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HOW DIAGNOSIS FITS INTO “PHM”? 
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* “Introduction to Prognostics” – Kai Goebel, NASA Ames – Tutorial at the First 
European Conference of the Prognostics and Health Management Society 2012 
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INTRODUCTION TO 

FAULT DIAGNOSIS 
Fundamental concepts 



WHAT IS (AUTOMATED) DIAGNOSIS? 

 What is diagnosis? 

 The identification of the nature of an illness or other 

problem by examination of the symptoms (Concise 

Oxford English Dictionary, 2008) 

 It is very typical of the medical domain, but not 

exclusive: finding the cause that something is 

wrong 
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WHAT IS (AUTOMATED) DIAGNOSIS? 

 How the diagnosis process works? 

6 

1. We observe (some) 

symptom(s) 

 

I feel dizzy, and have nausea  Temperature at boiler over 

140ºC 

2. We need to know that 

something is wrong 

 

Dizzines is not a normal status Temperature must be < 130ºC 

3. We enumerate the set 

of illness / malfunctions 

that fits the symptoms 

 

•Problems in your neck (muscles 

pulled in the cervix) 

•Vertigo 

•Etc… 

•Sensor fault: blocked exhaust 

pipe 

•Etc… 

4. We perform 

additional tests to 

confirm or reject the 

diagnosis 

•Discomfort in the ear  vertigo 

•I was running for one hour at 

noon (36ºC outside temperature, 

high humidity, high ozone 

concentration)  Heatstroke 

 

•Relation pressure/temperature 

abnormal => sensor fault 



 

INTRODUCTION 

FAULT DIAGNOSIS 

 I will focus on automated diagnosis of physical 

devices (industrial, aerospace, etc…) 

 R. Davies, 1982  

 Process of reasoning and acting 

 To identify the cause of a wrong behaviour 

 To restore the desire functionality 

 L. Console, 2000 

 Task that given a system and a set of 

observations from an abnormal behaviour 

determines what’s wrong in the system in order to 

recover its working order  
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INTRODUCTION 

DIAGNOSIS STAGES 

 

 

 

 

 

 

 

 

 Fault Detection: An abnormal event reported. 

 Fault Isolation: Location of a fault. 

 Fault Identification: Size  and time of the fault (severity). 
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* “Fault Diagnosis” - Douglas Brown, Analatom Inc. – Tutorial at the 2013 
Annual Conference of the Prognostics and Health Management Society 
 

Detection 

Isolation 

Identification 

Has a crime been committed? 
 

What crime was committed 
and who committed it? 
 

How severe was the crime? 
 



INTRODUCTION 

DIAGNOSIS APPROACHES 

 No universally accepted taxonomy 

 Venkatasubramanian et al., 2003 

 BalaKrishnan and Honavar, 1998 

 Knowledge based 

 Tzafestas 87; Guida y Tasso 94; Stefik 95; Jackson 98; Schreiber et al. 99. 

 Case Based Reasoning 

 Schank 82; Kolodner 93; Watson 97. 

 Machine learning 

 Goldberg 89; Quinlan 93; Venkatusugramanian and Chan 97; Mitchell 97; 

Muggelton 99. 

 Model-based 

 Hamscher, Console and de Kleer 92; Patton and Chen 1991; Isermann 93; 

Gertler 98; Patton 2000. 
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INTRODUCTION 

MODEL-BASED DIAGNOSIS (MBD) 

 Proposed in the early 80's to overcome limitations of 

the traditional expert systems approach 

 Model-based diagnosis uses an objective model of the 

device (system) to be diagnosed. More specifically, 

different types of models can be considered: 

 structural (concerning the physical or logical structure of 

a device) 

 functional (describing the functions of a device) 

 behavioral (describing how a device works, i.e., how its 

functions are achieved) 

 teleological (describing the purposes of the use of a 

device) 

 or a combination of them 10 



INTRODUCTION 

MODEL-BASED DIAGNOSIS (MBD) 

Real 

System 

Observed 

Behaviour 

Diagnosis 

Discrepancy 

Model 

Predicted 

Behaviour 

Textbooks, design, first principles, … 
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INTRODUCTION 

WHY MODEL-BASED DIAGNOSIS? 

 Reusable models; a library of component models can be built 

and the models in the library re-used for the diagnosis of 

different devices or for other tasks 

 The models are “objective” 

 Possibility of diagnosing “new” devices 

 It is natural to deal with dynamic and time-varying 

behavior 

 It is natural and simpler to deal with multiple faults and 

with fault masking 

 Detailed explanations 
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INTRODUCTION 

MODEL-BASED DIAGNOSIS APPROACHES 

 Control Theory / Engineering (FDI community) 

 Robust Fault Detection and Isolation 

 Analytical Models, mainly 

 Generation and Analysis of Residuals (discrepancy) 

 Most commonly used techniques 

 State-observers 

 Parity-equations (Analytical Redundancy Relations) 

 Parameter Identification (or Estimation) 
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INTRODUCTION 

