES 

In order to demonstrate the framework, a case study is 
presented which uses simulated brick degradation data to 
explore the application of online prognostics.  Though the 
most common output of a prognostic algorithm is a measure 
of RUL, the objective of these predictions is to estimate the 
shrinkage of the core at certain levels of future cumulative 
irradiation.  MATLAB R2012b was used to implement 
these case studies. 

4.1. Approach 

Based on the manual analysis mentioned in the previous 
section a set of simulated data was created which would 
provide an approximation of the behavior of graphite 
degradation.  It should be noted that the purpose of this data 
was to generate a suitable volume of data to explore the 
prognostic algorithms rather than being an accurate 
representation of the degradation of graphite.  Using a 
suitable 2nd order polynomial, shown in Eq. (1), and 
approximated from the manual analysis data, a set of 
graphite shrinkage values was generated for a series of data 
ranging from no irradiation to 16,000GWd accumulative 
core irradiation, a reasonable estimate for a lifetime of 
operation of an AGR core (based on existing analysis).   
 
𝑠 =   −0.00000022559𝑖! + 0.01110778967𝑖       (1) 
 
A component of noise was added to this signal to simulate 
errors in measurement. This component was based on a 
normal distribution and a new noisy component was 
generated and applied each time the program was run.  

 
Figure 3. Simulated core shrinkage data including a noise 

component 
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Figure 3 shows the output from one such run.  A second 
order polynomial was fitted to the noisy data and was 
compared to the original simulated data to provide a 
measure of the quality of fit that would be obtained if all the 
data were used to make the prediction.  In this case a least 
squares error value of 0.99987 was obtained, reflecting a 
good fit to the mode from the data.  In particular, the value 
of shrinkage at 16,000GWd was 119.9736mm from the 
original simulated data and 119.7853mm from the estimate 
derived from the noisy data, for this particular instance. In 
general, the difference is in the region of ±0.2% accuracy, 
which provides an indication of the maximum possible 
accuracy that could be expected of the predictions. 

4.2. Case 1: Train and predict 

Using the noisy data set, the first 250 data points were used 
to fit a 2nd order polynomial and this was used to make a 
prediction of the shrinkage at 16,000GWd.  Figure 4 shows 
the raw training data used, the prediction and the actual 
response using an example noisy data set.   

 
Figure 4. Predicted shrinkage response based on the first 
250 measured data points shown in the dotted line.  The 

idealized response is shown as the solid line. 
 
The choice of the initial training set size will have an effect 
on the early predictions, but with each new measurement 
beyond the initial training set, the predictive model (2nd 
order polynomial) could be revised using all available data.  
For example, Figure 5 shows the progress of the prediction 
of shrinkage at 16,000GWd as more of the raw noisy data is 
available. 

 
Figure 5. Progress of predicted shrinkage as more points are 

considered, demonstrating convergence on 120mm 
 
In this instance, after about 600 additional data points above 
the initial 250 training points (850 data points total), the 
prediction has converged on the actual final shrinkage of 
120mm.   The rate of convergence will depend on the initial 
data set used, and figure 6 illustrates the case where 20 
example noisy responses have been generated from the 
same underlying source signal. 
 

Figure 6. Illustration of responses from 20 different sets of 
input data 

4.3. Case 2: Response to an artificial outlier 

The second case investigated was to introduce an artificial 
outlier to investigate its response to the overall predictions 
made.  Using the same raw data an error of +30mm was 
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introduced to measurement point 900 and this is shown in 
figure 7. 

 
Figure 7. Raw data with an artificial outlier inserted 

 
The corresponding response of how this affected the 
predicted final shrinkage at 16,000GWd was generated and 
as expected this did not have a significant effect on the 
prediction.  Figure 8 shows a small perturbation caused by 
the introduction of the outlier at point 650 on the x-axis, but 
the influence of this single outlier on the overall prediction 
is quickly dominated by the contribution of the other data 
points. 
 

 
Figure 8. Progress of predicted shrinkage 

 

4.4. Case 3: Simulation of change in underlying model 

There are a number of possible reasons that the underlying 
degradation model may change.  For example, a change in 
the operating temperature of the reactor may affect the 
underlying shrinkage rate, as might other factors such as the 
planned injection of methane and carbon monoxide to 
inhibit the rate of radiolytic oxidation.  In other prognostic 
applications, maintenance actions could also result in a step 
change in the underlying degradation model.   

To simulate a change in underlying model a set of data was 
generated based on one polynomial model for the first half 
of the data and switching to a second polynomial model for 
the second half of the data.  Figure 9 shows a plot of the 
ideal data.  The solid line represents the initial polynomial 
model and is extended through to 16,000GWd.  The dotted 
line simulates a change in the underlying degradation 
response at 8,000 GWd and shows the new degradation 
path. 

 
Figure 9. Input data containing a change of underlying 

model at 8000GWd 
As with the previous cases, random noise was applied to the 
ideal signal, the first 250 points used as training data and a 
set of predictions calculated based on the available data.  
The results are shown in Figure 10.  As before, the 
predictions converge towards the 120mm value from the 
first polynomial model then following the change of model 
converge towards the second value of approximately 80mm. 
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Figure 10. Progress of prediction in response to change of 

underlying model from 20 sample cases 

5. DISCUSSION 

The case studies have demonstrated the applicability of 
prognostics to a continuous feed of measured shrinkage 
data.  A concern with an online prognostic system which 
continuously updates its prediction as new data is made 
available is the concern that an erroneous input 
measurement might significantly alter the prediction.  The 
case study which examined this contained an extreme 
outlier measurement as an input and though it did affect the 
final prediction slightly, its affect was minimized by the 
volume of other measurement data.  When there was a 
change in the underlying model, there was a lag in dealing 
with the change in response.  As an alternative, if the point 
at which the underlying model changed was known, then a 
new predictive model could be built from that point 
forward.  However, this new model would require a period 
of time to build up a suitable number of training points to be 
able to predict forward accurately.  Another option might be 
to run the prediction based on the full set of available data in 
tandem with the data from the change point onwards then 
switch across to the second model once enough seed data 
has been gathered.  It should be noted that for the graphite 
core, these underlying changes would be very infrequent so 
this change would not need to be undertaken very often.   

5.1. System Development 

In order to create an on-line prognostic system the following 
elements will be required by the system: 

• Data management strategy: The prognostics 
system needs to be able to access the appropriate 
input data streams as they become available.  In 
particular, the proper QA grade of the input needs 
to be assured. 

• Suitable predictive algorithm  
• Appropriate feedback mechanisms: as new data is 

fed to the system, this data can be used to either 
increase confidence in the predictions made, can 
be used to enhance the predictive model or can be 
used to identify an error in the data gathering.  
Ensuring the system is robust and able to deal with 
the possibility that the input data is erroneous is 
also important. 

5.1.1. Data Management Strategy 

This is critical to the successful deployment of an online 
prognostic system.  Often data comes from existing 
monitoring systems, but the prognostic system may require 
input from a number of different monitoring systems, which 
were not designed to exchange data.  In our case study, two 
sources of information are required, the cumulative damage 
and the measures of bore diameter.  Neither of these are 
available as an existing consolidated data source, so this 
needs to be addressed. 
 
A related issue with developing an online predictive system 
is the need to deal with historical data.  If an online 
prognostic system were being implemented in a new power 
plant, then this could be built into the initial design.  
However, with the AGR power plants (and equally with a 
large number of other designs of plant) they were built 
many years ago and the data capture and storage 
technologies were very different.  Including this legacy data 
is important as it does provide a good baseline reference and 
useful input to the predictive models. 

5.1.2. Choice of predictive algorithm 

There is an assumption that the chosen prognostic model is 
representative of the graphite degradation.  In order to be 
deployed as an online system then some of these 
assumptions will need to be addressed.  Li, Marsden & Fok 
(2004) describe in detail the relationship between the bore 
profile (the input to the predictive model) and irradiation 
induced dimensional change, and should be used as the 
basis for building a more complete predictive model. 

5.1.3. Feedback mechanism 

Both the choice of predictive algorithm and also the 
measure of confidence are important for the successful 
deployment of an online predictive system.  The predictive 
algorithm should be capable of predicting remaining useful 
life as the final output of the system, but should also be able 
to predict interim locations along the degradation curve to 
allow new operational data to be compared to predictions to 
assess their accuracy.  This provides the opportunity to 
update the prognostic model if the operational data and 
predicted data are significantly different.  It also provides 

Annual Conference of the Prognostics and Health Management Society 2013

475



Annual Conference of the Prognostics and Health Management Society 2013 
 

8 

the opportunity to attribute a measure of confidence to the 
predictions that are made.   

6. CONCLUSION 

The condition of core of the AGR nuclear power plant is a 
major life-limiting factor and being able to make predictions 
about its future health is important for continues and 
extended plant operation.  Currently these predictions are 
undertaken manually.  This paper has explored the potential 
for implementing an online predictive system by providing 
updated predictions of core shrinkage, a measure of core 
health, as and when new inspection data becomes available.  
In the first instance, the prognostic approach closely follows 
the manual approach to predicting shrinkage as the authors 
feel that this will ease the transition towards acceptance of 
an online prognostic approach.  However, it is recognized 
that there are other state of the art techniques which could 
have application here, and these should be investigated in 
future.  Case studies of an erroneous measurement and a 
change in the underlying degradation model have been 
explored through the use of simulated data and a discussion 
provided as to how these results could be incorporated into a 
system which would allow online prognostics to be 
performed. 
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                                     ABSTRACT 

A life cycle management-expert system (LCM-ES) 

framework is employed in this work for physics-based 

prognostics of a compressor disc. The modeling approach 

involves the integration of both global behavior and 

localized response of component at the microstructural level. 

This paper presents the results of a low cycle fatigue (LCF) 

case study for a near alpha titanium alloy (IMI 685) high 

pressure compressor disc using a microstructure based 

damage model and finite element analysis results. Both 

deterministic and probabilistic crack nucleation lives are 

determined at the two critical locations. The lognormal 

distributions of α-grain structure of IMI685 and hard alpha 

(HA) inclusions is considered in the probabilistic analysis, 

while the deterministic life is predicted based on their 

extreme values that would represent the worst life. In the 

LCF modeling, the plastic strain estimation assumes an 

empirical coefficient that has a strong dependence on the 

alpha grains and defect size. The proposed life prediction 

model is capable of capturing the effect of the grain size and 

hard alpha particle density variation on the LCF crack 

nucleation life. The worst case deterministic life corresponds 

well with 0.1% probability of failure and lie around 3542 

and 4710 cycles respectively for the primary fracture critical 

location in the disc.           

 1.  INTRODUCTION 

Gas turbine engine (GTE) components are subjected to 

extreme cyclic loads of different nature, namely mechanical, 

thermal and environmental during the engine operation. The 

performance and remaining life of the components reduce 

progressively because of the structural degradation and this 

poses a number of challenges. During the engine start-up  
__________________________ 

Avisekh Banerjee1 et. al.   This is an open-access article distributed under 

the terms of the Creative Commons Attribution 3.0 United States License, 

which permits unrestricted use, distribution, and reproduction in any 

medium, provided the original author and source are credited. 

and shut down, low cycle fatigue (LCF) and thermal 

mechanical fatigue (TMF) are the two dominant damage 

mechanisms for materials failure (Joseph and Zuiker, 2006). 

High cycle fatigue (HCF) arising out of vibrations can cause 

additional damage thus further shortening the engine life. 

The HCF accounts for 56% of the major aircraft engine 

failures and ultimately limits the service life of the most 

critical rotating components (Lütjering and Williams, 2007; 

Lütjering, Williams, and Gysler, 2003). The fan and 

compressor blades in a GTE are prone to HCF failures 

because of the high mean operating stresses and foreign 

object damage (FOD) (Leyens and Peters, 2003, Metzger 

and Seifert, 2012). For efficient design and life estimation of 

the GTE components, both LCF and HCF effects need to be 

considered. Relatively larger amplitude, smaller frequency 

and lower number of load cycles are encountered in the LCF 

failures while higher frequency, smaller amplitude and 

larger number of cycles are generally present in the HCF 

failures. The integration of these two contrasting situations 

makes any performance and life prediction model complex 

and cumbersome. Nonetheless, highly reliable and integrated 

materials- mechanism(s) computational models are required 

for the performance and lifing analysis. The aero-industries, 

on the other hand, are in constant demand for improved 

performance of aero engines by pushing the operating 

variables like the temperature and structural stress to higher 

ranges. This trend makes the structural materials more 

vulnerable to early damage evolution and their faster growth 

resulting in shorter life and greater risks of failures.  

High energy aerospace grade rotor materials are thermal-

mechanically processed (TMP) following a number of 

critical steps within a small window of temperature and 

strain rate. The TMP follows various heat treatments to 

tailor specific microstructure and properties in the alloys 

(SWRI, 2008; Semiatin, Nicolaou, Thomas and Turner, 

2008). In titanium alloys, the materials and manufacturing 

anomalies and defects are observed relating to 

material/metal flow and cracks/cavities. The hard alpha 

inclusions potentially degrade the structural integrity of high 
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energy rotors. The life cycle management of rotors based on 

either the safe life approach or the damage tolerance 

philosophy is impacted. A damage tolerance based 

probabilistic fracture mechanics approach was considered by 

South West Research Institute (SWRI) to develop DARWIN 

code to enhance the life of conventional transport aero-

engine rotors. The software essentially focuses on the LCF 

of titanium rotors/discs containing HA anomalies and 

considering residual stress effects (Lütjering and Williams, 

2007; SWRI, 2008). 

Our current on-going research focuses on the physics-based 

component specific technology solution for the assessment 

of the current damage state and the remaining useful life 

(RUL). The approach involves both global behavior and 

localized response of the material at microstructural level. 

The physical damage evolution and accumulation at micro 

level in components during operations of the GTE provide 

the vital inputs for life estimation. The material’s response to 

loading and environmental conditions and experimental/ 

simulated damage state constitute the basis of our approach. 

The intended physics-based prognostics solution combines 

both flight usage and microstructural damage data for 

reliable prediction of RUL of the GTE. In this paper, our 

objective is to apply the material microstructure - LCF 

model for the assessment of deterministic and probabilistic 

life in titanium alloy. High temperature near alpha (α) 

Titanium (Ti) alloys, in general are used for demanding 

applications such as static and rotating gas turbine engine 

components. The combination of high strength-to-weight 

ratio, excellent mechanical properties, and corrosion 

resistance makes titanium the material of choice for many 

critical applications. The maximum operating temperature 

for the forged and heat treated Ti alloys in aero-engines has 

been raised from 300°C to 600°C in the last 50 years 

(Lütjering, Williams,  and Gysler, 2003; Leyens and Peters, 

2003). Near alpha high temperature alloy, IMI 685 is 

considered in this work as a test case. The LCM-ES 

framework employed in this work incorporates 

thermodynamics-based off-design engine modeling, 

computational fluid dynamics (CFD) and heat transfer 

analysis, finite element method (FEM) analysis and physics-

based damage models. 

 

2. ALLOY AND DEFECT CHARACTERIZATION 

2.1. Near-α IMI685 

Ti alloys with small amount of β stabilizers (< 2 wt%) offer 

excellent oxidation resistance rather than high temperature  

creep resistance. Typical applications of the alloy in 

aerospace industries include airframe skin components and 

jet engine parts (compressor casing and other parts) 

requiring high strength at 455°C. Nominal compositions and 

maximum allowable usage temperature are respectively Ti-

6Al-5Zr-0.5Mo-0.25Si and 520°C. The range of 

microstructures for the IMI685 alloy consists of heavily 

deformed α–grains along with some spheroidized α to 

widmannstatten structure to acicular to martensitic structures 

(Boyer, Welsch and Collings, 1994). Quenching from beta 

phase fields produces laths of martensitic alpha which are 

delineated by thin films of beta phase. Ageing causes 

precipitation of fine alpha phase dispersion, while air 

cooling from beta phase fields gives a basket weave 

structure of widmannstatten structure of alpha phase 

delineated by beta phase (Wanhill and Barter, 2012). A large 

number of qualitative and quantitative models have been 

established describing their deformation and fracture 

behavior as a function of host of material parameters, 

including microstructure.  

For the probabilistic life analysis presented in this paper, the 

size distribution of alpha grain size in IMI 685 alloy is 

assumed to be lognormal as displayed in Figure 1.  The 

mean size of the alpha grain is considered as 55 microns 

(Nag, Praveen and Singh, 2006). The variance resulting from 

the mean and assumed distribution is assumed to be 22.5. 

 
  Figure 1: Lognormal distribution of grain size in IMI 685  

 

2.2. HA Defect 

Two types of defects (I and II) are known to be highly 

detrimental for the aircraft-grade titanium alloys. Type I or 

hard alpha (HA) represents the interstitially stabilized alpha 

phase with higher hardness and lower ductility as compared 

to matrix phase. The HA is characterized by excessive 

concentrations of elements like N (TiN), C and /or O. Type 

II are abnormally stabilized alpha-phase resulting from 

segregation of metallic alpha stabilizers, such as aluminum, 

contain an excessively high proportion of primary alpha and 

are slightly harder than the adjacent matrix (SWRI, 2008; 

Semiatin, Nicolaou, Thomas, and Turner, 2008; US patent 

4622079). The HA inclusions tend to cause premature LCF 

crack nucleation. The inclusions are particularly detrimental 

as they are infrequently and sporadically found in ingot and 

finished forged products. Excellent coherency between low 

density HA defects and the matrix in the deformed product 

makes it difficult to be inspected during NDE. Microporosity 
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as well as microcrackings are always associated with HA 

imperfections. SWRI has developed computer models for 

the prediction of the HA size and distribution as well as for 

diffusion zone (DZ) that correlates well with measured data 

(SWRI, 2008; Semiatin, Nicolaou, Thomas, and Turner, 

2008; McKeighan, Perocchi, Nicholls and McClung, 1999).              

For the probabilistic test case analysis presented in this paper, 

the size distribution of HA defects is assumed to be 

lognormal as displayed in Figure 2. The mean and variance 

for the data set are considered to be 17.7 µm and 7.5 

respectively to reflect the lower values usually found in thin 

IMI 685 discs. The two lognormal parameter estimates are 

µ=2.862 for location and σ = 0.154 for scale. However, 

much larger HA defect sizes are also reported with much 

less likelihood of occurrence (Semiatin, Nicolaou, Thomas, 

and Turner, 2008; McKeighan, Perocchi, Nicholls and 

McClung, 1999). 

 

Figure 2: Lognormal distribution of hard alpha defect size in 

IMI 685  

2.3. Alloy Property 

The temperature dependent mechanical and thermal 

properties of IMI 685 used in this work are presented in 

Figure 3. As the temperature increases, the modulus and 

tensile strength tend to decrease while thermal conductivity 

and coefficient also decrease. The Low Cycle Fatigue (LCF) 

life data at a temperature of 500°C was also obtained from 

existing literature as shown in Figure 4 (Lütjering, Williams, 

and Gysler, 2003; Leyens and Peters, 2003). The proposed 

microstructure based damage model described in section 3.2 

was also calibrated with this data. An average grain size of 

55µm and hard alpha particle density of 0.057 per unit area 

was also used (Nag, Praveen and Singh, 2006;  

Ramachandra,  Verma and Singh, 1988). 

 

Figure 3: Temperature dependent mechanical and thermal 

properties 

3.  MODELING APPROACH 

The approach here aims to integrate two levels of materials 

response, e.g. global and local to external stress under the 

influence of environmental conditions. The continuum 

mechanics approach for deformation and fracture is 

combined with localized failure and microstructural 

variations and dimensions (micro-mechanics). The localized 

behavior in the model is assumed to be controlled by two 

microstructural parameters, namely the alpha grain size and 

the inclusion size and distribution. To account for the global 

behavior and damage accumulation, the total strain is 

considered in the analysis. Following sections outline the 

salient features of both in the light of the prognostics and life 

management issues.  
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Figure 4: LCF data for IMI 685 at 500°C (Nag, Praveen and 

Singh, 2006)  

3.1. Physics-based Prognostics 

A patented Life Cycle Management-Expert System (LCM-

ES) framework for true physics-based prognostics is shown 

in Figure 5. It incorporates the engine cycle thermodynamics 

analysis, computational fluid dynamics (CFD) and heat 

transfer analysis, finite element method (FEM) analysis, and 

materials science based damage models.  

In this framework, the engine operational data obtained from 

the actual or intended usage of the engine is filtered into 

damage loads based on embedded metallurgical rules. The 

off-design engine modeling module is incorporated in the 

proposed system and built using the engine design 

parameters, this module is capable of generating the 

boundary conditions for heat transfer analysis for accurate 

temperature prediction over the engine components. A 

coupled thermal-structural FEA module is also included that 

is capable of obtaining the stress and strain states of each 

component that is in turn used as an input for the 

microstructural damage modeling module that predicts the 

mission profile based remaining life of each component. The 

same damage models can also be used to conduct 

probabilistic analysis that would allow the prediction of 

component reliability upfront as a function of the 

microstructure variability from one material to another. The 

inputs required to run the prognostics analysis include the 

component geometry and mesh files, material information 

and on-design engine design parameters. The lifing solution 

combines both flight usage and microstructural damage data 

for reliable life prediction. 

3.2. Proposed Damage Model 

Proposed microstructure based model is essentially strain 

based. The total strain (
∆��
�

) based model with the elastic 

component (
∆��
�

) modeled using Mason-Coffin equation and 

the plastic component (
∆��
�

) modeled using the 

 

Figure 5: Life Cycle Management - Expert System for physics-based prognostics
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microstructural parameters (Koul, 1998). The model is 

represented as below, 

 
∆��
2


∆��
2
�
∆�
2

 (1) 

The elastic component of the stress is given below, 

 
∆��
2

 ��́2��

� (2) 

where ��́  and  �  are the fatigue coefficient and exponent, 

respectively and �� is the number of loading cycles to crack 

nucleation. The plastic component is represented as below,  

 
∆�
2



���, ��

�2��
 (3) 

where � is the grain size, � is the number of hard alpha (HA) 

particles per unit area and � is an empirical coefficient. The 

probabilistic analysis will involve the variation of the 

microstructural parameters within their distribution range at 

a life limiting node identified with deterministic analysis. 

4. CASE STUDY 

For the purpose of a case study, a disc that is made of IMI 

685 has been selected that belongs to the High Pressure 

Compressor (HPC) section of an aero-engine with a thrust 

rating of around 30kN. The LCF life was determined for a 

typical operating condition of the engine operation that 

would represent a simple mission with take off-cruise-

landing. The cruise speed, altitude and the rpm (10,000 rpm) 

of a 30kN thrust aero-engine was taken into consideration 

for the off-design modeling to predict the mean-line 

temperature and pressure of the engine core that would serve 

as boundary conditions for subsequent thermal analysis. The 

following tasks were performed as per the LCM-ES 

framework requirement described earlier using a physics-

based prognostics system called XactLIFE. 

4.1. Geometry and Finite Element Modeling 

In the first step the 3D CAD model of the compressor disc 

was created and its finite element model generated using 

structured mesh as shown in the Figure 6. A single segment 

model was also created and periodic symmetry to reduce the 

computational expense. A structured mesh with 13,280 brick 

elements and 60 wedge elements were generated and five 

single segments used for FEA with periodic constraints to 

reduce the computational time while preserving accuracy. 

4.2. Thermal Analysis 

The mean-line temperature and pressure predicted through 

thermodynamics based off-design model was converted into 

metal temperature over the five dovetail segment disc sector 

as shown in Figure 7. The temperature at the bore, rim and 

the left and right welds of the disc were computed with the 

help of heat transfer analysis using a bladed disc model. 

 

 

Figure 6: Geometric and finite element models 

 

 

Figure 7: Predicted temperature profile 

4.3. Finite Element Analysis 

The finite element analysis (FEA) with a coupled steady-

state thermal and structural analysis was conducted. The 

thermal loads obtained from the heat transfer analysis were 

combined with the centrifugal load and the equivalent 

stresses and strains of the bulk material were computed. The 

boundary conditions representing the actual assembly 

condition were applied along with temperature dependent 

material properties for accurate results. The predicted von 

Mises stress profile is shown in Figure 8 where the high 

stress regions at the sides are due to the boundary constraints 

and will be ignored while computing the LCF life. 

4.4. Deterministic Life Prediction 

In the final step the deterministic LCF life to crack 

nucleation is predicted using the proposed model and the 

Annual Conference of the Prognostics and Health Management Society 2013

482



                                               Annual Conference of the Prognostics and Health Management Society, 2013 

6 

 

strain result obtained from the FEA. The extreme values of 

the grain size and hard alpha density has been selected from 

the 

 

 

Figure 8: Predicted von Mises stress profile 

 

 

Figure 9: Predicted LCF life to crack nucleation over the 

disc 

lognormal distribution shown in Figure 1 and 2. The 

distribution of the LCF crack nucleation life over the disc is 

shown in Figure 9. 

It can be seen from the figure that apart from the boundary 

region corresponding to the rear right weld, the minimum 

life is in the serration region. At these fracture critical 

location, the minimum life to crack nucleation was estimated 

to be 3,542 and 3,639 cycles at the nodes 81279 and 37585, 

respectively as shown in the figure above. The location of 

these life limiting regions corresponds to the high stress 

regions at the rear right welded region and the disc serrations. 

In addition to the stress, the temperature may also be high 

due to the maximum temperature being at the disc rim.  

4.5. Probabilistic Life Prediction 

The grain size and the hard alpha particle density are the two 

microstructural parameters used in the proposed LCF 

damage model. A lognormal distribution of these parameters 

as per Figures 1 and 2 are applied on the primary fracture 

critical location at the primary and secondary fracture 

critical locations corresponding to the node numbers 81279 

and 37585 respectively, and the result are shown in Figures 

10 and 11. The Figure 12 also shows the variation of the life 

with a combined lognormal distribution of grain size and 

hard alpha particle distribution. The Figure 10 and Figure 11 

suggest a more significant effect of variation of LCF with 

the distribution of the grain size compared to that of the hard 

alpha particle density. This observation may be true for thin 

discs but the distribution of the hard alpha particle density is 

more difficult to estimate due to the manufacturing process 

variability. An accurate estimation will be required for 

reliable probabilistic lifing analysis.  

Figure 10: Lognormal probability distribution of life with 

variation in grain size at primary and secondary fracture 

critical locations (FCL)  

The probability plots show that although the variation in the 

grain size and the hard alpha particles have different effects 

on the LCF crack nucleation of the IMI 685 disc, but the 

primary fracture critical location node has consistently lower 

life than the secondary fracture critical location node. To 
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study the reliability of the life prediction approach, the 

deterministic crack nucleation life for the extreme 

combination of the grain size and the hard alpha particle 

density that would result in the worst life and the 

probabilistic life for failure of 1 in 1000 components are 

compared in Table 1. It can be seen that the deterministic 

life for both the fracture critical locations are comparable 

with the probabilistic life computed with the variation of 

both the microstructure parameters, although the effect of  

 

Figure 11: Lognormal probability distribution of life with 

variation in hard alpha particle density at primary and 

secondary fracture critical locations (FCL)  

 

Figure 12: Lognormal probability distribution of life with 

variation in grain size as well as hard alpha particle density 

at primary and secondary fracture critical locations (FCL)  

the grain size is more significant on the probabilistic LCF 

life prediction. But the combined effect of the variation of 

the grain size as well as the hard alpha particle density will 

provide the best result compared to the deterministic life 

prediction. The majority of the distributed values for the two 

microstructural parameters are quite different than the 

extreme values selected for the deterministic life prediction, 

making the probabilistic life consistently higher. Hence the 

effect of the variations in both the microstructure parameters 

has to be considered for computing the probabilistic life. The 

probability plots and the above table also suggest that the 

effect of the grain size and hard alpha particle density 

variation on the LCF crack nucleation life has been 

sufficiently captured through this proposed life prediction 

model. 

Table 1: Comparison of deterministic and probabilistic life 

at primary and secondary fracture critical locations (FCL) 

Type of Calculation 

LCF Life 

Primary 

FCL 

Secondary 

FCL 

Deterministic 3,542 3,639 

Probabilistic @ 0.001 for grain 

size variation 
3,482 3,599 

Probabilistic @ 0.001 for hard 

alpha density variation 
3,820 3,801 

Probabilistic @ 0.001 for grain 

size and hard alpha density 

variation 

4,710 4,827 

 

5. CONCLUSIONS 

Physics-based prognostics approach has been applied to 

determine the LCF life for crack nucleation of an IMI 685 

high pressure compressor (HPC) disc in a drum assembly. 

Thermal and structural analysis was performed on a 

representative disc sector to calculate the stress, strain and 

temperature profiles over the component. The two fracture 

critical locations are identified, namely the primary at the 

disc web and the secondary at the disc serration and LCF life 

analysis is reported for both. 

A microstructure based damage model is proposed with 

grain size and hard alpha inclusions distribution as input 

parameters. The lognormal distributions for both these 

parameters are considered. Deterministic LCF life to crack 

nucleation computed using the extreme grain size and hard 

alpha particle density values that would result in the worst 

life is observed to be closely matching with the predicted 

probabilistic life at 0.001 probability of failure, suggesting 

the high reliability of the proposed model. This trend is also 

observed for both the primary and secondary fracture critical 

locations and also for the input microstructure parameters 

distributions in isolation as well as in combination. The 

result suggests that the grain size distribution has a stronger 

effect on the probabilistic LCF life in thin IMI 685 Discs.  
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ABSTRACT 

Significant improvements in hydro-generator diagnostics 
were achieved, in the past decades, by using continuous 
online measurements and a number of periodic tests. In 
recent years, the diagnostic raw data has been converted into 
more useful information by way of integrated diagnostic 
systems that used expert knowledge. For example, an 
integrated methodology for hydro-generator diagnostics was 
developed at Hydro-Québec’s research institute (IREQ) 
using a Web-based application. This comprehensive 
diagnostic system gives the degradation state of generator 
stator winding insulation by using a portfolio of diagnostic 
tools. Combining the results leads to a health index ranging 
from 1 (good condition) to 5 (worst condition). This system 
is used by Hydro-Québec’s power plant managers as well as 
technical support and maintenance engineers in the context 
of condition-based maintenance (CBM). The next step of 
development is to add new prognostic-related features. This 
involves automatic identification of active failure 
mechanisms, root cause analysis and estimation of the stage 
of advancement of any active mechanism. These 
characteristics form the basis of predictive maintenance and 
support the optimization of maintenance strategies.  

The approach is based on a number of causal trees (the 
failure mechanisms) formed by the combination of 
sequential physical degradation states that ultimately lead to 
a failure mode. Each combination of sequential physical 
states is unique and defines a particular failure mechanism. 
Failure mechanism analysis was followed by identification 
of all symptoms (diagnostics measurements, observations) 
with their respective thresholds defining each physical state.  

This paper presents the development of a prognostic 
approach where the modeling of failure mechanisms is 
combined with observable symptoms from our diagnostic 
system for the identification of active failure mechanisms.   

1. INTRODUCTION  

In the case of hydro power generation plants, most of the 
forced outage time is due to the hydro-generator. Within the 
generator, the stator winding is the most critical part as it 
accounts for more than two thirds of the major failures as 
can be found in the 2003 CIGRE survey on hydro-generator 
failures.  

For years, Hydro-Québec has adopted a maintenance 
strategy based on three types of maintenance: corrective, 
time-based and, more recently, condition-based, the last 
directly linked to diagnostic tests. An integrated generator 
diagnostic system implemented in 2008, provides 
information about the actual overall condition of all 
generators stator windings. This system ranks their 
condition for all Hydro-Québec power plants. The health 
index (I) ranges from 1 to 5, the highest being the worst 
condition (Hudon, Bélec, Nguyen, 2009). This information 
is used to prioritize the generators for maintenance. 
However, it does not suggest any particular maintenance 
action that should be performed in order to mitigate specific 
failure mechanisms affecting a generator stator.  

In the past, a number of authors have worked on 
degradation state diagrams as a prognostic approach for 
maintenance optimization for hydro-generators and other 
equipment (Anders, Endrenyi, Ford & Stone, 1990; Sim & 
Endrenyi, 1988; Welte, 2009). Figure 1 shows an example 
of state diagram adapted from Endrenyi et al. (2001).  

 

Figure 1. State diagrams including maintenance states (M1-
M3) for a failure (F) following a three stages process (S1-
S3). Endrenyi et al. (2001) 

Normand Amyot et al. This is an open-access article distributed under 
the terms of the Creative Commons Attribution 3.0 United States 
License, which permits unrestricted use, distribution, and reproduction 
in any medium, provided the original author and source are credited. 
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These state models were based on Markov or semi-Markov 
processes. However, they did not take into account the real 
physical states that can be identified by conducting a failure 
mechanism and symptoms analysis (FMSA) or a causal tree 
analysis as described in standard ISO 13379-1 on condition 
monitoring and diagnostics of machines (2012). They rather 
used health indices to characterize their degradation states 
as good, fair or bad for example. This type of approach does 
not lead to the identification of the specific maintenance 
action to perform within a particular physical state. 

The approach taken in this work is to identify the specific 
failure mechanisms in play for any given hydro-generator 
unit in order to take the proper maintenance action. 
Currently, this requires that knowledgeable experts study all 
observable symptoms and relate them to all possible 
degradation mechanisms through the identification of the 
related physical states. Much of this tedious work could be 
performed by an automated prognostic tool.  

In the context of existing prognostic approaches described 
by Byington, Roemer & Galie (2002) and shown in Figure 
2, the proposed approach would fit the upper part of the 
prognostic approach hierarchy. It can be considered as 
model-based as it uses knowledge-rich information provided 
by a diagnostic portfolio that accounts for physical 
degradation states. 

 

 

Figure 2. Hierarchy of prognostic approaches. Adapted from 
Byington et al. (2002). 

Figure 3 illustrates how different maintenance strategies can 
coexist depending on the condition of components and 
subcomponents and information available about them. Since 
maintenance can be optimized through a predictive failure 
mechanism and symptoms analysis, the present work 
systematizes this approach. It is based on an analysis of the 
possible failure mechanisms for hydro-generator stator 
windings that was carried out by Nguyen & Yelle (2001). 
These failure mechanisms lead to one of the seven failure 
modes listed in Table 1. A failure mode is defined as the 
final stage of a failure mechanism, after which the 
equipment can no longer perform its function.  

 

Figure 3. Existing maintenance strategies and their 
interrelations. 

Table 1. Hydro-generator failure modes 

f1 Phase-to-phase breakdown 

f2 Phase-to-ground breakdown in the slot 

f3 Phase-to-ground breakdown outside the magnetic core 

f4 Excessive rotor vibration 

f5 Loss of magnetic field 

f6 Melting of damper bar 

f7 Stator electrical connection failure  

2. FAILURE MECHANISMS ANS SYMPTOMS ANALYSIS  

A failure mechanism is any physical, chemical or other 
process that leads to failure. For generators, it originates 
from one or a combination of four stresses: Thermal, 
Electrical, Ambient and Mechanical (TEAM). As illustrated 
in figure 4, under these stresses, root causes are responsible 
for initiating the failure mechanisms in the same way as in a 
causal tree such as described in standard ISO 13379-1 
(2012). Failure mechanisms result in a sequence of events 
leading from one physical state to the next. In this model, 
each physical state is labeled according to its stress category 
(for example e3 is an electrical process). Each sequence in 
Fig. 2 leads to a potential failure mode (f1…f6). Several 
mechanisms may sometimes be active at the same time, but 
only one will lead to failure. Each potential failure 
mechanism is defined by a unique sequence of physical 
states. For example, figure 4 shows three possible failure 
mechanisms given the available symptoms: (T1,t1,…,t4,f1), 
(T1,t5,…,e3,f3) and (A3,a6,..,e3,f3).   

Did a failure 
occur? 

Corrective 
maintenance 

Yes 
yes

Preventive 
maintenance 

Dynamic 
approach? 

No 

Yes 
yes

No Failure 
mechanism 
approach? 

Time-based 
maintenance 

Condition-based 
maintenance 
(Diagnostics) 

Predictive 
maintenance 
(Prognostics) 

Yes 
yes

No 
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Figure 4. Three active failure mechanisms. Causes are in 
upper case and physical states are in lower case. 

 

Table 2 shows, by category of stress, all root causes for each 
of the 111 failure mechanisms that were identified. Of these 
failure mechanisms, 8 are initiated by root causes related to 
thermal stress, 8 to electrical stress, 35 to ambient stress and 
60 to mechanical stress. The number of intermediate 
physical states in these failure mechanisms is given in 
Table 3 for each type of stress category.   

3. PROGNOSTIC M ODEL  

  The prognostic model is based on automatic identification 
of the physical states from available symptoms. One specific 
set of symptoms, with their respective thresholds to comply 
with, defines one single physical state. Each characteristic 
symptom comes from the results of diagnostic tool 
measurements or visual inspections logged into our 
integrated diagnostic system for generators.  
 
The health index of the generator is computed by combining 
individual diagnostic results but each diagnostic tool also 
provides detailed information (symptoms) that can be used 
to identify the generator’s physical state at a given time. For 
instance, a generator’s condition could come from 
combining partial discharge (PD) measurements, visual 
inspection input, and polarization/depolarization current. In 
addition to this overall index, it is possible to mine data to 
the level of symptoms and determine whether gap 
discharges, say, are accompanied by visual signs of powder 
between end arms and, if so, the number of such sites. These 
symptoms are the key to identifying active physical states. 
Table 4 overviews the actual diagnostic tools logged in the 
database and the number of detailed symptoms that each can 
provide. Note that the scope of such an analysis is currently 
being expanded to include other characteristics logged in 
other monitoring system, such as air gap measurement, 
temperature and vibration analysis. 

Table 2. Root causes for failure mechanisms 
 

 

Root causes per stress category 

 

Number of 
failure 

mechanisms 

THERMAL STRESS (T) 8 

T1 Thermal aging (normal operation) 3 

T2 Accelerated aging (operation above specified rated 
temperatures ) 

3 

T3 Aging due to thermal cycling (frequent start/stop 
operation) 

2 

ELECTRICAL STRESS (E) 8 

E1 Improper manufacturing or design of bars 2 

E2 Poor semiconducting coating on the straight part of 
the bars (slot discharges) 

1 

E3 Poor design or manufacturing of end winding stress 
grading material (corona discharges) 

1 

E4 Insufficient spacing between end windings (gap 
discharges) 

1 

E5 Overvoltage transients 3 

AMBIENT STRESS (A) 35 

A1 Conducting contamination (carbon, steel or copper 
dust) 

6 

A2 Non-conductive contamination (construction dust or 
oil) 

9 

A3 Moisture in ambient air 7 

A4 Abrasive material attack 3 

A5 Water leakage (cooling system failure, fire 
protection and spills) 

10 

MECHANICAL STRESS (M)  60 

M1 Loose windings 17 

M2 Bad connection 6 

M3 Presence of external objects or loose parts 5 

M4 Mechanical shocks 4 

M5 Projectiles 4 

M6 Rotor and/or stator deformation 24 

 
Table 3. Number of physical states per process 

 
Types of process Number of physical states 

Thermal (t) 9 

Electrical (e) 22 

Ambient (a) 14 

Mechanical (m) 35 

 

T E A M 

Cause 
T1 

t1 

…

t5 

… 

Failure 
mode f1 

Failure 
mode f3 

t4 

Cause 
A3 

a6 

…

e3 

Failure 
mode f3 

 

e3
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Table 4. Diagnostic tools and detailed symptoms. 
 

Diagnostic tool Number of 
detailed 

symptoms 

(1) PD analysis (intensity, number) – PDAH 3-4  

(2) Phase-resolved PD – PRPD 6 

(3) Visual inspection 70 

(4) Polarization/depolarization currents (stator) 4 

(5) Ramped voltage current measurements 5 

(6) Semiconducting coating integrity 
measurement 

2 

(7) Ozone concentration measurements 2 

(8) Dissection (postmortem) 23 

 

Once problematic generators have been identified in our 
integrated generator diagnostic system (I=5), the prognostic 
tool analyzes the database for each of them to identify the 
most probable active failure mechanisms. In order to do so, 
a prognostic database was built including all potential 
failure mechanisms (sequences of physical states) and the 
set of symptoms with their threshold values associated with 
each physical state. Figure 5 shows an example of failure 
mechanism with the corresponding symptoms and 
thresholds defining the physical states.  

Active failure mechanisms are identified automatically 
using the available symptoms obtained from diagnostic 
tools. A search engine was developed to retrieve the 
symptoms from the integrated generator diagnostic system 
and compare them to the defined symptoms with thresholds 
for each physical state in the prognostic database. The active 
failure mechanisms proposed by the system are then 
displayed. The list of active failure mechanisms clearly 
depends on the data available. When many diagnostic 
symptoms are available, the search engine usually displays 
fewer possible failure mechanisms with higher confidence. 
When only a few symptoms are available for the generator, 
more possible failure mechanisms are displayed with lower 
confidence. Work is currently underway on confidence 
levels to develop a feature that would automatically propose 
the best test to minimize the uncertainty of failure 
mechanism identification. Pinpointing this one mechanism 
is therefore the issue to address first.  

4. FUTURE WORK  

The main objective of using such a prognostic approach is 
to improve maintenance strategies. The key is to include in 
the database all maintenance actions for each physical state 
in the failure mechanisms. Figure 6 shows the two step 
process: available symptoms identify the active physical 
state and for each physical state a maintenance action is 
defined.  

 

Figure 5. Failure mechanism with symptoms and thresholds 
defining physical states. Between parenthesis are symptoms 
pertaining to the diagnostics. S is the severity ranging from 
1 to 5. 

  

 

Figure 6. Symptoms identify the active physical state for 
which maintenance actions are defined.  

 

The doted area shows what has been accomplished yet. 
Future work will consist in the identification of maintenance 
actions for each physical state in the prognostic database. 
This will enable the predictive maintenance strategy.   

When an active mechanism is identified as the most critical, 
the system would thus propose customized maintenance 
action to solve the specific problem. Every maintenance 
action for a specific physical state would either completely 
restore the condition of the generator (“as good as new”) or 
just restore one of its previous physical state (“as bad as 

Physical 

State 

Maintenance 
Action 

A1 
Conductive 
Contamination  

a1   
Contamination 
impregnation in end 
arms 

e8  
Electrical field 
concentration 

e7 
Gap partial 
discharges 

e3  
Insulation erosion 
outside stator core 

D3 
Phase-to-phase 
breakdown 

Diagnostics, symptoms and 
thresholds 

Visual inspection: (4) S > 1.0 
Ramped voltage test: (1) S >3.0;  

(3) S <2.0 
Pol/depol.: (2) S >3.0 (4) S <2.0 

PDAH: (1) S >3.5 
Ozone:  S > 3.5 

Visual inspection: (3) S > 1.0 
PRPD: (5) S > 1.0 

Visual inspection: (3) S >= 5.0 

Post-mortem dissection analysis:  
(10) S > 1.0 

 
Transition state 

(No symptoms available) 

Symptoms 
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old”). The effect of every maintenance action for each 
state/mechanism must also be included in the database. 

A corollary to the effect of maintenance is to determine the 
transition time between successive physical states as 
degradation evolves. This feature will allow us to know the 
proper timeframe for maintenance as well as the impact of 
performing the job before a failure occurs. Automatic 
analysis will also be extended to rotor degradation 
mechanisms and, most importantly, incorporate all 
economic considerations, e.g., the cost and duration of each 
maintenance action, and the loss of revenue in the event of a 
forced outage. 

5. CONCLUSION  

The development of a prognostic model was initiated in 
order to optimize future maintenance of hydro-generators. 
At this stage, the model consists of a database of potential 
failure mechanisms combined with automatic recognition of 
active mechanisms from symptoms that define physical 
states. Embedded in the database are all the criteria used to 
define the physical states. This may be viewed as a means of 
capturing expert knowledge. A search engine can already be 
used to data mine the integrated diagnostic system Web 
application, and automatically identify and sort failure 
mechanisms from the data available for each generator. 

Many desirable features are not yet implemented, such as 
relating maintenance actions to physical states and 
estimating transition times between states, to name but two. 
Future work will address these features and also broaden the 
scope to the rotor. The prognostic engine will continue to 
evolve in the years to come and will be validated by case 
studies. 
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ABSTRACT 

An innovative prognostics and health management (PHM) 
technique for quantifying and characterizing health status of 
Plastic Bonded Explosive (PBX) Air force (AF) formula 
PBX (AF)-108 warhead explosive was developed using 
Near Infrared (NIR) spectra emitted by microPHAZIRTM 
NIR, a handheld platform developed by Thermo Fisher 
Scientific. Benchtop High Performance Liquid 
Chromatography (HPLC) was used as a reference technique 
for correlation to microPHAZIRTM NIR measurements. 

Near infrared spectra were acquired from twenty freshly 
manufactured mixes of PBX (AF)-108 explosive formulae, 
which were used in setting up a D-Optimal full-factorial 
design of experiment (DOE). Three-hundred and sixty 
measurements were recorded and analyzed using Partial 
Least Squares (PLS) regression analysis for model building 
and method development. Results were correlated to 
spectra, which were measured using HPLC reference 
technique. All recorded measurements performed with 
microPHAZIRTM handheld platform were successfully 
validated with HPLC measurements. An algorithm was 
developed for microPHAZIRTM NIR thus qualifying the 
platform as a real-time nondestructive test (NDT)/ 

nondestructive evaluation (NDE) tool for quantification of 
primary chemical constituents of PBX (AF)-108. Primary 
chemical constituents of PBX(AF)-108 are Polyurethane 
(PU) binder, Royal Demolition Explosive (RDX) oxidizer/ 
fuel, Isodecyl Pelargonate (IDP) plasticiser, and  E-702 (4, 
4’-methylenebis(2,6-di-tert-butyl-phenol) [MBDTBP] anti-
oxidant/stabilizer.  

This teaming effort between Raytheon Missile Systems 
(RMS), United Kingdom Ministry of Defence (UK MoD), 
Alliant Techsystems Launch systems (ATK LS), and 
Thermo Fisher Scientific demonstrated outstanding ability 
to utilize miniature cutting edge technology to perform real-
time NDT of PBX (AF)-108 warhead explosive without 
generating chemical waste and/or residue. The new 
technique will further be adapted for use to measure primary 
chemical constituents of other warhead explosives and solid 
rocket propellants. The new technique will significantly 
reduce costs associated with performing ordnance 
surveillance and Service Life Extension Program (SLEP) 
assessment, which is often destructive and requires use of 
lengthy and expensive test techniques described in North 
Atlantic Treaty Organization (NATO) Standardization 
Agreement (STANAG)-4170 and Allied Ordnance 
Publication (AOP)-7 manuals. 

Daoud et al. This is an open-access article distributed under the terms of
the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited. 
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1. INTRODUCTION 

Tactical missiles are often exposed to severe thermal and 
dynamic stresses associated with long- term exposure to 
harsh environments, including transportation handling, 
transportation vibration, diurnal cycling, and much more. 
These stresses may act individually or synergistically to 
factor into the aging, deterioration, and eventual 
decommissioning of some of Department of Defense (DoD) 
critical warfighting assets. Adverse reliability associated 
with long-term aging and deterioration of assets 
significantly affects the total life cycle cost of fielding these 
weapon systems in a high state of readiness. Reliability 
evaluation of legacy data has indicated failures in missile 
structural, energetic and electronic components, all 
associated with the long-term exposure to static (heat, 
humidity, salt, etc.), and dynamic (transportation shocks, 
vibration, etc.) stressors. 

Today, most common methods of NDT for evaluating the 
health of energetic systems are radiographic (X-ray 
imaging, X-ray computed tomography (CT), etc.), electrical 
(Eddy-current and electro-magnetic methods), dye 
penetrant, and acoustic and ultrasonic, or a combination 
thereof. These methods are used by manufacturers during 
the production process, mostly for quality control, and are 
seldom used once the system has been fielded. Moreover, 
for military energetic systems, it is usually impractical to 
use these methods in the field. For health monitoring in the 
field, deployable or portable platforms become valuable as 
NDT/NDE tools. 

A joint effort was carried out between the UK Ministry of 
Defence (MoD), Raytheon Missile Systems, ATK Launch 
Systems, and Thermo Fisher Scientific to qualify 
microPHAZIRTM NIR platform as a portable real-time NDE 
tool. The effort was successfully executed and will enable 
RMS, other defense contractors, US DoD and UK MoD to 
quantify chemical constituents of PBX (AF)-108 warhead 
explosive, a high energy plastic bonded explosive 
composition used in the armament subsystem of tactical 
missiles. The platform will further be adapted for use to 
measure numerous other explosives, solid and liquid rocket 
propellants. 

The proposed technology is hybrid, in that it does not 
provide wireless and/or continuous monitoring of the health 
status of the energetic material (i.e. PHM), yet it is a 
proactive NDE/NDT technique which replaces the old 
destructive test methodologies, described in NATO 
STANAG-4170 and AOP-7 manuals, imposed by 
Surveillance and Life Extension Programs (SLEP) of past 
and present day techniques. The proposed technology will 
define new means for realizing anticipated residual useful 
life (RUL) of an explosive from a chemical perspective, by 
quantifying chemical constituents within the explosive 
matrix, which can shed valuable information about the 
anticipated mechanical and structural behavior of the 

explosive matrix. The combination of chemical and 
mechanical (structural) health of the explosive determines 
whether a warhead (armament subsystem) would be 
warranted as “safe and suitable for service (S3)”. 

Today RMS and the UK MoD surveillance strategies seek 
to extend time between periodic evaluations, henceforth 
reducing tasks associated with subsystem breakdown, test 
and criticality analysis (BTCA) by as much as 50%. On 
average, a surveillance program is often recommended once 
every 4 years on a sample population which represents the 
fielded and/or stored weapons inventory, and with the 
introduction of microPHAZIRTM NIR real-time technology 
it will be feasible to extend the time between surveillance 
programs and/or reduce the number of assets that undergo 
surveillance evaluation. When a SLEP plan is established 
for warhead (armament subsystem) inventory, complex 
steps must be executed and comprise disassembly, 
dissection and extensive testing (physical, chemical, and 
mechanical tests) of the warhead explosive matrix, often 
referred to as “breakdown, test and criticality analysis 
(BTCA)”. BTCA coupled with arena testing (static fire) of 
the warhead as well as other subsystems are challenging 
tasks, from manpower, cost and schedule perspectives, and 
therefore the need to exercise cost controls while at the 
same time maintain absolute confidence in assets health 
demands that new technologies such as microPHAZIRTM 
NIR platform and more advanced (exploratory) technologies 
become integral part of SLEP cost consciousness and 
technology readiness. Generally, the ultimate goal is to be 
able to (i) predict subsystems, and henceforth system 
anomalies proactively and sufficiently in advance to 
institute corrective actions and/or preventive measures; and 
(ii) reduce generated chemical waste, logistics footprint, 
logistics response time, and life-cycle costs, which will 
ultimately increase systems availability, and enhance 
customer-supplier business relationship. 

The proposed technology will be adopted by RMS and the 
UK MoD as the principal means for realizing early warnings 
of unsafe conditions using real-time data, collected with 
mobile microPHAZIRTM NIR handheld platform and other 
advanced technologies of Thermo Fisher Scientific. Gaining 
real-time knowledge about the current health of an 
explosive matrix will offer effective insight to predicting 
future SLEP test plans. 

Successful application of microPHAZIRTM NIR handheld 
platform as a NDE/NDT tool is the cornerstone and the 
spring board for future development of PHM of energetic 
subsystems: Cartridge Actuated Devices (CADs), 
Propellant-Actuated Devices (PADs), and electro-explosive 
devices (EEDs) of tactical and strategic missiles. 
microPHAZIRTM NIR handheld platform offers enormous 
potential for applications requiring real-time monitoring of 
the health status of warheads and solid rocket motors subject 
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to fatigue, chemical and mechanical (structural) 
degradation.  

2. EXPERIMENTAL 

All starting raw materials were obtained commercially, in 
accordance with (IAW) military (MIL) standard MIL-E-
8289 specifications and used without further processing.  

2.1. Hazards and Safety Protocol  

Hazards data comprising impact, friction, electrostatic 
discharge (ESD), and differential scanning Calorimetry 
(DSC) were performed on two uncured 10- gram high-speed 
mixes with the highest and lowest solids DOE iterations 
(worst and best case scenarios, respectively). Cured 1⁄4-pint 
(120 gram) mixes of the high solids loaded and low solids 
loaded PBX (AF)-108 mixes were prepared to identify 
safety concerns during mixing and preparation of the one-
pint (600-gram) mixes and for handling and storage of the 
cured material. All hazards data were concluded to be low-
order and in conformance with actual production mixes. 
Most importantly, ATK Launch Systems conducted a 
hazards assessment to evaluate use of the microPHAZIRTM 
NIR with the PBX (AF)-108 warhead explosive. ATK LS 
Hazardous Operation Standards (AHOPS) require all 
portable electrical equipment within 25 feet of explosives or 
propellants to receive written approval from the Operating 
Building Electrical Classification Board (OBEC) committee 
chairman at ATK LS. Hazards analysis was performed for 
use of microPHAZIRTM NIR with PBX(AF)-108 and 
assessment of the platform was reviewed and approved by 
the OBEC, OSCB (Operations Safety Control Board) and 
PPCB (Plant Process Control Board) committees. 

Thermo Fisher Scientific has also conducted numerous tests 
on various explosives and constituents of the same family, 
using microPHAZIRTM NIR with the following external 
group explosives test facilities and DoD depots, to identify 
RDX explosive: 

I. Lew Kansas, Picatinny Arsenal, Dover, NJ. 

II. Federal Law Enforcement Training Center. 

III. National Forensic Science Technology Center 
(NFSTC).  

IV. Jimmie Oxley, University of Rhode Island. 

V. A TF Homemade Explosives Training Course. 

A D-Optimal Design of Experiment (DOE) was established, 
and consisted of manufacture of twenty mix iterations of 
PBX (AF)-108 with each constituent varied above and 
below specification limits, to capture high values and low 
values of each constituent. Twenty 600- gram (1-pint each) 
mixes of PBX (AF)-108 warhead explosive (Table 1) were 
prepared using a 1-pint Baker Perkins mixer. Each of the 
twenty 1-pint mixes was vacuum cast into a teflon-tape -

lined cup-like carton. The Teflon tape facilitated carton 
removal and simulated a production-tooling surface. Each of 
the twenty cast mixes was cast to produce a rectangular- 
shaped block of 1-inch by 4-inch by 5-inch geometrical 
dimension, as depicted in Figure 1. Each of the twenty cast 
blocks of PBX (AF)-108 mixes was measured in triplicate, 
at the six sides, depicted in Figure 7, using microPHAZIRTM 
NIR handheld platform. Afterwards and to validate test 
results, samples measuring 0.5 to 1.0-gram were removed 
from the same locations of each rectangular cast block using 

 

a stirrup cutter and analyzed in triplicate by benchtop 
HPLC. The primary measured constituents were: 

I. E-702 (4, 4’-methylenebis(2,6-di-tert-butyl-phenol) 
[MBDTBP]) anti-oxidant/stabilizer (Figure 2). 

II. HMX/RDX oxidizer/fuel (Figure 3). 

III. Isodecyl Pelargonate – IDP plasticizer (Figure 4). 

IV. Binder content was determined by difference 
between the sum of the primary 
constituents/ingredients in (I), (II), and (III) and 
100%]. 
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2.2. Instrumentation 

2.2.1. The microPHAZIRTM
 (NIR) Platform 

Near Infra-Red (NIR) spectroscopy is a well-established 
technique, which has been widely used since the mid- 
1970s. Only recently has new technology permitted NIR 
systems to be miniaturized into truly handheld system. One 
of the most important products is the microPHAZIRTM NIR 
handheld platform. MicroPHAZIRTM NIR handheld 
platform is based on near-infrared spectroscopy. The near-
infrared region, depicted in Figure 5 is located between the 
infrared and visible region with wavelengths that range from 
800-900 nanometers to 2500 nanometers. 

MicroPHAZIRTM NIR handheld platform was developed by 
Thermo Scientific and is based on vibrational spectroscopy. 
All molecules perpetually rotate, move, and contort in a 
complex manner at temperatures above absolute zero. 
Vibrational spectroscopy probes these contortions (or 
vibrations) of a sample to determine the chemical functional 
groups present. A common type of vibrational spectroscopy 
is infrared (IR) absorption/reflectance. It relies on 
illumination of the sample with optical radiation to probe 
the molecular vibrations. 

 

In NIR spectroscopy, the sample is illuminated with a broad 
spectrum of light in the near- infrared region and the 
transmission or reflection is recorded as a function of the 
frequency of the incident light. When the frequency of 
incident light equals the frequency of a specific molecular 
vibration, the sample tends to absorb some of the light. A 
material “fingerprint” results from recording the amount of 
light absorbed as a function of the wavelength (or 
frequency). The instrument is depicted in Figure 6. 
MicroPHAZIRTM NIR is a rugged handheld chemical 
identification unit designed for point-of-use applications, 
either in contact or analysis can be conducted through 
transparent bags and vials. This product allows the 
identification of chemicals and white powders using the 
principles of NIR spectroscopy. It is enclosed in a 
lightweight, rugged, resistant package. The 
microPHAZIRTM handheld contains a broadband NIR 
source, a Hadamard interferometer to separate the different 
wavelengths of light interacting with the sample, and a 
detector to collect the resulting energy. 

 

2.2.2. Agilent 1100 HPLC Platform 

Agilent 1100 Series system with different configurations 
comprises a vacuum degasser, isocratic pump, high-pressure 
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binary pump, low-pressure quaternary pump, autosampler, 
thermostatted column compartment, variable wavelength 
detector and diode array detector. Key measurements are 
necessary to evaluate the performance of HPLC systems. 
Some characteristics are influenced by only one part of the 
system. For example, linearity, spectral resolution and 
detection limits are influenced mainly by the detector, delay 
volume and composition accuracy by the pump and 
carryover by the autosampler. In contrast, other 
characteristics such as baseline noise and precision of 
retention times and peak areas are influenced by the 
complete system. This note describes the following 
measurements: 

I. Detector — baseline noise, drift, wander, linearity, 
spectral resolution, sensitivity. 

II. Pump — composition accuracy, precision, ripple, 
precision of retention times, delay volume.  

III. Column compartment — temperature stability.  

IV. Autosampler — precision of peak areas, linearity, 
carry-over.  

2.3. Measurements 

Measurements were performed on two platforms: 
microPHAZIRTM NIR handheld platform and Agilent 1100 
High-Performance Liquid Chromatography (HPLC) 
platform. In the case of microPHAZIRTM NIR handheld 
platform, measurements were performed and recorded on 
each of the six faces of each of the twenty blocks 
(representing twenty mixes), as depicted in Figure 7. 

Upon manufacture and vacuum cast of the explosive mix, 
the energetic surface is binder rich, henceforth prior to 
performing measurements approximately 1/8” of the binder- 

 

rich surface of each cast block is peeled-off and removed 
from the surface, exposing the homogeneous material. As 
illustrated in Figure 8. 

 

All measurements were recorded in the middle region of the 
surface of each block, as depicted in Figure 9 (right), in an 
area that was flat and free of any discoloration. Three 
independent NIR spectra were collected at each location (six 
total locations) per 600-gram of PBX(AF)-108 sample 
block, for a total of 18 readings per block. 

In the case of benchtop Agilent 1100 High-Performance 
Liquid Chromatography (HPLC) platform, samples were 
prepared for analysis by extracting in triplicate with 
acetonitrile at a level of 10.0 mg/ml. Extracts were analyzed 
using an Agilent 1100 High-performance liquid 
chromatography (HPLC) instrument with an Octadecyl 
Silane (ODS) column and a diode-array detector. Samples 
were extracted from each of the six locations of each of the 
twenty mixes to evaluate the levels of E-702 anti-oxidant 
(4,4-methylenebis (2,6-di-tert-butyl-phenol)), Royal 
Demolition explosive (RDX) oxidizer (1,3,5- Trinitro-1,3,5-
triazacyclohexane), and Isodecyl Pelargonate (IDP) 
plasticizer. The pint mixes were formulated with RDX that 
contained a small percentage of High Melting explosive 
(HMX). Thus the sum of HMX and RDX percentage by 
HPLC analysis represented the amount of RDX formulated 
in PBX (AF)-108 pint mixes. 
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2.4. Model Building 

2.4.1. Data Collection 

Collecting PBX (AF)-108 data using microPHAZIRTM NIR 
handheld platform followed best practices recommendations 
of the platform manufacturer, as follows: 

I. Obtain representative samples for the library. 

A. Obtain realistic sample mixes that will form the 
library. These sample mixes should be 
representative of the PBX (AF)-108 material that 
will be identified. No selectivity is implied for 
materials until the library is built and validated. 

B. Measure samples, as illustrated in Figures 5A and 
5B. Perform measurements in triplicate. 

C. Label all materials with name (Group ID or 
Method/Sample), and if appropriate reference 
value for PLS quantitative analysis. 

D. Transfer all names into a “.csv” file, and then use 
this to populate “GroupID.csv” on the 
microPHAZIRTM “Config” directory. 

II. Obtain reference values. 

A. For quantitative analysis, the full range of 
measurement shall be included in the library. 
Models only are considered robust over the data 
range actually referenced. 

B. Obtain replicate samples for at least 3 points over 
the measurement range.  

C. For realistic model building, at least 10 reference 
values over the measurement range shall be 
obtained. As the size of the range increases, so 
should the reference values collected. iv. Since 
samples may change over time, it is appropriate to 
collect the spectra from the same sample as the 
reference values are obtained from. 

2.4.2. Spectra Generation 

I. Pre-spectral collection. 

A. Prior to collecting spectra ensure that self-test 
performance qualification (PQ) has been 
performed. 

B. Ensure that group identifications (groupids) are 
transferred into GroupID.csv.  

C. Also ensure that the GroupID name is the correct 
name for the material and is present on the Collect 
screen on the microPHAZIRTM.  

II. Spectral collection’ 

A. The minimum number of spectra collected for any 
library building is triplicate scans in 3 positions. 
Position the nose of microPHAZIRTM firmly 
against the material to be measured, as depicted in 
Figure 9 (right), and take triplicate scans of the 
material without moving the sample. This will give 
information about instrument variability. Repeat 
twice. 

B. Repeat measurements for each side of the block.  

C. Repeat steps (A) and (B) for each mix. 

2.4.3. Spectral Evaluation 

I. Initial spectral evaluation. 

A. Load the collected data into Method Generator  

B. Ensure that there are no data which show 
absorbance (y-axis) past 3.  

C. Observe if there are any noisy spectra, especially at 
high absorbance. If so, delete them. These usually 
arise if the trigger was pressed either without a 
sample in front or if sample is inadequate.  

D. Highlight each group to make sure that all spectra 
look similar in the same group. Any obvious single 
outliers may be deleted. The best scenario is when 
the triplicate scans are right on top of each other, 
and there is little difference between positional 
scans. However, as long as the positional replicates 
appear similar and are close together, this is 
adequate. If one position is obviously off from the 
others, keep it, but watch to see if it affects the 
final results. 

E. Delete any spectra where there was awareness of 
probable mistake in measurement. Do not delete 
scans just to make everything pretty. Deviations 
from the norm could be due to actual inherent 
sample differences and will need to become part of 
the model. 

F. Reference values must be inputted at this time, 
using the Edit Y-value option. 

G. Save the final edited data. 

II. Method generation  

A. Progress through the standard preprocessing 
options, and then evaluate the model using Spectral 
Match.  

B. Adequate separation should be observed between 
samples. There should be a gap between the colors 
associated with one group and the next closest 
color of the nearest group.  

C. Save the model if the model is acceptable.  
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D. Load the data files onto the microPHAZIRTM to 
test the model. 

III. Method validation  

A. Load a set of spectra into method generator (MG). 
For true method validation these should be unique 
spectra, not used in library building.  

B. Select Model |Model validation. Browse to locate 
the application. Press OK  

C. A panel will open with the validation results. It will 
be sorted by sample groups. Therefore it is very 
important that the GroupID of new spectra be 
identical to the GroupID of the library spectra. 
Otherwise a No ID label will be inserted.  

D. The results show number of mismatches, false 
positives/false negatives, and then the full results 
of the model validation for each material. It will 
list the top 3 matches returned and their associated 
correlation coefficients. 

E. The results can be saved as a “.csv” file by 
selecting File | Save all 

3. RESULTS AND DISCUSSION 

Test sets collected from all twenty samples were analyzed 
using microPHAZIRTM NIR handheld platform. Upon 
reduction and analysis of the data, initial findings indicated 
near identical readings between those measured using 
microPHAZIRTM NIR handheld platform and those 
measured using benchtop HPLC, as listed in Tables 2 and 3 
and compared to the initial added quantities of each 
constituent in Table 1. This finding concluded platform 
capability to measure oxidizer (RDX), stabilizer (Methylene 
di-tertiary butyl phenol), and plasticiser (IDP) contents on 
real-time basis with excellent precision.   

 

 

As part of the developed algorithm, binder content would 
also show a reading, which is calculated based on the 
difference between the total measured primary constituents 
and 100 percent. Data produced on the microPHAZIRTM 
NIR handheld platform were plotted for the primary 
constituents of PBX (AF)-108. Data are depicted in Figure 
10 for IDP plasticizer, Figure 11 for E-702 stabilizer/anti-
oxidant, and in Figure 12 for RDX oxidizer, respectively. 
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Results indicate very good agreement for RDX, good 
agreement for IDP and acceptable agreement for E-702, 
between both sets of measurements in both handheld 
platform and benchtop platform, which further confirmed 
efficacy of using microPHAZIRTM NIR handheld platform 
as a tool for real-time non-destructive measurements of 
primary chemical constituents of PBX (AF)-108. 

As noted earlier, microPHAZIRTM NIR handheld platform 
did not directly measure binder content. The algorithm was 
developed to calculate a value for the binder, which is based 
on the difference between the sum of the primary 
ingredients and 100%. Results which were measured using 
microPHAZIRTM NIR handheld platform are summarized in 
Table 2 in units of percent by weight. 

Results from the HPLC analysis are summarized in Table 3. 
All measurements indicated close readings between the 
actual formula of the twenty explosive mixes and HPLC 
readings, with the exception of readings which were 

measured for percent Isodecyl Pelargonate (IDP) plasticizer. 
This is a common trend often observed with plasticizer-
containing composite energetics (explosives, boosters, and 
solid rocket propellants), and was determined to be a result 
of diffusion (migration) and eventually loss of the 
plasticizer. 

A common limitation with plasticized PBXs is that of 
plasticizer migration over time and at elevated temperatures 
during their service and even in the early stages of 
manufacture, during cure of the explosive charge. 
Plasticization is one of two mechanisms: internal 
plasticization, in which plasticizer molecules are attached to 
the polymer covalently as part of the polymer chain. And 
external, in which DOA is homogenized and absorbed by 
the polymer and oxidizer ingredients (as in PBXN-11) and 
other polymer-based explosives or rocket propellants. In 
internal plasticization, migration of plasticizers is absent. 
Plasticizer migration is more a concern when external 
plasticization occurs. 

In almost all plasticizers, loss occurs primarily due to their 
volatility, which comprises dual transport phenomena. The 
first is diffusion, which occurs when DOA moves through 
the explosive matrix from the inner core to the surface, and 
that is largely influenced by temperature coupled with 
viscosity and molecular weight of the plasticizer. The 
second is evaporation, which is greatly influenced by 
temperature and vapour pressure of the plasticizer. 

In the case of PBX (AF)-108 mixes, which were vacuum 
cast and subjected to high temperature cure, plasticizer 
migration was present, and could be noticed in coefficient of 
variation readings, depicted in Figure 13. For each mix, six 
faces (locations) of the rectangular block (Figure 4) were 
measured in triplicate, using HPLC bench top instrument. 
Coefficient of variation was stable (under or around 5%) 
with the exception of mixes 1, 16, 17, 18, 19, and 20. This 
variation is more an indication of IDP migration (diffusion) 
throughout the explosive matrix. 

Since coefficient of variation (CV) is a statistical tool 
generally used to express the standard deviation as a 
percentage of what is being measured relative to the sample 
or population mean, this variation is expressed as a percent 
of the mean. CV is determined by the relationship of 
“equation (1)”: 

CV = (SD/ ) x 100  (1) 

Where  and SD represent the sample mean and the 
sample standard deviation, respectively. 
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CV is a reliable reading when standard deviation (SD) rises 
proportionally with concentration. For example, in a 
replicate experiment data could indicate a value of 4 for 
standard deviation at a concentration of 100 units. This 
value could indicate a reading of 8 for standard deviation 
but this time at a concentration of 200 units. In both cases, 
coefficient of variation is the same, i.e. 4.0%. Coefficient of 
variation in such case is more useful than standard deviation 
for describing method performance at concentrations in 
between. In some tests however, standard deviation may be 
constant over the analytical range. Generally speaking, 
coefficient of variation CV provides a general "feeling" 
about the performance of a method. CVs of 5% or less 
generally give us a feeling of good method performance, 
whereas CVs of 10% and higher sound bad. However, the 
mean value becomes important before judging a CV. At 
very low concentrations, the CV may be high and at high 
concentrations the CV may be low. For example, a test with 
an SD of 0.1 mg/dL at a mean value of 0.5 mg/dL has a CV 
of 20%, whereas an SD of 1.0 mg/dL at a concentration of 
20 mg/dL corresponds to a CV of 5.0%. 

In Figure 14 the average standard deviation is plotted 
against the mix number. In the graph, standard deviation for 
RDX,/HMX, and E-702 is markedly low, and within 
specifications of +/- 1.7% and 0.01%, respectively 
(RDX/HMX = 82.0 +/- 1.7%; E-702 = 0.50 +/- 0.01%; IDP 
= 5.3 +/- 0.10%). In the case of RDX/HMX maximum 
measured standard deviation value  is 0.8%, significantly 
below the maximum allowable specification and well within 
acceptable range. Similarly, standard deviation for E-702 is 
just 0.01 and within its specification limit of +/- 0.01%.  In 
the case of the plasticiser (IDP), standard deviation is 
relatively higher than would be expected for most composite 
explosives and propellants with high solids content.  This is 
attributed to (i) migration of the plasticiser within the 
explosive matrix until steady state is attained (when the 
explosive is fully annealed); (ii)  as depicted in Figure 8, 
approximately 1/8” of the binder-rich surface of each cast 

 

block was peeled-off and removed from the surface of each 
sample block, henceforth exposing the homogeneous 
surface of the explosive. In a freshly manufactured mix, this 
binder-rich layer often contains higher amounts of 
plasticiser than fully annealed mixes. Because this process 
was performed by hand, rather than with a precision tool, it 
would be reasonable to expect higher variability in liquid 
plasticiser content between mixes, and therefore higher 
standard deviation. Lessons learned will be instituted in 
future work by (i) allowing mixes to sit for a period of 6-8 
weeks, to allow for the plasticiser component to attain 
steady state within the matrix; and (ii) a high precision tool 
will be used in removing the binder-rich layer, so that 
consistency between all mixes is exercised. 

In the case of microPHAZIRTM, standard deviation values 
are higher than HPLC values. This is due to the fact that 
NIR penetrates as high as 5 mm under the surface, whereas 
in the case of HPLC, a much larger sample is extracted from 
several locations and deeper than 5 mm.  In both techniques 
(HPLC vs. microPHAZIRTM) and as summarized in Tables 
2 and 3, measured values of primary constituents of each the 
twenty mixes, correlated quite well.  

Generally speaking, it would be reasonable to expect 
plasticizers in composite polymeric mixes to take longer to 
reach steady state levels throughout the matrix. These levels 
however tend to vary from one plasticizer to another, 
depending on molecular weight, vapour pressure, and 
viscosity of a plasticizer. 

4. CONCLUSION 

The D-optimal design of experiment (DOE) was successful 
in developing an algorithm for microPHAZIRTM NIR 
handheld platform for use in quantitative determination of 
primary chemical constituents of PBX (AF)-108. Therefore, 
use of microPHAZIRTM NIR handheld platform for real-
time non-destructive quantification of constituents of plastic 
bonded explosives was determined to be a valid test method 
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without generating chemical waste and/or residue. Datasets 
from both microPHAZIRTM NIR handheld platform and 
Agilent 1100 High-pressure liquid chromatography (HPLC) 
platform were close to each other and representative of the 
constituents of PBX (AF)-108 explosive. In the case of the 
microPHAZIRTM NIR handheld platform, the dataset 
indicates more stability in variance across the full datasets 
however observations of measurements collected using 
Agilent 1100 High-pressure liquid chromatography (HPLC) 
platform indicates sample inhomogeneity as a result of 
plasticizer migration. In the case of microPHAZIRTM NIR 
handheld platform the following observations may be stated: 

I. Averaging data improves results. 

II. Excellent ability to quantify HMX+RDX 
concentration 3.  Good ability to quantify IDP 
plasticizer concentration and migration trends 

III. Migration trends of IDP plasticizer requires 
multiple measurement points to improve reliability 
and confidence levels  

IV. Good ability to quantify E-702 stabilizer 
concentration. 

V. Repeat measurements of E-702 stabilizer content 
will improve reliability and confidence levels  

Some drawback associated with microPHAZIRTM NIR 
handheld platform may be summarized as follows: 

I. The platform has not yet been validated to offer 
reliable measurement of components, which exist 
in trace concentrations (below 0.1%). More testing 
will be deemed necessary in future DOEs. 

II. The platform periodically undergoes automatic 
calibration, during measurements, which is a 
necessary step, but can be frustrating at times. 

III. For measuring chemical constituents of other 
explosives, a new DOE will be required for each 
explosive formula and an associated algorithm 
must be developed. 

IV. Use of microPHAZIRTM NIR handheld platform 
for measuring chemical constituents of rocket 
motor solid rocket propellants will require 
retrofitting of an optical fiber wand to the machine. 
The wand will enable the user to measure chemical 
constituents inside the solid rocket propellant bore. 

V. Because microPHAZIRTM NIR handheld platform 
is a handheld instrument, it requires the use of a 
rechargeable lithium ion battery, and therefore a 
spare battery and a battery charger are important 
components of the platform and are supplied by the 
manufacturer, Thermo Fisher Scientific. 

 

NOMENCLATURE 

AF Air Force  

AOP Allied Ordnance Publication  

ATK Alliant Techsystems  

LS Launch Systems  

BTCA Breakdown, Test and Criticality Analysis  

CAD Cartridge-Actuated Device  

CT Computed Tomography  

CV Coefficient of Variance  

DOA Dioctyl Adipate  

DoD Department of Defense  

DSC Differential Scanning Calorimetry  

DSTO Defence Science and Technology Organization 

E-702 4,4-methylenebis (2,6-di-tert-butyl-phenol) 

EED Electro-Explosive Device  

ESD Electrostatic Discharge  

HMX High Melting eXplosive  

HOPS Hazardous Operation Standards  

HPLC High-Performance Liquid Chromatography 

IDP Isodecyl Pelargonate  

MoD Ministry of Defence  

NATO North Atlantic Treaty Organization  

NDE Non-Destructive Evaluation  

NDT Non-Destructive Testing  

NIR Near-Infrared  

OBEC Operating Building Electrical Classification Board  

ODS Octadecyl Silane  

OSCB Operations Safety Control Board  

PAD Propellant-Actuated Device  

PBX Plastic-Bonded Explosive  

PHM Prognostics and Health Management  
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ABSTRACT

Validation of prognostic technologies through ground and
flight tests is an important step in maturing these novel tech-
nologies and deploying them on real-world systems. To this
end, a series of flight tests have been conducted using an un-
manned electric vehicle during which the motor system bat-
teries were monitored by a prognostic algorithm. The re-
search presented here endeavors to produce and validate a
technology for predicting the remaining time until end-of-
discharge of the batteries on an electric aircraft as a function
of an expected future flight and online estimates of the charge
contained in the batteries. Flight data and flight experiment
results are presented along with an assessment of model and
algorithm performance.

1. INTRODUCTION

Recent improvements in battery technology have increased
energy density and capacity to the point of considering them
for general aviation vehicles. Battery health management
(BHM) is a safety-critical enabling technology for electric
aviation. Safe adoption of battery-powered propulsion in avi-
ation, however, suffers from difficulty in accurately estimat-
ing the total storage capacity in the batteries and determin-
ing the remaining useful capacity at any given instant during

Quach Cuong Chi et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

flight. This paper describes the application and assessment
of a battery health prognostics system in an unmanned all-
electric subscale aerial vehicle.

We develop a BHM system using a model-based framework
on the Edge-540T electric aircraft (Saha et al., 2011). In
model-based prognostics (Saha & Goebel, 2009; M. Orchard,
Tobar, & Vachtsevanos, 2009; Daigle & Goebel, 2013; Luo,
Pattipati, Qiao, & Chigusa, 2008), a model of the system un-
der prognosis is developed for the purposes of state estima-
tion and remaining life prediction. In this work, we compare
the original particle filter-based implementation with a new
unscented Kalman filter-based implementation that takes ad-
vantage of an improved battery model and new input predic-
tion methods in order to improve health state estimation and
end-of-discharge prediction performance.

This paper is organized as follows. Background informa-
tion and motivation for the implementation of onboard bat-
tery health management algorithms for electric vehicles are
given in Section 2. The prototype electric aircraft used to
demonstrate battery charge estimation and battery end of dis-
charge (EOD) prediction is described in Section 3. Battery
state of charge (SOC) estimation and EOD prediction results
are presented in Section 4 along with a description of rele-
vant model-based filtering techniques. Uncertain EOD pre-
dictions made over a sample flight of the unmanned aerial
vehicle (UAV) are presented and assessed in Section 5. Con-
clusions and future work are discussed in Section 6.

1
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2. BACKGROUND

Electric propulsion has long been used in cars and small
UAVs. Recently, improvements in battery storage capacity
have made it possible for general aviation vehicle manufac-
turers to consider battery-powered solutions as well. With
recent urgency to address environmental concerns, vehicle
manufacturers are increasingly investing in electric alterna-
tives (Harrup & Davis, 2010). Further, electric propulsion
provides a number of operational and control advantages: re-
duced noise, no emissions, more responsive thrust, and re-
duced part count, to name a few. Use of battery-powered
propulsion systems in manned and unmanned aircraft alike
will require more sophisticated means of estimating available
battery charge during operation. The estimation of remaining
charge is not easily determined during usage and, in addition,
each battery’s charge storage capacity degrades over its life
span.

As a result, operators of electrically-propelled aircraft are left
making conservative estimates of mission time. And, if a sig-
nificant change to the mission is required during flight, no
simple method exists to determine actual versus required bat-
tery charge. In other words, an operator currently must have
a reliable way to answer the following questions: 1) What
is the required charge to complete the new mission?, and 2)
What is the actual charge left in the batteries?

2.1. Battery Health Management Approaches

The main objective of BHM research is to create prognos-
tic algorithms that provide accurate estimates of battery stor-
age capacity during flight planning and accurate indication
of remaining charge during flight. Battery system models
for electric aircraft have been developed based on previous
laboratory and field experiments by (Saha, Goebel, Poll, &
Christophersen, 2009; Saha et al., 2011) and by (Daigle, Sax-
ena, & Goebel, 2012). The work reported here covers testing
and adapting the battery prognostic model to the flight envi-
ronment of a real electric vehicle.

