PHM Solution Development in Wind: Problems & Solutions

Jamie Godwin

October 16th 2013 New Orleans, Louisiana, USA.

Overview

- Motivation & Challenges
- •Case study # 1
 - •PHM for wind turbine pitch faults
 - •Data-driven, using maintenance logs
- •Case Study #2
 - •PHM for wind turbine gearbox
 - •Statistical, using normal operational behaviour
- Discussion
- Conclusions

Motivation

- •Low correlation between SCADA data and maintenance records
 - •(Less than 5% of alarms have an associated maintenance record)
- •Maintenance on a wind turbine represents 20-25% of total asset cost
 - •Up to 75% of this is unscheduled maintenance
 - •Preventive maintenance can be (up to) 40 times cheaper!
- •Typically, ~25% can be saved with the proper application of a n next generation maintenance philosophy
- •Lower than expected penetration of CBM into industry

Challenges

- •Data isn't labeled
 - •We don't know how degraded components are
 - •We don't know what attributes are relevant
- Text maintenance logs
 - •Often incomplete
 - Inconsistent vocabulary
- •Faults may go unrecorded in archive data
 - •Inclusion in PHM development will degrade performance

Motivation

Failure Rate and Downtime from 2 Large Surveys of European Wind Turbines over 13 years

Crabtree (2010)

Example Data

Time Stamp	Average Wind Speed	Max Wind Speed	Motor 1 torque maximum	Motor 2 torque maximum	Pitch torque average	Blade 1 angle	Blade 2 angle	alarm
01/01/2001 12:00	8.9	11.9	53.579998	53.029999	4.85	2.03	2.03	No
01/01/2001 12:10	10.2	14.6	61.369999	60.23	9.07	2.36	2.36	No
01/01/2001 12:20	1.1	1.7	0	0	0	85.919998	85.979996	No
01/01/2001 12:30	16.5	22.7	56.43	55.649998	51.610001	21.549999	21.549999	No
01/01/2001 12:40	9.6	12.4	44.119999	39.02	4.56	1.98	1.98	No
01/01/2001 12:50	14.8	20.5	49.369999	42.259998	19.959999	11.28	11.28	No
01/01/2001 13:00	7.1	9.1	17.83	17.779999	9.74	1.99	1.99	No
01/01/2001 13:10	9.2	14.3	39.93	33.469997	24.48	2.04	2.04	No
01/01/2001 13:20	12.8	19.2	68.019997	71.790001	47.289997	8.07	8.07	No
01/01/2001 13:30	1	2.6	0	0	0	0	-89.759995	No
01/01/2001 13:40	11.9	16.1	55.110001	59.989998	14.73	5.72	5.72	No
01/01/2001 13:50	4.4	6.2	13.88	12.21	4.17	1.98	1.98	No
01/01/2001 14:00	6.5	8.7	24.129999	23.619999	6.48	1.99	1.99	No
01/01/2001 14:10	4.4	5.4	61.189999	63.829998	0	70.659996	70.639999	No
01/01/2001 14:20	3.2	5	51.259998	52.02	7.15	2.01	2.01	No
01/01/2001 14:30	10.6	14.2	62.66	57.719997	7.86	2.41	2.41	No
01/01/2001 14:40	3	4	25.689999	29.619999	0	1.98	1.98	No
01/01/2001 14:50	12.6	17	63.93	63.02	41.200001	8.41	8.41	No
01/01/2001 15:00	6	8.2	0	0	0	86.169998	86.080002	yes
01/01/2001 15:10	7.4	8.9	18.369999	16.279999	6.85	1.98	1.98	No
01/01/2001 15:20	10.9	15.6	56.079998	56.84	13.23	4.15	4.15	No
01/01/2001 15:30	15.9	21.9	65.029999	65.639999	36.25	14.549999	14.549999	No
01/01/2001 15:40	7.2	10.5	16.6	18.76	6.62	1.98	1.98	No
01/01/2001 15:50	2.1	3.8	0	0	0	85.979996	85.939995	No
01/01/2001 16:00	2	2.7	0	0	0	85.959999	86.029999	No

144 records per day, across 190 channels (7 shown) Up to 100 wind turbines on a farm

... SCADA systems aren't perfect!

Case Study #1

- Needed to reduce pitch fault alarms from the SCADA system
- Large drain on maintenance resources
- 3 sources of data available SCADA data, SCADA alarms, maintenance records
- Hypothesis:
 - Can we automatically identify pitch faults, and we can determine if they are false positive?

Wind turbine pitch fault

- •A deviation of the wind turbine blade angle from a pre-defined optimum
 - •Modern wind turbines feather the blades to regulate power generation
- •Faults can be due to pitch motor degradation
- •Or they an be due to electrical system failure/malfunction
- •Each blade angle should be identical (but this may not always be the case)

Motivation

- •Wind turbine pitch fault represents the most common SCADA alarm on the wind turbine
 - •Up to 45% (!) of SCADA alarms are pitch system related
 - •Alarms can switch off turbine to prevent damage
- •In some cases, the alarms are active for over 100 days.
 - •~1,700 alarms per year (> 4 per day!)
 - •Large drain on maintenance resources to analyse all alarms
- •Difficult to determine pitch fault through SCADA analysis
 - •SCADA systems have many imperfections
- •Remote reset can be a cost effective strategy! (If it's safe to do)