MODEL-BASED DIAGNOSIS APPROACHES 

 Artificial Intelligence (DX community) 

 Fault Isolation and Identification  

 (assumption: robust fault detection is available) 

 Qualitative/quantitative models 

 Conflict detection and (diagnosis) candidates 

generation 

 Diagnosis based on structure and behavior 

 Consistency-based diagnosis 

 Abductive diagnosis 

 Consistency-based Diagnosis with fault models  

 BRIDGE (integration of DX and FDI) 
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CONSISTENCY-BASED 

DIAGNOSIS 



CONSISTENCY-BASED DIAGNOSIS 

 Main Model-based Diagnosis framework from DX 

community 

 Historical background 

 Second generation Expert Systems (Davis, 1982-84) 

 First works in USA, late 70s – early 80s (@ MIT, 

Stanford Univ.) 

 Solid theoretical background (Reiter, 1987) 

 Computational paradigm - GDE (deKleer, 1987) 

 Early results: 

 mid/late-80s: static systems 

 late 80s, early 90s: dynamic systems 

 late 90s (mature)  large systems 16 



CONSISTENCY-BASED DIAGNOSIS 

BASIC ASSUMPTIONS (DE KLEER 03) 

 

 

 

 

 

 

 

 Physical system 

 Set of interconnected components 

 Known desired function 

 Design achieves function  

 System is correct instance of design 

 All malfunctions caused by faulty component(s)  

 Behavioural information 
17 



A CLASSIC EXPOSITORY EXAMPLE: 

THE POLYBOX (DE KLEER 87, 03) 

18 
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MODEL-BASED APPROACH TO DIAGNOSIS 

Real 

System 

Observed 

Behaviour 

Diagnosis 

Discrepancy 

Model 

Predicted 

Behaviour 

Textbooks, design, first principles, … 
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OBSERVED BEHAVIOUR 
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MODEL-BASED APPROACH TO DIAGNOSIS 

Real 

System 

Observed 

Behaviour 

Diagnosis 

Discrepancy 

Model 

Predicted 
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Textbooks, design, first principles, … 
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LOCAL PROPAGATION (I) 
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LOCAL PROPAGATION (II) 
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LOCAL PROPAGATION (III) 
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LOCAL PROPAGATION (IV) 
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LOCAL PROPAGATION (V) 
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PREDICTED BEHAVIOUR 
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MODEL-BASED APPROACH TO DIAGNOSIS 

Real 

System 

Observed 

Behaviour 

Diagnosis 

Discrepancy 

Model 

Predicted 

Behaviour 

Textbooks, design, first principles, … 
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DISCREPANCY FOUND 

 

 

 

 

 

 

 

 

 

 

 Detect Symptoms: F=12 and F=10 29 
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MODEL-BASED APPROACH TO DIAGNOSIS 
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DIAGNOSIS FOR THE POLYBOX 
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DIAGNOSIS FOR THE POLYBOX 
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DIAGNOSIS FOR THE POLYBOX 
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DIAGNOSIS FOR THE POLYBOX 
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DIAGNOSIS FOR THE POLYBOX 
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CANDIDATES 

 

 

 

 

 

 

 

 

 

 Detect Symptoms: F=12 and F=10 

 Generate Candidates: {M1}, {A1}, {M2, A2}, {M2, 
M3} 
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CONSISTENCY-BASED 

DIAGNOSIS USING GDE 



CONSISTENCY-BASED DIAGNOSIS 

GENERAL DIAGNOSTIC ENGINE 

 GDE, de Kleer and Williams, 87 

 First model-based computational system for 

multiple faults 

 Main computational paradigm 

 Still a reference to compare any model-based 

proposal on DX community 
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GDE: THE COMPUTATIONAL PARADIGM 

FOR CONSISTENCY-BASED DIAGNOSIS 

39 
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GDE: THE COMPUTATIONAL PARADIGM 

FOR CONSISTENCY-BASED DIAGNOSIS 
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PREDICTION - REQUIREMENTS 

 

 

 

 

 

 

 

 

 

 Modeling structure 

 Modeling component behaviour 

 Predict overall behaviour 
41 
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COMPONENT-ORIENTED MODELLING: 

COMPONENTS AND CONNECTIONS 

 Systems: components linked by connections via 

terminals 

 Components:  Normally physical objects 

 Resistors, diodes, voltage sources, tanks, valves 

 Terminals: unique comunication link  

 Connections: ideal connections (but may be modelled as 

components) 

 No resistance wires, loadless pipes... 

