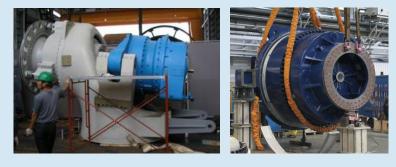


Predictive Maintenance Technology to Reduce O&M Costs

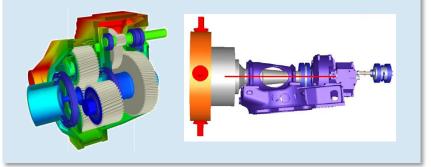
Dr Tugan Eritenel, Senior Engineering Analyst Dr John Coultate, Product Marketing Manager Dr Ashley Crowther, VP - Engineering

PHM Society Conference - 2013 14-Oct-2013, New Orleans, LA

> CONFIDENTIAL © Copyright 2013


Summary

- <u>Company introduction and background</u>
 - Drivetrain and gearbox design and consultancy and RomaxDesigner CAE software
 - Wind turbine condition monitoring (Insight Health Management Services)
- 1. Vibration based condition monitoring
 - Mainstream use in aerospace, (HUMS), and other power plants
 - Can detect most main bearing and gearbox faults
 - If installed, must be actively watched for alarms
- 2. <u>Business case for condition monitoring</u>
 - Comparing estimated costs for a HSS bearing replacement scenario
 - Looking for a solution for a wind farm without CMS
- 3. <u>Next generation predictive maintenance models (Insight)</u>
 - Combines statistical methods, SCADA data, vibration data, and maintenance history


Romax Technology – what do we do?

Drivetrain and gearbox design,

worldwide no. 1 independent wind turbine gearbox designer; 29 certified gearbox designs and 1.7 GW of gearboxes shipped

Drivetrain simulation software RomaxDESIGNER, virtual product development environment; dynamic analysis and bearing simulation

Engineering consultancy services,

analysis, certification support and failure investigation

|--|

InSight health management solutions, InSight software and technical services for optimising O&M

SHARING INNOVATION IN BEARING, GEARBOX & DRIVELINE

Slide 3

Monitoring and diagnostics track record

- Over 3.0 GW of data monitored and analysed to date using Romax InSight[™]
- Monitoring service Romax are currently monitoring over 1.5 GW

- CMS hardware and software solutions
- Strategic offerings for existing Gram & Juhl users (e.g. Siemens turbine operators)

