

SEE THE POTENTIAL™

Lubrication Oil Condition Monitoring and Remaining Useful Life Prediction with Particle Filtering

Junda Zhu Turbine Health Monitoring Group Renewable NRG Systems

- Introduction
- Model Development
- Model Validation
- RUL Prediction Algorithm Development and Validation
- Conclusions

Introduction Background & Motivation

Condition Based Maintenance (CBM) includes 3 Stages:

- 1) Diagnosis: Evaluate the current health condition of a component or subsystem.
- 2) Prognostics:
 - a) Estimate the system health status at future time.
 - b) Estimate the remaining useful life (RUL) of a component or subsystem.
- 3) Decision making.

The benefits of effective lubrication oil CBM includes:

- ✓ Improve drive train and gearbox reliability
- Earlier warning of possible failure compared to vibration analysis.
- ✓ Increase wind turbine availability
- ✓ Reduce maintenance costs
- ✓ Reduce labor cost
- Reduce environmental impact of mineral oil waste

Introduction Background & Motivation

The purpose of this research is to develop an online lubrication oil condition monitoring and remaining useful life prediction technique based on a particle filtering algorithm and commercially available online sensors.

Research Contribution

- ✓ Summarized and evaluated current lubrication oil health condition monitoring techniques and solutions.
- ✓ Developed and validated physics based models for lubrication oil performance degradation based on selected performance parameters.
- ✓ The remaining useful life prediction of lubrication oil has been successfully performed with the help of adapted particle filtering technique.
- ✓ Validated the developed lubrication oil condition monitoring and RUL prediction technique using a simulation case study.

Introduction Basic Degradation Features

The Principles of lubrication oil condition monitoring is by means of various sensing techniques to directly or indirectly monitor the basic lubricant degradation features.

- ✓Water contamination
 - 1) Cause: Leakage,, blow-by gas
 - 2) Impact: Lubrication function reduction, increase corrosion, deposit formation
- ✓Oxidation
 - 1) Cause: Chemical chain reaction from overheating and contamination.
 - Impact: Acid compound formation, insoluble products, varnish and sludge
- ✓ Particle contamination
 - 1) Cause: Oxidation by products, machine wear debris
 - 2) Impact: Clog filters and valves, defective seal, sever components friction

Performance

Parameters

Available Sensors

The relationship among the basic degradation features, performance parameters, and available oil condition sensors

Introduction Current Oil Monitoring Techniques

Component Degradation Modeling

Data Driven Based Modeling

System Encounter

Training Process

This is right. (good) (bad)

Diagnostic Capable

Physics Based Modeling

System Encounter

System Kinematic Information Acquisition

Diagnostic Capable SEE THE POTENTIAL"

Water Contamination Viscosity Model Development

 $V \downarrow M, T = (V \downarrow oil, T - V \downarrow water, T) \times (1 - P) + V \downarrow water, T$

V\u03c4water, $T = 2.414 \times 10^{-5} \times 10^{247.8} / (T + 273 - 104) / \rho \u03c4 water, T = -0.451 \times \ln T + 2.3591$ (Water Physical Property)

> $V \downarrow oil, T = 57470.5189 \times T^{\uparrow} - 1.935$ (Lubrication Oil Property from Initial Testing)

T = temperature, in Celsius

V \downarrow *oil*, *T* = viscosity of the healthy oil at temperature *T*, in *Cst*

 $V \downarrow water, T = viscosity of the water at temperature T, in Cst$

P = water volume percentage

Water Contamination Dielectric Constant Model Development

 $(\varepsilon \downarrow eff - \varepsilon \downarrow m / \varepsilon \downarrow eff + 2 \times \varepsilon \downarrow m) = \delta \downarrow i \times (\varepsilon \downarrow i - \varepsilon \downarrow m / \varepsilon \downarrow i + 2 \times \varepsilon \downarrow m)$ (Maxwell Garnet Mixing Rule, Effective Medium Theory)

