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Prognostics
Model-based prognostics
Particle filtering for degradation state estimate
Particle filtering for RUL estimate
Application
> Maintenance planning
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Prognostics: objectives

Evolution to... failure
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Prognostics: objectives

Evolution to... failure
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Degradation

Ith o .
Healthy initiation

Our objectives:

v

Present time
(t=k)

1. Estimate the component degradation at a the present time t =k




Prognostics: objectives

Evolution to... failure
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Degradation

Health o .
ealthy initiation

Our objectives:

v

Future time

Present time (t =r)

(t=k)

1. Estimate the component degradation at a the present time t =k
2. Estimate the component degradation at a future time r >k




Prognostics: objectives

Evolution to... failure
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RUL E‘O
(Remaining Useful Life) -
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1‘ Time at which the
Healthy Degradation Present time component will no
initiation (t=k) longer perform its
intended function
(t;)

Our objectives:

1. Estimate the component degradation at a the present time t =k
2. Estimate the component degradation at a future time r >k
3. Estimate the component Remaining Useful Life (RUL) =t;- k
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Turbine blade

Component: turbine blade
Degradation mechanism: creeping

s
S

Original
gauge length

Plastic
defr.an'nationl

Gauge length
at failure

Original diameter o

===,

Reduction in Diameter at failure
diameter




Definition of a degradation indicator —

Component: turbine blade
Degradation mechanism: creeping

v

__ Length(t) — initial length
B initial length

Degradation indicator: blade elongation X(t)

O, S

Orniginal

Our objectives:

gauge length — 1. Estimate the blade degradation at
deformaion, the present time t =k
pegmiegn; 2. Estimate the blade degradation at a
Original diameter d future timer > k
E ;JK“L e 3 3. Estimate the component Remaining
Reducionin | Diameter at faire Useful Life (RUL)

diameter
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Sources of information for prognostics

» A physical model of the degradation process (dynamic law describing the
evolution of the degradation indicator, X ):

Norton law for creep growth

Arrhenius law

X = blade elongation
T =temperature
= 2 = i ; i1t
9 =K, * = applied stress External/operational conditions

8, = rotational speed

—

A, Q, n = equipment inherent parameters




Sources of information for prognostics

A physical model of the degradation process
Threshold of failure:

«A blade is discarded when the elongation, X, reaches 1.5%o»

X

Xth

Fault Initiation




Sources of information for prognostics

A physical model of the degradation process
Threshold of failure

A seqguence of observations, related to the component degradation, collected
from the degradation initiation to the present time

Elongation measurements = past evolution of the degradation indicator

Fault Initiation




Sources of information for prognostics

A physical model of the degradation process
Threshold of failure

A sequence of observations, related to the component degradation, collected
from the degradation initiation to the present time

Measurement equation: -

Random noise with
known distribution




Sources of information for prognostics

A physical model of the degradation process
Threshold of failure

A seqguence of observations, related to the component degradation, collected
from the degradation initiation to the present time

Measurement equation
Life durations of a set of similar components which have already failed:




Sources of information for prognostics

A physical model of the degradation process
Threshold of failure

A seqguence of observations, related to the component degradation, collected
from the degradation initiation to the present time

Measurement equation
Life durations of a set of similar components which have already failed

A set of observations performed on a set of similar components from
degradation initiation to failure

z(t)

b
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Fault Initiation




Sources of information for prognostics

A physical model of the degradation process
Threshold of failure

A seqguence of observations, related to the component degradation, collected
from the degradation initiation to the present time

Measurement equation
Life durations of a set of similar components which have already failed

A set of observations performed on a set of similar components from
degradation initiation to failure

External/operational conditions Uy, Uy,..., Uy, Uy g5y

Past, present and future time evolution of:

T = temperature

0, = rotational speed
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o Prognostic approaches




N Prognostic approaches

A physical model of
the degradation
process
Measurement
equation

A sequence of observations
related to the component
degradation collected from
the degradation initiation
to the present time

A threshold of failure
External/operational
conditions

22

DEIE
Driven

Life durations of a set of
similar components which
have already failed

A set of observations
performed on a set of similar
components from
degradation initiation to
failure

Similar components




Prognostic approaches

A physical model of
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equation

A sequence of observations
related to the component
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A threshold of failure
External/operational
conditions

Life durations of a set of
similar components which
have already failed
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Prognostic approaches