 Possible faults: defective components, broken 

connection 
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MODELING STRUCTURE 

 

 

 

 

 

 

 

 

 

 MULT(M1), MULT(M2), MULT(M3), ADD(A1), ADD(A2), 
in2(M1)=in1(M3), out(M1)=in1(A1), out(M2)=in2(A1), 
out(M2)=in1(A2), out(M3)=in2(A2) 43 
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MODELING BEHAVIOR 

 Constrains / relations among 

 Input/Output variables 

 Internal parameters 

 Various directions 

 No implicit reference to or implicit assumptions 

about context (existence or state of other 

components) : no function-in-structure principle 
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MODELING BEHAVIOR 

 

 

 

 

 

 

 

 

 

 MULT(x)  OK(x)  out(x) = in1(x) * in2(x) 
ADD(x)  OK(x)  out(x) = in1(x) + in2(x) 

45 

M1 

M2 

M3 

A1 

A2 

X 

Y 

Z 

F 

G 

A 

B 

D 

E 

C 

[3] 

[2] 

[2] 

[3] 

[3] 

6 

6 

F 
12 

6 

12 



PREDICTION - PRINCIPLES 

 Infer the behaviour of the entire device from 

 Structural description 

 Component models 

 Observations (inputs/measurements) 

 

 Preserve dependencies on component models – 

OK(M1) 

 

 Propagate the effects of local models along the 

interaction paths (connections) 

 

 Propagate not only in the causal direction 46 



PROPAGATION 

CAUSAL DIRECTION (I) 

 

 

 

 

 

 

 

 

 

 [A]=3  [C]=2  X=6 (M1) 
47 
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PROPAGATION 

CAUSAL DIRECTION (II) 

 

 

 

 

 

 

 

 

 

 [B]=2  [D]=3  Y=6 (M2) 
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PROPAGATION 

CAUSAL DIRECTION (III) 

 

 

 

 

 

 

 

 

 

 X=6  Y=6  F=12 (A1) 
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PROPAGATION 

“BACKWARD” DIRECTION (II) 

 

 

 

 

 

 

 

 

 

 [F]=10  X=6  Y=4 (A1) 
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GDE: THE COMPUTATIONAL PARADIGM 

FOR CONSISTENCY-BASED DIAGNOSIS 
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SYMPTOMS 

 

 

 

 

 

 

 

 

 Symptoms are contradictions that indicate an 
inconsistency between observations and correct 
behaviour 

 But other potential sources of contradictions 

 Imprecise measurements 

 Bugs in the model 

 Bugs in propagation 
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SYMPTOMS DETECTION 

 Symptoms occur as contradictory values for one 

variable 

 Predicted plus observed 

 Predicted following two different paths 

 

 Dissimilarity measure: determine the level of 

“contradictoriness” between the values 
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SOME SYMPTOMS FOR THE POLYBOX (I)  
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SOME SYMPTOMS FOR THE POLYBOX (II)  
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SOME SYMPTOMS FOR THE POLYBOX (III)  
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SOME SYMPTOMS FOR THE POLYBOX (IV)  
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GDE: THE COMPUTATIONAL PARADIGM 

FOR CONSISTENCY-BASED DIAGNOSIS 
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IDENTIFY CONFLICTS 

 Conflict (informal): set components involved in the 

discrepancy; they cannot be all working properly 

 Polybox (minimal) conflicts 

 F=[10]  F=12  {M1, M2, A1}, {M1, M3, A1, A2} 
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IDENTIFY CONFLICTS 

 Polybox (minimal) conflicts 

 F=[10]  F=12  {M1, M2, A1}, {M1, M3, A1, A2} 

 X=6  X=4   {M1, M2, A1}, {M1, M3, A1, A2} 

 Y=6  Y=4   {M1, M2, A1}, {M1, M3, A1, A2} 

 Z=6  Z=8   {M1, M3, A1, A2} 

 G=[12]  G=10  {M1, M3, A1, A2} 

 By definition,any superset of a conflic set is a conflict 

 {M1, M2, A1}  {M1, M2, A1, A2}  {M1, M2, M3, A1, A2} 

 Minimal conflict: conflict no proper subset of which is a 

conflict 

 It is essential to represent the conflicts through the set of 

minimal conflicts (to avoid combinatorial explosion) 

 At least one component in each conflict must be 

faulty!!! 60 



CONFLICTS GENERATION WITH ATMS 

1. The problem solver performs inferences 

2. The Assumption-based Truth Maintenance System (ATMS) 

records the dependencies between inferences 

 Introduce observations as facts 

 Support each local propagation with a correcteness assumption for 

the component 

 Label of a node: (minimal) environments that entails the 

prediction 

 Records components that support prediction 

 Avoids recomputation 

 Symptoms: produce NOGOODS 

 

61 

NOGOODS are the MINIMAL CONFLICTS 



INFERENCE RECORDING VIA ATMS 

 Graphical representation 

ATMS nodes 

 

 Facts 

 

 Assumed node 

 

 Derived node 

 Inference recording 

if A=3, C=2 and M1 OK, X=6 
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INFERENCE RECORDING VIA ATMS 
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INFERENCE RECORDING VIA ATMS 
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GDE: THE COMPUTATIONAL PARADIGM 

FOR CONSISTENCY-BASED DIAGNOSIS 
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CANDIDATES 

 Candidate: hypothesis of how the device differs 

from model 

 Represented as a set of assumptions 

 Assumptions included: faulty 

 Assumptions not included: correct 

 

 

 

 

 

 

