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ABSTRACT

Battery powered electric vehicles (EVs) have emerged as a
promising solution for reducing the consumption of fossil fu-
els in modern transportation systems. Unfortunately the bat-
tery pack has a low energy storage capacity, which causes the
driving range of the EV to become very limited. It is there-
fore essential to properly characterize the different driving
situations of the vehicle in order to better predict the driving
load along the road ahead and to better estimate the remain-
ing driving range (RDR). However, this prediction cannot be
achieved straightforward due to sources of uncertainty intro-
duced by the randomness of the driving environment. In this
paper a novel approach for characterizing driving situations
and for predicting the driving load of an EV is presented. The
prediction of the driving load occurs in a model-based fash-
ion, where the model input variables are modeled as discrete-
time Markov processes. An approach for estimating the tran-
sition probabilities between Markov states in the presence of
sparse driving data is introduced. Furthermore, to capture the
changes in the driving environment a Bayes-based methodol-
ogy for recursively updating the established transition proba-
bilities is presented. The validity of the proposed approach is
illustrated through simulation and by a series of experimental
case studies.

1. INTRODUCTION

In modern times, the use of battery powered electric vehicles
(EVs) has grown due to they offer a promising solution for re-
ducing the consumption of fossil fuels. However, the limited
energy storage capacity of the battery pack causes the driving
range of the EV to become very limited. A proper charac-
terization of driving situations is therefore essential in order
to better predict the driving load, i.e., the electrical power
demanded to propel the EV along the road ahead. Such a
prediction can be used, for example, by an advanced driver

Javier A. Oliva et al. This is an open-access article distributed under the terms
of the Creative Commons Attribution 3.0 United States License, which per-
mits unrestricted use, distribution, and reproduction in any medium, provided
the original author and source are credited.

assistance system (ADAS) to estimate the RDR of the EV
in a more accurate manner. However, this prediction cannot
be achieved straightforward due to many sources of uncer-
tainty introduced by the randomness of the driving environ-
ment. Key affecting factors such as the road profile, the driv-
ing style or the traffic conditions are highly uncertain and are
usually difficult to predict.

To the best of our knowledge, few studies have addressed the
problem of predicting the driving load in EVs. (Wang, Xu, Li,
& Xu, 2007) combine cascade neural networks with a node-
decoupled extended Kalman filter to forecast the driving load.
In this work the authors define five load levels by fuzzy logic
and, instead of predicting an entire sequence of loads, the
load level is forecast. In (Yang, Huang, Tan, & He, 2008) the
driving load of a hybrid electric vehicle (HEV) is predicted
by using the discrete cosine transform (DCT) together with
support vector machines (SVM). Similar to the approach pre-
viously mentioned, the authors classifie the driving load into
five predefined levels. The forecasting task deals with the de-
cision about the next load level. An approach that predicts the
battery power requirements for EVs in real time by combin-
ing road information from a static map with historical driving
data is introduced by (Kim, Lee, & Shin, 2013).

The drawback with the aforementioned approaches is that
none of them treat the driving load in a stochastic manner. As
it has been shown in (Oliva, Weihrauch, & Bertram, 2013),
estimating the RDR of an EV requires characterizing the un-
certainty introduced by driving environment. Because of this,
this contribution deals with a novel approach for character-
izing driving situations and with an algorithm for predicting
the driving load of an EV. The prediction of the driving load
takes place under a model-based approach. A model of the
powertrain of an EV is used to compute the electrical power
demand of the electric motor as response to the road proper-
ties, the vehicle speed and the acceleration, which in this pa-
per constitute the input variables of the model. The evolution
of the input variables in time is first modeled as a homoge-
neous discrete-time Markov process. An offline approach for

1
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estimating the transition probabilities between states in the
presence of sparse data is introduced. This allows completely
characterizing the uncertainty in the transition probabilities of
the Markov state space even if information about some tran-
sitions between states is unavailable. However, relying solely
on the Markov transition models identified offline for predict-
ing the driving load usually does not adequately describe the
most recent driving situation. For this reason we also present
a Bayes-based methodology for updating the transition prob-
abilities as new information about the driving situation be-
comes available.

The remainder of this paper is organized as follows: Section
2 deals with the physical model of an EV used to compute the
driving load. In section 3 the characterization of driving situ-
ations is discussed and two offline methods for estimating the
transition probabilities between Markov states are introduced.
Section 4 explains the steps needed for updating the transition
probabilities on receipt of new information about the driving
situation. In section 5 the algorithm used for predicting the
driving load is described. Section 6 presents the simulation
and experimental results used for validating the proposed ap-
proach. Finally, section 7 concludes the findings of this work
and provides an outlook on our future work.

2. DRIVING LOAD MODELING IN EVS

As it was already mentioned, the prediction of the driving
load is carried out in a model-based fashion. From a physi-
cal point of view, the driving load can be either modeled by a
forward-facing or by a backward-facing approach (Guzzella
& Sciarretta, 2005). In the forward-facing approach the EV is
controlled to follow a desired speed. This approach considers
the physical properties of each component of the powertrain
and the dynamic interaction between them. The drawback
with this modeling approach is the high computational burden
required to solve the set of differential equations presented
in the model. This paper employs the backward-facing ap-
proach, for modeling the driving load of the EV. The backward-
facing approach is computationally efficient since it assumes
that the EV moves exactly with an imposed speed. The model
calculates the forces acting on the wheels and processes them
backwards through the powertrain. The computation of the
power demand depends only on algebraic equations, decreas-
ing in this manner the computational effort of the model.
Fig. 1 depicts the structure of the model used to compute the
driving load. As it is explained in the following two sections,
the input u is given by the speed v and acceleration a of the
vehicle and by the inclination (slope) θ of the road. The out-
put y of the model is the electrical power demanded by the
electric motor, denoted here as Pele.

The following section explains the model in detail. We omit
expressing the variables of the model as time dependent, since
this model is described by a set of algebraic equations.

Fx Tw

ωw

Tm

ωm

DrivelineTiresChassis Electric motor

y

u

u = [ v a θ ]T

y = Pele

Figure 1. Structure of the backward-facing approach for mod-
eling the driving load of an EV.

2.1. Backward-facing Approach

An electric vehicle is composed by many components which,
for simplification purposes, can be considered to move uni-
formly. As shown in Fig. 2, the force Fx required to propel
the vehicle forward can be computed by

Fx = Fair + Fg + Fr + Fi, (1)

where:

• Fair = 1
2ρaircwAv

2 is the aerodynamic drag force,
• Fg = mg sin (θ) is the hill climbing force,
• Fr = mgKr is the rolling resistance and
• Fi = ma is the force needed to accelerate/decelerate the

vehicle.

The parameter ρair is the density of air, cw is the aerodynamic
drag coefficient, A and m are the frontal area and the mass of
the vehicle, g is the gravitational acceleration and Kr is the
rolling resistance coefficient.

v

Fair

Fi, Fg

mg

1
2
Fr

1
2
Fr

Fx

θ

Figure 2. Forces acting during the motion of an EV.

The mechanical power Pmec demanded by the electric motor
is easily calculated by means of a polynomial power require-
ment model as follows:

Pmec = Fxv =
1

2
ρaircwAv

3 +mg sin (θ) v +

+mgKrv +mav. (2)

As suggested by (Guzzella & Sciarretta, 2005), the relation-
ship between the mechanical and the electrical power demand

2
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of an electric motor can be computed, with a certain degree
of accuracy, by employing a stationary map of the electric
motor’s efficiency as a function of the rotor’s rotational speed
and the torque demand

Pele =
Pmec

ηm (ωm, Tm)
, Pmec > 0. (3)

In Eq. (3) the electric motor’s efficiency is represented by
ηm , ωm = vid

rtire
is the rotational speed of the rotor and

Tm = Fxrtire
id

is the torque demand of the motor. Here rtire
and id are the tire’s radius and the gear ratio of the driveline
respectively.

One important feature of modern EVs is that certain amount
of the kinetic and the potential energy can be recovered by
means of the regenerative braking system. During braking
maneuvers the electric motor is operated as a generator, pro-
viding in this manner an extra braking torque to the wheels.
The recovered energy can then be used to supply power either
to the powertrain or to the auxiliary accessories. The amount
of braking torque depends on the operation strategy of the
braking system. The operation strategy optimizes the distri-
bution of braking torque between the mechanical and the re-
generative brakes in such a way, that the maximum electrical
power is generated. The electrical power generated is com-
puted by

Pele = Pmecηm (ωm,−Tm) kvx , Pmec < 0. (4)

Since the generated power depends on ωm, it would be a dif-
ficult task to supply power to the power bus at low speeds.
Because of this the parameter kvx is used to limit the usage
of the electric motor in generator mode according to Eq. (5),
so that the mechanical brakes are applied at very low speeds
and at high speeds the vehicle is braked mostly by the electric
motor.

kvx =





0 vx ≤ 3.5 m/s
vx−3.5

5 3.5 < vx < 8 m/s
0.9 vx ≥ 8 m/s

(5)

The efficiency map ηm is usually well defined just for the
motor mode (upper quadrant of Fig. 3). In order to extend the
map to the generator mode, the power losses are mirrored as
follows

ηm (ωm,−Tm) = 2− 1

ηm (ωm, Tm)
. (6)

Even though the computed efficiency map obtained by apply-
ing Eq. (6) slightly differs from the data that can be obtained
by measuring the efficiency of the electric motor working as
generator, it offers a practical and accurate solution for mod-
eling the electric motor also in generator mode.
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Figure 3. Efficiency map of an electric motor.

2.2. Factors Affecting the Prediction of the Driving Load

To properly predict the driving load under a model-based ap-
proach it is necessary to analyze the dynamics of each of the
parameters of Eq. (2) and to determine the source of informa-
tion needed to acquire them, in order to differentiate between
time invariant and time variant model parameters, from now
on referred as constants and input variables, respectively. On
the one hand, input variables are characterized by their high
dynamic and are usually easily measurable. On the other
hand, the constants, as the term suggests, rarely change or
change very slowly. Table 1 summarizes the dynamics and
presents the sources of information required to acquire each
of the parameters involved in the computation of Pmec.

Parameter Dynamics Source of information
a
(
m/s2

)
Very high Driver, road, traffic

v (m/s) High Driver, road, traffic
m (kg) Nearly constant Vehicle design
g
(
m/s2

)
Nearly constant Altitude

Kr High Road
θ (◦) High Road
ρair

(
kg/m3) Low Altitude

cw Nearly constant Vehicle design
A

(
m2

)
Nearly constant Vehicle design

Table 1. Dynamics and sources of information required for
the acquisition of the parameters affecting the prediction of
the driving load.

The parameters g and ρair, even though they can be easily
determined, depend on the altitude and rarely change dur-
ing a trip. Also m, cw and A can be easily acquired. They
don’t change since they depend on the vehicle design. The
friction coefficient Kr, despite its high dynamics, cannot be
measured, and therefore it has to be either assumed or esti-
mated. For this reason we consider it as a constant parameter
under the assumption that the road conditions do not change
drastically during a trip.

The slope θ changes rapidly according to the road type and
can be easily acquired either by integrating a GPS into the EV
or by using a navigation system with a preloaded static GIS

3
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(Geographic Information System). The speed v and the accel-
eration a depend on many factors that are difficult to predict
and that exhibit some degree of randomness. To these factors
belong the road type, the traffic conditions or the driver ag-
gressiveness, just to name a few. Hence v and a change very
dynamically and have to be treated as time variant.

The parameters v, a and θ are considered in this work as the
model input variables, since they meet the requirements pre-
viously mentioned. Accordingly, the input vector, used here
to denote a driving situation, is given by

u =
[
v a θ

]T
. (7)

The characterization of the input variables is explained in de-
tail in the following section.

3. DRIVING SITUATION CHARACTERIZATION

By assuming that the input vector u =
[
v a θ

]T
evolve

in time following a discrete-time stochastic process {uk} and
that it can take on values in a countable set U , called the state
space, then its behavior can be successfully modeled as a first
order Markov chain, under the assumption that it satisfies the
so called Markov property. This property states that, the fu-
ture state uk+1 depends only on the current state uk and not
on all previous states u0,u2, . . . ,uk−1. In other words, for
all {uk, k ≥ 0}

πi,j = p (uk+1 = j|uk = i,uk−1, . . . ,u0)

= p (uk+1 = j|uk = i) , (8)

where πi,j is known as conditional transition probability and
k denotes the discrete time step. All transition probabilities
between states are grouped in a transition probability matrix
Φ of the form

Φ =




π1,1 π1,2 · · · π1,m

π2,1 π2,2 · · · π2,m

...
...

. . .
...

πm,1 πm,2 · · · πm,m


 . (9)

Then, Eq. (8) can be expressed as

πi,j = Φ (uk+1 = j|uk = i) , (10)

where πi,j is the ijth element of Φ. Since the elements j
of Φ represent the transition probabilities to all other states
from i, each row satisfies the condition

∑m
j=1 πi,j = 1 for

all j ∈ U . Eq. (10) is said to be time homogeneous since
πi,j is independent of k. To better estimate the transition
probabilities of Eq. (10) the input state space is splitted up
into uk =

[
uvak uθk

]T
, where uvak =

[
vk ak

]
and

uθk = θk represent parts of the input state space given by
the tuple (v, a) and by the slope θ, respectively. As shown
in (Oliva et al., 2013), two transition probability matrices,

namely Φva and Φθ can be used to store all the information
regarding the transition probabilities of the input variables.
The following section introduces the methodology used in
the estimation of the transition probabilities of both transition
probability matrices (TPMs).

3.1. Characterization of Φva

In the presented approach, the structure of Φva differs slightly
from that of Φ as it was introduced by Eq. (9). The states of
the Markov chain are composed by vs ∈ V and by ai ∈ A,
where V and A represent the state space of the speed and
acceleration of the EV. The definition of the conditional tran-
sition probability given by Eq. (10) is reformulated for this
matrix as

πvsai,j = Φvsa (ak+1 = j|ak = i, vk = s) , (11)

where πvsai,j describes the probability of accelerating at rate aj
over the next time step given that the EV accelerates with ai
at given speed vs in the current time step. The structure of
Φva, with Φvsa ∈ RM×M and vs ∈ RN, is shown in Fig. (4).

i

v1 vsv2 · · · · · · · · · vN

Φvsa =




πvsa1,1 πvsa1,2 · · · πvsa1,M

πvsa2,1 πvsa2,2 · · · πvsa2,M
...

...
. . .

...
πvsaM,1 πvsam,2 · · · πvsaM,M




s

j

Figure 4. Structure of Φva.

The purpose of modeling uvak as a homogeneous Markov pro-
cess is to describe the stationary distribution of speed and ac-
celeration. In this work the transition probabilities of Φva are
estimated from historical driving data. Both a and v have to
first be discretized. Accordingly, the state space is discretized
as A = {amin, . . . ,−2ares,−ares, 0, ares, 2ares, . . . , amax}
and by V = {0, vres,2vres, . . . , vmax}, where vres = 1 km/h,
vmax = 140 km/h, ares = 0.2 m/s2, amin = −3 m/s2 and
amax = 3 m/s2. The resolutions vres and ares offer a good
trade-off between computational effort and accuracy.

3.1.1. Estimating the Stationary Distribution of Φva

In this work we use the maximum likelihood estimation (MLE)
scheme (T. C. Lee, Judge, & Zellner, 1970) for estimating the
time-invariant transition probabilities of Φva. A transition
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probability πvsai,j is computed by

πvsai,j =
ni,j
ni

, (12)

where ni,j represents the number of times the EV changes its
acceleration from ai to aj and ni is the total number of times
the EV accelerates with ai at given speed vs. This approach is
very practical since the estimation can by achieved by simply
counting the number of times a change in the acceleration
occurs.

3.1.2. Approximating Φva for unavailable data

As it will be shown in section 5, the construction of the Markov
chain for ak may lead to speed states vs, computed by Eq. (29),
where Φvsa → {0}, i.e., where no information about the dis-
tribution of the acceleration in the next time step is available.
This is caused due to the sparsity of the historical driving data
used for estimating the transition probabilities.

This issue can be sorted out by finding a suitable probability
distribution function of the form f (ak+1|ak = i, vk = s) that
can be employed for all Φvsa → {0}. The shape of such a
function can be better understood by analyzing the distribu-
tion of ak+1 at different (vk, ak). One strong candidate for
choosing f is the Beta distribution (Johannesson, Asbogard,
& Egardt, 2007). Fig. 5 shows the Beta function fitted over
different distributions of ak+1.

ak+1 [m/s2]
0.1 0.5 0.9 -0.1 0.5 0.8 0.4 0.9 1.3

ak+1 [m/s2] ak+1 [m/s2]

2 km/h, 0.3 m/s2 32 km/h, 0.3 m/s2 8 km/h, 0.6 m/s2

Figure 5. Fitted Beta function over the distribution of ak+1 at
different (vk, ak).

The Beta density function is a versatile function which is usu-
ally employed for modeling different shapes of probability
distributions, as shown in Fig. 6. The probability density
function (PDF) of the generalized Beta distribution is given
by

f (x|α, β, bL, bU ) =
(x− bL)

α−1
(bU − x)

β−1

(bU − bL)
α+β−1

, (13)

where α and β are the shape parameters of the Beta distribu-
tion and [bL, bU ] define the interval for which Eq. (13) is de-
fined. The fact that the Beta PDF is defined just over a given
interval can be exploited in that no accelerations beyond the
admissible values, dictated by the performance of the EV, can
be reached. Furthermore, bL and bU can be conveniently cho-

sen to force any ak+1, drawn from a Beta distribution given
by Eq. (13), to lie within the bounds of the state space of
Φvsa, i.e., ak+1 ∈ A.

0 0.2 0.4 0.6 0.8 1
0

1

2

3

α = 2, β = 5 α = 5, β = 1.5 α = 4, β =10

Figure 6. Different shapes of the Beta distribution on the in-
terval with bL = 0 and bU = 1.

The first two moments of ak+1, namely the expected value
and the variance, are given by

E [ak+1|α, β, bL, bU ] = bL + (bU − bL)
α

α+ β
(14)

and

V ar [ak+1|α, β, bL, bU ] =
(bU − bL)

2
αβ

(α+ β)
2

(α+ β + 1)
, (15)

respectively. The function f can be reformulated in such a
way that the parameters of the Beta distribution depend on the
Markov states and that the PDF is defined only over the state
space of a, i.e., f (ak+1|α (ak, vk) , β (ak, vk) , amin, amax).
The task is then to estimate both α and β for the entire state
space. To this aim we combine the Markov states of v and a
and define a two-dimensional state space denoted by

S = {a ∈ R, v ∈ R : A,V} . (16)

From the historical driving data we acquired all samples of
ak+1 and store them in the correspondent state of S accord-
ing to the values of vk and ak. The purpose of the afore-
mentioned step is to sort the historical data in such manner
that both E [ak+1] and V ar [ak+1] can be calculated with ba-
sic statistical operations from the available samples of ak+1.
Since the sparsity of the driving data causes E [ak+1] and
V ar [ak+1] to be defined pointwise over S, it is necessary
to identify a function g (a, v) and a function h (a, v) that de-
scribe how E [ak+1] and V ar [ak+1] vary throughout S, in
order to completely parametrize the state space. This is ac-
complished by means of an approximation by bivariate ten-
sor product B-Splines with a predefined sequence of knots
(Johannesson, 2005). The sequence of knots is set denser
where more information is available in order to better capture
the behavior of the most important regions of S. The splines
describing the variation of E [ak+1] and V ar [ak+1], namely
the functions g (a, v) and h (a, v), over S are presented in
Fig. 7 and in Fig. 8, respectively.
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Figure 7. Function g (a, v) representing the variation of
E [ak+1] over S.
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Figure 8. Function h (a, v) representing the variation of
V ar [ak+1] over S.

Having identifiedE [ak+1] and V ar [ak+1] for the entire state
space, the parameters α (a, v) , β (a, v) are estimated by mo-
ment matching, i.e., by evaluating g (a, v) and h (a, v) for
each state on S and by equating the result to the theoretical
moments given by Eq. (14) and Eq. (15) (Abourizk, Halpin,
& Wilson, 1994). Solving the obtained equation system for
α (a, v) and β (a, v) leads to

α (a, v) =
− (bL − µ)

bL − bU
− (bL − µ)

2
(bU − µ)

σ2 (bL − bU )
, (17)

β (a, v) =
(bU − µ)

bL − bU
+

(bL − µ) (bU − µ)
2

σ2 (bL − bU )
(18)

where µ = E [ak+1], σ2 = V ar [ak+1], bL = amin and
bU = amax.

3.2. Characterization of Φθ

The transition probability matrix for the slope is given by

Φθ =




πθ1,1 πθ1,2 . . . πθ1,h
πθ2,1 πθ2,2 . . . πθ2,h

...
...

. . .
...

πθh,1 πθh,2 . . . πθh,h


 . (19)

The estimation of the transition probabilities of Φθ occurs
similarly as shown in section 3.1.1 by applying the MLE to
real road height profiles.

The state space of the Markov chain for the slope is given
by Θ = {θmin, . . . ,−2θres,−θres, 0, θres, 2θres, . . . , θmax},
where θmin = −10◦,θmax = 10◦ and the resolution of the
discretezation is θres = 0.5◦.

4. ADAPTATION OF THE TRANSITION PROBABILITIES

Characterizing the driving situation relying solely on histor-
ical data provides a good estimation of how the EV moves
in the long term. However, the way a driver behaves might
change depending on the traffic situation, the time of the day,
the mood or the road condition. Because of this, a more
proper prediction scheme requires predicting the driving load
under an adaptive framework. This is achieved by updating
the transition probabilities of Φva and Φθ as new information
about the driving situation becomes available. This allows to
capture the non-homogeneity of the Markov process, which
might be introduced by changes in the driver behavior, the
traffic situation or the driving scenario. To this aim we em-
ploy a Bayesian posterior probability approach to update the
established transition probabilities between Markov states.

4.1. Bayes Inference for Markov Chains

The Bayes’ theorem estimates the posterior probability dis-
tribution of a parameter ψ by relating a likelihood function
obtained from a set of observations x and an assumed prior
probability distribution of the parameter. The update is com-
puted by

p (ψ|x) =
L (ψ|x) p (ψ)∫

Ψ
L (ψ|x) p (ψ) dψ

, (20)

where L (ψ|x) is the likelihood of the observed data, p (ψ) is
the prior probability distribution of ψ, p (ψ|x) is the posterior
probability distribution and Ψ represents the parameter space.
The factor

∫
Ψ
L (ψ|x) p (ψ) dψ is a normalization factor of

p (ψ|x). Eq. (20) can be expressed in terms of a normalized
likelihood as follows

p (ψ|x) ∝ L (ψ|x) p (ψ) . (21)

As formulated in Eq. (21), applying the Bayes’ theorem for
updating a transition probability πi,j , either of Φva or of Φθ,
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requires a likelihood function for the new observed informa-
tion and an assumption about prior distribution of πi,j on
each row of the correspondent TPM. The forthcoming ex-
planation deals with the theoretical foundations for updat-
ing any transition probability πi,j belonging to the mixture
πi = [πi,1, πi,2, . . . πi,j , . . . , πi,m], i.e., to the ith row of Φ
in Eq. (9). The application of this method for updating Φva

or Φθ succeeds in a similar fashion.

4.1.1. Likelihood Function

Let the random variable q, representing a transition between
two Markov states, to follow a multinomial distribution. The
probability distribution of q can be parametrized by a vector
πi, where πi,j = p (qi → qj) = p (qi,j) is the probability of
a transition from state i to state j, as it was already stated by
Eq. (10). Then, the likelihood of a sequence of new transi-
tions Q = {q1, q2, ..., qn} is given by

L (πi|Q) =

n∏

j=1

π
βi,j

i,j , (22)

where βi,j is the number of times a transition qi → qj occurs
in Q. For the sake of convenience we express βi,j =

∑
δi,j ,

where δi,j = 1 if qi → qj occurs and δi,j = 0, otherwise.

4.1.2. Prior Distribution

In the context of Markov chains, the task of the prior is to
specify an assumption about the probability distribution of the
ith row πi of Φ. Accordingly, it is necessary to find as many
prior distributions as the number of Markov states. Updating
the transition probabilities under a Bayesian approach works
with any kind of prior. However, since we consider the arbi-
trary set of new transitions Q to be multinomial distributed,
it is mathematically convenient to use a conjugate prior. The
use conjugate priors offers the advantage that the posterior
distribution has the same functional form of the prior. The
conjugate prior of the multinomial distribution is the Dirich-
let distribution (Strelioff, Crutchfield, & Hübler, 2007). Thus,
assuming the transition probabilities of a row from Φ to be
Dirichlet distributed leads to

p (πi|αi,1, αi,2, ..., αi,m) =
Γ
(∑m

j=1 αi,j

)

∏m
j=1 Γ (αi,j)

m∏

j=1

π
αi,j−1
i,j ,

(23)
where the hyperparameter αi,j can be understood as a vir-
tual count of occurrences of qi → qj before considering new
observations. Large values of αi,j reflect strong prior knowl-
edge about the distributions of the transition probabilities and
small values of correspond to ignorance. The parameter m
stands for the number of hyperparameters that parametrize
Eq. (23).

The choice of the Dirichlet distribution as the prior is a fairly

intuitive way to explain the meaning of the transition prob-
abilities in Φ. A transition probability πi,j as defined by
Eq. (10), can be understood as the first moment of the Dirich-
let distribution evaluated for πi,j . That is,

E [πi,j ] = πi,j =
αi,j
α0

, (24)

where α0 =
∑
i

αi is the total number of occurrences of

a transition starting from state i. The Dirichlet distribution
satisfies the unit simplex requirement

∑
E [πi,j ] = 1 and

0 ≤ E [πi,j ] ≤ 1 complying in this way with the properties
of a row πi in Φ. Furthermore, the uncertainty of a transition
probability can be computed by the second moment

V ar [πi,j ] =
αi,j (α0 − αi,j)
α0

2 (α0 + 1)
. (25)

In our approach the parameters of the Dirichlet prior distri-
bution are obtained from the offline estimation through MLE
of section 3.1.1. In the absence of prior knowledge about
the hyperparameters of Eq. (23), i.e., if Φ → {0} a com-
mon approach is to assume all probabilities to be equal. This
can be achieved by setting all αi,j = 1, which results in a
uniform prior distribution with an expectation value given by
E [πi,j ] = 1/M , where M represents the size of the state
space.

4.1.3. Posterior Distribution

Having a multinomial likelihood and a Dirichlet prior, the
posterior distribution of πi after observing a new sequence of
transitions Q can be found in a closed form by exploiting the
conjugate property of the Dirichlet distribution and the multi-
nomial distribution. Accordingly, the posterior is computed
by

p (πi|Q, α) ∝ L (πi|Q) p (πi|α) =

m∏

j=1

π
αi,j+βi,j−1
i,j .

(26)
The posterior is computed on receipt of new observations.
Considering the fact that in our system just one transition can
occur per time step, we can set βi,j = δi,j . Accordingly,
the set of hyperparameter αi can be recursively updated by
setting αi,k+1 = αi,k + 1 if qi → qj or αi,k+1 = αi,k,
otherwise. By employing this Bayesian scheme the updated
meanE [πi,j ]k+1 and variance V ar [πi,j ]k+1 of each element
in πi can be computed with the help of Eq. (24) and Eq. (25).
As it can be seen, the posterior computed by Eq. (26) keeps
the information regarding all transitions occurred up to time
step k.

Thus, depending on the values of the hyperparameters, many
new observations might be needed in order to converge with
the new Markov process. This is inconvenient in our applica-
tion, since a slow adaptation of transition probabilities would

7

European Conference of the Prognostics and Health Management Society 2014

8



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

cause the characterization of the most up to date driving sit-
uation to fail. Because of this, it would be desirable to find a
recursion for both E [πi,j ]k and V ar [πi,j ]k without needing
to deal with any prior knowledge about the hyperparameters
and that can be carried such that the influence of older tran-
sitions in the computation of the posterior is progressively
faded while keeping the underlying idea of an a Bayesian up-
date.

The aforementioned recursion is achieved by means of the
discounted mean-variance estimator shown in (Bertuccelli &
How, 2008) such that

E [πi,j ]k+1 = E [πi,j ]k +
V ar [πi,j ]k

(
δi,j − E [πi,j ]k

)

λkE [πi,j ]k
(
1− E [πi,j ]k

) ,
(27)

and

Var [πi,j ]k+1 =
Var [πi,j ]k E [πi,j ]k+1

(
1− E [πi,j ]k+1

)

λkE [πi,j ]k
(
1− E [πi,j ]k

)
+ Var [πi,j ]k

,

(28)
where λk < 1 is a factor used to scale the variance at each
iteration, which makes the estimation to be more responsive
to new observations. (Bertuccelli & How, 2008) shows that
convergence to the true moments is achieved if limk→∞ λk =
1. We thus consider using in this work a decaying factor λk =
1− λ

k , where 0 < λ < 1 and k denotes the time step.

5. DRIVING LOAD PREDICTION

The prediction of the driving load proceeds as presented in
Algorithm 1. At every time step measurements of the input
space, i.e., uk =

[
vk ak θk

]T
are acquired and pro-

cessed in order to determine the indices s, i and h, which are
used to allocate the measurements in the correspondent posi-
tion of the Markov state space.

First, the information about the speed and the acceleration is
updated. To this aim the index s determines the transition
probability matrix Φvsa to be updated. The index i is used
to find the row within the matrix, which contains the infor-
mation about the last observed transition. Having located the
row containing the transition of interest, all transition prob-
abilities πvsai,j ∈ πvsai are simultaneously updated by means
of Eqs. (27) and (28), ensuring in this way that the entire row
sums up to one. Analogous, the index h is used to determine
the row of Φθ to be updated. The update of the slope informa-
tion succeeds similarly to the procedure previously presented.

At every prediction time kp the driving load is predicted for a
given horizon length hl. A prediction consists of synthetically
generating one profile for the speed/acceleration and one for
the slope via Markov chains. The generated profiles are then
processed by the EV model in order to compute the driving
load.

The generation of the speed/acceleration profile starts by ran-
domly drawing from πvsai a sample aj for the next state ak+1

according to the current values of speed vk and acceleration
ak. To this aim the inverse transformation method is em-
ployed, since πvsai represents a discrete probability distribu-
tion. If no information about the distribution of ak+1 is avail-
able, i.e., if πvsai → {0}, then aj is randomly sampled from
Beta (α (vs, ai) , β (vs, ai) , amin, amax), whereα (vs, ai) and
β (vs, ai) are given by Eq. (17) and Eq. (18), respectively.
This step ensures a complete generation of the profile regard-
less of the lack of information about the distribuiton of ak+1.

Algorithm 1 Driving Load Prediction

Require: Φva,Φα,uk,Ω,∆t, hl
Ensure:

{
Pele,kp , Pele,kp+1, ..., Pele,kp+hl

}

Initialize:
Determine the indices s, i and h for the current speed, ac-
celeration and slope.
vs ← vk, ai ← ak, θh ← θk
Update Φvsa and Φθ . Use Eqs. (27) and (28) to:
Compute E

[
πvsai,j

]
and V ar

[
πvsai,j

]
for all πvsai,j ∈ πvsai

Compute E
[
πθi,j
]

and V ar
[
πθi,j
]

for all πθi,j ∈ πθi
if k = kp then

for l = 1 to hl do
Randomly draw aj for the next state according to:
if πvsai → {0} then
Beta (α (vs, ai) , β (vs, ai) , amin, amax)

else
Φvsa (ak+1 = aj |ak = ai, vk = vs)

end if
ak+1 ← aj
Compute vk+1 . Use Eq. (29)
uvak+1 ← [ vk+1 ak+1 ]
Randomly draw θj for the next state according to:
Φθ (θk+1 = θj |θk = θh)
uθk+1 ← θj
Set the input for the next time step
uk+1 ←

[
uvak+1 uθk+1

]T
Compute the power demand for the current time step
Pele,k = f (uk,Ω) . Use Eqs. (2), (3) and (4)
k ← k + 1

end for
end if

Contrary to other methods for generating synthetic driving
profiles (T. Lee & Filipi, 2011), our approach compute the
value of the speed in the next speed instead of randomly sam-
ple it. Here vk+1 is given by

vk+1 = vk + ak∆t, (29)

where ∆t denotes the time step size used in the generation
of the profile. Our approach is efficient, since computing
Eq. (29) for obtaining the speed is more efficient than sam-
pling it from any discrete distribution. After obtaining the
values of ak+1 and vk+1, the next step is to draw a sample θj
for the next time step according to the value of θk.
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Having predicted uk+1 =
[
vk+1 ak+1 θk+1

]T
the elec-

trical power demand is computed by means of Eqs. (2), (3)
and (4). To this aim the set Ω containing the parameters of
the EV model is needed. This procedure is repeated itera-
tively until the desired horizon length hl of the prediction is
reached.

6. RESULTS AND DISCUSSIONS

This section first introduces the experimental system used for
validating the prediction of the driving load. Afterwards, the
assumption regarding the Markovianity of the input variables
is validated through simulation. Finally, a series of experi-
mental case studies used to illustrate the applicability of our
approach in different driving situations is presented.

6.1. Experimental Setup

The EV used as experimental platform for gathering the data
and for testing the proposed approach is propelled by a 80 kW
and 280 Nm synchronous electric motor mounted in the front
axle and is powered by a 24 KWh Li-ion battery pack rated to
deliver up to 90 kW. The vehicle is equipped with a GPS used
to gather information about the speed and the acceleration of
the vehicle and the height profile of the road. A system for
measuring the voltage and the current of the motor is also
integrated. A data acquisition system is used to synchronize
the information delivered by these two systems.

EV Model Parameters
Parameter Value

A 2.29 m2

cw 0.28
m 1520 kg
Kr 0.7

Tm,max 280 Nm
Pele,max 80 kW
rtire 0.3 m
ρair 1.226 kg/m3

g 9.81 m/s2

Table 2. Parameters used for computing the driving load.

Table 2 shows the constant parameters used to compute the
driving load. It is worth noting that both m and Kr have to
be identified from real data, since they depend on the cargo
weight (given by the driver) and on the road condition, re-
spectively. In this work both parameters are identified offline
by fitting, in the least-square sense, the measured power con-
sumption for a given trip with to power demand computed by
the model for the same trip.

6.2. Validating the Markov Assumption

In this work a set historical drive cycles together with a set of
height profiles is employed. This information is used for es-
timating the transition probabilities of Φva and Φθ by MLE.
Then, Φva is approximated with the methodology presented

in section 3.1.2 for those regions with unavailable data. Due
to the wide spectrum of driving situations covered by the cho-
sen driving data, the estimated TPMs offer a proper starting
point for predicting the driving load under different driving
scenarios.

To validate the assumption about the Markovianity of the in-
put variables a set of synthetic profiles is generated as shown
in Algorithm 1, with the only difference being that the update
step is skipped. This allows us to model the input variables as
a homogeneous Markov process, which suffices at this stage
of the validation. The simulated profiles are then compared
with the data used for training the TMPs in order to see if the
distribution of the synthetic input variables correspond to that
of the original data. In this work we compute the probability
distribution of the data by means of kernel density estimation.
As it can be seen in Fig. 9, the distribution of the generated
profiles accurately describes the original data. It is important
to notice that the probability distribution of the speed is left
truncated, due to only non-negative speeds are considered.

−2 −1 0 1 2

Acceleration [m/s2] →

PD
F

0 20 40 60 80 100 120 140

Speed [km/h] →

PD
F

−10 −5 0 5 10

Slope [◦] →

PD
F

Figure 9. Probability distribution of the measured and simu-
lated speed (top), the acceleration (bottom-left) and the slope
(bottom-right). The solid and the dashed lines correspond to
the measurements and to the model, respectively.

Furthermore, it is of interest to investigate the impact com-
puting the speed with Eq. (29) instead of considering it part
of the Markov chain. To this aim we employ the joint speed-
acceleration frequency distribution (SAFD) depicted in Fig. 10.
The SAFD offers a good overview of the driving situations
exhibited by the driving data. As it can be appreciated, the
simulated driving profiles successfully models the real driv-
ing data in low-speed regions. However, the simulated data
lies very tight in regions above 80 km/h. This is due to the
drive cycles chosen to estimate Φva mainly describe driv-
ing situations in the city and rural areas. The usability of
the methodology presented in section 3.1.2 can be proved by
simulating driving data and by finding out the percentage of
data generated by using a Beta distribution. From 500 000 s
of simulated data a total of 4.7% was identified to be gener-
ated using this methodology.
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Figure 10. Joint frequency distribution of the measured (top)
and simulated (bottom) speed and acceleration profiles.

The power demand is computed by simulation using both the
training and the simulated input variables together with the
parameters shown in Table 2 . Fig. 11 depicts the distribution
of the power demand. As it can be seen, the proposed ap-
proach accurately models the power demand of the EV, spe-
cially important being the region with negative values, i.e.,
the distribution of power recovered through the regenerative
braking system.

The auto-covariance function (ACF) confirms that the power
demand of the EV can be predicted using a model-approach
with input variables modeled as Markov processes.
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Figure 11. Probability distribution (top) and ACF (bottom)
of the measured and simulated power demand. The solid and
the dashed lines correspond to the measurements and to the
model, respectively.

6.3. Experimental Case Studies

The proposed approach for adaptively predicting the driving
load is validated through a series of trips. Each trip takes
place along a different road and under a different driving sit-
uation. Three driving situations are tested, namely driving in
the city, in rural areas and driving in a combination of high-
way and city. All trips start with the Φva and Φθ estimated in
section 6.2, so that no previous information about the driver
behavior or the driving scenario is available. This allows in-
vestigating the adaptability of the TPMs for the different driv-
ing situations.

6.3.1. Scenario 1: City

The speed and the slope profile of the first trip are shown in
Fig. 12. Here the EV travels 9.17 km in approximately 20
minutes. The speed profile exhibits the common behavior of
a vehicle traveling in a city with many stops and a maximum
speed of approximately 50 km/h.

Fig. 13 shows the probability distribution of the predicted in-
put variables together with the computed power demand. The
prediction takes place at kp = 600 s, that is 10 minutes af-
ter beginning the trip and the horizon length of the prediction
is hl = 600 s. As it can be seen, the shape of PDF of the
speed resembles the real distribution. In the same manner the
PDF of the distribution fits the measured data. The difference
in the distribution of the predicted slope profile with the real
measurements is due to the discretization resolution used in
the Markov chain.

This causes the predicted slope to be more focused in some
regions, e.g. 0◦, in comparison to the real measurements
where the data is more widespread. Despite the difference
in the slope distribution, the PDF of the electrical power suc-
ceeds to describe the distribution for both demanded and re-
covered power.
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Figure 12. Driving situation representing a trip in the city.
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Figure 13. Snapshot at kp = 600 s of the probability distri-
bution of the predicted input variables and the power demand
for hl = 600 s in the city scenario. The solid and the dashed
lines correspond to the measurements and to the model, re-
spectively.

6.3.2. Scenario 2: Rural Areas

The second trip is depicted in Fig. 14. In this trip the EV
travels 17.03 Km along a rural road. The approximate du-
ration of the entire trip is 30 minutes. This driving scenario
is characterized by transition between zones with maximum
speed of 50 km/h and 70 km/h. The height profile remains
almost constant during the trip, with exception of the last 5
minutes where the slope of the road slightly increases. The
probability distribution of the predicted input variables and
the computed power demand is presented in Fig. 15. The dis-
tributions shown are the result of a prediction carried out 5
minutes after the beginning of the trip. i.e., kp = 300 s. In
this case the hl = 1 500 s. As it can be noticed, the distribu-
tion of the predicted speed presents a region of high probabil-
ity near to the zero speed. This is the result of the large stop
of approximately 100 s occurred at time step k = 400 s. Sim-
ilarly to results shown in the previous case, the distribution
of the power demand successfully captures the uncertainty of
the prediction.
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Figure 14. Driving situation representing a trip in rural areas.
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Figure 15. Snapshot at kp = 300 s of the probability distribu-
tion of the predicted input variables and the power demand for
hl = 1 500 s in the rural scenario. The solid and the dashed
lines correspond to the measurements and to the model, re-
spectively.

6.3.3. Scenario 3: Highway-City

The last experimental case study illustrates the flexibility of
our approach. Both the speed and the high profile are shown
in Fig. 16.

The purpose of this experiment is to test the ability to adapt
the driving load prediction to the change in the driving situ-
ation. To this aim the EV travels 75.28 Km on the highway
followed by 20.3 Km in the city. The driving behavior on the
highway is characterized by a mean speed above 100 km/h
and by very few stops. A very important feature of this driv-
ing scenario is the large increment on the height profile in one
segment of the road. In this case two prediction were carried
out, each of them with a horizon length hl = 1 500 s.

Fig. 17 shows the probability distribution of the predicted in-
put variables and the power demand for the first prediction
at kp = 1 800 s. As it can be seen the PDF of the predicted
speed differs from the real distribution, in that the region with
low speed is almost neglected. This is due to the segment of
city contained withing the horizon length of the prediction is
not taken into consideration. This causes the power demand
to be slightly overestimated.

At kp = 3 600 s a new prediction is carried out. In this case
the EV travels in a city driving scenario. As it can be seen
in Fig. 18 the PDF of the predicted speed profile seems to
converge to the real distribution. Accordingly, the distribu-
tion of the predicted driving load resembles very accurately
the shape of the real distribution. This shows that the pro-
posed approach succeeds in predicting the driving load even
if remarkable changes in the driving situation occur.

7. CONCLUSIONS AND FUTURE WORK

In this work a methodology for predicting the driving load
of an EV in uncertain environments is presented. The pre-
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Figure 16. Driving situation representing a trip combining
highway and city segments.
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Figure 17. Snapshot at kp = 1 800 s of the probability distri-
bution of the predicted input variables and the power demand
for hl = 1 500 s in the combined highway-city scenario. The
solid and the dashed lines correspond to the measurements
and to the model, respectively.
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Figure 18. Snapshot at kp = 3 600 s of the probability distri-
bution of the predicted input variables and the power demand
for hl = 1 500 s in the combined highway-city scenario. The
solid and the dashed lines correspond to the measurements
and to the model, respectively.

diction takes place under a model-based approach, in which
the input variables of an EV model, used to describe the driv-
ing situation, are modeled as first order discrete-time Markov
processes. The transition probabilities between Markov states
are first estimated offline from historical driving data via max-
imum likelihood estimation. Furthermore, an approach for
estimating transition probabilities in the presence of sparse
data is introduced. In order to account for most up to date
driving situations, road conditions and driving behaviors in
the driving load prediction, the transition probabilities are re-
cursively updated via Bayesian inference.

The validity of the proposed methodology is illustrated through
simulation and by means of a series of experimental cases of
study. The obtained results suggest, that the driving load can
be successfully predicted with our approach regardless of the
driving environment. Nevertheless, it has been realized that
by abrupt changes in the driving situation within a trip, the
time the transition probabilities take to converge to the new
driving situation can become large.

An aspect we aim to investigate in the future is therefore to
model the transition between driving situations as a Markov
jump process. In this way, it would be possible to choose dif-
ferent TPMs according to some stochastic process describing
the change between driving situations.
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ABSTRACT

Online prognostics of the battery capacity is a major chal-
lenge as ageing process is a complex phenomenon, hardly di-
rectly measurable. This paper offers a new methodology for
real-time estimating of the global battery performances for
Electric Vehicle (EV) use. The presented data-driven frame-
work build a model based on the modifications in battery sig-
nals behavior, according to the performance level. A first pat-
tern extraction step consists in the selection of battery signals
corresponding to specific acceleration profiles in real uses,
allowing to highlight the battery behavior. These extracted
voltage and current patterns are then considered to determine
the battery behavior for each State of Health (SOH) feature.
Studied patterns are compared using signal processing tech-
niques, allowing the estimation of the battery performance,
through statistical learning methods. The application of sig-
nal processing and Relevance Vector Machines (RVM) model
with multiple kernels, provides a powerful tool to diagnose
battery health online, only based on real signals. Further-
more, this methodology also allows the prediction of battery
Remaining Useful Life (RUL) during real use. The proposed
algorithm is validated using datasets from real EV uses. Pre-
sented diagnostics results on real data demonstrate the good
accuracy of this new framework for battery SOH prognostics
in real-time constraints, with uncontrolled conditions.

Anthony Barré et. al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

1. INTRODUCTION

Lithium-ion (Li-ion) batteries are becoming the battery of
choice in Electric Vehicles (EV) utilization. However, battery
health and lifetime remain a major drawback to the use of Li-
ion batteries in stringent life requirements. In EV context, ac-
curate battery health assessment is primordial to improve the
users confidence in the battery range. Indeed, it is one of the
biggest obstacles to widespread acceptance of EVs. Market
experts evaluated the effects of low range resources of EVs,
as a significant feature for users’ purchases intentions (Peters
& Dütschke, 2014).

The field of prognostics and health management offers differ-
ent approaches for estimating battery age level and remain-
ing lifetime (Saha & Goebel, 2008). There are many data-
driven methodologies that focus on the battery State of Health
(SOH) estimation (Barré et al., 2013). However, most of
these data-driven approaches perform well on their training
data only, under specific operational experiments, inducing
robustness and generalization mistakes. In real life, external
conditions cannot be controlled and these learned models are
subject to misestimations. Thus, an accurate way of estimat-
ing battery capacity in real-time based on real EV uses data-
driven algorithm still requires investigations (Barré, Suard,
Gérard, Montaru, & Riu, 2014).

In this work, we propose an alternative approach by only us-
ing data-driven methodology developed from a set of real EV
uses. Such a methodology requires large amounts of training
data in the development phase. In the EV context this train-
ing data requirement is very restrictive and costly. To face
this problem, we investigate whether it is possible to extract
relevant features from current and voltage signals collected
during real EV uses, under non controlled conditions. A key

1

European Conference of the Prognostics and Health Management Society 2014

15



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

Pattern extraction Battery health
construction 

Signal kernelsData acquisition
Estimation

S
ta

te
 o

f 
H

ea
lt

h

TimeSignal 1

S
ig

n
al

 3

Signal 2

v

I

U

Time

v

I

U

Time

End of Life

Figure 1. Battery signal analysis framework consisting of the data aquisition, the extraction of specific patterns, the formation
of new feature space and the estimation of the battery health level along with its remaining useful life

issue explored by this paper is how battery capacity can be
estimated during real EV uses, without specific requirement,
based only on real use data.

Section 2 presents the global theoretical framework and de-
tails the methods used for the SOH estimation and RUL prog-
nostic in real time. Then, Section 3 details the obtained re-
sults for SOH estimation and RUL prognosis in real EV uses
context. Finally, Section 4 presents the main conclusions and
discussions of this research.

2. METHODOLOGY

In this section, we present our approach to predict the bat-
tery State of Health (SOH) and its corresponding Remaining
Useful Life (RUL). As a first step, signal patterns were esti-
mated from the acquired data, in order to observe the battery
behavior modification. To quantify these modifications Dy-
namic Time Warping (DTW) is introduced. Then, a multiple
kernel Relevance Vector Machines (RVM) model is learned
to estimate the battery SOH in real time. Based on the SOH
estimations, the RUL is predicted with a bootstrap approach.
The global framework is illustrated in Figure 1.

2.1. Patterns extraction

The proposed methodology is based on the assumption of bat-
tery behavior modification along the battery life. Time series
signal can be used to diagnose health by analyzing battery
behavior. Thus, for a similar battery request, it is possible to
detect battery ageing effects based on signal shapes such as
current and voltage.

To observe a signal behavior modification, it is necessary to
compare battery signals under comparable uses. For example,
during an identical speed profile criterion, the battery voltage
does not react the same way depending on its health level.
Thus, the common reference here is the speed signal. In the
following study we consider maximal accelerations from 10
to 60 km/h in less than 12.5 seconds as a reference criterion.
This choice allows to extract patterns with a relatively large
length permitting to detect battery behavior. These extracted
training data are consequently issued from real EV uses, pro-
viding a large amount of data under uncontrolled conditions.
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Figure 2. Average signals profile corresponding to a maximal
acceleration under four different health levels, based on 10-60
km/h accelerations - Level 1 (SOH = 100 - 98%, T ' 24◦C)
- Level 2 (SOH = 98 - 96%, T ' 22◦C) - Level 3 (SOH = 96
- 92%, T ' 12◦C) - Level 4 (SOH = 92 - 87%, T ' 30◦C)

To compare the pattern behaviors under different health lev-
els we proceed to an average shape of the patterns for dif-
ferent battery health classes. Thus, the average shapes of the
extracted signals, under four different health classes are pre-
sented in Figure 2. These classes represent four battery health
levels, sorted from the least period ”Level 1” to the most aged
battery level ”Level 4”. The SOH level used to build these
groups, is here extrapolated from several complete charac-
terizations permitting to obtain SOH reference values. The
average temperature values of each class are various, going
from 12◦C for Level 3 to 30◦C for Level 4. It is important
to note that these temperature conditions can induce potential
pattern behavior modification.

Figure 2 illustrates the variations of signals behavior for dif-
ferent battery health levels. The extracted speed profiles are
really close to each other, forming good comparative sam-
ples. However, in real-life context it is impossible to obtain
exactly twice the same speed profile, implying a slight diver-
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sity among the extracted speed signals.

On the contrary, the corresponding extracted current and volt-
age patterns have various shapes. For example, the current
pattern of Level 4 (SOH between 92 and 87 %) is clearly
below the other ones, and its corresponding voltage pattern
increases faster than for the other health classes. This can be
explained by a difference of battery reaction for a same power
demand at different health levels. These behavior modifica-
tions demonstrate the alteration of the battery reaction in cor-
relation with health degradation.

The objective of the following study is to use these battery
behavior modifications to estimate its health level, only based
on the extracted patterns.

2.2. Dynamic Time Warping

In order to compare the signals pattern and quantify their sim-
ilarities, we have to consider a metric adapted to this prob-
lem. Thus, beyond usual measures, the current state-of-the-
art of shape similarity quantification is the Dynamic Time
Warping (DTW). It permits to compare asynchronous signals
of different lengths. The primary goal of DTW is to com-
pare sequences respecting their shapes by finding an optimal
alignment function stretching them. Since its introduction in
the 70s, DTW has commonly been used in signals similarity
problems in many fields : speech processing, signals recog-
nition, data mining and imaging (Aach & Church, 2001; Bar-
Joseph, Gerber, Gifford, Jaakkola, & Simon, 2002; Petitjean,
Kurtz, Passat, & Ganarski, 2012).

This method is based on the Levenshtein distance (Sakoe &
Chiba, 1971) and finds the optimal path between two sequences,
considering temporal distortion. This optimal path produces
an alignment function, along with a shape-based similarity
measure. Formally, we have two sequencesX := (x1, .., xN )
of length N ∈ N and Y := (y1, ..., yM ) of length M ∈ N. In
the following we fix a feature space denoted by F . To com-
pare two different features x, y ∈ F , one needs a local cost
measure, defined by a function c :

c : F × F → R≥0 (1)

Typically, the cost c(x, y) is low if x and y are similar to
each other, otherwise c(x, y) is high. Evaluating the local cost
measure c(x, y) for each pair of elements of the sequences
X and Y , one obtains the cost matrix C ∈ RN×M defines
by C(i, j) = c(xi, yj). The goal is to find the alignment
between X and Y minimizing the overall cost. A warping
path is a sequence p = (p1, ..., pL) with pl = (nl,ml) ∈ [1 :
N ]× [1 : M ], ∀l ∈ [1 : L], satisfying the conditions :





p1 = (1, 1) and pL = (N,M)
n1 ≤ ... ≤ nL and m1 ≤ ... ≤ mL

pl+1 − pl ∈ {(1, 0), (0, 1), (1, 1)}, ∀l ∈ [1 : L− 1]
(2)

A warping path p = (p1, ..., pL) defines an alignment be-
tween two sequences X and Y by assigning the element xnl

of X to the element yml
of Y . The alignment conditions im-

ply that the first elements of X and Y as well as their last
elements are aligned to each other. The total cost cp(X,Y )
of a warping path p between X and Y with respect to the
local cost measure c is defined as :

cp(X,Y ) =

L∑

l=1

c(xnl
, yml

) (3)

Furthermore, an optimal warping path between X and Y is
a warping path p∗ minimizing total cost among all possible
warping paths. The DTW distance dDTW (X,Y ) between X
and Y is then defined as the total cost of the optimal warping
path p∗ :

dDTW (X,Y ) = cp∗(X,Y ) = min {cp(X,Y )| ∀p} (4)

The local cost measure c is defined as the distance between
elements of sequences, e.g., the Euclidean distance. An ex-
ample of DTW warping paths is given in Figure 3.
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Figure 3. Illustration of paths of index pairs for a sequence
X of length N = 6 and a sequence Y of length M = 8
(a) Admissible warping path (b) Example of a non admissi-
ble warping path due to boundary conditions and step size
conditions

This DTW distance permits the comparison and the quantifi-
cation of different signals shape. It is particularly adapted to
battery signals evolution. Therefore, this distance measures
the difference between each extracted pattern.

2.3. Relevance Vector Machines

The Relevance Vector Machines (RVM), initially introduced
by (Tipping, 2001), is based on a Bayesian formulation of a
linear model with an appropriate prior that results in a sparse
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representation. Given the set of training patterns {ti|i =
1, ..., N} along with their corresponding health level {hi|i =
1, ..., N}, assume that hi = f(ti) + εi, where εi are assumed
to be independent samples from a Gaussian noise process
with zero mean and σ2 variance, i.e. σi ∼ N (0, σ2), ∀i.
The aim is to learn a dependency model of the targets on the
inputs to make accurate predictions of h for unseen values
of t. Typically, predictions are based on some function f(t)
defined over the input space, and learning is the process of
inferring the parameters of this function. This function takes
the form :

f(t) =

M∑

i=1

wiK(t, ti) + w0 (5)

where f(t) is the function output,K(t, ti) is a kernel function
and w = [w1, ..., wN ]T are the weights.

Therefore, the likelihood of dataset can be written as :

p(h|w, σ2) = (2πσ2)−
N
2 exp{− 1

2σ2
||h− φw||2} (6)

where φ = [φ(t1), ..., φ(tN )]T ,
and φ(tN ) = [1,K(ti, t1),K(ti, t2), ...,K(ti, tN )]T

When attempting to learn the relationship between t and h,
we wish to constrain complexity and hence the growth of the
weights w by defining an explicit prior probability distribu-
tion on w. Our preference for smoother and therefore less
complex functions is encoded by using a zero-mean Gaussian
prior over w. This gives us :

p(w|α) =

N∑

i=1

N(0, α−1
i ) (7)

where we have used αi to describe the inverse variance of
each wi. This means that there is a hyperparameter αi associ-
ated with each weight, modifying the strength of the prior
thereon. To complete the specification of this hierarchical
prior, we must define hyperpriors over α; as well as over the
noise variance σ2.

Having defined the prior, Bayesian inference proceeds by com-
puting the posterior over all unknows given the data from
Bayes’ rule, i.e. :

p(w,α, σ2|h) =
p(h|w,α, σ2)p(w,α, σ2)

p(h)
(8)

Assuming that the new test target is h∗, and the new test input
t∗ are used to make predictions. The predictions are made
according to :

p(h∗|h) =

∫
p(h∗|w,α, σ2)p(w,α, σ2|h)dwdαdσ2 (9)

We can decompose the posterior p(w,α, σ2|h) as :

p(w,α, σ2|h) = p(w|h, α, σ2)p(α, σ2|h) (10)

And so, the posterior distribution over the weights is :

p(w|h, α, σ2) =
p(h|w,α, σ2)p(w|α)

p(h|α, σ2)
∼ N (w|µ,Σ) (11)

where the posterior covariance and mean are respectively :

Σ = (σ−2φTφ+A)−1 (12)

µ = σ−2ΣφTh (13)

with A = diag(α0, ..., αN ). Note that σ2 is also treated as
hyperparameter, which can be estimated from the data.

Therefore, machine learning becomes a search for the most
probable hyperparameters posterior αMP and σ2

MP . Predic-
tions for a new input data t∗ are made according to the inte-
gration of weights to obtain the marginal likelihood for the
hyperparameters :

p(h|αMP , σ
2
MP ) =

∫
p(h∗|w, σ2

MP )p(w|αMP , σ
2
MP )dw

p(h|αMP , σ
2
MP ) = N (h∗|t∗, σ2

∗) (14)

with :
h∗ = µTφ(t∗) (15)

σ2
∗ = σ2

MP + φ(t∗)T Σφ(t∗) (16)

In order to employ the DTW measure in the RVM process,
we have to use a kernel function K considering the DTW
measure. Several attempts were made to derive kernels based
on the DTW distance (Lei & Sun, 2007). We consider in this
paper the Gaussian Dynamic Time Warping (GDTW) kernel
(Bahlmann, Haasdonk, & Burkhardt, 2002), with a parameter
γ, defined as :

KGDTW (t, ti) = exp(−γdDTW (t, ti)) (17)

2.4. Extension of RVM to Multiple Kernel

The use of different kernels in a same process allows the com-
bination of different characteristics. In the case of complex
phenomena, a multiple kernel approach can be useful as each
used kernel is subject to extract a different characteristic, ob-
tained with different kernel formations or parameters (Suard
& Mercier, 2009). In order to assign specific kernel for each
patterns, the prediction function is written :

f(t) =

N∑

i=1

k∑

j=1

wi,j ·Kj(t, ti) + w0 (18)

One possible way to write this function is to define a kernel
basis. This definition decomposes the kernel K into different
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blocks. The multiple kernel, for k kernels, is then composed
like a kernel basis :

K = [1 K1 K2 ... Kk] (19)

If we consider that all columns are independent, we can fi-
nally write the prediction function with :

f(t) =

N∗k∑

i=1

wi ·Ki(t) + w0 (20)

Thus, this formulation shows that we can extend RVM to mul-
tiple kernel with a kernel basis approach.

2.5. RUL prediction

The fitted model is used to estimate battery health at different
times. Based on these SOH estimations {hi∗|i = 1, ..., N},
the aim is to predict the battery Remaining Useful Life (RUL).
The RUL is defined as the remaining time until the battery
reaches an End of Life (EOL) criterion, commonly chosen as
80% SOH level.

Remaining Useful Life (RUL) is derived by projecting out the
capacity estimates into the future until expected capacity hits
the certain predetermined End of Life (EOL) threshold. As
opposed to the SOH estimations, this process does not require
to be done in real time as the SOH dynamic is too slow to
modify the RUL at every EV use. Thus, at a given time T ,
the proposed methodology considers a polynomial regression
to fit all the past SOH estimations {hi∗|i = 1, ..., N}, with
N ≤ T . The polynomial regression finds the coefficients
of a polynomial p of degree d that fits p(T ) to the estimated
battery health level hi∗ at a time i, in a least square sense.
The polynomial p of degree d is defined as :

p(T ) = p0 + p1T + ...+ pdT
d =

d∑

j=0

pjT
j (21)

Considering this polynomial construction, the aim is to build
a RUL probability density function. For this, we use a boot-
strap technique to predict the value of the RUL with a statis-
tical sampling.

Thus, we sample past SOH estimations {hi∗|i = 1, ..., N},
with replacement, obtaining bootstrap data {hBi∗|i = 1, ..., N}.
For this bootstrap data we calculate the corresponding poly-
nomial p and then use this polynomial to predict its associated
RUL.

Repeating these steps L times, we obtain a family of boot-

strap RUL predictions {R̂UL
B

g |g = 1, ..., L}. The distribu-

tion of the R̂UL
B

g allows the construction of a predicted RUL
probability density function (pdf) at a time T.

Even with few SOH estimations, this bootstrap permits the

obtention of RUL pdf. Note that, in battery RUL prediction
context, we will consider in the following study a polynomial
degree d = 2 to fit the SOH dynamics. This choice is a con-
sequence of the slow variations of SOH evolution observed in
the literature.

3. RESULTS

3.1. Model learning

The described framework is applied on battery real dataset.
The considered methodology is here tested with patterns ex-
tracted with a 10-60 km/h in less than 12.5 seconds as an
acceleration criterion. Note that a long acceleration pattern
contains more information and less variability than the short
ones. However, the longest acceleration profiles require larger
datasets to obtain enough patterns for the methodology pro-
cess.

The data used in this study wascollected from a real and non-
controlled EV use, during 460 days, generating 50 000 km.
Thereby processing data are representative of a large vari-
ety of conditions an EV battery can be faced with. More-
over, using real data ensures compatibility of the developed
methodology for embedded uses. The presented results here
come from a unique EV battery to illustrate the methodol-
ogy performances. This experiment also contains several bat-
tery characterizations permitting to measure the real SOH of
the battery, through a complex specific process done a test
bench. Thus, these measured SOH values compose the tar-
geted health levels h, and the aim is to produce SOH estima-
tions ĥ, with the explained methodology.

To illustrate the frequency of pattern extraction, on the stud-
ied real data, an acceleration profile corresponding to the de-
fined criterion happens in average every 150 km of EV use.
This value is given here as an indication as it is of course
highly dependent on the driving style and to driving condi-
tions. This property induces that during a real EV use, the
model provides a new SOH estimation on average every 150
km, which represents a good frequency compared to the total
battery lifetime estimated to be approximately of 160 000 km.
Thus, for a utilization of 15 000 km per year, the algorithm
produces two SOH estimations every week.

The extracted voltage and current patterns, as presented in
Figure 1, along with capacity references obtained from spe-
cific tests are then used. The training data sets are composed
of patterns issued from real EV uses and of frequent battery
measurements. Thus, each extracted pattern is associated to a
battery health level, permitting the training of the RVM algo-
rithm. In this study we use 75% of the data to train the RVM
algorithm and the other 25% compose the test data permitting
to evaluate the methodology accuracy.

The first step of the presented methodology is to create a
RVM model to estimate online the battery health during its
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real uses. As explained in Section 2.3, the use of several ker-
nels can add information into the model. Thus, in this study
we consider a multiple kernel RVM approach, with the as-
sociation of three different kernels. Two GDTW kernels are
respectively built with the extracted current patterns and with
the extracted voltage patterns. The other kernel is a Gaus-
sian kernel calculated from the values of the battery tempera-
ture measured at each pattern extraction. Battery temperature
measures are here introduced into the model construction to
avoid adding information about the variable external condi-
tions. Indeed, it is well known that the battery temperature
highly influences its reaction and its signals behavior. The
SOH targets h are here the extrapolations of the measures ob-
tained with the battery characterizations. Note that this model
learning step is computationally constraining, as it requires a
lot of DTW calculations. But this model construction is done
just once, before real time application context. The complex-
ity of this step is consequently not a drawback to the applica-
tion in a real EV use.

Therefore, the inputs of the learning RVM model are the ker-
nels corresponding to the current and voltage patterns along
with a kernel based on their associated battery temperature
measures, the output is an estimation ĥ of the battery SOH
level.

3.2. Results

Based on the learned RVM model, the methodology allows
the SOH diagnosis whenever a specific 10-60 km/h acceler-
ation in less than 12.5 seconds, is detected during EV use.
Thus, the embedded trained algorithm produces a new SOH
estimation at each acceleration corresponding to our criteria
defined in Section 2.1. The pattern extraction step is done in
real time, as it only requires a criteria comparison step. Once
a speed pattern is detected as satisfying, the extraction crite-
ria, the corresponding voltage and current patterns are then
extracted, along with the temperature value. These informa-
tions are then directly used as input in the SOH estimation
model, producing a SOH estimation. This estimation step is
done in real time, and the calculus time is highly dependent
to the variety of training datasets. Indeed, the estimation pro-
cess require the quantification of DTW distance between new
extracted patterns and all of the corresponding training pat-
terns. However, this implementation is done in a few seconds
and permits the application in real time. Figure 4 illustrates
the obtained performances by this methodology with a battery
under real EV use.

The global error between the estimations {ĥi|i = 1, ..., N}
and their respective targets {hi|i = 1, ..., N} is calculated
with the relative error as follows :

η =
1

N

N∑

i

∣∣∣∣∣1−
ĥi
hi

∣∣∣∣∣ (22)
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Figure 4. Estimation of the battery SOH in real-time, with a
mean corresponding relative estimation error of η = 0.81%

The SOH estimations demonstrate the good accuracy of the
proposed methodology as the average relative error η of the
results illustrated in the Figure 4 is 0.81%. Note that the stan-
dard deviation of the obtained errors is 1.1%, inducing an
interesting stability of the estimations. Moreover, the estima-
tions trend fits with the SOH measurements, validating the
reliability of this new innovative framework. Thus, Figure 4
shows that the use of machine learning process with battery
patterns allows the estimation of the battery SOH. This result
level is highly interesting as it performs to estimate the bat-
tery SOH with a good accuracy in real time during EV uses.

Based on these SOH estimations, the methodology detailed
in Section 2.4 permits the prediction of the battery RUL at
different times. Figure 5 presents the predicted battery RUL
probability density functions at three different times, based
on the SOH estimations illustrated in Figure 4.

Figure 5. Prediction of the battery RUL probability density
function (pdf) at three different times

The three RUL’s probability density functions (pdf) presented
in Figure 5 demonstrate the robustness of the proposed method-
ology. The chosen times for RUL estimation are made arti-
ficially to illustrate the evolution of the RUL pdfs over time.

6

European Conference of the Prognostics and Health Management Society 2014

20



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

Thus, the predicted RUL pdfs differ depending on the pre-
dicted time. The RUL pdf is indeed sensitive to the SOH
estimation variations. For example we can see the RUL pdf
predicted at 210 days considers a rapid battery capacity de-
crease, due to the last SOH estimations made before the pre-
diction time.

It is also noticeable that RUL prediction improving in both
accuracy and precision with the inclusion of more measure-
ments before prediction. This is clearly visible in Figure 5,
as the RUL pdf predicted at 460 days produces the best confi-
dence level compared to the two others predictions. Thus, at
460 days the EOL criteria is predicted to be reached between
580 and 610 days, which represents a narrow range consider-
ing the total battery life.

4. CONCLUSION

This paper presents the implementation of a machine learn-
ing framework that allows the estimation of the battery State
of Health (SOH) and predicting the Remaining Useful Life
(RUL), and more specifically for Lithium-ion batteries. The
proposed approach is based on the alteration of the battery
signals behavior throughout its life to estimate the battery
SOH, adapting the value of unknown model parameters dur-
ing a preliminary training process. The estimated value of the
battery capacity is then used to predict the battery RUL. Im-
plementation results show the robust performance of the al-
gorithm in real-time SOH estimation under uncontrolled con-
ditions. The presented method performs well in a real life
context, which is not the case of other existing approaches.

This study developed an innovative approach devoted to es-
timate the battery SOH during real EV uses, without specific
requirements. Such a methodology is a particular advantage
for a commercial aspect as it does not require to control the
battery life conditions to make an estimation. The learned
algorithm can indeed be used for estimating the SOH of all
batteries with the same design. Meaning that once the estima-
tion model is built, it can be used as an embedded estimation
model in all EVs.

Furthermore, the average estimation error of less than 1% ob-
tained in the example presented in Figure 4 can be reduced
using more training data coming from different EVs. In a
fleet context, an estimation model can be trained from sev-
eral EVs and then be embedded into all EVs using the same
battery. This would allow accurate SOH estimation in all of
these EVs.

Data driven approaches require large dataset to perform, how-
ever the results presented were obtained from a model built on
a single EV. This study demonstrates a new baseline for SOH
estimation only based on battery signals. It would be interest-
ing to use this algorithm with a large set of data coming from
an EV fleet. Thus, the next step is to test this methodology

with several batteries to demonstrate the robustness and accu-
racy of the developed process with a large EVs fleet. In this
case, the learned model by machine learning process would
deliver even more accurate SOH estimations, as it would be
based on more training datasets. To extend this methodol-
ogy, it can also be considered in future studies to explore new
kernels associations in order to input more information to the
machine learning step.

The presented methodology can also be transposed to every
battery use, to estimate its SOH during real utilizations. In-
deed, this study does not consider any restricting use hypoth-
esis. This methodology is, for example, adjustable in electric
aircraft context.
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ABSTRACT

Predicting whether or not vehicle batteries contain sufficient
charge to support operations over the remainder of a given
flight plan is critical for electric aircraft. This paper de-
scribes an approach for identifying upper and lower uncer-
tainty bounds on predictions that aircraft batteries will con-
tinue to meet output power and voltage requirements over
the remainder of a flight plan. Battery discharge prediction
is considered here in terms of the following components; (i)
online battery state of charge estimation; (ii) prediction of fu-
ture battery power demand as a function of an aircraft flight
plan; (iii) online estimation of additional parasitic battery
loads; and finally, (iv) estimation of flight plan safety. Sub-
stantial uncertainty is considered to be an irremovable part
of the battery discharge prediction problem. However, high-
confidence estimates of flight plan safety or lack of safety are
shown to be generated from even highly uncertain prognostic
predictions.

1. INTRODUCTION

Electric propulsion can provide a number of advantages over
combustion powered vehicles, such as reduced noise, zero
emissions, more responsive control of output power, reduced
part count, and reduced weight. In such vehicles, it is critical
to monitor battery charge and to estimate the ability of the
battery to support flight activities as it is discharged.

As is the case with many applications of prognostics, un-
avoidable uncertainties or inaccuracies in system state esti-
mates, system dynamics modeling, and future input estima-
tion will complicate the prediction problem (Sankararaman
& Goebel, 2013). The presence of substantial uncertainty in
prognostic estimates however does not necessarily rule out

Brian Bole et al. This is an open-access article distributed under the terms of
the Creative Commons Attribution 3.0 United States License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

its usefulness to a decision maker. If prognostic uncertainty
can be represented by a probability distribution or bounded
by a confidence interval, than it may still be extremely useful
for evaluating the potential risk and reward of various control
options (Edwards et al., 2010).

The battery discharge prognostic algorithm described in this
paper uses three primary tools to manage prognostic uncer-
tainty. First, unscented Kalman filtering (UKF) is used to up-
date probabilistic estimates of internal battery states, based on
a series of battery current and voltage observations. Second,
a predefined flight plan is used to identify upper and lower
uncertainty bounds around future system loading demands.
Finally, uncertainty is propagated over a prognostic horizon
to identify uncertainty bounds on prognostic estimates.

This paper extends our previous work on battery discharge
prediction for electric vehicles. The battery modeling and
UKF state estimation approaches explained here were re-
cently published in (Quach et al., 2013). The aerodynamic
and aircraft powertrain models used here to estimate future
battery power demand as a function of a flight plan were re-
cently published in (Bole et al., 2013). Our previous work
considered the prediction of remaining flying time given a
flight plan with no fixed termination time. That approach
is supplemented here by introducing new prognostic metrics
that will be used to evaluate the feasibility of completing a
fixed duration mission. This paper also describes the incor-
poration of parasitic resistance faults into prognostic predic-
tions.

This paper is organized as follows. The prototype electric air-
craft used to demonstrate battery charge estimation and dis-
charge prediction techniques is described in Section 2. Esti-
mation of battery SOC using unscented Kalman filtering and
an equivalent circuit model is presented in Section 3. Battery
demand modeling as a function of airspeed, acceleration, and
angle of climb is described in Section 4. The online detection
of parasitic battery loads is described in Section 5. Mission
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Figure 1. Edge-540T during landing

feasibility prediction and battery SOC estimation at the end
of a flight plan is presented in Section 6. Experimental re-
sults are described in Section 7. Finally, concluding remarks
are given in Section 8.

2. PROTOTYPE ELECTRIC VEHICLE BACKGROUND

Battery discharge prognosis is analyzed here in the context of
a prototype battery powered aircraft. The prototype aircraft
is a 33% scaled Edge-540T, with electric propulsion, shown
in Fig. 1. It is 98 inches long, with a 100 inch wing span,
1881 in2 of wing area, and weighs 47.4 lbs. This aircraft is
operated by researchers at the NASA Langley Research cen-
ter, and has been the subject of several publications on battery
discharge prediction and prognostics-based decision making
(Saha et al., 2011, 2012; Balaban & Alonso, 2013).

The aircraft powertrain is illustrated in Fig. 2. The pro-
peller of the UAV is driven by two tandem mounted outrun-
ner brushless DC motors that are each powered by a series
connection of two lithium polymer battery packs. Each of
the battery packs consist of five series connections of two
3900mAh lithium polymer pouch cells wired in parallel. The
total rated capacity of each pack is 7800 mAh with a 50 C
max burst discharge. When fully charged, each 5-cell pack
has an open circuit voltage of 21 V (4.2 V per cell).

Power flow from the battery packs to the driving motors is
controlled by a Jeti 90 Pro Opto electric speed controller
(ESC). The ESC sends synchronized voltages to the propeller
motors at a duty cycle determined by a throttle input, which
is either sent by remote control from a pilot or by an onboard
autopilot.

Inductive loop current sensors are mounted on the positive
lead feeding each ESC. Additional current sensors are also
mounted on the positive feed from each of the four batteries.
The positive lead of each battery is also tapped to provide
the data system with battery voltage measurements. These
are the signals that online battery discharge prognostic algo-
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Figure 2. Motor System Diagram

rithms will use to estimate battery SOC and to predict SOC
at end of mission.

3. BATTERY MODELING

The equivalent circuit model shown in Fig. 3 is used to repli-
cate battery current and voltage dynamics as a function of
estimated battery state of charge (SOC). This battery model
containes six electrical components that are tuned to recreate
the observed current-voltage dynamics of the Edge-540T bat-
tery packs. Battery charge is stored in the equivalent circuit
model capacitor, Cb. The Rs, Cs and Rcp, Ccp circuit ele-
ment pairs are used to capture standard battery phenomenon,
such as internal resistance drops and hysteresis effects.

Because the equivalent circuit model is used to model the
input-output response of a battery rather than its internal elec-
trochemical states, the number of electrical components used,
and there arrangement within an equivalent circuit can vary
widely in application (Chen & Rincon-Mora, 2006). Addi-
tionally, because battery input-output dynamics are known
to change as a function of internal battery charge, is often
the case that some of the parameters in an equivalent cir-
cuit model are parameterized as functions of battery state of
charge (SOC) (Zhang & Chow, 2010). There is no universal
guidance on how equivalent circuit parameters should be var-
ied as functions of SOC, and many differing approaches are
seen in literature. It was decided based on qualitative obser-
vation that defining Cb, Ccp, and Rcp as parameterized func-
tions of battery SOC gave an acceptable trade-off between the
number of parameters to be identified and model error.

The following SOC parameterizations were used for the Cb,
Ccp, and Rcp parameters in Fig. 3:

Cb = CCb0 +CCb1 ·SOC+CCb2 ·SOC2 +CCb3 ·SOC3 (1)

Ccp = Ccp0 + Ccp1 · exp (Ccp2 (SOC)) (2)
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Figure 3. Equivalent circuit battery model.

Rcp = Rcp0 +Rcp1 · exp (Rcp2 (SOC)) (3)

where the coefficients in the parameterized models for Cb,
Ccp, and Rcp must be tuned based on observed current-
voltage battery data over a range of battery SOC values.

Battery SOC is defined here as:

SOC = 1− qmax − qb
Cmax

(4)

where qb represents the charge stored in Cb, qmax is the
maximum charge that the battery can hold, and Cmax is the
maximum charge that can be drawn from the battery. Note
that, the maximum charge that can be drawn from the bat-
tery will be lower than the amount of charge stored in the
battery due to electrochemical side-reactions that lock some
portion of charge carriers in the battery. The term coulombic
efficiency is used to refer to the portion of stored charge that
is recoverable during the discharge of the battery. There are
some mechanisms including resting the battery that can un-
lock some of its lost capacity, however, the overall trend is
inevitably downward.

Two laboratory experiments were used to fit all of the param-
eters in the equivalent circuit model to the lithium polymer
packs used on the Edge-540T. Adapting the equivalent circuit
model to account for manufacturing variation and differences
in battery state-of-health is performed by varying only the
battery charge storage capacity term, qmax, and the series re-
sistance term, Rs, in equivalent circuit model. All other fitted
parameters in the equivalent circuit model are unvaried across
all Edge-540T packs. The qmax and Rs terms are identified
by running separate characterization cycles for each battery
pack prior to flight testing. A sample implementation for the
online adaptation of these parameters to track age-dependent
changes in battery dynamics is found in (Bole et al., 2014).

Examples of measured and modeled battery voltage curves
for two laboratory characterization cycles are shown in
Figs. 4 and 5. The results shown in Fig. 4 demonstrate a char-
acterization experiment in which a battery is discharged at a
low current from a fully charged state. During this low cur-
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Figure 4. Comparison between measured and predicted bat-
tery voltage over a low current discharge.
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Figure 5. Comparison between measured and predicted bat-
tery voltage over a pulsed current discharge.

rent discharge test, the voltage across the Cb capacitor plays
a dominate role. Thus, this experiment allows the Cb param-
eters in the equivalent circuit model to be fit in isolation.

Fig. 5 shows sample results from a second characterization
experiment in which a battery is discharged using a series of
current pulses. This experiment exposes voltage dynamics
that must be fit by the Rs, Cs, Ccp and Rcp parameters in the
equivalent circuit model.
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3.1. Battery State Estimation

The identified battery model can then be used to implement
an observer for the internal battery states based on sampled
voltage and current data. The observer will attempt to esti-
mate the internal states of each of the capacitors (Cb ,Cs, and
Ccp) in the equivalent circuit model.

The unscented Kalman filter (UKF) (Julier & Uhlmann, 1997,
2004) is a flexible tool for computing probabilistic belief in
system state estimates based on stochastic (and possibly non-
linear) models of system dynamics. The UKF assumes a gen-
eral nonlinear form of the state and output equations, and ef-
ficiently propagates model and state uncertainties without the
need to calculate Jacobians (unlike the extended Kalman fil-
ter). The UKF is restricted to additive Gaussian noise random
processes; however use of the unscented transform, a deter-
ministic sampling method, allows random variables with non-
Gaussian distributions to be incorporated using a minimal set
of weighted samples, called sigma points (Julier & Uhlmann,
1997).

The UKF takes as inputs the system inputs, u(k), and the
measured system outputs, y(k). The UKF gives as output,
performing estimation using the battery model, a probabil-
ity distribution for the state, p(x(k)|y(0 : k)), described in
the form of weighted sigma points (X ,w). From the sigma
points, estimates of SOC, and voltage can be directly derived
to obtain probability distributions of these quantities.

The number of sigma points needed is linear in the dimension
of the random variable, and so the statistics of the transformed
random variable, i.e., mean and covariance, can be computed
much more efficiently than by random sampling (Daigle et
al., 2012). Readers interested in the application of UKF and
UT to the estimation of battery SOC are referred to our previ-
ous papers (Bole et al., 2013; Daigle et al., 2012) and the ref-
erences therein. Here, it is sufficient to say that model based
filtering approaches such as UKF will be much less suscepti-
ble to initialization and measurement errors than the Coulomb
counting method currently used in many battery monitoring
systems (Dai et al., 2006).

4. FUTURE MOTOR POWER DEMAND MODELING

The characterization of net battery power required by aircraft
motors over a given set of maneuvers was recently described
in (Bole et al., 2013). The powertrain load estimation model-
ing introduced in (Bole et al., 2013) made use of a set of rel-
atively simple aerodynamics and powertrain dynamics equa-
tions that will be recreated here.

The equations presented here make use of the following as-
sumptions: (i) the propeller is mounted on the aircraft nose;
(ii) the angle between the thrust vector generated by the pro-
peller and the velocity vector of the aircraft is small; and (iii)

aircraft turning forces are small in comparison to the thrust
and drag forces on the aircraft in its direction of travel.

Given these assumptions, the sum of the forces acting in the
aircraft direction of travel can be expressed as:

Txw = D(v) +m · g · sin (α) +m · v̇ (5)

where Txw
represents the thrust produced by the aircraft in the

direction of travel, D represents the drag force acting in the
opposite direction of aircraft motion, v represents the aircraft
airspeed in units of meters/second, v̇ represents acceleration,
α represents angle of climb in units of radians, m represents
the vehicle mass, and g represents the earth’s gravity.

The drag force on the airframe was fitted to the following
polynomial function of airspeed and angle of climb,

D(v, γ) = c1 + c2 · v + c3 · v2 + c4 · α
for v ≥ 15m/s (6)

During take-off and landing maneuvers when the aircraft
speed is less than 15m/s the drag force is approximated
as D = 3 · v. The fitted parameter values used here are:
c1 = 53.9, c2 = −2.4, c3 = 0.07, c4 = 0.56

The product of thrust and airspeed gives the motive power
exerted by the aircraft on its environment,

Pp =
1

ηp
· Txw

· v (7)

where Pp represents propeller output power and ηp repre-
sents the approximate propeller output power conversion ef-
ficiency. The fitted value ηp = 0.7652 was found using a
commercial aerodynamics simulator.

A fixed power conversion efficiency is assumed here for the
aircraft motors and other power electronics,

PESC = ηe · Pp (8)

where ηe represents a power conversion efficiency factor and
PESC represents net power at the input to the aircraft’s two
ESCs. The average efficiency of aircraft motors and power
electronics was estimated here to be about 85%, ηp = 0.85.

The net ESC input power is equal to the sum of the power
outputs from the two series connected battery strings,

PESC = PB1,2 + PB3,4 (9)

where PB1,2 and PB3,4 represent the battery power output for
batteries B1,B2 and B3,B4 as denoted in Fig. 2.

Although both ESCs receive the same throttle input com-
mand, their individual power draw is known to have a pro-
portional relationship.

PB1,2 = λ · PB3,4 (10)

4
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where λ is constant of proportionality. This constant λ was
estimated to be about 1.37 over typical use cases for the Edge-
540T powertrain.

Substitution of Eqs. (5) - (8) yields an expression for the
approximate ESC input power required to fly at a particular
airspeed and angle of climb,

PESC =
1

ηeηp
· Txw · v

=
v

ηeηp
· (D (v, α) +mg · sin (α) +mv̇) (11)

The power demands on battery strings B1,2 and B3,4 are then
estimated as,

PB1,2
=

λ

1 + λ
· PESC

PB3,4 =
1

1 + λ
· PESC (12)

4.1. Uncertainty Representation

Uncertainty in future powertrain loading demands are con-
sidered here to be unavoidable in environmental and system
dynamics modeling. Uncertainty in future load prediction is
represented here by defining a median future demand predic-
tion with an upper and lower uncertainty bound.

Fig. 6 shows predicted and measured battery output power
and battery output energy respectively for the battery string
B1,B2 over a sample flight of the Edge-540T. The upper
and lower uncertainty bounds shown in Fig. 6 represent
±30% deviation from the future battery power estimated us-
ing Eqns. (11) and (12) with the following sample flight plan.

1. Takeoff and climb to ∼200 meters (duration = 60 s)
(α = 2.8◦, v0 = 0m

s , v̇ = 0.4m
s2 )

2. Maintain altitude and approximate airspeed of v = 23m
s

(duration = 265 s) (α = 0◦, v = 23m
s , v̇ = 0m

s2 )
3. Maintain altitude and approximate airspeed of v = 29m

s
(duration = 225 s) (α = 0◦, v = 29m

s , v̇ = 0m
s2 )

4. Maintain altitude and approximate airspeed of v = 22m
s

(duration = 140 s) (α = 0◦, v = 22m
s , v̇ = 0m

s2 )
5. Land aircraft (duration = 120 s) (α = −3◦, v0 = 22m

s ,
v̇ = −0.18m

s2 )

It can be seen from Fig. 6 that the actual battery power does
not always fall within the plotted upper and lower uncer-
tainty bounds. Notably the battery loads during the takeoff
and climb portion of the flight plan (from 0-60 seconds) are
seen to exceed the maximum predicted power at some points.
Also, the battery loads during landing maneuver (from 690-
810 seconds) are seen to exceed the minimum and maximum
predicted power. The exceedances seen in takeoff and land-
ing maneuvers are due to unmodeled transient dynamics in
the system. These transients are short lived however, and the

0 200 400 600 800
0

1000

2000

3000

Time (s)

B
1,

2 P
ow

er
 (

W
)

 

 
B

1,2
 Power

Median Predicted
Min/Max Predicted

0 200 400 600 800
0

200

400

600

800

1000

Time (s)
B

1,
2 E

ne
rg

y 
(k

W
⋅s)

 

 
B

1,2
 Energy

Median Predicted
Min/Max Predicted

Figure 6. Plots of measured and predicted B1,2 output power
and energy over a sample flight.

measured battery energy consumed over the sample flight is
seen to fall well within the estimated uncertainty bounds.

5. PARASITIC LOAD ESTIMATION

A potential fault mode for the Edge aircraft is some fault
in the electrical power system that manifests as a parasitic
load on the batteries. Because this fault mode presents an in-
creased load on the batteries, it will have effect of increasing
the battery charge required to complete a flight plan. Future
battery load estimates and battery discharge prediction would
thus be biased if the parasitic load faults were not incorpo-
rated. In such a situation, an integrated diagnostics and prog-
nostics approach is required (Bregon, Daigle, & Roychoud-
hury, 2012).

In our case, we consider a parasitic resistance that is located
in parallel with the batteries. The parasitic current, ip, is the
difference between the total battery current, i, and the current
going to the motors, im. In the aircraft, both i and im are
measured as well as the total battery voltage V .

A residual, defined as the difference between an observed sig-
nal and its model-predicted value, can be defined for the par-
asitic fault detection based on the measured values of i and
im. In the nominal case, our model for i is i = im. We
can then define a residual, ri, as r = i∗ − i∗m, where the ∗

superscript indicates a measured value. Nominally, ri = 0,
and we can define a simple threshold-based fault detector that

5
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triggers when ri > T for some threshold T . More complex
fault detection methods can also be used, e.g., (Daigle et al.,
2010). Once a fault is detected, we can estimate the parasitic
current at time k using

îp(k) = i∗(k)− i∗m(k), (13)

The parasitic resistance can then be estimated using

R̂p(k) =
V ∗
b (k)

îp(k)
. (14)

The estimate R̂p(k) will be noisy, since it is computed based
on measured values. Assuming that Rp is constant, we take
the median of all computed values to provide a robust esti-
mate of Rp, i.e.,

Rp(k) = median({R̂p(kj) : kd ≥ kj ≥ k}), (15)

where kd is the time of fault detection (and the time that fault
identification begins).

Since we are only interested in diagnosing the parasitic load
fault, the diagnosis approach can be very simple. In general,
one may also be concerned with sensor faults, in which case a
more complex diagnosis approach is required, e.g., (Balaban
et al., 2013; Daigle, Bregon, & Roychoudhury, 2011). In such
an approach, additional information must be used to improve
the analytical redundancy required for diagnosis.

Experimental results are shown in Figs. 7(a) and 7(b). In the
nominal case, parasitic current is estimated to be approxi-
mately zero, which is correct for the no fault case. For the
fault cases, parasitic current is clearly observed, and parasitic
resistances can be estimated. In this data, sensor noise is very
low and so the results are very accurate. Additional sensor
noise will have a significant impact on the computation of
parasitic resistance. Fig. 8 shows the difference in results for
additional noise. With higher noise, accuracy reduces and the
estimate takes longer to converge. Because we are using a
median, the results are still pretty smooth.

6. PREDICTION

We now consider the problem of predicting whether or not the
aircraft batteries contain sufficient charge to complete the re-
mainder of a given flight plan. The aircraft batteries are con-
sidered to be no longer able to safely support flight activities
when any of the battery pack voltages drop below 17V. A 17V
pack output voltage corresponds individual lithium-ion cell
voltages of approximately 3.4V. Discharging the lithium-ion
cells beyond this voltage risks damage or catastrophic failure.

Predictions of the future evolution of battery voltage over a
flight plan are generated using estimates of the present bat-
tery state, as well as estimates of the future loads to be placed
on the battery. As explained in Section 3.1, uncertainty in
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Figure 7. Parasitic current and resistance estimates.
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Figure 8. Parasitic resistance estimation with additional sen-
sor noise.

battery state estimates is represented using a weighted set of
sigma points. As explained in Section 4.1, uncertainty in pre-
dictions of the future battery power to be demanded over the
remainder of a flight plan are represented here by upper and
lower uncertainty bounds.

The experimental results presented in the next section demon-
strate that high confidence assessments on the safety of com-
pleting the remainder of a flight plan can be generated by sim-
ulating all of the current sigma point state estimates against
the extreme upper and lower bounds of anticipated future bat-
tery load. If the maximum and minimum sigma points result-
ing from the application of these future loading extremes are
safe, then we must have very high confidence that the mis-
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sion will be completed. If some of the simulated sigma points
reach a failure state, then we can attempt to further qualify the
risk of failure by applying additional analysis techniques.

7. EXPERIMENTAL TESTING OF BATTERY PREDIC-
TION

Fig. 9 shows an electrical schematic for a test stand that is
used to simultaneously subject batteries to both a static resis-
tive loads and a dynamic current loads. The B1 and B2 bat-
teries shown in Fig. 9 represent two batteries under test. Our
test articles are batteries with the same chemistry, capacity,
voltage, and manufacturer as the Edge-540T batteries. The
if component in Fig. 9 represents a dynamic current sink that
is programmed to sink the same current as was measured for
the B1,2 battery chain over a given flight of the Edge-540T.
The Rp component in Fig. 9 represents a resistive load that
can be switched in parallel with the batteries on command.

A Maccor Series 4000 automated battery cycler is used for
the tests described in this section, and for the battery char-
acterization cycling experiments described in Section 3. This
programmable test system can be configured to draw or apply
static loads or time dependent loads. The testing equipment
is capable of sourcing or sinking up to 5kW of power, with
current limited to 100A, and voltage limited to 50V. The cy-
cler can be programmed to terminate a loading profile based
on current, voltage, or temperature safety thresholds. In the
case of the experiments conducted here, a low-voltage safety
threshold of 17V per pack was used prevent over discharging
the batteries. If this threshold is crossed, the battery loading
experiment is terminated immediately and the batteries will
be considered failed for the purposes of that simulation run.

Four battery discharge experiments are described here. In all
of these experiments the if component in Fig. 9 is set equal
to a 10 Hz sampling of the iB1,2

current as measured over a
sample flight of the Edge-540T. One experiment is performed
with the Rp branch of Fig. 9 open. The resultant battery volt-
age response should closely follow the trends seen on bat-
teries B1 and B2 in the flight test, because they are being
subjected to the same current loads. The addition of a para-
sitic resistance to the battery circuit is tested in the remaining
three discharge experiments. Parasitic resistances are added
into the battery circuit at approximately 200 seconds into a
replayed flight. The lower the value of parasitic resistance in-
jected, the higher the parasitic current draw on the batteries.
The additional current drawn by this parasitic load effectively
increases the demand on the battery over a simulated flight,
and correspondingly increases the risk that the battery lacks
sufficient charge to complete a given flight plan. The parasitic
resistance values tested were: {Rp = 10 Ω, Rp = 5 Ω, and
Rp = 1 Ω}.
Fig. 10 shows B1 and B2 voltage measurements and SOC
estimates collected during a sample flight, and during four

Figure 9. Schematic of battery tester, showing current sources
and voltage measurement points.

battery discharge tests conducted in the laboratory. The flight
data was collected over an Edge-540T flight that followed the
sample flight plan described in Section 4.1. The battery volt-
age and SOC measurements for the nominal experiment (with
no parasitic load injected) are in fact seen to follow the flight
measurements. The injection of 10 Ω and 5 Ω parasitic resis-
tances is seen to result in lowered battery voltage and SOC
over a sample flight profile. Finally, the injection of a 1 Ω
resistance is seen to result in the early termination of the dis-
charge test due to an exceedence of the low-voltage safety
threshold at approximately 500 seconds.

Next we consider the generation of prognostic estimates for
the aircraft at regular time-indexes over a UAV mission. At
each time-index the inputs to the prognostic estimator are (i)
a set of sigma points representing battery state estimates; (ii)
estimated ±30% uncertainty bounds on motor system power
demands over a planned set of aircraft maneuvers; and (iii)
online estimates of parasitic load faults. Prognostic estimates
will be reported in terms of two metrics; (i) the predicted
battery SOC at the end of a flight plan, and (ii) the predicted
time to reach either the battery low-voltage cut-off threshold
or the end of a flight plan.

Fig. 11 shows the evolution of prediction uncertainty bounds
for the two prognostic metrics over five battery discharge data
sets. The starting uncertainty bounds for the prediction of
battery SOC at the end of the flight plan is seen to span from
approximately 55% SOC to 10% SOC. The battery EOD esti-
mate is seen to span from approximately 700 seconds to 810
seconds, where 810 seconds marks the expected end of the
aircraft flight plan. These uncertainty bounds indicate a pre-
dicted worst-case outcome where the batteries reach the low-
voltage cut-off threshold at approximately 700 seconds, and
a best-case predicted outcome in which the mission will be
safely completed.

During the time interval [0,180], all of the worst-case EOD
estimates are seen to converge on a belief that the mission will
not cause the batteries to fail prior to flight plan completion.
This convergence occurs because the battery state evolution
observed over the time interval [0,180] turns out to be better
that was predicted for the worst-case.
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Figure 10. Comparison of voltage measurements (top) and
SOC estimates (bottom) for batteries B1 and B2 over a sam-
ple flight and four test cases that include injected parasitic
resistances of various magnitudes.

Around 200 seconds into the mission a parasitic resistance is
injected in parallel with the batteries. The effect that this new
parasitic resistance has on predicted future battery loads is
clearly seen the predictions of SOC at end of flight plan. For
the case of the 1 Ω injected parasitic resistance, predictions
of SOC at end of flight plan are seen to rapidly converge to a
prediction that the battery charge will be fully depleted prior
to the end of the flight plan. The EOD prediction plots show
an initial drop in the confidence that batteries will survive the
remainder of the flight plan with 5 Ω and 10 Ω of parasitic
load. The confidence in flight plan safety for the 5 Ω and
10 Ω cases is then seen to converge to predicting the safe
completion of the mission.

This example demonstrates the combination of system state
estimation uncertainty and future system load uncertainty into
an estimate of prognostic uncertainty. Upper and lower un-

0 200 400 600 800
0

10

20

30

40

50

60

Time (s)

SO
C

 a
t E

nd
 o

f 
Fl

ig
ht

 P
la

n 
(%

)

 

 Flight Nominal R
p
 = 10 Ω R

p
 = 5 Ω R

p
 = 1 Ω

0 200 400 600 800
0

100

200

300

400

500

600

700

800

Time (s)

E
O

D
 (

s)

Figure 11. Prediction uncertainty bounds for two prognostic
metrics plotted at 30 second time intervals over five battery
discharge data sets. Predicted battery SOC at EOM is shown
in the top plot, and predicted time to reach a battery EOD
threshold is shown in the bottom plot

certainty bounds on the space of future outcomes are derived,
and the utility of these bounds for making high confidence es-
timates of flight plan safety is demonstrated. Consideration of
situations in which uncertainty bounds indicate that a range of
both safe and unsafe evolutions of the system state are possi-
ble is identified as a topic for future work. In such situations,
knowledge of a probability distribution for the prognostic un-
certainty between upper and lower uncertainty bounds, may
be needed to quantify the risk and reward of potential super-
visory control actions. Extending the prognostic results pre-
sented here in this way is possible, but is left as a topic for fu-
ture work. Flight demonstrations of autonomous and pilot-in-
the-loop decision making based on online battery discharge
predictions is also planned for future work.
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8. CONCLUSIONS

This paper describes an approach for identifying upper and
lower uncertainty bounds on predictions that aircraft batteries
will continue to meet output power and voltage requirements
over the remainder of a flight plan. Uncertainty bounds were
generated using uncertain estimates of a battery’s state and
uncertain predictions of future battery demands. The estab-
lishment of upper and lower bounds on prognostic estimates
was shown to enable high confidence assessments of amount
of safe flying time remaining before there is appreciable risk
of the battery output voltage dropping below specified lower
limits.
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ABSTRACT

Systems health management, and in particular fault diagno-
sis, is important for ensuring safe, correct, and efficient op-
eration of complex engineering systems. The performance
of an online health monitoring system depends critically on
the available sensors of the system. However, the set of se-
lected sensors is subject to many constraints, such as cost and
weight, and hence, these sensors must be selected judiciously.
This paper presents an offline design-time sensor placement
approach for complex systems. Our diagnosis method is built
upon the analysis of model-based residuals, which are com-
puted using structural model decomposition. Sensor place-
ment in this framework manifests as a residual selection prob-
lem, and we aim to find the set of residuals that achieves
single-fault diagnosability of the system, uses the minimum
number of sensors, and corresponds to the best model decom-
position for the best distribution of the diagnosis system. We
present a set of algorithms for solving this problem and com-
pare their performance in terms of computational complexity
and optimality of solutions. We demonstrate the approach
using a benchmark multi-tank system.

1. INTRODUCTION

Fault diagnosis, an important aspect of systems health man-
agement, is essential for ensuring safe, correct, and efficient
operation of complex engineering systems. Fault diagnosis
involves fault detection (whether system behavior is off-nom-
inal), fault isolation (what is the root cause of the off-nominal
behavior), and fault identification (what is the fault magni-
tude). The performance of the fault diagnosis system depends

Matthew Daigle et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

on the available sensors from which diagnostic information
can be extracted. However, the set of selected sensors are sub-
ject to many constraints, such as cost and weight, and hence,
these sensors must be selected judiciously.

For fault isolation, a valid placement of sensors should be one
in which the system is diagnosable, i.e., all single faults can
be uniquely isolated from each other, which is a design met-
ric for diagnostic performance (Narasimhan, Mosterman, &
Biswas, 1998). We utilize a fault isolation framework that is
based on the analysis of model-based residuals, where each
residual is computed as the difference between a measured
sensor output and the predicted value of that sensor output.
Local models of the system, that are used to make predic-
tions of measured outputs, are generated by decomposing the
global model of the system using structural model decom-
position (Roychoudhury, Daigle, Bregon, & Pulido, 2013).
Therefore, the problem of sensor placement is directly related
to one of residual selection.

In this paper, we formulate the sensor placement problem and
establish its search space through the novel concept of a com-
plete residual set, based on structural model decomposition.
We present three algorithms for solving this sensor placement
problem and compare their performance in terms of compu-
tational complexity and optimality of solutions. The different
algorithms are: (i) exhaustive search, (ii) stochastic search,
and (iii) structured search. The exhaustive search is a brute
force search over the residual space, and so guarantees opti-
mality but is not scalable. The stochastic search selects ran-
dom residual sets and modifies them randomly to try to im-
prove the current set of candidate solutions. The structured
search algorithm uses knowledge of what solutions are pre-
ferred in order to search a reduced space in a structured fash-
ion. We demonstrate the approach using a benchmark multi-

1

European Conference of the Prognostics and Health Management Society 2014

33



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

tank system (Daigle, Bregon, Biswas, Koutsoukos, & Pulido,
2012). In this work, we focus on continuous systems and
adopt the single fault assumption.

This paper is organized as follows. Section 2 presents re-
lated work to set the context for our contributions. Section 3
provides the necessary background information on structural
model decomposition and our qualitative fault isolation frame-
work. The problem formulation, which defines the problem
and establishes its search space, is presented in Section 4. The
diagnosability-based measurement selection approach and the
three algorithms are described in Section 5. Experimental re-
sults are provided in Section 6. Section 7 concludes the paper
and discusses future work.

2. RELATED WORK

Efficient solutions to the sensor placement problem have been
explored before. Our work is in contrast to other approaches
present in literature (Basseville, Benveniste, Moustakides, &
Rougee, 1987; Debouk, Lafortune, & Teneketzis, 2002; Roy-
choudhury, Biswas, & Koutsoukos, 2009) in that we look for
solutions that obtain maximum diagnosability by minimiz-
ing the size of the submodels, which yields smaller-sized di-
agnosers and allows its implementation as a distributed ap-
proach. For example, in (Basseville et al., 1987), the authors
propose an approach for optimal sensor location to increase
the fault detection performance in dynamic systems using sta-
tistical tests. In (Debouk et al., 2002) the authors assume that
the system is diagnosable given a set of sensors and look for
the least expensive combination of those sensors under which
the system is still diagnosable. Our decision in favor of dis-
tributed approaches is influenced by the fact that the design of
fault diagnosers can have consequences in terms of computa-
tional efficiency, scalability, single points of failure, and the
quickness of fault diagnosis, among others (Roychoudhury
et al., 2009). For example, centralized diagnosis approaches
suffer from single points of failure, large computational com-
plexity, and scalability issues. Decomposing the diagnosis
problem can address some or all of these issues.

Unlike the related approach of (Roychoudhury et al., 2009),
another focus of our work is in the use of structural informa-
tion to determine the best sensor locations. Several previous
papers make use of structural information for solving the sen-
sor placement problem (Krysander & Frisk, 2008; Rosich,
2012; Travé-Massuyès et al., 2006; Said & Djamel, 2013).
The use of structural information allows to efficiently solve
this problem for large and nonlinear differential-algebraic mod-
els. In (Krysander & Frisk, 2008) the authors propose new a
method, using Dulmage-Mendelson decomposition, for com-
puting which sensors to add to obtain maximum fault de-
tectability and isolability. A related approach is proposed in
(Travé-Massuyès et al., 2006), but following a different strat-
egy. Instead of computing which sensors to add to obtain

a certain isolability performance, in (Travé-Massuyès et al.,
2006) the problem is solved by hypothesizing sensors, then
computing Analytical Redundancy Relations (ARR) with all
possible causalities, and then obtaining the isolability prop-
erties. In this sense, our approach is more similar to the ap-
proach of (Krysander & Frisk, 2008), since we add sensors
looking for maximum diagnosability and then decompose the
system to look for the smaller submodels to obtain that max-
imum diagnosability. However, our approach is different to
both, since we include qualitative and temporal information
within our models, which improves diagnosability; and sec-
ond, the approach in (Travé-Massuyès et al., 2006) only al-
lows solutions where residuals are computed by using mini-
mal submodels.

Other approaches in the literature consider causal informa-
tion within the system model (Raghuraj, Bhushan, & Ren-
gaswamy, 1999; Rosich, Frisk, Aslund, Sarrate, & Nejjari,
2012). In (Raghuraj et al., 1999), the authors use a directed
graph and algorithms based on the graph to look for the op-
timal sensor location to ensure observability and fault reso-
lution. Also, the authors discuss the possibility of including
signs in the graph. However, unlike the approach presented
in this paper, signs are not included in the algorithms. An-
other difference against our approach is that they only con-
sider residuals computed using the global system model. In
(Rosich et al., 2012), the authors only allow residuals com-
puted from minimal submodels and temporal information is
not included.

One of the main problems of the structural approach to sen-
sor placement, especially when a large number of feasible
sensor locations is available, is that the computational effort
to look for the optimal solution could be huge. In (Eriksson,
Krysander, & Frisk, 2012) the authors use a quantitative diag-
nosability analysis to optimize sensor placement for fault di-
agnosis. In (Casillas, Puig, Garza-Castañon, & Rosich, 2013)
genetic algorithms are used for the same task. Unlike the
previous approaches, in (Frisk, Krysander, & Åslund, 2009)
the authors use analytical equations as a solution which can
handle models where structural approaches fail, however, it
is limited only to linear differential-algebraic systems, which
restricts severely its applicability to practical systems.

3. BACKGROUND

In this section, we first describe our approach to structural
model decomposition, which, given a global system model,
creates local models of system behavior. We then describe
our model-based diagnostic framework that is based on anal-
ysis of residuals computed using these local models.

3.1. System Modeling

We adopt here the structural model decomposition framework
described in (Roychoudhury et al., 2013). In the following,
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Figure 1. Tank system schematic.

we review the main details and and refer the interested reader
to (Roychoudhury et al., 2013) for additional explanation. We
define a model as follows:

Definition 1 (Model). A modelM∗ is a tupleM∗ = (V,C),
where V is a set of variables, and C is a set of constraints
among variables in V . V consists of five disjoint sets, namely,
the set of state variables, X; the set of parameters, Θ; the set
of inputs, U ; the set of outputs, Y ; and the set of auxiliary
variables, A. Each constraint c = (εc, Vc), such that c ∈ C,
consists of an equation εc involving variables Vc ⊆ V .

Input variables, U , are known, and the set of output variables,
Y , correspond to the (measured) sensor signals. Parame-
ters, Θ, include explicit model parameters that are used in the
model constraints. Auxiliary variables,A, are additional vari-
ables that are algebraically related to the state and parameter
variables, and are used to reduce the structural complexity of
the equations.

Throughout the paper, we use a benchmark multi-tank sys-
tem as a running example. The system consists of n tanks
connected serially, as shown in Fig. 1. For each tank i, where
i ∈ [1, n], ui denotes the input flow, mi denotes the liquid
mass, pi denotes the tank pressure, qi denotes the mass flow
out of the drain pipe, Ki denotes the tank capacitance, and
Rei denotes the drain pipe resistance. For adjacent tanks i
and i + 1, qi,i+1 denotes the mass flow from tank i to tank
i+1 through the connecting pipe, andRei,i+1 is the connect-
ing pipe resistance. The constraints for tank i are as follows:

ṁi = ui + qi−1,i − qi − qi,i+1,

mi =

∫ t

t0

ṁidt,

pi =
1

Ki
mi,

qi =
1

Rei
pi,

qi,i+1 =
1

Rei,i+1
(pi − pi+1).

For tank 1, q0,1 = 0, and for tank n, qn,n+1 = 0.

The measurements corresponding to pi, qi, and qi,i+1 are p∗i ,

q∗i , and q∗i,i+1 and are described by the following constraints:

p∗i = pi,

q∗i = qi,

q∗i,i+1 = qi,i+1.

Example 1. For a three-tank system measuring the output
flows, the modelM∗ is represented by the variable sets X =
{m1,m2,m3}, Θ = {K1, K2, K3, Re1, Re2, Re3, Re1,2,
Re2,3}, U = {u1, u2, u3}, Y = {p∗1, p∗2, p∗3, q∗1 , q∗2 , q∗3 ,
q∗1,2, q

∗
2,3}, and A = {ṁ1, ṁ2, ṁ2, p1, p2, p3, q1, q2, q3};

and the set of constraints C = {c1, c2, . . . , c22}, where the
constraints are given as follows:

ṁ1 = u1 − q1 − q1,2, (c1)
ṁ2 = u2 + q1,2 − q2 − q2,3, (c2)
ṁ3 = u3 + q2,3 − q3, (c3)

m1 =

∫ t

t0

ṁ1dt, (c4)

m2 =

∫ t

t0

ṁ2dt, (c5)

m3 =

∫ t

t0

ṁ3dt, (c6)

p1 =
1

K1
m1, (c7)

p2 =
1

K2
m2, (c8)

p3 =
1

K3
m3, (c9)

q1 =
1

Re1
p1, (c10)

q2 =
1

Re2
p2, (c11)

q3 =
1

Re3
p3, (c12)

q1,2 =
1

Re1,2
(p1 − p2), (c13)

q2,3 =
1

Re2,3
(p2 − p3), (c14)

p∗1 = p1, (c15)
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p∗2 = p2, (c16)
p∗3 = p3, (c17)
q∗1 = q1, (c18)
q∗2 = q2, (c19)
q∗3 = q3, (c20)
q∗1,2 = q1,2, (c21)

q∗2,3 = q2,3. (c22)

Here, the ∗ superscript is used to denote a measured value of
a physical variable, e.g., p1 is pressure and p∗1 is the measured
pressure. Since p1 is used to compute other variables, it can-
not belong to Y and a separation of the variables is required.

The notion of a causal assignment is used to specify the com-
putational causality for a constraint c, by defining which v ∈
Vc is the dependent variable in equation εc.
Definition 2 (Causal Assignment). A causal assignment α
to a constraint c = (εc, Vc) is a tuple α = (c, voutc ), where
voutc ∈ Vc is assigned as the dependent variable in εc.

We write a causal assignment of a constraint using its equa-
tion in a causal form, with := to explicitly denote the causal
(i.e., computational) direction.
Definition 3 (Valid Causal Assignments). We say that a set
of causal assignments A, for a modelM∗ is valid if

• For all v ∈ U ∪ Θ, A does not contain any α such that
α = (c, v).

• For all v ∈ Y , A does not contain any α = (c, voutc )
where v ∈ Vc − {voutc }.

• For all v ∈ V −U−Θ,A contains exactly one α = (c, v).

The definition of valid causal assignments states that (i) input
or parameter variables cannot be the dependent variables in
the causal assignment, (ii) a measured variable can be used
as the dependent variable, and (iii) every variable, which is
not input or parameter, is computed by only one (causal) con-
straint.

Based on this, a causal model is a model extended with a valid
set of causal assignments.
Definition 4 (Causal Model). Given a modelM∗ = (V,C),
a causal model forM∗ is a tupleM = (V,C,A), where A
is a set of valid causal assignments.

For the n-tank system, the causal constraints for tank i are as
follows:

ṁi := ui + qi−1,i − qi − qi,i+1,

mi :=

∫ t

t0

ṁidt,

pi :=
1

Ki
mi,

qi :=
1

Rei
pi,

qi,i+1 :=
1

Rei,i+1
(pi − pi+1),

p∗i := pi,

q∗i := qi,

q∗i,i+1 := qi,i+1.

Example 2. The causal modelM is represented by the same
variables and constraints asM∗, along with the set of causal
assignments A = {α1, α2, . . . , α22}, as given below:

ṁ1 := u1 − q1 − q1,2, (α1)
ṁ2 := u2 + q1,2 − q2 − q2,3, (α2)
ṁ3 := u3 + q2,3 − q3, (α3)

m1 :=

∫ t

t0

ṁ1dt, (α4)

m2 :=

∫ t

t0

ṁ2dt, (α5)

m3 :=

∫ t

t0

ṁ3dt, (α6)

p1 :=
1

K1
m1, (α7)

p2 :=
1

K2
m2, (α8)

p3 :=
1

K3
m3, (α9)

q1 :=
1

Re1
p1, (α10)

q2 :=
1

Re2
p2, (α11)

q3 :=
1

Re3
p3, (α12)

q1,2 :=
1

Re1,2
(p1 − p2), (α13)

q2,3 :=
1

Re2,3
(p2 − p3), (α14)

p∗1 := p1, (α15)
p∗2 := p2, (α16)
p∗3 := p3, (α17)
q∗1 := q1, (α18)
q∗2 := q2, (α19)
q∗3 := q3, (α20)
q∗1,2 := q1,2, (α21)

q∗2,3 := q2,3. (α22)
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Figure 2. Causal graph of the three-tank system.

We can visualize a causal model M using a directed graph
G = (N,A), where N is the set of nodes corresponding di-
rectly to the variables V inM, and A is the set of arcs, where
for every (c, voutc ) ∈ A, we include an arc (v′, voutc ) for each
v′ ∈ Vc − {voutc }.
Example 3. The causal graph corresponding to the three-tank
system model is given in Fig. 2. In the graph, we mark inputs
with dashed circles, state variables with dashed squares, and
outputs with solid squares.

3.2. Structural Model Decomposition

In our approach, a fault f is modeled as a step change in a
system model parameter value, θ ∈ Θ. Faults cause changes
in observed system behavior from model-predicted behavior.
We can detect such changes by computing residuals, defined
as the difference between the measured and predicted value
of some sensor.

Using the causal modelM of a system, we can predict values
of all the sensors in order to compute residuals. However, in
the global model, faults are coupled to all the sensors, i.e.,
they cause deviations in all the sensors eventually. Through
structural model decomposition, we can instead define local
submodels in which each residual responds to only a subset
of the faults, increasing diagnosability (Daigle et al., 2012).

Under this approach, given a (global) model, we can create
(local) submodels that use as additional inputs values from
the sensors (Roychoudhury et al., 2013). Given the set of
potential local inputs (selected from U ∪ Y ) and the set of
variables to be computed by the submodel (selected from Y ),
we create from a causal modelM a causal submodelMYi

, in
which Yi ⊆ Y is computed using Ci ⊆ C. In this way, each
submodel computes its variable values independently from
all other submodels. A causal submodel can be defined as
follows.
Definition 5 (Causal Submodel). A causal submodel MYi

of a causal modelM = (V,C,A) is a tupleMYi
= (Vi, Ci,

Ai), where Vi ⊆ V , Ci ⊆ C, and Ai ∩ A 6= ∅.

When using measurements (from Y ) as local inputs for a
causal submodel, the causality of these constraints must be
reversed, and so, in general, Ai is not a subset of A.

The procedure for generating a causal submodel from a causal
model is given as Algorithm 1 (Roychoudhury et al., 2013).
Given a causal modelM, and an output variable to be com-
puted y, the GenerateSubmodel algorithm derives a causal
submodelMi that computes y using as local inputs only vari-
ables from U∗ = U ∪ (Y − {y}). We briefly summarize the
algorithm below.

In Algorithm 1, the variables queue represents the set of
variables that have been added to the submodel but have not
yet been resolved, i.e., they cannot yet be computed by the
submodel. This queue is initialized to {y}, and the algo-
rithm then iterates until this queue has been emptied, i.e.,
the submodel can compute y using only variables in U∗. For
each variable v that must be resolved, we use Subroutine 2
(GetBestConstraint subroutine) to find the constraint
that should be used to resolve v in the minimal way.

The GetBestConstraint subroutine (which has been up-
dated from (Roychoudhury et al., 2013)) tries to find a con-
straint that completely resolves the variable, i.e., resolves v
without further backward propagation (all other variables in-
volved in the constraint are in Vi∪Θ∪U∗). Such a constraint
may be the one that computes v in the current causality, if
all needed variables are already in the submodel (in Vi) or
are available local inputs (in U∗); such a constraint may be
one that computes a measured output y∗ ∈ U∗, in which case
the causality will be modified such that y∗ becomes an in-
put, i.e., the constraint in the new causality will compute v
rather than y∗; or such a constraint may be one that computes
some y∗ through some v′ in an algebraic relation. If no such
constraint exists, then the constraint that computes v in the
current causal assignment is chosen, and further backward
propagation will be necessary. A preferences list, P , is used
to break ties if multiple minimal constraints exist to resolve
v.

We assume that the differential constraints in the model are
always in integral causality. We assume also that the model
M to be decomposed is free from algebraic loops (which will
prevent Algorithm 1 from terminating), otherwise, the con-
straints may be arbitrarily complex and nonlinear. However,
nonlinear constraints may not be possible in all causalities. If
causality must be changed in order for the decomposition to
proceed, there must be an expression for the constraint in the
new causal form. If some constraints are not available in all
possible causalities, then this may restrict the possible model
decompositions.
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Algorithm 1Mi = GenerateSubmodel(M, U∗, V ∗)
1: Vi ← V ∗

2: Ci ← ∅
3: Ai ← ∅
4: variables← V ∗

5: while variables 6= ∅ do
6: v ← pop(variables)
7: c← GetBestConstraint(v, Vi, U

∗,A)
8: Ci ← Ci ∪ {c}
9: Ai ← Ai ∪ {(c, v)}

10: for all v′ ∈ Vc do
11: if v′ /∈ Vi and v′ /∈ Θ and v′ /∈ U∗ then
12: variables← variables ∪ {v′}
13: end if
14: Vi ← Vi ∪ {v′}
15: end for
16: end while
17: Mi ← (Vi, Ci,Ai)

3.3. Qualitative Fault Isolation

As mentioned in Section 1, the goal of this work is to solve
the sensor placement problem such that all single faults can
be uniquely isolated from each other. The solution of this
problem depends on the diagnosis framework chosen. In this
section, we briefly present our fault isolation approach. For
details, please refer to (Mosterman & Biswas, 1999; Bregon
et al., 2014).

As previously mentioned, in our approach, a fault f is mod-
eled as a step change in a system model parameter value,
θ ∈ Θ. Faults are named by the associated parameter and
the direction of change, i.e., θ+ (resp., θ−) denotes a fault
defined as an abrupt increase (resp., decrease) in the value of
parameter θ. The complete fault set is denoted as F .
Example 4. In the three-tank system in Fig. 1, the complete
fault set F consists of {K−1 , K+

1 , K
−
2 , K

+
2 , K

−
3 , K

+
3 , Re

−
1 ,

Re+1 , Re
−
2 , Re

+
2 , Re

−
3 , Re

+
3 , Re

−
1,2, Re

+
1,2, Re

−
2,3, Re

+
2,3}.

Faults cause transients in the system variables that are ob-
served as deviations of measured values from predicted val-
ues. This is captured through the concept of a residual.
Definition 6 (Residual). A residual, ry , is a time-varying sig-
nal that is computed as the difference between a measure-
ment, y ⊆ Y , and a predicted value of the measurement y,
denoted as ŷ. A set of residuals is denoted as R.

From the previous subsection, we see that there are several
potential submodels that can compute ŷ, depending on what
local inputs are selected. In the nominal situation all resid-
uals are ideally zero, and when a fault occurs they become
nonzero. It is through analysis of the residual signals that
fault isolation is performed.

The transients produced in the residuals are captured as qual-
itative fault signatures (Mosterman & Biswas, 1999).
Definition 7 (Fault Signature). A fault signature for a fault
f and residual r, denoted by σf,r, is pair of symbols s1s2
representing potential qualitative changes in magnitude and
slope of r caused by f at the point of the occurrence of f .

Subroutine 2 c = GetBestConstraint(v, Vi, U
∗,A)

1: C ← ∅
2: cv ← find c where (c, v) ∈ A
3: if Vcv ⊆ Vi ∪ U∗ then
4: C ← C ∪ {cv}
5: end if
6: for all y ∈ Y ∩ U∗ do
7: cy ← find c where (c, y) ∈ A
8: if v ∈ Vcy and Vcy ⊆ Vi ∪ U∗ ∪Θ then
9: C ← C ∪ {cy}

10: end if
11: end for
12: for all y ∈ Y ∩ U∗ do
13: cy ← find c where (c, y) ∈ A
14: V ′ ← Vcy − {y}
15: for all v′ ∈ V ′ do
16: cv′ ← find c where (c, v′) ∈ A
17: if v ∈ Vcv′ and Vcy ⊆ {v} ∪ U∗ ∪Θ then
18: C ← C ∪ {cv′}
19: end if
20: end for
21: end for
22: if C = ∅ then
23: c← cv
24: else if cv ∈ C then
25: c← cv
26: else
27: C′ ← C
28: for all c1, c2 ∈ C where c1 6= c2 do
29: y1 ← find y where (c1, y1) ∈ A
30: y2 ← find y where (c2, y2) ∈ A
31: if (y1 / y2) ∈ P then
32: C′ ← C′ − {c1}
33: end if
34: end for
35: c← first(C′)
36: end if

The set of fault signatures for f and r is denoted as Σf,r.

The symbols s1 and s2 are selected from {0,+,-}, denoting
no change, increase, and decrease, respectively.

As additional diagnostic information we use also the temporal
order of residual deviation, captured through the concept of
relative residual orderings (Daigle, Koutsoukos, & Biswas,
2007).
Definition 8 (Relative Residual Ordering). If fault f always
manifests in residual ri before residual rj , then we define a
relative residual ordering between ri and rj for fault f , de-
noted by ri ≺f rj . We denote the set of all residual orderings
for f as Ωf,R.