A physical model of
the degradation
process
Measurement
equation

A sequence of observations
related to the component
degradation collected from
the degradation initiation
to the present time

A threshold of failure
External/operational
conditions

ife durations of a set of
components

Similar components
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o Model-based prognostics

o The filtering problem
o The forecasting problem




Model-based prognostics: the methodology

Component

X N C X

Present time
External/operational conditions
Observations

Degradation state

26



N Main sources of uncertainty

Noise on the observations Intrinsic randomness
(measurements) of the degradation process

—> Component

are never exactly known

k Presenttime

U External/operational conditions Future external/operational
z Observations conditions

X

Degradation state

g B | [T



N Prognostics = Filtering + Forecasting

—> Component

1. The filtering problem: to estimate the degradation state, X, , at the
present time

2. The forecasting problem:
= to predict the degradation state, X, , at a future time r
= to predict the component RUL

2 |
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o Model-based prognostics:

o The filtering problem

o The forecasting problem




The Filtering Problem

Estimation

Uy
—T—> Component
k Presenttime
U External/operational conditions
Z Observations
x Degradation state




Problem Setting

Z X
k k
Component | ——> Estimation —>

i)

Physical model of the degradation process X, = fk(Xk_l, a)k_l)

» X =hidden degradation state Time-discrete, hidden Markov process
> w=random process noise

>  f=physical model of the degradation process (non-linear dynamic law)

>  k=time step index

Measurement equation:

> v =random measurement noise Z, = h(Xk | Vk)

>  h =non-linear measurement equation




N The filtering problem in practice
(Physical model of the degradation process)

x = hidden degradation state (blade elongation)
Ty, %, = operational conditions
@, W,, W3=random process noises @, N (O, O'iz)

Y V V V

A, K and n = constants related to the material properties

Discretization of the
‘ dynamics

32




The filtering problem in practice
(Measurement Equation)

» z,=degradation observation (measure of the creep elongation)

»  p,=lgaussian measurement noise




| The Bayesian framework .
|

OBJECTIVE: p(x, |z, )

p(xk | Z1:k) t

a b Xy

* Interpretation of the bayesian probability P(X, | Zyy ) ?

= conditional on the background knowledge: the noisy
measurements Zy = Z4;,Z;,..., £

= subjective probability = degree of belief with regard to the
hidden degradation state X,
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| The state estimate and its uncertainty

p(Xk ‘ Z1:k)

—~————

> state mean (estimate) Xk :j p(X, | Zyy )- X, X,

> state variance (uncertainty) &2 = j(xk —% ) p(x, |z, )dx,
k .

N N

> state percentiles X5, Xgs




| The sequential solution (1) ]
|

* Letus assume that we know p(xk_1 | Zl:k—l) at time k-1

p(xk—l | Z1:k—1) Predlctlon p(xk | Z1:k—1)
stage

 Prediction stage: Chapman-Kolmogorov equation

PO X )P (X | 2y )




| The sequential solution (I)
|

* Letus assume that we know p(xk_1 | Zl:k—l) at time k-1

p(xk—l | Z1:k—1) Predlctlon p(xk | Z1:k—1)
stage

 Prediction stage: Chapman-Kolmogorov equation

p(Xk | Zl:k—l):j p(Xk | Xk—l)p(xk—l | Zl:k—l)dxk—l




p(xk—l | Zl:k—l)

—

|The sequential solution (lI) )
Zk
prediction | "% Update Pl 12
stage stage
Bl | T



|The sequential solution (lI) )
|

Zy
prior l posterior
(X s |24 4) Prediction p(X, | 23y ) Update p(X, | ;)
stage stage

 Update stage: Bayes Rule

Likelihood prior

posteri< \ !
p(Xk | Zl-k): p(zk | Xk)p(xk | Zl‘k—l)

. Z, | Z.
From the normalization p( k| lk—l)

_[ p(x [z X =1 . p(z| Zl:k—l):j P(Z %) P(X | 34 Jox,




practice?

| The sequential solution: What is difficult in —

1) The probability distributions are not usually available in close form!

