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o Prognostics
o Model-based prognostics
o Particle filtering for degradation state estimate
o Particle filtering for RUL estimate 
o Application

Ø Maintenance planning 

Outline
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o Prognostics
o What is it?
o Sources of information
o Prognostics in practice
o Prognostic approaches
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Prognostics: the degrading component
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Prognostics: the degrading component
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Prognostics: objectives

Healthy Degradation 
initiation

Evolution to… failure

Time at which the 
component will no 
longer perform its 
intended function

(tf)
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Prognostics: objectives

Healthy Degradation 
initiation

Evolution to… failure

Present time 
(t=k)

Our objectives:

1. Estimate the component  degradation at a the present time t =k
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Prognostics: objectives

Healthy Degradation 
initiation

Evolution to… failure

Present time 
(t=k)

Our objectives:

Future time 
(t =r)

Our objectives:

1. Estimate the component  degradation at a the present time t =k
2. Estimate the component  degradation at a future time r > k
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Prognostics: objectives

Healthy Degradation 
initiation

Evolution to… failure

Time at which the 
component will no 
longer perform its 
intended function

(tf)

RUL 
(Remaining Useful Life)

Present time 
(t=k)

Our objectives:

1. Estimate the component  degradation at a the present time t =k
2. Estimate the component  degradation at a future time r > k
3. Estimate the component Remaining Useful Life (RUL) = tf - k



10

o Prognostics
o What is it?
o Prognostics in practice
o Sources of information
o Prognostic approaches
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Turbine blade

Component: turbine blade
Degradation mechanism: creeping
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Component: turbine blade
Degradation mechanism: creeping

Degradation indicator: blade elongation

Definition of a degradation indicator

Length(t) – initial length
initial length( ) =tx

Our objectives:
1. Estimate the blade  degradation at 

the present time t =k
2. Estimate the blade degradation at a 

future time r > k
3. Estimate the component Remaining 

Useful Life (RUL)
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o Prognostics
o What is it?
o Prognostics in practice
o Sources of information
o Prognostic approaches
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Sources of information for prognostics

• A physical model of the degradation process (dynamic law describing the 
evolution of the degradation indicator, x ):

Norton law for creep growth

x = blade elongation

T = temperature

φ = Kθr
2 = applied stress

θr =  rotational speed

A, Q, n = equipment inherent parameters

n

RT
QA

dt
dx ϕ






= -exp

Arrhenius law 

External/operational conditions
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Sources of information for prognostics

• A physical model of the degradation process
• Threshold of failure:

Fault Initiation

x

t

thx

thx

«A blade is discarded when the elongation, x, reaches 1.5%»

ftk
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Sources of information for prognostics

• A physical model of the degradation process
• Threshold of failure
• A sequence of observations, related to the component degradation, collected 

from the degradation initiation to the present time

Fault Initiation

tz

tk

Elongation measurements = past evolution of the degradation indicator  
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Sources of information for prognostics

• A physical model of the degradation process
• Threshold of failure
• A sequence of observations, related to the component degradation, collected 

from the degradation initiation to the present time
• Measurement equation: ),( νxhz =

Random noise with
known distribution

( )2,0 σν
ν

N
xz

∝

+=
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Sources of information for prognostics

• A physical model of the degradation process
• Threshold of failure
• A sequence of observations, related to the component degradation, collected 

from the degradation initiation to the present time
• Measurement equation
• Life durations of a set of similar components which have already failed:

f
s

ff ttt ,...,, 21
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Sources of information for prognostics

• A physical model of the degradation process
• Threshold of failure
• A sequence of observations, related to the component degradation, collected 

from the degradation initiation to the present time
• Measurement equation
• Life durations of a set of similar components which have already failed
• A set of observations performed on a set of similar components from 

degradation initiation to failure

Fault Initiation

)(tz

t
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Sources of information for prognostics

• A physical model of the degradation process
• Threshold of failure
• A sequence of observations, related to the component degradation, collected 

from the degradation initiation to the present time
• Measurement equation
• Life durations of a set of similar components which have already failed
• A set of observations performed on a set of similar components from 

degradation initiation to failure
• External/operational conditions 

Past, present and future time evolution of:

T = temperature

θr ≡ rotational speed

,...,,...,, 121 +kk uuuu
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o Prognostics
o What is it?
o Prognostics in practice
o Sources of information
o Prognostic approaches
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Prognostic approaches

Data-
Driven

Model-
Based

• A physical model of 
the degradation 
process

• Measurement 
equation

• A sequence of observations 
related to the component 
degradation collected from 
the degradation initiation 
to the present time

• A threshold of failure
• External/operational

conditions 

• Life durations of a set of 
similar components which 
have already failed

• A set of observations 
performed on a set of similar 
components from 
degradation initiation to 
failure

Degrading component Similar components
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performed on a set of similar 
components from 
degradation initiation to 
failure

Degrading component Similar components

Hybrid



24

Prognostic approaches

Data-
Driven

Model-
Based

• A physical model of 
the degradation 
process

• Measurement 
equation

• A sequence of observations 
related to the component 
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o Model-based prognostics
o The filtering problem
o The forecasting problem
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Model-based prognostics: the methodology

Present time

External/operational conditions

Observations

Degradation statex
z
u
k

Component Estimation Forecasting
ku kz kx

RUL
xr

rku :1+
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Main sources of uncertainty

Present time

External/operational conditions

Observations

Degradation statex
z
u
k

Component Estimation Forecasting
ku kz kx

RUL
xr

rku :1+

Future external/operational 
conditions

are never exactly known

Noise on the observations
(measurements)

Intrinsic randomness
of the degradation process
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Prognostics = Filtering + Forecasting

Component Estimation Forecasting
ku kz kx

RUL
xr

rku :1+

1. The filtering problem: to estimate the degradation state,     , at the 
present time

2. The forecasting problem:
§ to predict the degradation state,     , at a future time r
§ to predict the component RUL

kx

rx
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o Model-based prognostics:
o The filtering problem
o The forecasting problem
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The Filtering Problem

Present time

External/operational conditions

Observations

Degradation statex
z
u
k

Component Estimation Prediction
ku kz kx

RUL
xr

rku :1+
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• Physical model of the degradation process

Ø x = hidden degradation state

Ø ω = random process noise
Ø f = physical model of the degradation process (non-linear dynamic law)

Ø k = time step index 

• Measurement equation:
Ø υ = random measurement noise
Ø h = non-linear measurement equation

Time-discrete, hidden Markov process

Problem Setting

Component Estimation
ku kz kx

( )11, −−= kkkk xfx ω

( )kkk xhz ν,=
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The filtering problem in practice 
(Physical model of the degradation process)

Ø x = hidden degradation state (blade elongation)
Ø = operational conditions
Ø = random process noises
Ø A, K and n = constants related to the material properties

Discretization of the 
dynamics

( )ndx e C x
dN

ω β=

( ) ( )( )n
K

TR
QA

dt
dx

3
2

20
10

-exp ωωϑ
ω

++⋅⋅







+⋅

⋅=

( ) ( )( )n

kk K
TR
QAxx 3

2
20

10
1 -exp ωωθ

ω
++⋅⋅








+⋅

⋅+= −

00 ,ϑT

321 ,, ωωω

Norton law for creep growth

),0( 2
ii N σω ∝
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Ø zk = degradation observation (measure of the  creep elongation)
Ø υk = igaussian measurement noise

kkkkk xxhz νν +== ),(

The filtering problem in practice
(Measurement Equation)
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The Bayesian framework

• Interpretation of the bayesian probability ?
§ conditional on the background knowledge: the noisy 

measurements 
§ subjective probability = degree of belief with regard to the  

hidden degradation state

kx

( )kk zxp :1|

( )kk zxp :1|

kk zzzz ,...,, 21:1 =

kx

OBJECTIVE: ( )kk zxp :1|
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Ø state mean (estimate)

Ø state variance (uncertainty)

Ø state percentiles  

The state estimate and its uncertainty

( )kk zxp :1|

( )∫ ⋅= kkkkk dxxzxpx :1|ˆ

( ) ( )∫ ⋅−= kkkkkx dxzxpxx
k :1

22 |ˆσ̂

955 ˆ,ˆ xx

5x̂ 95x̂

( )kk zxp :1|

kx
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• Let us assume that we know at time k-1

The sequential solution (I)