In order to generate signatures and orderings from a model,
we extend the definition of a model to include qualitative
labels on causal constraints. For each independent variable
involved in a constraint, we associate a qualitative label in-
dicating the qualitiative direction of influence the indepen-
dent variable has on the dependent variable. A dt label in-
dicates an integration, a + label indicates that a directly pro-
portional change, and a - label indicates an inversely propor-
tional change. From this representation a Temporal Causal
Graph (Mosterman & Biswas, 1999) (TCG) is obtained, and
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the algorithms described in (Daigle, 2008) may be used to
automatically derive the signatures and orderings.1

Together, fault signatures and relative residual orderings es-
tablish an event-based form of diagnostic information. For a
given fault, the combination of all fault signatures and resid-
ual orderings yields all the possible ways a fault can manifest
in the residuals. Each of these possibilities is a fault trace.
Definition 9 (Fault Trace). A fault trace for a fault f over
residuals R, denoted by λf,R, is a sequence of fault signa-
tures, of length ≤ |R| that includes, for every r ∈ R that will
deviate due to f , a fault signature σf,r, such that the sequence
of fault signatures satisfies Ωf,R.

The set of all fault traces for a fault constitutes its fault lan-
guage.
Definition 10 (Fault Language). The fault language of a fault
f ∈ F with residual set R, denoted by Lf,R, is the set of all
fault traces for f over the residuals in R.

In general, two faults are distinguishable if they always, in
finite time, produce different observations. In our diagnosis
framework, distinguishability between faults is characterized
using fault traces and languages.
Definition 11 (Distinguishability). Given a residual set, R, a
fault fi is distinguishable from a fault fj , denoted by fi �R

fj , if there does not exist a pair of fault traces λfi,R ∈ Lfi,R

and λfj ,R ∈ Lfj ,R, such that λfi v λfj .

One fault will be distinguishable from another fault if it can-
not produce a fault trace that is a prefix2 (denoted by v) of a
trace that can be produced by the other fault. If this is not the
case, then when that trace manifests, the first fault cannot be
distinguished from the second.

Distinguishability is used to define the diagnosability of a di-
agnosis model under a given fault isolation framework. A di-
agnosis model is an abstraction of a system model with only
diagnosis-relevant information, and it is defined as follows.
Definition 12 (Diagnosis Model). A diagnosis model S is a
tuple (F, Y,R, LF,R), where F = {f1, f2, . . . , fn} is a set
of faults, Y is a set of measurements, R is a set of residu-
als, and LF,R = {Lf1,R, Lf2,R, . . . , Lfn,R} is the set of fault
languages.

If a diagnosis model is diagnosable, then we can guarantee
the unique isolation of every fault in the diagnosis model.
Definition 13 (Diagnosability). A diagnosis model S = (F,
Y, R, LF,R) is diagnosable if and only if (∀fi, fj ∈ F )fi 6=
fj =⇒ fi �R fj .

If S is diagnosable, then every pair of faults is distinguishable
using the residual set R. Hence, we can uniquely isolate all
faults of interest. If S is not diagnosable, then ambiguities
1TCGs can also be derived directly from bond graphs (Karnopp, Margolis,
& Rosenberg, 2000). Our modeling approach is more general in that it is
not restricted to system topologies imposed by bond graphs.

2A fault trace λi is a prefix of fault trace λj if there is some (possibly empty)
sequence of events λk that can extend λi such that λiλk = λj .

will remain after fault isolation, i.e., after all possible fault
effects on the residuals have been observed.

4. PROBLEM FORMULATION

The problem we are trying to solve is one of sensor place-
ment for diagnosability. In our diagnostic framework, diag-
nosability is based on residuals, and so the sensor placement
problem manifests as a residual selection problem. For each
set of sensors, there are many potential residuals that can be
selected to achieve diagnosability. A solution to the problem
is a selection of residuals that achieves diagnosability; an op-
timal solution is one that satisfies some given criteria the best.

As described in Section 3, residuals are defined from sub-
model outputs. Given a modelM, there are many submodels
that can be defined, and residuals can be derived from each of
these. Clearly, this residual space is exceedingly large. How-
ever, many of these residuals are not actually unique, i.e.,
there may be two submodels that use the exact same com-
putations to produce two different residuals; in this case, the
residuals are equivalent. We express this property through the
concept of residual equivalence.
Definition 14 (Residual Equivalence). Given causal submod-
elsMi with inputs Ui and output yi ∈ Yi, andMj with in-
putsUj and output yj ∈ Yj , the residuals ri computed from yi
and rj computed from yj are equivalent, denoted as ri ≡ rj
if the causal constraints used to compute yi are the same as
the causal constraints to compute yj .

We need not consider solutions that contain residuals that are
equivalent, and this reduces the search space. We refer to
such a residual set as minimal.
Definition 15 (Minimal Residual Set). A residual set R is
minimal if there are no two residuals ri ∈ R and rj ∈ R,
i 6= j, where ri ≡ rj .

In fact we need only to search over the space of unique resid-
uals. For a given sensor set, we can define the corresponding
complete residual set, i.e., the largest set of residuals for a
sensor set that is minimal.
Definition 16 (Complete Residual Set). For a set of sensor
outputs Y , the complete residual set is the minimal residual
set RY such that there is no residual for an output in y ∈ Y ,
ry , such that R ∪ {ry} is also minimal.

The complete residual set contains, for a given set of sensors,
every possible way of computing residuals for those sensors.

So, the space of the residual selection problem is defined by
all combinations of residuals in the unique residual set. We
can find the complete residual set by using the model decom-
position algorithm. As described in Section 3, to compute a
submodel we must define the available local input set U∗ and
the local output set V ∗. For an ouput y ∈ Y , U∗ must consist
of U and elements from Y − {y}. For example, say we have
a three-tank system where Y = {q∗1 , q∗2 , q∗3}. Table 1 lists all
possible U∗ to compute each output y. Fig. 3 show the causal
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Mi U∗i V ∗i Ui

M1 {u1, u2, u3} {q∗1} {u1, u2, u3}
M2 {u1, u2, u3, q

∗
2} {q∗1} {u1, q

∗
2}

M3 {u1, u2, u3, q
∗
3} {q∗1} {u1, u2, q

∗
3}

M4 {u1, u2, u3, q
∗
2 , q
∗
3} {q∗1} {u1, q

∗
2}

M5 {u1, u2, u3} {q∗2} {u1, u2, u3}
M6 {u1, u2, u3, q

∗
1} {q∗2} {u2, u3, q

∗
1}

M7 {u1, u2, u3, q
∗
3} {q∗2} {u1, u2, q

∗
3}

M8 {u1, u2, u3, q
∗
1 , q
∗
3} {q∗2} {u2, q

∗
1 , q
∗
3}

M9 {u1, u2, u3} {q∗3} {u1, u2, u3}
M10 {u1, u2, u3, q

∗
1} {q∗3} {u2, u3, q

∗
1}

M11 {u1, u2, u3, q
∗
2} {q∗3} {u3, q

∗
2}

M12 {u1, u2, u3, q
∗
1 , q
∗
2} {q∗3} {u3, q

∗
2}

Table 1. Single-output Submodels

graphs for submodelsM1,M2,M3, andM4. The thicker,
green arrows in Fig. 3 indicate causal assignments that were
reversed to accommodate local inputs.

There are 2|Y |−1 possible subsets of Y − {y} from which
to define U∗, and hence |Y |2|Y |−1 residuals. However, this
residual set may not be minimal. The model decomposi-
tion algorithm finds the minimal submodel to compute the
given V ∗ using U∗, therefore, for a given V ∗ and two dif-
ferent U∗, the derived submodel may have the same Ui and
the same causal constraints. This occurs for the example in
Table 1. Here, the q∗1 residuals fromM2 andM4 are equiv-
alent. Since the Ui are the same, the submodel must be using
the same constraints to compute q∗1 (see Fig. 3). Similarly, the
q∗3 residuals fromM11 andM12 are equivalent. So, in this
case, the complete residual set size is less than |Y |2|Y |−1.

So, a solution to the problem will be a selection of residuals
from the complete residual set that achieves diagnosability.
Among these solutions, we desire only those that require the
minimum number of sensors (where measured values may be
used to compute residuals and/or as local inputs to submod-
els). We may prefer some solutions over others for a variety
of reasons. We define a relational operator � for solutions,
describing which solutions are preferred over others and thus
obtaining a notion of optimality for solutions. The � opera-
tor depends on the particular application, and we will describe
an implementation of it in the following section. The problem
can then be formally defined as follows.
Problem. For a modelM, fault set F , and sensor set Y , the
problem is to find a set of residuals Ri such that there is no
other Rj 6= Ri where Rj � Ri.

5. APPROACH

In this section, we introduce three different algorithms to solve
the problem stated in Section 4. For validation purposes, we
describe an exhaustive search algorithm. We describe also a
stochastic search algorithm and a structured search algorithm.

Before defining the � operator it is first important to note
that residuals can be associated with submodels larger than
those computing only themselves. Consider Table 1. For

Mi Ui Yi

M1 {u1, u2, u3} {q∗1 , q∗2 , q∗3}
M2 {u1, u2, q

∗
3} {q∗1 , q∗2}

M3 {u2, u3, q
∗
1} {q∗2 , q∗3}

M4 {u1, q
∗
2} {q∗1}

M5 {u2, q
∗
1 , q
∗
3} {q∗2}

M6 {u3, q
∗
2} {q∗3}

Table 2. Multi-Output Submodels

any Ui that can compute more than one residual, the sub-
models computing these residuals can be easily merged into a
multi-output submodel computing all the residuals. This sub-
model can be computed by taking the union of the variable
and constraint sets of the individual submodels. For exam-
ple, in Table 1, we see that M1, M5, and M9 all have the
input set {u1, u2, u3}; merging these submodels recovers the
global model. Also, the input set {u1, u2, q∗3} can be used
to compute both a residual for q∗1 and one for q∗2 (M3 and
M7, respectively). So for a given residual set, there is also an
associated submodel set, defined by the sets of inputs used to
compute the residuals in the set. All the associated submodels
for the example in Table 1 are given in Table 2.

For a given set of sensors such that diagnosability can be
achieved, what we desire is a solution that corresponds to
some notion of the best model decomposition (for the sub-
model set associated with the residual set). The more in-
dependent submodels that are used, the more distributed the
solution becomes. Since the submodels are computationally
independent, they can be executed in parallel and thus natu-
rally take advantage of distributed computational paradigms.
Further, model decomposition can lead to improved diagnos-
ability (Daigle et al., 2012).

We define the � operator using five metrics: (i) diagnosabil-
ity, (ii) the number of sensors used, (iii) the minimality of the
involved submodel set, (iv) the number of residuals per sub-
model, and (v) the total number of residuals. We explain each
of these in turn, starting with the minimality of a submodel
set, which is defined as follows.
Definition 17. For a given set of residualsR, the correspond-
ing submodel set M is minimal if for anyMi ∈ M , there is
no other Mj ∈ M , Mi 6= Mj , that can be created by de-
composing that submodel.

We do not prefer such solutions because they are likely to
include residuals that do not improve diagnosability. For ex-
ample, if the global model is in the submodel set, it is unlikely
that adding additional submodels, for which there are already
residuals for their outputs, will add diagnosability, since there
is much redundant information in a residual for the same out-
put over two different submodels.

We prefer fewer residuals per submodel because this implies
a greater level of decomposition, and we prefer fewer residu-
als, since that implies the solutions are minimal, i.e., they do
not include additional residuals that are not needed to obtain
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(a) M1 Causal Graph
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(b) M2, M4 Causal Graph
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(c) M3 Causal Graph

Figure 3. Causal graphs for submodelsM1,M2,M3, andM4.

Algorithm 3 R∗ = ExhaustiveSearch(R)

1: R ← combos(R)
2: R∗ ←R1

3: for all Ri ∈ R do
4: if Ri � R∗ then
5: R∗ ← Ri

6: end if
7: end for

diagnosability.

We next present the three algorithms, in which the inputs will
be the complete residual sets as defined here. Other resid-
ual sets, computed using different methods, may also be used
with no or little changes to the algorithms.

5.1. Exhaustive Search

As described in Section 4, the search space is defined by
the complete residual set. The exhaustive search algorithm
is shown as Algorithm 3. The combos function returns all
possible combinations of the residual set (this is the same as
the power set of R, excluding the empty set). The algorithm
tries each candidate solution, keeping track of the best solu-
tion observed so far. Because it tries all possibilities, it is
guaranteed to find the optimal solution, so it can be used to
validate the solutions of the other algorithms. However, it is
not scalable, as it must consider in the worst case |Y |2|Y |−1
candidate solutions.

5.2. Stochastic Search

The stochastic search sacrifices optimality for scalability. It
is given as Algorithm 4. It begins with k random candidate
solutions generated using the randomCombos function. Be-
ginning with multiple solutions rather than a single solution
helps reduce the chances of getting stuck in a local minimum.
For each candidate solution, it randomly adds or deletes a

Algorithm 4 R∗ = StochasticSearch(R, k,N)

1: R ← randomCombos(R, k)
2: for i = 1 to N do
3: for all Ri ∈ R do
4: R′i ← randomModify(Ri)
5: if R′i � Ri then
6: Ri ← R′i
7: end if
8: end for
9: end for

10: R∗ ←R1

11: for all Ri ∈ R do
12: if Ri � R∗ then
13: R∗ ← Ri

14: end if
15: end for

residual using the randomModify function, and, if this im-
proves the solution, then this solution is kept. This process
repeats for N iterations, therefore it explores only kN solu-
tions, where both k and N are selected by the user. For larger
search spaces, it is more likely to find a good solution with
larger values of k and N . If there are many good solutions in
the solution space, then this algorithm is likely to find at least
one of them, given enough iterations.

5.3. Structured Search

The exhaustive and stochastic search algorithms represent ap-
proaches at two opposite ends of the spectrum. We want scal-
ability as well as guarantees of optimality. We can do this by
searching through the residual space in a structured way, try-
ing to avoid parts of the search space that we know will not
contain optimal solutions.

First, we note that we desire solutions with the minimum
number of required sensors. Therefore, as a first stage in the
algorithm, we try to find minimum sensor sets that can pro-
vide complete diagnosability. To do this, we start with sin-
gle sensor solutions, one for each potential sensor. The only
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available residuals for single-sensor solutions are those from
the global model. If any of these are diagnosable, then we
have found an optimal solution. Otherwise, for each of these
candidates, we add a second sensor, and check if the candi-
date solution containing all available residuals for that sensor
set provide complete diagnosability. If so, we add this solu-
tion to a set of solutions to analyze later. We continue in this
manner, adding sensors, until diagnosability is achieved, thus
resulting in initial minimum sensor solutions.

As a second stage, for each of these initial minimum sen-
sor solutions, we select residuals, in a structured way, for the
given sensor set. We select residual sets using knowledge
of what kind of solutions we consider to be optimal. First,
instead of selecting residuals, we select submodels, and for
the selected submodels, select all associated residuals for the
given sensor set. Since the submodel space is much smaller
than the residual space, this shrinks the search space signif-
icantly. Second, we know that for a given sensor set, diag-
nosability cannot be achieved if any one sensor is removed,
therefore, we must consider only solutions in which residuals
for each sensor are provided. Therefore, we try only com-
binations that cover all the sensors. So, for each sensor, we
select a submodel that computes a residual for that sensor.
Over those combinations there are much fewer to consider.

For example, consider again Table 1. Assume the sensors for
q∗1 , q∗2 , and q∗3 are all required. There are 6 distinct input sets
that can be used to compute the 10 residuals of the complete
residual set for this sensor set, and these are shown in Table 2.
So, there are only 26 − 1 = 63 combinations of submodels
to consider, versus 210−1 = 1023 combinations of residu-
als. Now, if we consider only combinations of submodels
that cover all the residuals, there are only 36 combinations.

So, in summary, we have at most |Y |2|Y |−1 residuals but only
at most 2|Y | − 1 submodels. So there are 2|Y |2

|Y |−1

combi-
nations of residuals, versus 22

|Y |−1 combinations of submod-
els, shrinking the search space considerably. By consider-
ing only combinations of submodels that cover all residuals,
since there are at most 2|Y |−1 ways to compute each residual,
there are only at most (2|Y |−1)|Y | = 2|Y |

2−|Y | such combina-
tions to consider. So we have reduced our search space from
2|Y |2

|Y |−1

residual combinations to 22
|Y |−1 submodel combi-

nations to 2|Y |
2−|Y | submodel combinations that ensure there

are residuals for all sensors. Clearly, this last number grows
the slowest, and so we have decreased the search space over
the exhaustive search algorithm by a significant factor, offer-
ing much improved scalability.

The structured search is described by Algorithm 5. An ini-
tial solution queueR is first constructed using single sensors.
Until the initial solution queue is empty, the algorithm pops
the first element off the queue, and checks if it is diagnos-
able. If so, it is added to a new solution setR′, otherwise, we

create new candidate solutions with one additional sensor, for
each of the remaining sensors. Note here that Y (R) is used
to denote the sensors involved in residual set R. New candi-
date solutions are created only if we have not already found a
diagnosable solution with smaller size (L∗). The solutions at
this stage include the complete residual set for the minimum
sensor sets. The purpose of this stage of the algorithm is to
find the minimum sensor sets that can achieve diagnosability.

The purpose of the second stage of the algorithm is, given
these minimum sensor solutions, to find optimal residual sets
for each sensor set. Given one of these minimum sensor sets,
we generate, for each sensor in the set, the list of potential
residuals. Note here that Ry,Y denotes the set of residu-
als for y that can be computed using the sensors in Y . We
then use the selectCombos function to generate all com-
binations of residuals from these sets. For example, if we
have two sensors y1 and y2 where Ry1,Y = {r1, r2} and
Ry2,Y = {r3, r4}, selectCombos would generate four
residual sets: {r1, r3}, {r1, r4}, {r2, r3}, and {r3, r4}. Each
of these combinations that result in diagnosability is added to
a new solution set R∗. After this loop, the best solution is
picked fromR∗.

6. RESULTS

As a case study scenario, we apply the algorithms to an n-
tank system with the output flows as the available sensors, and
consider as the fault set allK+

i ,K−i ,Re+i ,Re−i ,Re+i,i+1, and
Re−i,i+1 faults. In this case, the system is only diagnosable if
all the output flow sensors are included, and this should be
discovered by the algorithms.

The inherent scalability of the system itself is shown in Ta-
ble 3. As the number of tanks increases, the size of the com-
plete residual set increases, as does the number of unique
submodel inputs. Each tank adds a new sensor, so in the
worst case, the number of unique residuals is n2n−1. For this
system, measuring the output flows allows for a substantial
amount of model decomposition, so this number is reduced
significantly. In fact, |RY | increases only polynomially (third
order). The number of unique Ui for the submodels grows in
the worst case with 2n− 1, but because of the decomposition
provided by the sensors, it grows only polynomially in this
case (second order). Since these parameters of the tank sys-
tem scale only polynomially, this cuts the worst-case search
space size drastically.

Results for exhaustive search are shown in Table 4. The ex-
haustive algorithm finds the optimal solutions, but quickly be-
comes unusable due to its poor scalability. For only 4 tanks,
the number of solutions that must be searched (2|RY | − 1) is
already over a million, and the search did not complete within
a reasonable amount of time.

For 2 tanks, the optimal solution is to use only the global
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Algorithm 5 R∗ = StructuredSearch(F,R, Y )

1: R ← ∅
2: for all y ∈ Y do
3: R← R∪R{y}
4: end for
5: L∗ ← inf
6: R′ ← ∅
7: whileR not empty do
8: R1 ← pop(R)
9: if diagnosable(F,R1) then

10: L∗ ← |R1|
11: R′ ←R′ ∪R1

12: else
13: if |R1| < L∗ then
14: for all y ∈ Y − Y (R1) do
15: Y ′ ← (Y − Y (R1)) ∪ {y}
16: R′1 ← RY ′
17: R← R∪ {R′1}
18: end for
19: end if
20: end if
21: end while
22: R∗ ← {R′
23: for all Ri ∈ R′ do
24: Yi ← Y (Ri)
25: R′′ ← ∅
26: for all y ∈ Yi do
27: R′′ ← R(y, Y )
28: end for
29: R′′ ← selectCombos(R′′)
30: for all R′′i ∈ R′′ do
31: if diagnosable(F,R′′i ) then
32: R∗ ← R∗ ∪ {R′}
33: end if
34: end for
35: end for
36: R∗ ←R∗1
37: for all Ri ∈ R∗ do
38: if Ri � R∗ then
39: R∗ ← Ri

40: end if
41: end for

model. If we use the submodel that computes q∗1 using q∗2
and the submodel that computes q∗2 using q∗1 , the system is
not diagnosable, and so the global model is the optimal solu-
tion. For 3 tanks, we can improve over the global model as
a solution by using two submodels computing {q∗1 , q∗2} and
{q∗2 , q∗3}. This decomposition is better than the global model,
uses just as many sensors, and obtains complete diagnosabil-
ity. We find that considering only the pressure sensors gives
similar results. When considering both flow and pressure sen-
sors, we still need one sensor for each tank, and the pressure
and flow measurements can be interchanged.

The structured search algorithm attempts to avoid searching
this entire space by (i) finding only minimum sensor sets
required for diagnosability, and (ii) for each of these sets
searching only over residual sets in which all sensors are cov-
ered. Downselecting to only residuals for a given minimum
sensor set reduces the search space significantly, as does, for
that given sensor set, considering only the residuals sets that
cover all the sensors.

Table 3. Scalability of Tank System

Number Size Number of
of Tanks of RY Unique Ui

2 4 3

3 10 6

4 20 10

5 35 15

6 56 21

7 84 28

8 120 36
9 165 45

10 220 55

Table 4. Exhaustive Search Results.

Number Solutions Final
of Tanks Searched Solution

2 15 ({u1, u2}, {q∗1 , q∗2})
3 1023 ({u1, u2, q

∗
3}, {q∗1 , q∗2})

({u2, u3, q
∗
1}, {q∗2 , q∗3})

4 1048575 N/A

Results for the structured search algorithm are shown in Ta-
ble 5. Here, the number of candidates searched grows signifi-
cantly slower than with the exhaustive search. Once the struc-
tured search finds a minimum sensor set from which to select
residuals, the remaining search space is searched in a some-
what exhaustive way, i.e., it tries all combinations of residual
sets for which the sensors are covered. Therefore, its growth
is still exponential although its scalability is much improved
over the exhaustive search algorithm.

Upon inspection of the solutions searched by the algorithm,
we find that only a small subset are actually only worth search-
ing. All other solutions are considering submodel sets that
are not minimal. By the definition of �, as long as a solution
exists using a minimal submodel set, a solution with a non-
minimal submodel set will never be optimal. It is very likely
that if there is a solution with a nonminimal submodel set,
there is one with a minimal submodel set. If this is true, then
the search space of the algorithm can be reduced even more,
further improving scalability.

Table 5. Structured Search Results.

Number Solutions Final
of Tanks Searched Solution

2 7 ({u1, u2}, {q∗1 , q∗2})
3 34 ({u1, u2, q

∗
3}, {q∗1 , q∗2})

({u2, u3, q
∗
1}, {q∗2 , q∗3})

4 277 ({u1, u2, q
∗
3}, {q∗1 , q∗2})

({u3, u4, q
∗
2}, {q∗3 , q∗4})

5 3427 ({u1, u2, q
∗
3}, {q∗1 , q∗2})

({u3, u4, q
∗
2 , q
∗
5}, {q∗3 , q∗4})

({u4, u5, q
∗
3}, {q∗4 , q∗5})
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Table 6. Stochastic Search Results.

Number Solutions Final
of Tanks Searched Solution

2 1000 ({u1, u2}, {q∗1 , q∗2})
3 1000 ({u1, u2, q

∗
3}, {q∗1 , q∗2})

({u2, u3, q
∗
1}, {q∗2})

({u3, q
∗
2}, {q∗3})

4 1000 ({u1, u2, u3, q
∗
4}, {q∗1 , q∗3})

({u2, u3, u4, q
∗
1}, {q∗2})

({u3, u4, q
∗
2}, {q∗4})

5 1000 ({u1, u2, u3, u4, u5∗}, {q∗1 , q∗5})
({u2, u3, u4, q

∗
1 , q
∗
5}, {q∗2 , q∗3 , q∗4})

Another way to increase scalability is by adding more struc-
ture to the search process, in a way that attempts to search first
solutions more likely to be optimal, if diagnosable, than oth-
ers. For example, we can try first the most decomposed solu-
tion (single-output submodels with the maximum number of
local inputs), and then working up towards the global model.
Because � prefers more decomposed solutions, if we search
candidates solutions with better decomposition first, we can
terminate the search once a solution is found (since less de-
composed solutions will not then be optimal). The first stage
of the algorithm could also be improved by starting first with
the maximum sensor set, then reducing it to find minumum
subsets that still achieve diagnosability. In this case study,
since all sensors are required for diagnosability, this would
have resulted in finding the required sensor set much faster.
In many cases it is more likely that a large subset of the sen-
sors are needed for diagnosability rather than a small subset.

Scalability can be improved by considering heuristics to guide
the search. A greedy search heuristic, for example, can im-
prove significantly the scalability, but the resulting solutions
may not be optimal.

The stochastic search algorithm is the most scalable, as the
number of solutions it searches are completely defined by the
user. Results for the stochastic search are given in Table 6.
Here, we used k = 10 and N = 100, so 1000 candidate
solutions are always searched independent of n. For 3, 4,
and 5 tanks, the optimal solutions are not found. However,
the solutions found are still diagnosable and represent a good
model decomposition. The solutions found are nonoptimal
because the submodel sets are not minimal. So, the solution
space is such that there are very few optimal solutions (in this
case only 1), but many good solutions. So if optimality is not
a requirement, the stochastic algorithm is a suitable choice
because it is likely to find a good solution since many exist
in the search space. For 5 tanks, the solution is much further
from optimal, so since the space is much bigger k and N
should be increased.

Based on the ideas of the structured algorithm, the stochas-
tic algorithm performance may potentially be improved. For

example, it can search only a reduced space in which all sen-
sors required for diagnosability are covered by the residual
set. With a reduced space to search, with the same number of
iterations it is more likely to find a better solution.

7. CONCLUSIONS

In this work, we have presented a diagnosability-based sensor
placement solution by using structural model decomposition.
The solution proposed in this paper analyzes the diagnosabil-
ity of a system to determine the minimum set of sensors re-
quired to uniquely isolate all single faults in the system. Then,
once the minimum set of sensors for complete diagnosability
is computed, several criteria are taken into account to select
among the set of equivalent solutions. In particular, we used
three different metrics: the minimality of the involved sub-
model set; the number of residuals per submodel; and the
total number of residuals.

In the paper we presented three different solutions for the
problem. The first one, an exhaustive search, finds the op-
timal solutions but is not scalable. A second one, a stochastic
search algorithm, sacrifices optimality for scalability. And a
third one, a structured search algorithm, is more scalable than
the exhaustive search while still guaranteeing optimality.

Experimental results on a multi-tank system demonstrated the
performance of the algorithms and suggest possible improve-
ments to the algorithms that will inform future work. In this
paper, we considered only single faults and a continuous sys-
tem for the case study, but, in future work, we will study how
the to extend this solutions to multiple fault diagnosis and hy-
brid systems. Future work will also apply the algorithms to
practical large-scale systems.
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ABSTRACT 

In this paper, the Generalized Cell Mapping (GCM) method 
for a linear system is compared with a new stochastic 
method for novel cell-to-cell mapping.  The authors 
presented the new stochastic method in a previous paper last 
year.  The two methods are compared in an application 
example of a vehicle alternator.  The alternator may 
experience three faults including belt slippage, a broken 
diode, or incorrect controller reference voltage.   Fault 
detection and isolation (FDI) is performed using the two 
cell-to-cell mapping methods.  The results show that the 
new stochastic method is more computationally intensive 
but yields better isolation results than the GCM method. 

1. INTRODUCTION 

Besides high performance, the other most important and 
desirable features of modern technological systems are 
safety and reliability. Owing to their increasing complexity, 
technological systems are becoming more and more 
vulnerable to faults. These faults, if not handled timely and 
properly, may lead to severe failures causing damage to 
property or even human lives. This is particularly true for 
the complex dynamic systems made of interconnected 
components where one faulty component can lead to 
malfunction of the overall system. Therefore, detection and 
isolation of the faults is of extreme importance in modern 
technological systems. Early detection and proper handling 
of faults essentially improve the dependability of the 
dynamic system ensuring safe operation. 

An important tool for analyzing dynamic systems is cell-to-
cell mapping as described by Hsu (1980).  The dynamic 
state space of the system is quantized into cells that the 
system may occupy as time evolves.  State variables are 
considered in intervals instead of a continuum of points.  
Such a system is justified due to the inherent inaccuracy of 
physical measurements.  Using this framework, the 

probability of cell transitions can be computed using various 
approaches such as Monte Carlo and GCM methods. 

In the Monte Carlo method, repeated random samplings and 
deterministic computations are used to find possible 
outcomes and their associated probabilities (Kastner, 2010).  
Using this information, a state probability transition matrix 
for the system can be constructed (Wang, 1999).  The more 
samplings performed, the more accurate the probability 
transition matrix (Sobol, 1994).   

In the GCM method, the boundaries of image cells are 
important in determining state transition probabilities (Hsu 
1981).  The image cell of the current cell are found first.  
Then the boundaries of the image cell are mapped back to 
locations on the current cell and when linearly connected 
form an area within the current cell.  Now this area is known 
to transition to a particular image cell area.  The probability 
associated with this transition is calculated given the total 
area of the current cell. 

The main motivation for formulating the GCM method was 
to analyze global dynamics of a system (Hsu, 1982). The 
purpose of the method was to find equilibrium states and 
periodic motions in the system that can be identified after 
many mapping steps are performed (Hsu & Chiu 1986).  
This global analysis can yield a stationary probability 
transition matrix that does not change with time. Stationary 
transition matrices allow the global behavior of the system 
to be analyzed through Markov Chain theory where the 
entire evolution of cell mapping over time is determined by 
the stationary transition matrix (Hsu & Guttalu, 1980). 

The Monte Carlo and GCM method each rely on repetitive 
simulations during each time step to calculate transition 
probabilities. Each method effectively uses information 
about the initial cell and image cell(s). The amount of 
computation involved could overwhelm a microcomputer 
trying to calculate transition probabilities in real-time. These 
methods are most suitable for offline approaches. Therefore, 
a new method that only uses information about the initial 
cell would be a beneficial step toward real-time 
applications. 

Sara Mohon et al. This is an open-access article distributed under the 
terms of the Creative Commons Attribution 3.0 United States License, 
which permits unrestricted use, distribution, and reproduction in any 
medium, provided the original author and source are credited. 
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The Monte Carlo and GCM approaches can also be 
computationally burdensome with respect to high 
dimensional nonlinear systems. Performing the Monte Carlo 
method on these systems requires huge sampling 
populations. The GCM method also requires many 
calculations in order to find image cell boundaries for a 
nonlinear system. Then all these image cell points must be 
inversely mapped into the original cell. The feasibility of 
these methods with nonlinear systems is severely limited. 

The new stochastic method proposed by the authors uses the 
system vector field to calculate state transition probabilities 
as time evolves without computing image cells.  In this 
paper, the new method will be called the flow method.  The 
flow in/out of a cell through its perimeter is analyzed similar 
to Green’s theorem.  The total flow through a cell is 
comprised of summation of the flow through the sides of the 
cell.  This flow directly impacts the probability of state 
transition.  At each time step, the flow through each side of 
current state is calculated and then normalized to total flow 
through whole state perimeter.  A time-varying probability 
transition matrix can be created from these calculations. 

Once armed with the above methods for obtaining the 
probability transition matrices, they can be applied to FDI 
problems.  For example, if an expected state transition has a 
very low probability, and then the state transitions to this 
state and possibly continues to transition to low probability 
states, then this could indicate a fault in the system.  This 
paper applies and compares the GCM and flow methods for 
fault detection in an alternator system previously described 
by Mohon and Pisu (2013).  Results show that the GCM 
method yields faster detection time with incomplete 
isolation of faults.  On the other hand, the new stochastic 
method results in slower detection time and complete 
isolation at the cost of more computational complexity. 

The first section of this paper describes the GCM method.  
The second section describes the flow method.  The third 
section applies the two methods to an application example 
with a faulty automotive alternator and compares FDI 
results.  Lastly, some concluding remarks about the 
usefulness of each method is provided. 

2. GENERALIZED CELL MAPPING METHOD 

The method for generalized cell mapping is described by C. 
Hsu in his book (Hsu 1987).  Unlike simple cell mapping, 
where one cell is mapped into a single image cell, 
generalized cell mapping allows one cell to be mapped to 
several image cells.  Each image cells represents a fraction 
of the total probability. 

Consider the following simple example.  Suppose we have a 
system described by Eq 1.  There are two states z1 and z2 
and only z2 is observable in output.  We can illustrate the 
state space divided into quantized states 1 through 7 in 

Figure 1.  We will also assume some maximum and 
minimum values for z1. 
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⎡
⎣⎢
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(1) 

 
Figure 1:  Quantized states in state space example 

 
Obtaining the image cell boundaries can be thought of as a 
Monte Carlo exercise.  By randomly choosing a large 
sample of random points within the initial cell (state 4) and 
applying the dynamic system equations, the new location of 
the points can be plotted on the 2D state space.  Figure 2 
and Figure 3 illustrate how the randomly sampled points 
move in time.  A large number of points will clearly 
delineate the boundary of the new image cell. 

 
Figure 2:  Initial cell with randomly sampled points 
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Figure 3:  Image cell containing new position of sampled 

points after a finite time delta t 
The new image cell in this example is clearly a quadrilateral 
with four vertices.  These vertices represent the boundaries 
of the image cell.  Note that the image cell is now spanning 
states 3, 4, and 5.  By using the system dynamic equations, 
these vertices and other important points can be mapped 
back into the original cell shown in Figure 4.  This will 
allow us to determine the regions of the original state that 
map into other states. 

 
Figure 4:  Inverse mapping important points on image cell 

back into original cell 
The regions of the area now defined in the original cell can 
be used to calculate probabilities of transitioning up or 
down in the system.  Region A2 is mapped back into region 
A1.  Region A4 is mapped back into region A3.  The 
probability to transition up, down, or stay in state 4 is given 
by the following. 

 

Pup = A1Acell
Pdown = A3Acell
Pstay =1− Pup − Pdown

 (2) 

This process can be repeated as the system’s state changes 
along with input values. 

3. PROPOSED FLOW METHOD 

The flow method was proposed by the authors in a previous 
paper (2013).  This method uses the system’s vector field F 
to determine flow into and out of the current state/cell.  The 
method exploits the divergence theorem and determines the 
total potential of flow through the cell as the sum of flows 
through the perimeter of the cell. 

A two-dimensional form of the divergence theorem is 
defined in Eq. (3).   We define C as a closed curve, A as the 
2D region in the plane enclosed by C, n as the outward 
pointing normal vector of the closed curve C, and F as a 
continuously differentiable vector field in region A.  A 
graph of the 2D divergence theorem for the same 2D system 
in Eq. 1 is shown in Figure 5.   

 ∇⋅F
!"( )dA = F

!"
⋅n
"( )dr

C
∫

A
∫∫

 

(3) 

 
Figure 5.  Graph of 2D Divergence Theorem for 2D state 

space system 
 
We consider that the vector field 𝐹 describes transition flow 
in and out of the current state along the state boundaries.  
For the DC electric machine model, 𝐹 is defined as Eq. (4) 
where 𝚤 and 𝚥 are coordinates of vector field F and functions 
f1 and f2 are defined by states z1 and z2 from the state space 
model in Eq. (1).  

 
F
!"
= f1 î + f2 ĵ
#z1 = f1(z1, z2,u1,u2,u3)
#z2 = f2 (z1, z2,u1,u2,u3)

 

(4) 
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The flow through the left and right sides of the area A in 
Figure 5 will be assumed zero for the alternator system 
shown in Figure 6. The line integrals along the state z 
boundaries will determine flow in and out of the state.  The 
vector field F is illustrated by grey slope field in Figure 6.  
Flow out of state z is defined as a positive value φ+ and flow 
into state z is a negative value φ-.  Since each side may have 
flow in and flow out sections, the flow transition point z** 
or z* is found if necessary and the appropriate limits of 
integration for flow in and flow out are integrated for each 
side.  Transition points are shown in Figure 6.  Without loss 
of generality assume f2 < 0 if z1 < z*,z** and f2 > 0 if  z1 > z*, 
z** such that Eq. (5) holds.  The upward and downward flow 
through each side of state z is given by Eq. (6). 

 
Figure 6.  Graph of quantized DC electric machine system 

with flow definitions 

 
f2 (z

*, z2
(1),u1,u2,u3) = 0

f2 (z
**, z2

(2),u1,u2,u3) = 0

 

(5) 
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z1
∗

∫ > 0

ϕ1
− = − f2 (z1, z2
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∗
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∫ < 0

ϕ2
− = f2 (z1, z2

(2),u1,u2,u3)dz1
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min

z1
∗∗

∫ < 0

ϕ2
+ = f2 (z1, z2
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z1
∗∗

z1
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∫ > 0

 

(6) 

Next we define φin, φout, and φtotal in Eq. (7) in order to build 
probabilities.  The sum of the absolute value of all inward 
flow in defined as φin.  The sum of all outward flow is 
defined as φout. The total flow φtotal is the sum of φin and φout. 

 

ϕin = ϕ1
− +ϕ2

−

ϕout =ϕ1
+ +ϕ2

+

ϕtotal =ϕ1
+ + ϕ1

− + ϕ2
_ +ϕ2

+

 

(7) 

The notion of probability can be interpreted as counting 
types of occurrences and then normalizing the count of each 
type by the total occurrences.  Suppose the occurrences of 
outward and inward flow defined in Eq. (6) are normalized 
by the total flow defined in Eq. (7).  For example, the 
probability to transition up will be defined as the outward 
flow through side 2, φ2

+, divided by the total flow φtotal. We 
can then define z+ as the state above current state z and 
define z− as the state below current state z.  Equation (8) 
gives the probability to stay within the current state and the 
probability to transition up or transition down to an adjacent 
state.  Uniform probability distribution is assumed along the 
borders of each state. 

 

1= ϕin

ϕtotal

+ ϕout

ϕtotal

1=
ϕ1

− +ϕ2
−

ϕtotal

+ ϕ2
+

ϕtotal

+ ϕ1
+

ϕtotal

1= Pr(z ' = z | z)+ Pr(z ' = z+ | z)
+ Pr(z ' = z− | z)  

(8) 

At each time step the probability to stay or transition up or 
transition down is calculated using the current state 
boundaries and the current input.  This information builds a 
time-varying probability transition matrix named L that can 
be constructed as shown in Table 1 for the example of 
current state z=2 at time t. 

Table 1. Example of probability transition matrix L for 
current state z=2 at a time t 

 
Thus far, the new method formulation has shown the 2D 
case.  The new method can also be extended for the 3D case 
using 3D divergence theorem defined in Eq. (3).  Define V 
as a closed volume, A as the surface area of V, 𝑛 as the 
outward pointing normal vector of the closed volume V, and 
𝐹 as a continuously differentiable vector field in volume V.  
A picture for a cubic volume is shown in Figure 7. 

  Future State z’ 
  1 2 3 4 

C
ur

re
nt

 S
ta

te
 z

 1 0 0 0 0 

2    0 

3 0 0 0 0 

4 0 0 0 0 
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Figure 7.  Graph of 3D Divergence Theorem 

This method can also be extended to higher dimensions as 
well using the same procedure. 

4. APPLICATION EXAMPLE:  EPGS SYSTEM 

Today’s vehicles require higher electrical demands than 
ever before due to more mandated safety technology and 
popular consumer technology integrated within the vehicle.  
The purpose of the vehicle’s electrical power generation 
storage (EPGS) system is to maintain the necessary 
electrical power needed to start the vehicle and keep it 
running smoothly.  A healthy EPGS system is crucial for 
proper operation of a vehicle and have been investigated in 
previous literature. 

Scacchioli, Rizzoni, and Pisu (2006) proposed a fault 
isolation approach for an EPGS system using two equivalent 
alternator models.  One equivalent model for a healthy 
alternator and one equivalent model for an alternator with 
one broken diode.  Parity equations and three residuals with 
constant thresholds were used for fault isolation.  The 
approach assumed a 3000 second Federal Urban Driving 
Schedule (FUDS) cycle.   

Zhang, Uliyar, Farfan-Ramos, Zhang, and Salman (2010) 
proposed a fault isolation approach for an EPGS system 
using parity relations trained by Principal Component 
Analysis (PCA).  Three residuals with constant thresholds 
were used for isolation.  The approach assumed a staircase 
profile for both load current and alternator speed input, 
which is not a realistic scenario.   

Hashemi and Pisu (2011) proposed a fault isolation 
approach for an EPGS system using two observers and three 
residuals.  The approach assumed a staircase profile for load 
current and a portion of the FUDS cycle for alternator 
speed.  Adaptive thresholds were used for isolation.  In 
other similar work, Hashemi and Pisu (2011) showed the 
same approach but created a reduced order adaptive 
threshold model using Gaussian fit of data.  The second 
approach was less computationally intensive.   

Scacchioli, Rizzoni, Salman, Onori, and Zhang (2013) 
proposed a fault isolation approach for an EPGS system 
using one equivalent EPGS model that used parity equations 
to produce three residuals for fault isolation.  The approach 
used a staircase profile for both load current and alternator 
speed input. 

As stated, previous work for fault isolation in an EPGS 
system has included observers and parity relations.  The 
approaches with observers were built for linear systems that 
approximate the nonlinear behavior of the EPGS system.  
These approaches cannot be extended for direct use on the 
nonlinear system itself.  At least three residuals are required 
for all previous approaches.  It is also concerning that some 
approaches were not validated using real driving situations.  
Therefore these approaches have limited scopes. 

4.1. Model for EPGS System  

This paper analyzes the EPGS system shown in Figure 8 as 
modeled by Scacchioli et al. (2006).  It consists of a voltage 
controller, alternator, and battery.  The controller can be an 
electronic control unit or a voltage controller on the 
alternator itself.  In this paper, the controller is a part of the 
alternator to regulate field voltage.  The alternator model 
consists of an AC synchronous generator, three phase full 
bridge diode rectifier, voltage controller, and excitation 
field.   

The engine crankshaft mechanically spins the generator’s 
rotor by use of a belt and pulley.  The rotor is a ferrous 
metal wrapped with a single conductive winding.  When the 
controller applies a small field voltage to the winding, a 
small field current flows through the winding.  The flow of 
current through the winding produces a magnetic rotor with 
a north and south pole.  However, the stator is composed of 
three phase stationary windings.  As the magnetic rotor 
moves relative to the conductive stator windings, an 
electromotive force is induced in the stator windings.  If the 
stator windings are connected to an electrical load, then AC 
current will flow in each of the three stator windings.  The 
three currents are sent to a diode bridge rectifier to produce 
DC current for electrical loads or for recharging the battery.  
Therefore, the alternator takes mechanical energy of the 
engine and produces electrical energy for the battery or 
loads of the vehicle.  
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Figure 8.  EPGS model 

 

The model for the EPGS system results in a complex 
nonlinear system but can be more easily modeled by an 
equivalent DC electric machine as described by Sacchioli et 
al. (2006).  The dashed line in Figure 8 encompasses the 
components represented by the DC model.  

The DC electric machine is modeled by the state space 
system in Eq. (9) as shown by Hashemi (2011). 

 

!z1
!z2

⎡
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⎤
⎦⎥
= 0 a12 (ω e )

1 a22 (ω e )
⎡
⎣⎢

⎤
⎦⎥

z1
z2

⎡
⎣⎢

⎤
⎦⎥

+ b11(ω e ) b12 (ω e )
0 b22 (ω e )

b13(ω e )
b23(ω e )

⎡
⎣⎢

⎤
⎦⎥

u1
u2
u3

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

y = 0 1[ ] z1
z2

⎡
⎣⎢

⎤
⎦⎥

 
(9) 

Equation (9) has two states z1 and z2 and inputs u1, u2, and 
u3.  The system inputs represent the alternator field voltage 
Vf, angular frequency of alternator ωe, and dc voltage of the 
battery Vdc also shown in Eq. (10).  The coefficients a12, a22 
and b11…b23 are functions of engine speed and were found 
using system identification by Hashemi (2011) using test 
data at different constant engine speeds. In this model, state 
z2 is the measurable quantity Idc which is the rectified output 
current of the alternator. 

 

y2 = Idc = z2
u1 =Vf

u2 =ω e

u3 =Vdc

 
(10) 

4.2. Possible Faults in EPGS System  

The EPGS system is important in every vehicle and faults in 
the system need to be detected and isolated as quickly as 
possible to prevent costlier damage.  This paper considers 
three common faults that occur in an EPGS system.  
Possible fault locations in EPGS system are bolded in 
Figure 9. 

1. Voltage controller fault:  This fault occurs when the 
reference voltage Vref is incorrectly raised or lowered 
by a percentage of the nominal Vref.  The fault can 
cause the alternator to overcharge or undercharge the 
battery. 

2. Open diode rectifier fault.  This fault occurs when a 
diode in the diode bridge rectifier breaks.  The fault 
results in a large ripple in battery voltage Vdc and 
alternator output current Idc thereby decreasing the 
efficiency of alternator output. 

3. Belt slip fault.  This input fault occurs when the belt 
between the engine crankshaft and alternator pulley 
slips due to insufficient tension.  The belt slip causes a 
decrease in alternator rotational speed ωe and a decrease 
in alternator output voltage.  To compensate, the 
voltage controller increases the field voltage and/or the 
battery must discharge more often to meet load 
demand.  This can age the battery prematurely.  Belt 
slip can signify the belt is worn and needs to be 
replaced. 

 
Figure 9:  Possible faults in EPGS model 

4.3. Simulation Results 

Previous work by Scacchioli et al. (2006) yielded a 
complete nonlinear EPGS model.  This nonlinear model 
uses ωe, Iload, and Vref as inputs and yields Vf, Vdc, and 
battery dc current Idc as output.  Diagnostics for the belt 
fault case, diode fault case, and voltage controller fault case 
are accomplished by using the flow model and GCM model.  
The flow model procedure is illustrated in Figure 10 and the 
GCM model procedure is illustrated in Figure 11.  

 
Figure 10.  EPGS model with flow method 
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Figure 11:  EPGS model with GCM method 

 
The inputs for the nonlinear EPGS Simulink model are 
provided in Mohon et al (2013). 

Table 2 details the selected injection time and magnitude of 
fault relative to nominal that were injected during 
simulation.  In other words, the nominal inputs were 
modified to simulate a fault. 

Table 2.  Fault injection time and magnitude 

 
Output z2 range for nominal and faulty cases must be 
quantized into rectangles to find the probability transition 
matrix over time.  Output z2 is quantized into 12 states with 
names 1-12.  The same boundaries and names will be used 
for faulty cases as well. 

The z1 range for this simulation is z1
min is -2.210e+06 and 

z1
max is 6.683e+06.  Given the z1 range, the quantized states, 

and u1, u2, and u3, the probability transition matrix can now 
be calculated using the f2 function from Eq. (1).   

The probability transition matrix L contains the prediction 
of the most likely quantized state z’ = zL and its probability 
P(z’ = zL) at the next time step.  The most likely probability 
and most likely predicted state can be compared with the 
quantized output state [Idc] that actually occurs.    If there is 
a relatively high probability of a particular state transition 
occurring and that state transition does not occur, then a 
fault may be present.  An example of predicted state 
probabilities, predicted states, and output states over time 
for belt fault case is shown in Figure 12 and Figure 13. 

Disagreement between predicted and output states are clear 
after calculating the difference of quantized output state [Idc] 
and the predicted state.  This difference is defined as the 
residual r in Eq. (11).  The residual results for each fault 
case using flow method are shown in Figure 14 through 
Figure 16.  The residual results for each fault case using 
GCM method are shown in Figure 17 through Figure 19. 

 
Figure 12.  Belt fault outputs for flow method 

 
Figure 13:  Belt fault outputs for GCM method 

 

 r = [Idc ]− [Idc,predicted ]

 

(11) 

 

  

Fault 
Injection 

time 
(s) 

Modified 
Input 

Resulting % drop 
with respect to 

nominal 
Belt Slip 10 ωe 80 

Open Diode 10 Vdc 
N/A 

(one broken diode) 
Voltage 

Controller 10 Vref 30 

European Conference of the Prognostics and Health Management Society 2014

53



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014 

8 

 
Figure 14.  Belt fault residual for flow method 

 
Figure 15.  Diode fault residual for flow method 

 
Figure 16.  Voltage controller fault residual for flow method 

 
Figure 17:  Belt fault residual for GCM method 

 
Figure 18:  Diode fault residual for GCM method 

 
Figure 19:  Voltage controller fault residual for GCM 

method 
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4.3.1. Analysis of Flow Method Results 

All three fault cases using the flow method show a short-
term disagreement r ≠ 0 between predicted and output states 
at time t=0.2 seconds but returns to agreement r = 0 
immediately at t=0.3 seconds.  The disagreement occurs 
before a fault is injected at time t=10 seconds.  This 
disagreement at t=0.2 could trigger a false alarm during 
fault detection.  Similar rapid switching behavior also 
occurs in the diode fault residual in Figure 17.  To 
distinguish between the similar switching behavior of false 
alarms with real faults and to build confidence in the 
diagnostic algorithm, a fault will only be detected if the 
residual shows disagreement for at least 0.2 seconds.  The 
belt fault will be detected at t=38.4 seconds.  The diode fault 
will be detected at t=10.7 seconds.  The controller fault will 
be detected at 10.2 seconds. 

Isolation of a detected fault will be achieved by monitoring 
the switching behavior during a finite time window 
following detection.  The belt fault appears in the residual 
when the load current increases or decreases.  Due to the 
quick duration of load current change, the belt fault is also 
present for a short time in the residual lasting between two 
to four seconds.  The diode fault causes a large ripple in the 
alternator output current.  This ripple causes frequent and 
rapid switching behavior from agreement to disagreement in 
the residual.  The controller fault is the only fault case 
where there is residual disagreement for the entire duration 
of the fault.   Therefore, the mean 𝑟 of the absolute value of 
the residuals during a finite time window can be used to 
isolate each fault as defined in Eq. (12).  The time window 
is chosen based on data behavior.  For the data in this paper, 
a six second window was used.  Table 3 shows the mean 
value calculations for each fault using the six second 
window immediately after fault detection.  

 
r =

ri
i=1

n

∑
n

 

(12) 

 
Table 3.  Mean 𝑟 for six second window using flow method 

 
Appropriate constant thresholds for 𝑟 can isolate the fault.  
For this paper, if 𝑟 is between 0.5 and 1 the fault is due to 
belt slip.  If 𝑟  is 1 the fault is due to the controller.  
Otherwise, the fault is due to an open diode. 

Based on this approach, the belt fault will be isolated at 
t=44.4 seconds; the diode fault will be isolated at t=16.7 

seconds; the controller fault will be isolated at time t=16.3 
seconds. 

4.3.2. Analysis of GCM Method Results 

The GCM method residuals show similar behavior 
compared to the flow method residuals.  For the GCM 
method, fault detection will occur when the residual shows 
disagreement for at least 0.2 seconds.  The belt fault will be 
detected at t=10.1 seconds.  The diode fault will be detected 
at t=52.5 seconds.  The controller fault will not be detected 
or isolated because the residual never deviates from zero.  
The controller fault causes the output to transition to a 
nonadjacent cell and GCM method allows for nonadjacent 
cell transitions.  Therefore, the residual of controller fault is 
always zero. 

Isolation of the detected fault can be attempted by Eq. (12) 
with using a six second window immediately after fault 
detection.  Table 5 shows the mean value calculation for 
each fault.  The belt slip fault can be isolated if 𝑟 is between 
0.1 and 0.2.  The open diode fault can be isolated if 𝑟 is 
between 0 and 1.  However, the voltage controller fault 
cannot be isolated.  The residual never deviates from zero 
during the entire dataset. Therefore, the voltage controller 
fault cannot be isolated using GCM method. 

Table 4.  Mean 𝑟 for six second window using GCM 
method 

 

4.3.3. FDI Summary 

Table 5 contains the detection and isolation times for both 
flow and GCM methods.  The flow method can isolate all 
three faults while the GCM method can isolate only belt slip 
and open diode faults.  The flow method can isolate the 
open diode fault faster than the GCM method.  The GCM 
method can isolate the belt slip fault faster than the flow 
method.  It is clear that the flow method gives best results 
since all fault detection and isolation is achievable. Fault Mean �̅� 

Belt Slip 0.75 
Open Diode 0.08 

Voltage Controller 1 
 

Fault Mean �̅� 
Belt Slip 0.15 

Open Diode 0.08 
Voltage Controller 0 
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Table 5.  Fault injection time and magnitude 

 
Different fault magnitudes might require different isolation 
thresholds.  This paper only considers three discrete fault 
modes. 

5. CONCLUSION 

This paper compares the GCM method and a new stochastic 
method for calculating state transition probabilities within a 
dynamic system.  The methods are compared by detecting 
and identifying faults in a vehicle alternator system.  The 
methods vary based on computational complexity and the 
ability to isolate all faults.  The GCM method could not 
detect the controller reference fault but did isolate the belt 
fault faster than the new stochastic method.  Overall, the 
new stochastic method is preferred since it can complete the 
FDI analysis even at the cost of computational effort. 
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NOMENCLATURE 

ωm engine rotational speed 
ωe alternator rotational speed 
Vdc battery DC voltage 
Vf field voltage 
Vref voltage controller reference 
Idc alternator output current 
Iload vehicle load current 
IB battery charging current 
z1 first state space state 
z2 second state space state and output 
u state space input 
a(ωe) state space parameter dependent on alternator 

rotational speed 

b(ωe) state space parameter dependent on alternator 
rotational speed 

z current state 
z’ possible future state 
z1

min minimum z1 value 
z1

max maximum z1 value 
z* flow transition point on z1 axis on side 1 of state z 
z** flow transition point on z1 axis on side 2 of state z 
z2

(1) upper boundary of state z 
z2

(2) lower boundary of state z 
φ+ flow up 
φ- flow down 
f general function 
𝐹 Field vector 
𝑛 normal vector 
C general closed curve 
A area within curve C 
r line integral direction along curve C 
φin total flow into state z 
φout total flow out of state z 
φnet net flow for given state z 
z+  state above state z 
z− state below state z 
L time varying probability transition matrix 
[Idc] quantized alternator output current 
r residual 
𝑟 mean of absolute value of residual 
n number of data points in residual 
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ABSTRACT  

This paper proposes a test protocol for drift identification 

and classification in a complex production system. The key 

objective here is to develop a classifier for failure causes 

where variables depend on a set of measured parameters. In 

the context of our work, we assume that the drift problem of 

a production system is generally observed in control 

products phase. The model proposed in this paper for failure 

causes classification is structured in the form of a causes-

effects graph based on Hierarchical Naïve Bayes formalism 

(HNB). Our key contribution in this is the methodology that 

allows developing failure causes classification test model in 

the complex and uncertain manufacturing context. 

1. INTRODUCTION 

Nowadays, the industrial market is characterized by capital 

investment and growing international competition. In this 

scenario, success depends on the competitiveness of 

products. In order to achieve this, manufacturers aim to 

maximize the performance and quality of services through 

three criteria: cycle time, costs and productivity (Kunio et 

al, 1995). These can only be achieved by improving 

manufacturing equipment availability. The manufacturing 

processes have become very complex and automated (Zio, 

2009), and requires accuracy while executing production 

steps in the context of automated manufacturing systems 

(AMS), especially for the production equipment. 

The equipment act directly on the product and they can be 

represented according to three parts: (i) the product flow 

that includes processed product, assembled product, finished 

product, etc., (ii) the controlled system including actuators, 

sensors and effectors, and (iii) the supervision, monitoring 

and control system (detection, diagnosis, prognosis, etc.), as 

shown in the Figure 1.  

However, sensors are not directly positioned on the product 

for technical reasons. Therefore, the manufacturing process 

has the risk of not observing perturbation that affects the 

product quality. Also, the production equipment do not have 

internal mechanism to confirm that recipe applied to the 

product has been carried out correctly (Bouaziz et al., 2013). 

Therefore, many drifts are unavoidable in the production 

process.   

 

Figue 1. Internal structure of the production equipment. 

(Bouaziz et al., 2013). 

This article is structured as follows: in section 2, we present 

the approaches details of the identification and classification 

processes. Section 3 is devoted to present state of the art in 

the field of classification (main techniques). In section 4, we 

propose an introduction to Hierarchical Naïve Bayes 

technique. Then in section 5, we present an application of 

our approach on the Tennessee Eastman Process example. 

2. IDENTIFICATION AND CLASSIFICATION PROCESS 

In this section, we present the four steps of our 

methodology. The process of identification and 

classification is performed according to Figure 2. 

 Ngoc Hoang Tran et al. This is an open-access article distributed under 

the terms of the Creative Commons Attribution 3.0 United States 
License, which permits unrestricted use, distribution, and reproduction 

in any medium, provided the original author and source are credited. 
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2.1. Definition of the production context 

This phase presents the production system context that is 

characterized by high complexity and uncertainty. Industrial 

production system is even more complex with multiple 

manufacturing processes running on the same production 

line and competing for available production resources. It 

means that there are a large number of elementary 

operations to manufacture a finished product (especially in 

the semiconductor and the pharmaceutical industries) and 

long production periods (8 to 10 weeks in semiconductor 

production). Also, the industrial production environment is 

naturally uncertain (equipment drifts, human errors...) that 

can impact the process control and maintenance contexts. 

2.2. Definition of modeling techniques 

In this second step, we analyze several methods based on 

the criteria defined within the production context. We 

analyse in particular if the model can: 

• Manage diversity of the parameter types (discrete, 

continuous, qualitative and quantitative). Examples: 

time, digital measurements, samples …  

• Manage multiple hierarchical classes of equipment 

parameters (sensors, motors...) and products. 

• Manage diversity of variables: (observed variables and 

unobserved variables).  

• Take into account correlation between variables or 

causal events. 

• Deal with uncertain data and/or missing data (complete 

data and incomplete data). 

 

 

• Be suitable: It is defined as the flexibility of the model 

for different purposes and problems (diagnosis, 

prognosis…). 

• Be efficient: it is defined as the computation time of 

variables distributions (performance).  

After making a synthetic comparison between the different 

methods (Neural networks, Decision trees, BN...), we found 

that modeling technique must be suitable to the context of 

production; and, this study is oriented towards probabilistic 

method: Bayes Network. 

2.3. Analysis of causality (FM/RC) 

The FMECA (Failure Modes, Effects and Criticality 

Analysis) approach is used to identify a list of failure modes 

(FM) and root causes (RC) by the expert. It is based on the 

priorities which are identified for the qualitative 

classification of failure modes by experts based on their 

knowledge. It results in the list of causalities (correlation 

between variables) (Bouaziz et al., 2013). 

2.4. Modeling 

In this last phase, we propose a mechanism to verify the 

causalities proposed by experts and/or find new causalities 

(Zaarour et al., 2004). An automated tool is proposed for 

this purpose that searches correlations by classification 

(Bouaziz et al., 2013) by learning them from a historical 

database. 

The classifiers inputs (parameters and graphical structure) 

are calculated from the measured data and experts' 

knowledge. The output tool helps to make decisions to 

Figure 2. Identification and classification process. 
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either verify and/or find existing or new causalities by 

calculating various probability distributions of the graphical 

model. In our case, as we propose to work in both diagnosis 

and prognosis; hence, we present a generic methodology for 

developing a simulation tool to assist this decision making. 

3. THE TECHNIQUES IN THE FIELD OF CLASSIFICATION  

Thereafter this section is designed to introduce techniques in 

the field of classification. It is necessary to know that in our 

case the classification phase is used for diagnosis/prognosis 

aspects. That is to say, the objective of this phase is to 

present a study of different types of classifiers with their 

advantages and disadvantages in the context that there is no 

single classifier that is better in all applications. We 

distinguish the classification algorithms in two categories as 

supervised and unsupervised classification. This section is 

dedicated to introduce some techniques often used in the 

each of these categories. 

3.1. The supervised classification  

In the process, when a failure causes are diagnosed, we 

classify the collected data according to different causes 

associated with degradation. The key purpose of supervised 

classification is to find, from the examples already classified 

(training sets), a model to predict the classes for new data. 

Following is the list of supervised classification methods 

used more often: 

• K-nearest neighbors (k Nearest Neighborhood or kNN): 

The idea of this method is to observe the k nearest 

neighbors of a new observation to determine the class 

membership of this new observation (Belur, 1991). To 

predict the class of a new variable, the algorithm finds 

the K nearest neighbors of the new cases and predicts 

the most common response of them. This method is 

used on continuous data. It is possible to take into 

account binary data (discrete variable with 2 

modalities), but not multinomial (discrete variable with 

n modalities) (Cover & Hart, 1967). It is difficult to 

find the class in case of insufficient data because it also 

needs a lot of examples for learning. 

• Decision trees data set: It is a recognized discrimination 

between different classes tools. The main advantage of 

decision trees is that they can be easily used with the 

understandable rules. If the attribute is binary, we have 

two possible decisions, whereas if the attribute has k 

modalities, we have k possible decisions. Indeed, 

although the execution is fast, but the construction of 

the tree uses much more time. Also, it do not actually 

support the continuous values. In addition, it is always 

possible to discretize but the problem here is how to 

optimize discretization (lose the least amount of 

information compared to the original variable). So the 

decision trees work well with criteria to manage 

diversity parameters and variables whereas with others, 

they are not accurate (Verron et al, 2010). 

• SVM Support Vector Machines: These are binary 

classifiers. The purpose of this technique is to find wide 

margin classifier to separate the data and maximize the 

distance between two classes. This linear classifier is 

called “hyperplane”. The closest points are called 

Support Vector (Verron et al, 2010). That “hyperplane” 

must be optimal which passes through the middle 

among the “hyperplanes” valid. This method has shown 

its effectiveness in many fields of applications such as 

image processing and medical diagnosis with large 

dimension datasets. However, the SVM application is 

not effective with the incomplete data. 

3.2. The unsupervised classification  

As we have discussed, when classes exist and that we have a 

large number of data already classified, we can classify new 

data (supervised classification). Unlike this technique, 

unsupervised classifications do not have a training set. 

There are two main families of unsupervised classification 

methods. 

Hierarchical classification: Its purpose is to create a 

hierarchy in groups of variables. It means that identified 

classes of variables are assigned different levels. 

Non-hierarchical classification: The hierarchy is not 

presented in this type of classification. The algorithms of 

this type produce classes but without forming a hierarchy 

(all classes are created in the same level). 

• Agglomerative Hierarchical Clustering (AHC): It is a 

method of classification based on simple principle. We 

begin by calculating dissimilar objects among N. Then 

we combine the two objects according to criterion 

aggregation, thus creating a class for these two objects. 

We then calculate the dissimilarity between this class 

with other N-2 objects using this criterion to create 

another class. Then the two classes of objects or 

grouping minimizing the aggregation criterion objects 

are grouped. And we continue until all objects are 

grouped. 

• Divisive Hierarchical Clustering (DHC): It is the 

inverse of the previous method where classes are 

created step by step. We initially assume that all 

individuals belong to the same class, and in turn we cut 

into two. This step is repeated until you get as many 

classes as individuals. 

• Bayesian Networks (BN) (Pearl, 1988): This method 

can be used on both discrete and continuous variables. 

Indeed, we can build a BN model with a graph that 

reflects the discrete or continuous data, modeled in the 

probability tables. The extracted data are used for 

learning and the level of complexity for the 
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computation depends on the amount of data. A BN may 

represent variables by nodes and prioritization of 

classes with a Hierarchical Naïve Bayes networks 

HNB. The probabilities calculations can be provided by 

Maximum Likelihood Estimation / Expectation–

Maximization algorithm (MLE/EM) and are used to 

represent correlations between nodes. Moreover, the 

advantage of Bayesian Networks is its adaptability. A 

Bayesian Network allows the consideration of the 

temporal dimension using Dynamic Bayesian Networks 

DBN (Verron et al., 2010). 

In this paper, we want to remind that our study is directed 

towards the probabilistic methods, so it is really a method 

that can fulfill all of these criteria. Moreover, in our study, 

data is not supervised with the need for Hierarchical 

priorities, we would present the following details of this 

method in the next section.  

4. INTRODUCTION OF THE HNB TECHNIQUE 

4.1. Background and principle 

A Bayes Network is a system representing knowledge and 

to calculate conditional probabilities providing solutions to 

different kinds of problems. The structure of this type of 

network is simple: a graph in which nodes represent random 

variables and arcs are connected by conditional probabilities 

(uncertainty knowledge) (Jensen, 1996). These variables 

may be discrete or continuous, observable or unobservable, 

detected or not detected. 

In the general case, X = {X1, X2,…, Xn}, the joint probability 

distribution P(X) is written as follows: 

            

 

   



n

i

ii XParentsXPXP
1

))(/(

 

              (1) 

 

 

The calculation of BN is based on the Bayes theory (Bayes, 

1763): 
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• P(X1) is the a priori probability (or Marginal) of X1. 

• P(X2/X1) is the posterior probability of X2 (knowing 

X1). 

• P(X1/X2) is the likelihood function of X1 (knowing 

X2). 

The marginal distribution P(X2) is calculated by the 

formula: 

       )(./)(./ 1121122 XPXXPXPXXPXP   (3)           

The Naïve Bayes Network also called Bayes classifier is the 

Bayes classifier with the simplest structure. This classifier is 

very famous because of its performance, especially in the 

case where all variables are discrete (Verron et al., 2010). 

Naïve Bayes networks have a simple and unique structure 

that includes two levels. The first level contains a single 

parent node and the second is several children with high 

hypothesis of conditional independence of children (X) to 

the parent. Nodes X1…Xn are independent conditional on Xc 

class. They are widely used to solve classification problems 

expressed by Eq. (4) and Figure 3: 
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Figure 3. Naïve Bayes models. 

 

Figure 4. Hierarchical Naïve Bayes models. 

In fact, the knowledge provided by an expert can also result 

in the creation of latent variables between two or more 

nodes. This is the case for example unsupervised problems 

where the class is never measured. Therefore, it is possible 

to provide the equivalent of a Naïve Bayesian network, the 

latent model, where classes (shown in blue in the following 

figure) are not part of the measured variables. A latent class 

(LC) model includes Xc, X1 and X2 latent and manifest 

variables Y1, Y2... Yn. Latent Hierarchical models illustrated 

in Figure 4 have been proposed by (Bishop & Tipping, 

1998) for data visualization and unsupervised classification. 

4.2. Learning and inference 

Different families of learning and inference algorithms are 

proposed in the literature (Naïm et al., 2007) with three 

criteria of classification:  
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• Objective: learning or inference.  

• Data: Complete or incomplete.  

• Judgments of the expert: with or without the expert 

knowledge.  

In this paper, we are working with two criteria (objective 

and data availability). (Bouaziz et al., 2013) presents a 

synthesis for probabilistic algorithms mostly used for Bayes 

networks. For a more detailed description, we recommend 

reading (Heckerman, 1998), (Neal & Hinton, 1998), (Pearl, 

1988), (Jensen, 1996) and (Kappen, 2002). 

These learning methods find the structure of Bayes network 

(structure learning) and estimate conditional probabilities 

(parameter learning) or acquire knowledge (experts' 

judgments). The inference algorithms are used for very large 

networks. There are many libraries for Bayes networks 

(BNT Matlab, BNJava, Java- Bayes, PNL…) and quality 

software (ProBT, BayesiaLab, Netica, Elvira…) that are 

useful (Naim et al., 2007). 

The conditional probabilities of variables are computed 

based on the Bayes theory for TEP model. These results can 

help to make decision support components for metrology 

and maintenance (Bouillaut et al., 2008). 

5. APPLICATION TO TENNESSEE EASTMAN PROCESS 

5.1. Description 

Tennessee Eastman Process (TEP) is a complex process 

developed by Eastman Company to provide a simulation of 

a real industrial process to test process monitoring methods. 

There are reactive gases A, C, D, E and inert gas B in the 

reactor. G and H are two products (liquid). The chemical 

reactions of the method are given by the equation system in 

Eq. (5). 

A (g) +C (g) +D (g) →G (liq) 

A (g) +C (g) +E(g) →H (liq) 

A(g) +E(g)   →F  (liq) 

3D(g)   →2F(liq)    (5) 

TEP has five elements: Reactor, Condenser, Compressor, 

Separator and Stripper. At first, the products leave the 

reactor while catalyst remains in there. Then the product gas 

is cooled through a condenser that moved to the vapor liquid 

separator. The uncondensed vapors in the separator return to 

the reactor via compressor. The inert gas B and derivative F 

are purged from the separator in this process. At last, the 

condensed stream into the separator is sent to the stripper to 

remove the last traces of reagents (Figure 5). 

The TEP includes 53 variables: 41 measurements and 12 

manipulated variables. Among these 41 variables, there are 

22 continuous variables (these are the values of the sensors 

of the process), while other measures are compositions such 

as concentrations, which are not readily available but 

continuously sampled. TEP is subjected to 20 different 

faults. These faults are of different natures: step, random 

variation (the increasing level variability of certain 

variables) or other actuators such as a blocked valve.  The 

description of these 20 mistakes and 53 variables is 

presented in detail in (Li & Xiao, 2011). Furthermore, we 

propose to work on the faults that cannot be observed (F16 to 

F20). 

5.2. Modeling 

In our work, we propose to determine a set of variables 

representing the case study TEP according to steps 3 and 4 

(see Figure 2). Therefore, the variables used in the 

illustrative models, we describe in this section, are 

inherently based on the experience and inference (Verron et 

al., 2010). Through this model, our objective is to describe 

the evolution and identify one or more failures in the 

system. We identified four distinct categories of variables:  

• Failure modes of the process FM: We assume that the 

states of the variable (FM) takes two possible values 

(detected, not detected). 

• Primary failure causes (level 1) RCi (i= 1→6): these are 

quantitative variables defined by expert opinion. They 

correspond to six elements of process TEP (see table 1). 

All variables have a binary mode (observed or 

unobserved). 

Node Variables 

RC1 Reactor feed flow 

RC2 Reactor temperature 

RC3 Reactor pressure 

RC4 Condenser cooling water 

RC5 Separator temperature 

RC6 Stripper valve 

Table 1. Primary failure causes. 

• Intermediate failure causes (level 2) Fj (j=1→20). In 

our work, the failure causes are defined by the experts; 

however, for detailed description, we recommend to 

read (Verron et al, 2010). All faults have a binary mode 

(observed or unobserved). 

• Parameter descriptions Xm (m=1→53): they are 

determined by the real process. We have 53 variables 

that correspond to the measurement and manipulated 

variables in TEP. Each variable has either a binary 

mode true or false. 
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In follows, we propose a graph structure of the model and 

calculate the probability distributions associated with each 

of variable in the graph. A classification structure from RCi 

with the known observation parameters Xm and structure 

prognosis/diagnosis of FM based on the observations on RCi 

is shown in Figure 6 below. 

 

Figure 6. Identification and classification model by 

Hierarchical naïve Bayes network. 

This model offers to classify failures causes in 2 

hierarchicals RCi and Fj. At the same time, we specify 

which are failures causes of the FM  and predict the future 

state of the system or a component. To continue, our result 

would be presented in the next section.  

6. RESULTS 

In this section, first we present the preliminary results of 

learning with simulation in two cases complete and 

incomplete data.  

 

At first, a square matrix (80 x 80) corresponding to 80 

variables (53 parameters Xm + 20 variables Fj + 6 variables 

RCi + 1 variable FM) and 80 samples for learning the 

probabilities are created by BNT Matlab © library (Murphy, 

2001). The calculation of probabilities is done by MLE 

(Maximum Likelihood Estimation) algorithm that is a 

statistical estimate of the probability based on its occurrence 

(frequency of occurrence) in the dataset. Similarly, we have 

created incomplete data by adding many hidden variables in 

complete data.  

Columns represent probabilities of variables. With FM 

(failure mode) variable we have 2 largest columns that 

represent probabilities of detected and undetected failure. 

We found that there are few different probability variables 

(Figure 7). This is unavoidable with incomplete data. 

However, we saw probabilities FM (failure mode) in two 

cases (0.77 and 0.74) is similar which is an acceptable 

result. 

 

Figure 7. The results of learning algorithme. 

Figure 5. TEP flow sheet adopting control structure proposed by (Lyman & Georgakis, 1995).  
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 Thereafter, we present the simulation results for the failure 

causes classification and prognosis after the appearance of 

failure. In the framework of this paper, we present un simple 

exemple model in Figure 8 to calculate probability 

distributions with the failure causes cooling water in 

condenser process (TEP) and related parametres. 

 

Figure 8. Exemple model to calculate probability 

distributions. 

Figures 9 and 10 present results of two scenarios with 

complete data (result with incomplete data is not shown in 

figures). These are cleary illustrative examples of inference. 

We presented only probability distributions with known 

observation of some variables (Figure 8).  

• P(FM|RCi): Variable observation in the example is RC4. 

We used Bayes formula to calculate the probability 

failure mode based on this observation. Thus, the FM 

process is defined (predicted) from the calculation of 

probabilities. This is the classification model for 

prognosis (Figure 9). 

 

Figure 9. Probability of variables in prognosis case. 

• P(RCi|FM): Similarly, we establish the diagnosis model 

when we know the observation of a failure mode. This 

is to calculate probabilities of the causes (for example 

RC4). This is the model of classification for diagnosis 

(Figure 10).  

 

Figure 10. Probability of variables in diagnosis case. 

Base on learning results, a predicted result of failure mode 

of process FM is calculated from the observed failures 

causes RC4 and F15 (see Figure 9). We found similar 

inferences in both cases. Indeed, probabilistic inference is 

essentially a matter of calculation. This shows that learning 

with whether complete or incomplete data (0.81 & 0.84), we 

also have close probabilities to make a decision. Similarly, 

in diagnosis case, we found probabilities of these variables 

(see Figure 10) from a failure mode of process FM which is 

detected. Therefore, we can compare between probabilities 

to make a correct decision. So these results show that the 

proposed method performs good detection capability. 

However, it should be mentioned that classifiers could not 

make choice easy if there are too many variables in the 

manufacturing process. This implies that we must have 

weights primarily depending on the differences between 

each variables to propose the optimal distribution. 

7. CONCLUSION AND PERSPECTIVES 

Our work presented in this paper deal with the identification 

and classification of failure causes in the context of complex 

industrial production. We first presented complex industrial 

manufacturing processes along with detailed steps of our 

methodology and in particular approaches for Bayes 

network. In the end, we presented simulation results on our 

TEP case study.  

We showed thereafter an international benchmark that our 

approach propose a solution in terms of classification. In 

particular, we have presented a failure causes classification 

method based on a set of measured parameters. The 

resulting model, developed using Bayesian approach, allows 

diagnosis or prognosis in a context of complete/incomplete 

data. Nevertheless, this proposed model is a testing protocol 

for failures causes classification. Therefore, certain aspects 

in this model could be improved. In future, we shall propose 

the learning of the proposed model on real set of data that 
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requires validation. On the other side, a development will be 

directed to a new configuration which is the application of a 

heuristic that quickly finds weights by the optimal structure 

of VIP classifier. In addition, an extension of the temporal 

Bayes network will improve dynamic monitoring for 

decision making. 

REFERENCES 

Bayes T., (1763). An Essay towards solving a Problem in 

the Doctrine of Chances. Philosophical Transactions of 

the Royal Society of London, vol. 53, pages 370-418. 

Belur V. D, (1991) Nearest Neighbor: Pattern Classification 

Techniques , IEEE Computer Society. 

Bouaziz. M.-F, Zamaï. E, Duvivier. F. (2013). Towards 

Bayesian Network Methodology for Predicting the 

equipment Health Factor of Complex Semiconductor 

Systems. International Journal of Production Research, 

Volume 51, Issue 15, 4597-4617. 

Bouillaut L., Leray P., Aknin P., François O., Dubois S., 

(2008). Dynamic Bayesian Networks Modelling 

Maintenance Strategies: Prevention of Broken Rails. 

WCRR'08 World Congress on Railway Research, 

Séoul. Corea. 

Bishop, C. M. and Tipping M. E., (1998). A hierarchical 

latent variable model for data visualization. IEEE 

Transactions on Pattern Analysis and Machine 

Intelligence  20(3), 281–293. 

Cover.T.M and Hart. P.E, (1967). Nearest neighbor pattern 

classification, IEEE Transactions on Information 

Theory, 13 :21–27. 

Heckerman D., (1998). A Tutorial on Learning with 

Bayesian Network. JORDAN M. I., Ed., Learning in 

Graphical Models, Kluwer Academic Publishers, 

Boston. 

Li H. and Xiao D-Y. , (2011). Faut diagnosic of Tennessee 

Eastman process using signal geometry matching 

technique . EURASIP Journal on Advance in Signal 

Processing 2011:83. 

Jensen F.V., (1996). Introduction to Bayesian networks, 

UCL Press, London. 

Kappen H., (2002). The cluster variation method for 

approximate reasoning in medical diagnosis. Eds., 

Modeling Bio-medical signals,World-Scientic. 

Kunio S., Mitsugu K., Yoshifumi K., (1995). An Advanced 

step in TPM Implementation. (pages 64-65). Paris, 

France. 

Lyman. PR, Georgakis. C. (1995). Plan-wide control of the 

Tennesse Eastman problem. Comput Chem Eng, 19(3), 

321-331. USA. 

Murphy K., (2001). The BayesNet Toolbox for Matlab. 

Computing Science and Statistics: Proceedings of 

Infence, vol. 33. 

Naim P., Wuillemin P.H., Leray P., Pourret O., (2007). 

Bayesian Network. 3e édition, Eyrolles (eds). 

Neal R.M., Hinton G.E., (1998). A View of the EM 

algorithm that justifies incre-mental, sparse and other 

variants. JORDAN M. I., Ed., Learning in Graphical 

Models, Kluwer Academic Publishers, Boston. 

Pearl J., (1988). Probabilistic reasoning in intelligent 

systems: Networks of plausible inference. Morgan – 

Kaufmann, San Diego. 

Verron. S., Li. J., Tiplica, T. (2010). Fault detection and 

isolation of faults in a multivariate process with 

Bayesian network. Journal of Process Control 20 (8), 

902-911. 

Zio, E.. (2009). Reliability engineering: Old problems and 

new challenges. Reliability Engineering and System 

Safety journal. Volume 94, pp. 125-141. 

Zaarour I., Heutte L., Leray P., Labiche J., Eter B., Mellier 

D., (2004). Clustering And Bayesian Network 

Approaches For Discovering Handwriting Strategies 

Of Primary School Children. IJPRAI 18(7):1233-1251. 

BIOGRAPHIES  

Mr. Tran Ngoc Hoang is a PhD student at 

Grenoble GSCOP Laboratory. He has 

completed his degree in Mechatronics 

from Polytechnic University of Danang, 

Vietnam in 2009.  He also holds a Master’s 

degree in engineering of complex system 

from Grenoble INP in 2013. His research 

interests include equipment usage diagnosis and multi 

criteria decision making. 

Mr. Mohammed-Farouk Bouaziz was 

born in Algeria, in 1985. He received a 

PhD in automation and production from 

the University of Grenoble (GSCOP), in 

2012. He is currently a Postdoctoral fellow 

at the Research Center for Automatic 

Control of Nancy (CRAN). His fields of 

interest include the discrete event systems (DES); 

probabilistic graphical models (PGM); prognostics and 

health management (PHM); decision support systems (DSS) 

and the industrial applications. 

Mr. Eric Zamaï was born in France in 

1971. He received a Ph.D with distinction 

in electrical engineering from the 

University of Toulouse, France, in 1997. 

He is currently an associated professor at 

the Grenoble Institute of Technology 

(Grenoble INP) and does his research at 

the Laboratory of Grenoble for Sciences of Conception, 

Optimisation and Production (G-SCOP). His research 

interests include supervision, diagnostic, prognostic, and 

management and control of production systems. He also 

teaches in Grenoble INP engineering school of ENSE3. His 

subjects are design of real time system, control and 

management, logic and PLC programming. 

European Conference of the Prognostics and Health Management Society 2014

65



Dynamic Weighted PSVR-Based Ensembles for Prognostics of 

Nuclear Components 

Jie Liu1, Valeria Vitelli2, Redouane Seraoui3 and Enrico Zio4 

1Chair on Systems Science and the Energetic Challenge, European Foundation for New Energy-Électricité de France, 

CentraleSupélec, Paris, France 

jie.liu@ecp.fr 

2Department of Biostatistics, University of Oslo, Oslo, Norway 

valeria.vitelli@medisin.uio.no 

3 EDF R&D/STEP Simulation et Traitement de l’information pour l’exploitation des systemes de production, Chatou, France 

redouane.seraoui@edf.fr 

4Energy Departement, Politecnico di Milano, Milano, Italy. Chair on System Science and the Energetic Challenge, European 

Foundation for New Energy – Electricite de France, CentraleSupélec, Paris, France 

enrico.zio@ecp.fr  

 
ABSTRACT 

Combining different physical and / or statistical predictive 

algorithms for Nuclear Power Plant (NPP) components into 

an ensemble can improve the robustness and accuracy of the 

prediction. In this paper, an ensemble approach is proposed 

for prediction of time series data based on a modified 

Probabilistic Support Vector Regression (PSVR) algorithm. 

We propose a modified Radial Basis Function (RBF) as 

kernel function to tackle time series data and two strategies 

to build diverse sub-models of the ensemble. A simple but 

effective strategy is used to combine the results from sub-

models built with PSVR, giving the ensemble prediction 

results. A real case study on a power production component 

is presented. 

1. INTRODUCTION 

Combining various data-driven approaches into an ensemble 

is a relatively recent direction of research, aimed at 

improving the robustness and accuracy of the final 

prediction. The models which compose the ensemble are 

called sub-models. Various strategies have been proposed 

for building sub-models, including error-correcting output 

coding, Bagging, Adaboost, and boosting (Kim, Pang, Je, 

Kim & Bang, 2003; Hu, Youn, Wang & Yoon, 2012). 

Similarly, several methods for aggregating the prediction 

results of the sub-models have been proposed, such as 

majority vote, weighted vote, Borda count, Bayes and 

probabilistic schemes, etc (Polikar, 2006).  

Support Vector Machine (SVM) is a popular and promising 

data-driven method for prognostics. SVM-based ensemble 

models have been proposed for classification. Chen, Wang 

and Zuylen (2009) use ensemble of SVMs to detect traffic 

incidents. The sub-models use different kernel functions and 

parameters, and their outputs are combined to improve the 

classification performance. Acar and Rais-Rohami (2009) 

treat the general weighted-sum formulation of an ensemble 

as an optimization problem, and then minimize an error 

metric to select the best weights for the sub-models of SVM. 

Kurram and Kwon (2013) try to achieve an optimal sparse 

combination of the sub-model results by jointly optimizing 

the separating hyperplane obtained by each SVM classifier 

and the corresponding weights of sub-decisions. Valentini 

and Dietterich (2003) prove that an ensemble of SVMs 

employing bagging of low-bias algorithms improves the 

generalization power of the procedure with respect to single 

SVM. The ensemble of SVMs built with bagging and 

boosting can greatly outperform a single SVM in terms of 

classification accuracy (Kim et al., 2003). 

SVM can also be treated as a Bayesian inference problem 

with Gaussian priors. The Maximum A Posteriori (MAP) 

solution to this problem can contextually give an estimate of 

the model parameters and also of the underlying function 

(Sollich, 1999). Within the Bayesian treatment of SVM, an 

error bar for the prediction, i.e. the variance of the predicted 

outcome, can also be obtained (Liu et al., 2012). This 

Jie Liu et al. This is an open-access article distributed under the terms of 

the Creative Commons Attribution 3.0 United States License, which 
permits unrestricted use, distribution, and reproduction in any medium, 

provided the original author and source are credited. 
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Bayesian interpretation of SVM for regression is called 

Probabilistic Support Vector Regression (PSVR). 

In this paper, we focus on the combination of multiple 

PSVR sub-models (Liu, Seraoui, Vitelli & Zio, 2012). The 

case study addressed in this paper concerns the monitoring 

of a component in the Reactor Coolant Pump (RCP) of a 

Nuclear Power Plant (NPP), with real data collected from a 

sensor.  

 An ensemble model of PSVRs is proposed in this paper 

with a dynamic weighting strategy. The elements of novelty 

of the method here proposed are various. In the previously 

mentioned ensembles of SVMs, all the weights were 

calculated during the training part and fixed for testing. 

However, a sub-model may perform well only on a part of 

the data set. Hence, the weights need to be updated 

considering the different data sets involved in the case study, 

and even different input vectors. A dynamic weighting 

strategy, based on local fitness calculation (Baudat & 

Anouar, 2003) is proposed in this paper. A dynamic 

weighting method is also used in Muhlbaier, Topalis and 

Polikar (2009), Yang, Yuan and Liu (2009) and Razavi-Far, 

Baraldi and Zio (2012), to add a new classifier to the 

ensemble model, but weights are not adjusted to the 

different input vectors. Moreover, in order to build an 

ensemble of PSVRs on different failure scenarios, a 

modified Radial Basis Function (RBF) is also proposed and 

used in this paper. In addition, a simple but efficient 

aggregating method is proposed to combine the outputs of 

the sub-models, including predicted values and associated 

error bars. Finally, two different strategies are proposed to 

form the training data set of each sub-model on the basis of 

the characteristics of the data. All the novel strategies are 

tested in the case study concerning a component of the RCP 

in a NPP. 

The rest of the paper is organized as follows. Section 2 

gives details about the proposed ensemble approach and a 

modified RBF. Section 3 illustrates the case study, the 

available data and how the two proposed ensemble models 

are constructed. Section 4 presents the experimental results 

from the PSVR ensemble models and describes the 

comparison with a single PSVR model. Finally, conclusions 

with some considerations are drawn in Section 5. 

2. DYNAMIC-WEIGHTED PSVR-BASED ENSEMBLE 

The strategy underlying the use of ensemble-based methods 

in prediction problems is to benefit from the strength of 

different sub-models by combining their outputs to improve 

the global prediction performance if compared to the result 

of a single sub-model.  

In this section, we give details about the proposed Dynamic-

Weighted PSVR-based Ensemble (named DW-PSVR-

Ensemble in short). 

2.1. Probabilistic Support Vector Regression 

Depending on the choice of the loss function, we can define 

different Gaussian versions of PSVR. The PSVR approach 

proposed in the previous work (Liu et al., 2012) and used in 

the ongoing research makes use of the ɛ-insensitive Loss 

Function, which enables a sparse set of support vectors to be 

obtained. 

2.1.1. PSVR with ɛ-Insensitive Loss Function 

With limited length of the paper, we do not give 

mathematical details on the derivation of the PSVR 

approach that can be found in Gao, Gunn, Harriset and 

Brown (2002). But it is very important to recall that the 

output of PSVR is a Gaussian distribution of the predicted 

value. 

2.1.2. Modified Radial Basis Function Kernel 

The kernel function enables the mapping of an input vector 

in a higher-dimensional Reproducing Kernel Hilbert Space 

(RKHS). By calculating pairwise inner products between 

mapped samples, kernel functions return the similarity 

between different samples. In fact, only kernels that fulfill 

Mercer’s Theorem (i.e. the kernel matrix must be positive 

semi-definite) are valid ones and, thus, can be used in SVM 

(Minh, Niyogi and Yang, 2006). The most common kernel 

functions include the linear kernel function, the polynomial 

kernel function and the Radial Basis Function (RBF). 

In all these popular kernel functions, different inputs, i.e. 

different elements of x(t), are treated equally in computing 

the inner product involved in RBF. For time series data, H 

historical values of the time series are normally chosen as 

inputs according to the partial autocorrelation analysis 

results. These values have, of course, different correlation 

structures with respect to the output. In order to reflect this 

difference, a modified RBF is proposed in this paper.  

Supposing two input vectors  𝒙(𝑖)  and 𝒙(𝑗) , in order to 

calculate the inner product of these two input vectors in 

RKHS, the traditional RBF is 𝐾(𝒙(𝑖), 𝒙(𝑗)) = exp (−
‖𝒙(𝑖)−𝒙(𝑗)‖2

2𝛾2
) ， 

with γ  the width of the kernel given  by particular 

optimization algorithm, and the proposed modified RBF is 

𝐾(𝒙(𝑖), 𝒙(𝑗)) = exp (−
〈𝑪𝑎

𝟐,(𝒙(𝑖)−𝒙(𝑗))
𝟐

〉

2𝛾2
)  . In general, 𝑪𝑎 =

(𝐶1, … , 𝐶𝐻) denotes the correlation between each input and 

the output, in our case between different temporal lags and 

the output of time series data. Suppose 𝑨𝒊 = [𝑥𝑖(𝑡)], 𝑩 =
[𝑦(𝑡)] , with 𝑥𝑖(𝑡)  the i-th input of 𝒙(𝑡)  and 𝑡 = 1, … , 𝑀 . 

Then,  𝐶𝑖   is the correlation between 𝑨𝒊 and 𝑩, and so the 

correlation between 𝑥𝑖(𝑡)  and 𝑦(𝑡) . As 𝑪𝑎  is constant for 

each sub-model, it is easy to prove that the modified RBF 

satisfies Mercer’s Theorem. Thus, the modification of the 

RBF does not change the theoretical results on which the 

PSVR method is based.  
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By giving different weights to different inputs in the input 

vector, we can reduce the influence of the inputs less 

correlated with the output and make the more correlated 

ones more significant in the relation between the inputs and 

the output. Another advantage of the modified RBF is 

illustrated in Section 3, when dealing with multiple time 

series data. 

2.2. Ensemble-Based Approach 

An ensemble-based approach is obtained by training diverse 

sub-models and, then, combining their results with given 

strategies. It can be proven that this can lead to superior 

performance with respect to a single model approach (Bauer 

& Kohavi, 1999). A simple paradigm of a typical ensemble-

based approach with N sub-models is shown in Figure 1. 

Ensemble models are built on three key components: a 

strategy to build diverse models; a strategy to construct 

accurate sub-models; a strategy to combine the outputs of 

the sub-models in a way such that the correct predictions are 

amplified, while the incorrect ones are counteracted. We 

focus here on the latter. Proper strategies to build diverse 

and accurate sub-models are described in relation to the case 

study. 

In the DW-PSVR-Ensemble that we are proposing, the sub-

models are built using the PSVR model presented in Liu et 

al. (2012). The reason for not using other data-driven 

approaches, including other SVMs, lies on the special 

output structure of PSVR. The output of each sub-model 

built with PSVR contains a predicted value and the 

associated variance, assuming that the predicted value 

follows a Gaussian distribution.  

 

Figure 1.  Paradigm of a typical ensemble method. 

A dynamic weighted-sum strategy is proposed to combine 

the outputs of the sub-models. As mentioned in Section 1, 

different methods can be applied to calculate the weights for 

the sub-models. In the methods that can be found in the 

literature, the weights are normally fixed after the ensemble 

model is built. They are only updated when new sub-models 

are added to the ensemble or when some sub-models are 

changed. In some real applications with fast changing 

environmental and operational conditions, the performance 

of the ensemble model may degrade rapidly. This 

degradation is not always caused by the low robustness or 

capability to adapt of the ensemble model, but can be due to 

the fact that the best sub-models are not given proper 

weights. In this paper, a dynamic weighting strategy is thus 

proposed. The weights are no longer constant during the 

prediction, but dependent on the input vector. They are 

recalculated each time a new input vector arrives. Inspired 

by the work of Baudat and Anouar (2003) and considering 

the characteristics of PSVR, a local fitness calculation is 

implemented in this paper to calculate weights of different 

sub-models for each input vector. 

2.2.1. Local Fitness Calculation 

In Baudat and Anouar (2003), the authors define a global 

and local criterion to characterize the feature space in SVM. 

The proposed local fitness can describe the linearity 

between the mapping of a new input vector and the mapping 

of all the Feature Vectors (FVs) of the model: if a linear 

combination of the mapping of the FVs can better approach 

the mapping of the new input vector, the model gives better 

approximation of the output of the new data point; otherwise, 

the model performs worse for this data point. Thus local 

fitness can be implemented to derive the weight of each sub-

model for each input vector.  

Suppose (𝒙𝑖 , 𝑦𝑖) , for 𝑖 = 1, 2, … , 𝑀  are the training data 

points, and the mapping φ(𝒙)  maps each input vector 𝒙𝑖 

into RKHS with the mapping 𝝋𝑖, for 𝑖 = 1, 2, … , 𝑀. 𝑘𝑖,𝑗 =

𝑘(𝒙𝑖 , 𝒙𝑗) is the inner product between 𝝋𝑖 and 𝝋𝑗. The FVs 

of this model, selected with the method proposed in Baudat 

and Anouar (2003), are { 𝒙1, 𝒙2, … , 𝒙𝐿 }, with the 

corresponding mapping S =  { 𝝋1, 𝝋2, … , 𝝋𝐿 }. 𝝋𝑁  is the 

mapping of the new input vector 𝒙𝑁. According to Baudat 

and Anouar (2003), the calculation of the local fitness of 

this new input vector amounts to finding 

{𝑎𝑁,1, 𝑎𝑁,2, … , 𝑎𝑁,𝐿}, which gives the minimum of Eq. (1). 

𝛿𝑁 =  
‖𝝋𝑁−∑ 𝑎𝑁,𝑖𝝋𝑖

𝐿
𝑖=1 ‖

‖𝝋𝑁‖
                                         ⑴ 

The minimum of 𝛿𝑁  can also be expressed with an inner 

product as shown in Eq. (2). 

min 𝛿𝑁 = 1 −
𝐾𝑆,𝑁

𝑡 𝐾𝑆,𝑆
−1𝐾𝑆,𝑁

𝑘𝑁,𝑁
= 𝐽𝑆                               ⑵ 

where 𝐾𝑆,𝑆 = (𝑘𝑖,𝑗), 𝑖, 𝑗 = 1,2, … , 𝐿 is the kernel matrix of S 

and 𝐾𝑆,𝑁 = (𝑘𝑖,𝑁), 𝑖 = 1,2, … , 𝐿  is the vector of the inner 

product between 𝝋𝑁 .  𝐽𝑆  is the local fitness of 𝒙𝑁  for this 

model.  

With Eq. (2), for a new coming data point at time t, we can 

calculate the local fitness 𝐽𝑖(𝑡) for the i-th sub-model. And 

the weight of the i-th sub-model for this data point is 

calculated as 𝜔𝑖(𝑡) =
1/𝐽𝑖(𝑡)

∑ 1/𝐽𝑗(𝑡)𝑁
𝑗=1

. 
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2.2.2. Combining Sub-Models Outputs 

Figure 2 shows the paradigm of DW-PSVR-Ensemble, 

where 𝑁 is the number of sub-models, 𝒙(𝑡) is a new input 

vector arriving at time 𝑡, 𝑤𝑗(𝑡) is the weight assigned to the 

j-th sub-model for the new input vector, �̂�𝑗(𝑡)  and 𝜎𝑗
2(𝑡)  

are the predicted value and corresponding variance for the j-

th sub-model given by PSVR, and �̂�(𝑡) and 𝜎2(𝑡) are the 

final outputs of the ensemble model. 

 

Figure 2.  Paradigm of the proposed DW-PSVR-Ensemble. 

The output of each PSVR-based sub-model is a Gaussian 

distribution predicted value. The proposed simple but 

efficient strategy for combining sub-models results is by 

taking a weighted-sum of Gaussian distributions, which 

means that 𝑁(�̂�(𝑡), 𝜎2(𝑡)) =  ∑ 𝜔𝑗(𝑡)𝑁(�̂�𝑗(𝑡), 𝜎𝑗
2(𝑡))𝑁

𝑗=1 , 

with 𝑁(�̂�(𝑡), 𝜎2(𝑡)) denoting a Gaussian distribution with 

mean value �̂�(𝑡)  and variance 𝜎2(𝑡) . From this, we can 

derive the fact that �̂�(𝑡) =  ∑ 𝜔𝑗(𝑡)�̂�𝑗
𝑁
𝑗=1 (𝑡)  and 𝜎(𝑡) =

 √∑ 𝜔𝑗
2(𝑡)𝜎𝑗

2(𝑡)𝑁
𝑗=1 , if we assume sub-models results to be 

uncorrelated. 

Note that all the sub-models weights and outputs are a 

function of 𝑡, which means that they are all dependent on 

the input vector of the ensemble model. 

3. CASE STUDY DESCRIPTION 

The real case study considered in this paper concerns the 1-

day prediction of leak flow of the first seal of the RCP of a 

NPP.  

In this section we describe the time series data and briefly 

recall the data pre-processing steps. We also detail the 

strategies to build accurate and diverse sub-models. 

3.1. Data Description and Pre-Processing 

In the data provided, there are 20 failure scenarios 

concerning the leak flow from 10 different NPPs. Each 

failure scenario contains a time series data of the leak flow.  

They are named Scenario 1, Scenario 2, …, Scenario 20 in 

the following sections of the paper. These data are 

monitored every four hours. As these data are time-

dependent and recorded within different time windows, only 

failure scenarios coming from the same NPP have the same 

size. From the second column of Table 1, we can see that 

the size of the failure scenarios can vary from 389 to 3129 

data points. In some of the scenarios, there are missing data 

points and outliers.  

 

Table 1. Characteristics of raw and reconstructed 

scenarios 

Scenario 
Size of 

Raw Data 
Best Number of 

Historical values H 

Size of 

Reconstructed 

Data 

1 2277 17 2265 

2 385 3 373 

3 385 3 373 

4 2027 14 2015 

5 2027 8 2015 

6 2027 8 2015 

7 1391 13 1379 

8 1391 4 1379 

9 1391 4 1379 

10 1391 4 1379 

11 3124 12 3112 

12 562 7 550 

13 562 9 550 

14 562 9 550 

15 964 2 952 

16 2767 8 2755 

17 2767 7 2755 

18 1061 7 1049 

19 1061 12 1049 

20 861 9 849 

 

Since the dataset we are going to analyze contains both 

missing data and outliers, we have to deal with both these 

issues. First of all, we will remove anomalous data, since 

their extreme values would affect the results of the analysis. 

Outliers can be easily detected by deciding some constraints, 

e.g. the limits 𝑥 ̅ ± 3 ∗ 𝜎𝑥  where 𝑥 ̅ is the mean of all the 

data points and 𝜎𝑥 is their standard deviation. These limits 

are needed to detect the outliers, selected as those data 

points bigger than 𝑥 ̅ + 3 ∗ 𝜎𝑥  or smaller than 𝑥 ̅ − 3 ∗ 𝜎𝑥 , 

and subsequently removed. Note that we used such 

constraints, rather than the usual ones based on the median 

and the InterQuartile Range (IQR), to be more conservative 

in the outlier selection, due to the dependence among data.  

Secondly, we want to reconstruct missing data. Note that, 

after the outlier selection and elimination procedure, the 

number of missing data has increased. A possible way to 

deal with the reconstruction of missing data is the local 

polynomial regression fitting. This local least squares 

regression technique estimates effectively the values when 

there are missing data points. Moreover, it can also be used 

to perform the smoothing of the available observations, in 

order to reduce noise. We will thus use this technique both 
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to reconstruct data where missing, and to obtain a smoother 

and less noisy time series in all remaining time instances. 

All details can be found in Liu et al. (2012). 

All the time series data of all failure scenarios are, then, 

normalized from 0 to 1. 

3.2. Strategies to Build Sub-Models 

Since we have a time series data set and since there is no 

other information available related to the target except for a 

set of monitored data directly related to the condition of the 

component of interest, the input vector of the model can 

only be a set of historical values. Before building the sub-

models of the ensemble, we, thus, need to decide the best 

number of historical values to be used as inputs. 

3.2.1. Sub-Model Identification 

For time series data, the inputs are normally a number of 

historical target values. Suppose 𝑎(𝑡) represents an instance 

of the time series data of one failure scenario. For 1-day 

ahead prediction, the output 𝑦(𝑡) is 𝑎(𝑡 + 6), because the 

signals are monitored every four hours. In order to decide 

the best 𝐻  for selecting the input vector 𝒙(𝑡) =
(𝑎(𝑡 − 𝐻 + 1), … , 𝑎(𝑡)) most related to the output, a partial 

autocorrelation analysis is carried out on each failure 

scenario, i.e. the correlation between the output and 

different temporal lags is computed. Figure 3 shows the 

results of this analysis on Scenario 1, where the x and y axis 

represent, respectively, the temporal lag (a multiple of four 

hours) and the corresponding empirical partial 

autocorrelation. The bounds of a 95% confidence interval 

are also shown with dashed lines in the Figure. The 

correlation decreases with the lag (although not linearly), 

and after a lag of 17 time steps, for Scenario 1 it is no longer 

comparable with the values observed for lags smaller than 

17, i.e. the best choice is  𝐻1 = 17.  

A best value 𝐻𝑖  is, thus, found for Scenario 𝑖 , for 𝑖 =
1, 2, … , 20; but this value is not the same for all scenarios, 

as shown in the third column of Table 1. When building an 

ensemble model, however, a unified size of input vector 

would simplify the model, since a single value of 𝐻  is 

applied for all scenarios to reconstruct the data. If we choose 

a small 𝐻, some useful information would be ignored for 

those scenarios with larger best 𝐻; in contrast, choosing a 

large 𝐻  would bring some perturbations to scenarios with 

smaller best 𝐻. In order to solve this problem, we propose 

the modified RBF, where 𝑪𝑎 , calculated by partial 

autocorrelation analysis, controls the contribution of each 

variable of the input vector, when 𝐻 is chosen as the largest 

of all the failure scenarios. For one scenario with smaller 

best 𝐻𝑖  , the values for the last 𝐻 − 𝐻𝑖   elements of the 

vector 𝑪𝑎 are very small compared to the first 𝐻𝑖  elements, 

because their correlations with the output are very weak. In 

this case study, we choose the biggest time step H of all the 

scenarios, i.e. 𝐻 = 17. 

 

Figure 3. Partial autocorrelation function of Scenario 1 with 

respect to time lags (multiples of four hours). Dotted lines 

are bounds of a 95% confidence interval. 

3.2.2. Two Strategies to Build Sub-Models 

Bagging and boosting are two of the most popular strategies 

to build diverse sub-models of an ensemble. However these 

methods are more suitable with scarce data. In our case, 

there are enough data (20 failure scenarios), so that two 

simple but efficient and reasonable strategies can be 

proposed. 

Thanks to the sub-model identification process described 

before, the data for each failure scenario has been 

reconstructed with same structure, where the input vector is 

𝒙(𝑡) = (𝑎(𝑡 − 16), … , 𝑎(𝑡)), and the corresponding output 

is 𝑦(𝑡) = 𝑎(𝑡 + 6), and 𝑡 takes every possible value in each 

scenario. The size of each failure scenario after 

reconstruction is listed in the fourth column of Table 1.  

With multiple failure scenarios available, the simplest and 

most immediate strategy is to build a sub-model on each 

failure scenario, so that the number of sub-models equals 

the number of failure scenarios. Because of the frequently 

changing operational and environmental conditions in NPP, 

each scenario can represent a specific process, and thus sub-

models built in such a way show enough diversity between 

each other. Another simple but effective strategy is to mix 

all the data points from all failure scenarios, and then divide 

them into different groups according to their target values 

𝑦(𝑡) . A sub-model is, then, trained on each group. This 

strategy is inspired by the intrinsic structure of SVM/PSVR. 

Performance of SVM depends highly, although not only, on 

the training data set (or support vectors). Sub-models built 

on training data set considering different ranges of output 

values can strengthen the specialty of each sub-model on 

particular characteristics of the input vectors. This strategy 

can make the sub-models perform well on different text 
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examples but worse on others. The proposed weighted-sum 

strategy to combine the outputs of sub-models will be 

shown to outperform the individual model. These two 

strategies are named Ensemble 1 and Ensemble 2, for 

convenience. 

3.2.3. Comparison of DW-PSVR-Ensemble with Single 

PSVR 

The ensemble model is expected to give better results than a 

single PSVR model. To verify this claim, a comparison 

between a single PSVR model and the proposed DW-

PSVR-Ensemble is carried out on the considered case study.  

Each time one out of 20 failure scenarios is chosen as the 

test data set (named Observed Scenario), the other 19 failure 

scenarios (named Reference Scenarios) are used to construct 

the ensemble model with the two previously proposed 

strategies. A PSVR model is also trained on the Observed 

Scenario for comparison (it is named Single PSVR to be 

distinguished from the two ensemble models). The size of 

the training data set for all PSVR models is fixed at 200 for 

the fairness of comparison.  The choice of the size is 

decided by trial and error in order not to increase too much 

the computational complexity in time and storage, which 

increases exponentially with the size of the training data set, 

and in order to guarantee the accuracy of the model.  

The steps of comparison are the following: 

1. Choose the training data set for Ensemble 1: 200 data 

points equidistantly distributed for each Reference 

Scenario are selected. Totally, 19 sub-models can be 

trained with PSVR, each trained on 200 data points 

from each scenario. 

2. Choose the training data set for Ensemble 2: the 

normalized data of 19 Reference Scenarios are sorted 

according to the output value of each data point and 

then divided into 10 groups, with the output value in the 

intervals of [0, 0.1], [0.1, 0.2], …, [0.9, 1]. For each 

group, if the size is bigger than 200, 200 data points 

equidistantly distributed in the group are chosen, if not, 

all the points in the group are used in the training data 

set. For the first eight groups, the size of training data 

set is 200, while for the last 2, the training data sets 

contain only 90 and 33 data points. Ten sub-models are 

built with PSVR on these training data sets.  

3. Choose the training data set for the single PSVR: the 

first 200 data points of the Observed Scenario are 

chosen to train one single PSVR model for regression 

on it.  

4. Calculation of Mean Absolute Error (MAE), Mean 

Relative Error (MRE), width of Prediction Intervals 

(PIs) with  95% confidence level (PI_Width), and 

coverage percentage of PIs with 95% confidence level 

(PI_Coverage) of the outputs of Ensemble 1, Ensemble 

2 and Single PSVR. 

5. Comparison of Ensemble 1, Ensemble 2 and Single 

PSVR considering prediction accuracy, uncertainty of 

estimation and robustness. 

The results and comparisons between these three models are 

presented in the next section. 

4. RESULTS 

In this section, the results from Ensemble 1, Ensemble 2 and 

Single PSVR are compared with respect to different aspects. 

 
Figure 4. MAE of prediction results of Ensemble 1, 

Ensemble 2 and Single PSVR, for all 20 failure scenarios. 

Figure 5. MRE of prediction results of Ensemble 1, 

Ensemble 2 and Single PSVR, for all 20 failure scenarios. 
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Figure 6. Width of PIs with 95% confidence level of 

prediction results of Ensemble 1, Ensemble 2 and Single 

PSVR, for all 20 failure scenarios. 

 
Figure 7. Coverage of PIs with 95% confidence level of 

prediction results of Ensemble 1, Ensemble 2 and Single 

PSVR, for all 20 failure scenarios. 

4.1. Prediction Accuracy and Uncertainty Estimation 

Figures 4, 5, 6 and 7 are the prediction results (including 

MAE, MRE, width and coverage of PI with 95% confidence 

level, i.e. [�̂� − 1.97𝜎, �̂� + 1.97𝜎], where σ is the variance 

of the assumed Gaussian distribution of the predicted value),  

respectively from Ensemble 1, Ensemble 2 and Single 

PSVR. It is clear that Single PSVR gives worst results in 

this case study, i.e. on average, the MSE and MAE are 

bigger than the ensembles and PI_Coverage is lower 

compared to the ensembles. There is no such problem with 

Ensemble 1 and Ensemble 2, because the training data set 

contains more information than that of Single PSVR. 

Moreover, Ensemble 1 gives better results than Ensemble 2 

considering the prediction accuracy, with more stable PIs. 

This is caused by the scarceness of the training data set for 

the last two sub-models of Ensemble 2, which are supposed 

to be experts on the prediction of the data points with output 

values in the intervals of [0.8, 0.9] and [0.9, 1.0].  

We also notice that Single PSVR can give comparable 

prediction accuracy to the ensemble models for some failure 

scenarios, but not for all of them. The bad results of Single 

PSVR are caused by the fact that the prediction results are 

highly dependent on the training data set. Moreover, the 

hyperparameters optimization is also critical to the 

performance of PSVR. Well-chosen hyperparameters values 

can improve the performance of PSVR. However, the 

optimization method can easily converge to a local extreme, 

which results into a good performance at the beginning but 

very bad at the end of the scenario. 

These unstable results from the Single PSVR prove the 

necessity of the ensemble approach for avoiding the limits 

of Single PSVR in attaining the desired accuracy and 

robustness of the model. The prediction results from 

Ensemble 1 and Ensemble 2 confirm the practicability and 

efficiency of the DW-PSVR-Ensemble approach. 

4.2. Robustness 

From Figures 4, 5, 6 and 7, it is seen that the ensemble 

models give more stable prediction results compared to the 

Single PSVR model. Single PSVR model cannot properly 

handle the noise in the data and it is difficult to find the 

global optimal values of the hyperparmeters, even with the 

modified RBF proposed in this paper. The weighted-sum 

ensemble models can decrease the influence of the noise by 

combining the prediction outputs of the sub-models; this is 

one reason for which ensemble models can give stable 

results, i.e. the ensemble models are more robust compared 

to the Single PSVR. 

5. CONCLUSION 

In this paper, we have proposed an innovative dynamic-

weighted PSVR-based ensemble approach for short-term 

prediction (1-day ahead prediction) with multiple time series 

data. Local fitness calculation is integrated to calculate the 

specific weights of the sub-models of the ensemble for each 

new input vector without bringing too much computational 

burden. A modified RBF kernel is used to discriminate the 

different correlation of the different inputs with the output. 

According to the characteristics of the available time series 

data in the case study, two strategies are proposed to form 

an ensemble model: one considering different scenarios and 

the other selecting different ranges of output values. In both 

cases, the proposed ensemble approach performs well in the 

real case study of signals recorded on a NPP component. 

Compared to the single model PSVR, the proposed 

ensemble models outperform on prediction accuracy, 

robustness and adaptability. This ensemble approach 

demands enough data on different pattern drifts. 

Further research needs to be carried out, for optimizing the 

numbers of sub-models and for obtaining a more careful 

tuning of the hyperparameters. 
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ABSTRACT 

The exhaust ventilation air from nuclear power plants and 

other nuclear facilities is carefully filtered, as aerosols are a 

potential vector of contamination. Monitoring the condition 

of the air filters improves radiation safety. In this paper the 

progression of differential pressures over air filters at a 

nuclear research reactor have been studied. Technical 

properties and possible environmental influences have been 

checked in order to understand the variation of the pressure 

over time. The differential pressure has been decomposed 

into different components as a result of an analysis of 

environmental conditions. The gradually increasing 

component, representing gradual accumulation of aerosol 

particles in the filter, is modeled as a gamma process and an 

estimate for determining the remaining useful life of the air 

filters has been computed.  

1. INTRODUCTION 

At most nuclear power plants there are relatively long 

periods of operation, typically about one year, before the 

plant is shut down for an outage period of several weeks for 

inspection, maintenance and possibly also refueling. For 

economical and safety reasons it is desirable to avoid 

unplanned shutdowns and keep the outage period as short as 

possible. The estimation of the remaining lifetime for air 

filters at a nuclear facility can therefore help in planning the 

optimal outage period for changing air filters. In addition to 

advancing safety and improving maintenance planning, this 

also helps to minimize radioactive waste. 

 

The OECD Halden Reactor project is an international 

research program with 20 member countries. One of the 

research themes deals with condition based maintenance at 

nuclear power plants. This paper describes methods 

developed within this project for estimating the remaining 

useful life (RUL) of air filters at nuclear power plants.  

The air filter data described in this paper is measured at one 

of the two research reactors belonging to the institute. The 

data contains measurements of the differential pressure over 

the air filters for air originating at two different locations in 

the reactor building. One of the locations is the reactor hall, 

and the other location is a laboratory where radiation 

experiments are held. 

2. TOWARDS RISK-INFORMED DECISION MAKING 

Filtration of exhaust air from nuclear facilities forms a 

barrier against nuclear contamination. High-efficiency 

particulate air (HEPA) filters are used as the final filtration 

stage due to their high particle removal efficiency. Another 

requirement for filters in these applications is durability 

even in unlikely scenarios, including e.g., earthquakes and 

explosions. Glass fiber media in HEPA filters is brittle and 

loses strength with aging (First, 1996; Winegardner 1996). 

With the current state of the art filter changes are based on 

conservative pressure difference and age limits (e.g., 10 

years from the date of manufacture) defined with the main 

focus of maintaining adequate physical strength. (U.S. 

Department of Energy, 2003). This is in contrast to most air 

filtration applications, where the energy cost of ventilation 

is a major factor in determining filter replacement policies 

(Gustavsson, Ginestet, Tronville & Hyttinen, 2011). 

As aerosol particles are accumulated in a filter, its 

permeability decreases, and consequently forces acting on 

the aging material increase (Brown, 1993). As increasing 

forces due to filter loading and the weakening of the 
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material aren’t considered jointly in the current state of the 

art (Gustavsson et al., 2011), filter replacement limits have 

to be set quite conservative. Prediction of pressure drop 

development, and consequently RUL facilitates time-based 

maintenance procedures to be superseded by condition 

based maintenance. As a further advantage, comparing 

actual pressure drop to predicted development facilitates 

monitoring of increased aerosol emissions.  

Prediction of pressure drop development is also a step 

towards risk-informed decision making. In this approach, 

complex safety-related issues are evaluated where 

probabilistic risk assessment is used as a tool in design, 

operation, and regulation to achieve an acceptable overall 

risk level (U.S. Nuclear Regulatory Commission, 2011; 

Varde & Pecht, 2012). In the case of air filtration this would 

involve, e.g., defining monitoring and replacement 

procedures based on predictions of filter strength and 

permeability developments combined with estimated 

probabilities of pressure shocks and evaluated consequences 

of mechanical failures. 

3. COLLECTED AIR FILTER DATA 

3.1. How the air is filtered at the reactor site 

The inlet air is split in three tubes where the air is filtered 

and heated or cooled down before it is sent to the destination 

rooms. The target temperature is regulated and supposed to 

be constant at 20°C all year, which means that the air is 

cooled down occasionally during summer and heated 

otherwise. In addition to the reactor hall and laboratory, the 

air is sent to adjacent rooms, but data in this paper is 

collected only for air from the reactor hall and laboratory. 

The outlet air is filtered through three types of filters; a 

coarse filter, a fine filter and a micro filter (HEPA filter). 

All three filters are changed at the same time based on the 

value of the pressure difference,      , which is measured 

over all  three filters. 

3.2. Differential pressure 

The collected data are from 1974 until now (2014) and are 

written down on paper schemas. In this first phase, data 

from the end of 2000 until the end of 2013 have been 

converted to digital form suitable for computer analysis. 

The differential pressures over the air filters from the two 

different locations, plotted in Figures 1 and 2, have different 

signatures. The differential pressure over the air filters for 

the laboratory has clear seasonal variation, so that the 

pressure drop decreases each spring. This is especially 

visible when the air filters have a high load of particles, with 

pressure drop decreasing up to about 20 % from winter to 

the following summer.  

The two locations are used very differently. While the 

entrance and exits to the reactor hall are practically sealed, 

the laboratory is a working environment with direct exits to 

the outdoor area where unfiltered air from the external 

environment can enter the room. To prevent leakage of 

radioactive particles, the indoor air pressure is kept 

adequately below the outdoor air pressure. 

Filter changes can be seen in the pressure difference graphs 

as sharp drops down to ca. 20 mmH2O and are indicated 

with vertical dashed lines in Figures 1 and 2. The filter pack 

was changed only once for the reactor hall and twice for the 

isotope laboratory during the studied period. 

 

 

Figure 1. The differential pressure over air filters for 

air coming from the reactor hall. 

 

 

Figure 2. The differential pressure over air filters for 

air coming from the isotope laboratory. 
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Some step-like increases of the differential pressure occur 

occasionally at both locations. It is not known what is 

causing these jumps, but it can be e.g. maintenance 

operations that contribute to extra loading of the filters. 

The differential pressure for air filters is commonly assumed 

to be monotonically increasing as particles accumulates in 

the filters under constant environmental conditions. The 

observed data, however, is clearly non-monotonic. The 

decreases in the data are assumed to be caused by both 

changing environmental conditions (especially humidity), 

measurements errors, and possible variations in air flow. 

3.3. Air quality 

As changing environmental conditions were hypothesized to 

influence the observed pressure drop, measurement data 

from a nearby weather station was retrieved. Available data 

included time series of outdoor air pressure, temperature, 

and humidity (Norwegian Meteorological Institute, 2014). 

Indoor humidity was estimated by computing the absolute 

amount of water in the incoming air and transforming it to 

relative humidity at 20 °C, which was the regulated indoor 

temperature. 

Data on particle concentrations in the outdoor air in the 

vicinity of the studied facility was not available. Availability 

of such data would have aided in understanding the 

observed phenomena. However, its interpretation wouldn’t 

have been trivial due to both the large number of different 

particles assumedly present and most of the particle 

concentrations showing a seasonal variability that correlates 

with the seasonal variability in the pressure drop data. 

3.4. Radioactivity measurements 

Radioactivity is also monitored in addition to differential 

pressures. It is measured at four different locations in the 

vicinity of the metal casings of the air filters. As particles 

accumulate in the air filters, the radioactivity readings will 

increase. The activity measurements can give an indication 

of unusual radioactive pollution in either location. 

4. METHODS USED FOR RUL ESTIMATION 

In RUL estimation the development of the differential 

pressure        is modeled as an aggregation of three 

phenomena, each occurring at different time scale: 

                                       (1) 

The modeled phenomena are: 

1.       : Gradual accumulation of aerosols  

2.       : Sporadic large aerosol emissions.  

3.       : Seasonal variation.  

4.    : Differential pressure of a new clean filter.  

5.     : Residual variation, comprising e.g. 

measurement errors. 

Gradual accumulation of aerosols causes the differential 

pressure to increase with a functional form that is 

characteristic to each combination of (not fully known) 

aerosol and filter characteristics. This phenomenon is 

modeled as a stochastic gamma process, where the gradual 

development of the pressure drop       is identified as a 

large number of small mutually independent gamma 

distributed increments (van Noortwijk, 2003): 

                  a                      (2) 

The shape function      of the gamma process represents 

the above mentioned functional form. Utilizing data from 

preceding filter lifetimes in shape function identification 

improves the reliability of the RUL estimates especially for 

long prediction horizons (Saarela, Nystad, Taipale & Ventä, 

2013). In this study a fit that was subjectively considered as 

adequately good (see discussion in Section 5.2)  was 

achieved  with a power law shape function 

          (3) 

where parameters c and b are identified from measured data. 