The applied approach is to develop and implement onboard
BHM which monitors usage of the motor batteries and which
runs estimation and prediction algorithms to: 1) determine
the SOC, which expresses the remaining battery charge in a
relative percentage; 2) predict the EOD, which is the total fly-
ing time; and 3) estimate the Remaining Useful Life (RUL),
which is the remaining flying time from the present instant.
The SOC is intended to be much like the fuel gauge in a con-
ventional liquid fueled system. The RUL and EOD both de-
scribe similar information, which is to provide the operator
some notion of how much operating time is remaining. The
difference is that the EOD predicts the total flying time rel-
ative to the start of the flight, whereas the RUL predicts the
remaining flying time relative to the current time. Because
the charge storage capacity and other battery parameters are

Figure 1. Useful charge available from new vs. old battery

known to degrade over the battery’s life, the underlying bat-
tery model must be tuned such that EOD predictions account
for the life cycle degradation of the batteries.

2.2. Challenges in Online Computation of Battery SOC

In conventional liquid fuel systems, the remaining fuel level
can be reliably measured and thus the remaining operating
time can be obtained using vehicle and motor performance
characteristics. This is because the volume of the tank is con-
stant over the vehicle’s lifespan. To the contrary, charge ca-
pacity in batteries can diminish over recharge cycles, and, de-
pending on the chemistry used, over time as well. Part of the
challenge of predicting the current battery SOC is determin-
ing the maximum capacity of constituent cells, which repre-
sents the initial condition of the discharge curve. As batteries
age and experience an increasing number of recharge cycles,
their maximum capacities diminish. Figure 1 illustrates this
typical life cycle degradation for three batteries used in sev-
eral flight experiments.

For this research, the charge capacity for a battery is the
charge it can supply between its maximum rated voltage and
the point when voltage drops precipitously under load. The
precipitous drop is figuratively called the ”knee point”.

3. PROTOTYPE ELECTRIC VEHICLE DESCRIPTION

A 33% scaled Edge-540T, with electric propulsion, is used for
this BHM research and development, as shown in Figure 2.
It is 98 inches long with a 100 inch wing span and weighs
47.4 lbs., has 1881 in2 of wing area with an average wing
load of 0.025 psi.

The power system consists of two outrunner brushless DC
electric motors mounted in tandem to drive a 26-inch pro-
peller. The motor assembly turns the propeller up to
6000 RPM to develop about 37 pounds of thrust. Its airspeed
ranges from a stall of 12 m/s to a dash of about 40 m/s (23-77

2
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Figure 2. Picture of Edge-540T during landing
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Figure 3. Motor System Diagram

knots).

Electrical connections in the aircraft powertrain are illustrated
in Figure 3. The two propeller motors are each powered by
a series connection of two lithium-polymer (LiPo) battery
packs. The power flow to the motors is controlled by a Jeti
90 Pro Opto electric speed controller (ESC). The ESC sends
synchronized voltages to the motors at a duty cycle that is
determined by a throttle input signal sent either by remote
control from a pilot, or by an onboard autopilot.

Inductive loop current sensors are mounted on the positive
lead feeding each ESC. Additional current sensors are also
mounted on the positive feed from each of the four batteries.
The positive lead of each battery is tapped to provide the data
system with battery voltage measurements. These are the sig-
nals that the BHM system uses to estimate SOC, EOD, and
RUL.

3.1. Energy Storage System

Each battery used to power the tandem motors consists of two
sets of five series-connected 4.2 V 3900 mAh LiPo pouch
cells, wired in parallel (Figure 4). The total rated capacity of
each pack is 7800 mAh with a 50 C max burst discharge. The

Figure 4. Powertrain battery packs
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Figure 5. Ground track of flight

50 C burst discharge allows a takeoff draw of up to 390 A.
Takeoffs generally peak about 140 A. When fully charged,
each 5-cell pack has an open circuit voltage of 21 V (4.2 V
per cell). Two serially connected packs provide a maximum
potential of 42 V to each motor.

The airplane is equipped with an autopilot that has the ca-
pability to navigate using a stored flight plan. A safety pilot
typically flies the airplane from runway to test altitude and
switches control to the autopilot, which proceeds to fly the
flight plan. Figure 5 shows the ground track for a typical
flight. Flight activities typically occur at 200 m above ground
level. Flights last about 15 minutes with flight duration de-
pending largely on throttle management.

A ground station interface monitors navigation and flight sta-
tus using a vertical situation display, a moving map, and var-
ious text parameter displays. A second ground display mon-
itors the powertrain batteries showing voltages, currents, re-
maining flight time, and state of charge for all four powertrain
batteries.

3.2. Data System and Raw Data

The aircraft is instrumented with a real-time data system, de-
scribed in (Hogge, Quach, & Hill, 2011). For the BHM re-
search, the data system records battery voltage, current, and

3

Annual Conference of the Prognostics and Health Management Society 2013

505



Annual Conference of the Prognostics and Health Management Society 2013

Serial'Port'Card'
('4'/'RS232'ports)'

Analog'I/O'(2)'
(Motor'current,'Air'data,…)'

Processor'

Analog'I/O'(1)'
(BHM,Accel,…)'

DC/DC'converter'

PC
/1
04
'IS
A'
Bu

s'

Storage'

a. CG'Accelerometers'
b. Motor'Current'
c. Event'Marker'

a. RPM'
b. Servo'Pos'(7)'
c. StaNc/Diff.'Pressure'
d. Alpha/Beta'

AirData/ServoPos'
Signal'CondiNoning'

BaQery'Signals'Card'

a. Motor'BaQ.'Volts'(4)'
b. Motor'BaQ.'Current'(4)'
c. Motor'BaQ.'Temp.'(4)'

GPS'Receiver'

AHRS'AHRS'–'VN100'
Gyro,'Mag.,'Accels'

Serial'Stream''
Tx''(OURXite9x)'

900'MHz'
ISM'

GPS'L1'

Figure 6. DAQ hardware diagram

temperature at 400 Hz. Figure 6 diagrams the data system
hardware components. The data system also executes a bat-
tery prognostic model that computes the EOD, RUL, and
SOC for all four batteries.

3.3. Flight Plan (Mission)

A sample flight of the Edge-540T electric aircraft is described
in this section. This flight test includes: 1) a flight segment
from take-off at 0 s to landing at 692 s; 2) taxiing to posi-
tion from 692 s to 885 s; 3) operating the motor on the run-
way to discharge the batteries (885-1435 s). The experiment
is stopped when the battery voltages drop below a specified
cut-off threshold of 17 volts that designates the end of useful
power delivery from the batteries.

The first flight segment (0-692 s) consists of essentially four
activities. These include a take-off, followed by flight in auto-
mode executing a flight plan at constant throttle set to 75%.
The throttle is increased to 85% from 322 to 550 s. The throt-
tle is then decreased to 75% from 550 to 692 s.

Figure 7 shows the throttle, propeller RPM, and battery power
profiles recorded over a sample flight. Recall from Figure 3
that each motor is fed by a different circuit and that each
circuit is powered by two batteries wired in series. The
blue/square and red/diamond traces shown in Figure 7 give
the net battery power input to the ESCs powering motors M1
and M2, respectively. The net battery power input to an ESC
is given by the product of the current flowing through the ESC
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Figure 7. Plots of throttle command, propeller RPM, and bat-
tery power draw measured over a sample flight

and the sum of the two series-connected battery voltages pow-
ering the ESC. The black trace in the battery power plot gives
the sum of all battery power input to the two onboard ESCs.

Figure 8 shows the current and voltage profiles for three of the
four batteries used to power the two propeller motors onboard
the Edge-540T. The current and voltage data for battery B4
showed anomalous readings and are omitted from the plots in
this paper. The ticks on the x-axis in Figures 7 and 8 denote
the time of notable activities.

An interesting observation to note regarding the battery power
draw over the sample flight is that motor M2 draws more
power than motor M1 the majority of the time. This occurs
until the batteries supplying power to motor M2 are depleted
to about 18 volts each. At this point, the batteries powering
motor M1 begin to take the majority load. This crossover is
seen in both the battery power and battery current profiles at
about the midpoint between 885 and 1232 s.

Relatively constant current draw is seen in Figure 8 for the
three periods of constant throttle. Note the steep drop in volt-
age during the takeoff climb to below 20 V at time 0 and the
subsequent voltage recovery by 57 s.

The period from 692 to 885 s in the figures shows the bat-
tery load when the pilot resumes control to land the airplane
and get the airplane in position to operate the motors on the
runway. Operating the motors on the runway to the end of
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Figure 8. Battery current and Voltage profiles measured over
sample flight

discharge for validation purposes, in lieu of flying until end
of discharge, is more desirable as it abates the risk of a ”dead
stick” landing or a potential crash.

The period between 885 to 1435 s captures the ground dis-
charge of the aircraft’s batteries. This phase of the flight test
is used to generate a ground truth measurement of the flight
time that the batteries would have been able to support had
the plane stayed in the air. For this segment, the pilot ini-
tially set the throttle to match the RPM range observed dur-
ing the 75% constant throttle phase of the flight between 550 s
and 692 s. For a constant throttle setting in the runway dis-
charge, the propeller RPM, shown in Figure 7, trends down-
ward and eventually drops below 4000 RPM. This is due to
the weakened battery condition in the latter part of the dis-
charge. Because the ground discharge is intended to imitate
flight, the throttle was increased at time 1232 sec to raise the
RPM above 4000 so as to meet output requirements for cruise
flight.

The motors were stopped at 1435 s, after the batteries volt-
ages were seen to fall below the 17 V threshold. Note that the
net current draw is seen to increase as the net battery voltage
decreases between 885 and 1232 s in order to meet the power
demand dictated by the throttle set-point.

4. BATTERY CHARGE DEPLETION PREDICTION

Online battery prognostic algorithms are intended to estimate
the present SOC and predict the EOD for the LiPo batteries
that are used to power the aircraft’s propeller motors. Sepa-
rate battery systems are used to power the data acquisition and

V
Cb

Rp

Cs Ccp

Rs Rcp

i

Figure 9. Equivalent circuit battery model

other flight communications and control hardware. The bat-
tery systems are sized such that it is always the case that the
batteries powering the propeller motors will be the first to be
depleted. For this reason, onboard battery discharge prognos-
tic algorithms and supervisory decision making actions are
only concerned with the propeller-driving batteries. Onboard
battery charge depletion prediction routines will first estimate
the current battery state, then these uncertain state estimates
will be propagated into the future using uncertainty model-
ing of battery physics and uncertainty models for the future
demands to be placed on the battery system.

4.1. Battery Modeling

The current SOC of powertrain batteries is estimated using
periodic battery current and voltage measurements along with
a model that captures the current-voltage characteristics and
how they vary as a function of battery charge (Pang, Farrell,
Du, & Barth, 2001).

The model used here is an extended version of that presented
in (Daigle et al., 2012). Figure 9 shows an equivalent circuit
battery model that makes use of three resistor and three ca-
pacitor components that are each tuned to match the observed
current-voltage dynamics of the batteries used to power the
propeller motors on the Edge-540T. Battery charge is stored
in the capacitor, Cb, in the equivalent circuit battery model.
The Rs, Cs and Rcp, Ccp circuit element pairs capture bat-
tery internal resistance drops and concentration polarization
effects, respectively. The resistor Rp is a large parasitic
resistance that accounts for the slow battery self-discharge
that is seen to occur over weeks or months of storage. Be-
cause battery current-voltage dynamics are known to vary as
a function of battery SOC some of the resistive and capaci-
tive (RC) components in the equivalent circuit model must be
parametrized as functions of battery SOC (Zhang & Chow,
2010). It was decided based on qualitative observation that
defining Cb, Ccp, and Rcp as parameterized functions of bat-
tery SOC gave an acceptable trade-off between the number of
parameters to be identified and model error.
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Table 1. Parameter values used in equivalent circuit model

Parameter Value Parameter Value
qmax 2.88× 104 C Cs 89.3 F
Cmax 2.85× 104 C Rcp0 1.60× 10−3 Ω
CCb0 19.4 F Rcp1 8.45
CCb1 1576 F Rcp2 −61.9
CCb2 41.7 F Ccp0 2689 F
CCb3 −203 F Ccp1 −2285 F
Rs 2.77× 10−2 Ccp2 −0.73 F

Battery SOC is defined as:

SOC = 1− qmax − qb
Cmax

(1)

where qb is the charge stored in the battery, qmax is the max-
imum charge that the battery can hold, and Cmax is the max-
imum charge that can be drawn from the battery. The term
coulombic efficiency is used to refer to the portion of stored
charge that is recoverable during the discharge of the battery.
There are some mechanisms including resting the battery that
can unlock some of its lost capacity, however, the overall
trend is inevitably downward.

Cb, Ccp and Rcp are parameterized as:

Cb = CCb0 +CCb1 ·SOC+CCb2 ·SOC2 +CCb3 ·SOC3 (2)

Ccp = Ccp0 + Ccp1 · exp (Ccp2 (SOC)) (3)

Rcp = Rcp0 +Rcp1 · exp (Rcp2 (SOC)) (4)

where CCb0, CCb1, CCb2, CCb3, Rcp0, Rcp1, and Rcp2

are empirical coefficients that are tuned based on observed
current-voltage battery data over a range of SOC.

The current and voltage dynamics of the equivalent circuit
model are defined as:

xB =
[
qb qcp qCs

]T
(5)

ẋB =



− 1

CbRp

1
CcpRp

1
CsRp

1
CbRp

− 1
CcpRpRcp

1
CsRp

1
CbRp

1
CcpRp

1
CsRp


xB+



i
i
i


+ξ (6)

yB = Vp =
[

1
Cb

1
Ccp

1
Cs

]
· xB (7)

where qb, qcp, and qcs represent the charge stored in Cb, Ccp,
and Ccs respectively, and the voltage drop across the battery
terminals is equal to the sum of the voltage drops across each
of the three capacitors.

The fitting of equivalent circuit RC parameters to the ob-
served current-voltage response of the Edge-540T powertrain
batteries is described in (Bole et al., 2013). The identified
parameter values for the batteries used in the sample flight
described in Section 3.3 are given in Table 1.
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Figure 10. Modeled and measured voltages of batteries B1
and B3 for a sample flight loading profile

Figure 10 shows the predicted and measured voltage profiles
for batteries B1 and B3 using the recorded battery current
profiles shown in Figure 8. The close match between ob-
served battery voltages and open-loop predictions made using
the given loading profile provides a measure of validation for
the fitted battery models.

4.2. Estimation

The identified battery model may be used to implement an ob-
server for the internal battery states based on sampled voltage
and current data. The unscented Kalman filter (UKF) (Julier
& Uhlmann, 1997, 2004) and the particle filter (Arulampalam
et al., 2002), are two flexible tools for preforming closed-loop
updates of the probabilistic belief in system state estimates
based on stochastic (and possibly nonlinear) models of sys-
tem dynamics. Both approaches operate by drawing samples
from probability distributions that are estimated for all of the
uncertain parameters in the system state estimate and system
dynamics model.

Particle filters use a discrete set of weighted samples, called
particles to represent the belief in current system state esti-
mates. Particles are sampled stochastically. The number of
particles used and the methods used to assign weights and
resample particles are design choices that will determine the
computational overhead of this approach.

The UKF assumes a general nonlinear form of the state and
output equations, and efficiently propagates model and state
uncertainties without the need to calculate Jacobians (unlike
the extended Kalman filter). The UKF is restricted to additive
Gaussian noise random processes; however use of the un-
scented transform, a deterministic sampling method, allows
random variables with non-Gaussian distributions to be in-
corporated using a minimal set of weighted samples, called
sigma points (Julier & Uhlmann, 1997). The number of sigma
points is only linear in the dimension of the random variable,
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Figure 11. Estimated SOC for batteries B1 and B3 over flight

and so the statistics of the transformed random variable, i.e.,
mean and covariance, can be computed much more efficiently
than by random sampling.

The use of a Kalman filter to update battery SOC estimates
based on current and voltage samples is described in (Pang
et al., 2001). The output of such closed-loop state estimation
techniques will be much less susceptible to initialization and
measurement errors than the Coulomb counting method cur-
rently used in many battery monitoring systems (Dai, Wei, &
Sun, 2006).

Figure 11 shows the evolution of SOC estimates that are pro-
duced by a UKF algorithm acting on the voltage and current
measurements for batteries B1 and B3 over the sample flight.
The prior distribution of the process noise used in the UKF
model is small here due to high confidence in the fitted bat-
tery model. The measurement noise is also assumed to be
small due to accurate current and voltage sensing onboard
the vehicle. The low measurement and process noise priors
result in negligible uncertainty around SOC estimates in this
case study. Therefore, uncertainty in the battery discharge
prognostic estimates presented here is caused almost entirely
by uncertainty in estimates of the future loads to be placed on
system batteries.

4.3. Prediction

The batteries are considered to have reached the EOD con-
dition when the battery voltage knee is observed under flight
loads. The battery voltage knee is characterized by a pre-
cipitous drop in voltage that occurs at low battery SOC. The
voltage knee is observed at approximately 1410 seconds for
all of the powertrain battery voltages plotted in Figures 8 and
10.

In order to make a prediction, the future loading on the batter-
ies and the corresponding uncertainty must be characterized
in some fashion. In the sample flight described in Section 3.3,
the aircraft flight plan is composed of the following phases;
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Figure 12. Measured and predicted net battery power con-
sumption over sample flight. The six phases of the sample
flight are annotated P1-P6

1. takeoff and climb to ∼200 meters (duration = 60 s)

2. maintain altitude, set throttle to 75% (duration = 275 s)

3. maintain altitude, set throttle to 85% (duration = 228 s)

4. maintain altitude, set throttle to 75% (duration = 142 s)

5. land and taxi down the runway (duration = 193 s)

6. fully deplete batteries by spinning the propeller at similar
RPMs those observed in phase 4.

The purpose of spinning the propeller at similar RPMs to
that observed during 75% throttle flight is to safely obtain
an approximate measurement for the amount of flight time
that would have been supported by the battery pack if the
aircraft had continued to be flown at the approximately the
same speed as it was going in phase 4. This measurement
allows comparison between battery EOD predictions made at
various points over the sample mission, and the EOD time
observed experimentally.

Subtracting the time spent landing and taxing on the runway
(during which vary little power is drawn) from 1410 seconds,
gives an approximate measurement for the time at which the
EOD condition would have been observed if the aircraft had
continued to be flown at the same speed as in phase 4 of the
flight plan until EOD, 1410− 193 = 1217 seconds.

Figure 12 shows measured and predicted net battery power
consumption over the sample flight. Future battery loading
is estimated for the sample flight using knowledge of phases
1-4 in the flight plan enumerated above. The battery load pre-
dicted for phase 4 of the flight plan is assumed to continue un-
til the battery system EOD condition is observed. The mean
battery load prediction, shown as a dashed line in Figure 12,
is estimated using a prior characterization of the energy re-
quired to perform aircraft maneuvers that are specified by a
given flight plan. Characterization of net battery power re-
quired for the Edge-540T UAV to fly a given set of maneuvers
is described in (Bole et al., 2013). A uniform probability dis-
tribution ranging ±30% from the mean battery load estimate
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is added to future load estimates, denoted by the green band
in Figure 12, to account for unmodeled system dynamics.

Given a state estimate, the prediction step proceeds by simu-
lating that state estimate through time up until the EOD point,
incorporating assumed future loading. For both the particle
filter and UKF, the state estimate is represented by a set of
weighted samples. The distribution of future loading, i.e.,
the battery power demand, is assumed to be constant over
each leg of the flight. The constant demand over each leg
of the flight is assumed to be drawn from a uniform distri-
bution ranging ±30% from the mean battery load estimate.
Here, we use the unscented transform to sample from the fu-
ture loading distribution and obtain sigma points that cover
the distribution, as described in (Daigle et al., 2012).

The equivalent circuit battery model is initialized for EOD
prediction by taking a sample from the battery state estimate.
The battery model is then simulated until EOD, using a bat-
tery load input that is drawn from the estimated distribution
of possible future battery power demands. Just three sigma
points are required to represent the uniformly distributed fu-
ture battery loading demands. For a uniform distribution
with the value used for the free parameter in the unscented
transform yields the three points as the mean of the distribu-
tion and its two endpoints, thus naturally capturing the input
bounds. The belief distribution for current system states is
represented using nine samples from the UKF. The EOD be-
lief estimate is then constructed by generating EOD estimates
for all combinations of the nine samples representing battery
state estimates, and the three samples of future battery load
(9 · 3 = 27 samples). This is much more efficient than when
using the much greater number of samples from the particle
filter.

5. ASSESSMENT

Figure 13 shows upper and lower bounds of RUL and EOD
predictions for batteries B1 and B3, obtained using UKF for
state estimation and the unscented transform for sample point
identification. Although these projections are computed for
all four batteries during the flight, only batteries B1 and B3
are shown in these graphs to avoid clutter. The figure shows
the median, and range of the probability distribution calcu-
lated from the three simulated sigma points. RUL and EOD
predictions are shown against the ground truth measurement
of RUL and EOD obtained by fully discharging the batter-
ies at flight loads on the ground. The ground truth measure-
ments for EOD and RUL are shown as dashed lines in the
figure. The ground truth RUL measurement is calculated by
subtracting the current time from the EOD time, which was
estimated to occur at 1217 seconds in Section 4.3 if the UAV
had continued to fly at approximately the same speed as it was
going in step 4 of the flight plan. An accuracy cone defined
by α = 0.3 is also shown for reference purposes. Predic-
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Figure 13. RUL and EOD predictions with future input trajec-
tories drawn from a uniform distribution using the unscented
transform.

tions are shown at 60 s intervals. Here, we see that while the
estimated RUL and EOD distributions seem to be converg-
ing to the true RUL and EOD as the flight progresses, there
is a consistent over-estimation of EOD for battery B1 and a
consistent under-estimation of EOD for battery B3 over the
sample flight.

The EOD estimation bias apparent in Figure 13 is explained
by the fact that the battery demand modeling used assumes a
constant split of power between the two tandem mounted pro-
peller motors. However, as was shown in Figures 7 and 10,
the power split between motors M1 and M2 is seen to change
abruptly near the end of discharge.

Although the RUL estimates for B3 are seen to be slightly
conservative, the estimates are fairly stable over the flight,
and the estimated RUL probability density functions are seen
to mostly fall within the 30% relative accuracy cone shown
for the sample flight. This result is a considerable improve-
ment on previous particle filter based implementations of bat-
tery EOD prognostics, that used the average of battery current
over a finite window to estimate the future battery loading
over a flight (Saha et al., 2011, 2009; Saha & Goebel, 2008;
M. E. Orchard et al., 2012). Not only are the predictions more
accurate, but they are more stable as well.

Figure 14 shows the mean RUL and EOD predictions ob-
tained using a particle filter algorithm described in (Saha et
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Figure 14. RUL and EOD predictions using particle filtering
with future load estimated using a 100 second window of past
current data

al., 2009), with a 100 s moving average used to project future
battery current draw. Observe that the high current draw dur-
ing takeoff does not reflect in reduced RUL until 57 s later;
likewise, when the 75% constant throttle segment is started
at the 57 s mark, the RUL does not stabilize until about 50 s
later; and again at the 322 s throttle change. This effect is
most pronounced on the throttle transition from the ground
motor off to the ground discharge at 885 sec. This 50 s hys-
teresis could be reduced by reducing the width of the 100 s
sliding window but at the expense of getting more jittery RUL
projections which makes for a more unnerving operator ex-
perience. With a small window, the RUL predictions tend to
fluctuate because when the load over the window is higher
than what the load will be in the future, RUL is underpre-
dicted, and when the load over the window is lower than the
future load, RUL is overpredicted.

6. CONCLUSIONS

This paper described the application and assessment of bat-
tery charge depletion prognostics onboard an unmanned all-
electric subscale vehicle. The paper also described a sam-
ple flight test during which a preplanned flight plan is au-
tonomously flown by the aircraft. Predictions of available
flight time remaining where generated based on measure-
ments of the battery state of charge and knowledge of a flight
plan. After a predetermined time the aircraft was landed and
the propeller was spun at flight speeds to obtain a measure-

ment of the actual flight time remaining. A unscented Kalman
filtering based battery discharge prognostic algorithm was
demonstrated, and the results were compared against a par-
ticle filtering based prognostic algorithm that had been pub-
lished previously. Future work will involve additional flight
tests, and improved input prediction methods that take advan-
tage of known flight plans for improved accuracy.
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ABSTRACT 

Up to date, model and parameter uncertainties are generally 

overlooked by majority of researchers in the field of battery 

study. As a consequence, accuracy of the SOC estimation is 

dominated by the model fidelity and may vary from cell-to-

cell. This paper proposes a systematic framework with 
associated methodologies to quantify the battery model and 

parameter uncertainties for more effective battery SOC 

estimation. Such a framework is also generally applicable 

for estimating other battery performances of interest (e.g. 

capacity and power capability). There are two major 

benefits using the proposed framework: i) consideration of 

the cell-to-cell variability, and ii) accuracy improvement of 

the low fidelity model comparable to the high fidelity 

without scarifying computational efficiency. One case study 

is used to demonstrate the effectiveness of the proposed 

framework.   

1. INTRODUCTION 

Hybrid Electric Vehicles (HEVs), Plug-in Hybrid Electric 

Vehicles (PHEVs) and Electric Vehicles (EVs) are gaining 

the popularity in automotive industry. Lithium-ion (Li-ion) 

battery is the most promising power source for 

HEVs/PHEVs/EVs due to its light weight, high energy 

density and relatively low self-discharge compared to Ni-

cad and NiMH batteries. Battery performances of interest, 

such as State-of-Charge (SOC), capacity and power 

capability, have been extensively studied due to their 

importance in real HEVs/PHEVs/EVs applications 

(Santhanagopalan & White, 2008; He et al., 2012; He et al., 
2012). Battery SOC, similar to the remaining gas in the 

gasoline vehicles, is of particular interest and should be 

exactly known at any operating time. Unfortunately, the 

percentage of the charge remaining in the battery, namely 

the battery SOC, is not a directly measurable quantity and 

thus should be accurately estimated instead. 

Coulomb counting is the most widely employed method for 

tracking the SOC provided that the initial SOC is known 

(Ng et al., 2008). Otherwise, Kalman Filter (KF) and 

Extended Kalman Filter (EKF) are typical methods for fast 

SOC estimation based on various equivalent circuit models 

of the Li-ion battery (Plett, 2004). Other methods in 

machine learning have been recently explored in the SOC 

estimation and/or degradation parameter (e.g., capacity) 

estimation (Andre et al., 2012; Lee et al., 2011; 
Santhanagopalan and White, 2010; Hu et al., 2012; He et al., 

2013).  

A common limitation in battery SOC estimation is 

ignorance of the battery parameter uncertainty if they are the 

same type and come from the same manufacturer. As a 

consequence, accuracy of the SOC estimation may vary 

from cell-to-cell. Another important limitation is 

unawareness of the model uncertainty which comes from 

the fact that no battery model can truly represent the 

physical system without any error in various operating 

conditions. Since the SOC estimation is conducted on the 

basis of the assumed ‘perfect’ battery model, any level of 
model uncertainty will cause biased SOC estimation 

regardless of the specific numeric algorithms. Up to date, 

the aforementioned two limitations are generally overlooked 

by majority of researchers in the field of battery study.   

Contribution of this paper is to propose a systematic 

framework with associated methodologies to quantify the 

battery model and parameter uncertainties for more effective 

battery SOC estimation. Such a framework is also generally 

applicable for estimating other battery performances of 

interest (e.g. capacity and power capability).  

The structure of the paper is organized as follows. Section 2 
illustrates model and parameter uncertainties of the battery 

model. Section 3 presents a framework with associated 
Xi et al. This is an open-access article distributed under the terms of the 

Creative Commons Attribution 3.0 United States License, which permits 

unrestricted use, distribution, and reproduction in any medium, provided 

the original author and source are credited. 
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methodologies to quantify the battery model and parameter 

uncertainties for more effective SOC estimation. Case study 

is presented in Section 4 for the demonstration of the 

proposed framework. Finally, conclusion is made in Section 

5.  

2. MODEL AND PARAMETER UNCERTAINTIES 

This section first presents a brief review of Li-ion battery 

models, and then illustrates model uncertainty and 

parameter uncertainty in the following two subsections, 

respectively.  

2.1 Battery Model  

Battery model can be classified into two groups: 

electrochemical models and equivalent circuit models. 

Electrochemical models are physics-based models where a 

set of governing non-linear differential equations are used to 

predict the battery internal state variables which can be 

further related to the typical battery performances of interest. 

They are generally treated as high fidelity models requiring 
high computational effort and thus are not desirable in real 

time battery SOC and State of Health (SOH) diagnosis. 

Equivalent circuit models are simplified physics-based 

models where a capacitor (or a voltage source) and resistors 

are used to represent the diffusion process and internal 

impedance of the battery cell, respectively. Compared to the 

electrochemical models, they can be viewed as low fidelity 

models with less accuracy but very high computational 

efficiency. Thus, majority of the Battery Management 

System (BMS) employs the equivalent circuit models for 

battery SOC and SOH diagnosis.  

A discrete time state-space model (see Eq, (1)) is typically 

used to estimate the battery hidden states (e.g. SOC and 

capacity) using the KF/EFK on the basis of the equivalent 

circuit models.    
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where xk is the state vector at the kth step; uk means the input 

vector (e.g. current); wk is the process noise; yk is the output 

vector (e.g. terminal voltage); vk is the measurement noise 

of the output vector; f(·) is the state transition function; and 

g(·) is the equivalent circuit model that relates the output 

vector with the input and hidden state vectors.  

2.2 Model Uncertainty 

When battery models are accurate and reliable, the output 

vector predicted from the model would be exactly the same 

as the true test results under various operating conditions. It 

is worth noting that above statement is valid when satisfying 
three conditions: i) no model parameter uncertainty, ii) no 

numerical algorithm uncertainty, and iii) no test error. 

However, models are generally built on the basis of many 

assumptions and simplifications and therefore model 

uncertainty may always exist because there is probably no 

ideal model which can predict the real physical system 

without any model bias.  

Eq. (2) shows one specific state-space model used for the 

SOC estimation.  
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where ����  is the SOC at the (k+1)th step; ���� is the 

coulomb accumulation for given charging/discharging 

efficiency (η), current (��) and time accumulation T;  �	is 
the nominal capacity. The second equation is the equivalent 

circuit model which builds the functional relationship for 

terminal voltage yk, OCV, internal impedance R and voltage 
change hk due to the hysteresis effect. A one-state hysteresis 

model is further expressed in Eq. (3).  


� �
exp �� ��������∆���

�� 
��� � �1 � exp �� ��������∆���
���!     (3) 

where " is a positive constant which tunes the rate of decay; 

and M is a polarization coefficient.  

For one specific battery cell, model uncertainty is the 

deterministic difference between the predicted terminal 

voltage yk and the true terminal voltage, which indicates the 

model inadequacy for representing the actual functional 

relationship under various battery operating conditions. In 

general, parameter uncertainty which will be illustrated in 

the next subsection is coupled with the model uncertainty 

and should be taken into account when characterizing the 

model uncertainty. Thus, model uncertainty becomes the 

stochastic difference between the predicted terminal voltage 

yk and the true terminal voltage. For the equivalent circuit 
model considered above, a corrected model after 

introducing the model uncertainty can be defined in Eq. (4). 

 

kkkkkkkk v，CxihRixOCVy +++−= ),()( δ

 

 (4) 

where δ(·) is the model uncertainty function which is also 
referred as the model bias in model validation community.  

Development of an effective model uncertainty 

characterization approach can improve model prediction 

accuracy in the intended uses of the model. Such process is 

especially useful to improve accuracy of a low fidelity 

model (e.g. equivalent circuit models with high 

computational efficiency) comparable to a high fidelity 

model (e.g. electrochemical models with low computational 
efficiency) so that battery SOC and SOH diagnosis can be 

conducted more effectively. 

2.3 Parameter Uncertainty 

A common mistake in battery SOC and SOH diagnosis is 

ignorance of the fact that the battery used in laboratory test 
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is different with others in real operation due to various 

sources of uncertainties (e.g. physical uncertainty) even if 

they are the same type and come from the same 

manufacturer. Physical uncertainty can be viewed as the 

cell-to-cell variability due to manufacturing tolerance. 

Correspondingly, parameter uncertainty is the realization of 
the physical uncertainty in the specific battery models.  

According to the battery model in Eq. (3) and Eq. (4), model 

parameters (e.g. internal impedance R, decay factor ", etc.) 

contain uncertainty due to the cell-to-cell variability and 

thus should be quantified appropriately. Otherwise, the 

battery SOC estimation may be accurate for one cell under 

perfect calibration condition, but not so accurate for other 

cells. The accuracy variability depends upon two factors: i) 

significance of the parameter uncertainty and ii) sensitivity 

of the accuracy with respect to the parameter uncertainty.   

2.4 Remarks on Model and Parameter Uncertainty  

In model calibration, the objective is to maximize the 

agreement between the model prediction and the 

experimental data. A common approach for simplification is 

to disregard the model uncertainty by maximizing the 

agreement between the original model prediction and the 

experimental data through calibration of unknown model 

parameters (e.g., internal impedance R, decay factor ", etc.). 

It is apparent that the calibrated model parameters may not 

be the true values. This is acceptable in model calibration 

because models are treated more pragmatically to increase 

their predictive power for one or several specified battery 
cells. However, if the objective is to improve the model 

prediction accuracy for the population of the battery cells 

under various operating conditions, it is risky to directly use 

model calibration technique because the model prediction 

could be inaccurate out of the calibration domain due to 

incorrect calibration of the model parameters and ignorance 

of the model uncertainty.  

3. PROPOSED FRAMEWORK FOR SOC 

ESTIMATION 

The proposed systematic framework is shown in Fig. 1 with 

consideration of the model and parameter uncertainties for 

more effective SOC estimation. There are two major 

benefits using the proposed framework: i) consideration of 
the cell-to-cell variability and ii) accuracy improvement of 

the initial battery model. Basically, this framework enables 

user to select a low fidelity battery model with high 

computational efficiency without scarifying the accuracy 

because a corrected battery model with high accuracy can be 

later obtained through characterizing the model uncertainty. 

Furthermore, battery SOC or SOH diagnosis becomes 

probabilistic instead of deterministic so that confidence of 

the estimation is available. Following subsections elaborate 

each step of the framework.   

3.1 Determination of Initial Battery Model  

The initial battery model ideally should include major input 
factors which influence the output performances. For 

example, OCV, SOC, charge/discharge current, hysteresis 

and temperature are important inputs for predicting the 

terminal voltage accurately and thus they should be 

considered in the empirical model. The purpose is to have a 

good base model with reasonable accuracy so that model 

uncertainty can be more effectively quantified to improve 

the model prediction accuracy. Otherwise, more noise 

factors would be included in the quantified model 

uncertainty such that the corrected model prediction would 

provide much wider confidence intervals to account for the 
ignorance of the important factor. In this study, the 

equivalent circuit model in Eq. (2) and Eq. (3) is used 

without considering the temperature effect. Thus, testing is 

conducted in the room temperature to eliminate the noise 

factor from various temperature levels for the SOC 

estimation.  

 
Figure 1. Flowchart of the proposed framework for battery SOC and SOH estimation 

3.2 Quantification of Parameter Uncertainty  

A certain number of battery cells should be determined to 

account for the cell-to-cell variability based on the 

parameter uncertainty. For example, defined pulse power 

capability tests of five battery cells result in five sets of 

model parameters after calibration of each battery cell 

individually. Thus, five random realizations are available for 

quantifying the uncertainty of each model parameter. The 

issue of data sufficiency needs to be addressed in this step.  

Typically, random parameters can be classified into two 

groups: i) irreducible random parameter and ii) reducible 

random parameter. The irreducible random parameters are 

characterized using Probability Density Functions (PDFs) 

with sufficient information. The reducible random 

parameters are derived from the lack of information for 
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describing the uncertainty. For example, parameters, i.e., the 

mean and the variance of the PDF, or even distribution types 

are uncertain unless sufficient information is collected. 

This study considers parameter uncertainty as irreducible 

random parameter and use Maximum Likelihood Estimation 

(MLE) to select the optimal distribution for each model 
parameter. The statistics of the random parameter is 

represented by the statistical parameter Θ of a candidate 

distribution. For example, in the case of a normal 

distribution, the parameter is defined as Θ={µθ, σθ}, which 

includes the mean and standard deviation. Thus, Θ is the 

calibration parameter and needs to be identified. The 

statistical model calibration using MLE is formulated as   

 Maximize ( ) ( )[ ]∑
=

Θ=Θ
M

j

iji vfVL

1

10 |log|  (5) 

where L(·) is the likelihood function; f(·) is the PDF of Vi for 

a given Θ; i means the i
th model parameter; and M is the 

number of available data. A candidate distribution pool, 

including Normal, Lognormal, Weibull, Beta, Gamma, and 

Uniform, is defined and the optimal distribution is 
determined by the maximum likelihood value among 

candidate distributions.  

3.3 Quantification of Model Uncertainty  

The objective for quantifying model uncertainty is to 

improve the model prediction accuracy by adding the 

identified model uncertainty to the original model as shown 

in Eq. (4). A two-step calibration procedure is proposed to 

accurately characterize the model uncertainty (or model bias) 

in various battery operating conditions.    

Step 1: calibrate unknown model parameter Vi        through 
calibration experiments as described in section 3.2; 

Step 2: calibrate the model uncertainty using the 

statistical calibration technique at several defined 
battery operating conditions using the Design of 

Experiment (DOE) technique.  

Then three steps are used to obtain the model uncertainty in 

various battery operating conditions with the aid of the 

response surface. 

Step 1: construct response surfaces for the central 

moments (e.g., mean and standard deviation) of the 

model uncertainty using the moving least square 

method;   

Step 2: calculate the central moments of the model 

uncertainty at any given operating condition on the 
basis of the response surfaces; 

Step 3: approximate the distributions of the model 

uncertainty at any given operating condition. 

Response surface of the model uncertainty plays a critical 

role in the process of obtaining corrected model prediction. 

Its accuracy mainly depends on three factors including: i) 

nonlinearity of the model uncertainty in various battery 

operating conditions; 2) amount and location of the 

identified model uncertainty using the DOE technique; and 

3) numerical algorithm of the response surface method.    

3.4 Correction of Initial Battery Model  

The corrected battery model is shown in Eq. (6) by adding 

the identified model uncertainty to the initial battery model. 
Furthermore, model parameter uncertainty is characterized 

by optimal PDFs to account for the cell-to-cell variability. 

The corrected model is a statistically validated model and is 

expected to produce more accurate and robust SOC 

estimation.   
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3.5 Selection of Numerical Algorithm  

KF has been widely used in many applications to estimate 

the hidden state for the linear state-space model. As an 

extension, EKF applies for non-linear state-space model 

using the linear approximation at each estimation step. 

Other KF related approaches are also reported such as 

adaptive KF, unscented KF, etc. All KF related approaches 

use linearity and Gaussian noise assumptions, which could 

cause numerical estimation error for the non-linear model 

with non-Gaussian noise. In that scenario, Particle Filter (PF) 
(Orchard & Vachtsevanos, 2009) is more appropriate to 

approximate the state PDF using Bayesian approach and 

avoiding such assumptions. However, PF is much more 

computational expensive than EKF. This study employs the 

EKF for demonstration of the proposed framework due to 

its reasonable accuracy and efficiency.      

3.6 Uncertainty Quantification  

The objective is to estimate SOC of the battery in a 

statistical manner using the validated battery model and the 

EKF. All sources of uncertainties are considered in model 

parameters and identified model uncertainty/bias. 

Essentially, the SOC estimation becomes an Uncertainty 
Quantification (UQ) process to quantify the distribution of 

the battery SOC subject to the input uncertainties from the 

model parameter, model uncertainty/bias and the 

measurement and process noise.  

A common challenge in UQ is a multi-dimensional 

integration to quantify probabilistic nature of system 

responses. Neither analytical multi-dimensional integration 

nor direct numerical integration is possible for large-scale 

engineering applications. Other than those approaches, 

existing approximate methods for UQ can be categorized 

into five groups (Youn et al., 2008): i) sampling method, ii) 
expansion method, iii) the most probable point (MPP)-based 

method, iv) response surface approximate method, and v) 
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approximate integration method. This study uses sampling 

method (i.e. the Monte Carlo Simulation) for UQ.    

4. CASE STUDY 

This section presents a case study to demonstrate the 

effectiveness of the proposed framework for SOC 

estimation. 

4.1 Background  

EIG C020 battery cells are used in this case study with the 

nominal capacity of 20Ah. Four battery cells were 

connected parallel to four channels of the battery cycler 

(Arbin BT2000). All experiments, including static capacity 

test, energy efficiency test, HPPC test, OCV-SOC test and 

FUDS test, were conducted at the room temperature (25 oC). 

Capacity test results are shown in Table 1 with the mean and 

standard deviation equal to 19.66 Ah and 0.037 Ah, 

respectively. Efficiency test results are listed in Table 2 for 

both charge and discharge efficiency with an overall mean 

of 0.997. In this study, the nominal capacity (=19.66 Ah) 
and charge/discharge efficiency (=0.997) are treated as 

constant value for the SOC estimation. OCV-SOC curve is 

obtained as shown in Fig. 2.  

Table1. Static capacity test 

 

Cell 
#1 

Cell 
#2 

Cell 
#3 

Cell 
#4 Mean STD 

Capacity 19.628 19.701 19.629 19.682 19.66 0.037 

Table 2. Energy efficiency test 

 Cell #1 Cell #2 Cell #3 Cell #4 Mean 

Discharge 
efficiency 

0.9970 0.9978 0.9982 0.9990 0.9983 

Charge 
efficiency 

0.9900 0.9980 0.9980 0.9965 0.9956 

 

 
Figure 2. OCV-SOC curve 

4.2 Results 

Four battery cells were used to study the uncertainty of four 

model parameters including: i) charging impedance R+, ii) 

discharge impedance R-, iii) decay factor γ, and iv) 
polarization coefficient M. Table 3 shows that the decay 

factor γ presents no uncertainty and other three parameters 
present different level of uncertainties. For example, the 

standard deviation (STD) of charging impedance R+ is 5.2% 

of its mean value. Typically, we should not ignore the 

parameter uncertainty if the STD is more than 1% of its 

mean value. Hence, three model parameters were 

characterized as random parameters and they were assumed 
to follow normal distribution with identified statistical 

moments listed in Table 3.  

Table 3. Uncertainty quantification of model parameters 

Parameter R+ R- γ M 

Cell #1 0.0023 0.0037 1.6026 0.0172 

Cell #2 0.0021 0.0037 1.6026 0.0162 

Cell #3 0.0024 0.0036 1.6026 0.0171 

Cell #4 0.0022 0.0035 1.6026 0.0163 

Mean 0.0025 0.0036 1.6026 0.0167 

STD 1.29e-4 9.57e-5 0 5.23e-4 

Percentage  5.2% 2.7% 0% 3.1% 

 

The first three battery cells were used as training data to 

quantify the model uncertainty. In this case study, response 

surface of the model uncertainty was constructed only for 

the 1st central moment (i.e. the mean) for simplification.  

FUDS test was then carried out for cell #4. Mean of the 

model uncertainty for the cell #4 was estimated for the 
FUDS test and the results are shown in Fig. 3.    

 

 
Figure 3. Mean of the model uncertainty of cell #4 for the 

FUDS test  

 

According to the original battery model, estimated terminal 

voltage generally agrees well with actual measurement as 

shown in Fig. 4(a). However, the difference is observable 

especially during the rest period in between the FUDS 

cycles, which is mainly due to the model inadequacy for 

representing the actual physical system. Such model 

limitation can be overcome by considering the model 

uncertainty using Eq. (4). Based on the identified model 
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uncertainty (see Fig. 3) for the FUDS test, the corrected 

terminal voltage agrees much better than the original model 

as shown in Fig. 4(b).    

 

 
(a) Without model uncertainty  

 
(b) With model uncertainty 

Figure 4. Comparison of terminal voltage for the original 

model and corrected model 

 

SOC estimation was conducted using both original battery 

model and corrected model with consideration of the model 
uncertainty. The battery cell #4 was first fully charged with 

100% of SOC; and then one FUDS cycle was applied and 

followed by a constant discharge current and a rest period. 

Such process was repeated till the SOC reached 10%. SOC 

calculated using the coulomb counting was treated as the 

reference value. EKF was used for SOC estimation for both 

battery models: i) original model without consideration of 

model uncertainty, and ii) corrected model with 

consideration of model uncertainty. The initial guess of 

SOC was set to 80% using the EKF for both models. Results 

are shown in Fig. 5 with clear indication that accuracy of 
SOC estimation can be significantly improved by 

considering the model uncertainty appropriately. In 

particular, the maximum percentage error (excluding the 

initial error) of the SOC estimation reaches 14% using the 

original model, whereas, the error is well below 5% if the 

model uncertainty is considered.    

 
(a) SOC comparison 

 
(b) Percentage error of SOC 

Figure 5. SOC estimation with and without 

consideration of the model uncertainty 

5. CONCLUSION 

A novel framework was proposed for quantifying model and 

parameter uncertainties for battery SOC and SOH diagnosis. 

Various uncertainty sources should be systematically 

addressed in order to have reliable battery management 

system and accurate SOC and SOH diagnosis in real 

HEV/PHEV/EV applications. In summary, four types of 

uncertainty play a key role for reliable estimation of the 
battery performances of interest and they are listed as: i) 

measurement uncertainty, ii) algorithm uncertainty, iii) 

model parameter uncertainty, and iv) model uncertainty. 

Measurement uncertainty includes current and voltage 

measurement error and has been well considered by most 

researchers. Algorithm uncertainty focuses on accuracy of 

numerical algorithms for estimating the battery hidden state. 

This field of research evolves gradually and typical 

algorithms include Kalman filter, extended Kalman filter 

and particle filter. A trade-off between numerical accuracy 

and efficiency should be considered depending upon 
specific applications. Model parameter uncertainty is not 

well considered up to date in the field of battery study. 

However, as massive products in the foreseeable future, 

Annual Conference of the Prognostics and Health Management Society 2013

518



Annual Conference of the Prognostics and Health Management Society 2013 

their physical uncertainty due to the manufacturing 

tolerance should be well addressed. Ignorance of model 

parameter uncertainty makes unreliable battery SOC and 

SOH diagnosis. Finally, model uncertainty dominates the 

accuracy level of battery SOC and SOH diagnosis. Different 

battery models represent different levels of fidelity 
comparing to the actual physical system. However, majority 

of the research focuses on the model development itself.  

This paper turns an eye on quantifying the model 

uncertainty so that the low fidelity model can possess the 

accuracy of high fidelity model without scarifying the 

computational efficiency. Preliminary case study of the 

SOC estimation demonstrated the effectiveness of the 

proposed framework.    
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ABSTRACT 

In order to anticipate failures and reduce downtime, 
“predictive diagnostic” aims not only at warning about the 
failure events before they occur but also at identifying the 
causes of degradation leading to such detections. Then, 
based on the results of predictive diagnostic, “prognostic” 
aims at estimating the remaining useful life in order to plan 
a maintenance action before unit performances are affected. 
However, these are complex tasks. To overcome these 
difficulties, the notion of fleet may be very useful. In the 
present paper a fleet is composed of heterogeneous units 
(mainly components but could be systems or sub-systems) 
that are grouped together considering some similarities. The 
fleet can provide capitalized data and information coming 
from other members of the fleet for the 
improvement/development of the diagnostic/prognostic 
models. In order to achieve PHM with a fleet-wide 
dimension, it is thus necessary to manage relevant 
knowledge arising from the fleet taking into account 
heterogeneities and similarities amongst components, 
operational context, behaviours, etc. This paper will focus 
mainly in the formalization of a data-driven prognostic 
model considering a fleet-wide approach. The model is 
based on a prognostic approach of the system health using 
Relevant Vector Machine. The proposed model is based on 
historical data coming from similar units of a fleet. The 
heterogeneity of the monitored data is treated by assessing a 
global health index of the units. The proposed approach is 
shown on a case study. This case study illustrates how the 
fleet dimension facilitates predictive diagnostic and the 
definition of the prognostic model in the marine domain. 

 

1. INTRODUCTION  

PHM involves the following processes: monitoring the 
process variables of a current situation, assessing the health 
of the system, prognosticating the Remaining Useful Life 
(RUL) of the system and making decision for maintenance 
action. In that sense, the data coming from the different 
variables of the process is also used for evaluating and 
monitoring a global indicator representative of the health 
state of a unit. The health state allows to supervise easily the 
degradation behaviour and to detect early enough drifts in 
operations (Rizzolo et al., 2011). If the health state is not 
satisfying, then predictive diagnostic could be performed. 
This process allows to identify the causes of a degradation 
before a failure occurs. Based on the potential degradation 
modes producing a drift in operation, the representative 
variables of this degraded component are used to predict the 
degradation trajectory and to assess the remaining time to 
reach a threshold, for instance a specified performance loss 
level. This time is called Remaining Useful Life. Finally the 
results are used for decision-making in order to select the 
maintenance actions to be performed in order to solve the 
drift.  

Implementing a PHM approach at a system level requires 
the consideration of failure rates of different equipment built 
on different technologies (mechanical, electrical, electronic 
or software natures) (Verma et al., 2010) whose behaviour 
can vary all along the different phases of their lifecycle 
(Bonissone and Varma, 2005). Moreover, for predictive 
diagnostic (i.e. diagnostic of drift before failure occurs), 
maintenance operators/engineers need to analyze the alarms 
and the symptoms behavior/evolution to understand which 
components may have caused the symptoms and the reasons 
for the abnormal behavior of the component. This analysis 
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needs to consider the operational context of the symptoms 
in order to understand the abnormal situation since it 
influences the component behavior. Finally, prognostic 
requires some specific model for each degradation, each 
operational condition, and each material part. Such number 
of dimension implies that the efforts (according to the type 
of model, number of data, laboratory tests…) needed for the 
definition of the model have to be important. Moreover, 
prognostic deals with the estimation of the future and thus 
uncertainty appears. However uncertainty could be reduced 
when more efforts are made (Pecht, 2010).  

However to improve PHM processes for large and complex 
systems such as power plants, ships and aircrafts, one 
possible approach is to take advantage of the fleet 
dimension. This dimension can provide knowledge and data 
to improve diagnostic and prognostic models (Medina-Oliva 
et al., 2013). 

A fleet shall be viewed as a set of systems, sub-systems and 
equipment. In this paper, the naval domain is addressed but 
the proposed approach can be broadened to other domains. 
Hence, in the following a unit of a fleet will be considered 
as a system (e.g. ship), a sub-system (e.g. propulsion or 
electric power generation) or equipment (e.g. diesel engine, 
shaft...) depending on the nature of the study. To be in 
accordance with the need of improving PHM at the fleet 
level, an original methodology is proposed in this paper 
wherein individual knowledge (of each unit) is capitalized 
for reuse purpose in order to improve PHM activities such 
as prognostic. To take advantage of the individual 
knowledge at the fleet level, a semantic model is used for 
the PHM activities in the naval domain. Such a semantic 
model enables to reuse particular data, such as maintenance 
history, reliability analysis, failure analysis, data analysis at 
a fleet level in order to provide knowledge. As data become 
available, prognostic process could benefit from more 
contextual information. 

2. PROBLEM STATEMENT 

Prognostic process aims at determining the Remaining 
Useful Life (RUL) of a unit on which a degradation is 
running. Some literature review, such as (Byington et al., 
2002; Jardine et al., 2006; Heng et al., 2009), propose an 
overview of this domain and consider classification among 
the prognostic models. (Byington et al., 2002) propose the 
first classification and classify the prognostic model into 
three categories: 

• Model based approach issued from physical laws of the 
degradation, 

• Data based approach issued from data or indicator 
monitored on the system, 

• Experience based approach mainly issued from 
reliability model. 

In this paper the aim is to benefit from the knowledge 
acquired during the operation of every unit of the fleet, i.e. 
events that occurred and have been solved, in order to solve 
the event occurring on the present unit (Medina-Oliva et al., 
2012b). The objective to benefit from the stored knowledge 
is subject to these constraints: 

• Units are heterogeneous (e.g. technically, structure, 
mission, environment…) since in the naval domain 
every ship is highly customized. Moreover, even if 
units are of the same kind (same technical features), the 
mission they have to fulfil as well as the environment in 
which they are evolving have a significant impact on 
the degradation behaviour. 

• Signals are heterogeneous. Indeed, signals are 
heterogeneous in two ways. The first one is for the 
same kind of unit, since they are evolving in different 
environment, with different mission… monitored 
signals show some significant variations. The second 
deals with the technical differences among units. In that 
sense, units could have different number of sensors 
since they are not technically identical. For instance, if 
engines have different number of cylinders hence, the 
monitoring of cylinder temperature means that the 
number of signals is also different. 

• Knowledge about degradation is application/technical 
oriented since it is mainly supported by 
FMECA/HAZOP. Hence in the corresponding 
monitoring databases, the structure of the 
fault/degradation tree might show some differences. 

• The current situation to be prognosticated is partially 
defined. Indeed, predictive diagnosis aims at finding the 
running degradation at its early stage. Hence only 
partial knowledge is available and based on symptoms. 

Moreover, in order to benefit from the latest information, 
since units are on-line monitored the proposed approach 
aims at integrating all the available information as soon as it 
is available through its integration at the fleet level. Such 
integration can be performed almost “on-line” through 
communication channel such as satellite or with some delay 
through USB hard disk for instance. 

The proposed approach is dedicated not to work as a single 
tool but together with some experts of the corresponding 
field. For instance, in (Medina-Oliva et al., 2013), the 
authors show how experts can perform predictive diagnosis 
using the fleet knowledge. For this goal, the experts are 
using an iterative process in order to select a target sub-fleet 
that contains the proper information to solve the case under 
study (Medina-Oliva et al., 2012b). 

Furthermore, one has to consider some constraint arising 
from the industrial context. Those constraints will help in 
the choice of well-fitted tools to support the fleet wide 
approach: 
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• The nature of the monitoring systems embedded in the 
ships. As for industrial systems, there exist several 
systems, which do not share a common conceptual data 
model (Umiliacchi et al., 2011). 

• Monitored data is real data. The signal embeds a part of 
randomness due to, for instance, measurement noise, 
singular behaviour… 

• Due to unique service life of every unit, there exist 
some heterogeneity between the measured signals. 
Hence, the sensor signals of a degradation processes 
can be captured by the probabilistic nature of the 
prognostic tool. 

3. PHM AT THE FLEET LEVEL 

For PHM activities, one of the industrial realities is the lack 
of capitalization of knowledge and model reuse which 
represents high costs and efforts for the enterprises (Weber 
et al., 2012) (Medina-Oliva et al., 2012a). In some fields 
such as the naval one, units are very customized leading to 
heterogeneous units. This fact limits mainly data and 
knowledge capitalization and exploitation.  

To tackle this issue the fleet dimension can provide enough 
information and data to improve/perform PHM activities. In 
that sense, when searching non-identical but similar units a 
higher volume of data becomes available to reduce 
uncertainty (e.g. more confidence on the hypothesis 
generation about the causes producing a drift or more 
information about the degradation trajectory of a unit). 
However, most of the existing fleet-wide approaches treat 
identical units either for the definition of thresholds based 
on the data of the fleet (Patrick et al., 2010), technical 
solution capitalization (Reymonet et al., 2009) or RUL 
estimation based on a similarity-based approach (Wang et 
al., 2008). The fact of comparing similar units has rarely 
been addressed as a whole in the literature. To deal with this 
issue, this paper is based on a methodology that leads to 
search non-identical but similar units. To do it, knowledge 
about different and general characteristics of units was 
formalized within an ontology (Medina-Oliva et al., 2012b), 
(Monnin et al., 2011a). This knowledge allows to group 
heterogeneous units based on shared common 
characteristics that are relevant for a given situation. Indeed, 
an expert determines the criteria (i.e. characteristics) to be 
matched in an iterative process. These criteria depend on the 
partial knowledge of the current situation, the unit under 
study, the goal of the expertise (here, predictive diagnosis 
and prognostic), and the expert itself. 

Regarding the prognostic techniques to be used, it has to be 
defined according the constraints previously defined. First, 
as the units are on-line monitored, time series data of either 
sensors or indicators are available for processing. Hence, 
data-based techniques are well fitted. A review of these 
techniques has been proposed by (Jardine et al., 2006). 
Among them, we chose techniques that process the past 

degradation time series. This choice has been guided since 
the definition of the unit population used to solve the current 
case is iterative, i.e. some units are dynamically removed or 
added. Hence the chosen prognostic model has to be able to 
integrate quickly new information, in our case time series, to 
perform its computation. Two example of such techniques 
are available in (Liu et al., 2007; Wang et al., 2008). (Lui et 
al., 2007) propose to compute match matrixes that are 
images of the fitting between the multidimensional time 
series, the current and the past one, for every past time 
series. Then, in every image, the best similarity indexes are 
selected and an Auto Regressive Moving Average model 
(ARMA) (Box & Jenkins, 1976) predicts the time to failure. 
Finally, the global RUL is computed by combining the 
ARMA models according to their degree of similarity. 
(Wang at al., 2008) propose to compute, first, a health index 
from the multi dimensional current time series in order to 
get a mono-dimensional time series. Then, they use 
Relevance Vector Machine (RVM) and Sparse Bayes 
Learning (SBL) techniques (Tipping, 2001) in order to 
synthetize the mono-dimensional signal in a few numbers of 
kernels. The online prediction process employs the 
background health information for the health prognostic 
using the Similarity Based Interpolation (SBI) technique. 
Moreover, (Wang et al., 2008) mention: “This framework 
also enables the continuous update of the background health 
information through offline Sparse Bayes Learning and 
continuous update of the prognostic results in real-time with 
new sensory signals through SBI… The SBL process can be 
carried out individually for different training unit which 
enables the background health knowledge to be built 
sequentially without complicated retraining process and 
updated as  more offline training units are gradually 
available.” 

Secondly, the online update of the available knowledge can 
be satisfied. For that purpose, the operator computing the 
health index has to be determined for every unit in the fleet. 
Then, once a new event makes new knowledge available, 
the RVM learning through SBL make knowledge available 
for prognostic. The resulting information is very sparse and 
does not require too much space to be stored. Moreover, its 
use in the on-line phase does not require a huge amount of 
computing facilities. 

Thirdly, since the considered units are heterogeneous, for 
instance they do not have the same number of cylinder, the 
monitored signals cannot be handle in the multi-dimensional 
signal space. Hence, the match matrix cannot handle this 
aspect. On the contrary, as (Wang et al., 2008) compute a 
mono-dimensional health index from the multidimensional 
time series, it is possible to compare the evolution of 2 
health indexes even if the underlying units have different 
number of signals/indicators. 
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Figure 1. A generic framework for structural health 

prognostic (Wang et al., 2008) 

4. PROPOSED PHM FLEET-WIDE APPROACH 

The global fleet-wide approach (Figure 2) is performed in 
the same way as classical PHM historical based prognostic 
technics in two stages. The first stage (Figure 2a) consists in 
determining the hypothetical events causing the deviation 
(i.e. predictive diagnosis). The result of this first step is a set 
of solved event that are similar to the actual event under 
investigation. This set of event is then used in the second 
stage of the approach (Figure 2b) as historical data in order 
to performed prognostic. 

4.1. Fleet-wide diagnostic approach 

The proposed fleet-wide approach allowing case-reuse 
could bring benefits to almost all PHM activities (Monnin et 
al., 2011a), (Monnin et al., 2011b), (Medina-Oliva et al., 
2012b). Some of them are: PHM solution engineering 
development/improvement, predictive diagnostic and 
prognostic model definition.  

For the predictive diagnostic, the objective is to identify the 
causes that produce a drift on operations before failure 
occurs. To facilitate this task, information/data of past 
events is capitalized thanks to the semantic model (Monnin 
et al., 2011b), (Medina-Oliva et al., 2012b). This way it is 
possible to reuse all the historic data about the real causes 
producing the abnormal behaviour found among the selected 
population (Figure 3). As a matter of fact, every time an 
abnormal situation is studied the experiences such as the 
alerts detection and the operational context, the real root 
causes and past maintenance actions, could be capitalized 
allowing to establish an improvement feedback loop. In that 
sense feedback about all the individuals composing the 
selected fleet could be used to obtain more representative 
statistics based on fleet-wide past experiences, in order to 
solve a current situation (e.g. alert detection). This approach 
eases the identification of the real causes and reduces the 
downtime for a given situation. 

Furthermore, historic data about the real causes is used in 
order to build what we called a “fleet-wide populated causal 
tree” (Figure 9). This kind of tree shows statistics based on 
the capitalized data found in the fleet. Moreover, the user is 
guided by the thickness of the linking-lines to search of the 
most probable causes that produce an abnormal behaviour 
(e.g. degradation/deviation). The lines that link one 
degradation to another are thicker as the number of 
occurrence of events is higher. This way the user can 
explore different level of causalities in order to identify the 
most probable root-cause of an abnormal behaviour before 
the failure occurs and impacts the systems performances. 
Once the most probable cause has been identified, it is 
possible to identify the set of units that have presented this 
cause in order to reuse this population for prognostic 
purposes.  

4.2. Fleet-wide prognostic approach 

The prognostic process conforms to the one proposed by 
(Wang et al., 2008). We add a selection of the on-line stage 
using population selection according to the fleet wide 
approach. 

 (a) 

 
(b) 

 
Figure 2. PHM fleet wide diagnostic (a) and 
prognostic (b) proposed approach process 
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Figure 3. PHM Monitoring and Fleet-wide Diagnostic simplified process 

4.2.1. Off line stage 

The off line stage is composed (Figure 4) of (a) the 
determination of the aggregation function for health index 
and of (b) Sparse Bayes Learning (SBL) for health time 
series. 

 (a) Health Index computation 
Wang et al. use a linear data transformation matrix T such 
that: 

 𝑇 = 𝑄!𝑄 !!𝑄𝑆! (1) 
Where, Q is composed of both faulty (degraded) and 
nominal multi-dimensional signals and SH is a {0,1} matrix 
corresponding to every element of Q according to its state, 
i.e. 0 for degraded and 1 for healthy. T is able to transform 
any set of multi-dimensional signal into a mono dimensional 
signal of health index. 

For the purpose of our approach, T has to be determined for 
every unit, event type and operating condition. On one hand, 
the computation of the matrix is not time consuming neither 
required complex data selection (2 sets of data: normal and 
degraded). On the other hand, this job has to be performed 
for every unit and every event type since degradation signals 
changes according to these 2 features. Both of them are 
easily identifiable. Moreover, operational conditions mode 
are influencing degradation signals as well, but are more 
hardly identifiable. Hence, some work is required for such a 
purpose. Then, normal and degraded signal are extracted as 
well as operational mode identification, and T matrixes are 
computed. 

(b) off training scheme with SBL 
For the sake of conciseness, we do not present the SBL. For 
more details, one can refer to (Wang et al. 2008) or to the 
original paper of Tipping (2001). The SBL is a generalized 
linear model in a Bayesian form and it shares the same 
functional form of the Support Vector Machine (SVM). 
Tipping has formulated this generalized linear model in a 
Bayesian form, named the Relevant Vector Machine 
(RVM). It achieves comparable machine learning accuracy 
to the SVM but provides a full predictive distribution with 
substantially fewer kernel functions. 

The RVM is a special case of a sparse linear model: 

 ℎ 𝑡 = 𝜔!𝜙 𝑡, 𝑡!!
!!! + 𝜀 𝑡  (2) 

where 𝜀 𝑡  is the measurement noise, 𝜔 = 𝜔!,𝜔!,⋯ ,𝜔!  
a weight vector and basis functions are formed of kernel 
functions 𝜙 𝑡, 𝑡!  centered at the training point 𝑡! . The 
sparseness property enables the automatic selection of a 
proper kernel at each location by pruning all irrelevant 
kernels. A sparse weight prior distribution can be assigned, 
in such a way that a different variance parameter is assigned 
to each weight. Moreover, SBL allows to integrate the 
uncertainty contained in the health index time series by 
using the statistics of the coefficients 𝜔 of the RVs. 

In the fleet repository, the degradation time series, 
associated to a solved event, are summarized by the 
Gaussian kernels and the weight vectors (mean and 
covariance matrix). It represents available knowledge for 
prognostic purpose. SBL performed every time new event 
has been solved and a degradation time series has to be 
integrated.  
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Figure 4. Off line stages of prognostics process 

 
Figure 5. On line stages of prognostics process for one 

learned time series 

4.2.2. On-line stage 

The on line stage (Figure 5) is split into 3 steps: (a) Actual 
health time series computation, (b) initial health condition 
and (c) Similarity Based Interpolation 

 (a) Actual health time series computation 
Based on the transformation matrix T (see eq. 1), the actual 
multi-dimensional time series is transformed into mono-
dimension health time series ℎ. 

(b) Initial health condition determination 
Lets consider ℎ a time series of health degradation from 
learned units with a length of 𝑙. ℎ and ℎ the current one 
transformed using T with a length of 𝑙. Then, if both series 
represents the same degradation, first 𝑙 < 𝑙 and second we 
supposed that ℎ can be found in ℎ. Indeed, as (Wang et al. 
2008) explained ℎ and ℎ may have different initial health 
index at the beginning of the time series due for instance to 
manufacturing variability or different service life. Hence the 
RUL estimation (see Figure 6), according to that single ℎ, 
is: 

 𝑅𝑈𝐿 =    𝑙 − 𝑙 − 𝑇!  (3) 

 
Figure 6. Initial health condition determination 

with 𝑇!  the initial time of matching between ℎ  and ℎ 
determined as: 

 𝑇! = 𝑚𝑖𝑛!!∈ !,!!! ℎ 𝑡! − ℎ 𝑇! + 𝑡!
!

!
!!!   (4) 

 (c) Similarity based interpolation 
Indeed, the computation of the RUL using step (a) is 
performed for every degradation time series selected using 
the fleet wide capability, i.e. ℎ! . Similarity based 
interpolation aims at combining these several RULs. 
Obviously, ℎ does not match every ℎ! with the same level 
of similarity. Hence, the combination of the RUL depends 
on the degree of matching. For a single unit u, its weight is 
issued from the matching step: 

 𝑊! = ℎ 𝑡𝑖 − ℎ 𝑇0
𝑢 + 𝑡𝑖

2𝑙
𝑖=1

−1
  (5) 

The final RUL is computed as: 

 𝑅𝑈𝐿 = !
!

𝑊!𝑅𝑈𝐿!!         𝑤ℎ𝑒𝑟𝑒  𝑊 = 𝑊!!   (6) 

4.2.3. Uncertainty management 

As explained earlier, the RVM approach allows to capture 
uncertainty contained in the data by means of the vector 𝜔 
and the associated covariance matrix. Hence, for every unit 
u, instead of having only one ℎ!, for instance the mean 
curve, one has several ℎ!!  corresponding to random 
realization of the weight 𝜔!. Hence eqs. (3) and (4) have to 
be computed for all the random realizations of the weight 
𝜔!. 

Finally, eq. (6) is re-written as: 

 𝑅𝑈𝐿 = !
!

!
!!

𝑊!
!𝑅𝑈𝐿!!!!  

 𝑤ℎ𝑒𝑟𝑒  𝑊 = 𝑊!! , 𝑎𝑛𝑑  𝑊! = 𝑊!
!

!   (7) 
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5. CASE-STUDY 

To illustrate the feasibility of the proposed approach as well 
as the added-value, a scenario was developed. This scenario 
shows how the fleet-wide approach is useful for experts 
during the decision making process for diagnosis and 
prognostic purposes. The scenario is developed using an 
ontology-based fleet-wide software application (Medina-
Oliva et al., 2012 & 2013) and KASEM® (Knowledge and 
Advanced Service for E-Monitoring) e-maintenance 
software platform. 

We consider first the predictive diagnosis of Volvo Penta 
D16 MG diesel engine. This engine presents one symptom: 
higher temperature of the turbo-compressor exhaust outlet 
gas. This symptom points out a degradation on the air-intake 
system.  

5.1. Predictive diagnostic of a diesel engine 

The air-intake system of this machine is a turbocharged 
system. A turbo-compressor consists of a turbine and a 
compressor connected by a shaft. The compressor draws in 
ambient air and compresses it. The compressor is connected 
to the turbine by a shaft and its outlet is routed to the engine 
cylinder air intake. Exhaust gas from the engine cylinders 
enters the turbine and expands, performing work on the 
turbine. The turbine spins the shaft connected to the 
compressor (Figure 7). 

 
Figure 7. Turbo-charge system 

 

The objective is first to help an expert to extract/retrieve 
data coming from the fleet in order to solve the diagnostic of 
this situation. In that sense, the expert should identify which 
are the most probable root-causes of degradation in the air-
intake system (Figure 8) either internal or external causes to 
the turbo-compressor (Muller et al., 2008).  

For the purpose of this example, the fleet is limited to diesel 
engines. Two hundred eighteen (218) events that occurred 
on diesel engines (Table 1) are considered. Table 1 presents 
an extract of the engine units of fleets and their technical 
features. It is possible to notice that units are heterogeneous, 
meaning they have different technical features. The 
ontology-based application aims at helping the expert in the 
research of similar cases among a heterogeneous fleet of 
engines that allows the identification of the root-causes. 
This way, to search the causes of the degradation the 
application guides the user and proposes different criteria 
such as the properties or technical features of units. For 
instance, since there is a degradation on the air-intake 
system for a turbo-charged engine, the embedded 
knowledge in the ontology (i.e. classification of engines) 
allows to select only turbo-charged engines. This criterion is 
essential to analyze the same type of degradation, for this 
reason it is necessary to integrate this criterion in the query. 
This kind of cluster could be relevant for the user since this 
criterion allows the definition of common and similar 
characteristics of engines behavior even though they are not 
identical.  

 
Figure 8. Causality tree about the possible causes of 
degradation of the air-intake system 

 
Table 1. Extract of engine fleet technical features stored in the data bases 

 

Turbocharger 
Oil inlet 

Compressor 
Wheel 

Ambient 
Air inlet 

Engine 
Cylinder 

Charge Air 
Cooler 

Compressor Air Flow 

Oil Oulet 
Watergate 

Compressor Turbine 
Wheel 

Exhaust 
Gas 

Discharge 

Higher	  temperature	   of	  the	  
turbo-‐compressor	  exhaust	  

outlet	  gas

Turbocompressor:	  
Degraded

Higher	  temperature	   of	  
the	  turbo-‐compressor	  
exhaust	  inlet	  gas

First	  level -‐
Internal Causes

First	  level -‐
External Causes

Engine Ref Output 
power (kW)

Nb. of 
Cylinder

Configuratio
n

Engine 
Speed (rpm)

Tag related 
to the 

ontology
Engine cycle Air admission Total Installation

Wärtsilä 12V38 8700 12 V 600 Fuel engine 4 Turbocharged 2 Propulsion engine
Wärtsilä RT-flex50 13960 8 L 124 Fuel oil 2 Turbocharged 2 Propulsion engine

Wärtsilä RT-FLEX82T 40680 9 L 80 Fuel oil 2 Turbocharged 1 Propulsion engine
Baudouin 12M26P1FR 357,94 12 V 1800 Fuel engine 4 Naturally-Aspirated 5 Generator engine

Wärtsilä 16V38 11600 16 V 600 Fuel engine 4 Turbocharged 3 Propulsion engine
Wärtsilä 9L38 6525 9 L 600 Fuel engine 4 Turbocharged 1 Propulsion engine
Wärtsilä 8L38 5800 8 L 600 Fuel engine 4 Turbocharged 1 Propulsion engine

Volvo Penta D16C – AMG 500 6 Ligne 1800 Fuel engine 4 Turbocharged 2 Generator engine
ABC 12VDZC 2652 12 V 1000 Fuel engine 4 Turbocharged 2 Propulsion engine

Baudouin 6 M26 SR P1 331 6 Ligne 1800 Fuel engine 4 Turbocharged 3 Generator engine
Baudouin 12 M26 SR 662 12 V 1800 4 Turbocharged 2 Propulsion engine
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Once an ontology-based query is performed among the fleet, 
the user might be able to investigate the past events that 
have occurred in the fleet in order to reuse this information 
for example for predictive diagnostic purposes.  

This way, information/data of past events is capitalized. The 
application allows to reuse all the historic data about the real 
causes producing the abnormal behavior found among the 
selected population. Furthermore, historical data about the 
real causes is used in order to build a “fleet-wide populated 
causal tree” (Figure 9). When exploring this tree which is 
based on statistics of fleet-wide past events (not on the 
signal of the events), it is possible to notice that the most 
probable cause producing the symptom is a degradation on 
the poppet valve of the outtake gas, which is delayed to 
open. Hence, the user can perform a predictive diagnostic 
guided by an ontology-based application that embeds useful 
knowledge about the marine domain and that allows the 
capitalization of data/knowledge within a fleet composed of 
heterogeneous units.  

Then, based on the results of predictive diagnostic, a 
prognostic will be performed using the health state 
trajectory of the resulting 74 events that are presenting a 
problem with the poppet valve. This way it will be possible 
to estimate the remaining useful life of the Volvo Penta D16 
MG diesel engine in order to plan a maintenance action 
before the engine performances are affected.  

The on-line prognostic process in performed on the Volvo 
Penta D16 MG diesel engine. The first step is to compute 
the health time series of the engine.  

 
Figure 9. Fleet-wide populated causal tree 

5.2. Prognostic based on the obtained fleet-wide 
population  

The second step is the computation of the RULs for every 
event time series. This part requires to get their degradation 
background knowledge, i.e. kernel vector, weights and 
covariance matrix. Then, several ℎ!! curves are generated. 
We show some curves in order to show different level of 
uncertainties capture by the RVs for k in {1…100} (Figure 
11). 

For every event u and ℎ!!  curves, a 𝑅𝑈𝐿!!  is computed. 
Figure 12 shows the histograms RULs for k in 
{1,…,10000}. One can notice that the relative dispersion of 
the histograms do not always correspond to a larger 
uncertainty in ℎ!!. For instance, for event 41, ℎ!!"’s show 
some uncertainty (Figure 11c) while the 𝑅𝑈𝐿!!"’s do not 
since a single value has been found. In the same way, 𝑅𝑈𝐿!!" 
and 𝑅𝑈𝐿!!!  (Figure 12b and d) exhibit the same dispersion 
while ℎ!!" and ℎ!!! (Figure 11 b and d) do not. Moreover, the 
contribution of every 𝑅𝑈𝐿!!  in the final RUL through the 
weight 𝑊!

!, eq. (7), allows to draw histograms for every 
event as well (Figure 13). 

Over all the events, only 68 gave a proper result to be used 
in the computation of the overall RUL. In such application, 
the computation of a single RUL does not seem of great 
relevance. Instead, the analysis of the histograms of the 
𝑅𝑈𝐿! would give better information. Such analysis could be 
performed with different number of histogram class (Figure 
14). We take 4 numbers of class, N, between 6 and 13. One 
can notice between only one mode (Figure 14 b) for N=6, 
three modes ((Figure 14 a and c) for N=8 and 11 or even 
four modes ((Figure 14d) for N=13. Such differences could 
be further investigated by going down the cause-tree, 
investigating the population homogeneity according their 
service life, mission… and with the help of engine experts. 

 
Figure 10: Health time series of the Volvo Penta D16 

MG diesel engine with ill-defined running degradation 

 

151

67

135

16

96

Turbo&compressor,
exhaust,outlet,gas,
Higher,Temperature,

69,42%,
Turbo&compressor,
exhaust,inlet,gas:,

Higher,Temperature,

30,58%,
Turbo&

compressor:,
Degraded,

0%,
…:…,

54,55%,
Poppet,valve,
ouFake,gas:,

Delayed,toopen,

10,71%,
Exhaust,inlet,

turbo&compressor,
gas,circuit:,
ObstrucMon,

0%,
…:…,

45,45%,
Poppet,valve,
intake,air:,

Delayed,to,close,

0%,
…:…,
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Cylinder,exhaust,
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Temperature,
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(a) 

 

(b) 

 
(c) 

 

(d) 

 
Figure 11: Several health curves for event 74 (a), 26 (b), 

41 (c), 33 (d). 

(a) 

 

(b) 

 
(c) 

 

(d) 

 
Figure 12: Histograms of 𝑹𝑼𝑳𝒌𝒖 for the event 74 (a), 

26 (b), 41 (c), 33 (d). 

(a) 

 

(b) 

 
(c) 

 

(d) 

 
Figure 13: Histograms of 𝑾𝒌

𝒖 for the event 74 (a), 26 (b), 
41 (c), 33 (d). 

(a) 

 

(b) 

 
(c) 

 

(d) 

 
Figure 14: Histogram of the 𝑹𝑼𝑳𝒖 of the Volvo Penta 

D16 MG diesel engine with ill-defined running 
degradation with different numbers of class: 8 (a), 6 (b), 

11 (c) and 13 (d). 

 

6. CONCLUSION 

In this paper we proposed an approach taking advantage of 
all available knowledge at a fleet level for predictive 
diagnosis and prognosis. The originality of this work lies in 
the ability to make prognosis even if the degradation 
occurring is ill-defined, i.e. only partial knowledge about the 
degradation is available. Obviously, such a tool is clearly 
not self-sufficient. It is meant to work with experts whose 
knowledge helps to focus on how to solve a situation. 

Despite the presented case study belongs to the naval 
domain, the proposed approach is general and can be 
applied to fields such as wind turbine farms, vehicle fleets… 

The presented work is a first step in that direction. Further 
steps can improve the usefulness of the proposed approach 
in several directions such as the computation of the units 
health which has to be homogenous over the entire fleet. An 
investigation on the operators to be used could be 
performed. The computation of the histograms of the 𝑅𝑈𝐿! 
could be performed at every stage of the cause-tree. 
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ABSTRACT 

In the United States, sustainable nuclear power to promote 

energy security is a key national energy priority. Advanced 

small modular reactors (AdvSMR), which are based on 

modularization of advanced reactor concepts using non-

light-water reactor (LWR) coolants such as liquid metal, 

helium, or molten salt, may provide a longer-term 

alternative to more conventional LWR-based concepts. The 

economics of AdvSMRs will be impacted by the reduced 

economy-of-scale savings when compared to traditional 

LWRs and the controllable day-to-day costs of AdvSMRs 
are expected to be dominated by operations and 

maintenance costs. Therefore, achieving the full benefits of 

AdvSMR deployment requires a new paradigm for plant 

design and management. In this context, prognostic health 

management of passive components in AdvSMRs can play a 

key role in enabling the economic deployment of 

AdvSMRs. This paper discusses features of AdvSMR 

systems that are likely to influence PHM implementation for 

passive components and discusses some requirements based 

on those features. Further, a brief overview of the state-of-

the-art in PHM relevant to AdvSMR passive components is 
provided followed by an illustration of prognostics for 

passive AdvSMR components. 

1. INTRODUCTION 

Nuclear energy currently contributes approximately 20% of 

baseload electrical needs in the United States and is 

considered a reliable generation source to meet future 
electricity needs. Sustainable nuclear power to promote 

energy security is a key national energy priority. The 

development of deployable small modular reactors (SMRs) 

is expected to support this priority by diversifying the 

available nuclear power alternatives for the country, and 

enhance U.S. economic competitiveness by ensuring a 

domestic capability to supply demonstrated reactor 

technology to a growing global market for clean and 

affordable energy sources.  

Several concepts for SMRs have been proposed (Abu-

Khader, 2009; Ingersol, 2009) with integral pressurized 
water reactor (iPWR) concepts the current front-runner for 

near-term licensing and deployment. Advanced small 

modular reactors (AdvSMRs), which are based on 

modularization of advanced reactor concepts using non-

light-water reactor (LWR) coolants such as liquid metal, 

helium, or liquid salt may provide a longer-term alternative 

to LWRs and iPWRs. 