 Diagnosis: identify every candidate consistent 

with observations 66 

Candidate example: {M2, A2} 
 
Meaning:  M2, A2 are faulty 
  M1, M3, A1 are correct 



CANDIDATE GENERATION 

 Since at least one component in each conflict must be faulty 

 Each candidate has to account for all conflicts 

 Each candidate has to retract at least one correctness 

assumption out of each conflict 

 Construct candidates as Hitting Set of (minimal) conflicts 

 Ca candidate, Ci conflict, Ca  Ci    Ci  

  Ca, Ca  i Ci 

 

 Each superset of a candidate is also a candidate: 

 Minimal candidates: minimal hitting set of minimal 

conflicts 

67 



CANDIDATE GENERATION EXAMPLE 

 

 

 

 

 

 
     

 Minimal conflicts 

 

 

 

 Minimal candidates 
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M1 

M2 

M3 

A1 

A2 

X 

Y 

Z 
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G 

A 

B 
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E 

C 

[3] 

[2] 

[2] 

[3] 

[3] 

F 
[10] 

[12] 

 12 

 10 

 6 

 6 

 6 

 4 

 4 

 8 

{ M1,  A1,  M2 } 
 
{ M1,  A1,  M3,  A2 } 

[M1], [A1], [M2, M3], [M2, A2] 



CBD USING GDE 

SUMMARY 

 It is based just on correct behavior models 

 No fault models are needed for fault isolation 

 Fault isolation is straightforward 

 

 Conflict calculation at run time, by means of a dependency recording 

engine (ATMS) 

 

 Diagnosis candidates computed as the minimal hitting set of  minimal 

conflicts 
 

 Minimal conflicts and minimal diagnosis usually avoid exponential 

time and space 

 

 Defined for static systems, discrete-valued models, but is 

ready for real-life, complex systems? 69 



CBD USING GDE 

A MORE COMPLEX REAL-LIFE SYSTEM 

70 

 Let’s consider a three-tank system 

 

 

 

 

 

 

 

 It has a set of related components like the polybox 

 We are measuring the level in the tanks 



CBD USING GDE 

A MORE COMPLEX REAL-LIFE SYSTEM 

 Step 1: predict behavior 

 Modeling structure 

 Relations between tanks, pipes/valves, and sensors as seen in the previous 

slide 

 

 

 

 Modeling component behaviour 

 

 

 

 
 Predict overall behavior 

 Local propagation 
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CBD USING GDE 

A MORE COMPLEX REAL-LIFE SYSTEM 

 Step 2: detect symptoms 

 

 

 

 

 

 

 

 Differences between sensor measurements and 

estimations 
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CBD USING GDE 

A MORE COMPLEX REAL-LIFE SYSTEM 

 Step 3: identify conflicts 

 

 

 

 

 

 

 

 Let’s assume we see a discrepancy in the 

measurement h1 
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CBD USING GDE 

A MORE COMPLEX REAL-LIFE SYSTEM 

 Step 3: identify conflicts 

74 {{T1}} 



CBD USING GDE 

A MORE COMPLEX REAL-LIFE SYSTEM 

 Step 3: identify conflicts 

75 {{T1}} 



CBD USING GDE 

A MORE COMPLEX REAL-LIFE SYSTEM 

 Step 3: identify conflicts 

76 {{T1}} 
{{T1, V1}} 



CBD USING GDE 

A MORE COMPLEX REAL-LIFE SYSTEM 

 Step 3: identify conflicts 

77 {{T1}} 
{{T1, V1}} 

h2 is 
measured!!! 



CBD USING GDE 

A MORE COMPLEX REAL-LIFE SYSTEM 

 Step 3: identify conflicts 

 {{T1, V1}} is a conflict 

 However, GDE has to consider all possible 

propagations, e.g., h2 can also be computed from 

 

 

 

 

 

    

 After doing all possible propagations: {{T1, V1}} is 

the minimal conflict 

 

78 

{{T1}} 
{{T1, V1}} {{T1, V1, T2}} {{T1, V1, T2, V2}} 

 {{T1, V1}} {{T1, V1, T2, V2}} 



CBD USING GDE 

A MORE COMPLEX REAL-LIFE SYSTEM 

 Step 4: Candidate generation 

 Minimal candidates: [T1], [V1]  
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MAIN DIFFICULTIES FOR CONTINUOUS 

DYNAMIC SYSTEMS 

 Inclusion of time in the models  

 There is no general extension for dynamic systems and Reiter’s 

theory  
 Not obvious how to model continuous systems in a component-based 

approach 

 Current estimations depend on current and past 

80 How is this 
computed??? 



MAIN DIFFICULTIES FOR CONTINUOUS 

DYNAMIC SYSTEMS 

 On-line simulation  

 Very demanding for continuous dynamic systems, especially if  

 Local models 

 Local propagation (which may easily stop!)  

 

 On-line dependency recording: difficulties  

 Very demanding on memory terms 

 

81 

Label registered 
with real values + 

time 

{{T1, V1}} 

{{T1}} 



MAIN DIFFICULTIES FOR CONTINUOUS 

DYNAMIC SYSTEMS 

 Conflict generation 

 Consistency-check is not trivial: 

 Dynamic systems may exhibit considerable delays 

 We need incremental diagnosis 

 How we can discriminate between faults? 