The expected value of the gamma process can then be 

calculated as 

  {      }  
    

 
 

 

 
   (4) 

which is then extrapolated to future time values in RUL 

prediction. 

Sporadic large aerosol emissions are caused by, e.g., some 

maintenance operations. They are modeled as stepwise 

increments in the differential pressure. A statistical 

identification of these larger increments could be based on, 

e.g., identifying a probability distribution of the observed 

increments and determining a classification threshold based 

on a predefined significance level (Box, Hunter & Hunter, 

2005). Instead of such a data-driven approach, however, 

classification based on a priori knowledge (especially times 

of maintenance operations) was seen as preferable. These 

sporadic phenomena were modeled as 

          ∑       (    )   (5) 

where    are the times and       the magnitudes of these 

sporadic large increases of the pressure drop. The logical 

expression (    ) is here interpreted to produce a value 1 

for true and 0 for false. 

Seasonal variation of the pressure drop is hypothesized to be 

caused by changes in relative air humidity as the heating of 

the input air varies. In filter loading laboratory experiments 

an increasing humidity has been observed both to decrease 

differential pressure (by facilitating especially larger 

particles already captured in the filter to rearrange) and to 

increase differential pressure (due to particles of various 
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hygroscopic salts expanding especially in high humidity) 

(Joubert, Laborde, Bouilloix, Chazelet & Thomas, 2011; 

Miguel, 2003).  

A detailed modeling of humidity-related air filtration 

phenomena would require comprehensive data of, e.g., the 

time history of aerosol composition. Most importantly, 

distributions of the hygroscopic properties of the particles 

would have to be known for past and assumed to remain 

relatively unchanged for the future. As such information 

was unavailable, seasonal variation observed in the data was 

modeled with a data-driven approach. Applying the 

principle of Occam’s razor (Burnham & Anderson, 2002), 

the simplest possible model with adequate modeling 

accuracy was sought for. A simple, yet reasonably accurate 

(see discussion in Section 5.2) model found turned out to be 

a sinusoid whose amplitude was directly proportional to 

      : 

                                        (6) 

where    indicates the number of the day from the beginning 

of each year. Coefficient    and day offset     were 

identified from data using differential evolution (Storn & 

Price, 1997) to minimize least squares cost function. In this 

optimization, term        in Eq. 6 was replaced by its 

expected value (Eq. 4) identified from the same data set. 

5. ESTIMATED LIFETIMES FOR THE AIR FILTERS 

5.1. Reactor hall 

Three distinctive steps were identified from the historical 

data for the differential pressure over the filters for air from 

the reactor hall. Their magnitudes were determined by 

visual inspection to be 3 mmH2O, 3 mmH2O, and 5 

mmH2O. After the last step the differential pressure had 

increased by 11 mmH2O due to sporadic stepwise changes 

since the start of the data series. 

The stepwise increase of the data was subtracted from the 

data before a median filter was applied to reduce the effect 

of noise and to have a monotonically increasing data series.  

The data then looks to be close to a parabolic curve. The 

actual form of the curve is not known since it is expected to 

change depending on the type distribution, size distribution 

and amount of particles in the air and the total airflow. A 

RUL estimation of the data using the gamma process model 

(Eq. 2) with power law shape function (Eq. 3) was carried 

out using the algorithms described in (van Noortwijk, 2003; 

Saarela et al., 2013). Values for the shape function 

parameters c and b were identified using the maximum 

likelihood approach, giving: 

                   (7) 

Figure 3 shows the data series after subtracting the stepwise 

increases and applying the median filter (solid line). The 

predicted power law function      is plotted as a dotted line. 

The threshold for the end of life should be determined from 

the recommended maximum pressure or operational 

performance in the specification of the filters. This 

information has not been obtained and it is set to 24 mmH2O 

(dashed line), which corresponds to the threshold when the 

filter is changed. 

At filter age 3600 days, the model gives a predicted end of 

life at filter age 4580 days with a 95 % confidence interval 

of [4160, 5120]. This prediction was made more than a year 

before the filters were changed. 

 

 

Figure 3. Predicted power law function, differential 

pressure and a RUL threshold.  

 

 

5.2. Isotope laboratory 

The differential pressure measured at the isotope laboratory 

exhaust air filter had a distinct seasonal component. This 

data was modeled as a sum of the three components 

discussed above. The identified components, representing 

phenomena of different time scales are plotted in Figure 4. 

The identified seasonal variation        has its minima at 

each summer, when input air is not heated and consequently 

indoor humidity is high. The straight line segments in the 

seasonal variation are time intervals for which original 

measurement data was not available. 
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Figure 4. Three components of pressure drop 

development identified from the data measured at the 

isotope laboratory exhaust air filter. 

 

The modeled differential pressure, i.e., the sum of the three 

identified components is plotted together with measured 

data in Figure 5. The standard deviation of the residual 

        was      mmH2O for six months preceding the 

RUL prediction time. The reading-to-reading variability in 

the measured data had roughly an equal standard deviation 

 (  (    )        )      mmH2O in the same time 

interval. This was subjectively considered as accurate 

enough to represent the pressure drop trend, while keeping 

the number of identified parameters reasonably small to 

reduce the risk of overfitting. This assessment also implies 

that the used functional forms (seasonal sinusoid and power 

law shape function) were considered as adequately 

applicable. However, the impact of modelling accuracy to 

the RUL estimation accuracy (Saxena, Celaya, Saha, Saha 

& Goebel, 2010) must be studied in further phases of this 

work. 

Identified values for the shape function parameters  

                   (8) 

differ from those identified from the reactor hall data. Since 

the filtration system is equivalent, the difference reflects the 

dissimilarities of aerosol concentration and composition. 

Figure 6 depicts RUL estimation using the data series after 

subtracting the identified seasonal variation and the stepwise 

increase and applying the median filter (solid line). The 

predicted power law function      is plotted as a dotted line. 

 

 

Figure 5. Measured and modeled differential 

pressure at the isotope laboratory exhaust air filter. 

 

 

RUL was estimated at filter age 2600 days, assuming 45 

mmH2O as the filter change threshold. The gamma process 

model representing gradually accumulating aerosols gives a 

predicted end of life at filter age 3040 days with a 95 % 

confidence interval of [2760, 3500] days. 

 

 

 

Figure 6. Predicted values of the power law function  

at the isotope laboratory exhaust air filter. 

 

 

The seasonal variation is predicted simply by extrapolating 

the identified sinusoid and using the prediction from the 

gamma process model in computing the increasing 

amplitude. For final prediction, depicted in Figure 7, these 

predicted pressure drop components are added together.  
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The 95 % confidence interval in Figure 7 was computed 

from the identified gamma process model, Eq. 2. In this 

simplified approach the uncertainties of the identified 

seasonal and sporadic component were not considered 

separately. Further study is required for understanding their 

impact on the reliability of the RUL estimate. Especially, 

inaccuracies in the identification of the seasonal component 

influence the identification of the gamma process in a way 

that is not compliant with the assumption of mutual 

independency of increments made in the theory of gamma 

processes. 

 

 

Figure 7. Predicted values of the pressure drop 

development at the isotope laboratory exhaust air 

filter. 

 

6. CONCLUSIONS 

Historically HEPA filters were developed for the removal of 

radioactive particles from air streams in nuclear facilities. 

Monitoring the loading of the air filters and estimating their 

remaining useful life can enhance the facilities ability to 

plan ahead and optimizing their maintenance schedule.  

In this study the measured differential pressure was 

decomposed into components representing phenomena of 

different time scales. RUL was estimated from the 

decomposed time series. The results suggest the 

applicability of this approach for estimation of RUL of air 

filters. Gamma process models are seen suitable for 

modelling gradual lifetime expenditure, especially as it 

easily adapts to the steeper increase of the differential 

pressure towards the end of filter life. Naturally the shape 

function representing the functional form of differential 

pressure development and values for model parameters have 

to be identified for each application separately. 

In this analysis, measured differential pressure at one 

location was found to have a strong seasonal variation. The 

amplitude of this variation increased as more particles 

accumulated in the filter. The phase of this variation was 

such that its minima coincided with the highest values of 

relative humidity of the indoor air. 

Modeling large sporadic aerosol emissions and seasonal 

variations separately facilitated increased accuracy in 

modeling the gradual pressure drop development. 

Evaluation and quantification of the RUL prediction 

accuracy will be topics in further phases of this work, where 

data from multiple filter life times will be utilized. 

Besides more accurate RUL estimates, modelling relevant 

phenomena separately allows more reliable detection of 

sporadic aerosol emissions when actual pressure drop 

deviates significantly from what is predicted. Consideration 

of high humidity values in pressure drop calculation is also 

relevant to fault scenarios involving release of steam. 
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ABSTRACT 

As the licenses of many nuclear power plants in the US and 
abroad are being extended, the accurate knowledge of 
system and component condition is becoming more 
important. The US Department of Energy (DOE) has funded 
a project with the primary goal of developing lifecycle 
prognostic methods that generate accurate and continuous 
remaining useful life (RUL) estimates as components 
transition through each stage of the component lifecycle. 
These stages correspond to beginning of life, operations at 
various expected and observed stress levels, the onset of 
detectable degradation, and degradation towards the 
eventual end of life. This paper provides an overview and 
application of a developed lifecycle prognostic approach 
and applies it to a heat exchanger fouling test bed under 
accelerated degradation conditions. The results of applying 
the lifecycle prognostic algorithms to the heat exchanger 
fouling experiment are given, followed by a discussion of 
the strengths and shortcomings of the developed techniques 
for this application. 

1. INTRODUCTION 

The field of systems and component level prognostics 
focuses on the determination of overall system health and 
RUL to provide safety, reliability, and financial benefits. 
The interest in this field is growing as more commercial 
reactor licenses seek to extend operations past original 
design lifetimes. As the operating life of the nuclear plant is 
increased, concern for the reliability and safety of the 
system components also grows. Development of online 
prognostic models for the RUL of many components can 
lead to more efficient maintenance scheduling, and when 
used for on-line monitoring, can reduce sudden loss of 

operations from unexpected component failure. The goals of 
well-made prognostic models are to lessen plant down time 
and the related loss of revenue. 
 
Current research focuses on the development of prognostic 
methods and models for estimating RUL throughout the 
lifetime of a component. To validate the developed 
methods, three accelerated degradation test beds have been 
constructed. These test beds include setups for induction 
motor degradation, pump impeller degradation, and heat 
exchanger fouling. Nuclear Power Plants (NPP) contain 
many heat exchangers, each of which is crucial to the 
overall performance of the plant. This is why accurate 
monitoring and modeling of the RUL for these heat 
exchangers is so important. Possibly the most important 
heat exchanger for maintenance purposes is the NPP 
condenser. Failure to remove waste heat in the system by 
the condenser can significantly reduce plant capability to 
maintain vacuum resulting in derating the NPP, which has 
occurred during hot summer months at several NPPs, 
including Watts Bar, resulting in a derating from loss of 
efficiency (Buecker 2009). Between 2008 and 2010, the 
North American Electric Reliability Corporation (NERC) 
stated that condenser associated performance issues were 
responsible for the removal of over 9.1 million megawatt 
hours from the energy grid (Fayard 2011). In an effort to 
reduce the effects of this efficiency loss for NPPs, the 
analysis given in this paper is implemented on the data 
collected from the small scale heat exchanger fouling 
experiment onsite at the University of Tennessee. This paper 
presents the development of a data-driven model for 
degradation detection methods, collection of system health 
indicators, and finally lifecycle prognostic prediction model 
development.   
 
The structure of this paper is as follows: A brief discussion 
of the background for heat exchanger fouling research and 

Zachary Welz et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License,
which permits unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are credited.
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the steps necessary to develop a lifecycle prognostics model 
for a heat exchanger system with a short explanation of each 
step. Next is a description of the heat exchanger setup and 
operating procedure used to generate the data for lifecycle 
prognostics model generation. This will be followed by a 
detailed report of the steps taken to develop the lifecycle 
model such as signal/feature selection, auto-associative 
kernel regression model development, prognostic parameter 
generation, general path model generation and Bayesian 
updating implementation. These methodologies will be 
followed by the lifecycle prognostics model results and a 
conclusion.  

2. BACKGROUND 

Research into heat exchanger degradation modeling is 
focused mainly on simulated heat exchanger system data, 
such as plate heat exchanger with simulated milk fouling 
(Georgiadis and Macchietto 2000). Unlike the physical heat 
exchanger test bed, simulated models provide the ability to 
quickly generate large sample data sets with multiple failure 
modes. Ardsomang et al. (2013) utilizes physics models for 
heat transfer and effectiveness to estimate the RUL of 
simulated heat exchanger data. Physics based methods for 
detecting fouling in heat exchangers, such as Kalman 
filtering utilizing first principles models, are also currently 
used (Jonsonn et al. 2007). Because the models are physics 
based, some of the parameters used for development are 
dependent on the heat transfer coefficient of the heat 
exchanger. For example, when significant fouling occurs, 
there is a reduction in heat transfer, which can be seen as 
changes in model parameters over time. This application of 
extended Kalman filtering is also sensitive when moderate 
fouling is introduced, showing this as a physics based 
approach that is well suited for on-line fouling detection in 
heat exchangers. The use of extended Kalman filters with 
temperature and flow rate sensor data shows an example of 
a state spaced model that can implement physics based 
approach to effectively detect heat exchanger fouling. 
 
Alternatively, a physical test bed allows for validation of the 
degradation models with real world signals collected from 
the heat exchanger. Simulated models must be designed to 
include a robust set of different conditions and failure 
mechanisms, whereas with real world experimentation 
different natural failure mechanisms, operations, and noise 
are inherent to the physical setup. Another inherent 
advantage of test beds is that unexpected developments in 
testing may not be considered when designing simulation 
models. For example, if a simulation of an induction motor 
system is developed to model the conditions of onset 
bearing failure, there may actually be several different 
failure modes, such as electrical, shaft or bearing, which the 
simulation will not implement. Using test bed data prevents 
the need for additional concerns in design. Simulated heat 
exchanger modeling is presently used mainly for on-line 

monitoring, diagnostics and fault detection (Upadhyaya et 
al., 2004). Unlike many first principle models, empirically 
driven models are developed almost exclusively on historic 
unfaulted data. Real-time data can be passed through to 
these models and monitored for deviations from expected 
normality.  
 
One type of empirical modeling technique is based on the 
auto-associative kernel regression (AAKR) (Wand and 
Jones 1995). AAKR models are built using vector selection 
techniques on unfaulted data to construct a memory matrix. 
The AAKR model in this study is an error correction model 
constructed using fault free data built off of methods 
developed by Yang et al (2006).  When faulted data is input 
to the model, the output is a corrected version of the faulted 
input data.  When the corrected data is compared to the 
actual data, the difference between them is termed residuals.  
As a component degrades, the residuals will increase until 
failure. Figure 1 shows the basic arrangement of the AAKR 
based prognostic system. Operational data is input and 
residuals are calculated. These residuals can be combined 
into a prognostic parameter, which is related to the health of 
the system.  A prognostic model is developed to explain the 
degradation process and predict the system RUL. These four 
steps, AAKR modeling, prognostic parameter generation 
and prognostic modeling, are discussed in subsequent 
sections. 
 

 
Figure 1 – Basic arrangement of an AAKR based prognostic 

system. 

Prognostic models can be classified into three types based 
on the type of data used in the model (Hines et al. 2007). 
The first of these, Type I, or simple time-to-failure 
distribution models, are used to estimate the failure times of 
a system, generally before operation begins or if there is no 
information available from the query system other than run 
time. Stressor information such as the flow rates for heat 
exchangers can be used to improve the estimates starting at 
the early stages of operation when expected or continuing 
stress levels are known with the second type of model, a 
Type II prognostic model. When quantifiable measured or 
inferred degradation is detected in the system, Bayesian 
techniques can be used to further transition to a Type III 
model, such as the general path model, for more accurate 
RUL estimates. 
 
The general path model (GPM) was first proposed by Lu 
and Meeker (1993), and was first used for prognostics by 
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Upadhyaya et al. (1994). GPM is commonly used to 
extrapolate some measure of system health, called the 
prognostic parameter, built from degradation data by means 
of a regression fit. For prognostics, past degradation cycles 
can be analyzed, and an appropriate functional fit type 
(linear, quadratic, etc.) can be determined and applied to an 
unfailed case with detectable levels of degradation. The 
regression model is then extrapolated to some failure 
threshold and the time to failure (TTF) is calculated. This 
method of utilizing GPM, along with Bayesian inference, is 
applied to the heat exchanger test bed.  
 
Bayesian methods for including prior information are based 
on Bayes’ theorem and can be used for regression problems. 
It has been shown by Coble and Hines (2011) that Bayesian 
inference for application in prognostics problems can be 
successfully used to update GPM regression weights based 
on prior information. By appending weighted inputs to the 
matrices, GPM regression can be purposefully biased 
towards historical paths or failure times. This method of 
Bayesian updating for use on the heat exchanger experiment 
data is discussed in section 4. 

3. EXPERIMENTAL SETUP AND DATA ACQUISITION 

The heat exchanger fouling test bed experiment was 
designed to increase the rate of fouling degradation of a tube 
and shell heat exchanger by expedited process side fouling.  
The system contains 8 sensors to monitor temperature, flow, 
and pressure within the 64 tube cross-flow heat exchanger, 
shown in Figure 2 and summarized in Table A1. 
 

 
Figure 2 – Schematic of heat exchanger physical setup  

 
As seen in Figure 2, there are thermocouples at each of the 
four entrances and exits of the heat exchanger used to 
measure the incoming and outgoing temperature of the hot 
and cold legs: sensors 1, 2, 3, and 4, respectively.  Pressure 
transducers are at both ends of the heat exchanger hot leg to 
measure the pressure variation (sensors 7 and 8). There are 
two turbine style flow meters to measure flow velocity of 
the hot and cold legs (sensors 5 and 6, respectively). A 

LabVIEW data acquisition (DAQ) system is used to sample 
and record the signals at 0.1 Hz. Three 250 watt heaters are 
used to heat the reservoir water for the hot leg supply, and a 
0.5 horsepower (HP) pump is used to facilitate flow. The 
heat exchanger used for this test bed is the Basco 64 tube 
and shell. Each hot leg tube is 0.25 inches in diameter and 
24 inches in length. A full list of system components is 
given in Table 1.  
 
Table 1 – Major systems components, brand, and location 

 Component Brand Location 

S
en

so
rs

 

Thermocouple Omega 

Hot Leg Inlet 
Hot Leg Outlet 
Cold Leg Inlet 
Cold Leg Outlet 

Turbine Flow 
Meter 

Blancett 
Hot Leg Inlet 
Cold Leg Outlet 

Pressure 
Transducer 

Dwyer 
Hot Leg Inlet 
Hot Leg Outlet 

Data Acquisition 
System 

Texas 
Instruments 

N/A 

C
om

po
ne

nt
s 

Heat Exchanger Basco N/A 

250 Watt  Heater Tempco 
Two on top of tank 
One on bottom of tank 

15 Gallon 
Reservoir Tank 

McMaster-
Carr 

Hot Leg - Below Heat 
Exchanger 

0.5 HP Pump Berkeley Below Tank 

 
Tube and shell heat exchanger degradation occurs most 
commonly as continuous fouling within the tubes, that 
results in a reduction in heat transfer to the point where it no 
longer meets specifications (Upadhyaya et al. 2004). For the 
scope of this experiment, this reduction in heat transfer is 
due to particulate fouling inside the process side tubes. To 
accelerate fouling of the test bed experiment, kaolin (china 
clay) is added to the hot leg water. At startup, a mixture of 
water and 105 grams of clay is added to the system, with 
additions of 75 grams of clay in solution every 48 hours 
during the cycle. This regular addition of clay helps to 
maintain a consistent clay density in solution within the 
system. Without these regular additions, the clay has a 
tendency to fall out of solution and settle in the reservoir 
tank. The typical cycle is 14 days of continuous operation at 
1 gallon-per-minute in the hot and cold legs (excluding 
down time during clay addition).  
 
Operational data have been collected for eight cycles run at 
one gallon-per-minute. For the purposes of this paper, the 
average flow rate can be considered a stress related variable 
as it is directly related to the fouling rate. The flow rate is 
important for the stressor-based prognostic algorithms, and 
in future research will be varied during a data collection 
cycle; for the extent of this paper, each cycle is held at near 
constant flow rate.  
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4. MODEL DEVELOPMENT 

To determine an optimal lifecycle prognostic method, 
multiple competing models were created. Four signal sets 
were selected to build the models, and ordinary least squares 
regression of each residual set was used to produce 
prognostic parameters. For the GPM, a linear and quadratic 
fit was used for each case, and Bayesian updating was 
applied. These will be further discussed in the following 
sections.  

4.1. Signal and Feature Sets 

From the data, certain features such as log mean 
temperature difference (LMTD), heat rate, and delta 
temperatures are calculated. The two features used in the 
prognostics models are heat rate and overall heat transfer 
coefficient given by equations 1 and 2b respectively.  
 

ሶܳ / ൌ 	 ሶ݉ ሺܥ ଵܶ െ ଶܶሻ                        (1) 
 

LMTD =	
൫݄ܶ1െܶܿ2൯െ൫݄ܶ2െܶܿ1൯

logቆ
݄ܶ1െܶܿ2
݄ܶ2െܶܿ1

ቇ
                 (2a) 

 

ܷ/ ൌ
ொሶ/

ெ்∗
                         (2b) 

 
where A is the surface area of heat transfer. 
 
These signals and features define the state of the system and 
are selected for inclusion into the AAKR models. When 
cleaning the training data for the AAKR model, it is 
important that the data is fault-free and the test cases operate 
in the same conditions. To reduce system noise, especially 
for the mass flow rates, a median filter was applied to 
remove outliers exceeding three standard deviations. This 
procedure removed many of the large spikes seen in the 
mass flow rate signals, which should have been in near 
steady state.  
 
It is important to develop AAKR models with groups of 
related variables. Therefore, the linear relationships between 
the signals and features were analyzed via correlation 
coefficients. Absolute coefficient values of greater than 0.7 
correspond to strong correlations between signals, and 
coefficients of 0.25 and below are considered to show no 
significant linear correlation. Figure 3 shows a plot of the 
correlation coefficients of the raw data and calculated 
feature indices, with indices summarized in Table A1.  
 
Figure 3 shows that there is a strong correlation between 
signal indices 1 to 4 (measured temperatures). There is also 
a strong correlation between signals 1 and 2 and features 13 
to 15 (LMDT and heat transfer coefficients). There are 
moderate correlations between signals 1 to 6 (5 and 6 are the 
flow rates) and 13 to 15. 

 
Figure 3 – Correlation coefficients of signals and features 

 
Four sets of related variables were chosen based on 
correlation coefficients and understanding of the system 
processes. Other signal sets were tested during initial 
modeling attempts, but did not return desirable residual 
values and trends, and therefore were not considered for 
final lifecycle prognostic methods. The selected signals and 
features were chosen either for being moderately-to-highly 
correlated to one another or for the strong trend observed in 
them, such as the increasing trend of the hot leg 
temperatures and the decreasing trend of the heat transfer 
coefficients. The indices chosen for each signal set are given 
in Table 2. 
 
Table 2– Signal sets used for modeling 

Signal Set Signal/Feature Indices Used 

1 2, 3, 11, 12, 14, 15 

2 1, 2, 3, 4, 11, 12, 14, 15 

3 1, 2, 3, 4 

4 1, 2, 3, 4, 14, 15 

 
In signal sets one, two, and four, the heat transfer 
coefficients, heat rates, and temperature signals are used.  
Since the overall heat transfer coefficients (indices 14-15) 
are calculated from first principles models that are 
dependent on temperature signals (Schmidt et al. 1993), 
including them in an empirical AAKR model has the effect 
of increasing both the model’s and prognostic parameter’s 
weightings toward the temperature signals. This may 
improve modeling attempts when the temperature signals 
have strong increasing trends, and is expected to be more 
effective than other methods of artificially increasing the 
weightings, as it collapses signals to known, important 
dimensionalities.   
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4.2. Auto-Associative Kernel Regression 

After feature selection is completed, the unfaulted heat 
exchanger data is divided into three data sets termed 
training, testing, and validation.  Training data is used to 
train the model and should consist of unfaulted data that 
covers the range of operating values. Testing data is used for 
bandwidth optimization, which will be deferred to later 
discussion, and validation data is used to validate the 
performance ability of the model. AAKR models for the 
heat exchanger were developed and evaluated with the PEM 
toolbox (Hines and Garvey 2006). Kernel regression 
requires a parametric kernel function, in this case a 
Gaussian function, defined by a bandwidth that specifies the 
region of localized weighting for an input vector to the 
memory matrix output. An optimal bandwidth can be 
selected by altering it to minimize the error between known 
unfaulted observations and the model output. This method 
of determining the bandwidth increases the accuracy of the 
kernel regression model (Wand and Jones 1995). The 
training residuals from an AAKR model of signal set 2 are 
shown in Figure 4. 

 
Figure 4 – Training residuals for signal set 2. 

 
For this experiment, the training residuals of the temperature 
signals are desired to be less than 1oC since the temperature 
signals change less than 10°C over the faulted range. The 
training residuals of the heat rate should optimally be less 
than 50 W, and the heat transfer coefficient residuals should 
be less than 10 ܹ/݉ଶܭ. These levels were chosen based 
off knowledge of signal and feature operating ranges over 
normal cycles. After the model is built, faulted data is 
passed through and residuals for each faulted cycle are 
calculated. An example of faulted residuals for the 
temperature sensors in signal set 2 is plotted in Figure 5. 

 
Figure 5 – Faulted residuals of temperature signals (indices 

1-4) using the signal set 2 model 
 
From the failure residuals shown, strong increasing trends 
can be seen for the hot leg temperature signals. Dominantly 
monotonic trends are important when combining residuals 
to make a prognostic parameter. When combining the 
residuals, the objective is for the resulting health indicator to 
increase or decrease over the lifecycle to help indicate the 
degree of system or component degradation. If the observed 
trends of the residuals show a strong increasing/decreasing 
trend then the resulting prognostic parameter will also have 
a strong trend and be more useful for RUL predictions. 

4.3. Prognostic Parameter Generation 

The prognostic parameter is a single metric of the amount of 
deviation from normal behavior of the system and is ideally 
linked to the overall health of the system.  In this project, it 
is calculated as a linear combination of the residuals from 
the AAKR model. While Coble (2010) used a genetic 
algorithm to find a linear combination of weights for the 
residuals, the algorithm is computationally expensive. 
Instead, an ordinary least squares (OLS) regression is 
applied that mimics the optimization and is less 
computationally intensive for smaller data sets. The 
monitoring model residuals of multiple runs to failure are 
collected into a single matrix by concatenating each test 
case. This creates an n x s matrix, X, where n is total data 
points in all test cases, and s is the number of signal 
residuals output from the model. This X matrix is regressed 
against the n x 1 vector y where each yi corresponds to the 
percent of the total unit life at that observation. This means 
that the residuals of each test case are fitted to a linear curve 
from 0 to 1. The linear weights are then  
 

መߚ      ൌ ሺ்ܺܺሻିଵ்ܺ(3)     ݕ 

where ߚመ  is an s x 1 vector.  
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4.4. General Path Model and Bayesian Updating 

When using the GPM approach, a parametric function is fit 
to the degradation parameter, and extrapolated until it 
crosses a predefined failure threshold. Typically, the failure 
threshold is based on historical failures but need not directly 
indicate a point of catastrophic failure.  The failure 
threshold can be set as any point where a system no longer 
conforms to the necessary specifications and demands 
placed upon it.  
 
Because of the limited number of test cases, the GPM and 
all components are created by the use of a leave one out 
cross validation (LOOCV) technique. Hence, to calculate 
the RUL of a specific case, every other case is used to build 
the model. This avoids invalidating a model by keeping 
training and testing data separate, yet general enough to 
compare over all cases. With more data an alternative 
approach could be to simply divide the cases in half and 
build one model.  
 
The degradation path is assumed to have the general linear 
form that is shown in equation 4: 
 

y|β, X, ۤσۥ	 ~ଶ NሺXβ, σଶ	Iሻ	                    (4) 
 
where y is the response a vector, X is the input data matrix, 
and β is the vector of regression parameters. This model 
assumes normally distributed errors with variance σ2.  
 
Development of failure thresholds had to be generated with 
respect to the data. The values were chosen as a reflection of 
an unacceptable amount of degradation, limited by the least 
degraded cycle for any given model. Any data collected 
after this point was considered past failure and removed 
from the data analysis. A histogram plot of failure times for 
the lifecycle prognostics models is shown in Figure 6. 

 
Figure 6 – Histogram of failure thresholds 

 
If the test case data is censored such that only data before a 
time step is available, then the RUL can be calculated at 

each time step by extrapolating the current path to the 
threshold. To do this, a suitable parametric fit must be 
chosen. The fit can be of any linearly separable form such 
as, linear, quadratic, exponential, etc. The OLS method is 
used for regression of the parametric fittings because the 
OLS regression on a joint Gaussian distribution of 
parameters gives the maximum likelihood estimate. This 
method assumes that the error is normally distributed 
around zero.  The OLS solution can be found using the 
pseudo-inverse given in equation 3.  
 
By adjusting the functions in the columns of the input 
matrix X, different fits can be applied to any test path. It is 
assumed that for a certain failure mode the degradation 
paths will follow similar fits. Therefore once a suitable fit is 
chosen for the failed data, it is assumed the censored faulted 
data will follow the same fit.  
 
Bayesian priors can also be incorporated into the OLS 
model (Gelman et al. 2004) to reduce the uncertainty and 
increase the stability of RUL estimates. Bayesian statistics 
combines prior distributions with sampling data to create a 
posterior distribution. When few data points are available, 
without incorporating any form of Bayesian prior 
estimations, the model can easily be affected by noise and 
give widely varying predictions of time to failure.  Coble 
and Hines (2011) use Bayesian methods to incorporate prior 
knowledge of regression parameters in the GPM.  This 
approach requires historical run-to-failure data in order to 
evaluate the prior distributions of regression parameters.  An 
alternative approach instead uses RUL estimates from Type 
I prognostic models as prior information (Nam 2013).  In 
this approach, the Type I RUL distribution is treated as an 
additional data point in the OLS regression.  The measured 
data are augmented with the distribution according to 
equation 5: 
































RUL

y

MTTF

X
X

thresh

y
Y

0

0
,,

   

 (5) 

 
where y is the observed prognostic parameter, thresh is the 
failure threshold, x is the timestamps (or appropriate 
transformation thereof), MTTF is mean failure time from the 
Type I distribution (or appropriate transformation thereof), 
 ௬ is the noise or uncertainty associated with the observedߑ
prognostic parameter, and ߑோ is the uncertainty in the 
Type I RUL estimate.  The OLS regression is then solved 
according to equations (6) – (8): 

β ൌ ቀXΣ‐ଵXቁ
‐ଵ
XΣ‐ଵy                       (6) 

 
ଶߪܸ ൌ ሺ்ܺିߑଵܺሻିଵ                     (7) 

 

σଶ ൌ
ଵ

୬‐୩
൫y‐Xβ൯


Σ‐ଵ൫y‐Xβ൯                (8) 

European Conference of the Prognostics and Health Management Society 2014

87



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014 
 

7 

where k is the degree of the parametric function used in the 
GPM. 
 
The weight of the prior information in the OLS regression 
depends on two main factors: the variance of the prior 
relative to the variance of the data, and the number of 
observations collected. If the variance of the prior is small 
compared to the noise of the data, the prior 0  will be 

weighed more heavily. However, no matter the difference in 
variance, with enough observations, the data should 
eventually swamp out the prior in calculating the posterior. 

4.5 Bayes Method Implementation 

For each of the four AAKR models, two prognostic 
modeling methods are used: 

GPM Method 1: No Bayesian updating 

GPM Method 2: Type 1 Bayes priors 

To compare the two methods, plots of the predicted TTF 
versus the actual TTF are examined. In each plot, the 
multiple blue lines correspond to the determined TTF of 
each cycle over time. Figure 7 shows a plot of the TTF 
comparison when no Bayesian updating is used. 

 

Figure 7 – Plot of the GPM method 1 TTF predictions 
across cycles without Bayesian updating 

 
Without Bayesian updating, TTF prediction times have 
large spikes, and prediction accuracy is reduced. While 
some peaks are due to the noise and artifacts in the heat 
exchanger data acquisition system, the somewhat larger and 
broader peaks at regular intervals are most likely the result 
of the regular additions of clay into the hot fluid. The extra 
clay would change the thermodynamics as well as mass 
flows of the otherwise closed system. In an attempt to 
improve TTF estimation, past cycle failure times are 
incorporated as prior information (Type I) as shown in 
Figure 8. 

 

Figure 8 - Plot of the GPM method 2 TTF predictions across 
cycles with Type I Bayesian updating 

 
The predictions using Type I prior information show visual 
improvement over those with no Bayesian updating.  

5. RESULTS AND DISCUSSION 

Initial modeling attempts revealed that using a quadratic fit 
is more accurate than using a linear fit; therefore, to 
conserve space, results will be confined to quadratic fit 
models. The different GPM methods and signal sets 
(models) are compared using several performance metrics. 

The first model comparison metric used is the absolute error 
mean (AEM), which returns the average absolute difference 
between the predicted RUL and the true RUL in real time 
units, shown in Figure 9.  Signal sets 1 and 3 have the 
lowest AEM, and GPM method 2 further improves the 
predictions.  Signal set 1 with GPM method 2 results in the 
most accurate RUL predictions for this data set. 

 
Figure 9 – Absolute error mean for four signal set models 

and two GPM methods 
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The second metric used to evaluate the prognostic models is 
the absolute error standard deviation (AES), which is a 
measure of the variation in error through time of each model 
and GPM method, shown in Figure 10.  Again, the model 
using signal set 1 and GPM method 2 shows the best 
performance, with highest precision in estimating the RUL.  

 
Figure 10 – Absolute error standard deviation for four signal 

set models and two GPM methods. 
 

To quantitatively compare the different GPM methods, the 
AEM, AES, spread, and coverage metrics are used (Saxena 
et al. 2010). A plot showing the results of these metrics for 
each GPM method for signal set 1 is shown in Figure 11 and 
the unnormalized metric scores are shown in Table 3.   

 

Figure 11 – Plot of normalized performance metrics for two 
GPM methods and signal set 1 

 

These metrics indicate that the Bayesian updating method 
(GPM Method 2) is more accurate for predicting RUL for 
this data set. 

 

 

Table 3 – Performance Metrics Scores  

G
PM

-1
 

AEM 1.7026E4 

AES 9.6206E3 

Spread 131.135 

Coverage 83 

G
PM

-2
 

AEM 1.1441E4 

AES 5.1395E3 

Spread 70.767 

Coverage 99 

 

6. CONCLUSION AND FUTURE WORK 

In analyzing the fouling of a heat exchanger, a method for 
the development of a lifecycle prognostics model was 
presented that spans from empirical modeling of the system 
to TTF calculations using the GPM. Across all test cases, 
the Bayesian transition using a type I prior outperformed the 
GPM with no Bayesian updating.  
 
The prognostics method presented here can be improved in 
several ways. The noise of the prognostics parameter can be 
reduced by improved filtering or prognostics parameter 
optimization. A more optimized prognostics parameter with 
a more well-defined degradation threshold could increase 
the prognosability and decrease the end of life RUL and 
TTF prediction errors. A crucial future implementation is 
the application of a fault detection method to cut beginning 
of life test data before a fault is detectable. Cutting data that 
is similar to clean or unfaulted data would increase 
trendability, particularly for linear GPM fits that would not 
accommodate a sudden increase in degradation. A 
mitigating factor to this is that all test cases are initially run 
with clay in the system. Therefore, physically, some form of 
degradation should be manifest from the beginning.  
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APPENDIX 

Table A1 – Measured signals and calculated features and 
their indices 

Signal Index Signal/Feature 

1 Hot Leg Inlet Temperature 

2 Hot Leg Outlet Temperature 

3 Cold Leg Inlet Temperature 

4 Cold Leg Outlet Temperature 

5 Hot Leg Flow Rate 

6 Cold Leg Flow Rate 

7 Hot Leg Inlet Pressure 

8 Hot Leg Outlet Pressure 

9 Delta Hot Leg Temperature 

10 Delta Cold Leg Temperature 

11 Hot Leg Heat Rate 

12 Cold Leg Heat Rate 

13 Log Mean Temperature Difference 

14 Hot Leg Overall Heat Transfer Coefficient 

15 Cold Leg Overall Heat Transfer Coefficient 
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ABSTRACT 

Given the critical nature of Gas Turbines in most industrial 

plants, it is a high priority to find ways of reducing 

maintenance costs and increasing the availability. Quickly 

detecting and identifying combustion anomalies enables the 

choice of an appropriate recovery strategy, potentially 

mitigating the consequences of unscheduled down time and 

increased maintenance costs. Monitoring the Exhaust Gas 

Temperature (EGT) profiles is a good means of detecting 

combustion problems: plugged nozzles and/or combustor and 

transition piece failures will always result in distorted exhaust 

gas temperature patterns. However the conventional 

monitoring systems do not allow robust discrimination 

between instrumental failures and real gas turbine issues; 

furthermore weak diagnostic methods can be source of 

numerous false alarms. 

In this paper, we investigate the problem of monitoring the 

combustion chambers of a gas turbine and we attempt to 

address this issue by introducing a strategy for automatic and 

efficient patterns recognition by using Machine Learning 

Classification algorithms. Some historical events have been 

firstly retrieved and analyzed to discover which features are 

useful for classification. Based on the observations, two 

multiclass classification algorithms, one based on logistic 

regression, the other on Artificial Neural Networks (ANN), 

have been developed. Finally, real-world datasets have been 

used to benchmark the performance of the proposed 

algorithms against a traditional physics-based approach. 

1. INTRODUCTION 

Today industrial gas turbines are one of the most widely-used 

prime movers for power generation and mechanical drive 

applications. In the Oil&Gas field these engines are often 

used to drive compression trains (for example in gas pumping 

or injection stations or in natural gas liquefaction plants) and 

to provide power for the plant.   

Maintenance costs and availability are two of the most 

important concerns to a heavy-duty gas turbine equipment 

owner. Gas turbines have to be built and operated with higher 

availability, reliability, and performance in order to ensure 

the customer with sufficient operating revenues and minimal 

fuel costs. Therefore, Remote Monitoring & Diagnostics 

(RM&D) of equipment like heavy duty gas turbine has 

become increasingly important and popular in the industry 

since it’s considered a critical process in preventing costly 

unplanned maintenance and secondary damage.  

To achieve this goal, a large number of critical parameters 

such as engine vibration, bearing temperature, combustion 

profile, etc. are continuously acquired to detect any changes 

in the normal operating conditions of the gas turbine engine. 

This large number of operational data from the everyday 

operation of a gas turbine is usually collected and analyzed 

as soon as new data sets arrive in the monitoring center. 

Anomaly detection rules and models are designed to scan 

through the data and notify the monitoring and diagnostic 

engineers, if any novelties or emerging problems are 

detected. 

For example every day of the year, the RM&D center of 

General Electric Company in Florence (GE Oil&Gas), Italy 

collects more than 3,850 operating hours of data from a fleet 

of more than 700 globally installed equipment (gas turbines, 

compressors, steam turbines and electric generator assets). 

More than 70,000 signals are processed by automatic 

diagnostic rules and about 2,300 recommendations per year 

are sent to customers. Therefore in recent years, in parallel 

with the operational diagnostic service, it has become 

increasingly important the challenge of transforming big data 

into knowledge (Jlang & Foster, 2013) and to detect 

emerging problems at nearly real-time (early warning) with 

the development of advanced analytics. In a great number of 

industrial applications, this continuous supervision of critical 

parameters is driving the gradual transition from systematic 

maintenance to conditional maintenance strategies 

(Vachtsevanos, Lewis, Roemer, Hess, and WU, 2006).  

C. Allegorico et al. This is an open-access article distributed under the 

terms of the Creative Commons Attribution 3.0 United States License, 

which permits unrestricted use, distribution, and reproduction in any 
medium, provided the original author and source are credited. 
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2. COMBUSTION MONITORING 

The diagnosis of any malfunction of the combustion system 

of a gas turbine is of great importance for long term engine 

reliability and availability. Main causes of damage of hot-

section components are imbalanced fuel distribution and 

combustion instabilities.  

Some of the common problems experienced in gas turbines 

operation are: random re-ignition, combustor blowout, 

abnormal combustion dynamics, and non-compliant 

emissions. Modern dry low NOx combustors can target very 

low emissions levels, but need to operate within very narrow 

equivalence ratio. Premixed combustors are often susceptible 

to thermoacoustic combustion instability, which can lead to 

large pressure oscillations in the combustor and decreased 

durability of components.  

Other causes of combustion issues are clogged or loose fuel 

nozzles, which may lead to severe burning problems. 

Abnormal fuel mass distribution among nozzles may cause 

high emissions of either NOx (due to hot spots in the 

combustion zone) or CO and unburned hydrocarbons (due to 

cold spots and poor mixing or atomization). Those hot spots 

reduce the time taken for failure in creep (phenomenon of 

plastic deformation) of the combustion liners, transition 

pieces, turbine nozzles and blades. In fact creep life of metal 

components in the hot section of a gas turbine is extremely 

sensitive to metal temperature. 

The consequences of hot-section component failures caused 

by overheating might be quite costly. In extreme cases, 

combustion liner failures can allow hot flames to impinge on 

the turbine pressure casing, which can result in catastrophic 

combustion casing failure (Figure 1). Even before casing 

failure occurs, broken pieces of the liner can pass into the 

expander section and cause extensive blade damage. 

Monitoring the gas turbine exhaust temperature spread via 

thermocouples mounted at the gas turbine exhaust section 

(i.e. maximum - minimum) is a good means of detecting 

combustion problems. In fact, almost all gas turbine control 

systems monitor this parameter and issue an alarm when it 

reaches an OEM-specified value. However most modern 

diagnostic systems often do not display expected exhaust gas 

turbine spread profiles (EGT spread) and do not figure out 

the source of the high-temperature spread. Moreover many 

false alarms are often triggered as a result of instrumental 

problems. 

In this paper, we discuss the application of a pattern 

recognition technique to the monitoring of the exhaust gas 

turbine temperature profile. Although physical insight is 

without any doubt an important step to enhance knowledge 

of the processes within the combustion chamber, large 

datasets can also be exploited with data-mining techniques 

based on black box models, such as classifiers or artificial 

neural networks (Hannes, Deneve, Vanderhaegen, & Museur, 

2009).  

 

Figure 1. Broken liner as the result of cracks propagation 

The data-driven approach to fault diagnosis and prognosis is 

usually preferred when system models are not available or 

not robust enough (e.g., when the physics underlying is too 

complex to be modeled), but instead system monitoring data 

is available (Namburu, Azam, Luo, Choi, & Pattipati, 2007).  

The key challenge in implementing this kind of approach is 

developing an algorithm that can flag anomalies without also 

sending out false alarms when something else changes such 

as engine operating conditions. Pure data-driven modeling 

techniques work well if sufficient labeled data are available. 

However in real-world applications like in gas turbine 

monitoring, obtaining sufficient labeled data is labor-

intensive, if ever possible. In particular, true positive cases 

might be sparse or noisy and using small set of labeled data 

may cause model over-fitting or ill-formed model 

representation (Yan, Yu, Sherbahn, and Brahmakshatriya, 

2013).  

In this paper, an anomaly detection method based on 

classifiers technology is discussed in detail and implemented 

on E-class gas turbines. These black box models, trained on 

historical data (training set), are used to detect the presence 

of anomaly patterns in unseen data of the EGT profile (test 

set). These specific signatures not only can alert the operator 

to a possible problem, but they also identify its severity and 

can guide in understanding the possible root cause. 

3. CLASSIFICATION  

In machine learning and statistics, classification is the 

problem of identifying to which of a set of categories a new 

observation belongs, on the basis of a training set of data 

containing observations whose category membership is 
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known. Example of classification would be to predict 

whether a patient has a given disease or not, classifying a 

given email as “spam” or “non-spam”, an online transactions 

as fraudulent or not, etc. It’s worth noting that the response 

variable y is qualitative instead of quantitative. All these 

cases above are examples of binary classification problems 

because the variable y that we'd like to predict admits only 

two possible outcomes (usually coded as "0" or "1"), but the 

same concept can be extended to multi-class cases to deal 

with situations where the outcome can have three or more 

possible types (e.g., "disease A" vs. "disease B" vs. "disease 

C"). 

There are many possible classification techniques, or 

classifiers, that one might use to predict a qualitative 

response. Some of these are: logistic regression, Artificial 

Neural Networks, K-nearest neighbors, decision tree and 

Support Vector Machines (James, Witten, Hastie, and 

Tibshirani, 2013). 

In this work, logistic regression and artificial neural networks 

techniques are investigated. Today logistic regression is one 

of the most popular and most widely used learning algorithms 

thanks to the interpretability of model parameters and ease of 

use. On the other hand, neural networks can be seen as 

nonlinear generalizations of logistic regression, and thus they 

are considered more flexible algorithms (Dreiseitl & Ohno-

Machado, 2002). 

3.1. LOGISTIC REGRESSION 

In a binary classification problem, where the response y falls 

into one of two categories, 0 or 1, logistic regression models 

the probability that y belongs to a particular category. The 

surface that partitions the vector space into two sets, one for 

each class, is called decision boundary. 

The function that satisfies the property that a prediction is 

between 0 and 1 is the hypothesis function 0 ≤ ℎ𝜃(𝑥) ≤ 1, 

defined as ℎ𝜃(𝑥) = 𝑔(𝜃𝑇𝑥) , where the function g is the 

logistic or sigmoid function 𝑔(𝑧) =
1

1+𝑒−𝑧 , that takes the 

shape of the S-curve shown in Figure 2 for values of z in the 

range of real numbers from −∞ to +∞. Putting these two 

equations together, we obtain an alternative form of the 

hypothesis function. 

    ℎ𝜃(𝑥) =
1

1+𝑒−𝜃𝑇𝑥
              (1) 

The output value of the hypothesis function is the estimated 

probability that the variable y is equal to 1 on a new input 

example x.  

Suppose that the hypothesis output is 0.7, the interpretation 

is that for a patient with features x, the patient has a 70% 

chance of having a specific disease. More formally we can 

write this as ℎ𝜃(𝑥) = 𝑃(𝑦 = 1|𝑥; 𝜃) probability that y = 1, 

given feature x, parameterized by θ. 

 

 

Figure 2. Sigmoid function 

The parameter vector θ is the vector of unknown linear 

regression coefficients of the nth order polynomial 𝜃0𝑥0 +
𝜃1𝑥1 + … + 𝜃𝑛𝑥𝑛 = 𝜃𝑇𝑥 . High-dimensional vector can be 

used in non-linear problems to get more complex decision 

boundary, but the model will be more susceptible to 

overfitting, which means that it may fit the training set very 

well, but fail to generalize to new examples. 

In every supervised learning problem, a training set of m 

training examples is required 

{(𝑥(1), 𝑦(1)), (𝑥(2), 𝑦(2)), ⋯ , (𝑥(𝑚), 𝑦(𝑚))} 

where each example is represented by an N+1 dimensional 

feature vector x, and its associated label y can be either 0 or 

1. 

𝑥 ϵ [

𝑥0

𝑥1

⋯
𝑥𝑛

]  𝑥0 = 1, 𝑦 ϵ{0,1} 

The training process of a classifier involves finding the best 

parameter θ vector for the logistic regression cost 

function  𝐽(𝜃) , given the dataset of x and y values. This 

optimization problem consists in minimizing the sum of the 

square difference between the output of the hypothesis ℎ𝜃(𝑥) 

and class label y, which is finding parameters θ that minimize 

the function:  

𝐽(𝜃) =
1

2𝑚
[∑(ℎ𝜃(𝑥𝑖) − 𝑦𝑖)2 + 𝜆 ∑ 𝜃𝑗

2

𝑛

𝑗=1

𝑚

𝑖=1

]        (2) 

where λ is the regularization parameter. This optimization 

problem can be solved with any standard numerical 

optimization algorithm, like the gradient descent or more 

advanced methods. 

3.2. ARTIFICIAL NEURAL NETWORKS 

In computer science and related fields, Artificial Neural 

Networks are computational models inspired by the neural 

structure of the brain that are capable of machine learning and 

European Conference of the Prognostics and Health Management Society 2014

94



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014 

4 

pattern recognition. Due to their high connectivity and 

parallelism, ANNs are able to link, in a non-linear way, a 

multi-dimensional input space with a multi-dimensional 

output space, allowing very high computational speed 

(Haykin, 1999). 

The neural network architecture used in this paper for gas 

turbine combustion monitoring is the multilayer feedforward 

neural network (see Figure 3), in which the artificial neurons 

are arranged in layers, and the neurons of a layer are linked 

to all the neurons of the following layer, while, there are no 

links among neurons of the same layer. The input layer 

consists of a set of nodes (where no data processing occurs) 

equal to the number of ANN inputs, while the number of 

neurons in the output layer is equal to the number of ANN 

outputs. 

 

Figure 3. Artificial Neural Network architecture 

Feedforward networks often have one or more hidden layers 

of sigmoid neurons also called activation functions (Eq. (1)) 

followed by an output layer of linear or sigmoid neurons. 

Multiple layers of neurons with nonlinear transfer functions 

allow the network to learn nonlinear relationships between 

input and output vectors. The linear output layer is most often 

used for function fitting (or nonlinear regression) problems, 

while sigmoid transfer function is used to constrain the 

outputs of a network (such as between 0 and 1). This is the 

case when the network is used for pattern recognition 

problems (in which a decision is being made by the network). 

All the calculations are performed in hidden and output 

layers. In particular, if xij is the ith input of the jth neuron and 

wij is the weight of xij, the neuron output yj is determined by 

means of an activation function f applied to the weighted sum 

of the inputs plus the bias b. 

𝑦𝑖 = 𝑓 (∑ 𝑤𝑖𝑗𝑥𝑖𝑗 + 𝑏

𝑚𝑗

𝑖=1

)     ,     𝑗 = 1, … , 𝑛𝑁           (3) 

The process of training a neural network involves tuning the 

values of the weights and biases of the network to optimize 

network performance, which generally is the mean square 

error mse, namely the average squared error between the 

network outputs y and the target outputs t. It is defined as 

follows: 

𝐹 = 𝑚𝑠𝑒 =
1

𝑁
∑(𝑒𝑖)

2

𝑁

𝑖=1

=
1

𝑁
∑(𝑡𝑖 − 𝑦𝑖)2

𝑁

𝑖=1

         (4) 

For training multilayer feedforward networks, any standard 

numerical optimization algorithm can be used to optimize the 

performance function, but there are a few key ones that have 

shown excellent performance for neural network training. 

These optimization methods use either the gradient of the 

network performance with respect to the network weights, or 

the Jacobian of the network errors with respect to the weights. 

The gradient and the Jacobian are calculated using a 

technique called backpropagation algorithm, which involves 

performing computations backward through the network.  

Although the functional forms for logistic regression and 

artificial neural network models are quite different, a network 

without a hidden layer is actually identical to a logistic 

regression model if the logistic (sigmoidal) activation 

function is used.  

Since artificial neural networks are aggregations of nonlinear 

functions (neurons), in classification problems ANNs are 

able to represent complex models that form non-linear 

hypotheses, differently from logistic regression that is only a 

linear classifier. The type of decision boundary that the 

network can learn is determined by the number of hidden 

layers.  

4. MODEL DEVELOPMENT 

The first step towards the development of a classifier for gas 

turbine combustion monitoring is the definition of the 

categories to be classified.  

Polar plot of EGT profiles is often used in diagnostics to 

identify uneven temperature distributions. The calculation of 

the exhaust swirl angle is then used to map temperatures back 

to the originating combustion chamber. Based on experience, 

the 4 classes of Figure 4 have been identified, each of which 

is characterized by a specific temperature distribution in the 

polar plot. 

For example, in a fault–free case (Class 1) the exhaust 

temperature profile is expected to be quite regular; it will be 

peaked on the abnormal thermocouple in presence of a sensor 

anomaly (Class 2) and asymmetric with more than one 

thermocouple far from the average temperature in the case of 

a cold (Class 3) or hot spot (Class 4). 

The underlying idea in this paper is that a classification model 

can be trained on real cases of normal behavior, sensor 

anomaly, cold spot and hot spot to recognize their specific 

patterns when new data are presented. 
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Figure 4. Polar plots of exhaust gas temperature profiles 

This would allow greater performance than traditional 

diagnostic systems that are simply based on the monitoring 

of the exhaust spread. 

4.1. REGULARIZED LOGISTIC REGRESSION TRAINING AND 

VALIDATION  

For the 4-classes classification problem presented here, a 

multi-class classification algorithm called “one-vs-all” is 

implemented. This algorithm handles the training set as 4 

separate binary classification problems, where each class i is 

separated from the remaining ones. In other words the logistic 

regression classifier ℎ𝜃
(𝑖)(𝑥)  is trained for each class i to 

predict the probability that y=i, ℎ𝜃
(𝑖)

= 𝑃(𝑦 = 𝑖|𝑥; 𝜃) . To 

make the final prediction, the 4 classifiers are run 

simultaneously on the input x, and the class with the highest 

probability max
𝑖

ℎ𝜃
(𝑖)(𝑥) is then selected. 

For the creation of the training dataset, historical events 

ground truth data have been primarily collected from RM&D 

issue database. Operating data of about 150 heavy-duty gas 

turbines in a period of 2 years operation are available for the 

analysis. Since we focus on anomaly detection algorithm, 

these data include both abnormal units and normal units, 

which are referred as positive and negative cases 

respectively. Secondly, time series of classifier input data x 

of some historical cases are extracted from the data historian 

and analyzed to generate the training dataset as explained 

below.  

The most reliable way to get a high performance machine 

learning system is to take a low bias learning algorithm and 

to train it on a massive training set. However in real-world 

applications true positive cases are sparse and only small 

labeled training set are available.  

An artificial data synthesis method can be used to create new 

data from scratch or to amplify a given dataset. The second 

case has been put in place to turn the relative small training 

set available into a larger training set. For intellectual 

property protection, we are not allowed to give details and 

how this procedure was carried out and the number of feature 

x considered for the model. 

Through the procedure explained above, a dataset of 11000 

samples was generated and divided in three subsets for 

training, validation and test with following ratio 0.7, 0.15 and 

0.15 respectively. 

A first order polynomial was too simple for the data and 

resulted in underfitting (high bias), so a 2° order polynomial 

was used. The regularization parameter λ can significantly 

affect the results of the polynomial regression. In particular, 

a model without regularization (λ = 0) fits the training set 

well, but does not generalize. Conversely, a model with too 

much regularization (λ = 100) does not fit the training set and 

testing set well. A good choice of λ can provide a good fit to 

the data.  

We used the Matlab® fminunc optimization solver to optimize 

the cost function Jtrain(θ) with parameters θ on the training 

dataset. Concretely we passed to fminunc function the 

following inputs: 

 The initial values of the parameters to be optimized 

 A function that, when given the training set and a 

particular θ, computes the logistic regression cost and 

gradient with respect to θ for the dataset (x, y). This allows 

fminunc to use the gradient when minimizing the 

function. 

For the regularized logistic regression, the Eq. (2) of the cost 

function becomes 

𝐽(𝜃) =
1

𝑚
∑ [−𝑦(𝑖)𝑙𝑜𝑔 (ℎ𝜃(𝑥(𝑖))) − (1 − 𝑦(𝑖))𝑙𝑜𝑔 (1 −𝑚

𝑖=1

ℎ𝜃(𝑥(𝑖)))] +
𝜆

2𝑚
∑ 𝜃𝑗

2𝑛
𝑗=1                                                    (5) 

Correspondingly, the partial derivative of regularized logistic 

regression cost for θj is defined as 

𝜕𝐽(𝜃)

𝜕𝜃0

=
1

𝑚
∑(ℎ𝜃(𝑥(𝑖)) − 𝑦(𝑖))𝑥𝑗

(𝑖)

𝑚

𝑖=1

                        𝑓𝑜𝑟 𝑗 =  0 

𝜕𝐽(𝜃)

𝜕𝜃𝑗

= (
1

𝑚
∑(ℎ𝜃(𝑥(𝑖)) − 𝑦(𝑖))𝑥𝑗

(𝑖)

𝑚

𝑖=1

) +
𝜆

𝑚
𝜃𝑗       𝑓𝑜𝑟 𝑗 ≥ 1 

After that the optimal values of θ were found, the model was 

then validated on the cross-validation dataset computing the 

cost function JCV(θ) for different values of λ. We found that, 

for the dataset considered, λ=8 is the value that works best in 

terms of having a small cross-validation and test set error 

(Figure 5).  
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Figure 5. Selecting λ using a cross-validation set 

Finally the model's performance has been evaluated on the 

test set, since it was not used in any part of training (that is, it 

was neither used to select the λ parameters, nor to learn the 

model parameters θ). The test error for λ = 8 was Jtest(θ) = 

0.64e-04 with 100% accuracy, that is the percentage of 

examples that the classifier got correct. 

After learning the parameters θ, to help visualize the model 

learned by the classifier, we have plotted the non-linear 

decision boundary that separates the positive and negative 

examples in a 3-dimensional space.  

 

Figure 6. Class 1 classifier decision boundaries 

 

 
Figure 7. Class 2 classifier decision boundaries 

 

 
Figure 8. Class 3 classifier decision boundaries 

 
Figure 9. Class 4 classifier decision boundaries 

In Figure 6 to Figure 9, the decision boundary for each of the 

4 assigned classes is shown in green. The red dots are the 

positive example, while the yellows ones are the negative 

examples. 

4.2. NEURAL NETWORK TRAINING AND VALIDATION 

The same dataset of section 4.1 was used to build a neural 

network based classifier. The architecture selected for the 

network is the feed-forward with sigmoid transfer functions 

in both hidden and output layers. The network has four output 

neurons, because there are four categories associated with 

each input vector, thus each output neuron represents a 

category. When an input vector x of the appropriate category 

is applied to the network, the corresponding neuron should 

produce a 1 and the other neurons should output 0. The 

influence of the number of neurons in the hidden layer was 

evaluated by comparing the response of different ANNs with 

different numbers of hidden neurons. Ten neurons in the 

hidden layer were considered an acceptable compromise 

between ANN accuracy and computational time required for 

the training. Due to the high number of patterns used for the 

training, the overfitting phenomenon (when the model learns 

the training data so well that it loses the ability to generalize) 

is unlikely to happen.  

The Matlab® Neural Network Toolbox was used for the 

training process. The best validation performance was found 

at iteration 93 with 100% of cases perfectly classified. 
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5. RESULTS ON REAL WORLD DATASETS 

As explained in section 4.1, the training dataset was obtained 

through an artificial data synthesis method on the observation 

of some relevant cases. For the validation on real data, time 

series with a one-minute sampling rate are used. Datasets 

prepared have duration of about one week before and after 

the event for positive cases and total length of 5 months for 

negative cases.  

Starting from combustion labeled cases stored in the RM&D 

issue database and other past events notified to customers, 5 

datasets, one for each class, have been identified (25 fault-

free cases, 25 cases of anomalies, 25 sensor failures/out of 

range, 25 cold spots and 4 hot spots). The hot spots cases are 

less numerous because they have a lower probability of 

occurrence. An additional class has been added to those seen 

previously in this paper, this new class contains out of range 

anomalies, which in most cases are broken probes with 

unreliable or full scale values. These cases are filtered by the 

algorithm without passing through classifier and must be 

correctly detected by the diagnostic system. 

A criterion to evaluate performance of classification problem 

is the contingency table that contains information about the 

outcome of the classifier compared with the target, giving 

information about the true or false positives and true or false 

negatives. The True Positive is a Target correctly identified 

whereas the True Negative is a Target correctly rejected. The 

False Positive, also known as Type I error, is a test result that 

is read as positive when it is really negative, whereas the 

False Negative, also known as Type II error, is a test result 

read as negative when it is really positive. 

Table 1: Sensor Failure Contingency Table 

Sensor Failure 
Target (Gold Standard) 

Positive Negative 

Test Outcome 

Positive 
True Positive 

25 

False Positive 

0 

Negative 
False Negative 

0 

True Negative 

25 

 

Table 2: Anomaly Contingency Table 

Anomaly 
Target (Gold Standard) 

Positive Negative 

Test Outcome 

Positive 
True Positive 

24 

False Positive 

0 

Negative 
False Negative 

1 

True Negative 

25 

 

Table 3: Cold Spot Contingency Table 

Cold Spot 
Target (Gold Standard) 

Positive Negative 

Test Outcome 

Positive 
True Positive 

25 

False Positive 

0 

Negative 
False Negative 

0 

True Negative 

25 

 

Table 4: Hot Spot Contingency Table 

Hot Spot 
Target (Gold Standard) 

Positive Negative 

Test Outcome 

Positive 
True Positive 

4 

False Positive 

0 

Negative 
False Negative 

0 

True Negative 

25 

 

The contingency tables from Table 1 to  

Table 4 summarize the results obtained with the classifier 

based on logistic regression for each class. It’s evident that 

the performance of the classifier is very satisfactory, since it 

fails to predict only one case from the anomaly test set, 

whereas the other predictions are correct. These results are 

also summarized in the confusion matrix in Table 5. 

A benchmarking with other two algorithms has been done 

using the same labeled cases. In particular we considered the 

Artificial Neural Network classifier described before and a 

Physics-Based (P-B) approach. The latter is a proprietary 

algorithm based on the monitoring of the EGT spread and is 

reinforced with the adjacency check between the 

coldest/hottest thermocouple and the second coldest/hottest 

thermocouple for the detection of cold and hot spot 

anomalies. 

Table 5: Confusion Matrix 

 

Target Class 
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Sensor 

Failure 
25 0 0 0 0 100% 

Normal 0 25 1 0 0 
96.2

% 

Anomaly 0 0 24 0 0 100% 

Cold Spot 0 0 0 25 0 100% 

Hot Spot 0 0 0 0 4 100% 

 
100

% 

100

% 

96

% 

100

% 

100

% 
99% 

In order to compare the three different algorithms, it is 

necessary to define some appropriate metrics. Starting from 

the contingency table explained above, it is possible to derive 

various indicators like precision and recall.  

In binary classification, precision is the ratio of the number 

of relevant records retrieved to the total number of irrelevant 

and relevant records retrieved, while recall is the ratio of the 

number of relevant records retrieved to the total number of 

relevant records in the database (Labatut, Cherifi, 2011).  

So, precision and recall are defined as: 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
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𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

From the definition above it turns out that a good classifier 

must have high precision and high recall. In fact, a low 

precision classifier produces high number of false alarms, 

whereas a low recall classifier gets a high number of missing 

alarms. 

Analyzing the results obtained in Table 6 and Table 7, the 

logistic regression classifier shows better performance in 

terms of precision and recall compared to the other two 

algorithms used for the benchmark. 

Table 6: Precision 

Class 
Precision 

LR 

Precision 

ANN 

Precision 

P-B Rule 

Sensor 

Failure 
100% 100% 100% 

Anomaly 100% 100% 88.88% 

Cold Spot 100% 100% 100% 

Hot Spot 100% 100% 100% 

TOTAL 100% 100% 96.96% 

Table 7: Recall 

Class 
Recall  

LR 

Recall 

ANN 

Recall 

P-B Rule 

Sensor Failure 100% 100% 96% 

Anomaly 96% 80 % 64% 

Cold Spot 100% 100% 80% 

Hot Spot 100% 75 % 100% 

TOTAL 98.73% 92.40% 81.01% 

The ANN based classifier generates 6 false negative, failing 

to predict 5 test cases from the Anomaly dataset and one case 

from the Hot Spot dataset, without generating any false 

positive prediction. This result decreases the recall relative to 

the two classes with the false negative without impacting the 

precision metrics. 

The P-B rule have a very low recall metric due to 5 false 

negatives in Cold Spot dataset, one in Sensor Failure dataset 

and 9 in Anomaly dataset. This rule also produces 2 false 

positives in Anomaly dataset affecting also the precision of 

the rule. 

Another useful metric to compare the three algorithms is the 

F1-Score. This score weights recall and precision equally, 

and a good retrieval algorithm will maximize both precision 

and recall simultaneously. Thus moderately good 

performance on both will be favored over extremely good 

performance on one and poor performance on the other. F1-

score is defined as: 

𝐹1 =  2
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

Table 8 confirms the performance results previously found. 

Despite the high accuracy of the ANN obtained in the training 

phase, the logistic regression showed a greater ability to place 

the unseen data in the right classes. This result can be 

probably explained by the fact that, given the strategy used 

for the training set generation, the logistic regression has a 

greater ability to fit the nature of the problem thanks to the 

analytical definition of its decision boundaries. 

Table 8: F1-Score 

Class 
F1-score 

LR 

F1-score 

ANN 

F1-score  

P-B Rule 

Sensor Failure 1 1 0.9795 

Anomaly 0.9795 0.8888 0.7441 

Cold Spot 1 1 0.8888 

Hot Spot 1 0.8571 1 

TOTAL 0.9936 0.9605 0.8827 

6. CONCLUSIONS 

The diagnosis of any malfunction of the combustion system 

of a gas turbine is critical in preventing costly unplanned 

maintenance and in reducing life-cycle costs of power plant 

operations. Monitoring the exhaust temperature spread is a 

good means of detecting combustion problems. However 

conventional monitoring systems do not allow robust 

discrimination between instrumental failures and real 

combustion issues; furthermore weak diagnostic methods can 

be source of numerous false alarms. 

In this research, a Machine Learning technique, based on 

classification technology, is proposed to efficiently recognize 

anomaly patterns of common combustion problems. These 

specific signatures not only can alert the operator to a 

possible problem, but they also identify its severity and can 

guide in understanding the possible root cause. Two 

multiclass classification algorithms, one based on logistic 

regression, the other on artificial neural networks, have been 

trained on labeled patterns extracted from real cases of 

normal behavior, sensor anomaly, cold spot and hot spot 

collected in the RM&D center of Florence. An artificial data 

synthesis method has been used to amplify the original 

dataset, since only small labeled training set is available. 

After training process, the developed classification models 

and an additional physics-based algorithm have been tested 

on real combustion cases.  

The final performance metrics pointed out better results for 

both data-driven methods compared to the physics-based 

model. The best performance, both in accuracy and recall, 

was achieved by the logistic regression algorithm. The ANN 

based classifier, despite having excellent accuracy, generated 

6 false negative resulting in a lower recall. 

Future research could investigate how to enhance the insight 

into the complex combustion system behavior relying not 

only on EGT profiles. For instance, multi-sensor fusion may 

provide robust and complete description of the combustion 

process combining information coming from additional 

sensors, such as combustion dynamic pressures and pressure 

ratio across the combustion fuel nozzles. 
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ABSTRACT 

This research is focused on developing an efficient fault 

diagnosis procedure for a journal bearing system. Vibration 

data of journal bearing rotor simulator under four conditions 

(i.e. a normal condition and three anomaly conditions 

including unbalance, rubbing and misalignment) was used 

to develop the algorithm. In order to improve diagnostic 

performance, cycle based time-domain features and 

frequency-domain features were extracted after resampling 

process being applied to the raw vibration data. Then, the 

optimal feature selection was accomplished by mixture of 

random combination performance test and Fisher Discrimin- 

ant Ratio (FDR) criteria. After selecting optimal features, 

Fisher Discriminant Analysis (FDA) algorithm classified 

each abnormal conditions mentioned above. To end with, 

the result of classification is evaluated and verified.  

1. INTRODUCTION 

The modern machineries widely deployed in manufacturing 

sectors and power plant facilities have rotors as a core part. 

Naturally, bearings supporting the rotors frequently fail to 

perform their designed responsibility due to various reasons. 

Failure in bearings may affect the entire system to 

deteriorate or cause stopover of the system since it 

incorporates high energy. This also can generate casualties 

or damages when the counter measures are not held in 

suitable time (Yaguo Lei, He, & Zi, 2008). To maintain 

performance of the rotating machineries and to prevent the 

catastrophe of having casualties and economic loss, 

numerous attempts have been made to diagnose the faults in 

their initial states.  

Vibration data is one of the reliable parameters that 

efficiently represents the performance of machineries, and it 

is widely used to define the health status of systems (Gupta, 

1997; Yaguo Lei, He, Zi, & Chen, 2008; Ocak, Loparo, & 

Discenzo, 2007). However, without proper signal processing 

techniques and knowledge on vibration, the data itself does 

not denote any information of health status. Though 

sometimes even when processing has been done properly, 

lack of knowledge hinders the successful diagnosis. 

Therefore, the need for setting up a reliable diagnose 

algorithm without any help from experts has been steadily 

increasing (Jardine, Lin, & Banjevic, 2006; Y. Lei, He, Zi, 

& Hu, 2007; Wong, Jack, & Nandi, 2006).  

In response to the request, an automatic diagnosis algorithm 

implementing Artificial Neural Network (ANN) was 

developed (Chen & Mo, 2004; Li, Chow, Tipsuwan, & 

Hung, 2000; Samanta & Al-Balushi, 2003). Vibration data 

were acquired from both the normal and abnormal bearing 

system, and from the data time-domain features or 

frequency-domain features were extracted, which were used 

as an input for ANN. ANN diagnosed the system as normal 

or abnormal upon those features. In addition, features from 

wavelet analysis in time-frequency domain facilitated 

constructing ANN based diagnosis (Al-Raheem & Abdul-

Karem, 2010; Han, Yang, Choi, & Kim, 2006; Sanz, Perera, 

& Huerta, 2007; Yang, Han, & An, 2004). Rather than 

piling more features, study on selecting effective features 

such as genetic algorithm took a part in this process (Han et 

al., 2006). Many fault diagnosis algorithms based on ANN 

have been introduced. However the limited use of ANN, 

which require certain amount of data, had led a way to other 

machine learning (Ahmadi, Moosavian, & Khazaee, 2012).  

In order to overcome the limitation in ANN, Support Vector 

Machine (SVM) based algorithms were suggested. Since 

SVM is a linear classifier for two-class problems, its use has 

Byungchul Jeon et al. This is an open-access article distributed under the 

terms of the Creative Commons Attribution 3.0 United States License, 

which permits unrestricted use, distribution, and reproduction in any 

medium, provided the original author and source are credited. 
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been limited to linearly separable data sets. However, with 

the invention of the kernels and other techniques as well, 

SVM has gained popularity among researchers (Huo-Ching 

& Yann-Chang, 2012; Yang, Han, & Hwang, 2005).  Often, 

ANN and SVM were used individually to compare 

performance of each algorithm, whereas others tried to 

combine these two method to generate more reliable 

diagnosis algorithm (Salahshoor, Kordestani, & Khoshro, 

2010; Samanta, Al-Balushi, & Al-Araimi, 2003).  

Fisher Discriminant Analysis (FDA) is another widely used 

machine learning technique. The basic principle of FDA is 

similar to that of SVM, but then FDA utilizes the scatter of 

data rather than the data itself. The advantage of using 

scatter over data lies in computational efficiency. 

Specifically, for large multi-class data set, FDA can save its 

resources while SVM wastes resources finding the optimal 

vector. The performance difference of FDA and SVM 

depends on the data set, which does not show much 

difference in this research. Thus, FDA was chosen as the 

main classifying algorithm.  

In this research, advanced fault diagnosis algorithm for 

journal bearing system has been developed. Advanced 

algorithm can be attributed to the features extracted from 

vibration per cycle while other researches have extracted 

features for certain amount of time. ‘A cycle’ method allows 

to identify the fault characteristics of the vibration signal 

more thoroughly. To achieve features per cycle, data were 

resampled before being extracted. Then, extracted features 

numbered more than 50, which needed dimensional 

reduction. In addition, not only the features incorporating 

cycle characteristics of vibration but also average and 

standard deviation of multiple cycles can represent the faults 

clearly. Features selection method by Fisher Discriminant 

Ratio (FDR) and random combination of features has been 

applied.  

Through the paper, the following section will cover the type 

of features extracted from the test-bed. Then, in section 

three feature extraction procedures will be clearly stated, 

and in section four, feature selection method will be 

revealed. Finally, the result of the classification will be 

discussed.  

2. EXPERIMENTAL SETUP AND DATA ACQUISITION 

2.1. Experimental Setup 

The RK4 rotor kit of GE Bently Nevada was used as a 

journal bearing rotor system for implementing anomaly 

conditions. This experimental apparatus is shown in Figure 

1. Rotor shaft with a disc of 800g supported by two journal 

bearings were tested. Two shafts were connected by a 

flexible coupling to acquire more reliable data. The 

vibration data was acquired from the middle of the test-bed, 

close to the point where the abnormal conditions were 

induced. Among several anomaly conditions of rotor 

systems, three kinds of abnormal conditions, unbalance, 

rubbing, misalignment, were induced to the test-bed.  

For unbalance test, a small amount of weight has been 

injected in the disc. Rubbing test was done by a rubbing 

screw to make partial rub on shaft. Additional misalignment 

device with ball bearing shifted the shaft up & downward to 

produce misaligned shaft data. In addition to those 

conditions, normal data was set as a reference.  

 

Figure 1. RK4 test-bed 

2.2. Vibration Data Acquisition 

To achieve consistent and reliable data sets, weight 

balancing procedure preceded the actual experiment. Unlike 

a ball bearing system or a roller bearing system, a journal 

bearing system shows relatively simple sinusoidal wave. 

Even the slightest alteration of the settings result in a big 

change of the waves. For example, improper disc joining 

practice will cause differences in the signal. Therefore, 

among various candidates, vibration amplitude and phase 

have been selected to represent the initial state of the system. 

So as to have consistent amplitude and phase throughout the 

whole data sets, balancing procedure preceded every 

experiment to make the system fit into the same amplitude 

and phase. This preceded action gives reliability to compare 

with the other data sets.  

After the balancing procedure is done, vibration data for 

four conditions can be achieved from the proximity probe 

installed between the journal bearings. Two points on the 

shaft, just beside the bearings have been chosen, and at each 

point, two probes are mounted at a right angle to receive 

voltage signal. Both the relative and absolute displacement 

between the sensor and the shaft can be measured. In 

addition to the time-based vibration signals of each sensor, 

shaft centerline orbit could be tracked via vibration signals 

of two probes mounted in a right angle. The phase 

information can be obtained through the keyphasor signal 

which prints once-per-revolution pulse to provide a precise 

timing measurement. This keyphasor signal enables us to 

dissect the signal into a cycle unit, which will be discussed 

in section 4. Vibration signals of proximity sensor were 

acquired by the rate of 4,000 samples/s via NI DAQ 4432. 

Each normal and abnormal state has been repeated three 

times, and for each case, data was obtained for 60 second 

long at 3600 rpm. 
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3. FEATURE TYPES 

The vibration data itself may show the difference among 

abnormal conditions graphically. Specifically, for journal 

bearing systems, modified sinusoidal wave of vibration 

undeniably proves that the system is not in a normal state. 

However, all data cannot be analyzed manually due to its 

large size. It will take tremendous amount of resources if all 

the data is processed by humans, while losing the reliability 

due to human factors. It is no doubt that quantified indicator 

is required to precisely diagnose malfunctions and to utilize 

the automatic system which can process big data in a short 

period of time.  

Statistical parameters were defined for features of vibration 

data, the quantified indicator of vibration. Some features 

were extracted for every cycle, while others were extracted 

for number of cycles. Whether a cycle or few cycles, unit 

for features must be defined considering the statistical 

definition and implication. 

3.1. Time-domain Features 

Time-domain indicates statistical features from the pre-

defined period of vibration data. Maximum, root-mean-

square, kurtosis and more features are extracted from every 

rotation. Also, mean and deviation for every rotation in 60 

cycles at 3600 rpm, are defined as each features.  

The first three features in Table 1 represents the vibration 

amplitude. In other words, they can be indicator of kinetic 

energy of the system. The next five features form skewness 

to entropy can be interpreted as indicators of shape of the 

wave. Upper/lower bound and AR coefficient represents 

distribution characteristics and signal changes over time. 

Especially, the information of orbit can be gathered via 

proximity probe mounted at a right angle. The mean and 

variance of each time-domain feature for 60 cycles are also 

adopted as features for anomaly diagnostics. Table 1 lists 

the features of time-domain. 

3.2. Frequency-domain Features 

Features in frequency-domain also implies important 

characteristics of vibration signals as much as time-domain 

features. All the frequency features are based on the power 

spectrum for one-second long data. Power spectrum itself 

shows distribution of the frequency elements, but needs to 

be quantified just like the vibration data.  

Five features were defined in this paper. The definition of 

frequency center (FC), root mean square frequency (RMSF), 

and root variance frequency (RVF) are stated in Table 2. 

(Wei, Guo, Jia, Liu, & Yuan, 2013; Yang & Widodo, 2009).  

( )s f  denotes the power spectrum of signal, so that 

according to the definition FC and RMSF show alteration in  

position change of main frequencies, RVF describes the 

convergence of the spectrum power. Additionally, two more 

Table 2. Frequency-domain features 

 

Features Description 

FC 
∫ 𝑓 × 𝑠(𝑓)𝑑𝑓

∫ 𝑠(𝑓)𝑑𝑓
 

RMSF [
∫ 𝑓2 × 𝑠(𝑓)𝑑𝑓

∫ 𝑠(𝑓)𝑑𝑓
]

1/2

 

RVF [
∫(𝑓 − 𝐹𝐶)2 × 𝑠(𝑓)𝑑𝑓

∫ 𝑠(𝑓)𝑑𝑓
]

1/2

 

2X / 1X  √
𝑠(𝑓2𝑋)

𝑠(𝑓1𝑋)
 

(Total-1X) / 1X 
[∫ √𝑠(𝑓)𝑑𝑓 − √𝑠(𝑓1𝑋)]

√𝑠(𝑓1𝑋)
 

 

Table 1. Time-domain features 

 

Features Description 

Maximum Max(𝑋𝑖) 

Mean absolute Mean(|𝑋𝑖|) 

RMS √
∑ 𝑋𝑖

2

𝑁
 

Skewness 
∑(𝑋𝑖 − �̅�)3

(𝑁 − 1)𝑠3
 

Kurtosis 
∑(𝑋𝑖 − �̅�)4

(𝑁 − 1)𝑠4
 

Crest factor 
𝑋𝑝𝑒𝑎𝑘

𝑋𝑟𝑚𝑠
 

Shape factor 
𝑋𝑟𝑚𝑠

Mean(|𝑋𝑖|)
 

Impulse factor 
Max(𝑋𝑖)

Mean(|𝑋𝑖|)
 

Entropy − ∑ 𝑝𝑖 × log 𝑝𝑖 

Upper  bound Max(𝑋𝑖) +
Max(𝑋𝑖) − Min(𝑋𝑖)

2(𝑁 − 1)
 

Lower  bound Min(𝑋𝑖) −
Max(𝑋𝑖) − Min(𝑋𝑖)

2(𝑁 − 1)
 

AR Coefficient Auto regressive coefficient(1st to 8th) 

Effective  orbit 

radius(1x, total) 

∑(𝑋𝑖
2 + 𝑌𝑖

2)

𝑁
 

Aspect ratio of 

1x orbit 

Minor Axis

Major Axis
 

 

European Conference of the Prognostics and Health Management Society 2014

103



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014 

4 

features regarding the ratio between the main and other 

frequency components are introduced as in the last two rows 

in Table 2. 
1

( )
X

s f and 
2

( )
X

s f  indicates the magnitude of 

1X and 2X component of vibration signal, respectively.  

4. STATISTICAL ANOMALY DETECTION METHODS 

4.1. Feature Extraction  

In this research, 47 features have been set as the candidate 

parameters for anomaly diagnosis of above mentioned 

conditions. Both time-domain and frequency-domain 

features are extracted for one rotation or/and one second. As 

stated in previous section, the raw vibration data should be 

segmented to maintain consistency of the features.  

4.1.1. Preprocessing for Feature Extraction 

The fundamental frequency of journal bearing systems 

dominates other frequencies. Naturally, the sub-harmonic 

frequencies as well as super-harmonic frequencies were 

often utilized in traditional diagnosis algorithm (Randall & 

Antoni, 2011). In this study, the test-bed used here shows 

typical journal bearing characteristics, so that features are 

extracted based on cycles. Feature extraction unit differs 

according to feature types, some use one rotation while 

others use multiple rotations. For either of the case, 

keyphasor signal must be implemented to segment the 

signal into exact cycles. The sampling rate, 4,000 samples 

per second, creates unevenly distributed sample points per 

cycle at target speed of 3,600 rpm, as in the Figure 2(b).  

And even if the sampling rate has altered to multiples of 

speed, the rotating speed cannot be controlled at exactly 

3,600 rpm, which makes resampling process inevitable. 

Resampling process enables the signal to have same number 

of data points per cycle. For example, in Figure 2(c), 

resampled signal shows eight points per cycle. With the 

given sampling rate and the target speed, signal was resamp- 

 

Figure 2. Resampling procedure (a) Keyphasor signal (b) 

raw Signal (c) resampled Signal 

 

led to have 64 points per cycle starting from the keyphasor 

signal to the next keyphasor signal. Intervals between data 

points were set by equivalent rotation angle difference, so as 

to have same data points even when the rpm changes. The 

resampled signal can now be used to extract features in 

accordance with the same criteria. 

4.1.2. Cycle based Feature Extraction 

As stated in section 3, time-domain features are extracted 

based on a cycle or several cycles. Features from certain 

period of time are universally used in developing fault 

diagnosis. However, considering the fact that fundamental 

frequency dominates in the journal bearing system, and the 

sensitivity that journal bearing sinusoidal waveforms have, 

one rotation of a signal would regard significant amount of 

information. If features are extracted one second without 

applying resampling process, for example, the particular 

information on a sinusoidal wave fades away as it is 

averaged with other non-particular information. This is the 

reason we are focusing on the cycle based features for 

journal bearing. Simultaneously, features related to valuable 

information such as the trend being shifted to other states 

are extracted from 60 cycle data. Widely scattered features 

of a cycle will grant a large variation, which itself can be an 

independent feature. Therefore, time-domain features are 

statistically described by the mean and variance terms of 

time-domain features.  

On the other hand, for frequency-domain features, it is 

desirable to extract 60 cycle based features. The longer the 

signal is acquired, the higher resolution of FFT result can be 

achieved. Since the target speed is 60 rev/sec, extreme high 

frequency components are not required. Rather sub-

harmonic frequencies or super-harmonic frequencies are 

required.  

So far, from raw vibration data 47 features are extracted. 

Among the 47 extracted ones, a few features have been 

chosen to check whether they are able to separate the 

malfunctions clearly. As presented in Figure 3, health 

classes can be unclearly or clearly separated depending on 

selection of a key feature set. In other words, it is sufficient 

to classify all health states if a key feature set is properly 

selected.  

 

(a) (b) 

Figure 3. Graphical expression of features in (a) time-

domain (b) frequency-domain 
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4.2. Feature Selection 

Accuracy and computational efficiency are the two main 

factors that define the performance of the diagnosis 

algorithm. In view of those two points, the best feature sets 

are minimum number of features that produce good result. 

Minimizing the number of features would greatly contribute 

to reducing computational demands. Reducing the time and 

effort for computation may be very critical to some real-

time diagnosis systems. Although real-time is not required, 

some features might hinder the characteristics of the data 

group which deteriorates algorithm performance. Therefore, 

many researches had been conducted solely on feature 

selection.  

In this research, feature selection was accomplished by 

mixture of Fisher Discriminant Ratio ranking and random 

combination performance test.  

4.2.1. FDR & Correlation Coefficient Ranking 

FDR is a criterion that indicates separable ability for two-

class data. In this research each abnormal conditions can be 

regarded as a class, as of universal terms. So high FDR 

value means that it can distinguish an abnormal condition 

from another condition. Its definition is in equation (1). The 

numerator shows that difference between mean of each class. 

In the denominator variance for each class data are summed 

to represent how well class data is congested. Specifically, 

two class data, whose mean difference is large, and which 

has small variance, FDR value for the feature will grant a 

high value (S. Theodoridis & Koutroumbas, 2008). 

 

Figure 4. Feature selection using FDR 

 

2

2 2

( )
i j

i j

F D R
 

 






            (1) 

The explained FDR values will be derived for every feature, 

and also for every abnormal combination sets of two. In this 

research 47 features are extracted for four classes, so total of 

47 x 4C2 FDR values will be calculated.  

However, FDR criteria does not take any consideration in 

reducing number of features. It only gives separable ability 

of individual features. Hence correlation coefficients 

between features are deliberated to obtain a cost function in 

equation (2). This cost function will sort out the features in a 

new ranking. The feature that used to have higher FDR 

value might be ranked very low in a new cost function 

ranking, and vice versa. The cost function can be used as a 

criteria for reducing the number of features. 

1

2
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1

a rg m a x
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k j i j

j r
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            (2) 

Yet, the combined FDR and correlation ranking is still 

based on two-class problems, which does not guarantee 

decent performance features for multi-class problems as 

well. To utilize in multi-class, random combination method 

is used. 

4.2.2. Random Combination Test  

To apply the feature rankings to multiple class problem, 

random combination of features are selected and evaluated 

by the performance of classification of training data set. 

First, the cost function value of feature rankings in section 

4.2.1. is examined. Though its absolute values do not hold 

crucial meaning, they can be used as a rough measure for 

separable ability in each two-class sets. As shown Figure 4, 

for each two class combination set, features that have less 

than half of the maximum value of cost function are 

discarded as they have bad separable ability. Selected high  

 

 

Figure 5. Random combination testing process 
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separable features represented in right bottom of Figure 

4(the orange colored values). To find priorities among the 

selected high separable features, random combination test 

was applied. The brief process is shown Figure 5.  

Random combination of features have tested 5000 times in 

this study. The occurrence of individual feature is 

accumulated when the prediction accuracy is above the 

threshold. The priority is ranked by the accumulated 

occurrence descending. The result in details will be 

described in section 5.1. 

4.3. Classification – Fishier Discriminant Analysis 

FDA (Fisher Discriminant Analysis) was used for a 

classification scheme. FDA classification algorithm is to 

find a hyper-plane, where projected data on to this plane 

maximizes the cost function, FDR(Welling, 2005).  

In the two-class problem, hyper-plane becomes a single line, 

represented by w. Assuming that the data are projected, high 

FDR corresponds to the difference of mean value being far 

away and the variance of each class being as small. Finding 

the line w manually might be computationally demanding, 

but the maximum eigenvalue of Sw
-1SB matrix is proven to 

be the vector w, where SB means covariance between 

classes, and SW means covariance within the class. 

 

Figure 6. Fisher Discriminant Analysis for two class 

problem 

 

For the multi-class problem, FDA criteria is substituted to 

other cost function J3, and the rest are the same as the two-

class problem(Sergios Theodoridis & Theodoridis, 2010). 

1

3
{ }




w B
J tr a c e S S          (3) 

The overall procedure of developing classification starts 

with acquiring data sets. Other researches have used a part 

of one set for training, and the rest for testing. Conversely, 

this research acquired two sets of data, one for training and 

the other for testing. After both data sets were resampled 

and normalized, the defined features were extracted. Then, 

the features from training data set was used in feature 

selection process since there will be no testing data in real 

systems. Selected features of the training data were utilized 

to develop the classification model by FDA, and the three w 

vectors were derived. The selected features of testing data 

are classified with the w vectors. 

5. RESULTS  

This section can be divided into two parts. The first one will 

discuss the optimal selected features accomplished by 

feature selection process. The latter part will discuss the 

result of class prediction of testing data sets. The training set 

and testing set is listed in the Table 3.  

Table 3. Training and testing data sets 

 

 

Before stating the result, data sets must be organized clearly. 

For feature selection and training the classifier, only training 

data sets were used. At classifier evaluation step, the testing 

data set was predicted using the classifier developed by 

training data sets.  

5.1. Feature Selection Results  

The main function of feature selection is to reduce the 

dimension to increase the efficiency of diagnosis algorithm. 

The test-bed vibration data had been transformed to time-

domain and frequency-domain features. Total 47 candidate 

features were extracted to be used as an input in 

classification. However, 47 seemed heavy even for the 

simplest classification algorithm, because the number of 

data, or cycles, was quite large. At the same time, applying 

too much features in poor separability for anomaly 

diagnosis may lowering the efficiency of the classifier. 

When all 47 features are used, the class prediction for the 

training set leaves only 74.7% accuracy, because not all the 

features were capable of classifying the conditions. So, 

feature selection by mixed FDR and correlation coefficient 

criteria was performed. Features that had higher value than 

the half of the maximum cost function value had been 

selected. Through this mixed feature selection method, 16 

features, almost one third of all 47 features, were recognized 

as valid parameters. These selected 16 parameter are same 

as the number listed in the x-axis of Figure 7. 

Data # Features Data # Features

N d N d

1 3600 47 1 3600 47

2 3600 47 2 3600 47

3 3600 47 3 3600 47

1 3600 47 1 3600 47

2 3600 47 2 3600 47

3 3600 47 3 3600 47

1 3600 47 1 3600 47

2 3600 47 2 3600 47

3 3600 47 3 3600 47

1 3600 47 1 3600 47

2 3600 47 2 3600 47

3 3600 47 3 3600 47

Rubbing

Misalign-

ment

Misalign-

ment

Testing Data

Conditions

Normal

Unbalance

Rubbing

Training Data

Conditions

Normal

Unbalance
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Figure 7. Occurrences of individual feature in random 

combination above threshold for accuracy 

 

Among these 16 remaining features, three features were 

selected randomly for 5000 times to evaluate the 

performance of the combinations. Three was selected as the 

least number of parameters for classifying the four-class 

problem. Each feature combination of training data set in 

Table 3 were trained and tested. In order to acquire the 

optimal features, the threshold of prediction accuracy was 

used as 80%. The 80% criteria above is supposed to be 

reasonable in a sense that prediction accuracy using all 47 

features yielding 74.7%, but further research needs to be 

done. Then, only the eligible feature combination scores the 

individual features as shown in Figure 5. The result 

produces a ranking list of 16 features, which are used in 

section 5.2 to predict the testing set classes. Through these 

selection process, optimal feature sets could be picked.  

5.2. Classification Results 

Before referring the classification result, the proposed 

feature extraction method in section 4.1. enhanced the 

consistency in features. Compared to the features from the 

previous studies, based on certain period of time, the 

proposed features showed separable ability more than twice 

as well as the previous ones.  

With the improved features, FDR feature selection method 

was performed to find the optimal features for classification. 

The first step was to obtain the FDR & correlation ranking 

list which is based on only training sets. Then, feature 

combinations according to the list rankings were formed and 

classified the testing data set. Starting from the top three 

feature combinations, a next ranking feature was added each 

time after classification result was attained. The result is 

shown in Figure 8.  

As it is displayed in the chart, all 16 feature combination 

does not yield good prediction result. Rather smaller number, 

from three to eleven features, gave 100% accurate 

prediction. In addition to the improved accuracy, 

computation time was saved greatly. The result more than   

 

Figure 8. Classification accuracy by number of features 

 

16 features have been achieved by adding left features after 

feature selection process. This chart insists that feature 

selection process was successful. 

6. CONCLUSION 

In this research, diagnose algorithm for four conditions of 

journal bearing systems has been developed. Two separate 

data sets were grouped as training set and testing set, 

respectively. Each of the condition was repeated three times 

and each test preceded the balancing procedure to enhance 

the reliability of the data sets. The initial vibration 

amplitude, indeed, had crucial effect in consistency. 

Considering the characteristics of a journal bearing system, 

features have been extracted based on a cycle or cycles after 

the proximitor signal was resampled. Keyphasor signal has 

made the resampling procedure possible, and that cycle 

segmentation became possible. Total of 47 Cycle based 

features are defined in time-domain and frequency-domain. 

Among those features 16 of them had been chosen to be 

effective parameter by FDR criteria and random 

combination performance test. This feature selection played 

key role in developing competent diagnosis algorithm with 

only three to eleven features being used. However, when 

choosing the features via random combination method, the 

accuracy threshold, which has not been studied deeply, 

plays key role. Further research must be conducted on this 

subject. 
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ABSTRACT 

Self-organizing maps have been used extensively for 
condition-based maintenance, where quantization errors of 
test data referring to the self-organizing maps of healthy 
training data have been used as features. Researchers have 
used minimum quantization error as a health indicator, 
which is sensitive to noise in the training data. Some other 
researchers have used the average of the quantization errors 
as a health indicator, where the best matching units of the 
trained self-organizing maps are required to be convex. 
These requirements are not always satisfied. This paper 
introduces a method that improves self-organizing maps for 
anomaly detection by addressing these issues. Noise 
dominated best matching units extracted from the map 
trained by the healthy training data are removed, and the rest 
are used as healthy references. For a given test data 
observation, the k-nearest neighbor algorithm is applied to 
identify neighbors of the observation that occur in the 
references. Then the Euclidean distance between the test 
data observation and the centroid of the neighbors is 
calculated as a health indicator. Compared with the 
minimum quantization error, the health indicator extracted 
by this method is less sensitive to noise, and compared with 
the average of quantization errors, it does not put limitations 
on the convexity or distribution of the best matching units. 
The result was validated using data from experiments on 
cooling fan bearings. 

1. INTRODUCTION 

Anomalies are patterns in data that do not conform to a 
defined notion of normal behavior (Chandola, Banerjee, & 
Kumar, 2009). Anomaly detection is used in the prognostics 
and health management (PHM) of mechanical and 
electronic systems to detect the existence of a fault before 
failure happens. The performance of currently available 

anomaly detection methods leaves room for improvement 
because some systems are still failing without warning. For 
example, even though maintained regularly, bearings remain 
the top contributor to failures of systems like computer 
cooling fans (Tian, 2006) and induction motors (Bianchini, 
Immovilli, Cocconcelli, Rubini, & Bellini, 2011). 

The data used in anomaly detection for mechanical and 
electronic systems are signals that are sensitive to faults. For 
example, in rotating machinery, time series like vibration 
signals and motor current signals have been used because 
they are sensitive to faults, widely available, and non-
intrusive. Some other signals like acoustic emission signals 
were found to be sensitivity to a fault at an early stage (Oh, 
Azarian, & Pecht, 2011), and they have been used as 
precursor parameters in the health monitoring of cooling fan 
bearings (Oh & Shibutani, 2012). 

Sensor signals may not be adequate for users to identify an 
anomaly of the system so fault features have been extracted 
from the sensor signals to increase separation of the normal 
and abnormal behavior of the system. For time series 
signals, commonly used features include peak-to-peak, rms, 
and kurtosis of the signal’s amplitude in the time domain, 
characteristic frequency components, wavelet coefficients, 
and empirical mode decomposition energy in frequency and 
time-frequency domains. Some researchers have introduced 
more sophisticated features (Tian, Morillo, & Pecht, 2013). 

The extracted features need to be transformed to 
understandable information to determine if a test 
observation is an anomaly or not. There are two approaches 
to perform this task. One is the physics-of-failure (PoF) 
approach. Variables of PoF models are monitored and 
compared to the calculated value from the model. When 
deviation of the monitored value from the model value 
exceeds a predetermined threshold, an anomaly is identified. 
Another is data-driven approach, where data mining 
techniques are applied to explore the structure of the data of 
the extracted features. Based on the structure, deviation of 
the system from a normal state is estimated. The PoF 
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approach requires physical models of the system failure 
mechanisms, which are not available in many applications. 
The data-driven approach does not have this requirement, 
but it needs more data than the PoF approach. With the 
rapid development of data acquisition techniques, the 
obstacle to obtain data is weakened, and therefore data-
driven approaches are preferred in many applications. 

The data-driven approach is usually realized by machine 
learning techniques. Based on the use of the data, machine 
learning techniques can be classified as supervised machine 
learning techniques and unsupervised machine learning 
techniques (Pecht, 2008). To detect a fault, supervised 
machine learning techniques require healthy training data 
and faulty training data to construct regions of healthy 
conditions and faulty conditions, and then a test data 
observation is classified to be healthy or faulty depending 
on which region it falls into. In anomaly detection, 
representative supervised machine learning techniques 
include support vector machine (SVM) (Sotiris, Tse, & 
Pecht, 2010) and k-nearest neighbor (KNN) algorithms (He, 
Li, & Zhu, 2013). Application of these techniques is limited 
by the availability of training data of anomalies. 

Unsupervised machine learning techniques do not need 
training data. They group observations into different clusters 
according to their mutual similarity. For example, during 
clustering, normal data and anomalies have different 
performance. Normal data may form large and dense 
clusters, and anomalies may form small and sparse clusters. 
Popular unsupervised machine learning techniques for 
anomaly detection in mechanical and electronic systems 
include self-organizing maps (SOM) (Huang, Xi, Li, Liu, 
Qiu & Lee, 2007) and k-means clustering (Wang, Liu, & 
Cui, 2012). Success of these techniques depends on the 
assumed relationship between the characteristics of the 
clusters and the anomalies. 

In many cases, normal data are abundant and the anomalies 
that can be used for training are scarce. Semi-supervised 
learning techniques are preferred in these cases. Some 
researchers identify the class for normal data and use these 
data as references to calculate the Mahalanobis distance 
(MD) of the test data (Jin, Ma, Cheng, & Pecht, 2012). The 
test data are classified as anomalies if their MD values are 
above a certain threshold. When the normal data are 
distributed in several clusters, current applications of MD 
cannot reflect the degree of deviation of the test data from 
being normal. Some researchers have used self-organizing 
maps (SOM) to cluster the data in terms of best matching 
units (BMUs) (Huang et al. 2007). The smallest distance of 
a test data observation to the BMUs, which is called the 
minimum quantization error (MQE) is used as an indicator 
for anomaly detection. In the presence of noise, which is 
introduced into the signals via sources like other interfering 
signals and errors of measurements, MQE can be the 

distance of the test data observation to a noise-dominated 
BMU, resulting in false detection. 

In this study, the semi-supervised application of SOM in 
anomaly detection is improved. After the maps are trained 
by normal training data, some BMUs are removed to reduce 
the influence of noise, and the neighbors in the BMUs of a 
given test data observation are identified by the k-nearest 
neighbor algorithm. Then the Euclidean distance between 
the test data observation and the centroid of the neighbors is 
calculated as an anomaly indicator. 

The rest of the paper is organized as follows: in section 2, 
the theoretical background of SOM and its application in 
system health monitoring are introduced. The SOM-based 
KNN algorithm developed in this study is introduced in 
section 3, and the algorithm is validated with an 
experimental study in section 4. In section 5, conclusions 
from this study are presented. 

2. SELF-ORGANIZING MAPS 

Self-Organizing Maps (SOM), also called Kohonen neural 
network, is a type of unsupervised machine learning 
technique based on competitive learning (Kohonen, 1990). 
It creates a network that maintains information on the 
topological relationships within the training data.  

2.1. Theoretical Background of SOM 

An SOM consists of a number of neurons. Each neuron is 
represented by a weight vector that has the same dimension 
of the training data. The neurons are organized according to 
their similarity where the neurons with the similar weight 
vectors are grouped as neighbors. This neighborhood 
relationship describes the structure of the map, which 
reflects the relationship in the training data. 

To create an SOM, at first the input data is normalized per 
variable by calculating the z-score of each observation. The 
size of the map is then determined by calculating the 
number of neurons from the number of observations in the 
training data using Eq. (1). 

 NM 5≈  (1) 

where M is the number of neurons, which is an integer close 
to the result of the right hand side of the equation, and N is 
the number of observations. 

The neurons are organized in a 2-dimensional map. The 
ratio of the side lengths of the map is approximately the 
ratio of the two largest eigenvalues of the training data’s 
covariance matrix. 

Elements of the weight vector of each neuron are initialized 
randomly. A training data observation is then picked as an 
input vector to calculate its Euclidean distance between all 
the neurons. For each input observation, the neuron that has 
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the minimum distance is found. This neuron is called the 
best matching unit (BMU) of that input observation. 
Neighbors of the BMU are selected, and their weight 
vectors are updated using a neighborhood function in 
described Eq. (2). 
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where hci is the neighborhood function between the BMU c 
and a neuron i. t is the index of iterations of training. a is the 
learning rate. rc is the vector of the BMU c, and ri is the 
vector of neuron i. σ is the radius around c. 

The neighborhood function is a non-increasing function of t 
and the distance between neuron i and the BMU c so that 
the neurons close to the BMU c are moving closer to c and 
the rate of moving is decreasing over the iterations of 
training. 

The neurons are updated according to Eq. (3). 

 )]()()[()()1( tWtxthtWtW iciii −+=+  (3) 

where Wi(t) is the weight vector of neuron i at tth iteration of 
training. hci is the neighborhood function, and x(t) is the 
input observation of the BMU c. 

The SOM is trained iteratively until all the weight vectors of 
the map are grouped into clusters according to their 
distance. When the learning process finished, the SOM is 
created. The procedure is summarized in Figure1. Details of 
SOM can be found in (Kohonen, 1990). 

2.2. Application of SOM in Mechanical and Electronic 
System Health Monitoring 

Researchers have explored the performance of SOM in 
health monitoring of mechanical and electronic systems 
where minimum quantization error (MQE) of a test data 
observation to the SOM has been used as a indicator to 
evaluate the health of the system (Qiu, Lee, Jin, & Yu, 
2003). 

Quantization error describes the distance between the input 
data observation and the BMU of the SOM. MQE is 
calculated as in Eq. (4): 

 kk
BDQ −= min  (4) 

where Q is the MQE, D is a test data observation, and Bk is 
the weight vector of the kth BMU. 

To monitor health conditions, at first the SOM is trained by 
the healthy training data, and then the MQE of a test data 
observation to the SOM is obtained. Large MQE indicates 
that the test data observation belongs to a space which is not 
covered by the training data. Based on the assumption that 
any deviation from the space covered by the normal training 

data is regarded as a deviation of the system from being 
normal, MQE can be used to indicate the severity of the 
system’s deviation from normal. This assumption is 
evaluated in the studies of (Kang & Birtwhistle, 2003). 
When MQE values are calculated for different stages in the 
life cycle of the system, the trend of the system’s health 
condition is obtained. 

 

 

 
Figure 1. Flow chart of the training process of SOM 

 

In practical situations, the normal training data are 
inevitably contaminated by noise. It is likely that during the 
training process, noise may have dominant influence on 
some BMUs in the map. During the testing process, when a 
test data observation is close to one of the noise dominated 
BMUs, its value of MQE is small, and it would be classified 
as normal. As a result, false detection may occur. 

One method to reduce the influence of noise dominated 
BMUs is to use the average of all the quantization errors as 
an indicator. This is equal to the Euclidean distance between 
the test observation and the centroid of all the BMUs. 
However, if the BMUs are distributed in different clusters, 
or if they are non-convex, the centroid of the BMUs may 
fail to represent the collective information of the BMUs. 
Therefore, a method is needed to improve the application of 
SOM in anomaly detection under noisy conditions. 

Normalize the training data

Are all the weight 
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Determine the map size
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Pick one observation from 
the training data
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Update the neurons
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3. SELF-ORGANIZING MAPS-BASED K-NEAREST 
NEIGHBOR ALGORITHM 

As discussed in section 2, MQE is subject to the influence 
of noise in the training data, and the average of quantization 
errors fails to work for the training data that are non-convex 
or have isolated clusters. These shortcomings can be 
overcome by selecting a subset of the BMUs and calculating 
their average quantization errors as an anomaly indicator.  

At first, a threshold is applied to the BMUs to remove the 
noise dominated BMUs. The normal training data contains 
information of both the dynamics of the system and noise. 
The dynamics of the system are stable and the data should 
concentrate on certain neurons in the SOM. As a result, 
some neurons become BMUs multiple times. The noise is 
random and the data from the noise do not concentrate on 
any neuron. As a result, even if some neurons become 
BMUs because of the noise, these neurons do not become 
BMUs very often. By removing the BMUs with relatively 
few hits, the influence of noise can be reduced. 

A subset of the BMUs is then selected. The average 
quantization error of a test observation to the BMUs in the 
subset is calculated as an anomaly indicator. Using the 
subset of BMUs has two benefits. First, by calculating the 
average of the quantization errors of the subset, the 
influence of noise is further reduced. Second, for a certain 
size of the subset in a local region, the data of the subset can 
be confined to the same cluster and be approximately 
convex, and therefore, the centroid of the subset is 
representative of the health condition of this subset. 

A main task is to select the BMUs that form the subset as 
the normal reference. In this study, the BMUs in the subset 
are selected as the nearest neighbors of the test data 
observation. If one nearest neighbor is selected, the health 
indicator is the MQE. If k nearest neighbors are selected, the 
health indicator is calculated as the average of the MQE, the 
second minimum quantization error, and up to the kth 
minimum quantization error. By including multiple nearest 
neighbors, the influence of noise is reduced. 

Identification of the nearest neighbors is performed by the k-
nearest neighbor (KNN) algorithm. In most cases, KNN is 
used as a classification technique, where a test data 
observation is classified to a class if it is closer to the 
nearest neighbors in that class. In this study, KNN is used as 
a semi-supervised learning technique, where KNN is only 
used to identify the nearest neighbors in the reference 
BMUs. The distance of the test data observation to the 
centroid of the identified neighbors is calculated. In this 
study this distance is called KNN distance. It is used as the 
health indicator. The use of KNN in this study is illustrated 
in Figure 2. 

 
Figure 2. KNN distance of a test data observation when k=3 

A flow chart of the method developed in this study is shown 
in Figure 3. 

 

 
Figure 3. Flow chart of the SOM-based KNN Algorithm 

In anomaly detection, the method is first applied to the 
healthy training data to get the sample of the value from the 
health indicator of the healthy system. A percentile of the 
sample is then selected as the anomaly threshold. 

4. EXPERIMENTAL STUDY 

The data from a cooling fan accelerated life test was used to 
validate the method developed in this study. The data have a 
tendency to form several clusters and they contain noise, 
which can present difficulties when used with conventional 
methods. The SOM approaches which involve either 
directly using the MQE or taking the distance to the centroid 
of multiple BMUs as the healthy reference produce 
erroneous detection results when used with this type of data 
or with non-convex data. The method developed in this 
paper was designed to address these two issues, which is 
demonstrated using data collected from the cooling fan 
bearing in the experiment. 
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4.1. Setup of the Experiment 

A new cooling fan with ball bearings was tested. The ball 
bearings were designed to be lubricated by grease and oil. 
To accelerate the degradation, the bearings were only 
lubricated by oil. After an initial measurement, the cooling 
fan was run at its rated speed of 4,800 rpm in a chamber at 
the fan’s maximum rated temperature of 70 °C. The cooling 
fan under test is shown in Figure 4. 

 

 
Figure 4. The cooling fan under test 

 

4.2. Data Acquisition 

The vibration acceleration signal and the motor current 
signal have been identified as sensitive to bearing faults 
(Immovilli, Bellini, Rubini, & Tassoni, 2010). The two 
signals were monitored in this study. The measurements 
were collected while the cooling fan was run at room 
temperature for a brief time between stressing periods. 
Signals collected at each measurement have a time span of 
10 seconds and consist of 1,024,000 observations, where the 
sampling rate is 102,400 Hz. Before the accelerated life test, 
three measurements of signals were collected as training 
data, which form a 3,072,000 by 2 matrix. Each row is an 
observation, and each column is a signal. Test data were 
collected after 0 hours, 8 hours, 16 hours, 24 hours, 48 
hours, and 72 hours of accelerated life testing, which form 6 
stages of the test. At each stage there was one measurement 
of the signals, which form a 1,024,000 by 2 matrix. The 0 
hour signal was one of the three measurements from the 
training data. 

The data were cut into segments sequentially. Each segment 
has 0.2 seconds of data, each containing 20,480 
observations. For one measurement, there are 50 segments. 
Features were extracted from these segments. The structure 
of a measurement is shown in Table 1. 

Table 1. Structure of a measurement 

 

4.3. Feature Extraction 

Some commonly used fault features were extracted from the 
segments of the data for both the vibration signal and the 
current signal. These features include peak-to-peak, rms, 
standard deviation, skewness, and kurtosis of the amplitude. 
For each signal, there are 5 features, and for both the 
vibration and current signals, together there are 10 features. 
After feature extraction, the data of each measurement is a 
50 by 10 matrix, where the row is an observation of the 
features, and the column is a feature. 

4.4. Analysis Result 

All the data were normalized by calculating z-scores 
referring to the mean and standard deviation of the training 
data. The size of the SOM was determined according to Eq. 
(1). The training data have three measurements, each of 
which has 50 observations, so there are 150 observations for 
training. According to Eq. (1), the map size was determined 
as 9 by 7 with 63 neurons. Each neuron is a vector with 10 
elements, corresponding to the number of features. 

After training, BMUs were identified in the map, as shown 
in Figure 5. Each lattice cell represents a neuron, and the 
number in a cell is the number of times the neuron has 
become a BMU, or the number of hits. The map shows the 
data tend to form several clusters. 

To determine the threshold to remove noise dominated 
neurons, hits of the neurons were sorted in a descending 
manner. The percentage of the cumulative sum of hits was 
plotted in Figure 6. 

The x axis is the index denoting the neurons with the same 
number of hits. For example, 3 denotes the neurons that 
have 3 hits. There are 9 such neurons, and altogether they 
account for 45 hits in the map. The y axis is the cumulative 
fraction of hits for the neurons referring to the total sum of 
hits. 

Segment index Observation index Vibration Current
1 0.06 -6.84
2 0.12 -6.66

… … …
20480 0.11 5.66
20481 0.15 5.75

…
40960 0.26 6.34

… … …
… … …

921601 -0.23 5.84
… … …

1024000 0.29 -6.98
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2
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…
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Figure 5. Hits of BMUs in the trained SOM 

 

 
Figure 6. Cumulative fraction of hits 

Among the 63 neurons, 52 neurons have become BMUs at 
least once. The sum of hits from neurons with more than 1 
hit account for 91.3% of the total hits. If we accept that 90% 
of the BMU neurons are not dominated by the noise, the 
neurons that have 1 hit should be removed. The remaining 
BMU neurons were used as reference data for KNN analysis. 

For each observation from the features of the test data, KNN 
found k nearest neighbors in the reference data, which are 
the BMUs. A larger k reduces influence of noise better, but 
it makes the algorithm more sensitive to the convexity of the 
data. Also, an odd value of k can help the algorithm to avoid 
tied votes. In this study, k was set to 3, considering that one 
neighbor is too sensitive to noise, and the next odd number 
is 3. The Euclidean distance of the test observation to the 
centroid of the BMUs neighbors was calculated as a health 
indicator. Values of the health indicator for the training data 
were calculated to establish a baseline for healthy condition. 
Distribution fitting of the health indicator value for the 
training data is shown in Figure 7. The Kolmogorov–

Smirnov goodness-of-fit test verified that the data could be 
fitted with a lognormal distribution. Using the 99.7 
percentile as the threshold to separate healthy data and 
anomalies, the anomaly threshold on the health indicator 
was found to be 3.6. If the value of the health indicator of a 
test observation is higher than this value, the observation is 
classified as an anomaly. 

The algorithm was applied to the data at all six stages of the 
test. Results are shown in Figure 8. 

 
Figure 7. Distribution fitting of the health indicator of the 

healthy training data 

 
Figure 8. Health indicator for the test data 

The health indicator values of the test data at each stage are 
shown in box plots. For each box, the central mark is the 
median, the edges are the 25th and 75th percentiles, and the 
whiskers extend to the most extreme data observations not 
considered outliers.  Outliers are observations which are 
outside 2.7 standard deviations from the mean value of the 
data and are marked as crosses. The circles are the means. 
Means at different time intervals are linked by straight lines. 

According to the health indicator value at each stage, the 
cooling fan bearings began to have anomalies after 8 hours 
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of test. The health indicator indicates that the bearing 
degraded monotonically until the end of the test after 72 
hours of test, where the bearing failed with audible sound 
emitted. The results are consistent with the observations in 
the experiment. The increase of the health indicator, which 
is the distance between the test data to their nearest 
neighbors in the reference BMUs, occurred because the 
reference BMUs established a region representing healthy 
conditions of the bearings. Larger distances to this region 
indicate a larger deviation from the healthy conditions of the 
bearings. As the bearings degraded, their condition deviates 
from being healthy, so the distance to the healthy region, 
which is the health indicator, increased. 

Besides the mean value, the standard deviation of the health 
indicator value is also increasing with the degradation of the 
bearings. This observation can be directly seen in Figure 8. 
The standard deviation of the health indicator value at each 
stage of the test is shown in Figure 9. 

The increase of the standard deviation can be explained as 
occurring because, as bearings degrade, random fluctuations 
become more frequent and intense in the vibration signal 
and the current signal. Values of the fault features extracted 
from the signals are distributed in a wider range due to these 
fluctuations, and as a result, the health indicator has a larger 
standard deviation as it combines the information of the 
features. 

 
Figure 9. Standard deviation of the health indicator 

In summary, although the data tended to form clusters, and 
contained noise, the method monitored the degradation of 
the bearing, and successfully detected the anomalies.  The 
unsupervised learning method employed in this study has 
the benefit of reduced sensitivity to noise in the data and the 
ability to accommodate data non-convex distributions 
including data with multiple clusters.  The requirements of 
this method are that training data are needed that sample the 
full range of healthy behavior (i.e., represent all the possible 
healthy clusters and the complexity of their distribution).  
This can impose practical limitations on the use of this 
method, since it can be costly or time consuming to collect 
this type of data for some systems.  Furthermore, this 

method needs to be combined with other algorithms for 
diagnostic or prognostic functions, since it is limited to 
anomaly detection. 

5. CONCLUSIONS 

This paper presents a self-organizing maps-based k-nearest 
neighbor algorithm for anomaly detection, which is applied 
in the health monitoring of mechanical and electronic 
systems. BMUs of the SOM trained by the healthy training 
data are extracted as healthy references. BMUs with small 
hits are removed from the references to reduce the influence 
of noise. For a test data observation, its Euclidean distance 
to the nearest neighbors in the reference BMUs is calculated 
as its health indicator value. 

The algorithm provides a measure of health monitoring and 
anomaly detection of bearings where the influence of the 
noise from the monitoring signals is reduced by removing 
noise dominated BMUs and by averaging neighboring 
reference BMUs. The influence of the distribution of the 
healthy training data is reduced by using KNN to take a 
subset of BMUs in a local region as references. Outputs of 
the algorithm include a health indicator that monotonically 
increases with the degradation of the system, and an 
anomaly detection threshold on the value of the health 
indicator. Moreover, the standard deviation of the health 
indicator can also be used as a measure of degradation for 
the system.  

The algorithm can be implemented in applications where the 
healthy training data are non-convex, for example, the data 
have several clusters. The algorithm can also reduce the 
influence of noise. 
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ABSTRACT

In the field of machine health monitoring, vibration analy-
sis is a proven method for detecting and diagnosing bearing
faults in rotating machines. One popular method for interpret-
ing vibration signals is envelope-demodulation, which allows
the maintainer to clearly identify an impulsive fault source
and its severity. In some cases, in-band noise can make im-
pulses associated with incipient faults difficult to detect and
interpret. In this paper, we use Wavelet De-Noising (WDN)
after envelope-demodulation to improve the accuracy of bear-
ing fault diagnostics. This contrasts the typical approach of
de-noising raw vibration signals prior to demodulation. We
find that WDN removes low amplitude harmonics and spuri-
ous reflections which may interfere with FFT techniques to
identify low-frequency peaks in the signal spectrum. When
measuring impact frequencies in the time-domain using a peak-
thresholding method, the proposed algorithm exhibits increas-
ingly confident periodicity at bearing fault frequencies.

1. INTRODUCTION

1.1. Bearing Fault Diagnosis

A faulty bearing will typically create periodic, impulsive vi-
brations, which are proportional to rotational speed. These vi-
brations may be recorded and analyzed to reveal the nature of
a given fault. Systems with multiple bearings and gear reduc-
tion systems will exhibit unique fault frequencies due to vary-
ing component dimensions and operating speeds. This sim-
ple observation may be exploited to determine exactly which
component is failing (Qui, Lee, Lin, & Yu, 2006). In more
sophisticated systems, multiple sensors are often used to in-
dicate fault locations based on local vibration power levels
(Waters & Beaujean, 2013).

Edward Bertot et al. This is an open-access article distributed under the terms
of the Creative Commons Attribution 3.0 United States License, which per-
mits unrestricted use, distribution, and reproduction in any medium, provided
the original author and source are credited.

1.2. Envelope Analysis

Within a given structure, fault-induced impulses will amplitude-
modulate mechanical resonances (McFadden & Smith, 1984).
Research on which this paper is based (Waters & Beaujean,
2013) utilizes envelope analysis to extract impulses from the
modulated signal, which allows for quick diagnosis of appar-
ent mechanical problems.

However, incipient faults are rather difficult to detect using
this method, due to lower signal-to-noise ratio (SNR). Extra-
neous noise sources such as nearby modal resonances, vibra-
tional reflections, and vibrational harmonics corrupt the enve-
lope signal. We find that low SNR degrades early-detection
abilities and in turn deteriorates estimates of Remaining Use-
ful Life (RUL). These noise sources are in-band and non-
white, so their removal is less than trivial.

To combat a low SNR in the demodulated signal, we require
a “de-noising” technique. This research focuses on wavelet
de-noising and its use in vibration analysis, particularly as a
post-processing scheme for envelope analysis. A secondary
objective is to reduce user-interaction with the algorithm’s pa-
rameters to obtain beneficial results.

1.3. Wavelet De-Noising

Many techniques have been devised for noise removal via sig-
nal processing. For our purposes, the algorithm must process
non-stationary signals with good time-resolution. Vibration
statistics will be in constant flux, given changes in bearing
wear, speed, and operating environment. More importantly, it
must perform without a priori knowledge of the noise.

1
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As far as the aforementioned requirements specify, Wavelet
De-Noising (WDN) is a proven candidate. The wavelet trans-
form outperforms the Short-Time Fourier Transform (STFT)
in terms of temporal resolution, allowing it greater flexibility
in analyzing non-stationary signals (Rioul & Vetterli, 1991).
It has also been demonstrated that WDN requires no knowl-
edge of the noise level in order to optimally remove it (Donoho,
1995).

1.4. Paper Structure

Section 2 provides a brief overview of wavelet de-noising
and its function, and reviews previous literature pertaining to
PHM applications. Section 3 explains the proposed method-
ology, then sections 4 and 5 contain results supporting the use
of WDN to help interpret demodulated vibration signals, and
Section 6 contains a few concluding remarks.

2. BACKGROUND

2.1. Discrete Wavelet Transform

A more in-depth discussion of wavelet techniques can be found
in (Daubechies, 1992). The wavelet transform, given as the
operator W , is easily visualized in the continuous domain:

Wf (a, b) =

∫ ∞

−∞
f(t)ψa,b(t)dt (1)

where f is an arbitrary function of the independent variable
t, and ψa,b is a family of wavelet functions defined by scaling
and shifting – respectively a and b,

ψa,b(t) =
1√
a
ψ

(
t− b
a

)
(2)

where ψ is a prototype function, or wavelet kernel.