The economics of small reactors (including AdvSMRs) will 

be impacted by the reduced economy-of-scale savings when 

compared to traditional LWRs, although the modular nature 

of such reactors can be advantageous in presenting lower 

initial capital costs. In addition, the controllable day-to-day 
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costs of AdvSMRs are expected to be dominated by 

operations and maintenance (O&M) costs, and achieving the 

full benefits of AdvSMR deployment requires a new 

paradigm for plant design and management.  

Components in nuclear power plants can be classified as 

active or passive. Passive components refer to those 
structures or components in a nuclear power plant that are 

functional without a power source. Examples of passive 

components include pipes, vessels, tanks, cables, etc. This is 

in contrast with active components which include pumps, 

valves, motors, etc. While proper maintenance of both 

active and passive components is important in the operation 

of nuclear power plants, the degradation in passive 

components, in particular, if not addressed in a timely 

fashion, is likely to result in unplanned plant shutdowns. 

Thus, PHM of passive components in AdvSMRs can play a 

key role in enabling the economic deployment of 

AdvSMRs.  

A recent technical report describes several of the 

requirements for performing PHM of passive AdvSMR 

requirements and outlines several research gaps and 

technical needs to address these gaps (Meyer, Coble, Hirt, 

Ramuhalli, Mitchell, Wootan, Berglin, Bond, & Henager, 

2013). This paper discusses features of AdvSMR systems 

that are likely to influence PHM implementation (Section 2) 

for passive components and discusses some requirements 

based on those features (Section 3). Further, a brief overview 

of the state-of-the-art in PHM relevant to AdvSMR passive 

components is provided (Section 4) followed by an 
illustration of prognostics for passive AdvSMR components 

(Section 5). Finally, some brief discussions and concluding 

remarks are provided in Section 6. 

2. ADVANCED SMALL MODULAR REACTORS 

The evolution of nuclear power generating technology is 

organized by categorizing systems as Generation (Gen) I, II, 

III, III+, and IV technologies. Gen I includes the earliest 

prototype reactors while most commercial LWRs in 

operation today are considered Gen II technologies. Gen III 

and III+ reactors represent improvements over Gen II 

technologies with respect to increased reliance on passive 

safety mechanisms, increased use of digital instrumentation 
and control, and increased monitoring instrumentation. Gen 

IV represents a more significant leap in terms of technology 

advancements and concepts within Gen IV have expected 

deployments dates beyond 2030. The Gen IV International 

Forum (GIF) was created to help focus international 

resources and efforts to establish the feasibility and 

performance of future generation reactors. Improvements in 

safety and reliability, sustainability, proliferation resistance, 

and economics are among the key goals of the GIF efforts. 

AdvSMRs will be based on Gen IV concepts, such as those 

promoted by the GIF. Candidate technologies promoted by 
the GIF include (NERAC, 2002; Abram & Ion, 2008): 

• Sodium Fast Reactors (SFRs) 

• Very High Temperature Reactors (VHTRs) 

• Gas-Cooled Fast Reactors (GFRs) 

• Lead-Cooled Fast Reactors (LFRs) 

• Molten Salt Reactors (MSRs) 

• Supercritical Water-Cooled Reactors (SWCRs) 

Like all nuclear reactors, heat is removed from the core in 

Gen IV reactors by a reactor coolant system that transfers 

the heat to a system of heat exchangers for power  

Figure 1. Depiction of a pool-type Sodium Fast Reactor. 

conversion. A depiction of a SFR in Figure 1 serves to 

illustrate many of the components that are basic to many 

nuclear power systems. In the case of the SFR, the primary 

sodium coolant and reactor core are contained within a 

reactor vessel. Penetrations in the reactor vessel allow the 

insertion and removal of control rods to manage the fission 

chain reaction. Pumps circulate the sodium through the 

reactor core and a secondary sodium loop transfers heat 

from a heat exchanger located in the reactor vessel to the 

steam generator. In the steam generator, heat is transferred 

from the sodium to water which is converted to steam. The 
steam is then converted to electricity through the turbine 

generator system.  

There are many possible variations on the system discussed 

above for Gen IV technologies, including loop versus pool 

type designs for the primary systems or the elimination of 

the secondary heat exchange loop. In the case of gas-cooled 

reactor systems, it may even be possible to couple the 

primary coolant (i.e., He) directly to the gas turbine. In 

essence, the higher operating temperatures and exotic 

coolants of Gen IV systems enable many system 

configurations that cannot be realized with conventional 
technologies to achieve improved efficiencies. The 

following subsections briefly summarize features that will 

be generally applicable to AdvSMR systems and how these 

features will impact PHM system deployment for passive 

components. 
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2.1. Operating Environment and Materials Degradation 

Passive components in AdvSMRs will be subject to 

relatively harsh operating environments in comparison to 

LWRs. This includes higher temperatures, fast neutron 

fluxes, and corrosive coolant conditions. Materials for 

advanced nuclear reactor applications generally consider 
radiation damage resistance, environmental stability, and 

high-temperature capability as paramount (Yvon & Carre, 

2009; Zinkle & Busby, 2009). Volumetric swelling and 

dimensional stability, embrittlement, stress corrosion 

cracking, irradiation and thermal creep, and corrosion are 

critical materials degradation issues. Welds are problematic 

in nuclear structures as preferred sites for environmental 

degradation and stress-assisted degradation processes. 

Compatibility issues arise with regard to liquid metal 

coolants for liquid metal fast reactors (LFRs and SFRs) 

when metals and alloys in flowing coolant experience 

unwanted chemical reactions or leaching. In addition to 
driving the degradation issues, the harsh operating 

environment will negatively impact the performance of 

sensors for health monitoring and constrain their 

deployment. 

2.2. Operations and Maintenance 

Staffing and control room requirements have been identified 

as a significant technical and policy issue for multi-module 

SMR installations (Cetiner, Fugate, Kisner, & Wood, 2012). 

Key issues include determining appropriate staffing levels 

and how many units may be operated from a single control 

room. PHM systems can play an important role in reducing 
O&M costs and staffing needs by providing greater 

awareness of component and system conditions. In this case, 

to mitigate impending failure of a critical passive 

component of one module, the power level of that module 

may be decreased to reduce stresses and slow down the 

failure mechanisms. The power level of other modules may 

also be increased to compensate for the decrease in power to 

the first module. In this case, the role of a PHM system may 

be to determine appropriate stressor levels to achieve a 

desired remaining useful life (RUL). Also, compensation 

introduces coupling between modules and uncertainty that 

needs to be considered in the PHM implementation. 

2.3. Concepts of Operation 

In order to balance overall electricity generation and to meet 

fluctuating electrical demands, AdvSMRs may operate in a 

load-following mode, where the output of one or more 

reactor modules is adjusted (and thereby the electrical 

output of the plant). This type of operation has been studied 

for iPWR reactor designs (Hines, Upadhyaya, Doster, 

Edwards, Lewis, Turinsky, & Coble, 2011). Alternatively, 

electricity generation can be adjusted by using surplus heat 

for a secondary application. AdvSMRs may be required to 

operate in tandem with variable sources of renewable 

energy and/or supply electricity and process heat for 

industrial applications. One of the objectives of the Next 

Generation Nuclear Plant (NGNP) was to demonstrate 

cogeneration of electricity and hydrogen using high-

temperature process heat (Southworth, MacDonald, Harrell, 

Shaber, Park, Holbrook, & Petti, 2003). Concepts for large-
scale nuclear geothermal energy storage, shale oil extraction 

via nuclear and renewable energy, and symbiotic nuclear 

and renewable energy systems for electricity generation and 

hydrogen production have also been proposed (Haratyk & 

Forsberg, 2011; Forsberg, 2012; Forsberg, Lee, Kulhanek, 

& Driscoll, 2012). A key characteristic of many of these 

concepts is that they facilitate matching a constant nuclear 

energy source with variable electricity demand by 

distributing the nuclear production over multiple product 

streams (see Figure 2). In such scenarios, the distribution of 

load over components in the product streams will be subject 

to daily and seasonal load variations. Similar to the O&M, 
this introduces coupling and uncertainties that need to be 

considered in the PHM implementation.  

 

Figure 2. AdvSMR deployment concept illustrating multiple 

generation missions. 

2.4. Refueling Schedules 

Several advanced reactor concepts are intended to operate 

for extended periods between outages. For LWRs, outages 

are scheduled every 18–24 months for refueling but several 

advanced reactor concepts are intended to operate with 

much longer periods between refueling. The Toshiba 4S 

concept, for instance, is designed to operate up to 30 years 
without refueling (Tsuboi, Arie, Ueda, Grenci, & Yacout, 

2012). The SSTAR is another advanced reactor concept 

with targeted operation periods of 15 to 30 years between 

refueling activities (Smith, Halsey, Brown, Sienicki, 

Moisseytsev, & Wade, 2008). Several other reactor concepts 

such as the liquid fuel MSRs and pebble bed-type VHTRs 

may have the capability to refuel while operating. Thus, it 

will be important that PHM systems for AdvSMRs are 

capable of utilizing data obtained from on-line 

measurements as well as data collected during outages.  
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3. PROGNOSTIC HEALTH MONITORING REQUIREMENTS 

Based on AdvSMR features such as those discussed in 

Section 2, a requirements analysis for the application of 

PHM to AdvSMRs has been performed, identifying several 

important requirements to date (Meyer et al., 2013):  

3.1. Sensors and Instrumentation for Condition 
Assessment of Passive Components 

Because opportunities to perform inspections and 

maintenance of passive components when the plant is off-

line will be limited in many designs, there is a need to 

monitor risk-significant passive components during plant 

operation for degradation. In addition, there is a need to 

monitor the stressors (time at temperature, fluence, 

mechanical loads, etc.) that are expected to contribute to 

degradation of these components. Requirements for sensors 

and instrumentation (whether for on-line or off-line 

condition assessment or for stressor monitoring) include: 

• Ability to tolerate the harsh operating conditions in 
AdvSMRs.  

• High sensitivity, to ensure that reliable measurements 

from earlier stages of degradation are possible.  

• Capability to quantify the amount of degradation from 

the measurements.  

3.2. Fusion of Measurement Data from Diverse Sources 

Accessibility to some AdvSMR components may be 

restricted, particularly in pool-type reactors in which many 

of the primary system components will be submersed in 

coolant. Additionally, for concepts with infrequent refueling 

outages, opportunities to access components for periodic 
off-line inspection will be reduced. The fusion of data 

obtained from both online and offline measurements may 

enhance the performance of prognostics relative to relying 

on either type of measurement alone.  

3.3. Address Coupling Between Components or Systems, 

and Across Modules 

Compensating O&M strategies and concepts of operation 

that seek to distribute the output over multiple product 

streams will result in coupling effects between components, 

systems, and modules. This is likely to result in changing or 

time-varying load conditions that will introduce uncertainty 
in future stressor profiles. 

3.4. Incorporation of Lifecycle Prognostics 

An effective PHM system for AdvSMRs should be able to 

adapt or adjust its prognostics methodology to where the 

component or degradation is in its lifecycle. This helps to 

ensure accurate and timely determination of RUL based on 

the available information. Part of this requirement is 

determining the appropriate degradation models and 

updating these models in response to changes in operating 

conditions. Further, it will be necessary to transition 

between stressor-based prognostics and condition-based 

prognostics depending on the available data.  

3.5. Integration with Risk Monitors for Real-time Risk 

Assessment 

Given that it will likely be impractical to monitor or assess 

every component, a risk assessment will need to be 

performed to determine risk-significant components to 

ensure the highest return on investment. Such a risk 

assessment is in line with current practice for safety-

significant components using risk-informed in-service 

inspection (RI-ISI). Also, the PHM system will be required 

to feed-back information on component condition and 

estimated RUL to the plant supervisory control algorithm 

for decision-making on O&M to manage and mitigate the 

impact of detected degradation. This feedback will have to 

flow through real-time risk monitors (Coble et al., 2013) 
that assess the risk associated with continued operation 

using the degraded component and contrast it with other 

options such as reactor-runbacks and shifting loads to other 

modules.  

3.6. Interface with Plant Supervisory Control System 

As already discussed, with compensating O&M strategies in 

a modular plant the potential exists to shift the power-

generating burden among the units and/or modules to ensure 

component availability until the next scheduled maintenance 

opportunity. To accomplish this, PHM systems for passive 

components will require interfacing with the plant 
supervisory control system for AdvSMRs, to both obtain 

real-time information on operating conditions as well as 

feedback information that the control systems may use to 

adjust operating conditions to ensure a certain RUL.  

  

Figure 3. Depiction of the multiple components of a PHM 

system for passive AdvSMR components. 
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4. RELEVANT PHM STATE-OF-THE-ART OVERVIEW 

A PHM system of AdvSMR passive components will 

consist of several elements, as depicted in Figure 3. This 

section contains a brief overview of the state-of-the-art for 

PHM relevant passive AdvSMR components by considering 

these elements. The overview provided here is an 
abbreviated version of a state-of-the-art assessment 

provided in Meyer et al. (2013).  

 

Figure 4. Conceptualization of candidate measurements and 

sensor locations for monitoring passive component 

degradation in AdvSMRs. 

4.1. Measurements 

Many different types of measurements can potentially be 

implemented in AdvSMRs to sample degradation and to 

input into prognostic models. Measurements can be 

categorized as local condition, global condition, and 

process/environmental measurements. Figure 4 illustrates 

several candidate measurements and sensor locations for 
monitoring passive component degradation in AdvSMRs. 

Local condition measurements refer to local nondestructive 

examination (NDE) measurements typically including 

various ultrasonic, eddy current, and visual testing 

techniques. These NDE measurements are currently limited 

to being performed while the reactor is off-line due to the 

operating environment. Although this limits the frequency at 

which these measurements can be performed, NDE 

measurements are generally more direct and descriptive than 

global condition or process/environmental measurements. 

Global condition monitoring has also been deployed to 
monitor the status of passive components in nuclear 

reactors. As the name implies, these measurements relate to 

the overall health of a component or system and do not 

necessarily contain information about the nature of the fault 

or its precise location. Global condition measurements are 

sensitive to fairly advanced degradation such as cracks or 

the existence of loose parts. Although the measurements are 

less descriptive than local NDE measurements, global 

condition measurements are performed during reactor 

operation, and thus can be performed with greater 

frequency. In addition, global condition measurements can 

be used to monitor components that are not accessible to 

local NDE measurements due to physical access limitations. 

Examples of global condition monitoring methods in 

nuclear reactors include vibration analysis, neutron noise 

analysis, and acoustic emission. Guided ultrasonic wave 

techniques are also emerging in the nuclear power industry 
and have the potential to merge some of the benefits of 

global measurements (i.e., long range sampling) and local 

measurements (i.e., descriptiveness). 

In addition to condition measurements, passive component 

health may indirectly be inferred from process/ 

environmental measurements. These typically include 

measurements of temperature, flow rate, pressure, neutron 

flux, and coolant chemistry variables. Process/ 

environmental conditions can be both contributors to 

passive component degradation and indicators of passive 

component degradation. In the former case, they represent 

stressors, and in the latter case, they are condition 
indicators. Like global condition measurements, process/ 

environmental measurements are generally less descriptive 

or direct than local NDE measurements, but they are 

performed during reactor operation and can be performed 

with greater frequency. 

4.2. Measurements in Harsh Environments 

Multiple concepts exist for performing process/ 

environmental and NDE measurements on-line at high 

temperatures and research in these technologies is ongoing. 

Examples of such efforts are provided by Ball, Holcomb, 

and Cetiner (2012) for measurements of temperature and 
neutron flux including gold-platinum (Au-Pt) 

thermocouples, Johnson Noise Thermometers (JNT), and 

high temperature fission chambers. In addition, there are 

several fiber optic and ultrasound based concepts for 

measuring temperature and pressure parameters. On the 

NDE side, there are efforts to develop piezoelectric based 

technologies for applications in SFRs (Bond, Griffin, 

Posakony, Harris, & Baldwin, 2012) and LFRs by Kažys, 

Voleisis, and Voleisiene (2008). A significant issue includes 

understanding how many proposed sensor types will hold-

up to significant radiation fluxes and research efforts to 

address this gap with respect to in-pile instrumentation 
applications is ongoing (Rempe et al. 2011). 

4.3. Diagnostics and Prognostics 

Several approaches to diagnostics and prognostics are 

potentially available. Research towards addressing issues 

such as data fusion for diagnostics, prognostic models, 

lifecycle prognostics, uncertainty quantification, and 

prognostics in coupled systems, is ongoing. It is likely that 

research in these areas will require adaptation to address 

issues specific to AdvSMR passive component applications. 

With respect to data fusion for diagnostics, most efforts 

have focused on the fusion being performed at the signal 
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level, using similar forms of measurements with less effort 

being expended on fusing dissimilar forms. Techniques for 

the latter efforts are largely data-driven and require data sets 

from known sources to determine the parameters of the 

fusion algorithm. Fusion using physics-based models, 

although not as widespread, has also been investigated. 

Several state prediction techniques exist for potential 

application to passive components in AdvSMRs, many of 

them based on data-driven or probabilistic models of 

damage progression. Physics-of-failure models are 

increasingly being considered. Limited failure rate data or 

information related to many passive components in 

AdvSMRs will motivate the use of physics-of-failure 

models over historical data-driven models. Applicable 

models exist for many forms of relevant degradation such as 

Paris’ Law for fatigue and Norton’s Law for thermal creep. 

These models contain empirically derived constants that 

may not be fully known over the range of relevant operating 
conditions in AdvSMRs. Tracking algorithms (i.e., Kalman 

filtering, extended Kalman filtering, and particle filtering) 

provide a convenient framework for incorporating the latest 

information from measurements and facilitating the 

propagation of uncertainty to failure. Coupling the particle 

filter technique with physics-of-failure models for 

degradation modes can provide a versatile means for 

estimating the RUL of AdvSMR passive components.  

5. ILLUSTRATION–PROGNOSTICS FOR ADVSMR PASSIVES 

The PF technique is adequately described in the literature, 

including several tutorials for implementation 
(Arulampalam, Maskell, Gordon, & Clapp, 2002; An, Choi, 

& Kim, 2012). An application of PF to forecast mechanical 

fatigue degradation in passive components in LWRs is 

described by Ramuhalli, Bond, Griffin, Dixit, and Henager 

Jr. (2010). Here, we provide a simple illustration of the PF 

technique to predict the failure of AdvSMR components due 

to thermal creep. Additional functionality and complexity 

can then be demonstrated by stepwise expansions and 

modifications to this simple illustration. 

The forecasting of thermal creep damage in He gas turbine 

blades fabricated from a Ni-based superalloy has recently 

been investigated by Baraldi, Mangili, and Zio (2012) using 
an ensemble of empirical models to improve performance. 

Here, Norton’s Law is used with the PF technique to predict 

the RUL of AdvSMR passive components. To generate a 

sequence of states, Norton’s Law [eq. (1)], is written as a 

state transition model: 

 ( )1 1 .n

k k k k
A t t

+ +
ε = σ − + ε  (1) 

Norton’s Law parameters for 316L stainless steel weld 

material provided in Nassour, Bose, and Spinelli (2001) are 

used for the initial demonstration presented here assuming a 

temperature of T = 700°C. For now, the Norton’s Law 

parameters are assumed to be Gaussian distributed variables 

and the values from Nassour et al. (2001) are interpreted as 

mean values although other distributions for these variables 

can be accommodated. The values of these parameters are 

provided in Table 1, along with assumed standard 

deviations.  

Norton’s Law is also used to generate simulated NDE 
measurement data. In this case, the model is developed in 

anticipation of accelerated aging studies that will provide 

data to validate the model illustrated here and potentially 

other models. The measurement uncertainties are assumed 

to have a Gaussian distribution. In this case, the uncertainty 

in the NDE measurements is assumed to be 0.1% of creep 

strain and the failure criterion is 3% creep strain. The actual 

failure time for these conditions according to Norton’s Law 

is 10.8 hrs. The NDE measurements are simulated to be 

performed with a periodicity of 1 hr. This selection was 

made to approximate the relative frequency that offline 

NDE measurements may be performed on an AdvSMR, 
assuming the failure time in the accelerated studies is 

correlated with a plant lifetime.  

Failure projections are included in Figures 5 through 7, for 

NDE measurements performed at 0 and 1 hours; 0, 1, and 2 

hours; and 0, 1, 2, 3, and 4 hours. The distributions of RUL 

for each scenario are shown in Figures 8 through 10. The 

results were generated using a sample of 5000 particles. 

Table 1. Summary of parameters and variables used in 

Norton’s Law model to forecast thermal creep failure. 

 

Parameter Value (mean) Std. Dev. 

n 9.05 3.33% 

A 2.93×10-22 (N m-2)-n h-1 10% 

σ 125 MPa --- 

6. CONCLUSIONS AND DISCUSSIONS 

PHM for passive components in AdvSMRs can play a key 

role in facilitating the deployment of AdvSMRs by 

minimizing controllable day-to-day costs associated with 

plant O&M. Although potential concepts and designs for 

AdvSMRs vary significantly, there are some general 

features that can help define the requirements of a PHM 

system for passive components. Degradation may be 

sampled in AdvSMRs through online and offline 

measurements. A PHM system is likely to be most effective 

if prognostics algorithms can use both types of 

measurements.  

A basic illustration is provided of a prognostics method 

based on the PF technique for predicting passive component 

failure due to thermal creep degradation. The illustration 

simulates sampling of creep degradation with offline NDE 

measurements. The illustration only represents the start of 

prognostic algorithm development as additional 

functionality to address many the requirements in Section 3 
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will need to be demonstrated. The approach is to alternately 

add functionality and demonstrate that added functionality 

with accelerated aging studies.  
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Figure 5. Failure projection for thermal creep based NDE 

measurements at 0 and 1 hours. 

 

 

Figure 6. Failure projection for thermal creep-based NDE 

measurements at 0, 1, and 2 hours. 

 

 

Figure 7. Failure projection for thermal creep-based NDE 
measurements at 0, 1, 2, 3, and 4 hours. 

 

 

Figure 8. RUL distribution for NDE measurements 

performed at 0 and 1 hours (see Figure 6). 
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Figure 9. RUL distribution for NDE measurements 

performed at 0, 1, and 2 hours (see Figure 7). 

 

 

Figure 10. RUL distribution for NDE measurements 

performed at 0, 1, 2, 3, and 4 hours (see Figure 8). 
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ABSTRACT 

The purpose of this paper is to present the research approach 

for the development of an algorithm for detection of a 

failure of the CH-53 swashplate bearing external spacer. 

The failure causes a lack of support of the swashplate 

bearing, thus creating a deformation of the outer ring. This 

study integrates the results of a new 3D dynamic model, 

developed for assessment of the defect pattern, and results 

from experiments. The research approach is planned in 

hierarchical phases. The experimental phases include a 

small scale specimen, full scale test rig, helicopter blades 

test facility and finally a CH-53 helicopter. The unique 

approach gradually simulates the real work environment of 

the swashplate bearing. The first two experimental phases 

and their results are presented. The first experimental phase 

is conducted on a small scale specimen and the second 

phase on a full scale test rig. Model results indicate that the 

lack of support has a defect pattern in both the radial and 

axial directions. These results are validated with the small 

scale specimen. In the future phases, the algorithm will be 

validated with data from the helicopter blades test facility 

and CH-53 helicopter. 

1. INTRODUCTION 

In 2008, the swashplate bearings of a CH-53 failed during a 

flight. The crew, subjected to a stroke followed by 

significant vibrations, managed to perform an emergency 

landing. Post-accident examination showed that a failure in 

the external spacer, separating the duplex ball bearing outer 

rings, led to collapse of the upper bearing and direct contact 

between the stationary and rotating swashplate. 

The swashplate is a device used for transmitting control 

inputs to the blades )see Figure 1(. Therefore the 

swashplate bearings are safety of flight critical components. 

The swashplate of the CH-53 is constructed of two angular 

contact ball bearings supported by two spacers- internal, 

between the static inner rings and external, between the 

rotating outer rings (see Figure 2). 

   
Figure 1. Sikorsky CH-53 swashplate; www.airliners.net 

 
Figure 2. Swashplate cross section 

_____________________ 

Mor Battat et al. This is an open-access article distributed under the terms 
of the Creative Commons Attribution 3.0 United States License, which 

permits unrestricted use, distribution, and reproduction in any medium, 

provided the original author and source are credited. 
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The Laboratory for Mechanical Health Monitoring at Ben 

Gurion University of the Negev (BGU) is developing a 

method for early detection of failures caused by deformation 

of the bearing outer ring and is establishing prognostic tools 

that could prevent such catastrophic failures.  

This article describes the methodology for development of a 

prognostic tool. The swashplate bearing cannot be 

efficiently examined before each flight, hence the need to 

develop a real-time diagnostic tool. The potential benefit of 

this research results is both in improving the aircraft safety 

and in reduction of maintenance costs. It should be noted, 

that the UH-60, as well as other Sikorsky helicopters, have a 

similar swashplate structure. 

The post-accident investigation findings indicate local 

deflection of the external spacer, adjacent to the grease 

nipple, as the first stage of the failure. External spacer 

increased deformation, toward the inner spacer, resulted in 

abrasion of the two spacers, finally causing the external 

spacer fracture.  

2. GENERAL APPROACH 

Pattern of bearings sub-components deformations are not 

thoroughly investigated, hence the need to study the defects 

signature. A new 3D dynamic model (Kogan et al., 2012) 

has been developed as a tool for investigation of faulty 

bearings behavior. As shown in Figure 3, time history data 

generated by the model was analyzed in order to define the 

fault expected pattern. Vibration signals generated by three 

test systems will be analyzed based on the model results in 

order to recognize the fault signature. At last, diagnostic 

algorithms will be applied to vibration data acquired from a 

CH-53 swashplate. The obtained signature will be compared 

to the validated dynamic model pattern to define the 

algorithm and the condition indicators of the fault. 

Most bearings dynamic models known today simulate 

localized faults. Since the majority of used bearings are 

radial bearings a two dimensional model is sufficient for 

pattern and behavior simulations. The CH-53 accident 

examination presents a different case. The axial loading and 

the fact that the defect is at the supporting spacer rather than 

at the bearing components requires a new insight. 

Constructing a new 3D model was the initial step. The 

model laid the foundations for the recognition of the 

defective pattern and the scale of vibrations at different 

levels of the failure progression. Knowing the expected 

pattern has a significant advantage when analyzing noisy 

data. 

Comparing the dynamic model results with vibration signals 

generated by different test systems is planned in phases. It is 

assumed that when advancing from one phase to another the 

measured data will simulate more realistically the signal and 

the environment of the helicopter rotor head. As a result, the 

difficulty to recognize the pattern of the faulty bearing is 

expected to increase from one phase to another, demanding 

more complex algorithms. Progress in phases is performed 

to guarantee the recognition of the defect signature among 

the variety of signals generated by the helicopter during a 

flight. 
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Figure 3. Research flow chart 

Two designated test rigs were developed in the BGU lab. A 

small scale specimen is designed for fast experiments and 

easy simulation of a wide range of faults. A full scale test 

rig simulates better the real environment of the helicopter 

swashplate. The rig, constructed with an original 

swashplate, provides a good simulation under laboratory 

conditions of the real support structure. IAI helicopter 

blades test facility will be a following phase to the 

laboratory test rigs, simulating a full rotor head icluding 

transmission, main shaft and  blades. The test systems will 

be installed and tested with a healthy swashplate at first. 

After all relevant data is acquired the healthy swashplate 

will be replaced by a faulty swashplate with a defective 

external spacer. In the final phase data acquisition will be 

made on an operational CH-53 ground run. The correlation 

of the signals between each test system is a primary 

question of the research and constantly being examined. 

Research by Keller & Grabill (2005) examined the detection 

ability of a CH-47D faulted swashplate bearings by 

vibration monitoring. The tests were conducted on a 

swashplate test rig built in back-to-back design in which the 

upper swashplate assembly is the drive and the lower 

swashplate assembly houses the tested bearing. The work 

shows that spalled and corroded bearings are easily 
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detected. Cage faults, however, were not detected by 

standard analysis methods.   

A paper by Dempsey et al. (2010) compares faulty bearing 

data collected on a UH-60 Black Hawk helicopters and data 

collected on a test stand. Three Receiver Operating 

Characteristic (ROC) curves were used to compare the 

bearing performances. Variables affecting the ability to 

recognize a fault are presented. These variables include 

sensor type, mounting, location, signal processing, structural 

dynamics, flight regimes, and history of the component. It is 

concluded that development of diagnostic tools on a test 

stand is a complicated process due to environmental factors. 

Our approach is designed to address the complexity of 

developing algorithms based on test rig data and 

implementing the algorithms on data from helicopter flights. 

The integration of a physical model and hierarchical test 

systems is a method designed to recognize the fault pattern 

in the different experimental systems. 

Frequently, when analyzing data, appearance of irregular 

peaks indicates a fault, but one cannot associate the peaks 

due to lack of the fault pattern. The physical model is a tool 

aimed to address this uncertainty. The experiment systems 

are aimed to address the influence of the environmental 

factors. 

3. DYNAMIC MODEL 

A new 3D dynamic ball bearing model was developed to 

study the effect of anomalies in bearing sub-components on 

the bearing dynamic behavior. The aim of the model is to 

calculate the dynamic response of a bearing with a wide 

spectrum of faults. The algorithm was implemented 

numerically in MATLAB and is based on a model used in a 

study by Tkachuk and Strackeljan (2010). 

The dynamics, for each bearings component, are based on 

the classical dynamic equations 

   ⃗⃗  ⃗     ⃗⃗  ⃗       ( ⃗    ⃗⃗  ⃗)    ⃗⃗ ̇     ⃗⃗  (  ⃗⃗ )     (1) 

where       are respectively the friction and the normal 

forces that act on a body, with mass   and acceleration   ; 

and  ( ⃗    ⃗⃗  ⃗) is the total moment of force acting on a body 

with a moment of inertia tensor     angular velocity  ⃗⃗ ; body 

system      with angular velocity  ⃗⃗ ; and rotational 

acceleration, within the body system,  ⃗⃗ ̇   . 

The relative velocity equation 

  ⃗⃗⃗⃗    ⃗⃗⃗⃗   ⃗⃗    ⃗⃗⃗⃗    (2) 

Where   ⃗⃗⃗⃗  is the velocity of the body at    and  ⃗⃗  is the 

angular velocity of   ⃗⃗⃗⃗ . 

The presented equations describe the motion of all the 

modeled bodies and are solved using time steps (see Figure 

4). In each time step, the solution of the equations is based 

on the previous time step solution, assuming a constant 

acceleration.  

The dynamic model was validated by comparison to 

analytical solutions and known bearing response to local 

defects. After validation, the model was implemented for a 

structural deformation case that corresponds with the 

accident examination findings. 

The failure investigation showed that the external spacer 

collapse separating the duplex ball bearing outer rings, led 

to damage of the upper bearing. The deformation of the 

outer ring was calculated using finite element analysis (see 

Figure 6). It was found that the lack of proper support 

causes local deflection in the axial direction of the outer ring 

of the top bearing. The deflected geometry was 

implemented in the dynamic model. 

 

Figure 4. Simplified model algorithm 

 

Figure 5. Model section 
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Figure 6. Structural defect finite element model 

4. SMALL SCALE SPECIMEN 

The small scale specimen is a kit of a generic test rig. The 

rig, shown in Figure 7, is a versatile platform built to study 

the signatures of common machinery faults. It has simply 

operated replaceable kits designed for fast experiments and 

simulation of a wide range of faults. 

 

Figure 7. Generic test rig with the small scale specimen kit 

 

 
a) cross-section  b)  image 

Figure 8. Small scale specimen 

The specimen, shown in Figure 8, is constructed of two 

axial unidirectional ball bearings (NSK 7208BWG) 

separated by the examined spacers (static internal spacer 

and dynamic external spacer). The bearings are tightly set 

into aluminum cups. Pressure, simulating the spacers axial 

load, is applied by tightening the cups screws, forcing the 

two outer races onto the spacer. 

Experiments included installation of the specimen with a 

healthy spacer and a number of spacers with faults of 

different sizes. Variation of tightening pressure resembled 

the spacers compression. A variable frequency drive 

controls the velocity of the electric motor and the shaft 

speed is measured by an optic encoder. Acceleration sensors 

can be mounted directly to the static shaft or onto the shaft 

housing, as shown in Figure 8a.  

5. FULL SCALE TEST RIG 

The main purpose the full scale test rig was to simulate the 

original work environment of the swashplate bearings 

without the environmental noise. The reduction of noise will 

help in recognition and isolation of the searched CIs. 

The rig, shown in Figure 9, is built around an original CH-

53 swashplate. The rotating plate is set in motion by a 

transmission of gears and a belt driven by an electric motor.  
The motor is set to rotate the plate at 185 RPM, the CH-53 

main rotor speed. 

 

Figure 9. Full scale test rig and sensors locations 

Simple and efficient change of swashplates was the main 

consideration in the design process. Already in-use loading 

configuration of such test rigs were examined (Bayoumi et 

al, 2008; Keller & Grabill, 2005). The chosen configuration, 

shown in Figure 9, has a reduced number of moving parts 

and lower weight due to reduction of the cyclic loading. 
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Figure 10 demonstrates the path of the load through the test 

rig. The simulation of the axial load on the swashplate is 

done using a hydraulic cylinder. The piston loads the main 

shaft that transmits the load to the rotating plate through the 

spider. The rotating plate transmits the load through the 

bearings to the stationary plate. 

 

Figure 10. Load transformation over the test rig 

In horizontal operating mode the rig simulates hovering due 

to the symmetric loading, therefore during the first 

installation, its balance was validated. 

 

Figure 11. Helicopter blades test facility 

The experimental program includes runs with healthy and 

faulty swashplates at a number of rotational speeds, piston 

pressures and sensor locations. Five different sensor 

locations, shown in Figure 9, have been selected considering 

both operational and scientific applications. The operational 

locations are derived from helicopter already-in-use sensor 

brackets and considering maintenance simplicity in case of 

malfunction. The scientific application considers sensor 

location optimization and variation of the damping in the 

rig. Furthermore, transfer function influences the acquired 

signal. Data from different sensor locations can be used as a 

tool of comparison or for further analysis. 

Experiments at the helicopter blades test facility, shown in 

Figure 11, are planned to take place in the next phase. For 

facilitation of data comparison, the same acquisition system 

and sensors will be used. 

6. RESULTS 

6.1. Model results 

This section describes the model implementation. The 

model was first designed with the small scale specimen 

bearing parameters followed by the full scale test rig bearing 

parameters.  

6.1.1. Small scale specimen bearing implementation 

The results of the standard bearing (NSK 7208BWG) 

dynamics under the influence of a defective support are 

presented. Table 1 presents the bearing parameters.  

Table 1. Small scale specimen bearing parameters 

Pitch diameter           [ ] 

Ball diameter           [ ] 

Number of balls    

Outer rings rotation speed   [   ] 

Defect length (azimuth)     

 

During a ball passage through the outer ring deflected zone, 

the axial load acting on the ball drops and the ball support of 

the inner ring is reduced. In order to compensate for the 

support reduction, the neighbor balls are overloaded. The 

sudden interruption of the inner ring support causes a 

periodic deflection. 

The inner ring center radial acceleration, shown in Figure 

12, presents paired impulses that correspond to the impulses 

of the axial acceleration. However, the impulses that appear 

in the radial acceleration include shaft speed modulation, 

which is related to the defect location variation. 

The angular distance between the balls is shorter than the 

angular length of the defect, therefore, between each two 

impacts corresponding to the interaction of a ball with the 

fault, appears a third impact that corresponds to next ball 

entrance into the deflected zone. 

Hydraulic 

cylinder  

Static 

plate 

Spider 

Rotating 

plate 

Shaft 

Electric 

engine 
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Examining the sensitivity of the bearing dynamics to 

variation of the defect geometry showed that the maximum 

acceleration of the inner ring is proportional to the 

maximum outer ring deflection. 

 

Figure 12. Small scale specimen bearing model results: 

inner ring radial acceleration 

The relation between the outer ring deflected zone length 

and the bearing dynamics is more complicated. The 

deflected zone is longer than the angular distance between 

the balls. Therefore, part of the time, the inner ring is 

supported by 12 balls. This small period is not enough for 

stabilization. Therefore, the maximum inner ring center 

deflection is defined by the length of the period that it is 

supported by 12 balls. This means that the inner ring center 

deflection is proportional to the length of the outer ring 

deflected zone. 

The model results show that the acceleration of the inner 

ring center is a sensitive indicator of the defect existence. 

Therefore, the power spectral density (PSD) of the 

simulated acceleration is evaluated for further comparison 

with the test results. 

 

Figure 13. Small scale specimen bearing model results: PSD 

of the inner ring acceleration 

The PSD of the axial acceleration of the inner ring center 

(see Figure 13) reveals peaks at the order: 

    (    ) (3) 

Where    is an index and    is the cage order which is 

defined as: 

   
 

 
(  

 

 
   ( )) (4) 

The significant peaks of    appear when   is a multiple of 

number of balls N, i.e. a harmonic of the Ball Pass 

Frequency Outer race (BPFO). 

The spectrum of the acceleration in the radial direction 

reveals the first harmonic of the shaft speed and peaks at the 

order: 

    (    )    (5) 

The significant peaks of    appear when   is a multiple of 

the number of the balls, i.e. sidebands of the shaft speed 

around a harmonic of the BPFO.  

6.1.2. Full scale bearing implementation  

Implementation of the dynamic model with a CH-53 

swashplate bearing parameters was examined. Table 2 

presents the bearing parameters. 

Table 2. Full scale bearing parameters 

Pitch diameter      [  ] 

Ball diameter    [  ] 

Number of balls    

Outer race operational frequency 3.16 [Hz] 

Contact angle      

Defect length (azimuth)     

 

In agreement with the small scale specimen bearing results 

the radial direction significant peaks of    indicate 

sidebands of the shaft speed around a harmonic of the 

BPFO. The axial direction peaks of    indicate harmonics 

of the BPFO. The axial acceleration shows peaks at the 

BPFO harmonics (44.95, 89.91 …).  

The main parameters affecting the rings acceleration are the 

number of balls, the axial load and defect length. In order to 

clearly identify the fault, a relatively large primary defect 

was produced. As mentioned in Table 2, a defect length of 

    was inserted to the outer spacer.  

The effect of the major increase in the number of balls can 

be seen when comparing the axial acceleration of the small 

scale specimen bearing (Figure 13) and the full scale 

bearing (Figure 14). 
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Figure 14. Full scale bearing model results: PSD of the 

inner ring acceleration 

Examination of the model result for various defect lengths is 

needed. These results would be used for development of a 

generic failure algorithm independent of the bearing 

dimensions or the number of balls. 

6.2. Small scale specimen experiments 

The small scale specimen test results include examination of 

the fault influence on both radial and axial acceleration 

spectra (see Figure 15). The comparison between the spectra 

of the faulty supported bearing in the radial and axial 

directions reveals that the axial acceleration signal is 

dominant at the BPFO order harmonics and the radial 

acceleration signal is predominated by the shaft speed 

sidebands. These results correspond to the model results 

presented in Figure 13. 

 

Figure 15. Small scale specimen results: PSD of the faulty 

supported bearing 

The model results, presented in Figure 13, show peaks at 

orders of  (    ) and of  (    )   . When   is not a 

multiple of number of balls    these peaks are low 

compared to the BPFO harmonics and to their shaft speed 

sidebands. Therefore, those peaks cannot be observed in the 

test results and are probably masked by other sources of 

vibrations. 

6.3. Full scale test rig preliminary results 

The rig was tested with a healthy bearing at 185 [RPM] 

without load. Transmission components frequencies were 

calculated and identified.  

The acceleration PSD of the healthy bearing is presented in 

Figure 16. The PSD was calculated on the resampled 

acceleration acquired at sensor location 2 (as shown in 

Figure 9) in the bearing radial direction. As expected the 

bearing tones cannot be observed with a healthy swashplate 

bearing.  Compared to the small scale specimen results, it 

can be seen that the vibration signature contains larger 

amount of information due to more inputs. This illustrates 

the expected difficulties in recognizing the pattern in a more 

realistic environment. Noises resulting from the 

transmission mask the bearing fundamental frequencies as 

shown in the multiple peaks appearing around the BPFO 

second harmonic (89.9). The model results point to the 

defect location but further analysis is needed in order to 

recognize the fault in complex mechanical systems. 

 

Figure 16. Full scale test rig results: order spectrum of the 

healthy swashplate acceleration  

7. CONCLUSIONS 

This paper presents the research approach for the 

development of an algorithm for detection of a failure of the 

CH-53 swashplate bearing external spacer. The failure 

causes a lack of support of the swashplate bearing, thus 

creating a deformation of the outer ring. This study 

integrates the results of a 3D dynamic model, developed for 

assessment of the defect pattern, and results from 

experimental systems.  

The new dynamic model predicts a defect pattern for the 

unique, newly-researched failure. The results present the 

defect pattern in the radial and axial directions. A similar 

Gear mesh 

Belt transmission 

  (    ) 

 (    )    
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schematic pattern was obtained in both the small scale 

specimen bearing and the full scale bearing. This pattern can 

be used in the future to develop a generic algorithm for 

detection of the failure independent of the bearing 

dimensions or the number of balls. 

The small scale specimen is designed for fast experiments 

and easy simulation of a wide range of faults. Experiments 

of the small scale specimen simulating the fault are in good 

agreement with the model results.  

A full scale test rig was constructed to simulate more 

realistically the signals generated by the rotating swashplate. 

The test rig configuration allows swashplates to be easily 

replaced and operated. The test rig was constructed to 

function under a static load and rotational speed of an 

operational main rotor while keeping a low number of 

moving parts and using a small electric motor. Preliminary 

experiments conducted on the test rig confirm the increase 

in noise sources. The appearance of multiple peaks around 

the BPFO second harmonic observed in the test rig 

experiment illustrates the need to integrate the model results 

with experiments. 

In the next steps it is planned to complete the seeded fault 

tests on the full scale test rig and examine the algorithm 

with data from the helicopter blades test facility and the CH-

53 helicopter. 
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ABSTRACT

We propose the use of multivariate orthogonal space
transformations and Vector Autoregressive Moving-Average
(VARMA) models in combination with data-driven system
identification models to improve residual-based approaches
to fault detection in rolling mills. Introducing VARMA mod-
els allows us to build k-step ahead multi-dimensional pre-
diction models including the time lags that best explain the
target. Multivariate orthogonal space transformations pro-
vide estimates for the dynamical parameters by rewriting the
equation set of the system at hand, decomposing the mea-
sured data into process and residuals spaces. Modeling in
the process space then produces much more accurate mod-
els due to dimensionality (noise) reduction. Since we use an
unsupervised scheme that requires a priori neither annotated
samples nor fault patterns/models, both model identification
and fault detection are based solely on the on-line recorded
data streams. Our experimental results demonstrate that our
approach yields improved Receiver Operating Characteristic
(ROC) curves than methods that do not employ vector autore-
gressive moving-average models and multivariate orthogonal
space transformations.

1. INTRODUCTION

Unscheduled machine downtime could be reduced signif-
icantly by accurate condition monitoring and early detec-
tion of faults. Thus, expensive repair costs could be min-
imized and production efficiency increased. The concept
of fault detection was formally defined by the ”SAFEPRO-
CESS” IFAC Technical Committee as the ”Determination of
Francisco Serdio et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

the faults present in a system and the time of detection”. Fur-
ther, they also defined a fault as ”An unpermitted deviation of
at least one characteristic property or parameter of the system
from the acceptable/usual/standard condition” (Isermann &
Ballé, 1997). At the time when the Committee introduced
the terminology to the fields of supervision, fault detection
and diagnosis, most applications supported fault detection by
simple threshold logic or hypothesis testing, but the number
of publications describing much more complex techniques
(such as fuzzy logic or neural networks) was steadily grow-
ing. The main challenge in our application is the detection
of faults, without (i) an analytical description of faults and
process models and (ii) a collection of typical fault patterns.
Approaches using model-based techniques that rely on an-
alytical process (system) models (Dong, Liu, & Li, 2010)
or employ models deduced from the physical definition of
the appearance of a fault (Bolt et al., 2010) or take advan-
tage of a robust observer design (Theilliol, Mahfouf, Ponsart,
Sauter, & Gama, 2010) are unsuited to our application. Nei-
ther are time-series analysis (Chandola, Banerjee, & Kumar,
2009) and vibration monitoring in frequency spaces (spec-
trograms, etc.) (Pichler, Lughofer, Buchegger, Klement, &
Huschenbett, 2012) because the measurement signals are not
completely smooth and continuous in their time line appear-
ance but may show jumping patterns even in fault-free states
due to, for instance, varying systems states. Pattern recog-
nition and classification approaches (Bishop, 2006) cannot
be employed (i) due to the absence of fault patterns and (ii)
because annotated samples are not available since simulating
real faults directly at the system involves high costs and the
risk of component breakdown.

For fault detection in rolling mills, we propose a residual-
based approach that builds upon data-driven techniques, com-
bined with vector autoregressive moving-average models and

1
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multivariate orthogonal space transformations. Further, we
use a dynamic threshold based on a tolerance band that tracks
the residuals of the models over time after being normalized
by a local error bar. The model-based FD approach takes ad-
vantage of the nominal model of the system to generate resid-
uals (deviations between model predictions and measured tar-
gets) containing information about the faults. Clearly, the
quality of the model is essential for fault detectability and
isolability and the avoidance of ”false alarms” (Frank, Al-
corta, & Köppen-Seliger, 2000).

We conducted our experiments using process history-based
methods which only require large amounts of historical pro-
cess data. There are different ways in which this data can
be transformed and presented as a priori knowledge to a diag-
nostic system. Principal Component Analysis (PCA) and Par-
tial Least Squares (PLS) together with statistical pattern clas-
sifiers form a major component of statistical feature extrac-
tion methods (Venkatasubramanian, Rengaswamy, Kavuri, &
Yin, 2003). Section 2 explains how we handle VARMA mod-
els and describes both PCA and PLS as preprocessing and di-
mension reduction tools and how to combine them with linear
or fuzzy methods. Section 4 comments briefly on preliminary
results which show that the proposed techniques yield better
Receiver Operating Characteristic (ROC) curves than previ-
ous fault detection methods. Section 5 concludes the paper
and presents future research directions.

2. MODELING

2.1. Methodology step by step

Our methodology at a glance is shown in Figure 1. In the
workflow, four different pathways can be follow, thus ob-
taining the different combinations of models, i.e. the models
without any additional issue (raw models), the VARMA mod-
els (including the lags of the channels), the models trained
on the projected spaces and the VARMA models trained on
the projected spaces. Along these pathways, how a dataset
is spanned to include lags and how a model can be trained
in a projected space is also depicted. The methodology also
include a preprocessing step cleaning the data.

2.2. VARMA (Multi-regressive) Models

Inspired by Auto-Regressive Moving Average (ARMA) mod-
els, which model a channel by its own lags, we use lags in
our multidimensional and multichannel approach. Thus, the
dataset containing the candidate channels to explain a target
is first spanned with the candidate channels’ lags (Figure 1).
To this end, each channel in the dataset is delayed several
times by different amounts (1 to L in our experiments). Then,
the model of each channel including all the channels’ lags
is learned by means of a modified variant of forward selec-
tion (Miller, 2002) over the spanned dataset. Thus, we ob-
tain separate and independent multivariate time series mod-

Figure 1. Methodology workflow. All combinations of meth-
ods can be obtained following the four different pathways.

els, fi, i = 1, ...,M .

Starting from the general definition of the model of a channel
chi as a function fi of other channels (where no lags are used),
and using the notation [t] to express the lag operator (also
known as backshift operator, at time t), it becomes straight-
forward to pass from the particular model definition where
the set of candidate channels for explaining the target is ob-
tained from the spanned dataset including lags (cf. Figure 1).
The functional relation without lags is then

chi[t] = fi(ch1[t], ...,chi−1[t],chi+1[t], ...,chM[t]) , (1)

while the functional relation with lags is

chi[t] = fi(chp[t− k], ...,chq[t− l], ...,chr[t−m]) , (2)

where k varies from 0 (i.e., allowing channels without lags
to participate in the model definition) to L, and p,q,r 6= i
(lags of chi are not included) but not necessarily p 6= q 6= r.
Thus, models are potentially obtained where no lags, different
lags from the same channel, or different lags from different
channels appear as input. To do not allow lagged versions of
chi will avoid introducing the information of the (potentially
faulty) channel as an input of the final model.

2
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Previous work using autoregressive models in the fault de-
tection area can be found in Schöener, Moser, and Lughofer
(2008), M. Yang and Makis (2010) and T. Yang (2006). These
use AR, ARX and ARMA models respectively, but we have
not found evidence of VARMA models applied for the pur-
pose of fault detection. However, our results demonstrate that
this new functional relation enriches the model set since they
yield better ROC curves (see section 4). A detailed descrip-
tion of ARMA models and its variations is provided in Holan,
Lund, and Davis (2010).

2.3. (Fuzzy) Principal Components Regression

Principal component analysis (PCA) (Jolliffe, 2002) is a vec-
tor space transformation that identifies the most meaningful
basis to re-express the original space while preserving maxi-
mum variance in a minimum number of dimensions and filter-
ing out the noise. When starting from correlated data, PCA
is a good technique to transform the set of original process
variables into a new set of uncorrelated variables that explain
the main trends of the process. The PCA decomposition is

X =
m

∑
h=1

vhrT
h +G =V RT +G , (3)

where V, R and G are scores, loadings and residuals, respec-
tively. Since PCA was first introduced as a tool (Jackson
& Mudholkar, 1979), numerous publications have described
fault detection using PCA, comprising both practical appli-
cations (Odgaard, Lin, & Jørgensen, 2008) and theoretical
studies (Tamura & Tsujita, 2007). We, however, do not use
PCA directly as a fault detection method; instead we go a
step further and use a Principal Component Regression (PCR)
technique –see Jolliffe (2002). PCR exploits the PCA capa-
bilities as a dimensionality reduction tool in order to produce
a new set of regressors to train a linear method with them (see
Figure 1). Since the model trained with the PCA scores can
be changed (a linear model is used in PCR), several variants
are possible. We used both PCR and Fuzzy PCR (FPCR) in
our experiments. For FPCR we used a Takagi-Sugeno fuzzy
model (TSK) trained with an extended version of SparseFIS
as explained in Lughofer and Kindermann (2010).

SparseFIS relies on a top-down approach that takes a maxi-
mum number of (allowed, feasible) rules as inputs and dis-
cards out as many rules as possible to find a compact rule set
through an enhanced numerical optimization process which
is a non-linear version of the projected gradient descent algo-
rithm (Daubechies, Defrise, & Mol, 2004). SparseFIS also
uses an extended form of TS fuzzy models, since it integrates
rule weights ρ ∈ [0,1] as rule importance levels, thus prefer-
ring some local regions over others.

f̂ (~x) = ŷ =
C

∑
i=1

Ψi(~x) · li(~x) Ψi(~x) =
ρiϕi(~x)

∑C
j=1 ρ jϕ j(~x)

, (4)

where li are the linear consequent functions and ϕ(~x) denotes
the activation degree of the i-th rule. The analytical model
of FPCR results from substituting the inputs in (4) by those
transformed (and usually reduced) by the PCA orthogonal
projection in (3).

2.4. (Fuzzy) Partial Least Squares

Partial Least Squares (PLS) handles correlated inputs, reduc-
ing the dimensionality of the input and target variables by
projecting them to the directions maximizing the covariance
between them. The projection combines highly correlated
variables into new one-dimensional variables. The PLS pro-
jection explained in terms of scores and loadings corresponds
to Equations (5) and (6).

X =
m

∑
h=1

th pT
h +E = T PT +E . (5)

Y =
m

∑
h=1

uhqT
h +F =UQT +F . (6)

These equations are called PLS outer relation, where T and U
are input and target scores, P and Q are input and target load-
ings, and E and F are input and target residuals. The relation
between score vectors th and uh is called inner relation.

Some previous work combined PLS with fuzzy systems in
what is called Fuzzy Partial Least Squares (FPLS) (Bang,
Yoo, & Lee, 2002), a subset of Nonlinear Partial Least
Squares (NPLS) techniques. This FPLS approach takes the
PLS outer relation as a reduction tool to remove collinearity
and then applies a Takagi fuzzy model to capture and model
the nonlinearity in the projected latent space. To the best of
our knowledge, FPLS has not been used in fault detection,
though there is published literature on PLS for process moni-
toring describing its theoretical properties (Li, Qin, & Zhou,
2010), on PLS and its variants with practical applications in
fault detection (Muradore & Fiorini, 2012), Wang, Kruger,
and Lennox (2003), and on fuzzy systems successfully ap-
plied in process monitoring tasks (Angelov, Giglio, Guardi-
ola, Lughofer, & Luján, 2006). Our results demonstrate that
it is also feasible to use the combination of PLS+TSK (i.e.,
FPLS) in the fault detection domain. As described in Section
2.3, we used a TSK model trained with an extended version
of SparseFIS. Analogously, the analytical model of FLSR
results from substituting the inputs in (4) by those resulting
from the PLS projection (5).

2.5. Dynamic Residual Analysis (On-line)

The online fault detection uses a dynamic analysis of the
residuals of the system. Figure 2 shows how the residual sig-
nal may be affected by a fault in a monitored channel. The
(real) example illustrates how the dynamic band mimics the
fault when the fault is too small and how the tolerance band
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is exceeded and a fault is signaled when the fault intensity
is sufficiently great to affect the residual signal. This strat-
egy provides a flexible way of handling the residuals, reacting
more dynamically to their basic trend.

In order to formulate the tolerance band for each new incom-
ing data sample~x(k) at time instance k, its affected residuals
res1(k), ...,resm∗(k) to all m∗ models f1, ..., fm∗ are calculated
and normalized according to the models’ confidence

resm(k) =
| fm(~x(k))− ym(k)|

con fm(k)
(7)

where fm is the model prediction, ym is the observed target
and con fm is a local error bar capturing different certainty
levels (confidence) for different regions of the input space ac-
cording to distribution, noise level, density, etc. of our train-
ing data. The inverse covariance matrix of the model inputs
XT X provides a reliable representation of dense and sparse
data regions (Nelles, 2001), and by multiplying it with the
noise level σ2, the noise intensity is incorporated

cov{parm}= σ2(XT X)−1 . (8)

Since the noise level of the training data is usually unknown,
we use an unbiased estimator (Söderström & Stoica, 1988)

σ̂2 =
2∑N

k=1(y(k)− ŷ(k))2

N−deg
, (9)

where N is the number of data samples in the training data and
deg is the degrees of freedom. For new test data samples Xtest ,
the covariance matrix of the model outputs ŷtest becomes

cov{ŷtest}=~xtest σ̂2(XT X)−1~xT
test = con fm , (10)

and is equivalent to the confidence. Thus, Equation (10) ex-
press the local error bars in the case of Linear Regression.

As long as the linear parameters of the consequent functions
in the Takagi-Sugeno fuzzy systems are estimated by a lo-
cal learning approach, the formula can also be exploited for
its partial local linear models. Then, a nestling of the conse-
quent hyper-planes to the models surface can be observed as
analyzed in Angelov, Lughofer, and Zhou (2008). This yields
a good approximation of the global model consisting of local
linear pieces, which can be used to calculate error bars for
each rule consequent function separately and to connect them
with weights, thus forming an overall error bar for the whole
fuzzy model. The error bar of an evolving (TS) fuzzy model
with C rules, for a specific sample~xact can be calculated by

ŷm±
√

cov{ŷm}= ŷm±
∑C

i=1 ϕi(~xact)
√

cov{ŷm,i}
∑C

i=1 ϕi(~xact)
, (11)

where ŷi is the estimated value of the ith rule consequent func-
tion, for which cov{ŷm,i} is calculated as in (10) by using the
inverse weighted matrix (XT

i QiXi)
−1 corresponding to the ith

rule and the noise variance as in (9). Hence,

cov{parm,i}= σ̂2(XT
i QiXi)

−1 . (12)

The symbol ϕi(~xact) denotes the membership degree of the
current point to the ith rule and ŷm the output value from the
TS fuzzy model for the current input point~xact .

The tolerance band equation is completed with the equations
of the incremental/decremental tracking along the timeline,
where the mean (13) and standard deviation (14) of the resid-
uals are computed.

µi(k) =
N1µi(k−1)+ resi(k)− resi(k−T )

N2
(13)

σi(k) =
1

N2
(N1σi(N−1)+N2∆µi(k)2+

(µi(k)− resi(k))2−N2∆µi(k−T )2−
(µi(k−T )− resi(k−T ))2) (14)

where resi(k−T ) = 0,µi(k−T ) = 0,N1 = k− 1,N2 = k for
all k < T and N1 = N2 = T for k ≥ T , and ∆µi(k) = µi(k)−
µi(k−1). Combining (13) and (14) yields the tolerance band
around the residuals of a given model

tolbandi(k) = µi(k)+n∗σi(k) , (15)

where n is the parameter in the fault detection method and
produces the ROC curve when varied.

Finally, our FD system is composed of M identified models,
thus producing M residuals signals that are evaluated in paral-
lel. The OR condition is used to identify faults: if a tolerance
band in (15) is exceeded by at least one model, a fault alarm
is triggered.

3. EXPERIMENTAL SETUP

We have not real faults in our datasets, so we were required
to introduce them artificially. This was done by an automatic
process, selecting 10 channels at random and introducing a
fault in each one. The fault parameters, i.e. type (abrupt of
incipient), shape (only for incipient faults) and position were
also chosen randomly. The process intentionally skips intro-
ducing faults in the warm-up of the detection system, which is
an initial stage (20 samples) where faults are neither assumed
nor signaled. It also skips faults in regions where the nom-
inal signal is constantly zero. Keeping the random-chosen-
parameters of a fault, it is replicated with 5 different inten-
sities (5%, 10%, 20%, 50%, 100%). Since each dataset is
composed by 5 different files to test, this led to 50 faults to be
detected in each tested dataset at each fault intensity.

This automatic process produces the test files of a run. A run
therefore is the execution of a method over these test files,
one time per fault intensity.
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Figure 2. Detection of a fault (drift with exponential shape) in
the residual space using a tolerance band. Different fault in-
tensities are shown. The upper line (blue) is a dynamic thresh-
old, whereas the lower line (green when below the threshold,
red otherwise) are the residuals. The thin line (black) belongs
to the trend of the residuals, i.e. its mean.

The datasets were composed by 240 channels, that after the
cleaning process were cut down to 51 and 45 for Dataset 1
and Dataset 2 respectively. There were 9676 samples to train
and 8959 samples to test in Dataset 1, whereas Dataset 2 had
11462 samples to train and 12716 samples to test.

4. RESULTS

We base our results on the average of 10 runs, leading to
500 candidate faults to be detected in each tested dataset at
each fault intensity. The different fault intensities determine
the minimum deviation from the nominal state that a method
can detect. Since the results are expressed in terms of ROC
curves, the outputs of the experiments are comparable. The
sensitivity parameter is the width n in the n∗σ tolerance band
(15); it was increased by steps of 1, from 1 to 10. As we were
especially interested in low false alarm rates (< 10%), the X
axis of the ROC curves (Figure 3) ranges from 0 to 10 (%).
The Y axis denotes the detection rate, and the larger the Area
Under the Curve (AUC), the better the method.

Figure 3, up, left, shows how Linear Regression using the
spanned datasets (thus obtaining VARMA models) and trans-
forming the dataset using PCA improves ROC curves com-
pared to those of purely linear methods. When the dataset is
not spanned but only transformed, the ROC curve produced
by the test is even better (recall that better means that the
Area Under the Curve (AUC) is greater). In this case, both
the expansion of the dataset using lags and the orthogonal
transformation help to improve the fault detection capabili-
ties, but when combined, the result is not as good as when
training the method only in the transformed (i.e., PCA) space.
This result seems to be consistent with the analogous case us-
ing SparseFIS instead of Linear Regression. Figure 3, up,
right, illustrates a behaviour similar to that described previ-
ously. SparseFIS produces an improved ROC curve when the
method is trained (and tested) on the spanned and transformed
dataset, that is, using VARMA models and PCA. When the
method is trained with the transformed dataset without lags
(i.e. without VARMA models), the ROC is better for one

dataset but worse for the other. Therefore, PCA as a prepro-
cessing stage helps to improve the fault detection capabilities
of our approach either with Linear Regression or with Sparse-
FIS, but to spanning the dataset with lags seems to yield no
further improvement.

The results are different when PLS is used. Figure 3, down,
left, shows how Linear Regression trained in a transformed
space using PLS without spanning the datasets (i.e. without
VARMA models) produces better ROC curves than the lin-
ear method itself. With the PLS transformation, the lags also
play a role. When the Linear Regression is trained in both
transformed and spanned space, the VARMA models yield a
greater AUC, as seen in the ROC curves. In Figure 3, down,
right, where Linear Regression is substituted by SparseFIS,
the result is consistent: the method trained (and tested) with
VARMA models in the transformed space using PLS pro-
duces better ROC curves than the model alone. Then, the use
of VARMA models on the transformed space still produce a
gain in the ROC curves. This is particularly noticeable for
’Dataset 1’, where the use of lags clearly increases the AUC.

Tables ?? and ?? show the detection rates for each method
when establishing thresholds for the false alarm rates in 3%,
5% and 10%, The highest rate per column is highlighted in
bold font and ’n/a’ denotes that the method is not able to
achieve a false alarm rate of X% or lower.

As can be seen, the methods trained in the transformed space
yield better results than methods trained in the original space.
As for transformation, PLS is clearly preferable to PCA; al-
though PCA produces better results than methods using the
original space, it is outperformed by PLS. VARMA models
and PLS appears to be a good combination, since the winning
approaches use a transformed space and a VARMA model.
The results do not indicate which model is preferable, since
Linear Regression and SparseFIS are winners the same num-
ber of times, i.e. 9 out of 18. Apparently, SparseFIS better de-
tects low-intensity faults, whereas Linear Regression is best
suited for high-intensity ones.

5. CONCLUSIONS AND FUTURE WORKS

We have introduced vector autoregressive moving-average
models in combination with multivariate orthogonal space
transformations to the fault detection domain. Using ROC
curves, we have demonstrated that, in terms of detection
rates, our approach outperforms approaches in which either
the datasets are not spanned with lags (time delays) or or-
thogonal transformations are not performed before the mod-
eling stage. When PCA transformation is used, the expansion
of the datasets with the lags produces no clear improvement
in fault detection capability, and the VARMA models can be
ignored in this case. In contrast, when the datasets are trans-
formed using PLS, VARMA models help to improve the ROC
curves, and therefore their fault detection capabilities.
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Figure 3. ROC curve (% detection (Y) vs % false alarm (X)) improved. Initial (worst) curves belong to Linear Regression (LR);
curves are improved when using PCR with lags; best curves use PCR without lags.

Table 1. Dataset 1. Highest detection rates with different fault and false alarm levels

Method

5% Fault 20% Fault 100% Fault
Max. False Alarms Max. False Alarms Max. False Alarms

< 3% < 5% < 10% < 3% < 5% < 10% < 3% < 5% < 10%
Linear Reg. 42.95 42.95 52.53 64.24 64.24 69.24 74.89 74.89 77.86
PCR 63.05 73.15 73.15 82.70 89.40 89.40 89.95 93.72 93.72
PCR + lags 47.10 64.10 64.10 63.39 79.95 79.95 86.41 94.40 94.40
PLS 61.77 61.77 72.91 81.22 81.22 89.98 92.84 92.84 96.43
PLS + lags 73.54 81.67 88.79 85.36 89.16 93.15 93.09 94.99 96.86
SparseFIS 34.45 34.45 39.87 45.08 45.08 49.65 51.59 51.59 53.67
PCA + SparseFIS 35.10 58.78 58.78 38.56 57.38 57.38 37.91 49.65 49.65
PCA + SparseFIS + lags 42.50 64.04 64.04 51.16 65.39 65.39 54.17 61.06 61.06
PLS + SparseFIS 35.78 35.78 54.26 52.37 52.37 63.92 63.24 63.24 73.05
PLS + SparseFIS + lags 78.11 85.65 91.30 85.44 89.42 94.41 73.81 77.33 81.86

Table 2. Dataset 2. Highest detection rates with different fault and false alarm levels

Method

5% Fault 20% Fault 100% Fault
Max. False Alarms Max. False Alarms Max. False Alarms

< 3% < 5% < 10% < 3% < 5% < 10% < 3% < 5% < 10%
Linear Reg. 21.08 23.36 30.57 29.06 35.97 45.63 47.72 53.40 59.07
PCR 43.49 57.78 67.69 54.57 68.43 78.58 69.49 80.46 85.11
PCR + lags 40.13 40.13 50.21 48.31 48.31 58.59 65.76 65.76 76.46
PLS 43.15 58.62 68.09 51.28 64.90 72.69 58.54 72.84 80.44
PLS + lags 39.13 52.79 67.20 53.78 67.87 79.24 74.45 85.93 91.42
SparseFIS n/a 14.51 29.68 n/a 20.43 36.55 n/a 32.79 47.88
PCA + SparseFIS 36.96 54.00 63.72 35.96 54.48 64.75 36.66 50.76 63.42
PCA + SparseFIS + lags 12.63 20.30 34.04 16.60 24.77 42.49 26.04 34.40 52.77
PLS + SparseFIS 56.08 61.34 69.55 63.49 69.15 76.96 63.65 71.26 76.13
PLS + SparseFIS + lags 56.76 62.05 80.37 63.92 66.68 75.75 66.76 69.92 79.05
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Testing our approach with more datasets and performing sta-
tistical tests on the results will be part of future work. Future
work will also concentrate on Fault Identification (FI). In FI,
the Fault Detection system goes further, providing additional
indications, with confidence measurements, of signaled faults
and their locations; this should equip the operator with more
information for the decision making process. How a fault de-
forms a model is a potential starting point for future research.
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ABSTRACT 

The need for standardized methods for comparison and 
evaluation of new models and algorithms has been known 
for nearly as long as there has been models and algorithms 
to evaluate. Conveying the results of these comparative 
algorithms to people not intimately familiar with the 
methods and systems can also present many challenges as 
nomenclature and relative representative values may vary 
from case to case. Many predictive models rely primarily on 
the minimization of simplistic error calculation techniques 
such as the Mean Squared Error (MSE) for their 
performance evaluation. This, however, may not provide the 
total necessary information when the criticality, or 
importance of a model’s predictions changes over time. 
Such is the case with prognostic models; predictions early in 
life can have relatively larger errors with lower impact on 
the operations of a system than a similar error near the end 
of life. For example, an error of 10 hours in the prediction of 
Remaining Useful Life (RUL) when the predicted value is 
1000 hours is far less significant than when the predicted 
value is 25 hours. This temporality of prognostic predictions 
in relation to the query unit’s lifetime means that any 
evaluation metrics should capture and reflect this evolution 
of importance. 
 
This work briefly explores some of the existing metrics and 
algorithms for evaluation of prognostic models, and then 
offers a series of alternative metrics that provide clear and 
intuitive measures that fully represent the quality of the 
model performance on a scale that is independent of the 
application. This provides a method for relating 
performance to users and evaluators with a wide range of 
backgrounds and expertise without the need for specific 
knowledge of the system in question, helping to aid in 
collaboration and cross-field use of prognostic 

methodologies. Four primary evaluation metrics can be used 
to capture information regarding both timely precision and 
accuracy for any series or set of prognostic predictions of 
RUL. These metrics, the Weighted Error Bias, the Weighted 
Prediction Spread, the Confidence Interval Coverage, and 
the Confidence Convergence Horizon are all detailed in this 
work and are designed such that they can easily be 
combined into a single representative “score” of the overall 
performance of a prediction set and by extension, the 
prognostic model that produced it. Designed to be separately 
informative or used as a group, this set of performance 
evaluation metrics can be used to quickly compare different 
prognostic prediction sets not only for the same 
corresponding query set, but just as simply from differing 
query data sets by scaling all predictions and metrics to 
relative values based on the individual query cases. 

1. INTRODUCTION 

The need for standardization in the area of evaluation for 
prognostics research has been well documented [Uckun et al 
2008]. Work has even been presented on the evaluation of 
individual features or parameters as to their suitability for 
use in prognostic modeling [Coble 2010]. Recent effort has 
been focused on the standardization of prognostic model 
performance evaluation based on meaningful criteria that 
can be used to compare the output of prognostic models not 
only within given application, but across the field of 
predictive engineering [Saxena 2008].  Unfortunately, 
despite this large step forward in the evaluation of 
prognostic models, the existing metrics have yet to see wide 
spread acceptance and use. This may in part be due to both 
the seemingly and occasionally complicated nature of 
evaluating and interpreting these metrics. 
 
 This work seeks to incorporate group-based comparison 
into the offline prognostic algorithm evaluation process, and 
presents variants on some well-known performance metrics 
that are built upon a multitude of known cases to which the 
prognostic model has been applied. 
 

_____________________ 
Michael Sharp. This is an open-access article distributed under the terms of 
the Creative Commons Attribution 3.0 United States License, which 
permits unrestricted use, distribution, and reproduction in any medium, 
provided the original author and source are credited. 
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Specifically, four separate updated scalar metrics have been 
identified that sufficiently characterize and convey 
meaningful, intuitive information about the output 
predictions of a prognostic model: Weighted Error Bias 
(WEB), Weighted Prediction Spread (WPS), Confidence 
Interval Coverage (CIC), and the Confidence Convergence 
Horizon (CCH).  Each one, detailed below, captures a key 
aspect and desirable quality of prognostic predictions that 
can be quickly, easily, and intuitively compared amongst 
separately developed models to rank and rate output 
performance. These metrics are built upon the errors and 
uncertainty associated with each prediction set, rewarding 
the minimization of both.  To calculate both the errors and 
uncertainty of a prediction set, another descriptive series of 
values known as the Binned Percent Error is also defined 
and demonstrated in both use and interpretation in regards to 
the scalar metrics.  

2. BACKGROUND AND MOTIVATION 

It has been suggested that depending on the needs of the end 
user, many different types of effective comparison 
algorithms could be employed such as cost/benefit analysis 
[Banks 2007]. However, given that many models may 
provide comparable results at similar costs, what are robust 
and useable methods for effectively ranking and expressing 
their relative effectiveness? Or more generally, what is the 
best way to convey results of a comparative analysis to 
someone that is not necessarily well versed in the science of 
prognostics or to a large audience with varied backgrounds 
and expertise? A standardized set of evaluation metrics that 
is both simple to calculate and intuitive to understand is 
possibly the best answer to this question. Many metrics for 
determining model error and even prognostic error have 
been proposed in the past. Building upon these metrics to 
update the evaluation of prognostic prediction set metrics, 
the addition of standardization in the formats and values 
reported can promote the use of the more intuitively 
descriptive metrics for a more wide spread understanding 
and standardization of the field of prognostics beyond it’s 
traditional set of core users. Simply, and accurately 
conveying the capabilities of any prognostic algorithm is 
key to gaining acceptance and application in real world, and 
industry scenarios.  
 

2.1. Standard Model Evaluation Metrics 

The most basic of metrics are often overlooked in regards to 
their usefulness for evaluation prognostic predictions. It is 
true that in many ways these simple error metrics are 
inadequate to completely and appropriately characterize the 
type of information pertinent to prognostic performance. 
However, when conveying information to potential users of 
a prognostic model or scientists and engineers from other 
fields, it is often convenient to at first convey information in 
a manner both simple and familiar to them. 

Many of these type metrics exist, but the Mean 
Absolute Error (MAE) is a fairly easy metric to compute 
and in many ways, the most intuitive to understand. 
Unfortunately, this metric could also be argued to be the 
least informative about the overall performance of the 
model compared to those presented in later sections of this 
paper. Defined in Equation 1, MAE is the average absolute 
difference between the model prediction Pi and the true 
Remaining Useful Life (RULi) at all times t and for all 
historic query cases i.  

 
Equation 1 

€ 

MAE =
1
N

1
Ti

ˆ P i(t) − RULi(t)( )
t

Ti

∑
i=1

N

∑  

In other words, the MAE can be thought of as the average 
error in prediction for each unit, i, that has run to failure and 
for each time T, that a prediction is made. The primary 
attraction of this metric is that it quantifies the average 
expected value any estimate will be from the true value in 
real units directly comparable with the system lifetime.  
Similarly, one could also calculate the standard deviation of 
the prediction error for a measure of the spread of these 
errors.  
 
 These metrics are useful for comparing separate 
models built upon similar data, or data from systems with 
comparable lifetime scales, but give no clear indication of 
prediction performance without some context to the data. 
Additionally, these standard formula metrics are inflexible 
to individual requirements about the specifications of the 
predictions and can be largely susceptible to outliers.  
 
 Although MAE has existed in some implicit form 
for as long as there have been errors to calculate, the direct 
usefulness of this intuitive error metric to the evaluation of 
prognostic predictions performance is severely limited. 
Conceptually, this error metric provides clear and 
meaningful indications of the expected error of the total 
lifetime of a system. Unfortunately as far as prognostics is 
concerned predictions near the end of a unit or system’s 
lifetime are much more critical than those near the 
beginning of life. The remaining metrics introduced and 
described in this work help to overcome and fill in the gaps 
left by MAE and similar standard metrics. 

2.2. Traditional Hierarchical Based Metrics 

Saxena et al proposed a hierarchical system of prognostic 
evaluation, which includes four primary metrics that rely on 
one another to provide meaning [Saxena et al 2009]. The 
hierarchy includes in order: the Prognostic Horizon, the 
Alpha – Lambda Performance, the Relative Accuracy, and 
Convergence. Briefly, these metrics describe in order, the 
first instance a prediction becomes within acceptable 
bounds, if predictions remain in the acceptable bounds at a 

€ 
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given time, one minus the percent difference of the 
prediction to the true value, and finally how quickly the 
predictions arrive at the final answer. 
 
This system is a good step in establishing a coherent and 
consistent method for evaluating the performance of a 
prognostic model. However, these metrics rely on several 
case specific terms and concepts that do not always lend 
well to conveying performance to individuals not previously 
well versed in their application. 
  
 As presented, the hierarchy is largely self-reliant.  
The groups of metrics must be evaluated together, the 
interpretation of the results from one test have effect on 
others. For example, a model could have an early lifetime 
Prognostic Horizon, but this is only truly useful if the model 
also passes all the Alpha-Lambda tests at every subsequent 
time instance. Similarly, a rapid convergence should be 
coupled with a good Relative Accuracy. Understanding the 
passing of these tests and their significance requires an 
understanding of the relationships between the metrics that 
may not be instantly intuitive to experts of other fields. 
 
 Also, some of these metrics are not presented in a scalar 
value manner, making it difficult to assign an overall 
quantitative value of prediction quality. When presenting 
the results of a model analysis to prospective users, often a 
simple and intuitive scalar value comparison is much 
cleaner and easier to understand than a series of mixed 
visually and numerically descriptive values. In other words, 
for certain audiences the hierarchy may unintentionally 
obscure model evaluation when trying to compare separate 
models. 
 
In the papers presented by Saxena, the metrics are used to 
evaluate the prognostic estimations of a single failed unit 
query case. These metrics each take into consideration only 
a single query case and only report aspects of that case. The 
obvious extension of this is to create an average of these 
individual query based metrics over a large set of query 
cases. However, this may not always translate well, 
particularly given the interdependency of the interpretation 
of the metrics as described above. Metrics built to 
collectively analyze a group predictions across several failed 
query cases can help to avoid such skewing of the reported 
values. 
 
Group based metrics can also help to better estimate a level 
of uncertainty associated with each predictive model under 
evaluation. Saxena et al suggest methods for incorporating 
singular case uncertainties into their metric evaluations, but 
do not suggest a simple, effective way to propagate these 
uncertainties [Saxena 2010]. Other recent works have also 
focused on the evaluation of uncertainty in regards to 
prognostics. Many interesting ideas concerning both the 
quantification and evaluation of uncertainty and uncertainty-

based metrics have been presented [Orchard et al. 2008], 
[Leao et al. 2010]. Metrics presented in later sections seek 
to provide intuitive estimations on model uncertainty based 
on the set of estimations themselves. 
 
Additional considerations about the interpretation and 
presentation of some of the metrics should also be 
mentioned. Prognostic Horizon was originally designed to 
report the first instance in life where predictions fall within 
a certain bound, regardless of if the predictions later leave 
that bound. In later work, Saxena suggests corrections to 
this by allowing the user to instead quantify the last time it 
falls in bound without going back out [Saxena 2009]. This 
practice makes much more sense and should become 
standard, but again because Prognostic Horizon is calculated 
over a series of individual cases, there is no standard way to 
define the value for a set of prediction cases. Should the 
average value be reported, or would a minimum or 
maximum be more representative? 
 
Similarly, the convergence metric has the potential to give 
the same quantification of convergence for vastly different 
evolutions in the predictions, potentially misleading any 
blind interpretation of the metric. For example, a prediction 
set that contains a large outlier early in life (which may be 
considered trivial) followed quickly by consistent near 
correct values can show the exact same convergence as one 
without an early outlier the never quite settles on a 
consistent prediction value, depending on the application 
these could be effectively very different results. This work 
seeks to build upon the initial successes of these metrics, by 
creating and presenting metrics and methods that are more 
easily interpreted on a common scale without need for 
intense understanding of the methods behind them. 

2.3. Additional Quantitative Evaluations 

Other works have also tried to build upon or propose other 
standardized metrics. Some of these works, taking a cue 
from the fields of meteorology and climatology have 
adapted the concepts of “value” and “skill into the 
prognostic predictions evaluation vernacular [Tang et al 
2011]. Skill, simply put, is the percent improvement of any 
singular evaluation metric of one prediction set versus some 
reference prediction set. This can be convenient as a concept 
for comparing two different models, but provides no 
additional information not obtained for the original metric 
itself.  

Conversely the concept of “value” is a quantitative metric 
that can directly be used to evaluate a prediction set. Value 
is the total set of some user-defined error versus 
consequence values for a particular application. This allows 
a user to capture important aspects of low probability but 
high cost errors that may be of particular interest, such as 
extreme early life failures. This is very useful for high level 
decision making and internal review processes; however it 
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lacks the intuitive ability to be conveyed without some form 
of reference context for the associated costs, whether they 
be in safety related hours, repair/downtime costs, or some 
other arbitrary unit. The value of a system is a wonderful 
internally created metric and can be used to great effect 
when properly applied and calculated in the industrial 
setting. Unfortunately, “value” does not translate well across 
different systems and industries. A standardized prognostic 
evaluation system should be expected to be instantly 
interpretable by people of many different backgrounds. The 
work presented below proposes solutions to this and other 
problems inherent in the standard set of prognostic 
evaluation metrics. 

3. PROPOSED UPDATED PROGNOSTIC PREDICTION 
METRICS 

To promote the wide spread usage of a set of standardized 
evaluation metrics for prognostic predictions, this work 
presents set of prognostic prediction evaluation metrics that 
are designed to be both intuitive and informative to users 
and reviewers with various backgrounds and levels of 
expertise. These metrics are also designed to be evaluated 
on and capture pertinent aspects of entire sets of prognostic 
predictions over many query cases. Each metric captures 
key aspects of accuracy, precision, and timeliness. For any 
prediction, there is both an expected error and an associated 
uncertainty, these metrics help to report the evolution of 
these values with special regards to the importance of the 
relative lifetime of the failed system or equipment, also 
referred to as query units. 