SHARING INNOVATION IN BEARING, GEARBOX & DRIVELINE

Slide 4

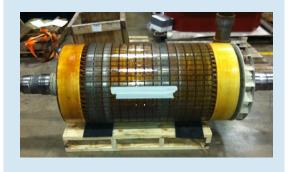
CONFIDENTIAL ©Copyright 2013

Drivetrain and rotating machinery failure examples

Main bearing failures

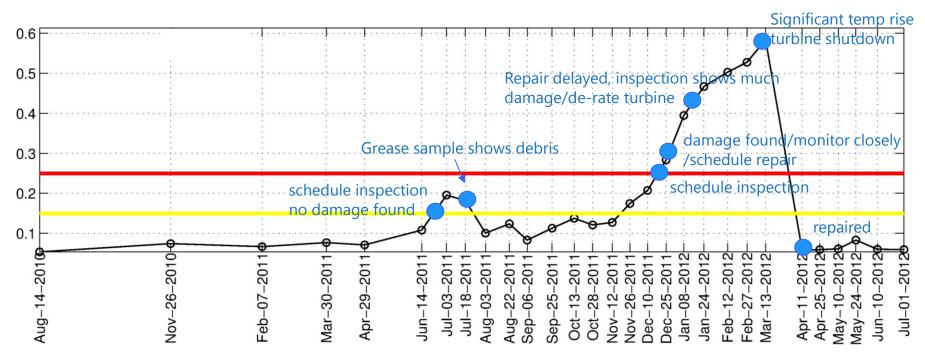
Gear failures

Yaw system failures


Coupling failures

Mount failures

Generator and bearing failures

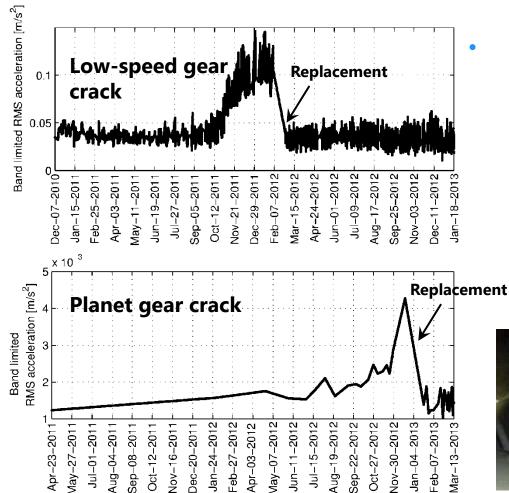


SHARING INNOVATION IN BEARING, GEARBOX & DRIVELINE

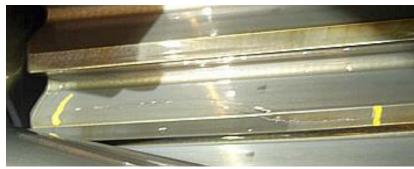
Slide 5

CONFIDENTIAL ©Copyright 2013

Case Studies

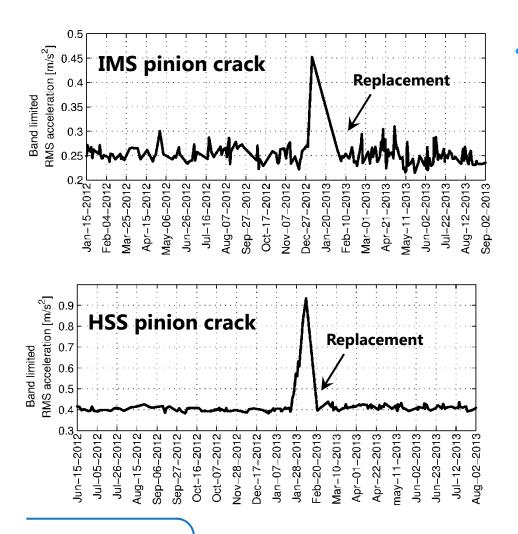


- Macro-pitting in main bearings
 - Timeline: 2-6 months
 - Replacement: Main bearing
 - Hub needs to be craned in 3- point mount turbine designs

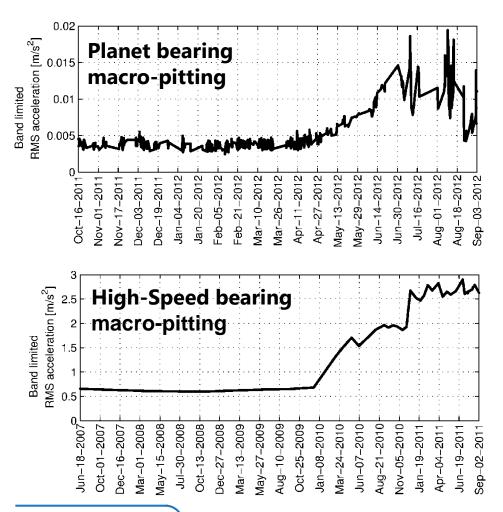


SHARING INNOVATION IN BEARING, GEARBOX & DRIVELINE

Case Studies – Gear Tooth Cracks



- Cracking in low-speed and planetary gears
 - Timeline: 5-90 days
 - Replacement: Gearbox
 - Broken planet tooth can lodge between ring and planet gears and crack the gearbox housing


Case Studies – Gear Tooth Cracks

- Cracks in medium-high speed gears
 - Timeline: 2-7 days
 - Replacement: Shaft & gear
 - Very good detection and repairs are usually ASAP.
 - Occasionally, operators reliefgrind the gear until replacement is convenient