Different 
symptom 

activation times 
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INCLUSION OF TEMPORAL 

INFORMATION WITHIN CBD 



INCLUSION OF TEMPORAL INFORMATION IN 

THE DX MODELS: EARLY APPROACHES (SURVEY) 

 Several extensions proposed for GDE 

 DEDALE (Dague et al. 1987)  CATS (Dague et al. 

1990)  DOGS (Taillibert & Loiez, 1997) 

 Inclusion of temporal indices for values 

 MIMIC (Dvorak & Kuipers, 1990) 

 Qualitative values with different time stamps 

 SIDIA (Guckenbiehl & Shaffer-Richter, 1990), 

MUDIA 

 Improves GDE with values over intervals 

 Magellan-MT (Dressler et al., 1994) 

 Avoid qualitative simulation 
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CONSISTENCY-BASED DIAGNOSIS 

SOME SOLUTIONS 

 Topological methods 

 On-line backward search through a causal or functional 

structure 

 estimation = propagation through causal/functional structure 

 consistency check (of qualitative values) 

 if a discrepancy is found: propagation backward: where is the 

source of inconsistency?    

 Off-line dependency-recording (i.e. compilation) 

techniques 

 System Description = Structural and Behavioural Information 

 Most of the times topology is fixed 

 Set of available observations is fixed and know beforehand 

 Is possible to propagate values/energy through every path? 

 No, if no structural faults are present 85 



ON-LINE FORWARD PROPAGATION 

AND BACKWARD SEARCH (SURVEY) 

 On-line backward search through a causal or functional 

structure:  

 CAEN (Bousson & Travé-Massuyès, 92), 

 causal graphs, influences,...  

 DYNAMIS (Chittaro et al., 1996), 

 Topological + behavioural + functional (and teleological) 

models 

 TRANSCEND (Mosterman & Biswas, 1997; 1999) 

 Fault detection using state-observers: provide qualitative 

signatures 

 Temporal causal graphs from bond-graphs (continuous & 

discrete behaviour  hybrid systems)  
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OFF-LINE DEPENDENCY-RECORDING (I.E. 

COMPILATION) TECHNIQUES (SURVEY) 

 FDI community:  

 Staroswiecki and Declerk 1989,  Staroswiecki et al., 1997 

 Lunze and Schiller, 1992 

 Nyberg, 2001, 2008 

 Ploix, 2001, 2003, 2005 

 Blanke, 2003, 2006 

 AI / DX community:  

 DOGS (Loiez & Taillibert, 1997)  

 DRUM-II (Frölich & Nejdl, 1997)  

 Washio et al., 1997 

 Ligeza and Gorny, 2000 

 PCs (Pulido and Alonso, 1999, 2004 / Bregon et al. 2009, 

2014) 

 BRIDGE (FDI & AI communities ) 

 Cordier et al. 2000; 2004 

 BRIDGE task group within MONET2 

 IEEE TSMC Part B, Special Issue on Bridge, 2004 
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POSSIBLE CONFLICTS 
A compilation technique for CBD 



POSSIBLE CONFLICTS 

Motivation: 

 How Consistency-based Diagnosis can be applied to 

continuous dynamic systems without on-line 

dependency-recording 

 Following GDE-like computational approach 
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POSSIBLE CONFLICTS  

(PULIDO AND ALONSO, 1999; 2004) 

 Dependency-Compilation technique 

 In industrial environments the set of available 

measurements is known and fixed beforehand 

 

 Main ideas 

 Not every sub-system in SD can be a conflict 

 A minimal conflict is a strictly over-determined set of 

constraints 

 It can be solved using local propagation 

 

 we will compute the set of (minimal) over-

determined systems off-line!!! 90 



POSSIBLE CONFLICTS COMPUTATION 

 Computing Possible Conflicts:  

 Generate an abstract representation of system as a 

hypergraph (some extensions to use causal graphs, 

temporal causal graphs, and bond graphs) 

 Derive the minimal set of overdetermined 

subsystems (Minimal Evaluation Chains, MECs). 

 Equivalent to all MSO sets and all minimal ARRs)  

 Generate Minimal Evaluation Models (MEMs) that 

are generated from MECs by introducing causality in 

the structural model. Obtain for each MEC all 

globally consistent causal assignments.  
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A CLASSICAL EXAMPLE REVISITED 

92 

M1 

M2 

M3 

A1 

A2 

X 

Y 

Z 

F 

G 

A 

B 

D 

E 

C 



STEP 1: REPRESENTING SD AS AN 

HYPERGRAPH 

93 



STEP 2: SEARCHING FOR  

OVER-CONSTRAINED SUB-SYSTEMS 

 Minimal evaluable chain, MEC:  

 Connected and strictly over-determined sub-systems 

 At least, one observation  

 

94 



STEP 3: CAN THE MEC BE SOLVED  

USING LOCAL PROPAGATION? 