In order to utilize this transform for sampled data, we dis-
cretize the scaling and shifting parameters in the following
manner:

am = am0 (3)

bm,n = nb0a
m
0 (4)

where m and n are the discrete analogues of frequency and
time, respectively.

Notably, the shifting parameter b is a function of scale a. This
illustrates a crucial advantage of the Discrete Wavelet Trans-
form (DWT); the distribution of information in frequency is
dyadic, or octave-band. For analyzing natural signals, this is
highly useful (Rioul & Vetterli, 1991).

The DWT results in a set of wavelet coefficients d, which are
given by the inner product

dm,n = 〈f(t), ψm,n(t)〉 (5)

which, when the proper wavelet family is chosen, represents

a frequency-orthogonal decomposition of the original signal
into subbands which are logarithmically spaced in frequency,
as shown in Figures 1 and 2. In Figure 1, the wavelet inner
product is functionally equivalent to BPF and LPF, or band-
pass and lowpass filtering.

Figure 1. Octave subband tree structure with three levels of
decomposition. Each filtering results in a set of coefficients,
typically referred to as detail (high frequency, cD) and ap-
proximation (low frequency, cA) coefficients. If this pat-
tern is repeated until cD6 and cA6, the 6-level decomposition
shown in Figure 2 will result.

Figure 2. Filter magnitude responses of a six level wavelet
decomposition, using the db6 wavelet. Note the logarithmic
frequency scale.

2.2. Coefficient Thresholding

As originally proposed in (Donoho & Johnstone, 1994), the
linear soft thresholding function is given by

τ(x) =

{
x− λsgn(x), |x| ≥ λ
0, |x| < λ

(6)

where x are the values being thresholded, sgn(x) is the sign
of x, and λ is the threshold below which values are set to zero.
Donoho and Johnstone (1994) prove that the threshold λ for
near-optimality (in the minimax sense) is calculated as

λ = σx
√

2log(N) (7)

2
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where N is the number of samples in the time series and
σx is the noise deviation. Exact noise statistics are difficult
to estimate without a priori characteristics or reference mea-
surements. A simplifying assumption is to consider Gaussian
noise as the dominant source in an incipient fault situation,
as suggested in Bozchalooi and Liang (2007). Therefore, the
noise deviation sigmax is just the unbiased estimate of the
standard deviation of the input signal.

σx ≈

√√√√ 1

N − 1

N∑

k=1

(xk − µx)2 (8)

where xk are sample values and µx is the arithmetic mean of
the time series.

When the thresholding function is applied to orthogonally de-
rived wavelet coefficients, the result is a de-noised version of
the original signal.

2.3. Existing Literature

Qui et al. (2006) discussed wavelet domain techniques for
vibration analysis applications. The authors use the same
method described in Section 2, but they criticize the use of
WDN for vibration signals due to tuning difficulties:

[...] there are other factors influencing the effec-
tiveness of [wavelet] de-noising, such as the wavelet
decomposition level and threshold rescaling method
selection, which make the de-noising problem even
more intricate. Since there are no explicit guidelines
for how to tune the existing parameters, most of the
time de-noising becomes a trial-and-error process.
(Qui et al., 2006, pg. 1080)

There is much truth to these statements, and using WDN on
raw vibrational signals generally gives unpredictable results.
However, this paper concludes that WDN is quite functional
in the context of envelope-demodulated vibration signals.

3. SIGNAL FLOW & METHODOLOGY

Typically, de-noising algorithms are used as a pre-processing
step to improve the effectiveness of subsequent signal pro-
cessing. However we find that when used prior to envelope
demodulation, WDN removes low-amplitude modal resonances
that allow the Hilbert Transform to work well. If the de-
noising is performed after demodulation, the impulse signal
is more effectively de-noised.

The full signal processing procedure is as follows:

1. The raw vibration signal is Hilbert filtered at a chosen
modal vibration frequency, resulting in a bandpass sig-
nal.

2. A Hilbert transform is performed, bringing the signal
into the baseband.

3. WDN is used to attenuate lower amplitude harmonics
and vibrational reflections.

4. The signal is searched for faults using peak detection in
both time and frequency.

This report mainly focuses on the third step of this process.

3.1. Time-Domain Detection

For time-domain peak detection, the MATLAB R© function
findpeaks is used to find local maxima. These peaks are
thresholded at thre, which is a function of the average signal
power,

thre = α
1

Ne

Ne−1∑

i=0

e2i . (9)

where Ne is the number of samples in the envelope signal e.
The constant α allows for adjustment to this threshold. This
function will remove smaller peaks that are not associated
with larger impacts.

The times between all successive peaks in the envelope signal
are measured, resulting in a vector of impulse periods. The
inverse of this vector is a set of impulse frequencies. A his-
togram will reveal higher concentrations on fault frequencies.

3.2. Frequency-Domain Detection

We use a Welch PSD estimate to visualize the distribution of
energy in the frequency domain. This allows for smaller time
windows and reduces spurious peaks in the FFT via averag-
ing.

4. SYNTHETIC SIGNAL TESTING

4.1. Setup

A synthetic vibration signal was constructed to test WDN ef-
fectiveness on a controlled envelope signal.

d[n] = e−γτsin(ωτ) (10)

τ =
n

fs
(11)

n is the sample number, fs is the sampling frequency, τ is
time relative to n = 0, and ω is the simulated modal res-
onance frequency (rad/sec). γ is the exponential decay con-
stant. This damped sine function is windowed and repeated in
time to simulate a periodic impact, much like a bearing fault
may produce in rotating machinery.

Modeled after real fault signals from the Case Western Re-
serve University bearing data set (Bearing Data Center, 2013),
these values are inferred by observing real signals:

γ ≈ 1000 ω ≈ 5000π
rad

sec
fs = 48kHz

3
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White noise is added to the signal at SNRT ≈ 0dB, where
SNRT is the time-domain signal-to-noise ratio. This is calcu-
lated within a window of one time-constant of the exponen-
tially decaying signal. This prevents inclusion of zeros be-
tween pulses, which would artificially reduce the SNR mea-
sure.

4.2. Discussion of Parameter Selection

Sensible parameter choices are derived from this experiment,
which help to effectively de-noise the envelope signal.

The first parameter is nd, or the number of decomposition lev-
els. Selection of this value essentially determines the band-
width of the lowest two subbands. If the desired signal is
placed between subbands, then undesired attenuation may oc-
cur during thresholding.

For baseband envelopes, the number of decompositions de-
pends on the highest possible fault frequency. In the case of
a rolling element bearing, this is usually BPFI (Ball Pass Fre-
quency of Inner raceway) (McFadden & Smith, 1984). There-
fore, to determine the maximum number of decompositions
allowable, we find nd such that

fs
π/2nd

2π
> BPFI. (12)

This will ensure that the frequencies of interest are not lost
between subbands.

The other important parameter is the wavelet, φ, which will
determine the amount of energy leakage between subbands.
Higher-order wavelets decrease subband leakage, but require
more computational power. In the time-domain, baseband en-
velopes simply correspond to a lowpass-filtered impulse train.
In the frequency domain, this corresponds to high energy con-
centrations near DC. Higher order wavelets will more ac-
curately de-noise and reconstruct the low frequency band,
which contains frequencies of interest. Throughout these ex-
periments, the Daubechies 20-tap wavelet (db20) is sufficient.

4.3. Results

The synthesized signal is Hilbert-filtered (bandpass) at ω, Hilbert
transformed (demodulated), and WDN is applied. The wave-
forms in Figure 3 show all stages of the algorithm.

To de-noise the envelope signal, we choose to use 10 levels
of decomposition. The reasoning, using Equation 12, is that
10 levels of decomposition will give a lowpass (scaling fil-
ter) cutoff at ≈ 24Hz. This cutoff needs to be set above the
synthesized fault frequency, which is 20Hz.

4.3.1. Frequency-Domain Detection

Figure 4 shows a low-frequency Welch PSD of the signal
before and after WDN, with the expected fault frequencies

Figure 3. WGN added to damped sine pulses. The fourth
and fifth plots show an increase in SNRT by ≈ +1dB from
applying WDN. The benefits of this procedure are not imme-
diately obvious in the time-domain. Wavelet decomposition
using db20 wavelet at a depth of 10 levels.

in grey. WDN removes higher harmonics that dominate the
PSD, which increases the likelihood of proper fault identifi-
cation using frequency-domain techniques.

4.3.2. Time-Domain Detection

To identify the fault in the time-domain, the signal is run
through a peak detector and thresholded. The confidence in-
terval plot in Figure 5 shows the improvement in detection
ability for a wider range of α. The bands around the estimate
denote 95% confidence intervals. The histograms in Figures
6 and 7 demonstrate what happens as α becomes too high,
and the time-domain plot in Figure 8 shows the location of
the threshold for α = 46.

4.4. Remarks

The WDN algorithm successfully attenuates non-fault related
envelopes in the signal, increasing the probability of proper
fault identification using both frequency-domain (PSD) and
time-domain (peak thresholding) methods. The confidence

4
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Figure 4. Welch PSD of signals shown in Figure 3 before (top) and after (bottom) WDN. Gray area shows ±10% of possible
fault frequencies

Figure 8. A high threshold causes peaks to be discarded from the first plot, whereas the WDN version of the signal still contains
these peaks.

interval plot in Figure 5 shows a “compression” in confidence
with variation in threshold scaling α. In the sections that fol-
low, this technique is tested on real-world signals to verify
results.

5. REAL SIGNAL TEST RESULTS

5.1. Setup

The Case Western Reserve University bearing data were tested
with the WDN algorithm. The precisely seeded faults were
created with electro-discharge machining, with the smallest
faults at 0.007”. A short time-domain waveform is shown of
the signal at all stages of the algorithm in Figure 9. The fault
frequency is at BPFO (Ball Pass Frequency of Outer race-
way).

The db20 wavelet is used to de-noise at 7 levels of decomposi-

tion. The resulting lowpass (scaling filter) cutoff is ≈ 187Hz.
With a rotational speed of around 1796 RPM (30Hz), the the-
oretical maximum fault frequency (BPFI) for the SKF 6205-
2RS bearing is approximately 107Hz.

5.2. Frequency-Domain Results

The 0.007” outer raceway fault is distinguishable by the large
spectral peak in Figure 10. One small, but noticeable im-
provement is the BPFO harmonic at ≈ 210Hz, marked with
an arrow in the figure, which is removed by WDN.

5.3. Time-Domain Results

The removal of harmonics has implications when attempting
to identify faults in the time-domain. Figure 11 shows that
the threshold method may pick up harmonics as the domi-

5
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Figure 10. Low frequency PSD of the vibration signal shown in Figure 9. The fault frequency BPFO is approximately 107Hz.

Figure 5. Estimated fault frequency vs. threshold level for the
noisy pulse signal shown in 3, periodic at 20Hz. By thresh-
olding the peaks of this envelope at a variable level α, the
de-noised envelope signal is shown to more accurately reflect
periodicity at the fault frequency.

nant envelope peak frequency. This issue arises when dealing
with the BPFO and BSF (Ball Spin Frequency), since their
harmonics may be near BPFI. In this case, low α makes es-
timation inaccurate for the non de-noised signal. With WDN
applied, this method works well for low thresholds. At large
negative values of α, the algorithm is simply measuring the
distance between local maxima.

5.4. Remarks

WDN successfully improved the time-domain fault identifi-
cation method by reducing its dependence on α. Other data
from the Case Western bearing dataset was tested, with simi-
lar results.

Figure 6. Histogram of impulse frequencies, before WDN.
These values are derived from the threshold shown in Figure
8. Low frequency content is a result of the threshold missing
lower-amplitude peaks.

6. CONCLUSION

In this paper, we have presented a method to improve de-
tection confidence in fault identification using wavelet de-
noising. The method deals with the myriad of in-band noise
sources in narrowband vibration signals without a priori noise
statistics.

Decomposition techniques are more suitable to detecting smooth
signals, therefore, WDN is applied after envelope demodula-
tion. This yields better results than attempting to de-noise a
broadband vibration signal, as in (Qui et al., 2006).

For general purpose signal conditioning, wavelet de-noising
is a low-risk, widely applicable technique. Donoho (1995)
proves that the gains in noise reduction outweigh the costs of
removing low-energy details from the signal. Therefore, un-
less computational limitations are critical, there is little reason

6
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Figure 7. Histogram of impulse frequencies, after WDN.
With the same threshold as Figure 6, more peaks are included
in the measure, at the proper fault frequency (around 20Hz).

not to utilize such an algorithm.

While this paper demonstrates the function of WDN in the
context of demodulated vibration signals, it also serves as a
guide for parameter choice. The number of parameters that
control this algorithm can be unwieldy, but some sensible de-
cisions and simplifying assumptions allow for ease of use:

• φ – wavelet type – In this paper, we decide upon the
Daubechies wavelet for its flat passband characteristics.
This choice allows for accurate representation of signal
proportions in the scale-space domain. In our experi-
ments, the db20 wavelet is sufficient. We choose a high
order wavelet, so that the passband cutoff is sharp. This
allows for a high number of decompositions without com-
promising the amplitudes of coefficients in the lower pass-
bands.

• λ – soft threshold level – This value was derived by Donoho
(Donoho, 1995) to be a function of noise variance, which
is unknown. We simplify this choice by assuming the in-
band noise is white, so that the resulting threshold is a
function of signal variance, which is known.

• nd – decomposition level – For our applications, we are
searching for energy in the baseband (a demodulated AM-
signal). The maximum frequency of a bearing fault is the
inner raceway fault frequency (BPFI). Therefore, the de-
composition level must not be so high as to place the
lowest subband cutoff below this frequency.

Figure 9. The time-domain waveform of a seeded fault with
0.007” diameter in the outer-raceway at all stages of the algo-
rithm.

Figure 11. Estimated fault frequency 95% confidence inter-
vals vs. threshold level for the vibration signal shown in 9.
This figure demonstrates the importance of removing vibra-
tional harmonics from envelope signals when using a peak
thresholding method.

7
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7. FUTURE WORK

To carry this research one step further, it is recommended that
power levels be trended over long timescales. The improve-
ments provided by WDN have yet to be tested for evalua-
tion of RUL. It may be hypothesized that, due to the early-
detection and confidence improvements demonstrated in this
paper, any RUL measure will benefit from earlier, more accu-
rate fault specifics.

With reference to those algorithms tested by Qui et al. (Qui
et al., 2006), a direct comparison between wavelet filtering
and WDN was never performed, but may be warranted. The
WDN algorithm as presented in this paper requires minimal
interaction to improve results, where wavelet filtering requires
some recursion to tune parameters. Their relative speeds and
effectiveness may be a worthwhile measurement.
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ABSTRACT

This paper describes an end-to-end Integrated Vehicle
Health Management (IVHM) development process with a
strong emphasis on the automation in creating functional
models from 3D Computer Aided Design (CAD) system’s
representation, throughout the implementation of this
process. It has been demonstrated that functional analysis
enhances the design and development of IVHM but this
approach is not widely adopted by industry and the research
community as it carries a significant amount of
subjectivism. This paper is meant to be a guideline that
supports the correctness through construction of a functional
representation for a complex mechatronic system. The
knowledge encapsulated in the 3D CATIA™ System
Design environment was linked with the Maintenance
Aware Design environment (MADe™) with the scope of
automatically creating functional models of the geometry of
a system. The entire process is documented step by step and
it is demonstrated on a laboratory fuel system test rig. The
paper is part of a larger effort towards an integrated COTS
toolset for IVHM design. Another objective of the study is
to identify the relations between the different types of
knowledge supporting the health management development
process when used together with the spatial and functional
dimensions of an asset. The conclusion of this work is that a
3D CAD model containing the topological representation of
a complex system can automate the development of the
functional model of such a system.

1. INTRODUCTION

Functional Modeling is a System Engineering discipline
typically carried out in the conceptual design phase of an
asset. The main goal of the functional modelling is to
capture, as early as possible, the overall main function of the
system as well as the function of each individual component

of this system. Complex systems from aerospace, off-shore,
mining and maritime industry sectors change their role over
the life time, and in these cases they have to meet new
requirements related to cost, safety, reliability,
maintainability and availability (Stecki et al., 2014). The
first three types of requirements are typically specified
upfront and they have been embedded into best design
practices for nearly six decades. The last two types of
requirements are often derived from the initial three sets of
requirements as the hardware and software limitation force
the designers to think of the design using one or a mix of the
following three approaches:

1. Design alterations

2. Redundancy

3. Adoption of IVHM technologies

The last approach can be successfully used when the
system’s risks are identified in a systematic manner.
Functional decomposition of a complex system,
identification of critical components, Functional Failure
Mode Effect and Criticality Analysis (FFMECA) are
developed of the same time in order to construct a complete
picture at the effects of failure models on the overall
system’s function. FFMECA can also act as foundation for
assessment of failure mode propagation throughout system,
identification and optimization of sensor set solutions, and
construction of expert systems capable of detecting and
isolating a given failure mode universe. Functional
dimension of a system has to be backed up by the
engineering knowledge expressed typically through physics-
based models. An IVHM development process based on a
mix of physical-functional analysis proved to offer a
systematic approach in designing IVHM solutions of small
scale real systems (e.g. an UAV fuel system) (Niculita,
2012). This process was instantiated using strictly COTS
software tools (Niculita, 2013). One of main challenges
throughout this instantiation was the construction of the
functional model of the fuel system from scratch. Also, the
significant amount of engineering knowledge related to the

Niculita et al. This is an open-access article distributed under the terms
of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.
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system itself that has to be readily available to the IVHM
analyst when constructing its functional representation (so
that this model is indeed a true representation of the real
system) is another explanation for this approach not being
used at a wide scale. Functional analysis was previously
described in the literature as a tool to support the overall
engineering design process of large-scale cyber-physical
systems (Stone & Wood, 2000; Hirtz et al, 2002, Kurtoglu
et al., 2008; Uckun, 2011; Komoto & Tomiyama, 2012). All
these references focused on the use of functional analysis in
supporting various engineering tasks throughout the design
of complex systems from a healthy perspective. Although
the references mentioned above point to the function-
behavior-structure (FBS) triad when shaping a new design,
this triad only captures the healthy state of a system. Stecki
(2013) introduced MADe™ as the one of the COTS
software tools capable of employing functional reasoning
approach to support development of IVHM capability by
taking into account the healthy and faulty states of a system.
The goal of the current paper was to automate the IVHM
design phase within the health management development
process when using this particular tool. The main purpose of
this effort was to be able to reuse the existent information
regarding the structure of a system, information which is
already available at different design stages of a given asset.
For this purpose, we used a laboratory test rig to identify the
steps of the process that allows an IVHM analyst to
automatically generate the functional model from the 3D
representation of such a system, representation which is
typically constructed by a fuel system designer using a
bespoke CAD tool. This paper employs CATIA™ to
emulate the fuel system designer activity of capturing the
structural layer of a system.

Compared to the previous work in functional modelling, the
novel contribution of this paper can be summarized as
follows:

1. A practical guide in identifying the steps an IVHM
analyst has to go through to automatically generate
functional models from structural models
(previously created by system designers) using
strictly COTS tools (CATIA™ and MADe™).

2. Enhancements required to be carried out on the
functional models in order to be a truly
representative qualitative dimension of the
behavior quantitative models of the same system.

3. A use-case of an UAV fuel system application that
highlights the main benefits of this approach in
designing IVHM solutions for complex systems.

The paper is organized as follows. Section 2 describes the
IVHM development process. Section 3 summarizes the
CATIA™ 3D representation of the test bed as part of the
system design and also of the steps of the process that
automatically generates the MADe™ functional model out

of 3D structural representation. The enhancements made to
the functional model to be an accurate representation of the
physics-based behavior model are described in Section 4.
Section 5 collates the concluding remarks and a summary of
the future direction of this research.

2. IVHM DEVELOPMENT PROCESS

The IVHM development process has been previously
described in (Niculita, 2013). In this, a functional analysis is
used (Figure 1) for the modelling of the effects of failure
modes throughout the system (downstream effects but also
upstream effects). The existent process will be enhanced by
using the information gathered within CAD models to
reduce the time and work required to create from scratch a
functional representation of a given asset. Very often,
physics-based models (depicted as an output of the System
Design activity – first stage of the IVHM development
process) do not necessarily describe the exact structure of a
system. For example, if a pipe doesn’t introduce a
significant pressure drop, it will be easily discarded by the
system modeler when constructing a physics-based model of
a fuel system or of an environmental control system. In this
context, construction of functional models based on design
schematics of physics-based models is difficult. For this
reason, we attempted to link the development of functional
models to 3D CAD models as such representations capture
every single component within a complex system.

Figure 1. Health management development process.

Although the IVHM development process is mapped against
the generic engineering cycle (Design, Safety and
Reliability analysis, Integration, Service and Maintenance)
the modelling activities supporting the IVHM Design do not
necessarily take place sequentially as depicted in the above
cycle. Over the last two decades, industry and academia
attempted to integrate the IVHM Design into System
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Design, although a clear methodology is still not available.
Three dimensions in modelling a system have been
identified as being capable of supporting the integration of
two processes (Design and IVHM) into a common thread:

1. Functional modelling

2. Behavior modelling

3. Structure modelling

These three dimensions are complemented by the physical
embodiment of a system as per Figure 2. The current paper
will address the Function-Structure link and will offer a
method to execute this link using COTS tools.

Figure 2. FBS and Physical embodiment relations

(Canedo, 2013) described the generation of multi-domain
simulation models capturing both the behavior-structural
dimensions of a system from the functional representation
of a system that is constructed using basic elementary
functions to simulation components available in Modelica
(Modelica Association). This study constructs the
Functional-Behavior-Structure framework from a Design
perspective without introducing IVHM related concepts.
Our attempt is to instantiate a generic FBS triad with the
information related to system risk identification, effects of
failure modes throughout the system, criticality figures in
order to support Design for Availability of cyber-physical
system.

3. SYSTEM DESIGN – STRUCTURE MODEL

A CAD model encapsulates a 3D representation of a given
system capable of offering a digital product view.

MADe has the capability of importing CAD models to
automatically create functional models from a 3D
representation of an asset; this was exercised on a laboratory

test-bench fuel system example and the overall step-by-step
process is thoroughly described in this paper. Within this
section, several findings are marked with label Fx in order
to support future implementation of this process.

The CAD model has to be represented at the part level (F1);
Figure 3 highlights the CAD model and its decomposition at
the part level for a fuel filter component. The fuel filter
selected for this fuel system (ASSY-Filter FESTO VAF-
PK-3 535883) is composed of five internal parts/elements:
indicator, filter head, o-ring seal, filter element, filter
housing.

All these part have to be represented in CATIA in order to
allow MADe to correctly import this particular component.
The same level of detail has been employed for the
representation of the entire fuel system test rig. At the end
of the design process, after modelling and assembling
components, a final assembly emerges. Figure 4 shows the
CATIA Final ASSY of the fuel system test bed subject to
study.

Figure 3. CAD model of the fuel filter.

Figure 4. CAD model of the fuel system.
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In order to exchange this information to business partners,
supply chain or contractors, it is necessary to generate a file
in a neutral computer interpretable representation of system
data. The International Organization for Standardization
generated the ISO 10303 standard that can support this task.
(SCRA Advanced Technology Institute, 2006) discusses in
their publication STEP Application Handbook the current
state of art in generating STEP files and their usability in the
industry by CAD, CAM and CAE systems. Also, they
highlight the importance of maintaining and updating the
information when exchanged among different
users/departments of large organization. The main
advantage of the STEP file format is the fact that it can be
used by other software platforms to exchange information.
CATIA software automatically generates this *.stp file from
a CAD model using the ISO-10303-21 standard.

Figure 5 highlights a part of the STEP code that was
generated from the CAD model for this particular system.

4. SYSTEM DESIGN – FUNCTIONAL MODEL

The STEP file was then imported into the MADe™ CAD
interface in order to extract information contained inside the
CAD solid models. This interface identifies and selects
information located in the Product definition section of the
STEP file. Within the next step, this information is
translated it into a *.mcdx file, which is a transition format
before the data characterizing a component/system is finally
imported into MADe™. Figure 6 illustrates the extracted
information from the CAD file that is translated into a
*.mcdx file.

Pairs between components can be also created by this
interface. The pairs constitute the relationships among the
different parts that directly interact within a component.
Assembly components are structured in a hierarchical list.
This arrangement highlights the level of each component
and their hierarchical position within the system under
investigation.

Within this intermediate step, the MADe FMEA Interface
will validate imported files against those currently available
in the MADe library (a standard library or a customized
library by the IVHM Team). The CAD model should use
the same taxonomy as the one available within the MADe
built-in component library (F2). If a functional model of a
filter manufactured by FESTO has been previously created
and saved as part of a MADe library under the name
“ASSY-Filter FESTO VAF- PK-3 535883”, the CAD model
of the fuel system will have to carry exactly this label when
this specific type of filter is used as part of the fuel system
design (F3).

During the import process, the hierarchy of the system and
all the connections between sub-systems, components, parts
have to be carefully mapped by the IVHM analyst as no
automated technique is currently available in MADe (F4).

Figure 7 depicts a flow diagram containing specific tasks
that are required to be carried out in order to use the MADe
CAD interface.

Figure 5. STEP File associated to the fuel system CAD Design.

European Conference of the Prognostics and Health Management Society 2014

130



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

5

Figure 6. Component selection from product structure contained by the MCDX file.

Figure 7. MADe CAD integration steps.
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Following the steps described in the previous flow diagram,
the functional model of each individual component of the
fuel system has been created (at the part level). As an
example, the figure below describes the links between the
parts of the filter component which match the physical links
of this particular component (e.g. the filter element is
coupled to the filter head and the filter housing, each of
these two couplings forming two pairs).

The translation of a CAD model into a functional model
using the MADe dedicated FMEA Step tool is carried out at
the component level.

The MADe CAD Interface is capable of creating pairs
between parts, but this process is manually done through the
CAD Interface tool (F5).

Figure 8. Translation of physical connections internal parts of a filter into the functional pairs.

Figure 9. The fuel system functional model automatically created by the MADe CAD Interface from a CAD 3D model
(hydraulic view).

Presently, there is no automatic technique for determining
pairs in the MADe CAD Interface, as it is considered very
difficult to determine accurately the connections between
parts based primarily off the geometry of the CAD (for
example, if a part was really close to another but had no
actual interaction between another it would potentially make
an erroneous pairing) (F6). Figure 9 describes the hydraulic
engineer view as the CAD 3D model addressed only the
hydraulic representation of the fuel system (it included the
pump motor and shut-off valve solenoid). The rest of the
components forming the fuel system electrics and controls
have to be integrated with the CAD 3D hydraulic model in
order to be automatically linked (as part of the automated
process) with functional models characterizing such
components. If the representations of such systems (e.g.
electrical system, control system) are not available for the
IVHM analyst, functional models of representative
components can be used and they are manually added to the
model in order to obtain a complete picture of the fuel
system functional model. Figure 9 depicts a multi-
dimensional view of the fuel system. Different engineering
disciplines are nowadays integrated as part of the same
system. The representation of this fuel system schematic in
MADe software (containing the information from three

different worlds - hydraulic, electrical, and controls) and it
was obtained by linking the input and output flows of the
components from Figure 8 and by manually adding the
functional representation of power unit, control unit and
different wires used to connect these units to the fuel
system.

The output flows were connected with the input flows of the
downstream component and an initial functional
representation of the fuel system was achieved. The output
of this operation is depicted in the Figure 11 as it captures
the collection of functional models for all components of the
fuel system test rig.
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Figure 10. Multi-dimensional view of the fuel system.

Figure 11. Fuel system MADe functional model.

5. SYSTEM DESIGN – BEHAVIOR AND RISK

IDENTIFICATION MODEL

The components models in Figures 8 and 10 contain the
function of each individual component, the input and output
flow(s) and the causal relationship between them. The
causal relationship maps out the physical behavior of a
component. For a normally closed valve, the function is
depicted in Figure 12. The functions of this component will
be to channel the flow and also to regulate the amount of
volumetric flow rate in the system. The bigger the pressure
at the inlet of this valve, the larger amount of volumetric
flow channel through the outlet as hydraulic energy.
Increasing the linear velocity input flow will allow more
volumetric flow rate through the outlet, therefore a positive
causal relation between these two parameters. In the case of
a normally open valve, by increasing the linear velocity

input flow less flow will be allowed to pass through the
valve. This is actually captured within the component
functional model in Figure 13 as a negative causal
relationship between these two particular flows. Similar
functional models are used to automatically generate the
hydraulic dimension of the fuel system (Figure 9) that was
sequentially updated with the electrical and control
dimension (Figure 11). Input and output flows were
connected in order to allow flows to be exchanged between
components. The model in Figure 10 represents the healthy
state of the fuel system – as it captures the way this system
was intended to operate.

The functional dimension of each component (created by
linking a 3D CAD component to a functional model of the
respective component from the MADe library) contains
failure modes associated to various parts that are forming
the respective component. The failure modes are described
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as failure diagrams and they can support safety and
reliability analysis by injecting failure diagram in this
model. Failure diagram can also support the identification of
the most critical components that will have to be monitored
in order to support health management function.

Figure 12. Functional model of a shut-off valve (normally closed).

Figure 13. Functional model of a shut-off valve (normally open).

Failure diagrams are documented in MADe by using four
different types of concepts (causes – mechanisms – faults -
symptoms). They all get connected into a tree architecture
and they will document automatically a model-based
FMECA analysis. The advantages of a model-based
FMECA versus traditional FMECA spreadsheets are
highlighted by Stecki (2014). The failure diagrams can be as
simple as the one depicted in Figure 14. Typically, this sort
information is captured by the system integrators who are
dealing most of the times at component level or line
replaceable unit (LRU). Component manufacturers might
want to define FMECAs at the part level and failure
diagrams of a gear could shape as complex as the one
depicted in Figure 14. The elements of the failure diagram
are ultimately linked to the functional failure of a given
component. This translates into a deviation from normality
of one or several of the output functional flows of that
component. For example: the function of the gear pump of
this fuel system is to supply volumetric flow rate as
hydraulic energy down the line. When this component is
affected by one of the faults captured within the failure
diagram from Figure 15, the volumetric flow rate generated
by this pump will drop. This should be explicitly captured
by the IVHM analyst as part of the functional model a pump
(Figure 16). Engineering judgment should be encapsulated
in the modelling activity when such models are created in

the first place as part of a new MADe library. If available,
this information will be retrieved as part of a functional
model created following the automated process described in
the previous sections.

Figure 14. Failure diagram of a shut-off valve.
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Figure 15. A fraction of gear pump failure diagram (failure diagram of the idle gear)

The correct selection of High or Low for the deviation of
output flows for components affected by failure modes will
enable the propagation of flows through the functional layer
throughout the system (downstream). In order to capture the
upstream propagation of faults within a complex system
several enhancements have to be carried out on the
functional model. For example, a clogged nozzle will
automatically determine the output flow (volumetric flow
rate – as hydraulic energy) to decrease, but there will also
be some increase of the input flow to increase (pressure – as
hydraulic energy). In order to describe this particular type of
behavior feedback loops have to be manually added to the
model (Figure 17). Assuming there are no leaks in this
system, if less flow is coming out from the nozzle
component, more flow will be pumped in the inlet pipe
(Pipe-4 component) as input flow. The positive causal
relationship between input and output flow of the pipe
component determines the output flow to increase, which is
an accurate representation of the behavior of this part of the
fuel system when clogging phenomena is occurring. This
representation was achieved using a negative feedback loop
(F-). This approach was repeated throughout the entire
system, for each individual component in order to fully
capture the effects of faults on the overall system. This
correlation has to be made by using expert knowledge or by
using physics-based models that are capable of describing
the behavior of the system under faulty scenarios.

Figure 16. Engineering rational related to the effects of
failure modes on the output functional flow of a component.

Figure 17. Functional feedback loops.
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Complexity of the failure diagrams might not always be
positively received by the IVHM analysts. A way to
overcome this issue is to establish criticality figures for the
elements of a failure diagram, calculate the risk priority
numbers (RPN) of each individual components
(RPN=Occurrence x Severity x Detectability) and tackle top
x most critical components of the system in order to meet
specific budget and time targets for the development of
IVHM capability. This approach is not new, but the entire
health management development process can be automated

by using COTS software tools that allow execution of
functional models automatically from the 3D representation
of a complex asset.

This automated approach enables the identification of
system-level risks and it can be applied for new or legacy
systems. Selection of the test points (incl. the sensor
identification and optimization analysis) for the fuel system
is directly derived from the functional model developed in
MADe. Sensor locations are highlighted in Figure 18.

Figure 18. Test points selection fuel system

6. CONCLUDING REMARKS

The overall aim of this work is to enhance the health
management development process and to support the
execution of this process using COTS software tools. Since
the CAD models tend to reside these days in the center of
the overall engineering process, this paper describes step by
step the workflow of creating functional models
automatically from CAD models that were previously
developed by the system designers. The functional models
can be further enhanced by capturing failure diagrams to
support safety, reliability and IVHM analysis. Using a
laboratory fuel system design use-case, we demonstrated
which steps are fully automated and which require manual
manipulation in order to construct the functional model of
the system being study. The functional model was
previously constructed as part of a different project (by a
different IVHM analyst) and the overall task took 3-6
months. Using the CAD import feature in MADe, the CAD
model and a predefined Fuel System MADe functional
library, the same system was functionally modelled in less
than 1 month (this included the time to construct the CAD
model of the fuel system at the part level). Once developed,
the functional model captures system’s behavior under
healthy conditions. A fair amount of information has to be
manually added to this functional model to reflect system
behavior under faulty conditions and to ensure it captures
the overall effects of the failure mode universe throughout

the system. The effects of failure modes throughout the
system (downstream and upstream) have to be mapped out
manually within this process. In MADe, this was carried out
using the feedback loop mechanism. The workflow
presented in this paper supports the consistency through
construction of models ultimately used for Asset Design and
IVHM Design, and the existent health management
development process was enhanced by adding a feature that
allows passing the geometry between the Asset Design and
IVHM Design in an automated manner. The automation in
construction of context-sensitive functional models for
complex systems forms part of the future work. This will be
achieved by linking the functional layer to the physics-based
models (that should encapsulate system’s behavior for both
healthy and faulty scenarios) of these systems.
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ABSTRACT 
In this paper we will discuss some practical aspects of 
health management for a rechargeable Li-ion battery system 
for aerospace applications. Industry working groups have 
developed guidance for the flight certification of this type of 
battery system, and we will show how this guidance is used 
in the design. We will also discuss safety features embedded 
in the battery system related to industry guidance; including 
cell energy balancing, internal temperature monitoring and 
emergency fuses. The keys to battery prognostics and health 
management (PHM) are analytic State of Charge (SoC) and 
State of Health (SoH) algorithms implemented in these 
battery systems. We show how these are developed and how 
we have tested them before deployment. These battery 
systems also collect data that is made available to the 
aircraft processing systems, e.g., Aircraft Health 
Management System, On-board Maintenance System, etc.. 
This allows for near real-time confirmation of proper 
operation of these battery systems as well as adherence to 
MSG-3 maintenance standards. We close with a brief 
discussion of the practical limitations in our implementation 
and a discussion of our ongoing and future development in 
this area. 

1. INTRODUCTION 

Lightweight, high capacity, rechargeable batteries, primarily 
based on compounds of lithium, are becoming widely 
available due in part to increased demand for electric 
vehicle energy storage. The cost of individual battery cells 
continues to drop, making these battery systems more 

affordable for consumer products, where they are replacing 
mature technologies such as NiCd (Nickel Cadmium) and 
NiMH (Nickel Metal Hydride) (Economist (2008), 
Electropaedia). 

This trend has impacted the aerospace industry as well, 
where lithium based batteries are starting to replace mature 
technologies for aircraft energy storage.  

Aerospace batteries are required to deliver power reliably, 
have a reasonably long life, have a consistent output over 
their lifetime, and be certifiably safe. In addition, with a 
high premium on weight, in order to replace the older 
technology, they should be lightweight when compared to 
the traditional technologies.  

While lithium based products still require more electronics 
than the NiCd and SLA (sealed lead acid) products, lithium 
chemistries are of considerably greater energy density than 
traditional technologies. Further, costs are trending 
downward. For example, a 2012 report in the McKinsey 
Quarterly (Hensley et al.  2012) shows that the price, around 
$500/kWh then, could fall to $200/kWh by 2020 and to 
about $160/kWh by 2025. Though the numbers are 
approximations which do not deal with variations in lithium 
based chemistries, etc., they do illustrate the potential for 
lithium based energy storage as an advantageous alternative. 

Lithium chemistries, being of considerably greater energy 
density than the traditional technologies, are also more 
volatile. This volatility has resulted in the need for 
development of battery management and safety monitoring 
subsystems for lithium-based battery systems. Despite many 
well publicized thermal issues with Li-ion batteries in recent 
times (see e.g., Chang et al., 2010, George, 2010, FAA, 
2011, and NTSB, 2014), these systems are certifiably safe 
and reliable. 

Mike Boost et al: This is an open-access article distributed under the 
terms of the Creative Commons Attribution 3.0 United States License, 
which permits unrestricted use, distribution, and reproduction in any 
medium, provided the original author and source are credited. 
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Our battery systems have integrated battery PHM in the 
form of cell energy balancing, SoH as a measure for 
remaining useful life estimation, internal fault detection, and 
system status monitoring. These subsystems are supported 
by the integration of data collection, processing, storage and 
reporting; thus integrating high density energy storage and 
battery management into a single embedded package. 

By additionally integrating the ability to send monitored 
data to the aircraft data systems, which can then be off-
boarded for immediate processing, these battery systems 
enable redundant and sophisticated processing for both 
remaining useful life predictions as well as near real-time 
stress level assessments. 

2. BATTERY SYSTEMS DESIGNED TO ENHANCE SAFETY 

When any technology is developed or modified for use in a 
civil aviation application, a critical step in the deployment 
process is system certification. This is the process by which 
regulatory authorities are assured of the safety of the system 
with respect to itself and the environment. The civil aviation 
authorities work to ensure the safety of all concerned by 
levying the need to demonstrate that all risks have been 
reduced to an acceptable level prior to certifying the system 
for flight. Some of the standards, guidelines, and 
recommended practices published by organizations such as 
SAE and RTCA that are applicable to the certification of 
aviation batteries and battery systems are: 

• ARP4754: Guidelines for Development of Civil 
Aircraft and Systems 

• ARP4761: Guidelines and Methods for Conducting the 
Safety Assessment Process on Civil Airborne Systems 
and Equipment  

• DO-160: Environmental Conditions and Test 
Procedures for Airborne Equipment 

• DO-178: Software Considerations in Airborne Systems 
and Equipment Certification  

• DO-227: Minimum Operational Performance Standards 
for Lithium Batteries 

• DO-254: Design Assurance Guidance for Airborne 
Electronic Hardware 

• DO-311: Minimum Operational Performance Standards 
for Rechargeable Lithium Battery Systems; see also 
FAA memorandum recommending the use of DO-311 
(FAA, 2010) 

• DO-347: Certification Test Guidance for Small and 
Medium Sized Rechargeable Lithium Batteries and 
Battery Systems 

The number and types of tests required to certify a system 
for flight is determined by the impact on flight safety as 
determined by the safety analysis of that system, which, as 
may be inferred by the number of industry specifications 
listed above, may be considerable. There are generally five 

design assurance levels (DAL) of safety assessment in the 
collective guidance. With the introduction of lithium based 
chemistries for aviation applications in recent years, 
regulatory “Special Conditions” are being levied on a case-
by-case basis to supplement the number and types of tests 
required to certify traditional chemistries.  

The additional monitoring and controlled levied by the 
“Special Conditions” drive the need for more electronic 
circuit based protection sub-systems. There is also need for 
high reliability/redundancy of the protection circuitry in 
order to satisfy the means of compliance associated with 
rechargeable lithium batteries.  

There are some applications wherein an indication of battery 
status prior to dispatch is required for the flight crew. The 
status message for such an application may be a “Clear to 
Dispatch” indication, and may be annunciated to the crew 
on the flight deck, with the minimum criteria for the 
indication being SoH and/or SoC above required levels.  

A common practice for measuring battery capacity is based 
on the voltage of a battery or the charge current of the 
battery, with the capacity of the battery being checked 
periodically via off-wing testing. These capacity tests are 
performed by removing the battery from the aircraft, fully 
charging it in a specialty shop, then determining the 
capacity stored by measuring the energy extracted through a 
complete discharge. This gives the new capacity of the 
battery (reflecting its SoH). The battery is then returned to 
the aircraft or serviced, if needed. This labor intensive 
method is meant to give confidence that the capacity (SoH) 
of the battery is not less than the required minimum level; 
allowing for an assurance of safety until the next battery off-
wing test takes place.  

With SoH data supported via “off-wing” tests, the crew 
reviews the SoC estimated data in real-time (i.e. via battery 
voltage) prior to flight. This provides the crew a go/no-go 
determination method.  

2.1. Advancement in Battery PHM 

The focus of battery PHM has been its application to 
automobiles (electrical vehicles (EV) and hybrid electrical 
vehicles (HEV)) but the techniques are similar when applied 
to civil aviation applications. The need for increased system 
certification and qualification testing brings additional 
constraints which need to be thoroughly dealt with before 
the product can be deployed. See the proceedings of the 
recent workshop (PHM Society, 2011) for an overview of 
the current state of the art in PHM research. 

Typically, large rechargeable battery stacks consist of 
smaller cells that are connected in series and parallel to get 
the requisite voltage range and current capacity. Most of our 
Li-ion batteries contain eight modules in series that generate 
the requisite voltage, and the number of cells within each 
module connected in parallel as needed to supply the 
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necessary current. Consequently, the desired output for a 
given application can be adjusted in a modular fashion by 
adding or removing individual module packs and cells to 
meet the application requirements.  

Charging and discharging the module cell stacks is a critical 
function because over-charging or over-discharging may 
prematurely degrade the cells within them. When all cells in 
a module are not identical, as is almost surely the case in 
practice, there is a danger of overcharging or excessively 
discharging any given cell if mechanisms are not emplaced 
to prevent it. The management of these functions is essential 
to maximize the life of the battery cells. This is fairly well 
known but see, e.g. the Battery University on the web for a 
lay exposition of this fact (batteryuniversity.com). 

Our battery management system has a dedicated Battery 
Management Unit (BMU); circuitry to implement fault 
detection, safety assessment, fault diagnostics, SoH, SoC 
and communications via industry standard ARINC 429 to 
the central Aircraft Health Management System (AHMS). 

The BMU combined with the battery chargers, allow the 
battery modules to be charged independently so as to 
prevent charging at higher than allowed voltages as may 
occur if one were charging modules in series. Further, the 
modules are discharged in a balanced fashion; meaning that 
the system is continuously working to balance the voltage in 
each module to better utilize the energy in the modules and 
to prevent any single module from prematurely terminating 
a discharge.  

The independent charging system ensures that the cells are 
charged at the cell voltage level, the very act of which 
eliminates the need for independent balancing techniques 
during charge. Moreover, during the discharge cycle, cell 
energy is redistributed to ensure more energy can be 
removed from the system before low voltage cut-off.  

Cell temperature has a critical role in the management of 
lithium based battery systems. We have incorporated a 
multi-stage power-down process by which the BMU ensures 
the control of the operation temperature of the battery 
system. There are multiple monitoring points for the 
temperature, including at the battery cell level and the 
internal ambient temperature of the entire battery system. 
Additional safety mechanisms in the battery system include 
physical fuses for over current protection. 

3. SOC AND SOH FUNCTIONS 

The topic of battery management is of considerable interest 
presently. As a result, there are numerous discussions in the 
literature covering a wide array of methods for SoC and 
SoH calculations. SoC, usually in a percentage, is a measure 
of the charge stored in a battery relative to its maximum 
charge storage capacity. Some aircraft batteries are essential 
for continuous safe flight and landing. In such case, the 
FAA Special Conditions require an indication of the SoC 

for the flight crew. The dispatch ready requirement for the 
SoC may vary per application however a common value 
chosen is when the SoC is greater than 90%. When this 
condition is met, the dispatch criteria are declared to be 
satisfied. 

SoH, expressed as a percentage, is a measure of actual 
capacity with respect to the declared battery capacity. We 
express the SoH as the ratio of the estimated battery 
capacity (in Ah) to the battery capacity when new, i.e., 
𝑆𝑜𝐻 =  𝑆𝑜𝐻𝑡

𝑆𝑜𝐻𝑛𝑒𝑤
. In this sense, the SoH can be additionally 

used as an advance indication of the future usefulness of a 
battery.  

Our lithium batteries provide a signal to the flight crew 
indicating that the battery can perform the required mission 
in the form of a “Clear to Dispatch” signal. For battery 
systems whose mission involves starting aircraft engines, 
there may be an additional ‘Clear to Start’ indicator. Both of 
these indicators may be generalized as an indication that the 
battery has sufficient available capacity, given the present 
environmental conditions and age, needed to perform a task. 
We began this work with these criteria in mind and with an 
economically beneficial intention of eliminating the need for 
removing the battery for SoH testing. 

3.1. Estimation of SoC and SoH  

There are several practical constraints to consider for an 
embedded SoC estimator; not the least is the need to include 
present environmental conditions in the state model (not a 
trivial matter as these state parameters are, themselves, 
dynamic and must be estimated) as well as available 
computational throughput. There are numerous methods for 
measuring SoC and SoH in current literature. For example, 
Di Domenico et al. (2010) use a model of the transport 
phenomenon in their approach and Lin et al. (2013) use 
thermal conduction models in theirs. The approach that we 
initially settled on was to employ the Unscented Kalman 
filter (UKF). A good description of the UKF is available in 
Kim et al. (2009) or Terajanu (2011). We used the UKF to 
develop an estimator used to build the SoC algorithm.  

During validation and under certain conditions, the results 
were promising but not consistent. The testing clearly 
exposed the sensitivity of the filter, which relies on a system 
state, or battery model. Even slight variations in the battery 
model caused divergence in the filter such that, in the end, 
the results required further refinement prior to being directly 
implemented as targeted.  

The sensitivity of the system parameters led us to conclude 
that an adaptive model, necessary to accurately reflect the 
physical changes in the battery due to aging, was not likely 
to prove sufficient for our needs at this time. Such an 
adaptive model is impractical given our computational 
constraints and the need for a much larger set of data to 
fully characterize the different environmental effects. This is 
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not to say that the UKF is a bad observer for this problem in 
general. Other researchers have been very successful in its 
application. See for example, Daigle et al. (2012), and we 
may reconsider it at a future time. Our current program 
constraints drove us to look further. 

3.2. State of charge (SoC) 

While refinements with the UKF carried forward, in a 
parallel fashion, we set about exploring alternate methods 
for tracking the SoC. An alternate method for calculating 
the SoC relies on coulomb counting (CC). This method 
maintains an accurate audit of charge moving in and out of 
the system over time. The basic requirements for this 
method are to have accurate measuring of the magnitude 
and direction of the current flow. There are a variety of 
physical effects to overcome, hardware related and 
chemically based obstacles, which make even such a 
seemingly simple approach quite involved. There are non-
linear effects stemming from environmental conditions, 
battery life, power losses, and measurement accuracy due to 
hardware limitations, which need to considered. The ability 
to provide this estimate within the required accuracy 
depends critically on sensor accuracy and knowing the SoH 
of the battery. As SoC tracking via CC requires knowing 
how much total charge can be held by the battery, the two 
cannot be separated. The type of application facing the SoC 
algorithm is a strong determining factor in the suitability of 
the CC method, along with the accuracy requirements on the 
SoH and current sensor. Tracking the SoC of an 
automobile’s battery is very different when compared to 
tracking the SoC of an airborne vehicle. This is due in part 
to the different charge and discharge scenarios experienced 
in those two examples. If relatively frequent full charge 
cycles are experienced, as in the case of civil aviation, 
calibration of the SoC estimate can take place with the 
completion of each charge cycle. This mitigates drift due to 
current sensing inaccuracies. 

Voltage-based SoC estimation is another method for 
tracking SoC, and used in lead-acid batteries. However, 
because in Li-ion cells, the voltage decreases non-linearly 
with the SoC, this method requires precise measurement of 
the system voltage, accurate predefined knowledge of the 
voltage decay profile under a myriad of conditions and 
accurate knowledge of ambient conditions as well as 
knowledge of operational history to be effective in 
estimating SoC for these chemistries. These requirements 
make voltage-based SoC less appealing than the CC 
method, which, as noted, relies most heavily on the current 
sensor and SoH accuracy. The exact voltage discharge 
curve, depends on the specific chemistry of the Li-Ion cell 
used. In our case, lithium iron phosphate (LiFePO4) is used. 
Unfortunately (at least for the purpose of voltage based SoC 
tracking), this chemistry has a very large section of the 
voltage curve that is nearly constant during discharge. In 
fact, approximately 80% of the charge might be stored 

within 130 mV of the voltage profile, making it very 
difficult to use the relationship between the voltage and the 
state of charge in this region. 

Other methodologies have been proposed in the literature, 
including physics and empirical model-based techniques. 
Like any analytical model, a physics-based model trades off 
complexity for accuracy. There are various approaches 
taken in the literature; such as Di Domenico et al. (2010), 
that incorporates a model of the transport mechanism of Li 
ions in the electrolyte to estimate charge. See also 
Malinowski (2011). 

One can also identify critical parameters for an empirical 
model, conduct experiments and use the experimental data 
to identify correlations. Figure 1, taken from Electropaedia, 
shows the result of a series of experiments that has 
established usable capacity as a function of discharge rate 
and temperature. This data can be turned into lookup tables 
or more sophisticated regression models to form the basis of 
an empirical SoC model. This has shown success both in the 
laboratory and in practical applications, though it also 
illustrates the need for a very large set of data solely to 
characterize one aspect of the SoC.  

 
Figure 1: Experimental data to support a model 

 
For our battery system, the design goal was to implement a 
SoC (and SoH) algorithm for aerospace applications that 
gives an estimate within a given error band when compared 
to the actual SoC and to do so in real-time. The end goal is 
to eliminate the need for periodic removal of the battery 
system from the host aircraft for SoH testing.  

3.2.1. The implemented algorithm 

Our early empirically based SoC algorithms were not 
successful in reaching our targets. Validation testing 
exposed weaknesses in correlating the slower time constants 
of the model with the rapid dynamic responses resulting 
from changing load conditions. As a result, a new approach 
was formulated which combined a voltage based method 
and the CC tracking method. The SoC is determined by 
using a weighing factor to change the amount of reliance on 
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SoC calculated based on CC vs. the open circuit voltage 
(OCV) vs. SoC data on the cells (this data is collected 
during assembly and stored on the battery). The weighting 
scheme will be described further below.  

A charge cycle is completed when the upper cut off voltage 
is reached in constant current mode followed by a constant 
voltage charge. Most often in civil aviation, the battery will 
complete a charge cycle on a regular frequency. By 
definition when fully charged the actual SoC is at 100%. We 
calibrate the SoC estimate by setting it to 100% whenever 
the unit completes a charge. This is done during the testing 
phase. 

The OCV charge/discharge curve for lithium iron phosphate 
has a large, nearly constant voltage region, e.g., a 15% SoC 
range may be represented by an approximately 3 mV 
voltage change. Voltage readings in nearly constant regions 
are not sufficiently reliable due to the necessary accuracy of 
the measurement in such a region. For this reason, our 
algorithm incorporates a disparity weighting technique for 
the final SoC estimate. When not charging or discharging, 
the SOCOCV is combined with the most recent SOCCC by 
weighting the contribution from each method as a function 
of the OCV. 

The weighting curve is given through incremental or 
differential capacity analysis as a scaling factor. 

   𝑄𝑑𝑖𝑓𝑓 =  1
𝑄

 𝑑(𝐴ℎ)
𝑑𝑉

,   (1)  

Where Qdiff is the differential capacity, Q is the total 
capacity in coulombs, and d(Ah)/dV is the derivative of the 
amount of charge added or removed with respect to the cell 
voltage change. 

The method relies on the fact that in regions where a large 
amount of charge (d(Ah)) is stored with a very small change 
in voltage (dV), the SOCCC is likely to be more accurate 
than the SOCV, and is thus amplified. 

With this real-time algorithm in place several tests were run 
in our actual battery system, at a variety of currents and 
temperatures. The test set included “ping-pong” testing; 
where we ran charge and discharge cycles for a variety of 
fixed time periods to quantify the effect of drift in the SoC 
estimate over time, drift being a known weakness of the CC 
method. In the long run, the drift is overcome by the battery 
charge cycle. When the battery charges to full capacity 
during normal operation, the SoC is known to be 100%.  
When reset to the known value, the drift resulting from the 
CC accumulation measurement error is eliminate and the 
cycle restarts. The results, which meet our expectation, are 
discussed in the results section. 

3.3. State of Health (SoH) 

As in the case of SoC, there are several methods for 
measuring SoH. Model-based, as well as empirical, methods 

are popular for determining SoH Williard et al. (2011) give 
a brief survey of some of these techniques. Hu et al. (2011) 
develop a multi-scale model for determining SoC and SoH 
based on an Extended Kalman Filtering technique. He et al. 
(2011) demonstrated an empirical model based on simple 
regression equations and optimal updating techniques. Le et 
al. (2011) show some very promising results using empirical 
techniques for the determination of SoH. A comprehensive 
presentation from Salman, et al. (2011) discusses what GM 
Research has been doing in all BPHM fields. Similarly, 
Klein (2011) gives a good overall perspective of BPHM. 

Typically, aviation batteries have an end of life defined as 
when the measured capacity is at 80% of the declared 
capacity. Capacity for this definition is determined at a rate 
of discharge that would result in the rated capacity of a new 
battery (1C) at room temperature. In most existing batteries, 
the capacity can only be measured in the lab. This requires 
the battery to be removed prior to testing and replaced 
which testing is completed.  The goal of a SoH calculation 
is to determine the battery degradation without removing the 
battery from the installation.  

To mitigate uncertainty we intentionally load stress the 
battery to compare the impedance of the cells at the present 
time against the impedance of those same cells when they 
were new.  

The basis for our SoH estimation is a multi-stage load test 
built into the battery. When the assembly of a battery unit is 
complete, an initial impedance test is conducted. This initial 
impedance is saved in the BMU and used as the baseline for 
the SoH calculations for the life of the battery unit. 

SoH tests are initiated automatically by the BMU at regular 
time intervals or at an end-of-charge event. The accuracy of 
the SoH results is increased when the battery SoC is at a 
known level; therefore the SoH test is run after every 
completed battery charge.  

The BMU initializes the module level impedance 
calculation by loading modules at a discharge rate designed 
to completely deplete the battery within 1 hour, or a 1C 
discharge rate. The individual module voltages and currents 
are logged. The BMU then initializes a high rate discharge 
for all modules. Again the module voltages and currents are 
logged. The voltage and current deltas are calculated and 
compared to determine the modules impedances. 

Cell impedance can be influenced greatly by temperature 
therefore the cell impedances must be scaled by a 
temperature scaling factor so the measured impedance can 
be correlated to the initial impedance measurement. This 
temperature factor polynomial was experimentally derived 
and is of the form: 

𝑇𝑓 =  
�𝑎+𝑇∗(𝑏+𝑇∗𝑐)�

�1.0+𝑇∗�𝑑+𝑇∗(𝑒+𝑇∗𝑓)��
   (2) 
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Where 𝑇𝑓  is the temperature scaling factor, T is the 
measured temperature and a, b, c, d, e and f are 
experimentally determined coefficients. 

A ratio of the temperature scaled module impedances to the 
initial module impedances, 𝑍𝑑𝑐_𝑟𝑎𝑡𝑖𝑜, is calculated and used 
as an input into another polynomial that was also 
experimentally derived.  

The SoH polynomial is shown in (3). 

 𝑆𝑜𝐻 =  �𝑔+𝑍𝑑𝑐_𝑟𝑎𝑡𝑖𝑜∗ℎ�

�1.0+𝑍𝑑𝑐_𝑟𝑎𝑡𝑖𝑜∗�𝑖+𝑍𝑑𝑐_𝑟𝑎𝑡𝑖𝑜∗𝑗��
  (3) 

Where 𝑍𝑑𝑐_𝑟𝑎𝑡𝑖𝑜 is the ratio of temperature scaled impedance 
to initial impedance and g, h, i and j are experimentally 
determined coefficients. 

Combined with boundary conditions and weighted data such 
as temperature historical measurements, the results have 
correlated well to the actual SoH of the battery modules.  

4. RESULTS 

Before discussing the results, the legends in the following 
figures will be described.  The BMU has an on board 
embedded system which logs and reports the SoC, as 
measured by the Securaplane system, over time.  This 
corresponds to the “BMU Reported SoC” seen in the graph 
legends.  A precision external data logging system was 
connected to the BMU to measure the voltage across and 
current into a given module.  These voltages and currents 
were used to calculate the “Measured SoC” seen in the 
graph legends.   The % error from the graph legends 
corresponds to the absolute value of the percent error 
between the “BMU Reported SoC” and “Measured SoC” as 
seen in equation 4. 

% 𝐸𝑟𝑟𝑜𝑟 =  �"BMU Reported SoC "− "Measured SoC" 
"BMU Reported SoC"

� (4) 

The two figures (Figure 2: Module A - SoC and Percent 
Error and Figure 3: Module B - SoC and Percent Error) 
show how our SoC algorithm tracks the measured SoC for 
two individual modules, A and B. The algorithm is 
generalized for all modules and as such the percent error 
does vary between modules; this accounts for the error 
discrepancy between module A and module B when 
comparing Figures 2 and 3.  

Also of note is the jump in the BMU reported SoC data at 
the end of the data sets. This is the aforementioned 
algorithm calibration when the end-of-charge is detected. 
The error between the final SoC value and 100% arises 
when a 0% SoC is assumed when the module is not actually 
at a 0% SoC value. This calibration can be seen in the 
Figure 2 and 3 for both modules A and B. 

 
Figure 2: Module A - SoC and Percent Error 

 
 

 
Figure 3: Module B - SoC and Percent Error 

 
Also included in the figures is the absolute value of the 
percent error for modules A and B. For both modules this 
error is under 2% for the majority of the charge cycle. The 
rise in percent error near the end of the graphs occurs as all 
modules transition to the constant voltage portion of the 
charging cycle and the charge current decreases. Due to the 
dynamic range of current required to be measured, our 
BMU inaccurately measures very low current values. This is 
the source of the error during the constant voltage charge 
mode. 

The “ping-pong” test results for module A are shown in 
Figure 4: Module A - "Ping Pong" Test Results. This figure 
shows the robustness of the algorithm over time with 
varying levels of current charge or draw. A divergence 
between the measured SoC and the BMU reported SoC can 
most easily be observed at 1:15, 2:15 and 3:15 on the figure. 
The BMU is required to measure a large current range; ones 
of amps to hundreds of amps.  The divergence in Figure 4 is 
due to the BMU’s inaccuracy measuring currents on the 
lower end of the measurement spectrum. To verify the 
accuracy of the algorithm an additional dataset was created 
and plotted which compensates for the incorrect current 
readings of the BMU.  
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Figure 4: Module A - "Ping Pong" Test Results 

SoH testing on substantially depleted battery modules has 
not yet been completed.  However initial test results shown 
in Figure 5: Module B SoH show relatively stable readings 
that establish a downward trend. The SoH progressing lower 
as the battery is aged is congruent with the expectation. 
Earlier results (prior to test number 26) show inaccuracies in 
the temperature scaling coefficients that are shown to be 
resolved from test 26 onwards. These initial results are 
promising; however more exhaustive testing is required to 
validate our SoH algorithm. 

 

 
Figure 5: Module B SoH 

 

5. FUTURE WORK 

The practical implementation of high accuracy SoC and 
SoH algorithms in embedded real-time battery systems has 
proven quite challenging. Such implementations require 
both measurement accuracy and robustness to 
environmental effects. The most significant challenge has 
proven to be developing accurate scaling factor calculations 
for consistent SoH results and having all necessary 
parameters accurately measured by the BMU for precise 
SoC results. Improvement to the algorithm’s accuracy and 
robustness can be attained through further refinement of 

these parameters and increased hardware sensitivity and 
characterization. 
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ABSTRACT 

The paper presents firstly an overview of various 

definitions/concepts of energy efficiency and their related 

applications in different contexts, especially in industrial 

sectors. Each definition/concept is analyzed and 

recommended for different decision-making levels. Then a 

multi-level approach is described in detail for evaluating 

energy efficiency index of an industrial process. In addition, 

the paper discusses potential prognostic approaches in order 

to forecast energy efficiency index by underlining 

difficulties and opportunities to implement such approaches. 

Finally, a specific example based on an air-fan system is 

introduced to illustrate energy efficiency concepts and the 

added value of the prognostics to predict energy efficiency 

evolution. 

1. INTRODUCTION 

Today, energy is the most concerned issue in economic 

growth (Jollands et al., 2010; Steuwer, 2013; Andrea 

Trianni, Cagno, Thollander, & Backlund, 2013). Energy 

resources are nonetheless limited and become more and 

more costly while manufacturing activities or operation of 

complex products (Lambert, Hall, Balogh, Gupta, & Arnold, 

2014; Urban & Ščasný, 2012) may involve significant 

energy consumption. Energy optimization of plants/centers 

and mobile systems (for example, industrial processes, 

manufacturing, computer data centers, transport, weapons 

systems and vehicles) is therefore an important issue to be 

solved in order to keep economic competitiveness and to 

reduce environmental impacts (Al-mofleh, 2009). This 

should be primarily reflected on by improving energy 

efficiency (EE), i.e. reducing the amount of energy required 

to provide products and services. Indeed, energy efficiency 

is considered as a key to sustainability (Oikonomou, 

Becchis, Steg, & Russolillo, 2009), industrial ecology 

(Boardman, 2004), and circular economy (Dixon, 

McGowan, Onysko, & Scheer, 2010; Wiel, Egan, & delta 

Cava, 2006).  

To support these sustainability issues, Europe has set 

ambitious goals to promote the development of new 

methodologies, new technologies or disruptive technologies 

that can improve the energy efficiency and reduce energy 

costs by up to 20% in the most energy-intensive industrial 

sectors  (European Commission, 2013). 

To face with this challenge, one of powerful solutions is to 

implement the energy efficiency as an important indicator 

for various decision-makings related to monitoring, 

operation management, modernization and maintenance 

plans, etc. It is important to note that the decision-makings 

are essentially based on age or/and reliability/remaining 

useful life  of components/system (Do Van, Voisin, Levrat, 

& Iung, 2013; Nicolai & Dekker, 1997; Wang, 2002). To be 

able to implement energy efficiency in decision-makings, 

the evaluation of energy efficiency is essential. This is the 

first objective of the present paper.  

Moreover, it is shown that Energy Efficiency Performance 

(EEP) is an upheaval during process-lifetime (Hasan & Arif, 

2014; Zhou & Ang, 2008). Predicting the degradation 

behavior of energy efficiency of components/systems is 

therefore crucial. It is however not very well founded. In 

fact, prognostics approaches have been basically used for 

predicting the remaining useful life (RUL) of 

components/systems (Byington, Roemer, Kacprzynski & 

Drive, 2002; Saha, Goebel, Poll, & Christophersen, 2007; 

Sankararaman, Daigle, Saxena, & Goebel, 2013; Saxena, 

Celaya, Saha, Saha, & Goebel, 2010). Enlarging this scope 

of prediction, several variants have been proposed to  

predict some other kinds of system features such as health 

or performance of components/systems (Cocheteux, Voisin, 

Levrat, & Iung, 2010). In that way, the second objective of 

the paper is to propose a new concept for the EE prediction. 

Thus, with regards to this global EE optimization and 

forecasting context, an overview of energy efficiency is 

presented in Section 2. The assessment of EE indicators in 

the case of industrial applications is also investigated. Then 

Section 3 focuses on describing potential prognostic 

approaches for EE prediction. An air-fan system is 

Anh Hoang et al. This is an open-access article distributed under the 

terms of the Creative Commons Attribution 3.0 United States License, 

which permits unrestricted use, distribution, and reproduction in any 

medium, provided the original author and source are credited. 
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introduced in Section 4 as an example to illustrate not only 

the proposed EE concepts but also the added value of 

prognostics implementation. Finally, Section 5 concludes 

the paper and prospects to prognostic-based energy 

efficiency in future works. 

2. CONCEPTS OF ENERGY EFFICIENCY 

2.1. General concepts 

Over the past decades, many governments and industrialists 

have focused on energy efficiency (EE) assessment which 

can be used for decision-making on strategy and priority 

actions in order to reduce energy consumption, energy 

demand and environmental problems.  

For this assessment, EE is expressed as using less energy to 

produce the same amount of services or useful outputs. In 

that way, EE equation is formulated as: 

        

      

Useful work of a process

Energy input into a process
 (Patterson, 1996). It means 

that a smaller amount of energy input is needed for the same 

useful produced output, or that a higher output is provided 

with the same energy input. In this way, energy efficiency 

can be used in a very wide range of applications and for 

different levels of features (Hilke & Lisa, 2012) in terms of 

energy demand sectors (buildings, appliances, transports, 

industries, services, etc.), sizes (on a local, national, 

international or global scopes), stake-holders (decision-

makers, energy providers, end-users, energy services 

companies, energy audit services companies, or particular 

equipment). For example, EE has already been investigated 

in several sectors such as industries (Boyd, 2014; Fleiter, 

Fehrenbach, Worrell, & Eichhammer, 2012), transport 

(Parry, Evans, & Oates, 2013; Zou, Elke, Hansen, & Kafle, 

2014), and buildings (Centre, Cddex, & April, 1992; 

Chirarattananon, Chaiwiwatworakul, Hien, Rakkwamsuk, & 

Kubaha, 2010). Nevertheless, for each sector (Darabnia & 

Demichela, 2013; Virtanen, Tuomaala, & Pentti, 2013), 

different visions of EE concept have been introduced.  

In fact, there are many ways to quantify energy efficiency 

level of a typical machine, factory or country. The well-

known concept of “energy efficiency indicators” or “energy 

efficiency index” (EEI) is often used basically with the 

evaluation of energy efficiency. Indicators of energy 

efficiency may provide the connection between the energy 

consumption and certain relevant economic and physical 

outputs (Salonitis & Ball, 2013). Four following categories 

of EEI: thermodynamic, physical-thermodynamic, 

economic-thermodynamic, and economic indicators have 

been mentioned by many authors: 

Thermodynamic indicators: They are measured as the 

energy dissipated or consumed by the system compared to 

the amount of energy in the resource processed. Both input 

and output are measured in thermodynamic units (e.g., GJ of 

delivered energy consumed in the production coke for 

coking coal). The importance of efficiency comes from the 

thermodynamic laws, namely the conservation of energy 

and the irreversible energy conversion to uselessness. By 

decreasing the energy loss in the processing, the useful 

energy transformed from energy input is increased. Thus, 

the thermodynamic definition of energy efficiency can be 

expressed as follows: 
          

  

Useful work or energyoutput

Energy input

(Jørgensen, 2010; Udphzrun, 2001). For example, the 

energy efficiency of a steam boiler is calculated as the ratio 

of the energy amount of steam output to the input heat 

needed to boil the water inside. In the case of motors, it 

should be the mechanical energy output divided by the input 

electricity. This type of EE indicators should not be applied 

to unknown thermodynamic characteristics or to the case in 

which there is no or poorly-monitored process because of 

missing information about energy loss. Relatively, 

thermodynamic indicators are not the best choice at the top 

level of national and international energy. According to 

(Tanaka, 2008), thermodynamic energy efficiency can be 

used only at the device level, end-use technology or energy 

conversion technology. 

Physical-thermodynamic indicators: This kind of 

indicators has been introduced to avoid the limit of 

thermodynamic indicators in systems with output units that 

are uncountable or specific energy format like systems in 

transport or agriculture. In fact, the output is evaluated in 

physical units while the input is in energy. In this way, the 

energy efficiency can be evaluated as  follows: 

        
 

  

Useful physical work output

Energy input
 (Ang, 2006; Bor, 2008; 

Giacone & Manco, 2012). It is important to note that the 

units of physical output have to be expressed in the designed 

units of the system capacity (tonnes of cement, passengers, 

kilometers, vehicles, the number of rooms, etc.). Calculated 

in either aggregated or disaggregated methods, these 

indicators directly stick to the technical power flow. As a 

consequence of various physical outputs, multiple forms are 

used for physical-based indicators such as energy 

intensities, specific energy consumption, etc. In spite of 

difficulties in quantifying the higher level of aggregated 

process, the physical-thermodynamic indicators can be 

applied to a variety of levels ranging from a very simple 

component level to a sector level (Farla & Blok, 2000).  

Economic-thermodynamic indicators: These indicators 

are hybrid indicators, in which the energy input is measured 

in thermodynamic units and the output is measured in 

market prices ($). The market prices are measured by the 

gross domestic product (GDP) or the market value of all 

final goods and services produced within a country or a 
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sector (Gavankar & Geyer, 2010; Rosenquist, McNeil, Iyer, 

Meyers, & McMahon, 2006; Scofield, 2009; Tsvetanov & 

Segerson, 2013). In this case, any difference in the output or 

input number can be affiliated to economic, social behaviors 

or calculation methods. The information of technical 

process is unnecessary and the energy output number is 

conveyed through energy price factors. The “Energy:GDP” 

increments may be misunderstood as the positive result of 

energy efficiency investment. But economic-thermodynamic 

indicators can be calculated by multiplying thermodynamic 

indicators with the economic value of output units. Thus, 

these indicators can be applied to high levels of economic 

structures such as the corporate, sub-sector, sector and 

national levels.  

Economic indicators or monetary indicators:  These 

indicators are used to measure changes in energy efficiency 

purely in terms of market values. They are named as the 

energy to GDP ratio, energy coefficient or energy elasticity. 

Economic indicators are given as the ratio of energy 

consumption in an energy unit to an economic activity in a 

monetary unit 
      

    

dollarized of output

dollarized Energy input
 (Ang & Xu, 2013; 

Gvozdenac-Urosevic, 2010; Worrell, Price, Martin, Farla, & 

Schaeffer, 1997; Wu, Chen, Bor, & Wu, 2007). Sometime, 

these indicators would be convertible from their physical-

thermodynamic indicator counterparts by simply 

multiplying the energy input with appropriated added 

energy prices. But, in another way, these economic 

indicators are just seen as a purely economic efficiency 

indicator rather than as an EEI because they are fully 

measured in economic values. This type of indicators should 

not be used in monitoring EEP systems. The economic 

indicators are often used when energy efficiency is 

measured at a high level of aggregation (international, 

national and sector levels), where it is impossible to 

characterize the output by a single physical unit.  

The EEI concepts previously detailed have been used in a 

number of studies as the root definition and referred to by 

various names like thermal energy efficiency (IEA, 2008), 

economic ratios, techno-economic ratios (Gavankar & 

Geyer, 2010), energy intensity or energy efficiency intensity 

(Hsu, 2014), Energy Efficiency Design Index (Lloyd’s 

Register, 2012), or benchmarks for energy efficiency (D. 

Phylipsen, Blok, Worrell, & Beer, 2002). 

From these definitions, it is possible to characterize also 

EEIs with regards to the abstraction level of decision-

makers mainly in terms of energy consumers and usage 

functions. In that way, we propose a classification of EEIs 

based on their potential applications (Figure 1). 

 

In Figure 1, it is illustrating that the more the energy 

consumers, the more chance and benefits energy efficiency 

investment brings about. Therefore, opportunities and 

challenges of energy efficiency applications at industrial 

sectors have to be addressed. 

2.2. Concepts of EEIs for industrial sectors 

As multiple factors are affecting energy efficiency 

performance of industrial sectors (process complexity, 

internal energy transformations various products and 

production rates, etc.), quantifying movement of energy 

efficiency needs explicit definitions and energy efficiency 

measurement.  

In industrial sectors, for measurement and management 

purposes, Specific Energy Consumption(SEC) is the most 

common EEI (“ODYSSEE database,” 2010; G. J. M. 

Phylipsen, Blok, & Worrell, 1997; Sudhakara Reddy & 

Kumar Ray, 2011). SEC is the ratio of the energy 

consumption to the useful physical output of a process or 

activity. By multiplying the physical unit by its economic 

value, the monetary unit can be created and the effect of 

economic factors could be concerned. When the output is 

measured in common physical units, an estimate of physical 

energy intensity is obtained (e.g. TJ/tonne). The total energy 

consumption in an industrial process is the summation of all 

types of energy such as electricity, gas, coal, and oil. The 

SEC for industrial processes is expressed as follows: 

Consumed

out

E
SEC

P
  (1) 

Where: ConsumedE  is the used total energy input, outP  is the 

process output in physical units. 
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Figure 1. Potential applications of energy efficiency 

indicators depending on levels of decision-makers and 

aggregation  
 

European Conference of the Prognostics and Health Management Society 2014

149



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014 

4 

When the output of industrial processes is uncountable or 

invisible (for example, electrical power distribution system 

or production process are pending but auxiliary system still 

running and consuming energy), then SEC is the ratio of 

energy inputs to energy outputs. It will be the inverse 

formula of thermodynamic energy efficiency. In this case, 

the difference between the input and the output is the total 

energy losses during equipment operation or an individual 

task of processes.  

Consumed In

Out Out

E E
SEC

P E
   (2) 

Where: InE is the necessary energy input used by industrial 

processes, OutE is the useful energy output delivered for 

industrial processes. 

In a typical industrial process, there are at least several 

factors affecting the EEI during its life. These factors could 

be classified into: the structure or function of the process 

and facility; management, operation methods and 

maintenance plans; energy categories; raw materials; ages of 

equipment; and production plans or load profiles. These 

factors change over time and depend on other parameters. 

Thus, it is important to discuss methods of EEI evaluation 

or EEP during its life-time for industrial processes. 

2.3. Assessment of EEIs in industrial applications 

For focusing on the assessment step, it is necessary to divide 

the study of energy efficiency into several different 

abstraction levels. Thus potential applications of EEIs 

regarding to aggregation/abstraction levels, are the most 

important factors that affect energy efficiency at each level 

and the inter-level interactions. They need to be detailed and 

discussed. 

2.3.1. At the component level      

According to the evaluation of changes in the efficiency of 

production equipment or a particular production process, the 

lower the disaggregation level can be analyzed, the more 

accurate the measurements of achieved technical energy 

efficiency improvements can be improved. Applying the 

component, process unit or sub-system concept offers a way 

to divide the energy use in an industrial system into smaller 

parts. A process unit can be considered as the smallest 

component of an industrial energy system (Schenk & Moll, 

2007). A single process/component unit is based on the 

function of the industrial process, for example, cooling, 

heating, and packing or air compressors. Input variables of 

operation conditions are classified into physical indicator 

(PI) and nonphysical indicator (NPI) categories. Total 

energy input 
t

iE , and total output 
t

iP  of one component i at 

time t (the time unit could be one hour, one day, one month, 

etc) can be expressed as: 

( , )t t E E

i i i iPI PIE f N  (3) 

( , )t t P P

i i i iPI PIP g N  (4) 

( , )

( , )


t E E

t i i i

i t P P

i i i

PI PI

PI P

f
C

g N I

N
SE  (5) 

Where:  

- E

iPI is a set of physical indicators affecting energy 

consumption of component i such as energy 

transformation, working duty cycles, available capacity, 

deterioration levels of elements, quality of raw materials, 

etc; 

- E

iNPI is a set of nonphysical indicators affecting energy 

consumption of component i such as ages, production 

planning, product programs (load profiles or process 

productivity), human skills, etc; 

- P

iPI  is a set of physical indicators affecting output of 

component i such as supplier availability, waste 

products, product types, etc; 

- P

iNPI is a set of nonphysical indicators affecting output 

of component i such as storage, transport stations, etc. 

It should be noted that t

if  and t

ig  are the functions of PIs 

and NPIs. These functions can be built up based on the data 

collected from the system or the understanding of the 

dynamics of the system. Both PIs and NPIs should be 

specified before applying the aggregation method to 

calculate energy inputs and useful outputs for each 

individual component. The PIs and NPIs should be 

collected. After determining and filtering processes to 

identify clear trends indicators, the EE threshold can be set 

from the requirement or field data. In that way, EEP for 

separated components can be foreseen. 

2.3.2. At the function/system level 

Together with using EEIs for separated components, the 

EEP of the global system should be taken into account. It 

has been shown that each component has its own energy 

profile depending on its operation modes (stop, on-load, off-

load, standby, etc.) and operation modes may be modified 

by system functions. During the operation process, the EEP 

at the function/system level may not be equal to the total 

value of all components. Many studies have shown that 

energy consumption varies with product capacity. 

Moreover, the system function has a strong impact on EEP 

and operation sustainability. The biggest challenge is to 

compute the volume of outputs of largely diverse products 

produced by industrial processes. For example, it is widely 

accepted that ‘tons of steel’ is a well-known measure of 

capacity and real output in the steel industry. But the output 

evaluation of a beverage factory by summing liters of beer, 

alcohol, mineral water, and nutria drink, is inaccurate. The 
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aggregation method to add multiple forms of outputs should 

be considered. Converting various physical output units into 

a common unit is commonly applied. In this case, it is 

needed to consider the weighting factor of separate 

subsystems or unit processes to produce one output type as 

Eq. (6). 

.t t t

i iP P   (6) 

Where: tP  is the total system output at time point t. t

i is 

the output weighting physical factor of the separated 

disaggregated component i at time point t. 

In comparison with Eq. (4), the value of t

i  is a function of 

total PIP and NPIP, which affect the role/duty or position of 

components in production sequences. 

At the component or separated process/sub-system level, the 

individual activities and processes in the complex process 

have to be disaggregated. The energy inputs can be simply 

summed to generate an aggregate energy indicator. But, in a 

general system, load profile and operation/process functions 

decide the available productivity, operation mode of 

production equipment and influence the energy 

consumption. In this case, in computing energy input, 

integration of load profile into function factors is highly 

recommended. The total energy consumption is defined by 

aggregating the individual energy consumption multiplied 

by the corresponding weighting energy factor as Eq. (7).   

.t t t

i iE E   (7)  

Where t

i  is the energy weighting energy factor of the 

separated component i at time point t. 

The energy weighting energy factor t

i is based on the 

energy used within one complete component. At the 

function/system level, t

i is deeply depended on PIE and 

NPIE of the structure of function/system production 

sequence. Together with weighting factors of outputs, the 

impact of weighting factors of each component can be 

shown clearly in comparison with other components. The 

higher the values of t

i  and t

i , the higher the contribution 

of component i. With the Eq. (6) and (7), formula (1) can be 

changed to:  

.

.

t tt
i it

t t t

i i

EE
SEC

P P










 



 (8) 

By conducting energy measurement, the total energy input 

and total system output at the global system level can be 

evaluated. The dependence of each component on the others 

ones and function/system process can be shown in Figure 2. 

 
Nevertheless, these two types of weighting factors are 

defined by the share of each component in the total of 

contribution of the function/system at the upper level of 

aggregation. They are used to get the weighted aggregate. 

The function/system factors with characteristics like flexible 

organizations of process sequence, multi-functional 

production should be taken into account. The movement of 

weight factors during time-line depends on the contribution 

of components to the global system. Thus, weight factors of 

components will not only influence EEIs and EEP at 

function/system levels, but also point out the critical 

components in the archived EEI target. 

Based on historical data and measured parameters via 

conducting energy audit or power management system, 

EEIs at current time and EEP can be reviewed. Industrial 

system performances with a variety of system functions, 

flexible processes and complex equipment are one main 

target to apply prognostics. Thus predicting the movement 

of EEIs or EEP is an issue to be supported by prognostics 

approaches. 

3. PROGNOSTIC APPROACHES FOR ENERGY EFFICIENCY 

3.1. Prognostics conventional approaches: an overview 

With the demand to anticipate the failure of a 

component/system, prognostics concepts have been 

introduced and successfully applied for different application 

fields (Muller, Suhner, & Iung, 2008; Si, Wang, Hu, & 

Zhou, 2011). The most obvious and widely used prognostic 

consists in predicting how much time is left before a failure 

occurs given the current condition, past and future operation 

profiles. The time left before an occurring failure is usually 

called remaining useful life (RUL). To support this 

prediction, various approaches have been developed from 

experience-based prognostics to model-based prognostics. 

The required information (depending on the type of 

prognostics approach) include: engineering model and data, 

failure history, past operating conditions, current conditions, 

identified fault patterns, transitional failure trajectories, 

maintenance history, system degradation and failure modes. 
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Figure 2. Aggregation approach to calculate EE parameters 

for the upstream level from separated component levels   
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The main prognostics approaches that have successfully 

been applied on different types of problems are: 

- Experience-Based Prognostics. Use statistical reliability 

to predict probability of failure at any time (Dragomir, 

Gouriveau, Dragomir, Minca, & Zerhouni, 2009; Muller 

et al., 2008); 

- Evolutionary/Statistical Trending Prognostics. 

Multivariable analysis of system response and error 

patterns compared to known fault patterns (Muller et al., 

2008; Si et al., 2011; Yang, Yu, & Cheng, 2007); 

- Data-driven prognostics. These approaches are used to 

determine the remaining useful life by trending the 

trajectory of a developing fault and predicting the 

amount of time before it reaches a predetermined 

threshold level (Goebel, Saha, & Saxena, 2008; 

Sankararaman & Goebel, 2014). The strong points of 

data-driven techniques are their ability to link with 

recognized system behavior by experience methods and 

simple in installation and implementation. 

- Model-Based (Physics of Failure Based Prognostics). 

These approaches need fully understanding of system to 

be expressed by mathematic functions or existing 

accurate mathematical models (Dai, Das, Ohadi, & 

Pecht, 2013; Fan, Yung, & Pecht, 2014; Medjaher, 

Skima, & Zerhouni, 2014). The accuracy of model and 

also the provided parameters of variables decide the 

precision of technical approaches. The main advantage 

of model-based approaches is reusing of model and 

flexible in configuring input data. 

3.2. Prognostic formulation method for energy 

efficiency: a generic approach 

As mentioned above, the existing prognostics concepts 

concern basically with the prediction of RUL or the failure 

date. Thus, they seem difficult even no longer to be applied 

for energy efficiency prediction since the energy efficiency 

behavior of a machine may be independent with its failure 

behavior. In this context, prognostic approaches should be 

used to predict the potential evolution of EEI of a machine, 

which is directly linked to its energy efficiency behavior, 

given the current condition, past and future operation 

profiles. Based on the evolution of EEI of a machine, it is 

possible to determine the time when EEI reaches its critical 

value related to the energy efficiency property of the 

machine. In this way, we propose an extension of RUL, 

namely REEL, in the framework of prognosis-based EE as 

follows: 

Remaining energy-efficient lifetime (REEL) is defined by 

the time left before a machine loses its energy efficiency 

property, which is technically and/or economically fixed in 

advance, given the current condition, past and future 

operation profiles. Mathematically, REEL can be expressed 

as:  

   { :  | }t T t

Threshold ThresholdREEL t E T SEC SEC SEC SEC     (9) 

Where: T is a random variable; E[T] is mathematic 

expectation of T and SECThreshold  is an energy efficiency 

threshold as Figure 3. 

  
Figure 3. EE deterioration behavior and REEL prediction 

effect on decision-making  

It cannot be denied that there are many difficulties to control 

global EEP because the system environment is changing. EE 

and system functioning mode are dependent on product flow 

and component ageing continuously modifies the system 

characteristics. There is a lack of decision support when it 

comes to questions of procuring, distributing and accounting 

for energy in production systems. Decisions in planning and 

operating production systems are mainly based on 

traditional metrics such as cost, quality and flexibility and 

rarely consider energy efficiency (Apostolos, Alexios, 

Georgios, Panagiotis, & George, 2013; Seow & Rahimifard, 

2011; Thiede, Bogdanski, & Herrmann, 2012; Weinert, 

Chiotellis, & Seliger, 2011). New forecast REEL situations 

can be seen in the vision deployment of combination the 

current degradation and EEP deterioration trends.  

With prognostic approach for EE, the EEP will be illustrated 

clearly and REEL can be predicted for various scenarios of 

actions plan. The predicted development of REEL scenarios 

will be used as aided-decision-making factor to select most 

efficient plans. If predicted EE value is not acceptable, 

various corrective actions such as replacement, update, and 

maintenance must be conducted at any identified critical 

level of system. In the other case, the value of EEI value of 

system is considered as under EE threshold and the 

remaining efficient life is long enough for securing 

functions of system, correction action is not necessary 

taken. The process will be repeated when new monitored 

data is updated. The outcomes of prognostic analysis 

combined with a database of traditional commercial 

operation principal will provide the different references of 

deciders. 

From this definition, it is now needed to discuss on how 

prognostic approaches can be applied for predicting REEL 

at component level and function/system one. 

3.2.1. REEL at component level      
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A small number of studies  already mentioned about energy 

aspect with the common issue-energy consumption 

(Balaban et al., 2013; Chiach, Chiach, Saxena, Rus, & 

Goebel, 2013) and highlight prognostics as potential tool for 

prediction of energy demand. But for evaluating the REEL 

of a component, both the energy consumption and the 

output for future operation profiles must be estimated. 

However they depend on several physical and nonphysical 

indicators, see again Eq. (3) and (4). This means that these 

physical and nonphysical indicators must be firstly 

identified and evaluated. Model or experience based 

techniques (Fleiter et al., 2012; Salta, Polatidis, & 

Haralambopoulos, 2009) may be secondly used to evaluate 

the energy consumption at and output from the determined 

physical and nonphysical indicators.  

In general, nonphysical indicators are usually known in 

advance and physical indicators, which may depend on 

component characteristics, related environment conditions 

and nonphysical ones, are often unknown. The deterioration 

evolution of these physical indicators may be predicted by 

prognostic approaches mentioned in the previous section (B. 

lung, M. Veron, M.C. Suhner, 2005; Muller et al., 2008). 

The proposed generic approach is shown in Figure 4. Only 

at this level, the EEP of component without the impact of 

other component or function of system can be evaluated 

directly. Any correction action at this level can help the 

component restore the EEI of individual component. Its EEI 

will be reduced under the EEThreshold or as equal the value of 

launching time. 

3.2.2. REEL at function/system level      

As mentioned in Section 2.3, to evaluate the REEL of a 

function/system, we need not only the information (energy 

consumption, output, REEL) related to all components but 

also the information related to function/system such as 

system structure, dependencies between components, 

production schedule, support system, operation condition 

and management, The link between the global energy 

consumption, the global output and this information are 

crucial. In fact, as proposed in Section 2.3 these 

relationships are represented by the weighting energy 

factors and the weighting physical factors. In this way, 

based on the results at component level, to predict the REEL 

at function/system level, the weighting energy factors and 

the weighting physical ones must be estimated. Figure 5 

illustrates the REEL prediction process for a 

function/system. 

The implementation of the REEL methodology both at the 

component and function levels need now to be illustrated in 

order to show its feasibility and added value. At this level, 

the optimization of operation or function system has strong 

impact in the energy consumption of each component. An 

efficient equipment could have a strong weighting factor 

and have a high opportunities in EE improvement at system 

level, caused of optimized working chain process, lack of 

skills of operator or low awareness of manager (A. Trianni 

& Cagno, 2012). 

 

Figure 5. REEL Prediction process at function/system level 

4. REEL EXPERIMENTATION TO A SPECIFIC 

EXAMPLE  

For illustrating the proposed concepts for energy efficiency 

and related evaluation/prediction approaches, it is chosen an 

industrial sub-system which is composed of a motor 

associated to a fan (Figure 6). The electrical motor-drive 

converts electrical power into mechanical power (via a 

rotating shaft connect to mechanical load). The electrical 

motor-drive has a big amount percentage of total power 

consumption in industrial applications.  

 
Figure 6. Basic components of fan system  

Figure 4. REEL Prediction process at component level 
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The proposed evaluation/prediction is applied at both 

component and function/system level. 

4.1. SEC at component level 

For reviewed air-fan system, we are considering the EE 

effect of three main components which are the control 

system, the electrical motor and the centrifugal fan. The 

power and air flows of the system are shown in Figure 7. 

 
Figure 7. Energy flow and Air flow output of fan system 

 

According to the disaggregation method, the detailed 

mathematic function of EEI at component level have to 

include both physical and thermal laws in time point t as 

below: 

1. Centrifugal fan: Centrifugal fan is used for 

applications requesting low noise and vibration. It can 

produce high air pressure, lower noise than axial fan. Fan 

consumes transformed input energy and converts it to the 

air-flow power. Fan efficiency is the ratio between the 

power transferred to the air stream and the mechanical 

power delivered by the motor. In that way, SEC of 

centrifugal fan t

MSEC  is the ratio of electrical input power 

to air-flow power output: 

t

t F in

F t

F out

E
SEC

E





  (10) 

Where: 
t

F inE  is mechanical input of fan and 
t

F outE  is air-

flow power of drive system.  

With the direct connection, an adjustment of fan speed can 

cause different airflows and pressures or performance 

levels. According to fan law, power input varies with the 

cube power while air flow rates vary in direct proportion to 

the rotational speed of the fan (International Energy agency, 

2011). The energy efficiency of the centrifugal fan is shown 

in Figure 8a. 

2. Electrical motor: An electric motor converts 

electricity into mechanical power, usually in the form of a 

shaft delivering torque at a defined rotational speed to an 

application machine. SEC of motor 
t

MSEC is the ratio of 

electrical input power to mechanical output power.  

t

t M in

M t

M out

E
SEC

E





   (11) 

Where: 
t

M inE   is electrical input and depends on different 

physical and nonphysical indicators. However, in this work, 

it is assumed that 
t

M inE   depends only on the speed of 

motor. More precisely, by connected in serial with 

centrifugal fans, that power input 
t

M inE  and power output 

t

M outE   are proportional with the cube power of the 

operating speed of motor (U.S. Department of Energy 

Energy Efficiency and Renewable Energy, 1989). This 

means that SEC of the motor depends on its operating 

speed. The energy efficiency of the motor in function of its 

speed is shown in Figure 8b. 

It is important to note that the operating speed of the motor 

may depend on different physical and/or nonphysical factors 

such as deterioration of the bearing, temperature, control 

strategy, etc. In this work, only the deterioration of the 

bearing is considered. Based on the condition/deterioration 

level, motor speed is set, for example, when the 

deterioration of bear increases, the speed of motor should be 

reduced due to a limited noise level constraint. It is assumed 

also that the motor is considered as failed if the deterioration 

level of the bearing reaches a limit level, usually called the 

failure threshold. In this study, this threshold is equal to 

200. To predict the deterioration behavior of the bearing, a 

model-based prognostic is implemented with noise and 

vibration level as the main indicators of bearing health 

(Fernández-Francos, Martínez-Rego, Fontenla-Romero, & 

Alonso-Betanzos, 2013; Satish, Member, Sarma, & 

Member, 2005). More precisely, stochastic Gamma process 

is used to model the deterioration behavior of the bearing. 

The illustration of the bearing deterioration according to 

physical vibration signal and its corresponding speed are 

shown in Figure 9.  

 

3. Control system is adjusting working-point of fan 

according to demand of fan or control strategies (noise, 

positive pressure or negative pressure…). We are 

considering controller with variable-speed drive (VSD) and 

limitation of vibrations noise. So that, speed of motor will 

be reduced when the bearing deterioration level is 
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Figure 9. Illustration of the motor deterioration and 

its corresponding speed 
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increasing. We estimate the SEC of control system
t

CSEC  

as: 

t t

t C in Electrical in

C t t

C out C out

E E
SEC

E E

 

 

 

 

(12) 

Where: 
t

C inE  is electrical input and 
t

C outE  is electrical power 

output of control system. 
t

Electrical inE  is the electrical input for 

the air-fan system during at time t. 

It is show that the energy efficiency of VSD depends 

principally on the operating speed of the motor (Rooks & 

Wallace, 2004).  The energy efficiency of VSD in function 

of the speed of the motor is shown in Figure 8c. 

 

4.2. SEC and REEL evaluation at function/system level 

As discussed above, the energy efficiency performance at 

function/system level is the most important issue. In fact, it 

is possible to show the reusability of SEC concept for 

function/system. For the air-fan system, two cases are 

considered: 

- If we consider that useful output is the air-flow power. 

EE of fan system is defined by the ratio of power transferred 

to the airstream to the power input to the fan. the SEC of the 

air-fan system has to be calculated as: 

1

. .dt

t t t
System in Electrical in Electrical in

System t t h

t tSystem out F out

p

o

E E E
SEC

E E
V

  

 

  



 
(13) 

Where: h is operating hours; Vt is air flow (m3/hour) and 

Δtp is pressure difference from the fan inlet to the outlet (Pa) 

- If we calculate the useful output as air-flow, in this 

case, SEC or usually called as “Specific air-fan power 

(SFP)” is used to estimate the specific power consumption 

per volume of air delivered and the energy consumption 

required for transporting air: 

2

dt

 



 



t t
System in Electrical in

System t h

tSystem out

o

E E
SEC

P
V

 
(14) 

The Eq. (13) and (14) clearly show that with different types 

of useful outputs, the final SECs of system may be 

dramatically different. With complex air-fan systems, in 

which demanded air-pressure is varied according to the 

technical process or many types of air distribution existing, 

the impact of pressure has to be taken into account for EEP. 

The SFP is a good energy‐performance indicator for the 

whole system, but it does not necessarily indicate the 

efficiency of the fan. The SFP will be calculated by the real 

operating conditions, and maximum SFP will be specific by 

energy standard. So the first one will be used more common 

in industrial application where air-fan is seen as one 

component of complex system but the second one will 

prefer for designing and standalone air-fan system. Thus to 

be able to evaluate SEC for a function/system, the outputs of 

the function/system have to be standardized by a unique 

one.  

According to energy flow and air flow shown in Figure 7, 

the global energy consumption and useful physical output 

can be calculated as follows:  

0 0t t

FP P     (15) 

0. 0. 1.t t t t

C M FP P P P     (16) 

t t t t
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Figure 8. Energy efficiency indicator of (a)- fan head, (b)- motor and (c)- flow control with operation conditions  (CML 

Northern Blower Incorporated, 1991; Rooks & Wallace, 2004; U.S. Department of Energy Energy Efficiency and 

Renewable Energy, 1989) 
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1 1
(1 ) (1 ) 1.t t t t

System C in M In F Int t

C M

E
SEC SEC

           (18) 

Where: 

t

CP , 
t

MP  and 
t

FP are useful output produced by control 

system, motor and centrifugal fan at time t. 

t

C Consumed , t

M Consumed  and t

F Consumed are the energy 

consumed by at controller, motor and fans, which are 

considered equal to the total energy losses during 

component operations at time t. 

From Eq. (6) and (16) we have the weighting factor for air 

output of each component as: 

 ,, 0,0,1   λ
t t t t

C M F     (19) 

From Eq. (7) and (18) we have the weighting factor for 

energy consumption of each component as: 

,, (1 1/ ),(1 1/ ),1         ω
t t t t t t

C M F C MSEC SEC    (20) 

At system level, these vectors ωt and λ
t
are closely related 

to energy consumption, useful output of control system, 

motor and centrifugal fan at time t. By applying an 

aggregation method, we can assess the EEP deterioration of 

the air-fan system in the future. The illustration is shown in 

Figure 10b.   

 

Based on the EEI (SEC) behavior predicted, REEL is 

evaluated by using Eq. (8). Figure 11a describes the 

potential evolution of SEC. Given a SEC threshold (herein

1.5thresholdSEC  ) the distribution of REEL is reached, see 

Figure 11b. The failure distribution of the motor is 

illustrated in Figure 11c. When compared with the 

distribution of REEL, it have a dramatically differences. 

Air-fan system is seen to reach the energy inefficient zone 

before it can touch the limit of physical life. This means that 

air-fan is available to deliver air, but consumed more energy 

than usual to distribution air and high level of noise and 

vibration of fan can have bad affections to the convenience 

of general system.  The SEC of any component (motor, 
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Figure 11. EEP deterioration and prognostic 

effect on decision-making indicator 

Figure 10.  Integrated generic prognostic approaches for EEP 

deterioration of fan system 
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controller, etc.) and its EEP evaluation are used to identify 

the key component to maintain the general EEP of air-fan 

system. The benefits and complexity of conducting correct 

actions to maintain EEP with can be consider as a main 

additional factor for plan-making process. For example, the 

dust removing of fresh air-filter or air duct should be 

conducted more often to maintain the EEP than waiting for 

the next shutdown time of air-system for general inspection 

period. Thus, various decisions making based RUL may be 

no longer appropriate when considering the EE performance 

criterion.  

5. SUMMARY AND CONCLUSIONS 

In this paper, it is first described an overview on energy 

efficiency concepts. Different concepts are classified 

according to the related decision-making levels. Then an EE 

concept for industrial sector is deeply discussed and 

developed. It leads to focus on the assessment of the energy 

efficiency behavior of an industrial component/system. In 

that way, an energy efficiency indicator (EEI) is introduced. 

Furthermore, it is proposed a mathematical formulation for 

calculating the proposed EEI at both component and 

function/system level. This formulation is illustrated by the 

implementation of an electrical fan-blower system. In 

addition, a novel concept related to the remaining 

efficiency-efficient lifetime, named REEL, of a 

component/system is proposed. In relation to conventional 

RUL providing information about failure date, REEL 

provides the remaining efficient lifetime of a 

component/system before it loses the energy efficiency 

property. REEL may be an interesting tool for decision 

making, for example, in areas such as maintenance, 

production scheduling, etc. In addition, the paper proposes a 

prognostic formulation approach which can help to predict 

the REEL at component and function/system level. This 

formulation is also tested on the case of electrical fan-

blower system. To add the human experiences about EE in 

modeling need extra interesting studies and also analyze the 

model properties (big data problems, combinatorial 

explosion, metrics, etc.). These both conceptual and 

analytical proposals for evaluating the EEI seem powerful. 

It should be however validated on real industrial system 

applications to prove its added value and benefits. The later 

will be our future works.  

NOMENCLATURE 

EE Energy Efficiency  

EEI Energy Efficiency Indicators/Index 

EEP Energy Efficiency Performance 

REEL  Remaining energy-efficient lifetime 

SEC Specific Energy Consumption 

VSD Variable‐Speed Drive 

REFERENCES 

Al-mofleh, A. (2009). Prospective of Energy Efficiency 

Practice , Indicator and Power Supplies Efficiency. 

Morden applied science, 3, 158–161. 

Ang, B. W. (2006). Monitoring changes in economy-wide 

energy efficiency: From energy–GDP ratio to 

composite efficiency index. Energy Policy, 34, 574–

582. 

Ang, B. W., & Xu, X. Y. (2013). Tracking industrial energy 

efficiency trends using index decomposition analysis. 

Energy Economics, 40, 1014–1021. 

Apostolos, F., Alexios, P., Georgios, P., Panagiotis, S., & 

George, C. (2013). Energy Efficiency of 

Manufacturing Processes: A Critical Review. 

Procedia CIRP, 7, 628–633. 

B. lung, M. Veron, M.C. Suhner, A. M. (2005). Integration 

of Maintenance Strategies into Prognosis Process to 

Decision-Making Aid on System Operation. CIRP 

Annals - Manufacturing Technology, 54. 

Balaban, E., Narasimhan, S., Daigle, M. J., Roychoudhury, 

I., Sweet, A., Bond, C., … Gorospe, G. (2013). 

Development of a Mobile Robot Test Platform and 

Methods for Validation of Prognostics-Enabled 

Decision Making Algorithms. International Journal of 

Prognostics and Health Management, 4, 1–19. 

Boardman, B. (2004). Achieving energy efficiency through 

product policy: the UK experience. Environmental 

Science & Policy, 7, 165–176. 

Bor, Y. J. (2008). Consistent multi-level energy efficiency 

indicators and their policy implications. Energy 

Economics, 30, 2401–2419. 

Boyd, G. a. (2014). Estimating the changes in the 

distribution of energy efficiency in the U.S. 

automobile assembly industry. Energy Economics, 42, 

81–87. 

Byington, C. S., Roemer, M. J., Kacprzynski, G. J., & 

Drive, T. P. (2002). Prognostic Enhancements to 

Diagnostic Systems for Improved Condition-Based 

Maintenance 1. 

Centre, R., Cddex, P., & April, R. (1992). Energy signature 

models for commercial buildings : test with measured 

data and interpretation. Energy and Buildings, 19, 

143–154. 

Chiach, J., Chiach, M., Saxena, A., Rus, G., & Goebel, K. 

(2013). An Energy-Based Prognostic Framework to 

Predict Fatigue Damage Evolution in Composites. 

Annual Conference of the Prognostics and Health 

Management Society,, 1–9. 

Chirarattananon, S., Chaiwiwatworakul, P., Hien, V. D., 

Rakkwamsuk, P., & Kubaha, K. (2010). Assessment 

of energy savings from the revised building energy 

code of Thailand. Energy, 35, 1741–1753. 

CML Northern Blower Incorporated. (1991). Fanfacts (p. 

11). 

Cocheteux, P., Voisin, A., Levrat, E., & Iung, B. (2010). 

System performance prognostic : context , issues and 

requirements. 1st IFAC Workshop on Advanced 

European Conference of the Prognostics and Health Management Society 2014

157



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014 

12 

Maintenance Engineering, Services and Technology 

(AMEST’10). 

Dai, J., Das, D., Ohadi, M., & Pecht, M. (2013). Reliability 

risk mitigation of free air cooling through prognostics 

and health management. Applied Energy, 111, 104–

112. 

Darabnia, B., & Demichela, M. (2013). Data Field for 

Decision Making in Maintenance Optimization : An 

Opportunity for Energy Saving. Chemical engineering 

transactions, 33, 367–372. 

Dixon, R. K., McGowan, E., Onysko, G., & Scheer, R. M. 

(2010). US energy conservation and efficiency 

policies: Challenges and opportunities. Energy Policy, 

38, 6398–6408. 

Do Van, P., Voisin, A., Levrat, E., & Iung, B. (2013). 

Remaining useful life based maintenance decision 

making for deteriorating systems with both perfect 

and imperfect maintenance actions. In 2013 IEEE 

Conference on Prognostics and Health Management 

(PHM) (pp. 1–9). IEEE. 

Dragomir, O. E., Gouriveau, R., Dragomir, F., Minca, E., & 

Zerhouni, N. (2009). Review of Prognostic Problem in 

Condition-Based Maintenance. 

European Commission. (2013). Energy challenges and 

policy. 

Fan, J., Yung, K.-C., & Pecht, M. (2014). Prognostics of 

lumen maintenance for High power white light 

emitting diodes using a nonlinear filter-based 

approach. Reliability Engineering & System Safety, 

123, 63–72. 

Farla, J. C. ., & Blok, K. (2000). The use of physical 

indicators for the monitoring of energy intensity 

developments in the Netherlands, 1980–1995. Energy, 

25, 609–638. 

Fernández-Francos, D., Martínez-Rego, D., Fontenla-

Romero, O., & Alonso-Betanzos, A. (2013). 

Automatic bearing fault diagnosis based on one-class 

ν-SVM. Computers & Industrial Engineering, 64, 

357–365. 

Fleiter, T., Fehrenbach, D., Worrell, E., & Eichhammer, W. 

(2012). Energy efficiency in the German pulp and 

paper industry – A model-based assessment of saving 

potentials. Energy, 40, 84–99. 

Gavankar, S., & Geyer, R. (2010). The rebound effect: State 

of the Debate and Implications for Energy Efficiency 

Research. Institute of Energy Efficiency (UCSB), 65. 

Giacone, E., & Manco, S. (2012). Energy efficiency 

measurement in industrial processes. Energy, 38, 331–

345. 

Goebel, K., Saha, B., & Saxena, A. (2008). A comparison of 

three data-driven techniques for prognostics. In 62nd 

Meeting of the Society for Machinery Failure 

Prevention Technology (pp. 1–13). Virginia Beach. 

Gvozdenac-Urosevic, B. (2010). Energy efficiency and 

GDP. Thermal Science, 14, 799–808. 

Hasan, O., & Arif, a. F. M. (2014). Performance and life 

prediction model for photovoltaic modules: Effect of 

encapsulant constitutive behavior. Solar Energy 

Materials and Solar Cells, 122, 75–87. 

Hilke, A., & Lisa, R. (2012). Mobilising investment in 

energy efficiency. © OECD/IEA, 2012. 

Hsu, D. (2014). How much information disclosure of 

building energy performance is necessary? Energy 

Policy, 64, 263–272. 

IEA. (2008). Assessing measures of energy efficiency 

performance and their application in industry. IEA 

INFORMATION PAPER. 

International Energy agency. (2011). Energy-Efficiency 

Policy Opportunities for Electric Motor-Driven 

Systems. 

Jollands, N., Waide, P., Ellis, M., Onoda, T., Laustsen, J., 

Tanaka, K., … Meier, A. (2010). The 25 IEA energy 

efficiency policy recommendations to the G8 

Gleneagles Plan of Action. Energy Policy, 38, 6409–

6418. 

Jørgensen, S. E. (2010). Ecosystem services, sustainability 

and thermodynamic indicators. Ecological 

Complexity, 7, 311–313. 

Lambert, J. G., Hall, C. a. S., Balogh, S., Gupta, A., & 

Arnold, M. (2014). Energy, EROI and quality of life. 

Energy Policy, 64, 153–167. 

Lloyd’s Register. (2012). Implementing the Energy 

Efficiency Design Index ( EEDI ) Guidance for 

owners , operators and shipyards. Lloyd’s Register, 

IMO. 

Medjaher, K., Skima, H., & Zerhouni, N. (2014). Condition 

assessment and fault prognostics of 

microelectromechanical systems. Microelectronics 

Reliability, 54, 143–151. 

Muller, A., Suhner, M.-C., & Iung, B. (2008). Formalisation 

of a new prognosis model for supporting proactive 

maintenance implementation on industrial system. 

Reliability Engineering & System Safety, 93, 234–253. 

Nicolai, R., & Dekker, R. (1997). A Review of Multi-

Component Maintenance Models with Economic 

Dependence. Reliability and Societal Safety, 411–435. 

ODYSSEE database. (2010). ODYSSEE data base. 

Oikonomou, V., Becchis, F., Steg, L., & Russolillo, D. 

(2009). Energy saving and energy efficiency concepts 

for policy making. Energy Policy, 37, 4787–4796. 

Parry, I. W. H., Evans, D., & Oates, W. E. (2013). Are 

energy efficiency standards justified? Journal of 

Environmental Economics and Management, 1–22. 

Patterson, M. G. (1996). What is energy efficiency ? 

Concepts , indicators and methodological issues. 

Energy Polic, 24, 377–390. 

Phylipsen, D., Blok, K., Worrell, E., & Beer, J. De. (2002). 

Benchmarking the energy efficiency of Dutch 

industry: an assessment of the expected effect on 

energy consumption and CO2 emissions. Energy 

Policy, 30, 663–679. 

European Conference of the Prognostics and Health Management Society 2014

158



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014 

13 

Phylipsen, G. J. M., Blok, K., & Worrell, E. (1997). 

International comparisons of energy efficiency-

Methodologies for the manufacturing industry. Energy 

Policy, 25, 715–725. 

Rooks, J., & Wallace, A. K. (2004). Energy Efficiency Of 

Variable Speed Drive Systems. Industry Applications 

Magazine, 10, 1–5. 

Rosenquist, G., McNeil, M., Iyer, M., Meyers, S., & 

McMahon, J. (2006). Energy efficiency standards for 

equipment: Additional opportunities in the residential 

and commercial sectors. Energy Policy, 34, 3257–

3267. 

Saha, B., Goebel, K., Poll, S., & Christophersen, J. (2007). 

A Bayesian Framework for Remaining Useful Life 

Estimation. Proceedings of AAAI Fall Symposium: AI 

for Prognostics (Working Notes), 1–6. 

Salonitis, K., & Ball, P. (2013). Energy Efficient 

Manufacturing from Machine Tools to Manufacturing 

Systems. Procedia CIRP, 7, 634–639. 

Salta, M., Polatidis, H., & Haralambopoulos, D. (2009). 

Energy use in the Greek manufacturing sector: A 

methodological framework based on physical 

indicators with aggregation and decomposition 

analysis. Energy, 34, 90–111. 

Sankararaman, S., Daigle, M., Saxena, A., & Goebel, K. 

(2013). Analytical algorithms to quantify the 

uncertainty in remaining useful life prediction. 2013 

IEEE Aerospace Conference, 1–11. 

Sankararaman, S., & Goebel, K. (2014). An Uncertainty 

Quantification Framework for Prognostics and 

Condition-Based Monitoring. 16th AIAA Non-

Deterministic Approaches Conference, 1–9. 

Satish, B., Member, S., Sarma, N. D. R., & Member, S. 

(2005). A Fuzzy BP Approach for Diagnosis and 

Prognosis of Bearing faults in Induction Motors, 1–4. 

Saxena, A., Celaya, J., Saha, B., Saha, S., & Goebel, K. 

(2010). Metrics for Offline Evaluation of Prognostic 

Performance, 1–20. 

Schenk, N. J., & Moll, H. C. (2007). The use of physical 

indicators for industrial energy demand scenarios. 

Ecological Economics, 63, 521–535. 

Scofield, J. H. (2009). Do LEED-certified buildings save 

energy? Yes, but. Energy and Buildings, 41, 1386–

1390. 

Seow, Y., & Rahimifard, S. (2011). A framework for 

modelling energy consumption within manufacturing 

systems. CIRP Journal of Manufacturing Science and 

Technology, 4, 258–264. 

Si, X.-S., Wang, W., Hu, C.-H., & Zhou, D.-H. (2011). 

Remaining useful life estimation – A review on the 

statistical data driven approaches. European Journal 

of Operational Research, 213, 1–14. 

Steuwer, D. S. (2013). Energy Efficiency Governance. 

doi:10.1007/978-3-658-00681-5 

Sudhakara Reddy, B., & Kumar Ray, B. (2011). 

Understanding industrial energy use: Physical energy 

intensity changes in Indian manufacturing sector. 

Energy Policy, 39, 7234–7243. 

Tanaka, K. (2008). Assessment of energy efficiency 

performance measures in industry and their 

application for policy. Energy Policy, 36, 2887–2902. 

Thiede, S., Bogdanski, G., & Herrmann, C. (2012). A 

Systematic Method for Increasing the Energy and 

Resource Efficiency in Manufacturing Companies. 

Procedia CIRP, 2, 28–33. 

Trianni, A., & Cagno, E. (2012). Dealing with barriers to 

energy efficiency and SMEs: Some empirical 

evidences. Energy, 37, 494–504. 

Trianni, A., Cagno, E., Thollander, P., & Backlund, S. 

(2013). Barriers to industrial energy efficiency in 

foundries: a European comparison. Journal of Cleaner 

Production, 40, 161–176. 

Tsvetanov, T., & Segerson, K. (2013). Re-evaluating the 

role of energy efficiency standards: A behavioral 

economics approach. Journal of Environmental 

Economics and Management, 66, 347–363. 

U.S. Department of Energy Energy Efficiency and 

Renewable Energy. (1989). Improving Fan System 

Performance: A Sourcebook for Industry. 

Udphzrun, R. D. Q. G. (2001). Monitoring energy efficiency 

performance in New Zealand: A conceptual and 

mothodological framework. 

Urban, J., & Ščasný, M. (2012). Exploring domestic energy-

saving: The role of environmental concern and 

background variables. Energy Policy, 47, 69–80. 

Virtanen, T., Tuomaala, M., & Pentti, E. (2013). Energy 

efficiency complexities: A technical and managerial 

investigation. Management Accounting Research, 24, 

401–416. 

Wang, H. (2002). A survey of maintenance policies of 

deteriorating systems. European Journal of 

Operational Research, 139, 469–489. 

Weinert, N., Chiotellis, S., & Seliger, G. (2011). 

Methodology for planning and operating energy-

efficient production systems. CIRP Annals - 

Manufacturing Technology, 60, 41–44. 

Wiel, S., Egan, C., & delta Cava, M. (2006). Energy 

efficiency standards and labels provide a solid 

foundation for economic growth, climate change 

mitigation, and regional trade. Energy for Sustainable 

Development, 10, 54–63. 

Worrell, E., Price, L., Martin, N., Farla, J., & Schaeffer, R. 

(1997). Energy intensity in the iron and steel industry: 

a comparison of physical and economic indicators. 

Energy Policy, 25, 727–744. 

Wu, L.-M., Chen, B.-S., Bor, Y.-C., & Wu, Y.-C. (2007). 

Structure model of energy efficiency indicators and 

applications. Energy Policy, 35, 3768–3777. 

Yang, Y., Yu, D., & Cheng, J. (2007). A fault diagnosis 

approach for roller bearing based on IMF envelope 

spectrum and SVM. Measurement, 40, 943–950. 

European Conference of the Prognostics and Health Management Society 2014

159



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014 

14 

Zhou, P., & Ang, B. W. (2008). Linear programming 

models for measuring economy-wide energy 

efficiency performance. Energy Policy, 36, 2911–

2916. 

Zou, B., Elke, M., Hansen, M., & Kafle, N. (2014). 

Evaluating air carrier fuel efficiency in the US airline 

industry. Transportation Research Part A: Policy and 

Practice, 59, 306–330. 

 

BIOGRAPHIES  

Anh HOANG was born in 1982 in Thanh Hoa, Vietnam. 

He received his M.S. degree in Electrical Engineering from 

Hanoi University of science and technology (2008). His 

responsibilities focused on courses of designing power 

distribution system, electrical equipment and renewable 

energy system. He was also active in the national energy 

auditing programs and built up road map for energy 

efficiency standard. His current research interests includes 

prognostic, energy audit, maintenance plan and energy 

management. 

Phuc DO is currently associate professor at Lorraine 

University, Research Centre for Automatic Control (CRAN 

CNRS UMR 7039), France. He received his Ph.D. in 

Systems Optimization and Dependability in 2008 from 

Troyes University of Technology (France) where he held an 

assistant professor position from 2009 to 2011. His research 

interests include stochastic modeling of systems 

deterioration, optimization of maintenance policies 

(condition-based maintenance, prognostics for maintenance 

decision-making, opportunistic and dynamic grouping 

maintenance), reliability importance measures and their 

related applications. 

Benoit IUNG is full Professor of Prognostics and Health 

Management (PHM) at Lorraine University (France). He 

conducts research at the CRAN lab where he is managing 

today a research group on Sustainable Industrial System 

Engineering. His research and teaching areas are related to 

dependability, prognostics, heath management, maintenance 

engineering and e-maintenance. In relation to these topics he 

took scientific responsibility for the participation of CRAN 

in a lot of national, European (i.e. REMAFEX, 

DYNAMITE) and international projects with China and 

Chile.  He has numerous collaborations with industry and 

serve on the advisory board for PREDICT company. He is 

now the chairman of the IFAC WG A-MEST on advanced 

maintenance, the chairman of the ESRA TC on 

Manufacturing, a fellow of the IFAC TC 5.1., a French 

Associate Member to CIRP Federation and a founding 

Fellow to the ISEAM. Benoît Iung has (co)-authored over 

150 scientific papers and several books including the first e-

maintenance book in Springer. He has supervised until now 

15 MA, 14 Ph. D. Students and 2 Post-Doctorate students. 

Benoît IUNG received his B.S., M.S. and Ph.D. in 

Automatic Control, Manufacturing Engineering and 

Automation Engineering, respectively, from Lorraine 

University, and an accreditation to be research supervisor 

(2002) from this same University.   

Eric LEVRAT received his Ph.D. in 1989 from the 

Université H. Poincaré Nancy 1, where he currently holds 

the position of an associate professor. He has been 

researcher at the Research Centre for Automatic Control of 

Nancy since 1990. Since 2003 he is involved in 

maintenance area, his research deals with dependability, 

maintenance decision in a proactive maintenance strategy, 

maintenance organisation, e-maintenance. He is member of 

French and International projects/groups on e-maintenance 

such as the CNRS MACOD working group (Modelling and 

Optimisation of Distributed vs. Collaborative Maintenance), 

the French scientific interest group 3SGS on "Dependability 

of Complex Systems", where he's leader of the project 

DEPRADEM2 (Degradation and Prognosis Modelling for 

Maintenance Decision Making), the Integrated Project 

DYNAMITE (Dynamic Decision in Maintenance), and the 

international project DEPEN-IMPRO (Modelling Policies 

for the improvement of Production Systems' Dependability).  

He is involved in several industrial projects with EDF, 

DCN, ALSTOM. His current research interests include 

prognosis (data driven and reliability driven prognosis), 

maintenance decision (opportunistic maintenance based on 

odds algorithm), dependability assessment, integrated 

logistic support. 

Alexandre VOISIN was born in Metz, France, in 1969, 

obtained an engineering degree in Electrical Engineering in 

1992. In 1999, he received his Ph.D degree in Electrical 

Engineering from the Lorraine University. He is currently 

associate professor at the Lorraine University. His primary 

research were in the field of fuzzy logic and information 

processing where he applied these techniques to subjective 

evaluation in the area of car seat comfort. Since 2003 he is 

involved in a maintenance project, managed by Pr. B. Iung. 

His research deals with dependability, maintenance decision 

in a proactive maintenance strategy, prognostics and 

monitoring, e-maintenance. He is member of French and 

International projects/groups on e-maintenance such as the 

CNRS MACOD working group (Modeling and 

Optimization of Distributed vs. Collaborative Maintenance), 

the French scientific interest group 3SGS on "Dependability 

of Complex Systems" in the project DEPRADEM 

(Degradation and Prognosis Modeling for Maintenance 

Decision Making), the French project BMCI (Condition 

monitoring for maintenance and Piloting of naval systems), 

the European Integrated Project DYNAMITE (Dynamic 

Decision in Maintenance), and the international project 

DEPEN-IMPRO (Modeling Policies for the improvement of 

Production Systems' Dependability). He is involved in 

European Conference of the Prognostics and Health Management Society 2014

160



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014 

15 

industrial projects with EDF, DCN, ALSTOM. His main 

research interests deal with prognostic, maintenance, multi-

criteria decision making, data analysis, subjective 

evaluation. 

European Conference of the Prognostics and Health Management Society 2014

161



Aligning PHM, SHM and CBM by understanding the physical 
system failure behaviour 

 

Tiedo Tinga1,2 and Richard Loendersloot1 

1University of Twente, Dynamics based Maintenance group, Enschede, The Netherlands 
t.tinga@utwente.nl 

r.loendersloot@utwente.nl 
 

2Netherlands Defence Academy, Faculty of Military Sciences, Den Helder, The Netherlands 

 
ABSTRACT 

In this work the three disciplines of condition based 
maintenance (CBM), structural health monitoring (SHM) 
and prognostics and health management (PHM) are 
described. Then the characteristics of the disciplines are 
compared, which leads to a clear insight in the 
commonalities, but also in the difference in objectives and 
scope of the three disciplines. The disciplines are then 
demonstrated using three different case studies on bearing 
vibration monitoring, composite panel structural health 
monitoring and helicopter landing gear prognostics, 
respectively. After a discussion on the benefits of 
understanding the system physical (failure) behaviour, an 
integrated approach is proposed in which the three 
disciplines are aligned.  This approach starts from defining 
an appropriate monitoring strategy (SHM and CM) and 
eventually ends in supporting the decision making (PHM) 
that leads to an optimal maintenance process throughout the 
life cycle of the asset.  