Data description

- •8 Wind turbines used in analysis
 - •~ 1 million SCADA records (10 min intervals, 28 months)
 - •243 recorded pitch faults in the maintenance log
 - •Over 20,000 SCADA records with pitch fault alarms
- •All wind turbines are from the same wind farm
- •All wind turbines are the same model
- •Attributes determined by entropy & expert guidance (after labeling)

Data labelling

- •3 classifications were derived:
 - •No Pitch fault present
 - •All data not in the other categories
 - Potential pitch fault
 - •Data associated with a SCADA pitch alarm
 - •Established pitch fault
 - •SCADA records directly associated to a maintenance action in the maintenance log (within 48 hours)

•These labels allow traditional data mining to be undertaken

Model selection

- •4 wind turbines used for training RIPPER (of the 8 available)
 - •Any classifier could have been used
- •Classes were balanced to remove majority bias
- •70 models developed (8 choose 4)
 - •Ensure methodology is not sensitive to training data
 - •Rule accuracy: 69.99% 87.41% (M=82.70%, SD=4.26%)
 - •Rule base: 6 38 (M=16.5, SD=7.65).
- •Weak correlation (r=.056) between number of rules & accuracy
 - •Beneficial to choose a smaller rule base which is easier for domain experts to understand.
- •21 Models were dominant for their rule base size
- •Chosen model had 14 rules with 85.50% accuracy

Classifier Post-processing

- •In order to filter SCADA data & remove noise, post-processing was performed
- •Needed to ensure persistence
- •A 90 minute threshold was set
 - •Partly due to past experience
 - •Partly due to analysis of the SCADA data
 - Partly due to expert knowledge
- •If the threshold was breached, an alarm was raised

Results

- Post-processing provided filtering of SCADA alarms
 - •Number of alarms was reduced by

$$35.80\% - 52.26\% (M=44.69\%, SD=6.62\%)$$

Average alarm length was reduced by

$$28.06\% - 49.90\% (M=35.68\%, SD=8.60\%).$$

- •74 of 85 Maintenance actions were identified by the expert system (>87% accuracy) 11 maintenance actions were missed
 - •7 of these 11 were due to missing data from the SCADA system
 - •The remaining 4 are currently under investigation

Case Study #1 Conclusions

- •Able to significantly reduce the number of SCADA alarms
- •Able to significantly reduce the length of SCADA alarms
- •Strong model classification accuracy (>85%)
- •High model diagnosis accuracy (>87%)
- •Needed significant quantities of data
- Needed a physical model
- •Used maintenance logs to guide system

Case Study #2

- •Need to identify gearbox degradation to enable efficient maintenance strategies
- •Very limited failure data available
 - •1 failure from >14,000 hours of data
 - •~\$5million if gearbox fails excessive maintenance performed.
- •New paradigm is required to identify degradation

Wind turbine gearbox

- •So much data is collected (>14,000 records/day)
 - •Why not use it?!
- •Traditional data mining tries to encapsulate failure conditions
 - •We have more "normal" data ... can we get more information out of this?
 - •(We can!)

Developing a condition index

- •If we can determine "normal" behaviour; we can measure deviations from this.
- •More "normal" data, means a stronger understanding of this behaviour.
 - •It's a win-win situation!
- •Can use multivariate distance metrics, such as the Mahalanobis distance (or robust derivatives):

$$RMD_i = \sqrt{(x_i - \hat{\mu}')^T MCD^{-1}(x_i - \hat{\mu}')}$$

Why the MCD?

•Estimation of covariance is sensitive to noise TOLERANCE ELLIPSE (97.5%)

Taken from Rousseeuw & Van Driessen (1999)

(bivariate)

Why the MCD?

•Estimation of covariance is sensitive to noise TOLERANCE ELLIPSE (97.5%)

Taken from Rousseeuw & Van Driessen (1999)

(bivariate)

Model Attributes

- •A (primitive) physics of failure model is utilised to determine attribute condition
- •As the gearbox degrades, inefficiencies are created
- •These inefficiencies cause increased friction
- •This friction manifests as heat
- •This heat is read by the sensors on the SCADA system

•Data is normalised for ambient temperature and loading

Condition Index

Thresholds determined based upon statistical properties of the RMD.

Condition Index – Smoothing

After Maintenance

Condition Index

- •Normal operational behaviour: ~94% of the time
- •After maintenance, gearbox remained normal for 362 consecutive days
- •Running in of the new gearbox is present in the data (not shown)
- •14 opportunities to inspect gearbox first 6 months before failure

Condition Index

- •Can accurately identify maintenance events in the data
- •Can quantify the effectiveness of the maintenance performed
- •Computationally tractable (can be performed on-line)
- Can be used for fault identification, RUL prediction, prognosis
 Using ANN/SVM/RVM/regression etc.

Novel extras – rule extraction

•Can use statistical levels to provide class labels to enable data mining.

	Test Turbine 1	Test Turbine 2	Test Turbine3	Average
Normal	860	821	829	846
Operation	(97.62%)	(93.12%)	(94.10%)	(96.03%)
Inspection	12	32	32	21
Suggested	(1.36%)	(3.86%)	(3.63%)	(2.39%)
Potential	9 (1.02%)	26	20	14
Damage		(2.95%)	(2.27%)	(1.59%)

Novel extras – rule extraction

- Example Rules (from model using RIPPER):
- Planetary Gear Temperature >= 51.20 Degrees
 Then Potential Damage
- Rotor Speed >= 17 RPM
 Then Potential Damage.
- Energy Generated <= 0.33 MW and Rotor Speed >= 11 RPM
 Then Potential Damage

Thank You

•Any Questions?

•E-Mail: j.l.godwin@durham.ac.uk