 Each hyper-arc in a MEC can be solved in 

different ways 

 Each MEC generates an and-or graph  

 In the and-or graph zero, one or more Minimal 

Evaluation Models, MEM, can be found:  

 Predictions are done from observations 

 Only local propagation is used 

 A possible discrepancy is found:  

 If an observed variable is predicted once 

 If a non-observed variable is predicted twice  

95 



STEP 3: CAN THE MEC BE SOLVED  

USING LOCAL PROPAGATION? 

 MEMs are not evaluated off-line  provide a model 

for simulation  fault detection is on-line 

 What is a possible conflict? Set of relations in a MEC 

containing, at least, one MEM 
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CONSISTENCY-BASED DIAGNOSIS 

WITH POSSIBLE CONFLICTS 

97 

Possible Conflicts 

Identification 

Predict 

Behaviour 

by PC 

simulation 

Possible 

Conflict 

Confirmation? 

Generate 

Candidates 

Refine 

Diagnosis 

New Observations 

Possible 

Conflicts 

computation 

Off-line On-line 



INCLUSION OF TEMPORAL INFORMATION 

 Differential constraints (Dressler et al. 1996; Chantler et 

al., 1996) 

 

 Interpretations (propagations through differential 

constraints) 

 Integral 

 Derivative 

 Extension of hypergraph and hyperarc definitions 

 

 

 

 

 PCs can be computed with either integral or derivative 

causality 
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AN EXAMPLE: 

THREE-TANK SYSTEM 

99 

 Let’s consider again the three-tank system 

 

 

 

 

 

 

 

 Which are the Possible Conflicts for this system? 



AN EXAMPLE: 

THREE-TANK SYSTEM 

100 

 Step 1 - System as a hypergraph 

 

 

 

 

 

 

 



AN EXAMPLE: 

THREE-TANK SYSTEM 

101 

 Step 2 - Minimal Evaluation Chains - MECs 

 

 

 

 

 

 

 



AN EXAMPLE: 

THREE-TANK SYSTEM 

 Step 3 - Possible Conflict 1 
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AN EXAMPLE: 

THREE-TANK SYSTEM 

 Step 3 - Possible Conflict 2 
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AN EXAMPLE: 

THREE-TANK SYSTEM 

 Step 3 - Possible Conflict 3 
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AN EXAMPLE: 

THREE-TANK SYSTEM 

 PCs identified 3 minimal computational subsystems that 

decompose the complete system and that can be simulated 

independently.  

 

 PCs are based on Reiter’s theory of diagnosis from first 

principles  

 Are able to automatically generate fault isolation 

candidates from model of correct behavior 

 Components involved within each PC: 

 For PC1: T1, V1 

 For PC2: T2, V1, V2 

 For PC3: T3, V2, V3 
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AN EXAMPLE: 

THREE-TANK SYSTEM 

Stuck fault in  
valve position at t=100 sec. 
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AN EXAMPLE: 

THREE-TANK SYSTEM 

 Fault: Blockage in V1 

 2 PCs trigger 

 2 of the residuals 

deviate, PC1 and PC2: 

 PC1:  {V1, T1} 

 PC2:  {V1, V2, T2} 

 

 Fault candidates: 

 [[V1], [T1, V2], [T1, T2]] 

 

 [V1] is the only single-

fault candidate 
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CBD WITH PCS 

SUMMARY 

 It is a quite simple but powerful approach to automatically 

perform fault detection and isolation (thanks to the AI and 

CBD background) 

 By using PCs, we computed a subset of minimal submodels 

which: 

 Define the minimal conflicts that can appear in a system 

 Avoids online dependency recording 

 Allows incremental diagnosis 

 Provides simulation submodels to estimate the behavior of the 

system 

 Can be run in separate processors “allowing” distributed diagnosis 

 Provides automatic fault isolation 

 Allows multiple fault diagnosis 

 Facilitates the integration with distributed prognostics solutions 
108 



CBD WITH PCS 

EXTENSIONS 

 The approach presented in this work is just the basic theory 

underlying CBD and PCs. Currently there are extensions 

for: 

 Integration of both simulation and state observers for fault 

detection 

 Integration of qualitative information for fault isolation 

 Efficient fault identification with minimal parameter estimators 

 Extension to hybrid systems fault diagnosis 

 Distributed diagnosis 

 Distributed and system-level prognosis 

 Multiple fault identification 

109 



SOME APPLICATION 

EXAMPLES 



PCS APPLICATION EXAMPLES 

 Efficient fault identification (advanced water 

recovery system) 

 Distributed diagnosis (planetary rover) 

 Distributed prognostics (centrifugal pump) 

 Efficient fault diagnosis when no first first principles model 

is available (beet sugar factory) 

 Fault detection, isolation and identification (spacecraft 

power distribution system) 

 Integrated system-level diagnosis and prognosis (electrical 

power system in a planetary rover) 

 Integrated diagnosis/prognosis 

 