1. INTRODUCTION  

The disciplines of condition based maintenance (CBM), 
structural health monitoring (SHM) and prognostics and 
health management (PHM) have a lot of commonalities. 
They all aim to improve the maintenance decision making, 
with the ultimate goal of reducing maintenance costs and 
increasing system availability. But at the same time they are 
focusing on different aspects of the field and are being 
developed in more or less separate communities. Although 
implicit links between, for example, CBM and PHM are 
being made in several occasions (Buderath & Adhikari, 
2012), the explicit relation between the disciplines has not  

often been addressed specifically. In this work we therefore 
aim to align the three disciplines by identifying the major 
benefits of the individual approaches and proposing an 
integrated approach that combines these aspects. Firstly, in 
section 2 of this paper, we discuss the major differences and 
commonalities of the three disciplines in a general sense, 
both in terms of the adopted techniques and methods and 
underlying philosophy. Secondly, each of the disciplines 
will be illustrated in section 3 with three (existing) practical 
cases from our own research in the different disciplines. The 
CBM illustration case is the rather traditional approach 
followed in the blind identification of bearing damage. The 
SHM illustration case concerns the damage assessment in a 
composite structure using a structural vibration technique, 
while the PHM illustration case concerns the prognostics of 
landing gear failure in a helicopter. After that, partly based 
on the experience from these three cases, the role of 
understanding the system failure behaviour will be 
discussed in section 4. It will be demonstrated that 
knowledge on the physical failure mechanisms, in 
combination with the monitoring of loads or condition, is a 
key element in all three disciplines, while this aspect is 
recognized and covered by only a minority of the cases 
found in practice. This aspect will thus be taken to align the 
approaches of CBM, SHM and PHM in section 5. Taking 
into account the differences in scope and objective of the 
three disciplines, but fully exploiting their individual 
strengths, it will be shown that they can be aligned to yield 
an integral approach for optimizing system life cycle 
management. The proposed approach will start on the 
lowest level by monitoring the appropriate parameters and 
will ultimately provide decision support on the highest level  
for the optimal life cycle management.  

Tiedo Tinga et al. This is an open-access article distributed under the 
terms of the Creative Commons Attribution 3.0 United States License, 
which permits unrestricted use, distribution, and reproduction in any 
medium, provided the original author and source are credited. 
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2. DESCRIPTIONS AND COMPARISON OF DISCIPLINES  

In this section the authors’ view on the basic concepts of the 
SHM, CBM and PHM disciplines will be presented. Also 
the differences and commonalities will be discussed. 

2.1. Condition Based Maintenance  

Condition based maintenance is the oldest discipline of the 
three. It is closely associated to Condition Monitoring (CM), 
which is a term covering a range of techniques that have 
been developed in the past fifty years to assess the condition 
of systems and components. Well-known condition 
monitoring techniques are vibration monitoring, oil analysis, 
acoustic emission and thermography. These methods are 
widely applied in industry, where the interpretation of 
measurement data is mainly experience-based and data-
driven. Vibration analysis techniques are mostly applied to 
rotating equipment (e.g. pumps, compressors, gear boxes, 
bearings). This means that the source of the vibrations is the 
machine’s normal operation, while faults can be detected as 
a change in that source (either in frequency or amplitude). 

When the results of condition monitoring are used to trigger 
maintenance activities, a condition based maintenance 
(CBM) policy emerges. The ISO-13374 standard, Condition 
Monitory and Diagnostics of Machines (ISO, 2012), defines 
the functionality in a condition monitoring system in six 
blocks: data acquisition, data manipulation, state detection, 
health assessment, prognostics assessment and advisory 
generation. Further, the Open Systems Architecture for 
Condition-Based Maintenance (OSA-CBM) (MIMOSA, 
2013) provides an implementation of that standard by 
adding data structures and defining interface methods for 
the functionality blocks in the ISO standard. Although 
research on advanced concepts like wireless sensor 
networks and energy harvesting to power autonomous 
sensors is ongoing, the data acquisition (sensors) and 
manipulation are nowadays rather well-established. 
Therefore, a major portion of the research in this discipline 
focuses on analyzing the obtained data to retrieve 
information from it. The methods developed for that are 
mainly data-driven, e.g. based on trending or on comparing 
with a baseline measurement, and are seldom based on 
physical models. Application of the final blocks, the health 
assessment and prognostics steps, is until now very limited 
in practice. This discipline is not covered widely in the 
scientific world, other than the application of CBM policies 
in maintenance modelling approaches. Also no scientific 
journals specifically on CM or CBM exist. However, since 
the field already exists for decades, many books on the topic 
are available. 

2.2. Structural Health Monitoring 

Structural health monitoring is a discipline that is closely 
related to condition monitoring, but has its origin in the 
inspection of structures. The methods are based on non-

destructive testing (NDT) techniques. These techniques, like 
ultrasonic testing, eddy current and acoustic emission, are 
traditionally applied using hand-held sensors or scanning 
techniques, and inspections are only performed occasionally 
or periodically, not bearing any relation with previous 
inspections. Due to the increased reliability and availability 
requirements of many assets, research has focused on 
developing continuous monitoring techniques, which 
evolved into the structural health monitoring discipline. A 
lot of scientific work is currently being done in this field, 
which also has its own scientific journals. The focus has 
been on the one hand on the development of new sensing 
techniques, and on the other hand on the development of 
advanced damage features and classifiers. Development of 
sensing approaches are based on new technologies using 
optical fibers and sensors to measure structural vibrations 
(e.g. piezo patches) and  wave propagation (e.g. ultrasonics). 
The development of new damage features and classifiers 
follows a data-driven approach, motivated by the “statistical 
pattern recognition paradigm” (Farrar & Worden, 2010), 
which is one of the key foundations of SHM. The 
application of physical models in this discipline is very 
limited. 

Applications are mainly found in aerospace and 
infrastructures (e.g. bridges). For vibration based methods, 
the source of vibrations is generally not the system itself, 
but the environment it is operated in (e.g. wind, waves). 
Faults or damage can be detected by observing changes in 
the response of the system to the vibrations. Note that this 
field has a strong focus on health assessment, but does not 
provide a clear approach to apply that to maintenance 
policies (although a link with CBM is rather 
straightforward). Instead, developments in SHM techniques 
mainly focus on increasing the probability of detection of 
faults, which originates from the NDT background of this 
discipline. Further, the first standard in this field was 
established only very recently (SAE, 2013), and in addition 
there is well-defined structure considering the five levels of 
SHM (Farrar & Worden, 2010). From levels 1 up to 5 more 
and more information on the damage in the structure is 
obtained:  

• Level 1: damage detection,  

• Level 2: damage localization, 

• Level 3: damage characterization,  

• Level 4: damage quantification,  

• Level 5: prognostics.  

The first three levels can now be achieved by many 
methods, while the final two are still quite challenging.  

2.3. Prognostics and Health Management 

The prognostics and health management discipline is 
somewhat different from the previous two, and also 
emerged more recently. Whereas CBM and SHM focus on 
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the monitoring of the system, PHM is a more integrated 
approach that aims to provide guidelines for managing the 
health of the system. In that way, it is a philosophy to 
perform Life Cycle Management, with a strong focus on the 
predictability (i.e. prognostics) of failures and maintenance. 
This is generally achieved by adopting some monitoring 
strategy, which may be a CM or SHM technique. Also in 
this field many data-driven approaches emerged to analyze 
the monitoring data, but in addition to that several physical 
model based methods have been developed (Orsagh, 
Roemer, Sheldon, & Klenke, 2004; Roemer, Byington, 
Kacprzynski, & Vachtsevanos, 2006). As for CM and CBM, 
this discipline emerged form industry, and has a relatively 
limited presence in the scientific world. PHM has a 
background in the military world, especially related to the 
development of the F-35 fighter aircraft (Brown, McCollom, 
Moore, & Hess, 2007). Thereafter, PHM approaches have 
also been developed for other military vehicles, but also for 
electronics and (civil) aerospace systems. 

2.4. Commonalities and differences 

Upon analyzing the  commonalities and differences between 
the three disciplines, the following aspects have been found. 
These aspects are also visualized in Figure 1. 

(i) the approaches for condition monitoring and structural 
health monitoring are very similar, since both disciplines  

 

 

Figure 1. Relation between CBM, SHM and PHM. 
 

look for features that are representative for damage or 
degradation of the system. However, there are some 
differences: 

• CM is closely related to the CBM policy, which means 
that the monitoring results are directly applied to guide 
the maintenance activities. In SHM the focus is 
completely on the monitoring and no explicit relation to 
a specific maintenance policy is made. However, 
linking SHM techniques to CBM seems 
straightforward. 

• In both fields, one of the commonly applied techniques 
is vibration monitoring, but the approaches are different 
in the following ways: 

o CM is mostly applied to rotating or reciprocating 
systems, where the primary vibration source is the 
system itself. Damage or degradation is diagnosed 
by detecting changes in that source, e.g. bearing 
faults that introduce additional vibrations. 

o SHM is mostly applied to load carrying or 
transferring structures, which are only actuated by 
their environment (wind, waves). The SHM 
techniques focus on  measuring (changes in) the 
response of the system or structure and relating 
those to the presence of damage. 

o The locations of the vibration sensors also vary. In 
CM the sensor is typically outside the part, whereas 
in SHM the sensors are commonly on (or even 
integrated in) the monitored part. 

(ii) both SHM and PHM include a prognostic capability, 
while CBM is mainly diagnostic. However, the differences 
between CBM and SHM in this respect are not that large, 
since in the SHM field the prognostics is only at level 5, 
which is not achieved in many cases. At the same time, CM 
data is often trended in time, which also provides a limited 
prognostic capability (which is also mentioned in the CBM 
ISO standard). 

(iii) PHM is acting on a somewhat higher level than CBM 
and SHM, since it has a clear ambition to enable health 
management. The latter is an activity related to Life Cycle 
Management (LCM), which means that an approach is 
followed to optimize all (maintenance) activities during the 
complete life cycle of the asset. This includes the selection 
of an appropriate maintenance policy, defining the 
maintenance interval length and deciding on the moment an 
asset should be discarded. CBM, and SHM to an even lesser 
extent, do not provide that extensive LCM support. 

(iv) the PHM field prescribes neither a specific maintenance 
concept nor a monitoring strategy. However, in typical 
PHM studies, CBM or other maintenance policies are 
adopted, and in many cases CM techniques are applied.  

3. PRACTICAL CASES 

In this section three practical cases will be presented, 
demonstrating the specific aspects of the three disciplines. 

3.1. CBM – bearing blind identification 

The field of condition monitoring has matured especially in 
its application to bearings (Rao, 1996). Since in industry so 
many bearings are used, a huge amount of experience has 
been gained on these type of systems. Moreover, the 
complexity of bearings is rather limited, which makes 
understanding the failure behaviour feasible in many cases. 
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For these reasons, condition monitoring data, which for 
bearings most of the time is vibration data, can in many 
cases be translated into information on the failure mode or 
the state / condition of the bearing. 

This will be demonstrated using the following case study. 
Vibration data on four different bearings is available: one 
undamaged (pristine) bearing and three with an artificial 
damage on the outer race, inner race and rolling element, 
respectively. In practice, the location and type of damage is 
unknown, and a so-called blind identification must be 
performed. However, since a considerable range of failure 
mechanisms can occur in the different bearing components 
(inner / outer race, rolling element), identification is quite 
challenging. Moreover, a recent development is to apply 
wireless sensor networks for vibration monitoring. Although 
this development reduces the wiring and installation efforts 
considerably, it simultaneously introduces additional 
boundary conditions due to the limits in data transmission 
bandwidth, power and local (on the sensor node) processing 
capacity. A generic approach is developed (Sanchez 
Ramirez, Loendersloot, & Tinga, 2014) to assess the 
damage.  

The vibration patterns observed will have to be matched 
with the most likely failure modes and failure mechanisms 
for bearings. Examples of failure modes are cracking, dry 
rolling, and heating, where the deterioration or failure of the 
bearing material is caused by mechanisms like fatigue, static 
overloading, wear, corrosion, etc. Additionally lubricant 
deterioration is also a key limiting factor of bearing life. For 
this case, the focus will be on cracking in the outer race, 
resulting in dynamic behaviour of the bearing related to the 
response to an impulse excitation. Figure 2 shows the 
vibration signal for the pristine bearing. The red line in the 
figures is a sinusoidal signal with the rotor speed frequency 
and an amplitude approximately equal to the maximum of 
the pristine bearing vibration.  

 

Figure 2. Vibration signal for pristine bearing. 
 

The signal for the damaged bearing is shown in Figure 3. 
The first way to identify a failure is to compare the signal of 
the (damaged) bearing to the baseline signal (red line). 
Figure 3 clearly shows that the amplitude bandwidth has 
increased considerably, indicating that a failure is present. 
However, the challenge is then to characterize or localize 
the fault. A first step in this analysis is to transform the 
signal to the frequency domain, and zoom in to the region 
with the highest energy content by applying a filter. For this 
bearing, the range of interest appeared to be in the 2500 - 
4000 Hz region. Valuable information about the source of 
the damage can be extracted by looking at the vibration 
signal, the rate at which the events occur and the possible 
variation of the amplitude (modulation). 

The modulations can be analyzed further by extracting the 
envelope of the vibration signal, and identifying the main 
modulating frequency fm, i.e. the frequency of the variation 
in signal amplitude. This is shown in Figure 4, where a clear 
frequency peak around 150 Hz occurs, which represents fm. 

 

Figure 3. Vibration signal for damaged bearing. 
 

 

Figure 4. Enveloping of the time signal with its 
corresponding frequency spectrum. 
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Finally, once the frequency range of interest and the main 
modulating frequency are known, the analysis will be based 
on shorter time periods related to the main modulating 
frequency. Here the instantaneous carrier frequencies are 
determined from the time signal segments that have been 
extracted according to the main modulation observed in the 
signal. Both the instantaneous frequencies and amplitude are 
extracted, as well as their ratio, as is shown in Figure 5. The 
variation of these quantities can be used as indicator of 
developing damage on the bearings.  

In summary, this case study showed how a typical condition 
monitoring technique as vibration monitoring can be used to 
detect and assess bearing damage. The methods presented 
here are only a small subset of the large variety of analysis 
methods available, but a special focus has been put here on 
computational inexpensive methods that enable application 
in a wireless sensor network. 

 

Figure 5. Instantaneous frequency and amplitude of the 
signal. 

3.2. SHM - damage assessment in composite structure 

Our SHM case study concerns the assessment of damage in 
a skin stiffener composite structure (Loendersloot, 
Ooijevaar, Warnet, Boer, & Akkerman, 2011; Ooijevaar, 
Loendersloot, Warnet, Boer, & Akkerman, 2010; Ooijevaar, 
Warnet, Loendersloot, Akkerman, & Boer, 2012), shown in 
Figure 6. Structural vibration techniques are adopted here to 
detect and locate (and possibly quantify) a delamination in 
the composite structure. The structure is actuated by a 
shaker, while the response is measured by piezo electric 
diaphragms. The damage sensitive parameter extracted from 
the structure is the mode shape curvature, while the Modal 
Strain Energy – Damage Identifier (MSE-DI) algorithm 
(Stubbs & Farrar, 1995) is selected as the damage classifier. 
The damage feature is selected based on the expected 
damage (a delamination between the skin and the stiffener, 
as shown in Figure 7) and the expected change in dynamic 
response: the local stiffness reduction induced by the 
damage results in a local change of the mode shapes, and 
more specifically of the mode shape curvatures. 

 

Figure 6. The composite skin-stiffener structure, equipped 
with piezo electric diaphragms. The damaged area is 

indicated in the bottom figure. 
 

This change is an indication of the presence and the location 
of damage and even serves as an estimation of the severity 
of the damage, provided a (physical) relation can be 
established between the size of the delamination and the 
criticality of the damage. 

 

 

Figure 7. First-ply delamination failure caused by the impact 
to which the structure was subjected. 

 
The MSE-DI algorithm is based on the comparison between 
the curvatures of the mode shapes of the pristine and 
damaged structure. Given the relative bending energy ���,����of the ith beam segment, of the nth mode, is defined as: 

 ���,���� 	 ��,����

�� 	 12� ���������� �� d���

����
 (1) 

Where ����� represents the axial strain amplitude for the nth 
participating mode shape. Note that the strain is directly 
measured by the piezo diaphragms. The total modal strain 
energy is approximated by the sum of Eq. (1) over a subset 
of mode shapes Nfreq. The damage index value is based on a 
number of mode shape curvatures, since the location and the 
size of the damage determine the effect the damage has on 
the mode shape curvatures. 

The damage index β for the ith segment of the structure is 
defined as the summed fractional stiffnesses: 
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 �� 	 � �� �� ���d������� � �� ���d� !"
� ����d������� � ����d� !" #$%&'(

�)*  (2) 

Where w(n)(x) represents the integrand of Eq. (1) and the 
tilde refers to the damaged case. The normalized damage 
index Zi, a statistical measure to identify outliers, is defined 
as: 

 +� 	 �� , -.  (3) 

Where µ is the mean value and σ the standard deviation of 
the damage index over all elements. The normalized damage 
index Z is shown in Figure 8. The value of the damage 
index around x = 0.8 m is close to -4, implying a significant 
(4σ) deviation of the fractional stiffness compared to the 
intact situation. This is a clear indication of the presence of 
the damage. The actual damage location corresponds to the 
location indicated by the MSE-DI algorithm. 

 

Figure 8. The normalized damage Z for the entire composite 
structure. The location of the damage corresponds with the 

deviating values around x = 0.8 m. 

3.3. PHM – predicting helicopter shock absorber failure 

The prognostics and health management approach is 
demonstrated by a case study on a helicopter landing gear. 
The landing gear contains a shock absorber (see Figure 9), 
that after some period starts to leak oil, caused by a 
damaged seal. The shock absorber inspection and 
maintenance schedule is based on flight hours (as is the case 
for most aircraft components).  

 

Figure 9. Landing gear shock absorber. 
 

However, for a landing gear, the number of flight hours is 
not the most appropriate usage parameter for predicting the 

failures. This is shown in Figure 10, where the number of 
flight hours at failure are plotted for 11 shock absorber seal 
failures: there is no correlation between the failures and 
number of flight hours, and it is difficult to predict when a 
seal failure will occur. However, this helicopter contains a 
Health and Usage Monitoring System (HUMS), which 
collects a large number of parameters on the usage (flight 
hours, altitude) and health (vibration data) of the helicopter. 
This data can be used to develop a prognostic method for 
the seal failure (Tinga, 2013). The physical mechanism 
causing the seal failure is sliding wear, which is governed 
by the normal force Fn applied to the seal, the sliding 
distance s and the specific wear rate k. Archard’s law can 
then be used to calculate the amount of wear in terms of lost 
volume V: 

 / 	 01�2 (4) 

The values of Fn and k can be obtained from the geometry 
and material properties of the seal. The sliding distance is 
governed by the usage of the landing gear, i.e. the number 
of landings and the weight of the helicopter during the 
landing. These latter two parameters are available from the 
HUMS, so for every seal failure the usage history is known 
and the amount of wear can be calculated, as is shown in 
Figure 11.  

 

 

Figure 10. Number of flight hours for 11 failure events. 
 

 

Figure 11. Calculated amount of wear for 11 failure events. 
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These results clearly show that the calculated amount of 
wear, based on the number of landings and landing weight, 
has much more predictive power than the number of flight 
hours, since the variation in these values is much lower. 
Except for the first two cases, the failures either occurred 
around 30 mm3 of lost volume, or around 50 mm3. The 
observed difference between the two groups can be 
explained by the fact that another type of seal was 
introduced in the absorbers that failed at 50 mm3 of wear. 
This new seal clearly has a better wear resistance than the 
original seal, since the oil leakage occurs at a later stage. It 
can thus be concluded that selection of the appropriate usage 
parameter, in this case the number of landings and landing 
weight, and using a suitable physical failure model enables 
to set-up a prognostic model.  

It is now rather straightforward to assess at any moment the 
remaining useful life (RUL) of the shock absorber in terms 
of number of landings. The amount of wear can be 
calculated from the monitored landing information (HUMS) 
and the amount of landings before seal leakage is expected 
can be calculated, thus providing a much better RUL 
assessment than with flight hours. 

3.4. Summarizing the cases 

The case studies in this section have illustrated many of the 
aspects mentioned in section 2. The CBM illustration case is 
mainly data-driven, only a limited amount of system and 
failure behaviour knowledge is used. Also, the source of the 
vibration (and its anomalies) is the rotation of the bearing 
itself. The SHM illustration case is also mainly data-driven, 
although in this case the dynamic behaviour of the system 
(i.e. mode shapes) is known as well as the effect the damage 
(delamination) has on the dynamic response. This 
information is used to select the damage feature and 
classifier. Finally, the PHM illustration case clearly has a 
physical model based approach, where the selection of 
monitoring data and its processing is motivated by the 
known physical behaviour of the shock absorber seal.  

4. RELEVANCE OF UNDERSTANDING FAILURE BEHAVIOUR  

In the case studies in the previous section it can be observed 
that knowledge on the failure behaviour of the systems is 
used to some extent in all three cases. This is one of the 
major differences between the approaches that was already 
stated in section 2. However, it is the authors’ conviction 
that understanding the failure behaviour and underlying 
physical mechanisms has the potential to increase the 
performance of the CBM and SHM disciplines. The 
motivation for that is in the relation between the usage of a 
system and the resulting system degradation (or remaining 
life consumption), as is shown schematically in Figure 12 
(Tinga, 2010). The upper three blocks in the figure represent 
this relation and ideally the dependency of the remaining 
useful life on the actual usage of the system is explicitly 

known. However, while the usage of a system is normally 
known by the operator, its effect on the remaining life 
consumption is typically unknown. The author believe that 
zooming in to the level of the physical failure mechanism 
(e.g. fatigue, wear) enables to quantify this relation, 
provided that either the usage (operating hours, rotational 
speed) or loads (strain gauge, thermocouple) are monitored. 

 

Figure 12. Relation between system usage and remaining 
life consumption is governed by failure mechanism. 

The figure also shows that condition monitoring is a third 
option for monitoring, and since information about the 
system condition is obtained directly, no detailed 
understanding of the failure mechanism is required. This is 
exactly the reason that in CM and SHM many data-driven 
approaches have been successfully developed. Just 
monitoring the condition (or some associated damage 
feature) enables to detect the exceedance of a predefined 
threshold, and then to trigger some maintenance activity. 
However, this approach (neglecting the actual physical 
failure behaviour) has three important drawbacks:  
• Selection of quantities to measure, sensor locations and 

data processing algorithms is mostly based on a trial-
and-error process; 

• The interpretation of the measured data and relating it 
to the damage or degradation is in many cases rather 
difficult; In general, it is only possible if a considerable 
set of failure data is available, which might be difficult 
to achieve for critical systems and systems that re 
operated in a variable way; 

• The method is only diagnostic, extension to a 
prognostic method is often difficult. 

These drawbacks can be addressed if the physical failure 
behaviour is understood. The selection of the appropriate 
monitored quantities and their locations can largely benefit 
from the knowledge on failure behaviour. The common 
approach in both CBM and SHM is to apply considerable 
numbers of sensors and start collecting large amounts of 
data. Only after a certain period of data collection, the 
analysis and interpretation of the data is considered. It is 
then often discovered that non-relevant parameters have 
been monitored and that other essential quantities are 
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missing. A much better approach is to start with identifying 
the system’s most critical failure mechanisms and their 
governing loads. These results can then be used to select 
suitable sensors and locations. For example, if a (rotating) 
system or component fails due to fatigue, the governing load 
is a cyclic stress. It is then not useful to monitor the number 
of operating hours or temperature, but much more useful to 
monitor the number of starts of the system and the rotational 
speeds, since that determines the number of stress cycles 
and their magnitude. Only a limited number of papers 
advocating this physics-based approach for CM system 
development is available, see e.g. (Banks, Reichard, Hines, 
& Brought, 2008). 

The next challenge after collecting the appropriate data is 
the interpretation of the data and retrieving information on 
the degradation of the system. If the knowledge on the 
system and its failure behaviour is limited, the only way to 
obtain that information is the experience-based approach: 
after collecting a sufficiently large amount of data, patterns 
or relations may be found in the data. This is the typical 
approach in data mining processes, but also approaches 
based on artificial neural networks and fuzzy logic follow 
this route. The drawbacks are that, firstly, relations can only 
be found when the data set is sufficiently large. For some 
(critical) systems the number of failures can be very limited, 
which significantly reduces the potential of the approach. 
Secondly, the failure identification is only reliable for 
conditions that have occurred at least once (and are present 
in the historic data). For systems that are operated in largely 
variable conditions (e.g. military, off-shore), this aspect 
yields a big limitation to the approach. However, when the 
system behaviour and associated physics of failure is well 
understood, the data sets no longer consist of anonymous 
numbers, but contain relevant information. Retrieving that 
information is generally much more straightforward, and 
requires much less data and experience, than in the purely 
data driven approaches.    

Finally, the ultimate challenge is to extend the methods to 
the prognostics. As was mentioned before, the traditional 
diagnostic methods in CBM and SHM sometimes use 
trending methods to do some prognostics. However, if the 
operational conditions of the system vary considerably, a 
trend based on historical data is not very representative for 
the present or future behaviour. It therefore has a limited 
prognostic capability. But, if physical models are used to 
quantify the failure behaviour, the expected degradation 
rates can be calculated (also when the conditions change) 
and reliable prognostic methods can be added to the 
diagnostic capabilities of CBM and SHM methods. 

5. ALIGNING CBM,  SHM  AND PHM 

Now the three disciplines have been described (section 2), 
have been compared and demonstrated with cases (section 
3), and the relevance of understanding the physical failure 

mechanisms has been discussed, it will be possible to align 
them. The proposed integral approach is shown in Figure 
13. As was mentioned before, the differences between CM 
and SHM are not large, and their aim is actually very 
similar. Except for SHM level 5 (prognostics), they also act 
at the same level of maturity / complexity (see Figure 1). 
This means that both methods could be used to monitor the 
(initiation or progression) of damage in a part or system. 
The specific application (e.g. rotating or static) will then 
determine whether a SHM or CBM technique is most 
suitable. On the next higher level, both monitoring strategies 
can then be connected to the CBM policy, which is used to 
govern the maintenance decisions (mainly when to replace a 
part). Instead of the CBM policy, also a usage based 
maintenance (UBM) or a load based maintenance (LBM) 
policy (Tinga, 2010) can be adopted. In that case also 
another monitoring strategy will have to be selected. 

 

 

Figure 13. Relation between system usage and remaining 
life consumption is governed by failure mechanism. 

 

Then, regardless of the adopted maintenance policy, a 
prognostic approach will have to be selected to assess the 
RUL at any moment, and there the PHM methods can play 
an important role. Finally, to guide all the maintenance 
related decisions (replace, repair, inspect, etc.) during the 
whole life cycle of the system, a suitable life cycle 
management approach must be arranged. Also for that 
purpose, several approaches developed in the PHM field are 
very suitable. This means that in the approach proposed in 
Figure 13, all three disciplines can be combined, where each 
of them has its own role and scope and the strengths of the 
individual disciplines are combined.  

One important additional aspect of the proposed approach is 
the inclusion of knowledge on the physical system and 
failure behaviour. As is indicated in Figure 13, and was also 
discussed in section 4, this fundamental knowledge 
improves the approach at three essential stages: (i) in the 
selection of the quantities to be monitored and their 
locations; (ii) in the processing of the measurement data to 
retrieve the required information on the system degradation; 
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(iii) in the prognostics, where a physical model-based 
approach improves the performance.  

In summary, instead of considering CBM, SHM and PHM 
as separate disciplines, the present work has shown how the 
three fields, their objectives and approaches can be aligned 
to achieve an integrated strategy to improve the life cycle 
management of any (complex) system.  

6. CONCLUSION  

In this paper the three disciplines of condition based 
maintenance (CBM), structural health monitoring (SHM) 
and prognostics and health management (PHM) have been 
described, compared and demonstrated using illustrating 
case studies. Several commonalities between the disciplines 
appeared, but also differences in scope and objectives could 
be identified. This insight enabled us to align the three 
disciplines and propose an integrated approach, in which the 
understanding of the physical system failure behavior 
appears to be an essential aspect. The proposed integral 
approach starts from defining an appropriate monitoring 
strategy (CM and SHM), applying the appropriate 
maintenance policy (CBM), performing prognostics (PHM) 
and eventually supporting the decision making that leads to 
an optimal maintenance process throughout the life cycle of 
the asset. 
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ABSTRACT 

The problem of fatigue crack growth monitoring and residual 

lifetime prediction is faced by means of sequential Monte 

Carlo methods commonly defined as sequential importance 

sampling/resampling or particle filtering techniques. The 

algorithm purpose is the estimation of the fatigue crack 

evolution in metallic structures, considering uncertainties 

coming from phenomenological aspects and material 

properties affecting the process. These multiple uncertainties 

become a series of unknown parameters within the 

framework of the dynamic state-space model describing the 

crack propagation. These parameters, if correctly estimated 

within the particle filtering algorithm, will cover the 

uncertainties coming from the real environment, improving 

the prognostic performances. The standard particle filter 

formulation needs additional methods to augment the state 

vector and to correctly estimate the parameters. The 

prognostic system composed by the sequential Monte Carlo 

algorithm able to account for different uncertainties is tested 

through several crack growth simulations. The applicability 

of the method to real structures and the employment in 

presence of real environmental conditions (i.e. variable 

loading conditions) is also discussed at the end of the paper. 

1. INTRODUCTION 

Crack propagation is one of the most widespread phenomena 

affecting metallic structures. Engineering community 

dedicated a lot of effort into the comprehension of the 

fracture mechanism and crack propagation phenomena, 

especially when fatigue loads affect the cracked structure. 

The latter case is well known as the fatigue crack growth 

(FCG) or fatigue crack propagation problem and, intuitively, 

it causes the need of the time to failure and the residual useful 

life (RUL) of the cracked structure for maintenance and 

safety purposes. 

The most part of RUL estimation techniques based on 

fracture mechanics have been developed from the work of 

Paris & Erdogan (1963) describing the crack growth rate as a 

function of the stress intensity factor (SIF) range acting 

during a fatigue load cycle. In the last decades, many works 

have been dedicated to FCG dealing with multiple aspects. 

Nonetheless, in spite of these in-depth studies, the RUL 

predictions cannot overlook the statistical aspects of fatigue 

crack propagation. The variability affecting FCG was 

highlighted from Virkler, Hillberry, Goel (1978), when 68 

fatigue crack growth tests on Al2024-T3 specimens produced 

a large variability of the crack growth data. This scatter can 

increase exponentially dealing with real structures in real 

environments. As a matter of fact, there are different sources 

of uncertainty affecting the fatigue crack behavior: (i) the 

variability of the material properties, (ii) the load sequences, 

(iii) the environmental conditions and (iv) the intrinsic 

variability of the phenomenon, that is driven by nano-scale 

events not accounted for within the usual engineering models. 

In order to overcome this variability and to improve the time 

to failure and RUL predictions, several statistical methods 

have been developed. Statistical definition of FCG 

parameters is a very popular technique to address the crack 

growth variability, since the parameter values comes from 

fitting procedures like regressions, maximum likelihood 

estimations etc. (Cross, Makeev & Armanios 2007, Corbetta, 

Sbarufatti, Manes & Giglio, 2014). Other methods employ 

stochastic models of the crack, using both analytical solutions 

and Monte Carlo methods, (Ray & Patankar 1999, Scafetta, 

Ray & West 2006, Mattrand & Bourinet, 2011). 

As mentioned above, the difficulties increase dealing with 

variable loading conditions. Elber (1970, 1971) introduced 

the crack closure effect that it has been studied later in 

presence of variable amplitude loading conditions by 

Newman (1981). Fatigue crack propagation under variable or 
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random loading conditions is still an open issue nowadays. 

Apart from the Newman’s paper (1981), many other works 

dedicated to crack growth rate are available (Newman 2005, 

Willenborg, Engle & Wood, 1971) and more recent papers 

appeared highlighting new methods to describe the prediction 

of crack propagation under random load spectra (Newman, 

Irving, Lin & Le, 2006, Mattrand & Bourinet, 2011). 

Nowadays, the development of real-time Structural Health 

Monitoring (SHM) techniques paves the way to real-time 

prognostics of structures. From a structural reliability point 

of view, the final target of prognostics is the prediction of the 

structure RUL starting from the information provided by an 

SHM unit composed by localized or distributed sensor 

networks and diagnostic algorithms. The output information 

should be combined with advanced algorithms able to take 

into account the uncertainties coming from both the SHM 

unit and the uncertainties affecting the monitored process. 

Therefore, the estimation of the probability density function 

(pdf) of the residual lifetime becomes feasible. The two main 

approaches employed in prognostics are the data-driven 

approach and the model-based approach. The first uses large 

amount of data to train algorithms able to predict the future 

degradation trends based on the previous knowledge, the 

second takes advantage of physical or phenomenological 

models to predict the most probable damage evolution. Only 

the model-based approach is considered in this context, based 

on the large number of studies on FCG and available models. 

Considering the SHM-Prognostics framework, a Sequential 

Importance Resampling (SIR) algorithm is proposed in this 

paper to track the damage propagation and update the RUL 

estimation of a simple structure subjected to fatigue loads. 

The dynamic state-space (DSS) model of the system is 

proposed in an adaptive form, thanks to the adaptation of 

model parameters and random processes. These quantities 

will be estimated during the crack propagation thanks to 

dedicated techniques within the SIR algorithm. Similar 

algorithms have just been applied to the fatigue crack growth 

problem. Cadini, Zio & Avram (2009) have applied particle 

filter algorithm (in the form of Sequential Importance 

Sampling/Resampling – SIS/SIR) without the parameter 

estimation. Corbetta, Sbarufatti, Manes & Giglio proposed a 

SIS/SIR algorithm with stochastic DSS model (2013a) and 

updating of the model parameters through Markov chain 

Monte Carlo (MCMC) techniques (2013b). Chiachio, 

Chiachio, Saxena , Rus & Goebel (2013) proposed a more 

complicated prediction problem dealing with composite 

materials and combined state-parameter estimation within the 

DSS framework. The SIR algorithm proposed in this work 

have some novelties with respect to the cited works, making 

use of the concept of intra-specimen and inter-specimen 

variability introduced by Bourinet & Lemaire (2008) and 

explained in detail is section 2. The artificial dynamics (AD) 

just used by Daigle & Goebel (2011) and Chiachio et al. 

(2013), and the kernel smoothing (KS) techniques will 

                                                           
1 Supposing a relatively small number of cycles (ΔN→1). 

improve the knowledge of the DSS model parameters 

describing the crack evolution. These methods will try to 

cover the inter-specimen variability affecting different 

specimens of the same structure. The intra-specimen 

variability is covered by a dynamic noise variance within the 

SIR formulation, explained in detail in section 3.4. An 

additional novelty introduced by this work is the evaluation 

of the Residual Useful Life through the numerical solution of 

the stochastic integral proposed by Yang & Manning (1996) 

instead of the long-lasting step-by-step simulation of the 

crack growth. Unfortunately, this method works in presence 

of constant-amplitude fatigue loads only. The purpose of this 

algorithm is to try covering several sources of uncertainties 

that can appear on real structures subjected to crack 

propagation. Several virtual tests on crack propagation 

altered with respect to the theoretical crack growth curve will 

prove the validity of the method. 

The paper organizes as follows: section 2 briefly introduces 

the FCG equation and its intrinsic variability, focusing on the 

residual life prediction problem. Section 3 summarizes 

sequential Monte Carlo methods and Bayesian filtering 

estimation, describing the adopted techniques for combined 

state-parameter estimations and dynamic noise variance 

selection. Section 4 shows the application of the algorithm to 

a simulated crack propagation and the prognostic 

formulation. Section 5 is dedicated to the results of the 

algorithm in terms of parameter estimation and RUL 

prediction, comparing the artificial dynamics and the kernel 

smoothing techniques. Section 6 concludes the paper. 

2. PROBLEM STATEMENT: FATIGUE CRACK GROWTH 

MONITORING AND PREDICTION 

Several FCG models are able to describe the growth rate as a 

function of crack length and a series of model parameters. 

The most popular model is the Paris-Erdogan equation (Paris 

& Erdogan, 1963) describing the FCG rate per load-cycle 

using the SIF range affecting the crack tip, as defined in Eq. 

(1a), and two empirical parameters commonly defined as C 

and m, as visible in Eq. (1b). 

 𝛥𝐾(𝑥) = 𝐹(𝑥)𝛥𝑆√𝜋𝑥 (1a) 

 
𝑑𝑥

𝑑𝑁
= 𝐶[𝛥𝐾(𝑥)]𝑚 (1b) 

Where x is the current crack length, ∆S is the applied load 

range, F(x) is a crack shape function depending on the crack 

length and the structure geometry, and N is the general load 

cycle. If the load range has constant amplitude and constant 

frequency, the FCG rate domain can easily change from load 

cycle to time domain, and Eq. (1b) becomes a first-order 

ordinary differential equation. If the discrete-time domain is 

used to describe the crack evolution, Eq. (1b) changes into 

Eq. (2a)1, where the crack growth rate dx/dN follows the 
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Paris-Erdogan Eq. (1b) or any other FCG rate model (see for 

instance the NASGRO model, NASA J.S. Centre, 2002). 

Considering the RUL of the cracked component, the Paris-

Erdogan model allows the direct calculation of the remaining 

number of cycles by a direct integration of Eq. (1b) using the 

separation of variable method, Eq. (2b)2. 

 𝑥𝑘 = 𝑥𝑘−1 +
𝑑𝑥

𝑑𝑁
|

𝑥=𝑥𝑘−1

Δ𝑁 (2a) 

 𝑁𝑟 =
𝑥

𝑙𝑖𝑚

(1−
𝑚
2

)
− 𝑥0

(1−
𝑚
2

)

𝐶𝐹𝑚Δ𝑆𝑚𝜋
𝑚
2 (1 −

𝑚
2

)
 (2b) 

The term x0 indicates the starting crack length, xlim is the limit 

crack length governed by the fracture toughness and the 

safety requirements for the structure. Nr is the number of 

remaining load cycles needed to reach the length xlim starting 

from x0. All the other variables are the same as in Eqs. (1). 

The application of more complicated models makes 

unfeasible the direct integration of Eq. (1b), requiring 

numerical integration or Monte Carlo simulation to estimate 

the remaining cycles. Obviously, the deterministic definition 

of Nr cannot be employed in effective lifetime predictions or 

maintenance strategies, because of the large variability 

affecting the crack growth process. As a proof of the 

variability affecting the FCG process on real structures, 

Figure 1 shows some experimental results coming from 

fatigue crack growth tests on helicopter fuselage panels. The 

ordinate axes shows the crack length in millimeters as a 

function of the load cycles on the abscissa. As clearly visible, 

there is an high discrepancy between the theoretical curve 

(built with NASGRO model) and the experimental data. 

Therefore, a statistical approach is mandatory for an efficient 

residual lifetime prediction. The interested reader can refer to 

Corbetta et al. (2014) for further information about the 

mentioned experimental activity.  

 

Figure 1. Comparison between experimental data and 

theoretical crack growth curve built with NASGRO model. 

                                                           
2 Considering a constant shape function F(x) = F. 

2.1. Conceptual definition of fatigue crack growth 

variability 

According to the previous considerations on the scatter 

affecting FCG data, the Bourinet & Lemaire (2008) approach 

is proposed here with a little modification. The method can 

be applied with any kind of FCG propagation model that 

follows the general form dx/dN = g(x) (in load-cycle domain 

or time domain). 

The variability affecting crack propagation is split into two 

main contributions, each of them related to one or several 

sources of uncertainty, according to the Bourinet & Lemaire 

approach. Firstly, a crack evolution can differ from the 

theoretical one because of different values of material 

properties and/or empirical parameters, which cannot be 

described by a single value for all the structures built with the 

same material. It is easy to understand this concept giving 

thought to a large fleet of the same aircraft, or to all the 

metallic parts constituting a long bridge or an high-rise 

building. Even though the same material is used, 

uncertainties due to manufacturing processes and 

environmental uncertainties are always present in these kind 

of structures. Moreover, as just mentioned above, the crack 

propagation event follows a random behavior caused by 

several variability not considered in the common engineering 

models of the phenomenon. This random behavior produces 

discrepancies between the theoretical crack evolution and the 

expected one, and these discrepancies can appear in a small 

time-range. The two variability contributions are defined as 

inter-specimen variability and intra-specimen variability, 

respectively.  

2.1.1. Inter-specimen variability 

Usually, the inter-specimen variability is described within the 

FCG model by a randomization of the parameters, for 

instance C and m affecting the Paris-Erdogan model. This is 

the most common technique to produce a random FCG 

model, and the sequential information on the crack length 

updates the parameter pdfs by means of statistical tools. 

Corbetta et al. (2014) propose an Adaptive Markov chain 

Monte Carlo algorithm to update the parameter distributions 

during real crack propagation on portions of helicopter 

fuselage. On the other hand, a slightly different approach is 

proposed hereafter. Checking the discrete-form of crack 

evolution in Eq. (2a), it can be described as in Eq. (3). 

 𝑥𝑘 = 𝑥𝑘−1 + Δ𝑥𝑘−1 Δ𝑁 (3) 

Where ∆xk-1 is the result of the Paris-Erdogan model in this 

context. Actually, ∆x∙∆N describes the crack increment 

within few load cycles. The model used to evaluate the crack 

increment ∆x can be very complex and composed by a large 

quantity of empirical parameters and/or material properties; 

however, the result will be always a crack increment per load 
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cycle (or per time unit considering constant-amplitude loads). 

Now, consider that the monitoring of the crack and the 

subsequent RUL prediction are the main goal of the 

prognostic system. Thus, one might be not interested in the 

exact knowledge of the parameters describing the current 

crack propagation, as the main intent is to correctly monitor 

the damage and to improve the prognostic performances. 

Accordingly, the inter-specimen variability is described 

hereby a single mathematical constant called correction 

parameter ψ. It will be modulated according to the 

information related to the crack length during the crack 

propagation. The correction parameter ψ multiplies the crack 

increment ∆x to adjust the model prediction on the measures 

coming from a general diagnostic unit (Eq. (4a)). The 

proposed Paris-Erdogan formulation is highlighted in Eq. 

(4b). 

 𝑥𝑘 = 𝑥𝑘−1 + 𝜓𝑘−1Δ𝑥𝑘−1Δ𝑁 (4a) 

 𝑥𝑘 = 𝑥𝑘−1 + 𝜓𝑘−1𝐶(𝐹(𝑥)Δ𝑆√𝜋𝑥𝑘−1)
𝑚

Δ𝑁 (4b) 

The updating procedure will change the value of the 

correction parameter ψ instead of the two parameters C and 

m during the Bayesian filter operation. The correction 

parameter, will try to cover the inter-specimen variability 

affecting the crack propagation phenomenon. From a 

different point of view, it could be considered a drift of the 

process noise usually employed to generate the stochastic 

model. This drift should cover the bias between the expected 

crack evolution (driven by the deterministic parameters of the 

model) and the actual crack growth happening on the 

structure. 

2.1.2. Intra-specimen variability 

The intra-specimen variability can be represented by a 

random process altering the crack growth at each time step as 

just presented by Yang & Manning (1996). The FCG rate 

model is modified by a lognormal random noise Ω, Eq. (5a).  

The employment of a lognormal random process to describe 

Ω is due to the nature of the damage. In fact, cracks can only 

increase over time (or at least, they remain constant), thus the 

crack increment during a discrete time step cannot be 

negative. Others distributions are able to satisfy this 

requirement, however the lognormal distribution is the 

easiest way to introduce the correct variability affecting the 

crack growth process. This random noise is representative of 

all the possible uncertainties affecting the real environments 

with respect to the theoretical model describing the FCG 

phenomenon: variability of the actual state of stress near the 

crack, environmental conditions, different direction of the 

applied load with respect to the expected one, just to name a 

few of them. 

Equation (3) modifies according to Ω and it can be employed 

in a dynamic state-space model of the process, Eq. (5b). 

 
𝑑𝑥

𝑑𝑁
= Ω 𝐶[Δ𝐾(𝑥)]𝑚 (5a) 

 𝑥𝑘 = 𝑥𝑘−1 + 𝐶[Δ𝐾(𝑥𝑘−1)]𝑚𝜔𝑘−1Δ𝑁 (5b) 

Where the term ωk-1 in Eq. (5b) is a realization of the random 

process Ω. This variable represents the random noise of the 

process within the Bayesian filtering framework. Even in this 

case, the optimal value of the process noise is unknown at the 

beginning of the crack growth. The first moments of the 

random noise (for instance the mean and variance) should be 

properly tuned using previous experimental tests 

representative of the current condition of the system. 

However, the amount of uncertainty makes impossible a 

complete characterization of the random noise. Then, the 

mean and the variance associated to the random noise Ω will 

be estimated during the crack propagation according to the 

data coming from the observation equation, as described in 

section 3. 

2.1.3. Residual useful life prediction 

The integration of Paris-Erdogan model is feasible even if the 

model becomes a random process due to the presence of Ω. 

The lognormal random process introduced in Eq. (5a) is used 

to evaluate the probability density function of the RUL 

according to Eq. (2b). As introduced by Yang & Manning, 

the integration of dx/dN= Ω g(x) brings to the equivalence in 

Eq. (6). 

 ∫
1

𝑔(𝑥)
𝑑𝑥

𝑥𝑙𝑖𝑚

𝑥0

= ∫ Ω
𝑁𝑟

0

0

𝑑𝑁 (6) 

The term Nr
0 is the theoretical number of remaining load 

cycles calculated with the deterministic FCG rate model g(x). 

The RUL distribution could be evaluated by means of Monte 

Carlo sampling and the theory of stochastic processes, 

avoiding the step-by-step simulation of crack growth samples 

commonly implemented in standard SIS/SIR algorithms. As 

a matter of fact, the right-hand side of Eq. (6) can be 

approximated using the summation of n* = Nr
0/∆N samples 

coming from the process Ω multiplied by the discretization 

∆N, as in Eq. (7). 

 ∫ Ω
𝑁𝑟

0

0

𝑑𝑁 ≈ ∑ 𝜔𝑗

𝑛∗

𝑗=1
Δ𝑁 (7) 

Again, the term ωj is the j-th sample coming from the random 

process Ω. The repetition of the summation in Eq. (7) for a 

relatively large number of times produces an approximation 

of the probability density function of the RUL in agreement 

with the theoretical curve defined by the stochastic Paris-

Erdogan law in Eq. (5a). This simple approach is limited to 

the case of constant amplitude loading conditions, and it will 

be explained in detail in section 3 within the pseudo-code of 

the SIR algorithm (subsection 3.5). Thus, if variable loads are 

applied to the cracked components, the step-by-step 
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simulation of the crack should be adopted, as well as more 

complicated techniques to evaluate the stochastic integrals. 

3. SEQUENTIAL IMPORTANCE RESAMPLING, PARAMETER 

ESTIMATION AND ADAPTIVE NOISE VARIANCE 

Literature about sequential Monte Carlo sampling is vast at 

least as the literature on fatigue crack growth. Therefore, the 

section summarizes the main features of SIR algorithms with 

a focus on the crack monitoring and prediction problem only. 

3.1. Monitoring and Prediction from a Bayesian filtering 

perspective 

Equations (3-5) presented in section 2 can be generalized 

with the common dynamic state-space model formulation 

composed by the state evolution, Eq. (8a) (following the 

hypothesis of the hidden Markov models of order one) and 

the observation equation, that is Eq. (8b) (linking the actual 

state of the system with the information provided by a 

measurement system). 

 𝑥𝑘 = 𝑓(𝑥𝑘−1, 𝜽, 𝜔𝑘−1) (8a) 

 𝑧𝑘 = ℎ(𝑥𝑘 , 𝜂𝑘) (8b) 

The vector θ contains empirical parameters supposed to be 

constant during the system evolution. Variables zk represents 

the measure related to the state xk at the general k-th step, and 

ηk is the random noise affecting the measurement system. The 

objective within the formulation of Bayesian filters is the 

evaluation of the posterior probability density function of the 

state x given a series of noisy observations z at a general time-

step k; it means the calculation of p(xk|z1:k). From a 

mathematical viewpoint, the problem statement is described 

by the Chapman-Kolmogorov equation, Eq. (9a) and the 

subsequent updating via Bayes’ rule, Eq. (9b). 

𝑝(𝑥𝑘|𝑧1:𝑘−1) = ∫ 𝑝(𝑥𝑘|𝑥𝑘−1)𝑝(𝑥𝑘−1|𝑧1:𝑘−1)𝑑𝑥𝑘−1 (9a) 

𝑝(𝑥𝑘|𝑧1:𝑘) =
𝑝(𝑥𝑘|𝑧1:𝑘−1)𝑝(𝑧𝑘|𝑥𝑘)

𝑝(𝑧𝑘|𝑧1:𝑘−1)
 (9b) 

The analytical solution of the posterior pdf is available if the 

system is linear and the processes are described by Gaussian 

distributions. This is not the case for crack propagation 

phenomena. The SIR algorithm allows approximating the 

posterior distribution p(xk|z1:k) by a series of samples 

representative of the system state, usually called particles by 

the widespread definition of the algorithm particle filter. 

Each particle has an associated weight w depending on the 

sequential information coming from the measurement 

system, diagnostic unit etc. The approximation of the 

posterior pdf is expressed in Eq. (10). 

 𝑝(𝑥𝑘|𝑧1:𝑘) ≈ ∑ 𝑤𝑛,𝑘
(𝑖)

𝛿(𝑥𝑘 − 𝑥𝑘
(𝑖)

)
𝑁𝑆

𝑖=1
 (10) 

Where NS is the total number of particles, xk
(i) is the value of 

the i-th particle at the general k-th time step, wn,k
(i) is the 

normalized weight associated to that particle and δ is the 

Dirac delta-function. The weight formulation employed in 

the SIR algorithm agrees with the bootstrap approximation, 

in which the transition density from xk-1 to xk is used as 

proposal distribution for the sample generation (Haug, 2005). 

As a consequence, the weights depend on the value at the 

previous step k-1 and on the likelihood of the measure given 

the particle value, as shown in Eq. (11). 

 𝑤𝑘
(𝑖)

= 𝑤𝑘−1
(𝑖)

𝑝(𝑧𝑘|𝑥𝑘
(𝑖)

) (11) 

Then the weights are normalized such that Σwk
(i)=1. 

Arulampalam, Maskell, Gordon & Clapp (2002) and Doucet, 

Godsill & Andrieu (2000) produced a detailed description of 

the algorithm for the interested reader.  

In case of combined state-parameter estimation, the vector x 

is augmented such that the extended system state is 

represented by the damage state and the parameter variables 

yk = [xk, θ]. Particles associated to the state x(i) and the 

parameter sample θ(i), together with the related weight w(i), 

will be representative of the combined state-parameter 

estimation or extended system state, Eq. (12a). It has to be 

remarked that the subscript k associated to θ in Eq. (12a) 

indicates the value of θ at the general k-th step, and it does 

not mean that θ is time-varying. The weight updating follows 

the same procedure of the standard particle filtering, 

nevertheless the likelihood of the measure is affected by the 

value of θ(i) used to propagate the particle (Eq. (12b)). 

{𝒚𝑘
(𝑖)

= (𝑥𝑘
(𝑖)

, 𝜽𝑘
(𝑖)

), 𝑤𝑘
(𝑖)

}
𝑖=1

𝑁𝑆
 (12a) 

𝑤𝑘
(𝑖)

∝ 𝑤𝑘−1
(𝑖)

𝑝(𝑧𝑘|𝒚𝑘
(𝑖)

) = 𝑤𝑘−1
(𝑖)

𝑝(𝑧𝑘|𝑥𝑘
(𝑖)

, 𝜽𝑘
(𝑖)

) (12b) 

The combined state-parameter posterior pdf is expressed 

thanks to Bayes’ rule (13) as highlighted by Liu & West 

(2001). 

𝑝(𝒚𝑘|𝑧1:𝑘) ∝ 𝑝(𝑧𝑘|𝒚𝑘)𝑝(𝑥𝑘|𝜽, 𝑧1:𝑘−1)𝑝(𝜽|𝑧1:𝑘−1) (13) 

As clearly visible by Eq. (13), the knowledge of the 

parameter pdf given the series of observations z is 

fundamental to approximate the posterior pdf of the 

augmented state vector y correctly. Thus, the proposal 

distribution from which to draw the samples of the parameter 

vector has to be considered in the SIR algorithm. The next 

sub-section briefly discusses the two main approaches used 

in this work: the artificial dynamics and the kernel smoothing 

techniques (Liu & West, 2001). Both these techniques will be 

used during the algorithm to update the correction parameter 

ψ shown in section 2. They have been selected because of 

their simplicity, while other more advanced techniques are 

available in literature as summarized by Kantas, Doucet, 

Singh & Maciejowski (2009). 

3.2. Artificial dynamics technique 

The main drawback in the insertion of constant parameter in 

the state vector is that the filtering method has to identify two 
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different quantities: one is time-varying, and the other one is 

constant. The first attempt is to select a DSS equation for the 

constant parameter on the form θk = θk-1. However, it leads to 

the well-known problem of sampling impoverishment or 

sample degeneracy. The sample degeneracy can be overcome 

by the addition of a small change in the sample values at each 

step of the algorithm. This small change is a random noise 

added to each particle, as presented in Eq. (14). 

 𝜽𝑘
(𝑖)

= 𝜽𝑘−1
(𝑖)

+ 𝝃𝑘
(𝑖)

 (14) 

where ξk
(i) is a random value with zero-mean and a variance 

that decreases in time. This is the idea suggested by Gordon, 

Salmond & Smith (1993) and recalled by Liu & West (2001). 

Actually, the statistics of ξ does not depend on the observed 

data, then p(θ|z1:k-1) is negligible in the posterior formulation 

of the state distribution. 

Noticeably, the simplicity of the method introduces a non-

negligible drawback that is the loss of information between 

the time steps. It happens because of the introduction of the 

mentioned artificial changing in the parameter values when 

they are fixed. Moreover, two questions have to be solved to 

maximize the performances of the algorithm: the selection of 

the initial covariance matrix of ξ, σξ,0
2, and the decreasing 

function depending on the discrete time σξ
2= σξ,0

2f(k), in order 

to reach the convergence in a relatively small number of 

iterations. 

3.3. Kernel smoothing technique 

Kernel smoothing method was developed by West (1993b) 

and it is based on the mixture modelling approach. It allows 

approximating the parameter posterior distribution by a 

Gaussian mixture using the weights associated to the 

particles, as shown in Eq. (15). 

 𝑝(𝜽|𝑧1:𝑘) ≈ ∑ 𝑤𝑘
(𝑖)

𝑁(𝜽|𝜇𝜽,𝑘
(𝑖)

, 𝜻𝑘
2Σ𝜽,𝑘)

𝑁𝑆

𝑖=1
 (15) 

where μθ,k
(i) is the kernel location for the i-th particle of the 

parameter θ, ζk is the smoothing parameter and Σθ,k is the 

Monte Carlo covariance matrix of θ. Intuitively, N(∙|m,S) 

indicates a probability that follows a normal distribution with 

mean m and covariance matrix S. Effective kernel locations 

μθ,k are specified according to the shrinkage rule proposed by 

West (1993b) depending on the smoothing parameters ζk and 

another parameter b=√(1- ζk
2). Equation (16) defines the 

kernel location for each particle. 

 𝜇𝜽,𝑘
(𝑖)

= 𝒃𝜽𝑘−1
(𝑖)

+ (1 − 𝒃)𝐸(𝜽𝑘−1) (16) 

The term E(θk-1) is the mean of the parameter vector θ at the 

k-1 th time step. Even though this methodology allows an 

effective and adaptive sampling technique, the function ζk = 

ζ(k) must be properly selected in order to reach the 

convergence of the algorithm. It should be a small decreasing 

function of the time as it happens for the variance introduced 

in the artificial dynamics method. Nevertheless, the loss of 

information is limited with respect to the previous approach. 

3.4. Dynamic noise variance 

In the previous sub-section, the problem of constant 

parameter estimation is faced presenting two different 

techniques covering the inter-specimen variability affecting 

the damage propagation phenomenon that can appear on real 

structures. Now the focus is on the intra-specimen variability. 

In this kind of nonlinear problems with non-Gaussian pdfs, 

the selection of too small noise features makes the algorithm 

unable to track the state variations properly. If this happens, 

the wrong state estimation will produce larger errors in the 

estimation of the RUL. On the other hand, too large noise 

features produce unreasonable enlargement of the posterior 

distributions, then useless information. Moreover, a too large 

noise variance alters the particle evolutions producing 

implausible propagation of the crack and falling into 

unexpected RUL distribution, too. An adaptive noise is 

proposed hereafter, trying to avoid the tuning of the noise Ω 

affecting the process. 

A suitable process noise for the crack growth problem is the 

lognormal random process already introduced in section 2. 

According to the theory of lognormal distributions, Ω can be 

described as an exponential function of a normal random 

process Λ, with mean and variance precisely selected, Eqs. 

(17a, b). In order to produce an unbiased estimation of the 

mean crack growth curve, the mean and variance of the 

normal random process Λ must be related according to the 

formulation in Eq. (17c), such that the mean of the random 

process approaches one (Eq. (17d)). 

 Ω = exp Λ (17a) 

 λ ~𝑁(𝜇Λ, 𝜎Λ
2) (17b) 

 𝜇Λ = −
𝜎Λ

2

2
 (17c) 

 𝐸(Ω) = exp {𝜇Λ +
𝜎Λ

2

2
} = 1 (17d) 

In this way, the average of the random process x (the 

evolution equation of the DSS model) will be centered on the 

deterministic evolution of x. The i-th sample of the process 

noise ω can be easily drawn according to Eq. (18). 

 𝜔(𝑖)~ exp{𝜆(𝑖)} = exp{𝜇Λ + 𝜎Λ 𝑟} (18) 

Where r indicates a random value drawn from the 

standardized normal distribution; thus λ(i) is a single 

realization of the random process Λ. Despite the link between 

the mean and the variance of the random process, the 

selection of σΛ
2 remains heuristic in the common practice. 

Then, a non-constant variance tuned on the scatter of the 

measures could improve the performance of the algorithm. 
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According to this concept, the simulations presented in 

section 5 make use of two methods to adjust the noise 

variance. First, the variance of the process Λ is assumed equal 

to the variance associated to the observations, which is a 

function of the estimated state at the previous time-step, as 

expressed in Eq. (19). 

 𝜎Λ𝑘+1

2 = 𝜎𝑧𝑘
2 (𝑥𝑘) (19) 

This is a very simple approach useful for systems where the 

variance of the process or the variance of the measurement 

system can increase over time, like in the structural 

degradation processes. The other technique makes use of the 

formulation of Xu and Li (2005) introducing the similarity 

parameter between the observation and the estimated state, 

defined in Eq. (20). The similarity parameter is proportional 

to the distance between E(xk) and the observation zk in multi-

dimensional or one-dimensional spaces (as in this case). The 

term V(xk) indicates the Monte Carlo variance of the state at 

time step k. 

 𝜑𝑘 = exp {−
(𝑧𝑘 − 𝐸(𝑥𝑘))

2

2𝑉(𝑥𝑘)
} (20) 

The new noise variance is computed according to Eq. (21) 

through the similarity parameter φk. 

𝜎Λ𝑘+1

2 = max (min (σΛ0
2√

1

𝜑𝑘

, 𝜎Λ,𝑚𝑎𝑥
2 ) , 𝜎Λ,𝑚𝑖𝑛

2 ) (21) 

Actually, the variance selection is replaced by the tuning of 

three parameters, so it is not completely avoided. They are 

the constant σΛ,0
2, the maximum and minimum allowable 

variances, σΛ,max
2 and σΛ,min

2. However, the selection of these 

quantities could be simpler than the selection of the optimal 

variance in some cases. Both the formulations in Eq. (19) and 

Eq. (21) will be employed in the SIR algorithm. 

3.5. Algorithm operation 

Sub-sections 3.1-3.4 define the equations adopted in the SIR 

algorithm, highlighting the artificial dynamics and kernel 

smoothing techniques to estimate constant model parameters 

(covering the inter-specimen variability), and an adaptation 

of the process noise variance (accounting for the intra-

specimen variability). The following points summarize the 

algorithm operation, while Table 1 explains the variances 

involved in the algorithm. 

1. Initialize the algorithm: 

𝑧0~𝑝 (𝑥0
𝑟 , 𝜎𝑧0

2 (𝑥0
𝑟)) 

∀ 𝑖 =  1, … , 𝑁𝑆 

𝜽0
(𝑖)

 ~𝑝(𝜽0, 𝜎𝝃0

2 ) 

𝑥0
(𝑖)

~𝑝(𝑥0|[𝑧0 𝜽0
(𝑖)

], 𝜎𝑥0
2 ) 

𝑤0
(𝑖)

= 1
𝑁𝑆

⁄  

2. Perform the transition: 

Update useful parameters 

𝜎𝝃𝑘

2 = 𝜎𝝃0

2 𝑓(𝑘)   for artificial dynamics, or 

𝜻𝑘 = 𝜻0𝑓(𝑘)   for kernel smoothing 

𝜎Λ𝑘

2 = 𝑓 (𝜎𝑧𝑘
2 (𝑥𝑘

𝑟))  according to (19), or 

𝜎Λ𝑘

2 = 𝑓(𝜑𝑘 , 𝜎Λ,0
2 , 𝜎Λ,𝑚𝑎𝑥

2 , 𝜎Λ,𝑚𝑖𝑛
2 ) according to (21) 

∀ 𝑖 =  1, … , 𝑁𝑆 

𝜽𝑘
(𝑖)

~𝑝(𝜽𝑘|𝜽𝑘−1
(𝑖)

, 𝜎𝝃𝑘

2 ) for artificial dynamics, or 

𝜽𝒌
(𝒊)

~p(𝜽𝑘|𝜇𝜽.𝑘
(𝑖)

, 𝜻𝑘
2Σ𝜽,𝑘−1) for kernel smoothing 

𝑥𝑘
(𝑖)

~𝑝(𝑥𝑘|[𝑥𝑘−1
(𝑖)

 𝜽𝑘
(𝑖)

], 𝜎𝑥𝑘−1
2 ) 

Draw 

𝑧𝑘 using a simulated measurement system 

3. Evaluate the new weights 

𝑤𝑘
(𝑖)

∝ 𝑤𝑛,𝑘−1
(𝑖)

𝑝(𝑧𝑘|𝒚𝑘
(𝑖)

= [𝑥𝑘
(𝑖)

 𝜽𝑘
(𝑖)

]) 

𝑤𝑛,𝑘
(𝑖)

=
𝑤𝑘

(𝑖)

∑ 𝑤𝑘
(𝑖)

𝑖

⁄  

4. Evaluate the posterior pdf 

𝑝(𝒚𝑘|𝑧1:𝑘) = ∑ 𝑤𝑛,𝑘
(𝑖)

𝛿(𝒚𝑘 − 𝒚𝑘
(𝑖)

)
𝑖

 

If the kernel smoothing is adopted, the posterior pdf of 

parameters becomes: 

𝑝(𝜽|𝑧1:𝑘) = ∑ 𝑤𝑛,𝑘
(𝑖)

𝑁(𝜽|𝜇𝜽,𝑘
(𝑖)

, 𝜻𝑘
2Σ𝜽,𝑘)

𝑖
 

5. Evaluate the Residual useful life up to the limit state xlim. 

∀ 𝑖 =  1, … , 𝑁𝑆 

- Estimate the theoretical number of remaining load cycles 

using Eq. (2b) 

𝑁𝑟
(𝑖)

= 𝑁𝑟(𝑥𝑙𝑖𝑚 , 𝑥0 = 𝑥𝑘
(𝑖)

, 𝜽𝑘
(𝑖)

) 

- Alter the estimation of the remaining load cycles using the 

integral of the random process Ω in (7): 

𝑁𝑟
(𝑖)

= ∫ Ω
𝑁𝑟

(𝑖)

0

𝑑𝑁 = ∑ 𝜔𝑗

𝑛∗=
𝑁𝑟

(𝑖)

Δ𝑁

𝑗=1
Δ𝑁 

- Generate the posterior pdf of the remaining load cycles 

𝑝(𝑁𝑟|𝑧1:𝑘) = ∑ 𝑤𝑛,𝑘
(𝑖)

𝛿(𝑁𝑟 − 𝑁𝑟
(𝑖)

)
𝑖

 

6. Resample the particles according to whatever resampling 

procedure: for instance the systematic resampling 

scheme (Arulampalam et al. 2002). 

∀ 𝑗 =  1, … , 𝑁𝑆 Assign: 𝑦𝑘
(𝑗)

= 𝑦𝑘
(𝑖)

 with probability 𝑤𝑛,𝑘
(𝑖)

 

7. Repeat the steps 2-6 for each k-th time step. 
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4. PROGNOSIS OF THE FCG PHENOMENON 

This section shows the SIR algorithm of section 3 applied to 

several simulated crack propagations. The key parameters of 

the algorithm are set according to the problem and the main 

features of the simulation are described as well. 

4.1. Target crack growth 

Target crack propagations are simulated according to Eq. (22) 

to prove the validity of the method. In this sub-section, the 

term a indicates the target crack, despite of the term x that 

indicates the crack samples drawn by the SIR algorithm. 

Table 2 shows the values of constants and parameters 

employed in the simulation. 

 𝑎𝑘 = 𝑎𝑘−1 + 𝜓0 𝐶(𝐹Δ𝑆√𝜋𝑎𝑘−1)
𝑚

𝜔𝑘−1Δ𝑁 (22) 

The correction parameter ψ0 modifies the theoretical crack 

propagation, and it constitutes the only parameter that has to 

be estimated thorough the SIR algorithm. It means that the 

vector θ describing the parameters of the model collapse to a 

single scalar quantity, ψ. Consequently, the vector of random 

processes ξ becomes scalar, too. Roughly speaking, a 

different correction parameter in the simulated crack 

increases or reduces the theoretical crack increment 

introduced by the Paris-Erdogan model. Several simulations 

are performed using different correction parameters. Figure 2 

shows an example of crack propagation simulated according 

to the characteristics in Table 2 and in Eq. (22). The target 

crack length a altered by a normal random noise (driven by 

ση
2) constitutes the observation z provided to the SIR 

algorithm, visible in Eq. (23a). 

The variance of the normal random noise is a function of the 

crack length itself multiplied by a constant α on the order of 

1E-3 as presented in Eq. (23b). This simulated measurement 

system is adopted in both the simulations with AD and KS 

approach. 

 
 𝑧𝑘 = ℎ(𝑎𝑘 , 𝜂𝑘) = 𝑎𝑘 + 𝑁(0, 𝜎𝜂𝑘

2 ) (23a) 

 𝜎𝜂𝑘
2 = 𝛼𝐸(𝑎𝑘)2 (23b) 

In this case, the variance of the random process ση,k
2 coincides 

to the variance of the measurement system given the Eq. 

(23a). As a consequence, σz,k
2=ση,k

2. 

4.2. SIR algorithm with artificial dynamics 

The monitoring-prediction problem of the FCG can be 

described combining the equations and ideas described in the 

previous sections. Equations (24a), (24b) and (24c) constitute 

the core of the SIR algorithm with the AD technique for the 

estimation of the model parameters. 

𝑥𝑘
(𝑖)

= 𝑥𝑘−1
(𝑖)

+ 𝜓𝑘−1
(𝑖)

𝐶 (𝐹Δ𝑆√𝜋𝑥𝑘−1
(𝑖)

)

𝑚

𝜔𝑘−1
(𝑖)

Δ𝑁 (24a) 

log 𝜓𝑘
(𝑖)

= log 𝜓𝑘−1
(𝑖)

+ 𝜉𝑘
(𝑖)

 (24b) 

𝑧𝑘 = 𝑎𝑘 + 𝜂𝑘 (24c) 

The superscript (i) indicates the i-th particle of the algorithm. 

Moreover, since the crack can only increase over time, the 

parameter ψ should be log-normally distributed so that the 

values cannot be negative. Therefore, the logarithmic 

transformation allows computing the artificial dynamics 

method by means of a normally distributed noise ξ. Equations 

(25) show the random processes used during the filtering 

procedure. The random process affecting the measures is the 

same just described in the Eqs. (23). 

𝜔𝑘 = exp{𝜆𝑘}; 𝜆𝑘~𝑁 (𝜇Λ𝑘
= −

𝜎𝜂𝑘
2

2
, 𝜎Λ𝑘

2 =  𝜎𝜂𝑘
2 ) (25a) 

𝜉𝑘~𝑁 (0, 𝜎𝜉𝑘

2 = 𝜎𝜉0

2 𝑓(𝑘)) (25b) 

𝜂𝑘~𝑁(0, 𝜎𝜂𝑘
2 = 𝛼𝐸(𝑎)𝑘

2
) (25c) 

 

Table 1. Variances used to develop the SIR algorithm. 

 

Variance Description 

σz,k
2(xk

r) 
Variance associated to the observations as a 

function of the real state xk
r at the k-th step 

σξ,k
2 

Variance associated to the parameter samples 
for the AD algorithm at the k-th step 

σx,k
2 

Variance associated to the state x coming from 

the state evolution equation at the k-th step 

ζk 
Smoothing parameter for KS algorithm a the 

general k-th step 

σΛ,0
2 Constant value associated to the noise variance 

σΛ,max
2 

Maximum allowable variance of the random 
noise Λ 

σΛ,min
2 

Minimum allowable variance of the random 

noise Λ 

Σθ,k Monte Carlo variance of θ at the k-th step 

 

Table 2. Features of the crack simulation. 

 

Parameter Description Value 

F(x) Crack shape function [-] 1.2 

ΔS 
Applied fatigue load 

[MPa] 
30 

C 
Empirical constant 

[mm/cycle · 1/MPa√mm] 
2.382e-12 

m Empirical constant [-] 3.2 

ψ0 Correction parameter [-] 1.25 

ω Random noise ~logN(1,exp{2}-1) 

a0 
Starting crack length  

[mm] 
5 

alim 
Critical crack length 

[mm] 
100 

ΔN 
load cycle increment per 

time-step [cycles] 
100 
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Equation (25a) shows the variance of the ancillary quantity Λ 

(used to define the random process ωk) as presented in Eq. 

(19). The artificial dynamics for the parameter estimation is 

generated using a normal random noise as in Eq. (25b) with 

decreasing variance defined in section 4.4. 

4.3. SIR algorithm with kernel smoothing 

Similarly to the formulation of the sub-section 4.2, Eq. (26) 

shows the DSS model of the algorithm using the KS approach 

for the parameter estimation. 

𝑥𝑘
(𝑖)

= 𝑥𝑘−1
(𝑖)

+ 𝜓𝑘−1
(𝑖)

𝐶 (𝐹Δ𝑆√𝜋𝑥𝑘−1
(𝑖)

)

𝑚

𝜔𝑘−1
(𝑖)

Δ𝑁 (26a) 

log 𝜓𝑘
(𝑖)

= 𝜇log 𝜓,𝑘
(𝑖)

+ 𝜁𝑘√σlog 𝜓,𝑘−1
2 𝑁(0,1) (26b) 

𝑧𝑘 = 𝑎𝑘 + 𝜂𝑘 (26c) 

σlogψ,k-1
2 is the estimated variance of log ψ at the previous 

time-step. The term μψ
k is the kernel location at step k and it 

is represented hereafter in scalar form (27). 

 𝜇log 𝜓,𝑘
(𝑖)

= 𝑏 log 𝜓𝑘
(𝑖)

+ (1 − 𝑏)𝐸(log 𝜓𝑘) (27) 

Where b=√(1- ζk
2). All the other quantities follow the 

definitions of the previous sections. The random processes 

defining the noises are the following: the realizations of the 

state noise Ω follow Eq. (25a). The definition of σΛ
2 is driven 

by the variance of the measurement system or by the 

similarity parameter of Xu and Li defined in (21), as in the 

case of artificial dynamics. The value of the smoothing 

parameter is presented in section 4.4. 

4.4. On the influence of initial variances 

As reminded in section 3, the artificial dynamics approach to 

estimate the model parameters needs a starting value for the 

variance used to draw the samples, which is σξ,0
2. Even the 

kernel smoothing approach requires the selection of the initial 

variance, but it is less important than the values employed in 

the AD algorithm. Actually, only the first samples of the 

parameters log ψ are drawn using the starting variance. 

 
Figure 2. Example of target crack growth according to (22) 

and Table 2. 

The Monte Carlo variance σlogψ
2 of the previous time step and 

the smoothing parameter ζ govern the current sampling step. 

However, a wrong initial variance of the parameter pdf can 

affect the overall performance of the algorithm even using the 

KS approach. Besides, prognostic system requires the 

decreasing function f(k) to update σξ,k
2 and ζk, respectively. 

The values presented afterwards have been preliminary 

selected following a trial & error procedure. These values 

must not be regarded as the best in absolute terms; 

nevertheless, they are associated to fairly good performances 

of the algorithm. A sensitivity analysis of SIR performances 

with respect to initialization values is matter of future 

research by the authors. 

The quantities presented here represent reasonable values 

according to the other parameter values, the variability 

associated to the observations and the magnitude of the 

observed state x. As declared above, they cannot be 

considered optimal, nor suboptimal variances for the studied 

process. Equation (28a) shows the starting values employed 

for the parameter noise variance with both the AD and KS 

technique, while Eq. (28b) shows the decreasing variance for 

the artificial dynamics. Regarding the KS approach, the 

initial value and the sub-sequent values of the smoothing 

parameters are defined in (28c-d). 

 𝜎𝜉,0
2 = 0.1 (28a) 

 𝜎𝜉,𝑘
2 =

𝜎ξ,0
2

𝑘
 (28b) 

 𝜁0 = 1 (28c) 

 𝜁𝑘 =
1

√𝑘
 (28d) 

The starting variances of the random noise ω conditioning the 

state evolution is selected with the same trial & error 

approach. Nevertheless, if the method based on Eq. (19) is 

adopted, the tuning of the initial variance is not required. As 

a matter of fact, the variance σΛ
2 is associated to the 

observation variance from the first measure. The approach 

proposed by Xu & Li requires the selection of three quantities 

instead: σΛ,0
2, σΛ,min

2 and σΛ,max
2. The magnitudes used in the 

simulations are expressed in Eq. (29) and can be considered 

reasonable values for the studied damage propagation 

process. 

 𝜎Λ,0
2 = 1  (29a) 

 𝜎Λ,𝑚𝑎𝑥
2 = 1.5 (29b) 

 𝜎Λ,𝑚𝑖𝑛
2 = 0.2 (29c) 

These values are used for both the AD and the KS algorithms. 

It has to be noticed that the term σΛ,0
2 is not the actual variance 

associated to the random noise, because it has multiplied by 

√(1/φ), as presented in (21). 
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5. RESULTS 

This section contains the main results of the algorithm. The 

capability of the developed prognostic unit to assess the 

residual lifetime of the system is highlighted in terms of 

model parameter estimation and RUL pdf. The overall 

behavior of the algorithm is established using both the AD 

and the KS technique. The crack length monitoring is 

simulated up to 150000 load cycles, which corresponds to a 

crack increment of around 7 mm: from 5 mm to 12 mm. The 

number of employed particles is 5000, the ∆N is set to 100 

load cycles, and a measure of the crack length z becomes 

available every ∆N. During these 150000 load cycles, the 

algorithms try to estimate the most probable crack length 

(state of the system), the correction parameter ψ, and the 

remaining number of cycles before the critical crack length 

limit (here arbitrary set to 100 mm). 

5.1. Monitoring and prediction of FCG  

The estimation of the crack length is the easiest goal because 

of the construction of the algorithm itself. Almost every 

estimation of the state contains the actual state, and the results 

are comparable for both the KS and the AD. The results are 

satisfactory and do not constitute the nodal point of the 

proposed algorithm. Then, the following parts will focus on 

the estimation capabilities in terms of correction parameter 

and RUL probability density functions. 

Figures 3 and 4 shows the results of the algorithm using the 

artificial dynamics approach to estimate the parameter ψ and 

the RUL, respectively. The simulations involve a small crack 

increment (from 5 to 12 millimeters) with respect to the 

critical crack length (100 mm), and the algorithm uses many 

measures to achieve acceptable results of the parameter ψ 

(expressed in Figure 3 in its logarithmic form), then adjusting 

the RUL prediction (Figure 4). 

However, the crack increment ∆x is very small in the first part 

of the crack propagation so that the discrimination among 

good and wrong values of the correction parameter is 

difficult. 

 
Figure 3. Correction parameter (log ψ) estimation using the 

SIR algorithm with artificial dynamics. 

 

Above all, the convergence velocity depends on the scatter 

affecting the measures. Hence, less frequent measures 

provided with larger ∆N could produce the same results 

because the difference between two distant crack lengths 

makes easier the identification of good and bad parameter 

values. 

The results of the previous figures have been achieved using 

the variance updating in (19), in which the variance of the 

observation equation governs the variance of the process 

noise σΛ
2. The implementation of the similarity parameter to 

drive the variance σΛ
2 produces comparable results. 

Figure 5 and 6 show the same graphs using a SIR algorithm 

with the kernel smoothing method. As expected, the 

smoothness of these results is higher with respect to the 

artificial dynamics case where, actually, the smoothing is 

missing. The advantages of the kernel smoothing technique is 

clear looking at the results of the whole simulation. The KS 

algorithm produces more stable results in terms of parameter 

estimation and above all RUL prediction with respect to the 

artificial dynamics method. 

The results of the kernel smoothing algorithm relate to the 

adaptive noise variance in (21), using the similarity parameter 

proposed by Xu and Li. It is important to underline that the 

first approach using the same variance of the observation 

equation does not work in this case. This can be related to the 

measure variance which is too small with respect to the one 

required by the algorithm. Figure 7 shows the estimation of 

the correction parameter using the kernel smoothing 

approach with the adaptive variance of the process noise 

according to (19). 

It obviously produces a wrong RUL prediction. The problem 

does not appear in the artificial dynamics case, where the 

artificial noise added to the particles is independent from 

whatever previous estimation. This leads to an higher scatter 

of the particles with respect to the kernel smoothing case.  

Therefore, a small variance of ω does not decrease the 

performance in a marked way. 

 
Figure 4. Residual useful life estimation using the SIR 

algorithm with artificial dynamics. 
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The approach of Xu and Li based on the similarity between 

the state estimation and the observations seems better as it 

works with both the algorithms. However, the tuning of 

σΛ,max
2, σΛ,min

2 and above all σΛ,0
2 is solved here with a trial 

& error procedure. One more question has to be investigated: 

the capability of the algorithm with one adaptive parameter 

only (ψ), to predict the RUL of a simulated crack built with a 

different couple of parameters C and m instead of a different 

value of ψ only. Then, a fictitious crack growth is simulated 

using (C; m) = (2.39e-11; 2.9) instead of the values presented 

in Table 2. In this case, the results are compared in terms of 

RUL distributions only because the correction parameter ψ, 

assumes a value which is not comparable with a target. Figure 

9 and 10 show the RUL prediction of the latter case for the 

artificial dynamics and the kernel smoothing algorithm, 

respectively. Even in this case, the variance of the random 

process is set equal to the variance of the observations for the 

AD and the similarity parameter has been employed for the 

KS approach, respectively. However, the initial variance of 

the correction parameter, defined as σξ,0
2, has to be properly 

tuned and differs from the case where a different ψ0 drives 

the target crack growth. As visible in the comparison between 

the figures 4-8 and 6-9, the results remain good. Of course, 

the validity of the results is limited to the range of crack 

lengths adopted in these simulations. 

 
Figure 5. Estimation of the correction parameter (log ψ) 

using the kernel smoothing algorithm. 

 
Figure 6. Estimation of the RUL using the kernel smoothing 

algorithm. 

The performances outside this range must be investigated. 

The AD algorithm produces worse results with respect to the 

previous case, while the kernel smoothing converges to a 

slightly biased expected value. This small bias does not 

appear when the target crack is built with a different 

parameter ψ. Nonetheless, the estimations remain acceptable. 

All the analyses and results presented above can be 

considered a preliminary study of the matter. Of course, they 

do not have the intent to quantify the errors occurring during 

the filtering procedure performed by the SIR algorithm. They 

want to investigate the effectiveness of the proposed methods 

and to analyze the performances as a tradeoff between 

different approaches. 

6. CONCLUSION 

A prognostic unit for FCG grounding on sequential Monte 

Carlo algorithms has been developed in this work. The kernel 

smoothing technique introduces more stable parameter 

estimation and RUL prediction. Its disadvantage is the higher 

computational effort with respect to the artificial dynamics 

algorithm. The estimation of the remaining number of cycles 

Nr using the stochastic integral proposed by Yang & Manning 

(1996) drastically reduces the computational effort required 

by common SIR algorithms for FCG prediction. Reporting on 

the adaptive variance of the process noise, the simple method 

that links the variance of the random process with the 

variance of the measurement system does not work in general 

terms, since the results are good only in the case of artificial 

dynamics algorithm. The approach based on the similarity 

parameter produces better results provided that the constant 

parameter σΛ,0
2 and the maximum and minimum allowable 

variances are properly selected. Actually, the tuning of all the 

parameters introduced in the mathematical formulation is a 

non-negligible limitation of the algorithm. Although the work 

highlighted some issues not already solved, the preliminary 

analysis presented here shows promising results. The authors 

want to stress the attention on the different kind of 

uncertainties that can affect the damage propagation process 

and on the proposed solution, introducing the inter-specimen 

and the intra-specimen variability within a Bayesian filtering 

framework. On the other hand, several investigations are 

mandatory to understand the behavior of the proposed 

sequential Monte Carlo algorithm. The validity of the 

correction parameters to cover the inter-specimen variability 

driven by multiple parameters (for example C and m) has to 

be proved, even though the results presented in section 5 

seems good. Then, an in-depth study of the variances 

involved in the process could bring to self-adaptive 

algorithms in which the influence of the selection of the 

initial variances is very limited. Finally yet importantly, the 

testing of the proposed system on real structures is 

fundamental to prove the effectiveness of the method. The 

implementation of the methodology on real structures 

remains prohibitive especially because of the difficulties to 

deal with random load conditions.  Even though the scientific 
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community has developed many approaches to solve the 

problem using efficient statistical ways, the implementation 

of these methods into a real-time prognostics framework 

introduces additional complications. For instance the real-

time estimation of the loads close to the damage, or the 

implementation of time-varying variables in the RUL 

prediction. These questions add up to the current issues of 

model parameter estimation and optimal variance selection, 

enlarging the dimension of the prognostic problem. 

 
Figure 7. Wrong estimation of the correction parameter (log 

ψ) using the KS algorithm and a noise variance equal to the 

variance of the measurement system. 

 
Figure 8. RUL prediction with artificial dynamics algorithm, 

using a target crack built with different C and m parameters. 

 
Figure 9. RUL prediction with kernel smoothing algorithm, 

using a target crack built with different C and m parameters. 
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ABSTRACT 

This paper proposes a novel approach based on a Particle 

Filtering technique and an Optimized Tuning Kernel 

Smoothing method for the prediction on the Remaining 

Useful Life (RUL) of a degrading component. We consider 

a case in which a model describing the degradation process 

is available, but the exact values of the model parameters 

are unknown and observations of historical degradation 

trajectories in similar components are unavailable. A 

numerical application concerning the prediction of the RUL 

of degrading Lithium-ion batteries is considered. The 

obtained results show that the proposed method can provide 

a satisfactory RUL prediction as well as the parameters 

estimation. 

1. INTRODUCTION 

Model-based prognostic methods resort to a mathematical 

representations of the degradation process (Orchard & 

Vachtsevanos, 2009; Sankavaram et al., 2009). They 

typically demand the knowledge of the values of the model 

parameters, which can be estimated considering the results 

of experimental tests or by observing the real degradation 

behaviors of similar components.  

However, in some practical situations, e.g. for some safety-

critical and high-value components (nuclear, aerospace, 

military, oil and gas fields), it is not feasible to perform run-

to failure experimental tests on the component degradation 

process and observations performed on similar components 

in the field are not available. Thus, in these cases, the 

estimation of the degradation model parameters and the 

prediction of the component RUL can resort only to a 

sequence of online measurements performed on the 

operating component as it undergoes degradation.  

In this work, this problem has been addressed by developing 

a Particle Filtering (PF) approach based on the definition of 

a “joint state” encoding the degradation state and the model 

parameters (D. An, J. H. Choi, & N. H. Kim, 2012; Daigle 

& Goebel, 2013). However, the direct application of the PF 

framework to the problem of parameter estimation typically 

provides unsatisfactory results due to particle 

impoverishment, especially in cases of several unknown 

parameters and very poor knowledge on their prior 

probability distribution functions (PDF). Some researches 

solve this problem by adding artificial noise on the particle 

model parameter values, but the variance of the artificial 

noise is a parameter difficult to set if complete degradation 

trajectories are not available. Another solution is to use the 

Kernel Smoothing (KS) technique whose key idea is to 

perform a shrinkage of the particle model parameter values 

(Hu, Baraldi, Maio, & Zio, 2013). The KS method has been 

shown to solve the particle impoverishment problem 

without the side effect of increasing the variance of the 

posterior PDF. However, the application of this algorithm 

requires the a-priori setting of the smoothing parameter 

which determines the amplitude of the particle shrinkage. 

Too large value of this parameter can cause an extra 

shrinkage and perturbation of the particles, which will result 

in a bias of the model parameter estimates. On the other side, 

too small values of the shrinkage parameter can result in the 

impoverishment of the population of particles. Notice that 

the proper setting of the smoothing parameter is a very 

critical problem in the case addressed in this work where 

historical trajectories describing the component degradation 

Yang Hu et al. This is an open-access article distributed under the terms 

of the Creative Commons Attribution 3.0 United States License, which 
permits unrestricted use, distribution, and reproduction in any medium, 

provided the original author and source are credited. 
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from its onset until failure are not available and, thus, a trial 

and error approach cannot be followed.  

In this work, we adopt a scheme proposed in a different 

context in (Tulsyan, Huang, Bhushan Gopaluni, & Fraser 

Forbes, 2013) for setting the proper value of the smoothing 

parameter. The idea is to optimize the smoothing parameter 

by finding the minimized Kullback–Leibler (KL) 

divergence between the predicted and posterior PDFs. This 

method employs only the information of online degradation 

measurements, which is very suitable for the problem in this 

paper.  A numerical case study concerning the prediction of 

Lithium-ion battery RUL is considered to verify the 

performance of the proposed prognostic approach.  

The paper is formed by the following sections: section 2 

makes a brief description of the problem addressed in this 

work; in section 3, the combined state and parameter 

estimation method and optimized turning kernel smoothing 

is proposed; an application study of Li-on battery is taken in 

section 4; section 5 summarizes this paper. 

2. PROBLEM STATEMENT 

We assume to know the physical model describing the 

degradation process formulated as a first order Markov 

Process: 

 
1 1( , , )t t td g d   p   (2.1) 

where ( , , )g d p  is the recursive transition function, 
td  is 

an indicator of the equipment degradation state at time t , 

tp  is the vector of the model parameters, whose true values 

are unknown,   is the process noise which represents the 

degradation process uncertainty. 

Furthermore, the measurement equation linking the 

degradation state d and its measurements, tz , is known. It is 

typically represented by a possibly non-linear function h: 

 ( , )t t nz h d    (2.2) 

where n  is the measurement noise. We assume a set of 

online measurements ( 1,2,..., )tz t T   collected from the 

beginning life of component (t=1) to the present time (t=T) 

is available.  

Furthermore, the failure threshold, f , i.e. a value of the 

degradation state such that if it is exceeded, the equipment is 

considered failed is assumed to be known and fixed. 

3. MODEL-BASED PROGNOSTICS APPROACH 

The description of the PF approach can be found in 

(Arulampalam, Maskell, Gordon, & Clapp, 2002; Orchard 

& Vachtsevanos, 2009), whereas its application to the 

problem of predicting the RUL of a degrading component 

can be found in (Hu et al., 2013; Zio & Peloni, 2011). In 

this section, we will discuss the use of the PF method for the 

problem of jointly estimating the degradation state and the 

model parameters’ values.  

3.1. Combined State and Parameter Estimation 

The combined estimate of the equipment degradation state 

and model parameters can be performed by using an 

extended PF (D. An, J.-H. Choi, & N. H. Kim, 2012; 

Arulampalam et al., 2002; Ching, Beck, & Porter, 2006; Liu 

& West, 2001; Tulsyan et al., 2013). The idea is to consider 

the model parameters as elements of the state vector which 

is estimated by the PF. Thus, the generic augmented i-th 

particle 
i

tk , is represented by: { , , }i i i i

t t t tk d w p , where 
i

td  

represents the degradation state, 
i

tp  the model parameters at 

time t and 
i

tw  is the weight associated to the particle. Since 

we need to simultaneously estimate the degradation state 

and model parameter, we need to extend Eq.(2.1) in order to 

describe, not only the transition of the degradation state , but 

also that of the model parameters. Thus, Eq.(2.1) becomes a 

system of two equations, one describing the transition of the 

state (
1g ) and the other the transition of the parameters 

(
2g ): 

 
1 1 1

2 1

( , , )

( )

i i i

t t t

i i

t t

d g d

g

 







p

p p
  (3.1) 

The transition function g, describing the degradation 

evolution, in Eq.(2.1) can be used for 
1g , whereas there are 

different options to define g2. In (Dawn An et al., 2012), the 

model parameters are kept unchanged during the prediction 

stage and g2 is given by: 

 2 1 -1= ( )i i i

t t tg  p p p   (3.2) 

this strategy has been shown to suffer the problem of 

particle impoverishment when several model parameters 

need to be simultaneously estimated (Daum, 2005): only 

very few “strong” particles with an associated high weight 

will survive after the updating phase. This low variety of the 

model parameter values in the population of particles causes 

an imprecise estimation of the parameters.  

The problem of the particle impoverishment has been 

addressed by adding an artificial noise to the particles 

parameters evolution equation (Corbetta, Sbarufatti, Manes, 

& Giglio, 2013; He, Williard, Osterman, & Pecht, 2011; 

Higuchi, 1997):  

 
2

1 2 ( ) (0, )i i i

t t t ANg N    p p p   (3.3) 

where 
2

AN  is the variance of the artificial noise. However, 

this method cannot be applied to our prognostic problem 

since it requires a proper setting of the value of 
2

AN , which 

is difficult to achieve by trial and error attempts, due to the 
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unavailability of complete examples of degradation 

trajectories in similar components. If too small values of 
2

AN  are used, the convergence of the model parameter 

values 
i

tp  in the population of particles to the model 

parameter true values is too slow and the problem of particle 

impoverishment can still be encountered. Whereas, if large 

values of 
2

AN  are used, the convergence to the parameters 

true values will never be achieved.  

In order to overtake these difficulties, in this work we 

consider an alternative PF approach based on an Optimized 

Tuning Kernel Smoothing (OTKS) algorithm which will be 

object of the next Section 3.2. 

3.2. Kernel smoothing approach 

Kernel smoothing consists in two different procedures to the 

population of particles: shrinkage and perturbation. 

Shrinkage aims at reducing the variability in the particle 

population by moving the single particle 
i

tp  toward the 

current estimated values ˆ
tp , whereas perturbation adds a 

controlled noise on 
i

tp  in order to maintain the desired 

variance in the population (Chen, Morris, & Martin, 2005; 

Liu & West, 2001; Wan-ping, Sheng, & Ting-wen, 2009). 

 Shrinkage 

The particle shrinkage is performed by: 

  2 2ˆ1 1 1i i

t t th h    p p p   (3.4) 

where the vector 
i

tp  contains the parameters values of the i-

th particle after the shrinkage. The direction of shrinkage is 

the estimated value of the parameter ˆ
tp . The smoothing 

parameter, [0,1]h , determines the degree of shrinkage: 

higher is its value, deeper is the shrinkage. If 1h  , the 

model parameters completely shrink to the estimated values 

ˆ
tp ; whereas if 0h  , no shrinkage is applied.  

After shrinkage, the parameters variance in the population 

of particles will decrease from  i

tV p to    21 i

th V p . 

Then, Eq.(2.1) is used to predict 1

i

td   based on 
i

tp : 

 1 1( , , )i i i

t t td g d   p   (3.5) 

 Perturbation 

Perturbation is used to maintain the variance of parameter 

particles by adding an artificial noise of variance  2 i

th V p : 

   2

1 2 ( ) 0,i i i i

t t t tg N h V   p p p p   (3.6) 

3.3. Optimization of Smoothing Parameter h 

The value of smoothing parameter h is very important for 

the performance of kernel smoothing. Some authors suggest 

to use the value 0.1h  , whereas other authors suggest 

optimizing the value of h using historical data (Chen et al., 

2005; Liu & West, 2001). In our work, given that historical 

trajectories describing the component degradation from its 

onset until failure are not available, the value of h is 

continuously updated, considering the newest measurement 

of the degradation state, according to (Tulsyan et al., 2013). 

Since the main idea of this algorithm is to find the value of 

h which projects the prediction PDF in the high density 

region of the posterior PDF, it can be executed even when 

just one measurement of the degradation state is available.  

The optimization of h is tactfully achieved by minimizing 

the KL divergence between prediction and posterior PDFs. 

In our case, the KL divergence is computed by: 

   1: 1

1: 1

1:

( | )
log ( | )

( | )

t t

t t t t

t tz

p d z
KL h p d z dd

p d z





 
  

 
  (3.7) 

where 
1: 1( | )t tp d z 

 and 
1:( | )t tp d z  are the prediction and 

posterior PDF, respectively. Using the Markov assumption 

and the Bayes theory, Eq.(3.7) can be rewritten as:  

 
1: 1

1: 1

( | ) ( | )

log ( | )
( | )

t t t t t

z
t t t t

t tz

p z d p d z dd

KL h p d z dd
p z d





 
 

  
 
 


  (3.8) 

which is approximated by: 

 
 

 
1

1

1

1

1

1

1

1

( | )

log
( | )

( | )

log
( | )

N

t t t t N
iz

t t t

it tz

N
i

t t tN
i

t i
i t t

p z d w dd

KL h w dd
p z d

w p z d

w
p z d





















 
 
 
 
 
 

 
 
 
 
 
 







  (3.9) 

where ( | )i

t tp z d  is the likelihood of particle i, given by 

Eq.(3.13). Thus, by substituting Eq.(3.13) into Eq.(3.9), one 

obtains: 

    1

1

log
N

i i

t t t

i

KL h w w



    (3.10) 

where  tKL h  is the KL divergence at time t using the 

smoothing parameter th , and 1

i

tw   is the weight of the i-th 

particle at time t-1 (which also depends on th ). Finally, the 
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optimal 
th value, hereafter called

*

th , is obtained by 

minimizing  tKL h : 

  *

[0,1]

arg min
t

t t
h

h KL h


      (3.11) 

In order to perform the minimization, given the 

impossibility of using analytical methods due to the form of 

Eq.(3.10), we divide the interval [0,1] into 100 discrete 

values, namely 0.01,0.02,…,0.99,1. For each value, we 

calculate the corresponding KL(h) and search the one with 

minimum KL(h).  

By substituting 
*

th into Eq.(3.4), one obtains the new 

equation for the particle shrinkage: 

    
2 2

* *

1 1
ˆ1 1 1i i

t t t t th h 

 
     

 
p p p   (3.12) 

New measurement 

is available?

0 0 0 0

1

0

( ),  ( )

, 1, 2,...,

i i

i

d p d p

w N i N 

p p

Sample from prior

yes

no

Stop

State prediction

   
2 2

* *

1 1 1 1 1
ˆ1 1 1i i

t t t t th h    

 
     

 
p p p

Parameter Shrinkage

*Optimized  value th

Parameter perturbation

  2
* 2

1 10, ( )i i

t t t pN h t  p p

Compute the weight

State and parameter estimation 
ˆ ˆ,t td p

Resample

RUL prediction

Reach the failure 

threshold?

 

Figure 1 Flow chart of PF-OTKS 

Notice that the execution of the shrinkage at time t requires 

the knowledge of 
*

1th  , which is based on the knowledge of 

the measurement 
1tz 

. In practice, at time t, once the 

measurement zt becomes available, we firstly calculate 
*

th  

and perform the kernel smoothing of the particle parameter 

at time t-1, -1

i

tp  and, then, we can apply the PF procedure to 

estimate the degradation state and parameters, as well as the 

RUL prediction, at time t.  

Figure 1 shows the flow chart of execution. 

In practice, the procedure is based on the repetition, at each 

time t, of the following steps: 

1) Sample the particles 0 0 0 0{ , , }i i i ik d w p  from their prior 

PDFs. At time t=1, the prior PDFs of the degradation 

state and parameter values are defined according to 

expert knowledge based on the specific applications.  

2) At time t, using the newest measurement 
tz  to figure 

out the optimal 
*

th  value using Eq.(3.11) 

3) Shrink the parameters particles with 
*

th (based on 

Eq.(3.12)) , and get 1

i

tp  

4) Make the prediction using 1

i

tp (based on Eq.(3.5)) and 

get the particles of degradation state 
i

td  

5) Perform the particle perturbation using 
*

th (based on 

Eq.(3.6), and get 
i

tp  

6) Compute the weight 
i

tw : 

 
1

1

( | )

( | )

i

i i t t

t t n
i

t t

i

P z d
w w

P z d







  (3.13) 

where ( | )i

t tP z d  is the likelihood of particle i. 

7) Compute the estimates of the parameters and state 

ˆ ˆ,t td p as well as their posterior PDFs: 

 
1

ˆ
N

i i

t t t

i

d w d


    (3.14) 

 
1

ˆ
N

i i

t t t

i

w


 p p   (3.15) 

8) Perform particle resampling using the systematic 

resampling method whose description can be found in 

(Arulampalam et al., 2002; Douc & Cappé, 2005) 

9) Perform the RUL prediction using 
i

td , 
i

tp  and 
i

tw

(based on Eq.(2.1)) 

10) Predict the prior PDFs for 
i

td  and 
i

tp  at next cycle 

(using Eq.(2.1)). 
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11) Set t=t+1, repeat from 2) 

4. NUMERICAL APPLICATION 

In this Section, we apply the proposal approach on the RUL 

prediction of a Lithium-ion battery. A detailed explanation 

of the battery degradation mechanism can be found in (He et 

al., 2011; Marcicki, Todeschini, Onori, & Canova, 2012; 

Saha, Goebel, Poll, & Christophersen, 2009; Zhang & Lee, 

2011). The quantity which is frequently used to indicate the 

battery degradation state is the battery capacity     . The 

degradation is mainly represented by a first phase during 

which the battery capacity slowly decreases, followed by a 

second phase characterized by a fast decreasing process. 

These two phases can be described by a double exponential 

model: 

  2

1 2 3 4( ) exp( ) exp( ) 0, pq t p p t p p t N        (4.1) 

where 
1 2 3, ,p p p  and 

4p  are the four model parameters 

(
1 3,p p determine the initial state and 

2 4,p p   the 

degradation rate), 2

p  is the process noise and t is the 

number of charge/discharge cycles experienced by the 

battery. The measurement equation is: 

 
2( ) ( ) (0, )mQ t q t N     (4.2) 

where ( )Q t  is the measurement at the t-th charge/discharge 

cycle and 
2

m  is the measurement noise. The failure 

threshold of ( )q t  is set according to expert knowledge. 

4.1. Generation of Online measurements 

Motivated to have a test of the performance of the proposed 

method, one complete battery degradation trajectory has 

been simulated using Eq.(4.2). The values of the parameters 

1 2 3, ,p p p  and 
4p have been as set in Table 1, the value of 

process and measurement noises ,p m   have been both 

equal to 0.001, and the threshold value equal to 0.7172. 

These parameters values, as well as the obtained 

degradation state q and the failure time will be referred to as 

the “true” values of the battery trajectory. 

4.2. Results 

The experiment is performed assuming that the true values 

of 
1 2 3, ,p p p  and 

4p are unknown, and the measurements 

performed on the battery of which we want to predict the 

RUL are available from cycle 1 to the present cycle. The 

prior PDFs for parameters 
1 2 3, ,p p p  and 

4p  are 

U(0.85,1.2), U (-0.001,0), U (-0.001,0) and U (0.03,0.13), 

respectively. Notice that the prior PDFs of  
1 2 3, ,p p p  and 

4p  are remarkably more dispersed than those used for the 

simulation of the true values of these parameters (in Table 

1). Furthermore, the true of the four parameters are located 

in the tail of the prior PDFs. This setting has been chosen in 

order to assess whether the method can work even if the 

parameter prior PDFs are very uncertain and shifted. 

Table 1 True values of the parameters in the considered 

battery degradation trajectory 

Parameter 1p  
2p  

3p  
4p  

life 

cycle 

Value 0.917 -8.19e-4 -2.93e-4 0.0523 115 

 

 

Figure 2 RUL prediction using PF-KS (left) and PF-OTKS (right) 
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Figure 3 Parameter estimation using PF-KS (left) and PF-OTKS (right)

Figure 2 shows the RUL predictions obtained at different 

times, with the red lines representing the 90% confidence 

interval. Figure 3 shows the estimates of the expected values 

and 90% confidence intervals of the four parameters of the 

considered battery. The continue thick horizontal lines 

represents the true value, the thin continuous line represents  

the estimates of the parameters expected values and the red 

lines are the 90% confidence interval of the parameter 

posterior PDF. 

From Figure 2, it can be observed that the RUL prediction 

given by PF-KS has more uncertainty than PF-OTKS. 

Furthermore, at the end of life of the battery, the PF-KS’s 

RUL prediction drifts from the true value, due to the 

unsatisfied estimation of the four parametesrs (in Figure 3), 

while PF-OTKS does not suffer this problem. 

For the parameter estimation, the PF-KS estimation of 
3p  is 

significantly drifted from the true value. And 2 4,p p  have 

small bias, whereas PF-OTKS provides more satisfied 

estimates of the parameters. Figure 4 shows the optimal 
*

th

value provided by PF-OTKS. Notice that the value of 0.1, 

which is suggested by (Liu & West, 2001), appears to be too 

large in this application. Large h means deeper shrinkage, 

which causes the bias and drift of the parameter estimation 

in the PF-KS. It is also interesting to observe that the 

optimal h value tends to decrease as time passes. At the 

beginning, since the particles of 1 2 3, ,p p p  and 
4p are far 

away from the true value, the optimal 
*

th  value is larger 

since deeper shrinkage and perturbations are needed to 

avoid particle impoverishment. On the other hand, at the end 

of the battery life, the particles are close to the true model 

parameter values, so the deep shrinkage and perturbation are 

not necessary. 

 

Figure 4 Optimized smoothing parameter h 

5. CONCLUSION 

In this work, we have proposed a PF-OTKS approach for 

the RUL prediction of degrading components based on a 

model of degradation with unknown parameters. We have 

assumed to know the model of the degradation process and 

to be able to perform measurements of quantities related to 

the component degradation; on the other side, we have 

assumed that we do not know the true value of the 

degradation model parameters nor we have available 

observations of degradation trajectories in similar 

components. 

The results of PF-OTKS obtained in a numerical case study 

regarding battery degradation have shown that the proposed 

method can provide estimates of the component RUL and 

model parameters, which are more satisfactory than those 
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obtained with PF-KS. The proposed approach will be 

further investigated in a situation in which the degradation 

model is partly unknown.  
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NOMENCLATURE 

td  Degradation state at time t 

tp  Vector of parameter values at time t 

  Process noise representing the degradation 

process uncertainty 

tz  Measurement of the degradation state td  

n  Variance measurement noise 

N Number of particles 

i

tw  Weight associated to particle i at time t 

i

td  Degradation state of particle i at time t 

i

tp  
Model parameters contained in particle i at 

time t 

i

tRUL  RUL of particle i at time t 

ˆ
td  Estimate of td  

ˆ
tp  Estimate of tp  

tRUL  Prediction of RUL at time t 

i

tp  Parameter values of particle i after shrinkage  
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ABSTRACT

A novel method is proposed to exploit jointly degradation
measurements originating from a set of identical systems for
making a degradation prognosis. The systems experience dif-
ferent degradation processes depending on operational condi-
tions. The degradation processes are assumed to be Gamma
processes. The aim is to cluster the degradation paths in
classes corresponding to the different operational conditions
in order to group properly the data for the estimation of degra-
dation process parameters. A model of Gamma process mix-
ture is considered and an expectation-minimization approach
is proposed to estimate the unknown parameters. The feasi-
bility of the method is shown on simulated cases. Progno-
sis results obtained with the proposed method are compared
with results obtained with basic strategies (considering each
system alone or all system together).

1. INTRODUCTION

To estimate the remaining useful lifetime (RUL) of a dete-
riorating system it is necessary to be able to model its dete-
rioration in order to predict when the deterioration leads to
a failure i.e. when it reaches a given threshold. To perform
this RUL prognosis one generally relies on measurements of
the degradation level and on a degradation model which is
assumed to describe the degradation evolution in time (Si,
Wang, Hu, & Zhou, 2011; Nystad, Gola, & Hulsund, 2012).
For example, in the case of a metal pipe corrosion, the thick-
ness provides a deterioration measure.

The Gamma process is widely used for degradation models
when deterioration is monotonic and gradual (Van Noortwijk,
2009). This process is defined by a set of parameters, in par-
ticular the shape and scale parameters in the case of an homo-

Edith Grall-Maes et. al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

geneous process. These parameters are usually unknown and
must be estimated in order to perform prognosis. Obviously
the reliability of prediction is directly related to the estima-
tion precision. Most of the time, in operational conditions
the amount of measurement is very limited. So when a set
of similar systems is available, one can use the data coming
from all the systems in the set to estimate the model parame-
ters. The expected gain of using all measurements together is
to improve the estimator precision (reduction of its variance
for example).

By considering all systems as a single one while estimating
the model parameters it is assumed that the degradation pro-
cess model is the same for all systems. In most cases, the
degradation process depends also on operating conditions that
may be partially unknown. In the pipe corrosion example, the
evolution of the pipe thickness depends on the used metal but
it also depends on the characteristics of the fluid carried by
the pipe (liquid/gaz, temperature, pressure. . . ) and on the lo-
cation (air/ground/underwater. . . ) and on the environmental
conditions of the pipe (temperature, humidity. . . ).

In this paper, we consider that we have a limited amount of
data from different systems. Each system has one operating
condition among an unknown finite number. Then each sys-
tem evolves in relation with its operating condition, which
remains always the same. This is not a system which evolves
in different classes corresponding to functioning modes, as
in (Ramasso & Gouriveau, 2014).

We propose a method to cluster the observed systems in classes,
corresponding to each operating condition. The degradation
process is assumed to be ruled by a Gamma process model.
The aim is to estimate the parameters of these Gamma pro-
cesses in order to predict their RUL. In order to tackle the
hypothesis of a number of operating conditions, a model of
Gamma process mixture is introduced. An expectation-minimization
algorithm is proposed to estimate the parameters of each pro-
cess in the mixture model.
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The problem is formalized in section 2. Then in section 3,
the mixture model and the expectation-minimization algo-
rithm (Ambroise & Govaert, 1998)(Hu & Sung, 2006) are
presented to determine the clusters. In section 4, the consid-
ered prognosis is described and a criterion for comparing the
prognosis values obtained according to different strategies of
the Gamma process parameter estimation is proposed. In sec-
tion 5, results on simulated data are presented and analyzed.
A conclusion on the selection of process classes number and
on future developments ends the paper.

2. PROBLEM FORMULATION

This section first gives a description of the problem and nota-
tions and ends with a brief recall about the Gamma process.

2.1. General Aim

The data we consider originates fromN paths describing degra-
dation process realizations. Each path pn, (n = 1, . . . , N)
is composed of |pn| observations ln,i with i = 1..|pn|. The
observation ln,i is characterized by the time instant tn,i, and
the deterioration level xn,i = x(tn,i) ∈ Ωx ⊂ R. Then
pn = {ln,i = (tn,i, xn,i)}i=1..|pn|.

We suppose that the observation set can be divided into K
unknown clustersCk, (k = 1, . . . ,K). In practise, each clus-
ter would correspond to an operating condition. Each cluster
represents a deterioration process characterized by some un-
known parameter vector belonging to the parameter set Θ =
{θk}Kk=1. Besides, the latent membership, or cluster labels of
paths are denoted by z = {zn}Nn=1 where zn = k means that
the path pn belongs to the cluster k. A set of cluster labels
defines a partition of all paths. Obviously, for a given path n,
all observations ln,i, (i = 1, . . . , | pn |) belong to the same
cluster.

The aim is to determine the latent cluster label for each obser-
vation and jointly the parameter vector of each process. Af-
terwards this parameter vector can be used to do prognosis.
As an illustration, the prognosis we consider in this paper is
the mean remaining useful lifetime, defined as the remaining
time before reaching a given deterioration threshold which is
the failure limit.

In this paper the chosen model for the deterioration processes
is the Gamma process, parameterized by 3 parameters, a, b
and u described in section ??. The increments, given by
x(tn,i) − x(tn,i−1) with tn,0 = 0 and x(0) = 0, are inde-
pendent. Their density distribution in the cluster k depends
on the time and on the parameter θk, and can be written as

fk (x(tn,i)− x(tn,i−1) | tn,i, tn,i−1, θk) .

In the following, for simplicity we will use the notation
fk(∆xn,i|θk). It has to be noticed that the density distribu-

tions of all the degradation increments are not the same be-
cause the increments are usually all different and/or the pro-
cess may be not stationary.

The objective is to find out the unknown cluster labels {zn}Nn=1

and consequently the distribution parameter set θ = {θk}Kk=1,
such that paths in the same cluster originate from a process
model with the same parameters.

The relevance of a partition described by z and a parameter
set θ can be measured using the log-likelihood given by

l(z, θ) =

N∑

n=1

|pn|∑

i=1

logfzn(∆xn,i | θzn) (1)

2.2. Gamma process

Mathematically, the Gamma process is defined as follows:
let A(t) be a non-decreasing, right-continuous, real-valued
function for t ≥ 0, with A(0) = 0. The Gamma process
with shape function A(t) and scale parameter b > 0 is a
continuous-time stochastic process {X(t), t ≥ 0} such that:

• X(0) = 0 with probability one;

• {X(t), t ≥ 0} is a stochastic process with independent
increments;

• X(t)−X(s) follows the Gamma distribution Γ(A(t)−
A(s), b) for 0 ≤ s < t

The definition of the Gamma process leads to two straightfor-
ward properties:

• {X(t), t ≥ 0} is a non-decreasing process.

• For all t ≥ 0, the expectation value and the variance of
X(t) could be written as:

E(X(t)) =
A(t)

b
Var(X(t)) =

A(t)

b2
(2)

In the degradation modeling framework, a non-homogeneous
Gamma process defined by A(t) = atu, (a > 0, u > 0)
is often considered. Thus the process is described by three
parameters : a, b, and u. In this case, X(t) − X(s) follows
the Gamma distribution Γ(a(tu − su), b).

Two methods are often mentioned for the parameter estima-
tion of the Gamma process: the moments estimation and the
maximum likelihood estimation (Cinlar, Osman, & Bazant,
1977). The maximum likelihood estimator is asymptotically
unbiased, which means the estimates converge to the true val-
ues as the number of observations increases as: N →∞. On
the other hand, the moments approach leads to simpler formu-
lae of the estimator. It is more straightforward to implement
and the computation time is much reduced compared with the
maximum likelihood method.
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3. PROCESS CLUSTERING

The proposed approach is based on the computation of mix-
ture models using the expectation-maximization (EM) algo-
rithm (Dempster, Laird, & Rubin, 1977). Beside, side infor-
mation is considered according to (Shental, Bar-Hillel, Hertz,
& Weinshall, 2003).

3.1. Related work

The EM algorithm is an iterative method that produces a set
of parameters that locally maximizes the log-likelihood of a
given sample, starting from an arbitrary set of parameters. It
is often used to estimate the unknown parameters of a mixture
model of K p.d.f. fk given by:

f(x|θ) =

K∑

k=1

αkfk(x|θk)

where αk is the probability of class k and fk(x|θk) the a pos-
teriori probability of class k.

Furthermore the procedure we use is based on the work of
Shental et al. (Shental et al., 2003) which describes an EM
procedure for a Gaussian mixture model and for handling
positive constraints, indicating that some observations arise
from the same source. The data set is assumed to be a set of
chunklets, and each chunklet is a set of points that originate
from the same source. Alternating E steps and M steps leads
to the estimation of the probability of each class, and the pa-
rameters (mean and variance) of each Gaussian class. The
solution can be considered as a soft partition.

3.2. Proposed method

The problem we deal with, in comparison with the problem
considered in (Shental et al., 2003), has to lead to a hard parti-
tion. Then we add an intermediate classification step between
the E and M steps. Such a classification step has been intro-
duced in the CEM algorithm (Celeux & Govaert, 1992, 1995)
for hard classification problem using mixture models without
constraints.

In comparison with the problem considered in (Shental et al.,
2003), there is another main difference. The model is not a
Gaussian mixture model and especially the degradation incre-
ments have different density distributions. The density distri-
butions of all the degradation increments would be the same
only in the case of homogeneous Gamma process, and of reg-
ularly sampled paths.

Thus, we have proposed an algorithm based on the mixture
models for the problem of statistical process clustering with
the two following properties. On the one hand, it takes into
account that observations in a same path belong to a same
class, and on the other hand it takes into account that a hard
classification is searched.

The E step at iterationm consists in calculating an estimation
of the a posteriori probability for each observation using the
parameters θ(m−1) = (a(m−1), b(m−1), u(m−1)). The poste-
rior probability c(m)

nk at iteration m that the path n belongs to
class k, given pn and the parameter θ(m−1) writes according
to

c
(m)
nk = p(zn = k|pn, θ(m−1))

=
α
(m−1)
k

∏|pn|
i=1 fk(∆xn,i|θ(m−1)k )

∑K
r=1 α

(m−1)
r

∏|pn|
i=1 fr(∆xn,i|θ

(m−1)
k )

(3)

with

fk(∆xn,i|(ak, bk, uk)) ∼ Γ(ak(tuk
n,i − tuk

n,i−1), bk)

The expectation of the log-likelihood over all possible assign-
ments which comply the given constraints is given by:

E(l(z, θ)) =

K∑

k=1

N∑

n=1

|pn|∑

i=1

logf(∆xn,i|k, θk)p(zn = k|pn, θ(m−1)k )

+

K∑

k=1

N∑

n=1

logαkp(zn = k|pn, θ(m−1)k )

The M step at iteration m consists in computing the parame-
tersα(m)

k , and θ(m) that maximize the expected log-likelihood
found on the E step. The parameter α(m)

k is given by

α
(m)
k =

1

N

N∑

n=1

(z(m)
n = k) (4)

and the parameters (a(m), b(m), u(m)) are determined by max-
imization of the log-likelihood.

Then the algorithm is the following one.

• Initialize the parameter set θ(0)

• Repeat until l(z(m), θ(m))− l(z(m−1), θ(m−1)) < ε

– compute c(m)
nk for each path n and each class k using

relation (3)

– determine the partition z(m) : choose z(m)
n = k cor-

responding to the largest value c(m)
nk

– determine the parameter vector θ(m) that maximizes
l(z(m), θ(m))

– compute the new value of the probability α(m)
k for

each class k using relation (4).

4. PROGNOSIS AND PERFORMANCE EVALUATION

4.1. Considered Prognosis

The considered prognosis is the remaining mean time un-
til a threshold is reached. Let S be a threshold, pn a path
with its last observation (tn,|pn|, xn,|pn|), its class label zn,

3
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and a set of Gamma process parameters corresponding to the
class label θzn = (azn , bzn , uzn). If the last degradation
level is smaller than the threshold, i.e. xn,|pn| < S, then
it is possible to estimate the remaining mean time until the
threshold is reached. This time is noted Tn,θzn (S). Since
the increment ∆Xn,i follows a Gamma distribution given by
Γ(azn(t

uzn
n,i − t

uzn
n,i−1), bzn), its mean is

E(∆Xn,i) =
azn
bzn

(t
uzn
n,i − t

uzn
n,i−1)

Then, taking i = |pn| + 1, it leads to the value Tn,θzn (S)
given by:

Tn,θzn (S) =

(
(S − xn,|pn|)

bzn
azn

+ t
uzn

n,|pn|

) 1
uzn − tn,|pn|

For a given value of K, a set Θ = {θk}Kk=1 and a set of
class labels z = {zn}Nn=1, the remaining mean time until a
threshold S is reached can be computed for each path n.

4.2. Prognosis performance evaluation

In the case of simulated data, it is possible to compare the
estimated prognosis result with the theoretical one. We have
prefered to use the theoretical remaining useful time than a
simulated value that we could obtain by running the path up to
the failure threshold. The estimated prognosis result for path
n, Tn,θ̃z̃n (S), is obtained using the estimated set of parame-

ters Θ̃ and the estimated set of class labels z̃. The theoretical
prognosis is noted Tn,θzn (S).

A large number of metrics in the forecasting applications have
been proposed, as accuracy and precision, which are classi-
cal metrics. The metrics we propose to use in this paper for
assessing the prognosis is near to relative accuracy given in
(Saxena, Celaya, Saha, Saha, & Goebel, 2010). It is a relative
error criterion which allows to give the same importance to
all classes. This is critical in our case because the precision
depends on the class evolution. For a path n, and a threshold
S we define the relative error en(S) as:

en(S) =
Tn,θ̃z̃n

(S)− Tn,θzn (S)

Tn,θzn (S)
(5)

Using all the paths for which the threshold is not reached for
the last sample, i.e. xn,|pn| < S, it is possible to compute the
mean of all the errors en to obtain Ee(S) and to compute the
standard deviation to obtain Se(S)

Ee(S) = Ê[{en(S)}n|xn,|pn|<S ] (6)

Se(S)(S) = σ̂[{en(S)}n|xn,|pn|<S ] (7)

The mean error should be equal to 0. The criterion which
characterizes the performance of an approach is the standard
deviation of the error.

Table 1. parameters - situations 1 and 2

Situation 1

class 1 class 2 class 3 class 4
a 16.67 28.12 41.67 55.80
b 1.67 1.87 2.083 2.23
u 0.8 0.8 0.8 0.8

Situation 2

class 1 class 2 class 3 class 4
a 16.67 24.5 33.75 43.21
b 1.67 1.75 1.87 1.96
u 0.8 0.8 0.8 0.8

5. RESULTS

Simulations have been done considering two situations. For
both of them, there are 4 classes, each class with 6 paths,
each path with 3 samples. The time increments are within an
uniform distribution between 2 and 8. Parameters for both
situations are given in table 1.