Case Studies

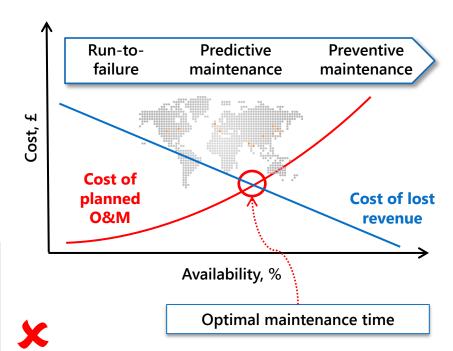
- Macropitting and axial cracking in gearbox bearings
 - Timeline: 3-12 months
 - Replacement: Gearbox if planetary stage, bearing if high-speed stage
 - Debris from bearing can dent gears and initiate cracks

Business Case for Condition Monitoring

Example For a gearbox bearing failure requiring down-tower repair:

Predictive maintenance	Reactive maintenance
Bearing macro-pitting detected early with vibration based CMS	Bearing fails, from macro-pitting developed into cracks. CMS does not exist, or not being watched.
Visual (endoscope) inspection, confirmation of damage, action plan	Damage assessment.
Assess how long bearing can operate, combine repairs with other turbines. Wait for low-wind season.	Gearbox has secondary damage or completely fails. Debris dents on gears and bearing, cracked housing.
New parts and labor \approx \$70k.	New gearbox and labor $\approx \frac{200}{500}$ -500k.
Downtime is $5-10$ k per turbine. (for \approx 5-10 days)	Downtime $> \approx \frac{20k}{20k}$ (depending on season and availability)
Cranes and service cost \approx \$100k.	Cranes and service cost \approx \$100k.
TOTAL COST ≈\$180k.	TYPICAL TOTAL COST ≈ \$320k.

SHARING INNOVATION IN BEARING, GEARBOX & DRIVELINE


Striking a Balance

• Reactive maintenance:

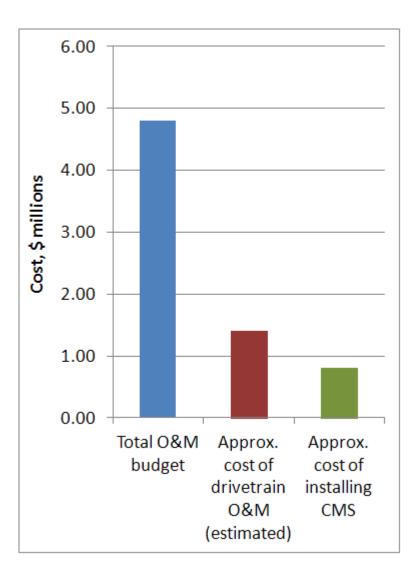
- Run to failure
- Often expensive

Preventive maintenance:

- Fix everything prematurely
- 100s of routine maintenance operations
- Too expensive!

Predictive maintenance:

- Optimised cost
- Enabled by key technologies e.g. predictive models


Х

Enabling predictive maintenance without CMS

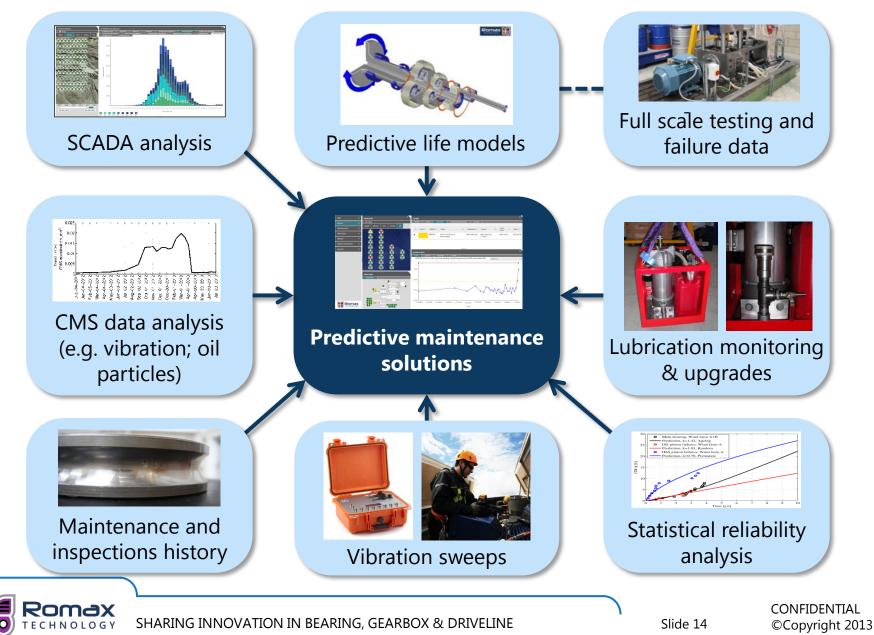
- Example: out of warranty wind farm, 80 x 1.5 MW class wind turbines
 - O&M budget = approx. \$4.8m
 per year
 - The site has no CMS a major barrier to predictive maintenance
 - Cost of installing CMS is prohibitively high for this operator.
 - Approx. \$800,000 initial outlay with no CAPEX budget available
 - ≈\$10,000 per CMS unit

Enabling predictive maintenance without CMS

Solution: portable vibration sweeps

- Annual or quarterly drivetrain condition assessments 0 using portable equipment: vibration analysis
- More cost effective in the short term 0
 - Example: End-of-Warranty vibration sweep •

SHARING INNOVATION IN BEARING, GEARBOX & DRIVELINE


further actions or inspections

1. Install temporary monitoring equipment

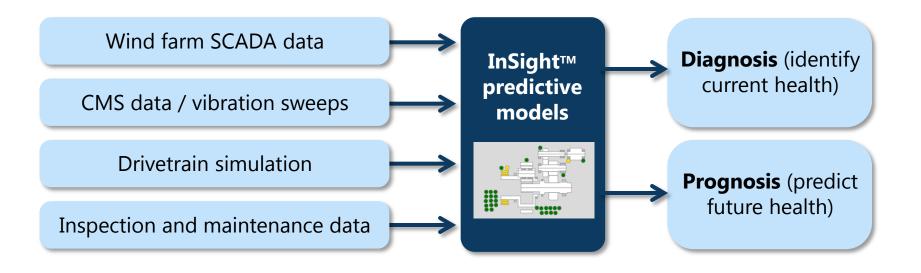
2. Romax monitoring team

analyse measured data

Enabling technologies for predictive maintenance

Close up: predictive life models

- The aim of a predictive model is to prioritise and schedule maintenance and inspections
- For many years, predictive life models have been utilized for maintenance scheduling:
 - Aerospace aero engine monitoring
 - Power production steam and gas turbines
 - Helicopters 'Health and Usage Monitoring Systems' (HUMS)


SHARING INNOVATION IN BEARING, GEARBOX & DRIVELINE

Slide 15

CONFIDENTIAL ©Copyright 2013

Close up: predictive maintenance models

- In a fleet of wind turbines, predictive models work in conjunction with CMS to give the longest lead time for identifying faults
- Huge cost savings come from scheduling large crane operations simultaneously – e.g. Romax regularly save US operators money supporting main bearing repairs

SHARING INNOVATION IN BEARING, GEARBOX & DRIVELINE

Slide 16

Conclusions

- 1) Predictive maintenance reduces costs for O&M, if done properly.
 - Existing CMS: must be usable by operators and be watched.
 - <u>CMS does not exist and cost is prohibitive</u>: intelligent tools (portable vibration sweep) can be used.
 - This is Romax's experience. Comments from operators?
- 2) Innovative software tools are being developed and tried.
 - Inspection and maintenance data: reports, replacements.
 - Statistical analysis, failure rates of each gear and assembly.
 - SCADA data analysis: power, wind speed, yaw, pitch, temperature, alarms, ...
 - Usage: How long a bearing spent above 70°C.
 - Vibration analysis: Gear, bearing, shaft, coupling faults