( )1:11 | −− kk zxp

Prediction
stage

( )1:11 | −− kk zxp ( )1:1| −kk zxp

• Prediction stage: Chapman-Kolmogorov equation

( ) ( )...||... 1:111 −−− kkkk zxpxxp

Time k-1 Time k

1−kx
kx
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The sequential solution (I)

( ) ( ) ( )∫ −−−−− = 11:1111:1 ||| kkkkkkk dxzxpxxpzxp

Time k-1 Time k

1−kx kx

• Let us assume that we know at time k-1( )1:11 | −− kk zxp

Prediction
stage

( )1:11 | −− kk zxp ( )1:1| −kk zxp

• Prediction stage: Chapman-Kolmogorov equation
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The sequential solution (II)

kz

Prediction
stage

( )1:11 | −− kk zxp ( )1:1| −kk zxp
Update 
stage

( )kk zxp :1|
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The sequential solution (II)

posterior
priorLikelihood

( ) ( ) ( )∫ −− ⋅= kkkkkkk dxzxpxzpzzp 1.11:1 |||
From the normalization

( ) 1| :1 =∫ kkk dxzxp

( ) ( ) ( )
( )1:1

1:1
:1 |

|||
−

−=
kk

kkkk
kk zzp

zxpxzpzxp

kz

Prediction
stage

( )1:11 | −− kk zxp ( )1:1| −kk zxp

• Update stage: Bayes Rule

Update 
stage

( )kk zxp :1|

prior posterior
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The sequential solution: What is difficult in 
practice?

1) The probability distributions are not usually available in close form!

2) The integrals are difficult to solve analytically!

( )1:11 | −− kk zxp

( ) ( ) ( )∫ −−−−− = 11:1111:1:0 ||| kkkkkkk dxzxpxxpzxp

( ) ( ) ( )
( )1:1

1:1
:1 |

|||
−

−=
kk

kkkk
kk zzp

zxpxzpzxp

( ) ( ) ( )∫ −− ⋅= kkkkkkk dxzxpxzpzzp 1.11:1 |||
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PARTICLE FILTERING

Numerical solution which, in the limit, tends to the exact posterior pdf:

Kalman Filter Extended-Kalman
Filter

Approximate Grid-
based filters

Exact only for linear
systems and additive 

Gaussian noises

Analytical
approximation

Numerical
approximation
(burdensome)

Available model-based filtering techniques

( )kk zxp :1|
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o Particle filtering for degradation state estimate
oThe intuitive representation 
oDetailed analytical approach to the problem
oThe pseudocode
oState estimate in practice
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0 0.05 0.10

0.5

1

0 0.05 0.10

5

10

15

The intuitive representation:
1.  pdf approximation

( ) ( )∑
=

−≈
sN

i

ii xxwxp
1

0000 δ

0x

( )0xp

ix0

iw0

1
1

0 =∑
=

sN

i

iw

• Time 0, we approximate in the form of a set of Ns random
samples with associated weights :ix0

s

i

N
w 1

0 = { }ii wx 00 ,
( )0xp
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The intuitive representation:
1.  pdf approximation

( ) ( )∑
=

−≈
sN

i

ii xxwxp
1

0000 δ

• Time 0, we approximate in the form of a set of Ns random
samples with associated weights :ix0

s

i

N
w 1

0 = { }ii wx 00 ,
( )0xp

Cumulative distribution: 

( )∫
0

0
''

x
dxxp

0 0.05 0.10

0.5

1

 

 

analytical cdf
approximated cdf

ix0

iw0
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The intuitive representation:
prediction stage: Monte Carlo Simulation

Prediction
stage

( )0xp ( )1xp

{ }ii wx 00 , ( ){ }iiii wxfx 0001 ,,ω=

( ) ( )( )nii
i

ii K
TR

QAxx 3
2

20
10

01 -exp ωωθ
ω

++







+

+=

Prediction stage for particle i

1. Sample a value of 
2. Apply: 

iii
321 ,, ωωω

( )001 ,ωxfx =
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0 0.05 0.10

0.5

1

 

 

Time 0
Time 1

The intuitive representation:
prediction stage: Monte Carlo Simulation

x

w

( ) ( )( )nii
i

ii K
TR

QAxx 3
2

20
10

01 -exp ωωθ
ω

++







+

+=
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The intuitive representation:
update stage: weight modification