The mean theoretical evolution respectively for situation 1
and situation 2 is described in figure 1a and figure 3a. In
situation 2, the classes are more similar than in situation 1: at
each instant the mean values for 2 different classes are closer
than in situation 1. However the standard deviations are the
same for both situations.
Example of simulated data respectively corresponding to sit-
uation 1 and situation 2 are given in figure 2a and figure 4a.

The simulated data has been used to determine jointly the
class of each path and the parameter set of each class, for
different values of K (a priori number of classes). Simula-
tions have been done for K between 1 and 7.
For the example of situation 1, the estimated class of each
path for K = 3, 4, 5 is described in figures 2b, c, and d. The
mean evolution of the degradation corresponding to the esti-
mated parameters is given in figures 1b, c, and d. In the case
of K = 4 classes, it is possible to determine the number of
paths which are misclassified, since it corresponds to the the-
oretical number of classes. It can be seen than one path of
class 1 (’+’ red) is affected to class 2 (’*’ green). All other
paths are correctly classified.

Similar results for situation 2 are given in figure 4, for the
estimated class of each path, and in figure 3, for the mean
evolution of the degradation. In the case of K = 4 classes, 3
paths are misclassified: one path of class 1 is affected to class
2 and two paths of class 2 are affected to class 3.

The prognosis Tn,θ̃z̃n (S) has been determined in 9 cases of

estimation of parameter θ̃:
• “semi-theoretical case” : the parameter set is estimated

assuming the true class of each path is known;
• “path case” : a parameter set is estimated for each path

using the 3 observations of the considered path;
• “estimated K-class case” (for K = 1 . . . 7): the class of

each path and the parameter set of each class are deter-
mine jointly.
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Figure 1. Evolution of the mean degradation value in situ-
ation 1 for (a) the theoretical parameters (b) the estimated
parameters with 4 classes (c) the estimated parameters with
3 classes (d) the estimated parameters with 5 classes. Each
color corresponds to an estimated class.
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Figure 2. Example of simulated data in situation 2 for (a) the
theoretical class (b) the estimated class for 4 classes (c) the
estimated class with 3 classes (d) the estimated class with 5
classes. Each color corresponds to an estimated class.
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Figure 3. Evolution of the mean degradation value in situ-
ation 2 for (a) the theoretical parameters (b) the estimated
parameters with 4 classes (c) the estimated parameters with
3 classes (d) the estimated parameters with 5 classes. Each
color corresponds to an estimated class.
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Figure 4. Example of simulated data in situation 2 for (a) the
theoretical class (b) the estimated class for 4 classes (c) the
estimated class with 3 classes (d) the estimated class with 5
classes. Each color corresponds to an estimated class.
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Figure 5. Example of prognosis for (a) the theoretical pa-
rameters (b) the estimated parameters for each path (c) the
estimated parameters with 4 classes. Each color corresponds
to a theoretical class.

The prognosis obtained in the “semi-theoretical case” leads
to the minimum error which is reachable, for a given path
set. The obtained error is due to the error of the parameters,
arising from the estimation with a limited number of paths.

In figure 5, an example of prognosis for situation 2 with a
threshold S = 250 shows “theoretical case”, “path case” and
“estimated 4-class case”.

In the “path case” there exists a large variance and the bad
estimation is due to the very low number of samples for each
path. This is particularly visible when the degradation level at
the last inspection time is far from the failure level i.e. when
the time of prognosis is far from the failure time. In the case
of class 1 (red ’+’) predicted mean failure times are in [40, 80]
instead of [50, 60] for the “theoretical case”. In the “estimated
4-class case”, the impact of the misclassified paths appears
clearly. One path of class 1 is affected to class 2 and two paths
of class 2 are affected to class 3. Hence the estimated value
for parameter u is smaller than its theoretical value for class 2
(green ’*’) and the green line on figure 3b is more curved than
on figure 3a. As a consequence the estimated mean residual
lifetime for class 2 is greater than the theoretical one.

The simulation has been repeated for 200 path sets and for

Table 2. Estimated mean Ee(S) (relation 6) and estimated
standard deviation Se(S) (relation 7) for situation 1

(a)

threshold 200 300 350

semi-theor. 0.0057 0.0050 0.0055
1 path 0.0289 0.0276 0.0309
1 class -0.1183 -0.0123 -0.0104
2-class -0.0194 0.0002 0.0009
3-class -0.0080 0.0031 0.0037
4-class 0.0067 0.0059 0.0064
5-class 0.0103 0.0089 0.0097
6-class 0.0126 0.0109 0.0119
7-class 0.0143 0.0128 0.0140

(b)

threshold 200 300 350

semi-theor. 0.0450 0.0520 0.0555
1 path 0.1629 0.1813 0.1954
1 class 0.2960 0.3462 0.3512
2-class 0.1954 0.1897 0.1924
3-class 0.1117 0.1193 0.1221
4-class 0.0554 0.0615 0.0650
5-class 0.0745 0.0821 0.0868
6-class 0.0859 0.0947 0.1004
7-class 0.0961 0.1062 0.1131

Table 3. (a) Estimated mean Ee(S) (relation 6) and (b) esti-
mated standard deviation Se(S) (relation 7) for situation 2

(a)

threshold 150 200 250

semi-theor. 0.0073 0.0059 0.0054
1 path 0.0333 0.0280 0.0276
1 class -0.1777 -0.0581 -0.0124
2-class -0.0202 -0.0106 0.0003
3-class -0.0010 0.0011 0.0059
4-class 0.0098 0.0080 0.0075
5-class 0.0138 0.0105 0.0099
6-class 0.0159 0.0120 0.0113
7-class 0.0186 0.0143 0.0136

(b)

threshold 150 200 250

semi-theor. 0.0413 0.0460 0.0500
1 path 0.1602 0.1649 0.1769
1 class 0.2232 0.2797 0.3007
2-class 0.1755 0.1651 0.1642
3-class 0.1090 0.1154 0.1169
4-class 0.0708 0.0744 0.0769
5-class 0.0821 0.0876 0.0913
6-class 0.0893 0.0950 0.0995
7-class 0.0984 0.1043 0.1099
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three thresholds. The estimated prognosis values Tn,θ̃z̃n (S)

have been compared with the theoretical value Tn,θzn (S).
The mean error Ee(S) given by relation (6) and Se(S) given
by relation (7) have been computed for the 9 cases (described
above) of estimated Gamma process parameters and for each
threshold. The estimated mean errorEe(S) and the estimated
standard deviation Se(S) for situation 1, obtained using 200
path sets, are given in tables 2(a) and (b). For situation 2 they
are given in tables 3(a) and (b).

As expected, the estimated mean error is close to 0. For both
situations, the worse result is obtained with the “estimated 1-
class case”. From estimated standard deviation point of view,
the closest case to the “semi-theoretical case” is the “esti-
mated 4-class case”. It corresponds to the theoretical number
of classes and to the expected result. As one could expect,
results in situation 2 are worse than in situation 1 because the
classes are more similar. Consequently the number of mis-
classified paths is larger than in situation 1 and the Gamma
process parameters are estimated with a larger error. For both
situations, when the number of classes is larger than the theo-
retical one, the impact is not very important. On the contrary
when the number of classes is smaller than the theoretical
one, some paths from different Gamma process are mixed and
the parameters are not estimated correctly and consequently
the prognosis error can be important.

6. CONCLUSION

In this paper, a method is proposed for making a degrada-
tion prognosis based on Gamma process model parameters
that are estimated using degradation measurements on differ-
ent systems. It is assumed that there are a number of oper-
ational conditions leading to different degradation processes.
Estimating the Gamma process model parameters using only
one system leads to poor results due to the limited number
of samples. On the contrary, estimating the Gamma process
model parameters considering only one Gamma process leads
to poor results due to the mixture of systems with different
degradation trends.

The proposed method consists in considering a mixture of
Gamma process models. It allows to cluster the degradation
paths in classes corresponding to the different degradation
trends and to estimate the Gamma process parameters. It uses
an expectation-minimization approach that takes into consid-
eration that all measurements in a same path belong to the
same class.

Simulations have been done and demonstrate the feasibility of
the method. They have shown that grouping paths originating
from the same process allows to really increase the progno-
sis performance in comparison with the two basic strategies
(all paths in one class, one class per path). The best result
has been obtained with the class number equal to the theoret-
ical one ; however if the number of classes is sur-estimated

the result evolves slowly. A method for choosing the number
of classes, using the Bayesian information criterion (Kass &
Raftery, 1995), is currently being studied.
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ABSTRACT

This work presents an efficient computational framework for
estimating the end of life (EOL) and remaining useful life
(RUL) by combining the particle filter (PF)-based prognostics
with the technique of Subset simulation. It has been named
PFP-SubSim on behalf of the full denomination of the com-
putational framework, namely, PF-based prognostics based
on Subset Simulation. This scheme is especially useful when
dealing with the prognostics of evolving processes with asymp-
totic behaviors, as observed in practice for many degradation
processes. The effectiveness and accuracy of the proposed al-
gorithm is demonstrated through an example for predicting
the probability density function of EOL for a carbon-fibre
composite coupon subjected to an asymptotic fatigue degra-
dation process. It is shown that PFP-SubSim algorithm is ef-
ficient, and at the same time, fairly accurate in obtaining the
probability density function of EOL and RUL as compared to
the traditional PF-based prognostic approach reported in the
PHM literature.

1. INTRODUCTION

The goal of prognostics is to make end of life (EOL) and re-
maining useful life (RUL) predictions of components, subsys-
tems, and systems that enable timely maintenance decisions
to be made under the presence of uncertainty. In practice, dif-
ferent sources of uncertainty are present in a typical prognos-
tic problem, namely, (a) uncertainty in modeling the system,
(b) uncertainty in future inputs to the system and (c) mea-
surements noise (Sankararaman & Goebel, 2013). Further it
is added the uncertainty that the PF-based prognostics algo-

Manuel Chiachı́o et. al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

rithm (Orchard, Kacprzynski, Goebel, Saha, & Vachtsevanos,
2008) introduces itself, since, in general, these prognostics
algorithms employ a limited amount of discrete samples for
making predictions, unless analytical methods are employed,
which are limited to very specific cases in real life applica-
tions (Sankararaman & Goebel, 2013).

There is an additional source of error attributable to the prog-
nostics algorithm itself, which is due to the lack of confidence
in dealing with the EOL estimate, and it is especially rep-
resentative of systems whose evolving dynamic exhibit an
asymptotic behavior in approaching towards the thresholds.
In this situation, prediction accuracy and precision can vary
significantly unless higher-density sampling-based methods
are employed to characterize fault propagation trajectories
achieving higher resolutions in the vicinity of the threshold,
which considerably increases the computational cost. On the
other hand, choosing a conservative threshold, such that it
meets a propagation trajectory prior to the asymptotic region,
is one approach but results in throwing away potentially use-
ful component life.

In this work, a novel efficient algorithm, named PFP-SubSim,
is presented for estimating the EOL and RUL by combining
the PF-based prognostics (Daigle & Goebel, 2011) with the
technique of Subset simulation for efficient rare-event sim-
ulation, first developed in (Au & Beck, 2001). The result
is a especially suited algorithm for the prognosis of asymp-
totic processes. The idea behind PFP-SubSim algorithm is to
split the multi-step-ahead predicted trajectories into multiple
branches of selected samples (seeds) at various stages of the
process, which are further reproduced into closer approxima-
tions to the desired threshold by conditional sampling using
the propagation model. A sequence of nested subsets of sam-
ples (simulation levels) are sequentially defined such that, at
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each simulation level, the samples are increasingly distributed
in the vicinity of the threshold, achieving high resolution for
the EOL estimate.

A case study is presented for predicting the EOL of a com-
posite coupon subjected to an asymptotic fatigue degradation
process, that illustrates some of the challenges in a real-world
application of the algorithm. Matrix micro-cracks are con-
sidered as the primary degradation mode where the increase
in micro-cracks density exhibits asymptotic behavior as fa-
tigue cycling continues. Structural health monitoring in this
example is accomplished through Lamb wave-based active
interrogation using PZT sensors together with a set of strain-
gauges for measuring stiffness reduction. The data used for
this case study is an open-access dataset distributed by NASA
Ames Prognostics Data Repository (Saxena, Goebel, Larrosa,
& Chang, 2008).

The paper is organized as follows. Section 2 reviews the the-
ory underlying the prognostics problem and overviews the
computational architecture we adopt in further sections. In
Section 3 the basis of Subset Simulation method is presented
before introducing a formal Subset Simulation approach in a
prognostic context, which is provided in Section 4. The ef-
ficiency of FPF-SubSim is illustrated in Section 5 through a
case study. In Section 6, a discussion about the performance
of PFP-SubSim algorithm in relation with the standard PF-
based prognostic algorithm is provided. Section 7 provides
concluding remarks.

2. PF-BASED PROGNOSTICS

Let consider a state-space model which is used to sequen-
tially predicting the state xk ∈ X ⊂ Rnx of a dynamic sys-
tem for observed data vector yk, where k ∈ N, is the time
index. Let us also consider that the state xk may depends on
a set of model parameters θ ∈ Θ ⊂ Rnθ . Mathematically, the
state-space model can be described at time k in a generalized
manner as:

xk = fk(xk−1, uk, vk, θ) (1a)
yk = hk(xk, uk, wk, θ) (1b)

where uk ∈ Rnu is the input vector and vk ∈ Rnv and
wk ∈ Rnw , are uncertain variables introduced to account
for the model error and measurement error, respectively. The
functions fk and hk are possibly nonlinear functions for the
state transition evolution and observation equation, respec-
tively. In the last equation, the measurements yk are assumed
conditionally independent given the parameter θ ∈ Rnθ and
the states xk ∈ X , follow a Markov model of order one. In
addition, it is defined the augmented state zk in the joint state-
parameter space as zk = (xk, θ) ∈ Z = Θ × X ⊂ Rnθ+nx ,
so that p(zk) = p(xk|θ)p(θ). The focus of state-estima-
tion (also known as the filtering problem) is on sequentially
updating the probability density function (PDF) of the state

zk, given the observed measurements up to time k, y0:k =
{y0, . . . , yk−1, yk}, i.e., p(xk, θk|y0:k) ≡ p(zk|y0:k). This
implies the evaluation of multidimensional integrals parame-
terized by θ, within a Bayesian framework of prediction and
updating (Cappe, Guillin, Marin, & Robert, 2004). These
integrals are usually intractable except some especial cases
of linear systems and Gaussian noise, hence a generally fol-
lowed solution is to obtain an approximation to p(zk|y0:k) by
means of particle filters (PF) (Gordon, Salmond, & Smith,
1993), which may be directly applied to nonlinear systems
with non-Gaussian noise terms (Arulampalam, Maskell, Gor-
don, & Clapp, 2002). Using PF, the approximation to the
state distribution p(zk|y0:k) is described through a set of N
discrete weighted particles

{
(x

(i)
k , θ

(i)
k , ω

(i)
k

}N
i=1

that can be
readily sampled from a convenient importance distribution
q(x0:k, θ0:k|y0:k) as:

p(x0:k, θ0:k|y0:k) ≈
N∑

i=1

ŵ
(i)
k δ(x0:k−x(i)

0:k)δ(θ0:k−θ(i)
0:k) (2)

where ŵ(i)
k is the unnormalized importance weight for the ith

particle:

ŵ
(i)
k =

p(x
(i)
0:k, θ0:k|y0:k)

q(x
(i)
0:k, θ0:k|y0:k)

(3)

For practical reasons, the PDF q(x0:k, θ0:k|y1:k) is chosen so
that it admits a sample procedure by choosing q(x0:k, θ0:k|y0:k)
= q(x0:k, θ0:k|y0:k−1) (Arulampalam et al., 2002), hence it
can be factorized in a form similar to that of the target poste-
rior PDF, i.e. :

q(x0:k, θ0:k|y0:k) = q(x0:k−1, θ0:k−1|y0:k−1)q(xk|xk−1, θk−1),
resulting:

ŵ
(i)
k ∝ ŵ

(i−1)
k

p(x
(i)
k |x

(i)
k−1, θ

(i)
k−1)p(yk|x(i)

k , θ
(i)
k )

q(x
(i)
k |x

(i)
k−1, θ

(i)
k )

(4)

where p(x(i)
k |x

(i)
k−1, θ

(i)
k−1) and p(yk|x(i)

k , θ
(i)
k ) are1 the PDFs

of state estimation and updating, respectively, which can be
obtained using the state-space model defined in Eq. (1) and
assuming prescribed PDFs for vk and wk. Without lack of
generality, we adopt the bootstrap filter (Gordon et al., 1993)
consisting on adopting q(xk|xk−1, θk−1) = p(xk|xk−1, θk−1),
so that the expression for the ith unnormalized particle weight
yields

ŵ
(i)
k ∝ ŵ

(i)
k−1p(yk|x

(i)
k , θ

(i)
k ) (5)

Observe from Eqs. (4) and (5) that the weight values ŵ(i)
k are

known only up to a scaling factor, which can be overpassed
by normalization as: w(i)

k = ŵ
(i)
k /

∑N
i=1 ŵ

(i)
k , i = 1, . . . , N ,

where w(i)
k denotes the normalized value of the ith particle

1For simpler notation the conditioning on the model input uk is dropped
from Eq. (1)
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at time k. A pseudocode implementation of the PF is given
in Algorithm 1, which includes a systematic resampling step
(Rubin, 1987) to avoid the well-known degeneracy deficiency
of the PF (Cappe et al., 2004).

2.1. Prognostics and RUL prediction

Prognostics is concerned with the performance of the compo-
nent that lies outside a given region of acceptable behavior.
Mathematically, it requires the generation of a `-step ahead
prediction of state PDF, namely p(zk+`|y1:k), using the most
up-to-date knowledge of the system at time k (Orchard et al.,
2008). By computing the time indexes t > k ∈ N when
future states zt violate any previously defined thresholds, an
estimate of the end of life (EOL) can be derived.

Algorithm 1 PF with on-line parameter updating
1: inputs:
2: N, {number of particles per time step}
3: Algorithm:

4: Initialize
[(
θ

(1)
0 , x

(1)
0

)
, . . . ,

(
θ

(i)
0 , x

(i)
0

)
, . . . ,

(
θ

(N)
0 , x

(N)
0

)]
,

where (θ, x) ∼ p(θ)p(x|θ)
5: Assign the initial unnorrmalized weights:{

ŵ
(i)
0 = p(y0|x(i)

0 , θ(i))
}N
i=1

At k > 1 {time k evolves as new data point arrives}
6: Resampling of N particles according to weights
w

(i)
k−1, i = 1, . . . , N .

7: for i = 1 to N do
8: Sample: θ(i)

k ∼ p(θk|θ
(i)
k−1)

x
(i)
k ∼ p(xk|x

(i)
k−1, θ

(i)
k ).

9: Update the weight ŵ(i)
k = p(yk|x(i)

k , θ
(i)
k )

10: end for
11: Normalize weights w(i)

k = ŵ
(i)
k /

∑N
i=1 ŵ

(i)
k

12: output:
{

(x
(i)
k , θ

(i)
k ), w

(i)
k

}N
i=1

The region of unacceptable behavior can be defined by means
of a set of thresholds b = {b1, . . . , bc} on one or various
critical parameters. These thresholds can be combined into a
threshold function TEOL = TEOL(x, θ) ≡ TEOL(z), that
maps a given point in the joint state-parameter space to the
Boolean domain {0, 1} (Daigle & Goebel, 2011). For instance,
when a given particle i starting from time k performs a ran-
dom walk and hits any of the thresholds in b, then T (i)

EOL ≡
TEOL(z

(i)
k ) = 1, otherwise T (i)

EOL = 0. The time t > k at
which that happens defines the EOLk for that particle. Math-
ematically:

EOL
(i)
k = inf{t ∈ N : t > k ∧ T (i)

EOL = 1} (6)

Using the updated weights at the starting time k, an approxi-

mation to the PDF of EOL is given by:

p(EOLn|y0:k) ≈
N∑

i=1

ω
(i)
k δ(EOLk − EOL(i)

k ) (7)

Once EOLn is estimated, the remaining useful life can be
readily obtained as RULk = EOLk − k. An algorithmic
description of the prognostic procedure is provided as Algo-
rithm 2.

Algorithm 2 Standard PF-prognostics and RUL prediction

1: inputs:
{(

x
(i)
k , θ

(i)
k

)
, ω

(i)
k

}N
i=1

, b = {b1, . . . , bc}
2: for i = 1→ N do
3: Calculate: TEOL

(
x

(i)
k , θ

(i)
k

)

4: while T iEOL = 0 do
5: Sample: θ(i)

t ∼ p(θt|θ(i)
t−1)

x
(i)
t ∼ p(xt|x(i)

t−1, θ
(i)
t ).

6: t← t+ 1, t > k

7: zt =
(
x

(i)
t , θ

(i)
t

)
← zt+1 =

(
x

(i)
t+1, θ

(i)
t+1

)

8: end while
9: EOL

(i)
k ← t

RUL
(i)
k = EOL

(i)
k − k

10: end for
11: output EOLk, RULk = EOLk − k

3. SUBSET SIMULATION METHOD

Subset Simulation is an adaptive stochastic simulation ap-
proach originally proposed to compute small failure proba-
bilities of engineering systems (Au & Beck, 2001). The con-
ceptual idea behind Subset Simulation is to represent a small
failure probability as a product of larger probabilities.

In a general way, Subset Simulation is a method for efficiently
generating conditional samples that correspond to specified
levels of a performance function g : Rnθ+nx → R in a pro-
gressive manner, converting a problem involving rare-event
simulation into a sequence of problems involving more fre-
quent events. This general aspect makes Subset Simulation
applicable to a broad range of areas of science where the
simulation/prediction of unprovable events is required (Au &
Beck, 2003; Ching, Au, & Beck, 2005). In this section, the
Subset Simulation method is presented using its primary aim
on small failure probabilities estimation. In the next section,
Subset Simulation is specialized for the use in prognostics,
and in particular for asymptotic processes.

Let F be the region of unacceptable behavior, or failure re-
gion, in the z-space, z ∈ Z ⊂ Rnθ+nx , corresponding to
exceedance of the performance function g above some speci-
fied threshold level b:

F = {z ∈ Z : g(z) > b} (8)

3
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Let us now assume that F is defined as the intersection of
m regions Z, i.e, they are arranged as nested subsets of re-
gions starting from the entire space Z and shrinking to the
failure domain F , i.e., F1 ⊃ F2 . . . ⊃ Fm−1 ⊃ Fm = F ,
so that F =

⋂m
j=1 Fj . Each subset Fj (typically termed as

intermediate failure domain) is defined as Fj = {z ∈ Z :
g(z) > bj}, with bj+1 > bj , such that p(z|Fj) ∝ p(z)IFj (z),
j = 1, . . . ,m. The term p(z) denotes the probability model
for z. By definition of conditional probability, it follows that2:

P (F) = P
( m⋂

j=1

Fj
)

= P (F1)

m∏

j=2

P (Fj |Fj−1) (9)

where P (Fj |Fj−1) ≡ P (z ∈ Fj |z ∈ Fj−1), is the condi-
tional failure probability at the (j − 1)th intermediate failure
domain. Observe that the probability P (F) may be relatively
small, however it can be approximated by Subset Simulation
as the product of larger conditional probabilities involved in
Eq. (9), thus avoiding simulation of rare events.

In the last equation, apart from P (F1), which can be read-
ily estimated by the standard Monte Carlo method (MC), the
remaining factors cannot be efficiently estimated because of
the sampling conditional on Fj−1, j = 2, . . . ,m. However,
MCMC methods can be used for sampling from the PDF
p(zj−1|Fj−1) when j > 2 giving:

P (Fj |Fj−1) ≈ P̄j =
1

M

M∑

n=1

IFj (z
(n)
j−1) (10)

where z(n)
j−1 ∼ p(zj−1|Fj−1) and IFj (z

(n)
j−1) is an indicator

function for the region Fj , j = 1, . . . ,m, that assigns a value
of 1 when g(z

(n)
j−1) > bj , and 0 otherwise.

Observe that it is possible to obtain Markov chain samples
that are generated at the (j−1)th level which lie inFj , so that
they are distributed as p(z|Fj). Hence they provide “seeds”
for simulating more samples according to p(z|Fj) by using
MCMC sampling with no burn-in required, which is an im-
portant feature of Subset Simulation to avoid wasting sam-
ples (Au & Beck, 2001). As described further below, Fj is
actually chosen adaptively based on the samples {z(n)

j−1, n =
1, . . . ,M} from p(z|Fj−1) in such a way that the worst (in
the sense of closer to the intermediate failure threshold) among
theM samples define an intermediate level. For practical rea-
sons, the amount of samples defining the intermediate level
are chosen as a specified fraction of the total amount of M
samples by fixing a value P0 ∈ (0, 1), so that there are ex-
actly NP0 of these seed samples in Fj

(
so P̄j = P0 in

Eq. (10)
)
. For a specified value of P0, the intermediate thresh-

old value bj defining Fj is obtained in an adaptive manner as

2In what follows, we use P (·) to denote probability whereas a PDF is ex-
pressed as p(·). In addition, we use P (F) ≡ P (z ∈ F), for simpler
notation

the [MP0]
th largest value among the values g(z

(n)
j−1), n =

1, . . . ,M , so that the sample estimate of P (Fj |Fj−1) in Eq.
(10) is equal to P0. The remaining M(1 − P0) samples are
generated from p(z|Fj) by MCMC, giving a total of M sam-
ples in Fj . Repeating this process, we can compute the con-
ditional probabilities of the higher-conditional levels until the
final region Fm = F has been reached.

In Subset Simulation, the choice of an adequate P0 has a sig-
nificant impact on the efficiency of the algorithm. Indeed, a
small value for the conditional probability (P0 → 0) makes
that the distance between consecutive intermediate levels bj−
bj−1 becomes too large, which leads to a rare-event simula-
tion problem. In the other hand, if the intermediate threshold
values were chosen too close (P0 → 1), the algorithm would
take a large total number of simulation levels m (and hence
large computational effort) to progress toward the target re-
gion of interest, F . Hence, a rational choice for P0 is of key
importance for the efficiency of the algorithm. In the origi-
nal presentation of Subset Simulation in (Au & Beck, 2001),
P0 = 0.1 was recommended, and more recently in (Zuev,
Beck, Au, & Katafygiotis, 2011), the range 0.1 6 P0 6
0.3 was found to be near optimal after a rigorous sensitiv-
ity study of Subset Simulation. In this paper, we will adopt
P0 = 0.2. For convenience of implementation, P0 is chosen
so that MP0 and 1/P0 are positive integers.

As stated before, to draw samples from the target PDF p(z|Fj),
MCMC methods like Metropolis-Hastings (Metropolis, Rosen-
bluth, Rosenbluth, Teller, & Teller, 1953) are adequate. In
the original version of Subset Simulation (Au & Beck, 2001),
a modified Metropolis algorithm (MMA) was proposed that
worked well even in very high dimensions (e.g. 103-104), be-
cause the original algorithm fails in this case (Au & Beck,
2001)). In MMA, a univariate proposal PDF is chosen for
each component of the parameter vector and each compo-
nent candidate is accepted or rejected separately, instead of
drawing a full parameter vector candidate from a multi-di-
mensional PDF as in the original algorithm. To avoid repeat-
ing literature, the reader is refered to (Au & Beck, 2001) for
further details about MMA. More details about implementa-
tion issues can be encountered in the work of (Zuev et al.,
2011).

4. SUBSET SIMULATION IN PF-BASED PROGNOSTICS

In this section, the Subset Simulation method presented above
is adapted for its application in prognostics. The definition of
failure regionF in Eq. (8) is adopted here to establish a nested
sequence of prognostic regions Fj in Z = Θ × X , whose
points are of the form zjt ≡ (xjt , θ

j
t ), t > k, such that g(zjt ) <

bj , being g : F → R the performance function on Z. The
sequence of threshold values bj+1 > bj , j = 1, . . . ,m are

4
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obtained3 sequentially as in Section 3. Observe that the per-
formance function g works analogously to the TEOL function
defined in Section 2.1. The main difference between them
is that g allows us to know not only whether the state has
reached the threshold b, but also how close it is to b if it has
not.

Summarizing, the proposed algorithm simulate sequentially
the joint state-parameter zjt = (xjt , θ

j
t ) over a set of nested re-

gionsFj , j = 1, . . . ,m, such that zjt ∼ IFj (θ, x)p(x|θ)p(θ).
Figure 1 schematically describes the performance of the algo-
rithm.

See Algorithm 3 for a pseudocode implementation, which is
intended to be sufficient for most cases of application. The al-
gorithm is implemented such that a fixed amount of M sam-
ples are drawn per simulation level Fj , so that NT = mM :
the total amount of model evaluations required by the algo-
rithm to reach the final threshold. It is important to remark
that it does not imply any restriction but it allows control-
ling the computational burden. In addition, the conditional
probability is set to P0 = 0.2, following the recommendation
about Subset Simulation method in (Zuev et al., 2011). Fig-
ure 2 provides an algorithm flow-chart to better understand
the main steps of the algorithm. For simplicity, the time sub-
scripts are dropped from Step 10, since the time indexing in-
formation is implicitly contained at each sample.

k k + 1
. . .

t

F

Fj

Fj−1

Time index

z t

Figure 1. Generation of conditional samples in PFP-Sub-
Sim: solid disks represent samples in the joint state-parameter
space. Darker gray tones are used to represent samples dis-
tributed in increasing intermediate regions. Circled disks are
the Markov chain samples used as seeds for generating new
samples distributed as p(·|Fj), j = 1, . . . ,m.

3The bj sequence is an increasing sequence (i.e., bj+1 > bj ) or a de-
creasingly sequence (bj+1 < bj ) depending wether the process is a non-
decreasing or decreasing process, respectively. With no loss of generality, it
is considered as an increasing sequence.

Algorithm 3 Pseudocode implementation for PFP-SubSim
1: Inputs:
2: P0 ∈ [0, 1] {gives percentile selection, chosen so
NP0, 1/P0 ∈ Z+; P0 = 0.2 is recommended}.

3: M, {number of samples per intermediate level}; m,
{maximum number of simulation levels allowed};
` = M/N .

Require:
{

(x
(i)
k , θ

(i)
k ), w

(i)
k

}N
i=1

; e.g. use Algorithm 1.
4: Algorithm:
5: for i : 1, . . . , N do
6: for t : k + 1, . . . , k + ` do
7: Sample θ0,(i)

t ∼ p(θt|θ(i)
t−1)

x
0,(i)
t ∼ p(xt|x(i)

t−1, θ
(i)
t ).

8: end for
9: end for

10:
[
(θ0,(1), x0,(1)), . . . , (θ0,(M), x0,(M))

]

11: for j : 1, . . . ,m do
12: for n : 1, . . . ,M do

13: Evaluate: g(n)
j = g

(
zj−1,(n)

)
;

14: end for
15: Sort

[(
θj−1,(n), xj−1,(n)

)
, n : 1, . . . ,M

]
so that

g
(1)
j 6 g

(2)
j 6 . . . g

(M)
j

16: Fix bj = 1
2

(
g

(MP0)
j + g

(MP0+1)
j

)

17: for n = 1, . . . ,MP0 do
18: Select as a seed

(
θ
j,(n)
(1) , x

j,(n)
(1)

)
=(

θj−1,(n), xj−1,(n)
)
∼ p
(
θ, x|Fj

)

19: Run MMA (Au & Beck, 2001) to generate
1/P0 states of a Markov chain lying in Fj :[(
θ
j,(n)
(1) , x

j,(n)
(1)

)
, . . . ,

(
θ
j,(n)
(1/P0), x

j,(n)
(1/P0)

)]

20: end for
21: Renumber

[
(θ
j,(n)
(i) , x

j,(n)
(i) )

]

n = 1, . . . ,MP0; i = 1, . . . , 1/P0 as:
22:

[
(θj,(1), xj,(1)), . . . , (θj,(M), xj,(M))

]

23: if bj > b then
Record the times indexes of the first-passage
points→End Algorithm

24: end if
25: end for
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Algorithm flow-chart

Run forward the model
xt = fk(xt−1, ut, vt, θt)

θ ∼ p(θt|θt−1)
t > k

for j=1 : m

Evaluate the performance function:
g
(n)
j = g

(
zj−1,(n)

)
, n = 1, . . . ,M.

Fix the threshold value:
bj as [MP0]

th percentile of
{
g
(
zj−1,(n)

)}M

n=1

Automatically define the set Fj:
Fj ,

{
(z ∈ Z) : g(zj) < bj

}

Select MP0 seeds:(
z
j,(n)
(1)

)
=
(
zj−1,(n)

)
∼ p

(
· |Fj

)
,

n = 1, . . . ,MP0

Generate 1/P0 states of
a Markov Chain lying in Fj:[(
z
j,(n)
(1)

)
, . . . ,

(
z
j,(n)
(1/P0)

)]
∼ p

(
· |Fj

)

Renumber (z
j,(n)
(i) )

n = 1, . . . ,MP0;
i = 1, . . . , 1/P0 as:[(
zj,(1)

)
, . . . ,

(
zj,(M)

)]

If
bj > b
End

EOL,
{
t ∈ R : t > tP ∧ TEOLj

(z) = 1
}

Figure 2. PFP-SubSim algorithm flowchart.

5. CASE STUDY

In this section, the performance of the algorithm is investi-
gated on a challenging problem about prognostics of matrix
micro-cracks saturation in CFRP laminates using SHM data
from a fatigue experiment. The framework for prognostics of
fatigue damage in CFRP composites has been recently con-
tributed by the authors in (Chiachı́o, Chiachı́o, Saxena, Rus,
& Goebel, 2013) and (Chiachı́o, Chiachı́o, Saxena, Rus, &
Goebel, 2013). To avoid repeating literature but conferring a
sufficient conceptual framework, the relevant details are pre-
sented here in a brief manner.

5.1. Damage modeling in composites

As already shown in (Chiachı́o et al., 2013), a physic-based
prognostic framework is preferred as a versatile way to deal

with accurate predictions for fatigue damage in composites
without much training. It is based on modeling the energy
released per unit crack area due to the formation of a new
crack between two existing cracks, denoted as G. This en-
ergy, known as energy release rate (ERR), can be obtained
as (J. A. Nairn, 1989, 1995):

G =
σ2
xh

2ρh90

(
1

E∗x(2ρ)
− 1

E∗x(ρ)

)
(11)

where σx is the maximum applied axial tension to the lami-
nate, ρ is the matrix micro-cracks density defined as ρ = 1

2l̄

with l̄ being the normalized half-crack spacing, and h and h90

are the laminate and 90◦-sublaminate half-thickness, respec-
tively. See more details in the Nomenclature section. The
term E∗x(ρ), as a function of ρ, is the effective longitudinal
laminate stiffness, i.e. the stiffness due to the current dam-
age state, which can be efficiently modeled through micro-
damage mechanics models like shear-lag models (Garrett &
Bailey, 1977; Highsmith & Reifsnider, 1982), variational mod-
els (Hashin, 1985), and crack opening displacement based
models (Gudmundson & Weilin, 1993; Lundmark & Varna,
2005). In this work, the shear-lag approach is adopted for
being simpler and well-suited for symmetric cross-ply lami-
nates, which is the laminate type used in this case study, as
shown below. Equation (12) provides the analytical expres-
sion for the effective longitudinal stiffness using the classical
shear-lag model (Joffe & Varna, 1999):

E∗x =
Ex,0

1 + a 1
2l̄
R(l̄)

(12)

In the last equation, Ex,0 is the intact longitudinal Young’s
modulus of the laminate, l̄ = l

h90
is the half crack-spacing

normalized with the 90◦ sub-laminate thickness and a is a
known function of laminate properties (defined in the Ap-
pendix). The function R(l̄), known as the average stress per-
turbation function, is defined by:

R(l̄) =
2

ξ
tanh(ξl̄) (13)

where ξ is the shear-lag parameter which is expressed as a
function of ply and laminate properties (see the Nomenclature
section for further details about the terms involved in the next
expression) as:

ξ2 = Gyz

(
1

Ey
+

1

λE
(φ)
x

)
(14)

The evolution of crack-density over time is achieved by intro-
ducing the ERR into the modified Paris’ law (J. Nairn & Hu,
1992), as shown below:

dρ
dn

= A(∆G)α (15)
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In the last equation, A and α are fitting parameters and ∆G
is the increment in ERR for a specific stress amplitude during
the fatigue loading: ∆G = G(σx,max) − G(σx,min). Due
to the complexity of the expression for ∆G, which involves
the underlying micro-damage mechanics model for the com-
putation of E∗x(ρ) shown above, a closed-form solution for
Eq. (15) is hard to obtain. To overcome this drawback, the re-
sulting differential equation can be solved by approximating
the derivative using ”unit-time” finite differences, consider-
ing that damage evolves cycle-to-cycle, as:

ρn = ρn−1 +A (∆G(ρn−1))
α (16)

5.2. Filtering recursion

As discussed in the last section, the progression of damage is
modeled at every cycle n by focusing on the matrix-cracks
density, ρn, and the normalized effective stiffness, Dn =
E∗
x

Ex,0
, defining a joint response function of two components:

fn = [f1n , f2n ] for matrix cracks-density and normalized ef-
fective stiffness, respectively. Let denote by xn = [x1n , x2n ]
the actual system response, for matrix micro-cracks density
and normalized effective stiffness, respectively. Next, the
damage model can be embedded stochastically (Beck, 2010)
by adding a model-error term vn ∈ R2 that represents the dif-
ference between the actual system response xn and the model
output fn. The following input/output (I/O) state-space model
is defined:

x1n = ρn = f1n(ρn−1, θ, un)︸ ︷︷ ︸
Equation 16

+v1n (17a)

x2n = Dn = f2n(ρn, θ, un)︸ ︷︷ ︸
Equation 12

+v2n (17b)

where θ is a set of updatable model parameters and un de-
notes the set of input parameters to the system at time n. If
yn = [y1n , y2n ] =

[
ρ̂n, D̂n

]
are the measurements of the

system output xn, then the following measurement function
is added to the discrete state-space model to account for the
measurement error wn ∈ R2:

y1n = ρ̂n = x1n + w1n (18a)

y2n = D̂n = x2n + w2n (18b)

We use the Principle of Maximum Information Entropy (Beck,
2010) to choose vn and wn as i.i.d. Gaussian variables, vn ∼
N (0,

[
σv1n , σv2n

]
I2), wn ∼ N (0,

[
σw1n

, σw2n

]
I2), being[

σv1n , σv2n
]

and
[
σw1n

, σw2n

]
the standard deviations of vn

and wn respectively, and I2 the identity matrix of order 2,
so they can be readily sampled. For this example, we adopt
σw1n

= 10−2 and σw1n
= 10−6, assuming as known. The

model parameters θ are selected among the complete set of
parameters that defines the ensemble based on the modified
Paris’ law through a global sensitivity analysis based on vari-

ances and following the methodology proposed by (Saltelli et
al., 2008). As result, the ply properties {Ex, Ey, h} together
with the modified Paris’ law fitting parameter {α} emerged as
influential parameters in terms of model output uncertainty.
Moreover, the set of updatable model parameters θ was com-
pleted by adding the error terms to the last choice, i.e., θ =
{α,Ex, Ey, h, σv, σw}. The rest mechanical and geometri-
cal parameters act as static non-updatable input parameters,
hence they can be readily fixed at any point within their range
of variation, (e.g. the mean value) without significantly influ-
encing the output uncertainty.

5.3. Dataset

The performance of the proposed algorithm is investigated
using SHM data obtained from a set of run-to-failure fatigue
experiments. Both stiffness data and NDE measurements of
internal damage, such as micro-crack density and delami-
nation area, were periodically measured during the fatigue
test (Saxena et al., 2011) (although we will only focus here
on predicting matrix-micro cracks). Torayca T700G uni-di-
rectional carbon-prepreg material was used for 15.24 cm×
25.4 cm coupons with notched dogbone geometry and stack-
ing sequence defined by [02/904]s. The nominal values of the
laminate ply properties are given in Table 1, along with their
statistical description.

The tests were conducted under load-controlled tension cyclic
loading, with a maximum applied load of 31.13 KN, fre-
quency f = 5 Hz, and a stress ratio R = 0.14 (defined as
the relation between the minimum and maximum stress for
each cycle). Lamb wave signals were periodically recorded
using a PZT sensor network to estimate internal micro-crack
density. The mapping between PZT raw data and micro-
crack density was done following the methodology proposed
in (Larrosa & Chang, 2012). Additionally, periodic X-rays
were taken to visualize and characterize subsurface damage
features, in particular, the micro-crack damage pattern. More
details about these tests are reported in the Composite dataset,
NASA Ames Prognostics Data Repository (Saxena et al., 2008)
(damage data used in this example correspond to laminate
L1S19). A summary of the measurements of matrix micro-
cracks used in this study is provided in Table 2.

5.4. Results

For predicting the estimate end of life (EOL) of the laminate,
we are interested in computing the time when the damage
grows beyond a predefined damage threshold. In this study,
a threshold value of ρ = 424 cracks per meter is considered,
hence b = 424. A total amount of N = 100 particles trajec-
tories are employed for Algorithm 1 which are further used
as initialization samples for Algorithm 3. The results of Al-
gorithm 3 are presented for three different simulation levels
(m = 3) in Figure 3a, by using P0 = 0.2 and M = 2.4 · 104
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Table 1. Prior information and nominal values of main parameters used in calculations. Classical laminate theory may be used
from these parameters to obtain the values of the remaining parameters attributable to the laminate configuration.

Type Parameter Nominal value Units COV (%) Prior PDF
Mechanical Ex 127.55 GPa 10 LN

Ey 8.41 GPa 10 LN
Gxy 6.20 GPa 10 LN
Gm
d0

1 · 105 GPa/m 50 LN
νxy 0.31 – 10 LN
Gyz 2.82 GPa 10 LN
h 1.5 · 10−4 m 10 LN

Fitting α 1.80 – 20 LN
A 1 · 10−4 – 20 LN

Errors σv1n 4 # cracks
m·cycle – U(0.5, 8)

σv2n 0.01 # cracks
m·cycle – U(0.001, 0.02)

Table 2. Experimental sequence of damage for cross-ply [02/904]s Torayca T700 CFRP laminate taken from the Composite
dataset, NASA Ames Prognostics Data Repository (Saxena et al., 2008). The data are presented for micro-cracks density (ρn
corresponding to specimen L1S19 in the dataset.)

Fatigue cycles, n 101 102 103 104 2·104 3·104 4·104 5·104 6·104 7·104 8·104 9·104 105

ρn [# cracks/m] 98.2 111.0 117.4 208.5 269.6 305.0 355.5 396.4 402.3 402.1 407.0 418.5 424.5
Dn 0.954 0.939 0.930 0.924 0.902 0.899 0.888 0.881 0.896 0.872 0.877 0.885 0.880

samples per simulation level. The results shown in Figure 3
are satisfactory in the sense that our algorithm has the abil-
ity to estimate the EOL with high precision with a moderate
computational cost.

Figure 3b shows the EOL estimate by a histogram representa-
tion. The estimate is calculated by using the set ofM samples
from the latest subset (F3), which contributes in obtaining a
higher quality of the estimate, as it is shown below.

6. DISCUSSION

To evaluate the computational improvement and accuracy that
can be achieved using PFP-SubSim, the algorithm is com-
pared with a standard PF-based prognostics algorithm in terms
of efficiency in obtaining the EOL estimate. To this end, we
examine the quality of an estimator based on samples from
the different competing algorithms separately. Before pro-
ceeding with the analysis, we briefly review here general is-
sues about quality of estimators.

Let g(zn) > b, n > k, n, k ∈ N represents the fault indica-
tor of our system, such that P (zt ∈ Z|g(zt) > b) = ϑ, where
ϑ is strictly higher than 0. By definition of TEOL, the next
equation also holds: P (zn ∈ Z|TEOL(zn) = 1) = ϑ, (see
Section4). We want to obtain an estimator ϑ̂ from ϑ.

Suppose now that, starting at time n > k, NT2 samples of the
joint state-parameter {z(v)

n }NT2
v=1 are drawn from a state tran-

sition evolution model as in Eq. (1a) (or specifically Eq. (17),
when the last two cited damage features in composites, are
considered). By definition, {z(v)

n } are Markov chain samples

of multi-step ahead predictions which are distributed with
equally probability among N particle trajectories. The start-
ing points of those trajectories are the latest N updated parti-

cles at time k, i.e.
{(

z
(i)
k

)
, ω

(i)
k

}N
i=1

, obtained using Algo-

rithm 1, resulting in N independent Markov chains of fixed 4

length Ns. Hence Ns = NT2/N .

It is straightforward that an unbiased estimator for ϑ can be
readily obtained by simulatingN i.i.d. trajectories of the pro-
cess using Algorithm 2 and further compute the ratio of par-
ticles that reach the threshold b, as follows:

ϑ ≈ ϑ̂ =
1

NT2

N∑

i=1

Ns∑

q=1

T
(i,q)
EOL (19)

where T (i,q)
EOL is the value of the TEOL function evaluated at

sample q of the ith Markov chain, i.e., T (i,q)
EOL = TEOL(z

(i)
q ).

The coefficient of variation (c.o.v.) of the last estimator is
given in Eq. (20) (the proof that Eq. (20) is the c.o.v. of ϑ̂ is
given in the Appendix).

δϑ̂ =

√
(1− ϑ)

ϑNT2
[1 + γ] (20)

In the last equation, γ is the autocorrelation factor, which is
related with the level of correlation between the samples of
any of the N Markov chains (see the Appendix).
4Only for this comparative exercise, Algorithm 2 is run using an “ad hoc”
time threshold as stopping rule, instead of using a stopping rule based on
exceedance of the particle trajectory over specified thresholds, as usual.
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Figure 3. Prognostics results for predicting matrix micro-cracks density from cycle n = 4 · 104 using the modified Paris’
law model. (a): PFP-SubSim output using M = 2.4 · 104 samples per simulation level. Each subset is defined by samples
(circles) in the joint state-parameter space Z, where the latest intermediate predictive samples are marked in dark purple
circles. (b): Histogram representation of the estimated EOL at cycle n = 4 · 104. The green triangle represents the time (in
cycles) when matrix micro-cracks density will reach the final threshold b = 424 [#cracks · m−1], which was reported in
(Saxena et al., 2008) (laminate L1S19), and also shown in Table 2.

On the other hand, when Algorithm 3 is used for prognos-
tics, an unbiased estimator from ϑ can be readily obtained
as ϑ̂ = (P0)m, where m is the total number simulation lev-
els employed by the algorithm to reach the required thresh-
old. The c.o.v. of ϑ̂ can be calculated as (see Zuev et al. for a
detailed demonstration):

δϑ̂ =

√(
log(γ)

log(P0)

)2
(1− P0)

P0NT3
[1 + γ] (21)

where NT3 is the total amount of evaluations employed by
Algorithm 3.

Our objective for this comparative exercise is to demonstrate
that Algorithm 3 is able to obtain the same, or better, qual-
ity of an EOL estimate but employing less model evaluations
than Algorithm 2. For simplicity but no loss of generality, let
us adopt a configuration in which both algorithms give sam-
ples with equal (or similar) level of correlation between them,
hence γ is equal for both algorithms. It is reasonable to hy-
pothesize that there exist a configuration for NT2 and NT3

in which both algorithms give the same quality for the EOL
estimate. Then the next equation holds:

(1− P0)(log ϑ)2ϑNT2

(1− ϑ)(logP0)2P0NT3
= 1 (22)

which is the result of dividing Eq. (21) by Eq. (20). From last
equation, it is easy to obtain an expression for the number of
samples NT2 required for Algorithm 2 to obtain an estimate
of EOL with the same level of accuracy as that obtained using
Algorithm 3, provided that a total amount ofNT3 samples are
employed:

NT2 = NT3
(1− ϑ)P0

(1− P0)ϑ

(
logP 2

0

log ϑ2

)2

︸ ︷︷ ︸
�1

(23)

Observe that the factor that multiplies NT3 is always greater
than unity, since by definition, P0 > ϑ. In rare-event prob-
lems (like asymptotic processes with conservative thresholds),
P0 � ϑ, hence the last cited factor is fairly greater that 1,
which demonstrates the high efficiency of our algorithm for
prognostics of asymptotic processes.

As a numerical proof of the last postulate, the same exercise
of prognostics for fatigue degradation is reproduced here al-
though, in this case, by using the standard PF-based algo-
rithm (Algorithm 2). The same total number of model eval-
uations as in Algorithm 3 is adopted, i.e. NT2 = NT3 =
3×2.4 ·104 = 7.2 ·104, which are equally distributed among
N = 100 particle trajectories. The results reveal that only
231 particles among a total amount of 7.2 ·104 particles reach
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the threshold, in contrast to 2383 particles scrutinized when
PFP-SubSim was employed. Since these particles serve to de-
fine the EOL sample size, a poorer EOL estimate is obtained
when using Algorithm 2 and only a better estimate may be
obtained by employing more simulations, which necessarily
increases the computational cost. These results suggest that
high efficiency can be gained by employing the PFP-SubSim
algorithm for prognostics of asymptotic processes.

7. CONCLUSION

A new algorithm for PF-based prognostics has been presented
in this paper. The algorithm combines the prognostics princi-
ples with the Subset Simulation method to achieve efficiency
for simulating asymptotic processes. We demonstrate the com-
putational efficiency and accuracy that can be gained with the
novel algorithm in a case study about predicting the saturation
of matrix micro-cracks due to fatigue damage in composites,
that illustrate some of the challenges in a real-world appli-
cation of the algorithm. The main conclusions of this work
are:

• PFP-SubSim gets efficiency by adaptively simulating sam-
ples over a nested sequence of subsets until the final prog-
nostic threshold is reached. The sequence of subset are
adopted in an automated manner, which avoids tedious
preliminary calibrations.

• For the case study considered, PFP-SubSim outperforms
the standard PF-based prognostic algorithm, typically used
by the prognostic community. It is demonstrated that PFP-
SubSim is able to obtain the same quality of an EOL es-
timator by employing significant less evaluations.

• More research effort is required to formally explore the
optimal calibration aspects of the algorithm using a vari-
ety of examples of application.
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NOMENCLATURE AND BASIC RELATIONS

The next are nomenclature description and basic relations to
help understand the case study presented here (Section 5.1).

h Ply thickness

h90 [90n]-sublaminate half-thickness
hφ [φnφ

2
]-sublaminate thickness

λ Ply thickness ratio λ = hφ/h90

l̄ Average dimensionless half spacing of cracks, l̄ = l
h90

E90
x Undamaged x-direction [90n] sublaminate modulus

Ex,0 Undamaged x-direction laminate Young’s modulus
E∗x Damaged x-direction laminate Young’s modulus
E

(φ)
x Longitudinal Young’s modulus

E
(φ)
y Transverse Young’s modulus

ν
(φ)
xy In-plane Poisson ratio
σx Maximum applied stress

The function a in Eq. (12) can is expressed as a function of
the laminate and ply properties listed above as:

a =
Eyh90

Exhφ


1− ν(φ)

xy

ν(φ)
xy h90

E
(φ)
y

+
νxyhφ
Ey

h90

E
(φ)
y

+
hφ
Ex


 1− νxyν(φ)

xy

1− ν2
xy

Ey
Ex

(24)
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APPENDIX

Let T (i,q)
EOL be the threshold function as defined in Section 2.1

and applied for the qth sample in the ith Markov chain, i.e.
T

(i,q)
EOL = TEOL

(
z(i,q)

)
, i = 1, . . . , N , q = 1, . . . Ns. Ob-

serve that T (i,q)
EOL is a Bernoulli random variable of parameter

ϑ. It is straightforward to obtain an unbiased estimator for ϑ
by simulating N i.i.d. trajectories of the process and further
compute the ratio of particles that reach the threshold b, as
follows:

ϑ ≈ ϑ̂ =
1

NT2

N∑

i=1

Ns∑

q=1

T
(i,q)
EOL (25)

where T (i,q)
EOL is the qth Bernoulli trial at trajectory i. The vari-

ance of ϑ̂ can be calculated as:

Var
[
ϑ̂
]

= E
[
ϑ̂− ϑ

]2
= E

[
1

NT2

N∑

i=1

Ns∑

q=1

(
T

(i,q)
EOL − ϑ

)
]2

1

NT2

N∑

i=1

E

[
Ns∑

q=1

(T
(i,q)
EOL − ϑ)

]2

︸ ︷︷ ︸
(∗)

(26)
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Note that (*) can be evaluated by means of the autocovari-
ances of the stationary sequence T (i,q)

EOL, q = 1, . . . , Ns, as:

E

[
Ns∑

q=1

(T
(i,q)
EOL − ϑ)

]2

=

Ns∑

q,l=1

ϕ(i)(l) (27)

where ϕ(i)(l) is the autocovariance of the ith chain at lag l
from q, i.e., ϕ(i)(l) = E

[
T

(i,q)
EOL)T

(i,q+l)
EOL )

]
−ϑ2, l = 1, . . . , Ns.

In the last equation, it is assumed that each trajectory is prob-
abilistically equivalent, which is motivated by the use of PF
with sequential importance resampling (SIR), as in Algorithm
1. Therefore, we will use the term ϕ(l) with independence of
the chain index i.

Next, we evaluate Eq. (27):

Ns∑

q,l=1

ϕ(l) = Nsϕ(0) + 2

Ns−1∑

l=1

(Ns − q)ϕ(l) (28)

and substitute Eq. (28) into Eq. (26):

Var
[
ϑ̂
]

=
ϕ(0)

NT2




1 + 2

Ns−1∑

l=1

(
Ns − l
Ns

)
ϕ(l)

ϕ(0)
︸ ︷︷ ︸

γ




(29)

Note thatϕ(0) is the variance of any ith Markov chain T (i,q)
EOL),

which is compounded by Bernoulli trials of parameter ϑ, hence
ϕ(0) = Var

[
T

(i,q)
EOL

]
= ϑ(1 − ϑ), q = 1, . . . , Ns. Equation

(29) can be expressed in a simplified manner, as:

Var
[
ϑ̂
]

=
ϑ(1− ϑ)

NT2
[1 + γ] (30)

where γ is a correlation factor who penalizes the quality of
the estimator when highly correlated samples for the Markov
chains are employed. Note that, in model-based prognostics,
the value of γ is directly related with the efficiency of the ar-
tificial dynamics in drawing samples in Θ although it is not
explicitly reflected here, since each Bernoulli trial is previ-
ously sampled from p(θt|θt−1) (see Algorithm 2). An study
of the influence of the γ is out of the scope of this work.

Finally, the c.o.v. of ϑ̂, δϑ̂, is expressed as shown bellow:

δϑ̂ =

√
(1− ϑ)

ϑNT2
[1 + γ] (31)
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ABSTRACT

With the paradigm shift towards prognostic and health man-
agement (PHM) of machinery, there is need for reliable PHM
methodologies with narrow error bounds to allow mainte-
nance engineers take decisive maintenance actions based on
the prognostic results. Prognostics is mainly concerned with
the estimation of the remaining useful life (RUL) or time to
failure (TTF). The accuracy of PHM methods is usually a
function of the features extracted from the raw data obtained
from sensors. In cases where the extracted features do not
display clear degradation trends, for instance highly loaded
bearings, the accuracy of the state of the art PHM methods
is significantly affected. The data which lacks clear degra-
dation trend is referred to as non-trending data. This study
presents a method for extracting degradation trends from non-
trending condition monitoring data for RUL estimation. The
raw signals are first filtered using a discrete wavelet trans-
form (DWT) denoising filter to remove noise from the ac-
quired signals. Time domain, frequency domain and time-
frequency domain features are then extracted from the fil-
tered signals. An autoregressive (AR) model is then applied
to the extracted features to identify the degradation trends.
Features representing the maximum health information are
then selected based on a performance evaluation criteria us-
ing extreme learning machine (ELM) algorithm. The selected
features can then be used as inputs in a prognostic algorithm.
The feasibility of the method is demonstrated using experi-
mental bearing vibration data. The performance of the method
is evaluated on the accuracy of RUL estimation and the results
show that the method can be used to accurately estimate RUL
with a maximum error of 10%.

1. INTRODUCTION

The last one decade has seen focus shifting towards predic-
tive maintenance strategies where maintenance action is taken
based on future health state prediction of a component or sys-

James Kuria Kimotho et. al. This is an open-access article distributed un-
der the terms of the Creative Commons Attribution 3.0 United States Li-
cense, which permits unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are credited.

tem. Accurate prediction of the future health or damage prop-
agation of a component provides the maintenance engineers
with time to appropriately schedule maintenance without af-
fecting operations. Autonomous systems can also use the pre-
dictions to adapt to the prevailing conditions, such that their
missions are accomplished. Unlike diagnosis which deals
with events that have already occurred, prognosis is much
more difficult since it deals with stochastic events that are
yet to occur (Kim, Tan, Mathew, & Choi, 2012). Although
numerous prognostic methods have been proposed, they are
still at the experimental stage (Dragomir, Gouriveau, Minca,
& Zerhouni, 2009). This could be attributed to the wide er-
ror bounds associated with most algorithms such that mainte-
nance engineers would not have confidence to allow a system
to operate once a fault has been identified. Another challenge
is the long computational time for both training and predic-
tion, displayed by most methods, rendering them unsuitable
for real time prognosis.

Prognosis is a function of the features extracted from the raw
data and therefore it is important that the features extracted
contain maximum information regarding degradation trend
for the predictions to be accurate. Depending on the type
of component or system, the observed features may show
an increasing or decreasing trend. However, there are sit-
uations where the data does not show any observable trend
(non-trending data), making long-term prognosis very diffi-
cult. Figure 1 (a) shows data with observable degradation
trend while (b) shows data with no observable trend until fail-
ure.

Various attempts to extract features that represent degradation
trends in machinery components have been made. Amongst
these attempts is the use of time-frequency methods and au-
toregressive models. Gu et al., (Gu, Zhao, & Zhang, 2013)
introduced a hybrid approach based on autoregressive filter to
remove discrete frequencies from a bearing signal and empir-
ical mode decomposition to extract the residual signal which
contains the degradation trend. However, the performance
of this approach on the ability to provide accurate RUL es-
timation was not evaluated. Junsheng et al., (Junsheng, De-
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Figure 1. Extracted features from (a) trending data and (b) non-trending data.

jie, & Yu, 2006) presented a fault diagnosis approach based
on empirical mode decomposition (EMD) and autoregressive
(AR) model which was verified with experimental data on
the ability to accurately diagnose bearing faults. Zhang et al.,
(Y. Zhang, Zuo, & Bai, 2013) proposed a fault diagnosis and
performance degradation method based on multiple features,
where singular values and autoregressive model parameters
are extracted from the results of empirical mode decomposi-
tion of the raw signals. Kernel principal component analysis
(KPCA) was then employed for feature transformation and
reduction. However, the capability of the method to iden-
tify performance degradation was not verified. In addition,
although PCA has been successfully applied in feature reduc-
tion for diagnosis purposes, it may not suitable for prognosis
since it orthogonally transforms features which makes them
loose important degradation information. Recently, EMD has
received a lot of attention as a feature extraction technique
for non-stationary signals (Georgoulas, Loutas, Stylios, &
Kostopoulos, 2013; Wang, Lu, Wang, Liu, & Fan, 2013; Yu,
Dejie, & Junsheng, 2006; Xiong & Yang, 2012). This method
is able to enhance impulses in signals, associated with faults
and is therefore more suited for fault diagnosis rather than
prognosis, where the ability to identify continued degradation
is important. Since not all of the extracted features contain
important information on degradation trend, it is important to
select the features that accurately represent the degradation
process.

There has been considerable effort to develop algorithms for
automatic feature selection. However, most of these algo-
rithms are focused on feature selection for fault diagnosis or
health state based prognosis. In this case, features are se-
lected based on their capability to discriminate between dif-
ferent classes (fault categories or health states). Linear dis-
criminant analysis (LDA) which is based on the assumption
that different classes generate data based on Gaussian dis-
tributions has been employed in feature selection for fault
classification (Bator, Dirks, Monks, & Lohweg, 2012). Dis-

tance evaluation technique which computes the largest dis-
tance separating data between classes is another feature se-
lection technique that has been employed to select the opti-
mal features that represent the different health states of a de-
grading component (Kim et al., 2012). Camci et al., (Camci,
Medjaher, Zerhouni, & Nectoux, 2012) proposed a feature
evaluation method for effective bearing prognostics based on
separability value. The features were divided into time seg-
ments and the separability of the segments based on 25th and
75th percentile distributions computed. The overall separa-
bility value of each feature was then computed as a feature
evaluation value. However, the performance of this method
for accurate prognosis was not evaluated. The use of separa-
bility of features as a method of feature selection can also be
found in (Medjaher, Camci, & Zerhouni, 2012). Benkedjouh
et al., (Benkedjouh, Medjaher, Zerhouni, & Rechak, 2013)
employed isometric feature mapping reduction technique to
find a small number of features that represent a large number
of observations. The accuracy of the method on ability to im-
prove prognosis was not evaluated. Other methods of feature
selection or selection can be found in (Li et al., 2011; Sug-
umaran, Muralidharan, & Ramachandran, 2007; K. Zhang,
Li, Scarf, & Ball, 2011). Saxena and Vachtsevanos, (Saxena
& Vachtsevanos, 2007) explored the capabilities of multi-
core cell processing environment for feature extraction and
selection for on-board diagnosis and prognosis. Their effort
was concentrated on developing parallel algorithms for Fast
Fourier Transforms (FFTs) that could speed up their imple-
mentation. Tran and Yang, (Tran & Yang, 2010) presented
a method for feature selection based on classification and re-
gression trees. The feature selection was however conducted
for classification of faults only and not for prognosis. Ra-
masso and Gouriveau, (Ramasso & Gouriveau, 2010) pro-
posed a prognostics method involving three modules, obser-
vation selection, prediction and classification. A method for
feature selection was also presented but found to have high
computational requirements. From the literature surveyed,
it is evident that there is a need to develop an effective fea-
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ture selection approach for prognosis based on regression ap-
proach.

This paper presents a feature extraction method based on com-
bination of a wavelet denoising filter and autoregressive model
with automatic model order selection for feature extraction
and the use of kernel based ELM for feature selection based
on performance evaluation criteria of the extracted features.
This feature extraction approach has the capability of extract-
ing degradation trends from non-trending data. The perfor-
mance of the method based on ability to provide accurate
RUL estimations using ELM is also demonstrated.

2. PROPOSED METHOD

The proposed method involves denoising the raw signals us-
ing discrete wavelet transform (DWT) denoising then extract-
ing time, frequency and time-frequency domain features. An
AR model is then established for each of the extracted fea-
tures. The optimum features are then selected using kernel
based ELM algorithm. Finally the performance of the method
is evaluated using the same kernel based ELM algorithm. Fig-
ure 2 shows the workflow of the proposed method.

2.1. Feature Extraction

Feature extraction involves deriving time, frequency and time-
frequency domain features from the raw signals which are
sampled at suitable frequencies. Signals acquired from some
machinery components such as faulty bearing are normally
considered non-stationary, that is, frequency varies with time,

and hence the extraction of time-frequency features. In this
work, wavelet packet decomposition (WPD) is employed for
the extraction of the time-frequency features. The denoised
signal is decomposed up to 3 levels using bior3.7 wavelet.
The detail coefficients from level 1 to 3 and the approximate
coefficient for level 3 are then obtained. The wavelet energy
is then computed from the wavelet coefficients. Fast Fourier
Transform (FFT) is employed to extract the frequency domain
features. A total of 19 features, 12 time domain, 3 frequency
domain and 4 time-frequency domain from each signal may
be extracted from the denoised signals. A summary of these
features is presented in Table 1 (Galar, Kumar, & Zhao, 2012;
Maio et al., 2012).

2.2. Autoregressive (AR) Model

AR model represents a time series in which the next value in
the sequence is predicted based on a certain number of pre-
vious values. The AR model parameters may contain im-
portant information regarding the condition of a component
(Y. Zhang et al., 2013). The following model is established to
each of the extracted features f to obtain degradation trend:

fn =

p∑

k=1

akfn−k + en, n = 1, 2...N (1)

where ak are the model parameters, p is the model order, en is
the residual of the model and N is the number of data points
in f . In this work, the model parameters were determined
using the Yule-Walker method (Stoica, Friedlander, & Son-

Raw Training
Data

DWT-
Denoising

Feature
Extraction AR Model

ELM
Feature 
selection

ELM Method
Training and 
Validation

Degradation
Model

RUL
Estimation

AR Model
Extraction of
Selected
Features

DWT-
Denoising

Raw Testing
Data

TRAINING STAGE

TESTING/ ONLINE PROGNOSIS
STAGE

Good?

Parameter
Tuning

Yes

No

Target 
Vector

Figure 2. Workflow of the proposed method.
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Table 1. Features extracted from denoised signals

2.2. Feature Extraction 

Feature extraction involves deriving time-, frequency- and time-frequency- domain features from the raw signals. 
Signals acquired from some machinery components such as faulty bearing are normally considered non-
stationary, that is, frequency varies with time, and hence the extraction of time-frequency features. In this work, 
wavelet packet decomposition (WPD) is employed for the extraction of the time-frequency features. The denoised 
signal is decomposed up to 3 levels. The detail coefficients from level 1 to 3 and the approximate coefficient for 
level 3 are then obtained. The wavelet energy is then computed from the wavelet coefficients. Fast Fourier 
Transform (FFT) is employed to extract the frequency domain features. Table 1 shows the features extracted from 
the denoised signals. 

Table 1 
Features extracted from the denoised signals. 
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2.3. Autoregressive Model 

AR model represents a time series in which the next value in the sequence is predicted based on a certain 
number of previous values. The AR model parameters may contain important information regarding the condition 
of a component [5]. The following model is established to each of the extracted features to obtain degradation 
trend: 

݂ሺ݊ሻ ൌ െ∑ ܽሺ݇ሻ݂ሺ݊ െ ݇ሻ  ݁ሺ݊ሻ
ୀଵ ,        (3) 

where	ܽሺ݇ሻ are the model parameters,  is the model order and ݁ሺ݊ሻ is the residual of the model. In this work, 
the model parameters were determined using the Yule-Walker method [20]. The performance of the AR model 
depends on the choice of the model order. In this study, the Akaike information criteria (AIC) introduced by Akaike 
was employed [21]: 

ሻሺܥܫܣ ൌ log൫ߪො൯ 
ଶ

ே
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ොߪ ൌ
ଵ

ேି
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ଶே

ୀାଵ ,       (5) 

derstrom, 1988). The performance of the AR model depends
on the choice of the model order. In this study, the Akaike in-
formation criteria, AIC introduced by Akaike was employed
(Ayalew, Babu, & Rao, 2012):

AIC(p) = log(σ̂p) +
2p

N
, (2)

where,

σ̂p =
1

(N − p)
N∑

n=p+1

(fn −
p∑

k=1

akfn−k)
2, (3)

The model order is varied from 1 to 100 and the model order
yielding the minimum AIC is selected. The feasibility of
this approach is demonstrated using the impulse factor IF ,
extracted from the filtered signal. For each sampled signal
with M data points, IF is obtained as follows:

IF =
max(xK)

1
M

∑M
K=1 |xK |

, K = 1, 2, ..M (4)

Figure 3(a) shows the impulse factor of a bearing vibration
signal before application of AR model, in which the degrada-
tion trend is not clearly identifiable. Figure 3(b) shows the AR
model (fIF ) of the feature, which presents a clearer degrada-

tion trend or fault evolution trend. The AR model also acts
as a filtering method, thus eliminating the noise within the
extracted feature.

2.3. Extreme Learning Machine (ELM)

Extreme learning machine is a relatively new simple learning
algorithm for single-hidden layer feedforward neural network
(SLFN) which was first proposed by Huang in 2005 (Huang,
Zhu, & Siew, 2006). Figure 4 shows the structure of a SLFN
with radial basis function (RBF) hidden neurons. xj is the
input vector at the input neuron j, ai is the input weight con-
necting the hidden neuron i and the input neurons, bi is the
bias of the hidden neuron βi is the output weight of the hidden
neuron i and y is the output (Huang et al., 2006).

In ELM, the input weights and hidden layer biases of SLFN
are randomly generated, while the output weights linking the
hidden layer to the output layer are determined through sim-
ple generalized inverse operation of the hidden layer output
matrices (Huang et al., 2006). The ELM learning process
is extremely fast compared to other machine learning algo-
rithms such as support vector machines and artificial neural
networks with back propagation (Huang et al., 2006). The
kernel based ELM has two parameters (regularization param-
eter C and kernel parameter γ) that tuning. In this work,
C = 7000 and γ = 2.9 were employed.
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2.3.1. ELM Based Feature Selection

Feature selection is important for machinery prognosis in or-
der to reduce computational time and effort, and also to avoid
over-fitting of data which results to large prediction errors.
In this work, kernel based extreme learning machines was
employed for feature selection due to its robust predictions
and fast training and prediction times. The AR features are
first evaluated individually on their ability to provide accurate
prognosis. The input to the ELM method is the AR features
while the target vector is the fraction of the remaining useful
life. The mean square error computed from the target frac-
tional RUL and estimated fractional RUL of the training data
for each individual input feature is obtained and values for all
the inputs are normalized between 0 and 1. A performance
evaluation criterion, PEC is then defined by:

PEC = 1− mse

max(mse)
(5)

where µ is the normalized training mean square error, mse.

Figure 5 shows the workflow of the feature selection algo-
rithm.

AR model
of feature i

Target vector

ELM training

ELM degradation
model

ELM Test

Compute PECi<N

No

Yes

select i if
PEC i PEC( ) ≥

sc

i i 1= +

Figure 5. Workflow of the ELM-based feature selection al-
gorithm. i is the feature index and N is the total number of
features.

To obtain the selection criteria PECsc, the PEC is varied
from 0 to 1 and the mse of the training data set is obtained.
The PEC value that yields the minimum mse is taken as the
feature selection criteria.

2.3.2. ELM Based RUL Estimation

During the training stage of the method, the selected features
are used as inputs to the PHM algorithm while the fractional
remaining useful life is used as the target vector. The frac-
tional RUL is used to take care of the varying lifetimes of ma-
chinery components. A degradation model is obtained after
training, which is used together with the testing input features
to predict the fractional RUL of the test data.

Given the current time, tc, and the fractional RUL, Fc, the es-
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timated remaining useful lifeRUL can be obtained by similar
triangles as follows:

RUL = tEOL − tc =
tc

1− Fc
Fc (6)

where tEOL is the time to end of life of the component.

3. APPLICATION EXAMPLE

To demonstrate the applicability of the method, a case study
was conducted. Run to failure rolling element bearing data
provided for the 2012 PHM data challenge was employed
(Nectoux et al., 2012). The data consists of run to failure
vibration data recorded by two accelerometers, along the ver-
tical direction and along the horizontal direction, sampled at
a frequency of 25.6 kHz with 2560 samples recorded at inter-
vals of 10 seconds. Two complete run to failure data sets are
provided for algorithm training and five truncated run to fail-
ure data are provided for testing. The challenge is to provide
an estimation of the remaining useful life of the test bearings
(Nectoux et al., 2012).

The features detailed in section 2.1 were extracted and an AR
model applied. The proposed feature selection method de-
scribed in section 2.3.1 was then applied. Figure 7 shows the
mse as a function of PEC.
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Figure 7. Mean square error, mse as a function of perfor-
mance evaluation criteria, PEC for the training data set.

From Figure 7, it is evident that features with a performance
evaluation criteria value of 0.65 yield the lowest mse. There-
fore a selection criterion of PECsc = 0.65 was employed
in this study. Based on this selection criterion, 11 out of
38 features were selected. Figure 8 shows the PEC value
of each feature. It can be observed that not many features
from the vertical acceleration were selected. The vibration
signal from the vertical accelerometer was highly impulsive
which led to high mean square errors. Although the features
extracted from the vertical accelerometer may not be suitable
for prognosis, they may provide valuable information about
the nature and location of faults within the bearings.
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Figure 8. Performance evaluation criteria of the extracted fea-
tures described in section 2.1, (a) horizontal vibration and (b)
vertical vibration.

The selected features were then extracted from the denoised
signals of the training and test data. An AR model was ap-
plied to the resulting features in order to obtain inputs to the
ELM algorithm. The ELM method was then trained with the
AR features as the input and fractional lifetime as the target
vector. A degradation model consisting of the number of neu-
rons, the input and output weights of the hidden layer was ob-
tained. The AR features from the test data were then used as
inputs to the degradation model and the estimated fractional
lifetime obtained as the output.

Using Eq. 6, the RUL of the five test bearings were computed
from the fractional lifetime obtained as the output from the
ELM algorithm. Figure 9 shows curves of the estimated RUL,
the actual RUL and predicted RUL of bearing 1 3. RULc is
the RUL at the current time. The predicted RUL is obtained
by fitting a linear curve from the current time to the point
where the RUL is zero

Figure 9 shows that the accuracy of the method increases to-
wards the end of life of the component. This is the most crit-
ical stage of the prognosis since it signifies that the mainte-
nance engineers should start planning for maintenance.
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The performance of the method was evaluated based on per-
formance metrics such as percentage RUL error and percent-
age accuracy as shown below:

%Error =
ActRUL− estRUL

ActRUL
× 100, (7)

whereActRUL is the actual RUL of the test data provided for
validation of the prognostic methods and estRUL is the esti-
mated RUL. Table 2 shows the performance of the proposed
method based on percentage error and percentage accuracy.
The estimated RUL is based on the current time.

Table 2. Performance of the proposed method based on prog-
nostic performance metrics.

Test % Error
Bearing 1 3 0.44
Bearing 1 4 5.31
Bearing 1 5 -4.94
Bearing 1 6 -8.41
Bearing 1 7 3.71

The negative percentage error signifies late prediction or over-
estimation of RUL, which is usually not desirable in machin-
ery prognosis since the machine may breakdown before the
scheduled maintenance, depending on the margin of error of
the estimation. Table 1 shows the proposed method yields
accuracies within 10% error bounds. This would be a good
reference for maintenance.

4. CONCLUSION

The accuracy of any prognostic algorithm is a function of
the information contained in the input features which are ex-
tracted from the raw condition monitoring data. A method
for feature extraction and selection for machinery prognosis
based on autoregressive modeling and extreme learning ma-
chine is presented. The proposed feature extraction method
is able to identify degradation trends in condition monitoring
data for effective prognosis. The feasibility of the method is
demonstrated using bearing run-to-failure experimental data.
The results show that the proposed method is effective in es-

timating the remaining useful life of machinery components,
with error bounds within a 10% bandwidth. The results also
show that feature selection improves the accuracy of RUL es-
timation significantly. Therefore, we conclude that the pro-
posed method of feature extraction and selection can be used
as an effective tool for estimating the remaining useful life of
machinery components.
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ABSTRACT

Prognostics and Health Management (PHM) is a multidisci-
plinary field aiming at maintaining physical systems in their
optimal functioning conditions. The system under study is
assumed to be monitored by sensors from which are obtained
measurements reflecting the system’s health state. A health
index (HI) is estimated to feed a data-driven PHM solution
developed to predict the remaining useful life (RUL). In this
paper, the values taken by an HI are assumed imprecise (IHI).
An IHI is interpreted as a planar figure called polygon and a
case-based reasoning (CBR) approach is adapted to estimate
the RUL. This adaptation makes use of computational geom-
etry tools in order to estimate the nearest cases to a given
testing instance. The proposed algorithm called RULCLIP-
PER is assessed and compared on datasets generated by the
NASA’s turbofan simulator (C-MAPSS) including the four
turbofan testing datasets and the two testing datasets of the
PHM’08 data challenge. These datasets represent 1360 test-
ing instances and cover different realistic and difficult cases
considering operating conditions and fault modes with un-
known characteristics. The problem of feature selection, health
index estimation, RUL fusion and ensembles are also tackled.
The proposed algorithm is shown to be efficient with few pa-
rameter tuning on all datasets.

1. INTRODUCTION

Knowledge-based systems and Case-Based Reasoning approa-
ches (CBR) have appeared as suitable tools for data-driven
Prognostics and Health Management (PHM) (Saxena, Wu,
& Vachtsevanos, 2005; T. Wang, Yu, Siegel, & Lee, 2008;
T. Wang, 2010; Ramasso, Rombaut, & Zerhouni, 2013). In

Emmanuel Ramasso et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

CBR, historical instances of the system - with condition data
and known failure time - are used to create a library of degra-
dation models or health indices. Then, for a test instance, the
similarity with the degradation models is evaluated generat-
ing a set of Remaining Useful Life (RUL) estimates which are
finally aggregated.

The required assumptions for CBR implementation are lim-
ited, the main issues consisting in, on the one hand, the choice
of an appropriate similarity measure and, on the other hand,
the selection of the relevant training instances. CBR approa-
ches are also flexible since it is simple to incorporate quanti-
tative and qualitative pieces of knowledge such as measure-
ments and expertise.

We consider applications for which the noise due to various
sources, such as operational conditions or fault modes, can
not be well characterised and where filtering may change the
meaning of the health index. We assume that the health index
can not be well defined by a single real value but only by Im-
precise Health Index (IHI). To fix ideas, an illustration taken
from the turbofan engine dataset (Saxena, Goebel, Simon, &
Eklund, 2008) (used and detailed in experiments) is given in
Figure 1. The figure pictorially represents the IHI taken from
the fourth dataset (made of two fault modes and six operating
conditions) for the 8th training data (P1), the 100th training
data (P2) and the 1st testing data (P3) of this dataset. As de-
picted, fault modes may generate

• sudden changes in wear (e.g in P1, t ∈ [225, 275]) that
may increase the lifetime of the unit. It may be due to
both fault modes and operating conditions, for example
a drastic decrease of speed to cope with mechanical inci-
dents or meteorological phenomenons.

• Unexpected changes in the trend, such as increasing in-
stead of decreasing (e.g. P2, t > 125) that may disturb
the algorithm. It may be due to component failures such

1
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as sensors or electronics.
• Sudden bursts characterised by low signal-to-noise ratio

(SNR) on a possibly short duration which deeply affect
the HI (e.g. on P3 with t ∈ [10, 75]) that may affect the
lifetime accordingly to the fault type which is generally
unknown.
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Figure 1. Effect of fault modes and operating conditions on
health indices estimation. HIs (here obtained from training
instances) are described with planar figures called polygons.

The representation and the propagation of imprecision (or un-
certainty) is of paramount importance in engineering analyses
(Vachtsevanos, 2006; Orchard, Kacprzynski, Goebel, Saha,
& Vachtsevanos, 2008; Beer, Ferson, & Kreinovich, 2013).
Several mathematical theories (Klir & Wierman, 1999) have
been used in prognostics such as probability theory (including
Bayesian approaches) (Peng et al., 2012), set-membership ap-
proaches (including fuzzy-sets) (Chen, Zhang, Vachtsevanos,
& Orchard, 2011; El-Koujok, Gouriveau, & Zerhouni, 2011)
and Dempster-Shafer’s theory of belief functions (Serir, Ra-
masso, & Zerhouni, 2012; Ramasso et al., 2013). Facing im-
precision in HIs for prognostics is thus not new but the way
to handle it can be considered differently.

We assume 1-D health index to be available but obtained from
noisy measurements. The data points are supposed to repre-
sent vertices of a simple planar polygon. The IHI is thus a
polygon-shaped health index represented by a planar figure.
Three polygons are depicted in Figure 1. Using computa-
tional geometry tools, a prognostics method is proposed that
handles IHI without knowing nor estimating the noise prop-
erties. The method is based on CBR for which a similarity
measure adapted to IHI and polygon is developed. The set
of cases is made of training instances represented by poly-
gons and the similarity with a testing instance recorded on the
in-service system is made dependent on the degree of inter-
section between both training and testing polygon instances.
The prognostics algorithm introduced is called “RULCLIP-
PER” (Remaining Useful Life estimation based on impreCise
heaLth Index modeled by Planar Polygons and similarity-
basEd Reasoning”).

The next Section is dedicated to the presentation of a method-
ology to build imprecise health index and perform prognos-
tics. The methodology is then applied on C-MAPSS datasets.

2. PROGNOSTICS BASED ON IMPRECISE HEALTH INDEX:
A CBR APPROACH

A health index (HI) takes the form of a 1-dimensional real-
valued signal H = [x1 x2 . . . xj . . . xT ]T, xj ∈ R obtained
at some instants t1, t2 . . . tT .

2.1. Polygon-shaped representation of IHI

An IHI is defined as a polygon where each vertex is repre-
sented by a data point estimated from the original HI. The set
of vertices is obtained by first rearranging the data points to
define an ordered sequence that is made possible by extract-
ing the upper and lower envelopes of the noisy HI. For that,
let’s define H̃ = [x̃1 x̃2 . . . x̃j . . . x̃T ]T a smooth HI ob-
tained by applying a filter over H such that the extraction of
both envelopes of H is made easier. The filter used in this
paper was a 15-point moving average.

A polygon (representing an IHI) is thus defined as a set of
pairs (xj , tj) made of HI values xj at time index tj .

The upper envelope of H denoted S is defined by

S = {(xj , tj)|xj ≥ x̃j} ∪ {(xj−1, tj)|xj < x̃j} , (1)

meaning that, for a given data point j, if the HI value xj at
time tj is greater than the filtered value x̃j then the upper en-
velope is equal to the HI value, otherwise it takes its previous
value. The lower envelope I is defined similarly by

I = {(xj , tj)|xj < x̃j} ∪ {(xj−1, tj)|xj ≥ x̃j} . (2)

The ordered pairs of vertices listed counterclockwise repre-
sents a bounding closed polygonal chain that separates the
plane into two regions. The word “polygon” refers to a plane
figure bounded by the closed path defined as:

P =
{

(x1, t1)S , (x2, t2)S . . . (xj , tj)
S . . . (xT , tT )S ,

(xT , tT )I , (xT−1, tT−1)I . . . (x1, t1)I , (x1, t1)S
}

(3)
with (xj , tj)

S ∈ S and (xj , tj)
I ∈ I. To close the polygon,

the first and last vertices are the same. The pairs of vertices
define a finite sequence of straight line segments representing
the polygon.

More specifically, a polygon is a region of the plane enclosed
by a simple cycle of straight line segments where nonadjacent
segments do not intersect and two adjacent segments intersect
only at their common endpoint (Rosen, 2004). However, the
second part of the definition of the bounds may generate some
segment intersections. These inconsistencies can be corrected
easily by exchanging the corresponding values of the lower
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and upper bounds when an intersection is detected. When
consistent bounds are obtained, the polygon is made of non-
intersecting line segments which characterise a Jordan’s sim-
ple closed curve also called simple polygon (Filippov, 1950).
This category of polygon enables one to apply some standard
algorithms from Computational Geometry (Rigaux, Scholl,
& Voisard, 2002; Rosen, 2004; Longley, de Smith, & Good-
child, 2007). Note that some of the most efficient algorithms
for operations on polygons can manage self-intersections (Vatti,
1992; Greiner & Hormann, 1998) but these inconsistencies
generally increase time-consumption.

2.2. CBR approach for prognostics based on IHI

2.2.1. Training dataset

We assume the training dataset to be composed of N training
instances:

L = {Pi,Ki}Ni=1 (4)

where Pi is the ith polygon attached to the ith imprecise
health index Hi and Ki = [y1 y2 . . . yj . . . yT ]T, yj ∈
N represents a discrete-valued signal reflecting a system’s
state. The component Ki may be useful in some applications
where the system can be described by means of latent vari-
ables (Ramasso & Denoeux, 2013; Javed, Gouriveau, & Zer-
houni, 2013). In that case, Ki may represent a partial knowl-
edge about the state. For example, in (Ramasso et al., 2013),
partial knowledge was encoded by belief functions to express
imprecision and uncertainty about the states.

2.2.2. Determining the nearest case

A testing instance takes the form of a health index H∗ from
which the envelopes can be estimated as explained in the pre-
vious paragraph, leading to the polygon representation P∗.
As in usual CBR approaches for prognostics (T. Wang, 2010;
Ramasso et al., 2013), the goal is to sort the training instances
with respect to their similarity to the testing instance. How-
ever, since the training instances are made of polygons, the
usual Euclidean distance is not adapted. We propose the fol-
lowing similarity measure.

Getting inspired from the Computer Vision community (Powers,
2011), recall, precision and Fβ indices are used to quantify
the relevance of a training instance compared to the testing
one. Precision represents the fraction of the retrieved instance
that is relevant, while recall is the fraction of the relevant in-
stance that is retrieved. The Fβ is an harmonic mean which
gives equal weight to recall and precision when β = 1. Note
that the three indices are normalised into [0, 1].

More precisely, for the ith training instance:

1. Estimate the area of the intersection between the polygon
Pi and P∗:

A∩ = Area (Pi ∩ P∗) (5)

2. Compute the “recall”:

Rec =
A∩
Ai

(6)

3. Compute the “precision”:

Prec =
A∩
A∗

(7)

4. Compute the “Fβ,i”, in particular for β = 1, characteriz-
ing the similarity with the ith training instance:

F1,i = 2
Rec · Prec

Rec + Prec
(8)

where Ai,A∗,A∩ represent the area of polygons Pi, P∗ and
of their intersection respectively.

Example 1 An illustration of intersection is given in Fig-
ure 2 where the darkest polygon represents a training in-
stance and the two other polygons are testing ones. The whitest
polygon is within the testing instance meaning that the preci-
sion is high, but the recall is pretty low since it covers only a
small part of the testing instance. On the opposite, the third
polygon covers entirely the testing instance leading to a high
recall but its spread decreases the precision.
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Figure 2. Illustration of recall and precision.

Practically, intersection construction is the main difficulty and
was tackled quite recently in computational geometry for ar-
bitrary planar polygons. It consists in determining the region
of geometric intersection which can be performed in three
phases (Rosen, 2004) (Chap. 38):

1. Compute the intersection between the boundaries of the
objects using the linearithmic plane sweep algorithm (Bentley
& Ottmann, 1979);

2. If the boundaries do not intersect then determine whether
one object is nested within the other;

3. If the boundaries do intersect then classify the resulting
boundary fragments gathered to create the final intersec-
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tion region (Margalit & Knott, 1989; Chazelle & Edels-
brunner, 1992), which can be performed in linearithmic
time. Regularized Boolean operations ensure the closure
of the interior of the set-theoretic intersection.

In this paper, the Vatti’s algorithm (Vatti, 1992) has been
used because it is generic and can manage most of pratical
cases. Several implementations of this algorithm have been
proposed, especially in (Greiner & Hormann, 1998) which
was shown to be particularly efficient.

2.2.3. Estimating the Remaining Useful Life (RUL)

The F1 measure is used to sort the N training polygon in-
stances in descending order: P(1) > P(2) · · · > P(j) · · · >
P(N) so that P(1) is the closest instance to the testing one and
P(N) the farthest one. The index (i) in P(i) represents a re-
ordering and the symbol > in P(i) > P(j) means that the ith
polygon is more similar to the testing instance that the jth.

CBR assumes that a limited number of instances, say K, are
enough to approximate the testing instance. The K closest
training instances can then be combined to estimate the RUL.
The length of a training instance minus the length of a test-
ing instance provides an estimation of the RUL (Figure 3).
Given the definition of a polygon (Section 2.1) and of the
training dataset (Eq. 4), the length of both the training and
testing polygon instances is given by Ti and T∗ respectively.
Therefore, the estimated RUL is given by

ˆRUL = Ti − T∗ . (9)

Example 2 Two polygons are illustrated in Figure 3, one
coming from the training dataset #1 (the tenth instance) and
one from the testing dataset #1 (the first instance). Since
T1 = 222 and T∗ = 31, the estimated RUL is 191 time-units.
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Figure 3. Polygon instances: training (P1) and testing (P∗).

Each closest training instance P(i) can be accompanied by a
state sequence K(i) so that K estimations of the RUL, de-
noted ˆRULK, can be obtained from the state sequences in
addition to the ones obtained with P(i) and denoted ˆRULP .

Using K(i), the last transition in the sequence is supposed to
represent a jump of the system to a faulty state. This assump-
tion relies on the fact that the last part of a training instance
represents the system’s end-of-life (Ramasso et al., 2013; Ra-
masso & Gouriveau, 2013; Javed et al., 2013).

The 2K estimations of the RUL can then be pooled in one
set: ˆRULPK = { ˆRULP , ˆRULK} and an information fusion
process can then be performed to combine these partial RUL
estimates. According to the application, the fusion rule can
be adapted (Kuncheva, 2004).

A plot chart of RULCLIPPER algorithm is depicted in Fig-
ure 4. Some of the elements will be illustrated in the next
section dedicated to experiments.

3. EXPERIMENTS: METHOD

RULCLIPPER is tested on the datasets obtained from the tur-
bofan engine degradation simulator (Saxena, Goebel, et al.,
2008). Before presenting results, several details about the
datasets have to be presented, in particular how to select the
features and how to compute the health index.

3.1. Turbofan engine degradation simulator

The simulation model (Saxena, Goebel, et al., 2008) was built
on the Commercial Modular Aero-Propulsion System Simu-
lation (C-MAPSS) developed at NASA Army Research Lab.,
able to simulate the operation of an engine model of the 90.000
lb thrust class. A total of 21 output variables were recorded
to simulate sensor measurements to the system. Another 3
variables representing the engine operating conditions were
recorded, namely altitude (kilo feet), Mach number (speed)
and Throttle Resolver Angle (TRA) value which is the angu-
lar deflection of the pilot’s power lever having a range from
20% to 100%. In the sequel, references to variables are made
by using their column position in the data files as provided on
the data repository of the Prognostics Center of Excellence
website: it begins by number 6 and finishes to 26 (see (Saxena,
Goebel, et al., 2008) for details).

3.2. Datasets

Six datasets generated from independent simulation experi-
ments were provided, each with some specificities (Saxena,
Goebel, et al., 2008).

Datasets #1 and #2 include only one fault modes (HPC degra-
dation) while datasets #3 and #4 include two (HPC degrada-
tion and fan degradation). Datasets #1 and #3 include a sin-
gle operational condition against six for datasets #2 and #4.
Dataset #4 represents the most complex case study. Datasets
#5T (semi-final testing dataset) and #5V (final validation
dataset) were generated for the 2008’s PHM data challenge
with one fault mode and six operating conditions. The two
last datasets have common training instances. A summary of
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Figure 4. The sequence of operations involved in the proposed approach.

the six datasets are shown in Table 1 according to information
taken from (Saxena, Goebel, et al., 2008).

Each dataset is divided into training and testing subsets. The
training set includes instances with complete run-to-failure
data (to develop life prediction models), and the actual fail-
ure mode for training instances in #3 and #4 is not labeled.
The testing datasets include instances with data up to a certain
cycle and are used for RUL estimation and algorithm perfor-
mance evaluation.

The testing instances are also simulated run-to-failure and
only an earlier portion of the history is provided. The ac-
tual life (RUL) of the testing instances are known only for
datasets #1, #2, #3 and #4 and can only be used for test-
ing algorithm. For datasets #5T and #5V , results have to
be uploaded to the data repository: uploading is allowed only
once a day for #5T whereas only a single try is possible for
dataset #5V .

The validation can be performed by many performance mea-
sures (Saxena, Celaya, et al., 2008) among which accuracy-
based measures such as the timeliness, also called scoring
function in the sequel since it has been used in the data chal-
lenge to sort participants algorithm. The review of papers us-
ing the C-MAPSS datasets show that the timeliness was the
most used performance measure (about 30% of papers). Note
that, for datasets #5T and #5V , this performance measure is
returned for each submission by the data challenge chairs.

For comparison purpose, the scoring function is also used in

this paper with the same parameters as in the challenge:

S =

N∑

n=1

Sn (10a)

Sn =

{
e−dn/13 − 1, dn ≤ 0

edn/10 − 1, dn > 0
, n = 1 . . . N (10b)

dn = estimated RUL− true RUL (10c)

This function, that assigns higher penalty to late predictions,
has to be minimised. In addition to the scoring function (com-
puted for all datasets), a second performance measure was
used (on datasets #1 to #4 for which we know the RUL)
called accuracy measure A that evaluates the percentage of
testing instances for which the RUL estimate is within the in-
terval [−13,+10] around the true RUL (Saxena, Celaya, et
al., 2008). These values are the same as the scoring function
and was used in several papers such as (Ramasso et al., 2013)
for dataset #1.

3.3. Related results on C-MAPSS

For comparison purpose, results of predictions from other
researchers (as exhaustive as possible) on these datasets are
summarised below for each dataset. Note that some authors
also used the simulator to create their own datasets (Sarkar,
Jin, & Ray, 2011; Zein-Sabatto, Bodruzzaman, & Mikhail,
2013; Al-Salah, Zein-Sabatto, & Bodruzzaman, 2012). Ref-
erences have been put on the NASA PCOE website.

To our knowledge, the full testing dataset of #1 was only
used in two papers: In (Liu, Gebraeel, & Shi, 2013) where
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Datasets
C-MAPSS DATASETS

TURBFOFAN CHALLENGE
#1 #2 #3 #4 #5T #5V

Nb. of faults 1 1 2 2 1 1
Nb. of operating conditions 1 6 1 6 6 6
Nb. training instances 100 260 100 249 218
Nb. testing instances 100 259 100 248 218 435
Minimum RUL 7 6 6 6 10 6
Maximum RUL 145 194 145 195 150 190

Table 1. Datasets characteristics according to the organisers. In this paper, results for all datasets are provided in the exper-
iments, but more details are given specifically for datasets #1 and #3. Note that the datasets called “data challenge” have
a common training datasets made of 218 instances. The “semi-final” testing dataset (#5T ) is made of 218 instances and the
“final” validation dataset (#5V ) is made of 435 instances.

the authors reported results by using an average error between
true RUL and prediction; and to evaluate the EVIPRO algo-
rithm in (Ramasso et al., 2013) where the performance was
assessed by using the accuracy measure which was equal to
53% on the testing dataset #1. The full testing datasets of
#2, #3, #4 were not used in the past (only a few instances
were considered in a few papers).

Testing datasets #5T (corresponding to a “semi-final” test-
ing dataset) and #5V (corresponding to the “final” valida-
tion dataset) represent datasets for which the true RULs is not
known. These datasets were used in many papers summarised
in Table 2 (for published work after 2008) and in Table 3 (for
results of challengers during the competition in 2008). The
complete review of scores on these datasets were found on
the web or obtained by request to the conference chairs. In
Table 3, methods (1), (2) and (3) were published in (T. Wang
et al., 2008), (Heimes, 2008) and (Peel, 2008) respectively.

It can be observed that no score has been mentioned in the lit-
erature on the final validation dataset #5V since 2008, whereas
the semi-final testing dataset #5T was used in several papers.
The final dataset is complex and the performances obtained
by the challengers are high. According to our knowledge,
good performances (in terms of scoring) can be obtained on
the final dataset only if the algorithm is robust. Indeed, a few
important mistakes (too late or too early predictions) can lead
to bad scores. This was also observed with RULCLIPPER
on the other datasets. Robustness can be evaluated by com-
puting several PHM metrics (Saxena, Celaya, et al., 2008) as
proposed in (T. Wang, 2010).

Therefore, the generalisation capability of the algorithm should
be ensured before trying the final dataset. This is illustrated
in Tables 2-3 and Figure 6 which depict the scores obtained
on the semi-final dataset #5T and on the final dataset #5V .
Some algorithms exhibited very low score on #5T (made of
218 instances), whereas a relatively poor score was obtained
on the final dataset. The winner obtained 737 on #5T (ac-
cording to the conference chairs) which is not the best score,
but only 5636 on the final dataset #5V .

Algo. (pseudo.) #5T #5V
RULCLIPPER 752 11572
SBL (P. Wang, Youn, & Hu, 2012) 1139 n.a.
DW (Hu, Youn, Wang, & Yoon, 2012) 1334 n.a.
OW (Hu et al., 2012) 1349 n.a.
MLP (Riad, Elminir, & Elattar, 2010) 1540 n.a.
AW (Hu et al., 2012) 1863 n.a.
SVM-SBI (Hu et al., 2012) 2047 n.a.
RVM-SBI (Hu et al., 2012) 2230 n.a.
EXP-SBI (Hu et al., 2012) 2282 n.a.
GPM3 (Coble, 2010) 2500 n.a.
RNN (Hu et al., 2012) 4390 n.a.
REG2 (Riad et al., 2010) 6877 n.a.
GPM2B (Coble, 2010) 19200 n.a.
GPM2 (Coble, 2010) 20600 n.a.
GPM1 (Coble, 2010) 22500 n.a.
QUAD (Hu et al., 2012) 53846 n.a.

Table 2. Performance of the state-of-the-art approaches on
#5T (semi-final dataset) and #5V (final dataset) after 2008
(published work).

Note that some papers using the datasets of the data chal-
lenge are not mentioned in the table because error measures
(accuracy-based) were given and that is not possible by us-
ing the original testing datasets for which the true RULs are
not known: testing errors are not possible on testing datasets
#5T and 5V , but only on the training dataset. This rule (de-
fined from 2008 to 2014) may change in the near future so
that other metrics (in addition to the scoring function) could
be obtained on demand to the data challenge chairs.

3.4. Priors about the datasets

Some rules were used to improve prognostics on these datasets,
some have been proposed in previous papers:

R1: The first rule is related to the fact that, according to (Saxena,
Goebel, et al., 2008), the maximum RUL in testing in-
stances for #5T was greater than 10 and lower than 150
time-units, while being greater than 6 and greater than
190 in testing instances for #5V . Moreover, most of pre-
vious approaches agreed on limiting the RUL estimates
around 135 (depending on papers (T. Wang et al., 2008;
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Algo. (pseudo.) / Data #5T #5V
heracles (1) 737 (3rd) 5636 (1st)
FOH (2) 512 (2nd) 6691 (2nd)
LP (3) n.a. 25921
sunbea 436.8 (1st) 54437 (22nd)
bobosir 1263 8637
L6 1051 9530
GoNavy 1075 10571
beck1903 1049 14275
Sentient 809 19148
A 975 20471
mjhutk 2430 30861
RelRes 1966 35863
phmnrc 2399 35953
SuperSiegel 1139 154999

Table 3. Pseudonyms and scores (known on both #5T and
#5V ) during the 2008’s PHM data challenge. Methods (1),
(2) and (3) were published

T. Wang, 2010; Heimes, 2008; Riad et al., 2010)) be-
cause too large and late estimates are greatly penalized
by the scoring function. So, for most of tests presented
below, the RUL was given by max(6,min( ˆRUL, 135))
where ˆRUL was the estimated RUL.

R2: The difference between 1 and the average of the first
5% of an instance was used as an offset to compel the
health index (HI) to begin around 1. Even though the
health index function (Eq. 11) already compels it, there
are some cases, in particular for #2,#3 and #4, for
which the health index was strongly disturbed by fault
modes and operating conditions.

R3: To limit the impact of fault modes (datasets #3 and
#4), a detection of the monotonicity (Coble, 2010) is
performed. When the testing instance is less than the
half of the training instance and if more than 25 consec-
utive samples are above the training instance, then the
training instance is not taken into account. This simple
rule was applied on all datasets considered (even without
fault modes or without operating conditions).

R4: To decrease the risk of overpredictions, the sequence of
states K were made of two states, the second state being
activated only 15 samples before the end-of-life. This
setting similar to (Ramasso & Gouriveau, 2013), was the
same for all tests and all datasets.

3.5. Local/global health index estimation

To reflect a real-world and practical cases, the health indices
(HI) for both training and testing datasets were not given by
the organisers (Saxena, Goebel, et al., 2008). An adaptation
of the approach proposed in (T. Wang, 2010) is presented be-
low to estimate the HI for each instance. These HIs (highly
corrupted by noise) are the basis of the proposed methodol-
ogy described in previous sections (Fig. 4).

The set of features for the ith unit is Xi = [x1 x2 . . .xt . . .xTi
]T

where xt = [xt,1 xt,2 . . . xt,m . . . xt,q] is the q-dimensional
feature vector at t (composed of sensor measurements), and
ut is the vector of operating conditions at t. The operational
conditions variables can be clustered into a finite number of
operating regimes (T. Wang, 2010). Crisp outputs are ob-
tained such that the current regime at time t, Ct, is precisely
known. Then, for samples (ut,xt) collected at early age of
the system, e.g. t < σ1, the health index attached to the ith
training unit is HI(xt, θθθp) = 1, where the set of parameters θθθp

depends on the model used to link regimes and sensor mea-
surements.

At late age of the system, e.g. t > σ2, the corresponding
output is HI(xt, θθθp) = 0. In (T. Wang, 2010), the author
used only the data at t > σ2 and t < σ1 in addition to 6
models (one for each operating mode) built on all data. In
comparison, we propose to make use of samples between σ1
and σ2 while building a local model for each operating mode
in each training instance. Moreover, we have used one HI for
each training instance while in (T. Wang, 2010) a global HI
model was estimated using all instances.

The corresponding output of the index is set to

ĤIi(xt, θθθp) ≡ 1− exp

(
log(0.05)

0.95 · Ti
· t
)
, t ∈ [σ1, σ2]. (11)

This function allows to compel the health index to be glob-
ally decreasing, from 1 (healthy) to 0 (faulty). As proposed
in (T. Wang, 2010), σ1 = Ti · 5% and σ2 = Ti · 95% where
Ti is the length of the ith training instance. We used lo-
cal linear models for multi-regime health assessment so that
θθθpi = [θpi,0 θ

p
i,1 . . . θ

p
i,q] represents the parameters of a linear

model defined conditionnally to the pth regime. The health
index at time t given the pth regime can be estimated as

HIi(xt, θθθ
p
i ) = θpi,0 +

q∑

n=1

θpi,n · xt,n (12)

where θθθp can be estimated by standard least-squares algo-
rithms. In experiments, in case the estimation of HI is per-
formed by considering the three operating conditions, then it
will be called a local approach (Fig. 4) and global otherwise.
HIs are then transformed into IHIs as proposed in previous
sections (Fig. 4).

3.6. Information fusion for improved RUL estimation

The first family of rules is a combination of minimum and
maximum RUL estimates suggested in (T. Wang, 2010):

αmM(R) = α ·minR+ (1− α) ·maxR (13)

where R is a set of RUL estimates and αmM(R) the combi-
nation result. For example, in (T. Wang, 2010), α = 13/23.
In this paper, we consideredα ∈ {0.1, 0.2, 0.3, . . . 0.9, 13/23}.
The authors in (T. Wang, 2010) also added two outlier re-

7

European Conference of the Prognostics and Health Management Society 2014

229



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

moval (OR) rules to keep RULs within the interquartile range:

OR : {a ∈ R : a ∈ [q25, q75]} (14)

and

WL : {a ∈ R : q50−3·(q50−q25) < a < q50+2·(q75−q50)}
(15)

The set of RUL estimates provided by the algorithm, con-
sidering either discrete (K) or continuous predictions (P), is
denoted

R ≡ ˆRUL
[OR|WL],[th],M

P[K] (16)

Only the M first RULs estimates were taken into account
(sorted according to the F1 measure) with M ∈ {11, 15} in
this study. OR|WLmeans that one of the outlier removal op-
erators was applied. The optional parameter [th] means that
only training instances with F1 measure greater than 0.5 were
kept.

Weighted average is the second family of rules:

mw
[e],[OR]
L =

L∑

i=1

ω
[e],[OR]
i ·R(i) (17)

where the weights are made dependent on the similarity F1,i

(Eq. 8) between the testing instance and the ith training in-
stance; R(i) is the ith RUL estimate in set of RULs R sorted
in descending order with respect to the similarity (F1,i) ; L ∈
{3, 5, 7, 9, 11, 15} is the number of RULs kept to compute the
average while applying or not the outlier removal rule OR.
The weights are given by the following equations:

ωi = F1,i/

L∑

k=1

F1,k , (18)

with softmax normalisation:

ωei = exp(F1,i)/

L∑

k=1

exp(F1,k) , (19)

using outlier removal (OR):

ωORi = OR(F1,i)/

L∑

k=1

OR(F1,k) , (20)

and combining OR and softmax:

ωe,ORi = exp(OR(F1,i))/

L∑

k=1

exp(OR(F1,k)) . (21)

The third kind of rules is a combination of the previous ones:

ˆRUL = 0.5 · αmM(R) + 0.5 ·mw[e],[OR|WL]
L (22)

Considering several combinations of parameters, about 3168

rules were considered.

3.7. Selecting the subset of sensors

As shown by the literature review presented beforehand, many
combinations of features can be used (among 21 variables),
and a subset was particularly used made of features {7, 8,
12, 16, 17, 20} (involving key sensors for the turbofan degra-
dation (Sarkar et al., 2011)). To this preselection, a subset of
sensors was added from every possible subsets with cardinal-
ity equal to 1, 2, 3 and 4 in {∅, 9, 10, 11, 13, 14, 18, 19, 22,
25, 26} as well as subsets of cardinality 5 comprising sensor
9 leading to a total of 511 cases. For each combination (511
cases for each dataset), we applied the prognostics algorithm
RULCLIPPER introduced previously and the best subset was
selected by minimising the scoring function.

3.8. Testing datasets

Given the training instances of a given dataset, the first task
is to create a testing dataset in order to estimate 1) the in-
put features and 2) the fusion RUL of RULCLIPPER. The
training instances were truncated at a time instant randomly
selected from a uniform distribution between 10% and 80%
of the half-remaining life. This procedure allowed to obtain
instances with small enough RULs to allow the occurrence of
substantial degradation, and also large enough RULs to test
the robustness of algorithms (Hu et al., 2012). The obtained
testing datasets were used in RULCLIPPER with all subsets
of features (511 subsets, 3168 fusion rules) and with two sub-
sets of features (511×511 combinations for each fusion rule).

4. RESULTS AND DISCUSSIONS

Results are presented and compared to past work for all datasets
(turbofan and data challenge). More details are given for
datasets #1,#3 and #5T and #5V .

4.1. Performances on datasets #1 and #3

The results can be represented in the penalty – accuracy plane
for all combinations of features. A point in that plane with
coordinates (P1(S1, A1)) is obtained by considering the ac-
curacy (A1) for the lowest penalty score (S1) given a subset
of features. In order to represent the imprecision concern-
ing the performances, a second point P2(S2, A2) is taken and
defined by the lowest score plus 25% (S2 = S1 + 25%S1)
with accuracy (A2): these two points define a rectangle in the
penalty – accuracy plane.

Figure 5 represents the accumulation of these rectangles for
all combinations of features in the testing datasets #1 and
#3. The whitest part corresponds to the area where most of
rectangles are located and thus to the likeliest performances
given several subsets of features. If the white area is large
then it means that the subset of features should be carefully
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selected. If the area is concentrated then several subsets of
features provided similar performances: it is an image of the
robustness with respect to the choice of the subsets. The
scores have been divided by the number of testing instance
for comparison purpose.

For dataset #1, the performance’s centroid is located around
(60%; 4.0) (or (60%; 400)). One can draw any subset of fea-
tures (among the 511 combinations considered) and can ex-
pect a score between S = 310 and S = 440 with an accuracy
between A = 56 and A = 64. A few “optimal” subsets
led to better performances (reported in Table 4 for the testing
datasets). The effect of the fault mode on the performances is
important. The scores are more spread and a clear global de-
crease of the accuracy is observed (translation of the cluster
of performances to the left hand-side). The level of the col-
orbar indicates that the choice of the features becomes more
and more crucial as the difficulty of the dataset increases: it
is simpler to find a subset of features for dataset #1 leading
to low penalty and high accuracy because the level is quite
similar on a large area (with a value around 8). However, it is
more sensitive for dataset #3 for which the level is around 12
on a very local area. A similar (and magnified) observation
was obtained on the other datasets.

Figure 5. Performances for #1 (top) and #3 (bottom).

Based on these results obtained on the testing datasets, the
fusion rule and the subset of features were selected for final
evaluation of the testing datasets by minimising the scoring
function (as done for the PHM data challenge) and maximis-
ing the accuracy. The results obtained on the testing datasets
#1 and #3 are summarised in Table 4 (note that the features
indicated in the table have to be assembled with features 7, 8,

12, 16, 17, and 20). For each dataset, the combinations of fea-
tures are given with respect to the two best scores (“Best S”)
and the two best accuracies (“Best A”). For example, the first
line of Table 4 concerns dataset #1 for which the best score
is S = 261 (with A = 63%) when using features 9, 10, 14,

25 and 26, and the RUL fusion “0.9mM( ˆRUL
th,11

P ) ⊕mw7”
which corresponds to the combination of two elements: 1)
the output of the min/max operator (Eq. 13) with parameter
α = 0.9 applied on the 11 first RUL estimates and keeping
only estimates with a similarity greater than 0.5, and 2) the
weighted average (Eq. 17) of the L = 7 first RUL estimates
after outlier removal. The high value of α (0.9) implies more
weight to the minimum (early) estimate. An accuracy of 70%
on #1 was obtained with the same subset of features while
keeping a low score at S = 301. This accuracy obtained by
the RULCLIPPER algorithm is significantly higher (+16%)
than the previous known results given by the EVIPRO-KNN
algorithm (Ramasso et al., 2013) which yielded 53%. Other
metrics were computed (see Table 6) for performance com-
parison with previous approaches: An exponential-based re-
gression model with health index estimation proposed in (Liu
et al., 2013) that provided MAPE = 9% on #1 and an Echo
State Network with Kalman filter and submodels of instances
presented in (Peng et al., 2012) with1 MSE = 3969.

The part entitled (#1,#3)/S indicates the best scores for the
same subset of features tested with the same fusion method
on both datasets. Considering simultaneously #1 and #3 is
equivalent to a situation where the engine is degrading while
developing a fault. As the score is low and the accuracy high
on both datasets using the same subset of features and the
same method, it means that this parameterisation makes the
prognostics robust to the introduction of the fault mode.

4.2. RULCLIPPERs ensemble to manage sensors faults

Two RULCLIPPERs were considered, each with one particu-
lar subset of features. All couples of subsets of features were
studied (about 130000 combinations) on each testing dataset.
The best couples are given in Table 5.

Beyond the important improvement of scores and accuracies
compared to the previous results (Table 4), it shows it is not
enough to take the two subsets leading to the two best results
and expecting an improvement of the performances. Indeed,
in most cases, performances for the single feature subsets se-
lected are not the best ones, but their combination yielded
to significative improvement of the performances compared
to Table 4. For example, for dataset #1, combining RUL
estimates provided by subset of features {10, 11, 14, 22} (in
addition to 7, 8, 12, 16, 17, 20) with {13, 18, 19, 22} led to
S = 216 and P = 67%. It represents 27% of improvement
on the score and +4% on accuracy compared to the best per-

1Authors in (Peng et al., 2012) actually provided the best RMSE obtained
equal to 63, so MSE was computed as 3969 = 632.
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TYPE DATA FEATURES FUSION S A

Best /S #1 9, 10, 14, 25, 26 0.9mM( ˆRUL
th,11

P )⊕mw7 272 68

Best /A #1 9, 10, 14, 25, 26 0.9mM( ˆRUL
th,11

P )⊕mw13 301 70

Best /S #3 9, 13, 14, 22, 26 0.9mM( ˆRUL
WL,11

PK )⊕mwOR3 353 57

Best /A #3 9, 19, 25 0.8mM( ˆRUL
WL,11

PK ) 632 63

Best /A (2) #3 18, 25, 26 mwe,ORe,5 ⊕mw5 580 63

Best /A (3) #3 9, 10, 14, 18, 25 0.8mM( ˆRUL
WL,11

PK )⊕mw3 476 60

(#1,#3) /S #1 9, 11, 14, 25, 26 0.9mM( ˆRUL
th,11

P )⊕mwe,OR9 294 64
#3 − − 480 55

(#1,#3) /S(2) #1 9, 10, 14, 25, 26 0.9mM( ˆRUL
th,11

P )⊕mwOR13 299 63
#3 − − 480 56

(#1,#3) /S(2) #1 9, 10, 14, 25, 26 0.9mM( ˆRUL
th,11

P )⊕mwOR5 315 66
#3 − − 435 54

Table 4. Subset of features (in addition to 7, 8, 12, 16, 17, 20) leading to the best performances in terms of scores (and the
corresponding accuracies) for each dataset using a single RULCLIPPER.

Data Type Features Fusion S PSubset 1 S1 P1 Subset 2 S2 P2

#1 Best /S 10, 11, 14, 22 301 64 13, 18, 19, 22 325 62 0.9mM( ˆRUL
th,11

P )⊕mwOR5 216 67

Best /A 10, 11, 14, 22 301 64 13, 18, 19, 22 325 62 0.9mM( ˆRUL
th,11

P )⊕mwOR7 224 70

#3
Best /S 13, 19, 25, 26 525 61 9, 13, 14, 22, 26 353 58 0.9mM( ˆRUL

th,11

P ) 317 59

Best /A 14, 18, 19, 26 499 61 9, 10, 13, 14, 26 399 58 0.9mM( ˆRUL
WL,15

P )⊕mwOR11 332 63

Table 5. Combination of subsets of features (in addition to 7, 8, 12, 16, 17, 20) leading to the best performances in terms of
scores (and the corresponding accuracies) for each dataset using the fusion of two RULCLIPPERs.

formances obtained in Table 4 with subset {13, 14, 18, 25},
and more when considering the performances of single sub-
sets (S1 = 301 and P1 = 64%, or S2 = 325 with P2 = 62%).
Similar observations can be made on #3.

4.3. Results on the PHM data challenge (#5T ,#5V )

Based on the 218 training instances provided, RULCLIPPER
was run on the testing dataset using the 511 combinations of
features with the 3168 fusion rules. The results were sorted
by ascending order with respect to the scoring function. The
first five best subsets of features were then selected: {9, 11, 26},
{9, 18, 22, 25}, {9}, {9, 10, 13, 25}, {9, 10, 18, 25, 26} (in ad-
dition to 7, 8, 12, 16, 17, 20 for each subset).

These combinations of features were considered and evalu-
ated on the dataset #5T . The best score was given by aver-
aging three configurations of RULCLIPPERs, each with en-
sembles based on three subsets of features:

• RULCLIPPER 1 with inputs {9, 11, 26}, {9, 18, 22, 25}
and {9};

• RULCLIPPER 2 with inputs {9, 11, 26}, {9, 18, 22, 25}
and {9, 10, 13, 25};

• RULCLIPPER 3 with inputs {9, 11, 26}, {9, 18, 22, 25}
and {9, 10, 18, 25, 26}.

The RUL limit was set to 135 as described in Section 3.4
and the fusion rule was the same for all individual RULCLIP-
PER, namely 0.9mM( ˆRUL

11

PK)⊕mwOR15 . The score obtained
on dataset #5T (on the NASA’s website) was equal to 752,
which is the 3rd score compared to published works. An al-
ternative was considered by increasing the RUL limit from
135 to 175. The fusion rule was the same as previously and
the score obtained was 934 which is quite low relatively to
the high risk taken by setting the RUL limit to 175.

The average of the three configurations given above provided
a set of RULs parameterised by both a RUL limit (135, 175)
and a fusion method. Three parameterisations were consid-
ered and combined: Ω1 = (135, 0.8mM( ˆRUL

11

PK)⊕mwOR5 ),
Ω2 = (175, 0.9mM( ˆRUL

11

PK) ⊕ mwOR9 ), and Ω3 = (175,

0.9mM( ˆRUL
11

PK)⊕mw15). The motivation of this configu-
ration was to make long-term predictions possible while min-
imising the risk of making late predictions. The RULs ob-
tained by Ω2 and Ω3 were averaged and the resulting com-
bined by a weighted average with with Ω1. The weights were
set by a sigmoid (with shape parameter: 0.3 and position:
120) to increase the importance of RULCLIPPERs Ω2 and
Ω3 when the estimation is greater than 120 while giving more
importance to Ω1 otherwise.
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This methodology was then applied with the final testing dataset
(#5V ) yielding 11672. The comparison with approaches can
be quantified on Figure 6. The generalisation of RULCLIP-
PER parameterised as proposed in this paper is lower than
the first five algorithms (see square markers on the left-hand
side). Indeed, some of these algorithms provided higher scores
on #5T but lower on the final dataset #5V . One explanation
accounting for the lack of generalisation capability compared
to the first five algorithms may hold in the “rules” integrated
in RULCLIPPER (section 3.4). These rules have been tuned
according to observations on the five other datasets but may
be not relevant for dataset #5V if the statistics governing the
generation of instances have been modified (Saxena, Goebel,
et al., 2008). In order to show the applicability of RULCLIP-
PER algorithm with as less parameterisation as possible, the
author intentionally kept the same settings for all datasets
without distinction in particular concerning the number of
fault modes or thresholds on RUL limits.

However, the generalisation is better than the 23 remaining
algorithms, for which lower scores on #5T have been ob-
tained with higher ones on #5V (see square markers on the
right-hand side). RULCLIPPER provided a relatively low
score on both datasets using the same parameters (816 on
#5T and 11672 on #5V ). The authors remarked on the pre-
vious datasets (#1 to #4) that a few instances can disturb
the algorithm (in particular to test the robustness), generating
very late or very early predictions, degrading drastically the
scores. The important difference on scores between #5T and
#5V can be due to this particularity.

A summary of results of RULCLIPPER on C-MAPSS datasets
is given in Table 6. The best performances were selected
according to the scoring function (better accuracies can be
obtained as shown in previous tables but with lower scores).
Metrics are defined in (Saxena, Celaya, et al., 2008).

5. CONCLUSION

The RULCLIPPER algorithm is proposed to estimate the re-
maining lifetime of systems in which noisy health indices
are assumed imprecise. RULCLIPPER is made of elements
inspired from both the computer vision and computational
geometry communities and relies on the adaptation of case-
based reasoning to manage the imprecise training and testing
instances. The combination of these elements makes it an
original and efficient approach for RUL estimation as shown
in experiments.

RULCLIPPER was validated with the six datasets coming
from the turbofan engine simulator (C-MAPSS), including
the so-called turbofan datasets (four datasets) and the data
challenge (two datasets), and compared to past work. These
datasets are considered as complex due to the presence of
fault modes and operating conditions. In addition to RUL-
CLIPPER, a method was proposed to estimate the health indi-

cator (in presence of faults and operating conditions) and the
problem of the selection of the most relevant sensors was also
tackled. Information fusion rules were finally studied to com-
bine RUL estimates as well as ensemble of RULCLIPPERs.
The review of past work, the presentation of the datasets, as
well as the results on sensor selection, health index estima-
tion, information fusion rules and RULCLIPPER ensembles
are expected to give a hand to other researchers interested in
testing their algorithms on these datasets.

The use of the same algorithm (RULCLIPPER) for all datasets
lets suppose that, more generally, computational geometry
seems promising for PHM in presence of noisy HIs. How-
ever, as for all similarity-based matching algorithm (T. Wang,
2010), the computational cost associated to sort instances is
the most important limitation of RULCLIPPER. Two solu-
tions can be considered. Firstly, since operations on convex
polygons are simpler (and faster), a procedure can be used to
approximate the bounds and to decrease the number of seg-
ments.