3.1. Weighted Error Bias 

The Weighted Error Bias (WEB) is the first of the lifetime 
percentage based metrics. WEB, as defined in Equation 2, is 
a measure indicating the effective bias in all predictions as a 
percentage of total unit lifetime.  
Equation 2 
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WEB =
100
N

wi(t)
t =1

T

∑ *
ˆ P i(t) − RULi(t)( )

TotalUnitLifeTimeii=1

N

∑  

where wi(t) is the importance weighting for unit i at time t. 
In this equation, negative values indicate that the prognostic 
predictions tend to be lower than the true RUL where 
positive means the opposite. Additional metrics, such as the 
Weighted Prediction Spread (WPS) presented below, can be 
combined with the WEB help to capture the average 
absolute deviation or uncertainty of a prediction set. 
 
From this equation, it becomes evident that WEB is very 
similar to MAE except in two important respects. First, it is 
tallied and reported as a percentage of the total lifetime of 
the individual failed query unit, i. This allows for the 
intuitive inspection of the performance of a series of 
predictions without the need for some contextual setting. A 

model whose predictions yield a 10%WEB would be 
expected to be better than one with a 25%WEB regardless 
of the systems, equipment, or time scales involved. This 
also has the added benefit of implicitly scaling the errors 
such that similar deviations from the true Remaining Useful 
Life (RUL) values for short-lived components would be 
weighed heavier than those in longer-lived units, even 
within the same historic data set. This is intuitively 
important, as an error of 20 time cycles is less important if 
the unit in question survives 300 cycles as opposed to if it 
only survives 100 cycles.  
 
The second difference is in the explicit importance 
weighting, wi, of the different errors based on their time in 
the lifecycle of the historic unit. This importance weighting 
can easily be tailored to the specific needs or desires of the 
end user, but in most cases an emphasis on the end of 
lifetime is the most meaningful towards prognostic 
predictions. A 10% error near the beginning of unit life 
when there is 85% of life remaining gives plenty of time to 
act an take corrective actions, where a 10% error with only 
5% of life remaining could result in an unexpected failure if 
the unit were expected to life through those remaining 
cycles. A weighting function that accurately reflects this end 
of life importance is the Gaussian Kernel Function with a 
mean value set to the lifetime of the unit and a standard 
deviation, or bandwidth, set to 50% of that lifetime. 
Although this metric is built with weightings in mind, a 
weighting function equal to 1/T for all t can easily turn this 
metric into a simple average of percent difference between 
the true and estimated values. For this and all weighted 
metric, comparisons between algorithms using these metrics 
would only be meaningful if standard weighting functions 
are used. Additional work and investigation into what the 
most appropriate standardized weighting function could 
prove beneficial. However, regardless of the weighting 
function, the standardized scaling of the metrics can help it 
be more relatable to generic audiences. 
 
The optimal value for the WEB is zero, indicating that the 
average prediction value is centered on the true RUL. 
Positive and negative values simply express the direction of 
the bias, otherwise this metric can be presented as a 
representation of averaged percent error, a concept that is 
widely utilized and accessible to many academic and 
industry backgrounds. The weighting function can be 
tailored to any specific need or application, but the 
fundamental metric remains an easily interpreted percentage 
of system lifetime. 

3.2. Percent Error Value Binning 

 The final three prognostic prediction performance 
metrics rely on estimating or inferring the uncertainty of 
prognostic predictions throughout the total lifetime of a 
query unit. In order to do this effectively, the 95% 
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confidence interval (or some similar level of confidence 
interval) needs to be calculated at various points throughout 
the unit lifetime. One of the more straight forward methods 
for doing this is to create a set of bins evenly divided 
between 0 and 100% of system lifetime, and placing each 
calculated percent error in the bin corresponding to the true 
percent of unit life corresponding to that error. In other 
words, first calculate the percent error for a given historic 
prediction, Pi(t), such that the percent error is the difference 
between the predicted RUL and the actual RUL divided by 
the query unit ,i’s, total lifetime. 
Equation 3 

 
 
 

Next note the corresponding percentage of actual lifetime 
(POL), defined by the current time, t, divided by the current 
unit’s total lifetime. Finally place the calculated percent 
error into the POL bin whose edges, B, are defined as:  
BLOWER < POLi(t) < BUPPER 
Repeat for all historic predictions over all query cases, 
placing them in to the same series of corresponding bins. 
Converting the numbers into percentages allows for the 
direct comparison and inclusion of these similarly located 
values with proper importance weightings applied as based 
on their lifetime. 
 
Once this series of regular serial bins is populated, a 95% 
confidence interval around the mean value can be calculated 
from the 2.5% and 97.5% percentiles of the error set for 
each bin. Much like the weightings presented with the 
metrics presented in this paper, these percentages can be 
altered to suit the specific application requirements. 
Additionally, the expected value for each individual bin can 
be calculated, creating an expected error bias that maps 
throughout the lifetime of a unit as a more detailed 
representation of the WEB if such is required. This binning 
is primarily an intermediary form for the metrics presented 
in this paper, but as will be shown later, it can also be used 
to create clear visualizations of the evolution of predictions 
and how they relate to the true values of RUL. 
Visualizations such as these can be a great aid in 
communicating a prediction algorithm’s performance to an 
audience not intimately familiar with the algorithm or 
system in question. 

3.3. Weighted Prediction Spread 

 Uncertainty estimations, though not always 
straightforward, are a crucial part of evaluating any 
prediction value. Thus it follows that the quality of any 
prediction model should also be defined by its’ associated 
uncertainty. Additionally, much like the model prediction 
error and bias, not all points during the lifetime of the query 
system should necessarily be treated with equal importance. 
The predictions of Remaining Useful Life (RUL) made by a 

model are typically more important near the end of the 
system’s life than they are at the beginning of life, as near 
the beginning of life there is comparatively much more time 
to react and compensate, or mitigate any impending faults or 
failure inferred from the prognostic model.  
 
The spread of the model predictions at various points in life 
are an important factor in the total considerations of the 
uncertainty of a series of predictions. The prediction spread 
for each binned point of system life, is calculated as the 
difference between the upper and lower bounds of the 
corresponding 95% confidence intervals from the binned 
error values discussed previously.  Using the same 
importance weighting function as the Weighted Error Bias 
(WEB), the Weighted Prediction Spread (WPS) can be 
defined as by Equation 4.  
Equation 4 
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In this equation, the weighting function is based on the 
center value for each reference bin, such that each bin 
importance weighting, Wbi, is defined by the Gaussian 
kernel in Equation 5. 
Equation 5 
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Notice that the typical normalization factor associated with 
Gaussian kernels is rendered unnecessary due to the 
inherent normalization factor included in the definition of 
WUS.  Although a kernel bandwidth of 50% is shown, other 
bandwidths or even a uniform weighting function can easily 
be substituted to accommodate specific needs. All the 
factors and values associated in the metrics based on the 
binned interval error values are listed and manipulated as 
percentages allowing for quick intuitive evaluation of the 
effective important uncertainty of any given prediction set.  
 
With this metric, a 0% WPS alone would seem to indicate 
absolute certainty in all predicted values, but this may be 
misleading. In fact, all this would indicate is that all 
predictions made are exactly the same based exclusively on 
the percent RUL of the system in question. This is why 
uncertainty is comprised of both a spread and a bias. The 
WPS metric can be used in conjunction with the WEB to 
infer the level of model uncertainty according to the 

equation:

€ 

Uncer ≈ WPS +WEB2 . This modification of 
the traditional equation for analytic uncertainty allows for 
more flexibility in defining what an appropriate value of the 
spread should be.  
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Another useful criteria to think of is if the predictions do in 
fact have enough spread to cover the true RUL (i.e. 
WPS>=WEB). A more explicit and useful metric evaluating 
this coverage is the Confidence Interval Coverage (CIC) 
should also be calculated, and is discussed in the next 
section. 

3.4. Confidence Interval Coverage 

 Another important indication of the quality of a 
prediction set generated by any model is whether or not the 
confidence interval of the prediction spread covers the true 
Remaining Useful Life (RUL). This effectively incorporates 
information relating to both the error bias and the error 
variance at given points in life. This metric is simply 
defined by the total percentage of binned error sets whose 
95% confidence interval contains the true RUL. This is 
more rigorously defined in Equation 6. 
 
Equation 6 

 
 
 
 
 

This equation is interpreted as the sum number of true 
percent RUL values that are contained within their 
corresponding error bin set, and divided by the total number 
of bins and multiplied by 100 to convert to a percentage. 
This additional metric verifies the total accuracy of the 
prediction set. An optimal coverage of 100% shows that the 
true value of any prediction is contained within the 
prediction spread or approximate confidence interval of the 
prognostic model’s predictions. This when coupled with the 
previously detailed metrics gives a solid expectation of the 
accuracy and expected effective error over the total of 
system life predictions. The final vital element not conveyed 
by these metrics is the explicit end of life accuracy and 
precision. The Confidence Convergence Horizon fills this 
void. 

3.5. Confidence Convergence Horizon 

 This final standalone metric captures and quantifies 
the end of life quality of both the precision and accuracy of 
a prediction set. A 10% Confidence Convergence Horizon 
(CCH), or simply the Convergence Horizon (CH), identifies 
the percentage of system Remaining Useful Life (RUL) 
beyond which, all prediction confidence intervals are both 
less than 10% of the total system life and contain the true 
RUL. In other words, the CCH identifies a RUL prediction 
value that once reached, it and all remaining predictions of 
RUL can trusted to be no more than 10% from the true RUL 
95% of the time (assuming a 95% confidence interval was 
selected as described above). Obviously a CCH of 100% 
would be optimal, showing that all predictions within the 
query set are within less than 10% of the true values. Much 

like the other metrics, the percentage of this metric can be 
adjusted to suit the specific needs and requirements of any 
particular application. 
 Although this seems to be a rather stringent 
criterion to meet, it nonetheless, is very important. This 
horizon is a quick and intuitive identifier of the region of 
most confidence for a particular prediction set. 
Unfortunately, like any single descriptive metric, the CCH 
has the potential to be misleading if it is not considered 
along with the other metrics defined in this section. As an 
example, consider a model which predicts the RUL of a 
system within 10% during most of the system life, but due 
to an artifact of the data, exhibits an 11% bias at the very 
end of life. This model would produce a CCH of 0% as 
there is no point in time which you can trust all following 
predictions to be less than 10%. This does not however 
mean that the model produces unusable or even inaccurate 
results.  

Information from each of the listed metrics 
contains and expresses vital information required to develop 
a full understanding of the models performance, but when 
relating to potential users of an algorithm it is often 
convenient to assign a single quantitative value of 
“goodness” to a particular model and prediction set. 
Described in the following section is a method for 
developing such a single metric. 
 

3.6. Total Score Metric 

There has been proposed a sort of hierarchical ranking of 
some of the previously developed metrics [Saxena 2009]. 
To some degree, this work is able to eliminate the explicit 
need for this hierarchical system and in its place supplies a 
single aggregate scoring metric to rank the overall 
performance of a particular prognostic model’s output 
predictions. Of the metrics detailed in this paper, four in 
particular can be merged to give a singular quantitative 
value of “goodness” for a prognostic model prediction set. 
These metrics, Weighted Error Bias (WEB), Weighted 
Prediction Spread (WPS), Confidence Interval Coverage 
(CIC), and the Confidence Convergence Horizon (CCH) 
each detail a particular yet vital aspect of the total historic 
prediction produced by a given model. With this in mind, 
and given that each of these metrics have been constructed 
to be listed in similar units of percent Remaining Useful 
Life (%RUL), a simple composite of these metrics can yield 
a meaningful, accessible, and direct measure of the quality 
of a model prediction set. Equation 7 can easily be applied 
for quick quantitative comparison of multiple models’ 
prediction sets. 
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Equation 7 
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Note that in this equation, both the absolute value of the 
WEB and the WPS are subtracted from 100 to reflect that 
the minimums of these values are the desired quantities. The 
original WEB metric can be negative to indicate direction of 
bias, but when combining into an overall score, it is the 
absolute value that is of more interest. N is any normalized 
vector weighting the importance of the four metrics. For 
both simplicity, and intuitive interpretation of the resulting 
number, a simple average of the four modified metrics can 
be taken, (mathematically this results from a vector of [.25 
.25 .25 .25]). This combined metric can easily be used to 
present the performance of any predictive model out of a 
perfect score of 100%. Much like other standardized 
academic testing, this ideal score is ranked based on ideal 
performance. For nearly all real systems, 100% accurate 
predictions 100% of the time is essentially impossible, but 
this still can help to provide an intuitive ranking system 
familiar to a wide audience. Some of the model metrics 
contain similar information, this is not useless redundancy, 
but instead reflects the increased importance of these 
aspects when the metrics are combined. For example, if a 
set of model predictions exhibit 0% CIC, that prediction set 
would also by definition exhibit a 0% CCH. Coverage of the 
correct RUL within a confidence interval is one of the most 
important criteria any prognostic model should meet, so 
with the standard weighting set, the best total score the 
model could produce would be less than 50%, reflecting that 
the model has never produced correct answer. 

4. PREDICTION METRIC EXAMPLE CASES STUDIES 

To help further clarify and explain the prediction 
metrics, consider a standard pump and motor system with a 
mean failure time of about 275 operating hours with two 
common modes of failure with different mean failure times. 
Three separate simulated models were built to predict the 
Remaining Useful Life (RUL) of these motors. The first is 
based strictly on statistical conditional time based 
probability of failure. The second two are built to simulate 
more effects based modeling types. In order to compare the 
three models, each one uses a set of 100 predictions about 
similar sets of query cases and has the metrics detailed 
above applied to those prediction sets. 

Shown in Figure 1, the Model 1 prediction set for 
all 100 cases completely overlay one another. This is 
expected and due to the fact that this model’s output is 
based exclusively on the current lifetime of the queried 
system.  
 

 
Figure 1 - Model 1 RUL Predictions 

Despite the fact that each of the predictions for each 
individual case are all exactly the same, they represent 
varying percentages based on the true queried system’s 
lifetime.  This is accounted for in the calculations of the 
performance metrics shown in Figure 2. 

 
Figure 2 - Model 1 Prediction Performance Metrics 

 The most intuitive and easily understood metric on 
this figure is the Mean Absolute Error (MAE), listed as 35.1 
hours with an associated standard deviation of 26.2 hours. 
Considering that the average lifetime is 275 hours, these 
numbers present values which would easily allow for the 
rescheduling of duty cycles to accommodate maintenance or 
similar mitigating actions before the units would be 
expected to fail. The MAE gives a good basic understanding 
of how much error to expect out of the model, and is good 
for comparing models that are run against the same data set. 
However, the three example models presented here are run 
with differing query data sets. The sets are taken from 
similar sets of pump systems, but the individual units and 
their true total lifetimes are different. Although MAE could 
be used to compare these models and prediction sets 
because time units and expected average lifetimes are the 
same, the percentage-based metrics are more appropriate 
and generally informative. 

The most prominent prediction evaluation tool in 
this figure is the binned error average estimate and their 
associated 95% confidence intervals represented by the blue 
error bars. This contains the most total and useful 
information about the prediction set. These bind also are 
used to represent the other metrics as they evolve through 
time. The solid blue line is the bias at a given time; the 
error-bars represent the spread; the total number of bars 
which contain the red (true) RUL represent the confidence 
coverage. Finally, the Convergence Horizon will be 
represented as a green box in the following figures, but is 
not present in this on due to CH being equal to 0.   

From this chart it is obvious that early in life the 
model predicts the correct percentage of RUL on average, 
but also has high uncertainty, meaning it may in fact never 
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predict the exact true RUL for a particular unit. This 
inference is confirmed by examination of the end of life 
binned error as the average model prediction value departs 
from the true RUL line at around 62% of life consumed 
(38% RUL) and loses even the 95% prediction interval 
coverage at around 85% of life consumed (15% RUL). 
Because of the fact that this is a strictly time based model, 
this helps to confirm that the model is unable precisely 
predict individual systems’ RUL, instead only calculating 
the average RUL over all historic systems. Although this 
chart of binned error is useful and contains a wealth of 
information, it does require some degree of examination and 
analysis in order to compare different model sets. The other 
percentage based prediction metrics provide that analysis.  

The effective bias for this model, as calculated by 
the Weighted Error Bias (WEB) from Equation 2 is 5.86%. 
Again, this can be seen in the binned error analysis as the 
average estimation line begins to deviate from the true RUL 
line particularly near the end of life. For this system, that 
means that there is an effective average bias of about 16 
hours on average, but this does not mean that the expected 
error is 16 hours. This value, as well as the Weighted 
Prediction Spread (WPS), is considered an effective value 
because of their applied weighting function shown in the 
figure as a magenta dotted line, which allows them to be 
more effective at ranking the predictions. If for some reason, 
the more literal average values are needed, the same 
equations and metrics can be applied with a simple 
adjustment of the weighting function. This prediction set’s 
WPS is listed as 58.07% of life, reflecting the fact that there 
is a considerable amount of uncertainty associated with the 
predictions. 

The final two metrics listed are the Confidence 
Interval Coverage (CIC) and the Convergence Horizon 
(CH).  Reported at 83% and 0% respectively, these indicate 
that although the model uncertainty covers the true RUL 
83% of the time, it never continuously falls within 10 of that 
true value towards the end of the unit’s life. 

All these metrics can be combined according to 
Equation 7 in order to give this model’s prediction set a 
total ranking of 54.83% out of a possible total score of 
100%. This should not be read as an indication that the 
model’s total accuracy is around 50% or that only 50% of 
the model’s estimations are trust worthy. Instead this metric 
shows a quantitative evaluation of the model’s performance 
for this prediction set. It is a quick and relatable evaluation 
of the model’s “goodness” which can easily be used to 
compare against other models, or other prediction sets. For 
example, if Model 1 is compared to Model 2 shown in 
Figure 3, one can quickly see that Model 2 has a total 
performance score of 75.02%, much better than Model 1’s 
54.83%. 
  

 
Figure 3 - Model 2 Predictions and Metrics Evaluation 

Looking at the individual metrics, it becomes clear why this 
model is ranked better. First, it has 100% CIC with a 16.5% 
CH meaning that not only is the model more accurate 
overall, but it also shows that the accuracy improves near 
end of life. Next the effective prediction spread is 16.4% of 
life, much lower than Model 1’s WPS. Finally Model 2 has 
virtually 0% effective bias, meaning that all the predictions 
are centered on the true RUL.  
 Clearly, these metrics give a quick, effective, and 
qualitative method for comparing two different models, and 
if that were the only end goal the analysis could stop there. 
However, if there is opportunity to change and improve the 
models which created the prediction sets, then the scalar 
metrics alone may not give the complete picture. Consider 
the prediction set developed by Model 3 in Figure 4. 

 
Figure 4 - Model 3 Predictions and Metrics Evaluation 

Model 3 has a total performance score of 48.36%, indicating 
its’ performance is worse than either of the two previous 
models. In fact, the only metrics which it out performs both 
of the other models are MAE and the WPS. Unfortunately, 
these alone would not necessarily merit further 
investigations into the development of this model. However, 
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when the total binned prediction value map is investigated, 
it becomes instantly clear that by removing a small bias in 
this model, these predictions would be expected to out 
perform both of the previous models. This same conclusion 
could be inferred from the scalar metrics, but a graphical 
examination of the binned values map is both more 
expedient and informative.   

5. SUMMARY AND CONCLUSION 

The scalar metrics presented in this work help to provide 
clear and concise evaluations of the performance of 
prognostic models in a manner easily accessible and largely 
intuitive to audiences with various backgrounds and 
expertise. In order to demonstrate and visualize the 
underlying meanings of each of the metrics, three separate 
sets of predictions made from three separate simulated 
prognostic models were compared. From the results listed in 
Table 1 it is clear that Model 2 is the best performing model 
by a large margin. 
 
 
 
Table 1 – Summary of Model Comparison Results 
 Total 

Score 
MAE WEB WPS CIC CCH 

M1 54.83% 35.09 
Hrs 

5.06% 57.80% 83.0% 0% 

M2 75.02% 15.39 
Hrs 

0.03% 16.40% 100% 16.5% 

M3 46.36% 10.64 
Hrs 

3.58% 9.99% 7.0% 0% 

Further, Model 3 shows great potential for improvement via 
a simple bias removal as can be inferred from the low 
Weighted Prediction Spread (WPS) coupled with the results 
of the binned prediction value map. A quick summary of 
each metric is listed below in Table 2. 
 
Table 2 - Metrics Summary 

Metric 
Name 

Quality Aspect 
Reflected 

Units 

Mean 
Absolute  

Error  
(MAE) 

Precision 
Average distance 
from true value 

Real Time Units 

Weighted  
Error 
Bias  

(WEB) 

Timely Precision 
Scaled expected 

distance from true 
value 

Percent of Unit Life 
Weighted by Lifetime 

Importance  

Weighted  
Prediction  

Spread 
(WPS) 

Timely Accuracy 
Scaled uncertainty 
estimate associated 
with each prediction 

Percent of Unit Life 
Weighted by Lifetime 

Importance 

Confidence 
Interval  

Coverage  

Accuracy 
How often the 

estimated 

Percent of Unit Life 

(CIC) uncertainty contains 
the true value 

Confidence 
Convergence 

Horizon  
(CCH) 

Timely Accuracy 
& Precision 

What part of life can 
all remaining 

estimates be trusted 
to within 10% 

Percent of Unit 
Remaining Useful Life 

Binned 
 Prediction 
 Value Map 

Timely Accuracy 
& Precision 

Detailed 
visualization of the 

evolution of the 
prognostic 

predictions. Used to 
calculate other 

metrics 

Percent of Unit Life 

 
These novel metrics build upon natural aspects of the 
prediction data itself to create meaningful and intuitive 
representations of performance. The goal of this work is to 
learn from previously introduced metrics and create a set of 
generic metrics that can be widely used and understood in 
both academic and industrial settings. All of the metrics 
detailed in this work can be easily calculated and widely 
applied and interpreted across many cases allowing for un-
obscured, evaluation of predictions from a wide variety of 
algorithms and methodologies. The balance between case 
specific adaptability and overall standardization is an area of 
continual interest and research. This work seeks to provide a 
set of metrics that provide a level of both in a manner that is 
accessible and relatable to a wide audience to help promote 
investigation and collaboration on prognostic projects across 
many fields.  
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ABSTRACT 

This paper introduces a concept and approach on bridging 
Prognostics and Health Management (PHM), an engineering 
discipline, to Space Medicine (SM) in order to mitigate the 
Human Health and Performance (HH&P) risks of 
exploration-class space missions by focusing on efforts to 
reduce countermeasure mass and volume and drive the risks 
down to an acceptable level. The paper also discusses main 
risks of missions such as autonomous medical care risk (i.e., 
mission and long-term health risk due to the inability to 
provide adequate medical care throughout the mission) and 
Behavioral Health and Performance (BH&P) risk (i.e., 
mission and long-term behavioral health risk). The main 
objective of the HH&P technologies being developed for 
exploration-class missions is to maintain the health of the 
crew and support optimal and sustained performance 
throughout the duration of a mission. A PHM-based 
technology solution augmented with predictive diagnostics 
capability could be the one that meets the main objective. In 
discussing the similarities of and differences between the 
PHM and SM domains, the paper explores available 
solutions on crew health maintenance in terms of predictive 
diagnostics providing early and actionable real-time 
warnings of impending health problems that otherwise 
would have gone undetected. The paper discusses the use of 
PHM principles and techniques with data mining 
capabilities to assess the value of Electronic Health Records 
(EHR) augmented with real-time monitoring of data for 
accurate predictive diagnostics on manned space exploration 
programs. The proposed technology concept with predictive 
diagnostics capability and a pilot implementation of the 

technology on the International Space Station (ISS) includes 
evaluation and augmented research/testing of the 
technology, which will regularly and efficiently provide 
advancements during the development phases. 

1. INTRODUCTION 

Long duration missions present numerous risks to crew 
health and performance. The international space community 
is actively studying these effects and possible mitigation 
techniques, but much work remains to be done. As such the 
space community and space agencies are increasingly 
cooperating to enable timely answers in support of 
exploration mission needs (2013 “Global Exploration 
Roadmap” report). This is very important because with a 
common understanding of risks and effective mitigation 
approaches, the space community has the opportunity to 
leverage investments in the research and technology 
development to mitigate risks. 

Crew health and performance are critical to successful 
human exploration. Long-duration missions bring numerous 
risks that must be understood and mitigated in order to keep 
astronauts healthy, rather than treat a diagnosed health 
disorder. Crewed missions venturing beyond Low Earth 
Orbit (LEO) will require technology solutions for crew 
health care to address physiological, psychological, 
performance, and other needs in-situ, e.g., self-sufficiency, 
as an emergency or quick-return option will not be feasible. 
Therefore, onboard capabilities that would allow for early 
self-diagnosis of impending health issues, and autonomous 
identification of proper responses on negative trends to keep 
astronauts healthy are critical. With the absence of real-time 
medical ground support, personal health-tracking tools for 
health monitoring, health risk assessment and management 
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are required for any crew member to predict her/his future 
health condition if no preventive measures are taken. 

Per the 2013 “Global Exploration Roadmap” report, 
published by the International Space Exploration 
Coordination Group (ISECG) in August 2013, a key 
supporting objective to develop exploration technologies 
and capabilities is the following: test concepts, approaches, 
countermeasures and techniques to maintain crew health and 
performance. This paper suggests a concept using PHM-
based technologies, such as real-time health monitoring and 
condition-based health maintenance in terms of predictive 
diagnostics. Discussing similarities of PHM vs. Space 
Medicine, the paper introduces a predictive diagnostics 
concept for crew health maintenance. Furthermore, it 
explores PHM solutions based on real-time monitoring, 
which could be applicable to crew health risk assessment 
and management. 

While the International Space Station is an excellent 
platform and currently the only “test bed” on which to 
prepare for future manned exploration missions, the 
exploration beyond low-Earth orbit will require a new 
generation of capabilities and systems, which build on 
existing capabilities and incorporate technologies yet to be 
developed. 

It becomes necessary to develop alternative, evidence-
based, effective methods and tools to predict and prevent 
health problems in a timely manner, rather than to follow 
reactive approaches, which are inherent to conventional 
medicine, but largely prohibitive in the operational 
environment of space because of lack of accessibility of 
health problem resolutions. 

Interdisciplinary research is underway to develop computer-
based, self-diagnosis and self-directed treatment programs 
for astronauts to autonomously predict, prevent, and manage 
potential health problems (e.g., Fink, Clark, Reisman, and 
Tarbell, 2013). In the 2010 Interim Report “Life and 
Physical Sciences Research for a New Era of Space 
Exploration” the National Research Council emphasizes a 
priority on bringing the programs to the required technology 
readiness level (TRL), i.e., corresponding to a representative 
laboratory environment for exploration-class missions (TRL 
6 per NASA designation), so that they can be systematically 
evaluated in comparative treatment outcome studies. 

2. UNDERSTANDING THE TECHNOLOGY 

Prognostics and Health Management (PHM) is an 
engineering discipline that focuses on the fundamental 
principles of system failures in an attempt to predict when 
they might fail, and links the principles to system life cycle 
management. Sometimes this engineering discipline is also 
referred to as System Health Management (SHM) (Uckun, 
Goebel, and Lucas, 2008). In recent years, PHM has 
emerged as a key enabling technology to provide early 

warning of failure and assess the potential for life extension, 
thereby leading to potential monetary and downtime 
savings. 

Prognostics is about predicting the future performance of a 
component by assessing the extent of deviation or 
degradation of a system from its expected normal operating 
conditions. The science of prognostics is based on the 
analysis of failure modes, detection of early signs of wear 
and aging, and fault conditions. Technical approaches to 
building models in prognostics can be categorized broadly 
into data-driven approaches, model-based approaches, and 
hybrid approaches. 

As an engineering discipline PHM includes the following: 

• Health monitoring (i.e., monitoring the extent of 
degradation or deviation from an expected normal 
condition); 

• Methods for in-situ monitoring; 
• Sensors for prognostics; 
• Data collection, pre-processing, reduction, and feature 

extraction; 
• Methods for identifying and analyzing precursors based 

on failure mechanisms; 
• Damage assessment; 
• Anomaly detection; 
• Diagnostics; 
• Prognostics; 
• Risk and uncertainty analysis; 
• Software tools for diagnostics and prognostics. 

PHM concept implementation is now a required design 
feature for space systems (Uckun et al., 2008). Space 
systems have built-in PHM elements such as failure 
tracking. In the future, PHM will enable systems to assess 
their own real-time performance (self-cognizant health 
management and diagnostics) under actual usage conditions 
and adaptively enhance life cycle sustainment with risk-
mitigation actions. 

Human health is one of the application areas of PHM, while 
health records and health care delivery are going digital 
(see, e.g., Health Information Technology (Health IT): 
“Policymaking, Regulation, & Strategy” on the 
HealthIT.gov website of the U.S. Department of Health and 
Human Services). As multiple intersecting platforms evolve 
to form a novel operational foundation for health and health 
care – the digital health utility – the stage is set for 
fundamental and unprecedented transformation. Progress in 
computational science, information technology (IT), and 
biomedical and health research methods have made it 
possible to foresee the emergence of a learning health 
system that enables both the seamless and efficient delivery 
of best care practices and the real-time generation and 
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application of new knowledge (Grossman, Powers, and 
McGinnis, Rapporteurs and Editors (2011)). 

Prognostics as an engineering discipline is focusing on 
predicting the time at which a system or a component will 
no longer perform its intended function, while predictive 
diagnostics is built on the powerful foundation of predictive 
analytics. But whereas predictive analytics and PHM 
methods are to identify what is going to fail and when a 
particular element is going to fail, in-flight predictive 
diagnostics also tells the cause(s) of the failure as well as 
potential factors contributing to and the priority of the 
impending failure. Direct, contributing, and root causes as 
well as priority of the impending failure with a 
corresponding probability are other notions introduced by 
predictive diagnostics. That makes predictive diagnostics 
different from predictive analytics. The terminology is not 
commonly adopted yet. 

Like PHM, predictive diagnostics provides early and 
actionable real-time warnings of impending health problems 
that otherwise would have gone undetected. Based upon the 
differences between real-time health status and predefined 
normal status, predictive diagnostics detects and isolates 
abnormal dynamics and negative trends in the context of 
operating conditions. An underlying concept in predictive 
diagnostics in space missions is that every crew member is 
unique. This requires the development of a unique data set 
(“set of fingerprints”) for each individual in a number of 
areas: medical history, genetic predisposition, recent 
medical events, baseline health assessments including vital 
signs in terms of operational (e.g., extra-vehicular activity) 
and emotional contexts (e.g., anxiety (2010 Interim Report 
“Life and Physical Sciences Research for a New Era of 
Space Exploration”)). 

A PHM-based system augmented with predictive 
diagnostics capability would be required to perform real-
time health assessment followed by evaluating the 
assessment results against a crew member health baseline, 
i.e., a health pattern corresponding to a “normal” health 
state in which the crew member is identified as a physically 
and mentally healthy person meeting in-flight specific 
requirements. Based upon the differences between real-time 
assessment and normal health state, predictive analytics 
would detect negative trends and isolate abnormal dynamics 
in the context of the current operational environment. 

PHM technologies augmented with predictive diagnostics 
capability on manned space exploration programs include, 
but are not limited to the following: 

• Proven engineering techniques, data analysis, and 
statistical methods to astronaut health maintenance in 
order to translate complex data into accurate knowledge 
and informed actions; 

• Methods for in-situ monitoring of astronaut health 
using unobtrusive and non-invasive sensors/devices;   

• Implementation of telemetry and data processing 
concepts to improve health care delivery;  

• Data-driven approaches, algorithms and models for 
large-scale health data processing and extraction of 
features of interest; 

• Health damage assessment; 
• Identification and analysis of precursors on health 

compromise; 
• Statistical techniques and machine learning methods for 

diagnostics and prognostics; 

• Anomaly detection. 

The absence of real-time medical ground support requires a 
shift in health care delivery on manned exploration-class 
space programs from a telemedicine paradigm to that of 
medical autonomy (i.e., onboard health care). It used to be 
that all the information on crew member health and all the 
controls were residing with the medical ground support 
team (Integrated Medical Group (IMG) or MED Ops Team) 
and on-board health care professional (Crew Medical 
Officer (CMO)). This paradigm may have to shift to where 
the consumer, i.e., the crew member, is gathering his/her 
own supplemental data through various means, and decides 
whether he/she wants to share these data with the medical 
ground support team and when. These data are additional to 
those data the medical ground support team receives on a 
regular basis as the routine part of the space program. 
Having accepted the inherent risk of autonomous medical 
care (2013 “Global Exploration Roadmap” report) the crew 
should be in control until a disorder symptom is identified 
or a disease is diagnosed. Given that predictive diagnostics 
is the key to keep the crew healthy, it appears that in 
addition to the current responsibilities, which the IMG 
usually has on space programs, the new role of the ground 
support team is to provide the crew with more health 
assessment software applications rather than more 
pharmaceuticals. Yet, this could/should be largely done at 
the mission design stage though. The paradigm shift could 
yield solutions to known issues related to health care 
delivery on manned space programs, such as underreporting, 
reluctance to discuss health status, etc. 

The technology implementation could bridge PHM with the 
space medicine domain by introducing proven engineering 
techniques coupled with advanced information technologies 
that could help the space medicine community to build 
scientific- and evidence-based health care delivery in terms 
of individualized medicine and autonomy paradigms. 

3. SIMILARITIES BETWEEN SPACE MEDICINE AND 
ENGINEERING 

There has been a growing interest in monitoring the “health” 
of both the operational environment and astronauts in order 
to predict failures and provide early warning to avoid health 
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compromise. Here, health is defined as the degree of normal 
condition. The following are the PHM techniques used in 
real-time health monitoring: 

• Built-in-test (BIT);  
• Usage of “canary devices”1 and/or (bio-) markers; 
• Monitoring of and reasoning over failure precursors; 
• Modeling of accumulated damage. 

All of these techniques could be successfully employed to 
astronaut health real-time monitoring as well. For example, 
like certain biomarkers, the “canary devices” (Pecht, 2008), 
which are usually integrated into a system, have 
incorporated failure mechanisms that occur first in the 
embedded device. 

Thus, it is possible to make continuously updated 
predictions based on the actual environmental and 
operational condition monitoring of astronaut health (see 
also Figure 1). 

 
Figure 1. Comparison of Health Care vs. Engineering 
(Uckun et al., 2008) 

Health management in both engineering and medicine 
domains requires that considerations of the appropriateness 
of interventions are based on scientific evidence. Given the 
similarities of the two domains focusing on prognostics, a 
common scientific foundation for both of the domains could 
be established. However, to ensure maturity of this 
foundation, a common language, singular methodology, and 
benchmarking are required to be implemented. For more 
details, Uckun et al. (2008) provides an excellent summary 
on PHM methods and techniques, whereas Lucas and Abu-
Hanna (1999) do the same for prognostic methods and 
techniques in medicine. 

                                                             
1 Usage of “canary devices” is one of the PHM techniques: an early-
warning device derived from the use of a canary bird to detect the presence 
of poisonous gases in a mineshaft. For example, certain bacteria and 
microbes could serve as canary devices to detect an impending health issue.   

It should be stressed though that a fundamental difference 
exists between components of complex machinery/processes 
and the human body or organs/processes within. While 
machine/process components may have well-defined and 
well-understood failure modes, the failure modes of a 
human body or organs/processes within are far less 
predictable: (1) the human body is not a machine, and (2) it 
is characterized by far more complex (and often unknown) 
interactions of failure modes. Rapid, unpredicted, and 
unforeseen changes in the health status of a patient can 
occur within seconds. 

4. MANAGING HEALTH AND HUMAN PERFORMANCE 
RISKS FOR SPACE EXPLORATION: THE VALUE OF 
PREDICTIVE DIAGNOSTICS 

The promise of data-driven decision-making is now being 
recognized broadly. Decisions that previously were based 
on guesswork, or on painstakingly constructed models of 
reality, can now be made based on the data itself. Decision-
making in the areas of health and human performance 
management is not any different. 

It is widely believed that the use of the particular data-
driven information technology can reduce the cost of 
healthcare while improving its quality, by making care more 
preventive and personalized, and by basing it on continuous 
monitoring. 

To understand the value of new technologies a 
differentiation has to be made between two things that are 
often confused by analysts: capabilities and functions. 
Capabilities are derived from combinations of functions. 
Functions are the basic tasks or activities that can be 
performed with a new technology. Broadly speaking, a 
capability is what can be achieved with the technology, i.e., 
“what it is for”, whereas a function is what the technology 
does. 

Predictive analytics is a new information management 
approach and set of capabilities for uncovering additional 
value from health information. Within the health care sector 
it provides new insights that have the potential to advance 
personalized care, improve patient outcomes, and avoid 
unnecessary costs. 

Predictive analytics is the process of examining large 
amounts of data, from a variety of data sources and in 
different formats, to deliver insights that can enable 
decisions in real or near real time. Various analytical 
concepts such as data mining, natural language processing, 
artificial intelligence (e.g., expert systems), machine 
learning, and predictive analytics itself can be employed to 
analyze, contextualize, and visualize the data. The analytical 
approaches can be employed to recognize inherent patterns, 
correlations and anomalies, which can be discovered as a 
result of integrating vast amounts of data from different data 
sources (e.g., sensor-data fusion). Also, computer-based 
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self-diagnosis and self-directed treatment programs could be 
a solution to known issues, such as underreporting on health 
challenges. It appears that sharing information with personal 
devices rather than with MED Ops Team (MEDical 
Operations Team) or CMO is a preferred option for 
astronauts. 

The variety of predictive diagnostics techniques, which are 
based on predictive analytics, is usually divided into three 
categories (Langreth & Waldholz (1999)):  

• Predictive models look for certain relationships and 
patterns that usually lead to certain behavior and predict 
system failures;  

• Descriptive models aim at creating segmentations and 
find clusters of data elements with similar 
characteristics;   

• Decision models use optimization techniques to predict 
results of decisions. 

In predictive models the outcome of the dependent values 
could be predicted by determining the explanatory values. 
Where predictive models focus on a specific event or 
behavior, descriptive models identify as many different 
relationships as possible. Decision models, another branch 
of the predictive analytics, lean particularly heavily on 
operations research, including areas such as route planning, 
resource optimization, etc. This classification is very 
practical, since it provides an immediate understanding of 
the areas where predictive analytics add value. 

The following are data types proposed for digitizing the data 
as Electronic Health Records (EHR) and using predictive 
diagnostics to support astronaut health maintenance on 
space exploration programs: 

• Clinical data (up to 80% of health data is unstructured 
as documents, images, clinical or transcribed notes); 

• Publications (clinical research and medical reference 
material); 

• Clinical references (text-based practice guidelines and 
health product data, i.e., drug information); 

• Genomic data (significant amounts of new gene 
sequencing data) (Langreth & Waldholz (1999)); 

• Streamed data (health monitoring with handheld and 
sensor-based wireless or smart devices). 

There are many sources of data within the health care sector. 
However, it is unrealistic to assume that all data can be put 
to use for predictive diagnostics due to a range of 
operational and technical challenges (mainly interfacing and 
incompatibility issues) and privacy considerations. 

5. REAL-TIME MONITORING FOR ASTRONAUT HEALTH 
MANAGEMENT 

In order to assess the effects of environmental and 
operational factors on the health status, and to allow early 
detection of negative trends, real-time health monitoring is 
required. The ultimate goal of real-time monitoring as an 
essential component of a predictive capability is its potential 
for providing meaningful and up-to-date data for detecting 
trends in astronaut health status during a mission. In this 
context, “status” should be considered to include the 
capacity to perform mission-related tasks and the level of 
health/well-being. The challenge is to provide not only valid 
and reliable data, but also data sensitive to potentially subtle 
physiological and neuropsychological deficits caused by 
stressors. Typical stressors are listed below that can 
potentially lead to undesirable developments such as 
overgrowth of certain bacteria, decreasing immune 
response, anxiety, depression, tension, fatigue, daytime 
sleepiness, stress-related cardiac arrhythmias, memory 
impairments, etc. (2010 Interim Report “Life and Physical 
Sciences Research for a New Era of Space Exploration”): 

• Exposure to solar and space radiation; 
• Prolonged period of exposure to microgravity; 
• Confinement in close, relatively austere quarters; 
• Limited contact with family and friends; 
• Isolation (small number of crew members); 
• Chronically inadequate sleep; 
• Work overload; 
• Atmospheric composition (e.g., CO2 concentration); 
• Volatile organic compounds; 
• Variation in light spectrum; 
• Vibration; 
• Noise; 
• Monotony; 
• Environment pollution. 

A real-time monitoring approach (2010 Oracle white paper: 
“Predictive Analytics: Bringing the tools to the data”) is 
presented in Diagram 1 below. 

Real-time monitoring as a predictive capability component 
is common for both PHM and astronaut health care based on 
predictive diagnostics. Unlike conventional medicine, which 
is based on taking “snapshots” (i.e., medical check-ups) to 
track health status, PHM with a predictive analytics 
capability takes advantage of analyzing additional 
information acquired during manned space exploration 
programs on a real-time basis. 
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6. DISCUSSION & CONCLUSION 

The primary benefit of the successful technology 
implementation is the ability to successfully achieve 
affordable human space missions to LEO and beyond (e.g., 
human settlement on the Moon and Mars). An 
implementation of the proposed technology with predictive 
diagnostics capability on the ISS, as a unique human-
occupied test platform in space, will directly contribute to 
the knowledge base and advancements in managing health 
and human performance risks for space exploration. In 
addition to research, the ISS provides the capability to 
validate countermeasures and mitigation strategies. While 
countermeasures used on the ISS are largely effective at 
managing health and performance risks, the technology 
implementation could lead to a better understanding of the 
risks and to the development of novel countermeasures 
against these risks. The proposed technology with on-board 
predictive capability coupled with countermeasures against 
cardiovascular, musculoskeletal, and neurological or 
behavioral challenges associated with space flight is critical 
for human space exploration. Nutritional countermeasures 
are also essential, given the impact of diet and nutrition on 
human health both in space and on Earth. In addition, there 
are other potential factors being investigated, which might 
predispose individuals to certain changes in the visual 
system during space flight (e.g., “Longitudinal Study of 
Astronaut Health” (LSAH) and 2012 NASA Evidence 
Report “Risk of Spaceflight-Induced Intracranial 
Hypertension and Vision Alterations”), which could cause 
problems on future long-duration exploration missions and 
for which no countermeasures are currently known. 
However, progress on all these issues must be made before 
long-term exploration missions can be successful. 

Since crew health and performance are primary, critical 
concerns, the space community and the ISS program should 
actively take advantage of ISS-based research to extend 
human space mission durations while ensuring crew health 
and performance (Popov, 2012). The health risks are 
significant enough to drive decisions related to planning of 
exploration missions beyond LEO. 

In order to develop a mature PHM-based technology with a 
predictive capability the following recommendations on 
further research, detailed in the 2010 Interim Report “Life 
and Physical Sciences Research for a New Era of Space 
Exploration”, need to be implemented: 

• Determination of the mission-specific effects and other 
relevant stressors, alone and in combination, on the 
general psychological and physical well-being of an 
astronaut. Emphasis should be on determining the 
extent to which such stressors constitute a risk to 
mission success;  

• Development of interventions to prevent, minimize, or 
reverse deleterious effects during extended missions. 

To assess the effects of environmental factors on crew 
health and to enable early detection of negative trends a 
real-time monitoring is required. The monitoring challenge 
is to provide not only valid and reliable data, but also data 
sensitive to potentially subtle physiological and 
neuropsychological deficits caused by the stressors. 

To build a sustainable human space exploration endeavor 
that lasts decades, the international space community should 
maintain a focus on delivering value to the public (2013 
“Global Exploration Roadmap” report). The proposed 
technology concept with predictive diagnostics capability 
and a pilot implementation of the technology aboard the 
International Space Station includes evaluation and 
augmented research/testing of the technology, which will 
regularly and efficiently provide advancements during the 
development phases. The pilot implementation could serve 
as a contribution to the exploration-class mission readiness 
since it would demonstrate autonomous crew operation 
capability coupled with a reduced supply chain on health 
care delivery. Investments in the technology development, 
with bringing the technology to TRL 6, can lead to 
improvements in the quality of life here on Earth and create 
benefits of national and global interest. 

History has repeatedly shown that finding ways to meet the 
challenges of safe and sustainable human space flight results 
in solutions that are applicable far beyond space flight (2013 
“Global Exploration Roadmap” report). It is important to 
ensure consistent realization and broader dissemination of 
the benefits generated by the technologies validated on the 
ISS in order to meet requirements and challenges of 
exploration-class space missions. 

REFERENCES 

Alexander, D. J., Gibson, C. R., Hamilton, D. R., Lee, S. M. 
C., Mader, T. H., Otto, C., Oubre, C. M., Pass, A. F., 
Platts, S. H., Scott, J. M., Smith, S. M., Stenger, M. B., 
Westby, C. M., Zanello, S.B. (2012). Risk of 
Spaceflight-Induced Intracranial Hypertension and 
Vision Alterations. NASA Evidence Report: 
http://humanresearchroadmap.nasa.gov/Evidence/report
s/VIIP.pdf 

Fink, W., Clark, J. B., Reisman, G. E., Tarbell, M. A. 
(2013). Comprehensive Visual Field Test & Diagnosis 
System in Support of Astronaut Health and 
Performance. IEEE Aerospace Conference 
Proceedings, paper #2675, Big Sky, Montana 

Grossman, C., Powers, B., and McGinnis, J. M., 
Rapporteurs and Editors (2011). Digital Infrastructure 
for the Learning Health System: The Foundation for 
Continuous Improvement in Health and Health Care – 
Workshop Series Summary. Roundtable on Value & 
Science-Driven Health Care; Institute of Medicine, The 
National Academies Press, Washington, D.C. 

Annual Conference of the Prognostics and Health Management Society 2013

571



Annual Conference of the Prognostics and Health Management Society 2013 

 7 

Health Information Technology (Health IT): Policymaking, 
Regulation, & Strategy: http://www.healthit.gov/policy-
researchers-implementers/meaningful-use. Office of the 
National Coordinator for Health Information 
Technology; U.S. Department of Health and Human 
Services 

Langreth, R., & Waldholz, M. (1999). New era of 
personalized medicine: Targeting drugs for each unique 
genetic profile. Oncologist 4(5):426-427 

Life and Physical Sciences Research for a New Era of Space 
Exploration: An Interim Report. National Research 
Council, The National Academies Press, Washington, 
D.C., 2010 

Longitudinal Study of Astronaut Health (LSAH) and the 
respective LSAH Newsletters referenced therein; 
http://lsda.jsc.nasa.gov/scripts/mission/miss.cfm?pay_in
dex=317&mis_index=218&program_index=13  

Lucas, P. J. F., & Abu-Hanna, A. (1999). Prognostic 
methods in medicine. Artificial Intelligence in 
Medicine, 15:105-119 

Pecht, M. (2008). Prognostics and Health Management of 
Electronics; Wiley 

Popov, A. (2012). System Health Management and Space 
Medicine Predictive Diagnostics. Common Concepts 
and Approaches. IEEE Aerospace Conference 
Proceedings, Big Sky, Montana 

Predictive Analytics: Bringing the tools to the data (2010). 
An Oracle white paper, September 2010 

The Global Exploration Roadmap (2013): 
https://www.globalspaceexploration.org/c/document_li
brary/get_file?uuid=6bdce6a3-1400-4b47-b6ba-
3556755273c3&groupId=10812. International Space 
Exploration Coordination Group (ISECG) 

Uckun, S., Goebel, K., Lucas, P. J. F. (2008). Standardizing 
Research Methods for Prognostics. International 
Conference on Prognostics and Health Management, 
October 2008 

BIOGRAPHIES 

Alexandre Popov received a M.Sc. in 
Computerized Control Systems 
Engineering from Moscow State 
University of Aerospace Technologies 
(former Moscow Aviation Institute) in 
1983 and M.Sc. in Applied Mathematics 
from Moscow State University in 1988.  
As a test-engineer with Tushinsky 

Machine Building Enterprise (Russia) he had conducted 
verification tests of navigation and landing systems on the 
BURAN space program. At a later date he - as a data 
architect and business analyst – had led software 
development for mission planning on MIR and International 
Space Station (ISS) programs at the Energia Rocket Space 
Corporation (Russia) [1988-1998]. From 2000 to 2003 he 
served as an advisory member of Engineering with 

Lockheed Martin Canada working on the ISS program 
(ISSP) at the Canadian Space Agency (CSA). He joined the 
Canadian Space Agency as a mission planner in 2003 and 
has contributed to the ISSP process and data integration 
effort. From 2011 to 2012 he led CSA efforts on developing 
requirements for and prototyping of a space medicine 
decision support system for exploration class missions with 
predictive diagnostics capability. He is currently working as 
an Operations Engineer on the ISS program at CSA. 

Wolfgang Fink is currently an Associate 
Professor and the inaugural Edward & 
Maria Keonjian Endowed Chair of 
Microelectronics with joint appointments 
in the Departments of Electrical and 
Computer Engineering, Biomedical 
Engineering, Systems and Industrial 
Engineering, Aerospace and Mechanical 

Engineering, and Ophthalmology and Vision Science at the 
University of Arizona in Tucson. He is a Visiting Associate 
in Physics at the California Institute of Technology, and 
holds concurrent appointments as Visiting Research 
Associate Professor of Ophthalmology and Neurological 
Surgery at the University of Southern California. Dr. Fink is 
the founder and director of the Visual and Autonomous 
Exploration Systems Research Laboratory at Caltech 
(http://autonomy.caltech.edu) and at the University of 
Arizona (http://autonomy.arizona.edu). He was a Senior 
Researcher at NASA’s Jet Propulsion Laboratory from 2000 
till 2009. He obtained a B.S. and M.S. degree in Physics and 
Physical Chemistry from the University of Göttingen, 
Germany, and a Ph.D. in Theoretical Physics from the 
University of Tübingen, Germany in 1997. Dr. Fink’s 
interest in human-machine interfaces, autonomous & 
reasoning systems, and evolutionary optimization has 
focused his research programs on artificial vision, 
autonomous robotic space exploration, biomedical 
sensor/system development, cognitive/reasoning systems, 
and computer-optimized design. Dr. Fink is a Fellow of the 
American Institute for Medical and Biological Engineering 
(AIMBE). His work is documented in numerous 
publications and patents. Dr. Fink holds a Commercial 
Pilots License for Rotorcraft. 

Andrew Hess is a 1969 graduate of the 
University of Virginia (BS Aerospace 
Engineering) and the U. S. Navy Test 
Pilot School. Andy attended George 
Washington University working towards a 
Masters in Technology Management and 
has completed many Navy and DOD 
sponsored professional and acquisition 

management courses. Andy is world renowned for his work 
in fixed and rotary wing health monitoring and is recognized 
as the father of Naval Aviation propulsion diagnostics. 
Working for the Naval Air System Command and beginning 
with the A-7E Engine Monitoring System program of the 

Annual Conference of the Prognostics and Health Management Society 2013

572



Fault Monitoring Techniques for Nuclear Components 

Gee-Yong Park
1
 and Jung Taek Kim

2
 

1,2
Korea Atomic Energy Research Institute,Yuseong-gu, Daejeon, Dukjin-dong 150, South Korea 

gypark@kaeri.re.kr 

jtkim@kaeri.re.kr 

 
ABSTRACT 

In this paper, we describe our previous studies for the 

development of an analysis algorithm and the application of 

a fault monitoring technique. Various signal processing 

methods have been implemented in the so-called monitoring 

tools to monitor and analyze abnormal conditions of 

components in nuclear power plants (NPPs). One of the 

analysis methods were devised by us for the efficient 

analysis of transient signals from NPP process components. 

This method, the adaptive cone-kernel distribution, is 

presented in this paper along with the description of the 

monitoring tool. Then, some application results using the 

monitoring tool are presented. As another application, the 

fault monitoring technique applied to the agitator driving 

system of a thermal chemical reduction reactor is also 

presented though this technique is not integrated in the 

monitoring tool yet. 

1.  INTRODUCTION 

The fault monitoring technique consists of hardware and 

software elements to investigate successfully the status of a 

target component, equipment, or system. For the hardware 

part, a sensing type and an appropriate sensor for measuring 

relevant signals are first determined. Along with the sensors 

employed, the data acquisition system should be 

established. For the software part, it is usual in our studies 

that a signal processing method is selected to analyze the 

signal that were acquired by and stored in the data 

acquisition system, then some useful feature representing 

information of the target system status is extracted from the 

result of signal processing analysis, and finally a certain 

diagnostic method such as expert system or neural network 

is applied to the features, resulting in the identification of 

current status of the system to be monitored. 

We implemented various signal analysis methods and 

improved some methods for application to the transient 

signals from a system. These various signal analysis 

methods covers from classical analysis methods such as the 

frequency or spectral analysis to the time-frequency analysis 

methods for analysis of transient signals such metal impact 

signal by a loose part in NPP. 

Figure 1 shows the main page of our monitoring tool. This 

tool has classical spectral analysis methods and also various 

time-frequency analyses such as STFT (Short-Time Fourier 

Transform), WVD (Wigner-Vill Distribution), CWD(Choi-

Williams Distribution), BJD (Born-Jordan Distribution), 

CKD (Cone-Kernel Distribution), and ACKD (Adaptive 

Cone-Kernel Distribution). The monitoring tool was 

implemented by LabVIEW program language. The analysis 

methods described above were implemented into “dll” 

libraries that were then integrated into the LabVIEW-based 

monitoring tool 

 
Figure 1. Monitoring tool - main page 

 
G. Y. Park et al. This is an open-access article distributed under the 

terms of the Creative Commons Attribution 3.0 United States License, 
which permits unrestricted use, distribution, and reproduction in any 

medium, provided the original author and source are credited. 

Annual Conference of the Prognostics and Health Management Society 2013

573



Annual Conference of the Prognostics and Health Management Society 2013 

2 

The upper left part of Figure 1 indicates menus for reading 

input data and displaying this data and the lower left part is 

for menus for options and refining analysis results. The 

upper right screen is for displaying 2-dimensional time-

frequency results along with frequency and time data. The 

lower graph is displayed only when 3 dimensional data need 

to be displayed. The more explanation of each component 

can be seen in Figure 2. 

 
Figure 2. Menu functions of the monitoring tool 

 

Among them, the adaptive cone-kernel distribution (ACKD) 

was devised by our team and this is described in detail in 

Section 2 with brief description of applications results. 

Section 3 describes other application result of fault 

monitoring techniques that had been carried out in our 

projects but are not implemented in this monitoring tool. 

2.   DEVELOPMENT OF ADAPTIVE CONE KERNEL 

DISTRIBUTION 

In this section, an adaptive CKD, which was devised for 

improving analysis performance and also reducing 

calculation load, is described.  

The general form of a time-frequency distribution (TFD) is 

represented by (Claasen & Meckleubrauker, 1980) 

  












  ddud)u(*x)u(x),(e);,t(C
22

)ut(j

x
,(1) 

where x is an analytic signal, x* is the complex conjugate of 

x,  represents the time lag, and  is the kernel function. The 

form of TFD by Cohen (Cohen, 1995) is slightly different 

from Eq.(1) in that the parameter  has a negative sign. If 

the kernel function is such that (,) = 1, then Eq.(1) is the 

Wigner-Vill distribution (WVD). The WVD is known to 

have very desirable properties in the time-frequency domain. 

For a signal composed of multi-component signals, however, 

it has a critical drawback in that ghost signals (i.e., called 

“cross-terms”) present among the true signal components. 

These results make the time-frequency representation very 

difficult to interpret. To overcome this, time-frequency 

representation of a signal is usually performed base on the 

general form of Eq.(1) where the kernel function  is 

designed from the previously proposed candidates 

(Hlawatsch & Boudreaux-Bartels, 1992) for a better 

representation of a case sensitive signal.  

Various kernels have been proposed for satisfying the 

desirable properties (time and frequency maginals, finite 

support in time and frequency, and so forth) of TFD and at 

the same time reducing the undesirable effect (i.e., cross-

terms). The exponential kernel, which is known as the Choi-

Williams kernel (Choi & Williams, 1989), is the one that 

satisfies almost all of the desirable TFD properties and can 

suppress well the effects of the cross-terms. It is represented 

by 

 /22

e),(     (2) 

In Eq.(2)  is a tuning parameter. Born-Jordan kernel has 

the form of 

)(csin),(     (3) 

It fulfills almost all of the TFD properties. All the kernel 

functions are summarized well in the paper of Cohen (1995) 

and Hlawatsch and Boudreaux-Bartels (1992). 

2.1. CKD and ACKD 

Up to this time, there is no kernel that satisfies all the 

desirable properties and also shows the best cross-term 

reduction capability. The cone-kernel distribution proposed 

by Y. Zhao, et al (1990) is the one with the best capability 

of suppressing the cross-term effects; instead, of sacrificing 

many of desirable properties (Loughlin et al., 1993). The 

design of CKD is originated from the idea that a kernel 

should satisfy the time support and also enhancing the 

frequency resolution by paying a penalty to the neighbors of 

signal frequencies by the use of a so-called lateral inhibition 

(Zhao, et al., 1990). A different form of the general class of 

TFD of Eq.(1) can be presented such as 
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The kernel function in Eq.(4) is the inverse Fourier 

transform of the kernel function in Eq.(1) with respect to . 

The cone kernel in the t- domain in (4) is represented as 



 


.W.O,0

|t|a||),(g
),t(      (5) 

In Eq.(5), the cone boundary parameter, a, adjusts the slopes 

of the cone with the constraint that 2  a <  and usually set 

to 2 according to the finite support property (Claasen & 

Meckleubrauker, 1980). The function g() is a sort of 

window in the Fourier transform for preventing a frequency 

leakage and it is usually represented by the Gaussian 

function. 

The discrete form of the above equation (Czerwinski & 

Jones, 1995) is represented by 
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In Eq.(6), the continuous variable f will be represented by 

the discrete Fourier data at the implementation phase. 

According to the cone length T in Eq.(6), the resolutions of 

time and frequency domains are traded off. 

For a signal with multi-components, it is necessary for the 

cone length to vary adaptively according to the signal type. 

The adaptive cone-kernel distribution (ACKD) was 

proposed by Czerwinski & Jones (1995) where the 

performance measure was the highest time-frequency signal 

energy normalized by the square of the cone length. This 

method usually shows a reasonably optimal value of the 

cone length according to the signal type, but it requires 

massive computations and a careful selection of the time-

axis range for the signal data.  

In this paper, a more computationally efficient adaptive 

method is proposed. In this method, at a particular time step 

n, the frequency values are calculated for each incremental 

step of a variation of the cone length. The performance 

measure is the normalized Shannon’s entropy that is applied 

to the frequency data obtained at each incremental step in 

the cone length for a particular time. The normalized 

Shannon’s entropy is expressed as 
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In Eq.(7), n is the time index and m is the discrete frequency 

index, M is the total frequency data. The fN is the 

normalized energy and represented by 
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The optimal cone length T at a particular (fixed) time index 

is determined when the entropy has a local minimum value 

over the variations of the cone length T. If it is decreasing 

smoothly then the optimal T is determined when the entropy 

value is below the threshold value such as 

Eth = Emin + (Emax-Emin)    (9) 

In Eq.(9), Eth is the threshold entropy, Emin and Emax 

represent the minimum and maximum values of the entropy, 

respectively, and  is the given threshold parameter. In 

determining the optimal cone length, the entropy trend 

shows a small fluctuating behavior, which may induce an 

inaccurate determination of the local minimum point. In 

order to remedy this problem, the entropy plot for the 

variation of T at a particular sample point is smoothed by 

the curve smoothing technique (Moon, 1998). 

2.2. Performance Evaluation for Arbitrarily Synthesized 

Signal 

Figure 3 shows an arbitrary, multi-component signal that 

contains two impulses at the data sample index i=56 and 60, 

respectively, one burst signal at i=108~148, two chirp 

signals at i=200~300, and two mixed sine waves at 

i=350~400. The sampling rate is given by 50 kHz. The 

detailed information of the multi-components (S1, S2, S3, 

S4, and S5) is presented in Table 1. 

 
Figure 3: An arbitrarily generated signal 

 

 

Figure 4 displays the results of the STFT, the Born-Jordan 

distribution (BJD), the Choi-Williams distribution (CWD), 

the Cone-Kernel distribution (CKD) and the adaptive CKD 

(ACKD). Figure 4(a) represents the STFT with the window 

length of 64, which shows clearly the superior depression of 

the cross-terms but very poor time and frequency 

resolutions. The BJD in Figure 4(b) is obtained from the 

parameter  = 0.005 in Eq.(3). The CWD with =150000 in 

Eq.(2) is displayed in Figure 4(c), where the cross-terms are 

still disturbing the time-frequency representation. Figure 4(d) 

displays the CKD with T=32 in Eq.(6). All the figures 

depict the real part. Though the CKD with an appropriate 

cone length (T=32) shows a better the time-frequency 

representation than the other time-frequency representations 

in Figures 4(a),(b), and (c), it is necessary the cone length be 

varied according to the signal type. 

Figure 4(e) shows the result of the ACKD proposed in this 

paper. The maximum search range of the cone length is 

given by 64 and the threshold parameter is set by  = 0.05. 

Figure 4(e) shows a good time-frequency representation and 

moreover, the two vertical strips for corresponding impulse 

signals can be discriminated. Figure 5(a) and Figure 5(b) 

magnify the results of ACKD of Figure 4(e) and CKD of 

Table1. Description of signal components 

Signals Expression & Description 

#1 (S1) S1 = 20 at i=56, and S1 = 0, otherwise 

#2 (S2) S2 = 20 at i=60, and S2 = 0, otherwise 

#3 (S3) S3 = 4M{cos(220i/256)+ 

        cos(250i/256)}, and 











Otherwise,0

148i108,)128i(
400

1
1

M
2

 

#4 (S4) S4 = 4{cos(2(i/8)(i/512))+ 

           cos(2(i/16)(i/512))},  

for 200i300, and S4=0, otherwise 

#5 (S5) S5 = 4{cos(2i/5)+cos(2i/10)},  

for 200i300, and S5 = 0, otherwise 
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Figure 4(d), respectively, for the data sample range of 

0~100. As can be seen in Figures 5, the discrimination of 

the two impulses are much clearer in ACKD. The optimal 

values of the cone length calculated in this adaptive method 

are shown in Figure 6 along the data sample index. 

 
(a) STFT (Window Length = 64)  (b) BJD ( = 0.005) 

 
(c) CWD ( = 150000)           (d) CKD (T = 32) 

 
(e) ACKD 

Figure 4: Time-Frequency representations for an arbitrarily 

generated signal 

 
(a) ACKD (0~100)                (b) CKD (0~100) 

Figure 5: Comparison of magnified ACKD and CKD 

 

 

2.3. Application of Monitoring Tool 

The monitoring tool as in Figure 1 was used for monitoring 

of the integration of a check valve and also for identifying 

the status of pipe corrosion, which had been performed by 

the joint research between the KAERI and the SNL (Sandia 

National Laboratory) as an I-NERI project. 

Some example of application of ACKD to acoustic emission 

(AE) sensor signals for the check valve monitoring is 

depicted in Figure 7. 

 
(a) Normal Close    (b) Disk wearing   (c) Foreign object 

Figure 7: Results of ACKD for AE signals from a check 

valve disk 

As can be seen in Figure 7, the AE signals from a healthy 

check valve typically have a signal component dominant at 

150 kHz and, if an abnormal situation happens, there can be 

seen that signal components dominant at other frequencies 

begin to appear. When the leak occurs due to disk wearing, 

the dominant frequencies are extensively spreading over 100 

kHz as can be seen in Figure 7(b). For the disk stuck by a 

foreign object, it can be seen that the signal components at 

higher frequencies are generated. 

For the identification of pipe corrosion, it was identified that 

the signals from accelerometers installed in the area of the 

pipe elbow did not represent distinguishable transient 

characteristics in such a passive method (in other words, in 

the case of two transmitting- and receiving- accelerometers, 

a certain discriminating feature was supposed to be 

identified.) For the experiment for the pipe corrosion, the 

STFT was applied to signals from accelerometers and the 

linear scale of the distribution of STFT was transformed 

into the log scale. The ridge pattern is extracted from this 

result. Figure 8 shows the ridge pattern for the pipe in the 

normal state. 

 
Figure 8: Ridge pattern for the pipe with normal state 

 
Figure 6: Optimal cone length along signal sequence 
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The ridge pattern in Figure 8 was abstracted by the use of 

peak number and peak energy. Figure 9 shows some 

application results from the two types of experimental pipes; 

the pipe with normal state and 2 mm mechanical thinning.  

 
(a) Normal state                     (b) 2 mm thinning 

Figure 9: Peak number vs. peak energy for pipes with 

different local width 

As can be seen in Figure 9, the abstracted ridge pattern is 

moving from the lower left portion to the upper right portion. 

This shift trend could be identified consistently for the pipe 

with 1 mm thinning, and was validated for the real data 

from the pipe corrosion. 

3. APPLICATION OF FAULT MONITORING TECHNIQUE 

This section presents additional application example from 

our previous study (Park et al., 2003) that are not integrated 

into the monitoring tool in Section 2. The target system to 

which a fault monitoring technique was applied is the 

agitator driving system. The agitator driving system 

equipped on the top of the thermal reduction reactor for a 

high-temperature chemical reaction is composed of the 

magnetic driver and the agitator whose rotating axis is 

connected to the motor installed on the side of the thermal 

reduction reactor via the flexible joint.  

Figure 10 shows the configuration of the thermal reduction 

reactor and the agitator driving system. The power 

transmission through the flexible joint produces vibrations 

and, for series of the operations, this induces the looseness 

of the surrounding bolts. In the real operations, there existed 

that the operator sometimes forgot to tighten some of bolts.  

 

Figure 10. Configuration of the full-scale thermal reduction 

reactor and the agitator driving system 

 

During the thermal reduction process, the fume is generated 

from the chemical reaction and propagates through the 

internal space of the agitator driving system. The bearings in 

the magnetic driver are affected by the fume, which results 

in the corrosion/wear of the bearings and the blocking of the 

clearance between the rotating axis and the outer ring. 

The fault in the agitator driving system increases the burden 

of regulating the agitator rotating speed to the pre-set point 

(200 rpm) for the optimal chemical reaction. In order to 

identify the fault occurrence and its cause, the fault 

monitoring technique for the agitator driving system is 

developed. This technique is implemented on the vibration 

signals measured by two accelerometers on the outer shroud 

of the magnetic drive as shown in Figure 11. 

Through the experiments, the vibration signals for a speed 

of 200 rpm with various faults were measured. The 

sampling rate was set to 25.6 kHz for all cases. The data for 

5 types of faults are analyzed. The five faults presented in 

this paper are the clearance blocking, the bearing defects, 

the lower bolts looseness, the upper bolts looseness, and the 

upper-right bolt looseness.  

 

Figure 11. Experimental facility for the agitator driving 

system 

 

The rotation speed is fluctuated with the maximum 

deviation of 20 rpm around 200 rpm. In order to classify 

the faults, the spectral analysis was first applied to the 

signals for 5 faults and the normal rotation. From the 

spectral analysis, some faults such as the clearance blocking 

and the bearing defects show slightly different trend other 

than the normal rotation but it is not easy to identify the 

distinguishing peaks for discriminating a fault. 

In order to identify accurately a fault in the agitator driving 

system, the wavelet decomposition (Burrus, et al., 1998) 

was applied to the vibration signal. Figure 12 shows the 

wavelet decomposition for a normal vibration signal that has 

65,536 data samples. As can be seen in Figure 12, the 

vibration signals are decomposed into the corresponding 

components that have the octave band frequency contents. 

The feature extraction was performed by the 2nd order 

moment calculation. The 2nd order moment calculation was 

simple and showed good distinguishable features for 

corresponding faults as can be seen in Figure 13. For 
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establishing the diagnosis process, the neural network 

classifier, which is called Fuzzy ARTMAP (Carpenter, et al., 

1992), was constructed. 

 

Figure 12. Wavelet decomposition for normal signal 
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Figure 13. Features extracted from the results of wavelet 

decomposition for 6 types of cases 

 

The fuzzy ARTMAP is a class of neural networks that 

perform incremental supervised learning of recognition 

categories and multidimensional maps in response to input 

vectors presented in arbitrary order. Figure 14 shows the 

architecture of the fuzzy ARTMAP where two fuzzy ART 

(Carpenter, et al., 1991) modules (ARTa and ARTb) and a 

map field Fab are involved. The input vectors A of 

dimension Ma and B of dimension Mb are the feature vectors 

respectively corresponding to the symptom and the cause. 

The components of each input vector are analog or binary 

values within the range of [0,1]. The each component of the 

input vector represents a feature item that is grouped to 

establish the representative feature. Thus the analog value of 

each component of the input vector means the degree of 

belongingness to the corresponding feature item, and this is 

similar to the fuzzy membership value. The detailed 

description on the operational mechanisms of the fuzzy 

ARTMAP is presented in Carpenter, et al (1992). 

 

Figure 14. Configuration of fuzzy ARTMAP 

 

During training the fuzzy ARTMAP, one set for each fault 

was selected from the data set and the remainder data set 

were used to test the fuzzy ARTMAP performance. In the 

training phase, training data for each fault is presented just 

once to the fuzzy ARTMAP and single learning iteration is 

performed. The input vector A for the fuzzy ARTa is the 2nd 

momentum feature values and has a dimension of Ma = 9. 

All the inputs for the fuzzy ARTa are normalized. The input 

vector B for the fuzzy ARTb is the binary values with a 

single ‘1’ that represent a specific fault and has a dimension 

of Mb = 6. Figure 15 summarizes the test data and the 

parameters for the fuzzy ARTMAP. From tests, the fuzzy 

ARTMAP showed the perfect fault identification though 

some test data are distorted from the training data. 

 

Figure 15. Parameter settings of the fuzzy ARTMAP and 

the diagnosis results for faults 

4. CONCLUSIONS 

In this paper, the monitoring tool established at our 

department and the fault monitoring techniques using this 

tool and other means are briefly described. In the nuclear 

field, classical analysis methods such as a spectral analysis 

or an auto-regressive model are applicable to most of signals 
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Training DataTraining Data • Data Set : 6 Cases ( 1:Normal, 2:Upper-Right Bolt Loose, 3: Lower Bolts Loose, 

4:Upper Bolts Loose, 5:Bearing Defect, 6:Clearance Blocking)

• Data Set : 6 Cases ( 1:Normal, 2:Upper-Right Bolt Loose, 3: Lower Bolts Loose, 

4:Upper Bolts Loose, 5:Bearing Defect, 6:Clearance Blocking)

Test DataTest Data

• Normal Data : 7 Sets

• Upper-Right Bolt Looseness : 4 Sets

• Lower Bolts Looseness: 5 Sets

• Upper Bolts Looseness: 3 Sets

• Bearing Defects: 4 Sets

• Shaft Clearance Blocking: 4 Sets

• Normal Data : 7 Sets

• Upper-Right Bolt Looseness : 4 Sets

• Lower Bolts Looseness: 5 Sets

• Upper Bolts Looseness: 3 Sets

• Bearing Defects: 4 Sets

• Shaft Clearance Blocking: 4 Sets

Training Type

&

Parameters

Training Type

&

Parameters

• Off-Line Learning, Single Input Presentation, and Single Learning Iteration

• Fast Learn: =1

• Conservative Limit Value: =0.0001

• Vigilance and Matching Criterion: a = 0.8, b = 0.8, ab = 0.8

• Off-Line Learning, Single Input Presentation, and Single Learning Iteration

• Fast Learn: =1

• Conservative Limit Value: =0.0001

• Vigilance and Matching Criterion: a = 0.8, b = 0.8, ab = 0.8

Test ResultsTest Results
• For Training Data : 100 % Correct Identification

• For Test Data: 100 % Correct Identification

• For Training Data : 100 % Correct Identification

• For Test Data: 100 % Correct Identification
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stored in the data acquisition system. For a more delicate 

analysis for transient signals, an analysis method based on 

the time-frequency basis is useful. In this paper, an adaptive 

cone-kernel distribution whose window size is varied 

according to its adaptive mechanism is presented. This 

method is so efficient for computing time that it can be used 

on line. The monitoring tool described in this paper contains 

various signal-analysis methods. In our works, this tool was 

applied to the monitoring of the check valve and the 

identifying the status of pipe corrosion. By the use of the 

monitoring tool we developed, a new method or technique 

can be easily implemented and incorporated into this tool. 

As one additional application, the fault monitoring 

technique of the agitator driving system was described. In 

this monitoring technique, the wavelet decomposition is 

used as a signal processing analysis and 2
nd

 order 

momentum is used to extract the signal features from the 

decomposed signals. For investigating or diagnosing the 

fault status, the fuzzy ARTMAP is employed for 

discriminating robustly the fault patterns. These signal 

processing algorithm and fault monitoring technique are 

also going to be implemented in the monitoring tool. 
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ABSTRACT 

Acoustic Emissions (AE) are stress waves produced by the 
sudden internal stress redistribution of material caused by 
changes in the internal structure of the material. Possible 
causes of these changes are crack initiation and growth, 
crack opening/closure, or pitting in monolithic materials 
(gear/ bearing material). Where as vibration can measure the 
effect of damage, AE is a direct measure of damage. 
Unfortunately, AE methodologies suffer from the need of 
high sample rates (4 to 10 Msps) and relatively immature 
algorithms for condition indictors (CI). This paper 
hypothesizes that the AE signature is the result of some 
forcing function (e.g. periodic motion in the case of rotating 
machinery). By using analog signal processing to 
demodulating the AE signature, one can reconstruct the 
information carried (e.g. modulation) by the AE signature 
and provide improved diagnostics. As most on-line 
condition monitoring systems are embedded system, analog 
signal processing techniques where used which reduce the 
effective sample rate needed to operate on the AE signal to 
those similarly found in traditional vibration processing 
systems. Further, by implementing another signal 
processing technique, time synchronous averaging, the AE 
signal is further enhanced. This allowed, for the first time, 
an AE signal to be used to identify a specific component 
within gearbox. This processing is tested on a split torque 
gearbox and results are presented. 

1. INTRODUCTION 

The promise of condition based maintenance (CBM) 

systems is to produce maintenance saving by reducing 
unscheduled maintenance events. As confidence in CBM 
improves and systems mature, maintenance paradigms can 
be moved to a true, “On Condition” practice.  
Unfortunately, for many industries, CBM is an immature 
technology and has not proven itself in operational 
circumstances. The low penetration (3% of installed 
turbines) of condition monitoring systems (CMS) into the 
wind turbine industry is symptomatic of the lack of 
confidence in the ability of CMS to deliver their’ promised 
performance. The industry needs better sensing and analysis 
capabilities in order to capture these markets.  

One aspect of condition monitoring on wind turbines is the 
extraordinarily low frequencies of the environment. The 
main shaft rate on utility scales wind turbines range from 
0.11 to .25 Hz. With typical planetary gearbox frequencies 
of 1:5, gear mesh frequencies in the range of 10 to 25 Hz are 
not uncommon. Because acceleration is the second 
derivative of displacement, gear mesh frequencies are on the 
order 0.005 to 0.02 G’s, making gear fault detection difficult 
with tradition vibration condition monitoring systems. 

Acoustic Emissions (AE) are the stress waved produced by 
the sudden internal stress redistribution of material caused 
by the changes in the internal structure of the material. 
Possible causes of these changes are crack initiation and 
growth, crack opening and closure, or pitting in various 
monolithic materials (gear, bearing material) or composite 
materials (concrete, fiberglass).  Most sources of AE are 
damage related. Thus the ability to detect AE can be used to 
give diagnostics indications of component health. 

AE is a direct measure of damages instead of the indicator 
of the result of damage (such as vibration). AE can 
potentially be a more sensitive of fault, especially in the low 
frequency seen on the planetary gearboxes of wind turbines. 

_____________________ 
Bechhoefer, E. This is an open-access article distributed under the terms of 
the Creative Commons Attribution 3.0 United States License, which 
permits unrestricted use, distribution, and reproduction in any medium, 
provided the original author and source are credited. 
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However, AE systems tend to be more expensive and 
difficult to implement over vibration based non-destructive 
test or CMS. 

From a development perspective, AE has a number of 
perceived disadvantages: 

• AE signals are relatively high frequency, 1 to 4 
MHz, thus the sample rates are high (4 to 10 
MSPS), 

• Processing of the data, needed for feature 
extraction, is made more difficult because of the 
high sample rates and large volume of data needed 
to be processed (consider 10 MSPS for 40 seconds, 
which would capture just 6 revolutions on a 2.5 
MW wind turbine, is 400 million samples!), 

• Typical AE analysis is limited in its “action 
ability”, meaning that its can detect or count AE 
events, but does not tie the event to a component in 
the gearbox. 

The ideal CMS would: 

• Allow for fault detectability afforded the direct 
measure of damage in the AE signal, which is 
independent of rotation rate,  

• The maturity of vibration processing techniques to 
provide actionable information by identifying the 
component which is damages, 

• Reduce the computation burden of AE by 
sampling at the lower rate. 

• Improve the detection of low frequency 
components which are now difficult to do with 
vibration based CMS. 

We developed an analog Hilbert envelope circuit to 
demodulate the AE signal, which greatly reduced the sample 
rate typically needed for AE. This reduces the cost of a AE 
CMS system by allowing the use of lower end, audio analog 
to digital converts and low end microcontroller for 
processing of that data. Additionally, we applied time 
synchronous averaging of the demodulated signal to 
improve the signal to noise ratio of the signal which 
normally would be undetectable, but also allowed the 
identification of the damaged component (AE analysis 
typically only identifies that there is damage, but not what is 
damage). Finally, this new technique was compared against 
tradition vibration analysis, using similar algorithms, and 
was found to be significantly better and gear fault detection. 

2. AE: ACOUSTIC EMISSIONS 

AE as phenomena, has been observed in many disparate 
fields of study. The earliest use of AE analysis was in 
geology and seismology. Here the analysis of elastic waves 
produced by an earthquake was used to find the location and 

depth of the event. Similarly, AE was proposed as a method 
to predict rockburst in mines. Tinsmiths have noted the “tin 
cry” associated with twinning deformation, and the clicks 
noted during heat treatment of steels is well documented 
(this is related to martensitic transformations of metals, 
which has been show to be a strong emitter of AE). 

The general acceptance that AE is associated with 
dislocation and plastic deformation/crack propagation in 
metal was first proposed by (Liptai, 1969). The essential 
principles of AE where explored in (Liptai, 1970), by 
considering a grain of polycrytstalline material (steel, for 
example), where the grain boundary has a diameter of d=5 x 
10-3in. During a strain event, the upper half of the grain slips 
over the lower half by a distance of d=1 x 10-3in. Given a 
shear modulus of G=4 x 106 psi, then the stress driving the 
deformation is eq 1, and the energy change occurring with a 
deformation is eq. 2. 

€ 

σs = sG d              (1) 

€ 

ω = s
2GA

2d ≡10
−12 in

lbs          (2) 

where A is the sheared area. This allows one to estimate the 
frequency of an event as: 

€ 

ω = 2GA
dm ≈ 5 ×106 rad sec ≈ 0.8MHz     (3). 

where m is the half mass of the grain (assumed to be steal). 
While estimates vary with density, grain size, and material, 
this estimate serves to bound the AE frequency from 500 
KHz to perhaps 40 MHz. 