1z

Prediction
stage

( )0xp ( )1xp
Update 
stage

( )11 | zxp

• Time 1: measure becomes available à particle weights’ update 058.01 =z

measurement

0.02 0.04 0.06 0.08 0.10

0.1

0.2

 

 

prior
posterior

w
kz

{ }ii wx 00 , { }ii wx 01 , { }ii wx 11 ,
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The intuitive representation:
update stage: weight modification

1z

Prediction
stage

( )0xp ( )1xp
Update 
stage

( )11 | zxp

• Time 1: measure becomes available

• Compute likelihood of the particles:

1z

( )ixzp 11 |

0 0.5 1 1.5 20

0.5

1

1.5

2( )ixzp 1|

ix11z

( )ixzp 11 |
( )2,0 σν
ν

N
xz

∝

+=

{ }ii wx 00 , { }ii wx 01 , { }ii wx 11 ,
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The intuitive representation:
update stage: weight modification

1z

Prediction
stage

( )0xp ( )1xp
Update 
stage

( )11 | zxp

• Time 1: measure becomes available

• Compute likelihood of the particles:

•

1z

( )ixzp 11 |

( )ixzpww 1101 |⋅=

{ }ii wx 00 , { }ii wx 01 , { }ii wx 11 ,
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• Repeat prediction and update stage each time a new 
measure becomes available

The intuitive representation

Prediction
stage

( )1:11 | −− kk zxp ( )1:1| −kk zxp
Update 
stage

( )kk zxp :1|

kz

{ }i
k

i
k wx 11, −− { }i

k
i
k wx 1, − { }i

k
i
k wx ,
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The intuitive representation:
prediction stage: Monte Carlo Simulation

Prediction
stage

( )1:11 | −− kk zxp ( )1:1| −kk zxp

( ){ }i
k

i
k

i
kk

i
k wxfx 111 ,, −−−= ω

0 1 2 3 4 5 6 70

0.05

0.1

0.15

0.2

0.25

 

 

Time k-1
Time k

x

w

{ }i
k

i
k wx 11, −−
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The intuitive representation:
update stage: weight modification

kz

Prediction
stage

( )1:11 | −− kk zxp ( )1:1| −kk zxp
Update 
stage

( )kk zxp :1|

• Time k: measure becomes available à particle weight modificationkz

0 1 2 3 4 5 6 70

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 

 

prior
posterior

Measure
w

measurement

kz

{ }i
k

i
k wx 11, −− { }i

k
i
k wx 1, − { }i

k
i
k wx ,
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Example of Particle Trajectories

x
thx

1z 2z 3z
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Estimates of interest

∑
=

=
sN

i

i
k

i
kk xwx

1

ˆ

( )∑
=

−=
sN

i
k

i
k

i
kk xxw

1

22 ˆσ̂

Ø degradation state mean (estimate)

Ø degradation state variance (uncertainty)

{ }i
k

i
k wx , ( ) ( )∑

=

−≈
sN

i

i
kk

i
kkk xxwzxp

1
:1

~| δ
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o Particle filtering for degradation state estimate
oThe intuitive representation 
oDetailed analytical approach to the problem
oThe algorithm
oState estimate in practice
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Basic Idea: Importance sampling

OBJECTIVE: ( )kk zxp :1:0 |

MAIN IDEA: IMPORTANCE SAMPLING

( ) ( )∑
=

−≈
sN

i

i
kk

i
kkk xxwzxp

1
:0:0:1:0 | δ
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Importance sampling

• Let                      be a probability density function (pdf) difficult to 
sample from, with          easy to evaluate

• Let             be a proposal pdf easy to sample from:

where: 

( ) ( )xxp π∝

( )xq { }
SNi

ix :1=

( ) ( )∑
=

−≈
sN

i

ii xxwxp
1

δ

( )
( )i

i
i

xq
xw π

=~
∑
=

=

SNi

i

i
i

w
ww

,1

~
~

( )xπ

Importance density
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Example: approximation of the pdf distribution

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

 

 

analytical cdf
approximated cdf

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

 