2) The integrals are difficult to solve analytically!

p(zk | Xk)p(xk | Zl:k—l)
p(zk | Zl:k—l)

/
Plal )= Jole %) ol )b

p(Xk | Zrk):
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vailable model-based filtering techniques
|

- Extended-Kalman Approximate Grid-

AL Filter based filters

Exact only for linear : Numerical
. Analytical o
systems and additive SR approximation
) : approximation
Gaussian noises (burdensome)
—~——
PARTICLE FILTERING
Numerical solution which, in the limit, tends to the exact posterior pdf:
p(xk | Z1:k)
Bl | T




Particle filtering for degradation state estimate

oThe Intuitive representation

oDetalled analytical approach to the problem
oThe pseudocode
oState estimate in practice




The intuitive representation:
1. pdf approximation

« Time 0, we approximate d-
samples X, with associated w

in the form of a set of N random

eights w = Ni: e wh f

S

—~————

Ns . .
p(xo)z;waa(xo )

15 |
p(xo)
10
5,
% 0.05 0.1 y

Ng
w, =1
=1
i1
Wo
0.5
Wk % * % * ¥ *
% 0.05 0.1 i
Xo




The intuitive representation:
1. pdf approximation

« Time 0, we approximate in the form of a set of N random
samplesx, with associated weightsw =1 e wh f
° N

—~———

NS . .
p(xo)z;waa(xo )

Cumulative distribution: 1

[ p(x)dx

0 05

= gnalytical cdf
m approximated cdf




The intuitive representation: —_—
prediction stage: Monte Carlo Simulation

Plx:) Prediction Px)
X = f(Xo’a)o)

Prediction stage for particle |

1. Sample a value of @, o;, o,
2. Apply:

X=X+ Aexp(- Q .)j(K(HO voif+ol)

R(T, + o,




The intuitive representation:
prediction stage: Monte Carlo Simulation

X=X+ Aexp[- Q )j(K(é’o vl ¥+ o))

R(T, + @)
w 1 |
+ Time 0O
+ Time 1
0.5
N M
P S SIS Kok Kk KRR
OO 0.05 0.1 X
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The intuitive representation:
update stage: weight modification
|
measurement .

J
Po) Prediction Pl Update Pl 2)

RNy RN

« Time 1: measure z, =0.058 becomes available = particle weights’ update

W , + prior
K + posterior
0.2 b ~
k¥
0.1+ = CL D
* %%;!,

Fo2 004 006 008 01
Bl |' S




update stage: weight modification

| The intuitive representation:
|

p(xo)

—>

- stage

Prediction

p(xl)

Zl

J
Update p(x |z)
stage

 Time 1: measure Z, becomes available

o Compute likelihood of the particles: p(Zl | XjIL)

—~—————

plz1x) -

1.5¢

1t
- I
.5r

0

0

05

1

15




The intuitive representation:
update stage: weight modification
|

Zy

J
Po) Prediction Pl Update

- stage - stage

p(x,2,)

 Time 1: measure Z, becomes available

v
o Compute likelihood of the particles: p(Zl | XjIL)

—~————

* W1:Wo'p(21|X1i)




| The intuitive representation
|

 Repeat prediction and update stage each time a new
measure becomes available

Update
stage

p(xk | Zl:k—l) p(xk | Zl:k)

p(xk—l | Z1:|<—1)

—>

Prediction
stage




N The intuitive representation:
prediction stage: Monte Carlo Simulation

p(xk—l | Zl:k—l)

—>

Prediction
stage

p(xk | Zl:k—l)

W
0.25

0.2~

0.15-

0.05-

51

+ Time k-1
+ Time k

X




The intuitive representation:
update stage: weight modification

Zk
¢ )
p(xk—l | Zl:k—l) Prediction p(xk | Zl:k—l) Update p(xk | 2y

— > >

« Time k: measurez, becomes available - particle weight modification

W o7 ‘
measurement
0.6- N + prior |
AN * posterior
0.5+ i
0.4 .
0.3+ i

o2 () - f

+
0.1 l ) . |
* * * * + %
*
e 3k ke * -

’ £, |
00 1 2




J-E

th

xample of Particle Trajectories

time




Estimates of interest

—~———
NS

o i\

> degradation state mean (estimate) X = Z W, X,
=
NS

A2 i i ~ \2
> degradation state variance (uncertainty) Oy = Z W, (Xk — Xy )
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o Particle filtering for degradation state estimate
oThe Intuitive representation

oDetalled analytical approach to the problem
o The algorithm

oState estimate in practice
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asic Idea: Importance sampling

OBJECTIVE: P(Xoy | Z)