 $\varepsilon \downarrow M, T = \varepsilon \downarrow oil, T \times (1+3 \times P \times \varepsilon \downarrow water, T - \varepsilon \downarrow oil, T / \varepsilon \downarrow water, T + 2 \times \varepsilon \downarrow oil, T - P \times (\varepsilon \downarrow water, T - \varepsilon \downarrow oil, T))$

 $\varepsilon \downarrow$ water, $T = 80 - 0.4 \times ((T + 273) - 293)$ (Water Physical Property)

 $\varepsilon \downarrow oil, T = 4.90028 \times T \uparrow -0.121$ (Lubrication Oil Property from Initial Testing)

 $\varepsilon \downarrow oil, T$ = dielectric constant of healthy oil at temperature *T* $\varepsilon \downarrow water, T$ = dielectric constant of water at temperature *T*

Lubrication oil water contamination simulation model for viscosity and dielectric constant

Model Validation

Experimental Setup

Dielectric constant sensor and the LabJack U12 data acquisition system

Iron and silicon dioxide powder from SIGMA-ALDRICH

Viscometer and Its Data Acquisition System

Model Validation

Water Contamination Model Validation

 X_1

0

Χ,

X

0,

X

0,

X

05

Why Particle Filtering?

- ✓ In many applications, it is required to estimate a latent or 'hidden' process (the 'state' of the system) from noisy, convolved or non-linearly distorted observations.
- ✓ State estimation problems for non-linear non-Gaussian state-space models do not typically admit analytic solutions. Since their introduction in 1993, particle filtering methods have become a very popular class of algorithms to solve these estimation problems numerically in an online manner.
- ✓ Some Typical applications from the engineering perspective include:
 - > Tracking for radar and sonar applications
 - Real-time enhancement of speech and audio signals
 - > Sequence and channel estimation in digital communications channels
 - Medical monitoring of patient eeg/ecg signals
 - Image sequence tracking

How about Kalman Filter?

- ✓ Linear system dynamic with Gaussian noise----Kalman Filter
- ✓ Non-Linear system with Gaussian noise----Unscented or Extended Kalman Filter
- Highly Non-linear system with either Gaussian or non-Gaussian noise----Particle Filtering

In practical applications, there are elements of non-Gaussianity and/or non linearity which make analytical computations impossible. Kalman Filter is linearization based technique, if the system nonlinearity grows, any of linearization (either local or statistical linearization) methods breaks down.

RUL Prediction Algorithm Development and Validation

Industrial Scenario Simulation Overview

Simulation Condition

- **1)** The deterioration state of the lubrication oil was defined as the water contamination level P.
- 2) The viscometer and dielectric constant sensor outputs were defined as observation data.
- 3) The lubrication oil deterioration process was simulated for 30 days (720 hours).
- 4) At the end of the simulation, the water contamination level P reached at 5%.
- 5) The sampling time interval was set to be every hour.
- 6) The failure threshold was set as 3% which was defined as the industry water contamination level limit.
- 7) At approximately the 525th hour, the water contamination level reached 3%.

Particle Filtering Structure

State Transition Function

 $X\downarrow k+1 = 1.0017 \times X\downarrow k + Random(0,1) \times 0.00007$

Observation Function

 $Z \downarrow k = [\blacksquare (57470.5189 \times T \downarrow k \uparrow -1.935 + 0.451 \times \ln T \downarrow k - 2.3591) \times (1 - X \downarrow k) - 0.451 \times \ln T \downarrow k + 2.3591 @ 4.90028 \times T \downarrow k \uparrow -0.121 \times (1 + 3 \times X \downarrow k \times 1)$

Water Contamination Propagation Template

Water Contamination Model Validation

Conclusions

Conclusions Implementation

SEE THE POTENTIAL™

Thank you very much.

Turbine Health Monitoring Group Renewable NRG Systems 110 Riggs Road, Hinesburg, Vermont 05461 USA