 

analytical pdf
particles and associated weights

20 Particles

x x

• Particles sampled from:  q(x)=U[0,5]
• Corresponding weight obtained from:  ( )

( )
( )

5/1
~

i

i

i
i x

xq
xw ππ

==

ix

iw

( )xπ
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Example: approximation of the pdf distribution
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500 Particles

( )xπ
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Particle Filter: Estimate of the posterior

In practice:
• Sample Ns particles from
• Compute weights from:

( )
( )k

i
k

k
i

ki
k zxq

zxpw
:1:0

:1:0

|
|

∝

( ) ( )∑
=

−≈
sN

i

i
kk

i
kkk xxwzxp

1
:0:0:1:0 | δ

( )kk zxq :1:0 |

Arbitrarily chosen
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Sequential Importance Sampling

( ) ( ) ( )1:11:0:11:0:1:0 |,|| −−−= kkkkkkk zxqzxxqzxq

Known from
previous time step

Arbitrarily chosen

i
k

ii xxx 110 ,...,, −Sample at time k-1:

i
k

i
k

ii xxxx ,,...,, 110 −Sample at time k:                                  

( )kkk zxxq :11:0 ,| −from
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Particle Filter: Estimate of the posterior

In practice:
• Sample Ns particles from
• Compute weights from:

( )
( )

( )
( ) ( )1:11:0:11:0

:1:0

:1:0

:1:0

|,|
|

|
|

−−−

=∝
k

i
kk

i
k

i
k

k
i

k

k
i

k

k
i

ki
k zxqzxxq

zxp
zxq
zxpw

( ) ( )∑
=

−≈
sN

i

i
kk

i
kkk xxwzxp

1
:0:0:1:0 | δ

( ) ( ) ( )1:11:0:11:0:1:0 |,|| −−−= kkkkkkk zxqzxxqzxq

?
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Recursive formula for ( )k
i

k zxp :1:0 |

( ) ( ) ( )
( )1:1

1:1:01:1:0
:1:0 |

,|||
−

−−=
kk

kkkkk
kk zzp

zxzpzxpzxp
• Bayes Rule
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Recursive formula for ( )k
i

k zxp :1:0 |

( ) ( ) ( )
( )

( ) ( ) ( )
( )1:1

1:1:01:11:01:11:0

1:1

1:1:01:1:0
:1:0

|
,||,|

|
,|||

−

−−−−−

−

−−

=

=

kk

kkkkkkkk

kk

kkkkk
kk

zzp
zxzpzxpzxxp

zzp
zxzpzxpzxp

(conditional probability formula)

( ) ( ) ( )1:11:01:11:01:11:0 |,||,
)()|(),(

−−−−−− =
=

kkkkkkkk zxpzxxpzxxp
BPBAPBAP
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Recursive formula for ( )k
i

k zxp :1:0 |

( ) ( ) ( )
( )

( ) ( ) ( )
( )

( ) ( ) ( )
( )1:1

:01:11:01:0

1:1

1:1:01:11:01:11:0

1:1

1:1:01:1:0
:1:0

|
|||

|
,||,|

|
,|||

−

−−−

−

−−−−−

−

−−

=

=

=

kk

kkkkkk

kk

kkkkkkkk

kk

kkkkk
kk

zzp
xzpzxpxxp

zzp
zxzpzxpzxxp

zzp
zxzpzxpzxp

(observational independence)
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Recursive formula for ( )k
i

k zxp :1:0 |

( ) ( ) ( )
( )

( ) ( ) ( )
( )

( ) ( ) ( )
( )

( ) ( ) ( )
( )1:1

1:0:0
1:11:0

1:1

:01:11:01:0

1:1

1:1:01:11:01:11:0

1:1

1:1:01:1:0
:1:0

|
|||

|
|||

|
,||,|

|
,|||

−

−
−−

−

−−−

−

−−−−−

−

−−

=

=

=

=

kk

kkkk
kk

kk

kkkkkk

kk

kkkkkkkk

kk

kkkkk
kk

zzp
xxpxzpzxp

zzp
xzpzxpxxp

zzp
zxzpzxpzxxp

zzp
zxzpzxpzxp

Rearrangement
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Recursive formula for ( )k
i

k zxp :1:0 |

( ) ( ) ( )
( )