—~—————

MAIN IDEA: IMPORTANCE SAMPLING

Oklzlk ZWk ( )




. I
| Importance sampling
|

« Let p(x)ocz(x) be a probability density function (pdf) difficult to
sample from, with ﬂ(X) easy to evaluate

« Let q(x) be aproposal pdf easy to sample from: {xi }izl:NS

Importance density Ty

p(X)ziW‘(f(X—Xi)

where:




0.8f

0.6

0.4F

0.2

Example: approximation of the pdf distribution

—analytical 7Z'(X)

* particles and associated weights |

20 Particles

0.5 1 15 2 2.5 3 i 3.5 4 4.5

a1

—analytical cdf
—approximated cdf

» Particles sampled from: q(x)=U[0,5]

* Corresponding weight obtained from:




Example: approximation of the pdf distribution

|
1
0l —analytical 77(x) |
' * particles and associated weights
0.6/ .
20 Particles
0.4
0.2+
% o5 1 15 2 25 3 35 4 a5
0.01 .
i
0.008- & %
r Y
0.006f | 500 Particles
0.002- }
{
0)

—analytical cdf
—approximated cdf

| —analytiéal cdf
1.2F —approximated cdf |




N| Particle Filter: Estimate of the posterior

P(Xoy | 24y ) ZWk ( )

Arbitrarily chosen

In practice: l
« Sample N particles from q(xo:k | Zl:k)

« Compute weights from:

60 B | [T
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| Sequential Importance Sampling
|

Arbitrarily chosen

|
q(XO:k | Z1:k ): q(xk | XO:k—l’ Z1:k (XO:k—l | Z1:k—1)
!

Known from
previous time step

Sample at time k-1: X(i), Xli yoeny X g

v

Sample at time k: X(i), Xli,..., Xli(_l-
|

from Q(Xk | Xok-1 Z1:k)




| Particle Filter: Estimate of the posterior :
|

P(Xoy | 24y ) ZWk ( )

In practice:
« Sample N, particles from q(XO:k | Zl:k): Q(Xk | Xox_1 Zl:k)q(xo:k—l | Zl:k—l)
« Compute weights from:

f)

[ p(X(i):k | Z1:k)_ P Xi- | L.
Wy € ( i )_ ( i i i )
q XO:k | Z1:k q Xk | XO:k—l’ Z1:k XO:k—l | Z1:k—1




| Recursive formula for p(x(‘):klzl:k)
|

p(XO:k | Zl:k—l)p(zk | Xo;k ! Z1;|<_1) ¢ BayeS RUIe
p(zk | Z1:k—1)

p(XO:k | Z1:k ) =




NJ| Recursive formulafor p(xi, | 2y )

Xow | Z14 )=
p( o4 | 1.k) ﬂ( | Zl_k_l)

_ I | 240)

p(zk | Zl‘k—l)

o B | [T
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| Recursive formula for p(x('):k|zl:k)
|

p(XO:k | Zl:k—l)p(zk | Xy Zl:k—l)
PXox | 2y )=
( o 1k) p(zk | Zl:k—l)

(observational independence)




BT
| Recursive formula for p(X('):k | Zl:k)
m
P(Xo | Ze1)P(Z, | X Zus 1)
PXox | 21 ) =
o |2 p(z, | 234 1)
_ PO | Xose 1 Zuse 1) Pt | Zua 1) P(Z | Xoser Zuics)
p(z, | 234 1)
— p(Xk M@H)p(xo:k;fl | Zl:k—l)p(;(l XO:k)
Ly T Z5x=
Rearrangement
P(z, %5 )P(X | Xgis)

= p(XO:k—l | Z]_'k—l) p(Zk | Zl:k—l)
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| Recursive formula for p(x('):klzl:k)
|

P(Xou | Zus1)P(Z | Xoser Zuics)
Pz | Zu )
_ P04 | Xor 10 Zuac 1) P(Xos s | Zi ) P(Z | X Zusc )
Pz | Zu )
_ P04 | Xor1)P(Xos s | Zuie 1) P(Zi | X )
Pz, | 2y )

p(XO:k | Zl:k):

= P Xy | Zpy g Jommme P AR =L ;
PlXocs |2 p(Z, [ 2341 (Markov model)

—~———

- (e, % )p(x, 1)
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N Weight updating equation — Sequential
Importance Sampling (SIS)

e Where were we?
= SLIDE 62:

i p(X(i):k | Z1:k)
Wk ) q(x(i):k | Zl:k)