111 



EFFICIENT FAULT 

IDENTIFICATION 
Advanced Water Recovery System  



ADVANCED WATER RECOVERY SYSTEM 
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ADVANCED WATER RECOVERY SYSTEM 
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ADVANCED WATER RECOVERY SYSTEM 
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ADVANCED WATER RECOVERY SYSTEM 
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ADVANCED WATER RECOVERY SYSTEM 
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ADVANCED WATER RECOVERY SYSTEM 



ADVANCED WATER RECOVERY SYSTEM 
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ADVANCED WATER RECOVERY SYSTEM 
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DISTRIBUTED 

DIAGNOSIS 
Planetary rover 



MOTIVATION 

 Autonomous vehicles like UAVs and 

rovers receive command sequences from 

humans 

 E.g., as a set of waypoints with scientific 

objectives to achieve at each 

 Unexpected situations can cause the 

vehicle to go into a safe mode while 

engineers diagnose the problem, which 

might take a long time 

 An autonomous decision-making system 

that includes automated diagnosis and 

prognosis in making optimal decisions 

can save time, money, and increase 

mission value 

 

 122 * E. Balaban, S. Narasimhan, M. Daigle, I. Roychoudhury, A. Sweet, C. Bond, 
G. Gorospe . “Development of a mobile robot test platform and methods for 
validation of prognostics-enabled decision making algorithms”, Int. J. Prognost. 
Health Manag. 4 (1) (2013). 



ROVER TESTBED 

 
 Developed rover testbed for hardware-

in-the-loop testing and validation of 

control, diagnosis, prognosis, and 

decision-making algorithms 

 Skid-steered rover (1.4x1.1x0.63 m) 

with each wheel independently driven 

by a DC motor 

 Four lithium-ion battery packs 

provide power to the wheels 

 Separate battery pack powers the 

data acquisition system 

 Onboard laptop implements control 

software 

 Flexible publish/subscribe network 

architecture allows diagnosis, 

prognosis, decision-making to be 

implemented in a distributed fashion 

Controlling Laptop Batteries 

Data Acquisition 

and Power 

Distribution 

Motors 

Phone 
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ROVER TESTBED SENSOR SUITE 

124 

Measurement Type Manufacturer Location/comments Measurement Type 

GPS (longitude and 

latitude) 
Motorola On the smartphone 

GPS (longitude and 

latitude) 

Gyroscope (roll, pitch, 

yaw) 
Motorola On the smartphone 

Gyroscope (roll, pitch, 

yaw) 

Motor temperature Omega 
On each motor (to be 

implemented) 
Motor temperature 

Battery temperature  Omega 
On each battery pack (to 

be implemented) 
Battery temperature  

Position encoder Maxon On each drive motor Position encoder 

Battery voltage Custom 

On a custom PCB board 

measuring individual 

battery pack voltages 

Battery voltage 

Total current Custom 

On a custom PCB board 

measuring individual 

battery pack voltages 

Total current 

Individual motor 

current 
Custom 

On a custom PCB board 

measuring individual 

motor currents (on the 

battery side of the motor 

controllers) 

Individual motor current 



INTEGRATED DECISION MAKING 

ARCHITECTURE (BALABAN ET AL., 2013) 

1. Rover receives control inputs (individual wheel speeds) and sensors produce 

outputs 

2. Low-level control modifies wheel speed commands to move towards a given 

waypoint in the presence of diagnosed faults 

3. Diagnoser receives rover inputs and outputs and produces fault candidates 

4. Prognoser receives rover inputs and outputs and predicts remaining useful 

life (RUL) or rover and/or its components (eg, batteries, motors) 

5. Decision maker plans the order to visit the waypoints (science objectives) 

given diagnostic and prognostic information. It can also selectively eliminate 

some of the waypoints if all of them are not achievable due to vehicle health or 

energy constraints. 
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INTEGRATED AND DISTRIBUTED APPROACH 

 Distributed approach needed to solve the problem 

efficiently 

 Common modeling framework for modeling both nominal and 

faulty system behavior and handling both the diagnosis and 

prognosis tasks 

 Use structural model decomposition to distribute the problem 
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DISTRIBUTED DIAGNOSIS ARCHITECTURE 
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LOCAL DIAGNOSER DESIGN 

 Diagnosers designed to be globally diagnosable, i.e., they 

have enough local diagnostic information to independently 

generate globally correct diagnoses 

 Design process is a search process 

 Start with minimal submodels and expand/merge until submodel 

is globally diagnosable (enough measurements from other parts of 

the system are added) 

 Each local diagnoser operates fully independently from 

other local diagnosers 

 Has its own model for residual generation 

 Does its own fault detection 

 Does its own fault isolation 

 Does its own fault identification 

 No communication and no central diagnosis 

coordinator 
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CASE STUDY: MINIMAL SUBMODELS (PCS) 

 

Battery 
Submodels 

Motor Electrical 
Submodels 

Wheel 
Submodels 
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CASE STUDY: DIAGNOSER SUBMODELS 

 Batteries 
Submodel 

Wheel/Motor Submodels 
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DISTRIBUTED DIAGNOSIS 