The second solution concerns implementations, particularly
of the intersection algorithm. Computational geometry has
become a very active field in particular to improve memory
and time requirements, with applications in multimedia (com-
puter graphics such as games). CUDA implementations on
processor arrays (using graphic cards) can be pointed out as
a promising solution. With such implementations, real-time
and anytime prognostics can be considered. The extension of
RULCLIPPER to multiple health indices is also under study,
in particular by using polytopes.
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ABSTRACT 

A reliable prognosis is crucial to manage asset health and 

predict maintenance needs of large civil jet engines, which 

in turn contribute to enhanced aircraft airworthiness, longer 

time on wing and optimized lifecycle costs. With the 

accumulation of large amount of data over the last decade, 

one can relate the number of components serviced during a 

maintenance visit to the history of parameters inside and 

outside the engine (temperatures, pressure, shaft rotation 

speeds, vibration levels, etc.). While established statistical 

models had been developed for small samples, more recent 

computer-intensive statistical techniques from the field of 

Machine Learning (ML) can handle more complex datasets. 

In particular, binary classifiers constitute an attractive 

option to predict the probability of servicing the components 

of a given jet engine at the next maintenance visit. This 

paper demonstrates the validity of such data-driven methods 

on an industrial case study involving failures of thousands 

of compressor blades in aeronautical turbomachines. The 

prediction accuracy obtained with the ML techniques 

presents a significant improvement over the state-of-the-art. 

Moreover, the performance of six binary classifiers with 

different characteristics - logistic regression, support vector 

machines, classification trees, random forests, gradient 

boosted trees and neural networks - was compared 

according to four qualitative and quantitative criteria. 

Results show that there is no clear winner, although 

ensemble models based on trees (random forests and 

boosted trees) offer a good overall compromise while neural 

networks offer the best absolute performance.  In the 

industrial world, the business objectives, the environment in 

which the models are deployed and the users’ skills should 

dictate the choice of the most adequate statistical technique.   

1. INTRODUCTION  AND MODELING APPROACH 

A jet engine is complex machine subject to particularly 

demanding operating conditions that explains the 

deterioration of the engine components. Therefore, a proper 

maintenance of jet engines is crucial to ensure 

airworthiness, reduce fuel consumption and ultimately lower 

operating cost. Large amount of data are acquired on a 

permanent basis by jet engine manufacturers to help 

engineers in predicting future maintenance needs. On the 

one hand, the health of a jet engine is monitored in real-time 

by dozens of sensors measuring hundreds of variables inside 

and outside the engine (temperature, pressure, rotation 

speeds, vibration levels…); the data from this Engine Health 

Monitoring (EHM) system are recorded in corporate 

databases for later analysis. On the other hand, for every 

maintenance shop visit performed all around the world, the 

number of components scrapped are registered by 

maintenance technicians and engineers and sent to the 

engine manufacturer. These two major types of data can be 

combined to establish a prognosis of the health of the fleet 

of engines. 

To predict future maintenance needs, reliability engineers 

rely on multiple techniques that can be divided into two 

categories: 

1. Analytical inductive methods based on engineering 

reasoning and analysis of failure modes of the part, 

such as Failure mode, effects, and criticality analysis 

(FMECA) (Jordan, 1972). Methods in this category 

typically require a deep technical expertise and 

knowledge of the product but limited volumes of 

historical data.   

2. Deductive statistical techniques inferring risk of failure 

using actual past data from similar cases. Many such 

statistical methods have been applied to reliability 

engineering (Meeker & Escobar, 1998): analysis of 
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failure time data (Kalbfleisch & Prentice, 2011), 

biostatistics-inspired survival analysis (Lawless, 2003), 

Poisson-related models based on count data with excess 

zeros such as zero-inflated models (Lambert, 1992) or 

hurdle models (Grogger & Carson, 1991).  

This paper covers a set of methods belonging to the second 

category. Most of such statistical methods currently in use 

by industrial corporations are based on established statistical 

models developed for dealing with small samples. However, 

the large volumes of monitoring data acquired over the last 

decade allowed resorting to more data-driven, computer-

intensive methods for predicting maintenance needs 

(Jardine, Lin, & Banjevic, 2006). In this paper, we intend to 

validate a statistical approach for PHM of jet engine parts 

based on binary classifiers from the field of machine 

learning. Such binary classifiers predict whether a given part 

in the engine is likely to be scrapped (output variable   
 ) or not (   ) at the next maintenance visit, given its 

own history and the history of similar components. 

Compared to the aforementioned statistical models, the 

literature on binary classifiers applied to reliability 

engineering and maintenance planning is still scarce. For 

instance, Kim, Tan, Mathew, Kim, and Choi (2008) used 

Support Vector Machines to predict the remaining useful 

life of elements in high pressure liquefied natural gas 

pumps. Caesarendra, Widodo, and Yang (2010) used 

logistic regression to evaluate the degradation of bearings. 

Rafiee, Arvani, Harifi, and Sadeghi (2007) used neural 

networks to monitor the condition of gearbox components. 

Nevertheless, there are few examples in the literature 

comparing rigorously the predictive performance of several 

binary classifiers concurrently, which is the objective of our 

paper. 

According to our approach, the statistical model of part 

failure can be expressed in the most general way as: 

                                    ( )    (1) 

where   is the     output vector to be predicted 

(containing the probability of failure or the occurrence of 

failure in our case study),   is the   (   )  matrix of 

predictors (including intercept) ,     is the actual function to 

estimate and   is an     vector of residuals (i.e. errors) of 

the model. The function    is potentially complex, nonlinear 

and depends on a set of parameters   – varying from model 

to model - to be estimated via model fitting. In equation (1), 

the residuals   are assumed to be centered and normally 

distributed with constant variance   , i.e.    (    )). In 

fact, it is impossible to identify the actual function   : 

instead, the statistical models provide an estimate  ̂  of the 

actual   . The role of the statistician is to find the model that 

is as close as possible to    by 1) finding the most relevant 

type of model and 2) by tuning the parameters  . 

Following the description of the context in this introduction, 

the article will present the case study and the dataset in 

Section 2 before detailing the methodology – including 

simple mathematical formulation behind the classifiers - in 

Section 3. The results of the comparison of the binary 

classifiers are covered in Section 4 and commented in 

Section 5, which also opens discussion for potential 

improvements and next steps. 

2. CASE STUDY AND DATASET DESCRIPTION 

2.1. Description of the compressor blades   

We tested the validity of our approach on a case study 

involving blades in the intermediate pressure (IPC) and high 

pressure compressors (HPC) of Rolls-Royce Trent 500 

engines (Figure 1). Such compressor blades are made of 

titanium (in the front and middle stages) or nickel alloys (in 

the rear stages of the HPC) and manufactured by forging or 

machining processes. We selected compressor blades as our 

case study as they are relevant candidates to test the validity 

of the statistical approach:  

 There are numerous stages in a Trent 500 (8 in the IPC 

and 6 in the HPC), each containing dozens of blades. 

Thus, in total, there are hundreds of compressor blades 

in a Trent 500 engine. This leads to a dataset with more 

observations (higher  ), an important condition for 

making the statistical approach viable. 

 The 14 different types of blades are located all along 

the gas path of the engine, and therefore subject to very 

diverse operating conditions (amplitude of temperature 

and pressure, rotation speeds and vibration levels in the 

IPC and HPC shafts, etc.). This large diversity of 

situations also improves the meaningfulness and quality 

of the statistical estimates.  

 

 

Figure 1 - Location of the blades in Trent 500 engine 

 

Knowing the deterioration mechanisms of the component is 

important to select the most adequate type of statistical 

model and the predictors entering the model as inputs. 

Compressor blades are subject to demanding conditions 

during engine operations and their degradation is influenced 

mostly by gas temperature and pressure, shaft rotation speed 

and vibration levels.  
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2.2. Structure of the dataset  

Our dataset comprises a total of         serviced 

components, corresponding to 36 components per engine, 

for 337 maintenance visits performed on 176 different 

engines between 2000 and 2012. The number of 

components serviced during the maintenance visits comes 

from the analysis of maintenance invoices while the 

predictors of the model have been extracted from the Engine 

Health Monitoring (EHM) database. 

Out of the hundreds of variables recorded by the EHM 

system, we have selected only the      most relevant 

ones (Table 1). Selecting a limited number of variables 

fulfills several objectives: 1) keep the predictors most 

pertinent to the failure mechanisms of the components in the 

case study, 2) make the approach more tangible for the 

reader by exposing few, meaningful variables and 3) not to 

compromise industrial confidentiality. 

 

The number of cycles and the Turbine Gas Temperature 

(TGT) are usually considered by maintenance engineers as 

the best proxies for overall deterioration of a jet engine. The 

rotation speed N2 of the intermediate shaft can be 

considered as a proxy for fatigue due to centrifugal forces 

and fluid-structure interaction. Taking both the margin and 

absolute values of some of those engine parameters allowed 

us to include in the statistical models two complementary 

types of information about the engine operations. The 

average and delta values over the period between two 

maintenance visits provide us with information about the 

average and variability of the engine parameters, 

respectively. 

3. METHODOLOGY 

In this Section 3, we describe the general modeling 

approach that we followed, as well as the simple 

characteristics of the binary classifiers compared in the 

paper. 

3.1. General approach and data cleaning  

Our objective is to obtain an estimate  ̂  that is as close as 

possible to the actual true function   explaining   as a 

function of the engine parameters defined in the matrix   of 

predictors in equation 1. The choice of the model  ̂  

depends on the probability distributions of the output   and 

the structure of the predictors  . The predictors   being all 

numeric, it is possible to use a large variety of models. After 

preliminary data exploration, we found that the probability 

distribution of the output   discarded models based on the 

Poisson distribution or count data. Instead, binary classifiers 

appeared more adapted to our case study: the output   thus 

takes the value of 1 for a failed component and 0 for a non-

failed component.   can alternatively be a probability of 

failure, in which case a threshold has to be defined so as to 

classify the probability as corresponding – or not - to a 

failed component. 

The list of predictors   being defined, we pre-processed the 

data to make them more suitable for subsequent statistical 

analysis. First, the few outliers were removed or their value 

reattributed by usual imputations techniques: imputations of 

the mean or median by relevant groups and regression on 

other predictors. Second, the predictors were scaled
1
 in 

order to increase the quality of the estimates and increase 

the convergence of the algorithms, as some are known for 

their instability, notably neural networks. Scaling the 

predictors thus ensures giving a common ground for 

comparing all the binary classifiers. 

                                                           
1  Scaling means that each predictor    in   was transformed as   

  
(      

)    
⁄  where    

 and    
 are respectively the mean and standard 

error of the variable    

Table 1. Variables selected as model predictors. 

 

Variable Description 

Cycles 
Number of cycles (i.e. flights) done by the 

engine between two maintenance visits 

Average 

TGT 

margin 

Average of the margin (i.e. difference with 

the admissible value) of the temperature in 

the turbine (highest temperature in the 

engine) over the period between two 

maintenance visits 

Delta TGT 

margin 

Difference between the initial and final 

values of the turbine temperature margin  

over two maintenance visits 

Average N2 

margin 

Average of the margin  of the rotation 

speed of the intermediate shaft over the 

period between two maintenance visits 

Delta N2 

margin 

Difference between the initial and final 

values of the intermediate shaft speed 

margin  over two maintenance visits 

Average N2 

Average of the absolute rotation speed of 

the intermediate shaft over the period 

between two maintenance visits 

Delta N2  

Difference between the initial and final 

values of the intermediate shaft absolute 

speed  over two maintenance visits 

Average 

VB2  

Average of the vibration level in the 

intermediate shaft over the period between 

two maintenance visits 

Delta VB2  

Difference between the initial and final 

values of the intermediate shaft vibration 

level  over two maintenance visits 

Average 

OAT 

Average of the absolute Outside Air 

Temperature over the period between two 

maintenance visits 

Delta OAT 

Difference between the initial and final 

values of the absolute Outside Air 

Temperature  over two maintenance visits 
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3.2. Characteristics of binary classifiers 

Many binary classifiers have emerged from the field of 

Machine Learning over the last two decades to predict 

phenomena involving binary outcomes in a large diversity 

of applications (e.g. disease diagnosis, image recognition). 

We cover in this section 6 of the most popular ones, 

presenting a gradual increase in terms of model complexity, 

from the easily interpretable linear logistic regression to the 

complex, highly nonlinear neural networks. This section is 

based on the widely acknowledged text of Hastie, 

Tibshirani, and Friedman (2009) and intends to initiate the 

reader – especially the one not versed in statistical methods 

– to the main characteristics and differences between binary 

classifiers. An intuitive presentation of the principle and a 

simple formulation of the mathematics of the techniques are 

presented; moreover, the tuning parameters (aka 

hyperparameters) of the models are described so as to 

illustrate their complexity. Indeed, behind the sometimes 

fancy names attributed by statisticians or computer scientists 

to those binary classifiers, one should be aware of the 

explanatory power and predictive accuracy of these 

techniques, but also the amount of skills required to use 

them properly. 

3.2.1. Logistic regression 

In logistic regression the binary output   is transformed so 

that the natural logarithm of its odds
2
 is expressed as a linear 

function of  , the matrix of predictors. It can also be written 

as the probability
3
 of the outcome of   given  :  

 

 

   (
 (       )

 (       )
)         

 (       )

 
    (      )

      (      )
    (       ) 

(1) 

Therefore, the logistic regression is a binary classifier 

depending on a linear function of the predictors. The model 

provides the linear coefficients    that quantify the risks on 

the output  :  

     (  )      (2) 

where   is the increase (and symmetrically decrease if 

      ) of the relative risk of failure provoked by an 

increase in one unit of the predictor   . Thanks to the 

coefficients of the logistic regression, it is thus possible to 

                                                           
2  An odd is defined as the ratio of  (       )  the probability of 

failing given the predictors   over  (       )      (      
 ) the probability of not failing given  . 
3 Since a probability is obtained, it is still necessary to define a threshold to 

classify the outcome as 1 or 0. A method to identify the best threshold is 
given in Section 4.1.   

estimate the marginal effect of each predictor on the output 

variable  , rendering the model more interpretable. This 

unique characteristic combined with the simplicity of the 

model assumptions makes the logistic regression 

particularly attractive and popular amongst analysts with 

little statistical background. Moreover, the logistic 

regression doesn’t require tuning parameters (aka 

hyperparameters) which often represent a considerable part 

of the modeling process.  

Nonetheless, the deterioration of jet engine components is a 

nonlinear stochastic process and predictors are usually 

correlated. Unable to capture this added complexity of the 

dataset, the logistic regression is limited in terms of 

goodness-of-fit and prediction accuracy: more sophisticated 

models thus have to be used.   

3.2.2. Support Vector Machines 

Support Vector Machines (SVM) became popular two 

decades ago after the research on statistical learning theory 

of Vapnik (1996). It is a nonlinear and non-parametric 

method based on transforming, via a complex transform 

function  , the initial (often non  separable) dataset into a 

new space of much higher – and potentially infinite – 

dimension. In this new space, the likelihood of having a 

separable dataset is much higher and it becomes possible to 

obtain a linear decision boundary, in lieu of a nonlinear 

decision boundary in the initial space. In this article, we 

used a particular type of SVM classifier called “C-SVM” 

which can be formulated mathematically as an optimization 

problem under constraints (Chang et al., 2011): 

 

         
 

 
‖ ‖   ∑   

 
     under 

  (〈   (  ) 〉    )      and 

              

(3) 

In equation (3),    is the i
th

 element of the relabeled
4
 version 

of the output  ,    is the i
th

 element of the initial matrix of 

predictor  ,   is the vector of coefficients,    a constant 

(i.e. intercept) and             are parameters quantifying the 

degree of non separability of the elements in the dataset. 

Geometrically speaking, solving this problem consists in 

determining the hyperplane such as the estimated values 

〈   (  ) 〉     don’t deviate from the output values   . 

The aforementioned mapping from the initial low 

dimensional space to a higher dimensional space is done by 

so-called kernel functions  (     ) expressed as the inner 

product of the transform function   i.e.  (     )    (  )  

  (  ). There are several types of kernel functions: linear 

     , d-degree polynomial (        ) , Gaussian radial 

basis functions (RBF)    (  ‖     ‖
 
)  and sigmoid 

    (        ). We have selected RBF kernels for our 

                                                           
4 While the initial         , the relabeled              

European Conference of the Prognostics and Health Management Society 2014

239



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014 

5 

analysis because they offer the best trade-off in terms of 

computing cost, stability and performance. 

In our case, C-SVM with Gaussian kernels can be tuned by 

2 hyperparameters: 

1.   is a “cost” (i.e. regularization) parameter controlling 

over fitting: the larger the C, the higher the penalization 

of the error. It makes a compromise between the 

complexity of the model and the respect of the 

constraints in equation (3). 

2.   
 

     is the scaling constant (aka kernel bandwidth 

parameter in non-parametric statistics) controlling the 

shape of the Gaussian kernel: the higher the  , the 

smaller the standard deviation of the Gaussian. 

3.2.3. Classification trees 

A classification tree is another nonlinear non-parametric 

statistical technique consisting in a hierarchy of nodes 

obtained by recursive partitioning of the initial dataset. Each 

child node is characterized by a subset of its parent node
5
 

and is obtained by splitting the parent subset over a unique 

predictor, according to a threshold (continuous predictor) or 

partition over its levels (categorical predictor). Popularized 

by Breiman, Friedman, Stone and Olshen (1984), CART 

(Classification and Regression Tree) is the most popular 

implementation algorithm for classification trees and 

requires three elements: 

1. a criterion to select the best dichotomic split at each 

node by minimizing a measure of error, typically the 

Gini index or a measure of information entropy 

2. a stopping rule to decide whether a node is final - 

becoming a “leaf” of the tree – or whether the splitting 

process should continue 

3. a decision rule to assign each leaf to a class (i.e. 

outcome) of the output  .  

The tree is progressively grown in a recursive fashion by 

dichotomic splits at each node until all leaves have been 

generated. Each leaf corresponds to one of the disjoint 

partitions of the initial dataset and is characterized by a 

simple model that differs from leaf to leaf. The full tree 

being often prone to overfitting, it is possible to “prune” it 

and obtain a smaller tree with less leaves but better 

performance. The mathematical formulation of a 

classification tree is relatively simple: 

  ̂ ( )  ∑          

 

   

 (4) 

where   is the number of leaves of the tree,      the indicator 

function and    the value of the class (i.e. 0 or 1) assigned 

to the     leaf corresponding to the subregion    of the 11-

                                                           
5 The first “root” node of the tree corresponds to the full initial dataset. 

dimensional space of predictors. It should be noted that the 

variable names in Figure 2 and Figure 3 are ordered in a 

different manner than in Table 1. 

 

Figure 2 - Tree fitted on the case study (renamed variables) 

 

Trees are particularly flexible since they accept indistinctly 

continuous, ordinal or binary predictors. They are also very 

easy to interpret thanks to the visualization of the tree 

structure (Figure 2). Last but not least, calculations on trees 

are particularly fast.  

However, they are characterized by low bias and high 

variance: the addition of an outlier or a new observation in 

the dataset may dramatically modify the thresholds for the 

dichotomic split and lead to trees with very different 

classification results. A solution to this instability consists in 

“averaging” the predictions from a set of trees: this is the 

idea behind random forests and gradient boosted trees. As a 

consequence, although a single tree is a relatively weak 

binary classifier, it is actually a very important statistical 

technique as it constitutes the basis of more sophisticated 

models. 

The choice of the splitting criterion being not a tuning 

parameter per se but rather a methodological choice, the 

performance of classification trees can be adjusted by 2 

hyperparameters: 

1. The number of leaves in the tree, which is related to the 

depth of the tree and the degree of overfitting. 

2. The cost complexity parameter    that defines the 

minimum benefit to be obtained in terms of model fit 

before a split should be attempted. It is notably used to 

prune the fully-grown tree. 

3.2.4. Random forests 

Formalized by Breiman (2001), random forests is an 

ensemble model constructed by combining a large number 

of bootstrapped trees after random sampling with 
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replacement amongst the   observations of the training 

dataset (   ) and also after random sampling amongst the 

  predictors   at each node. The class assignment is made 

by the majority vote on the class membership of the output 

  (classification case). By averaging from a large number of 

uncorrelated, unbiased but high-variance single 

classification trees, the variance is reduced and the 

prediction accuracy is improved. The mathematical 

formulation of random forests is less simple because of the 

combination of single trees. 

Random forests are not prone to overfitting (Hastie et al., 

2009) and are also robust to outliers, noise, unbalanced 

datasets and missing data. Fast to compute, they provide 

estimates of correlations between predictors, the level of 

prediction accuracy and an assessment of the importance of 

each variable (Figure 3). 

 

 

Figure 3 – Relative importance of the predictors  

 

Random forests accept 3 main hyperparameters: 

1. The number of single trees to be averaged into the 

random forest. The higher the number of trees, the 

higher the accuracy and the computing cost. 

2. The number of predictors randomly sampled at each 

split.  

3. The minimum size (i.e. number of elements) in the 

terminal nodes, or equivalently the maximum number 

of leaves in each of the individual trees. 

3.2.5. Gradient boosted trees 

Like Random forests, Gradient Boosted Tree (GBT) is an 

ensemble method based on combining a large number of 

single (classification) trees to form a stronger model. 

Contrary to random forests though, each individual tree in a 

GBT is weighted according to its prediction accuracy; a 

shrinkage parameter       can also be defined to 

penalize the contribution of each tree when it is added to the 

GBT. Developed by Friedman (2001), boosted trees can be 

formulated mathematically as: 

  ̂ ( )  ∑   ∑           

  

   

 

   

 (5) 

where   is the number of trees while the weights    and 

the coefficients     are estimated by iterative procedures 

and are functions of the shrinkage coefficient  . 

Boosted trees can quantify the relative importance of the 

predictors as well as their nonlinear marginal influence (aka 

partial dependence) on the output  . We showed in equation 

(2) that the coefficients   have a similar role in the logistic 

regression, although they were constrained to have a linear 

marginal influence.  

Gradient Boosted Trees can be tuned by 3 hyperparameters, 

some of which are common to the hyperparameters of single 

trees: 

1. The number   of individual trees to combine in the 

ensemble model, equal to the number of boosting 

iterations. The higher, the more accurate and the 

computing cost of the model. If   is too high though, 

over fitting might occur, contrary to random forests. 

2. The size            (i.e. the number of leaves) of each of 

the   constituent trees of the GBT.  

3. The shrinkage parameter   is penalizing each tree 

constituting a GBT. It is equivalent to the learning rate 

or the decay also encountered in neural network. 

3.2.6. Neural networks 

Neural networks are made of individual perceptrons whose 

output    can be written      (∑          )  where      are 

the inputs of the perceptron,       its weights and    a so-

called “activation function”, typically the sigmoid   ( )  
 (      )⁄ . The perceptrons are organized in such a way 

that the output of a perceptron located upstream becomes 

the input of a perceptron downstream, forming de facto a net   

organized in three types of layers:  

1. the input layer made of the   observed predictors, 

2. the hidden layer(s) containing   non-observed 

perceptrons      (     ∑     
 
     )  computing 

the nonlinear features from linear combinations of the 

inputs 

3. the output layer containing the probability of failure  

 

In a neural network, the probability of each class of the 

binary output   is therefore expressed as a complex 

nonlinear function of linear combination of the predictors:  

European Conference of the Prognostics and Health Management Society 2014

241



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014 

7 

 (         )  
 
     ∑       (     ∑     

 
     )

 
   

∑  
     ∑       (     ∑     

 
     )

 
    

   

   (6) 

Neural networks are very relevant to highly nonlinear 

problems and can produce very accurate results, despite 

being potentially subject to overfitting or non-convergence. 

However, they require a scaled dataset with no categorical 

predictors and a certain expertise in choosing the number of 

perceptrons and layers, the structure of the connections, the 

penalization (also called weight decay), amongst others. The 

two hyperparameters for neural networks are: 

1. The decay   is often compared to a learning rate, in the 

sense that it will penalize the estimation of the weights 

     of the neural network  

2. The maximum number of iterations before 

convergence. The higher this number, the higher the 

probability for the neural network to reach a stable and 

accurate solution 

 

Each of the aforementioned binary classifiers exhibit 

advantages and drawbacks that have been extensively 

documented in Machine Learning literature (Huang et al., 

2003). The next section presents a comparison of their 

merits through an application to our case study. 

4. RESULTS 

This section presents the results of models’ performance, 

based on the methodology developed in Section 3. After a 

description of the criteria retained for comparing the 

models, we present an overall ranking of the binary 

classifiers, followed by a more quantitative assessment of 

model’s performance based on two criteria: prediction 

accuracy and the c-statistic. 

4.1. Criteria for comparing models 

To account for the different characteristics of the 

aforementioned binary classifiers, we defined a set of 

comparison criteria: 

1. The accuracy of the model is a quantitative criterion 

measured by metrics such as the percentage of 

outcomes correctly predicted or the area under the 

Receiver Operating Characteristic (ROC) curve, a 

typical tool in the field of machine learning applied to 

binary classification (Fawcett, 2006) (Figure 4).  

2. The interpretability of the model is defined more 

subjectively as the difficulty to understand and use the 

results of the model for a subsequent engineering 

analysis. 

3. The easiness to fit the model is a second qualitative 

criterion indicating the level of efforts and skills to 

actually train the model (selection of the predictor, 

tuning of the hyperparameters, etc.). 

4. The cost is a quantitative assessment of the computing 

time needed to train the model. For a fair comparison, 

the measures are acquired on the same computer under 

similar conditions for all the models. 

We decided to include two qualitative comparison criteria 

because the performance of a binary classifier can’t be 

reduced to quantitative metrics such as accuracy or 

computing cost. The complexity in training, understanding 

and interpreting a model indeed represents a large hidden 

cost that might strongly limit the performance of the model 

and even prevent its use in some situations (low 

maintainability, poor formal training, lack of statistical 

skills of the users, etc.). 

4.2. Overall comparison of binary classifiers 

The 6 binary classifiers are compared according to the 

aforementioned criteria, each assesses on a qualitative scale 

in order to respect confidentiality agreement (Table 3). Each 

binary classifier presents advantages and drawbacks for 

each of the criteria.  

Not surprisingly, ensemble models based on classification 

trees (random forest, gradient boosted trees) as well as other 

strongly nonlinear models (neural networks and SVMs to a 

lower extent) are much more accurate than the linear logistic 

regression or the unstable weak classifier (single tree). 

Regarding interpretability, logistic regression provides the 

coefficients of the model, which allows estimating the 

marginal effect that each predictor has on the output. Single 

trees give an interesting visual view on the problem, 

provided the tree is not too deep (number of leaves smaller 

than 20). Random forests can rank the predictors according 

to their importance. The other classifiers are more difficult 

to interpret because 1) their mathematical formulation is not 

as easy and/or 2) they don’t provide directly a measure of 

the influence of the predictors.  

The easiest training and fit is obtained with robust models 

with few and conceptually simple hyperparameters such as 

decision tree, logistic regression or random forest and 

boosted trees to a lower extent. On the contrary, complex 

and unstable techniques such as SVM and neural networks 

require expertise to be properly trained and fitted. 

Unsurprisingly, the more sophisticated and the higher the 

number of hyperparameters, the more computing resources 

are necessary to fit the model. There is almost a direct 

relationship between the easiness to train a model and its 

cost. 

4.3. Focus on prediction accuracy of the classifiers 

Even though qualitative criteria are important, the prediction 

accuracy is often attributed a greater importance when 

ranking models, as it might appear as the most objective 

criterion: the higher the prediction accuracy, the more likely 
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the model will predict future outcomes with success. In the 

case of binary classifiers, the prediction accuracy is the 

number of outcomes correctly predicted (i.e. the sum of true 

positives and true negatives) over the total number of 

observations in the dataset.  

Nonetheless, the prediction accuracy varies according to 

hyperparameters of the model or according to the cut-off 

threshold selected to separate positive (   ) and negative 

(   ) outcomes. This variation in accuracy is obtained by 

computing the prediction accuracy over a range of 

hyperparameters or cut-offs, whose results are visualized 

through the so-called ROC curve. The ROC curve expresses 

True Positive Rate (TPR aka sensitivity of the model) in the 

Y-axis as a function of the False Positive Rate (FPR equal 

to 1-specificity) in the X-axis (Figure 4).  

 

 

Figure 4. ROC curve comparing the classifiers’ accuracy
6
. 

 

There are two efficient ways to evaluate the performance of 

a binary classifier from the ROC graph: 

1. identify the point at the closest Euclidean distance from 

the top left corner of the ROC. This point corresponds 

to the highest TPR and the lowest FPR simultaneously, 

namely the highest prediction accuracy attainable by 

the model. This particular point has been retained as a 

common ground for comparing model accuracy, 

although Provost, Fawcett, and Kohavi (1998) debated 

over its robustness and relevance. To mitigate this 

effect, we generated Monte-Carlo simulations of 20 

ROC by random sampling of training and test sets from 

the initial dataset, from which we extracted the worst, 

average and best prediction accuracy (Table 2). The 

averaged 20 simulations are presented in Figure 4 and 

allows a comparison between the 6 binary classifiers. 

2. the Area Under the Receiver Operating Characteristic 

(ROC) curve (AUC), also called the c-statistic, 

                                                           
6 The TPR and FPR normally vary from 0 to 1 in a ROC curve. Figure 4 is 

only an extract with unscaled axes from the full ROC curve as it serves 
only as an illustration of the principle of ROC curves. 

corresponds to the “probability that the classifier will 

rank a randomly chosen positive instance higher than a 

randomly chosen negative instance” (Fawett, 2006). 

The c-statistic measures the quality of the classification 

of the binary classifier over the full range of a 

parameter or threshold. For this reason, it is often 

described as more robust at quantifying the average 

performance of a classifier than the mere prediction 

accuracy. 

We compared the binary classifiers by computing their 

average accuracies and the c-stastistic in percent (first value 

in each cell), as well as the minimum and maximum values 

(values in brackets) from the 20 Monte Carlo simulations 

(Table 2). To respect industrial confidentiality however, we 

provide data relatively to the average fit of the logistic 

regression model (marked in bold), as it is the simplest of 

the aforementioned binary classifiers. Since neural networks 

are known to be very sensitive to non-scaled datasets, we 

give the accuracy and AUC for the non-scaled (first line in 

each cell) and the scaled versions of the dataset (second line 

in each cell). 

 

Several insights arise from Figure 4 and Table 2: 

 The performance of the logistic regression is indeed the 

lowest on average, as measured by the prediction 

accuracy and the c-statistic. It is followed by 

classification trees, SVM, Gradient Boosted Trees, 

Neural Networks and random Forests, in that order. 

 According to the partial ROC curve, some models are 

more accurate for some values of FPR and TPR. In 

absolute terms, neural networks are the most accurate 

for low to middle FPR while SVMs are more accurate 

for middle to high values of FPR. 

 The variation in performance for different simulations 

of the same model is important, as measured by the 

range between the minimum and maximum values of 

Table 2. Accuracy and c-statistic of the binary 

classifiers relatively to logistic regression. 

 

Classifier 
Relative 

accuracy 

Relative c-

statistic 

Logistic regression 
100% [86-111] 

101% [88-111] 

100% [90-109] 

100% [91-106] 

SVM 
106% [25-128] 

105% [27-132] 

115% [108-122] 

115% [109-120] 

Classification trees 
114% [82-131] 

112% [80-136] 

108% [98-116] 

107% [100-116] 

Random Forests 
134% [131-136] 

134% [131-136] 

111% [103-118] 

111% [101-122] 

Gradient Boosted Trees 
121% [102-132] 

120% [99-131] 

115% [104-127] 

114% [105-120] 

Neural network 
115% [61-132] 

127% [119-132] 

115% [77-126] 

123% [115-129] 
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the accuracy and the AUC. For instance, SVMs have a 

good average performance (accuracy=106%, 

AUC=115%) but a change in the dataset can lead to 

very poor (25%) or excellent (132%) prediction 

accuracies.   

 The variation in model performance can be large for 

one criterion and not for the other. The lower the 

variation, the more robust the method and thus the 

higher degree of confidence one can have on the quality 

of the output of a given model. Again, SVMs offer a 

good illustration of this effect, as the accuracy has a 

high variance compared to the AUC  

 Except for 8 out of 24 cases, scaling the dataset 

improves the prediction accuracy of the c-statistic. It is 

particularly significant for neural networks, whose 

lowest performance becomes one of the highest 

amongst all models. 

5. DISCUSSION AND CONCLUSION 

First of all, the results appear promising compared to the 

state-of-the-art, although confidentiality agreement impeded 

us to provide absolute performance of the binary classifiers.  

The overall comparison of the binary classifiers shows that 

the models are complementary. As often in statistical 

modelling, there is no “one size fits all” but rather models 

whose dissimilar characteristics make them more suitable to 

different objectives or users. On the one hand, the logistic 

regression will be more adapted to an infrequent user with 

less statistical skills and interested in quickly obtaining an 

approximate estimate from a simple and robust model. On 

the other end, neural networks might be a better choice for a 

well-defined objective where high and robust prediction 

accuracy is required (e.g. the integration into an 

optimization system). Business objectives will decide on the 

trade-offs between the conflicting criteria in Table 3, 

knowing that accuracy is often the criterion against which 

the other criteria - interpretability, computing cost, easiness 

to fit-  have to be traded with. Nonetheless, ensemble 

models based on trees – namely random forests and boosted 

trees – seem to offer a proper overall compromise: they are 

robust, easy to train and fit, not too costly for the 

performance increase they allow while still yielding deep 

insights if interpreted correctly. 

A quantitative ranking of the models is somewhat arbitrary 

as the performance might not increase for the accuracy and 

the AUC simultaneously. Moreover, some models are more 

performing for some zones of the ROC curve, meaning that 

different binary classifiers should be chosen according to 

the target values of FPR and TPR. Thus, it might be 

worthwhile to create an ensemble “meta-model” based on a 

combination of the 6 models, eventually applied selectively 

to right portions in the dataset. 

Variation in performance can be quite high and depends on 

two main factors, whose relative influence on the model 

robustness is challenging to assess:  

1. The structure of the training and test sets randomly 

generated at each simulation. In such case, the absolute 

robustness of the models should be clearly questioned 

and the model should not be used, as it might not be 

possible to ensure the degree of accuracy of its 

predictions. SVM and to a lower extent single 

classification trees should thus be used carefully in our 

case study. 

2. The internals of each method have some influence on 

the model performance: random generation of initial 

weights for neural networks, a local instead of a global 

minimum encountered by an optimization technique, 

etc. In such a case, the robustness of the model can be 

improved by tuning its hyperparameters. Nonetheless, 

this operation requires high statistical expertise and 

might not improve significantly the performance of a 

model   

Scaling the initial dataset provides a better ground for 

comparing the models and almost always improves the 

model performance, should it be measured by the AUC or 

the prediction accuracy. This data transformation step is 

even necessary to ensure the relevance of neural networks, 

which finally ranks as the most performant in absolute 

terms. Thus, we recommend scaling the datasets whenever 

possible before fitting binary classifiers.  

Next steps for future research can be formulated:  

 The first step would consist in increasing the robustness 

of the performance assessment by generating more 

simulations (hundreds or even thousands) and taking 

quantiles or confidence intervals from the simulated 

ROC instead of the minimum and maximum values  

 Improving the performance of each model might be a 

second step, done by better tuning of the 

hyperparameters and by adding more predictors, at the 

expense of a higher computing cost and probably for a 

marginal gain in performance. 

 Compare the prediction accuracy of the statistical 

models with the manual engineering-based estimates 

done by seasoned maintenance engineers. This task 

would be time-consuming and uncertain, given the lack 

of structured data.  
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NOMENCLATURE  

  number of observations in the sample 

  number of predictors in the model 

      output vector to be predicted, containing the   

probability or the occurrence of failure 

    (   ) matrix of predictors (incl. intercept) 

      vector of residuals of the model 

  (   )    vector of model’s coefficients  

   actual function explaining   according to   

 ̂  estimate of the actual function  
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APPENDIX 

 

The binary classifiers are ranked qualitatively according to four criteria, amongst which accuracy that is related to results in 

Table 2. The more asterisks, the better the classifier on the criterion. The qualitative ranking can be interpreted for two 

criteria: 

 For “Interpretability”: *** corresponds to a classifier directly returning regression coefficients, so that the results 

can be easily interpreted by non-specialists (i.e. coefficients of a multiple linear regression giving the marginal effect 

of the predictor). ** corresponds to either an easy visualization of the results (classification trees) or the classifier’s 

ability to return the relative importance of the variables (random forests). * is given to “black-box” models for which 

engineering insights are difficult (gradient boosted trees) if not impossible to obtain (SVM, neural networks) from 

the results. 

Table 3. Overall qualitative comparison of binary classifiers according to four criteria. 

 

Classifier Accuracy Interpretability 
Easiness to train and 

fit the model 

Computing 

affordability 

Logistic regression * *** ** *** 

SVM ** * * * 

Classification trees * ** *** *** 

Random Forests *** ** ** ** 

Gradient Boosted Trees *** * ** * 

Neural network *** * * * 
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 For “Easiness to train and fit”: *** corresponds to a classifier that can be used by anyone with normal engineering 

skills can manage with less than one days training. ** is awarded to classifiers requiring approximately 1-2 weeks of 

specialized training. * is given to models requiring professional expertise. 
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ABSTRACT

Recently, Prognostics and Health Management (PHM) has
gained attention from the industrial world since it aims at
increasing safety and reliability while reducing the mainte-
nance cost by providing a useful prediction about the Re-
maining Useful Life (RUL) of critical components/system.
In this paper, an Instance-Based Learning (IBL) approach is
proposed for RUL prediction. Instances correspond to trajec-
tories representing run-to-failure data of a component. These
trajectories are modeled using Unsupervised Kernel Regres-
sion (UKR). A historical database is used to learn a UKR
model for each training unit. These models fuse the run-to-
failure data into a single feature that evolves over time and
hence allow the construction of a library of instances. When
unseen sensory data arrive, the learned UKR models are used
to construct the test degradation trajectories. RUL is deduced
by comparing the test degradation trajectory to the library of
instance. Only the most similar train instances are kept for
RUL prediction. The proposed approach was tested and com-
pared to approaches that apply linear regression and PCA to
model the library of instances. Results highlight the benefit
of using UK compared to other approaches.

1. INTRODUCTION

Industrial systems are becoming more and more complex.
Maintaining them is thus becoming costly and difficult. Prog-
nostics and Health Management aims at reducing such main-
tenance costs while increasing systems security and reliabil-
ity. In a PHM process, prognostic is a central activity where
the common task is to predict the remaining life before failure
of the examined equipment. As defined by the 2004 Interna-
tional Organization for Standardization (ISO, 2004), prog-
nostics is an estimation of time to failure and risks of one or
more existing or future failure modes.

Racha Khelif et al. This is an open-access article distributed under the terms
of the Creative Commons Attribution 3.0 United States License, which per-
mits unrestricted use, distribution, and reproduction in any medium, provided
the original author and source are credited.

In general prognostic approaches can be classified into three
classes: model-based, data-driven and hybrid approaches.

Model-based approaches study and model the degradation of
the component by relying on the physical laws describing the
damage propagation. This type of approaches gives accurate
prognostics results. However, building such models for com-
plex systems is a hard task especially in the absence of an
adequate knowledge about the physical degradation phenom-
ena.

Data-driven approaches, on the other hand, offer an appeal-
ing alternative to perform prognostics due to their ability to
learn models from historical data. They are based on statis-
tical and learning techniques and give the prediction output
directly from the condition monitoring data. They offer a
tradeoff between precision, complexity and implementation
costs. Unlike model-based approaches which are application
specific, data-driven approaches have a wider framework of
applications. They can be applied on different systems as
long as the assumptions related to the implemented approach
are satisfied. However, the prediction outcome resulting from
such approaches is less accurate.

Hybrid approaches are a combination of both data-driven and
model-based approaches. The combined approach inherits
the merits of both approaches while reducing the associated
inconveniences. To increase the accuracy and the prediction
performance, the physical model is studied and validated of-
fline using model-based techniques and then models parame-
ters are updated online using data-driven techniques.

As we do not have any prior knowledge about the physical
degradation model of the monitored component, in this pa-
per, we propose the use of a data-driven approach for RUL
prediction. The approach is known under the name Instance
Based Learning (IBL). The problem with this approach is to
find an instance formalization that is able to estimate the RUL
of a component while using the entire available sensory data.

There exist two types of instance formalizations: supervised

1
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and unsupervised formalizations. (Wang, Yu, Siegel, & Lee,
2008) for example used a supervised formalization of instances
by applying linear regression. They proposed to learn a re-
gression model of the damage by taking into account only
the boundaries of the sensory data. (Mosallam, Medjaher,
& Zerhouni, 2013) on the other hand, used an unsupervised
formalization by applying principal component analysis.

We select the unsupervised formalization of instances and we
propose the use of unsupervised kernel regression for this
purpose. We compare the performance of the latter to both
PCA and linear regression. Instances in our approach are thus
obtained using unsupervised kernel regression. UKR allows
modeling the latter without any assumptions about the com-
ponents health status or the degradation model. The proposed
method constructs a library of instances by fusing the run-to-
failure data into a single feature that is faithful to the sensory
data representing the damage propagation. Test instances are
matched to the library of instances using a similarity measure
and the RUL is estimated by using the end of life values of
the retrieved best matches. This approach is compatible with
any applications satisfying these assumptions:

• Run-to-failure data is available.

• Test components are assumed to go through the same
degradation process as train components.

• Sensory data capture the health status evolution.

• Component level prognostics.

The remaining of this paper is organized as follows: section 2
details the proposed approach. Section 3 describes the exper-
imental validation and the obtained results. Finally section 4
concludes the paper.

2. RUL PREDICTION APPROACH

The proposed approach predicts the remaining useful life of
a new component based on already seen examples. That is
learned instances.

IBL approaches for RUL prediction usually go through three
main steps as depicted in Figure1; instance formalization, re-
trieval step and RUL prediction. The purpose of the instance
formalization step is to construct a library of instances that
characterize the health status evolution of components. At
the retrieval step, a similarity test is conducted to retrieve the
most similar instances that are present in the library and re-
lated to the problem instance. Once these instances are iden-
tified, the information present in them is then used for RUL
prediction.

In our proposed approach, instances are formalized as degra-
dation trajectories modeled using unsupervised kernel regres-
sion. The method is divided into two steps: an offline and
an online step. Offline, a UKR model is learned from each
train instance, where a train instance is an instance that goes

 

Sensory  
data 

Instance 
 formalization 

Retrieval  
step 

RUL 
 prediction Library of  

instances 

Figure 1. General IBL approach for RUL prediction.

through the whole degradation process. These learned mod-
els are used to fuse the multidimensional run-to-failure data
into a single feature that depicts the evolution of the health
status of the component. Hence, this modeling step enables
the construction of a library of train instances that are faith-
ful to the sensory data reflecting the degradation propagation.
Online, each of the learned UKR models will be used to re-
construct a test degradation trajectory for the considered test
unit. For a single test unit, all the reconstructed trajectories
are compared to the train trajectories present in the library of
instances. RUL is deduced by keeping only the train trajecto-
ries that are close to the test instance. The proposed approach
is summarized in Figure 2 and will be further explained here-
after.

Offline sensory 

data (history) 

[1xm] [nxm] 

Rgression 
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 fitting 
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RUL  
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UKR  
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Online step 
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Rgression 

Figure 2. The general proposed approach. IBL approach for
RUL prediction.

2.1. Instance Formalization

Instances are formalized as a one dimensional signal that is a
faithful and compact representation of the multidimensional
sensory data related to the degradation process. These degra-
dation trajectories are modeled using unsupervised kernel re-
gression.

UKR is a recent approach that is used to obtain a faithful la-
tent dimensional representationX=(x1,x2,,xN ) , [qxN] of the
set of observed data (sensory data in our case) Y =(y1,y2,,yN )
,[pxN]. The method was proposed by Meinecke and Klanke
as an unsupervised formulation of the Nadaraya-Watson esti-
mator. The idea is to generalize the estimator to the unsuper-
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vised case of function learning (Meinicke, Klanke, Memise-
vic, & Ritter, 2005). In the supervised case the estimator real-
izes a continuous generalization of the functional relationship
between two random variables X and Y as described in Eq.(1)

y = f(x) =

N∑

i=1

yi
KH(x− xi)∑
j KH(x− xi)

(1)

Where KH is the kernel density.

As stated in (Memisevic, 2003), the difference between the
supervised and the unsupervised regression lies in the usage
of the input variables. In the supervised case this becomes a
problem of estimating a functional relationship of the input
and the related output variable using samples of the latter. In
the unsupervised case, the input variable space is considered
missing and needs to be estimated together with the func-
tional relationship by finding the sample set of outputs that
gives the minimum reconstruction error. In order to derive the
unsupervised counterpart of the estimator, (Meinicke et al.,
2005) use the same functional form of the Nadaraya-Watson
kernel regression estimator, but treat the missing input data as
parameters. This set of parameters X=xi serves as a lower di-
mensional latent representation of the original dataset Y=yi.
The UKR function becomes:

{
bi(x;X) = K(x−xi)∑

j K(x−xi)

y = f(x;X) =
∑N

i yibi(x;X) = Y b(x;X)
(2)

Where bi(x;X) contains the kernel-based latent basis func-
tion and f(x;X) is the UKR function.

The objective of unsupervised function as defined by Meincke
et al. (2005) is to find a suitable realization of the mapping
between the latent domain and the original data domain to-
gether with an associated latent representation. This can be
reduced to a problem of finding a suitable latent mixture den-
sity p.

p(x;X) =
1

N

N∑

i=1

K(x− xi) (3)

With that latent density model, the UKR function can be com-
pletely specified without any further parameters. After having
defined the UKR model, the training phase of UKR consists
in minimizing the reconstruction error, R, which is the error
between the original observed data and the data points recon-
structed from the latent variable vectors xi

R(X) =
1

N

N∑

i=1

||yi − f(xi;X)||2 (4)

The concept of UKR is an appropriate choice in our applica-
tion since the output variable space to which we do not have
access, as we do not have any prior information about the
degradation evolution, is not required to perform the regres-
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Figure 3. Learning how to formalize instances.

sion. The output of the regression model is a compact repre-
sentation of the input data that keeps the resulting information
loss at minimum.

As it can be seen from figure 3, from each training unit, a
model is learned and saved in a library of models. This library
is later used to formalize train and test instances. See figure
4.
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Figure 4. Instance formalization. (a) For a training unit. (b)
For a test units.

For a train instance, the corresponding UKR model is known
and directly used to construct the degradation trajectory. As
for a test instance, the corresponding model is not known but
assumed to be one of the models presents in the library. In
order to identify the right model, all the models of the library
are used. This results in “n” - number of UKR models- test
trajectories for a single test unit. At the retrieval step only the
appropriate models are kept.

The obtained trajectories using UKR are further processed to
produce a smoother output. Figure 5 presents the obtained
trajectory after curve fitting.

2.2. Retrieval Step

In IBL, the retrieval step is of high importance. Retrieving
unrelated instances will result in a large margin of prediction
error. In order to obtain an estimation of the RUL of a given
test instance, the train instances (instances with known End of
Life values) similar to the test instance are retrieved. This is
done by conducting a similarity test between test and train tra-
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Figure 5. UKR degradation trajectory.

jectories. In most of the available IBL prognostic approaches,
the historical data is not entirely used to set this similarity, it
is either set by a vector of features characterizing the instance
instead of of the actual instance data (Xue et al., 2008), or
by using only the last measurements (Ramasso, Rombaut, &
Zerhouni, 2013),(Zio, Di Maio, & Stasi, 2010).(Mosallam et
al., 2013) and (Wang et al., 2008) took into consideration the
whole historical data. However, with giving the same weight
to all observations while it is known that late observations are
of higher importance as failure of components occurs at late
ages.

In this work, we use a similarity measure that considers the
whole observation data with giving more weights to late ones.
Figure 6 illustrates how to conduct this similarity test for a
single test unit ”p” when ”n” train instances are available.

 

Figure 6. Retrieval step for a single test instance.

For each train instance, a single trajectory is constructed us-
ing the UKR model learned from that train instance. As for
test instances, the testing unit consists of n test trajectories
each constructed using one of the UKR models learned of-
fline. As shown in Figure 6, each test trajectory is com-
pared to its peer train trajectory that is the train trajectory con-

structed using the same UKR model. The sign +/- on the fig-
ure represents the computation of a similarity score between
the two trajectories. This score is obtained by conducting a
similarity measure as follows: The examined trajectories are
divided into windows. Each window in the test trajectory is
scanned throughout the entire train trajectory. The purpose of
doing this is to find the trajectories with the highest similarity
scores. The similarity between windows and thereby trajec-
tories is based on the Euclidean distance, where late windows
are given more importance since failure occurs at the late ages
of life of the component. The final similarity score for each
train trajectory is a value that is between ’zero’ and ’one’.
Zero indicating complete dissimilarity and one indicating a
perfect match. The described similarity measure is formal-
ized in algorithm 1 and illustrated in figure 7.

 

 
time time 

Figure 7. Proposed similarity measure.
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By the end of the retrieve step, the most similar instances
to the train instance are identified based on their similarity
scores and kept aside for later use.

3. RUL PREDICTION

For a given test instance, RUL is predicted using the retrieved
train instances. As described in figure 8, the library of in-
stances contains instances with known end of life values. Once
an online instance arrives, that is an instance with an unknown
end of life value, a similarity test between instances is con-
ducted using the approach described in this paper. RUL is
then deduced using the EOLs of the best match instances.

 

EOL ? 

Online data 

Described approach 

Instance formalisation  

              + 

Similarity measure 

Estimated 

RUL 
EOL 1 EOL 2 EOL n 

Library of instances  

Figure 8. Proposed similarity measure.

For each retrieved train instance, RUL is calculated as the
difference between the end of life of the latter and the end of
similarity. Eq.(5)

RUL(i) = EOLi − EOSi (5)

Where EOLi is the end of life of the train instance i and
EOSi is the end of similarity which also indicates the cur-
rent location on the train instance and is set by the similarity
measure.

The predicted test RUL is obtained as either a simple average
of RULs of best match instances, Eq. (6) or a weighted sum,
where weights are obtained based on the similarity score of
the best match instances, Eq. (7).

MeanpredictedRUL =
1

k
.

k∑

i=1

RUL(i) (6)

WeightedsumpredictedRUL =

k∑

i=1

w(i).RUL(i) (7)

where,

w(i) =
SimScore(i)

∑k
i=1 SimScore(i)

4. APPLICATION AND RESULTS

4.1. Data Representation

The challenge dataset of diagnostics and prognostics of ma-
chine faults from the first international conference of PHM
(Saxena, Goebel, Simon, & Eklund, 2008) was used to eval-
uate and assess the performance of the proposed approach.

This dataset simulates the damage propagation of aircraft gas
turbine engines. It consists of 26 features which are multi-
ple multivariate time series signals. Each time series repre-
sents a different engine from the same complex system. At
the beginning, each engine is operating normally but ends up
developing a fault prior to failure.

Among the available datasets, dataset 1 was used. This dataset
is characterized by one operating condition and one fault mode.
The training file is composed of 100 time series representing
the damage propagation of 100 units. Each unit in this file
goes through the whole degradation process. The test file is
composed of 100 time series as well. However, these time se-
ries end up some time prior to failure. Hence, the objective is
to predict the remaining useful life for each test unit. Among
the 21 sensors, only 5 were used accordingly to (Ramasso et
al., 2013),(Wang et al., 2008).

4.2. Evaluation Metric

To evaluate the performance of the proposed approach, the
percentage of acceptable predictions is considered as an eval-
uation criteria.

A prediction is considered correct if its corresponding error,
Eq. (9) falls with the range of acceptable errors (Ramasso et
al., 2013), (Goebel & Bonissone, 2005). In this paper, the
interval was set as I= [-10, 13]. The interval is asymmetric
as early predictions i.e. predictions with positive errors, are
preferable in prognostics and hence more tolerable compared
to late ones. Figure 9 illustrates this interval.

The performance is then calculated as the percentage of the
overall correct predictions.

Error = ActualRUL− PredictedRUL (8)

Late 

predictions 

Correct predictions Early 

predictions 

Too 

late 

Too  

Early 
0 +13 -10 

Figure 9. Evaluation Metrics.

4.3. Results and Discussion

To estimate the remaining useful life of the test unit a UKR
model was learned from each unit in the training file. The
entire 100 units of the test file were used for testing. It should
be noted here that test trajectories have different lengths. That
is each test unit has a different prediction horizon.

Throughout the whole testing, the same set of parameters of
the similarity measure was used, the size of windows was set
to 30, the overlap to 15, λ was set to 1 and the threshold to
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0.8. this set of parameters is user-defined and determine how
strict is the similarity measure.

Figure 10 shows the predicted and real RUL values for the
100 test unit, using UKR with a simple average of best match
RULs.
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Figure 10. Actual and predicted RUL values for the test units.

The performance of our approach based on UKR was com-
pared to PCA and linear regression. To do this, the UKR
modeling step in the general approach, Figure 2, was replaced
by PCA and linear regression.

As a first alternative to UKR, and for comparison reasons,
PCA was used to fuse the sensory data into a one dimen-
sional signal. This step was repeated offline and online. The
obtained fitted online signal was compared to the library of
instances constructed using PCA and RUL was calculated as
described in section 2.3.

The second alternative was to model the degradation trajec-
tories using linear regression. As proposed by (Wang et al.,
2008) a regression model was trained offline by considering
two states of the component; healthy and faulty. A com-
ponent is considered healthy at the beginning of its life and
faulty at the end of its life. Only sensory data representing the
healthy and faulty states were used to train the model. The re-
gression model was used both offline and online to fuse the
sensory data. The fitted online trajectory was compared as
well to the library of instances following the same approach
described in this paper.

The performance of UKR was compared to PCA, since in this
work UKR was used as dimension reduction tool and PCA
is the most widely used and understood dimension reduction
tool. Linear regression on the other hand was used by (Wang
et al., 2008) for the same datasets and proved to be efficient
for damage modeling on this dataset.

Results obtained using UKR based modeling approach, PCA
and linear regression are shown in figures 11 and 12. Fig-

ure 11 depicts the obtained results using a simple average of
RULs of best match instances while figure 12 depicts the ob-
tained results using a weighted sum of the latter. Both meth-
ods had almost equal performance with slight preference of
the weighted sum method.

Figure 13 depicts the performance difference between UKR
linear regression and PCA according to the selected number
of neighbors. The graph shows better performance of UKR.

Figure 11. Obtained results using simple average of best
match RULS.

Figure 12. Obtained results using a weighted sum of best
matches RULs.

The results show clearly higher performance of UKR based
modeling approach compared to both PCA and linear regres-
sion modeling. This superior performance can be explained
by the following main two reasons; absence of any type of
modeling while using PCA, and using only portions of the
training data to train the regression model while applying lin-
ear regression.
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Figure 13. Performance difference between UKR, PCA and
linear regression.

The approach is built on instance based learning where the
similarity between train and test instances is of high impor-
tance. In the absence of any learned model, that is applied to
both train and test instances as it is the case for PCA, finding
and detecting such a similarity is rare (not always an option)
since the instances were not modeled in the same way. This is
why PCA had the worst performance compared to linear re-
gression and UKR.As for linear regression, although a unique
model was used for both test and train instances the model
was learned using only a portion of the training data while ne-
glecting the rest. This slightly affected the performance of the
linear regression leading to worse performance than the pro-
posed UKR-based approach for higher number of neighbors.
As it can be seen from figures 8 and 9, changing the number
of neighbors affects the performance of the prediction. The
prediction performance for both approaches varies from 42%
to 50% for the linear regression approach and from 38% to
57% for the UKR approach. The best prediction performance
value using the linear regression approach is 50% and it is
obtained by considering 9 neighbors while the best prediction
performance for the UKR approach is 57% obtained using 15
neighbors. Comparing the best prediction performances of
both approaches UKR seems to be better as it gives the high-
est overall performance.

5. CONCLUSION

This paper presented a prognostic approach for RUL predic-
tion based on instance based learning and unsupervised ker-
nel regression. UKR was used to model the degradation tra-
jectories without any prior knowledge about the health state
of the component. Online, the piece of trajectory constructed
using the UKR models learned offline, is compared to a li-
brary of degradation trajectories. RUL is then estimated di-
rectly using the retrieved best match trajectories.

The approach was demonstrated on the challenge dataset of
diagnostics and prognostics of machine faults. Results showed
better performance of UKR modeling compared to PCA. As
for linear regression, the performance difference is in favor of
UKR for higher number of neighbors. Our future work will
focus on further enhancing the instance formalization and the

similarity measure by adding to the temporal aspect of tra-
jectories a frequency aspect and considering the frequency
difference when setting the similarity score.
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ABSTRACT 

Aircraft readiness management plays pivotal role for 
aviation authorities to enhance mission availability, 
reliability and reduce maintenance cost. This has been the 
focus area of the industry for many years now. This paper 
focuses on developing an approach for maximizing the 
aircraft readiness based on the Aircraft Health Assessment 
and a novel approach for Maintenance Planning. An 
integrated solution using results from Prognostic Health 
Management (PHM) functions has been proposed. The 
concept is based on the condition based mission planning, 
operational risk assessment, maintenance planning and 
supply chain management. Also an insight is provided into 
the systematic approach to derive maintenance strategy 
leading towards certification. Although, the solution can be 
used for both commercial and military aviation, the focus in 
this paper is on implementation for military platforms. 
Details on implementation are discussed in brief and the 
results of this implementation on some hypothetical 
scenarios are presented. The results outline the effectiveness 
of the approaches in improving the aircraft readiness. 

1. INTRODUCTION 

Aircraft Readiness is a related measure of the availability 
and is a metric predominantly used for military aviation. 
Readiness includes operational downtime, free time and 
storage time. Aircraft Readiness covers a broader 
perspective than just availability of an aircraft, a complete 
availability of the operational systems with the supporting 
staff, resources and infrastructure necessary for the 
operations is a measure of the readiness. Overall readiness 
of an air vehicle is a joint product of capability assessment 
of planned missions based on present and future health of 

the vehicle and efficient maintenance planning considering 
logistic delay and other constraints related to supply chain. 
The Aircraft Readiness Management process can be 
subdivided into Maintenance Planning & Management, 
Resource Planning & management & Supply Chain. 

The effective management of operations of aircraft across 
fleet, squadron and enterprise levels for an organization 
highly depends upon the availability of a matured Operation 
Support System.  The Operation Support System, being core 
off-board ISHM module, generally provides ground support 
services through Mission Planning and Readiness 
Management of air vehicle.   

Most of the air forces or airlines use disjoint tools for the 
sub-processes. This may lead to non-feasible mission plans, 
more maintenance time and introduces delays and 
operational overheads in identifying the suitable aircraft 
with the planned configuration. ISHM enables to provide 
integrated solution of these functions for efficient and cost 
effective readiness management.  

Intelligent maintenance planner has an optimization model 
for appropriate clustering of maintenance tasks into 
maintenance events. This model, which synchronizes with 
resource planning and mission planning, enhances mission 
availability, fleet maintainability and operational cost 
saving. Intelligent maintenance planner augments the 
conventional Reliability Centered Maintenance (RCM) 
process (Preventive, Reactive, etc) with Condition Based 
Maintenance (CBM) to generate an optimized maintenance 
plan.  

The novelty of this work includes method to create 
maintenance database from certifiable RCM decision logic, 
handling strategic importance of planned missions based on 
mission types, providing flexibility in selection of 
optimization modes (availability alone and availability 
along with cost). This also includes a simplified approach 
for accommodating resource constraints in order to provide 

Adhikari et al. This is an open-access article distributed under the terms 
of the Creative Commons Attribution 3.0 United States License, which 
permits unrestricted use, distribution, and reproduction in any medium, 
provided the original author and source are credited. 
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2 

an integrated solution. Simulation results of the solution 
integrated in ISHM Simulation Framework of Airbus 
Defence & Space illustrate the convincing performance of 
the algorithm and help in taking decision on functional 
architecture of off-board ISHM (Mathias Buderath, 
Adhikari P. P., 2012).  

2. CONCEPT OF INTEGRATED SOLUTION OF READINESS 
MANAGEMENT 

Planning for aircraft readiness generally is done in two 
phases, namely Long-term, Short-term. However, some 
operator prefers to implement also “Medium Term” 
(Muchiri  Anthony K., 2002).  In order to synchronize 
aircraft utilization and aircraft maintenance, a close 
relationship is maintained between air force head quarter 
and squadron for military operation; the Commercial 
Planning Department and Maintenance Planning & Support 
Departments for civil aviation. Long term planning, input 
for which is driven by Commercial Planning Department 
(for civil) or Air force Headquarter (for military), consists of 
the following functions: 

• Flying Hours Programs (FHP) 

• Aircraft Utilization Scenario  

• Maintenance Scenario 

• Resource Requirement Scenario 

Flying Hours Programs (FHP) by Air force Headquarter 
determines the number of total yearly flying hours in order 
to ensure combat readiness and training requirement of Air 
Force (Philip Y Cho, 2011). Each squadron specifies daily 
sortie requirements and assigns to each aircraft for complete 

year and this results to generate Aircraft Utilization 
Scenario. Preventive maintenance requirements with 
different frequencies are identified to predict maintenance 
scenario for each aircraft based on predicted usage for 
complete year. Then resource requirement for preventive 
maintenance scenario are identified date-wise for complete 
year.       

Readiness management is a short term planning (1-3 
months) of maintenance events and resources required along 
with associated managements based on health assessment 
which analyzes results from diagnostics, prognostics, 
inspections and assesses operational capability of aircraft for 
planned mission.  Mission Planner receives information 
from Readiness management on readily available aircrafts 
for operational planning.  

Reliability Centered Maintenance (RCM) provides 
maintenance strategy mapping maintenance type and 
redesign decision with each fault and PM task details 
(recommended schedule, Max FH, cycles, calendar date, 
etc) to Readiness Management. RCM is a well-structured, 
logical decision process used to identify the policies needed 
to manage failure modes that could cause the functional 
failure of any physical item in a given operating scenario.  

3. FRAMEWORK TO DERIVE MAINTENANCE STRATEGY  

There are at least six key factors required for maintenance to 
achieve its purpose of optimizing operating performance. 
These are to reduce operating risk, avoid aircraft failures, 
provide reliable equipment, achieve least operating costs, 
eliminate defects in operational aircraft and maximize 
availability. These purposes are determined by three KPIs: 
enhancement in mission availability, reliability and 

Figure 1. Functional Block Diagram of Aircraft Readiness Management 
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reduction of maintenance cost. Suitable maintenance 
strategies are selected during design stage to provide the 
required values of the KPIs. However, maintenance strategy 
may get changed based on periodic evaluation of 
maintenance effectiveness and risk assessment during 
operation phase.   

Maintenance Strategy aims to map all fault modes at 
individual and LRU levels to different maintenance 
categories: PM (S-Servicing, L-Lubrication, OC-Scheduled 
On-condition, HT-Hard Time and FF-Failure Finding 
Inspection), CBM, Run-to-Fail and other actions consisting 
of redesign, change in operation or maintenance procedure 
or restriction in operation. Optimized maintenance strategy 
is also derived at component/LRU level.  

Maintenance credits are acquired when an ISHM system can 
replace the existing industry standard maintenance for a 
given component or complete aircraft system and this 
enhances availability, maintainability and mission 
capabilities of aircraft. To reach this level, evolution of 
ISHM development has to pass through effective process for 
technology maturation, development, verification, 
validation, qualification and finally certification. 

After determination of the potential functionality and 
benefits of ISHM, technology maturation efforts are 
initiated. The maturation efforts are often performed 
through technology development guided by appropriate 

roadmaps. Efforts are allocated to RCM analysis, design and 
analysis of algorithm for diagnostics, prognostics, sensor 
selection and other enablers related to off-board ISHM. This 
also includes enhancing the performance of ISHM in terms 
of increased accuracy, reduced weight, improved reliability, 
advanced communication and efficient data transfer. 
Technology gaps and risks are identified and efforts are 
allocated to fill the gaps and to mitigate the risks. During the 
maturation phase, the potential benefits and credits of ISHM 
are re-assessed and validation evidence is gathered through 
component rigs, integrated simulation framework, etc. The 
Figure 3 details the activities during concept refinement and 
technology development phases. 
 
RCM analysis is the foundation to establish a framework for 
candidate selection. The Figure 2 depicts the logic for 
deciding maintenance strategy for a LRU. The proposed 
decision logic is based on existing guidelines: SAE JA1011, 
SAE JA1012, NAVAIR 00-25-403 and ATA MSG-3 with 
suitable modification. After fault consequence check, 
maintenance options for each fault type of a LRU are short 
listed based on technical feasibility only. Cost effectiveness 
and risk are computed for each selected option of the fault 
type. Best maintenance option or combinations of options 
are selected for LRU by solving optimization problem 
which maximizes availability, ROI of selected option and 
minimizes risk at the LRU level.  

 
Figure 2.  RCM Decision Logic for Maintenance Strategy 
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Figure 3.  Guideline for technology development & 
maturation 

4. MAINTENANCE PLANNING  MECHANIZATION 

Operations in commercial airline are more cost sensitive and 
hence it is no surprise that major focus of the work on 
maintenance planner has been on airline scheduling. 
Significant differences in the military and civil flight 
operations make most of the existing work not directly 
applicable to military aviation, but can be a good starting 
point. The basic difference in civil and military aviation is 
that the civil aviation is highly focused on route selection 
and assignments with profitability and cost savings being 
the major goal. On the other hand, the goal for military 
aviation is a high level of combat readiness with cost being 
relatively less significant factor. Also, since the fighter 
squadrons are usually fixed at a given location, readiness 
does not involve any decisions regarding routes. Hence the 
objective here is to define a maintenance schedule that will 
minimize the downtime thereby ensuring most effective 
utilization of the system with applicable constraints at the 
lowest possible costs. In other words enhancing the 
availability leading to combat readiness is achieved through 
advanced maintenance planning and management.  
 
Maintenance-scheduling is not limited to aviation industry 
and the benefits are evident in various industries and 
substantial effort has been put into this over the last few 
years by various researchers, prominent among them are : 
power plants (Canto, 2008; Doyle, 2004; Damien et al., 
2007); aircrafts and -engines (Almgren et al., 2008; Sarac et 
al., 2006); production planning (Panagiotidou and Tagaras, 
2007). Almgren et al. (2008) presents mathematical models 

for finding optimal opportunistic maintenance schedules for 
systems, in which components are assigned maximum 
replacement intervals. The work is extended for complete 
aircraft having heterogeneous maintenance types (Run-to-
fail, Preventive, Condition Based Maintenance) along with 
the unique features as mentioned in the introduction.  
 
The following figure summarizes key steps for maintenance 
planning. 
 

 

Figure 4.  Key Steps for Maintenance Planning 

4.1. Mathematical models for optimization 

The proposed Maintenance Planner supports the following 
two modes of optimizations 

• Availability Optimization  
• Availability & Cost Optimization  

 
Let us consider there are ‘N’  maintenance tasks and a finite 
maintenance time horizon (in terms of day/slot) is 
discretised into ‘T’  time steps. The optimization problem for 
all three modes can be represented as following. 

Minimize (X,Z):    ∑ ∑
=

=

=







 +
T

t

Ni

i
ttitit ZDXC

1 1

       (1)

                                         
 
Subjected to: The constraints related to due dates of 
maintenance, associated thresholds, minimum gap between 
two consecutive maintenances, exclusivity of tasks and 
resource availability, etc are mentioned bellow. 

Where, 

Cit Weight factor of each design variable  in terms of 
maintenance cost or over maintenance time/effort 
related to maintenance task ‘i’  at day/slot ‘t’  

Dt Weight factor of each design variable  in terms of 
unavailability  and or maintenance site cost  related 
to possible maintenance event starting at day/slot ‘t’   

Xit Sets to ‘1’  if maintenance task ‘i’  is requested at 
day/slot ‘t’ ,  otherwise  it sets to ‘0’  

Zt Sets to ‘1’  if the resultant maintenance event for a/c 
occurs starts at day/slot ‘t’ , otherwise  it sets to ‘0’  
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The following table defines objective parameters (‘C it’  & 
‘D t’ ) in three different modes. 
 

Table 1. Definition of Weight factors 
 

Optimization 
Mode 

Cit Dt 

Availability 
Optimization  
 

w1*(Over 
maintenance Time)  

: for each task (i) & 
each day/slot (t) 
within maintenance 
horizon 

w2*(Mission 
Unavailability)     
: for probable 
maintenance 
event starting at 
day/slot (t) within 
maintenance 
horizon 

Availability & 
Cost 
Optimization  

w1*(Individual 
Maintenance Cost) 
+ w2*(Over 
maintenance Cost)  

: for each task (i) & 
each day/slot (t) 
within maintenance 
horizon 

w3*(Cost of Site) 
+ w4*(Mission 
Unavailability) 
 
: for probable 
maintenance 
event starting at 
day/slot (t) within 
maintenance 
horizon 

 
Constraints:  
 
If there is no resource constraint, each component is 
replaced / repaired on or before due date and maintenance 
schedule falls within opportunistic maintenance threshold 
and maintenance threshold.  
 

1
0

≥∑
=

tf

tt
itX ,       },...2,1{ Ni ∈                       (2)       

 

Where, ( )i
omth

i
mth

i
md tttt −−=0 , ( )i

mth
i
md tttf −=  and 

variables are defined here. 
          

i

md
t  

Time when maintenance is due for task ‘i’; This is 
calculated based on current and maximum FH, cycles 
and calendar date for preventive maintenance 
candidate. This is calculated from RUL from CBM 
candidate.  

i

omth
t

 

Opportunistic maintenance threshold for task ‘i’; 
Opportunistic maintenance threshold is maximum 
allowable window of maintenance schedule decision.  

i

mth
t  

Maintenance threshold for asset ‘i’; Maintenance 
threshold is threshold time before expiry of RUL; 
before which maintenance has to be scheduled. This is 
set to zero for run-to-fail maintenance candidate.  

 
For reactive maintenance of critical item, opportunistic 
maintenance threshold and maintenance threshold are zeros.  

For reactive maintenance of non-critical item, opportunistic 
maintenance threshold = - Threshold, i.e. Next maintenance 
event will include this task. For only CBM candidate, 
maintenance threshold is non zero. 
 
For preventive maintenance (Calendar based), gap between 
two maintenance dates scheduled should be such that 
number of days should be less than maximum numbers of 
days specified (‘Ti’ ) for the item. 

1
1

≥∑
+

+=

Til

lt
itX , TiTl −= ,....,0 (3)

    
If a maintenance event is scheduled, at least one 
maintenance task will be accomplished. 

tit ZX < ,  

           { } { }TtNi ,.....2,1&,.....2,1 ∈∈          (4) 

For exclusives maintenance tasks, two sets can not be 
included in same maintenance event. 
∑ ������� � �
�� � 1                                                 (5)                                                                                    
 
Where, 

�� � ������
��� � �����

��� �: ����
��� � � �����


��
 � �����
��
 �: ���


��
 �  
 
‘A’  and ‘B’ are selected from two exclusive sets of 
maintenance tasks.   

� � ��� � � � … .� ���   

 
Where, ‘d’ represents the set of days where maintenance 
tasks ‘A’  & ‘B’  may get scheduled together in same 
maintenance event, ‘q’  is the maximum number of 
combinations of maintenance instances of ‘A’  and ‘B’  
during complete maintenance horizon. 

A/C has to be mandatorily available for selected days. Cost 
of maintenance event is set to very high on these days 
(d1,2,..n). 

#�$�%&,(,..)� * 10,�-                                       (6)

  
    Special Constraints related to resource unavailability: 
 
If there is resource constraint for a critical item, due date 
(‘tmdr’ ) of maintenance is postponed to earliest date when 
resource is available and opportunistic maintenance 
threshold and maintenance threshold are set to zeros. A/C 
will be down until maintenance of the critical items. 

���.%/=1,      { }Nri ,.....2,1∈                           (7) 

 
If there is resource constraint for a non-critical item, due 
date of maintenance can be shifted to the earliest date when 
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resource is available and opportunistic maintenance 
threshold is of negative value, i.e. next maintenance event 
shall include this task. 

1
0

≥∑
=

tf

tt
itX ,            },...2,1{ Nncri ∈            (8)  

 

Where, ( )i
omth

i
mth

i
md tttt −−=0 , ( )i

mth
i
md tttf −=  and 

‘Nncr’  is number of non-critical tasks with resource 
constraint.  
                                              

No maintenance event can be scheduled if common 
resources like infrastructure are not available in a set of days 
(d1,2,..n). 

0)( ,..2,1
=∈ ndtZ                           (9) 

 

‘X it’  & ‘Z t’  are binary variables. Length of maintenance 
horizon is ‘T’  and ‘N’  is the maximum number of 
maintenance tasks to be scheduled within this horizon. 

{ },1,0, ∈tit ZX          

{ } { }TtNi ,.....2,1&,.....2,1 ∈∈            (10)         

 
The optimization problem is solved by Binary Integer 
programming. 
 
Instead of enhancing more number of constraints due to 
resources, the solution is simplified by recalculating due 
date of maintenance requests and opportunistic maintenance 
threshold. Towards this end, Maintenance planner projects 
allocation of resources based on maintenance requests, task 
priority, predicted usage considering missions planned, 
available resources as updated by resource planner.  Figure 
5 depicts the interactions between maintenance planner and 

resource planner along with sequence numbers. 

4.2. Availability model 

Unavailability of mission due to A/C down for maintenance 
event, which starts at particular day/slot, depends on the 
following factors:  

• Probable coincidence of maintenance schedule 
with mission schedule  

• Type of mission planned and this is driven by 
strategic importance factor 

• Duration of possible maintenance event consisting 
of maximum  number of maintenance tasks 

 
The aircraft down time for probable maintenance event 
starting at day / slot ‘d’  considering importance factor of 
missions affected is: 
 

∑∑
= =

=
Mt

i

Dd

j

jiDmjiCmjiFmdUa
1 1

),(*),((*),()(      (11) 

Where, 
Fm(i,j)    Mission of mission type ‘i’  is scheduled or not 

scheduled at day/slot ‘j’ 
 

Cm(i,j) Importance factor for mission type ‘i’  scheduled 
at day/slot ‘j’ 
 

Dm(i,j) Duration of mission type ‘i’  scheduled at 
day/slot ‘j’ 
 

Mt Maximum number of mission types 

Dd Maximum number of days/slots required by 
maintenance event. 

Figure 6.  Interaction between Maintenance Planner & Resource Planner 

Figure 5. Interaction between Maintenance Planner & Resource Planner 
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Importance factors for different mission types are 
configurable. The following table shows an example of 
gradation of importance of different mission types.  
 

Table 2:  Example of Mission Importance Grade 
 

Mission Type (code) Importance 
Grade [Level] 

Fighter Bomber  Very High [5] 
Suppression of Enemy Air Defence  High          [4] 
Maritime Air Operations Medium    [3] 
Reconnaissance mission Low          [2] 
Surveillance Mission Very Low [1] 
No Mission  No impact [0] 

 
In case of availability & cost optimization mode which may 
be applicable for civil operation, the aircraft downtime can 
be converted to cost incurred due to outage of aircraft 
operation. This contributes common maintenance cost 
related to maintenance event. 

4.3. Model for Aircraft over maintenance 

Due to clustering of maintenance tasks for batch 
maintenance of aircraft, some equipment may undergo 
maintenance ahead of their scheduled maintenance time. 
This is referred to as ‘over maintenance’. Over maintenance 
incurs additional cost to operation and support activities. 
 
Over maintenance factor for maintenance task ‘i’  at day ‘(d-
j)’  can be defined as: 

i
omthttojforjHopiFojdiOm 0**)(),( ==−     (12) 

 

Where, 

d Maintenance due date for task ‘i’ 
 

Fo(i)  Over maintenance effort per hour for task ‘i’   
 

Hop Average operating hour per day 
 

01203
4  Opportunistic maintenance threshold for 

maintenance task ‘i’  
 
In case of availability & cost optimization mode, this over 
maintenance factor can be converted to over maintenance 
cost after multiplying with appropriate cost factor and this 
contribute cost related to each maintenance task. 

4.4. Cost Model 

In Availability and Cost Optimization mode, objective 
function for scheduling maintenance events represents total 
cost to execute maintenance events during complete 
maintenance horizon and this cost aspects are attributed due 
to the following factors 

• Cost related to each maintenance task 
o The direct maintenance cost  
o Over maintenance cost attributed due to 

shifting of maintenance task from due 
date 

• Common maintenance cost related to a 
maintenance event  

o Cost of site/infrastructure 
o Representative cost of unavailability of 

mission due to A/C down for maintenance 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Cost of Individual Maintenance Task 
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Objective of maintenance optimisation is to reduce 
maintenance cost and to enhance availability. First type of 
cost is directly related with maintenance cost and second 
type of cost is mainly related with availability.  
 
The direct maintenance cost related to each individual 
maintenance task has the following cost components: 

• Material 
• Labour 
• Test 
• Ground support equipment 

 
Corresponding cost equations are given in detail in Table 
3.1 of NAVAIR 00-25-403.  

Common maintenance cost related to a maintenance event is 
attributed by the following factors 

• Cost of site/infrastructure 
• Representative cost of unavailability of mission 

due to A/C down for maintenance 
 
Cost of site/infrastructure depends upon demand and 
availability. Even if there is no real cost related to 
site/infrastructure, representative cost figure based on site 
availability brings intelligence in optimization. 
 

 
Figure 7.  Resource Planner Block Diagram 

5. RESOURCE PLANNING 

Mission effectiveness is highly dependent on efficient 
maintenance which in turn is dependent upon reliable and 
prompt logistical support. Regardless of the cost it is 
important to have the item readily available to support the 
efforts of the mechanics in a timely manner.  

Resource control function (Figure 7) calculates resource 
demand based on long term maintenance scenario, historical 
data. Validity check module generates resource constraints 
and validates maintenance plan based on request from 
maintenance planner. Resource Management function 
manages purchase process, tracks availability and delivery, 
avoiding excess inventory and captures feedback to refine 
continuously important thresholds like lead times, etc. 

6. CONDITION BASED MISSION PLANNING 

The condition based Mission Planner developed has an 
additional feature of providing warning to user for re-
planning in addition to the conventional features like entry 
of mission plan through digital map, replay of mission with 
aircraft model in loop, creation of database for mission plan 
& flying program. Re-planning intelligence of Mission 
Planner is driven by performance evaluation (level 1&2), 
mission and segment capability computed by ORA and 
approved maintenance planned.  
 
Initially the performance parameters of aircraft related to 
estimated trajectory as per mission plan are computed. If 
estimated performance exceeds the specified performance 
limits of aircraft, user is instructed in term of warning to re-
schedule the mission plan. Mission Planner warns the user 
to reschedule the mission plan if approved maintenance plan 
conflicts with mission plan. Applicability of mission 
segments of a particular aircraft is checked with respect to 
operational capabilities of the aircraft for the segment, 
computed by ORA. It checks whether operational capability 
for that segment is less than mission critical threshold. If 
operational capability does not support the particular 
mission segment for an aircraft, it instructs in term of 
warning to re-plan the particular segment of the Mission. 

7. RESULTS & DISCUSSION 

For simplicity, it is assumed that electrical and hydraulic 
system represents complete aircraft and a representative use 
case is defined to validate maintenance strategy and 
planning algorithm. Failure Mode Effect and Criticality 
Analysis (FMECA) are carried out for selected components 
which are run through the candidate selection logic to define 
maintenance type for each fault.   

Figure 8 represents different units of maintenance 
scheduling. A maintenance task is considered as lowest unit 
of maintenance to be scheduled. Task steps (TS) will be 
considered in the description of each maintenance task. 
Maintenance events are scheduled by clustering a number of 
maintenance tasks using optimization.  Maintenance Plan 
for an A/C is scheduling of all maintenance event during 
complete A/C maintenance horizon. Final Maintenance Plan 
is derived after merging individual maintenance plan for a 
fleet of A/Cs. 
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Figure 8.  Definition of different unit of maintenance 
planning for a use case 

 
A scenario is defined with maintenance tasks with asset ids 
within 100-116 (which are arbitrary). Database tables (~20) 
are populated with synthetic data related to faults, 
maintenance task details, resources required, cost details, etc 
aligning with the use case and mapping with OSA-CBM 
data structure.  Figure 9 depicts the maintenance plan 
computed by the tool developed. Individual maintenance 
requests are represented by different red colored symbols 
whereas the blue line with blue symbols represents 
beginning of a maintenance event with respective tasks 
having maintenance event spread across the shaded zone.  
Maintenance plan is created in Maintenance benefit mode 

where only PM and RTF maintenance types are considered 
and the same is created in maintenance credit mode having 
all possible maintenance types including CBM. The 
generated maintenance plan for the defined hypothetical 
scenario leads to the following observations. Availability 
enhancement is 19% more in maintenance credit mode 
compared to maintenance benefit mode. This indicates the 
benefit of CBM compared to PM.  Availability enhancement 
due to optimization is 64% in maintenance credit mode. 

Selection of optimum value of opportunistic maintenance 
threshold is done based on fact that availability increases 
with increase of the threshold but cost saving initially 
increases but starts reducing after some value of the 
threshold due to over maintenance cost. With this 
consideration, user may decide opportunistic maintenance 
threshold as 8 days as per Figure 10 for this specific 
scenario.   

Maintenance Planner ensures A/C to be more available for 
strategically more important mission. The priorities of 
missions are assumed as mentioned in the Table 2. A 
maintenance plan is already scheduled on a particular date, 
if a strategically more important mission is suddenly 
scheduled on the same date, maintenance planner will 
ensure to enhance probability to accomplish the mission and 
reschedule maintenance date. The Figure 9 (scheduling of 
maintenance event 3) depicts the same results. 

Figure 9.  Maintenance Plan: First tab of Maintenance Planner 
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Maintenance Planer provides feature to input selected dates 
on which A/C availability is mandatory. Maintenance 
Planner will also ensure availability of the A/C on the 
selected dates and shift maintenance to adjacent dates date 
based on only availability or both availability & cost 
optimization as per selection of optimization mode. 

 

Figure 10. Selection optimum value of opportunistic 
maintenance threshold 

 
Maintenance planner avoids scheduling the maintenance 
event on a particular day if logistic resources or required 
infrastructure is not available on the desired day. Shifting of 
maintenance date is based on criticality of item, priority, 
earliest date having appropriate amount of resource types 
available and optimum value of cost & availability. 
Relevant resource constraints are also tested and provide 
satisfactory results. 

8. CONCLUSION 

An integrated solution of aircraft readiness management 
based on ISHM has been presented. A logical approach has 
been proposed to provide framework for maintenance 
strategy based on certification guideline and optimization 
model for maintenance planning which efficiently handles 
important factors, resource constraints and flexible means of 
selecting optimization mode based on available data. The 
proposed approach reduces the complexity of the problem, 
but the solutions found may not always be the optimal 
solution. If optimization iterations can be done in single 
stage, that is, schedule of task steps in maintenance events is 
also part of main optimization model; the solution may be 
optimal. The results have been shown for one hypothetical 
scenario; more realistic data along with a Monte Carlo 
simulation would be more accurate. The present concept can 
be extended to finite time horizon optimization of 
maintenance and replacement models for multi-unit system 
having both deterministic and stochastic parts.  
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NOMENCLATURE 

A/C        Aircraft 
BIT Built-In Test 
CBM Condition Based Maintenance 
FF Failure Finding (inspection) 
FH          Flying Hour 
FHP        Flying Hours Program 
FMECA Failure Mode, Effects and Criticality Analysis 
HRT Hazard Risk Table 
HT Hard Time (task) 
ISHM     Integrated System Health Monitoring 
IVHM    Integrated Vehicle Heath Monitoring 
KPI        Key Performance Indicator 
L Lubrication 
LRU       Line Replaceable Unit 
OC On-Condition (maintenance) 
ORA      Operational Risk Assessment 
OSA      Open System Architecture 
PHM      Prognostic Health Management 
PM         Preventive Maintenance 
RCM      Reliability Centered Maintenance  
ROI        Return on Investment 
RUL       Remaining Useful Life 
RTF       Run-to-Fail (maintenance) 
S Servicing 
SHM      Structural Health Monitoring 
TS          Task Step 
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ABSTRACT 

In the aeronautical field, one of the major concerns is the 
availability of systems. To ensure availability, Prognosis 
and Health Management algorithms are developed. The aim 
of these algorithms is twofold. The first one is to detect and 
locate degradation premise of “no go” condition occurrence. 
The second one is to predict the health state of the system at 
a given time horizon. Before introducing PHM algorithms 
in operation, it is necessary to assess their performances. 
This is accomplished thank to a “maturation” phase. This 
phase consists in defining the performance metrics from an 
operational relevance point of view, in estimating this 
performance indicator and finally in proposing 
improvements to meet the airline companies requirements. 
We consider that the maturation of the detection function 
has already been completed and that we are interested in the 
maturation of the prognosis function. This paper deals with 
the performance assessment of a prognosis function using 
two operational metrics. A performance estimation 
procedure is developed. It is applied to the prognosis of 
turbofan engine lubricant over-consumption. 

The considered prognosis function is the probability to cross 
“no go” condition threshold at a given time horizon. This 
prediction is made thanks to an indicator of the health state 
of the system. Then it is compared with a threshold in order 
to trigger an alarm and give rise to a removal if necessary. 
Within this framework, we have defined two operational 
metrics for assessing the performance of this prognosis 
function. These metrics are the “ratio of justified removals” 

(P(Alarm|Crossing)) and the “ratio of not justified 
removals” (P(No-crossing|Alarm)). These metrics require 
the availability of observed lubricant over-consumption to 
compare the prediction results to the observed values. In the 
absence of lubricant over-consumption values in operation, 
a way is to simulate values. 

This communication describes the procedure to estimate the 
performance of the prognosis function and presents the 
obtained results. The performances estimations trigger 
improvements. It appears that we have to enhance the 
precision of the considered health indicator before 
continuing to assess the performance of the considered 
prognosis function. 

1. INTRODUCTION  

With the context of air traffic growth, the availability of 
systems is a major challenge for airlines. To minimize non-
programmed downtime, “no go” condition occurrence, 
impacting the decision of aircraft take-off, are subject to 
monitoring. 

PHM systems have been developed by Safran Snecma. The 
introduction of these PHM systems in operation can be 
carried out only after having reached a certain maturity 
level. The required maturity level before operation is based 
on performance requirements. To achieve this level and thus 
meet the requirements, a maturation procedure (hmad, 2012) 
is applied to these PHM systems. 

The maturation process has already applied to detection 
functions. It allowed defining performance indicators that 
meet the operational airlines needs. In this paper, we focus Ouadie HMAD et al. This is an open-access article distributed under the 

terms of the Creative Commons Attribution 3.0 United States License, 
which permits unrestricted use, distribution, and reproduction in any 
medium, provided the original author and source are credited. 
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on the maturation of the prognosis function applied to the 
monitoring of the lubrication system. 

The originality of this paper is to work on actual airline 
operating concerns and to propose solutions from an 
operational relevance point of view. 

This communication is organized as follows: as a first step, 
the Engine Oil Consumption algorithm (EOC) that monitors 
the lubrication system is described. The considered 
prognosis function developed by Safran is presented next. In 
order to estimate the performance of this function, the 
prognosis performance indicators or metrics are defined in 
section 4. Their estimation requires the presence of 
degradations, which were simulated based on gamma 
process as discussed in section 5. Experimental results in the 
context of the prognosis of lubricant over-consumption are 
reported in section 6. To conclude this paper we summarize 
the main concerns and present possible opportunities. 

2. ENGINE OIL CONSUMPTION PHM  ALGORITHM  

The EOC PHM algorithm allows monitoring of the lubricant 
consumption in automatic way in order to early detect any 
abnormal consumptions (Demaison, 2010). This represents 
a major challenge because deterioration of the lubrication 
system has non-negligible consequences on the execution of 
the turbojet engine. 

Estimated lubricant consumption represents the indicator of 
the health status of the lubrication system. This indicator is 
used by the detection and prognosis functions in order to 
detect and prevent abnormal consumptions. 

EOC PHM algorithm principle is based on the monitoring 
of the lubricant level evolution in the tank. It estimates the 
consumption at iso-condition on several flights, assuming a 
normalized operating environment. This estimator allows a 
better estimation of the lubricant consumption compared 
with a simple average consumption estimator calculated at 
each engine maintenance. 

Lubricant levels in the tank after landing of a flight and 
before take-off of the next flight are measured to detect any 
lubricant filling performed by the maintenance service 
between successive flights. Once the fillings are detected 
and quantified, they are used to correct lubricant levels. This 
correction consists in subtracting the amount of estimated 
lubricant for each filling to the measured lubricant levels. 
After this correction, consumption estimation consists in 
determining the slope of the regression line of lubricant 
levels sampled on several flights. 

The available data represent flight cycles (take-off, cruise, 
landing) on ten engines from five aircraft. No abnormal 
consumption has been observed during the operation. All of 
the estimated lubricant consumption represents normal 
consumptions. These nominal consumptions are distributed 
around an average value of 0.18 l/h or 0.2 l/h depending on 

the engines. Figure 1 represents the estimated lubricant 
consumption on two engines from different aircraft. 

Two consumption limits are considered in the maintenance 
manual: 
• abnormal consumption: 0.38 l/h  
• strongly drifted consumption: 0.76 l/h.  

 
Figure 1. Example of estimated lubricant consumptions. 

EOC PHM algorithm allows guaranteeing the health status 
of the lubrication system by monitoring the different 
possible causes of abnormal consumption. Experience 
shows that abnormal consumption can evolve suddenly or 
gradually up to cross the abnormal consumption (0.38 l/h) 
and the strongly drifted consumption thresholds (0.76 l/h). 

According to experts, the gradual evolution of consumption 
translates into an increase in lubricant consumption of about 
0.1 l/h per month and represents 90% of abnormal 
consumption cases. So we will focus on such evolution even 
if it has not been yet observed on collected data. 

3. PROGNOSIS FUNCTION PRINCIPLE  

The considered prognosis function consists in predicting the 
probability that the indicator of the health status cross a 
failure threshold at a given operational time horizon. 

In operation, the prognosis function is triggered after the 
detection of a degradation premise. Detection takes place 
when the health indicator crosses a detection threshold 
(figure 2). From this moment noted “td”, the prognosis is 
initiated. 

 
Figure 2. Illustration of the prognosis function initiation. 
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The prognosis function aims to estimate the probability to 
cross a failure threshold at a time horizon H based on a 
history of size T. The crossing probability estimation from td 
is performed by comparing the slope of the health indicator 
with the necessary slope (critical slope) to cross the failure 
threshold at td + H. 

The health indicator slope is estimated using a linear 
regression on a window of size T. Then, the critical slope to 
cross the threshold at td + H is determined from the point at 
instant td, intercept the value regression at this time, and 
point at instant td + H, intercept the failure threshold as 
shown by figure 3. 

Under the hypothesis that these two slopes are normal 
random variables of unknown variance: these two slopes are 
compared using a Student test. The result of the test allows 
estimating the probability that the slope of the health 
indicator is lower or higher than the critical slope. This is 
equivalent to the probability that the health indicator crosses 
the failure threshold at time horizon H. 

 
Figure 3.Illustration of the prognosis function principle. 

 
The prognosis function input is composed of observations of 
the health indicator and its output is the estimated crossing 
probability. The prognosis function parameters are: 

• the observations history size: T,  
• the prognosis horizon size: H,  
• the failure threshold, 
• the consumption samples within the window. 

In the abnormal consumptions prognosis case, the health 
indicator is the lubricant consumption estimated by EOC 
PHM algorithm over several flights. As the prognosis is 
initiated after having crossed the detection threshold, the 
observations history size, T, is 1 month of operation: 100 
flights (taking into account the number of days on a 
calendar month). When detection occurs before, the 
observations history size is equal to the available number of 
flights until detection. The prognosis horizon, H, is set at 20 
flights, 4 operating days in this case. The failure threshold is 
set to 0.38 l/h which corresponds to the abnormal 
consumption threshold from the maintenance manual. 

The objective is to estimate the performances of this 
prognosis function and compare it to the airline company’s 
expectations. To do this, some performance metrics are 
needed. The next section focuses on the prognosis 
performance indicators or metrics. 

4. PROGNOSIS PERFORMANCE I NDICATORS OR M ETRICS 

According to (Jardine, 2006), regardless of the application 
domain, there are mainly two prognosis metrics or 
indicators. The first consists in predicting the remaining 
time before the failure of a component or system knowing 
the past and present operating conditions. This metric is 
commonly named Remaining Useful Life (RUL). The 
second metric consists in predicting the probability that a 
component or system operates without failure during a 
given horizon knowing the past and present operating 
conditions (crossing probability). 

In (Dragomir, 2008), the author states that it is important to 
differentiate prognosis metrics (or indicators) and prognosis 
performance metrics (or indicators). 

These prognosis metrics define the nature of the realized 
prognosis: 

• “deterministic” prognosis for remaining useful life 
(RUL) 

• “probabilistic” prognosis for the crossing probability. 

The performances indicators of a prognosis function depend 
on the nature of the realized prognosis. That is why two 
classes of prognosis performance metrics are encountered in 
the literature. The first class is related to “deterministic” 
prognosis approach (RUL). This class is discussed a lot in 
the literature (Si, 2011) (Sikorska, 2011). The second class 
is related to “probabilistic” prognosis metrics (crossing 
probability) and is little represented in the literature. 

In the literature, prognosis performance metrics based on the 
RUL are numerous. (Saxena, 2008) has developed a state of 
the art of these metrics from different domains 
(meteorology, medicine, finance, automobile, 
aeronautics...). Several metrics are discussed in 
(Vachtsevanos, 2006) and (Saxena, 2009). Traditional 
metrics such as bias, deviation, mean squared error... may 
be used. Other less conventional are also used as accuracy, 
precision and timeliness...  

Prognosis performance metrics associated with the 
“probabilistic” prognosis are less numerous and come 
mainly from the meteorological field where this kind of 
prognosis is frequently used. The first idea to evaluate the 
performance of any prediction function is to estimate the 
prediction error and the mean squared error of the difference 
between predictions and observations is generally 
considered. A similar metric exists within the 
“probabilistic” prognosis framework. This metric is named 
Brier Score (BS) (Brier, 1950). 

0 td-T td td+H
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The Brier score represents the mean squared error of the 
“probabilistic” prognosis: 

 

 

(1) 

with : 

N: the number of predictions, 
pi: the crossing probability with threshold S, estimated at 
time tp and for a given horizon H. pi=P(X(tp+H)>S|t=t p) 
oi: the observed probability which is equal to 1 if there is a 
crossing and 0 otherwise. 

The Brier score is between 0 and 1, the perfect score being 
0. 

According to (Candille, 2005) “probabilistic” prognosis 
functions must meet two criteria: 
• reliability  indicates to what extent the predicted 

probabilities are consistent with observations (crossings 
threshold). If the frequency of threshold crossing is 
larger or smaller than predictions, predictions are, 
respectively, underestimated or overestimated, 

• resolution allows to assess the capacity of a prognosis 
function to separate multiple events to predict. The 
resolution of a prognosis function is high when 
predictions distribution corresponds to the observations 
distribution. 

Estimation of reliability and resolution of a prognosis 
function is possible through the Brier Score decomposition 
(Murphy, 1973). The latter can be decomposed into three 
components (BS = reliability - resolution + uncertainty): 

 

 

(2) 

where a sample of N predictions is separated into T classes 
according to the predicted probabilities pk (for example pi 
belongs to: 0% - 5%; 5%-10%;...; 95%-100%). Each class 
contains nk predicted probabilities (pk). �̅k corresponds to the 
observed frequency of class k occurrence and �̅ corresponds 
to the average rate of positive samples over the whole data 
set. 

The first two terms of BS have been defined previously. The 
third one is named uncertainty. The uncertainty allows 
quantifying the intrinsic variability of the observations. It is 
not used as a prognosis performance metric. It corresponds 
to the variance of a Bernoulli law of parameter �̅. 

It is possible to get an idea of the reliability using a 
reliability diagram (figure 4) which represents graphically 
the reliability of a prognosis function (Bröcker, 2007). This 
diagram consists in drawing (�̅k) observed frequencies of 
events (e.g. crossing threshold) on the basis of the predicted 

probabilities pk for these events. The resulting curve is 
compared to the diagonal of the diagram. The diagonal 
corresponds to predictions in perfect harmony with crossing 
observations. The points under (over) the diagonal indicate 
that predictions were overestimated (underestimated 
respectively). 

 
Figure 4. Example of reliability diagram. 

 
It is possible to have an idea of the prognosis function 
resolution using a ROC curve (Ebert, 2013). To do this, the 
prognosis should be reduced to a decision problem based on 
the estimated crossing probability. This implies that there is 
a decision rule that allows classifying the estimated 
probabilities in two classes (crossing or no crossing). The 
ROC curve allows characterizing the ability of a prognosis 
function to differentiate two categories of events which is 
also the objective of the resolution. Better the performance 
of the ROC curved, better the resolution of the prognosis 
function. 

In the aeronautical field, prognosis performance indicators 
have to meet operational requirements defined by the 
airlines. They are different from those found in the 
literature. In this work, two operational metrics to assess 
performances of a prognosis function are used: 
• the ratio of not justified removals which estimates 

P(No-crossing|Alarm): this metric focuses on the 
number of times where the prognosis function fails 
when it announces a crossing (leading to a removal), 

• the ratio of justified removals which estimates 
P(Alarm|Crossing): this metric is equivalent to the 
proportion of good detection in the context of the 
prognosis. It corresponds to the success probability of 
the prognosis function. 

These prognosis performance metrics are based on: 
• triggering an alarm. In our case, an alarm is triggered 

when the estimated crossing probability is greater than 
0.8 which gives rise to a removal.  

• the availability of the sampled health indicator until 
crossing the failure threshold. 

�� =  1
� 	(�� − ��)2

�

�=1
 

�� =  1
� 	 �� (�� − �̅� )2

�

�=1
− 1

� 	 �� (�̅� −  �̅)2 +  �̅ (1 − 
�

�=1
�̅ ) 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Predicted probabilities pk

O
bs

er
ve

d 
fr

e
qu

en
ci

es
 (

o k 
)

overestimated
prediction perfect reliability

underestimated
prediction

European Conference of the Prognostics and Health Management Society 2014

269



 

It appears that the assessment of prognosis performance is 
based on the availability of observations up to failure or 
exceeding the critical threshold. 

Such data are not (or rarely) available in the aeronautical 
field. The available data represent cases without 
degradation. Therefore, the application of the presented 
metrics is not possible. 

To compensate the lack of data with degradation, it is 
possible to simulate health indicator series up to failure or 
up to a threshold corresponding to a degree of critical 
degradation. The simulation is based on a degradation 
model that represents the effect of the deterioration 
mechanism or degradation of a component or a system on 
the health indicator. Degradation models are discussed in 
the next section. 

5. DEGRADATION M ODELS 

The term “degradation” describes the irreversible evolution 
of one or several characteristics of a component related to 
time, the operating time or an external cause. This evolution 
can be sudden or gradual, and its outcome is failure (if the 
degradation is not stabilized over time). 

In this paper, we focus on gradual evolution of continuous 
degradation since they represent 90% of the abnormal 
consumption causes. 

The objective of degradation models is to characterize the 
health indicator evolution from a given system or 
component in modeling the evolution of its degradation to 
the failure or trespassing of a critical threshold affecting the 
performance. 

Gradual degradation modeling considers several possible 
states of the studied system or component. Different states 
range from nominal operating condition to failure through 
intermediate states that do not affect critically the system 
performance. 

Two continuous degradation models are frequently used 
(Nikulin, 2010): the Gamma process and the Wiener process 
with a positive trend. They represent the evolution of 
increasing deterioration or increasing on average 
respectively. They belong to the class of Levy processes 
which are stochastic processes with independent increments. 

In the case of Wiener process, the probability of decreasing 
degradation on a time interval is not zero, which can be a 
drawback for some modeled systems. 

On the other hand, the Gamma process is monotone 
increasing and allows modeling degradation mechanisms 
that are inherently slow, continuous and increasing with 
independent increments. 

Degradations, in our case, have a gradual evolution which is 
growing and monotonous. It reflects the fact that the health 
state of the system cannot improve over time. The Gamma 

process has therefore been chosen to characterize this 
evolution. 

The Gamma process is a continuous state space and 
increments are positive and independent. It presents other 
very interesting features: 
• it is possible to formulate a hypothesis about its average 

trend (e.g. using expert opinions or human knowledge), 
• increments can be stationary or not. In the case of 

stationary increments, it is a homogenous Gamma 
process. 

Non-stationary increments can model nonlinear degradation 
evolution. This feature of the Gamma process is a benefit 
that justifies his frequent use (Van Noortwijk, 2009). 

The Gamma process consists of a form parameter (v(t)) and 
a scale parameter (u). So, (Xt)t≥0 is a Gamma process if: 
• X� = 0  
• (X�)���  is a stochastic process with independent 

increments 
• For	0 ≤ h ≤ t, the law of increment (�� − ��) follows 

a Gamma distribution : 	�( (!) −  (ℎ); $) 
The density of the gamma distribution �( (!), $) is defined 
by: 

 
 

(3) 

With: 
 I'(x) = ) 1			if	x ∈ A

			0	otherwise3 
 �(4) = 5 6789:8;<6∞

�   (Gamma function) 

It can be shown that: 

 
 

(4) 

 
 

(5) 

• (��)��� is a process whose trajectories are almost surely 
increasing, 

• (��)��� is a Markov process, 
• The trajectories of X admit a countable infinity of 

jumps in any time interval, 
• If S is the failure threshold and � = ��=(! > 0 ∶ �� ≥�) we have : 

 
 

(6) 

The homogenous Gamma process is a special case of the 
Gamma process when the shape parameter v(t) = ct with 
c>0. 

=�!(A) =
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The non-homogeneous three-parameter Gamma process is a 
special case of the non-homogeneous Gamma process with 
an exponent on time (Van Noortwijk, 2009). The shape 
parameter has the following form v(t) = ctb (with b and c 
strictly positive real). 

It is possible to obtain various degradation evolution shapes 
depending on the value of b (figure 5): 

• If b = 1, the Gamma process is a homogeneous process. 
The process increments are stationary. The evolution of 
the degradation is linear. 

• If b < 1, the Gamma process is a non-homogeneous 
process and the evolution of the degradation has a 
logarithmic shape. 

• If b > 1, the Gamma process is a non-homogeneous 
process and the evolution of the degradation has a 
parabolic shape. 

 
Figure 5. Example of Gamma processes evolution for b = 1; 

b >1 and b <1 in the relationship v(t) = ctb. 
 

The parameter estimation of the Gamma process can be 
realized using the moment’s method or the maximum 
likelihood method (Roussignol, 2009). 

For given parameters, it is possible to generate evolution 
trajectories (paths). When the parameters of the Gamma 
process are known, the method to generate a trajectory of 
the Gamma process settings v(t) = ctb and u consisting of n 
observations is the following: 

• generate n observations time ti 
• simulate the realization of n-1 increments with 

 ∆�V = ��W −  ��WXY ~ �( (!V) −  (!V89); $)  � = 1. . . � 
• build the trajectory A� = 0 et A\ = ∑ ∆AV\V^9 . 

If degradation data are not available, a common procedure is 
to choose the Gamma process parameters in order to fit 
experts’ statements. They generally give information about 
the trend, the variance and the shape of degradation curve. 
The degradation shape corresponds to the acceleration of the 
degradation process with time. 

Based on such degradation model, the next section is 
dedicated to prognosis performance metrics estimator. 

6. PROGNOSIS PERFORMANCE METRICS ESTIMATOR  

This section describes the estimation method of the 
prognosis performance metrics (P(No-crossing|Alarm) and 

P(Alarm|Crossing)) in the case of EOC PHM algorithm. 
First of all, it is necessary to describe the data available for 
their estimate. The considered data are:  

Estimated lubricant consumption values, noted Ci(t), 
represent the health indicator produced by EOC PHM 
algorithm (c.f. figure 1).  

Overconsumption, noted SCi(t), simulated using Gamma 
process chosen according to expert statements. A lubricant 
leak, in 90% cases, induced an increase in nominal 
consumption of 0.1 l/h/month with a standard deviation of 
0.01 l/h at the end of a month. Figure 6 represents 
trajectories of the Gamma process generated from 
information provided by the experts. 500 trajectories have 
been generated for a linear evolution (b = 1) by an average 
of 0.1 l/h all 100 flights and a standard deviation of 0.01 l/h 
at flight no. 100. 

 
Figure 6. Example of 500 overconsumption trajectories 

generated by simulation. 
 

« Pseudo observed » trajectories, noted POi(t), have been 
built by adding the simulated overconsumption and the 
estimated consumption to get a degradation evolution with 
the desired properties, POi(t) = Ci(t)+ SCi(t). Figure 7 
represents these trajectories for the data from the two 
previous figures, 

 
Figure 7. Example of « pseudo observed » Trajectories. 

 
« Theoretical » trajectories, CTHi(t), describe the relevant 
theoretical phenomenon. This translates into a linear 
evolution of the lubricant consumption which is considered 
constant during normal operation (≈ 0.2 l/h). These 
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trajectories correspond to the simulated overconsumption 
added to the average consumption (CM), CTHi(t)= CM + 
SCi(t). An example is given in figure 8. 

 
Figure 8. Example of « theoretical » trajectories. 

 
Using these data, the estimation of each prognosis 
performance metric procedure is described in the two 
following paragraphs. 

6.1. P(NO CROSSING|ALARM) 

The estimate of P(No-crossing|Alarm) is, from multiple 
paths, to determine the proportion of alarms triggered by the 
prognosis function while the real degradation indicator stays 
below the failure threshold in the considered time horizon 
(H). To do this, the procedure is: 

For each “pseudo observed” trajectory: 

• determine the instant (td) that initiate the prognosis 
function, 

• apply the prognosis function to observations that 
belong in the interval [td - T, td], 

• estimate the probability that observations cross the 
failure threshold after time horizon H (at td + H), 

• if the estimated crossing probability exceeds a limit 
set at 0.8, an alarm is triggered, 

• in case of alarm, identify the “theoretical” path 
corresponding to the considered “pseudo observed” 
trajectory, 

• check if the “theoretical” trajectory has crossed the 
failure threshold at instant td + H. Increment not 
justified crossing counter if this is not the case. 

This procedure has been applied from the detection time td 
on each simulated trajectory. Once all trajectories are 
considered, the ratio of unjustified crossings that represents 
an empirical estimate of P(No-crossing|Alarm) has been 
determined. This allowed observing the evolution of this 
indicator over flights. 

6.2. P(ALARM|CROSSING) 

This indicator corresponds to the probability of good failure 
prognosis.  

The estimation procedure is:  

For each “theoretical” trajectory: 

• determine the instant (tp) which corresponds to the 
instant when the considered “theoretical” trajectory 
CTHi(t)cross the failure threshold. 

• apply the prognosis function to observations of the 
corresponding “pseudo observed” path within the 
time interval [tp-H-T, tp - H] to estimate the 
probability that the trajectory crosses the failure 
threshold at time tp. 

• if the estimated crossing probability exceeds a limit 
of probability set at 0.8, an alarm is triggered and 
the justified crossing counter is increment. 

For each trajectory, this procedure has been applied from 
the time tp to the end of the observation time. This was 
repeated for all trajectories. Once all trajectories have been 
considered, the ratio of justified crossings that represents an 
empirical estimate of P(Alarm|Crossing) has been 
determined. 

7. CASE STUDY : LUBRICANT OVER-CONSUMPTION 

PROGNOSIS 

The methodology to evaluate the performance of the 
prognosis function has been applied to the EOC PHM 
algorithm. Results are presented on figure 9 and figure 10 
for one engine on two different aircrafts. 

Each figure is composed of three subfigures: 

1. the first one represents the “pseudo observed” 
trajectories for one engine, the failure threshold 
(horizontal solid line), the detection threshold 
(horizontal dashed line) from which the prognosis is 
initiated, a threshold that indicates that 10% of 
“theoretical” paths have crossed the failure 
threshold (vertical dashed line on the left) and a 
second threshold indicating that 90% of 
“theoretical” paths have crossed the failure 
threshold (vertical dotted line on the right). 

2. the second one represents the ratio of unjustified 
failure prognosis, P(No-crossing|Alarm), over flights 
and the 10% and 90% thresholds. 

3. the third subfigure represents the ratio of justified 
failure prognosis, P(Alarm|Crossing), over flights 
and the 10% and 90% thresholds. 

The unjustified crossings ratios are not null. They range 
from 6% (figure 10), which is acceptable, up to more than 
40% (figure 9), which is not acceptable. 

These unacceptable values are explained by the noisy nature 
of estimated consumption. Depending on the learning slope 
zone of the “pseudo observed” trajectories, the latter may be 
more or less pronounced which has a direct impact on the 
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crossing probability. It happens that the slope of a trajectory 
is important and induces a crossing probability greater than 
80%. However, as the estimated consumption falls sharply, 
the trajectory in question does not cross the failure threshold 
and therefore gives rise to an unjustified failure prognosis 
(unjustified removal). 

Concerning the justified crossings proportions, they increase 
over flights to 100% once all paths are above the failure 
threshold. The noisy nature of the estimated consumptions 
has also a significant impact there. This is due to the fact 
that certain trajectories go below the failure threshold for a 
short time before crossing it again. 

However, these non-acceptable performances in terms of P 
(No-Crossing|Alarm), deserve to be nuanced. It is less 
damaging to observe an unjustified alarm when the 
“theoretical” crossing probability is close to 90% than when 
it is approximately 10%. If the peak of the P(No-
crossing|Alarm) curve is close to the  flight at 90% 
threshold this is less damaging than if the peak is nearby the 
flight at 10% threshold. In terms of justified crossings 
ratios, P(Alarm|Crossing), deserve to be refined. It is less 
damaging than P(Alarm|Crossing) is low when the 
theoretical crossing probability is approximately 10% than 
when the theoretical crossing probability is approximately 
90%. If a large value of the P(Alarm|Crossing) curve appear 
between flights at 10% and 90% this is less damaging than 
if this value does not appear until after the flight to 90%.  

The accuracy of estimated consumption has a direct impact 
on the performance of the prognosis function. It is therefore 
necessary to improve the accuracy of estimated 
consumption in order to re-evaluate the performance. This is 
discussed in the next section. 

 
Figure 9. Engine 1 aircraft 4, « pseudo observed » 

trajectories and associated prognosis performances. 

 
Figure 10. Engine 1 aircraft 5, « pseudo observed » 
trajectories and associated prognosis performances. 

7.1. Performance analysis and enhancement 

Several proposals have been made to improve the 
performance of the prognosis function: 
• First, as mentioned above, stabilization of the precision 

estimated consumption. It appears clearly that the 
fluctuation of the paths causes unjustified failure 
forecasts or fail to forecast failure, 

• If this is not sufficient, the limit of probability, 
arbitrarily set to 0.8, which gives rise to an alarm and 
removal can be modified. Increasing this limit of 
probability is likely to diminish the number of 
unjustified crossing predictions, 

• The tuning of the history window size (T) or the 
prognosis horizon size (H). 

However, the impact of the two last proposals cannot be 
assessed until the accuracy of the estimated consumptions is 
not improved. 

In this perspective, corrections of consumption have been 
realized taken into account some missing fills. These 
improvements are to acting on the extraction of lubricant 
levels to improve the final estimate of consumption. 
Inaccuracies remain however. They are explained by the 
omission of one or more fillings when some flights are 
missing. 

These consumption estimates were used to estimate the 
performance of the prognosis function again. The estimation 
procedure remains unchanged. The results in figure 
11Figure and figure 12 are presented in a similar way and 
on the same data as figure 9 and figure 10. 

For engine 1 of aircraft 4 (figure 11), the results after 
changes appear poorer than before. This is again due to the 
estimated consumptions. It would appear that other fillings 
than those already corrected have been omitted. This 
explains the increases in consumption followed by decreases 
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which are probably due to a subsequent detection of missing 
fills. 

 
Figure 11. Engine 1 aircraft 4, « pseudo observed » 
trajectories and associated prognosis performances. 

 
Conclusions are the same for engine 1 of aircraft 5 (figure 
12) with not justified crossing ratio of 98% just before 
crossing the failure threshold. This is due to the fact that, 
due to noise, the trajectories are decreasing just before 
crossing the failure threshold. It follows that the majority of 
crossing probabilities estimated on the history window (T) 
prior to this phenomenon are greater than 80% resulting in a 
high proportion of unjustified crossings. It appears that 
results strongly depend of each engine and it is not easy to 
have a general conclusion. 

 
Figure 12. Engine 1 aircraft 5, « pseudo observed » 
trajectories and associated prognosis performances. 

8. CONCLUSION  

In the aeronautical field, the formalization of PHM systems 
and their performance requirements are defined from an 
operational point of view. This often results that used 
performance indicators are different from those derived 

from the literature. The performance evaluation is to adapt 
indicators from the literature to industrial needs or to define 
new ones. The adaptation of these indicators is to ensure 
their relevance with regard to the expected performance 
requirements.  

The performance of PHM systems requirements defined by 
operators are the ratio of unjustified failure prognosis, P(No-
crossing|Alarm), and the ratio of justified failure prognosis, 
P(Alarm|Crossing). The estimation of each of these 
probabilities procedure was undertaken by the prognosis 
process of lubricant overconsumption. The required data for 
their estimate are: the estimated consumptions, simulated 
overconsumption using Gamma process, “pseudo observed” 
trajectories and “theoretical” trajectories. This has allowed 
establishing a method to perform empirical estimation of the 
performance of the prognosis function. 

The estimation of performance indicators and the analysis of 
the results have been illustrated by the maturation of the 
prognosis function in the case of EOC PHM algorithm. 

Results show that: 
• the accuracy of estimated consumptions have a direct 

and significant impact on the performance of the 
prognosis function, 

• prognosis is very sensitive to the noise of the signal 
which it uses to make the prognosis. 

Extraction of lubricant levels improved partially stabilized 
consumption estimate. This is not sufficient for the use of 
the prognosis function. We should continue in this direction 
in order to correct missing fills. Once these done, other 
optimizations may be considered: 
• the limit of probability, arbitrarily set to 0.8, which 

gives rise to an alarm and a removal could be optimize, 
• the size of the history window, T, and/or the prognosis 

horizon, H, could be tune in order to improve results . 
Another possible improvement would be to change the 
prognosis method. This perspective is being studied. A 
second prognosis function using particle filtering has been 
developed. After maturation of the latter, the performance of 
the two prognosis methods (linear regression and particle 
filtering) will be compared. 

NOMENCLATURE  

BS  Brier Score 
Ci(t) estimated lubrication consumption values 
CM  average consumption 
CTHi(t) theoretical trajectories  
EOC engine Oil Consumption 
H prognosis horizon size 
P(Alarm| Crossing) ratio of justified removals 
P(No Crossing| Alarm) ratio of not justified removals 
PHM Prognostics and Health Management 
POi(t) Pseudo Observed trajectories 
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ROC Receiver Operating Characteristic 
RUL  Remaining Useful Life 
S failure threshold 
SCi(t) simulated overconsumption 
T observations history size 
td detection time (initiation of the prognosis function) 
tp theoretical path failure threshold crossing instant 
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ABSTRACT 

Within the last decade several new methods for prognostics 

have been developed and an overall understanding of the 

various issues involved in predictions for health management 

has significantly improved. However, it appears that there is 

still a lack of consensus on how prognostics is defined and 

what constitutes good performance for prognostics. This 

paper first differentiates prognostics from other prediction 

approaches before highlighting key attributes of performance 

for prediction methods. Then it argues that it is important to 

understand what factors affect the performance of a 

prognostic approach. Factors such as the application and end 

use of a prognostic output, the various methods to make 

predictions, purpose of performance evaluation, etc. are 

discussed. This paper presents a comprehensive view of 

various such aspects that dictate or should dictate what 

performance evaluation must be as far as prognostics is 

concerned. It is also discussed what should be used as 

baseline to assess performance and how to interpret 

commonly used comparisons of algorithm predictions to 

observed failure times. The primary goal of this paper is to 

present some arguments of how these issues can be addressed 

and to stimulate a discussion about meaningful evaluation of 

prognostic performance. These discussions are followed by a 

brief description of prognostics metrics proposed recently, 

their applicability, and limitations. This paper does not intend 

to suggest any metrics in particular rather highlights 

important aspects that must be covered by any performance 

evaluation method for prognostics. 

1. INTRODUCTION 

The demand for engineering systems with sophisticated 

functionality, high safety levels, low environmental footprint, 

and other requirements is accompanied by increasing cost to 

build and operate these systems. Besides increased 

manufacturing cost, it is the mitigation of operational 

disruptions caused when hardware or software break down 

that are driving up life-cycle cost and affecting operational 

availability. The malfunction of just a small part can seriously 

degrade the utility of a large portion of a complex system – 

or cause it to seize performing its primary function altogether. 

To counteract that, operators and manufacturers are 

increasingly looking towards system health management as a 

mechanism to actively deal with changing performance 

characteristics of individual components. This is 

accomplished by assessing the state of health of the system 

components, estimating their remaining useful life, and by 

initiating mitigating action that will either prevent the 

breakdown, minimize downtime, avoid unscheduled 

maintenance, or result in similar results that minimize life-

cycle cost of the system. At the core of system health 

management is Prognostics, the method by which remaining 

useful life of a component (or system) is estimated. The 

ability to predict future events, conditional on anticipated 

usage and environmental conditions, is the Achilles heel of 

System Health Management. It is therefore not surprising that 

considerable attention has been given to this technology in 

the last few years. Indeed, the term “prognostics” has been 

used by various practitioners in any context that has a 

predictive element, not all of which actually result in 

estimation of remaining life. In the first part of this paper, the 

different instantiations of life prediction are reviewed in the 

context of methods that are based on fleet-level and unit-

based life prediction and the term “Prognostics” is clarified. 

An indispensable element in maturing prognostics is the 

ability to measure the performance of a prognostic algorithm. 

Traditional metrics that are, for example, used for diagnostics 

do not capture the unique characteristics of prognostics. Since 

the discipline is still young, new metrics are emerging that 

each measure specific features of prognostics. The second 
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part of this paper explores the most important metrics that 

have emerged. The paper also discusses general 

considerations when evaluating Prognostics. While assessing 

and ranking one method over another, it is important to pick 

metrics that evaluate the same components and do not, for 

example, penalize one algorithm (but not another) for poor 

quality of external inputs (such as noisy or missing data, 

inadequate domain models, etc.). Furthermore, the metrics 

should consider evaluating various aspects of a prediction 

that are useful towards decision making, such as time to 

prediction or confidence in prediction. Finally it is important 

to consider what the performance is being measured against. 