- q(xk | Xoy-1 Zl:k) |
= SLIDE 67:
- p(Zk |Xk)p(xk |Xk—1)

o
Wi o p(xis 1 22i) Pl 130 )p(x 1 X0 p(z 1 % )p(x 1 X s i
‘ q(xé):k | Z1:k) Q(XL | Xé):k—l’ Zl . q(XIL | X(I):k—l’ Z1:k) -

: N
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| A possible choice for q(xk |x0:k_1,zl:k)

M T POPULAR CHOICE Easy! We know the
OSTPOPU ¢ OC/ Physical model of the

degradation process
q(Xk | Xok-11 Zi ) = p(Xk | Xk—l)

= w (Zklka ’PZ |X
k — "Wkt M k 1 2k
X :
9 Okt ™ Easy! We know

the measurement
equation

Advantage:
» easy to implement (both sampling and evaluation of weights)

Drawbacks:
» state-space explored without knowledge of observations
» degeneracy phenomenon




|SIS: degeneracy problem

W,
Variance of the weights can only increase
over time: w, = w,'(_lp(zk | x,'()

Time O
—~——
Weight distribution becomes progressively
more skewed
e el NN ENE| N -

—~———

W
Large effort in updating particles whose 20
contribution to final estimate is almost O

T Time 20
Resampling Algorithm
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Bootstrap resampling procedure

Reduce number of samples with low weights and increase number of
samples with large weights

Set of unequally weighted samples - set of equally weighted particles
i i |Ns { j* }NS
{xk,wk }i:1 = % L/ NGy

BOOTSTRAP RESAMPLING WITH REPLACEMENT

4 Cdf (weights)

1 1
> I
' W * Ol )_ |

Uniform R ‘ p(xk =X )= W,
distribution ij J
O > H_liv v —
p(i) J Resampled index

- I POLITECNICO DI MILANO
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o Particle filtering for degradation state
estimate

oThe Intuitive representation

oDetalled analytical approach to the problem
oThe pseudo-code
oState estimate in practice

- I POLITECNICO DI MILANO



fampling Importance Resampling (SIR) PF ——

[{xk,wk ] SIR - PF[Xk 1,Wk 1}|N1,zk]

Fori=1:Ng |
- Sample: X, using X, and X, = f (X _,, @)

- Assign the particles a weight: W, = w‘k_lp(zk | x‘k)
End For

Fori=1:Ng
- Normalize the weights: W, = WK/ZWK
End For -1

- I POLITECNICO DI MILANO



fampling Importance Resampling (SIR) PF —

T3 % N, _ ; oINS
oo wg =2 |- resaweee [f w4
e Bootstrap sample the system states (with replacement)

e Update the weights: W =1/N,

- Compute estimates of interest:

N, o
e Posterior mean: R =D WX
i=1
N, ,
e Posterior variance: 67 =D W, (XL — )“(k)
i=1
End SIR-PF

- I POLITECNICO DI MILANO
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o Particle filtering for degradation state
estimate

oThe Intuitive representation

oDetalled analytical approach to the problem
oThe algorithm

oState estimate in practice

- I POLITECNICO DI MILANO



N Degradation state estimate in practice

n=6

A= 7.5e3 %/(MPa"*day)

Q: Activation energy = 290000 J/mol
R: Ideal gas constant = 8.31 J/(mol*K)
K=0. 0011 MPa

T,=1100 K

6, = 3000 rpm

w,~ N(0; 11) K

w,~ N(O; 30) rpm

Initial Condition: Timet=0-> X, =0 = Estimate at i esiimate
Number of Particles: N, =1000 25/ time 500 e
meas
20r
Elongation Measure 15!
500 0.2411%
10
5,
P15 02 025 0.3

X

B POLITECNICO DI MILANO




N Degradation state estimate in practice

n=6

A= 7.5e3%/(MPa"*day)

Q: Activation energy = 290000 J/mol
R: Ideal gas constant = 8.31 J/(mol*K)
K=0. 0011 MPa

T,=1100 K

6, = 3000 rpm

w,~ N(0; 11) K

w,~ N(O; 30) rpm

Initial Condition: Timet=0 > X, =0 el
Number of Particles: Np =1000 25- Estimate at
20l time 2000
Elongation Measure _
15- — pdf estimate
500 0.2411% ;K true
L meas
1000 0,4600% °
1500 0,7129 i
2000 0,8938 Pes 0.9 0.95 1