( ) ( ) ( )
( )

( ) ( ) ( )
( )

( ) ( ) ( )
( )

( ) ( ) ( )
( )1:1

1
1:11:0

1:1

1:0:0
1:11:0

1:1

:01:11:01:0

1:1

1:1:01:11:01:11:0

1:1

1:1:01:1:0
:1:0

|
|||

|
|||

|
|||

|
,||,|

|
,|||

−

−
−−

−

−
−−

−

−−−

−

−−−−−

−

−−

=

=

=

=

=

kk

kkkk
kk

kk

kkkk
kk

kk

kkkkkk

kk

kkkkkkkk

kk

kkkkk
kk

zzp
xxpxzpzxp

zzp
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(Markov model)
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Weight updating equation – Sequential 
Importance Sampling (SIS)

• Where were we?
§ SLIDE 62:

§ SLIDE 67: 
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A possible choice for 

MOST POPULAR CHOICE
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Advantage:
Ø easy to implement (both sampling and evaluation of weights)

Drawbacks:
Ø state-space explored without knowledge of observations
Ø degeneracy phenomenon

( )kkk zxxq :11:0 ,| −

Easy! We know the 
Physical model of the 
degradation process

Easy! We know 
the measurement 

equation
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SIS: degeneracy problem

Time 20

w20
i

Time 0

w1
i

Variance of the weights can only increase 
over time: 

Weight distribution becomes progressively
more skewed

Large effort in updating particles whose
contribution to final estimate is almost 0

Resampling Algorithm
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Bootstrap resampling procedure 

BOOTSTRAP RESAMPLING WITH REPLACEMENT

j
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Resampled index

Cdf (weights)
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Uniform
distribution
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0
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• Reduce number of samples with low weights and increase number of
samples with large weights

• Set of unequally weighted samples → set of equally weighted particles
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o Particle filtering for degradation state 
estimate

oThe intuitive representation 
oDetailed analytical approach to the problem
oThe pseudo-code
oState estimate in practice



Sampling Importance Resampling (SIR) PF
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For i = 1: Ns
- Sample:      using and 
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- Compute estimates of interest:

• Posterior mean:

• Posterior variance:
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End SIR-PF

• Bootstrap sample the system states (with replacement)

• Update the weights: s
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Sampling Importance Resampling (SIR) PF
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o Particle filtering for degradation state 
estimate

oThe intuitive representation 
oDetailed analytical approach to the problem
oThe algorithm
oState estimate in practice



Degradation state estimate in practice
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Degradation state estimate in practice
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o Model-based prognostics:
o The filtering problem
o The forecasting problem



Component Estimation Prediction
ku kz ( )kk zxp :1|

RUL
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The forecasting problem

Information Available:
• Estimate of the pdf of the state at the current time (from PF):                    

in the form of
• future (random) distribution of the operational/external conditions:
• physical model of the degradation process

• Estimate
• Estimate RUL   
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o The forecasting problem
o Particle Filtering for RUL estimate



RUL estimate: Method

• Prediction of the degradation state one time step ahead:
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RUL estimate: Method

• Prediction stage at r-k time step ahead:
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RUL estimate in practice
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RUL estimate in practice
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RUL estimate in practice: performance

• Another test case: one creep elongation measure every month

• Test over Ntst = 250 different creep growth trajectories

• Mean Relative Absolute Error:

• Coverage:
∑
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o Application:
o Maintenance Planning for a degrading 
structure



x

d
d*

0

The degrading component

Component: structure
Degradation mechanism: crack propagation
Degradation Indicator: crack depth, x (not directly measurable)
Threshold of failure: xth

thx



Physical model of the degradation process

Paris-Erdogan model

( )ndx e C x
dN

ω β= ( )1
1 1

k
n

k k kx x e C x Nω β−
− −= + ∆Discretization of 

the dynamics

x

d
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Ø x = hidden degradation state (crack depth)

Ø ω = independent Gaussian process noise

Ø N = load cycle → �me k

Ø C, β and n = constants related to the material properties



Measurement equation

1

0 11 exp ln k
k k
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xz d
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Logit model: non-destructive
ultrasonic inspections

Ø zk = degradation observation (vibration measurements)