 Residual Generation 

 Local observer (eg, Kalman filter, unscented Kalman filter, 

particle filter) based on nominal local submodel computes nominal 

behavior as a reference 

 Residual computed as measured value minus reference value 

 Fault Detection 

 Nominally residual is approximately zero 

 Fault detected when residual deviation from zero is statistically 

significant 
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DISTRIBUTED DIAGNOSIS 

 Fault Isolation 

 Initiated upon fault detection 

 Residual deviations abstracted to qualitative 0, +, and -  values for 

changes in magnitude and slope (termed qualitative fault 

signatures) 

 Derived symbolic form of deviations compared to model-predicted 

deviations to isolate faults 

 Each new residual deviation provides more information for 

reducing the candidate set 

 Also use temporal order of residual deviations within a submodel 

(termed relative measurement orderings) 

 Fault Identification 

 For each fault hypothesis, use (minimal) local observer based on 

faulty system model to estimate fault parameters (and system 

state) 

 Fault hypotheses that cannot match measurements are eliminated 
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SOME RESULTS 
INCREASES IN MOTOR FRICTION AND ELECTRICAL RESISTANCE 
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DISTRIBUTED 

PROGNOSIS 
Centrifugal pump 

(rapid propellant system) 



THE LINK BETWEEN DIAGNOSIS AND 

PROGNOSIS 

 

 

 

 

 

 

 

 

 

 

 

• Diagnosis – identification (parameter estimation) – “Process of 
determining the state of a component to perform its function(s)” 

• Prognosis – “Estimation of remaining life of a component or 
subsystem” 
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MOTIVATION 

 Fast propellant 

 Secure system 

 We need fault diagnosis and 

prognosis 

 Prognosis is computationally 

expensive 

 Propose model decomposition 

approach to define local state-

parameter estimation problems from 

the global problem 

 Allows estimation to be 

performed more efficiently 

 Allows damage estimation to be 

naturally distributed 
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CASE STUDY 

 Apply framework to centrifugal pump 

 Complex electro-mechanical devices used for fluid delivery in 

water systems, spacecraft fueling, etc. 

 Often undergo continuous usage, so require regular maintenance 

 Provide a critical function, so failures can cause loss of mission 

 Centrifugal pump operation 

 Fluid enters the inlet, impeller 

rotation forces fluid through  

the outlet 

 Impeller rotation driven by  

electric motor 

 Bearings help minimize friction 

 Bearing housing contains  

lubricating oil 

 Wear rings prevent excessive  

internal leakage 
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MODEL REPRESENTATION 

 PCs may be derived from system equations or graphical 

representations 

 Graphical representations that include causality are preferred because they are 

more efficient and result in a simpler decomposition algorithm 

 Use hypergraph structure to represent model and define a 

decomposition algorithm based on that 

 Variables are vertices 

 Hyperedges are causal  

relationships 

 Derived directly from  

system equations 
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DECOMPOSITION 

ALGORITHM 
 Start at a measurement variable 

 Propagate back to predecessor variables 

 Stop propagation at measured variables 
and input variables, continue propagation 
on other variables until measured or 
input variables are reached 
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MODEL DECOMPOSITION RESULTS 
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DISTRIBUTED FAULT PROGNOSIS 

ARCHITECTURE 
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RESULTS 

ESTIMATION AND PREDICTION PERFORMANCE 
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RESULTS 

SCALABILITY 
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CURRENT CHALLENGES 

AND OPEN PROBLEMS 
(In Model-based Diagnosis) 



CURRENT CHALLENGES 

AND OPEN PROBLEMS 

 Modelling!!! 
 

 On line simulation 

 Problems with dynamic systems: initial conditions or derivatives 
estimation 

 

 What is the source of complexity? 

 Complex systems or large systems (# components) 

 

 Multiple modelling: 

 At what level of abstraction are we modelling? 

 How we can combine results from different levels of abstraction? 
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CURRENT CHALLENGES 

AND OPEN PROBLEMS 

 Real time model-based diagnosis 

 

 Distributed diagnosis 

 

 Diagnosis of Hybrid Systems 

 

 Autonomous Systems 

 

 Integration of Model-based diagnosis: 

 with other diagnosis techniques 

 with other tasks: prognostics, re-configuration, repair, 
monitoring, supervision/FTC,... 

 model-based diagnosis in the product life-cycle 

 (re-usable) model libraries 146 
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WHERE TO FIND MORE INFORMATION… 

 Conferences 

 PHM: http://www.phmsociety.org/ 

 DX: http://dx-2014.ist.tugraz.at/ 

 IJCAI: http://ijcai.org/ 

 Safeprocess: http://safeprocess15.sciencesconf.org/ part of IFAC 

organization, 

 IFAC world conference: http://www.ifac2014.org/ 

 Journals 

 Artificial Intelligence Journal 

 International Journal of the PHM Society (IJPHM) 

 Journal of AI Research 

 IEEE Transactions On Systems, Man and Cybernetics 

 AI Communications 

 Control Engineering Practice 

 Engineering Application on Artificial Intelligence 

 … 
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