X X

B POLITECNICO DI MILANO
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o Model-based prognostics:
o The filtering problem
o| The forecasting problem

- I POLITECNICO DI MILANO



N| The forecasting problem

Uy

> Component

Information Available:
« Estimate of the pdf of the state at the current time (from PF): p(xk | Zl;k)
in the form of {x,w |-
 future (random) distribution of the operational/external conditions:pr(ur,a)r)
* physical model of the degradation process  x = f, (xk_l,a)k_l)

—~—————

. Estimate p(x_ |z, )
e Estimate RUL

_ POLITECNICO DI MILANO
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o The forecasting problem
o Particle Filtering for RUL estimate

- I POLITECNICO DI MILANO



UL estimate: Method

N

Prediction of the degradation state one time step ahead:

p(xk | Z1:k)

—>

Prediction
stage

—

i i
X = Ty (Xk’a)k)

—~—g—

N

p(Xk+1 | Z1:k ) ~ ZS: WII< §(Xk+l - Xli<+l)

=1

POLITECNICO DI MILANO



| RUL estimate: Method :
|

* Prediction stage at r-k time step ahead:
v

X |Zlk ZWk (X _X> Particles {xf).r,WL}

X
A
Xth . - .\

e RUL estimate

—~—g—

NS
p(rul| z,, )~ ZwL&(rul —rul')
=1

time

- I POLITECNICO DI MILANO



RUL estimate in practice

Elongation Measure

500 0.2411%

—RUL pdf estimate
% True RUL

0 500 1000 1500 2000 2500 3000 3500

RUL
- I POLITECNICO DI MILANO



RUL estimate in practice

Elongation Measure

500 0.2411%
1000 0,4600%
1500 0,7129
3 2000 0,8938
10
6x
— RUL pdf estimate

5 ¥ True RUL

4,

3,

2,

17 r

0

0 500 1000 1%00 2000 2500 3000 3500

RUL
- I POLITECNICO DI MILANO



RUL estimate in practice: performance

* Another test case: one creep elongation measure every month

2500
2000 |

. 1500 }
= 4000 }
500 |

0

0 500 1000 1500 2000 2500

« Testover N, = 250 different creep growth trajectories

e Mean Relative Absolute Error:

Nt —ril
rMAE = Nl S| I””'}zO.lSOi 0.009
« Coverage: soi] MU
Neg 1 if rul, e C>*
Cov=T;Ci; =10 i rul e G Cov =0.663+0.018
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N —

o Application:

o Maintenance Planning for a degrading
structure
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The degrading component

Component: structure

Degradation mechanism: crack propagation

Degradation Indicator: crack depth, x (not directly measurable)
Threshold of failure: xth

th
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Physical model of the degradation process

| —
d|
s
X
Paris-Erdogan model 0

dx _eoC (ﬂ&)n __, Discretizationof X, =X, +e%aC (ﬂ\/a)” AN

dN the dynamics

» x = hidden degradation state (crack depth)
» = independent Gaussian process noise
» N =load cycle > Bme k

» C, fand n = constants related to the material properties
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Measurement equation

-1

X, o ] Logit model: non-destructive
_ k ultrasonic inspections

d — X, P

z, =d {1—exp(,ﬁ0 + 4, 1In

» z, = degradation observation (vibration measurements)

» v, = Independent non additive measurement noise

> S, 1 = constants related to the material properties
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Objectives

e Degradation state (crack depth) estimate at the present time
e RUL prediction

e Maintenance planning
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Crack growth evolution

e 5 measurements at: k; = 100; k, = 200; k; = 300; k, = 400; ks = 500
e 5000 particles

p(Xk‘ZO:k)

100

------------- Filtered estimate 5 5

90 H +  Truth 5 :
an H +-c band . ——— ,j_

Estimated State

F. Cadini, E. Zio, D. Avram “Monte Carlo-based filtering for fatigue crack growth estimation”, Probabilistic Engineering Mechanics, 24, n. 3, pp.