Ø υk = independent non additive measurement noise

Ø β0, β1 = constants related to the material properties



Objectives

• Degradation state (crack depth) estimate at the present time
• RUL prediction
• Maintenance planning



Crack growth evolution

F. Cadini, E. Zio, D. Avram “Monte Carlo-based filtering for fatigue crack growth estimation”, Probabilistic Engineering Mechanics, 24, n. 3, pp.
367-373, 2009

( )0:k kp x z

∼

• 5 measurements at: k1 = 100; k2 = 200; k3 = 300; k4 = 400; k5 = 500
• 5000 particles



RUL estimate

• 5 measurements at: k1 = 100; k2 = 200; k3 = 300; k4 = 400; k5 = 500
• 5000 particles
• True failure time is 631

∼p(tf|z1:k)



Maintenance: ultimate goal of PHM

Maintenance 
Intervention

Unplanned

Corrective

Replacement or repair 
of failed units

Planned

Scheduled

Perform 
inspections, and 
possibly repairs, 

following a 
predefined 
schedule

Condition- based

Monitor the health 
of the system and 

then decide on 
repair actions 
based on the 

degradation level 
assessed

Predictive

Predict the 
Remaining Useful 
Life (RUL) of the 
system and then 
decide on repair 
actions based on 

the predicted RUL

Particle 
Filtering



[*] A.H. Christer, W. Wang, J.M. Sharp, A state space condition monitoring model for furnace erosion prediction and replacement, European Journal
of Operational Research, Vol. 101, 1997, pp. 1-14

Predictive maintenance

• A cost model of literature[*] is considered for the quantification of
the costs driving the maintenance strategy

• Hypotheses:
Ø Inspection procedure: periodic inspections are performed at given

scheduled times. Results of the inspection are z1:k.

Ø Maintenance actions: either replacement upon failure (cost cf) or
preventive replacement (cost cp)

Ø Decision-making policy: at any future time a decision can be made on
whether to replace the component or to further extend its life, albeit
assuming the risk of a possible failure



Predictive maintenance planning

• l is the remaining life duration until replacement

• Expected cost per unit time, C(k,l) (evaluated at the present time k, assuming
that the component will be replaced at time k+l)

C(k,l)= f(cp, cf, P(RUL<l))

•

• Among all future time steps l, the best time to replacement lmin is the one
which minimizes:

C(k,l)= f(cp, cf, P(RUL<l))

Particle filter!!P(RUL<l)



• Measurements at time steps: k1 = 100, k2 = 200, k3 = 300, k4 = 400

• Number of particles: 5000

• TRUE FAILURE TIME = 452

Expected cost per unit time

k1=100

k2=200

k3=300

k4=400

F. Cadini, E. Zio “Model-based Monte Carlo state estimation for condition-based component replacement”, Reliability Engineering and System Safety, doi:10.1016/j.ress.2008.08.003, 
94, n. 3, pp. 752-758, 2009

Predictive maintenance: results

Time
step (k)

Minimum 
E[cost per 
unit time]

Kmin

100 33 505

200 33 516

300 36 423

400 35 434
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o Prognostics
o Model-based prognostics
o Particle filtering for degradation state estimate
o Particle filtering for RUL estimate 
o Application

Ø Maintenance planning 

Outline



Particle Filtering for Prognostics at PHME 2014

• Session 2c: «Sequential Monte Carlo sampling for crack growth prediction
providing for several uncertainties» by: Matteo Corbetta, Claudio 
Sbarufatti, Andrea Manes, Marco Giglio

• Session 2c: «A Prognostic Approach Based on Particle Filtering and 
optimized Tuning Kernel Smoothing» Yang Hu, Piero Baraldi, Francesco Di 
Maio, Enrico Zio

• Session 5b: «A particle Filtering-based Approach for the prediction of the 
Remaining Useful Life of an Aluminium Electrolytic Capacitor» Marco 
Rigamonti, Piero Baraldi, Enrico Zio, Daniel Astigarraga, Ainhoa Galarza

• Session 8b: «A Model-Based Prognostics Framework to Predict Fatigue
Damage Evolution and Reliability in Composites» by Juan Chiach, Manuel 
Chiach, Abhinav Saxena, Guillermo Rus and Kai Goebel
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