2.1. AE: State of the Art 

Most AE products quantify five basic condition indicators 
(Figure 1): Amplitude, Duration, Rise Time, Counts and the 
mean area under the rectified signal envelope (MARSE). 
Other condition indicators (CI), such as average frequency 
(counts/duration), are function of the basic AE CIs and have 
been found to be useful in non-destructive test literature 
(Miller, 2005). Cumulative counts and cumulative absolute 
energy have also been shown to correlate to the fatigue 
crack growth process (Barsoum  2009).  

More recent studies have focused on the use of wavelet to 
de-noise and enhance the AE signal. For example (Abouel-
seoud 2012) used a continuous wavelet transform improve 
the signal to noise ratio for diagnostics on a wind turbine 
planetary gearbox.  In (Gu, 2011), a signal processing 
method for AE signal by envelope analysis with discrete 
wavelet transforms followed by spectral analysis allowed 
visualization of the gearbox fault frequencies.  

It most be noted that none of these analysis can directly tie 
the AE CI with a specific component within a gearbox. 
Instead, these techniques can give indicators that there is a 
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fault present, and rely upon more tradition techniques such a 
Borescope to identify the damage component.  

 

 
Figure 1 AE Condition Indicators 

These methodologies, while successful in diagnostics, 
fundamentally do not address the hardware/software need to 
sample at lower data rates (needed for lower cost systems). 
Additionally, wavelets required off-line processing/ 
optimization techniques to select coefficients/levels to 
achieve successful diagnostics.  

For a commercial product, the reapplication cost (e.g. off 
line analysis, configuration for the given application, etc.) 
and hardware costs are a large driving factor. This is the 
motivation to develop a system with the performance of AE 
fault detection, but without sacrificing the cost advantage of 
tradition vibration based systems. 

3. ANALOG PROCESSING TO IMPROVE THE AE SENSOR 

The AE signal is generated by an impulse or forcing 
function, which causes a dislocation in the material. For 
rotating components such as gears, that force and the 
resulting damage is periodic. With this view, we 
hypothesized that the AE signal is the carrier signal on 
which the forcing function is modulated. The forcing 
function information content relates to the damage it is 
exciting (e.g. the AE signal). For nominal gears, there 
should be no AE signal, while a damaged gear should 
generate a period AE response. 

In the fault case, the information of interest is not the AE 
signal, but the modulated force/load that is causing the AE 
burst. This type of information process is similar to the 
information in an amplitude modulated (AM) radio 
frequency signal, where the information is recovered by 
demodulating the radio signal.  

In an AM radio, the carrier is demodulated using an analog 
signal conditioning circuit. This allows the system to be 

designed at audio frequencies (10s of KHz vs. MHz of the 
carrier signal). In the proposed analysis, the AE signal is 
demodulated with an analog circuit, and the result 
acquisition system is designed to performance at tradition 
vibration processing frequencies (100 KHz vs. MHz). The 
signal processing can then be performed on low cost 
embedded microcontrollers instead of higher end computers. 

A demodulator shifts the carrier frequency to baseband, 
eq(4), followed by low pass filtering and enveloping. 

( ) ( ) ( ) ( )[ ]bababa ++−=× coscos21coscos     (4) 

The envelope is the absolute value of the Hilbert transform. 
In frequency domain, the Hilbert transform is defined in the 
Fourier domain as: 2X(f), for f>0, and X(f) = 0, for f<0, 
which easily computed in software. As stated, one of the 
objectives is to perform this signal processing in an analog 
circuit, such as in (Figure 2). The raw, time domain signal 
from the AE sensor is defined as x(t). x(t) is quadrature 
demodulated by convolving the signal x(t) with a frequency 
near the carrier frequency (cos(ft)) and then low pass 
filtered to remove the image. The carrier frequency is 
generated by a voltage-controlled oscillator (VCO) or 
through low pass filtering a pulse width modulated (PWM) 
signal. This allows one to configure the demodulation 
process for different materials (which may have different 
AE carrier frequencies) or for different AE sensors, which 
may have different frequency responses.  

After low pass filtering to remove the image (e.g. cos(a+b)) 
of the baseband signal, the quadrature is create by phase 
shifting the baseband signal by π/2 radian. The quadrature 
signals are then squared, summed and the square root is 
taking. This circuit can be built at low cost using operational 
amplifiers (op amps) per (Horowitz, 1995) or by using a 
monolithic multiplier/divider such as the AD532. This 
transforms the AE signal to its demodulated envelop. 

 
Figure 2 Analog Signal Process for the AE Sensor 

 
The advantage of using an analog/hardware solution instead 
of the using a digital approach is a greatly simplified 
acquisition and processing system. Instead of designing a 
system to sample at potentially 10 MSPS (which includes 
increased memory, a high performance processor, high 
speed ADC, increased capacity of the power supply, 
increased heat dissipation), more modest 100 KSPS system 
can be designed. Note that the limit of the system is no 
longer the sample rate of the ADC, but the bandwidth of the 
analog devices, typically on the order to 2 GHz.   
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While other researchers have “enveloped” the AE signal by 
low pass filtering the rectified AE signal (Miller, 2005), this 
does capture the modulation rate of the forcing function. 
This is because a rectified/low pass enveloping technique 
does not heterodyne the AE signal to base band, as does the 
presented technique. 

For rotating machinery, e.g. a gearbox, where the load is 
periodic the, the envelope of the AE sensor contain the 
information related to any gear faults within the gearbox. 
This has the advantage of giving actionable information as 
to the faulted component, as the AE signal is generated as a 
result of the periodic load of a specific component. As such, 
the modulation rate is the same as the damaged component 
rate. This in turn is easily identified through spectral 
analysis.  

3.1. Feature Extraction from the AE Envelope 

Vibration signatures for machinery faults tend to be small 
relative to other vibration signatures. For example, in the 
typical gearbox, the energy associated with gear mesh and 
shaft vibrations will be orders of magnitude larger than a 
fault feature. This is also the the case in performing analysis 
on the AE envelope. Spectral analysis or root mean squares 
(RMS) of AE signal are not powerful enough CIs to detect 
an early fault, let alone provide information useful for 
prognostics. Additionally, since all rotating equipment has 
limits on the feedback controls driving it, there is some 
variation in speed. When taking the spectrum, this variation 
in shaft speed violates requirement of stationarity.  

To improve the performance of the gear analysis and to 
control for variation in shaft rates, the analysis will based on 
operations of the time synchronous average (Bechhoefer, 
2009). Time synchronous averaging (TSA) is a signal 
processing technique that extracts periodic waveforms from 
noisy data. The TSA is well suited for gearbox analysis, 
where it allows the AE signature of the gear under analysis 
to be separated from other gears and noise sources in the 
gearbox that are not synchronous with that gear. 
Additionally, variations in shaft speed can be corrected, 
which would otherwise result in spreading of spectral 
energy into an adjacent gear mesh bins. In order to do this, a 
signal is phased-locked with the angular position of a shaft 
under analysis.  

This phase information can be provided through a n per 
revolution tachometer signal (such as a Hall sensor or 
optical encoder, where the time at which the tachometer 
signal crosses from low to high is called the zero crossing). 

The model for vibration in a shaft in a gear box was given in 
(McFadden, 1985) as: 

x(t) = Σi=1:K Xi(1+ ai(t))cos(2πi fm(t)+ Φi)+b(t)      (5) 

where: 

Xi is the amplitude of the kth mesh harmonic 

fm(t) is the average mesh frequency 
ak(t) is the amplitude modulation function of the 
kth mesh harmonic. 
φi(t) is the phase modulation function of the kth 
mesh harmonic. 
Φi is the initial phase of harmonic k, and 
b(t) is additive background noise.  

The mesh frequency is a function of the shaft rotational 
speed: fm = Nf, where N is the number of teeth on the gear 
and f is the shaft speed, with no reduction in the analysis 
performance. This is a general model, and it is hypothesized 
in this paper that the vibration signal can be replace by the 
AE envelope signal.   

This TSA model assumes that f is constant. As noted, due to 
the finite bandwidth of the feedback control, there is some 
wander in the shaft speed due to changes in load or feedback 
delay. This change in speed will result in smearing of 
amplitude energy in the frequency domain. The smearing 
effect, and non synchronous noise, is reduced by resampling 
the time domain signal into the angular domain: mx(θ) = 
E[x(θ)] = mx(θ+Θ). The variable Θ is the period of the 
cycle to which the gearbox operation is periodic, and E[] is 
the expectation (e.g. ensemble mean). This makes the 
assumption that mx(θ) is stationary and ergodic. If this 
assumption is true, than non-synchronous noise is reduce by 
1/sqrt(rev), where rev is the number of cycles measured for 
the TSA. 

3.2. Condition Indicators based on the TSA 

The TSA is an example of angular resampling (McFadden, 
1985), where the number of data points in one shaft 
revolution (rn) are interpolated into m number of data points, 
such that: 

• For all shaft revolutions n, m is larger than r, 

• And m = 2ceiling (log2 (r)) (assumes a radix 2 Fast 
Fourier Transform). 

Linear, bandwidth limited linear interpolation, and spline 
techniques have been used. In this study, linear interpolation 
was used as it is considerable faster than spline or 
bandwidth limited filtering, with no apparent reduction in 
analysis performance of the TSA. 

The TSA itself can be used for CIs. Typically, a CI is a 
statistics of a waveform (in the case the TSA). Common 
statistics are RMS, Peak to Peak, Crest Factor, and Kurtosis. 

3.2.1. Gear Fault Condition Indicators 

There are at least six failure modes for gears (IS10825, 
2007): surface disturbances, scuffing, deformations, surface 
fatigue, fissures/cracks and tooth breakage. Each type of 
failure mode, potentially, can generate a different fault 
signature. Additionally, relative to the energy associated 
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with gear mesh frequencies and other noise sources, the 
fault signatures are typically small. A number of researchers 
have proposed analysis techniques to identify these different 
faults (McFadden, 1985, Zakrajsek, 1993). These analyses 
are based on the operation of the TSA. In this study the fault 
is a broken tooth, and the following analysis where 
conducted (note the gear mesh frequency is found by: take 
the FFT of the TSA, take the absolute value of the number 
teeth + 1 bin): 

• The common statistics of the TSA. 

• Figure of Merit 0: the TSA peak-to-peak divided 
by the sum of the 1st and 2nd gear mesh frequencies; 

• Side Band Modulation: the ration of the sum of the 
gear mesh side bands (+/-1 bin) divided by the gear 
mesh frequency. 

• Residual Analysis: where shaft order 1, 2, and 3 
frequencies, and the gear mesh harmonics, of the 
TSA are removed. Faults such as a soft/broken 
tooth generate a 1 per rev impacts in the TSA. In 
the frequency domain of the TSA, these impacts 
are expressed as multiple harmonic of the 1 per 
rev. The shaft order 1, 2 and 3 frequencies and gear 
mesh harmonics in the frequency domain, and then 
the inverse FFT is performed. This allows the 
impact signature to become prominent in the time 
domain. CIs are statistics of this waveform (RMS, 
Peak 2 Peak, Crest Factor, Kurtosis). 

• Energy Operator: which is a type of residual of the 
autocorrelation function. For a nominal gear, the 
predominant vibration is gear mesh. Surface 
disturbances, scuffing, etc, generate small higher 
frequency values which are not removed by 
autocorrelation. Formally, the EO is: TSA2:n-1 x 
TSA2:n-1 x – TSA1:n-2 x TSA3:n . The bold indicates 
a vector of TSA values. The CIs of the EO are the 
standard statistics of the EO vector 

• Narrowband Analysis: operates on the TSA by 
filtering out all frequencies except that of the gear 
mesh and with a given bandwidth. It is calculated 
by zeroing bins in of the Fourier transform of the 
TSA, except the gear mesh. The bandwidth is 
typically 10% of the number of teeth on the gear 
under analysis. For example, a 23 tooth gear 
analysis would retain bins 21, 22, 23, 24, and 25, 
and there conjugates in frequency domain. Then 
the inverse FFT is taken, and statistics of waveform 
are taken. Narrowband analysis can capture 
sideband modulation of the gear mesh frequency 
due to misalignment, or a cracked/broken tooth. 

• Amplitude Modulation (AM) analysis is the 
absolute value of the Hilbert transform of the 
Narrowband signal. For a gear with minimum 

transmission error, the AM analysis feature should 
be a constant value. Faults will greatly increase the 
kurtosis of the signal 

• Frequency Modulation (FM) analysis is the 
derivative of the angle of the Hilbert transform of 
the Narrowband signal. It’s is a powerful tool 
capable of detecting changes of phase due to 
uneven tooth loading, characteristic of a number of 
fault types. 

For a more complete description of these analyses, see 
(McFadden, 1985., Zakrajsek, 1993).  

The analysis for the experiment used 17 CIs. In general, 
there is no consensus on which CIa are best, as different CIs 
seem to work better than other CIs depending on the fault 
type.  

4. EXPERIMENTAL TEST 

The test was conducted on a split torque gearbox (STG). 
While not a planetary gearbox, the TSG similarly splits the 
torque path from a drive pinion to a driven gear. A full 
description of the article is available in (Li, 2012). The test 
consisted of the comparison of the nominal gears, with a 
idler shaft pinions that was missing 100% of a tooth (e.g. 
the “Bad Gear”). The idler shaft rate was rate was 0.556 x 
the input shaft, on which a 1/rev tachometer takeoff was 
mounted (Figure 3).  

A Physical Acoustic sensor, model: WD was used. This 
sensor is a wideband differential sensor with high sensitivity 
and bandwidth (100-900 KHz). The sensor was mounted on 
the output side of the gearbox, and after pre-amplification, 
was demodulate using a Analog Devices quadrature 
demodulator. The heterodyne frequency was 500 KHz. This 
frequency was optimized via testing using a Hsu-Neilsen 
source. The output of the demodulator and the tachometer 
1/rev signal was sampled at 100 KHz using a 18 bit 
National Instruments data acquisition system. This 
represents an AE bandpass signal of 400 to 600 KHz, and an 
envelope bandwidth of 50 KHz. The gearbox was run at 60 
Hz input shaft speed, where data was collected for 8 seconds 
per trail. 
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Figure 3 Split Torque Gearbox, Exploded View 

4.1. Initial Results 

The tachometer, shaft ratio and AE envelope signal was 
processed using the linear interpolation TSA algorithm 
presented in (Bechhoefer 2009).  For the 8-second 
acquisition, the TSA had approximately 250 revolutions. 
The TSA length was 2ceil(log2(100000/(60*40/70)) = 4096 
points. Some experimentation was performed where inline 
decimation was conducted to reduce the effective sample 
rate to 50000, with no loss in signal fidelity (Bechhoefer, 
2012). Figure 4 displays the nominal vs. bad gear. The Bad 
Gear tooth fault is clearly visible when compared to the 
Nominal Gear. 

 
Figure 4 TSA of the AE Envelope: Nominal vs. Bad Gear 

By removing the 1/Rev and gear mesh tone, the residual 
signal improves the fault visually (Figure 5).  

 
Figure 5 Residual of the AE Envelope 

The one per revolution seems to be the result of an eccentric 
output gear, as the 1/Rev was present in both the nominal 
and damage gear TSA waveform. The Bad Gear fault is also 
clearly evident in the Energy Operator (Figure 6). The 
waveform of the FM analysis shows a large phase reversal 
at the fault, which large Frequency modulation RMS/Peak 
to Peak (Table 1). The TSA, Residual, Energy Operator and 
Frequency modulation condition indicators are highly 
significant (Table 1). 

It should be noted that without TSA, the raw spectrum of 
the demodulated AE signal indicated that the “Nominal 
Gear” was more damaged than the “Bad Gear”, as evident 
by a large 50 Hz frequency associated with the shaft rate. 
This was likely caused by the eccentric pinion – the fault 
was not discernable without the use of the TSA.  

4.2. Quantifying Result Performance 

To quantify the performance, the measure of seperatbility 
was calculated using the pooled sample standard deviation. 
The sample size was 5 acquisitions per trail, where the 
populations for the null set came from the nominal gear (no 
damage) and the alternative set came from the damage gear 
population. 
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Figure 6 Energy Operator of the AE Envelope 

The test statistics is then: 

€ 

T = E Y1[ ]− E Y2[ ] Sp 2
n               (6) 

where,  

( ) ( ) 2211 2
2

2
1 −−+−= nSnSnSp        (7) 

A test statistic T greater than 3.58 is considered significant 
and would indicate that the CI could detect the fault 
(Wackerly, 1996). Note that AE is for the T statistics using 
the AE Envelope, while Vib is the T statistics from an 
earlier study using vibration data alone (Table 1). 
 

Table 1. AE Envelop CI Algorithm Results 

Condition Indicator AE Vib 

TSA RMS 21.6 3 
TSA Peak-to-Peak 9.2 4 
FM0 3.25  
Sideband Modulation 3.14 4.3 
Residual RMS 24.45 2.8 
Residual Kurtosis 6.54 0.065 
Residual P2P 15.4 2.75 
Residual Crest Factor 6.91 1.24 
Freq. Mod. RMS 6.65 0.22 
Freq. Mod. P2P 4.14 0.616 
Energy Operator RMS 33.26 3.5 
Energy Operator P2P 7.74 2.4 

Narrowband RMS 5.87 1.1 

Narrowband P2P 6.6 0.1 

Narrowband CF 5.24 7.1 

Amp. Mod. RMS 6.04 1.1 

Amp. Mod. P2P 6.9 3.1 

 

These results are very encouraging. In general, the AE 
envelope T statistics is far more significant than the 
vibration based T statistic. 

5. CONCLUSION 

The AE envelope analysis show promises to be a powerful 
tool for gear fault diagnostics. By heterodyning the raw AE 
signal, it is possible to reduce the hardware resources and 
cost normally associated with AE processing. In this 
experiment, the acquisition-sampling rate of 100 KSPS was 
used on an AE sensor with a signal bandwidth of 600 KHz, 
using an analogy Hilbert transform circuit. 

The AE envelope signal was then processed using time 
synchronous averaging (TSA). The TSA is commonly used 
with vibration-based diagnostics: this is the first time its use 
has been published using AE data. The TSA of the AE 
envelope was used to control for variation in shaft speed, 
and to reduce non-synchronous noise. The use of the TSA 
allowed the gear fault to be identified. 

Condition Indicators, based on the TSA, were calculated for 
both the AE sensor and the for vibration sensor 
(accelerometer). The CIs for the AE enveloped signal were 
3x more statistically significant than for the vibration 
sensor. This indicated that the combination of demodulated 
AE sensor data and the use of the TSA was superior for gear 
fault detection than traditional vibration/accelerometer 
sensors.  

Currently, we are working on the deployment of a prototype 
AE sensor for application in wind turbines.  
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ABSTRACT

For manufacturers systems monitoring or production 
equipment optimization solutions are founded on specific 
algorithms that produce low level local information about 
risk of degradation or production loss. In either case local 
results are combined in synthetic reports aimed to help 
decision taking at higher level. This work is about the 
description of an automatic fusion mechanism able to build 
expert output with direct understanding of the system 
behavior and help to infer causes of efficiency loss. An 
example application was built and tested in a semiconductor 
fab. The algorithms diagnosed yield degradation in different 
subsystems or work-area and were digested in a weekly 
report that highlighted the main production problems. We
deployed the same methodology for condition based 
maintenance of aircraft engines on a test platform. The first 
part of this document sketches out some notations, the 
second part describes the semiconductor application and the 
conclusion is dedicated to the transfer in the aeronautic 
domain for the decision level of an engine fleet health 
monitoring system.

1. METHODOLOGY

Our decision implementation is based on a Bayesian 
framework (Yu, Cleary, Osborn, & Rajiv, 2007) but is also 
known as a mixture of experts (Yuksel, Wilson, & Gader, 
2012). A decision process is based on available information 
with confidence levels. Health monitoring information is 
mainly the result of computations of diagnosis algorithms. 
This result, for an algorithm �, is the probability that a score 
	�� reaches a given level		��. We call this probability a risk, 
�� in Eq. (1):

�� = �(�� > ��) (1)

We often complete this risk value with precision 

information �� computed as an estimation of the output 
variance or a square error obtained by a supervised cross-
validation process. 

Each algorithm produces values from a variety of 
experiments. An experiment is materialized by a set of 
observations. For example one observes successive flights 
of the same aircraft and registers all parameters during the 
last month; this leads to a dataset ��������� ([� −
1	month, �]). This dataset may be used by an algorithm that 
produces a risk ��(�). If we shift the observation window 
(one month) by one new day (about 10 flights), we obtain 
another lot of observations and the same algorithm will 
compute a new risk ��(� + 1	day). Others results may also 
be obtained by modification of the algorithm’s parameters. 
For example a change in the input sources, a change of a 
scale parameter, etc. We finally get a whole population of 
available results at a given time.

1.1. Fusion operator

Many results are linked together and from the analyst point 
of view it may be interesting to transform raw risk data into 
something more accurate that better corresponds to the 
underlying problem. 

A fusion operator, Eq. (2), is a function that transforms a 
collection of risk results with precision into a new risk with 
a higher meaning for the analyst.

��� = Φ������, ��� , … , ���� (2)

This seems to be another way to increase the risk 
population. But this process may be represented graphically 
and leads to better interpretation. We progressively replace 
low level risk computations by synthesis about subsystems 
or components.

If we use the case of successive diagnostics, then a fusion 
operator may also be some diagnostic confirmation that 
exploits the list of preceding computations to ensure the 
presence of degradation (e.g. the probability that one 
observes 8 detections over the last 10 flights).

_____________________
Jérôme Lacaille et al. This is an open-access article distributed under the 
terms of the Creative Commons Attribution 3.0 United States License, 
which permits unrestricted use, distribution, and reproduction in any 
medium, provided the original author and source are credited.
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1.2. Implication coefficients

Looking at the algorithm’s parameters, its input sources and 
the observed dataset, we may associate each risk result to 
system component fault � with a weighting vector. The 
implication value ��� = �(� = �|�� > ��) may be 
interpreted as an a priori probability that fault � may occur 
when algorithm a result let us expect a risk of degradation.

The first implication vectors are defined by experts for 
initial algorithms which already are based on specific fault 
identification. It is more complex after some fusion 
operation. Moreover, as there may always be some 
dependencies between faults, even across different 
components, those implication vectors will be updated by a 
learning procedure using capitalization of experience.

1.3. Synthesis or projections

The decision process should use all available risk data. But 
the plurality of risk results makes it impossible. So we need 
to reduce the amount of information in a synthesis for each 
subsystem we want to monitor.

Suppose we have a component � that may be damaged
according to a list of possible faults � ∈ �. Let ��� = �(�|�)
the probability that fault � leads to a damage of component 
�. This value is often available from design and certification 
documents like the FMEA (Failure modes and Effect 
Analysis). A nice projection representing the risk of 
component � to be damaged may be given by Eq. (3):

�� =�	
���

�� � ���
�� ��

�/��
����∈�

(3)

This proposition is just a simple example using a logical 
weighted sum without taking care of faults and algorithms 
dependencies. Normalization constants �� and �� are used 
to ensure that the weighted sum has a value between 0 and 1 
and keeps a meaning as kind of risk. Different fusion 
methods may also be used (like for example taking the 
highest detection). Eq. (4) below can be used to update the 
implication coefficients by a supervised learning procedure.

Independency of scores may be reached by designing 
algorithms related to subsystems. For example, in a 
fabrication process, if different but equivalent tools are 
used, local algorithms using only local measurements are 
independents. Using independent sets of faults and 
corresponding algorithms may lead to an exact formulation 
of a probability that a component is defective.
Methodologies exist to group results into independent 
variables (Alhoniemi et al., 2007). Our actual goal is to 
converge to an approximate formulation with a Bayesian 
neural network. Other approaches may use dependency 
matrixes (Singh & Holland, 2010) or decision trees 

(Ricordeau & Lacaille, 2010) but at the end we always get a 
parametric model we may update with new experiments.

Fusion algorithm with risk result �� is associated to the 
component � . If needed, we may compute implication 
values ��� from Bayes rule: ��� = ����(�)/�(�) , the latter 
two probabilities are known and updated by maintenance 
people: �(�) is the occurrence rate of fault � and �(�) is 
the repair or change rate of component �. The computation 
of this new implication coefficient serves the only purpose 
of being able to chain the analysis drawing a hierarchic
graph of decisions from subsystems’ components to higher 
subsystems and the global system that is monitored.

1.4. Confidence and efficiency

The main goal to achieve in decision making is gaining 
expert confidence. An optimization process manipulating 
the risk population is driven by this confidence. Gaining 
confidence is assured by a measure of the efficiency of the 
synthesis results.

Each expert may be viewed as a “human” or test algorithm 
� . So each expert produces one risk �� usually linked to 
specific component’s faults. Implication of the expert �� is 
straightforward and given by the expert himself. However, 
an expert is subject to mistakes and so his precision �� is 
unknown and should be estimated. Usually, expert risk is a 
binary result: either faulty �� = 1 or healthy �� = 0.

In datamining processes, the expert result is known as 
supervision information. This supervision is used to build an 
efficiency measure like the mean-square error in Eq. (4).

��� =� (�� − ��)�
����

	 〈��. ��〉
�

(4)

This value gives for any algorithm a measure of the 
adequacy between expert knowledge and the algorithm 
computation. It may be calculated for any component 
projection �� and measure a confidence level for a decision 
about the health of this component.

2. SEMICONDUCTOR FAB YIELD LOSS ANALYSIS

An experiment at the ST-Microelectronics 8'' fab in Rousset 
(France) showed that a great deal of information measured 
during the manufacturing process had a direct impact on the 
output yield. An influence analysis (measures of entropy 
and mutual information) measuring the stochastic 
dependences between the yield and automatically selected 
combinations of measurements proved the need to develop a 
prototype based on defectivity measurements. 

A pilot project for collecting defectivity measurements and 
information on the routing of the wafers in the fab ran in 
real time at the Rousset fab (Lacaille & Dubus, 2005; 
Lacaille, 2008). It has highlighted many causes of wafer 
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deterioration. Engineers and defectivity operators where 
able to automatically generate synthesis reports to supervise 
equipment health and production quality (Lacaille, 2005).

2.1. Microfabrication process

In a semiconductor fab, wafers are produced with a high rate 
(more than 1000 wafers a week). A single wafer is 
processed during almost three months and different products 
are manufactured at the same time by the same equipments. 
Wafers are grouped together in lots of 25, each lot is carried 
in a pod and all wafers in a pod are of the same kind. 
Sometime a lot is inspected, specific metrology equipments 
observe 4 to 6 wafers in this lot and we get defectivity 
measurements. Almost 20% of the lots are inspected for 
defectivity observations. This procedure allows only a very 
small proportion of the production to be observed. Moreover 
as defectivity operations are not productive steps, operators 
bypass them.

The defectivity metrology measures defects and produces 
observations like a number of defects of a minimal size, a 
defect density and a proportion of dies affected by the 
defects on the wafer area. Those defects are responsible of 
almost 80% of the yield loss in an industrial fab for a mature 
product.

Figure 1 - Inspection steps are dispatched over the route of 
the wafers in the fab. The yield is computed at the end of the 

production by test steps.

In the 8'' fab of ST in Rousset, defectivity operation steps 
are put on the wafer/product route but can be moved
randomly to improve the metrology sampling on specific 
parts of the production (Figure 1). The route of the lot is 
determined by the product recipe but for each production 
step, each layer, the specialized operator can choose 
randomly between similar but certified equipments in his
work-area.

To analyze the overall fab production in ST Rousset 8'' it 
was necessary to model the random trajectories of wafer 
pods within the park of equipments. The stochastic nature of 
these trajectories is the result of the availability of similar 
and interchangeable equipments per work-area.

On those trajectories (simplified by successive arrows on 
Figure 2), defectivity steps appear like some measurement 
points (red dots) on a very complex curve. And route 
information, WIP (wafer in process) data, can provide 
observations on the same curve. For each step and each 
wafer we observe route information: date, equipment, recipe 
of the equipment, delay from the last step, slot position in 
the pod and sometime metrology information like defect 

density or defective dies. Route information is systematic 
while metrology is random.

Figure 2 – Trajectories of wafers in the fab are complex 
curves (arrows) on which specific defectivity measurement 

points (red dots) are set.

The yield is measured at the end of the production in a 
specific back-end area by an electrical batch of tests. The 
yield information, results of those tests, almost corresponds 
to a proportion of surviving dies on the wafer.

2.2. Diagnosis methodology

The solution exploits a population of micro-algorithms: the 
agents. Those algorithms try to estimate a low-yield risk 
using some measurements taken on the wafer trajectories. 
This risk output �� for each agent � is the probability of a 
low yield output.

Each agent uses only few points of measurements, thus 
ensuring the robustness of its calculation. In fact, the small 
analyzes carried out independently are not sufficient to 
explain the behavior of the fab, but a global information 
with a high degree of accuracy emerges from the entire 
population of local predictors.

Each agent uses some defectivity measurements taken 
during the route of the pods and/or process information 
taken from the tools (temperatures, pressures, etc.) and/or 
logistic data like equipment-id, receipt, inter-operation 
delays… The largest agent uses no more than 6 entries. The 
very large number of available measurements implies the 
existence of a lot of possible combinations of small number 
of measurements. The software solution solves this problem 
by using a population of agents distributed on a network of 
computers. This population evolves every day to adapt to 
the fab production.
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This methodology is an implementation of machine 
ensemble theory (Figueiras-Vidal & Rokach, 2012) which 
goal is to model complex functions using an ensemble of 
small data-driven components. One of the reference work in 
this domain is (Jacobs, Jordan, Nowlan, & Hinton, 1991).

2.2.1. Neural networks agents

The agents are self-adapting algorithmic components. Each 
one of them contains a batch of neural-networks regularly 
calibrated in real time. Each agent uses about fifty neural-
networks (Figure 3). Each network inputs are the same 
inputs given to the agent; it is a small selection of WIP 
measurement points in the fab: defectivity, process values, 
and logistic data which are measured for each wafer. The
neural-network models a relation between its inputs data
and the wafer yield, the quality measure obtained by electric 
tests at the end of the fabrication process. Prediction error 
on calibration set is a quality indicator of the estimator. The 
wafer set used for calibration is a subset of the past 
processed wafers so the difference between two neural-
networks comes from the “random” selection of the subset 
of wafers (see below). The final response of the agent is 
given by an estimation ��	 of the yield from a vote of a 
selection of the 20 best neural-networks. Then each agent �
produces a low yield score �� = �(�� < �) and associated 
quality indicator �� as a final estimation of �� 	 precision. 
The threshold � is fixed according to the current fab 
expectation but may be adapted specifically for each 
product. 

Figure 3 – Description of the inside of the agent. 50 neural 
networks, essentially multi-layer perceptrons with 3 layers, 

predict the yield from given parameters. Each neural 
network is learnt on a different training set ensuring 

accessibility to local behavior models. 20 among the best 
predictors are kept and used simultaneously in a voting 

process.

In this specific implementation the experts’ skill is limited 
to the electric tests giving the real yield �� and risk �� =
�(�� < �) for each processed wafer (�� = 1 or may be 
adapted by product). It is possible to compute an efficiency 

measure �� from Eq. (4). This measure is used by the
population optimization algorithm (Figure 4) to select the 
best agents.

The input observations sent to each neural network for 
calibration may be product-specific. Some agents work with 
all kind of products but the majority is specialized. A 
classification algorithm automatically selects the set of old 
products adapted for an agent based on the prediction 
efficiency on past measurements. Then new products are 
compared with preceding technologies using an 
unsupervised clusterisation algorithm to initiate implication 
values between agents and new products.

2.2.2. Agent population optimization

To make the agent population relevant at each time when 
the fab production evolves, we implement a genetic 
algorithm (Figure 4): the agents communicate together and 
exchange information on the relevance of each one of their 
inputs. The agent inputs are exchanged when agents meet 
together. The whole population is really moving over the 
fab and can be seen as a sort of swarm. The population of 
agent evolves gradually and it emerges an increasingly 
relevant response while leaving the system able to integrate 
each day some new characteristics of the fab production.

Figure 4 – A genetic algorithm optimizes the agent 
population.

The genetic algorithm optimizes the quality of the agent 
population but it has to respect hard constraints to ensure a 
homogeneous repartition of the agents over the whole fab
and all products (see Figure 5).
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Figure 5 – A constraint forces the agents’ population to be 
dispatched with a similar repartition to the production.

2.3. Decision help by fusion of diagnostics

A homogeneous population of agents emitting each one the 
same type of information replaces the complexity of the 
trajectories of the pods of wafers. The outputs of each 
algorithm are a risk of “low yield” �� and a measurement of 
reliability ��	(Figure	6). Thus one can produce dashboards 
measuring the health of the equipments of work-areas, 
anticipating the quality of production and locating the 
equipments responsible for crisis and deterioration of the 
quality (Figure 8, Figure 9 and Figure 10).

Figure 6 – Output of an agent. The risk (x-axis) is drawn 
with the yield (y-axis) for tested wafers. The green stars are 

computation of more than 66% of reliability, the orange 
have an reliability between 33% and 66% and the red ones 

are less than 33% of reliability. 

Figure 7 schematizes the production of high level outputs 
from the original risk computations. The following figures 
are examples of such fusion algorithms.

Figure 7 – Organization of the statistic computations. Risks 
are only intermediate results used by high-level fusion

projectons.

Figure 8 is a fusion over an etch work-area. Here the fusion 
sums risks of low yield estimated for each wafer going 
through a given etch tool. For each tool, the summation is 
weighted according to Eq. (3) (with just one fault 
corresponding to the degradation of a die causing a decrease 
of the yield) and using implications that are high if the agent 
use information acquired on the given equipment, lower if 
not but if the wafer was processed by this equipment
(depends on the distance on the wafer’s route).

Figure 9 shows the evolution over time of the low yield 
estimation for a given tool using the same preceding 
computation. This graph helps to understand how to build 
alerts when a local risk crosses a maximum threshold or 
how to detect tendencies and eventually anticipate a crisis.

Figure 10 presents a synthesis for the worse equipments 
within all work-areas of the fab with recall of the past 
evolution.

Figure 8 – High-level and detailed risk analysis of the 
equipements in a work-area. One have imediately a snapshot 

of the efficiency of each tool.
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Figure 9 – Real-time survey of equipment. Alerts are 
automatically sent to operators.

Figure 10 – Global analysis across all work-areas. All 
equipments of the fab are sorted by decreasing risks or 

decreasing risk-variations. The graph can also be filtered by 
work-areas or technologies.

2.4. Automatic inline scheduling

This whole system is entirely distributed over a cluster of 
computers (Figure 11). The agents are independent and their 
computations can be done in parallel. Only a central 
database for data collection (DC) is needed but it can be 
accessed simultaneously by different requests.

Figure 11 – Distributed architecture of the system.

The computation uses two internal cycles (Figure 12). 

 The on-line scheduling cycle is based on the acquisition 
of new measurements. The new data are automatically 
pushed to the system by an ftp channel and the loader 
program automatically detects the arrival of new 
information.

 The genetic algorithm and the maturity of the agent 
population drive the internal scheduling cycle.

Figure 12 – System scheduling. The system is working non-
stop ensuring a maturity of the agent population when the 

production evolves.

3. ENGINE CONDITION MAINTENANCE

Advanced health monitoring is becoming a standard for new 
engine applications, in order to enable in-service event 
reduction and engine maintenance optimization. The goal is 
to reduce operational events such as IFSD (In Flight Shut 
Down), ATO (Aborted Take-Off), D&C (Delay &
Cancellation) and to substitute them with maintenance 
operations that are planned long enough in advance in order 
to minimize their operational impacts for the airlines. IFSDs 
and ATOs are very seldom but still stressing for the pilots 
and they often produce secondary damages that might 
increase reparation costs. D&Cs are usually not critical but 
occur more often; their consequences can be traffic 
disorganization, customer dissatisfaction. They are partially 
linked to procedures and controls to perform 
troubleshooting (Lacaille, 2012; Ricordeau & Lacaille, 
2010).

The performance of engine health monitoring functionalities 
is driven by the capability to model the engine behavior and 
to identify engines on healthy or unhealthy conditions.
Methodologies based on fusions of diagnostics applied to 
aerospace monitoring may be find in (Tang et al., 2009) for 
optimization of remaining useful life (RUL) estimations; in 
(Klein, Rudyk, & Masad, 2011) for the identification of 
bearing faults using vibration or acoustic signatures 
extracted from multiple microphones or accelerometers; and 
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in (Romessis, Kyriazis, & Mathioudakis, 2007) for 
performance analysis of the turbofan engine.

3.1. Health monitoring algorithms

Algorithms written for health monitoring purpose in 
Snecma are decomposed in two parts: the first one is made 
of embeddable code aimed to produce health indicators 
from engine raw measurements. Those computed indicators 
are sent to the ground with context information coming from 
the aircraft computer. 

The ground application hosts the scoring process (Figure 
13). The scoring process transforms health indicators into 
risk of abnormality �� . This algorithm first uses a 
normalization phase to suppress the context dependency 
(flight specification like altitude, speed, weather conditions 
…) The second phase is either a model of normality which 
produces a likelihood to measure a range from normal 
behavior or an identification process using physical 
knowledge of the monitored system to target specific faults. 
At the end we have generic novelty detectors implying a 
subsystem in general or specific fault diagnostics (Lacaille 
& Nya Djiki, 2010; Lacaille, 2009, 2010).

Figure 13 – Two phases of the ground diagnostic process. 
CRN (Context Removal and Normalization) suppress flight 
dependencies and FDI (Fault Detection and Identification) 

detects unusual behavior and try to identify the specific 
faults of a subsystem.

Precision �� of each algorithm is given by an estimation of 
the diagnostic error computed on a supervised dataset
(Figure 14).

Figure 14 – Precision quality value (PQV) of the algorithms 
computed by an estimator learned on a supervision dataset.

The engine start capability (ESC) algorithm is a good 
application example (Flandrois, Lacaille, Masse, & Ausloos, 
2009). Different subsystems and components are involved
(Figure 15): the auxiliary power unit (ACU) that provides 
external pressure to the starter, the admission valve, the fuel 
pump, the fuel metering unit (FMU), the ignition system, 
etc.

Figure 15 – Subsystems parts of the start system of a 
turbofan engine.

The health indicators are extracted from the raw temporal 
measurements with a “specific instant detection algorithm”. 
They are mostly time delays (Figure 16).

Figure 16 – Health indicators for the ESC algorithm.
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Normality scores are computed for each indicator or 
coherent group of indicators if a multivariate observation is 
needed. At the end we build 8 scores listed in the following 
Table 1:

Table 1 – List of scores used for degradation risks
computation of the ESC application.

3.2. Decision methodology

Decision step (on the ground) takes inputs from the set of 
risks generated by each specific algorithm. The specificity 
of algorithms comes from their design: there exist 
algorithms to detect each pump fault, gear wear, damaged 
bearings, oil leakage, filter clogging, intermittent sensors, 
etc. The faults relative to e a c h  subsystem produce 
comparable effects so the risk measurements are highly 
dependent. 

The decision layer is actually built following the scheme
presented in section 1 and derived specifically for a 
semiconductor fab in section 2. But in the case of aeronautic 
data we have a very small number of observed degradations, 
it is why the algorithms are mostly based on normality 
scores and their efficiency measured on a small number of 
observations. The implications come from expert knowledge 
but are progressively adapted using troubleshooting tools 
that records new data.

For the engine start capability (ESC) algorithm, the 
implication coefficients are roughly initialized by experts
(Table 2). Decision on each impacted component is 
computed by fusion knowing the relation between faults and 
components.

Efficiency of the results is measured using maintenance 
reports on which identification of the problem is given after 
repair. Maintenance results are not always known by the 
manufacturer but as engine’s design is completely mastered 
by the company; experts systematically give prognostics 
about the engines conditions. This supervision helps 
improving the implication values by a learning procedure.

Figure 17 shows an example of fusion of ESC detection 
algorithms. This fusion gives information about all 
components used in this process: APU, starter, valves, etc. 
This image presents the results of an artificial scenario 
where several defects were simulated sequentially.

The final decision is obtained only after some confirmation 
process that uses successive risk computations to solve 
incompatibilities and increases likelihood by a temporal 
confirmation.

Table 2 – Implication coefficients between faults and 
indicators. Values are roughly proposed by experts.

Figure 17 – Synthesis of the decision process for the 
different components that impacts the engine start system. 
Here the computed risk corresponds to the probability of a 

component failure leading to a D&C.

3.3. Conclusion

There is still a lot of freedom in the parameters used for 
normalization and identification algorithms as well as in 
size and shape of the confirmation by fusion of past 
computations. The methodology presented in the first 
section, applied in the second on a manufacturing process is 
compatible with engine health monitoring and is currently 
tested on Snecma’s health monitoring research platform.
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NOMENCLATURE

APU Auxiliary Power unit
ATO Aborted Take-Off
CRN Context Removal and Normalization
DC Data Collection
D&C Delay and Cancellation
ESC Engine Start Capability
FDI Fault Detection and Identification
FMEA Failure Mode and Effect Analysis
IFSD In Flight Shut Down
PQV Predictive Quality Value
WIP Wafer In Process
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ABSTRACT 

Fusion prognostic framework for lithium-ion battery 

remaining useful life (RUL) estimation has become a hot 

spot. Especially, the cycle life prediction has been 

conducted widely, for which many prognostic methods have 

been proposed correspondingly. However, many fusion 

frameworks which can achieve high precision are 

accompanied with high computing complexity and high 

time consumption which makes these methods low real-time 

performance. Either, some widely used prediction models 

with low complexity are weak to handle the nonlinear 

degradation features. To solve these problems, a fusion 

framework is proposed combining the model-based 

extended kalman filter (EKF) and the data-driven improved 

nonlinear scale degradation parameter based autoregressive 

(NSDP-AR) models. The proposed approach takes 

advantage of the state tracking ability of EKF algorithm to 

define the specific state transition model for the battery 

sample. Meanwhile, NSDP-AR model which contains the 

degradation features of each period is to promote the 

universality of the ND-AR (Nonlinear Degradation 

Autoregressive) model. NSDP-AR model is used to obtain 

the long term trend prediction results which are adopted as 

the observation data. Finally, a combination is made to 

realize the RUL prediction under the kalman filter (KF) 

system, which is an improvement to meet the practical 

applications. Experimental results with the battery test data 

from NASA PCoE and CALCE show that the fusion 

prognostic framework can predict the lithium-ion battery 

RUL with high efficiency and accuracy. 

1. INTRODUCTION 

Lithium-ion (Li-ion) batteries have become the preferred 

energy solution for various electrical-driven systems such as 

consuming electronics, electric vehicles, and even the 

aerospace field due to the high energy density, high galvanic 

potential, lightness of the weight and long lifetime 

compared to traditional energy storage batteries (He, 

Williard, Osterman & Michael Pecht, 2011). However, no 

matter how excellent the performance of the lithium-ion 

battery is, it degrades over time for aging, environmental 

impacts, and dynamic loading (Zhang & Lee, 2011). In 

order to satisfy the increasing demand for operation 

reliability, study on the effective methodologies for battery 

performance evaluation becomes considerably necessary 

and important. In particular, the remaining useful life (RUL) 

estimation of the Li-ion battery is the essential part in the 

field of electronic prognostics and health management 

(PHM). RUL also can be named remaining service life or 

residue life, which refers to the available service time 

(always using how many charge and discharge cycles the 

battery can experience to describe this variable) left before 

the degradation level of the system is unacceptable (Zhang 

& Lee, 2011). Successful RUL prediction is highly desirable 

for ensuring reliable system operation.  

Recently, extensive research activities have been conducted 

on the RUL estimation of Li-ion batteries. Generally 

speaking, prognostics methods can be classified into 

data-driven and model-based approaches. Artificial Neural 

Networks (ANN) (Liu, Saxena, Goebel, Saha & Wang, 

2010) and Relevance Vector Machine (RVM) (Zhang & Lee, 

2011) are typical representatives for data-driven approaches 

which establish the prediction model using the characters 

selected from the data without considering the physical 

system features. Model-based approaches focus on the state 

space model studies which proceed from the system 

characteristics like Extended Kalman Filter (EKF) (He, 

Williard, Osterman & Pecht, 2011) and Particle Filter (PF) 

which can obtain both the RUL and uncertainty 

representation (Saha & Goebel, 2009). 

_____________________ 
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Current researches show that there are several limitations in 

the above two kinds. Although the empirical degradation 

model is proposed on the basis of a large amount of 

experiments and rigorous analyses, it still cannot take into 

account all the complicated online operation conditions. 

That is to say, the performance of model-based method 

which is determined by the accuracy of the model cannot 

adapt to various actual working conditions. Meanwhile, 

estimation of the parameter in a specific model is an uneasy 

work and satisfied results are rarely obtained. Even though 

there is little such problem in data-driven approaches, they 

still suffer from the drawback for ignoring the distinctions 

among different types of systems in which the data sets 

belong to. 

In order to address the aforementioned problems, 

data-model-fusion prognostic frameworks are proposed and 

attract more and more attention. Till now, various studies 

have been conducted in this field. A fusion prognostic 

framework with model-based PF algorithm and data-driven 

neural networks method has been proposed by Liu etc for 

dynamic system state forecasting and achieved a successful 

result for battery RUL estimation (Liu, Wang, Ma, Yang & 

Yang, 2012). Fusion frameworks combining data-driven and 

model-based prediction approaches can overcome the 

aforementioned shortcomings. With adoption of the data 

features obtained from the data-driven approach, 

dependence of the model-based method on the empirical 

model is alleviated. Meanwhile, system characteristics are 

added into the data-driven framework. In short, both the 

system and data features are contained in the fusion 

framework whose effect is expected to be better than any 

single method. 

For online real-time applications, the accuracy as well as the 

real-time performance of the prognostic algorithm is crucial. 

However, majority of the fusion framework focuses on the 

accuracy without considering the efficiency and the 

calculation complexity. In order to satisfy the rigorous 

requirements in practical forecasting, a data-model-fusion 

framework with a strong emphasis on real-time prediction 

capability is worthy of more studies.  

EKF algorithm used for the nonlinear systems is an 

extension of the Kalman Filter (KF) which is a recursive 

solution under the least-squares principle. EKF is one kind 

of stochastic filtering method based on the state space model 

which stands for the system features. With linearization of 

the system equations using Taylor expansion and cycles of 

state estimation and updating, EKF can provide an efficient 

computational solution even when the precise nature of the 

modeled system is unknown (Welch & Bishop, 1995). EKF 

has a good state tracking ability in the capacity prediction 

and the RUL can be obtained when the failure threshold is 

provided (He, Williard, Osterman & Pecht, 2011). 

Meanwhile, massive applications of the performance 

estimation for the lithium-ion batteries show that EKF is a 

promising algorithm with low computational complexity, 

strong real-time estimation ability and satisfied prognostic 

effect (Zhang & Lee, 2011). 

Although such advantages have been shown in practical 

applications, EKF still has the limitation as a model-based 

approach. As discussed before, adoption of a data-driven 

method can effectively address this problem. Various 

data-driven methods such as machine learning and artificial 

intelligence have a satisfied prediction effect but also with a 

complicated calculation process and a lot of time 

consumption which make these algorithms have less 

practical value in real-time battery performance estimation 

especially when implemented in hardware. Due to such a 

practical concern, a much simpler data-driven method that 

has been applied in many prediction fields, namely the AR 

(Auto Regressive) model, draws our attention. AR model is 

suitable for the real-time estimation with small data sets 

(Wei, 1994). This combination is expected to possess better 

efficiency for real-time prognostic applications. 

However, degradation of the Li-ion battery has obvious 

nonlinear characteristics. As a consequence, linearization 

using Taylor expansion leads to inaccurate approximation of 

state transition and observation equations resulting in 

non-optimal battery performance estimation. Meanwhile, 

AR model is a linear model which establishes a linear 

equation between the current state and several previous 

states. Although researchers have conducted some studies 

on the AR model improvement (Liu, Luo, Peng, Peng & 

Pecht, 2012), there still exists certain theoretical and 

application limitations in the modified AR model.  

To address these problems, a data-model-fusion prognostic 

framework is proposed by combining the EKF algorithm 

with a modified nonlinear scale degradation parameter 

based autoregressive (NSDP-AR) model for the RUL 

estimation. EKF system is established on the basis of the 

state space model which contains state transition and 

observation functions. Using the strong state tracking ability 

of the EKF algorithm, parameters in the empirical 

degradation model (i.e. the state transition function)   

(Saha & Goebel, 2009) are obtained so that a specific model 

for the battery sample is established. To improve the 

absolute degradation parameter based ND-AR model for 

better long term prediction, a more reasonable scale 

parameter based nonlinear degradation factor is proposed 

which contains the degradation changing information for 

certain type of batteries. Correspondingly, NSDP-AR model 

is established by combining the proposed factor and the AR 

model. For a reasonable extension of the obtained 

NSDP-AR model in practical applications, Grey Correlation 

Analysis (GCA) method is used to determine the weight of 

the parameter groups from different battery samples which 

are used to establish the modified model using the true 

degradation information. On the basis of those parameters 

and corresponding weights, specific NSDP-AR model is 
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obtained for the battery’s RUL estimation. On the basis of 

the above work, fusion-data-model prognostic framework is 

established. Experimental results using the NASA PCoE 

and CALCE battery data sets show that the framework can 

predict the Li-ion battery RUL efficiently and accurately 

which indicates a strong practical application of the 

proposed framework. While, there is one thing that need to 

be pointed out that there are many reasons that will cause 

the degradation of the battery. Here, we only consider the 

major part of these factors, which are the battery aging 

caused by charge and discharge cycle. We only take the 

cycle aging caused degradation into consideration here. 

This paper is organized as follows. In Section 2, the related 

prediction models including KF/EKF algorithm and current 

ND-AR model as well as the correlation analysis method 

GCA are introduced. The proposed NSDP-AR model and 

the corresponding fusion-data-model prognostic framework 

for RUL estimation of the Li-ion battery are introduced in 

Section 3. The effectiveness of the proposed prognostics 

framework is demonstrated via battery RUL prediction 

experiments using Li-ion battery data sets from NASA 

PCoE and CALCE in Section 4. Finally, the conclusion and 

future work are given in Section 5 and 6, respectively. 

2. RELATED WORK 

2.1. KF/EKF Algorithm 

Many researchers have used KF/EKF algorithm to estimate 

the unknown parameters in the battery empirical 

degradation model and obtain the RUL of the battery (He, 

Williard, Osterman & Pecht, 2011). These researches used 

the state tracking ability of KF/EKF algorithm and the state 

space model of the battery system. EKF algorithm is the 

expansion of the KF algorithm in order to meet the 

requirements of the nonlinear applications. So, here we give 

more information of KF algorithm, EKF theory can be 

obtained by analogy of the KF algorithm. 

KF is one kind of model-based algorithms that provides an 

efficient recursive solution of the least-squares method for 

the discrete-data linear systems. The state space model of 

the system can be described in Eq. (1). 

1
  

k k k k k k

k k k k

x F x B u w

z H x v

  


 
          (1) 

Here, Fk stands for the state transition matrix, Bk is the 

control matrix, xk is the k
th

 state of the system, uk is the 

control input of the system, while the wk is the system 

process noise which obeys the Gaussian distribution that its 

mean value is zero and the variance is W. The first equation 

named state transition function describes the relationship 

between the k
th

 (i.e. 
k

x ) and the k-1
th

 (i.e. 1kx  ) state. The 

second equation named observation function turns the 

implied system state into measurable outputs. Here, the Hk 

is the observation matrix, zk is the measurements and the vk 

is similar with wk but its variance is R where W and R are 

both real. 

The prediction process using the KF algorithm is divided 

into two main steps: time update and measurement update 

which can be described by two groups of mathematical 

equations (Welch & Bishop, 1995). The calculation flow of 

KF algorithm is as Figure 1 shows. 

State update

Past states
State transition 

function

State 

estimation

Observation 
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Real 

observation 
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State update

Observation 

error
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Figure 1. KF algorithm framework 
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            (3) 

Here, the meaning of Fk , Bk and uk are same with the 

introduction in Eq. (1). | 1k kx   and | 1k kP   are the predicted 

mean and covariance of the state, respectively, on the time 

step k before seeing the measurement. |k kx  and |k kP are the 

estimated mean and covariance of the state, respectively, on 

time step k after seeing the measurement. 
ky is the 

innovation or the measurement residual on time step k. Sk is 

the measurement prediction covariance on the time step k. 

Kk is the filter gain, which tells how much the predictions 

should be corrected on time step k. Time update step 

depends on the k-1
th

 state measurement update result 

1| 1k kx    and 1| 1k kP    as well as the k
th

 control input of the 

system. At the same time, on the basis of the measurement 

residual, the filter gain can be obtained to update the 
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previous estimation result in Eq. (2). This step means using 

the real measurement information to update the previous 

result. After each time and measurement update as shown in 

Eq. (2) and Eq. (3), the process is repeated to obtain the 

state estimate and corresponding prediction covariance. 

More detailed description of these equations and theory can 

be referred in related literature (Welch & Bishop, 1995). 

However, KF algorithm is used for the systems whose 

features can be described into a linear equation as shown in 

Eq. (1). In most of the practical applications like Li-ion 

battery, systems always have some nonlinear characteristics 

such that the system model has to be described as follows, 

the meaning of the variables are same with Eq. (1): 

1( , , )

( , )

k k k k

k k k

x f x u w

z h x v





             (4) 

In order to extend KF algorithm into nonlinear conditions, 

EKF which uses the Taylor expansion to linearize the 

system functions around the current estimate is employed. 

After the linearization step, the same approaches as KF 

algorithm are used to estimate the system states. EKF is a 

subprime optimal estimate method which can satisfy the 

requirements of certain systems which have a low or median 

nonlinear feature. 

2.2. The ND-AR Model  

To address the nonlinear degradation prediction problem, an 

improved AR model named ND-AR model which describes 

the degradation features using an accelerated factor TK   

as follows: 

1

1 ( )
TK

a k b


  
               (5) 

Here, a and b stand for the unknown parameters in the 

factor which contain the nonlinear degradation information 

of the capacity, and k is the prediction step which can be 

described the discharging cycle number the battery has 

experienced in another way. Here, the ND-AR model only 

considers the battery aging caused by charge and discharge 

cycle which is the major reason of the degradation. This 

means that ND-AR model chooses an approximated way to 

describe the nonlinear feature of the capacity through only 

taking the cycle aging into consideration but ignoring other 

factors. The factor extracts a correlation relationship 

between the prediction step k and the accelerated feature of 

the capacity degradation. This improvement provides a 

valuable reference that adopts a mathematical factor related 

to the degradation parameters to describe the degradation 

characteristics in the data-driven prediction model. The 

specific expression of the ND-AR model is as follows: 

1 1 2 2[ ]t T t t p t p tx K x x x a                (6) 

Here, KT is the accelerated factor and the remaining part of 

the Eq. (6) is the basic AR model. In the AR model, ϕk is the 

autoregressive coefficient and at is the noise which obeys 

Gaussian distribution. The adoption of the accelerated factor 

makes the AR model nonlinear. As a result, the accelerated 

and nonlinear degradation trend of the capacity of Li-ion 

battery can be retrieved (Liu, Luo, Peng & Pecht, 2012). 

2.3. GCA Algorithm 

GCA is an efficient and convenient correlation analysis 

approach which has been generally used in data variation 

trend similarity analysis. After choosing the standard data 

array Y={Y(k) | k = 1,2, …,n} and the comparison data set 

Xi={Xi(k) | k = 1,2,…,n} (i = 1,2,…,m), correlation 

coefficient can be calculated according to the following 

equation: 

min min | ( ) ( ) | max max | ( ) ( ) |
( )

| ( ) ( ) | max max | ( ) ( ) |

i i
i k i k

i

i i
i k

Y k X k Y k X k
k

Y k X k Y k X k






  


  
 (7) 

where   is the discrimination whose value ranges from 

zero to infinity. According to some investigation, the effect 

of the resolution is best when ρ≤0.5463 (Shen, Xue & 

Zhang, 2003). In order to facilitate the overall comparison, a 

concentration which turns the correlation coefficient of each 

point into one final result will be made through calculating 

the average of the above coefficients. The correlation degree 

between Y and Xi is defined in Eq. (8): 

1

1
( ), 1,2,...,

n

i i

k

r k k n
n




            (8) 

Here, ϛi is the correlation degree between Xi and Y and n is 

the number of the comparison data sets. 

3. FUSION PROGNOSTIC FRAMEWORK FOR LITHIUM-ION 

BATTERY RUL ESTIMATION 

3.1. Estimation of the Empirical Degradation Model  

In order to establish the specific state space model for the 

Li-ion battery, we need to confirm the state transition 

function which indicates the system state transition features. 

Researchers such as Saha in NASA PCoE have conducted 

studies on establishing an empirical state model for 

lithium-ion batteries and proposed a degradation model to 

describe the capacity degradation properties (Saha & Goebel, 

2009). The model can be described as follows: 

2( / )

1 1e
kt

k C kC C
   

               (9) 

The model makes a relevancy between the k
th

 charge cycle 

capacity Ck and the k+1
th

 discharge cycle capacity Ck+1. 

Moreover, kt is the rest time between cycles k and k+1, 

C  is the charge and discharge efficiency named coulomb 

efficiency which describes the difference between the 
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capacity filled in the battery and the capacity that the battery 

could provide during usage, 1  and 2  are the 

parameters that need to be determined. The first part of the 

model C kC  describes the degradation trend of the battery 

capacity and the other part 2( / )

1e
kt  

 represents the 

regenerative capacity during the rest time kt . However, due 

to the complex operation conditions, the coulomb efficiency 

C  doesn’t remain constant for each cycle. So, we make 

C  as another parameter that needs to be estimated.  

With outstanding state tracking capability, the EKF 

algorithms can be used to identify the parameters in the 

empirical degradation model. Thus, 1 , 2  and C  are 

the states need to be estimated. Given the empirical model 

and the capacity degradation data sets, we can conduct the 

state and measurement updates as described in Eq. (10). 

1

2

2,

, , 1

1, 1, 1

2, 2, 1
( / )

1 , 1,

                

                      

                      

c

k k

C k C k

k k

k k
t

k C k k k k

w

w

w

C C e v








 

 
 

 






 



 
  
  


  

       (10) 

Here, 
C

w , 
1

w , 
2

w  and vk stand for the noise in the 

state space model which used for the parameters estimation. 

3.2. NSDP-AR Model for Measurements Obtaining 

According to the related researches, the ND-AR model has 

some limitations because the nonlinear degradation is 

described using an acceleration factor related to the 

prediction step. This is not reasonable as the parameters of 

the factor will change a lot with different degraded speed 

and trajectory, different prediction starting points, sample 

length of the data, sample interval and density. This makes 

the ND-AR model not general for other applications.  

According to the degradation curve, we can draw a 

conclusion that the degradation trend has a close 

relationship with the number of the charging and 

discharging cycles. The degradation degree increases with 

the growth of the cycle number. However, the life-cycle 

length and prediction starting point is different according to 

individual application. So, we must define or extract a new 

parameter which can stand for the degradation period with 

better generalization. Current percentage of the life-cycle 

length (CPoL) is a scale quantity related to the charging and 

discharging cycles. Here, CPoL is similar with the definition 

of the state of health (SOH) of the battery. But the standard 

definition equations of SOH often use capacity or the power 

of the battery, so there are certain differences between the 

two variables. CPoL is the ratio of the current cycles the 

battery has experienced k and whole cycles during the entire 

lifetime of the battery L. The specific expression is defined 

as Eq. (11). 

k
CPoL

L
                  (11) 

Eq. (11) shows a better applicability for the individual 

battery. The CPoL can represent the current internal reaction 

phase which determines the capacity degradation feature.  

However, L is a parameter just needed to be predicted, 

moreover, the accurate CPoL cannot be obtained in practical 

applications. Therefore, we need to find an approximated 

method to estimate it. With GCA analysis, current 

percentage of the predicted-life-cycle length (CPoP) shown 

in Eq. (12) indicates high correlation relationship with the 

CPoL by replacing the L with the predicted-life-cycle length 

L’ obtained using AR model. So, we apply the CPoP as the 

nonlinear degradation factor, regarding CPoP as an 

approximated CPoL to implement the proposed approach. 

'

k
CPoP

L
                (12) 

The nonlinear degradation factor in this paper has two 

specific forms. The first one is the same as the related 

ND-AR model researches have used which can be described 

as Eq. (5). The other one is obtained from the capacity 

degradation feature perspective which can be described in 

an exponential related form (He, Williard, Osterman & 

Pecht, 2011) (Miao, Xie, Cui, Liang & Pecht, 2012). Two 

specific forms can be described as Eqs. (13) and (14). 

1

[1 ( )]
T

K
a kp b


  

           (13) 

b kp d kp

TK a e c e                (14) 

Here kp is the parameter of the CPoL and a, b, c and d are 

the parameters need to be estimated. With the true 

degradation data set of certain samples and the 

corresponding AR model prediction results, we apply EKF 

algorithm for estimating the parameters in Eqs. (13) and 

(14). The detailed modeling steps are similar as the ND-AR 

model (Liu, Luo, Peng, Peng & Pecht, 2012). 

In addition, we must determine the parameters of the factor 

in applications when the true degradation information is 

unknown. We can conceive that the correlation degree of 

the history degradation knowledge contributes to the 

extension of the modified model. Therefore, the weight is 

determined by the correlation degree and the weighted 

average results can be described as Eq. (15) 

1

1

n
i

i n
i

j

j

r
m m

r



 


              (15) 

where n is the number of batteries we apply for modeling, 

i
r  is the correlation degree between the ith battery sample 

whose parameter is mi. 
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With this improved data-driven method, we can achieve the 

long-term degradation trend prediction of the capacity. 

3.3. Fusion-data-model Prognostic Framework for 

Lithium-ion Battery RUL Estimation 

By applying empirical degradation model as the state 

transition function with model-based EKF algorithm, and 

the prediction result with data-driven NSDP-AR model as 

the measurements update, we can get a novel 

fusion-data-model prognostic framework shown as Eq. (16). 

 2( / )

1 1    
                                  

kt

k C k k

k k k

C C e w
y C v

   

     
 

       (16) 

The whole prognostics framework is shown in Figure 2. 

Empirical Capacity Degradation Model

Grey Correlation Analysis to 

obtain the correlation degree

Real data based NSDP-AR 

model establishment offline

Online NSDP-AR model Observation

State EstimationState Update

 

Figure 2. Fusion-data-model Framework for Lithium-ion 

Battery RUL Estimation 

 

The detailed flow of fusion-data-model is as follows.  

Definition: prediction starting point T, cycle number k, the 

length of the data for modeling Length, real capacity value 

Capacity, predicted capacity value C(k), failure threshold U, 

long-term trend of the capacity obtained by NSDP-AR 

model NSDP-ARpredict(k), and the predicted life-cycle 

length given by AR model L’. 

Step 1. Choose individual batteries as the historical samples 

to modeling the specific NSDP-AR models. 

Step 2. Pre-process the data like smoothing, outliers 

removing and then set parameters such as T, U, noise 

covariance matrix and other feature matrix. Capacity data 

set is divided into the historical part Capacity(1:T) and the 

testing part according to the parameter T. 

Step 3. Predict with AR model.  

Step 3-1. Determine the order of the AR model p according 

to the AIC (Akaike information criterion) principle 

2( ) ln 2AIC p N p
p

             (17) 

Here N is the number of the data samples, p is the model 

order, 
2

p  is the prediction variance of p order model. 

Step 3-2. Use a fusion approach with both Burg method and 

Yule-Wallker method to calculate the regression coefficient 

( 1, 2,..., )
i

i p   of the p order AR model. 

1 1 2 2t t t p t p tx x x x a              (18) 

Choose the dynamic weight P1i and P2i for the respective 

results from each method 
1i  and 2 ( 1,2,..., )i i p  , then 

calculate the fusion value as Eq. (19). 

1 1 2 2 ( 1,2,..., )i i i i iP P i p            (19) 

Step 3-3. Estimate RUL using AR(p) model by performing a 

multi-step iterative computation to obtain the long-term 

trend of the capacity ARpredict, and the corresponding 

life-cycle prediction result L’. 

Step 4. Model NSDP-AR. 

Step 4-1. Calculate the real value sequence of the nonlinear 

degradation factor 
,T realK  using Eq. (20). 

,T real

Capacity
K

ARpredict
              (20) 

Step 4-2. Compute the CPoL with Eq. (12) and CPoP with 

Eq. (11), and ensure the feasibility of the approximated 

method using GCA algorithm. 

Step 4-3. Identify the parameters of the proposed factor with 

EKF algorithm. 

Step 4-4. Model the NSDP-AR by combining the factor and 

basic AR model for historical individual battery sample. 

Step 4-5. Repeat the Step 4-4 for each battery sample. 

Step 4-6. Utilize GCA algorithm and weighted average 

method with Eq. (15) to obtain the NSDP-AR model. 

Step 5. Establish the fusion prognostic model with Eq. (16).  

Step 6. Predict RUL using the model obtained in Step 5. 

There is a key problem need to be explained, that is in this 

research we only know the data obtained from the system, 

when we conduct the experiments, the state estimation result 

will be put into next state estimation step. That is, the 

prediction is a multi-step iterative prediction, we use the last 

data point of the collective data set and then all the steps are 

completed with the help of the previous estimation results. 

4. EXPERIMENTS AND ANALYSIS 

4.1. Battery Data Set 

We utilize two battery data sets from NASA PCoE and 

CALCE for evaluate the performance of the proposed 

framework, respectively. The first Li-ion battery data set 

including battery #5, #6 and #18 are from NASA PCoE. 

These batteries were tested under certain condition (with the 
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temperature +25℃). The 2 Ah batteries were charged with 

the charging current 1.5A until the batteries voltage reaches 

4.2V, then discharged with the discharging current 2A until 

the batteries voltage reached 2.5V (Saha, Goebel, Poll & 

Christophersen, 2009) (Saha & Goebel, 2007). When the 

battery capacity reaches about 70% of rated capacity, the 

Li-ion battery is regarded to reaching its end of life (EOL). 

In the experiments, the threshold is set as 1.38Ah.  

The second Li-ion battery data sets are from the CALCE of 

the University of Maryland containing battery #8, #21 and 

#33. The cycling of the batteries was implemented with the 

Arbin BT2000 battery testing system under room 

temperature. The 1.1 Ah rated capacity of batteries were 

adopted in the test with the discharging current (0.45A that 

the discharging speeds is 0.5C) (He, Williard, Osterman & 

Pecht, 2011) (He, Williard, Osterman & Pecht, 2011) (He, 

Williard, Osterman & Pecht, 2011). The threshold is set as 

0.88 Ah.  

4.2. Methods for Comparison 

In order to verify the effectiveness of the NSDP-AR model 

and the fusion prognostic framework, another two 

algorithms are applied for comparison: 

Method 1. Model-based EKF framework for RUL 

prediction. 

Method 2. Fusion-data-model prognostic framework with 

EKF algorithm and ND-AR model. 

These three methods will be utilized to predict the 

lithium-ion battery RUL. 

4.3. Evaluation Criteria 

The performance of the algorithm will be evaluated by RUL 

and capacity prediction errors. 

RUL prediction error: We use the RUL prediction result 

predictionRUL  to minus the true RUL value realRUL  to 

describe the RUL prediction error 
RUL

E . 

RUL prediction realE RUL RUL            (21) 

Mean Absolute Error (MAE) for capacity prediction: 
The MAE is described in Eq. (22) to evaluate the prediction 

error. 

1

1
( ) ( )

n

i

MAE x i x i
n 

             (22) 

Here, ( )x i  is the true capacity value and ( )x i  is the 

prediction value for each cycle, n is the length of data. 

Root Mean Square Error (RMSE) for capacity 

prediction: The RMSE can be described as Eq. (23): 

 
2

1

1
( ) ( )

n

i

RMSE x i x i
n 

           (23) 

The symbols above have the same meaning as MAE. 

4.4. Parameters Identification of the Empirical 

Degradation Model  

With high performance of state tracking for EKF algorithm, 

we can determine the fit parameters of the empirical 

degradation model. We have conducted a series of 

experiments with several data sets to estimate the reasonable 

model for each battery. In order to describe the tracking 

result briefly, we choose NASA Battery #18 and CALCE 

Battery #33 to show the result.  

The parameters in the experiments for NASA Battery data 

are set as follows: the length of the history data set L1 = 50; 

the failure threshold U = 1.38Ah; initial state vector [a0; b0; 

c0] = [1; 10; 10] where a0 stands for the coulombic 

efficiency , b0 and c0 stand for the unknown parameters β1 

and β2; the process noise variance matrix Q = [0.0001, 0,0; 0, 

0.0001, 0; 0, 0, 0.0001]; observation noise variance R = 

0.0001. The weighted average numerical parameters results 

are: a = 0.9958; b = 10.0040; c = 9.9602. 

The parameters in the experiments for CALCE Battery data 

are set as follows: the length of the history data set L1 = 280; 

the failure threshold U = 0.88 Ah; initial state vector [a0; b0; 

c0] = [1; 10; 10] where a0, b0 and c0 have the same meaning 

as NASA experiments; the process noise variance Q = 

[0.0001, 0, 0; 0, 0.0001, 0; 0, 0, 0.0001]; observation noise 

variance R = 0.0001. The weighted average numerical 

parameters results are: a = 0.9991; b = 10.0015; c = 9.9847. 

4.5. Parameters identification of NSDP-AR Model 

According to the modeling flow of the NSDP-AR model, 

we can obtain the specific nonlinear degradation factor for 

each battery data set as well as the weighted average result 

on the basis of the correlation degree of the degradation 

trend. Both of the factor forms proposed before have been 

adopted into the experiments respectively for a comparison 

between different factor forms.  

In the experiments for NASA battery data set, Battery #5 

and #6 are selected to establish the NSDP-AR models. The 

obtained weighted parameters will be adopted into the RUL 

estimation for Battery #18. Similarly, in the experiments for 

CALCE data set, Battery #8 and #21 are used for modeling 

and Battery #33 is used for verification. We set the 

prediction starting point T in the medium-term of each 

battery sample. Correlation degree between the modeling 

batteries and the estimated battery are calculated with GCA 

method where the distinguish coefficient is set as 0.5463. 

The results are shown in Table 1. 
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Table 1. Weighted parameters for prediction application 

 

Index GCA Form 
Parameters 

a b c d 

NASA 

#5 
0.6117 1 -0.0303 0.3938 - - 

NASA 

#6 
0.7612 2 0.9896 0.0028 0.0005 3.9656 

CALCE 

#8 
0.6985 1 -0.1326 -0.5346 - - 

CALCE 

#21 
0.6776 2 1.0357 -0.0268 0.0011 3.3169 

 

4.6. RUL Estimation with the Fusion-data-model 

Prognostic Framework 

With the parameters obtained in Section 4.4 and 4.5, we 

conducted RUL estimation experiments using different 

methods. With the fusion prognostics, the RUL prediction 

results of NASA Battery #18 are shown in Figures 3 and 4. 

The result in Figure 3 is based on the nonlinear degradation 

factor form as Eq. (13), while Figure 4 shows the result 

based on the factor as Eq. (14). 

 

Figure 3. RUL prediction based on proposed fusion 

framework for NASA Battery #18 (Form 1) 

 

 

Figure 4. RUL prediction based on proposed fusion 

framework for NASA Battery #18 (Form 2) 

 

Similarly, Figures 5 and 6 show the experimental results for 

CALCE battery data sets. Here, two different factor forms 

are also adopted in the fusion prognostic framework, which 

are similar as the experiments above. 

 

Figure 5. RUL prediction based on proposed fusion 

framework for CALCE Battery #33 (Form 1) 

 

 

Figure 6. RUL prediction based on proposed fusion 

framework for CALCE Battery #33 (Form 2) 

 

From the RUL prediction results for two types of battery 

data sets, we can find that the degradation curves as well as 

the estimated EOL points are very close to the actual values. 

It is indicated that the proposed method is efficient and 

accurate. 

4.7. Comparison and Analysis 

To compare and evaluate different RUL prediction methods, 

we also conducted more experiments. The quantitative 

results are shown in Table 2 and Table 3 for NASA and 

CALCE batteries, respectively. 

By analyzing the experimental results above, it can be seen 

that the proposed method can achieve better performance 

than the other methods with the MAE and RMSE shown in 

Tables 2 and 3. The ND-AR model based on prediction step 

k may sometimes make a deterioration of the prediction 

results, because this method does not take into account the 

diversity of degradation speed. In contrast, the NSDP-AR 
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model can overcome this problem and lead to a better RUL 

estimated result. It is showed that the NSDP-AR model 

based fusion framework achieve an improvement on 

prediction accuracy. 

Table 2. Comparison of RUL estimation with different 

prognostics for NASA Battery #18 

 

Methods ERUL MAE RMSE 

EKF 9 0.0804 0.1112 

EKF & ND-AR (1) 1 0.0862 0.1335 

EKF & ND-AR (2) 5 0.0458 0.0636 

EKF & NSDP-AR (1) 1 0.0938 0.1338 

EKF & NSDP-AR (2) 2 0.0726 0.1083 

 

Table 3. Comparison of RUL estimation with different 

prognostics for CALCE Battery #33 

 

Methods ERUL MAE RMSE 

EKF 0 0.0206 0.0239 

EKF & ND-AR (1) 48 0.0287 0.0357 

EKF & ND-AR (2) × 116.5041 257.2003 

EKF & NSDP-AR (1) 16 0.0173 0.0213 

EKF & NSDP-AR (2) 4 0.0133 0.0162 

 

Note that, the RUL estimated error for CALCE Battery #33 

obtained with EKF algorithm equals to 0 in Table 3. 

However, the estimated degradation trend is obviously 

diverse from the real curve, and the satisfied RUL 

prediction result is a coincidence for certain battery samples. 

At the same time, the real-time performance of EKF 

algorithm is superior to the other statistical filtering such as 

Particle Filter. The comparison between the operating speed 

of PF and EKF is shown in Table 4. We can find that the 

execution time of fusion EKF algorithm is shorter than the 

fusion PF method but the accuracy is close with each other.  

Table 4. Comparison of RUL estimation with different 

prognostics for CALCE Battery #33 

 

Methods ERUL(cycle) Time(s) 

Fusion EKF 7 2.27 

Fusion PF 9 11.45 

 

Moreover, the NSDP-AR model realizes satisfied prediction 

for the nonlinear degradation trend, and more reasonable 

than ND-AR model, which stands that the proposed fusion 

framework shows a good application prospect. 

5. CONCLUSIONS 

This paper explores an improved fusion-data-model 

prognostic framework with EKF algorithm and NSDP-AR 

model for battery RUL estimation. The main contributions 

of this research can be concluded as follows. (1) A 

data-model fusion prognostic framework with low 

computation complexity and better real-time capability is 

proposed. (2) Improvements are obtained to modify the 

ND-AR model including a scale parameter based nonlinear 

degradation analysis, and an approximate method to obtain 

the CPoL data sets, and an extension method using GCA 

method, as a result, an improved NSDP-AR model is 

achieved. (3) A combination of model-based EKF algorithm 

and improved data-driven NSDP-AR model which weakens 

the dependence on empirical degradation model and 

improves the nonlinear predicting accuracy. 

6. FUTURE WORK 

In future, more efforts should be focused on obtaining the 

RUL estimation result when the capacity cannot be 

observed on-line, which is the actual condition in practical 

applications. Up to now, we have conducted some studies 

with a novel parameter called time intervals to equal 

discharging voltage difference (TIEDVD) to realize indirect 

RUL prognostics. Meanwhile, in this paper we only conduct 

the study on estimating the RUL when the battery is fully 

discharged and discharged, which is not true in practical 

applications. On the other hand, the empirical degradation 

model used in this framework only takes the capacity 

degradation principle and the regeneration phenomenon of 

the capacity during test time into consideration. More 

factors such as depth of discharge (DOD) and internal 

temperature of the lithium-ion battery should be considered 

while modeling. Especially, the indirect health indicator (HI) 

with on-line monitoring parameters and the fusion HI 

combines with more correlation analysis methods should be 

applied to realize more flexible and applicable RUL 

estimation. 
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ABSTRACT 

Data-driven techniques based on Bayesian framework like 

Gaussian Process Regression (GPR) can not only predict the 

lithium-ion battery Remaining Useful Life (RUL), but also 

provide the uncertainty representation. However, it is 

always difficult to choose the covariance function of GPR 

and the confidence bound is usually large if the training data 

are not enough. In order to solve this problem, a combining 

method is proposed, it is a prognostic framework based on 

GPR model combined with Empirical Model (EMGPR) to 

realize the lithium-ion battery RUL prediction. EMGPR has 

the advantages of predicting the tendency and uncertainty 

management for RUL estimation. The modeling process of 

EMGPR consists of two steps. The self-deterministic part, 

which reflects the real physical process of battery 

degradation, is approximated by the empirical model. And 

the disturbance part, which is caused by random noise such 

as measurement and environment noise, is expressed by the 

GPR model. In application, two key factors of EMGPR are 

focused. Firstly, the prediction result is not accurate enough 

if the training data are not very reliable. In this case, more 

reliable training data should be selected optimized. 

Secondly, the characteristic of the disturbance is involved to 

determine the kernel function of GPR model. With this 

EMGPR framework, the RUL result is estimated with 

uncertainty representation, as well, the covariance function 

of GPR is easy to choose. Experiments with NASA PCoE 

and CALCE battery data show the satisfactory result can be 

obtained with the EMGPR approach. 

1. INTRODUCTION 

Lithium-ion batteries have been widely used in the domains 

of portable designs, notebook computers, electric vehicles 

and airplanes and spacecrafts because of their high energy 

density, low self-discharge rates, wide operating 

temperature ranges, and high charge-discharge rates. 

Lithium-ion batteries which act as energy storage 

components are critical to the safety of electric devices or 

systems (Yang, Ye, Guo & Ma, 2012). However, the 

lithium-ion battery will degrade over time on account of 

aging, environmental impacts and dynamic loading, etc. 

Failure of battery may lead to loss of operation, decreased 

output, and it might even bring danger to the operators. 

Hence, it is meaningful to detect the underlying degradation 

and take measures to prevent the potential failures and 

ultimately prevent the disastrous failures. Prognostics and 

health management (PHM), is to predict how soon a system 

or component will loss efficacy or reach the failure 

threshold (Zhang & Lee, 2011) (Widodo, Shim, 

Caesarendra & Yang, 2011). Effective precaution measures 

could be taken in advance if we predict the failures 

successfully. For health state monitoring, battery parameters 

included voltage, current, temperature and capacity are 

measured to estimate the state of charge (SOC), the State of 

Health (SOH), the end of life (EoL) and the remaining 

useful life (RUL) (here we only focus on the remaining 

cycle life) of lithium-ion battery (Saha, Goebel & 

Christophersen, 2009).  

In order to estimate lithium-ion battery RUL well and make 

an optimized design of battery-systems, both model-based 

and data-driven techniques are applied. Gao et al. presents a 

dynamic model which is suitable for virtual-prototyping of 

portable battery-powered systems. The model takes 

nonlinear equilibrium potentials, rate, temperature-variation, 

thermal effects and transient power demand into 

consideration (Gao & Liu, 2002). Rong et al. introduces an 

analytical model to predict the remaining capacity of a 

lithium-ion battery, which is in view of the cycle-aging and 

temperature effects (Rong, 2006). Erdinc et al. proposes a 

dynamic model which cares about the significant 

temperature and capacity fading (Erdinc, Vural & 

_____________________ 
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Uzunoglu, 2009). The model-based technologies are direct 

and intelligible. However, the performances and characters 

of batteries are highly influenced by their complex operating 

conditions and internal inaccessible. Hence, it is difficult to 

establish an exact model to describe whole information of 

lithium-ion batteries. 