367-373, 2009
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RUL estimate

« 5 measurements at: k; = 100; k, = 200; k; = 300; k, = 400; ks = 500

5000 patrticles
True failure time is 631

P(tlz1.)
UUT mrp=ggs— T ' ' ' ! ! |T="100
0,005 HMEAH= 7540 -3------- SR SN S S S SRS Sl
i B N S e
_ 100 200 300 400 500 GO0 700 8O0 900 1000
= 0.01 STO =812 T T ) : : : T =200
 (0.005 HMEAH= 7329 -4------- e eEE T SRR PEE R R S —
= 0 ] ] ] ] ]
= 100 200 300 400 500 600 700 8O0 900 1000
= 001
= [0.005
o0
0.01
0.005
0
100 200 300 400 &S00 GO0 700 8O0 900 1000
00T myp=sus— T ' ' ! ! ' [T=7500
0.005 | MEAR= 6932 - 3 ----- S A S R N A Ao
] ] ] ] ] |
1NN 200 300 40N &ON RON 700 AN 90N 100N
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Maintenance: ultimate goal of PHM

|
Maintenance
Intervention
Unplanned
Scheduled Condition- based Predictive
- Perform Monitor the health Predict the
Corrective inspections, and of the systgm and Re;maining Useful
. . . then decide on Life (RUL) of the
Replacement or repair possibly repairs, . )
] ) followi repair actions system and then
of failed units o OW"ng a based on the decide on repair
predefined degradation level actions based on
schedule assessed the predicted RUL
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Predictive maintenance

A cost model of literaturel’l is considered for the quantification of
the costs driving the maintenance strategy

Hypotheses:

» Inspection procedure: periodic inspections are performed at given
scheduled times. Results of the inspection are z,,,.

» Maintenance actions: either replacement upon failure (cost c¢;) or
preventive replacement (cost c,)

» Decision-making policy: at any future time a decision can be made on
whether to replace the component or to further extend its life, albeit
assuming the risk of a possible failure

[*] A.H. Christer, W. Wang, J.M. Sharp, A state space condition monitoring model for furnace erosion prediction and replacement, European Journal

of Operational Research, Vol. 101, 1997, pp. 1-14
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Predictive maintenance planning

[ is the remaining life duration until replacement

Expected cost per unit time, C(k,/) (evaluated at the present time k, assuming
that the component will be replaced at time k+/)

C(k,))= f(c,, ¢, P(RUL<))

P(RUL<I) } Particle filter!!

Among all future time steps /, the best time to replacement /. is the one

which minimizes:

n

C(k,))= f(c,, c¢; P(RUL<I))
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N Predictive maintenance: results

* Measurements at time steps: k, = 100, k, = 200, k; = 300, k, = 400
e Number of particles: 5000
e TRUE FAILURE TIME =452

Expected cost per unit time

210

L i e S S N

TN e e EEEEEEE R L et

L L S o e k,=100
10 k=100 |

0 100 200 300 400 500 BOO ¥OO 8O0 900 1000
g T T T T T T T T T
5 k,=200
@
o
k7]
=]
o
=
x
2
w

AU O S k,=400

10 | 1 | 1 | | | k=400 |

1} 100 200 300 400 500 BOOC YOO 8O0 900 1000

Time

F. Cadini, E. Zio “Model-based Monte Carlo state estimation for condition-based component replacement”, Reliability Engineering and System Safety, doi:10.1016/j.ress.2008.08.003,

94, n. 3, pp. 752-758, 2009
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Outline

Prognostics

Model-based prognostics

Particle filtering for degradation state estimate
Particle filtering for RUL estimate

O O O O O

Application
> Maintenance planning
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Particle Filtering for Prognostics at PHME 2014

e Session 2c: «Sequential Monte Carlo sampling for crack growth prediction
providing for several uncertainties» by: Matteo Corbetta, Claudio
Sbarufatti, Andrea Manes, Marco Giglio

e Session 2c: «A Prognostic Approach Based on Particle Filtering and
optimized Tuning Kernel Smoothing» Yang Hu, Piero Baraldi, Francesco Di
Maio, Enrico Zio

e Session 5b: «A particle Filtering-based Approach for the prediction of the
Remaining Useful Life of an Aluminium Electrolytic Capacitor» Marco
Rigamonti, Piero Baraldi, Enrico Zio, Daniel Astigarraga, Ainhoa Galarza

e Session 8b: «A Model-Based Prognostics Framework to Predict Fatigue
Damage Evolution and Reliability in Composites» by Juan Chiach, Manuel
Chiach, Abhinav Saxena, Guillermo Rus and Kai Goebel
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