With the advancement of sensor and data storage 

technologies, the data-driven prognostics are emphasized. 

The data-driven approach Auto-Regressive Integrated 

Moving Average model (ARIMA) is utilized for RUL 

estimation. Without taking any physical process into 

consideration, it is possible to deal with the non-stationary 

monitoring data. But the ARIMA model is unsuitable for 

long-term prediction. Then the Extended Kalman Filter 

(EKF) is proposed to handle the nonlinear and 

non-stationary modeling. The EKF cannot accommodate the 

non-modeled process (Saha, Goebel & Christophersen, 

2009) (Do, Forgez, Benkaha & Friedrich, 2009) (He, 

Williard, Osterman & Pecht, 2011). Lots of data-driven 

methods cannot manage the uncertainty of prognostics. 

Hence, the uncertainty caused by the measurement errors, 

the environmental noise and the model noise is addressed in 

prognostics. Especially, for long-term state prediction, the 

uncertainty must be represented and managed effectively 

(He, Williard, Osterman & Pecht, 2011). Bayesian 

framework based data-driven approaches such as Particle 

Filter (PF) (Dalal, Ma & He, 2011) (Xing, Tsui & Pecht, 

2012), Relevance Vector Machine (RVM) and Gaussian 

Process Regression (GPR) can provide the uncertainty 

reprepsentation of the RUL value (Goebel, Saha & Saxena, 

2009) (Saha, Goebel, Poll & Christophersen, 2009) (Goebel, 

Saha, Saxena, Celaya &  Christophersen, 2009) (Chen & 

Pecht, 2012).  

Among these algorithms, the GPR model based on the 

Bayesian framework is flexible to be adopted in the 

non-linear regression of stochastic time series. And it can 

predict the RUL of lithium-ion batteries, offerring the 

confidence interval of predicted value and manage the 

uncertainty (Rasmussen & Williams, 2006) (Saha, Goebel 

& Christophersen, 2009). The GPR algorithm provides 

variance around its means predictions, and combines prior 

knowledge with observed data (Li & Zhang, 2010) 

(Cristianini & Taylor, 2000) (Scholkopf & Smola, 2002). 

Although the GPR provides a theoretically framework for 

prognostics, there are some limitations in practical usage. 

First, choosing proper kernel function (covariance function) 

is critical. However, it is sometimes difficult to make an 

optimal selection due to lack of knowledge about the actual 

process. In addition, the GPR model can predict the mean 

function and variance function with hyper-parameters, if the 

training data is not available enough, the prediction 

confidence bound will become so large and the result is not 

reliable (Goebel, Saha & Saxena, 2009). 

In this work, a novel empirical mode combined with GPR is 

proposed to predict the RUL of lithium-ion battery (it is as 

EMGPR). Firstly, by the combination, we can conquer the 

inconvenience of choosing the prediction covariance 

function. Secondly, the optimization of the selection of the 

training data is focused to reduce the prediction uncertainty.  

In the EMGPR framework, training data are divided into 

two parts. One is self-deterministic and could be estimated 

by empirical model. This part reflects the real physical 

deterioration of lithium-ion battery. The other is the 

disturbance components which reflects the random noise 

including measure noise, model noise and environment 

noise could be expressed by GPR. The final prediction 

result of RUL is the sum of the two parts. Experiments have 

been done with data set of NASA and the University of 

Maryland to illustrate the effectiveness of EMGPR 

prognostics framework for lithium-ion battery. 

This paper is organized as follows. The GPR method is 

depicted in Section 2. In Section 3, the lithium-ion 

prognostic method of EMGPR is introduced. Experiments 

of lithium-ion battery RUL estimation with EMGPR are 

discussed in details in Section 4. The conclusion and future 

work are described in Section 5 and 6. 

2. GAUSSIAN PROCESSING REGRESSION MODEL 

The GPR model affects input variables to output crack 

growth by probabilistically inferring the nonlinear 

relationship between input and output (Mohanty, Das, 

Chattopadhyay & Peralta, 2009). It has been widely applied 

in machine learning (Rasmussen & Williams, 2006) 

(Snelson, 2007), data mining, image processing, pattern 

recognition and prognostics of both metallic and electronics 

systems. Particularly, GPR model is utilized for the 

prognostics of lithium-ion battery (Liu, Pang, Zhou, & Peng, 

2010). 

The basic idea of GPR modeling is to define the Gaussian 

Processing (GP) to describe a function distribution. The GP 

is a collection of random and finite stochastic variables 

which follows to Gaussian distribution. GP is fully 

described by its mean function ( )m x  and the covariance 

function ( , ')k x x . 

( ) ~ ( ( ), ( , '))f x GP m x k x x            (1) 

( ) [ ( )]m x E f x                (2) 

( , ') [( ( ) ( )), ( ( ') ( '))]k x x E f x m x f x m x        (3) 

where the symbol E means the expectation. 

For the regression, we model as, 

( )y f x                   (4) 
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Here x is the input vector, f is the function output and y is 

the observed values with noise. The noise   is usually 

assumed to follow the Normal distribution.  

2~ (0, )nN                  (5) 

The prior distribution of y is, 

2~ ( ( ), ( , ) )n ny N m x K X X I         (6) 

The prior joint distribution of y and the prediction value *f  
is described as follows: 

2

*

* * * *

( , ) ( , )
~ ( ),

( , ) ( , )

n n
y K X X I K X x

N m x
f K x X k x x

   
       

  (7) 

The parameter ( , ) ( )n ijK X X K k   is a symmetric 

positive definite covariance matrix. The element in the 

matrix 
ijk means the correlation of ix  and 

jx . The 

equation 
* *( , ) ( , )TK X x K x X  is the covariance matric of 

test data *x  and training data X. * *( , )k x x  is the 

covariance of *x  itself. The symbol nI  is a unity matrix. 

We can compute the posterior distribution of prediction 

value 
*

f : 

* * **| , , ~ ( ,cov( ))f X y x N f f            (8) 

2 1

** ( , )[ ( , ) ] ( )n nf m K x X K X X I y m       (9) 

2 1

* * * * *cov( ) ( , ) ( , ) [ ( , ) ] ( , )n nf k x x K x X K X X I K X x    

(10) 

Hence, the mean of the prediction output is,  

^

* *f                     (11) 

And the variance of the prediction output is, 

^
2

* *cov( )f                  (12) 

Different mean functions and covariance functions contain 

some unknown parameters, they are hyper-parameters. 

Based on marginal likelihood Bayesian theory, we can 

identify the optimal hyper-parameters with a numerical 

optimization routine such as conjugate gradients 

(Rasmussen & Williams, 2006) (Li & Zhang, 2010). 

By analyzing Eq. (9) to Eq. (12), the main challenge is to 

determine the covariance function for the prognostics with 

GPR. 

3. PROGNOSTICS FRAMEWORK OF EMGPR 

The remaining useful capacity of lithium-ion battery is 

predicted in this paper to calculate the RUL. A fused 

framework of EMGPR is proposed to predict the RUL of 

lithium-ion battery. Here two important steps are involved. 

Firstly, the characteristic of battery is analyzed to set the 

kernel function of GPR. Secondly, experiments are 

implemented to optimize the preferable training data. 

Theoretically, any time series can be represented as 

consisting of two parts, a self-deterministic part and a 

disturbance component (Saha, Goebel & Christophersen, 

2009). The self-deterministic part depends on the real 

physical process, while the disturbance component mainly 

influenced by the random noise containing measurement 

noise, process noise, surrounding environment noise, etc. In 

the EMGPR framework, the self-deterministic part is 

described by the empirical model such as 

double-exponential model and Gaussian model, which 

influent the output by curve fitting algorithms. The 

disturbance component is expressed by GPR Model. The 

final prediction result is the fusion of the two parts. The 

prognostics flowchart is shown in Figure 1. 

Put y to the 

chosen 

empirical model 

to get fitting 

curve y1

Prediction 1st 

output 

Decide the 

Covariance 

Function by 

analyze y2

Set the initial 

parameters

Training the 
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parameters 

Add operation

Training Data

Prediction 2nd 

output 

Sensor Data

GPR

Choose training data y

Choose 
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EM
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Prediction 

output

No No

Yse

Put test data to 

y1 to get the 1st 

prediction 

  y subtract y1 to 

get the 

disturbance part 

y2

 

Figure 1. The fusion EMGPR framework based on 

combined GPR and Empirical Model 

The detail steps of the EMGPR algorithm are as follows: 

Step 1. Choose the training data. This step is executed 

repeatedly until a satisfied training accuracy is obtained. In 
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this work, we assume that the training ends while the Root 

Mean Square Error (RMSE) value is less than 0.5. 

Step 2. Choose a proper empirical model to describe the real 

physical deterioration of lithium-ion battery. Similarly, this 

step is carried out repeatedly to identify the suitable 

empirical model. The criterion of choosing the training data 

and empirical model is an experienced setting with 

experiments. 

Step 3. Put the training data into the identified empirical 

model to get a fitting curve y1 (In this step, the parameters of 

empirical model are determined).  

Step 4. Predict with the model in Step 3 to obtain the 1
st
 

prediction output. 

Step 5. Subtract y1 from y to get the disturbance part, 

denoted as the variable y2. 

Step 6. Analyze the characteristics of disturbance part and 

choose the covariance function of GPR model. 

Step 7. Initialize parameters of mean function and 

covariance function of GPR model. 

Step 8. Train the hyper-parameters of covariance function. 

Step 9. Compute the prediction results of disturbance with 

GPR model (it is as the 2
nd

 prediction output). 

Step 10. Fuse the 1
st
 prediction output and the 2

nd
 prediction 

output together to obtain the final estimated value. 

4. EXPERIMENTS AND DISCUSSION 

4.1. Raw Data of Lithium-ion Batteries 

The data set used in this work to perform the lithium-ion 

battery prognostics are obtained from the data repository of 

NASA Ames Prognostics Center of Excellence (PCoE) and 

the Center for Advanced Life Cycle Engineering (CALCE) 

of the University of Maryland.  

The battery data from NASA were run through 3 different 

operation profiles (charge, discharge and impedance) at 

room temperature. Charging was carried out in a constant 

current mode at 1.5A until the battery voltage reached 4.2V 

and then continued charging in a constant voltage mode 

until the charge current dropped to 20mA. Discharging was 

performed at a constant current level of 2A until the battery 

voltage falling to 2.7V, 2.5V, 2.2V and 2.5V for batteries 

B0005, B0006, B0007 and B0018 respectively. Impedance 

measurement was carried out through an electrochemical 

impedance spectroscopy frequency sweep from 0.1Hz to 

5kHz. Repeated charge and discharge cycles result in 

accelerated aging of the batteries while impedance 

measurements provide insight into the internal battery 

parameters that change with aging processes. The 

experiments were stopped when the batteries reached 

end-of-life criteria, which was a 30% fade in rated capacity 

(from 2Ahr to 1.4Ahr). This data set offers us the discharge 

capacity of each cycle.  

Figure 2 shows the capacity degradation of battery from 

NASA, assuming that the capacity threshold is 1.41Ah. The 

horizontal axis represents the number of charge and 

discharge cycles. The vertical axis represents the capacity 

(Ah). 
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Figure 2. Capacity Degradation of Battery from NASA 

PCoE 

Another data set is obtained from CALCE of the Maryland 

University, which is tested on the BT2000 lithium-ion 

battery experimental system. The experiment data contain 

two groups. The rated capacity is 1.35Ah and 1.1Ah 

separately. The experiments were done at 20℃ to 25℃, 

and the time, charging current/voltage, discharging 

current/voltage and charging/discharging capacity values are 

offered. Charging was carried out in a constant current 

mode at 0.675A until the battery voltage reached 4.2V and 

discharge was carried out at a constant current level of 

1.35A until the battery voltage felt to 2.7V. The discharging 

rate of battery CS2_8, CS2_21, CS2_33 and CS2_34 are 

0.5C. The experiments were stopped when the batteries 

reached end-of-life criteria, which was a 20% fade in rated 

capacity (from 1.1Ahr to 0.88Ahr).  

Figure 3 shows the capacity degradation of battery from 

CALCE of. Here the capacity threshold we set is 0.88Ah. 
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Figure 3. Capacity degradation of battery from CALCE 
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4.2. RUL prediction with different size of training data 

The prediction result with large confidence bound using the 

non-sufficient available data is analyzed here. Experiments 

are implemented NASA battery B0007 to determine the 

better size of the training data. The training data (cycle) are 

from cycle 2 to 140, from cycle 50 to 140 and from cycle 

100 to 140, respectively. The predicted results are shown in 

Figure 4. The red line of circle is the real test data, and the 

blue line with plus sign is the prediction result with training 

data from cycle 20 to cycle 140, the grey line with triangle 

is the prediction result with training data from cycle 50 to 

cycle 140 and the green line with square is the prediction 

result with training data from cycle 100 to cycle 140. The 

grey shade represents the prediction confidence bound. 
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Figure 4. Prediction with different size of training data  

Root Mean Square Error (RMSE) and Mean Absolute Error 

(MAE) are utilized to evaluate the accuracy of the 

estimation, which are defined as Eq. (13) and Eq. (14).  

2

1

1
[ ( ) ( )]

n

i

RMSE x i x i
n 

              (13) 

1

1
( ) ( )

n

i

MAE x i x i
n 

                (14) 

Here ( )x i  and ( )x i  represent the actual test data and the 

predicted result.  

The quantified comparison is shown in Table 1. 

Table 1 RMSE and MAE with different test data 

 

Training Cycle RMSE Value MAE Value 

20-140 0.3873 0.0581 

50-140 0.2719 0.0430 

100-140 0.0676 0.0090 

 

From Table 1, we can find that better prediction result can 

be obtained and the prediction confidence bound is smaller 

with local training data set, although the local data set is 

with less data points. 

4.3. RUL prediction with different covariance functions 

In this section, experiments are executed to illustrate the 

influence of covariance function in the lithium-ion battery 

prognostics based on GPR. Predictions are implemented 

with two common covariance functions, conSEiso function 

and covMaterniso function. Based on the experiments above, 

training data are chosen from 100 to 140 cycles. Prediction 

result is shown in Figure 5. 
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Figure 5. Predicted results with different covariance 

functions 

In detail, the conSEiso function and the covMaterniso 

function are defined as Eqs. (15) and (16). In Eqs. (15) and 

(16), 1 、 2 、 3 、 、 l 、d  are hyper-parameters. The 

valuables t and t   are the real value and prediction value. 

' 2
' 2

1 2

2

( )
( , ) exp( )

2

t t
k t t 




             (15) 

' 2

3

1

1
( , ') exp( ( ) )

2

d

l

k t t t t 


          (16) 

The RMSE and MAE are shown in Table 2. 

Table 2. Predicted RMSE and MAE with different 

covariance functions 

 

Covariance function RMSE MAE 

conSEiso 0.2520 0.0416 

conMaterniso 0.0628 0.0083 

 

We can find that the covariance function plays an important 

role in the prognostics of lithium-ion based on GPR model. 

Thus, it is necessary to take more efforts to the choice of 

covariance function. 

4.4. Choice of covariance function 

We assume that the battery data is composed by two parts: 

one reflects the inherent degradation regular 
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(self-deterministic part) which can be described and 

analyzed as double-exponential or Gaussian empirical 

model. The other part is the disturbance component, which 

connects with environment factor, operating load etc., which 

are stochastic and can be estimated with GPR model. 

Usually, the lifetime of electronics component degenerates 

with double-exponential or Gaussian curve. Hence, we 

firstly use a double-exponential model, described as Eq. 

(17), or Gaussian model, described as Eq. (18), to 

approximate the self-deterministic part. 

1 1

1 1 1

b x d x
y a e c e                  (17) 

22

2

( )

1 2

x b

cy a e




                  (18) 

Here, parameters 1a , 1b , 1c , 1d , 2a , 2b  and 2c  can 

be identified by fitting with the training data. The criterion 

of the choice of the empirical model is whether the 

prediction RMSE value is less than 0.5.  

Then, we can construct the disturbance component ( 2y ) 

which can be predicted with GPR,  

2 1y y y                     (19) 

where y  is the raw data value.  

The disturbance parts are indicated in Figure 6.  
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Figure 6. Disturbance parts 

For battery B0007, we choose training data from cycle 100 

to 140, the prediction output cycle is from 141 to 168 and 

the empirical model is Gaussian model. For battery B0005, 

the training data is from cycle 100 to 140, the prediction 

output cycle is from 141 to 168 and the empirical model is 

double-exponential model. For battery CS2_8, the training 

data is from cycle 122 to cycle 130, the prediction output 

cycle is from 131 to 146 and the empirical model is 

double-exponential model.  

We can conclude that the training number is some extent 

periodical from Figure 6. Therefore, we use the covariance 

function as Eq. (20), 

2 2 '

2

2

2
exp( sin ( ( )))

2
f fk x x

l





         (20) 

With EMGPR framework, the regular of deterministic is 

represented, and the difficulty of choosing the covariance 

function of GPR model is overcome. 

4.5. RUL Prediction with EMGPR 

At last, experiments to predict the RUL of lithium-ion 

battery are realized. We predict the RUL of NASA batteries 

B0005 and B0007 and CACLE battery CS2_8 with the 

proposed EMGPR method.  

Figure 7 shows the predicted result with NASA battery 

B0007. Here, the training data is from cycle 100 to cycle 

140, and the estimated output is from cycle 141 to cycle 168. 

The covariance we use is the periodic type, as shown in Eq. 

(19), and the empirical model is the Gaussian model.  

Figure 8 shows the experiment result on CALCE battery 

CS2_8. The training data is from cycle 122 to cycle 130. 

The predicted output is from cycle 134 to cycle 146. The 

covariance function is the same with that in Eq. (20). And 

the empirical model is double-exponential model. 
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Figure 7. Predicted result of NASA battery B0007 based on 

EMGPR method 
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Figure 8. Predicted result of CALCE battery CS2_8 based on 

EMGPR method 
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The RMSE and MAE of predicted results for battery B0005, 

battery B0007 and battery CS2_8 are shown in Table 3. 

Table 3. Comparison of RMSE and MAE with different 

prognostic methods 

 
Battery index RMSE  MAE  

B0005 0.0805 0.0112 

B0007 0.0663 0.0089 

CS2_8 0.0314 0.0067 

 

From the results above, it can be concluded that the 

prognostic framework of EMGPR can predict the RUL of 

lithium-ion battery satisfied. With this method, the 

estimated result is offered with uncertainty. The uncertainty 

expression parameter confidence bound is small. Moreover, 

the covariance function is easy to choose. 

5. CONCLUSIONS 

In this paper, a fusion prognostic framework of the 

combination of the GPR model and the empirical model 

(EMGPR) is proposed. The main contribution of this paper 

can be concluded as follows. (1) The GPR characteristics is 

studied and experiments have implemented to illustrate that 

the confidence bound is smaller if the training data keep 

closer to the test data. Thus, an important step of prediction 

with EMGPR approach is to choose the proper training data. 

(2) In the framework of the EMGPR approach, the training 

data are divided into two parts. One is self-deterministic 

which can be approximated by the empirical model 

(indicates the degradation trend). The other part is the 

disturbance components which turns out to be periodic and 

can be predicted with the GPR model. The periodicity of the 

disturbance components has a positive influence on the 

decision of the covariance function of GPR. As a result, the 

challenging selection of the covariance function can be 

solved. (3) The empirical models, proved to be effective in 

RUL prognostics of lithium-ion battery, are 

double-exponential model and Gaussian model. In actual 

application, the flow of choosing the proper empirical model 

should be considered. (4) Experimental results with both 

data from NASA PCoE and CALCE show that the EMGPR 

prognostic framework can predict the RUL of lithium-ion 

battery with high performance as well as indicated its 

uncertainty. 

6. FUTURE WORK 

In future, we will explore more effective empirical models. 

The more specific theory will be studied to choose the 

empirical model directly. Moreover, the idea of EMGPR 

can be extended. Other techniques such as filter, smooth 

theory can be combined with GPR method or EMGPR for 

lithium-ion battery prognostics. In addition, uncertainty 

representation such as probability density function (PDF) 

may be utilized. 
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ABSTRACT 

The PHM (Prognostics and Health Monitoring) applications 

play an increasingly important role on the aeronautical 

industry and can provide a wide range of benefits for 
complex systems, such as aircraft landing gears (LDG). 

Indeed forecasting the RUL (Remaining Useful Life) of the 

landing gear subsystems can enable condition–based 

maintenance, improve the aircraft availability and reduce 

unscheduled events.  The purpose of this work is to 

investigate nominal and degraded simulated retraction times 

of a landing gear and to apply a prognostics approach, 

specifically the particle filter (PF) algorithm, from which the 

RUL can be predicted at a given confidence level. 

1. INTRODUCTION 

The future vision for complex systems, such as an aircraft, 

is the self-monitoring and control. The exploitation of 
Prognostics and Health Monitoring (PHM) may lead to 

important competitive advantages in terms of maintenance 

and operations (ACARE, 2010). Over the past years, the 

health monitoring community has vastly extended its 

capability to monitor systems for the improvements on 

forecasting and prediction (Khuzadi, 2008).  

Many authors have already discussed about new paradigms 

for product life-cycle support. Camci, Valentine & Navarra 

(2007), Papakostas et al, (2010), Kalgren et al (2007) and 

Rodrigues, Yoneyama & Nascimento (2012) label the 

importance of the PHM use in aeronautical maintenance and 
for the decision making, by enabling effectiveness on 

troubleshooting, improved logistics and increased fleet 

availability. In other words PHM is the basis for decision 

support in a complex environment enabling better planning 

and subsequently boosting operational availability.  

Figure 1 illustrates the estimation of degradation for a 

system being monitored and the approximation for the 

system RUL as a probability density function (PDF). 

 

 

Figure 1. RUL estimation  

 

 Large complex systems such as aircraft landing gears 

(LDG) are composed of multiple systems and subsystems. 

LDG plays an important role in aircraft safety, comfort and 

stability. Some examples for the LDG failure modes are the 

blocked circuit, degraded seals, leak and vibration (Oliva et 

al, 2012). The aircraft LDG health monitoring may improve 

the aircraft dispatchability and the operational efficiency, 

avoiding unscheduled maintenance, Aircraft-on-Ground 

(AOG) events and other impacts. One example was the 

crash on July 2013 of the flight 345 due to nose LDG 

collapse during landing at LaGuardia Airport 
(AIRNATION.NET). 

 Ji, Zhang & Dong (2011) studied the LDG retraction and 

extension problem and the operational impact of some 

components degradation. Zhou, Yunxia and Rui (2011) 

modeled the LDG dynamics and studied structural problems 

__________________________________________ 

Cerdeira, P.B.O. et al. This is an open-access article distributed under the 

terms of the Creative Commons Attribution 3.0 United States License, 

which permits unrestricted use, distribution, and reproduction in any 

medium, provided the original author and source are credited. 

Annual Conference of the Prognostics and Health Management Society 2013

616



Annual Conference of the Prognostics and Health Management Society 2013 

2 

occurred by the effect of the hard landing and suggested the 

adoption of PHM solution for this issue. 

The present work is composed by a PF algorithm for the 

landing gear retraction subsystem in order to estimate its 

RUL. A computational model proposed by Denery et al 

(2006) was used to simulate the dynamics and different 
degradation conditions of the LDG retraction subsystem.    

Regarding Particle Filter (PF), it is considered state of the 

art in nonlinear non-Gaussian state estimation (NASA; 

Orchard; Vachtsevanos et al, 2006).Goebel et al (2008) 

made a comparison between PF and other regression 

methods for a battery health management, and concluded 

that PF is a sophisticated technique considering the accuracy 

for the smaller estimations. Saha & Goebel (2009) modeled 

Li-ion battery capacity depletion by the use of PF 

framework for the predictions of the EOD (end-of-

discharge) and EOL (end-of-life) effectively. 

This paper is organized as follow: in Section 2, a brief 
description of the landing gear retraction model is 

presented; in Section 3, the PF algorithm is explained, in 

Section 4 the simulation and the estimation results are 

discussed, followed by conclusions in Section 5. 

2. LANDING GEAR SIMULATION MODEL 

The first step for the generation of landing gear data was the 

reuse of an existing Landing Gear (LDG) model proposed 

by Denery et al (2006). The reused model is a faithful 

description of the right main LDG of HL20 aircraft in terms 

of physical representation. It was implemented in 

Simulink® using some blocks of the SimMechanics® tool.    

Figure 2 presents the Simulink block diagram employed in 

the LDG model simulations. 

 

 

Figure 2. LDG Model  

 

We included three special blocks on the model shown in 

Figure 2, compared to the original file: SimIn, SimOut and 

Gaussian Noise.  

The SimIn block represents the landing gear actuator force 

and it was used to introduce degradation effects. 

Gaussian noise block was added to simulate imperfections 

in the angular displacement measurements. 

The results of each simulation were stored in the Matlab 

workspace by using the SimOut block. 

The blocks in gray are from the original model, the Inner 

and Outer blocks represent the aircraft structure restrictions 
and the Env block controls the environment, including 

dynamic simulation, gravity, tolerance and restrictions of 

the movement modes. None of the parameters inside these 

blocks was changed.  

2.1. Input Model 

Figure 3 represents the actuator input force over LDG 

cycles, representing the system degradation, due to loss of 

hydraulic pressure, for example. Each cycle corresponds to a 

LDG retraction. An initial nominal force retraction of 

5600N was defined and in every step a random value 

between 0N and -50N was added. 

 

 

Figure 3. Input Force 

 
The decreasing actuator input force may be associated with 

some failures modes. Some data observed at field events 

indicates linear loss of hydraulic pressure, degraded seals or 

valves and clogged hydraulic lines. Based on this field 

empirical data, the profile shown on Figure 3 was 

considered in this study. 

2.2. LDG simulation 

The LDG model outputs the retraction angle, however an 

algorithm takes into account this output in order to define 

the LDG retraction time. In this study it was defined the 

retraction angle that indicates the maximum degradation 

effect correlated to the retraction time. 

The first simulation step was to establish an index, as shown 

in equation (1). A similar function is described by Azimi-

Sadjadi et al (2000) as an uncorrelated-features assumption 
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by the Fisher discriminant function, which in this case is 

used to define the angle that maximizes the degradation 

effect: 

30

)(

22

2







n

I

ND

ND




                                    (1) 

 

where µD is the mean retraction time of a set of simulations 

for each input force, µN mean nominal retraction time, σD 

degraded retraction time standard deviation, σN nominal 

retraction standard deviation, I degradation index, n number 

of simulations. Figure 4(a) represents the LDG retraction 

simulation for the nominal input force, and shows the mean 

and the standard deviation of the retraction times between 0 

and 70 degrees. Figure 4(b) illustrates the LDG retraction 

simulation with a degraded input force with the mean 
retraction time and the standard deviation.  

 

 
Figure 4. Comparison Simulation for LDG Retraction 

 

Figure 4(b) shows slower retraction times than the ones 

shown in Figure 4 (a), what illustrates the degradation. 

In order to get the best angular displacement which 

represents the maximum degradation index, four input 

forces were defined (4000N, 4500N, 5000N and 5600N). 

Arbitrarily, it was decided that the nominal force was 

5600N and the considered degraded conditions were with 

forces of 5000N, 4500N and 4000N. Note that the model 

retraction starts with 0° and stops with 90°. 

We found reasonable 30 simulations for each input force 

and a comparison was made among the µ and σ of the 

nominal force and the degraded ones, as represented in 
equation (1). According to the results, the 70 degrees 

presented the maximum index. In other words, the 

degradation index was established as being the retraction 

time from 0 to 70 degrees. Figure 5 illustrates the output of 

the first part of the simulation step results. 

 
Figure 5. Best Index for Angular Displacement 

 

The second step was to find the failure threshold. We had 
established the 3000N force as the minimum input force and 

set 30 simulations in order to get the µ for the failure 

retraction time and it was around 2.93 seconds. This result is 

the threshold input for the PF algorithm, to be detailed in 

Section 4.1. Note that the 3000N force was adopted as being 

the minimum force needed to perform the LDG retraction. 

Finally, the simulations were performed with an initial 

actuator force and decreased by a delta random force value. 

The results of the LDG retraction time simulation were 

recorded to be used on the PF algorithm.  

Table 1 shows the initial parameters used in LDG model. 

Table 1. LDG Simulation Parameters 

Parameter Value Unit 

Gaussian Noise Mean 0 Degree 

Gaussian Noise standard 

deviation 
2 Degree 

Time sampling 0.1 Second 

Total Simulation time 10 Second 

Initial Actuator Force 5600 Newton 

Delta Force (0,-50) Newton 
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Figure 6 illustrates the steps of the landing gear simulation. 

 

 
Figure 6. Schematic of LDG Simulations 

3. PARTICLE FILTER 

Particle Filter in model-based prognostics utilizes a concept 

of sequential importance sampling and Bayesian theory.  

The PF algorithm involves prediction and filtering steps. 

The prediction step uses both previous state and the process 

model to generate an a priori probability density function 

(PDF) for the state at the next time instant, as shown in 

equation (2). 

 

11:1111:1 )|()|()|(   kkkkkkk dxzxPxxPzxP     (2) 

  

The filtering step considers the current observations Zk and 

the a priori PDF to generate the posteriori state PDF, using 
Bayes’ formula as shown in equation (3). 
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The core idea is to construct a PDF of the state based on all 

available information. For nonlinear systems the particles 

are generated and recursively updated from a nonlinear 

process model that describes the evolution in time, in this 

case on each cycle, under analysis of a measurement (Zk) 

and the priori estimate of the state PDF (Goebel et al., 

2008).  

Figure 7 summarizes the landing gear PF flowchart. The 

prediction parameters utilize the damage state model, as 

shown in equation (4), for prediction and filtering step. 

 

  

 

Figure 7. Particle Filter Flowchart 

  

The landing gear retraction fail model is an empirical 

function, that can be written recursively in terms of the 

previous step, and it was obtained from the simulation 
measurements. It is represented in equation (4): 

 

 
bkaekx )(                                      (4) 

 

  

where )(kx  is the prediction parameter (LDG retraction 

time) of k cycles. The coefficients a and b represents the 

exponential damage state. More details about this model can 

be found in Section 4.1. 

 The particles are generated and updated from the prior 
knowledge of the state PDF, then propagated through 

landing gear cycles using the nonlinear equation (4) which 

is recursively updated by using the observed data 

(measurements). The algorithm than continues with the 

propagation of the particles until the failure threshold to 

give the RUL PDF. 

 Figure 8 summarizes one step for PF algorithm cycle 

adapted from An, Choi & Kim (2012).  
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Figure 8. PF algorithm steps 

4. SIMULATION 

4.1. Simulation scenario 

The LDG model described on section 2 was used to 

simulate the retraction times given the Gaussian noise 

(Figure 2) and the degradation profile (Figure 3) We 

established 60 points as observed data (Zk). Figure 9 shows 

the measure values and the retraction time failure threshold.  

 

 
Figure 9. Retraction Time Measurement 

 

The initial estimations for the coefficients b0 in equation (4) 
were found by fitting an exponential function through the 

measurement values. It was adjusted in a C.I. to 

accommodate the samples inside it. 

The initial damage value x0 was set with the same initial 

value as the a0.  

Figure 10 shows the polynomial curve, as well as the 

confidence interval. 

 
Figure 10. Exponential fitting 

 

Table 2 shows the parameters of this first simulation 

considering 0.1s for the time sampling. U(min,max) denotes 
a uniform probability density function with support 

[min,max].  

 

Table 2.  PF Simulation Parameters 

Parameter Value Unit 

Threshold 2.93 Second 

Particles 10e3  

Significance 

Level C.I. 
95%  

Initial Damage 

x0 
U(1.6,1.9) Second 

Initial Parameter 

b0 
U(0,0.008)  

Initial  Std 
Deviation of 

Measurement 

Error s0 

U(0,0820, 0,0902) Second 

 
The distribution of the standard deviation measurement 

error was obtained by the examination of the first 20 

measure values of the LDG retraction time in a bootstrap 
procedure. 

More two scenarios were simulated with different time 

sampling 0.05s and 0.2s, following the same steps as 

described in Section 2.2.  Table 3 shows the parameters for 

different time sampling simulation. 
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Table 3. PF Simulation Parameters 

Parameter 
Value 

(0,05s) 

Values 

(0,2s) 
Unit 

Threshold 2,33 2,8 Second 

Initial Damage 
x0 

U(1,35, 
1,55) 

U(1,6, 
1,8) 

Second 

Initial 

Parameter b0 

U(0, 

0,008) 

U(0, 

0,008) 
 

Initial  Std 

Deviation of 

Measurement 

Error s0 

U(0,0579, 

0,0636) 

U(0,0838, 

0,0905) 
Second 

   

4.2.  Simulation Results 

After defining the parameters, we ran a set of simulations 

adjusting the significance level and compared results with 

true simulated data until the failure threshold. 

The estimation of the RUL for the first simulated scenario, 

considering the 0.1s as time sampling, resulted on a median 

value around cycle 49 and the interval considering the 

significance level was between cycles 40 and 60.  

We can observe in Figure 12 the predicted future damage 

states, which were obtained by propagating the particles 

though the damage model until it reaches the Failure 
Threshold.  

Figure 12 shows the predictions of the LDG retraction time 

and true simulated data after cycle 60 until the failure 

threshold. Most of the data fits inside the prediction interval 

of the PF. 

 

Figure 11. PF Predictions 

 

 

Figure 12. PF Predictions versus Measurement 

 

A set of simulations were done using different time 

sampling in other to demonstrate how this parameter can 

interfere into the precision of the RUL. Figure 13 indicates 

the estimation for 0.05s time sampling and Figure 14 

indicates the estimation for 0.2s time sampling. 

 Figure 13 shows a predicted growth rate slightly steeper 

and a lower dispersion with respect to the model curve when 

compared to the Figure 14. This analysis indicates greater 

dispersion between the values for samples of 0.2s and RUL 

forward in time. 

 

Figure 13. Estimation for 0.05s Time Sampling 
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Figure 14. Estimation for 0.2s Time Sampling 

 
Through Figure 15 we can make a comparison between the 

RUL for the three different time sampling simulations 

(0.05s, 0.1s and 0.2s). It can be noticed that the higher the 

interval between samplings (0.2s), the higher is the standard 
deviation as one can see the measurements outside the C.I 

crossing the failure threshold in Figure 14. 

The estimated failure mean cycle for the time sampling 

0.05s, 0.1s and 0.2s is 55 °, 49 ° and 79°, respectively, and 

the standard deviation is 6.18, 6.36 and 9.39. In this study 

the time sampling of 0.2s is inappropriate since the failure 

occurs before the estimation of the RUL. 

 

 
Figure 15. RUL for Different Sampling Times 

 

5. CONCLUSIONS 

This paper presented a method to obtain the remaining 

useful life for the landing gear retraction subsystem, based 

on PF techniques for estimation. 

A landing gear model was used to simulate the system 

dynamic behavior and adapted to establish the degradation 
index. For the failure mode under investigation a model was 

presented based on the simulated data. 

The results obtained by simulating the PF algorithm with 

measured values from the LDG model allowed a reasonable 

prediction level against the true data for the 0.05s and 0.1s 

time sampling. However the 0.2s time sampling is 

considered inappropriate for the remaining life prediction. 

Future research may extend the proposed models for the 

LDG extension. To mature the algorithm, aircraft raw data 

may be analyzed using the PF algorithm. Finally other 

opportunity could include the comparison of the prediction 

interval using a different PHM approach.  
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ABSTRACT 

Filtration is a critical process in many industrial systems to 

obtain the desired level of purification for liquids or gas. 

Air, fuel, and oil filters are the most common examples in 

industrial systems. Filter clogging is the main failure mode 

leading to filter replacement or undesired outcomes such as 

reduced performance and efficiency or cascading failures. 

For example, contaminants in fuel (e.g. rust particles, paint 

chips, dirt involved into fuel while tank is filling, tank 

moisture rust) may lead to performance reduction in the 

engine and rapid wear in the pump. Prognostics has 

potential to avoid cost and increase safety when applied to 

filters. One of the main challenges of prognostics is the lack 

of failure degradation data obtained from industrial systems. 

This paper presents the process of design and building of an 

experimental rig to obtain prognostics data for filter 

clogging mechanism and data obtained from the rig. Two 

types of filters have been used during the accelerated filter 

clogging and 23 run-to-failure data have been collected. 

Flow rate and pressure sensors are used for condition 

monitoring purposes. The filter clogging has been recorded 

through a camera to evaluate the findings with pressure and 

flow sensors. The data collected is very promising for 

development of prognostics methodologies. 

1. INTRODUCTION 

Filtration is basically described as a unit operation that is 

separation of suspended particles and fluid utilizing a 

medium where only the liquid can pass (Cheremisinoff, 

1998). Filtration phenomenon is interest of several 

engineering processes including automotive, chemical, 

reactor, and process engineering applications. Besides, 

several industrial applications such as food, 

pharmaceuticals, metal production, and minerals embrace 

filtration process (Sparks, 2011). 

Sharing an important role with pumps, fuel filters filtrate 

dirt, contaminants in the fuel system such as rust & dust 

particulate which has been released by holding tank, pipe 

work, paint chips, tank moisture, or other numerous type of 

dirt has been delivered via the supply tanker (Wilfong et al., 

2010). Consequences like engine & pump performance 

reduction due to increased abrasion and inefficient burning 

in the engine are the main motivation for necessity of fuel 

filtration. System flow rate and engine performance 

decreases once a fuel filter is clogged where it doesn’t 

function well in its desired operation ranges. A picture of 

clogged and clean filter is shown in Figure 1. The difference 

in between clogged and clean mesh is visible. Fuel filters 

replaced & cleaned on a regular basis. Monitoring and 

implementation of prognostics have the potential to avoid 

costs and increase safety. 

 
Figure 1. Clogged vs. clean filter (WikiHow, 2013) 

 

The rest of the paper is organized as follows. Section two 

gives a brief literature review of prognostics in condition-

based maintenance (CBM), and literature of physics-based 

modeling on filter clogging. Section three discusses in detail 

the filter clogging experimental scenario under accelerated 

aging conditions. The paper concludes with discussion of 

the results and future work. 

Eker et al. This is an open-access article distributed under the terms of 

the Creative Commons Attribution 3.0 United States License, which 
permits unrestricted use, distribution, and reproduction in any medium, 

provided the original author and source are credited. 
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2. LITERATURE REVIEW 

Condition-based maintenance (CBM) is a predictive 

maintenance strategy, where the maintenance tasks are 

performed when the need arises. The necessity concept is 

determined by assessing and trending the health condition of 

the equipment (Camci and Chinnam, 2010; Eker et al., 

2011). Although CBM minimizes the spare part costs, time 

spent on maintenance and system downtime; it has 

difficulties such as modeling failures or installing and using 

of monitoring equipment.  

Diagnostics and prognostics are the two major disciplines of 

CBM. Diagnostics involves identifying degradation and 

current health status of asset as well as revealing their 

causes and locations which is relatively mature area 

compared to prognostics. It aims to stop and schedule a 

maintenance task for the system once an abnormality has 

been detected or let the system continue otherwise. In 

general, incipient failures follow a slow degradation path 

(Kwan et al., 2003). Detection of failure progression is more 

valuable compared to the detection of failure once it has 

reached to severe point. Furthermore, it is a prerequisite for 

prognostics (Xiong et al., 2008).  

Prognostics is forecasting the systems or components future 

health level by trending the current health level up to failure 

status and predicting the remaining useful life (RUL). It is 

considered to be one of the most challenging and key 

enabling technology among the other phases of CBM 

(Zhang et al., 2006; Peng et al., 2010; Daigle and Goebel, 

2010). 

Several studies on modeling of filtration process and fuel 

system investigations have found in the literature. (Roussel 

et al., 2007) has experimentally explained the general 

clogging process as a function of; ratio of particle to mesh 

hole size (D), solid fraction (Ø), and the number of grains 

arriving at each mesh hole during one test (Ne ). They 

conducted several clogging experiments and optimized the 

clogging parameters in their model. (Park, 2002) has 

investigated F-5F aircraft engine failure caused by erosion-

corrosion of a fuel manifold. They claimed that engine 

failures are caused by sudden pressure drop due to particles 

(mostly steel and iron) from the welding beads of fuel 

manifold. Internal welding beads are corroded and metal 

particles spread out which makes the fuel pump failed. 

Results are obtained by using EDX analysis of related 

surfaces. A comprehensive investigation of UAV fuel 

systems has been conducted in IVHM Centre, Cranfield 

University, UK (Niculita et al., 2012; Niculita et al., 2013). 

Several failure scenarios including clogged filter and faulty 

gear pump has been investigated and mostly diagnostics 

based studies have been conducted. Direct Proportional 

Valves (DPV) that have the ability to mimic fuel filter 

blockage have been utilized to imitate the clogging filter 

scenario. Darcy’s Law and Kozeny-Carman Equations are 

two commonly used formulations applied in in the field of 

fluid dynamics to model the pressure drop of a fluid flowing 

through a porous medium (Carman, 1997). (Sappok et al., 

2010) worked on the effects of ash accumulation in diesel 

particulate filters (DPV). They presented the results of their 

detailed measurements with formulated lubricants, 

correlating ash properties to individual lubricant additives 

and their effects on filter pressure differentiation. 

(Pontikakis et al., 2001) developed a mathematical model 

for dynamic behavior of filtering process in ceramic foam 

filter. The model is able to estimate the filtration efficiency, 

accumulation of particle mass in the filter, and pressure drop 

throughout a filter. 

3. FILTER CLOGGING EXPERIMENTAL RIG 

This section discusses in detail the filter clogging 

experimental scenario under accelerated aging conditions. 

We study the effects of different pump speed and solid ratio. 

Accelerated degradation data collecting mechanism for 

prognostic purposes is discussed in this section. 

3.1. Design & Installation 

Filter clogging system was designed as cyclical in order to 

have continuous flow so that system flow continues till the 

filter has fully clogged. It’s not necessary to add particles or 

water as shown in Figure 3 and Figure 4. Figure 3 is the top 

down perspective view of the real test rig with the 

components tags. 

A peristaltic pump was installed in the system to maintain 

the flow of the suspension prepared. The pump sucks the 

suspension with a desired flow rate and pumps it through 

the filter and letting the suspension pour into the tank back. 

Pressure sensors across the filter and a flow meter was 

installed in the system to measure the pressure difference 

and flow rate during the clogging.  

A colorful (necessary for image processing), solid type of 

particles with a desired size range, having the features of; 

low water absorption level, closer to water density level, and 

water-insoluble, was determined to be the optimal way for 

the particle selection process. Polyetheretherketone (PEEK) 

particles have been selected among several other types of 

solids. The 450PF PEEK particle size distribution is shown 

in Figure 2. A stirrer was installed in order to sustain 

constant amount of particles flowing through the system. 

Stirrer was necessary since the PEEK particles sink after a 

while leaving the water clean due to the density difference. 

Pressure and flow rate values are considered to be health 

indicators of filter degradation. Pressure difference across 

the filter is expected to increase and flow rate is expected to 

be decreased during a clogging process. A high quality 

macro lens camera was installed in the system and macro 

pictures of the filter were taken in every two seconds. A 

macro picture and zoomed view of a filter mesh is shown in 

Figure 5. 
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Figure 2. PEEK particle size distribution 

 

The mesh inside the filter can clearly be captured and it can 

be utilized in image processing applications for clogging 

rate calculations which gives the ground truth information 

of clogging.  Other sensory information can be compared 

with the clogging rate obtained from the macro pictures 

dataset. 

 

Figure 3. Filter clogging rig system design 

 

 

Figure 4. Filter clogging test rig & components 

 

Components of the system were selected so that no other 

component will degrade other than the filter due to the solid 

particles inside the liquid. A peristaltic pump and magnetic 

flow meter were selected since they don’t get affected by 

the debris inside the liquid. Peristaltic pump compresses the 

flexible tube connected to the rotor in which the pump does 

not interconnect with the suspension. Similarly, magnetic 

flow meters don’t have moving parts inside where 

existences of particles are not harmful to the sensor at all. 

The system design shown in Figure 3 was selected among 

several other types of designs since it promises better 

solution for degradation process and requires less human 

labor. 

 
Figure 5. Zoomed capture of a filter mesh 
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125 micron pore sized car fuel filters have been selected to 

be used in the system as shown in Figure 6. The ratio of 

filter pore size to the mean size of particles is higher than 1 

which means the clogging process is stochastic since the 

majority of particles can flow through the mesh without 

being captured. Bridges are being formed and clogging is 

occurred when the considerable amount of particles 

approaches to each hole (Roussel et al., 2007). 

 

Figure 6. Filters type 1 and type 2 

 

A box was designed to cover the filter area. The interior side 

of box was covered with a white colored material and a light 

source was directed inside the box to provide a constant 

uniform light so that the filter is isolated from varying 

environmental light. 

3.2. Data Collection 

This section provides the details of accelerated clogging 

experiments of two types of fuel filters. 

125 micron pore sized two type of fuel filters have been 

utilized for clogging experiments in the lab environment and 

pressure and flow rate measurements have been collected. 

Details of the operating conditions are shown in Table 1. 

Maximum amount of particle capturing levels for the filters 

have been measured and the suspension solid ratio have 

been prepared considering these values. 10 and 12 run-to-

failure experiments have been conducted for filters type 1 

and type 2 respectively. Each clogging experiment has run 

and monitored till the pressure drop (e.g. Differential 

Pressure, ∆P) has reached to peak value and remains stable 

for a while as shown in Figure 7. 

Basically ∆P values calculated as subtracting the pressure 

values obtained from pressure sensor 1 (i.e. upstream 

pressure) from the pressure sensor 2 (i.e. downstream 

pressure) values. Upstream pressure and ∆P values show 

similar degradation profile since pressure values collected 

from pressure sensor 2 are quite low range compared to 

upstream pressure. Figure 7 plots show the raw 

measurements obtained from these three sensors. Upstream 

and downstream pressure values show linear degradation for 

the majority of lifetime and exponential degradation 

behaviors are seen after that as shown in plot 1 and plot 2, 

Figure 7. Exponential degradation behavior of downstream 

pressure measurements can only be seen in the zoomed 

version (i.e. plot 2, Figure 7). On the other hand, flow rate 

values remain same for a long period of time and show a 

dramatic drop at the end of experiments due to clogging. 

 

Figure 7. Raw sensor measurements 

 

Macro lens camera was set to take pictures once in two 

seconds during each clogging test. Experiments were 

stopped due to prevent potential failures in the other 

components of the system. Examples of the pictures during 

the filter clogging are shown in Figure 10. Clogging of the 

filter can be seen clearly by examining the pictures. Image 

processing techniques will be implemented on these pictures 

to obtain the ground truth information regarding the filter 

clogging level. Accelerated aging experiments took around 

four minutes with the operating conditions mentioned in 

Table 1. At the end of experiments, flow rate values are 

dropped 57% and 48% in average for filters type1 and type2 

respectively.  

Annual Conference of the Prognostics and Health Management Society 2013

627



Annual Conference of the Prognostics and Health Management Society 2013 

5 

 

Figure 8. Filter type1 experiment 6 smoothed vs. raw data 

Table 1. Operating conditions 

Filter Type Type 1 Type 2 

Pore Size (micron) 125 125 

Mean Particle Size (micron) 60 60 

Max. amount of particles captured  

by the filter (g) 

5.2 7.0 

Total weight of particles in the 

tank (g) 

26.0 21.0 

Water Weight in the tank (g) 7507.9 7500 

Solid Ratio (beginning) 0.35% 0.28% 

Solid Ratio (end of clogging) 0.28% 0.19% 

Solid Ratio change (max) 20% 33% 

Flow Rate (RPM) 211 211 

 

Smoothing has been performed on the raw dataset obtained 

from experiments. It has been done by taking the median 

values of each 100 data points since the raw data was 

collected with 100 Hz sample rate. Smoothed vs. raw data 

plot is shown in Figure 8 and Figure 9. Figure 9 depicts the 

zoomed two seconds (200 data points) of an experiment and 

corresponding two smoothed points. In addition, it shows 

the pressure peak reflections of the pump pulses. 

 

Figure 9. Zoomed pressure plot of a sample 

Figure 11 and Figure 12 depict ∆P and flow rate 

measurements obtained from filter type one and two 

respectively. 

 

Figure 10. Filter pictures during an experiment 

 

 

 

 

Annual Conference of the Prognostics and Health Management Society 2013

628



Annual Conference of the Prognostics and Health Management Society 2013 

6 

 

 

 

Figure 11. Filter type1 smoothed data 

 

 

Figure 12. Filter type 2 smoothed data 

3.3. Discussions Regarding the Data Collection & New 

Rig Design and Experiments 

After analyzing the dataset we collected, it has been realized 

that the data collection can be improved more. Discussions 

about the dataset are summarized in Table 2. 

Table 2. Dataset discussions & action table 

Challenge Action Goal 

Picture quality 

& light 

reflection 

problem 

Covering the 

filter area with 

a chamber 

Image processing 

improvements 

Keeping the 

operating 

condition 

same 

Several 

enhancements 

done listed 

below 

Reproducibility 

Change in 

solid ratio 

Putting 

another tank 

in the system 

Physics-based modelling 

enhancement 

High variety 

in filter 

lifetimes (22% 

- 30%) 

Some 

enhancements 

done listed 

below 

• Reproducibility 

• Improvements in 

prognostic 

modelling 

High 

oscillation 

amplitudes in 

pressure 

measurements 

Putting 

dummy filters 

or chambers 

in the line 

before 

upstream 

pressure 

sensor 

• Lowering oscillation 

amplitude 

Vague 

clogging 

pictures 

Testing of 

lower solid 

ratios 

To see the degradation 

clearly on the macro 

pictures 

Bubbles 

emerge in the 

filter 

Filling all the 

system with a 

clean water 

prior to tests 

• Avoiding the bubble 

effect on clogging of 

filter mesh 

• Reproducibility 

Invisible flow 

movements 

Using 

colourful 

liquid 

To track the flow inside 

the filter during the 

clogging 

 

Several other experiments have been conducted by taking 

into account of these concepts. First we have started 

changing the design of the test rig by putting another tank in 

the system. In the main tank we prepared the suspension 

with a lower solid ratio (i.e. 0.14%) in order to see the 

clogging process more clearly in the pictures and have 

longer lifetime for filters. Another tank was initially empty 

in the beginning of each test. End of tubing has been 

connected to other tank so that the solid ratio did not change 

during the experiment. Test rig design was cyclical for the 

previous experiments. End of tubing was connected to the 

same tank so solid ratio used to change during the 
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experiment due to considerable amount of particles was 

being captured by the filter. In the new experiments, 

suspension was prepared with a specific solid ratio so that 

the main tank became almost empty at the end of each 

experiment ended up with a clogged filter. We utilized only 

filter type 2 since the mesh material quality and robustness 

is quite higher than the type 1 filter. 

It has been seen that the length of soft tubing was affecting 

the life variety of experiments, particle capture rate, and also 

the pressure measurement oscillation amplitude. We didn’t 

have chance to avoid using soft tubing since the peristaltic 

pump mechanism requires soft material in order to pump it 

by squeezing it. Hereupon we have made the length of soft 

tubing as short as possible and constant for each experiment 

and results got better and have become reproducible as 

shown in Figure 13. In that figure smoothed pressure and 

flow rate measurements of six different run-to-failure 

experiments are shown. And the lifetime variation in these 

experiments are reduced to 12% (variation was 25% in 

average before). 

 

Figure 13. New experiments with constant solid ratio 

After these experiments we have tried to reduce the 

fluctuation amplitude which would make problems in 

physics-based modeling and reproducibility concerns. In 

order to do that we installed dummy filters in the system 

just before the upstream pressure sensor. Basically a dummy 

filter is an empty chamber which helps to reduce the pump 

pulse effects. Addition of dummy filter in the line helped to 

decrease the fluctuation amplitudes in pressure 

measurements. Comparison of pressure values with or 

without dummy filter is shown in Figure 14. Pressure 

fluctuation due to the pump reduces dramatically with a 

dummy filter. Adding a second dummy doesn’t change as 

the way the first one did. That amplitude (~2PSI) of 

fluctuation in pressure is similar to the flow created by the 

atmospheric pressure. We did an experiment with the 

atmospheric pressure, where the pump wasn’t used. It gave 

the similar amplitude to the experiments done with one or 

two dummy filters. 

 

Figure 14. Dummy filter effect comparison 

Finally we have tried to get rid of bubbles occur inside the 

filter. In order to do that, we filled all the system with clean 

water prior to the tests. We made sure that no air left in the 

system. Then we managed to get rid of bubbles. However 

fluctuations got back to the same level similar to the system 

without a dummy filter which means the dummy filter with 

full of water started reflecting the pressure pulses generated 

by the pump. 

4. CONCLUSION & FUTURE WORK 

This paper presents design & data collection process for 

filter clogging phenomenon to be used in prognostic 

application. Accelerated filter clogging experiments have 

been conducted. Pressure and flow rate signals have been 
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collected during the experiments and macro pictures of 

filters have been taken too. The experiments were continued 

till each filter got clogged and considerable amount of 

reduction in the flow rate was monitored at the end of each 

clogging. Operating and environmental conditions are kept 

same. Two different types of fuel filters have been clogged 

using PEEK polymer particles & water suspension. Several 

enhancements have been done on data collection & design 

to improve the reproducibility and to help the physics-based 

modeling. Results show that the enhancement actions taken 

provide better reproducibility and an improved dataset. 

Accelerated filter clogging experiments are planned to be 

conducted with the latest operating conditions and test rig 

design. Data-driven, physics-based and hybrid modeling 

studies will be done on the final dataset to be collected. 
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ABSTRACT 

Declining defense budgets have required the U. S. Military 

to develop innovative ways to cut the cost of readiness. 

Avoiding costs within operations and support activities is 

achievable by reducing the frequency of maintenance 

events. This must be done without sacrificing the safety of 

personnel, pose no harmful effect on aircraft airworthiness, 

or decline mission readiness. Condition Based Maintenance 

technology has long been presented as a major enabler for 

realizing cost avoidance. For more than a decade, the 

Department of Defense has steadily become more interested 

and involved in the development, installation and utilization 

of Condition Based Maintenance technology. The dedicated 

utilization of the technology has, in several instances, been 

instrumental in lowering the cost of operational readiness 

and has reduced soldiers’ maintenance burden. The Army’s 

employment of the technology, particularly by the Apache 

Attack Helicopter Project Management Office and AH-64 

aviation units, has supported the Army Aviation and Missile 

Command Logistics Center in its daily mission to achieve 

the goal of Cost-Wise Readiness. As an example, the Army 

is benefiting from an ongoing project that has extended the 

Apache AH-64D Main Transmission time between overhaul 

and its Sprag Clutch retirement change life limit. Benefit 

metrics from flight hour extensions have been calculated 

and validated. This paper presents the substantiated positive 

results achieved from one ongoing project and the dedicated 

utilization of deployed Condition Based Maintenance 

technology. In terms of cost-avoidance, a 9.2:1 return on 

investment from the project has occurred, within 24 months. 

1. INTRODUCTION 

Declining defense budgets have required the U. S. Military 

to develop innovative ways to cut the cost of readiness. 

Avoiding costs within operations and support (O&S) 

activities is achievable by reducing the frequency of 

maintenance events. This must be done without sacrificing 

the safety of personnel, pose no harmful effect on aircraft 

airworthiness, or decline mission readiness. Condition 

Based Maintenance (CBM) technology has long been 

presented as a major catalyst for realizing cost avoidance. 

For more than a decade, the Department of Defense (DOD) 

has steadily become more interested and involved in the 

development, installation and utilization of CBM. The 

dedicated utilization of the technology has, in several 

instances, been instrumental in lowering the cost of 

operational readiness and has reduced soldiers’ maintenance 

burden. 

 

The Army’s use of CBM technology, chiefly by the Apache 

Attack Helicopter (AAH) Project Management Office 

(PMO) and its AH-64 aviation units, has supported the goal 

of Cost-Wise Readiness (CWR). CWR is a top objective of 

the Army Aviation & Missile Command (AMCOM) 

Logistics Center (ALC) in its mission. One goal of the 

Supportability and Sustainment Directorate (SSD), 

Sustainment Optimization & Analysis (SOA) – Analysis 

Division is to support this mission by substantiating CWR 

wins. As an example, the team collaborated with other U. S. 

Army Aviation offices to substantiate the benefits from an 

ongoing CBM project, one which has successfully extended 

the AH-64D Main Transmission time between overhaul 

(TBO) and its internal Sprag Clutches’ retirement change 

(RC) Life limit. CBM benefit metrics from these flight hour 

extensions have been identified, calculated, and validated. 

2. BACKGROUND  – THE ISSUE BEHIND THE COST DRIVER 

In the fall of 1999, all 743 U. S. Army Apache Helicopters 

were grounded in order to inspect the Main Transmission 

Accessory Gearboxes. This decision followed the June 1999 

accident of an Israeli Air Force AH-64, where it was 

determined that the accident was caused by the dual failure 

of the primary and secondary Accessory Gearbox Sprag 

Clutches. U. S. Army AH-64s had experienced six similar 

M. Carter. This is an open-access article distributed under the terms of 

the Creative Commons Attribution 3.0 United States License, which 
permits unrestricted use, distribution, and reproduction in any medium, 

provided the original author and source are credited. 
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failures. Fortunately, each failure occurred while the aircraft 

weren’t flying. In all cases, the clutches experienced 

unexpected early wear and caused untimely clutch failure. 

Gearboxes, including the clutch, with greater than 1000 

flight hours were immediately replaced. Fig. 1 shows the 

internal workings of the AH-64D Main Transmission. Gears 

shown in the forefront of the illustration are the accessory 

gears driven by the primary and secondary Sprag Clutches. 

 

 

     Fig. 1 Apache AH-64D Helicopter Main Transmission 

 

The Sprag Clutches provide the mechanical power input to 

the helicopter’s hydraulic, electrical and pressurized air 

systems via the accessory gears. Because of the important 

nature of the clutch’s functionality, it is categorized as a 

Critical Safety Item (CSI) or a flight safety part. Failure of a 

CSI/flight safety part could cause a catastrophic or critical 

failure. Such critical failure could result in the loss or 

serious damage to the aircraft and/or weapons system, an 

unacceptable risk of personal injury or loss of life, or an 

uncommanded engine shutdown that jeopardizes safety. The 

TBO of the transmission, to include its clutches was 

originally 2000 hours. However, after the entire fleet was 

grounded for inspection, the clutches were given a highly 

conservative 1000 hour RC Life limit. This constricted life 

limit has significantly increased O&S costs for many years. 

In accordance with Army Regulation 700-82, the clutch is 

only replaceable at the depot maintenance level. Therefore, 

the main transmission had to be removed and replaced by 

Apache units every 1000 hours, at a minimum. In addition, 

the maintenance burden was increased due to the 

exceedingly constrictive RC Life limit requirement. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     Fig. 2 Transmission Accessory Gearbox Sprag Clutch 

3. THE O&S COST MITIGATING REMEDIATION PROJECT 

The AAH PMO is responsible for planning, directing and 

controlling the allocation and utilization of all resources 

authorized for the execution of the Apache AH-64 Program. 

By authority of the Army Acquisition Executive and the 

designation of the Program Executive Office (PEO), the 

AAH PMO performs as the Army’s centralized manager for 

the AAH Project. Within that mission, the PMO directs and 

controls all phases of research, development, procurement, 

production, distribution, logistic support, fielding, fiscal and 

budgetary management of the Apache Attack Helicopter and 

its sub-products. 

 

This role was exemplified by the AAH PMO’s coordination 

with the AMCOM G3 CBM Office, the Army Aviation and 

Missile Research Development and Engineering Center 

(AMRDEC) Aviation Engineering Directorate (AED) CBM 

office, the Engineering Directorate (ED) Reliability, 

Availability, Maintainability (RAM) office, the Redstone 

Test Center (RTC) laboratory, The Boeing Corporation 

(aircraft OEM), and BorgWarner (Sprag Clutch OEM). 

 

Details of the problem being solved and what approaches 

were taken:  The AAH community at-large suffered from an 

inflated transmission removal rate due to the unquestionably 

conservative Sprag Clutch Life Limit.  In support of the 

AAH PMO’s number one goal to extend the Sprag Clutch 

up to 2000 hours which would reflect the Main 

Transmission’s TBO, the AED Apache Division office 

proposed the Sprag Clutch Endurance Test Project.  

Funding for the project was approved and provided by the 

AMCOM G3 CBM Office during FY10. Well-coordinated 

engineering, testing, and analyses efforts were executed. 

The approval for the extension was limited exclusively to 

those AH-64D Helicopters which actively participate in 

Degradation 

Observed 
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CBM using the MSPU. Such participation is defined in 

AED’s AH-64D CBM Manual.  The effort was led by the 

AED CBM Office and the cost, schedule and performance 

of the work was overseen by the AMCOM G3 CBM Office. 

The SSD SOA Office continues its oversight of the project. 

It has assumed the responsibility for CBM since AMCOM 

executed a recent reorganization. 

4. RESULTS OF THE SPRAG CLUTCH ENDURANCE PROJECT 

The excessively conservative RC Life limit cost driver was 

significantly mitigated through remediation. Several Army 

Aviation organizations’ collaborative engineering, testing, 

and analyses efforts resulted in the authorization of the first 

Sprag Clutch RC Life limit 250 hour extension from 1000 to 

1250 hours in July 2011. A second 250 hour extension was 

authorized in April 2013, from 1250 to 1500 hours. Testing 

and analysis continues. The goal is to raise the Sprag Clutch 

RC Life limit to 2000 hours or beyond if possible with no 

negative effect on airworthiness.  Proprietary algorithms are 

constantly being developed and improved to meet the goal. 

 

Results of this project have been measured and it was 

determined to be successful. Success has been indicated in 

terms of avoiding unnecessary cost, exceptional reductions 

in transmission demands, increased component time on 

wing, and has resulted in the reduction of soldier-maintainer 

burden. Greater than $11.14M per year in Cost Avoidance 

has been calculated during the brief timeframe between July 

2011 and June 2013. This has occurred due to extensive 

development, installation and dedicated utilization of CBM 

technology.  The technology has provided the capability to 

implement the initial 250 hour extension, without proper 

utilization, the same outstanding level of success would not 

have been possible. 

 

The total cost avoidance during this short 24 month 

timeframe is $22.3M. This figure has been validated by the 

Army’s AMCOM G3 Command Analysis Directorate 

(CAD) Office. During the same timeframe, unit level 

demands for the transmission have been reduced by 20.3%, 

or by 84 total transmissions – from 501 to 417. Therefore, 

the part was removed and replaced by Apache units much 

less frequently since the fleet-wide 250 hour extension was 

authorized. Demand per 10,000 flight hours dropped from 

12.72 to 10.14.  The AH-64D Main Transmission Time on 

Wing (TOW) has increased by 31,665 flight hours. This 

TOW metric was figured by calculating the total number of 

hours the Sprag Clutch exceeded its former 1000 flight hour 

RC Life limitation, without exceeding the newly authorized 

limit.  It should be noted that this occurred with a 4.3% 

increase in total fleet wide flying hours.  This increase, 

without the extension, would have undoubtedly caused 

greater demands.  Figure 3 illustrates the benefits. 

 

 
 

     Fig. 3 Transmission Accessory Gearbox Sprag Clutch 

 

Increased TOW has reduced soldier-maintainer burden in 

terms of Maintenance Man-Hours (MMH). A conservative 

estimate of MMH reduction since the first fleet wide AWR 

was issued in July 2011 is 5,355 hours. It is difficult to put a 

precise figure on the MMH reduction because of the 

different situations that the aircraft could be in while the 

transmission is changed due to Sprag Clutch RC time. Most 

times when the transmission is replaced the helicopter has 

been inducted for regularly scheduled Phase Maintenance. 

This helps reduce the MMH requirement because other parts 

such as the blades, rotor head, left and right nose gearboxes 

and all other associated parts that must be removed to allow 

transmission removal will have already been removed as 

part of the scheduled maintenance event. The significant 

quantity of MMHs required to remove and replace the other 

parts wouldn’t count against changing the transmission 

alone. The transmission in this situation requires 51 MMHs 

on average, and will vary depending on the experience of 

the crew and available equipment. The costly Maintenance 

Test Flight (MTF) required when any of the above parts 

listed are removed and replaced will not count solely against 

the transmission replacement. It is understood that an MTF 

cost approximately $4,000 per total aircraft flight hour. 

 

However, when the aircraft is not already inducted in such 

scheduled maintenance and all the additional parts must be 

removed to replace the transmission, the quantity of MMHs 

and the MTF cost are all counted against the replacement. 

 

It is notable that fleet-wide AH-64D flight hours have 

increased since July 2011, when the first extension was 

authorized. This serves to indicate that the project has likely 

provided benefits to some degree in terms of increases in 

aircraft uptime, resulting in improved AAH Fully Mission 

Capable (FMC) rates. The project included engineering, 

construction and qualification of the Main Transmission test 

Annual Conference of the Prognostics and Health Management Society 2013

635



Annual Conference of the Prognostics and Health Management Society 2013 

4 

stand located at the RTC. As a result of rigorous testing 

which included thousands of ground-air-ground cycles, 

multiple teardowns and detailed analysis, the Apache 

PMO’s Technical Management Division and Fleet 

Management offices have received authorization from AED 

to release Accessory Sprag Clutch RC Life and Main 

Transmission TBO extensions. The extensions have been 

authorized by publishing Airworthiness Releases (AWR).  

Each AWR includes within its scope only the AH-64D 

Helicopters which actively participate in CBM using the 

MSPU. Such participation is defined in AED’s AH-64D 

CBM Manual. 

 

Army Aviation has been proactive in its establishment of the 

infrastructure required to achieve these sought after CBM 

benefits.  As a maintenance approach, CBM has begun to 

enable the optimization of certain DoD maintenance 

programs. The extensions were engineered by the Aviation 

Engineering Directorate (AED) in accordance with the 

Aeronautical Design Standard Handbook for U.S. Army 

Aircraft CBM Systems. AED authorized a series of five 

extensions five Airworthiness Releases (AWR).  The clutch 

RC Life has been extended from 1000 to 1500 hours fleet 

wide and transmission TBO has increased from 2000 to 

3000 hours.   

5. CONCLUSION 

The AH-64D Main Transmission Sprag Clutch Endurance 

Test Project has effectively resulted in substantial increases 

in component Time on Wing, cost Avoidance, demand 

reductions, and overall increases in the rate of FMC AH-64 

Apache Attack Helicopters. It is anticipated that the clutch’s 

CBM enabled benefits will continue to accrue as time passes 

by and flying hours continue to accumulate fleet wide. 
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TOW      Time on Wing 
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ABSTRACT 

Earlier this year, UTC Aerospace Systems introduced the 

Aircraft System Health Management (ASHM) Tool, a web 

application that takes in Aircraft Condition Monitoring 

Function (ACMF) reports for selected subsystems and 

components of an aircraft platform, parses and processes the 

reported parameters against thresholds and computes 

estimated or expected values for some key parameters, and 

serves the report data and the processed results as part of a 

fleet view available to airline and maintenance users. 

 
The ASHM application uses Informatica PowerCenter to 

parse and store incoming report data and Informatica 

RulePoint to apply alert rules and analytic processing to the 

report data as it is persisted to the ASHM database.  This 

paper describes how UTC Aerospace Systems has leveraged 

a commercial off-the-shelf tool suite rather than continue to 

build custom components for the ASHM architecture, with 

the goals of achieving a short development cycle, robust 

transaction processing, and scalability to other aircraft 

systems and other aircraft platforms. 

Instead of building tools from scratch that would need to be 

reworked as the application scales, a set of scalable tools 

that suit the task at hand and in the future were selected.  

The full suite of tools, beyond what has been implemented 

so far, appears to provide capability to address data 

integrity, reliability and performance as the application 

grows. 

1. BACKGROUND 

UTC Aerospace Systems is a supplier of aircraft systems 

and power, controls and sensing systems for platforms that 

include commercial and military aircraft, including 

helicopters, and international space programs. They are a 

division of UTC Propulsion and Aerospace Systems, which 

also includes Pratt & Whitney (engines).  Their aircraft 

systems and services include actuation systems, aero 

structures, air management systems, interiors, landing gear, 

propeller systems, and wheels and brakes.  Their power 

controls and sensing systems include electric systems, 

engine components, engine and control systems, fire 

protection system, intelligence, surveillance and 

reconnaissance systems, sensors and integrated systems, and 

space systems. 

Historically, UTC Aerospace Systems has not had a 

proactive capability in place to predict when a critical or 

important issue might occur for systems other than the APU.  

Furthermore, what was previously a once-per-day sample of 

sensor readings for the APU has been moving rapidly to a 

real-time, over-the-air paradigm. 

2. MOTIVATION 

Pratt & Whitney AeroPower (formerly Hamilton Sundstrand 

Power Systems) has been monitoring the A320 and A380 

Fleets of many airline customers for over 15 years. Essential 

requirements developed during this time were: 

 The ability to easily accommodate new versions of 

aircraft reports. 

 An alerting engine that is scalable and that allows for 

the addition of alert processes against any number of 

parameters. 

 A “modern” web based user interface that allows end 

users to focus on aircraft within the fleet 

Except as noted, all content Copyright © 

United Technologies Corporation, 2013 

Glenn Peters et al. This is an open-access article distributed under the 

terms of the Creative Commons Attribution 3.0 United States License, 

which permits unrestricted use, distribution, and reproduction in any 
medium, provided the original author and source are credited. 
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Informatica Corporation develops and markets data 

integration software tools that have allowed UTC Aerospace 

Systems to: 

a) Develop positional parsers to quickly react to different 

report versions 

b) Develop an alerting engine for parameters,  events and 

trends  

c) Develop a user interface to display alerts generated by 

the alerting engine. 

3. EVENT DRIVEN ARCHITECTURE 

3.1. Events 

Events represent any change(s) in state throughout an 

enterprise, from the lowest, narrowest level to the highest 

and broadest. 

Events can be sensor reads, social media postings, location 

changes, financial transactions, database operations and file 

arrivals, for example. Events are effective triggers for 

transitions between states. 

Missing events are themselves events because something 

that was expected to happen did not happen.  These special 

events are nonetheless important because they signal 

transition to anomaly or exception states. For example, a 

business process step that is not executed by a particular 

time, an event not received an expected time after or before 

another event, or no readings, input or feedback received for 

a specific period of time. 

3.2. Event Processing  

Event processing is a solution approach that deals with 

making sense out of events from one or more sources. 

Events may be combined with other sources of data to 

define “situations of interest”. This provides automatic 

monitoring of changes in state, reduced decision latency, 

consistent application of business rules, self-service, and 

knowledge capture. Figure 1 shows how event processing 

flows from input event sources to output actions. 

 

Figure 1. Event Processing Flow 

 

3.3. Informatica RulePoint 

RulePoint is Informatica’s event processing solution, and is 

designed to be deployed as a standalone solution or as part 

of a broader event-based architecture.  For background, 

RulePoint was developed by Agent Logic, which was 

acquired by Informatica in 2009, in a move to fill a gap in 

Informatica’s overall data integration suite of products. 

 

RulePoint is focused on the end user / data analyst, and 

provides a rule-based approach to event processing, and that 

includes self-service, event-condition-action and 

temporal/geo-spatial rule handling.  

 

An event-driven architecture is a special type of data driven 

architecture in which changes in state drive the activity 

within an environment. Put simply, events drive the 

execution of logic, or perhaps more correctly, events feed 

the application of rules and actions based on the outcome of 

the applications of those rules within the architecture. 

4. APPLICATION OF INFORMATICA TOOLS TO ASHM 

Figure 2 shows how the general categories of data, analytics 

and event processing are handled by the specific Informatica 

tools that are being used for the ASHM project. 

 

Figure 2. Data Analytics with Event Processing 

 

4.1. High Level Solution Architecture 

Figure 3 shows the ASHM architecture at a high level.  

Standard ATA reports come in for various subsystems of 

multiple aircraft, are parsed by Informatica PowerCenter 

using parser templates created for each report type, stored in 

the application database, acquired and processed by 

RulePoint for alerts and sent through engineering models for 

computation of other ‘estimated’ or ‘corrected’ parameter 

values.   

Figure copyright © 
Informatica Corporation 

Figure copyright © Informatica Corporation 
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Figure 3. ASHM Architecture 

 

 

4.2. Data Flow from Aircraft Reports to Database 

Figure 4 shows the data flow from incoming aircraft reports 

to the database.  At the top, different report types arrive and 

are bucketed by type into directories for further processing. 

Each subsystem has one or more report types, and as ASHM 

grows to process more systems of each aircraft platform, 

and adds more aircraft platforms, the number of report types 

will grow accordingly, as indicated by the arrows to the 

lower right of the diagram. 

 
Figure 4. Data Flow – Aircraft Reports to Database 

 

4.3. First Level Parsing to Categorize Reports 

 

Figure 5. Report Categorization 

 

First, as shown in Figure 5, the reports are parsed at a high 

level to determine the specific type of report, e.g. 

subsystem, report type, variant of that report type, and based 

on that a determination is made and action taken to move 

that report to the proper staging directory. 

4.4. Second Level Parsing to Harvest Report Data 

 

 

Figure 6. Report Data Transformation 

 

Secondly, as shown in Figure 6, the Data Transformation 

agent reads each report as one record of input, and parses 

the parameters from that report. It stores each parameter as 

part a unique record for that report in the application 

database. 
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4.5. RulePoint Workflow in ASHM 

Figure 7 shows the flow of data through RulePoint, by 

report type originating with a SQL Source that acquires 

parameter instance data from the ASHM database and 

pushes it into a RulePoint Topic.  A Rule references one or 

more topics and may use data from those topics to 1) 

determine anomalous conditions, e.g. value out of range, 2) 

compute new values based on those parameters, 3) send 

those computed values or detected conditions to a 

Responder that is responsible for storing new data back to 

the same ASHM database.  RulePoint has a wide variety of 

responders that can send emails, send data to other systems, 

write to files, et cetera. 

 

Figure 7. RulePoint Workflow 

4.6. Automated Rule Generation 

For the ASHM project automatic alert rule generation based 

on thresholds defined in the database was employed (see 

Figure 8).  This tool uses the RulePoint Java API Adapter to 

1) connect to the development RulePoint instance, 2) 

remove all previously generated (as opposed to hand 

entered) rules, and 3) generate a new set of rules based on 

those thresholds.  Currently there are 250+ alert rules, with 

more being added for each new report type. These 

thresholds are originally defined but are inspected and 

assessed at the outset and as needed to reduce the 

occurrence of false alarms. 

 

Figure 8. Alert Rule Generation 

 

4.7. Parameter Alerts 

The ASHM application checks for out of range “alert” 

conditions on selected incoming report parameters, looking 

for warning or alarm conditions that are higher or lower 

than expected under normal operating conditions. Each 

“alertable” parameter has its own set of thresholds defined 

in the database for low and high warning and alarms, for 

example  0, 1, 99, and 100, for low alarm, low warning, 

high warning and high alarm thresholds, which would 

trigger a low alarm condition if the parameter value is at or 

below 0, for a low warning if the parameter values is above 

0 but at or below 1, and likewise a high alarm if the 

parameter value is at or above 100, and a high warn if the 

parameter values is at or above 99 but less than 100. 

There are also mechanisms in place to define two additional 

criteria which are when the thresholds are to be ignored, say 

when some (the same or another) parameter’s value meets a 

certain conditional relationship with a fixed value, e.g. <= 

some value, = some value, or >= some value. 

The parameter alert rules store alert conditions that are 

detected back to the database, where they are used to display 

those anomalous conditions to the end user in the web 

application. 

4.8. Analytics 

In RulePoint, an analytic is a plugin that can be invoked 

from a rule, and in ASHM a health (or diagnostic) analytic 

is an engineering model of a component or corrections for 

ambient conditions applied to a set of input parameters. 

These analytics are used to compute values that would be 

expected from a normal running system, and these values 

can be compared against actual values, and also can be 

processed against thresholds defined in the database, if 

present.   

4.9. Web Application 

 

Figure 9. ASHM Dashboard 

 

Image copyright © Informatica Corporation 
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5. LESSONS LEARNED AND BEST PRACTICES 

 

 By design, the overall application architecture and 

implementation is heavily dependent on the database 

architecture and support.  This dependence makes it 

possible to make minor changes that support end-to-end 

Database to RulePoint to Database functional testing, 

which are critical to the integrity and proper operation 

of the tool. 

 

 The integration of the general commercial off-the-shelf 

tools purpose-built for applications such as ASHM are 

viewed critical to its continued success.  There are other 

tools in the vendor offering that can be brought in as 

needed when the platform requires it as it expands in 

systems, numbers of reports and types of aircraft that 

are supported. 

 

 Monitoring and logging of the various automation 

components was and continues to be important for 

troubleshooting and debugging development and 

production issues and anomalies. 

 

 As a design goal, the architecture is generic, and so can 

be modified to accept and process additional types of 

inputs, e.g. other aircraft such as helicopters, or ground 

vehicles, or other high value assets. 

6. CONCLUSION 

The use of a suite of off-the-shelf commercial tools, whose 

intended design was consistent with our ASHM design 

goals, provided the framework for the ASHM architecture.   

Much of the learning about the application and integration 

frameworks were encountered and dealt with by the vendor, 

and that expertise was applied to improve the general 

purpose set of tools.   The tools also provide options for 

future growth as the application scales to more platforms 

and systems, as ASHM makes its way towards a ‘big data’ 

service. 
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ABSTRACT 

Condition-based maintenance is a cost effective 

maintenance strategy, in which maintenance schedules are 

predicted based on the results provided from diagnostics and 

prognostics. Although there are several reviews on 

diagnostics methods and CBM, a relatively small number of 

reviews on prognostics are available. Moreover, most of 

them either provide a simple comparison of different 

prognostics methods or focus on algorithms rather than 

interpreting the algorithms in the context of prognostics. 

The goal of this paper is to provide a practical review of 

prognostics methods so that beginners in prognostics can 

select appropriate methods for their field of applications in 

terms of implementation and prognostics performance. To 

achieve this goal, this paper introduces not only various 

prognostics algorithms, but also their attributes and pros and 

cons using simple examples. 

1. INTRODUCTION 

Prognostics is to predict future behavior of 

damage/degradation and the remaining useful life (RUL) of 

in-service system, which facilitates condition-based 

maintenance whose schedule is planned according to 

predicted results based on diagnosis. There are a large 

number of publications on condition-based maintenance 

(Jardine, Lin, & Banjevic, 2006; Grall, Bérenguer, & 

Dieulle, 2002; Yam, Tse, Li, & Tu, 2001) and diagnostics 

methods (Martin, 1994; Samuel & Pines, 2005; Singh & Al 

Kazzaz, 2003; Juricic, Znidarsic, & Fussel, 1997; 

Sugumaran, Sabareesh, & Ramachandran, 2008; Yan & Gao, 

2007; Samanta & Al-Balushi, 2003). On the other hand, a 

relatively small number of reviews on prognostics are 

available (Si, Wang, Hu, & Zhou, 2011; Srivastava & Das, 

2009; Goebel, Saha, & Saxena, 2008; Saha, Goebel, & 

Christophersen, 2009; Xing, Williard, Tsui, & Pecht, 2011; 

Zhang & Lee, 2011). Most of them provide a simple 

comparison of different prognostics methods using a 

specific application, a summary of pros and cons of 

algorithms, or a collection of papers. In addition, most 

review papers focused on algorithms rather than interpreting 

the algorithms in the context of prognostics. Therefore, the 

goal of this paper is to provide a practical review of 

prognostic methods so that beginners in prognostics can 

select appropriate methods for their field of applications. To 

achieve this goal, this paper introduces not only various 

prognostics algorithms, but also their attributes and pros and 

cons, so that engineers can choose the best algorithm for 

their field of applications in terms of implementation and 

prognostics performance. 

In general, prognostics methods can be categorized into 

data-driven, physics-based, and hybrid approaches. Data-

driven approaches use information from previously 

collected data (training data) to identify the characteristic of 

the currently measured damage state and to predict the 

future trend. Physics-based approaches assume that a 

physical model describing the behavior of damage is 

available, and combine the physical model with measured 

data to identify model parameters and to predict the future 

behavior. Hybrid approaches combine the above-mentioned 

two methods to improve the prediction performance 

(Mohanty, Teale, Chattopadhyay, Peralta, & Willhauck, 

2007; Sankavaram, Pattipati, Kodali, Pattipati, Azam, 

Kumar, & Pecht, 2009; Cheng & Pecht, 2009; Xu & Xu, 

2011; Xing, Miao, Tsui, & Pecht, 2011). The last approach, 

however, is not mature yet, and will not be considered in 

this paper. Dawn An et al. This is an open-access article distributed under the terms 

of the Creative Commons Attribution 3.0 United States License, which 
permits unrestricted use, distribution, and reproduction in any medium, 

provided the original author and source are credited. 
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Data-driven and physics-based approaches have different 

properties that will contribute to the preference of each 

algorithm. Providing a standard to select the best algorithm 

is important for a practical review of prognostic methods, 

and considering practically available conditions is also 

important. In this paper, therefore, the following conditions 

will be considered: the number of data sets, the level of 

noise and bias in obtained data, availability of loading 

conditions and physical models, and complexity of damage 

growth behavior. Typical prognostics algorithms are tested 

under such conditions, and the algorithms’ attributes and 

pros and cons are provided based on the results. 

The paper is organized as follows: in Sections 2 and 3, 

reviews on the data-driven and physics-based approaches 

are presented, respectively. In Section 4, several case studies 

are presented to analyz different prognostics methods, 

followed by conclusions in Section 5. 

2. REVIEWS ON DATA-DRIVEN APPROACHES 

Data-driven approaches use information from collected data 

to identify the characteristics of damage state and predict the 

future state without using any particular physical model. 

Instead, mathematical models with weight parameters are 

employed. The weight parameters are determined based on 

the training data that are obtained under the various usage 

conditions. Since the data-driven approaches depend on the 

trend of data, which often has a distinct characteristic near 

the end of life, it is powerful in predicting near-future 

behaviors, especially toward the end of life.  

The data-driven approaches are divided into two categories: 

(1) the artificial intelligence approaches that include neural 

network (NN) (Chakraborty, Mehrotra, Mohan, & Ranka, 

1992; Krogh, 2008; Yao, 1999)  and fuzzy logic (Zio & 

Maio, 2010; Gouriveau, Dragomir, & Zerhouni, 2008), and 

(2) the statistical approaches that include gamma process 

(Pandey & Noortwijk, 2004; Dickson & Waters, 1993), 

hidden Markov model (Rabiner, 1989), and regression-

based model such as Gaussian process (GP) regression 

(Mackay, 1997; Seeger, 2004), relevance vector machine 

(Tipping, 2001), and least square regression (Tran & Yang, 

2009; Bretscher, 1995), etc. Among these algorithms, NN 

and GP are commonly used for prognostics and will be 

discussed in the following sections. 

2.1. Neural Network (NN) 

NN is a representative data-driven method, in which a 

network model learns a way to produce a desired output, 

such as the level of degradation or lifespan, reacting to 

given inputs, such as time and usage conditions. This 

method mimics the human nervous system, which responds 

and adapts to a stimulus. Once the network model learns 

enough the relationship between inputs and output, it can be 

used for the purpose of diagnosis and prognosis. A typical 

architecture, feed-forward neural network (FFNN) (Svozil, 

Kvasnička, & Pospíchal, 1997), is illustrated in Figure 1. In 

the figure, circles represent nodes (also called a neuron or 

unit), and each set of nodes in the same column is called a 

layer. The nodes in the input and output layer, respectively, 

represent input variables and response variable. The number 

of nodes in the hidden layer can be adjusted to properly 

express the mechanism between input and output. Once the 

network model learned enough, the model is functionalized 

using transfer functions and weight parameters. Transfer 

functions characterize the relationship between each layer, 

and several types of transfer function are available such as 

sigmoid, inverse, and linear function (Duch & Jankowski, 

1999). Weight parameters include weights for the 

interconnected nodes and biases that are added to inputs of 

transfer functions (Liu, Saxena, Goebel, Saha, & Wang, 

2010; Firth, Lahav, & Somerville, 2003). The process of 

finding the weight parameters is called training or learning, 

and to accomplish that, many sets of training data are 

required. 

In general, FFNN is often called a back-propagation neural 

network (BPNN) because weight parameters are obtained 

through the learning/optimization algorithm (Rumelhart, 

Hinton, & Williams, 1986) that adjusts weight parameters 

through backward propagation of errors between actual 

output (training data) and the one from the network model 

based on gradient descent optimization methods. In addition 

to FFNN, there exists recurrent (Bodén, 2002), fuzzy (Liu & 

Li, 2004), wavelet (He, Tan, & Sun, 2004), associative-

memory (Bicciato, Pandin, Didonè, & Bello, 2001), 

modular (Happel & Murre, 1994),
 
and hybrid (Psichogios & 

Ungar, 1992; Rovithakis, Maniadakis, & Zervakis, 2004) 

neural network. 

In the following, three important issues are discussed for 

NN-based prognostics.  

2.1.1. Issue 1: Network Model Definition (the Number of 

Node and Layer) 

The first issue is the definition of the network model that 

includes selecting the number of hidden nodes, hidden 

layers and input nodes. Trial-and-error methods are often 

used to determine a suitable network model. Lawrence, 

Giles, and Tsoi (1998) and Doukim, Dargham, and Chekima 

 
Figure 1. Illustration of typical network model: FFNN 
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(2010) investigated the usage of mean square error in order 

to find the optimal number of hidden nodes. Gómez, Franco, 

and Jérez (2009) used generalization complexity to 

determine the number of nodes and showed that the results 

were quite close to the optimum. Although one or two 

hidden layers are generally used, there is no fixed rule. 

Ostafe (2005) presented a method using pattern recognition 

to determine the number of hidden layers. The problem of 

determining the number of input nodes occurs when input 

variables affecting the output are not clear; various inputs 

possibly affecting the response can be considered or only 

data trace is applicable. Chakraborty et al. (1992) compared 

the prediction results of flour prices using variable network 

models. In such a case, actual past values are used for inputs, 

but how many past values should be used is unclear. In fact, 

the accuracy of prediction results is not proportional to the 

number of input nodes. Chang and Hsieh (2011) also 

researched to select the optimal input layer neurons using 

particle swarm optimization. Therefore, defining a proper 

neural network model can be difficult for new users without 

having much experience. 

2.1.2. Issue 2: Optimal Parameters (Finding Weights 

and Biases) 

Once a network model is defined, the next issue is to find 

weight parameters related with the model. In NN, no matter 

how complex the relationship between input and output 

layer is, it is possible to express the relationship by 

augmenting the number of hidden layers and hidden nodes. 

However, when the BP algorithm is used, the following 

problems exist: (1) the global optimum of many weight 

parameters is extremely difficult to find, and (2) the 

convergence rate is very low and depends on the initial 

estimates. For these reasons, there have been many efforts to 

improve the drawbacks of the BP algorithm. Salomon and 

Hemmen (1996) presented a dynamic self-adaptation 

algorithm to accelerate the steepest descent method, and 

Chen, Lin, Tseng, and Lin (2006) applied the simulated 

annealing algorithm to search for the best BP parameters 

such as learning rate, momentum and the number of hidden 

nodes. Also, Subudhi, Jena, and Gupta (2008) proposed a 

technique combining the genetic algorithm and differential 

evolution with BP, and Nawi, Ransing, and Ransing (2007)
 

presented a technique combining the conjugate gradient 

optimization algorithm with the BP algorithm. There are 

many ensemble techniques to improve the performance of a 

single algorithm (Navone, Granitto, Verdes, & Ceccatto, 

2001; Jacobs, 1995; Drucker, Cortes, Jackel, LeCun, & 

Vapnik, 1994; Krogh & Vedelsby, 1995; Perrone & Cooper, 

1993; Naftaly, Intrator, & Horn, 1997), and the other efforts 

are found in the Refs.(Jardine et al., 2006; Salomon and 

Hemmen, 1996; Nawi et al., 2007) However, finding good 

weight parameters is still challenging, and the performance 

of NN algorithm deteriorates with non-optimal weight 

parameters. 

2.1.3. Issue 3: Uncertainty From Data and Optimization 

Process 

Last but not least, uncertainty in noise and bias in training 

data is an important issue in NN, as most measured data 

include them. The bias here is different from the bias as 

weight parameters; here the bias is the error caused by 

sensors, such as calibration error. In terms of noise, it is 

common to provide confidence bounds based on nonlinear 

regression and/or the error between NN outputs and training 

data (Chryssoloiuris, Lee, & Ramsey, 1996; Veaux, Schumi, 

Schweinsberg, & Ungar, 1998; Yang, Kavli, Carlin, Clausen, 

& Groot, 2000; Leonard, Kramer, & Ungar, 1992). 

Bootstrapping (Efron & Tibshirani, 1994) can also be 

applied, which can be easily implemented by running 

Matlab NN toolbox several times because Matlab uses 

different subsets of given training data for obtaining weight 

parameters. Furthermore, running NN several times can 

relieve the concerns about initial weight parameters for 

optimization by setting different initial parameters 

automatically. For example, Liu et al. (2010) used the 

repeating method with 50 attempts to predict battery’s RUL 

with uncertainty. Actually, a basic method to handle 

uncertainty in NN is the probabilistic neural network (PNN) 

(Specht, 1990) using Parzen estimator (Parzen, 1962). 

However, most papers employ PNN for classification or risk 

diagnosis (Petalas, Spyridonos, Glotsos, Cavouras, 

Ravazoula, & Nikiforidis, 2003; Giurgiutiu, 2002; Mao, Tan, 

& Ser, 2000), and prognostics ones are rarely found except 

for the study by Khawaja, Vachtsevanos, and Wu (2005). 

They introduced a way to obtain not only confidence bounds 

but also confidence distribution based on PNN to predict a 

crack on a planetary gear plate. Unfortunately, bias in 

measured data cannot be handled with data-driven 

approaches because the approaches are based on measured 

data, and there are no parameters related with bias. 

2.2. Gaussian Process (GP) Regression 

GP is a commonly used method among regression-based 

data-driven approaches for prognostics, whose conceptual 

property is illustrated in Figure 2. An outstanding property 

of GP is that simulated outputs are smoothly constructed 

making exactly the same value as every measured point 

(data) as blue-dashed curve in Figure 2. The reason for this 

can be explained with following GP model that is composed 

of a global model ( fβ ) and departures (  1 rR Y Fβ ): 

 1*=y  fβ rR Y Fβ                           (1) 

where *y  is a simulated GP output at an arbitrary input 

vector, *x  whose size is 1 p  ( p  is the number of input 

variables), f  is the known function of *x  and determines 

polynomial order of global model, β  is the regression 

coefficient and obtained by  
1

1 1T T


 
F R F F R Y , and r  is a 
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1 n  ( n  is the number of measured data) vector, which 

represents a correlation between *x  and a n p  input 

matrix of all measured points, X . The rest capital letters 

, , and R Y F  that are the same property as their small letters’ 

have the same size in terms of row vector as their small 

letters, but the size of column vector is the same as number 

of measured data, n .  

If correlation terms ( r  and R ) and departures term are 

ignored in Eq. (1), it becomes that *=y fβ  with 

 
1

T T


β F F F Y , which is the ordinary least square 

regression (Tran & Yang, 2009). Consequently, GP is 

distinguishable from least squarie in terms of that simulated 

outputs penetrate every measured point with two 

assumptions that (1) GP model is a combination of global 

model and local departures, and (2) the error between every 

points is correlated. Assumption (1) is already reflected in 

the GP model, and assumption (2) is determined by a type 

of covariance function and scale parameters (or 

hyperparameters) related with them. Once scale parameters 

are obtained based on the measured points (training data) 

using optimization algorithm, GP model can be used to 

predict future behavior of damage. Lastly, the name, 

Gaussian process comes from the assumption that each 

point is normally distributed. Based on this assumption with 

multivariate normal distribution, more 

mathematical/probabilistic derivation can be done in terms 

of probabilistic parameters of Gaussian distribution; the 

mean expressed in Eq. (1) and the variance found in the 

Refs. (Gelman, Carlin, Stern, & Rubin, 2004; Santner, 

Williams, & Notz, 2003). 

2.2.1. Issue 1: Model Problem (Covariance Function) 

In common with NN, the performance of GP largely 

depends on models. In this case, covariance function and 

polynomial order of global model are related with GP model, 

but order of global model is less important as it is often 

handled with constant value. There are various types of 

covariance functions such as radial basis (or squared 

exponential), rational quadratic, neural network, Matern, 

periodic, constant and linear (Rasmussen & Williams, 2006; 

Williams, 1997). Mohanty, Das, Chattopadhyay, and Peralta 

(2009) compared the prediction results of crack length under 

variable loading from radial basis function (RBF) 

covariance function and neural network based (NN-based) 

covariance function, and showed that RBF-based GP model 

outperformed NN-based one in their application. As part of 

an effort to resolve the selection of covariance function, 

research on nonstationary covariance functions that is a 

model to adapt to variable smoothness and can be 

constructed by adding or multiplying simple covariance 

functions has been conducted. Paciorek and Schervish (2004) 

introduced a class of nonstationary covariance functions so 

that the model adapts to variable smoothness, and compared 

the results from stationary GP. From their research, it was 

concluded that the results from nonstationary GP are better 

than stationary GP, but pointed out that simplicity loss of 

the algorithm occurs as the nonstationary GP requires more 

parameters than a stationary GP. Brahim-Belhouari and 

Bermak (2004) used nonstationary GP to predict respiration 

signal, and compared with a GP model with an exponential 

covariance function, and Liu, Pang, Zhou, and Peng (2012) 

used the combination of three covariance functions to 

predict lithium-ion battery degradation (state of health, 

SOH). 

2.2.2. Issue 2: Optimization Problem (Finding Scale 

Parameters) 

Determining the scale parameters related with covariance 

function is also important, since they determine the 

smoothness of regression model. In general, the parameters 

are obtained based on equivalent likelihood function (Sacks, 

Welch, Mitchell, & Wynn, 1989) via optimization algorithm. 

It, however, is a difficult task to search their optimum 

values, and even if they are found they are not always the 

best selection (An & Choi, 2012). Since the scale 

parameters are seriously affected by input and output values, 

input and output values are applied as normalized values in 

most cases. Mohanty et al. (2009), however, studied the 

performance to prediction crack growth according to three 

different types of scaling. Neal (1998) considered the scale 

parameters as distributions rather than deterministic values, 

and An and Choi (2012) showed that the GP models with 

scale parameters identified as distributions outperform the 

one using optimal deterministic parameter. 

2.2.3. Issue 3: Data Problems (Num. of Data and 

Uncertainty) 

Even though large number of training data is usually 

profitable for increasing accuracy of prediction results, it’s 

not always acceptable for GP because it also increases 

computational costs to calculate the inversion of the 

covariance matrix (Eq. (1)) as well as generates singularity. 

It is suggested that inversion by direct method may become 

 
Figure 2. Illustration of GP regression 

Annual Conference of the Prognostics and Health Management Society 2013

645



Annual Conference of the Prognostics and Health Management Society 2013 

5 

prohibitive when the number of the data points is greater 

than 1000 (MacKay, 1997). As a solution to relieve such 

problem, the methods to select a subset of data points are 

usually employed (Lawrence, Seeger, & Herbrich, 2003; 

Smola & Bartlett, 2001; Foster, Waagen, Aijaz, Hurley, 

Luis, Rinsky, Satyavolu, Way, Gazis, & Srivastava, 2009). 

While Melkumyan and Ramos (2009) suggested new 

covariance function based on cosine function that inherently 

provides a sparse covariance matrix. In terms of uncertainty, 

it’s determined with Gaussian noise as mentioned before. 

Mohanty et al. (2007) and Liu et al. (2012), respectively, 

showed the predictive confidence interval of crack length 

and SOH of lithium-ion battery using GP. 

3. REVIEWS ON PHYSICS-BASED APPROACHES 

Physics-based approaches combine the physical damage 

model with measured data to predict future behavior of 

damage and the RUL, which is illustrated in Figure 3. The 

behavior of the physical model depends on the model 

parameters that are estimated and updated in company with 

damage state based on the measured data. Finally, the RUL 

is predicted by progressing the damage state until it reaches 

a threshold as the dashed curves in the Figure 3. Similar 

issues are addressed in this approach as the previous ones.  

3.1. Issue 1: Model Problem (Physical Model Accuracy) 

Since the physics-based approaches employ a physics model 

describing the behavior of damage, it has advantages in 

predicting long term behaviors of damage. However, model 

validation should be carried out since such models contain 

many assumptions and approximations. There have been 

much literature on model validation using statistical 

methods such as hypothesis test and Bayesian method to 

calibrate and improve the model by comparing with 

observation (Rebba, Huang, Liu, & Mahadevan, 2006; 

Rebba, Mahadevan, & Huang, 2006; Kleijnen, 1995; 

Sargent, 2009). In general, the number of model parameters 

increases as model complexity increases, which makes it 

difficult to identify the model. Recently, Coppe, Pais, 

Haftka, and Kim (2012) showed that the issue of model 

accuracy can be relieved by identifying equivalent model 

parameters of the simpler model. They showed that a simple 

Paris model with an assumed stress-intensity factor can be 

used for predicting crack growth of complex geometries by 

adjusting the model parameters to compensate for the error 

in the simple model. Although this is limited to the case of a 

similar model form, cumbersome efforts to validate the 

model accuracy can be eased off. 

3.2. Issue 2: Model Parameter (Physical Model 

Parameters, Noise and Bias) 

3.2.1. Introduction to Physics-Based Algorithms 

Once a physical model is available, model parameter 

identification becomes the most important issue, which is 

performed with an estimation algorithm based on measured 

data with a usage condition. In fact, estimation algorithms 

become criteria to classify physics-based approaches. There 

are several algorithms such as Kalman filter (Kalman, 1960), 

extended Kalman filter (Julier & Uhlmann, 2004), particle 

filter (PF) (Doucet, De Freitas, & Gordon, 2001), and 

Bayesian method (BM) (Kramer & Sorenson, 1998). These 

algorithms are based on the Bayesian inference (Bayes, 

1763), in which observations are used to estimate and 

update unknown parameters in the form of a probability 

density function (PDF). The updated PDF is called the 

posterior distribution, which is obtained by multiplying the 

prior distribution that is prior knowledge or information of 

the unknown parameters and the likelihood function that is 

the PDF value of measured data conditional on the given 

parameters.  

There are several researches dealing with parameter 

estimation in terms of prognostics. DeCastro, Tang, Loparo, 

Goebel, and Vachtsevanos (2009) used extended Kalman 

filter to estimate model parameters and predict RUL for 

crack growth on a planetary carrier plate. Orchard and 

Vachtsevanos (2007) estimated the crack closure effect 

using PF for RUL prediction of a planetary carrier plate 

based on vibration-based feature. Daigle and Goebel (2011) 

used PF to estimate wear coefficients by considering 

multiple damage mechanisms in centrifugal pumps. An, 

Choi, Schmitz, and Kim (2011) estimated wear coefficients 

to predict the joint wear volume of slider-crank mechanism 

based on BM. Among the aforementioned algorithms, PF is 

the most commonly used for prognostics. In the following, 

PF and BM are discussed. 

 Particle filter (PF) 

PF is the most commonly used algorithm in the prognostics 

field, in which the posterior distribution of model 

parameters is expressed as a number of particles (or samples) 

and their weights as shown in Figure 4. There are three steps 

in PF process: (1) prediction step - posterior distributions of 

the model parameters ( θ ) at the previous ( 1k  th) step are  
Figure 3. Illustration of physics-based prognostics 
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used for the prior at the current ( k th) step, and the damage 

state at the current time is transmitted from the previous one 

based on a damage model (physical model), (2) update step 

- model parameters and damage state are updated based on 

the likelihood function combined with measurement data 

( x ), and (3) resampling step - particles of the prior 

distribution are resampled based on their weights expressed 

as vertical-rectangular in Figure 4 by duplicating or 

eliminating the samples with high or low weight, 

respectively. The resampled result corresponds to the 

posterior distribution at the current step and is also used as 

the prior distribution at the next ( 1k  th) step. That means 

the Bayesian update is processed in a sequential way with 

particles in PF. 

Since prediction results from PF depends on initial 

distributions of parameters (posterior distribution at 0k  ), 

correct information or proper assumption for initial 

distributions is one of the most important issues to find 

model parameters. Another important point is accumulated 

sampling error that occurs during the update process. In 

other words, the particle depletion problem can occur since 

those particles with a very small weight are eliminated, 

while those particles with a high weight are duplicated. 

There have been researches to recover the particle diversity 

during update process. A common practice is to add random 

sample 
1k 

 from arbitrary distribution during the 

prediction step; that is, 
1 1k k k      so that identical 

particles are not generated (Higuchi, 1997; Kitagawa, 1987; 

Wang, Liao, & Xing, 2009). This method, however, can 

change probabilistic characteristic of parameters as well as 

increase the variance of parameters. Gilks and Berzuini 

(2001) proposed a resample-move algorithm based on PF 

and Markov Chain Monte Carlo (MCMC) method (Andrieu, 

Freitas, Doucet, & Jordan, 2003), Kim and Park (2011) 

introduced the maximum entropy particle filter and 

demonstrated the effectiveness of the proposed technique by 

applying it to highly nonlinear dynamical systems. 

 Bayesian method (BM) 

The Bayesian update is processed with an overall way in 

BM; the posterior distribution is obtained as an equation by 

multiplying all the likelihood function given by k  number 

of data. Once the posterior distribution is available, a 

sampling method can be used to draw samples from the 

posterior distribution. Therefore, the estimation performance 

in BM depends on sampling methods, MCMC method 

which has been recognized as a computationally effective 

means is usually employed. MCMC is based on a Markov 

chain model of random walk as shown in Figure 5. It starts 

from generating an arbitrary initial sample (old sample) and 

a new sample from an arbitrary proposal distribution with 

the centered at the old sample. The two samples are 

compared with each other based on an acceptance criterion, 

from which either one is selected. In Figure 5, two circles 

with dashed line means new samples not selected, and in 

this case, the old one is selected. This process is repeated as 

many as the number of particles in PF. 

Even though there is no accumulated sampling error in BM, 

there still exists some error caused by sampling method, 

random walk. Initial sample, proposal distribution for new 

sample, and acceptance ratio to the old sample have an 

effect on the sampling results; with improper setting, it 

could be not converged or show stationary chain that old 

sample is selected continually. There are some researches to 

reduce those effects by utilizing marginal density function 

for proposal distribution (Rubin, 1998; An & Choi, 2013). 

Gelfand and Sahu (1994) presented two distinct adaptive 

strategies to accelerate the convergence of a MCMC 

algorithm. More literatures are found in the Ref. (Andrieu et 

al. 2003). 

3.2.2. Correlation Issue between Model Parameters 

One of the most challenging parts in model parameter 

identification is correlation between model parameters. 

Without properly identifying correlation, the predicted RUL 

can be significantly different from reality. An, Choi, and 

Kim (2012) studied the correlation in a crack growth 

problem, in which correlation between the parameters was 

well identified, but eache parameter was not accurately 

identified under a large level of noise because of the 

correlations: correlation between the two Paris parameters 

and correlation between bias and the initial crack size. The 

 
Figure 4. Illustration of PF process 

 
Figure 5. Illustration of BM process with MCMC. 
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prediction results of damage growth and RUL, however, 

were reliable since many combinations of the correlated 

parameters can yield the same prediction results.  

3.3. Issue 3: Uncertainty From Data (Noise and Bias) 

Since damage cannot be directly measured in many cases, a 

damage quantification process is required from sensor 

measurement data, which is called structural health 

monitoring (SHM). SHM data could include a large level of 

noise and bias due to sensor equipment, and there are 

several researches dealt with the analysis of noise and bias 

in SHM data. Gu, Azarian, and Pecht (2008) presented a 

prognostics approach which detects the performance 

degradation of multilayer ceramic capacitors under 

temperature-humidity-bias conditions. Coppe, Haftka, Kim, 

and Yuan (2009) showed that the uncertainty in structure-

specific damage growth parameters can be progressively 

reduced in spite of noise and bias in sensor measurements. 

Guan, Liu, Saxena, Celaya, and Goebel (2009) considered 

various uncertainties from measurements, modeling, and 

parameter estimations to describe the stochastic process of 

fatigue damage accumulation based on a maximum entropy-

based general framework. It is concluded that convergence 

with large noise becomes slow, and positive and negative 

bias, respectively, effect on early and late prediction. 

4. CASE STUDY TO SELECT PERTINENT METHOD 

Prognostics algorithms including NN, GP, PF and BM are 

analyzed and compared, so that engineers can choose the 

best algorithm for their field of applications. Since there are 

many variations each algorithm, the most common and basic 

ones are employed. 

4.1. Problem Definition 

4.1.1. Given Information for Case Study 

Paris model (Paris & Erdogan, 1963) and Huang’s model 

(Huang, Torgeir, & Cui, 2008) are, respectively, employed 

for a simple behavior of damage growth and complex 

behavior of damage growth, which are shown in Figure 6. In 

each model, there are ten sets of data under different loading 

conditions. Different level of noise and bias are artificially 

added to the data in Figure 6. Bias is considered as -2 mm, 

and noise is uniformly distributed between u mm and u

mm. Three different levels of u  are considered: 0, 1, and 5 

mm. Ten data sets are numbering, one data set (usually #8) 

will be used for the set to be predicted and the other sets will 

be used for training data. 

4.1.2. Definition of Algorithm Conditions 

For the case of NN, the network model is constructed based 

on FFNN with three input nodes, one hidden layer with two 

nodes. Then, the number of total weight parameters become 

11 including eight weights ( 3 2 2 1   ) and three biases 

(2+1). Since there is one hidden layer, two transfer 

functions are required, and as a common way, the tangent 

sigmoid and pure linear functions are employed. For GP 

model, linear or second order polynomial function is 

employed for the global model, and one parameter radial 

basis covariance function is employed as follow: 

   
2

, exp / , , , 1, ,i j i jR d h d i j n     
 

x x x x       (2) 

where h  is a scale parameter to be identified, ,i j
x x  are 

vector of input variables, n  is total number of training data; 

in this case, 3n k  , and k  is the current time index. 

For the input variable in NN and GP, the previous three 

damage data (
3 2 1, ,k k kx x x  

) are used, and the current 

damage data (
kx ) becomes the output. Also, loading 

conditions can be utilized by adding to the input nodes. In 

this case, loading condition at the current cycle is added to 

the forth input node. If 16k  , 13 sets of input and output 

data are available, which are used to obtain weight 

parameters, and then future damages ( 1 2 3, , ,...p p p

k k kx x x   ) are 

predicted based on the obtained parameters and the previous 

damage data. According to the previous damage data used 

as inputs, prediction methods can be divided into short term 

prediction and long term prediction. Short term prediction is 

one-step ahead prediction since it uses only measured data 

for input, e.g., 
1 2, ,k k kx x x 

 are inputs to predict 3

p

kx  . On 

 
a) simple model 

 
b) complex model 

Figure 6. Problem definition for case study 
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the other hand, long term prediction is multi-step ahead 

prediction since it utilizes predicted results as inputs, e.g., 

1 2, ,p p

k k kx x x   are inputs to predict 3

p

kx  . In terms of 

prediction uncertainty, while noise in training data can be 

handled during GP, bootstrapping is employed by repeating 

NN 30 times to handle uncertainty from data noise and 

optimization process in NN.  

Models for physics-based approaches are the same as Paris 

model and Huang’s model employed to generate data sets. 

There are, respectively, two and six model parameters in 

Paris model and Huang’s model, and the data sets in Figure 

6 were generated with following true model parameters: 

Paris model ture parameters: =3.8, 1.5e-10m C   

Huang’s model true parameters: 3.1, 5.5e-11,m C   

3.1, 5.5e-11, 5.2, 0.2, 2.8, 580th ym C K n       

 

4.2. Case Study Results 

4.2.1. Data-Driven Results 

At first, the performance of training data is compared. 

Figure 7 shows the comparison between NN and GP with 

different levels of noise. In the figure, the red and blue star 

markers are, respectively, future damage data and training 

data up to the current cycle (1500 cycles), and circle 

markers are simulation results from each algorithm. Thick 

dotted curve and thick dashed curve are, respectively, 

medians of short term prediction and long term prediction, 

and their thin curves represent 90% confidence intervals. 

GP show exact result under perfect data (no noise) and 

outperform NN under small noise in terms of both short 

term and long term prediction. Long term prediction using 

GP is not available under large noise and many sets of 

training data. In this case, NN outperform GP in both short 

term and long term prediction, and long term prediction 

results get better as the number of cycles increases. The 

reason why GP is better than NN for small noise and small 

number of data is because of correlation property. Large 

data affect adversely the covariance matrix manipulation. 

Also, GP model penetrates every training data points 

assuming each data are correlated, which means that the GP 

behaves poorly when the data include large noise because 

the noisy relation is reflected to the predictions. While the 

reason for better results from NN under large noise and 

many data is that increasing data have no effect on network 

model but gives more information. Also, combination of 

transfer function is much less restricted to the level of noise. 

4.2.2. Physics-Based Results 

As mentioned before, bias in obtained data cannot be 

handled with data-driven approaches. In contrast, physics-

based one can do it by adding bias to unknown parameter, 

whose results are shown in Figure 8. In the figure, 

measurement data up to the current cycle (blue star makers) 

are biased; measured crack size is consistently less than the 

true one. The medians of prediction results (dashed curves) 

at the current cycle are close to the true one, which means 

bias is well identified and compensated. Since physical 

model describes behavior of damage data accurately, the 

difference between model and data can be obtained as a 

constant at any cycle, which satisfies bias in measurement 

data is a constant. Further study for noise and bias in physic-

based approaches is found in the Ref. (An et al., 2012). 

The difference between PF and BM is negligible in view of 

the prediction results because the two methods have the 

same foundation with the same physical model. The only 

differences are the way of updating distributions and 

generating samples. BM is faster than PF because the 

 
a) NN under perfect data with 

prediction set#=8 

 
b) GP under perfect data with 

prediction set#=8 

 
c) NN under small noise with 

prediction set#=5 

 
d) GP under small noise with 

prediction set#=5 

 
e) NN under large noise with 

prediction set#=8 and 

training set#=6,7,9,10 

 
f) GP under large noise with 

prediction set#=8 and 

training set#=6,7,9,10 

Figure 7. Results from data-driven approaches with the case of 

simple damage growth 
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posterior distribution is given as a single equation and there 

is no accumulated sampling error. Even if PF has an 

accumulated sampling error during the updating process, it 

predicts well because the updating process occurs along 

with damage propagation. However, BM is not practical for 

them because of tremendous computational costs (Gilks & 

Berzuini, 2001; An, Choi, & Kim, 2012; Storvik, 2002). 

This is a key difference between the two methods, and more 

detailed comparison between PF and OBM can be found in 

the reference by An et al. (2012). 

4.2.3. Case Study for Comparison between NN and PF 

For data-driven approaches, NN is considered to predict 

damage growth in a complex model, because it is difficult to 

use a proper correlation function for GP to predict future 

due to retardation portion in obtained data. To find out how 

many data sets are required to obtain proper prediction 

results, different numbers of training sets are randomly 

selected. The results from this case study are presented in 

Figure 9 (a) and (b). Based on the training data sets, NN 

well predicts future damage as shown in Figure 9 (a). It, 

however, is limited to short term prediction, and proper 

results for long term prediction could not be found with 

different attempts. If there are available loading conditions, 

medians of short term and long term prediction become 

similar to each other with at least three sets of training data 

as shown in Figure 9 (b). 

If there are available physical model as well as loading 

conditions, it might be clear that using physics-based 

approaches for the case of complex model outperforms data-

driven ones. Since BM has a difficulty for the complex 

model due to extremely expensive computational costs, PF 

is only considered, and the results are shown in Figure 9 (c). 

The median of prediction is still not accurate, but 

uncertainty covers that. Also, since this physical model 

largely depends on the initial damage, if the initial 

distribution of damage is also updated, median will close to 

the true one. For example, Figure 9 (d) shows the results 

with true value of initial damage. 

4.3. Results summary 

In terms of algorithms, results from case studies can be 

summarized as follow: GP works well when the correlation 

function can be well defined such as the case of small noise 

data and simple models. It is easy to implement and fast to 

calculate. NN is proper to apply for the case of large noise 

and complex models with many training data sets. Even so, 

NN can be applied for small noise and simple models, 

which has a wide range of applications. It is, however, 

challenging to obtain many sets of data in realistic 

applications. PF and BM are less affected by the level of 

noise and model complexity, but they can be employed only 

if a physical model and loading conditions are given. The 

 
a) PF 

 
b) BM 

Figure 8. Results from physics-based approaches with the 

case of simple damage growth under small noise and 

negative bias 

 
a) NN with training set#=2, 7, 

9 

 
b) NN with training set#=6, 7, 

10 and loading conditions 

 
c) PF with distributed initial 

damage size 

 
d) PF with true value of initial 

damage size 

Figure 9. Comparison of NN and PF with the case of complex 

damage growth under small noise 
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results from the two methods are not much different, but PF 

and BM, respectively, have advantage in terms of wide 

range of applications and a fast calculation. Further, the case 

of no loading conditions and no physical models, short term 

prediction can be done by using data-driven approaches 

with at least three data sets. For long term predictions, 

loading conditions are additionally required. 

5. CONCLUSIONS 

This paper provides a practical review of both data-driven 

and physics-based approaches for the purpose of prognostics. 

As common prognostics algorithms, NN, GP, PF and BM 

are introduced and employed for case studies under practical 

conditions to discuss about attributes, pros and cons, and 

applicable conditions. Even if advanced algorithms are 

available, the basic algorithms are employed in this study, 

and the results are analyzed focusing on their intrinsic 

properties. This will be helpful for the beginners in 

prognostics to choose the best algorithm for their field of 

applications. 
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ABSTRACT 

This paper introduces research and discusses findings 

dealing with failure modes of gearboxes in wind turbines. 

These gearboxes fail in general after five years which is far 

below the expected design life of twenty years of a wind 

turbine. The research is taking a more holistic approach 

towards finding typical behaviour of the main shaft taking 

the transient nature of the wind into consideration. In this 

research, a small scale wind turbine test rig has been 

designed and manufactured with displacement sensors 

installed to observe the displacement of the main shaft at 

specific points, namely the main bearing locations of the 

forward framework of a wind turbine nacelle, where the 

main shaft is installed. The experimental data measured 

from the test rig is being analysed with common beam 

bending, statistical and fatigue theories to draw conclusions 

for long term loading in service. Aspects of the turbulent 

nature of the wind driving the wind turbine have been taken 

into consideration as being part of the aerodynamic loading 

onto the rotor and eventually the gearbox, transmitted 

through the main shaft. The purpose of the test rig at this 

stage is to obtain a quantitative insight into the motion of 

the main shaft. The deliberately chosen softer aluminum 

material and the more slender geometry for the components 

should provide exaggerated displacements which help to 

make motion and deformations more obvious. At this point, 

no resemblance to real size wind turbines has been 

established. 

1. INTRODUCTION 

Gearboxes of horizontal wind turbines have a tendency to 

fail in service before the end of the design life of the wind 

turbine itself (Van Rensselar, 2010). According to Musial, 

Butterfield and McNiff (2007), the failure of the gearbox 

begins in the bearings of the gears inside the gearbox. In this 

project an experimental approach is conducted to determine 

the typical motion of the main shaft that connects the rotor 

hub with the gearbox. The shaft is in general rigidly 

connected with the carrier arm of the first planetary stage 

through a ring that applies pressure onto the surfaces of both 

components (Rexroth Bosch Group, 2010). Figure 1 shows 

a sketch of a typical gearbox with three planetary stages 

used in wind turbines. The above mentioned rigid 

connection is visible here as well. Misalignments between 

the main shaft and the first planetary stage are expected to 

contribute to the failure problems. Also indicated are typical 

gear shaft or carrier arm bearing locations. Moser (2010) 

states that one reason for the gearbox failure is the turbulent 

nature of the wind. The flow field around a wind turbine in 

real wind situations is turbulent. It has randomly distributed 

eddies with small and large sizes. These eddies hit the three 

blades of a rotor, a three bladed rotor assumed, with 

different speeds and under different angles at different 

locations along the blades. Hence they are expected to cause 

different local aerodynamic forces which apply a resultant 

moment onto the hub of the rotor which is changing in 

magnitude and direction over time. 

 
 

Figure 1. Typical gearbox layout (Rexroth Bosch Group, 

2010) 

The experimental design in this research has a main shaft 

realised with two main bearings holding the shaft. The 

displacements of these bearings in the plane perpendicular 

to the main shaft have been measured. In particular the 

displacements along two axes, orthogonal to each other have 

been recorded over time. The entire experiment has taken 

place in a test set up in a laboratory. The set up comprised 

Dirk Lutschinger et al. This is an open-access article distributed under the 

terms of the Creative Commons Attribution 3.0 United States License, 
which permits unrestricted use, distribution, and reproduction in any 

medium, provided the original author and source are credited. 
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of three main components, a fan, an aerodynamic element, 

the function of which will be explained later in this paper, 

and a wind turbine test rig. As a fourth component, a board 

containing the electrical devices for the measurement 

equipment has been constructed. Figure 2 illustrates the 

overall experimental setup of the four components.  

 

 

Figure 2. Wind Turbine test set up 

 

2. EXPERIMENTAL TESTS 

2.1. Wind Simulation 

The tests were performed inside a laboratory with a 

conventional industrial fan as the flow source. The flow 

behind a fan, according to Eck (1973) is built up as a 

concentrated flow with rotation and a vortex core inside, 

parallel to the flow direction and centered around the central 

line of the hub of the fan. To straighten the flow again and 

to get rid of the vortex, an aerodynamic construction has 

been installed behind the fan. It consists of a stator and 

vertical vanes. This design has been taken over from general 

arrangements of low-speed wind tunnels as described by 

Pope & Harper (1966). This component, that is actually 

acting as sort of an aerodynamic filter can be seen in Figure 

2 in the center of the image. 
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After placing the “aerodynamic filter” downstream of the 

fan, a more even flow was obtained. In the left side of 

Figure 3, the flow with the vortex after the fan, visualized 

with cotton strips, can be seen whereas on the right side of 

the figure, the straightened flow has been made obvious 

with the cotton strips. Test campaigns have been performed 

to investigate the wind speeds downstream at designated 

locations. For that a micromanometre has been used. It was 

connected to a pitot tube that has been placed onto the 

central line at the height of the hub of the fan. 

Measurements were taken downstream in 1 meter steps up 

to 4 meters away from the “aerodynamic filter”. Measured 

data has been put together in Table 1. The values represent 

overall wind speeds and their fluctuations in meters per 

seconds. The first column divides the table into three 

different fan rotational speed levels with 1 being the slowest 

and 3 the fastest. 

The measurements showed that for distances greater than 3 

meters the fluctuation of the speeds significantly increased. 

This was also experienced with a simple hand test placing 

the hand into the flow and “feeling” the change of the 

pressure induced onto the hand’s surface by the flow. 

Through this test a more turbulent flow in this general area 

was assumed. The measurements of main shaft 

displacements were conducted with the wind turbine test rig 

being positioned 3 metres behind the straightener vanes, in 

the transient wind speed zone. 

2.2. Main Shaft Motion 

The test rig was designed in a way so that the basic structure 

of a main shaft and gearbox installation has been realised 

with two main shaft bearings and the corresponding 

brackets to hold them as well as the bracket to hold the 

gearbox. This structure could be seen in Figure 4 in a design 

example from Rexroth Bosch. The gearbox in the 

experiment has not been reproduced with gears but only the 

front wall and the bearing holding the main shaft in the front 

wall of the gearbox has been installed. To simulate the total 

inertia of the gearbox a basic calculation was performed 

with methods from machine dynamics. As a geometrical 

reference, the gear arrangement sketched in Figure 1 has 

been used. A fly wheel with a corresponding inertia has 

been manufactured and installed onto the shaft. The two 

main shaft brackets with the main shaft bearings, shown in 

Figure 5 as Bearing 1 and Bearing 2, have been designed 

with two blocks each on extensions with a relative angle 

towards each other of 90° and 45° towards the horizontal. 

This has the purpose to measure displacements of the blocks 

with proximity probes. The sizes of the blocks have been 

chosen according to requirements from the proximity probe 

handbook to build up the necessary eddy current to function 

properly. The distance of the blocks from the rotational axis 

has been chosen for the same reason. There are two 

proximity probes for each main shaft bearing, measuring the 

displacements in two axes perpendicular to each other. The 

probes themselves have been mounted onto steel brackets to 

keep their movements negligible in relation to the 

aluminium shaft and bracket arrangement. The shaft 

continues through the gearbox wall and the bearing where 

the main shaft enters the gearbox.  

 

Table 1. Flow speeds and fluctuations in [m/s] at different 

distances behind the straightener vanes for different fan 

speed settings 

 

Fan 

level 

1 [m] 2 [m] 3 [m] 4 [m] 

1 6.0 ± 0.3 6.2 ± 0.5 5.1 ± 0.6 4.2 ± 0.7 

2 6.6 ± 0.2 6.9 ± 0.4 5.4 ± 0.5 4.5 ± 0.8 

3 7.0 ± 0.5 7.1 ± 0.2 5.7 ± 0.4 4.9 ± 1.1 

 

 

Figure 3: Flow vortex behind fan (left) and straightened flow with aerodynamic element (right) 
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Figure 4. Main shaft and bearing framework example 

(Rexroth Bosch Group, 2010) 

 

 
 

Figure 5. Wind turbine test rig component arrangement 

 

3. THEORETICAL CONSIDERATION 

3.1. Forces on blades and resulting moment in rotor hub 

The theoretical approach taken in this project to deal with 

the aerodynamic forces on each blade is to assume a 

resulting aerodynamic force in the so called pressure point 

of the blade, depending on the flow around it. The flow 

environment is considered highly turbulent, with eddies of 

different sizes and flow velocities at different locations in 

the flow field at one point in time, as can be seen simply 

sketched in Figure 6. Every blade will experience a different 

flow and hence a different magnitude and direction of the 

resulting aerodynamic force and also the pressure point will 

be at a different location or radius from the rotational axis of 

the rotor. This resulting force can then be split up into its 

components in the rotational plane of the rotor and 

perpendicular to this plane, parallel to the rotational axis, as 

shown in Figure 7. 

 
 

Figure 6. Sketched turbulent wind flow with eddies 

 

 

 
 

Figure 7. Aerodynamic force components on individual 

blades

Here the pressure point has been labeled as C, the 

corresponding radii are shown with r and the two force 

components, one in-plane, A, and out-of-plane, B, all 

individually numbered for the three blades. When only the 

B force components are considered, then together with their 

radii, they create a resulting moment in the rotor hub, in a 
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plane through the main shaft axis, oriented in space 

depending on the magnitude of the individual moments of 

each blade. 

Components A contribute to the rotational motion of the 

rotor. The effect that this moment has on the main shaft is, 

as expected from simple beam bending theory, a 

deformation of the framework holding the main shaft. This 

deformation will be restrained at the bearing locations on 

the main shaft. However, since the framework has a certain 

stiffness and is not assumed rigid here, certain 

displacements of the bearings can be observed. A free body 

diagram of the main shaft with the external loading moment 

Ma and the bearing supports along with their displacements 

δ1 and δ2 for the two bearings can be seen in Figure 8. 

 

 
 

Figure 8. Free body diagram of main shaft 

 

In this figure, the stiffness of the framework and the 

stiffness of the bearing brackets in particular, have been 

represented as springs. 

 

4. TEST RESULTS AND ANALYSIS 

For a more common method of viewing the main shaft 

movement, the displacement data can be mathematically 

transformed into horizontal and vertical components.  

Figure 9 and Figure 10 represent orbit plots, where the 

vertical displacement component of a bearing is plotted 

against its corresponding horizontal displacement 

component. This is shown in Figure 9 for Bearing 1 and in 

Figure 10 for Bearing 2. When plotted in this fashion, it is 

obvious that the shaft is mainly oscillating in the vertical 

plane through the main shaft central axis. For Bearing 1 the 

magnitude of the horizontal amplitude around the middle 

axis is only about 15% of the magnitude of the amplitude in 

the vertical plane. For Bearing 2, this relation is 11.5%. In 

the plots, a certain deviation from the vertical plane is 

visible. 

 
 

Figure 9. Orbit plot Bearing 1 

 

 
 

Figure 10. Orbit plot Bearing 2 

 

It has been assumed to be caused by an asymmetrical 

geometrical error of the test rig construction. Further 

investigation will be conducted to shed light onto this effect 

in following tests. Disregarding this effect, it still allows for 

the simplified approach of assuming the main shaft being 

alternatingly bent in more or less a vertical plane.  

Figure 11 is an extract of the data from this experiment. The 

curves represent the vertical displacements for Bearing 1 

and Bearing 2. It is clearly seen that the direction of 

displacement for the two bearings relative to each other is
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the same. When Bearing 1 is moving upward, Bearing 2 

does the same movement and there is no counteracting 

movement of the two bearings. 

Figure 12 shows a close up of the structure that holds the 

bearings and hence the main shaft. By inspection, and not 

quantifying any values, the design suggests that the stiffness 

in the horizontal plane of this framework is much higher 

than in the vertical plane of the main shaft. It is suspected 

that this fact contributes to the orbital plots appearing the 

way they do with a larger amplitude in the vertical plane 

compared to the horizontal. A moment that is applied at the 

hub, resulting from aerodynamic loads, as described in 

section 3.1, will see its vertical component having a higher 

bending effect onto the main shaft than its horizontal 

component. Therefore, in further investigations in this 

paper, for simplifying reasons, only the vertical 

displacements are being considered. 

 

Two different effects can be considered for the 

displacements of the main shaft, when it is continued 

through the gearbox wall. 

 
Figure 11. Vertical displacements Bearing 1 and Bearing 2 

 

Firstly, if the first bearing in the gearbox can be considered 

to have a certain angular clearance when a moment is 

applied, there will be limited resistance from the bearing 

against the bending moment. The resulting angular 

displacement, which in beam bending theory is the slope of 

the bending curve, will be transmitted into the first gear 

stage of the gearbox. An oscillating movement of the kind 

detected in this experiment is likely to cause a damaging 

effect over a longer period of time in the gearbox. 

Secondly, if the bearing does not allow for any movement 

due to the moment from the main shaft, then the bearing, 

which is generally made from a harder material than the 

gearbox wall, would be expected to follow the main shafts 

angular movement. This will effectively bend and distort the 

gearbox wall, having a similar effect on the first gear stage. 

Again, a long term destructive effect would be expected. In 

this project, further experimental investigations are planned 

to be able to prove the link between the aerodynamic effects 

and main shaft motion. Simulation methods will also be 

used for comparison and validation. 

 

 
 

Figure 12. Main shaft framework stiffnesses 

 

Another investigation can be performed with the 

experimentally obtained data when considering the theory of 

fatigue in regards to repetitive loading of components or 

system members. As described earlier, the horizontal 

movements are rather small compared to the vertical
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oscillations so that for a simplified approach only the 

vertical displacements are considered. It is obvious that the 

peaks of the displacements group in different ranges with 

different numbers of reoccurrences and a statistical 

approach can be taken. Since the two bearings move 

somewhat synchronously only the data for Bearing 1 is 

considered here. A data peak histogram was created using 

data similar to that shown in Figure 11, from a time record 

covering 20 seconds. The number of peaks in the range 

between 0 mm and 0.0025 mm was 2373, the number of 

peaks in the range between 0.0025 mm and 0.0075 mm was 

2480, the number of peaks in the range between 0.0075 mm 

and 0.0125 mm was 264, and between 0.0125 mm and 

0.0175 mm was 6. 

 

 

Figure 13. High speed camera sequence of proximity probe tip 

 

Over the given timeframe of the experiment, with a simple 

extrapolation, it could be calculated that these numbers 

reach 10
6
 cycles after 8428s or 2.34h for the 0 mm to 0.0025 

mm range, 8064s or 2.3h for the 0.0025 mm to 0.0075 mm 

range, 75757s or 21h for the 0.0075 mm to 0.0125 mm 

range and 3333333s or 39 days for the 0.0175 mm to 0.0125 

range.  

The 10
6
 cycle number has a special meaning in fatigue 

theory, being the critical number of cycles for members 

made of steel at which failure and component lifetime can 

be measured. In a so called S-N curve, a member loaded 

repeatedly above the limit specified in the S-N curve will 

fail before reaching 10
6
 cycles, whereas the member loaded 

below this critical limit, will survive, theoretically forever. 

Given the typical lifetime until failure of five years for wind 

turbine gearboxes, it could be hypothesized that the simple 

approach of this repetitive bending theory for this 

application in this experiment from a fatigue point of view 

would not primarily contribute to a failure of a gearbox part. 

Further research is however planned to be conducted to 

investigate, if such behaviour of the main shaft also exists in 

larger scale wind turbines with similar main shaft and 

bearing design, and if the motion pattern, displacements and 

cycle numbers are similar.  

To optically obtain an impression of the movement of the 

bearings, and hence the main shaft as well as the hub of the 

rotor, footage has been recorded with a high speed camera.  

Figure 13 shows a sequence of pictures of the motion of one 

front bearing block from its maximum point of distance to 

its minimum point of distance to the front tip of a proximity 

probe. The single line, visible in the picture is fixed onto a 

distinctive dot on the probe front. The circle has been 

inserted as an object being fixed at the single line and 

reaching close to the surface of the block that is connected 

with the moving bearing holder. The radius of the circle is 

constant throughout the sequence. The square has been 

aligned with features of the block and is shifting with the 

movement relative to the circle. Since the displacements are 

rather small, it is hard, if not impossible to make out any 

change in the distance between the circle and the square, 

here in this picture, but if the sequence is switched through 

in rapid succession on a computer screen, the movement is 

obvious.
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5. CONCLUSION 

An introduction has been given into research investigating 

the cause for premature wind turbine gearbox failures. At 

the current stage an experimental wind turbine test rig set up 

exists in a laboratory. The wind flow environment, created 

by a fan has been quantified by measurements and roughly 

defined. Turbulences in the flow, which are assumed to be 

the cause for the gearbox damage have been considered by 

assuming unequal aerodynamic forces on rotor blades, 

which create a resulting fluctuating moment at the rotor hub. 

It is intended to artificially increase the intensity of 

turbulences by objects being placed in the wind flow and 

record and analyse the effect on the test rig. 

Until now, measurements have been conducted with 

proximity probes to measure the displacement of the main 

shaft at bearing positions due to the resulting moment at the 

hub. It has been found that a dominant repetitive bending 

movement in the vertical plane exists. Two hypotheses have 

been stated as to what effect this bending could have on the 

first bearing of the gearbox and the gearbox wall. In both 

cases, the effect of the motion of the main shaft is suspected 

to have a long term damaging effect inside the gearbox. In 

further investigations it is planned to simulate a gearbox 

with suitable software and use the real life data, obtained in 

these experiments, as simulated input motion at the gearbox 

entrance. Also experimental measurements of 

displacements, bending angles and stresses at the interface 

between the main shaft and gearbox wall on the test rig are 

anticipated.  

A further investigation has revealed by using simple fatigue 

theory, that the repetitive bending for certain ranges of 

displacements reaches critical numbers long before the 

gearbox lifetime of five years. This does not exclude that 

this motion is not contributing to the failure but a direct link 

to a critical number close to five years has not been 

established.  

In the experiment a high speed camera was used to optically 

capture the motion of the main shaft. This device is intended 

to be used further in the project to verify test data as far as it 

is possible and to investigate and make visible any 

displacements that occur. In particular when the intensity of 

the turbulent flow is increased it is hoped to see more 

obvious effects on the components.  

As this paper is only focusing on the main shaft movement 

which was the first goal of this research, there are more 

additions of sensors planned in the experimental set up. For 

example, strain gauges have already been installed on all 

three blade roots and two encoder wheels with optical 

switches have been installed on the main shaft which 

provide further concurrent experimental data to give a 

broader picture of the effects that take place during 

operation. It is also intended to install more sophisticated 

blades as compared to the crude ones which are currently 

fitted to the hub.  

As for the wind environment, it is planned to obtain a more 

precise picture of the flow pattern downstream of the wind 

source and straightener device as well as a more 

sophisticated means of quantifying turbulent flow. Where 

suitable, flow simulation software will be used to aid in 

confirming the experimental values gathered. 

Multiple variations of factors such as mentioned above are 

planned with the aim to better understand causes of wind 

turbine gearbox failures. At the moment the project looks at 

the aspects of aerodynamics, vibration and gear and bearing 

wear from a more distant vintage point and rather 

investigates how these three areas have a combined effect 

onto the system. Where deemed suitable, a closer look into 

certain components and under certain operating conditions 

will be performed in future experiments and subprojects. 
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ABSTRACT 

This study is concerned with the building of an appropriate 

model to estimate failure parameters of an Auxiliary Power 

Unit (APU). Linear and nonlinear models were used in 

order to evaluate which model is more suitable for this 

application. Data for model building and testing were 

obtained by simulating a nonlinear dynamic model of APU 

in Matlab/Simulink for various operating conditions to 

which it may be subjected to and with different levels of 

failure parameter degradation. Linear models were obtained 

by least-squares regression, whereas nonlinear models were 

obtained by training neural networks. The results obtained 

with these two models were compared. As a result, the 

neural network models were found to provide a better 

estimate of the APU failure parameters.  

1. INTRODUCTION 

The aviation business has grown rapidly in the last decade 

and the competition between operators becomes 

increasingly fierce. The development of new technologies to 

reduce costs and maximize operating profit has become the 

goal of the manufacturers in order to produce aircraft with 

competitive advantage. For this purpose, the increase in 

aircraft availability by means of improved maintenance 

techniques has become a key issue.  

Nowadays aircraft maintenance is no longer a procedure 

merely reactive (conducted after the occurrence of a fault). 

Instead, it includes preventive actions (taken to avoid the 

occurrence of faults and based on statistics of mean time to 

failure of components) and tends to include more and more 

predictive actions (Vieira, 2008). In this last case, 

parameters are used to indicate the condition or state in 

which a system is close to the end of its useful life. 

Hence concerns about systems Prognostics and Health 

Management (PHM) have increased among aircraft 

manufacturers. PHM covers the use of various techniques to 

evaluate the degradation state of a system through 

operational data analysis. Health data analysis enables 

optimization of maintenance activities, which reduces 

aircraft operational and maintenance costs and increases 

aircraft availability, therefore increases the operating profit 

of the airline. 

In order to implement PHM in a system it is useful to have 

reasonable and representative amount of measured 

parameters of this system or other systems that are affected 

by it. However, the addition of new sensors could result in 

increasing costs for the manufacturer and add aircraft 

weight. It could also increase maintenance costs, since the 

number of components that might fail and require 

replacement would be higher. 

As the aircraft operate under varying conditions of 

temperature, pressure and load, it is important that the PHM 

of an aviation system takes into account different operating 

conditions to which the system is subjected in order to avoid 

that the effects of variations in operating conditions are 

interpreted as system degradation. 

This paper aims to determine an appropriate method to 

estimate values of failure parameters introduced in a 

nonlinear dynamic model of APU. Due to the simplicity of 

implementation, the linear approach was tried first. Since 

the results obtained from the use of linear regression did not 

get an acceptable accuracy, neural networks implementation 

was chosen in an attempt to get better results. Several levels 

of degradation of failure parameters are considered, as well 

as various operating conditions to which an APU is 

subjected. 
Renata M. Pascoal et al. This is an open-access article distributed under 

the terms of the Creative Commons Attribution 3.0 United States 
License, which permits unrestricted use, distribution, and reproduction 

in any medium, provided the original author and source are credited. 

Annual Conference of the Prognostics and Health Management Society 2013

664



Annual Conference of the Prognostics and Health Management Society 2013 
 

2 

The remainder of the text is organized as follows. Section 2 

contains a brief description of an APU system, as well as the 

adopted model and the values of operating conditions and 

failure parameters that were used in this study. Section 3 

presents the methods used to estimate failure parameters and 

the methodology adopted. Section 4 discusses the estimation 

results. Concluding remarks are presented in Section 5. 

2. AUXILIARY POWER UNIT 

The aircraft APU is a gas turbine whose main function is to 

assist with starting of the engines. In addition it is capable to 

provide pneumatic power to other systems, as well as 

electrical power through the activation of an electrical 

generator. In principle the APU is intended to operate on the 

ground, but it can be used in an emergency to run the 

generators in flight. 

A typical APU is composed of three main elements which 

are compressor, combustor and turbine. It also has auxiliary 

components: fuel system, bleed system that controls the 

amount of extracted pneumatic power, gearbox and 

electrical generator. Control laws of the APU are performed 

by the Full Authority Digital Engine Control (FADEC) 

(Vianna et al., 2011). An APU schematic diagram is 

presented in Figure 1. 

 

Figure 1. APU schematic diagram. 

In order to provide information to FADEC, the APU has 

several sensors that measure shaft speed, exhaust gas 

temperature (EGT), bleed pressure and fuel flow.  

2.1. APU Model description 

The thermodynamic model of APU used in this work was 

developed in MATLAB/Simulink. The model consists of 

blocks that model the behavior of each physical component 

of a real APU. A schematic representation of this model 

incorporating blocks of three major components, 

compressor, combustor and turbine, plus two others that 

model the dynamic of the shaft and the control system is 

shown in Figure 2. The APU model used in this work is 

owned by Embraer and content rights are owned by the 

supplier. Then details about equations and methods related 

to model construction and faults modeling cannot be shown 

in this paper. 

The three model outputs (EGT, bleed pressure and fuel 

flow) correspond to sensed values of a real system. The 

model has inputs for environmental conditions, temperature 

and pressure, which influence the system behavior. It also 

has an input for bleed flow and, internally to compressor 

block, there is an input for shaft power representing the 

power extracted by the electrical generator. 

 

Figure 2. APU model block diagram. 

In a real APU, the compressor is the unit that provides 

compressed air to the combustor. Its performance is defined 

by parameters such as pressure ratio (ratio between the 

output pressure and inlet pressure), air flow rate and total 

adiabatic efficiency, which represents the degree of 

deviation of the actual compression process in the 

compressor from a reversible adiabatic compression 

process. 

The compressor block of APU model has functions 

implemented using maps obtained from charts similar to 

those shown in Figure 3. These functions take input 

parameters such as ambient pressure, ambient temperature 

and shaft speed to provide torque for the compressor, air 

flow, pressure and temperature at the compressor outlet as 

outputs. 

The functions implemented in the burner block receive the 

values of pressure, temperature and flow rate of the input air 

from the compressor block and the fuel flow rate from the 

controller, and calculate the combustor outlet pressure, 

temperature and flow rate. The fuel-air ratio (FAR) is also 

an output of this block. 

The turbine block has functions based on maps obtained 

from charts similar to those shown in Figure 4. These 

functions take as inputs shaft speed and the corrected value 

of the air flow, and provide as outputs the pressure ratio, the 

torque of the turbine and the exhaust gas temperature. 
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The block that models the control system consists of a PID 

(proportional-integral-derivative) controller which controls 

the shaft speed by measuring the APU fuel flow. The block 

modeling shaft dynamic calculates the resulting shaft 

acceleration. The value of this acceleration, which depends 

on the value of inertia of the shaft, is integrated over time to 

obtain the shaft speed that is the output of this block. 

 

Figure 3. Notional Pressure Ratio Compressor Map (Jones, 

2003). 

 

Figure 4. Notional Pressure Ratio Turbine Map (Jones, 

2003). 

2.2. APU failure parameters 

Since an APU is a complex machine made up of several 

components, various failure modes can occur throughout its 

life cycle. This work intends to estimate the following three 

APU failure parameters: 

1. Excessive bleed; 

2. Compressor efficiency loss; 

3. Turbine efficiency loss. 

The choice of these failure parameters was based on the fact 

that their occurrences are commonplace in real APU 

systems. 

2.3. APU Model data acquisition 

Operating conditions have a direct influence on the outputs 

of the APU model. So they must be taken into account in 

the identification of fault conditions for a satisfactory APU 

health monitoring. Thus, data for implementing the methods 

to estimate the failure parameters were obtained through 

model simulations considering variations in operating 

conditions and in the degradation of failure parameters with 

the values specified in Table 1 and Table 2. These values 

are based on authors’ field experience and they cover typical 

ranges. 

  

To acquire data for estimation model building and testing, 

three situations were considered. In all situations the 

operating conditions assume all the possible values from 

Table 1. These are the situations: 

1. The only introduced failure parameter is compressor 

efficiency loss, which assumes all the possible values of 

Table 2. Other failure parameters are zero; 

Table 2. Values of failure parameters degradation. 

 

Failure Parameter Values 

Excessive Bleed (kg/s) 
0, 0.189, 0.378 and 

0.605 

Compressor efficiency 

loss (%) 

0, 1.4, 2.8, 4.2, 5.6, 

7, 8.4, 9.8, 11.2, 

12.6 and 14 

Turbine efficiency loss 

(%) 

0, 0.6, 1.2, 1.8, 2.4, 

3, 3.6, 4.2, 4.8, 5.4 

and 6 

 

Table 1. Values of operating conditions. 

 

Operating Condition Values 

Ambient temperature (ºC) 0, 20 and 40 

Ambient pressure (kPa) at 

sea level, 5000ft and 

10000ft 

101.35, 85.81 

and 70.26 

Shaft power required (kJ/s) 
0, 22.37, 44.74 

and 67.11 

Bleed flow extracted (kg/s) 
0, 0.189, 0.378 

and 0.605 
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2. The only introduced failure parameter is turbine 

efficiency loss, which assumes all the possible values of 

Table 2. Other failure parameters are zero; 

3. The only introduced failure parameter is excessive 

bleed, which assumes all the possible values of Table 2. 

Other failure parameters are zero. 

In order to validate the methods, the operating condition 

values were chosen randomly and limited by their minimum 

and maximum values on Table 1. Failure parameters were 

also chosen randomly inside the range described above. For 

example, in situation 1, compressor efficiency loss values 

were chosen randomly between 0 and 14%, and the other 

failure parameters were zero. 

3. METHODOLOGY OF FAILURE PARAMETERS ESTIMATION 

Sections 3.1 and 3.2 describe the methods employed in this 

work to build linear and nonlinear models, respectively. 

Section 3.3 summarizes the methodology for failure 

parameter estimation. 

3.1. Multivariable Linear Regression 

Let   be the total number of observations,   the number of 

explanatory variables (ambient temperature, ambient 

pressure, shaft power required, bleed flow extracted, EGT, 

bleed pressure and fuel flow in this work) and   the number 

of dependent variables (compressor efficiency loss, turbine 

efficiency loss and excessive bleed in this work) in the 

regression procedure. The matrix of explanatory variables  

    (         ,          ; with an extra column of 

unit values to account for the offset term in the regression) 

is denoted by   , the matrix of dependent variables     

(         ,          ) is denoted by  , the matrix of 

linear regression parameters to be estimated    (   
       ,          )  is denoted by   and the matrix of 

values estimated by the method  ̂   (          ,   
       ) is denoted by  ̂. These matrices can be arranged 

in the following format for use in multivariable linear 

regression: 

  [

 ̂   ̂    ̂  

 ̂   ̂    ̂  

    
 ̂   ̂    ̂  

]  [

          

          

    
          

]  

  [

        

        

    
        

]  ̂  [

 ̂   ̂    ̂  

 ̂   ̂    ̂  

    
 ̂   ̂    ̂  

] 

(1) 

By using least-squares, the matrix of linear regression 

parameters to be estimated,  , and the matrix of values 

estimated by the method,  ̂, are obtained from 

             (2) 

 ̂     (3) 

In this work one set of the data simulated by the model as 

described on section 2.3 will be used to obtain     (training 

set) and the other set will be used to estimate failure 

parameters  ̂  (test set). As a measure of estimation 

performance, the mean square error (MSE) between 

estimated and true values will be calculated for the  th 

failure parameter as 

       
∑ (             )

  
   

 
         (4) 

3.2. Neural Networks 

Artificial neural networks (ANNs) have been widely 

investigated for use in fault diagnosis. ANNs are trained to 

map inputs to outputs via nonlinear relationships in an 

architecture which resembles the process performed in the 

brain. Generally, the neural network operates in two phases: 

one learning phase and one operation phase. The purpose of 

the learning phase is to adjust the parameters of the neural 

network which will allow the neural network to function 

properly during the operation phase (Marinai, 2004). 

In this work, Multi Layer Perceptron (MLP) networks with 

sigmoidal activation function are employed (Marinai, 2004). 

The adopted MLP architecture comprises three layers: input 

layer, hidden layer and output layer. Training is 

accomplished by using the well-known backpropagation 

algorithm, as implemented in the Neural Network Toolbox 

of MATLAB (version R2010a). The network inputs and 

outputs were defined as in the linear regression case. 

3.3. Methodology for failure parameters estimation 

The flowchart in Figure 5 summarizes the methodology 

employed in this study. It is worth noting that the data 

resulting from the APU simulations were divided into two 

separate sets for model building and validation purposes. 

 

Figure 5. Methodology for evaluating the performance of 

the estimation methods. 
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4. RESULTS 

4.1. Linear Regression 

4.1.1. Situation 1 

The MSE between the values of compressor efficiency loss 

estimated by linear regression and the values that were 

indeed used on simulation was 2.910
4

. The estimation 

results are depicted in the plot of estimated versus true 

values presented in Figure 6. The line in the plot represents 

the optimal result that would be obtained if estimated value 

was equal to true value. 

 

Figure 6. Compressor efficiency loss values from simulation 

versus values estimated by the linear regression model. 

4.1.2. Situation 2 

The MSE for estimation of turbine efficiency loss by the 

Least Squares Method was 6.910
5

. Figure 7 shows the 

plot of the values of simulation against the estimated values. 

 

Figure 7. Turbine efficiency loss values from simulation 

versus values estimated by the linear regression model. 

4.1.3. Situation 3 

The MSE for estimation of excessive bleed by the Least 

Squares Method was 136. Figure 8 shows the plot of the 

values of simulation against the estimated values. 

 

Figure 8. Excessive bleed values from simulation versus 

values estimated by the linear regression model. 

4.2. Neural Networks 

4.2.1. Situation 1 

The MSE calculated for estimation of compressor efficiency 

loss by the neural network was 1.610
5

. Figure 9 shows the 

plot of the values of simulation against the estimated values. 

By comparing Figure 6 with Figure 9 and the MSE values 

obtained by linear regression and the neural network, it is 

possible to notice that the neural network presented better 

performance on estimating compressor efficiency loss 

values. 

 

Figure 9. Compressor efficiency loss values from simulation 

versus values estimated by the neural network model. 
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4.2.2. Situation 2 

The MSE for estimation of turbine efficiency loss by the 

Neural Network is 1.010
7

. Figure 10 shows the plot of the 

values of simulation against the estimated values. 

By comparing Figure 7 with Figure 10 and the MSE values 

obtained by linear regression and the neural network, it is 

possible to notice that the neural network also presented 

better performance on estimating turbine efficiency loss 

values. 

 

Figure 10. Turbine efficiency loss values from simulation 

versus values estimated by the neural network model. 

4.2.3. Situation 3 

The MSE for estimation of excessive bleed by the Neural 

Network was 1.4. Figure 11 shows the plot of the values of 

simulation against the estimated values. 

 

Figure 11. Excessive bleed values from simulation versus 

values estimated by the neural network model. 

 

By comparing Figure 8 with Figure 11 and the MSE values 

obtained by linear regression and the neural network, it is 

possible to notice that the neural network presented better 

performance on estimating excessive bleed values.  

4.3. Results Summary 

The MSE for both methods are summarized on the table 

below: 

 

5. CONCLUSION 

This paper presented the results of an investigation 

involving the use of linear regression and neural networks 

for the estimation of APU failure parameters from operating 

conditions and measurements of EGT, bleed pressure and 

fuel flow. In all cases, the neural network models provided 

considerably better estimation results which indicates that 

there are nonlinearities in the relation among the monitored 

variables that cannot be neglected. 

Future works could be concerned with extensions of this 

investigation to encompass the use of field data. 
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ABSTRACT 

We created a general framework for analysts to store and 
view data in a way that removes the boundaries created by 
operating systems, programming languages, and proximity. 
With the advent of HTML5 and CSS3 with JavaScript the 
distribution of information is limited to only those who lack 
a browser. We created a framework based on the 
methodology: one server, one web based application. 
Additional benefits are increased opportunities for 
collaboration. Today the idea of a group in a single room is 
antiquated. Groups will communicate and collaborate with 
others from other universities, organizations, as well as 
other continents across times zones. There are many 
varieties of data gathering and condition-monitoring 
software available as well as companies who specialize in 
customizing software to individual applications. One single 
group will depend on multiple languages, environments, and 
computers to oversee recording and collaborating with one 
another in a single lab. The heterogeneous nature of the 
system creates challenges for seamless exchange of data and 
ideas between members. To address these limitations we 
designed a framework to allow users seamless accessibility 
to their data. Our framework was deployed using the data 
feed on the NASA Ames’ planetary rover testbed. Our paper 
demonstrates the process and implementation we followed 
on the rover. 

1. INTRODUCTION 

Through observing the vast number of stove-piped data 
plotting tools used at NASA as well as the current practices 
for prognostics, diagnostics, and the concerns of their 
analysts, the framework for Web Based Prognostics and 
24/7 Monitoring (WBPM) was created. Most projects use 
hard-drive based applications for data gathered during 
testing (e.g. Labview, ICE, C#, Java, and Matlab). Some 

will have options for delivering data to servers for storage. 
The dilemma is that the compatibility for most analysts is 
limited to a single platform. While most software packages 
provide multiple releases intended for different platforms, 
the known issues in the program would vary depending on 
the user’s chosen operation system (OS). This inconsistency 
forces analysts to collaborate on uniform devices and 
software packages. The limitations change yet again 
depending on the length of project. Both short-term and 
long-term projects present their own unique needs and 
limitations for data acquisition and analysis. These range 
from reliability of storing data locally to human factors 
associated with long-term projects. Many analysts will plan 
a visit with researchers at National Aeronautics and Space 
Administration (NASA) Ames Research Center and other 
facilities to have the ability to contribute with research being 
conducted. Once their time has elapsed there are limited 
ways for them to have input and access to current data. The 
need to remove boundaries is of great importance in order to 
support increased collaboration and innovation at NASA 
and other institutions. 

For the majority of analysts, the expectation of Hyper Text 
Markup Language 5 (HTML5), Cascading Style Sheets 
Level 3 (CSS3), JavaScript (JS), and PHP: Hypertext 
Preprocessor (PHP) are for the creation of static websites. In 
the past, this may have been the case; PHP once was an 
acronym for Personal Home Page. The latest updates to 
web-based computer languages have given power to 
accomplish tasks that were once only executable with 
languages traditionally OS based. The case study using a 
data feed from the NASA Ames’ planetary rover testbed 
encompasses the majority of tasks WBPM is designed to 
address. The rover gathers data with the aid of one 
researcher overseeing the controls, it stores the information 
on a laptop directly on the rover, users can subscribe to the 
outputs, and it is considered to be conducting short term 
(ST) tests. These tests happen frequently providing many 
opportunities to test with the WBPM framework. 
Adjustments in rover mission profile based upon feedback 

Miryam Strautkalns et al. This is an open-access article distributed under 
the terms of the Creative Commons Attribution 3.0 United States 
License, which permits unrestricted use, distribution, and reproduction 
in any medium, provided the original author and source are credited. 
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from the data take time. The WBPM will accept data and 
the modifications would make the data received relevant.  

The contribution of the paper is a framework that allows 
analysts the ability to monitor their data on any smart 
mobile device, computer, or laptop. Platform independent 
storage and retrieval of data is possible. 

The paper is organized as follows. Section (2) Motivations, 
explains the reasons that drove this framework to be created. 
Section (3) The Flow of Data, explains the languages used 
and how the data is stored. Section (4) WBPM Framework, 
describes the data being monitored for the rover test bed. 
Section (5) Case study with NASA planetary rover test bed, 
overviews the observations and use of the rover test bed 
simulator to test the framework. Section (6) Framework 
Abilities, Benefits, and Future, explains the capabilities and 
benefits of using a web environment for data acquisition. 
Section (7) Conclusion, summarizes the findings made. 

2. MOTIVATIONS 

During most research projects, it was observed that certain 
restrictions were problematic to the overall quality of 
projects. The solution was more involvement and time on-
site by analysts. More information was gathered about the 
common ST and long term (LT) research practices and it 
was realized that there was an extraordinarily large amount 
of physical energy expended to remain present and ensure 
the quality of one’s project, such as remaining in close 
proximity to the data  (e.g. sleeping onsite or at a lodge).  

Concerns changed depending on the parameters of the 
project, though the overall concern was maintaining the 
results from the time spent with testing. With projects 
whose data acquisition was maintained on a single 
computer, the concern was maintaining the system. There 
were experiences where a day’s work was lost due to the 
failure of the system, resulting in a loss of data collected. 
Live data storage on a server would have prevented any data 
loss experienced from relying on the computer. Many other 
scenarios would end on the same concern and the same 
solution was available to all projects: data acquisition that 
did not rely on the computer alone to gather and store 
project data.  

One server, one web based application. The solution was 
available because of the strength web based languages had 
gained with the latest updates made. Once the framework as 
a solution was established the previous ideas of a project’s 
process changed, and the options available had increased. 
The environments for collaboration had broadened; the 
ability to store and present live data during experiments was 
available with more customization. With every test more 
features that benefit the research process present 
themselves. 

3. CORE TECHNOLOGIES USED  

The WBPM framework is built using HTML5, CSS3, JS, 
PHP, and MySQL with rover test bed simulator. The 
following subsections explain and summarize the languages, 
technologies, and content used. 

3.1. HTML5 

To create a framework that would be malleable and easily 
customizable, HTML5, JS, CSS3, and PHP were used. 
HTML5 comes with many updates that continue what 
HTML4 started with its updates and contributions in 
changing HTML from a document-based language to a 
dynamic and interactive user experience. Canvas is a 
powerful visual tool that is available in HTML5, and with 
JS, the visualizations can be used to create graphing 
systems, charts, and visualizations that update live. Prior to 
HTML5, the canvas was usually defined using a Java plugin 
or a Flash plugin. Form validation offers a security to the 
quality of information collected; HTML5 validation is 
available within the browser.  

3.2. CSS3 

CSS3 is a way to organize and represent information 
through the browser environment in a useful and relevant 
structure for the content and audience. This includes the 
style sheet parameters required by the Canvas object. CSS3 
introduces 2d and 3d transformations, transitions, and 
animations. These features organize the visualization of 
information in an effective manner for the user. Studies 
have shown that different categories of information are 
more susceptible to understanding if presented accordingly. 
In addition, CSS3 styles can be dynamically modified 
through JavaScript operating on the Document Object 
Model (DOM). CSS3, like its predecessors, tailor the 
presentation of the data depending on whether it is on a 
computer, smart phone, or tablet. 

3.3. JS 

JS is a dynamic object-oriented language used to control and 
moderate actions and behaviors of webpages and web-based 
applications. Whether it is a computer, smart phone, or 
tablet, JS is the language used to aid activities ranging from 
game play to live information feeds. HTML5’s tools in 
combination with JS create environments ideal to handle the 
viewing and controlling of live content. Because of its 
popularity and power, JS is commonly referred to as the 
language of the web. JS in this work provides a way to 
facilitate both the visualizations of the content viewer and a 
portal to initiate the transmission of data. Developer groups 
are still performing extensive work to increase the 
performance of JS. 
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3.4. MySQL 

My Structured Query Language (MySQL) is a database 
management system that with commands can create 
different layouts for information storage. While MySQL 
alone does not contain an interface to make these 
modifications, there are many user interfaces in many 
different languages that are created for the task. MySQL is 
the world’s most widely used database system and can be 
used on any platform. A standard interface to MySQL is 
through PHP. Modern interfaces can also be through 
languages such as Python. 

3.5.  PHP 

A server-side language, PHP is a lightweight language used 
for accessing and altering databases and their content. In 
addition to being used to work with databases, PHP can be 
embedded and used to create webpages with HTML. PHP 
executes the chosen connector for the framework data, 
stores the data in the MySQL database and passes the 
information forward as a response back to the JS and HTML 
in an array. 

3.6. Modern Browsers 

Web browser software development is far greater than all 
other software development combined.  As of June 2012, 
there are approximately 2.4 billion Internet users and most 
of those users have access to browsers via smart phones and 
tablets outside of the traditional browser facilitated by a 
desktop or laptop computer. Since HTML5’s updates, the 
browser environment now has the power to take on tasks 
thought to be limited to computer based software packages 
and stand alone applications. Current browsers are capable 
of accomplishing tasks ranging from new transitions and 
movement, 3d Canvas drawing, and reading motion sensor 
data for accelerometers, gyroscopes, and magnetometers. 
Development for the web helps alleviate concerns that most 
analysts face in keeping their software current so their data 
is readable and usable as hardware and software platforms 
evolve. This is due to the fact that the cost and person power 
used to fix existing bugs, create new functions, and extend 
the software will not be wasted on a software platform that 
may not be around in the future. 

4. WBPM FRAMEWORK - CURRENT ROVER TEST BED 
DATA ACQUISITION 

The NASA planetary rover currently monitors 84 
parameters/second, including the statuses of twenty-four 
batteries, the voltage output and temperature of each, the 
currents, commanded speed, and actual speed for each of the 
four wheels, the global positioning system for latitude, 
longitude, and elevation, and the accelerometer, gyroscope, 
magnetometer readings for x, y, and z values. The output of 
data comes in the form of an array including the timestamp 
and a new updated array of values comes every second for 

the duration of a test. In order to observe the live tests 
performed while the rover is driven, the users must install 
Windows based communication software used to facilitate 
subscription. 

 
Figure 1. Current Flow chart of Rover Data. 

Figure 1 shows the current sequence for Rover Data storage: 

• Rover begins transmitting data. 

• Local Data Acquisition Software monitors data 
being transmitted and sorts data into an array 

• Array is saved to the rover laptop’s hard drive in a 
text document file. 

Once the text file containing rover data for the test session is 
saved, a researcher will upload the file to be stored on their 
server. Here people are able to download the file, and, using 
a corresponding Matlab file, can distinguish between the 
different values listed. 

4.1. WBPM Framework 

Depending on the project environment, the initialization of 
how the framework begins will change to accommodate 
different levels of security.  

 
Figure 2. Framework Chart 
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Figure 2 shows the steps for implementing the WBPM 
Framework on the rover test bed, with the arrows signifying 
data being transmitted between languages and devices: 

• Browser is initialized; the JS creates an 
Asynchronous JavaScript and Extensible Markup 
Language (AJAX) request.  

• The AJAX request is created, establishes a 
successful connection and the PHP is opened.  

• The PHP executes the connector program used to 
communicate data being transmitted from the 
project.  

• The data string is received by the PHP and is split 
into its individual parameters and separated into an 
array. 

• The array’s data is stored by the PHP into the 
server’s MySQL database along with other 
parameters including originator and access list (for 
security). 

• When specific parameters in a time frame are 
requested, the information is then sorted into new 
arrays and sent to the JS as a response to the initial 
query. 

• The AJAX response receives a new value for each 
area of the rover being monitored. Each value is 
added to the corresponding array. 

• The array values in JS are sent to populate the 
HTML5 Canvas drawn graphs. 

• User will be able to use common thumb gestures to 
scroll the data. 

In real-time mode this process repeats with a set time 
interval. The rover receives new data every second and the 
AJAX is set to request data in accordance. 

5. CASE STUDY 

Initial steps were to incorporate the standard methods users 
have been following to observe the data. After installation 
of the communications software there were compatibility 
problems encountered. The connectors and programming 
created for users to observe the rover’s testing were written 
in a platform specific manner around many Windows 
functions – confirming one of the rationale for developing 
the one server, one web-based application approach. The 
computer being used in this case is an Apple MacBook Pro. 
The result was that observing the data with the same 
research environment, software that allow analysts to 
observe the rover test bed during a live experiment, was not 
platform-independent. This situation was a real life 
motivation for the WBPM framework.  

The installation of the platform-dependent communication 
software was not an option and the solution was to recode 
the simulation available to be compatible. Understanding 
the goal is to store and retrieve data the flexibility of 
framework allows analysts choices on how to present and 
store it.  

New data from the rover is transmitted every second and 
that dictates the cycle for AJAX requests sent. There is an 
empty array created within the JS and each AJAX response 
from the rover is added per second. The AJAX requests 
initiate the communication between the PHP and the Matlab 
rover simulation. The Matlab rover simulation provides 
simulated rover data.  The rover data is transmitted through 
a Java connector embedded in Matlab in a string of values 
lead by a timestamp, this contains the values for each sensor 
on the rover for that time. The Java connector and PHP have 
several tasks to perform. 

Java connector: 

1. Initiate a connection to the MySQL database. 

2. Connect with the Matlab Rover simulation to 
retrieve the data string. 

3. Separate the string into arrays for organization. 

4. Store the data into the MySQL table. 

PHP Query: 

1. Opened by an AJAX request. 

2. Initiate a connection to the MySQL database. 

3. Send a MySQL query to gather data from the 
database. 

4. Send sorted data back as a response to the 
AJAX request.  

 
 

Figure 3. Entire set of rover data: 4 min 3 sec test - Battery 1 
Voltage 
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Figure 4. Six latest rover data values - Battery 1 Voltage 

The Canvas graph has been programmed to show two views 
when selected, one for the values over the entire length of 
the rover test, Figure 3, or the six most recent plots of data, 
Figure 4.  

 

 
Figure 5. Smartphone test.  

The WBPM framework then required mobile device testing 
to review future possibilities for project monitoring. A 
connection to be established between the simulation on 
localhost and a smartphone meant creating an open port for 
communication over a wireless connection. Figure 5 shows 
the mobile WBPM framework monitoring the rover’s 
battery 1 voltage, running on a smartphone. 

6.  WBPM ABILITIES AND BENEFITS 

WBPM is providing a flexible base that can provide secure 
and reliable monitoring. The resources, browsers, and 
programming languages used have an extremely vast 
network providing regular updates and support. All because 
of the fact that the online world changes so rapidly, when 
engineering for the web you have to create for the future. 
Programming for the present in some cases is already too 
late. Despite the fast paced speed of innovation the support 

maintained for older web standards is a part of planning web 
applications. There are common programming practices to 
ensure that users with older browsers can use applications. 
This in combination with the browser’s built-in cross OS 
features create an environment where analysts do not need 
to worry about whether collaborators have the required 
software installed on their computer, much less the correct 
OS installed on their system to support the software itself. 
Developing for the web helps prevent software development 
in directions which are not upgradable. 

6.1. WBPM – Future 

Having a WBPM system will only increase in relevance and 
strength. The capabilities to monitor in real time the 
performance of a project from a smartphone exists, 
receiving text messages when errors occur, auto generated 
emails upon completion of a project cycle – these are all 
valuable options for analysts. Not only providing a new 
definition for a project’s environment scope, but the 
opportunity for an analyst to make greater use of their time 
outside of the scope of in person monitoring. There is no 
need to physically observe a task during the duration of its 
test. (Except for parameters for which there are no methods 
of measuring). The timeliness of data monitoring is not 
confined to a computer’s storage to be viewed at a later 
date. With secure connections and encryptions it is a safe 
and cost effective solution to have instantaneous access to 
the data and to share that data in worldwide collaborations. 
Not only can you share data, but remotely adjust the settings 
to the project itself. 

Much development of the plotting capabilities needs to be 
addressed. The plotting of multiple parameters at once is a 
challenging issue. The ability to zoom in and focus analysis 
on different portions of the data is also a challenge. In 
addition methods to perform remote commanding will also 
require addressing new TBD solutions. 

In addition, though the central notion is one server, one 
web-based application, each data acquisition source will 
require the development of additional code to push the data 
to the server.  

7. CONCLUSION 

The WBPM framework creates an environment that allows 
remote viewing of rover data on all OSs and mobile devices. 
WBPM is the beginning of a cloud based monitoring and 
fault diagnosis application. Projects rely on computer based 
software packages; with the framework analysts can 
incorporate stability for data acquisition. The next steps for 
effective prognostics will be to have monitoring 
applications that are server based with a connector receiving 
data from the project source.  

The WBPM resources and languages used create an 
environment that is ever changing and updating. By using 
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the browser to monitor live data analysts have new options 
to how they conduct projects and collaborations and monitor 
PHM systems. The rover case study shows the benefits of 
data monitoring and storage when comparing the current 
method of stove-piped applications to the WBPM 
framework’s method. Future extensions of the framework 
will only expand the number of systems that can benefit 
from the framework. The interactivity will increase the 
number of ways analysts remotely manage their data.  
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ABSTRACT 

The deterioration of high-bypass turbofan aircraft engines is 
an area of study that has the potential to provide valuable 
information to both engine manufacturers and users. 
Differences in deterioration between engines corresponding 
to different airlines, climates or flight patterns offer insight 
into ideal maintenance patterns and fine-tuned estimates on 
engine lifetime for airlines that operate over a wide range of 
conditions. In this paper, a model of high-bypass turbofan 
aircraft engine deterioration – based on cycle frequency, air 
quality, relative passenger mass and climate – and its 
possible application as a predictor of engine health and 
lifetime is described. Because the quantity of interest was 
long-term changes in engine health, the data set was mid-
flight snapshot data, grouped as a set of time-series 
corresponding to different engines. Ultimately, a simple 
model was derived which can be used to predict how long a 
high-bypass turbofan engine will last under given 
conditions. Since all of the engines used in this study were 
the same configuration and model, the numeric results will 
be most valid when predicting health of engines of that 
variety. However, the approach outlined here could be used 
for any type of engine with enough available data. The 
results will allow manufacturers to provide better 
maintenance recommendations to owners of the assets. 

1. INTRODUCTION 

As profit-motivated organizations, manufacturers and users 
of high-bypass turbofan engines should strive to use and 
take care of their engines in the most cost and time-efficient 
way possible. However, with the variation in flight patterns, 
and environmental conditions across airlines, continents and 
even aircraft, it is clear that a one-size-fits-all maintenance 
program will not be the best solution for all airlines using 
the same type of engine. Because of this, there is a need for 
information that allows for tailoring maintenance programs 
to fit the usage profile of a given airline.  

Many studies of turbine engine deterioration have been 
performed in recent years.  Some, such as the damage 
propagation modeling study by Saxena, Goebel, Simon and 
Eklund (2008), use simulated models of turbine engines to 
predict how they will react to different conditions. These 
studies are immensely helpful in determining the general 
character of engine deterioration.  Others consider the 
effectiveness of different strategies for the detection of 
deterioration patterns or faults (Krok & Ashby, 2002; 
Changzheng & Yong, 2006, Weizhong & Feng, 2008). 

Some of the approaches used in past studies inspired the one 
used here. Like Saxena et al. (2008), we took into 
consideration the effects of maintenance events on the 
deterioration pattern. However, instead of incorporating 
maintenance events as process noise, we attempted to 
identify them and use their locations as starting and 
stopping points in analysis.  

The analysis performed here differs from these past studies 
in a few key ways.  In using real snapshot data from engines 
belonging to several different airlines, we are able to 
consider the average effect of certain environmental 
conditions on a group of engines 

The remainder of the paper is separated into three sections 
as follows. In Section 2, we outline the experimental 
strategy that was used to create a model of deterioration for 
one type of engine. This was based on the use of a trained 
neural network to predict Exhaust Gas Temperature (EGT), 
an indicator of engine health, and the analysis of changes in 
EGT over time for several different engines. We also 
comment on the assumptions made in the process of 
performing this analysis and the motivation behind them. In 
Section 3, we first describe the general trend that was 
observed in the data as a means of characterizing the 
deterioration of high-bypass turbofan engines. Then, we 
discuss the observed relationships between flight conditions 
– cycle frequency, environment, passenger load and air 
quality – and consider two different sets of airlines – 
grouped by climate – as case studies. Finally, we summarize 
the main results in Section 4 and outline several possible 
uses of this information for engine manufacturers and 
airlines along with the shortfalls of this experiment and 

 
Christina Brasco et al. This is an open-access article distributed under the 
terms of the Creative Commons Attribution 3.0 United States License, 
which permits unrestricted use, distribution, and reproduction in any 
medium, provided the original author and source are credited.  
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ways in which it could be improved with the addition of 
more data.  

2. EXPERIMENTAL SETUP 

2.1. Data Set 

For the purposes of this analysis, the data set of interest was 
snapshot flight data from one type and configuration of 
high-bypass turbofan engines recorded over three years. 
Before training or testing the neural network, the data was 
preprocessed in two different steps. First, data points with 
one or more missing values were removed from the set. 
Next, the distribution of each variable was considered 
separately and, as each resembled a normal distribution, the 
tails of these distributions (mostly extreme outliers) were 
discarded to reduce the variance of the entire data set. As an 
example, the distribution of ambient temperature from the 
primed data set is shown in Figure 1. Finally, the testing and 
training data sets were assembled in different ways from the 
primed data set. 

2.2. Neural Network Setup 

In this analysis, a trained neural network was used to predict 
EGT given five different inputs at the time that the snapshot 
was recorded – Bleed Ratio, Mach number (ratio of airplane 
speed to the speed of sound through air), ambient 
temperature, N1 (the percentage of maximum fan speed of 
the engine, directly related to throttle setting) and altitude. 
An artificial neural network like this one is modeled after a 
biological neural network: with several hidden elements 
(called nodes) and weights assigned to the connections 
between input, hidden and output nodes. Each hidden and 
output node has an activation function associated with it, 
through which an appropriately weighted sum is passed to 
determine the output of the node. Because of the complex 
interior structure of a neural network, it has the ability to be 
trained to accurately predict an output given a series of 
inputs for arbitrarily complex functions (Jain, Mao and 
Mohiuddin, 1996). This quality makes a neural network an 
ideal choice for approximating our unknown function of 
EGT based on several inputs.  

The training of the neural network takes place in two steps. 
The first step, feed-forward, involves sending the inputs for 
a given data point through the activation functions at the 
various levels. Then, in back-propagation, the different sets 
of weights are adjusted based on the derivative of the 
activation function, values of the weights and error in the 
output for the given data point (Jain et al., 1996). The neural 
network used here contained one hidden layer with five 
nodes. There was a sigmoid activation function from the 
input layer to the hidden layer and from the hidden to the 
output layer with adjustable weights at each step.  

 

The training data for the neural network was created by 
averaging subsets of points in the snapshot flight data. This 
was done to create a training data set that was completely 
separate from the testing set and to reduce the variance in 
the training data set. To do so, limits of between five and 
fourteen bins were set for each input variable such that each 
bin contained a non-negligible number of points. Then, the 
entire data set was divided into 5-dimensional hypercubes 
bounded on each side by a bin from one input parameter. 
All of the points contained in one such hypercube were 
averaged to create a single point in the training data set. 
Only points from hypercubes containing one hundred or 
more original data points were kept.  

In deciding how the neural network should be tested and 
how the output should be viewed, it was necessary to 
consider how the deterioration of high-bypass turbofan 
engines would appear. For these engines, EGT is considered 
to be an indicator of the engine’s health. The EGT margin is 
defined as the amount that the EGT is below the allowable 
limit for a given stage in the flight. When an engine is new, 
its EGT margin is at its highest. Over time, it shrinks until 
the engine must be retired.  

Because none of the five input variables used were time or 
health-dependent, it was inferred that the neural network 
would not be sensitive to changes in an engine’s health. 
Thus, residual EGT – the difference between the predicted 
and actual EGT – for a particular engine should change with 
time as the engine deteriorates or has maintenance 
performed on it. Based on this information, the network was 
tested for one engine at a time and residual EGT was 
recorded for each data point. Additionally, it was 

Figure 1: Histogram of ambient temperature (degrees C) of 
primed data set 
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determined that an increase in residual EGT would be 
equivalent to a decrease in EGT margin. Therefore, the 
speed at which residual EGT changes for a given engine 
should indicate how quickly the health of the engine 
deteriorates as a whole.  

2.3. Regression Analysis 

After collecting time-dependent residuals for a given 
engine, these residuals needed to be analyzed in order to 
pinpoint the differences between engines. The approach for 
such an analysis was determined by observing similarities 
between several graphs of residuals vs. time.  

As demonstrated in one such graph in Figure 2, residual 
EGT tends to increase with time, as expected, until there are 
sudden shifts in the graph. At these points, residual EGT 
decreases by a few degrees Celsius before continuing to 
follow the same upward trend as before. These jumps 
downward indicated maintenance had been performed on 
the engine.  

We decided that a regression analysis should stop at these 
points – not go through them – because they interrupt the 
trend. Once this decision was made, it remained to devise a 
method of finding these jumps. In the absence of 
maintenance data, two different strategies were used. First, 
groundings for an extended period of time – more than five 
days – were assumed to be maintenance events. Since each 
data point corresponds to one flight, this was a simple 
matter of finding all pairs of points separated by five days or 
more. This length of time allowed for planes to be grounded 
for weather or other non-maintenance reasons such as the 
temporary closure of an airport. Next, downward jumps in 
the data were detected using criteria similar to that used in 

visual identification. That is, we identified times when a 
local max was closely followed by a local min at both the 
top and bottom of the band of residual EGT, giving the 
appearance of a downward vertical shift like those shown in 
Figure 2. 

Figure 3 shows several examples of the algorithm’s success 
in identifying maintenance-like events. Without ground 
truth for maintenance event timing, the success of the jump-
finding algorithm could only be judged by evaluating how 
often it correctly identified maintenance events compared 
with identification with the naked eye. Testing this method 
on several different graphs of residuals vs. time, we found 
that this method correctly identified 80 to 90 percent of the 
vertical discrepancies that were perceived by the naked eye 
to probably indicate a maintenance event. In addition, very 
few false positive events were identified. 

Once the boundaries of the jumps were found, it remained to 
determine how quickly residuals changed between those 
boundaries. The first step in this endeavor was to cluster the 
data using the built-in k-means clustering algorithm 
(MacQueen, 1967). K-means clustering partitions a set of 
observations into k clusters such that the sum of the errors 
(distance between the cluster center and points contained in 
the cluster) is minimized.  This is done by choosing k 
points, assigning each data point to the closest of those k 
points, and calculating the new average of each of the k sets 
of points. This is repeated until the centers of the clusters no 
longer move (MacQueen, 1967). There are many different 
methods that can be used to find an ideal number of clusters, 
k, although it has been noted that there is not necessarily a 
unique best value (Sugar & James, 2003) In light of this, we 
chose the number of clusters by performing k-means on 
several different time-series of residual EGT and noting 
how many centers would effectively cut down the noise in 
the data – likely due to differences in variables for which we 
did not account – while still demonstrating the moving 
trend. We found that, for this data set, approximately one 
center per 150 data points provides a good compromise.   

An example of the effects of the k-means clustering 
algorithm is shown in Figure 4, which contains a plot of the 
original residual EGT output for a single engine, alongside 
the points obtained by the clustering algorithm run over the 
output data set. In both plots, vertical lines mark 
maintenance. Figure 4 shows that the resulting set of 
clustered points does indeed serve as a good approximation 
of the original data set while making performing regressions 
simpler. Between each set of maintenances jumps, the EGT 
changes in a predominantly linear fashion and the net trend 
is similar to those in the original data.    

Next, the data was smoothed using an exponential 
smoothing algorithm with a small smoothing coefficient 
(Ostertagova & Ostertag, 2012). This technique was 
employed to bring potentially noisy data points just slightly 
closer to a perceived trend line, again to improve the  

Figure 2: Residual EGT vs. Time (days, in MATLAB 
format) for one engine 

Annual Conference of the Prognostics and Health Management Society 2013

679



Annual Conference of the Prognostics and Health Management Society 2013 

4 

 

accuracy of regression. Finally, three fits were made of the 
data: exponential (ln(residual) vs. time), quadratic (square 
root of residual vs. time) and linear. All of the appropriate 
equation shifts and coefficients were recorded along with 
the correlation coefficients. Later, this information was used 
to determine the best type of model for deterioration as a 
function of time. 

3. RESULTS 

3.1. Characterizing Deterioration 

Bearing in mind the ultimate goal of quantifying 
deterioration and engine usable life as they differ based on 
environmental factors and flight characteristics, the type of 
deterioration must first be characterized. When the groups 
of clustered points were analyzed, the average Pearson’s r 

Figure 4: Residual EGT (degrees C) vs. time (days, in 
MATLAB format) for a single engine before (top) and 
after (bottom) clustering 
 

Figure 3: Samples of jumps found (marked with 
vertical lines) using identification criteria on graphs 
with slightly different shapes 
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values for the three types of regressions were nearly 
identical over the entire set of engines, likely due to the 
small number of clustered points and fairly slow rate of 
change between maintenances. Based on this criterion, no 
single equation type was clearly superior. Previous work 
demonstrates that EGT margin deterioration rates stabilize 
after a period of fast initial loss and remain fairly constant 
until the engine needs to be removed (Ackert, 2011), it was 
decided that the general form of deterioration between 
maintenances would be 

𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙  𝐸𝐺𝑇 =   𝛼𝑡 +   𝛽                        (1) 

In Eq. (1), t is the number of days since the first flight in the 
recorded data set, and 𝛼 and 𝛽 are coefficients determined 
by a linear regression. We see from this equation that the 
speed of engine deterioration is determined by 𝛼, indicating 
that this will be the quantity of interest for this study. 
Further, 𝛽 is understood to be the initial deterioration of the 
engine at time t = 0 Going forward, 𝛼 will be referred to as 
the deterioration coefficient.  

When increase in EGT margin through maintenance events 
is taken into account, Eq. (1) is not a complete description 
of the progression of residual EGT as a function of time. If 
we consider several different types of maintenances, 
numbered {1, ... , k} ,which can be performed throughout 
the engine's lifetime, the fully general expression for 
residual EGT (or, equivalently, decrease in EGT margin) is 

𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙  𝐸𝐺𝑇 =   𝛼𝑡 +   𝛽 −    𝑛!𝛿!!
!!!               (2) 

In Eq. (2), 𝛿! is the increase in EGT margin attributed to 
maintenance type i and 𝑛! is the number of times that 
maintenance type i has been performed between the 
beginning of the engine's lifetime and time t. 

3.2. Differences in Deterioration Coefficient 

Having determined the most likely function for EGT margin 
deterioration as a function of time, it remains to quantify 
how this depends on environmental factors and cycle 
frequency. It must be noted that the character of 
deterioration may be different and less linear towards the 
beginning or end of an engine's life. However, the data on 
initial installation dates is currently unavailable and the 
possible time-dependency will be ignored for the purposes 
of this analysis as we consider a strictly linear model of 
deterioration. 

In determining the appropriate equation for deterioration 
coefficient as a function of cycle frequency (f), the density 
of particles in the atmosphere near takeoff (PM10 in 
𝜇𝑔 𝑚!, denoted p, taken from a database of experimental 
PM10 values), and effective passenger mass (denoted m and 
calculated based on the number of first/business/economy 
class passengers on a flight), observed mathematical 
relationships and one physical constraint were taken into 
account. The limit we placed on our equation was that if 

f=0, 𝛼=0. That is, if an engine is never in flight, it will 
experience negligible or zero deterioration. As a 
consequence of this assumption and the observation that 
there was a very strong positive linear correlation between 
deterioration coefficient and cycle frequency, we concluded 
that the general form of the equation for deterioration 
coefficient would be 

𝛼 𝑓, 𝑝,𝑚 =   𝑔(𝑝,𝑚)(𝐴𝑓)                    (3) 

Where 𝑔  (𝑝,𝑚)  is an unknown function of p and m. 
Ultimately, we found that 𝑔(𝑝,𝑚) was well approximated 
by the general form 

𝑔 𝑝,𝑚 = (𝐵𝑝 + 𝐶)(𝐷𝑚 + 𝐹)                   (4) 

Therefore, the complete equation for 𝛼 will be  

𝛼 𝑓, 𝑝,𝑚 = (𝐵𝑝 + 𝐶)(𝐷𝑚 + 𝐹)(𝐴𝑓)             (5) 

In Eq. (5), the units of 𝛼 are degrees Celsius per day. So this 
equation can be used to predict the lifetime of an engine in 
days or years assuming a constant cycle frequency. If we 
wish to predict the lifetime of an engine simply in the 
number of cycles, we may define the quantity 𝛾 = !

! as the 
deterioration coefficient in units of degrees Celsius per 
cycle. Then, Eq. (5) can be equivalently written as  

𝛾 𝑝,𝑚 = 𝐴(𝐵𝑝 + 𝐶)(𝐷𝑚 + 𝐹)                (6) 

 

where  𝐵,𝐶,𝐷, and  𝐹 are constants which can be determined 
for airlines operating in different climates. 

We must note that the relevant data points here are airlines, 
not engines. The average deterioration coefficient and cycle 
frequency were found for all of the engines with a common 
central hub operating under the same airline. Values of p 
and m were taken from the PM10 data at the most common 
hub city and seating configuration for each airline, 
respectively. In determining airplane load, we only 
considered passenger mass because it was assumed that the 
cargo bay would be filled equally between planes and that 
the differences in overall load would come from varying 
numbers of passengers on the plane. This choice was 
motivated by the fact that there is a good deal of variance in 
the distributions of deterioration coefficients for an airline. 
However, as shown in Figure 5, these distributions have 
well defined peak values. Therefore, this information is the 
most meaningful as it applies to groups of engines with 
common characteristics. In this case, those belonging to a 
single airline.  

3.3. Deterioration Coefficients in Different Climates 

Having derived an appropriate equation for deterioration 
coefficient, it remains to show how the unknown constants 
vary with the climate of the main hub of these airlines. To 
begin, the main hub city for each airline was designated as 
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one of five climate types - Tropical/Equatorial, Dry 
(arid/semiarid), Mild temperate, Continental/Microthermal 
or Polar – based on the Köppen-Geiger climate 
classification system, the most frequently-used set of 
climate classification criteria (Kottek, Grieser, Beck, Rudolf 
and Rubel, 2006). The motivation for such a classification 
comes from the fact that several factors – air composition, 
average precipitation, seasonal humidity variations – that 
may effect engine performance but for which in-flight data 
is not available, differ greatly between different locations 
around the globe. In the Köppen-Geiger classification 
system, these are accounted for and geographic locations are 
grouped according to the typical ranges of values exhibited 
for these characteristics. Grouping airlines in this way 
allows us to potentially reduce some of the error due to 
conditions we cannot quantitatively account for. Kottek et 
al. (2006) provide a detailed description of the criteria 
considered for these classifications.  

Then, the coefficients for Eq. (6) were determined for 
engines operating in both Arid/Semiarid and Equatorial 
climates. The lines of the equations derived for Arid and 
Equatorial climates are shown in Figure 6, graphed in the 
form ! !,!

!"!!
= 𝐴(𝐷𝑚 + 𝐹) along with the points for airlines 

corresponding to those climates. 

For Arid climates, it was found that the equation for 𝛾 
would be 

𝛾 𝑝,𝑚 = (1.31 ∙ 10!!𝑝 + 0.0033)(4.84 ∙ 10!!𝑚 − 4.44) 
(7) 

And similarly, in Equatorial climates,  

𝛾 𝑝,𝑚 = (−5.81 ∙ 10!!𝑝 + 0.0012)(1.25 ∙ 10!!𝑚 − .10) 
(8) 

Based on Eq. (7) and Eq. (8), we see that the dependency of 
𝛾 on the different input parameters varies based on climate. 
In arid climates, where flight conditions are generally 
harsher, we see that  

!"
!"
= (1.31 ∙ 10!!)(4.84 ∙ 10!!𝑚 − 4.44)           (9) 

!"
!"

= 1.31 ∙ 10!!𝑝 + 0.0033 4.84 ∙ 10!!         (10) 

With values for p on the order of 10! and m on the order of 
10!, the values of the partial derivatives of 𝛾 with respect to 
p and m, respectively, are on the order of 10!! and 10!!.  

On the other hand, in Equatorial climates 
!"
!"
= (−5.81 ∙ 10!!)(1.25 ∙ 10!!𝑚 − 0.10)        (11) 

!"
!"

= (−5.81 ∙ 10!!𝑝 + 0.0012)(1.25 ∙ 10!!)      (12) 

Figure 5: Distribution of deterioration coefficients for three 
airlines with different numbers of engines 
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Using the same estimates for p and m, we see that the values 
of the partial derivatives of 𝛾  with respect to p and m, 
respectively, are on the order of 10!!  and 10!! , almost 
negligible compared with those in Arid climates. So we see 
that in less harsh climates, deterioration coefficient is much 
less sensitive to changes in flight conditions.  

4. DISCUSSION AND CONCLUSION 

We see in Figure 5 that although this model of deterioration 
coefficient is fairly accurate, it is not perfect. Here, we 
ignored several possible parameters that could have affected 
deterioration coefficient, possibly bringing the points in 
Figure 5 closer to the trend line and creating a slightly better 
model. This was motivated both by a desire to keep the 
model from becoming too complicated to be useful and an 
absence of reliable data. A few such parameters would have 
been runway length or fuel efficiency - indicators of how 
the plane is flown differently between airlines. However, we 
also note that these factors may be difficult to define before 
the engine is put into service, making an accurate prediction 
of deterioration coefficient with a refined model difficult.  

Despite the possibility that this model is not a perfect 
description of deterioration coefficient, we are now 
equipped with a tool that can be used to help manufacturers 
and users of high-bypass turbofan engines with reasonable 
accuracy. 

First and foremost, our model allows us to make estimates 
on the relative lifetimes of engines under different 
conditions. Using the specific value of 𝛼 or, equivalently, 𝛾 
for a given airline, along with a pre-specified maintenance 
plan and initial EGT margin, we can use Eq. (2) to predict 
either the number of days or cycles that an engine will last 
on the wing of a plane. Both airlines and engine 
manufacturers can use this information to determine how 
often an engine needs to be maintained for it to reach a 
desired number of cycles or years of use.  

Once lifetime estimates and maintenance patterns are 
determined for a specific engine, this information can be 
used in financial considerations for producers and 
consumers. Companies that produce or maintenance 
engines, knowing what the maintenance frequency will 
likely be, can use this information to determine how much 
maintenance events should cost to appropriately offset the 
price of producing the engine. Airlines can use this model 
and the resulting recommended maintenance patterns in a 
similar way. Knowing how much an airline will need to 
spend on an engine (or a set of engines in a fleet) during its 
usable life will allow ticket prices to be adjusted 
accordingly. 

We see here that this model has the potential to help save 
both time and resources. The major shortfall of this study is 
that it only included a few airlines per climate type, some of 
which did not have data on very many engines, and that 

only two different climate types were considered. At the 
time of the study, all of the available data was used. 
However, with more flight data from a wider array of engine 
models, configurations, locations and airlines, the analysis 
performed here could be expanded, making it more accurate 
and robust.   
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ABSTRACT 

In large industries usage of advanced technological methods 
and modern equipment comes with the problem of storing, 
interpreting and analyzing huge amount of information. 
Handling information becomes more complicated and 
important at the same time. So, data quality is one of major 
challenges considering a rapid growth of information, 
fragmentation of information systems, incorrect data 
formatting  and  other  issues.  The  aim  of  this  paper  is  to  
describe industrial data processing and analytics on the real-
world use case. The most crucial data quality issues are 
described, examined and classified in terms of Data Quality 
Dimensions. Factual industrial information supports and 
illustrates each encountered data deficiency. In addition, we 
describe methods for elimination data quality issues and 
data analysis techniques, which are applied after cleaning 
data procedure. In addition, an approach to address data 
quality problems in large-scale industrial datasets is 
proposed. This techniques and methods comprise several 
well-known techniques, which come from both worlds of 
mathematical logic and also statistics, improving data 
quality procedure and cleaning results. 

1. INTRODUCTION 

Caused by decreasing software cost and technological 
improvements, the amount of data produced, processed and 
stored by companies grows continuously. This data contains 
information regarding work process, equipment, staff 
involved and even more. Based on this data decisions are 
made, long-term plans are drawn up and statistics are 
compiled. Therefore, even small amounts of poor quality 
data may cause problems and costly consequences. 
Examples for complications caused by dirty information 

include wrong decisions, inadequate prognoses based on 
imperfect statistics, troublesome handling and analysis of 
data.  Hence,  data  cleansing  is  one  of  the  most  important  
tasks in information technologies, especially in knowledge-
based systems. The current work examines data analysis and 
cleaning using an example from the Siemens Energy Sector, 
in particular its subdivision Oil and Gas solutions. Part of its 
operational data is analyzed for possible data quality 
problems and a number of approaches to their solution are 
considered. 

This paper is structured as follows. Firstly, an introduction 
to the topic of data quality and a description of related work 
is provided. The third section describes an industrial use 
case and particular data schemes. The forth section 
examines primary data characteristics describing its quality 
conditions. First subsection here comes with the list of 
generally defined data quality dimensions. Next, they are 
discussed in conjunction with our industrial scenario and 
illustrated with factual examples. In the fifth section there 
are proposed techniques and methods, which help to 
overcome difficulties of low data quality and make use of 
such information. In addition, data analysis techniques are 
described. The paper concludes with a summary of findings 
and statements of further requirements and needs for future 
development in data quality assessment and data cleaning 
for industrial data-related procedures. 

2. RELATED WORK 

Unsatisfactory data quality affects each field of action in 
both IT-related procedures and business-related tasks. Many 
companies elaborate their approaches to data quality 
assessment with respect to their own data purposes and 
types. Huge amounts of data, including names, addresses, 
numerical and categorical values have to be stored and 
manipulated. Towards to improvement of information 
quality assessment there is a number of research works 

Thomas Hubauer et al. This is an open-access article distributed under 
the terms of the Creative Commons Attribution 3.0 United States 
License, which permits unrestricted use, distribution, and reproduction 
in any medium, provided the original author and source are credited. 
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conducted by post, insurance (Corporation & Consulting, 
2011) and product trading (Pipino, Lee, & Wang, 2002) 
companies, criminal-record governmental system (Laudon, 
1986) and many others (Wang, Strong, & Guarascio, 1996). 
In industry and research fields the challenge of complex 
data access is relevant as well: there exist a number of 
research works from different branches, such as industrial 
ecology (Weidema, B. P. & Wesnæs, 1996), healthcare 
industry (Safran et al., 1998; Gendron & D’Onofrio, 2001), 
meteorology (Foken et al., 2005), sensor networks (Wallis et 
al., 2007). Moreover, recently there have been launched a 
project “Optique” intended to improve data quality and to 
provide a quick end-user access to Big Data. It is conducted 
jointly by several European universities and two big 
industrial companies: Siemens AG and Statoil USA. The 
goals of the project are (Optique, 2012): 

 to provide a semantic end-to-end connection between 
users and data sources; 

 to enable users to rapidly formulate intuitive queries 
using familiar vocabularies and conceptualizations; 

 to integrate data spread across multiple distributed 
data sources, including streaming sources; 

 to exploit massive parallelism for scalability far 
beyond traditional RDBMSs and thus to reduce the 
turnaround time for information requests to minutes 
rather than days. 

3. CASE STUDY: INDUSTRIAL DATA 

This paper relates to data quality at Siemens Energy Sector. 
Data handling and processing in energy domain is becoming 
a big challenge, while power generation is getting more and 
more important in the course of time. 

Siemens Energy Services maintains thousands of power 
generation facilities, specifically, the major core 
components: gas and steam turbines, called in the latter 
“appliances” or “rotating equipment”. Operational support is 
provided through a global network of more than 50 service 
centers. These centers are in turn linked to a common 
database center, which stores the information coming from 
the appliances in several thousands databases. Further in this 
chapter data organization, processing and data types used in 
the tables are presented (see also Figure 1). 

Each appliance comprises several industrial computers, 
which operate based upon information from sensors and 
serve the functions of (i) control unit and (ii)  data collector. 
Overall approximately 2000 sensors are used to monitor the 
functioning of a single appliance. 

The control unit serves the following functions: receiving 
sensor measurements, real-time monitoring of the appliance 
and communication of all information to a data collector. To 
conduct monitoring, it processes received sensor data in 
several ways and generates corresponding short messages 
(“events”),  that  describe  the  status  of  a  unit  and  its  
functioning. There are three levels of data processing 
offered by a control unit: 

 no processing applied at all, data remains as it was 
generated by hardware sensors (“raw”  data); 

 soft sensors: small chunks of code, which use 
predefined rules (i.e., thresholds, trends) in order to 
generate events for condition monitoring; there are 
usually approx. 2000 soft sensors and mostly each 
soft sensor is assigned to one or several hard sensors; 

 simple analysis: information preprocessing, based on 
hard sensors' measurements and soft sensors' 
calculations (e.g., Fast Fourier Transformation). 

The main function of a data collector is to accumulate the 
information, passed by control unit and to send it regularly 
to the central database. Below are described different types 
of tables stored in databases: 

 Serial numbers, identification codes and all 
general characteristics of unit components. Below 
is shown exemplary Table 1 with such information. 

In the addition, location of the appliance, weather 
conditions, history of operation and conducted 
maintenance, performance indices are provided. 
Generally, information of that kind is polytypic: it 
contains strings, numerical data and other types. 

Table 1. Main characteristics of an appliance 

ID Engine Type Power Output Frequency … 

T1 TurbineType1 12.90MW(e) 50/60 Hz … 

T2 TurbineType2 19.10MW(e) 50/60 Hz … 

Figure 1. Appliance structure and data flow 
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Table 2. Measurement data 

SensorID Timestamp Value1 Value2 … 

TMP23-1 2010/07/23 23:11:55 44 49 … 

 Measurements of sensors and monitoring devices. 
Table 2 depicts the schema of such data, which is 
often called as “raw” data, referring to the fact, that it 
represents unprocessed data incoming from 
machinery itself. Tables of that category contain 
mostly numerical data and have extremely large size. 

 Pre-processed data and events. Typically data 
preprocessed by control unit and soft sensors is 
stored in different tables. Though these tables are 
distinguished, they have the same structure, showed 
below in the Table 3. Tables of this category have a 
huge  size  as  well  and  consist  mostly  of  text  and  
date/time data. 

 Processed data. In  that  category  databases  store  
results of analyses, conducted previously by service 
centre for a particular appliance. All diagnostics 
results based on data from central database, store in 
the  database  as  well  and  might  be  used  for  further  
diagnostics. 

Each table has up to 20 attributes and contains various data 
formats, including scaled (nominal, ordinal, interval, ratio 
types), separated (with comma, tabulation), binary, floating-
point (single, double) data types. Per a single appliance 
overall amount of tables exceeds 150. In sum, tabulations 
with sensor and event data result in 100 TB of timestamped 
data. Moreover, sensors continuously produce 
measurements at a rate between 1 and 1000 Hz and about 30 
GB of a new sensor and event data are generated per day. 
Due to numerous causes, such as different vendors of 
devices or historical reasons, for a database scheme there 
exist more than 10 various logical schemes. 

Thus, in described situation there arises a number of 
challenges that complicate access to information and its 
processing. Their overcoming requires great amount of time 
and resources. Further in this paper these challenges and 
approaches to them are discussed more thoroughly.  

4. DATA QUALITY DIMENSIONS 

In order to point out and classify the defects of data, special 
data characteristics have been defined. Deficient condition  
of any one of them has an impact on effective analysis and 
processing of the information. They are called Data Quality 
Dimensions.   

The first part of this section lists general data characteristics 
used to describe data of any purpose. The second part 
explores dimensions of industrial data and provides some 
explanatory factual examples. 

4.1. Main characteristics of a data 

Overall there are 16 typical data quality dimensions 
describing data features (Kahn, Strong, & Wang, 2002) as 
listed in Figure 2. 

Typically, classification of dimensions slightly differs 
depending on the purpose of information and used data 
types. From time to time some dimensions are omitted and 
others are split up to several more concrete attributes. The 
reason  is  that  in  various  fields  of  actions  some  particular  
characteristics are more important and more attention is paid 
to them. For instance, for military government information 
security is a major feature, whereas for postal services 
complete and free-of-errors address database is more of a 
priority. For easier prioritizing and handling data quality 
issues, dimensions can be clustered in three 
hyperdimensions (Karr, Sanil, & Banks, 2006): 

 Process: characteristics related to a maintenance of 
data, such as Ease of Manipulation, Value-Added, 
Security. 

 Data: characteristics of the information itself, such 
as Believability, Completeness, Free of Error, 
Objectivity, Relevancy.  

 User: characteristics related to usage and interaction 
with users, such as Appropriate Amount of 
Information, Accessibility, Timeliness, 
Understandability. 

Nevertheless, all above-listed data attributes are important 
for databases of any purpose and there exist different 
techniques and methods to estimate them and correct 
existing data to improve its attributes. 

Figure 2. Data Quality Dimensions 
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Table 3. Processed data 

To obtain acceptable data quality however often requires a  
lot of time and resources and at times even manual 
correction to ensure cleanliness of data. 

From now on we focus on industrial data and its significant 
data quality attributes, in particular in the domain of energy 
solutions. 

4.2. Data Quality Dimensions in industry 

In this section we analyze the quality of real industrial data 
based on (a relevant subset of) the data quality dimensions 
defined previously. One of the tools used during this project 
for analyzing data in the Siemens database and exploring its 
quality is the “Diagnostics of rotating equipment” software. 
Its main features include: 

 loading from a database sensor and event data 
corresponding to one particular or several appliances, 
components or devices during a certain time period; 

 visualization of data using tables and graphs; 

 analyzing sensor signals by means of statistical 
methods; 

 identifying patterns in event data i.e., revealing 
regularities preceding occurrences of a particular 
event. 

In the following we give concrete examples of Data Quality 
Dimensions presented in Section 4.1. In order to illustrate 
relevancy of data quality problems there are used 
thermocouples measurements monitoring functioning of a 
gas turbine. 

Completeness, accessibility 

The fullness of information i.e., the fact that data is not 
missing and sufficiently detailed, is the most important 

characteristic of a data. Nevertheless, data loss is not 
uncommon in industry for several reasons. These reasons 
include the inability to access the required data: the 
appliance might be located in a remote region and due to a 
bad (or absent) connection between the data collector in the 
unit and the main database, the information may be 
unavailable. Another reason is device faults. Depending on 
causes, there might be absent only one type of data tables: 
“raw”  or  event  data,  and  in  that  case  it  is  still  possible  to  
make use of available information in order to conduct an 
analysis. More severely is the case that no data for a 
particular period is available at all. Figure 3 depicts loss of 
sensor measurements whereas Figure 4 shows absence of 
event pre-processed data for a week between 20th and 26th 
of September.  

Consistent Representation 

When information comes from multiple sources, it is 
essential to have data represented in the same format. In the 
current use case there exist a number of contraventions: 

 various recordings of timestamps, as date and time 
can be written in several ways. For instance, devices 
of one kind write timestamps as 
DD/MM/YYYY~hh:mm:ss while another have a 
format YYYY-MM-DD~hh:mm:ss and many more of 
other  types  of  devices  having  other  date  and  time  
formats. 

 data types of some information sources and 
monitoring devices require conversion from one 
format to another e.g., from String to Float or from 
String  to Integer. 

 different monitoring systems and control units 
indicate the same event in different ways. That 
happens due to diverse reasons such as various 
device vendors, different software versions or even 
location. Therefore a lack of standardization might 
occur and the same entities and events might be 
denoted differently. As shown in Figure 5, when a 
device S1 measurements show the failure of 
vibration devices, the corresponding event is denoted 
in several ways: different quantity of spaces between 

ApplianceID Time Class ErrorCode Downtime … 
XX476 2010/07/23 21:10:35 Warning OilTemperatureHigh 00:00:05 … 

Figure 3. Signal data loss 

Figure 4. Event data loss 
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event message and sensor ID, sensor ID in 
parentheses etc, which badly affects analysis and 
statistics. 

Free of Errors, Believability, Accuracy 

In order to rely on results of analysis, data should be correct, 
precise and relevant. The possible causes of occurrence of 
erroneous and inaccurate data are very diverse: (i) one or 
several devices of the appliance faulted and gave inaccurate 
or wrong measurements; (ii) control unit failure occurred 
and there was an error during data preprocessing; (iii) there 
are three data transfer segments - from sensors to control 
unit, from control unit to data collector and between the 
appliance and data warehouse, for each frequencies of data 
transfer and speeds of data flow differ. It might happen that 
poor connection distorted information on one of these 
segments. Below are listed a few examples of discrediting 
data or insufficient data accuracy. 

 Time Synchronization - timestamps of events and 
measurements incoming from several different 
devices might slightly differ due to such reasons as 
(1) time settings of a particular devices; (2) 
frequency and duration of data transfers between 
components, control unit and data collector. 

 Range of values. Figure 6a shows an example where 
thermocouple sensor measure values are out of 
domain, namely minus temperatures. Additionally, 
occasionally outliers occur – spikes or sudden 
changes of value within the domain. They should be 
treated properly during the analysis. Figure 6b 
depicts  an  example  of  outliers  -  all  sensors  show  
alternately range maximum and minimum. 

 Oscillations and noise. Figure 7a shows heavy 
oscillations of all signals. Figure 7b depicts the case, 
when signal measurements contain too much noisy 
data. 

 Vast difference in measures. If there are several 
sensing elements, which duplicate each other, and 
they measure completely different values, then it is 
problematically to rely on these measurements. On a 
Figure 7c RSignal measurements differ from all 
other measurements for more than 100 degrees. In 
the case shown on Figure 7d, duplicating sensors 
measure the similar values, but as soon as 
temperature drops or rises, sensors measurements 
change with the different amplitude, as it is marked 
inside of black rectangles. 

 Signal alternation. On the Figure 8 is shown the case, 
when two signal at some moment alternated each 
other and swapped their measurements, as it is also 
marked with the black rectangles. 

Ease of Manipulation, Data Schemes 

Data schemes and structures are highly heterogeneous, 
depended upon which technique was used to create it, which 
unit it belongs to, from where it comes historically. 
Moreover, not all foreign keys between databases are 
present. If information on the same entity is distributed 
among several sources, for instance, if information 
concerning a particular malfunction of an appliance should 
be extracted from tables “Incident Summary”, “Daily Event 
Log”, “Burner tip temperature” and others, the problem of 
missing foreign keys do not allow for easy merging of data. 

Timeliness, Appropriate Amount of Information 

For a thorough analysis it is critical to have all data 
available and updated. Though for each diagnostics case the 
considered time period always differs: it might be sufficient 
to consider only the last hour in order to identify a cause of  
an event, but in other cases one needs to analyze the last 
several  years,  for  example  to  detect  a  deterioration  of  a  
particular component.  

Figure 5. Different denotations of the same event 

(a) 

(b) 

Figure 6. (a) Values out of range: minus temperatures.      
(b) Outliers: measurements of range minimum, maximum. 
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Thus, usually data typically does not expire and become 
irrelevant in several years but on the other hand, has to be 
stored for decades. 

In conclusion, for successful information analysis it is 
crucial to determine how reliable data is and to bring it to 
the representation convenient for required purposes. In the 
following section we discuss methods and techniques 
developed to achieve this goal. 

5. DATA ANALYSIS 

In this chapter there are examined techniques which help to 
get use of low quality data. Firstly, there are described data 
cleaning methods and in addition, a proposal to improve 
them is made. Data analysis techniques are described in the 
second part of the chapter. 

5.1. Quality assessment and cleaning 

There are several directions in data cleaning and existing 
techniques aimed at particular problems (Rahm & Do, 
2000): duplicate identification and elimination, data 
transformations, schema matching, data mining approaches 
and others. Moreover there are also unified techniques. The 
main scientific approaches include statistical, machine 
learning and knowledge-based approaches. But in general 

any data cleaning technique should satisfy several 
requirements (Rahm & Do, 2000): 

 should detect and remove all major errors and 
inconsistencies both in individual data sources and 
when integrating multiple sources. 

 should be supported by tools to limit manual 
inspection and programming effort and be extensible 
to easily cover additional sources. 

 should not be performed in isolation but together 
with schema-related data transformations based on 
comprehensive metadata. 

Statistical methods are used to: (i) visualize the data; (ii) 
summarize and describe existing data by means of 
univariate and multivariate analysis; (iii) offer hypotheses 
and decisions with the aid of statistical tests; (iv) interpret 
data employing sampling techniques. 

One of the most widely used statistical tools for data quality 
assessment is called quality indicator (Bergdahl et al., 
2007). It is a measure of how well provided information 
meets criteria and requirements for an output quality. Also 
there exist a number of statistical/probabilistic  techniques 
and its modifications (Winkler, 1999), 1-1 matching 
methods and bridging file technique (Winkler, 2004). 

(a) 

(c) (b) 

Figure 7. (a) Oscillatory signals. (b) Noisy data - BSignal measurements look like a white noise. (c) RSignal shows 
divergent values. (d) SSignal and GSignal have rise/drop amplitudes differing from other duplicating sensors. 

 

(d) 

(c) 
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Figure 8. BSignal and RSignal traded places. 

In the current use case statistical approach is widely used for 
detecting faults in sensor readings. For large-scale databases 
that  enlarge  day  by  day  with  new  portions  of  sensor  
measurements it is highly essential to use fast and robust 
techniques detecting changes in signal behavior. The main 
approach is time-series analysis, cross- and autocorrelation, 
spectrum and Fourier analyses in particular. In addition, 
there are simple indicators and distribution tests are 
exploited in order to detect quickly changes in statistical 
parameters of sensor readings.  

There exist a number of effective machine-learning 
algorithms. The most widely used are artificial neural 
networks, clustering algorithms, support vector machines, 
similarity learning. For a faulty sensor readings detection 
machine learning approach is successfully used for analysis 
of several sensor signals at once in order to establish 
confidence level for each device and thus to identify 
malfunctioning sensors straight away. 

Another application of machine learning algorithms is 
duplicate elimination. For this task usually clustering and 
neural networks are exploited. One more technique is sorted 
neighbourhood method and its modifications (Bertolazzi, De 
Santis, & Scannapieco, 2003; Yan et al., 2007). All these 
methods are used in large-scale databases as well 
(Hernandez & Stolfo, 1995) and in the current use-case can 
be exploited to get rid of duplicates in event data. 

For a knowledge-based approach the application domain can 
be represented  (Batini & Scannapieca, 2006): 

 procedurally in form of program code, or implicitly 
as patterns of activation in a neural network; 

 as an explicit and declarative representation, in terms 
of a knowledge base, consisting of logical formulas 
or rules expressed in a representation language. 

Typically the most general approach to perform data 
transformations are extensions of standard query language 
SQL (Rahm & Do, 2000), which allows flexible 
transformation step definitions, their easy reuse and 
supports query processing tasks. 

Additionally, there are several systems developed which  

Table 4. Measurement data for an exemplary sensor 

        
Figure 9. Temperature sensor measurements range 

represented in a model 

improve the quality of data by means of rules extracted from 
domain knowledge and domain-independent 
transformations (Batini & Scannapieca, 2006), e.g. the 
Intelliclean system (Lup, Lee, & Wang, 2001) aimed at 
efficient duplicate elimination, the Atlas technique (Tejada, 
Knoblock, & Minton, 2001) which allows to obtain new 
rules through a learning process and Clue-Based method for 
record matching (Buechi et al., 2003). 

As a proposition for a further work, we propose to combine 
existing techniques in order to increase productivity and 
effectiveness of the data cleaning process. The dataset 
introduced here can serve as a test. As a motivating 
example, consider measurements of a temperature sensor 
presented in a Table 4 both in a semantic model and as a 
statistical value. 

In the model-based representation of a sensor data, such as 
indicated on Figure 9, after processing a measurements 
presented in a Table 4 the system would detect an outlier at 
a time 13:22:10. 

On the contrary, analyzing data with statistical methods, 
there would be a trend detected. Thus, having available 
results both by model-based reasoning and statistical 
techniques would prevent a false alarm. 

Likewise, it is useful to combine multivariate statistical 
analysis and machine learning algorithms such as clustering 
and neural networks for establishing a quality of several 
sensors measurements. 

Therefore, that joint approach would help to improve the 
following weak points in managing low-quality data: 

 efficient detection of data deficiency, such as (i) false 
positive errors and (ii) false negative errors; 

 detecting correlations between particular sequences 
of events and their consequences and between 
measurements using numerous solutions, such as 
pattern-matching algorithms, independency tests and 
others; and 

Sensor ID Timestamp Value 

TMPS1 2010/08/28 13:21:55 597.2 

TMPS1 2010/08/28 13:22:00 598.5 

TMPS1 2010/08/28 13:22:05 599.6 

TMPS1 2010/08/28 13:22:10 600.3 
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 model-driven correction of a model in case of 
changes in system structure. 

5.2. Analysis and diagnostics 

In this subsection there are shortly explained, how the 
cleaned data is studied and processed further in the current 
industry case. The main use is continuous diagnosing of the 
condition of the appliance in order to predict and prevent 
future faults of the machinery and to react instantly as 
anomalies or faults in operating are detected. Two main 
approaches for that are: (i) data-driven and (ii) knowledge-
based techniques. Data-driven approaches includes pattern 
recognition, neural networks, numerical approaches; 
knowledge-based techniques include case descriptions, 
faults and correct behavior modeling. The following factors 
determine the choice of the appropriate diagnosing method 
in a particular case (ISO 13379-1, 2009): 

 application and initial design of the equipment; 

 availability of data to be analyzed and its complexity; 
and 

 required qualifications of a resulting computations 
and models. 

Brief summary of above-mentioned diagnosing techniques, 
presented in (ISO 13379-1, 2009): 

Data-driven approach methods classify different 
functioning states of an appliance: normal, fault one, fault 
two etc. In order to achieve this, firstly the model is trained 
with the historical data from each condition and after that 
launched with the new data, which has to be classified. 

The great advantage of data-driven approach is that it does 
not have need for a thorough knowledge of the system to be 
diagnosed. The other strong advantage is absence of 
constraints  on  the  data  type  of  independent  variables.  As  a  
disadvantage it is worth to mention, that it might be 
computationally difficult to train a model, as it requires 
comparatively large amount of prescribed fault and non-
fault states to construct a model. In addition, modelling by 
this approach does not result with an explanatory diagnosis. 

The list of the most common data-driven techniques: 

 Statistical data analysis, case-based reasoning; 

 Neural networks; 

 Classification trees; 

 Random forests; 

 Logistic regression; 

 Support vector machines. 

Knowledge-based approaches are used to represent 
knowledge using various knowledge representation 

techniques and reason over it to infer new knowledge. Their 
biggest advantage is the possibility of thorough diagnostics. 
There are two fundamental knowledge-based methods used 
by engineers: 

 Fault/symptom diagnostic approach; 

 Causal tree diagnostic approach. 

In special situations several approaches may be combined 
for better results, but still both approaches are not disjoint, 
i.e. there are methods which might be referred to both types. 
However, each approach has its advantages as well as 
drawbacks and an engineer chooses appropriate diagnostic 
technique based on the type of an appliance, complexity of 
modeling, availability of necessary data and other factors. 

6. CONCLUSION 

For current industry use-case, data is employed to conduct 
calculations necessary for emergency diagnostics, prognosis 
of efficiency and further analysis. However, due to 
imperfect, incomplete or defective information and data 
schemes these tasks have become rather difficult to realize: 
wrong, missing or incorrectly formatted data may result in 
erroneous computations and false decisions, which can be 
quite disastrous for an industry processes, especially for 
large-scale industries.  

The current paper studies data quality and different 
approaches to its assessment. We summarized and 
illustrated the most common defectiveness of a large-scaled 
industrial database by the example of Siemens Energy 
Domain and its equipment measurements. We also reviewed 
existing techniques that are used to overcome errors in data 
and proposed an approach to address data quality problems. 
And  as  shown  in  the  examples,  there  is  no  doubt  that  data  
requires continuous control and quality improvement, 
although the design of a convenient technological solution 
to that challenge is far from trivial.   
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ABSTRACT

The increase of natural, industrial disasters and diverse crisis
has stimulated more research interest in the world. A cri-
sis can be industrial accident, train accident, earthquake, and
etc. However, the crisis management is currently an impor-
tant challenge for medical service and research, to develop
new technical of decision support system to guide the deci-
sion makers. Crisis management is a special type of collab-
oration, therefore several aspects must be considered. The
more important aspect or problem in a crisis management, is
the coordination (and communication) between different ac-
tors and groups involved in the management. In this paper
the focus is how to handle the coordination and interaction
between these different actors and groups involved in crisis
management by using a finite state automaton. The represen-
tation of the crisis management as a set of couple of states
and events allows to optimize the crisis management by hav-
ing real time the evolution of the situation and the prediction
of their evolution at their earliest.

1. INTRODUCTION

Nowadays, there has been a lot of interest in crisis manage-
ment. Because, in the last years, we assist to a growing num-
ber of disasters and diverse crisis, such as the Indian Ocean
tsunami 2004, the Japanese earthquake and tsunami 2011,
and ect (Reuter, Heger, & Pipek, 2013). Therefore, the re-
sponse to these disasters and crisis (natural or man-made)
have to be fast and effective. A fast and affective response in
a crisis situation allows to reduce the disaster consequences
on people and the damages in nearby areas. However, the re-
sponse to a crisis situation requires the collaboration between
different numerous people and groups, for example police,
Moussa Traore et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

the personnel working in the site, first aid agents, Doctors,
government delegates, position of victims. The figure 1 de-
pict a given scenario for crisis management implying various
actors and groups. When a disaster occurs, the people on the
accident site send information to the communication center
and the latter sends rescuer teams to the accident site or af-
fected zone as shown in figure 1 (Benkhelifa, Moussaoui, &
N-Taboudjemat, 2013). In crisis management several aspects
must be considered. The more important aspect in crisis man-
agement, is the coordination between the actors and groups
involved in the management. The coordination between dif-
ferent actors involved in crisis management is fundamental to
reduce the disaster consequence on victims and nearest areas.

The new challenge of crisis situation is the representation of
the crisis management as a set of couple of states and events
to guide decision makers. In this paper, the coordination be-
tween different actors and groups involved in crisis manage-
ment is viewed as discrete model (event). Discrete Event
System (DES) are dynamic system whose the behavior is
governed by occurrence of physical events that cause abrupt
changes in the state of the system (Sayed-Mouchaweh & Bil-
laudel, 2012). Most of the last approaches of DES is rep-
resented by Automaton (Yunxia, 2003; Sampath, Sengupta,
Lafortune, Sinnamohideen, & Teneketzis, 1995; Kwong &
Yonge-Mallo, 2011) and Petri Net (Cabasino, Giua, & Seatzu,
2010). The figure 2 illustrates an example of modeling of
a crisis management as Finite State Automaton (FSA). The
purpose of modeling the crisis management as FSA is to opti-
mize the crisis management by having real time the evolution
of the situation and the prediction of their evolution at their
earliest. The FSA of the crisis management is used to gener-
ate languages (or sequence of events) for diagnosis purpose.
The diagnosis in crisis management is not to detect failures,
but to detect the critical situations. The critical situation in
figure 2 is going twice in the state “x5” during the crisis man-
agement. The state “x5” corresponds to the waste of time of

1
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the intervention team to access to the crisis site, and in crisis
management the waste time is unacceptable.

Recently, the prediction of DES based on the sequence of
events (or equivalently, a trajectory) has increasingly inter-
est of many researchers in the last years. The prediction, in
general, is the process of making a decision about a future
result or evolution of a situation. In literature, a lot of predic-
tion approaches of DES are presented. The authors in (Genc
& Lafortune, 2009) are presented a prediction method of a
possibly unobservable event in the system behavior, based on
the language containing the observable events. In (Takai &
Kumar, 2012), the local prognosers of DES exchange their
observations for the sake of arriving at the prognosis deci-
sion. The prediction problem in (Xi-Rien, 1989) is a special
type of projection between two languages. We present in this
paper, a new approach for the prediction of DES and adaptive
detector of supervision pattern using FSA, which is based on
the discrete model corresponding to the crisis management.

This paper is organize as follows. In section 2, we briefly
review same notation and definition of the Automaton model
of DES. In section 3, we describe the discrete model of crisis
management. The standard diagnoser for the dynamic model
is shown in section 5. A general definition of discrete event
dynamic system is presented in section 4. We present in sec-
tion 6, the prediction of DES. Finally, the learning diagnoser
and adaptive supervision pattern are presented in section 7.

Communication center

Satellite

Accident area

Fire truck

Rescue

Rescue

team

Doctor

Hospital center

Volunteers

Police

helicopter

First aid agents

Figure 1. Emergency response scenario, (I. Benkhelifa et al).

2. FINITE STATE AUTOMATON

A Finite State Automaton can be defined as a six-tuple M =
(X ,Σ,Y,δ ,x0,F), where

- X is the set of states, Σ is the set of input events,

- Y is the nonempty finite set of outputs,

- δ : X×Σ−→ X is the transition function,

- x0 ∈ X is the start (initial) state,

- F ⊆X is the (possibly empty) set of accepting or terminal
states.

The finite set of events Σ can be partitioned in two subset,
such that Σ = Σo ∪ Σuo, where Σo is the observable events
and Σuo is the unobservable events. A string is a finite-length
sequence of events in Σ. The set of all strings formed by
events in Σ is denoted by Σ∗. The set Σ∗ is also called the
Kleene-closure of Σ.

Further, we extend the transition function δ to δ̂ to ac-
cept words over Σ as following δ̂ : X ×Σ∗ −→ X . A state
x′ ∈ X is reachable from the state x it there exists a sequence
TM ∈ Σ∗ such that x′ = δ̂ (x,TM) and we write x 7−→ x′, and
x′ = δ̂ (x,TM) is a path ξ in M if x = x0 ∈ X . The state x0 is
called beginning of ξ and xn is called the end of ξ . In the fol-
lowing, we call the strings TM = t1 · · · tn, with t1, · · · , tn ∈ Σ
a trajectory in the system M. Thus, the path ξ is defined as

ξ = x0
t1−→ x1 · · ·xn−1

tn−→ xn = x0
TM−→ xn.

Let TM be a trajectory in Σ. For each trajectory TM ∈ Σ∗, |TM|
denoted its length. We say, the trajectory TM ∈ Σ∗ is accepted

by M if and only if there exists a path ξ = x0
TM−→ xn, labeled

by TM , in the state diagram of M leading from start state x0 to
terminal state xn ∈ F .

Any subset of Σ∗ is called a language over Σ. The generated
language of M, denoted by L (M) is defined as

L (M) = {TM ∈ Σ∗ | δ̂ (x0,TM) ∈ X}.

The language accepted by the system M is the set of all and
only those trajectories over Σ that are accepted by M. The
marked language accepted by M is defined by

Lm(M) = {TM ∈ Σ∗ | δ̂ (x0,TM) ∈ F}.

The language accepted by a deterministic FSA Lm(M) is
called a regular language. A FSA of M is deterministic, if any
given path in M labeled by trajectory TM ∈ Σ∗ has a unique
run, otherwise, FSA of M is non-deterministic.

The projection of strings from L (M) −→ Σ∗o is denoted by
P : L (M)−→ Σ∗o. Given a strings TM ∈L (M), P is obtained
by removing all elements of Σuo in string TM .

2
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Figure 2. Interaction between different actors involved in the crisis management.
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3. DISCRETE MODEL OF CRISIS MANAGEMENT

In this paper, the interaction between different actors and
groups involved in crisis management is viewed as discrete
model. The discrete model corresponding to the crisis man-
agement is modeled as a FSA. This is represented as a quin-
tuple structure,

G = (X ,Σ,Y,ϕ,x0) ,

with ϕ is the transition relation, ϕ is the extension of δ of
the system M, the relation ϕ has type X ×Σ→ X ×Y . For
instance, z′ = (x′,y′) ∈ ϕ(x, ti), with x, x′ ∈ X , y′ ∈ Y and
ti ∈ Σ.

Example 1: The Figure 3 shows the FSA of the crisis man-
agement corresponding to the figure2, with x0 = x1. In this
example,

- X = {x1,x2,x3,x4,x5,x6,x7,x8},
- Σ = {t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11, t12, t13, t14, t15},
- Y = {y1,y2,y3,y4,y5,y6,y7,y8},

The figure 3 shows a discrete event model and outputting yi
for all i ∈ {1, · · · ,8}, when the system is in state xi for i ∈
{1, · · · ,8}, respectively.

x1

x2

x3 x4

x5

x6

x7

x8
y1

y2

y3
y4

y5

y6

y7

y8

t1

t2

t3

t4

t5t6

t7

t8

t9

t10

t11

t12 t13

t14

t15

Figure 3. FSA model of the crisis management.

The FSA model of the crisis management shown in figure 3,
allows one hand to monitor the communication and informa-
tion between various groups involved in crisis management,
and also to supervise same specific behaviors (or pattern) that
can be a critical situation in the management. The notion of
pattern means to define a language associated with a path of
system G that we are interested in for the purpose of diag-
nosis. Other word, the pattern is defined as the recognition
problem of the path whose intention is to answer the ques-
tion whether trajectories corresponding to observed path are

accepted or not by the model of the pattern. In (Ye & Dague,
2012), a pattern is define as a FSA. The language may be
associated with the occurrence of single or multiple critical
situation.

The transition function ϕ of G = (X ,Σ,Y,ϕ,x1) can be ex-
tended to take input sequence. For example in figure 3,
ϕ(x1, t3) = {x3,y3} and ϕ(x1, t3t9) = {x7,y3y7}.
The equation ϕ(x1, t3) = {x3,y3}, means when the system G
is in state x1 and the communication event t3 is emitted, the
system G moves in the state x3 and sends a communicate mes-
sage y3 (output).

Define two projections ϕ1 and ϕ2 of ϕ such that ϕ1 gives the
states reached from a state and an input given. The projection
ϕ2 defines the input/output pairs from state. These projections
are defined as
{

ϕ1(x, ti) = {x′ ∈ X | ∃ y′ ∈ Y such that (x′,y′) ∈ ϕ(x, ti)},
ϕ2(x, ti) = {y′ ∈ Y | ∃ x′ ∈ X such that (x′,y′) ∈ ϕ(x, ti)},

The projections ϕ1 and ϕ2 of ϕ may be extended as well to
take input sequences. By applying ϕ1 and ϕ2 on the diagram
represented in figure 3, we get

ϕ1(x1, t3t9) = {x7} and ϕ2(x1, t3t7) = {y3y7}.

Let L(G) be the language defined by the FSA G containing
the input sequence allowed by G. Formally

L(G) = {TG | TG ∈ Σ∗ and ∆G ∈ ϕ2(x1,TG)},

with x1 start state and ∆G output corresponding to the input
TG. The state x ∈ X of G has an associated language

LG(x) = {TG | TG ∈ Σ∗ and ∆G ∈ ϕ2(x,TG)},

with ∆G = y1 · · ·yk and TG = t1 · · · tk such that y1, · · · ,yk ∈ Y
and t1, · · · , tk ∈ Σ. The language LG(x) is the set of all trajec-
tory that originate from the state x of the system G. Clearly
in figure 3, L(G) = LG(x1).

Let K (LG(x1), ti) be the trajectory that ends with ti (Genc &
Lafortune, 2009). Formally

K (LG(x1), ti) = {TG = T0ti | T0 ∈ Σ∗ and ti ∈ Σ}.

We recall here, the FSA model of a dynamic system is de-
fined as G = (X ,Σ,Y,ϕ,x1), where ϕ : X×Σ−→ X×Y is the
transition function.

4. DISCRETE EVENT DYNAMIC SYSTEM

In the literature, the event set Σ may include failure events
Σ f = {Σ1, · · · ,Σp}. Indeed, a dynamic system can have p
failure modes of critical situations (F1, · · · ,Fp) that describe
the condition of the system. In addition to normal and failure

4
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modes the system may have a degraded mode, denoted Nd .
Therefore, the state set X can be partitioned according to the
condition of the system.

X = XN ∪XNd ∪XF1 ∪·· ·∪XFp .

The condition of the system goes in XNd , when the degrada-
tion event occurs and in XFi when the failure event occurs.

To define the condition map of a dynamic system on a tra-
jectory TG of G, we introduce the label propagation function
LP : X ×Ω×Σ∗ → Ω. LP(x,λ ,TG) propagates the label λ
over TG ∈ Σ∗, starting from x∈ X and following the dynamics
of G, i.e. according LG(x), with x ∈ X , λ ∈Ω and LG(x) ∈ Σ∗
such that TG = K (LG(x),T ).

LP(x,λ ,TG) =





N, if ∃ x′ ∈ X | x′ ∈ ϕ1(x,TG) and x′ ∈ XN

Nd , if ∃ x′ ∈ X | x′ ∈ ϕ1(x,TG) and x′ ∈ Xd

Fi, if ∃ x′ ∈ X | x′ ∈ ϕ1(x,TG) and x′ ∈ XFi

The definition of the conditions map may be extended to sub-
sets of X .

for all z⊆ X , LP(z,λz,TG) =
⋃

x1
TG→xi∈z

{LP(x1,λi,TG)}.

Let x1, · · · ,xm ∈ X and m ∈ N such that z =
{(x1,λ1), · · · ,(xm,λm)}. The system’s condition λi is
normal if λi = N for all 1 ≤ i ≤ m, certain if λi = Fi for all
1 ≤ i≤ m and uncertain if there exist λ j = N and λi = Fi for
same 1≤ i, j ≤m. Further detail about notions of certain and
uncertain system’s condition may be found in (Zad, Kwong,
& Wonham, 2003) and (Genc & Lafortune, 2009).

Example 2: Figure 3 shows a FSA model of a crisis man-
agement. We use the input of the system G to supervise the
behavior corresponding to the critical situation. The critical
situation that we want to detect is outputting twice y5 during
the crisis management. The first appearance of the output y5
in the output sequence ∆G brings the system into the set XNd
corresponding to the degraded mode Nd . The second appear-
ance of the output y5 in the output sequence ∆G during the
crisis management brings the system into the set XF corre-
sponding to the critical mode. In this example

X = {x1, x2, x3, x4, x5, x6, x7, x8}
Ω = {N, Nd , F}
Y = {y1, y2, y3, y4, y5, y6, y7, y8}

The necessary and sufficient condition for the pattern of a
DES is based on the learning diagnoser and prediction of
DES. The learning diagnoser is obtained from the standard
diagnoser.

5. STANDARD DIAGNOSER

A standard diagnoser denoted DG must be able to detect and
isolates faults and failures (Sampath et al., 1995), or to de-
tect critical situations in crisis management. A fault implies
a certain level of degradation of performance and a failure
on the other hand denotes a complete operational breakdown
of equipment or the process (Yunxia, 2003). A standard di-
agnoser is a FSA built for to detect and isolates faults and
failures of G. Let G = (X ,Σ,Y,ϕ,x0) be the discrete event
model for the dynamic system that we want supervise. The
set Y is the output of system G. The standard diagnoser that
we use for discrete event dynamic systems is a FSA that takes
the output sequence ∆G = y1y2 · · · of system G as its input as
shown in figure 4, with λi the condition functioning of the
system.

Plant +
Controller (DES)(DES)

Diagnosery1y2 · · ·yk

output
sequence

λ1λ2 · · ·λk

Estimates of the
system’s condition

Figure 4. System and Supervision pattern

The standard diagnoser DG of G is defined as DG =
(Z,Y,Ω,ζ ,z0), with Z is the set of standard diagnoser state, Y
is the set of standard diagnoser input, Ω is the set of standard
diagnoser output, ζ is the standard diagnoser state transition
function, the relation ζ has type Z×Y → Z, z0 ∈ Z is the start
state of the standard diagnoser.

The diagnoser state space Z is the resulting subset of 2X×Ω

composed of the state of the diagnoser that are reachable from
z0 under ζ . The initial state z0 of the diagnoser is defined by
z0 = (x0,λ0). Assume the system G is normal to start, then
λ0 = N. State z ∈ Z is given by

z = {(x1,λ1),(x2,λ2), · · · ,(xn−1,λn−1),(xn,λn)},

where xi ∈ X and λi ∈Ω, for all i ∈ {1, · · · ,n}. In the follow-
ing, |z|= 1.

Basing on the output sequence ∆G = y1y2 · · ·yk of the sys-
tem G, a state zk = (xk,λk) ∈ Z is determined to which xk
may belong at the time that yk was generated. For the di-
agnoser, the estimate of the system’s condition from x1 will
be LP(x1,λk,∆G) such that (x1,λ1) ∈ ζ (xk,λk), with z1 =
(x1,λ1) and zk = (xk,λk).

The diagnoser state transition is defined by
zk+1 = ζ (xk,yk+1) with zk = (xk,λk) and yk+1 ∈ Y . In the
following, we write the diagnoser state zk = (xk,λk) as zk =
(xz,k,λk). The standard diagnoser presented further above is
shown in figure 5. Here, the pattern that has to supervise
is having twice y5 in the output sequence during the crisis
management. We remind that y1,y2 · · · ∈ Y are outputs of the
system G and inputs for the diagnoser DG.

5
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y1

y2 y3

y4y5

y6

y7

y8

xz,1

xz,2 xz,3

xz,4xz,5

xz,6

xz,7

xz,8

Nd ,F

D1

N N

NN

N

NN

Output

zk

yk

xz,k

λk

Figure 5. Standard diagnoser of the critical behavior in crisis
management.

We address the problem of supervision pattern of a Discrete
Event Dynamic System (DEDS). Let H be a bounded set
of finite-length strings over Σ. The pattern can be define as a
bounded H. The definition of the language that should be rec-
ognized by the supervision pattern depend the problem stud-
ied. In this paper, the critical situation (behavior) during the
crisis management is detected if and only if.




LDG(xz,1) = {TDG | TDG ∈ Y ∗ and ∆DG ∈ ζ2(xz,1,TDG)},
such that, it exists a language L ∈ Σ∗ defined by
L = {TG ∈ Σ∗ | TDG ∈ ϕ2(x1,TG} and f (L) = true,

f (L) is a condition to define.

In this paper, the condition is given as




f (L) = |Po(L)| ≥ C,

Po : Σ∗ −→ H∗, H ⊆ Σ,

C = Criteria,here C is a positive number,

with Po is the projection of strings, TDG = y1y1 · · · , and ϕ2
is the extension of ϕ of G. For the behavior that we want
to supervise here, we have H = {t6} and the Criteria C = 2.
Until now, only the occurrence of t6 brings G in the state x5
as shown in figure 3.

The supervision pattern shown in figure 6 recognizes the lan-
guage LDG(xz,1) if and only if the condition |Po(L)| ≥ 2 is
verified.

The trajectory LDG(xz,k) is used to predict the evolution of
the situation during the crisis management. The prediction,

|Po(L)|= 0

|Po(L)|= 1

|Po(L)|= 1 |Po(L)| ≥ 2

|Po(L)|= 2
XN XNd XF

Figure 6. New supervision pattern for the critical situation in
crisis management.

in general, is the process of making a decision about a fu-
ture result or evolution of a situation. In the next section, we
introduce the problem of prediction of discrete event system.

6. THE PREDICTION OF DEDS

The prediction of a trajectory (or equivalently, sequence) of a
dynamic system behavior is defined in the context of formal
language.

Let LDG(xz,1) denote the set of all trajectory that orig-
inate from the start state diagnoser z1 = (xz,1,λ1), and
K (LDG(xz,1,yα)) the trajectory ends with yα ∈ Y .

K (LDG(xz,1,yα)) = {β ∈ Y ∗ such that β = y1 · · ·ynyα}.

Let ζ1 and ζ2 be the two projections of ζ of diagnoser DG,
with ζ1 is given by

ζ1(xz,k−1,yk) = {xz,k | ∃ λ such that (xz,k,λ )∈ ζ (xz,k−1,yk)},

with λ = LP(xz,1,λk,β ) ∈ Ω if yα = yk and the state zk =
(xz,k,λ )⊆ Z is the state estimate of DG at time k,
and ζ2 is defined by

ζ2(xz,k−1,yk) = {λ | ∃ xz,k ∈ zk such that zk ∈ ζ (xz,k−1,yk)}.

Let ψ(x) be the function giving the state immediately after
the state x. This function is defined as

ψ(x) = {x′ | ∃ y ∈ Y such that x′ ∈ ζ1(x,y)}.

Roughly speaking, a diagnoser state is predictable if it is al-
ways possible to detect the future diagnoser state, strictly be-
fore to arrive in this state. In this paper, we base only on the
output sequence of DEDS model of system G to predict the
future state or evolution. The prediction of the future diag-
noser state at time k, when xz,k is generated, is given by

x̂z,k+1 = ψ(xz,k)∩ζ1(xz,k,yk+1),

with yk+1 ∈ Y and yk+1 is the input of DG.

The predicted state of the diagnoser DG is :
ẑk+1 = (x̂z,k+1,yk+1).
Thus, the prediction of the trajectory K̂ (LDG(xz,1,yk+1)) is
the form: K̂ (LDG(xz,1,yk+1)) = {β̂ = y1 · · ·ykyk+1}.
The prediction of the system’s condition is the propagation of
the label λk+1 over β̂ , defined by LP(xz,1,λk+1, β̂ ). Finally
the diagnosis state predicted from xz,1 is the form

6
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ẑk+1 = (x̂k+1,LP(xz,1,λk+1, β̂ ), xk 7−→ x̂k+1.

For instance, suppose at time k the output sequence ∆G =
y1y3 is observed, then the diagnoser state is xz,k = xz,3 and the
system’s condition from xz,1 is LP(xz,1,λ3,y1y3) = N.

When the system is in the state x3 in figure 3, and if the next
output symbol yk+1 is anything other than y4, y5, y7, we get

ψ(xz,3)∩ζ1(xz,3,yk+1) = /0,

that means the observation generated after y3 is inconsis-
tent with the model dynamic and the diagnoser cannot pro-
ceed. The currant diagnoser state xz,k+1 is different to diag-
noser state x̂z,k+1 predicted before. Basing in the language
LG(x1) = TG, in particular the output sequence ∆G, we deter-
mine the state candidate.

When the output sequence is inconsistent with the model of
the system G, then we have to revise the model of G by adding
to its new transition that we believe are missing in the nominal
model. This situation is not interpreted as a faulty situation,
because we did not add new states. All the normal and fault
modes are known and we add only the messing transitions.
Adding new transitions in Σ of G is called learning diagnoser.
In the next section we detail the construction of a learning
diagnoser.

7. LEARNING DIAGNOSER

A learning diagnoser is a standard diagnosis that tolerant of
missing transitions (information) about the system to be diag-
nosed. The learning diagnosis must be able to learn the true
model of the system G, when missing information about the
system are presented.

Let tnew be a new event detected and not found in Σ of system
G. The new set of input events of G is given by Σnew = Σ∪
{tnew}. A transition xd

tnew−→ xa is ordered pair of state denoting
a transition from the state xd to the state xa. Let ϕ ′ be the
extend function transition of ϕ of the system G such that

ϕ ′1(x, t j) =

{
xa if x = xd and t j = tnew

ϕ1(x, t j) otherwise

Let be a dynamic model G′ of G defines as G′ =
extend(G,Π) = (X ,Σ∪Π,Y,ϕ ′,x0). And G′ is called the ex-
tension of G by Π, with Π is the set containing all the new
transitions founded. The set transition Π is empty, if the
model G of the system is consistent with the output sequence.

For instance in figure 2, when an accident happen, the infor-
mation center is going to send data and actions to the emer-
gency department. All the information are sent in 5 minutes,
but with a wrong weather condition. For example, if the in-
formation center sends a temperature of 30◦C in winter (Eu-
ropa). Then the system is going to detect the temperature

30◦C in winter in Europa is wrong. That mean the first team
can not go before the correct temperature. During this wait,
the first team loses time (waste of time) that mean in the di-
agram 3, the system is in the state x5. The transition from
the state x4 to the state x5 is a new transition for the system
G. The resulting diagnoser, including the new transition, is
shown in figure 7, then ψ(xz,4) = {xz,6,xz,5}.
When the model of G is inconsistent with the output se-
quence, the subset H for the supervision pattern may be up-
dated. In this paper, the critical situation that we want super-
vise is going twice in the state x5, then with the new tran-
sition tnew, we can go to the x5 (event t6 or tnew occurs).
Then the new subset for the supervision pattern is define by
H = Hupdate = {t6, tnew}. The critical pattern of behavior in
crisis management is detected if and only if




LDG(xz,1) = {TDG | TDG ∈ Y ∗ & ∆DG ∈ ζ2(xz,1,TDG)}
such that it exist a language L defined by
L = {TG ∈ Σ∗ such that TDG ∈ ϕ2(x1,TG} and |Po(L)| ≥ C
Pnew

o : Σ∗new −→ H∗update, Π⊇ Hupdate = H ∪{tnew}
C = Criteria and in figure 6 Po = Pnew

o .

Pnew
o : Σ∗new −→ H∗update is the new definition of Po and

Criteria=2. The fact to update the bounded set H ⊆ Σ, we
obtain a learning supervision pattern (see figure 6).

y1

y2 y3

y4y5

y6

y7

y8

xz,1

xz,2 xz,3

xz,4xz,5

xz,6

xz,7

xz,8

D1

Nd ,F N N

NN

N

NN

Output

zk

yk

xz,k

λk

tnew

Figure 7. Learning diagnoser of the critical behavior in crisis
management.

The diagnoser, as a Finite State Automaton, can be automat-
ically translated into computer code. For example, the algo-
rithm for a part of diagnoser 7, is given by
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Algorithm 1 D1

Require: D1 : z = (xz,k,N) and y
while y == y1 do

read y
z1← (xz,k,N)

end while
if y==y2 then

go to D2
else if y == y3 then

go to D3
else if y == y6 then

go to D6
else if y == y8 then

go to D8
else

go to inconsistency
end if

8. CONCLUSION AND PERSPECTIVES

In this paper, we proposed a representation of the crisis man-
agement as a set of couple of states and events. A learning di-
agnoser and prediction approaches are proposed and applied
onto crisis management. Also, a method of adaptive supervi-
sion pattern is proposed in this paper.

Future work will also focus to introduction of the notion of
the probability and to integrate time information onto the new
transitions detected.
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