In online applications where it may not be possible to know 

the ground truth, it is difficult to measure accuracy aspects of 

performance because the failure has not yet happened (and 

hopefully will not happen when human life or costly assets 

are at stake) (Engel, Gilmartin, Bongort, & Hess, 2000). 

However, even in offline cases where ground truth is 

established through prior experiments, it may not be the 

plausible course of action to compare the predictions against 

one outcome (realization) of an, otherwise stochastic, process 

in light of several sources of uncertainties.  

The paper concludes with a discussion of the path ahead for 

Prognostics. Specifically, the following issues are considered 

in detail:  

 What does prediction performance mean in different 

application contexts?  

 What are different components of algorithms that need 

to be evaluated and compared in prognostics 

applications? 

 What are various assessment approaches that are 

currently used and how to interpret the results? 

 What are lacking issues that need to be considered? 

2. CONSIDERATIONS IN PERFORMANCE EVALUATION 

2.1. Attributes of Prediction Performance – Correctness, 

Timeliness, and Confidence 

The essence of a meaningful prediction lies in three key 

attributes that are important to achieve regardless of the 

prediction method used. These key attributes are – 

correctness (accuracy and precision), timeliness, and 

confidence in a prediction. It should be noted that attributes 

as defined here are not metrics themselves but a set of 

properties that define performance of a prediction algorithm. 

Suitable metrics can be defined to measure and quantify these 

attributes as discussed in latter sections. 

Correctness: By definition performance evaluation refers to 

the notion of assessing correctness of a system output with 

respect to its desired specification. Prediction outputs are 

generally understood to be in the form of probability density 

functions due to inherent uncertainties involved. Hence the 

notion of correctness translates into accuracy and precision 

of the predicted distributions. Accuracy is a measure of 

deviation of a prediction output from measured, observed, or 

inferred ground truth. Specifically the prediction accuracy is 

a quantitative measure of error between the predicted end-of-

life and the observed end-of-life of the monitored 

component/system. Several metrics can be used to define 

prediction accuracy such as but not limited to those listed in 

(Saxena, Celaya, Balaban, Goebel, Saha, Saha, & 

Schwabacher, 2008). Precision on the other hand is a measure 

of spread of a distribution. By definition (precision = 

[standard deviation]-1) narrower distributions are considered 

more precise. When estimating a single point, ideal precision 

would be infinite if accuracy is 100%. However, it must be 

kept in mind that higher precision (or narrower distribution) 

is not always better. More than a decade ago Engel et al. 

(2000) explained the paradox in prognostics - “The more 

precise the remaining life estimate, the less probability that 

this estimate will be correct”. Furthermore, it was analytically 

shown by (Sankararaman & Goebel, 2013) that the end-of-

life point (or the RUL) is stochastic by nature.  Therefore, a 

prognostics algorithm should estimate a probability 

distribution function and not just the observed single instance 

of a failure. However, the ideal value for precision of a 

predicted distribution would be to match the precision of 

ground truth distribution. In other words, arbitrarily narrow 

distributions could lead to risky decisions, just as arbitrarily 

wide distributions lead to larger ambiguity (or less 

confidence) in a prediction. 

Timeliness:  This refers to the time aspects related to 

availability and usability of predictions. It measures how 

quickly a prediction algorithm produces its outputs, in 

comparison to the failure effects that they are mitigating.  

Prediction Horizon: The measure of how early, before the 

actual failure event, a prediction system produces a correct 

(w.r.t. specifications) prediction of end-of-life to be able to 

implement an actionable decision and response as part of the 

health management activity. For prognostics it is measured as 

Prognostic Horizon or Prognostic Distance at the time a 

prediction is made (Johnson, Gormley, Kessler, Mott, 

Patterson-Hine, Reichard, & Scandura Jr, 2011; Saxena, 

Celaya, Saha, Saha, & Goebel, 2010). 

Prediction Response Time: The measure of how quickly the 

prognostic function produces a correct output, from a given 

set of system measurements. It includes the time it takes for 

an algorithm to converge to a reasonable performance level. 

 

Figure 1. Correctness and timeliness attributes of prediction 

performance. 
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Confidence: It is a measure of trust (or conversely, the 

measure of uncertainty) in a prediction method’s output. It is 

generally viewed in several related but different contexts. In 

predicting end-of-life for a unit confidence is expressed as 

probability of failure at any given time computed from a 

given failure-time distribution. From a decision making point 

of view is it is expressed through precision of the predicted 

distribution, i.e. more precise distributions lead to higher 

confidence and less ambiguity for decision making (Engel et 

al., 2000). Similarly confidence is also associated to the 

notion of risk of failure with respect to the time an action is 

taken. In the broader context of validation confidence is 

expressed as trust in a prediction method based on stability of 

predictions over time through sensitivity and robustness 

measures (Guan, Jha, Liu, Saxena, Celaya, & Goebel, 2010; 

Johnson et al., 2011). These measures are evaluated with 

respect to factors that directly affect predictions such as data 

quality (amount of data, sampling rates, noise levels, etc.), 

model quality (granularity of models, correctness, 

adaptability, etc.), accuracy of priors, etc.  

The three performance attributes as described above are the 

most important ones from prognostics point of view. There 

are several metrics that can be used to assess each of these 

attributes, however, the important message here is that 

prognostic performance evaluation must account for all three 

of these and which specific metrics are used depends on 

several other factors as discussed in further sections. 

2.2. Type of Prediction Method 

Within the Health Management (HM) community there are 

several different interpretations of what is meant by the term 

prognostics. Although all interpretations involve some type 

of predictions about system’s health the basis for such 

predictions is very different. This paper acknowledges the 

significance of all prediction methods but at the same time 

considers Prognostics strictly as condition based prediction 

methods. It is argued that depending on the type of prediction 

method and the data used to make these predictions the 

metrics to evaluate prediction performance should be slightly 

different. As discussed above in Section 2.1, at its core 

prediction performance is characterized by three attributes 

namely, Correctness, Timeliness, and Confidence, although 

the specific metrics that measure these could differ from each 

other in different cases. 

A classification of various prediction methods was proposed 

in (Coble Jamie Baalis, 2010). While the author tried to 

classify these methods into well-defined categories, there is 

often a fuzzy boundary where a method may fall into one 

category or the other. Furthermore, it can be observed that in 

that classification one method follows naturally from another 

as one moves from predictions based on information from a 

fleet towards using information from a single specific unit. A 

brief definition for each is provided here for readability, but 

a more detailed description and some examples can be found 

in (Coble Jamie Baalis, 2010).  

 

Type-I or Reliability-based Prediction methods predict 

component failure time based on statistical models fit to lab 

testing data or historical failure data. These methods are not 

considered prognostic methods in a strict sense but are the 

basis for much of how the assets have been maintained 

traditionally. Predictions are expressed in terms of Mean-Life 

metrics such as Mean Time Between Failures (MTBF) and 

many other variations expressing observed failure rates 

(Saxena & Roemer, 2013). Theoretically speaking it is 

possible to make life predictions for a specific unit through 

models used in these methods and assess correctness based 

on actual end of life, the performance is likely to be within 

expectations only when predictions for a large number of 

similar units is aggregated. Therefore, aggregate error and 

precision based metrics are generally used. Notions of 

timeliness do not quite apply here as predictions can be made 

at any time as they are based on historical data already 

processed to build models. Furthermore, since these models 

are static and do not get updated with time, the prediction of 

end-of-life does not change irrespective of when in time that 

prediction is made. Therefore there is no notion of 

performance tracking as in prognostics. Confidence is usually 

expressed as probability of failure at any given time 

computed from failure-time distribution. These metrics are 

generally useful for operators, maintainers, designers, and 

policy regulators for gauging and optimizing operational 

performance at the fleet level. The key shortcoming of this 

approach is that it cannot take into account the effects of 

operational conditions that have a significant bearing on 

actual component life.  

 

Type-II or Damage Accumulation-based Prediction - These 

models estimate the lifetime of an average component 

operating under a given set of usage conditions (stressors). 

The output of these models is a distribution of failure times 

due to stochastic nature of operating conditions. These 

models however do not rely on condition monitoring data to 

estimate the state of a specific system and the predictions are 

based on population models of failure of such systems. For 

performance evaluation, correctness can be measured using 

any of the accuracy and precision metrics drawing 

comparisons from the actual ground truth for a specific unit. 

Although predictions here tend to be more accurate than for 

Type-I methods, algorithms are best evaluated by 

aggregating performance from several units as they are still 

based on population models. However unlike Type-I 

methods, notions of timeliness become relevant here as 

predictions must be updated regularly to account for changes 

due to recent operational conditions. Therefore, most metrics 

for Type-III methods may be applicable with slight 

modifications to aggregate performance from several units. 

Confidence is generally expressed as probability of failure 

and precision based metrics, although concepts of robustness 

to data quality may be applicable. 
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Type-III or Condition-based Prediction or Prognostics – 

Prognostics is the prediction of remaining useful life of a 

specific component or system based on its usage history 

inferred from monitoring data and expected future load 

profile. Prognostics generally utilizes a degradation model 

that predicts the future states based on inputs about current 

system state and expected load levels (stressors) on the 

system. These domain specific models are generally 

adaptable and can be developed based on physics of failure 

or can be learned from run-to-failure data through data-driven 

methods. Since the predictions are made specifically for a 

given unit correctness is measured for that individual unit and 

aggregation over multiple units is not required. Due to the 

notion of runtime adaptation or learning, it is important to 

track the response time and consequently the prediction 

horizon every time a prediction is generated. Similarly the 

concept of online performance measurements is most 

relevant in these scenarios. Confidence is expressed through 

expressing uncertainties properly and computing probability 

of failure within acceptable error bounds.  

 

Type-IV or Data Analytics-based Prediction or Predictive 

Analytics - Predictive analytics is a term that has surfaced 

recently and is often being used interchangeably with 

prognostics in the PHM contexts. While it does involve 

making predictions based on information gleaned from past 

usage history data, the nature of predictions itself is not 

exactly the same as that in prognostics. A key difference 

being prognostics generates a prediction over a continuous 

space and therefore provides exact values of RUL over a set 

of real values in ℝ . Predictive analytics is more suited 

towards making discretized predictions that may not be a real 

number but a range over ℝ or a qualitative set, such as [low, 

medium, high]. It is different from reliability based prediction 

in that here the predictions are based on trends observed in a 

multidimensional space that includes observations from a 

verity of non-homogenous and often unstructured data such 

as time sequences of complex operational patterns, sensor 

data, operator observations, environmental factors, 

geographical features, etc. just to name a few. Here the key 

problem to deal with is to mine information from large 

datasets and identify complex patterns that have been shown 

to lead towards anomalies of failures through collected 

history data. The approaches are mostly based on a data-

driven (data-mining and machine learning) methods and are 

employed in situations where modeling the system behavior 

and its interaction with the external environment including 

human operators is often too complex to model. Correctness 

in such cases is measured through metrics used in pattern 

classification literature such as error rates (false positives and 

false negatives), Confidence in a prediction is expressed 

through similarity ranking metrics, or probability of failure 

occurring. 

2.3. Purpose of Performance Evaluation 

Relevance of a prediction is truly defined by the purpose it 

serves towards meeting overall system goals. In one 

application performance assessment could be used to 

optimize system operations at run-time, in another it could be 

used to optimize logistics chain to improve maintenance and 

repair efficiencies over a longer time horizon. Actions based 

on predictions range from fully autonomous to human 

controlled. Therefore, while it is important to measure 

prediction performance at the algorithmic level to assess 

technical quality (accuracy, uncertainty handling, 

performance improvement over time, convergence, etc.), 

from a practitioner’s perspective it is equally important to 

design metrics that measure effectiveness of predictions 

towards improving system performance. A classification of 

metrics was proposed based on their relevance to various 

PHM stakeholders, which showed that not all metrics are 

relevant to all practitioners (Goebel Kai, Saxena, Saha, Saha, 

& Celaya, 2011). Similarly, following hierarchy can be 

observed in performance metrics depending on the scope of 

the system within which prediction performance is measured 

defining the overall goal of performance evaluation.  

Table 1. Hierarchy of prediction performance metrics based 

on scope and function. 

System Scope Goal Metrics 

Core algorithm 

level (software 

and logic) 

Improve 

prediction 

algorithm 

performance 

Algorithm performance 

metrics assessed during 

development 

Implementation 

level (software 

and hardware) 

Efficient 

design of 

PHM system 

Computational performance 

metrics during system 

design 

System level 

with prognostics 

outside the 

decision loop 

Logistics 

planning 
PHM effectiveness metrics 

at system/fleet level 

assessed over long periods 

System level 

with prognostics 

in decision loop 

Operational 

planning 
PHM effectiveness metrics 

at decision control loop 

level assessed both at long 

and short terms 

2.4. Sources of Errors in Prognostics 

Irrespective of the overall approach taken (data-driven, 

model based or any combination thereof) any prognostic 

(condition based prediction) method consists of several 

components each of which must together perform well to 

achieve good prediction performance. As described in 

(Roychoudhury, Saxena, Celaya, & Goebel, 2013) a general 

prognostics method can be thought of being composed of at 

least four independent elements (data sources, domain 

models, implementation aspects, and a core prediction 

algorithm), each of which contributes to the overall 
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prediction performance. For instance, given a choice of a 

particular algorithm, the performance will additionally 

depend on the quality of sensors (location, resolution, 

sampling rates, signal-to-noise ratio, etc.), method of signal 

processing (information loss, feature extraction, etc.), quality 

of degradation model, and the ability to accurately estimate 

future load profile.  

Generally speaking a core prognostic algorithm itself consists 

of steps like state estimation, state propagation, future load 

and uncertainty estimation, failure threshold determination, 

etc. Therefore, a performance evaluation method must be 

cognizant of which factors are being evaluated so the 

performance can be attributed to the right elements and not 

necessarily generalized to the prognostic algorithm. For 

reference, some examples of core algorithms and 

corresponding sources of errors are described below.  

- Model based filtering algorithm for prediction generally 

consists of state estimation step followed by state 

propagation for prediction of RUL. Degradation models 

are developed based on domain knowledge about the 

physics of failures. Magnitude of errors in models 

therefore depend on quality of domain expertise. While 

state propagation step is the only true predictive element 

in these algorithm, overall performance is also affected 

by quality of state estimation and the estimation of future 

loading on the system. 

- Data-driven algorithms that were compared by (Goebel 

K., Saha, & Saxena, 2008) used a common preprocessing 

step to eliminate variability due to data preprocessing 

and uncertainties in state estimation while comparing 

prediction performance of several regression algorithms. 

Here the degradation models are learnt from available 

run-to-failure data and hence errors in models here 

depend on quality of information available from data and 

the choice of data models or mappings that describe 

relationships between sensor observations and system 

states, and operational conditions and fault growth rates. 

- Other pure data-driven approaches used such as in 

PHM08 challenge used a variety of preprocessing steps. 

See for instance the methods used by (Coble J. B. & 

Hines, 2008; Wang & Lee, 2009). These approaches 

bypass an explicit state-estimation step and make 

predictions purely based on similarity computations. 

Here errors depend on choice of variables used for 

computing similarity, similarity measure itself, and the 

vector length to compute similarity, for example. 

While it is arguable which factors should be included as part 

of prognostic algorithm and which as external to the 

algorithm, from a PHM system level viewpoint performance 

of the following must be evaluated at a minimum (1) 

correctness of state estimator (2) correctness of assumed 

future loading, operating, and environmental conditions; and 

(3) correctness of degradation (or fault propagation) model. 

A more detailed discussion on this is provided in Section 3. 

Furthermore, in an operational context, performance of a 

prognostic method can only be evaluated through overall 

effectiveness observed together with the decision making 

control loop. For example, whether the overall failure rates 

have gone down due to implementing of a prognostics 

algorithm, or whether a system was able to optimize its 

operation to maintain safety and maximize mission goals 

based on prognostics. It is important to determine which 

factors should be included in performance assessment, which 

accordingly guides the choice of specific metrics. For 

example, from an operational view point one is interested in 

the performance of overall prognostics and health 

management (PHM) system, but at the low level the interest 

lies in identifying which algorithm performs better given the 

same set of inputs (measurement data quality, domain 

models, implementation hardware, etc.), which is the focus 

of this paper. 

2.5. Offline vs. Online Performance 

Offline performance measurement generally refers to testing 

prediction ability of an algorithm on a dataset where failure 

time is precisely known as that event has already taken place. 

Performance is assessed based on how well a predicted 

estimate matches the true outcome. This, however, has 

limited usefulness and does not fully help when an algorithm 

is implemented on a real system. It is often desirable to track 

prediction performance to ensure that appropriate and timely 

decisions can be taken to benefit from advanced warnings 

from predictions. Therefore, online metrics are designed to 

track algorithm performance in real-time and predict 

system’s RUL while the actual EOL will not be known until 

it actually fails or may never be known if a repair action is 

executed based on predicted impending failure. In the 

absence of availability of true failure time it becomes 

challenging to assess how well an algorithm is predicting at 

runtime and most offline performance evaluation metrics are 

of little or no use. While, this is still an area of active research 

some attempts have been made. For instance, two main 

approaches have been suggested. A short term fixed-k step 

ahead state prediction is generated in addition to RUL 

predictions. These short term predictions can then be 

evaluated for correctness with only a k-step delay and not 

having to wait until the failure time. Consistently good values 

or convergence of the correctness metrics is taken as a 

measure of confidence in RUL prediction performance. 

Similarly, other metrics such as stability (less fluctuations 

from one prediction to the next) of short term predictions can 

be used to improve confidence and usability in a decision 

making loop. 
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3. WHAT SHOULD BE MEASURED? 

Several metrics have been developed and currently used for 

assessing prognostic performance that also account for 

uncertainties in predictions. It is, however, rarely discussed 

how distributions of predicted RUL are to be interpreted, 

what they should be compared to for correctness, or how to 

actually make such comparisons. While the role of 

uncertainties in RUL predictions was discussed in (Celaya, 

Saxena, & Goebel, 2012; Sankararaman & Goebel, 2013) this 

section sheds some light on the contribution of uncertainties 

in RUL predictions to unravel the details of what 

comparisons are mathematically meaningful, and how to 

correctly interpret various types of comparisons within a 

performance evaluation task. 

Existing methods for performance assessment can be broadly 

classified as being applicable to two types of situations: (1) 

where the RUL of a component/system is stochastically 

predicted using a prognostic algorithm, and the ground truth 

end-of-life (that is measured after failure) is compared 

against the algorithm prediction; and (2) where the RUL of a 

component/system is stochastically predicted using a 

prognostic algorithm, and this prediction is compared against 

an ensemble of end-of-life realizations available by running 

multiple nominally identical components to failure; 

sometimes, historical run-to-failure data sets are readily 

available in the literature for this purpose.  

While the former requires the comparison of a probability 

distribution to a point value, the latter requires verifying 

whether the run-to-failure times are samples of the predicted 

probability distribution. Sometimes, in the latter case, the 

different run-to-failure times may be used to construct a 

probability distribution, and therefore, it is necessary to 

measure the extent of agreement between the run-to-failure 

probability distribution and the RUL distribution predicted 

by the prognostic algorithm. This section explores the 

scientific philosophy behind these two approaches for 

performance evaluation, and investigates the interpretation 

and relevance of such comparison. 

To begin with, it is necessary to understand why the 

prediction of a prognostic algorithm is uncertain. 

Sankararaman and Goebel (2013) explain that, in condition-

based prognostics, all the uncertainty needs to be interpreted 

subjectively. In other words, the uncertainty is simply 

reflective of the analyst’s knowledge and not related to true 

randomness. For example, the component/system is at a 

particular state at any time instant. Since this state cannot be 

estimated accurately, it is represented using a probability 

distribution. Similarly, though future loading conditions are 

expressed using probability distribution(s), only one 

realization (based on that probability distribution) would 

actually occur during the course of operation of the 

component/system. Similarly, the degradation model also 

predicts how the health deteriorates; though this model may 

be uncertain, this uncertainty is not related to physical 

randomness. A prognostic algorithm aims at processing all of 

these sources of uncertainty (state, loading conditions, and 

degradation model), and quantifies their combined effect by 

computing the uncertainty in the RUL. Thus, the uncertainty 

estimated by the prognostic algorithm is not (and should not 

be) related to true randomness, and is purely subjective in 

nature. 

This raises the question: What is related to physical 

randomness? True randomness occurs while running multiple 

nominally identical components to failure. The material 

properties of these components exhibit true variability. The 

initial state of these components exhibits true variability. The 

loading conditions that these components are subjected to 

experience true variability. Therefore, the RUL distribution 

estimated by running multiple components to failure exhibits 

true variability. It is not really meaningful to compare this 

probability distribution against the probability distribution 

predicted by the prognostic algorithm, since the former 

reflects the presence of true variability (in properties and 

loading conditions) across multiple nominally identical 

components/systems, whereas the latter focuses on predicting 

the RUL of one particular component/system. This implies 

that comparing the stochastic prediction of a prognostic 

algorithm to historical run-to-failure data sets does not 

necessarily help in evaluating the performance of the 

algorithm, since the sources and interpretation of uncertainty 

underlying these two statistical distributions are completely 

different.  

In other words, if prognostic algorithms are meant for 

condition-based RUL assessment, then they should predict 

the RUL of only the intended component/system, and hence, 

it is necessary to rely on the ground truth end-of-life of that 

particular component/system in order to evaluate algorithm 

performance. 

The prediction of a prognostic algorithm depends on four 

factors: 

1. Choice of degradation model and associated uncertainty 

2. State estimate and associated uncertainty, at time of 

prediction 

3. Assumed future loading conditions and associated 

uncertainty 

4. Procedure by which the algorithm processes all the 

above three uncertainties, in order to compute the 

uncertainty in the RUL.  

The first three of these four factors need to be both accurate 

and precise, in order to achieve the best possible 

performance, from the perspective of the prognostic 

algorithm. The fourth factor needs to be mathematically and 

statistically exact, without making any approximations 

and/or assumptions regarding the probability distribution 

type and parameters of the RUL.  

Note that, at present, it is not possible to verify whether the 

first three factors accurate or check whether the predicted 
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uncertainty in the RUL is truly reflective of the combined 

effect of the different sources of uncertainty. It is necessary 

to directly evaluate the prediction of the prognostic algorithm 

by directly comparing against the ground truth RUL. The rest 

of this section explores how this goal can be accomplished, 

by analyzing what quantities can be measured, in order to 

evaluate prognostic algorithm performance. 

3.1. Ideal, Hypothetical Scenario 

Consider an engineering component/system and a particular 

time-instant at which the RUL needs to be predicted using a 

prognostic algorithm. The algorithm, first, estimates the state, 

in terms of a probability distribution. Assume that a 

degradation model is readily available. Further, the 

uncertainty regarding the future loading conditions is also 

assumed to be available. 

Imagine a hypothetical scenario wherein it is possible to run 

the same component/system to failure multiple times. From 

one run to another, the properties of the component/system 

do not change because the same system is being used, and the 

initial state is also invariant. However, the loading 

experienced in each run is different from another run. It is 

unreasonable to assume that the prognostic algorithm would 

possess knowledge regarding the statistics of the actual future 

loading conditions; therefore, the assumed loading statistics 

may or may not be identical to the actual loading statistics. 

(This, in fact, is the major challenge in prognostics in 

comparison with several other disciplines, because future 

loading conditions need to be anticipated accurately, in order 

to predict failure.) 

It is possible to test whether the observed run-to-failure times 

are actually realizations of the probability distribution 

predicted by the algorithm using statistical methods, and such 

a test will be indicative of the prognostic algorithm 

performance. Note that the prognostic algorithm is likely to 

overestimate the uncertainty because (1) while the true state 

estimate is point-valued, the algorithm only estimates a 

probability distribution; and (2) the degradation model adds 

additional uncertainty. However, (1) if these two factors are 

infinitely accurate and precise; (2) if the algorithm assumes 

loading conditions that are exactly similar to those observed 

in reality; and (3) if the algorithm accurately processes the 

different sources of uncertainty, then the probability 

distribution predicted by the algorithm will be exactly 

identical to the probability distribution of the observed run-

to-failure times. 

Note that this evaluation jointly evaluates all of the 

aforementioned four factors, i.e., even if one factor were not 

accurate/correct, this would be reflected as a difference 

between the probability distributions corresponding to 

prediction and observation. However, as it can be seen from 

the description of the scenario, such evaluation is only 

hypothetical because it is not possible to fail the same 

component multiple times, while starting from the same time-

instant. Therefore, it is necessary to investigate other 

evaluation measures that are useful in practice. 

3.2. Post End-of-Life: Point-Valued Evaluation 

As mentioned at the beginning of this section, the most 

commonly preferred method of evaluation is to wait until the 

end-of-life is reached, and compare the actual run-to-failure 

time against the algorithm prediction. The accuracy and 

precision of the prediction can be estimated easily. However, 

such comparison is not only unfair, but, sometimes, it may 

lead to incorrect conclusions. 

Unfairness: From the time of prediction until the time of 

failure, the algorithm assumes some uncertainty regarding the 

future loading and usage conditions. However, the observed 

ground truth is reflective of only one loading/usage condition, 

thereby implying that similar quantities are not compared. 

Concluding poor performance for a good algorithm: The 

aforementioned unfairness can sometimes lead to concluding 

that a good algorithm is poor. Consider the case where an 

algorithm is provided future loading conditions that are 

completely different from the actual loading conditions. The 

algorithm may process the provided information accurately 

and compute the RUL. However, this prediction may be 

completely different from the observed RUL. This difference 

needs to be attributed only to the incorrectly assumed loading 

conditions and it is not reasonable to penalize the prognostic 

algorithm in this context. 

Concluding good performance of a poor algorithm: Suppose 

that the prediction of the algorithm is extremely accurate and 

precise, with respect to the observed ground truth. Then, it 

cannot be inferred that the algorithm is performing well. For 

instance, if the true damage (expressed in terms of the states) 

had been overestimated, and if the degradation model depicts 

a slower degradation rate than reality, then, ground-truth-

based evaluation may suggest that the algorithm is indeed 

performing well. It is generally understood that a good 

prognostic algorithm needs to accurately estimate the state, 

and if the state estimation is not accurate, then the algorithm 

needs to be penalized. Clearly in this case, the algorithm is 

not penalized. 

3.3. Post End-of-Life: Informed Evaluation 

It is possible to eliminate the effect of not knowing the 

loading condition in advance, by waiting until failure. The 

actual loading/usage condition experienced by the 

component/system can be observed, and the prediction 

algorithm can be provided with this information. Therefore, 

the algorithm prediction can be “informed” with the actual 

loading condition, and the informed-prediction can be 

computed easily. Note that, at the time of prediction, this 

information would not be available to the algorithm. 

Therefore, this procedure is only to evaluate the algorithm 

performance, after eliminating the effect of unknown future 
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loading conditions. All the other information provided to the 

algorithm need to be reflective of the information available 

to the algorithm at the time of prediction. 

Similar to the traditional ground-truth-based evaluation, the 

informed prediction of the algorithm can be compared against 

the observed ground truth. Note that the former is uncertain 

because of uncertainty in the state estimate and the 

degradation model. The precision and accuracy of the 

prediction can be computed. It can be easily seen that this 

evaluation is stricter than the evaluation in Section 3.2, and 

this performance evaluation needs to be meet requirements. 

However, whether this evaluation is sufficient, is unclear at 

present. This is because, just as in Section 3.2, overestimate 

damage and underestimated degradation rates may 

compensate each other and lead to higher accuracy and 

precision.  

3.4. Pre End-of-Life Evaluation 

While the above described measures of evaluation focus on 

characterizing the effects of state estimates, future loading 

conditions, and degradation model, it is also necessary to 

check whether the algorithm is accurately processing the 

different sources of uncertainty. This is not related to 

accurately predicting the RUL, but is directly associated to 

the mathematical treatment of the various sources of 

uncertainty.  

Some algorithms may average the effect of the different 

sources of uncertainty on the RUL, and arbitrarily calculate 

the variance of RUL using approximations and assumptions 

(Celaya et al., 2012). It is important not to underestimate or 

overestimate the underlying uncertainty and accurately 

calculate the probability distribution of RUL. The ideal 

approach to perform such calculation is the use of Monte 

Carlo simulation with a large number of samples; though this 

requires high computational power, this method can be used 

to check the performance of other algorithms that are suitable 

for online prediction. In other words, the probability 

distributions obtained using the specific algorithm and Monte 

Carlo simulation can be compared and any discrepancy can 

be quantified, in order to evaluate the performance of the 

algorithm, from the perspective of integrating the different 

sources of uncertainty.  

3.5. Summary 

The search of prognostic performance evaluation measures 

raises several important questions and concerns. There are 

four important critical factors that control the performance of 

prognostic algorithm, and it is not practically possible to 

individually evaluate the goodness of these factors. While 

testing the performance against observed ground truth seems 

to be the most widely used method, it is not only unfair but 

may lead to incorrect conclusions. The informed-prediction 

method eliminates the uncertainty regarding the future 

loading conditions, and quantifies the combined effect of 

state uncertainty and degradation model uncertainty on the 

RUL prediction. The fourth factor, i.e., whether all the 

sources of uncertainty are being processed and integrated 

accurately, can be verified by comparing the algorithm 

prediction against rigorous Monte Carlo simulation. 

An important challenge is the inability to check whether the 

loading conditions assumed by the algorithm are reflective of 

what is expected in reality. Is it reasonable to penalize the 

algorithm for poor performance? Another issue is the ability 

to identify whether the adverse effect of two (or more) 

incorrectly estimated quantities jointly cancel out one 

another, and deceivingly suggest that the prediction is highly 

accurate and precise. Further research is necessary to address 

these issues and improve the state of the art techniques for 

prognostic performance evaluation.  

4. STATE-OF-THE-ART ON PROGNOSTICS METRICS 

Several performance metrics were proposed earlier that 

evaluate key attributes (correctness, timeliness, and 

confidence) of prognostic performance as described in 

Section 2.1). Specifically following four metrics were 

suggested –  

Prediction horizon – quantifies how early a prediction 

algorithm can make reasonable predictions to allow 

maximum advance warning before an impending failure. 

Alpha-lambda accuracy – specifies whether an algorithm’s 

prediction error is within desired accuracy bounds (specified 

by α) at any given time (specified by λ). 

Relative accuracy – quantifies the prediction error 

normalized by remaining component life at any given time. 

Convergence – tracks the rate of improvement in prognostic 

algorithm’s performance as time progresses. 

As described in (Saxena et al., 2010) these metrics convey 

how prognostic performance evolves with time as end-of-life 

time approaches closer. These metrics also acknowledged 

that prognostics must account for uncertainties and that any 

prediction method should include a representation of 

uncertainties through abstractions such as, for instance, the 

probability distributions. These metrics are parameterized 

through several parameters α (accuracy modifier), β 

(confidence modifier), and λ (time window modifier), which 

must be derived as specifications for prognostics based on 

high level requirements. In their latter publications authors 

described and illustrated through an example how such a 

flowdown can be carried out to derive numerical 

specifications for these parameters (Saxena, Roychoudhury, 

Celaya, Saha, Saha, & Goebel, 2012). There have been other 

recent efforts that acknowledge the need to evaluate 

performance under uncertainty. Generally speaking 

individual efforts are driven by respective application needs, 

however, it appears that many research articles have been 

developing metrics without explicitly discussing the 
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interpretation of the quantities being compared, therefore 

largely ignoring the issues such as those discussed in Section 

3. 

In (Leao Bruno P, Gomes, & Yoneyama, 2011; Leao Bruno 

P. & Yoneyama, 2013) a Probability Integral Transform 

(PIT) based method is presented that evaluates whether an 

algorithm processes uncertainties adequately by comparing 

the statistics of predicted RUL distributions to a ground truth 

distribution obtained from several run-to-failure datasets. 

The advantage of this method is in that it allows comparisons 

of arbitrary (parametric or non-parametric) distribution types 

obtained from field data or experimentation to address the 

scenario described in Section 3.1. Since the statistical 

significance of the analysis depends on the number of run-to-

failure test cases available, limits on values can be computed 

for a desired significance level to assert whether a particular 

algorithm processes the uncertainty (as observed through 

several examples) correctly in a statistical sense. Authors also 

proposed some graphical visualizations to express confidence 

bounds in such assertions. As a limitation, availability of 

statistically sufficient ground truth data and validity of 

aggregating the field data into a single histogram is always 

questionable for such approaches to work properly. As 

presented in some of the earlier works from the authors 

(Saxena et al., 2008; Saxena, Celaya, Saha, Saha, & Goebel, 

2009b; Saxena et al., 2010)  there has been a general tendency 

towards computing an aggregate metric score over 

performance of several units under test. However, in the 

context of condition based prognostics, where users are 

concerned with prognostic performance of an algorithm on 

specific use case, applying aggregation or averaging metrics 

may not be valid due to effects of different operational and 

loading conditions on the usage life of units included in a 

historical dataset.  

Next, the various metrics proposed based on PIT do not 

address the timeliness attributes of performance as discussed 

in Section 2.1. In fact, unfortunately, it is still very common 

to find metrics that disregard the timeliness aspect of 

prognostic performance. In (Sharp, 2013) several averaging 

metrics are presented that can be considered an improvement 

over traditional error or variance based metrics, but suffer 

from same limitations that it is not technically correct to 

average predictions made at different times. Although, by 

means of a user defined weighting function this limitation is 

somewhat alleviated, but choosing an appropriate weighting 

function is another subjective proposition that makes these 

metrics non-standardized and difficult to implement. Metrics 

such as Weighted Error Bias (WEB), Weighted Prediction 

Spread (WPS), Confidence Interval Coverage (CIC), 

Confidence Convergence Horizon (CCH), and a weighted 

sum total of all to create a Total Score Metric (TSM) may not 

be as simple or intuitive as authors intended them to be.  

While most of the above metrics were proposed primarily for 

offline evaluation of prognostic performance, there have been 

other works that tackle specific challenges. Much of the 

recent literature either focuses on incorporating uncertainties 

or attempts to develop methods for online performance 

evaluation. Some of the recently published methods are 

summarized in Table 2. The aspect of online performance 

evaluation is mostly addressed by assessing performance on 

short term predictions of the system state (not necessarily the 

end-of-life). Correctness and consistency of these predictions 

over time is used to assert confidence in long term RUL 

predictions, where there cannot be an explicit evaluation of 

correctness and timeliness in the absence of end-of-life 

ground truth. Short term correctness is measured through 

usual accuracy and precision metrics, and consistency is 

generally measured by variance between successive 

predictions. There is no denying the fact that these are still 

conceptual challenges in evaluating prognostic performance 

and the research community continues to work towards 

finding a robust solution. 
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Table 2. Recently published metrics in prognostics literature. 

Metric Description Formula 

Online Performance Evaluation 

RUL Online Precision 

Index (RUL-OPI) 

(Orchard, Tang, 

Goebel, & 

Vachtsevanos, 2009) 

RUL-OPI quantifies and tracks the precision of predicted 

RUL distributions by quantifying the length of 

95%confidence bounds (CI(i)) normalized by the 

predicted RUL (r(i)) at any given time instant. An 

algorithm with a high index (close to 1) is preferred, which 

indicates high precision or narrow confidence bounds. 

 

   sup CI(i) inf CI(i)

r(i)
I i e

 
  
   

Dynamic Standard 

Deviation (DStd) 

(Olivares, Muñoz, & 

Orchard, 2013) 

DStd quantifies the stability of predictions within a time 

window (Δ). Variance between individual predictions 

made within the time window is computed. The metric is 

normalized to a range [0,1] using the logistic function φ 

for easy comparisons.  

  1: j
j

DStd Var E EOL | y


 
  

 

 

Critical-α  Performance 

Measure  

(Olivares et al., 2013) 

Looking from the perspective of actionable decision 

making, this measure computes the critical percentile (α) 

of an RUL distribution that would define a Just-In-Time-

Point (JITP) for that application. JITP must always occur 

before actual failure, and hence the value of this metric 

lies in interval (0,0.5] and should be maximized to avoid 

unnecessary conservatism in decision making. 

 crit % pred

pred

arg max JITP (k ) EOL ;

k [1,EOL]

 

 






 

Accuracy and 

Precision over fixed 

horizon  

(Liu & Sun, 2012) 

The accuracy metric (Ac) computes the probability mass 

of the predicted RUL within the acceptable α bounds and 

compares them to actual states realized at the end of the 

short horizon window.  

Similarly the precision (Pr) metric compares the spread 

(based on confidence intervals (CI)) of the predicted (P) 

probability density function to the true pdf (T) at the end 

of one horizon window. It is however not clear how the 

true pdf is obtained for comparison, where one would 

expect only a point observation from an actual event. 

p

T P
T P

T

P T
T P max

max T

P max

Ac (c)dc or (c)

CI CI
1 if CI CI

CI
CI CI

Pr 1 if CI CI CI
CI CI

if CI CI
0

 





 




   


 



 


 

 

Metrics Dealing with Uncertainty in Predictions 

β-criterion (Saxena et 

al., 2010; Saxena et al., 

2012) 

β-criterion specifies desired level of overlap between 

predicted RUL PDF and the acceptable error bounds (α-, 

α+) around observed EOL.  

Further extensions to β-criterion were proposed to bound 

probabilities of early (β-) and late (β+) predictions that are 

guided by higher level system requirements. 

These criteria apply to situations described in Section 3.2. 

 

*EoL 

EoL ground truth

EoL

Predicted point 

estimate of EoL










 ][EoL

Total probability 

of EoL within α-bounds

Total probability 

of EoL occurring 

later than α+ bound 

resulting in failure

Total probability of 

EoL occurring earlier 

than α- bound resulting 

in early repair or 

missed opportunity


Predicted 

EoL probability 

distribution

α- : Acceptable 

limit for early 

predictions 

α+: Acceptable limit 

for late predictions
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Probability Integral 

Transform (PIT) and 

PIT based metrics  

(Leao Bruno P. & 

Yoneyama, 2013) 

PIT allows to assess how well a predicted distribution 

match the variability in the actual process. Ground truth 

RUL values from several run-to-failure datasets are 

transformed into corresponding PIT values using the 

cumulative distribution functions for the predicted RULs. 

Closer the transformed values lie to a uniform distribution 

U(0,1) better the predicted distribution represents the 

observed process. 

To check this resemblance a graphical prognostic 

performance plot (PPP) was suggested with a quantitative 

measure prognostic quality index (q). Further, a 

significance level of the result can be determined based on 

hypothesis testing. Other such measures are also possible. 

𝑃𝐼𝑇: 𝑧𝑖 = 𝐹(𝑥𝑖) s.t. 

𝐹(𝑥) =  ∫ 𝜋(𝜉)𝑑𝜉
𝑥

−∞
= 𝑃(𝑋 ≤ 𝑥) and  

𝑍 = 𝐹(𝑋) ~𝑈(0,1) 

 

𝑞 = 1 −
2

𝑀
∑ |𝑎𝑏𝑠𝑗 − 𝑜𝑟𝑑𝑗|𝑀

𝑗=1  to quantify 

deviation from the reference U(0,1) 

 

 

Table 3. Classification of prediction methods and description of metrics typically used for performance evaluation. 

Prediction 

Method 
Prediction Model Applicability Accuracy Timeliness Confidence 

Type I 
Reliability analysis 

based predictions 

Population-based 

statistics data from 

(mostly controlled) 

experiments or usage 

history data 

Predict mean life 

of a component. 

Correctness of 

predictions is 

meaningful for a 

fleet in general, 

and not for an 

individual unit 

Mean-life metrics such as MTBF, MTBR, 

etc. can be predicted and then compared 

to observations from actual field data. 

These, errors in predictions can be used 

as a metric of accuracy. Otherwise, if 

maintenance actions based on these 

metrics are effective, then any observed 

change in mean-life estimates can be 

interpreted as a measure of effectiveness 

(accuracy, timeliness) of such predictions. 

Probability of success 

metrics such as RxCy 

specifying x% 

reliability with y% 

confidence. E.g. 

R96C90 is a popular 

metric in automotive 

industry 

Type II 
Damage 

accumulation model 

based predictions 

Unit specific load 

history data + 

population based 

Damage 

accumulation model 

Predict remaining 

life of an 

individual unit 

based on 

population model 

Metrics like alpha-

lambda accuracy and 

relative accuracy 

quantify correctness 

of prognostic 

algorithms (Saxena et 

al., 2010) 

Prediction 

horizon, and 

lambda, the time 

window 

modifier, based 

metrics assess 

timeliness 

aspects of 

prognostics 

β-criterion (Saxena, 

Celaya, Saha, Saha, & 

Goebel, 2009a) 

assesses confidence  in 

prediction correctness, 

Robustness (Guan et 

al., 2010) and 

sensitivity metrics 

(Vachtsevanos, Lewis, 

Roemer, Hess, & Wu, 

2006) assess 

confidence via offline 

analysis 

Type III 
Condition based 

predictions - 

Prognostics 

Unit specific 

degradation model 

(data-driven or 

physics based), load 

history, and 

condition monitoring 

data.  

Predictions 

customized for 

individual unit by 

learning specific 

individual 

behavior 

Type IV 

Data Analytics 

based predictions – 

Predictive analytics 

Rich set of data from 

multiple units in a 

variety of operating 

conditions + 

analytical data model 

for pattern matching 

Predictions for 

individual unit 

based on rich 

operational history 

data 

Classification error 

rate metrics (such as 

false positives, false 

negatives), aggregate 

error metrics (such as 

MAPE, MSE, MAD, 

etc) to evaluate 

predictions on 

multiple units. 

Timeliness may 

be expressed by 

length of history 

sequence 

considered for 

accurate 

predictions. 

Similarity scores 

between two high 

dimensional history 

vectors establish 

confidence. Similarity 

metrics such as 

precision and recall are 

often employed 

Algo 1

Algo 2
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ABSTRACT 

Wind turbine operation and maintenance costs depend on 

the reliability of its components. Thus, a critical task is to 

detect and isolate faults, as fast as possible, and restore 

optimal operating conditions in the shortest time. In this 

paper, a  data mining approach is proposed for fault  

prediction by detecting the faults  inception in the wind 

turbines, in particu lar pitch actuators. The role of the latter 

is to adjust the blade pitch by rotating it according to the 

current wind speed in order to optimize the wind turbine 

power production. The fault p rediction of pitch actuators is 

a challenging task because of the high variability of the 

wind speed, the confusion between faults and noise as well 

as outliers, the occurrence of pitch actuator faults in power 

optimization region in which the fault consequences are 

hidden and the actions of the control feedback which 

compensate the fault effects. To answer these challenges , 

the proposed approach monitors a drift from normal 

operating conditions towards  failure condition. To ach ieve 

drift detection, two drift indicators are used. The first 

indicator detects the drift and the second indicator confirms 

it. Both indicators are based on the observation of changes 

in the characteristics of normal operating mode over time. A 

wind turbine simulator is used to validate the performance 

of the proposed approach. 

1. INTRODUCTION 

1.1. Basic definitions and motivation 

The search for alternative clean energy is undoubtedly 

becoming more and more important in modern societies. 

The growing interest in wind energy production has led to 

the design of sophisticated wind turbines. Like every  other 

complex and heterogeneous system, wind turb ines are prone 

to faults that can affect their performance and increase 

maintenance costs. In addition, it is very difficult and even 

dangerous to access the turbines. Thus, it is crucial to design 

an automated diagnostics system in  order to achieve the 

fault detection and isolation.  

In general, fault diagnosis of wind turbines is a challenging 

task because of the high variability of the wind speed and 

the confusion between faults and noise as well as outliers . 

However, the fault diagnosis of pitch actuators is 

particularly a challenging task because of i) the occurrence 

of pitch actuator faults in power optimizat ion region in  

which the fault  consequences are hidden and ii) the actions 

of the control feedback which compensate the fault effects. 

Operating conditions of a system may change from normal 

to faulty either abruptly or gradually. In the case of gradual 

change, the system begins to malfunction (degraded 

behavior) until the failure takes over completely. The 

prediction of the occurrence of a failu re prior to its 

occurrence can help providing a time to achieve appropriate 

corrective actions leading to decrease the maintenance costs 

and to increase the availability time . This can be achieved 

by early d iagnosis module. Therefore, early diagnosis of 

pitch actuators is of particular interest for wind turbines 

industry due to their operational & maintenance costs  as 

well as their essential role in optimizing the energy 

production.  

1.2. State of the art 

Diagnosis approaches can be divided into two main  

categories: analytical model based and data min ing 

approaches. Analytical model based approaches exploit  the 

physical knowledge about the system dynamics and 

structure to construct a mathematical or analytical model. 

The conceptual realization of these models can vary 

according to the used approach as the parity space 

(Ozdemir, Seiler & Balas, 2011) (Blesa, Puig, Romera & 

Saludes, 2011), state estimation (Zhang, Zhang, Zhao 

Ferrari, Polycarpou & Parisini, 2011), unknown  input 

observer (Odgaard & Stoustrup, 2011), Kalman  filters, 

unknown input Kalman filters (Chen, Ding, Sari, Naik, 

Houari TOUBAKH et al. This is an open-access article distributed under 
the terms of the Creative Commons Attribution 3.0 United States 

License, which permits unrestricted use, distribution, and reproduction 
in any medium, provided the original author and source are credited. 
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Khan & Yin , 2011), parameter identification 

(Simani,Castaldi & Bonfe, 2011), state-parameter 

estimation, as extended Kalman filter approaches (LIU, 

2011) etc. The applicat ion of model-based approaches for 

the fault diagnosis of wind turbines is  difficult due to the 

wind turbine complexity and to the strong non-stationary of 

its environment. An alternative to the analytical model-

based approaches is data min ing approaches. In the latter, 

the model is built  using historical data about the system 

dynamical behaviors. The model is built by learn ing from 

data in order to link the input or observation space to the 

output or decision space. Examples of these approaches 

applied to fault diagnosis of wind turbines we can cite, 

support vector machines (SVM) (Laouti,Sheibat-Othman & 

Othman, 2011), neural networks (Schlechtingen & Santos, 

2011), principal component analysis  (Kim, Parthasarathy, 

Uluyol,  Foslien, Shuangwen & Fleming, 2011), auto-

adaptive dynamical clustering (AuDyC) (Chammas, 

Duviella  & Lecoeuche, 2013), self-feature organization map  

(Kim, Parthasarathy, Uluyol, Foslien, Shuangwen & 

Fleming, 2011), k nearest neighbors (Toubakh, Sayed-

Mouchaweh & Duviella ,2013).  

 

Few approaches have been proposed to achieve predictive 

diagnosis of wind turbines, in particular pitch actuators. 

This is due to the fact  that modeling component degradation 

in strong nonlinear and complex non-stationary 

environments is very hard task. Examples of these methods, 

we can cite genetic programming algorithm (Kusiak & 

Verma, 2011), neural network, neural network ensemble, 

the boosting tree algorithm, and SVM (Kusiak & Li, 2010). 

These methods achieve the fault prediction using the 

Supervisory Control and Data Acquisition (SCADA) data. 

The latter have the disadvantage to be of limited size and 

thus they do not provide enough of information about 

components operating conditions. Thus, the prediction 

accuracy of specific fau lts is not sufficiently accurate.   

1.3. Our approach 

In this paper, a data min ing based approach is proposed in 

order to achieve the prediction o f fau lts that can impact 

wind turbine pitch actuators. Initial offline modeling allows 

constructing initial classes based on the historical data set. 

These classes are represented by restricted zones in the 

feature space. The latter is formed by sensitive features to 

pitch actuators’ operating conditions in order to distinguish 

any drift  from normal to fault  operating conditions. The 

modeling tool is a dynamical clustering algorithm called 

AuDyC (Auto-Adaptive Dynamical Clustering) used to 

initialize the classes that will be dynamically updated. In 

this work, the faulty class, representing the failure operating 

conditions of pitch actuator, is considered to be a priori 

unknown. The only known class in advance is the one 

representing the pitch actuator normal operating conditions . 

Gradual degradations in pitch actuator operating conditions 

are considered as a drift in the characteristics of normal 

class, representing the normal operating conditions, over 

time. This drift is characterized by  a change in patterns 

distribution in the normal class in the feature space. The 

proposed approach monitors a change in the characteristics 

of this class in order to detect and confirm a drift, 

degradation, of pitch actuator normal operating conditions. 

Detecting and following this drift can help to predict the 

occurrence of pitch actuator failure. The drift is monitored 

using two drift indicators: one to detect a drift and the 

second to confirm it . When the drift is detected by the first 

indicator, a  warning is emitted to human operators. Then, 

the second drift indicator confirms this drift in order to 

inform human operators of the necessity to react by taking 

the adequate correction actions.  

 

The proposed data mining approach is composed of five 

main steps:  processing and data analysis, classifier design, 

drift monitoring, updating and interpretation steps. 

 

The paper is organized as fo llows. In  section 2, the wind 

turbine benchmark and the generated fault scenarios are 

described. In section 3, the proposed approach to achieve 

fault prediction of pitch actuators is detailed. In section 4, 

the results based on the use of the wind turbine benchmark 

are presented. Finally, the conclusion and perspectives are 

discussed in section 5. 

2. WIND TURBINE BENCHMARK DES CRIPTION 

A benchmark model for Fault Detection and Isolation (FDI) 

and fault tolerant control (FTC) of wind turbines was 

proposed in (Odgaard & Stoustrup, 2009). The benchmark 

is based on the model of a generic three blade horizontal 

variable speed wind turbine with a full converter coupling 

and a rated power of 4.8 MW. The wind turbine model 

under study is composed of four parts: the blades, the drive 

train, the generator with the converter, and the controller. 

More details of the benchmark model can be found in  

(Odgaard & Stoustrup, 2009). 

The controller operates in four zones (see Figure 1). Zone 1 

is the start-up of the turbines, zone 2 is power optimization, 

zone 3 is constant power production and zone 4 is no power 

production due to a too high wind speed. The focus of this 

benchmark model is on the operation of wind turbine in  

zones 2 & 3. 

Two control strategies are applied to optimize the energy 

production and keep it constant at its optimal value: the 

convertor torque control in zone 2 and the b lades angle 

control in zone 3. In zone 2 (see Fig. 1), the wind turbine is 

controlled so that it produces as much energy as possible. 

To do so, the blades angle is maintained equal to 0° and the 

tip speed ratio is kept constant at its optimal value. The 

latter is regulated by the rotating speed control by tuning the 

convertor torque. Once the optimal power production is 
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achieved, the blades angle control maintains the convertor 

torque constant and adjusts the rotating speed by controlling 

the blades angle. The latter modifies the transfer of the 

aerodynamic power of the wind on the blades.  

 

Figure 1. Reference power curve for the wind turbine 

depending on the wind speed. 

 

Figure 2 shows the overall wind turbine model structure 

where 
w  denotes the wind speed, 

r  the rotor torque, 
r

the rotor speed, g  the generator torque, g  the generator 

speed, 
r  the pitch angle  control reference, 

m  the 

measured pitch angles, 
,r m  the measured rotor speed, ,g m  

the measured generator torque, ,g m  the measured generator 

speed, gP  the measured generated electrical power,  ,g r  the 

generator torque reference, and 
rP  the power reference. 

The benchmark model permits to simulate the wind turbine 

behavior in two power zones: 1) zone 2 (power 

optimization) where g is controlled  and 
r is equal to zero  

and; 2) zone 3 (optimal energy production) where g is kept 

constant and 
r is controlled. In this paper, we focus on 

pitch actuator faults as it is discussed in subsection 2.1. 

 

 
 

Figure 2. Block diagram of the wind turbine model 

(Odgaard & Stoustrup, 2009). 

2.1. Pitch System Model 

The hydraulic pitch system is modeled as a closed loop of 

dynamic system. The state representation of the nominal 

pitch system dynamics is:  
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The state vector 
bx  is composed of pitch angular speed

i


, 

and position 
i  for each blade i  : ( 1, 2,3)i  .

by  is the 

measured pitch position,
r  is the pitch angle position 

reference provided by the controller, and f  is the feedback 

pitch system (see Figure 3). ,n   are the parameters of the 

pitch system where 
n  represent the natural frequencies and 

   is the damping ratio. 

The role o f the pitch actuator is to adjust the pitch of a b lade 

by rotating it; while the pitch angle of a blade is measured 

on the cylinder of the pitch actuator.   

 

Figure 3. Block diagram of p itch system. 

2.2.  Fault scenarios  

The pitch actuator fault considered in this paper is caused by 

air content increase in the actuator’s oil. This fault is 

modeled  as a gradual change in  the parameters ,n   of  

pitch actuator n°3 (Odgaard & Stoustrup, 2009). Nine 

scenarios for this fault are generated in order to simulate 

slow, moderate and high degradation speeds represented by 

slow, moderate and h igh drift speeds. Each drift  speed 

scenario is generated at three different time instances . Thus, 

parameters ,n  are changed linearly from 
1 1,n   to 

2 2,n   

in a period of 30s, 60s and 90s, corresponding respectively 

to high, moderate and slow drift speeds. Then, the fault 

remains active for 100s. Finally  the parameters decrease 

again to return to their in itia l values (see Figure4).  
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Figure 4. Drift scenarios corresponding to high drift speed 

in 3 different time instances.   

 

The goal of using three d ifferent drift speeds starting in 

three different instant times is to test the performance, drift  

detection and confirmation, in the case of slow, moderate 

and high degradation speeds occurring in different wind 

speed (zones 2 and 3). Actuator fault scenarios are 

summarized in Tab le1. 

 

3. PROPOS ED APPROACH  

In this section, a dynamical data min ing approach is 

developed in order to achieve condition monitoring and 

fault prediction of pitch actuator. It performs this prediction 

by detecting a drift of the system operating conditions from 

normal to fau lty modes.  

The proposed approach is based on 5 steps developed in the 

following subsections (see Fig. 5).    

 

 
Figure 5. Proposed approach steps. 

3.1. Processing and data analysis step 

 

This step aims at finding the features  sensitive to the system 

operating conditions in order to construct the feature space. 

The position of the pitch actuators is measured by two 

redundant sensors for each of the three p itch positions

 , 1,  2,  3,  2( )1,  k mi k i   , with the same reference angle 

r  provided to each of them. In order to enhance the 

robustness against noise, the measures are filtered by a first 

order filter using time constant 0.06 .s    

The research of sensitive features is based on the signals 

provided by the pitch sensors as well as the prior knowledge 

about the system dynamics. These features are chosen in 

order to maximize the discrimination between operating  

modes in the feature space. In this work, two-dimensional 

feature space is constructed for the actuator faults  (Toubakh 

et al., 2013). Both features are  residuals A   , A= 1, 2  

computed by (4) and (5). Residuals A , A= 1, 2 , are 

generated by the comparison between the pitch angle 

measurement ,k mi , 1,  2,i  1,  2,  3k    and the reference 

value of the pitch angle r  (see Figure 3). The strong 

variability of the wind speed leads to a strong variability of 

the control pitch command which can increase the residuals 
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Table 1. Pitch actuator fault scenarios. 

 

Fault N° Drift  

speed 

        Fault  Period  

F1h 30s  
1 1 2 2, ,n n   

 

3200s-3330s  

F1m 60s  
1 1 2 2, ,n n   

 

3200s-3360s  

F1s 90s  
1 1 2 2, ,n n   

 

3200s-3390s  

 

Fault N° Drift  

speed 

        Fault  Period  

F2h 30s  
1 1 2 2, ,n n   

 

3300s-3430s  

F2m 60s  
1 1 2 2, ,n n   

 

3300s-3460s  

F2s 90s  
1 1 2 2, ,n n   

 

3300s-3490s  

 

Fault N° Drift  

speed 

        Fault  Period  
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1 1 2 2, ,n n   
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in the normal functioning mode. To overcome this problem 

which can cause false alarms, the residuals are computed 

within  a time window in order to take into account the 

control variab ility ( ).rV   The size of this time window is 

determined experimentally to achieve a tradeoff between the 

delay of drift detection and false drift detection.  
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              (4) 

 

        

              (5) 

      

           

              (6) 

 

3.2. Classifier Design step 

 

This step aims at designing a classifier able to assign a new 

pattern to one of the learnt classes in the feature space. A 

new pattern characterizes the actual operating conditions 

(normal or faulty in response to the occurrence of a certain  

fault) of the system.  

Figure 6 shows the classes representing normal and failure 

operating conditions of pitch actuator in the feature space 

constituted by the two residuals defined by (4) and (5). Due 

to the wind turbine non-stationary environments, an 

overlapping region is created between the normal and 

failure classes (see Figure 6). In this region, the 

consequences of the fault are hidden because the actuators 

are not solicited o r are solicited for s mall angles. In both 

cases, normal and failure classes overlap because of pitch 

sensors noises and low wind speed (see Figures 6 and7). 

 

Figure 6.  Large v iew of overlapping reg ion for the third  

pitch actuator normal and failure operating conditions . 

 

  Figure 7.  Feature space of the third pitch actuator 

normal and failu re operating conditions . 

In order to distinguish as much as possible the operating 

conditions (normal/fau lty) and to improve the 

misclassification rate of the classifier, the normal and failure 

classes are split into three classes 1, 2 and 3 and the pitch 

actuator dynamics are represented by two different 

operating modes. The first one corresponds to the case of 

big pitch angles and high wind speed; while the second 

operating mode represents the case of small p itch angles and 

low wind speed (see Figure 8). Class 1 is the ambiguity 

class. It gathers the patterns processing pitch actuator 

normal or fau lty operating conditions. This class represents 

the operating mode 1 (small angle and low wind speed). 

Class 2 represents the normal operating conditions class in 

operating mode 2 (large angle and high wind speed). Class 3 

represents pitch actuator failu re class in operating mode 2. 

 

 

 

 

 

 

 

 

 

 

                                           

 

                        

Figure 8. (a) Actuator decision space. (b) Operat ing modes 1 

and 2 modeled by a finite state automaton containing two 

states.  
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3.2.1. Pattern decisions analysis 

 

When a new pattern is classified in the ambiguity class, 

assigning it to normal or failu re operating conditions is a 

risky decision since normal and failure classes are 

overlapped in this region of the feature space. In order to 

reduce this risk of misclassificat ion, the decision about the 

status (normal or fau lty) of any pattern classified in this 

region is delayed by assigning the label ‘A’ (ambiguity 

decision). Then, this ambiguity can be removed by 

analyzing the past and future decisions of this pattern. This 

pattern decisions analysis is achieved by using a set of 

decision rules allowing assigning to ambiguity patterns  

label ‘N’ or label ‘F’ (normal or faulty) as follows. Let us 

suppose that  1, , ,    A t t t nX x x x    is a set of patterns 

associated with the decision ‘A’. Let xt-1 be the previous 

pattern arrived just before 
tx ,  t -1D x  be the decision of 

this pattern, xt+n+1 be the pattern arrived just after
t nx 

, 

 t+n+1D x  be the decision for this pattern. Then, decision 

 D x , Ax X   can be updated as follows: 
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1 1
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(7)            

 

 (8)             

   

 (9)            

      

(10)            

      

where   refers to ‘And’ logical operation.  

 

3. 2.2. Classification approach  

 

Auto-adaptive Dynamical Clustering Algorithm (AuDyC) is 

used as a classification method in order to design the 

classifier. AuDyC was chosen because it is -) dynamical, -) 

unsupervised classification method and -) able to model 

streams of patterns since it  reflects always the final 

distribution of patterns in  the features space. It uses a 

technique that is inspired from the Gaussian mixture model 

(Lecoeuche & Lurette, 2003), (Traore, Duviella  & 

Lecoeuche, 2009). Let dE  be a d-dimensional feature space. 

Each feature vector  
dEx  is called a pattern. The patterns 

are used to model Gaussian prototypes jP  characterized by  

a center  j

d×1

P
μ R  and a covariance matrix j

d×d

P
R  . 

Each gaussian prototype characterizes a class. A min imum 

number of winN  patterns are necessary to define one 

prototype, where 
winN is a user-defined threshold. A  class 

models an operating mode and groups patterns that  are 

similar one to each other. The similarity criterion that is 

used is the Gaussian membership degree. Faults will affect 

directly this d istribution and this will be seen on the 

continuously updated parameters . AuDyC will be associated 

with decision rules in order to design the classifier able to 

analyze the trajectory. 

For more details on the functionalities  of AuDyC, then 

adaptation like merging classes, splitting classes etc. The 

rules of recursive adaptation and the similarity criteria in  

AuDyC, can be found in (Lecoeuche & Lurette, 2003), 

(Traore et al., 2009). 

 

3.3. Updating step  

 

The updating step aims at reacting to the changes  in the 

feature space. AuDyC is dynamic since it continuously 

updates the parameters by using the recursive adaptation 

rules (11), (12). In such a way, its validity and performance 

over time is preserved. 

 

  

new old

win

ne

j j j
p p p

j j j

w old

wij n
p p p p

μ (t) μ (t 1) f   (μ (t 1), , , N )

t t 1 t 1 μ (t 1),( ) ( ) g  ( ( , , N), )

x x

x x  



 

  



 

(11)  

 

 

(12)                

 

Where 
newx   and 

oldx  are the newest arrived pattern and the 

oldest pattern in the time window 
winN  respectively. 

Initial offline modeling allows the construction of init ial  

classes that characterize knowledge from historical data. 

The historical data are usually sensor data that are saved. 

The modeling tool AuDyC used to initialize the feature 

spaces is based on extracted features from h istorical data, 

that will be online dynamically  updated. Knowledge of 

failure modes given from (labeled) h istorical data can help  

building a classificat ion scheme for fault d iagnosis. 

However, in reality, these data are hard to obtain. 

In this work, we suppose that only data corresponding to 

normal operating conditions (normal class) are known in  

advance. The training of the process by applying AuDyC is 

made based on features that are extracted from historical 

sensor data once finished; the class corresponding to normal 

operating mode is retained. We denote this class by

 N N NC μ ,  .   

In online functioning, the parameters of NC  are 

dynamically updated by AuDyC for each new pattern 

arrives in operating mode 2. This y ields changes in the class 

parameters which continuously reflect the d istribution of the 

newest arriv ing patterns. We denote by  C μ ,e ee
   the 
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evolving classes in the feature space. We have

  NC (t 0) μ , Ce ee
    . 

In operating mode 1, normal and faulty behaviors cannot be 

distinguished. Thus, in the proposed approach, the decisions 

about the status (normal/ faulty) of patterns located in this 

region are delayed. Therefore in this case, the classifier will 

not be updated in order to avoid integrating in the drift time 

window useless patterns. In order to detect the drift as soon 

as possible, AuDyC updates the class parameters by using a 

window that contains only the patterns belonging to 

operating mode 2. AuDyC is dynamic by nature in the sense 

that it continuously updates  the parameters of the classes as 

new patterns arrive.  

 

3.4. Drift Monitoring step 

 

The key problem of drift monitoring is to distinguish 

between variations due to stochastic perturbations and 

variations caused by unexpected changes in a system’s state. 

If the sequence of observations is noisy, it may  contain 

some inconsistent observations or measurements errors 

(outliers) that are random and may never appear again. 

Therefore, it  is reasonable to monitor a system and to 

process observations within time windows in order to 

average and reduce the noise influence. Moreover, the 

informat ion about possible structural changes within time 

windows can be interpreted and processed more easily. As a 

result, a more reliable classifier update can be achieved by 

monitoring within time windows. The latter must include 

enough of patterns representing the drift. To d istinguish the 

useful patterns, the pitch actuator dynamics are represented 

by two different operating modes. In the operating mode 2, 

the degradation consequences of pitch actuator can be 

observed. Therefore, all patterns in this mode are useful to 

be analyzed and to be included in the drift time window. In  

the operating mode 1, the degradation consequences are 

masked. Patterns representing normal operating conditions 

cannot be distinguished from patterns representing pitch 

actuator degradations. Therefore in this case, no decision 

(normal/drift) will be taken in order to avoid integrating in  

the drift time window useless patterns.      

 

The proposed methodology makes use of class parameters 

which are dynamically updated at each time but only with 

the patterns belonging to operating mode 2. Drift indicators 

are ext racted from these parameters and detection of faults 

inception will be made based on their values. We define 

   h1 h2I , Ix x  as: 

 

    

   

h1 Mah N N

h2 E N

I d μ , , e

I d , e

x

x

  

  
 

    (13)            

   

 (14) 

  

Where 
E Mahd ,d are, respectively, the Mahalanobis and  

Euclidean metrics. Euclidean metric computes the distance 

between center of the normal class 
N  and the center of 

evolving class
e ; on the other side Mahalanobis metric  

computes the distance between the normal class 
NC  and 

evolving class center
e . 

 

 

 

1 T

Mah N N N N

T

E N N N

d C , ( ) ( )e e e

d , ( ) ( )e e e


        

         

 

    

 (15)            

   

 (16) 

  

3.5. Interpretation step  

 

This step aims at interpreting the detected changes within 

the classifier parameters and structure. This interpretation is 

then used as a prediction about the tendency of the future 

development of the wind turbine current situation. This 

prediction is useful to fo rmulate a control or maintenance 

action. 

 

In this work we have two indicators of change

   h1 h2I , Ix x . If one indicator exceeds a certain threshold

th , the drift alarm will be launched. This means that the 

pitch actuators state has been moved (drift) away from the 

normal class. The second indicator aims at confirming the 

drift detection. The reason behind the use of two distance 

metrics (Euclidean and Mahalanobis ones) in the same time 

is to exploit the complementarily between them. Indeed, the 

Mahalanobis metric calcu lates the distance between the 

gravity center of the evolving class and the initial class. This 

will give more reactiv ity in case of change; while the 

Euclidean metric confirms this change by calculating the 

distance between the gravity center of the initial class and 

gravity center evolving class. The selection of th  is  

motivated statically. 

4. EXPERIMENTATIO N AND OBTAINED RESULTS 

The failure of p itch actuator is caused by a continuous 

degradation of its performance over t ime. This degradation 

can be seen as a continuous drift of the normal operating 

conditions characteristics (normal class) of the pitch 

actuator. Detecting and following this drift can help the 

prediction of the occurrence of the pitch actuator failure. 

The two monitoring ind icators defined by (13) and (14) are 

used to detect and to confirm this drift for the nine scenarios 

defined in section 2.   

Figures 10 and 11 show the obtained results using the two 

drift  detection indicators defined by (13) and (14). Table 2 

shows the values of these indicators for the nine defined 

drift scenarios. These values represent the required time 

European Conference of the Prognostics and Health Management Society 2014

294



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014 

8 

(starting from the drift beginning) to detect and confirm the 

drift  occurrence. Thus, they can be used as an evaluation 

criterion to measure the time delay to detect a drift before its 

end.     

 
Figure 10. Drift indicator based on Mahalanobis distance of 

the third pitch actuator.   

 
Figure 11. Drift indicator based on Euclidean distance of the 

third pitch actuator.   

 

 

5. CONCLUS ION AND FUTURE WORK  

In this paper, a methodology of condition monitoring and 

fault pred iction was established. It is based on dynamical 

architecture of fault pred iction. It was based on monitoring 

dynamically updated evolving class parameters. The 

methodology was tested on a benchmark of a wind turbine. 

It was shown that under the assumptions developed in this 

paper, the methodology has given promising results for 

different scenarios of simulat ion. 

 

Future work will focus on the fault pred iction and 

prognostics of other wind turbine critical components as the 

converter and drive train. 
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ABSTRACT 

Recently, the rapid expansion of wind energy activity has 

led to an increasing number of publications that deal with 

wind turbine health monitoring. In real practice, 

implementing a prognostics and health management (PHM) 

strategy for wind turbines is challenging. Indeed, wind 

turbines are complex electro-mechanical systems that often 

work under rapidly changing environment and operating 

load conditions. Although several review papers that 

address wind turbines fault diagnosis were published, they 

are mostly focused on a specific component or on a specific 

category of methods. Therefore, a larger snapshot on recent 

advances in wind turbine fault diagnosis is presented in this 

paper. Fault diagnosis approaches could be grouped in three 

major categories according to the available a priori 

knowledge about the system behavior: 

quantitative/qualitative model, signal analysis and artificial 

intelligence based approaches. Each of the proposed 

methods in the literature has its advantages and drawbacks. 

Therefore, a comparison between these methods according 

to some meaningful evaluation criteria is conducted. 

1. INTRODUCTION 

Wind power industry continues to show a significant 

worldwide growth during the last decade. However, due to 

the competitive environment associated with the power 

generation industry, costs for operation and maintenance 

(O&M) of wind turbines need to be reduced (Arabian-

Hoseynabadi, Oraee, & Tavner, 2010). Prognostics and 

Health Management (PHM) is one of the best strategies to 

achieve such purpose. Indeed, inspection tasks and time 

based maintenance activities are often expensive and require 

undesired downtime to be performed (Lu, Li, Wu, & Yang, 

2009). Moreover, implementing a PHM policy allows to 

support system long-term performance through accurate 

monitoring, incipient fault diagnosis and prediction of 

impending faults (Kalgren, Byington, & Roemer, 2006). A 

fault diagnosis function estimates the current system health 

state from health features or sensors measurements. 

Whereas, a prognosis procedure seeks to predict when a 

potential upcoming failure will occur given the current 

system health state and the future usage conditions (Roemer, 

Nwadiogbu & Bloor, 2001). 

However, a number of challenges remain to be met while 

performing wind turbines health assessment tasks owing to: 

- The complex structure of the wind turbine (Fischer, 

Besnard & Bertling, 2012) 

- The non-linearity and non-stationarity of the 

aerodynamics of such system (Lu et al., 2009) 

- Fault tolerant nature of its control system (Simani, 

Castaldi & Tilli, 2011). 

In order to address these constraints, a better understanding 

of the multiple failure modes associated with various 

components and their interactions is needed. In addition, 

symptoms related to the operating loads, environmental 

conditions and maintenance scenarios should be 

distinguished from actual wind turbine performance loss. 

Then, fault diagnosis and prognosis functions could be 

reliable.  

Although a number of review papers addressing these topics 

have been published (Hameed, Hong, Cho, Ahn, & Song, 

2009), (Sharma & Mahto, 2013), (Azarian, Kumar, Patil, 

Shrivastava & Pecht, 2011), (García Márquez, Tobias, Pinar 
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Pérez & Papaelias, 2012), (Nie & Wang, 2013), (Lu & 

Sharma, 2009) (Sheng, 2011), they are mostly focused 

either on a particular component (gearbox components, 

insulated gate bipolar transistors (IGBTs)…) or on 

condition monitoring techniques and signal analysis tools. 

Therefore, in this review paper, a larger snapshot of recent 

diagnosis research works is explored in order to compare the 

proposed methods according to some meaningful evaluation 

criteria. Prior to that, a brief description of the wind turbine 

system and the most common condition monitoring tools is 

given. 

2. WIND TURBINES HEALTH MONITORING 

A wind turbine is a rotating mechanical device that converts 

wind kinetic energy to practical mechanical energy, 

resulting in electricity production. The rotary part can be 

either vertical or horizontal. The most recently used wind 

turbines are horizontal-axis based with two or three blades. 

These turbines also have a nacelle, which is held up by the 

tower and contains the gearbox and the generator. The 

gearbox increases the speed of the low-speed shaft to a 

suitable value required by the generator. A yaw system, 

which turns the nacelle and the rotor to face the wind, 

enables the turbine to capture the maximum amount of 

energy. According to the type of the generation system, the 

gearbox and the converter, different wind turbines 

categories can be distinguished (Kahrobaee & Asgarpoor, 

2011). Among them, the variable-speed wind turbines offer 

advantages such as four quadrant power capabilities, 

maximum aerodynamic efficiency and reduced mechanical 

stress (Flórez, 2012). The double fed induction generator 

(DFIG) is today one of the most popular schemes for 

variable-speed wind turbines which has been introduced to 

replace the fixed-speed, squirrel-cage induction generators 

(Figure 1). In general terms, from the viewpoint of health 

monitoring, fixed speed turbines have a greater occurrence 

of mechanical failures (often in the gearbox) while electric 

failures are predominant in variable-speed turbines. More 

details about wind turbines configurations and their failures 

modes could be found in several papers (Fischer et al., 

2012) (Arabian-Hoseynabadi et al., 2010), (Kahrobaee & 

Asgarpoor, 2011). 

 

Figure 1. Typical configuration of a DFIG-based wind 

turbine (Flórez, 2012). 

2.1. Condition Monitoring Systems for wind turbines 

Among the review papers on wind turbines health 

monitoring and fault diagnosis, several of them were 

focused on Condition Monitoring Systems (CMS) tools 

used for that purpose. A CMS includes a set of sensors, 

signal acquisition and processing software, cabling and 

installations that gives continuous information about the 

monitored component condition. The CMS is used on wind 

turbines (especially off-shore ones) in order to monitor the 

most critical components such as gearboxes, generators, 

main bearings and blades. García Márquez et al. (2012) 

found that vibration analysis is the most known technology 

employed in wind turbines, especially for rotating 

equipment such as gearboxes components and bearings that 

supports the low speed shaft. Acoustic emission analysis is 

another condition monitoring tool used for rotating wind 

turbines components as well as for the blades (Hameed et 

al., 2009). In addition, oil analysis is typically applied to the 

gearbox and may have two purposes: (1) guaranteeing the 

oil quality (by measuring the oil temperature, its 

contamination and moisture) or (2) monitoring various 

rotating parts condition/wear (by looking for oil 

contamination or variation of particulates properties) 

(Sharma & Mahto, 2013). For more thorough summaries on 

condition monitoring techniques related to different wind 

turbines subassemblies, see (Hameed et al., 2009) and (Lu 

& Sharma, 2009). 

Based on the above references, it is worth mentioning that: 

- For the drive train components, the variable-speed 

operation and the stochastic characteristics of the 

aerodynamic loads prevent the usage of traditional 

frequency domain analysis techniques. Therefore, time-

frequency analysis (e.g. wavelet transforms) is more suitable 

(Lu et al., 2009), 

- The acoustic emission based tools give earlier 

warning of wind turbines gearbox failure at low-speeds 

compared to the classical vibration-based ones. However, 

acoustic emission techniques require higher sampling rates 

and they may not be a cost-effective solution to the gearbox 

fault detection (Azarian et al., 2011), 

- Despite many research achievements in developing 

condition monitoring techniques, their implementation in 

practice still faces some challenges. Indeed, they still suffer 

from false alarms and they do not demonstrate satisfactory 

performance in the detection of incipient faults especially 

those related to electrical/electronic components (Yang, 

Tavner, Sheng & Court, 2012). 

A CMS has the advantage to be accurate in monitoring 

specific kinds of failures. However, it requires more sensors 

and equipment to be installed in wind turbines as well as 

higher data storage costs resulted from a higher sampling 

rate of the acquired signals. To date, and because of these 

high implementation costs, such systems are more used for 
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offshore wind turbines where maintenance visits are more 

complicated (Yang, Tavner, Crabtree & Wilkinson, 2008). 

2.2. Towards SCADA data based health monitoring 

In comparison with a CMS which is intended only to health 

monitoring purpose, the Supervisory Control and Data 

Acquisition (SCADA) system is able to resolve certain 

supervisory control tasks by automatically starting, 

stopping, and resetting the turbines in case of small 

fluctuations (Verma, 2012). Furthermore, SCADA records 

tend to be a major data source for monitoring wind turbines 

condition in the last years (Sharma & Mahto, 2013). Indeed, 

SCADA data might be fault informative. These data are of 

two types: status codes and operational data. The status data 

are recorded whenever the system undergoes status changes, 

whereas the operational data are recorded at predefined time 

intervals (Kusiak & Verma, 2011). Operational SCADA 

data include operational variables such as the produced 

power, the wind speed, some components temperatures and 

even vibration and oil debris monitoring data in some cases 

(Nie & Wang, 2013). Thus, SCADA based health 

monitoring is considered to be a cheaper solution than CMS 

since no additional sensors are required. However, wind 

turbines SCADA systems usually limit the amount of data 

to a number of records (10 min average data) and they are 

not initially designed for condition monitoring purposes. 

Then, conventional condition monitoring approaches which 

are developed for highly sampled CMS data are mostly not 

valuable and an appropriate SCADA data analysis tool is 

needed (Yang, Court & Jiang, 2013). 

3. WIND TURBINES FAULT DIAGNOSIS APPROACHES 

Regardless of used condition monitoring tools, several fault 

detection and diagnosis methods have been developed. In 

general and according to the nature of the available process 

knowledge, these methods can be categorized into three 

main classes: model-based, signal analysis and artificial 

intelligence (AI) methods. 

 Model based methods 

For this first broad category, a priori knowledge about the 

system operation modes is complete enough to be 

formalized into a quantitative or qualitative model. The 

quantitative models are in the form of fundamental laws 

described by mathematical relationships on the system 

input-output measurements. The quantitative models based 

approaches are of two categories: parameter estimation, and 

output observer based approaches. 

The parameter estimation based methods use a system 

identification technique on input/output measurements in 

order to monitor the evolution of the system characteristic 

parameters against a nominal parameter set. Output observer 

(or residual generation) methods use an observer, often a 

Kalman filter, in order to assess the difference between the 

actual and the estimated output (reconstructed from the 

system model and controlled inputs). However, qualitative 

models use qualitative relationships or knowledge bases to 

draw conclusions regarding the state of a system and its 

components (Katipamula & Brambley, 2005). Hence, a 

qualitative model could be either a qualitative physics-

based, discrete event or rule-based model. 

 Signal analysis methods 

Signal analysis methods are based on time and frequency 

domain analysis without any explicit mathematical model. 

Only knowledge about suitable fault features is required. 

Fault features can be derived from raw signals (vibration, 

acoustic emission, electrical signatures…) in order to 

evaluate the system operating state. Fast Fourier 

transformation, cepstrum (spectral representation of signals) 

and envelope curve analysis are some common approaches. 

More details about these techniques are given in (Jardine, 

Lin & Banjevic, 2006). 

 Artificial intelligence methods 

When a process is too complex or poorly known to be 

monitored through quantitative or qualitative models, and if 

signal analysis techniques do not allow an unambiguous 

diagnosis, artificial intelligence (AI) approaches can be used 

to overcome these limitations. AI based methods learn the 

complex model exclusively from available historical data 

(Venkatasubramanian, Rengaswamy, Kavuri & Yin, 2003). 

Artificial neural networks and clustering/classification 

techniques belong to this category of methods. 

Without concern of exhaustiveness, the present review gives 

some examples from recent wind turbine fault diagnosis 

studies in order to illustrate each category of methods. 

3.1. Literature review 

Different wind turbines components are considered within 

the reviewed works. Moreover, both CMS and SCADA 

based monitoring tools could be found. The only 

differentiator is the category of the fault diagnosis methods 

used. 

Within the quantitative model based fault diagnosis 

category, Chen, Ding, Sari, Naik, Khan and Yin (2011) put 

forward an observer-based fault detection and isolation 

scheme for the wind turbine pitch system and the drive train. 

They utilized a Kalman filter for residual generation. Then, 

a generalized likelihood ratio test and a cumulative variance 

index were applied for residual evaluation. Test data were 

extracted from a wind turbine simulator proposed within 

(Odgaard, Stoustrup & Kinnaert, 2009). Another example of 

an observer based approach implemented using SCADA 

data is reported in (Guo, 2011). In this paper, the normal 

behaviour of the generator bearing temperature is modelled 

based on a nonlinear state estimate technique (NSET). 

When residuals between the NSET estimates and the 
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measured values exceed predefined thresholds, an incipient 

fault is flagged. Effectiveness of this approach was 

evaluated by the analysis of a manual drift added to the 

historical SCADA data. Simani et al. (2011) performed a 

parameter identification/estimation based method for 

converters fault diagnosis. Since the studied component is 

non-linear and the wind speed measurement is highly noisy, 

a fuzzy multiple model was considered. Such model 

consists of a collection of several local affine models, each 

of them describes a different operating mode. Thus, they 

used a fuzzy clustering technique in order to determine the 

regions in which the measured data could be approximated 

by local models. The effectiveness of such method was 

shown on a simulated process. On the other hand, 

Kostandyan and Sørensen (2012) explored a physics of 

failure model in order to assess the accumulated linear 

damage for a given load profile. It is applied to evaluate the 

damage value and predict the wind turbines power 

electronics reliability. 

Regarding the qualitative model based approaches, 

Echavarria, Tomiyama, Huberts and Van Bussel (2008) 

developed a model-based reasoner for the overall system. 

The authors used qualitative physics in order to describe the 

behavior of the wind turbine in terms of qualitative 

characteristics changes over time. Such approach allows the 

possibility to model systems of higher complexity such as 

wind turbines. Work done by Rodriguez, Garcia, Morant, 

Correcher and Quiles (2008) has shown that Petri Nets are 

also suited for system-level modeling and namely for wind 

turbines fault diagnosis. 

Within the scope of this review, signal analysis based fault 

diagnosis works are the most prevalent in the literature. 

Classical signal processing techniques were widely applied 

for studying wind turbines components, mainly the gearbox 

and the generator components. Indeed, Yang et al., (2008) 

applied a wavelet-based adaptive filter in order to extract the 

energy of the generator power signal at prescribed, fault-

related frequencies. In addition, the signal non-stationarity 

was treated by adjusting the filter bandwidth according to 

the fluctuation of the wind speed. Both mechanical and 

electrical abnormalities were assessed experimentally on a 

wind turbine test rig. A similar work on generator fault 

diagnosis is done by Amirat, Choqueuse and Benbouzid 

(2010). They highlighted the use of the Hilbert 

transformation on the stator current data. Vibration signals 

were also widely used with classical signal processing tools 

in both time and frequency domain (Zhang, Verma & 

Kusiak, 2012) (Liu, Zhang, Han & Wang, 2012).  

The construction of some SCADA data curves and studying 

their deviation from a reference one is being more adopted 

for a global wind turbine health monitoring. This kind of 

approaches is specific to wind energy domain and can be 

integrated among AI methods. Kusiak and Verma (2013) 

studied three operational curves: power curve, rotor curve 

and blade pitch curve, which plot three measurements 

against the wind speed. A k-means clustering and 

Mahalanobis distance were used to extract smooth 

performance curves by removing outliers without any 

pretreatment on raw data. The obtained performance curves 

will be considered as baseline curves to detect fault drifts. In 

a similar manner, Yang et al. (2013) established several 

reference plots by extracting correlations between relevant 

SCADA variables. However, input variables were first 

preprocessed and normalized relatively to the wind speed or 

to the generator speed values in order to obtain smooth 

curves. 

With regards to more known AI based approaches, Laouti, 

Sheibat-Othman and Othman (2011) conducted a fault 

diagnosis for pitch system sensors and actuators by means 

of a support vector machine classifier. Fault features were 

manually constructed and a wind turbine simulator data was 

used for this purpose. For gearbox fault diagnosis, Kim, 

Parthasarathy, Uluyol, Foslien, Sheng and Fleming (2011) 

proposed a fault detection method based on SCADA 

measurements. They applied principal components analysis 

and a clustering technique in order to diagnose gearbox 

faults. Tong and Guo (2013) proposed an improved data-

mining algorithm for the extraction of association rules on 

status codes (considered as fault alarms). The purpose was 

to extract implied causal relationships between status codes 

that lead to an effective fault alarm. In such a way, the 

number of alarms was reduced and then operators’ work 

efficiency improved. Kusiak and Li (2011) proposed to use 

the occurrence time of certain status codes which are related 

to the diagnosed faults in order to label the SCADA data. 

The obtained labeled training data set was then used by 

several data-mining algorithms (Neural network, standard 

classification and regression tree (CART), the Boosting 

Tree Algorithm (BTA), SVM…) in order to predict the 

diverter malfunction. Work done by Godwin and Matthews 

(2013) dealt with the development of an expert system for 

the classification and detection of wind turbine pitch faults. 

Decision rules were extracted by a decision tree-type rule 

learning algorithm and then validated by an independent 

expert. A similar approach could be found within (Yongxin, 

Tao, Wenguang & Dongxiang, 2012) where a trained 

decision tree was used in order to construct fault diagnosis 

rules of a wind turbines gearbox.  

3.2. Review results and discussion 

Based on this survey, major advantages and drawbacks of 

each category of wind turbines fault diagnosis approaches 

are listed hereafter:  

- Monitoring data issued from CMS or SCADA systems 

can be used in implementing model-based and 

artificial intelligence approaches. However, signal 

analysis methods are mostly used when accurate and 
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specific fault oriented acquisition system is available, 

i.e. with CMS.  

- Quantitative model approaches, in particular parameter 

estimation based ones, have the advantage of 

identifying the abnormal physical parameters rather 

than faulty signal signatures that are more dependent to 

the load condition (Lu et al., 2009). However, model-

based approaches require a sufficiently accurate a 

priori knowledge to construct a mathematical or 

analytic model for the monitored system. This is hard 

to achieve in case of complex non-linear systems as 

wind turbines.  

- Although qualitative models based approaches require 

deep knowledge about the wind turbines behavior, they 

have the ability to monitor the overall system via the 

causal knowledge and the laws governing the behavior 

of its subsystems (Venkatasubramanian, Rengaswamy, 

Yin & Kavuri, 2003). 

- Signal analysis based approaches are easier to 

implement if a sophisticated data acquisition systems 

and sensors exists. However, successful 

implementation of such approaches is dependent on 

the construction of suitable fault-related features and 

reliable thresholds since subjective and unproven ones 

may result in wrong alerts (Yang et al., 2013). 

- Artificial intelligence approaches achieve multi-

dimensional analysis based on the combination of 

several sensors that monitor the same component. 

However their performance is highly dependent on the 

selection of training data set which must represent all 

operating modes for the wind turbine. In addition, 

since the obtained models are not usually transparent, 

the obtained results can be hard to be interpreted and 

demonstrated. 

As a synthesis of this review, some criteria are proposed to 

compare these three categories of diagnosis methods 

(Table1). Such comparison could support the choice of the 

suitable fault diagnosis approach with respect to the initial 

needs. Chosen criteria for this comparison are the following: 

(1) System’s non-stationary nature: ability to separate 

the actual degradation and environmental or load 

effects 

(2) Needed knowledge: ability to construct model 

without need to a priori knowledge  

(3) System level: ability to deal with system hierarchical 

levels (local component or global system point of 

view) 

Table1 show the rank accorded to each category of methods 

regarding each criterion. A category is accorded the first 

rank when it satisfies the best the criterion in question. 

Considering the first criterion, quantitative model-based 

approaches, are the most suitable for dealing with the 

systems non-stationary nature, especially by using 

parameter estimation techniques. Signal analysis approaches 

can also deal with such non-stationarity by adjusting filters 

bandwidth according to the fluctuation of the wind speed 

(Yang et al., 2008). 

Table 1. Comparison of fault diagnosis methods 

 System non-

stationarity 

Needed 

knowledge 

System 

level 

Model 

Based 
+ + + + + + + 

Signal 

Analysis 
+ + + + + 

AI + + + + + + 

Artificial intelligence approaches are less suited when this 

constraint should be satisfied. Moreover, in terms of the 

third criterion, qualitative models are more appropriate for 

system level monitoring. Artificial intelligence methods can 

be also used if appropriate health features are afforded. 

These results remain broad since they are extracted from a 

wide range of fault diagnosis approaches from the literature. 

Thus, such comparison does not substitute an effective 

implementation and comparison of most major methods 

with specific fault and real condition monitoring data.  

4. CONCLUSION 

Fault diagnosis methods developed for different wind 

turbine components such as gearbox, main bearings and 

generators are widely proposed. However, other critical 

wind turbine components such as blades, pitch systems and 

converters still need more focus. This is because of the -) 

hard modeling and detection of blades icing, deflection and 

fatigue and -) actions of the control feedback which 

compensate the pitch actuators and converter fault effects. 

In addition, the use of SCADA data for wind turbine health 

monitoring has led to the development of specific diagnosis 

methods for wind energy domain. The methods based on the 

analysis of wind turbine performance clearly separate out 

pre-failure data from other normal operating data. However, 

it is challenging to associate a drift in wind turbine 

performance to a particular failure using only global 

features as the produced power. Faults characterization 

requires often measurements about more of specific features 

related to the components dynamical behaviors. Thus, 

algorithms based on SCADA signals analysis should be 

combined with components oriented CMS based signals 

analysis. This combination helps to better diagnose 

components related faults. 

  

European Conference of the Prognostics and Health Management Society 2014

301



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014 

6 

ACKNOWLEDGEMENT 

This work is supported by the region Nord Pas de Calais 

and Ecole des Mines de Douai. 

REFERENCES 

Amirat, Y., Choqueuse, V., & Benbouzid, M. E. H. (2010). 

Wind turbines condition monitoring and fault diagnosis 

using generator current amplitude demodulation. 

Proceedings of  IEEE Energy Conference and 

Exhibition (EnergyCon), pp. 310-315.  

Arabian-Hoseynabadi, H., Oraee, H., & Tavner, P. J. 

(2010). Failure modes and effects analysis (FMEA) for 

wind turbines. International Journal of Electrical 

Power & Energy Systems, 32(7), 817-824. 

Azarian, M. H., Kumar, R. S., Patil, N., Shrivastava, A., & 

Pecht, M. (2011). Applications of health monitoring to 

wind turbines. Proceedings of Condition Monitoring 

and Diagnostics Engineering Management Conference, 

pp. 304-313. 

Chen, W., Ding, S. X., Sari, A., Naik, A., Khan, A., & Yin, 

S. (2011). Observer-based FDI schemes for wind 

turbine benchmark. Proceedings of IFAC World 

Congress, pp. 7073-7078. 

Echavarria, E., Tomiyama, T., Huberts, H., & Van Bussel, 

G. (2008). Fault diagnosis system for an offshore wind 

turbine using qualitative physics. Proceedings of EWEC 

conference. 

Fischer, K., Besnard, F., & Bertling, L. (2012). Reliability-

centered maintenance for wind turbines based on 

statistical analysis and practical experience. IEEE 

Transactions on Energy Conversion,  27(1), 184-195. 

Flórez Rodriguez D. M., Sliding Mode Control in Grid-

Connected Wind Farms for Stability Enhancement, PhD 

Thesis, Universidad Carlos III de Madrid, Spain, June 

2012. 

García Márquez, F. P., Tobias, A. M., Pinar Pérez, J. M., & 

Papaelias, M. (2012). Condition monitoring of wind 

turbines: Techniques and methods. Renewable Energy, 

46, 169-178. 

Godwin, J. L., & Matthews, P. (2013). Classification and 

Detection of Wind Turbine Pitch Faults Through 

SCADA Data Analysis. International Journal of 

Prognostics and Health Management. 

Guo, P. (2011). WEC condition monitoring based on 

SCADA data analysis. In IEEE Chineese Control 

Conference (CCC), pp. 5099-5103. 

Hameed, Z., Hong, Y. S., Cho, Y. M., Ahn, S. H, & Song, 

C. K. (2009). Condition monitoring and fault detection 

of wind turbines and related algorithms: a review. 

Renewable and Sustainable Energy Reviews, 13(1), 1-

39. 

Jardine, A. K., Lin, D., & Banjevic, D. (2006). A review on 

machinery diagnostics and prognostics implementing 

condition-based maintenance. Mechanical systems and 

signal processing, 20(7), 1483-1510. 

Kahrobaee, S., & Asgarpoor, S. (2011). Risk-based failure 

mode and effect analysis for wind turbines (RB-

FMEA). In IEEE North American Power Symposium 

(NAPS), pp. 1-7. 

Kalgren, P. W., Byington, C. S., & Roemer, M. J. (2006). 

Defining PHM, a lexical evolution of maintenance and 

logistics. In IEEE Autotestcon, pp. 353-358. 
Katipamula, S., & Brambley, M. R. (2005). Review article: 

methods for fault detection, diagnostics, and 

prognostics for building systems—a review, Part I. 

HVAC&R Research, 11(1), 3-25. 

Kim, K., Parthasarathy, G., Uluyol, O., Foslien, W., Sheng, 

S., & Fleming, P. (2011). Use of SCADA data for 

failure detection in wind turbines. In International 

Conference on Energy Sustainability, pp. 2071-2079. 

Kostandyan, E. E., & Sørensen, J. D. (2012). Physics of 

failure as a basis for solder elements reliability 

assessment in wind turbines. Reliability Engineering & 

System Safety, 108, 100-107. 

Kusiak, A., & Li, W. (2011). The prediction and diagnosis 

of wind turbine faults. Renewable Energy, 36(1), 16-23. 

Kusiak, A., & Verma, A. (2011). A data-driven approach for 

monitoring blade pitch faults in wind turbines. IEEE 

Transactions on Sustainable Energy, 2(1), 87-96. 

Kusiak, A., & Verma, A. (2013). Monitoring wind farms 

with performance curves. IEEE Transactions on 

Sustainable Energy, 4(1), 192-199. 

Laouti, N., Sheibat-Othman, N., & Othman, S. (2011, 

August). Support vector machines for fault detection in 

wind turbines. In Proceedings of IFAC World 

Congress, pp. 7067-707. 

Liu, W. Y., Zhang, W. H., Han, J. G., & Wang, G. F. 

(2012). A new wind turbine fault diagnosis method 

based on the local mean decomposition. Renewable 

Energy, 48, 411-415. 

Lu, B., Li, Y., Wu, X., & Yang, Z. (2009). A review of 

recent advances in wind turbine condition monitoring 

and fault diagnosis. In Power Electronics and Machines 

in Wind Applications Conference, pp. 1-7. 

Lu, B., & Sharma, S. K. (2009). A literature review of IGBT 

fault diagnostic and protection methods for power 

inverters. IEEE Transactions on Industry 

Applications,  45(5), 1770-1777. 

Nie, M., & Wang, L. (2013). Review of Condition 

Monitoring and Fault Diagnosis Technologies for Wind 

Turbine Gearbox. Procedia CIRP, 11, 287-290. 

Odgaard, P.F., Stoustrup, J., & Kinnaert, M. (2009). Fault 

tolerant control of wind turbines- a benchmark model. 

IFAC symposium on fault detection, supervision and 

safety of technical processes, 155-160. 

Rodriguez, L., Garcia, E., Morant, F., Correcher, A., & 

Quiles, E. (2008). Application of latent nestling method 

using coloured petri nets for the fault diagnosis in the 

wind turbine subsets. In IEEE International Conference 

on Emerging Technologies and Factory Automation, 

pp. 767-773.  

European Conference of the Prognostics and Health Management Society 2014

302



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014 

7 

Roemer, M. J., Nwadiogbu, E. O., & Bloor, G. (2001). 

Development of diagnostic and prognostic technologies 

for aerospace health management applications. In IEEE 

Aerospace Conference, pp. 3139-3147. 

Sharma, S., & Mahto, D. (2013). Condition monitoring of 

wind turbines: a review. International Journal of 

Scientific and Engineering Research, 4(8), 35-50. 

Sheng, S. (2011). Investigation of Various Condition 

Monitoring Techniquest Based on a Damaged Wind 

Turbine Gearbox. International workshop on structural 

health monitoring, Stanford, California. 

Simani, S., Castaldi, P., & Tilli, A. (2011). Data-driven 

approach for wind turbine actuator and sensor fault 

detection and isolation. In Proceedings of IFAC World 

Congress, pp. 8301-8306. 

Tong, C., & Guo, P. (2013). Data mining with improved 

Apriori algorithm on wind generator alarm data. In 

Chinese Control and Decision Conference (CCDC), pp. 

1936-1941.  

Venkatasubramanian, V., Rengaswamy, R., Kavuri, S. N., 

& Yin, K. (2003). A review of process fault detection 

and diagnosis: Part III: Process history based 

methods. Computers & chemical engineering, 27(3), 

327-346. 

Venkatasubramanian, V., Rengaswamy, R., Yin, K., & 

Kavuri, S. N. (2003). A review of process fault 

detection and diagnosis, Part II: Qualitative models and 

search strategies. Computers in Chemical Engineering 

27(3), 313-326. 

Verma, A. P. (2012). Performance monitoring of wind 

turbines: a data-mining approach. Doctoral 

dissertation. The University of Iowa, Iowa, USA. 

Yang, W., Court, R., & Jiang, J. (2013). Wind turbine 

condition monitoring by the approach of SCADA data 

analysis. Renewable Energy, 53, 365-376. 

Yang, W., Tavner, P. J., Crabtree, C. J., & Wilkinson, M. 

(2008). Research on a simple, cheap but globally 

effective condition monitoring technique for wind 

turbines. In International Conference on Electrical 

Machines, pp. 1-5.  

Yang, W., Tavner, P. J., Sheng, S., & Court, R. S. (2012). 

Information Entropy: an effective approach for wind 

turbine condition monitoring. EWEA conference. 

Yongxin, F., Tao, Y., Wenguang, Y., & Dongxiang J. 

(2012). Study of fault diagnosis method for wind 

turbine with decision classification algorithms and 

expert system. TELKOMNIKA Indonesian Journal of 

Electrical Engineering, 10(5), 905-910. 

Zhang, Z., Verma, A., & Kusiak, A. (2012). Fault analysis 

and condition monitoring of the wind turbine 

gearbox. IEEE Transactions on Energy 

Conversion, 27(2), 526-535. 

 

 

BIOGRAPHIES  

Bouthaina Abichou obtained her engineer diploma in 

industrial engineering from the University of Tunis in 

Tunisia (ENIT-Tunis) in 2006. In 2013, she obtained her 

PhD degree in automatic control from the University of 

Lorraine, France. Currently, she is a postdoctoral research 

fellow at the National Engineering School of Mines, Douai, 

France. Her research interests include systems condition 

monitoring, fault diagnosis and prognosis, data fusion, 

operational research… 

Diana Marcela Flórez received the Electrical Engineering 

degree at National University of Colombia, Manizales, 

Colombia. In 2006 she joined the Department of Electrical 

Engineering at University Carlos III of Madrid, Spain, 

where she completed her M.Sc. (2008), and Ph.D (2012) 

degrees in Electrical Engineering, Electronics and 

Automation. Since April 2013 she is a post-doctoral 

researcher at Ecole Centrale de Lille, at Electrotechnics and 

Power Electronics Laboratory (L2EP), in the framework of 

Reliability Assessment of Wind Farms. She deals with 

modelling and analysis of wind energy conversion systems 

in the field of stability and reliability and the integration of 

renewable energy generation systems into electrical grids. 

Moamar Sayed-Mouchaweh received his Master degree 

from the University of Technology of Compiegne-France in 

1999. Then, he received his PhD degree from the University 

of Reims-France in December 2002.  He was nominated as 

Associated Professor in Computer Science, Control and 

Signal processing at the University of Reims-France in the 

Research center in Sciences and Technology of the 

Information and the Communication (CReSTIC). In 

December 2008, he obtained the Habilitation to Direct 

Researches (HDR) in Computer science, Control and Signal 

processing. Since September 2011, he is working as a Full 

Professor in the High National Engineering School of Mines 

“Ecole Nationale Supérieure des Mines de Douai” at the 

Department of Automatic Control and Computer Science 

(Informatique & Automatique IA). 

Houari Toubakh received his engineering degree in 

electrical from the University of Technology, Setif, Algeria, 

in 2010. Then, he received his Master degree. in 

Automatical and computer engineering from the National 

Polytechnic Institute of   Marseille France in 2012. He is 

curently Ph.D student in the High National Engineering 

School of Mines “Ecole Nationale Supérieure des Mines de 

Douai” at the Department of Automatic Control and 

Computer Science (Informatique & Automatique IA). His 

research interests include machine learning, wind turbine, 

Diagnosis and Prognosis of industrial production system 

using artificial intelligence techniques. 

Bruno François obtained the PhD degree in electrical 

engineering in 1996 from the University of Science and 

Technology of Lille (USTL), France. He is with the 

European Conference of the Prognostics and Health Management Society 2014

303



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014 

8 

Laboratory of Electrical Engineering and Power Electronics 

of Lille (L2EP) and is Full Professor at the department of 

Electrical Engineering of Ecole Centrale de Lille, France. 

His field of interest includes power electronics, renewable 

energy sources and power systems. He is currently working 

on renewable energy based active generators and on the 

design of advanced energy management systems. 

 

European Conference of the Prognostics and Health Management Society 2014

304



Economic Aspects of Prognostics and Health Management Systems in the 

Wind Industry 

Christian T. Geiss 

Industrieanlagen-Betriebsgesellschaft mbH, Ottobrunn, Germany 

geiss@iabg.de 

 
ABSTRACT 

Since Wind Turbines are one of the most dynamically 

stressed structures, all parts should be subjected to 

Prognostics and Health Management System. This is 

especially true for the supporting structure since it is 

exposed to high fatigue loads. The current technical trend in 

the O&M business is to improve the life-time of these 

supporting structures. In particular, when considering the 

supporting structure of a wind turbine from a civil 

engineering perspective; a long term approach is most 

beneficial in financial, ecological and social aspects. To 

meet the challenge of managing the life-time of wind 

turbine supporting structures efficiently, it is necessary to 

develop technical concepts assessing the consumed life-time 

of a wind turbine. Future PHM systems of wind turbines 

must include this function. 

The global O&M market in the wind energy industry grew 

in the period from 2005 to 2011 at a rate of around 18 per 

cent, annually. The main growth driver is the aging overall 

turbine park. Especially in the European onshore wind 

market there will be a profit migration of the O&M business 

at the expense of new construction until 2020. Until the year 

2020, three quarters of the total profit in the wind energy 

industry will be occupied by O&M services (Oliver 

Wymann, 2011). 

This paper discusses the special economic aspects of 

Prognostics and Health Management Systems focusing on a 

remaining lifetime prediction as a basic maintenance system 

in application within the wind industry. Besides studies of 

the future O&M market development, concepts to lower the 

levelized cost of energy through PHM from a 

macroeconomic perspective will also be discussed. 

Keywords: Wind O&M market, Lifetime management, 

Levelized cost of energy, return on investment analysis. 

1. INTRODUCTION 

Europe is currently in the energy transition process from 

conventional and fossil power technologies to renewable 

energy technologies. Fossil fuels helped to build the modern 

world we know in Europe. But with the goal to preserve the 

ecological balance for future generations and not to continue 

robbing natural resources for blind growth, the task of the 

generations in this century is to transform our energy system 

into a renewable one. Additionally renewable resources also 

enable people in developing countries quick and useful 

access to energy for their daily lives. We live in a 

transformative moment in history in which we should not 

waste time anymore and use this unique gift of our planet. 

In this context it is worthwhile to remember a famous quote 

of the theoretical physicist and mastermind Albert Einstein: 

“Imagination is more important than knowledge. 

Knowledge is limited; Imagination encircles the world.” 

With this background the paper is concerned with the 

possibilities and potentials of PHM systems to economically 

optimize the operation of wind power plants. 

2. GLOBAL WIND MARKET DEVELOPMENT 

The global wind market is mainly characterized through a 

mature onshore market and a growing offshore market. The 

pioneers of the past in the onshore wind energy 

developments were the USA, Denmark, Germany and Spain 

(GWEC, 2012). Those countries represented the starting 

points for the global onshore wind energy development. 

Despite the growing Asian market, Europe is still the 

continent with the highest installed wind power capacity. 

Furthermore Latin America, India, Africa and Canada are 

also very dynamic markets. Until today roughly 80 countries 

contribute in developing the global onshore wind energy 

market. As shown in Figure 1 the current total global 

installed capacity accounts 282 GW. Average annual growth 

rates of about 28 % characterized the dynamic development 

(GWEC, 2012). Christian Timo Geiss. This is an open-access article distributed under 

the terms of the Creative Commons Attribution 3.0 United States 
License, which permits unrestricted use, distribution, and reproduction 

in any medium, provided the original author and source are credited. 
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Figure 1: Global wind power capacity development 

(GWEC, 2012). 

 

At the end of 2012 the European market added 108 GW to 

its installed wind power capacity. A share of 78 GW was 

installed in the leading markets, namely Germany, Spain, 

France, Italy and the UK. Within the major players, 

Germany is still the leading wind energy market in Europe 

and conducts 32 GW installed wind power. The new major 

finalized offshore projects on the British coast made UK the 

European country with the highest capacity growth rate 

(EWEA, 2013). 

In regards to the capacity growth rates, Asia beat the 

European growth rates for the first time in 2009. In 2010 

Asia installed more new wind turbines than the USA and 

Europe combined. The main driver in Asia is the Chinese 

market. Figure 2 shows the distribution of the current global 

cumulative installed wind turbine capacity for the leading 

countries. 

 

Figure 2: Global wind turbine capacity distribution  

(GWEC, 2012). 

 

 

Figure 3: Cumulative capacity forecast per region    

(GWEC, 2012). 

 

Besides the already mentioned rapid Asian market growth 

Figure 3 also shows the developing markets in Latin 

America, Africa and the Middle East region as well as the 

Pacific area. Especially in Morocco for example, there are 

excellent locations for converting wind energy. However the 

limiting factors in these regions are the unstable political 

and social frameworks. 

The previously mentioned leading role of Germany in the 

European market is graphically expressed in Figure 4. The 

second largest wind market in Europe is located in Spain 

which undergone flourishing development in the early 

2000s. Currently the restrictive and backward renewable 

energy policy in Spain leads the local wind energy market 

development almost to a deadlock. 

 

Figure 4: European wind turbine capacity distribution 

(EWEA, 2013). 
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The European wind energy market can be subdivided into 

an onshore market segment and an offshore market segment. 

Figure 5 shows the market development in those areas 

considering the annual installations in the last decade. 

Despite the fact that there are plenty of research as well as 

market activities in the new offshore business, the lion’s 

share considering real operative business is still clearly 

covered by onshore turbines. The presented European 

market setup is also valid for the German market as Table 1 

points out. A special feature of the mature German market is 

the growing importance of repowering activities as more 

and more turbines reach their designed life-times. The 

alternative to repowering is plant life extension with the 

support of PHM systems in application. Special macro-

economic aspects of this opportunity will be discussed later 

in the article. 

Due to the fact that major players of the European wind 

energy market are currently revising their policies and 

subsidies – causing uncertainty on the investors’ side –

European market growth will decelerate. 

However, new positive market developments are recognized 

in Latin America. In the last five years Brazil has gone from 

a fledgling wind market to a generic business development 

base. Brazil alone installed more than twice the amount of 

grid-connected turbines than all other Latin American 

countries combined. 

Another future flourishing market will be South Africa. The 

South African government is currently tendering big wind 

turbine projects in the mountain regions northwest and 

northeast of Cape Town. 

 

 

 
Figure 5: European new business onshore/offshore   

(EWEA, 2013). 

 

 

 

 

 

Table 1: German onshore wind market                    

(Deutsche WindGuard GmbH, 2013a). 

 

3. DEVELOPMENTS IN THE WIND O&M MARKET 

In Europe the general market environment is characterized 

by a mature onshore market and a growing offshore market. 

In future the European market will experience a profit 

migration from new installations to O&M services. The 

European wind service market currently has a size of 2.3 bn. 

€. Furthermore the European wind energy servicing market 

occupied in recent years roughly half of the global wind 

energy servicing market size. The European market will 

grow up to 2.7 bn. € until 2020, as shown in Figure 6. From 

2005 until 2011 the European O&M market grew about 18 

% annually on average. Germany’s maintenance market will 

be the largest and reach 1 bn. € in 2020. 

The main market players in the European O&M business in 

the wind industry are the service departments of the Original 

Equipment Manufacturers (OEM), Independent Service 

Providers (ISP) and the Wind Farm Owners (WFO). ISPs 

currently mainly concentrate their business activities on 

special turbine types and regional areas. Due to the 

decreasing margins in production of wind turbines, the 

OEMs build increasingly their businesses on complete 

packages of wind power plants including all services over a 

life-time of 20 years. In doing so, they secure their market 

positions facing new business models such as ISPs (BWE, 

2012). 

 

 

 

Figure 6: European service market development       

(Deloitte / TaylorWessing, 2012). 

 

 

 

 

Number Capacity [MW]

2012 Cumulative installed wind turbines - 31.12.2012 22907 30989

Gross new installed wind turbines in 2013 1154 2998

- Repowering 269 766

Dismantling in 2013 416 258

2013 Cumulative installed wind turbines - 31.12.2013 23645 33730
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Looking into the latest statistics of the German wind energy 

association – Bundesverband WindErnergie e.V. – it can be 

seen that the OEM service concepts still dominate the 

market with a 90 % share of OEM service contracts in the 

German wind energy market (BWE, 2012). However, 

different studies predict that the current 10 % market share 

of the ISPs will rise up to 30 % in 2020 (Oliver Wymann, 

2011). Additionally the ISPs are also searching for new 

market possibilities in Poland, France and Italy. 

From a macro-economic perspective this represents positive 

development. The growing number of competitors in the 

O&M market will lead to increased price pressure and lower 

the current high maintenance costs. 

Until now the onshore market clearly dominated the O&M 

business. In the year 2012 about 91 % turnover was reached 

in the onshore market and 9 % turnover in the offshore 

market. The increasing average age and the large number of 

turbines in the onshore market provide a good basis for 

future business developments. In the coming years more and 

more turbines will exceed their designed lifetime of 20 

years. In the year 2012 about 860 turbines were older than 

20 years. Predictions say that in the year 2020 we will have 

8,200 turbines over 20 years in operation (Fraunhofer 

IWES, 2013). Despite having relatively less turbines, the 

offshore sector still offers market potential for players in the 

O&M market. The core problem which needs to be solved 

soon in the offshore maintenance business is the high 

maintenance cost – 2 to 4 times higher than in the onshore 

sector (IRENA, 2012). 

4. COST STRUCTURE OF A WIND TURBINE PROJECT 

Prior to analyzing economic concepts of PHM systems in 

the wind industry it is necessary to get a clear understanding 

of the cost structure in that business branch. On the highest 

level the cost structure can be subdivided into investment 

costs and operation costs. Furthermore, the investment costs 

are categorized into primary investment costs and secondary 

investment costs. 

The main investment costs come directly from the wind 

turbines’ physical components. Main cost drivers are the 

following subsystems: gear box, rotor blades, generators and 

particularly the towers. The specific investment costs of 

wind turbines rise with increasing hub heights but decrease 

with increasing power of the turbine. This correlation is 

mainly lead by the influencing high costs of the supporting 

structure of turbines. The specific tower costs rise with 

increasing turbine power. On average the primary 

investment cost shares of the tower structure range from 24 

% to 32 % for a wind turbine in the onshore market. In 

comparison rotor blades on average cost from 21 % to 24 % 

of primary investment, and the gearboxes cost from 10 % to 

18 % of primary investment. Those three subsystems 

represent the most important cost shares of the wind turbine 

and therefore are important working points for the 

installation of a PHM system. 

The secondary investment costs contain on a basic level the 

foundation of the wind turbine, the grid connection as well 

as the prior planning activities and during the turbine 

construction phase. The main cost share of on average 18 % 

is occupied by the foundation costs. Together with the 

above-mentioned importance of the supporting structure 

from an economic perspective, the supporting structure 

components tower and foundation are of particular interest 

for PHM future systems in application in the wind industry. 

Figure 7 illustrates the investment cost structure of an 

example 3 MW onshore wind turbine in Southern Germany. 

The second main cost category of wind turbines is the 

operating costs. By definition the operating costs contain all 

expenses necessary to ensure a safe and reliable operation of 

the turbine over the whole life span. Core expenses are 

maintenance and repair, leasing costs, commercial and 

technical operation management, insurance costs, savings 

and miscellaneous costs. 

Due to the importance of maintenance and repair costs in 

the distribution of the operating costs the majority of the 

wind turbine owners prefer full service contracts. The 

duration of those full service contracts for wind turbines 

range from 10 years to 15 years. Full service contracts 

include the benefits of all maintenance and repair costs by 

default defined in the wind industry as well as all unplanned 

maintenance and repair activities beyond the warranty of the 

Original Equipment Manufacturer (OEM). Additionally 

providers of such full service contracts guarantee a certain 

level of availability of the wind turbine over the lifetime. 

The guaranteed availability levels range from 95 % to 99 %. 

The main providers for full service contracts are on the one 

hand the OEMs and on the other hand the so called 

Independent Service Providers (ISPs). In particular, the 

wind turbine owners profit in this framework from a 

calculable cash flow plan of their wind turbine project with 

minimized risks. 

 

Figure 7: Distribution of investment costs – Onshore. 

 

A recent poll of the German wind energy association – 

Bundesverband WindEnergie e.V. - came to the result that 
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34 % of the overall wind turbines in the German market are 

serviced in standard service contracts and 64 % of the 

turbines in full service contracts (BWE, 2012). 

To proceed with the analysis of the distribution of the 

operating costs it is appropriate to subdivide operations 

costs in to the first half of the planned lifespan of a wind 

turbine project and the second half of the lifespan. 

Figure 8 shows the proportional distribution of operating 

expenses of an average onshore wind turbine project. Most 

importantly, the high amount of maintenance and repair as 

well as the increasing development in the second half of the 

life span is remarkable. In the second half of the lifetime 

wind turbines cause 30 % to 43 % more O&M costs 

compared to the first half. 

The whole renewable energy branch in Europe is currently 

under cost pressure in the energy transition process. On the 

route to a renewable energy system the basic challenge is to 

further reduce the energy production costs of the different 

technologies. PHM systems can certainly help to solve these 

complex problems on a technical basis. 

To illustrate this point; Germany spends in 2013 23 bn. € for 

feed-in tariffs and other subsidies for renewable energy 

sources. Those costs have to be optimized and the 

technologies will have to be further developed to 

marketability. However, the wind energy technology 

already covers an important and economical part of the 

renewable capacities in the power system and represents 

therefore a valuable development base. The key concept 

from a macro economic standpoint is to reduce the 

Levelized Cost of Energy (LCOE) of a specific generation 

technology – in this case, wind energy. 

 

 

Figure 8: O&M cost dependence from turbine age 

(Deutsche WindGuard GmbH, 2013b). 

 

5. PHM TO LOWER THE LEVELIZED COST OF ENERGY 

In order to evaluate the total costs of production of 

electricity the concept of Levelized Cost of Energy (LCOE) 

can be applied.  

In the case of wind energy this concept describes the costs 

incurring for the conversion of wind energy into electricity. 

The streams of costs for wind energy are converted to a net 

present value using the time value of money. In general the 

LCOE represent the price at which electricity must be 

generated from, at a specific source to break even over the 

lifetime of the project. All costs over the lifetime of a given 

project are summarised and included, discounted to the 

present time t = t0 and levelized based on the annual energy 

production of the particular project. 

In case of wind turbines the generated electricity represents 

future income and is discounted cash flow in the model. In 

Ct the annual overall costs are summarized. The parameter 

includes: General fixed and variable costs of the wind 

turbine project, all costs incurring from maintenance 

activities, insurance costs as well as recycling costs of the 

wind turbine. In case of wind energy projects there are no 

fuel costs to consider, which would normally represent an 

important parameter in economic evaluations of 

conventional power plants. The used discount rate for the 

study is exemplary derived from the theory of Weighted 

Average Cost of Capital (WACC). Under consideration of 

the current financial market the WACC discount rate 

depends from the amount of equity capital in the certain 

project, the calculative return of equity capital and the 

amount of bonded capital (Berk, J., 2011). 

One applicable formula to calculate the LCOE with this 

international known approach is the following: 

 

𝐼0 +∑
𝐶𝑡

(1 + 𝑖)𝑡
𝑛
𝑡=1

∑
𝑌𝑒𝑙

(1 + 𝑖)𝑡
𝑛
𝑡=1

 

 (1) 

 

The goal of this approach is to enable the comparison of the 

energy production costs from different conventional and 

renewable sources from a macro-economic perspective. The 

method of levelized cost of energy is not suited to give 

evidence to the cost effectiveness of a certain wind turbine 

project. For those purposes one needs a defined cash flow 

calculation over the lifetime of the certain project. 

Furthermore, the resulting prices of the LCOE approach also 

can not be compared to current energy prices in the energy 

stock market – e.g. at the European Energy Exchange (EEX) 

in Leipzig, Germany. The stock prices are dependent on 

weather and grid conditions and mainly influenced by the 

global market conditions in short term. Those effects cannot 

be represented with LCOE prices. 

Figure 9 compares the different energy converting 

technologies which are currently available in the energy 

system. 

Considering specific investment costs between 1000 and 

1800 € / kW in the onshore area the levelized cost of energy 

of onshore wind turbines range between 45 and 107 € / 
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MWh. At good wind locations onshore wind turbines are 

already able to produce power cheaper than conventional 

new coal and gas power plants. If this positive development 

continues, in future onshore wind turbines might be possibly 

cheaper than average brown coal capacities in the energy 

system. Offshore wind turbine technology costs currently 

between 119 and 194 € / MWh providing specific 

investment costs ranging from 3400 € / kW to 4500 € / kW 

Fraunhofer ISE, (2013). Here, LCOE of offshore 

technologies are approximately double the LCOE of 

onshore wind technologies. The expensive installation 

process especially, and the high O&M costs contribute to 

that setting. But in general the LCOE of renewable energy 

sources decrease in preparation of the future renewable 

energy system, while the LCOE of conventional power 

plants will continue to rise. 

 Figure 10 describes on top level how the LCOE of a wind 

turbine project come together on an annual basis. The left 

side represents the cost side subdivided in the annual capital 

cost as well as the annual operation and maintenance cost. 

The right side represents the denominator side.  

 

Figure 9: Comparison of renewable energy LCOE 

(Fraunhofer ISE, 2013). 

 

 

 
Figure 10: LCOE setup of an onshore wind project  

(IRENA, 2012). 

 

The annual energy yield is dependent on the specific turbine 

characteristics as well as the location characteristics. 

Derived from technical and mathematical relationships in 

order to optimize and reduce the levelized cost of energy of 

wind turbine technologies, three main strategies connected 

with PHM systems can be clarified: 

 

1) Lower O&M costs. 

2) Increase power output. 

3) Increase the lifetime of wind turbines. 

Consequently PHM systems for the wind industry in future 

will have to focus holistically in those three dimensions 

according to Figure 11. 

To analyze the economic impact of optimizing those three 

parameters it is worthwhile to conduct a generic sensitivity 

analysis. 

As general setup of the sensitivity analysis the study focuses 

on a typical onshore wind turbine class ranging from 2 to 3 

MW. The overall operating costs in the years one to ten are 

fixed to 25.1 € / MWh on average according to Deutsche 

WindGuard GmbH, (2013b) in the study presented here. In 

the years eleven to twenty the operating costs are fixed to on 

average 26.3 € / MWh for the analyzing calculation 

conducted here. Furthermore the discount rate is defined by 

3.8 % after the WACC-approach over the whole sensitivity 

analysis. 

 

 

Figure 11: Focusing dimensions of PHM for wind turbines. 

 

 

 
Figure 12: Effect on LCOE by enhancing reference yield. 
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Firstly the study is modifying the annual energy yield which 

corresponds to the PHM function of helping to increase the 

annual power output – e.g. through higher availability in the 

power grid. A typical value of 2,882 MWh/kW/a as 100 % 

reference value for the ideal onshore wind turbine was set. 

 

As shown in Figure 12, the annual energy yield has a high 

impact on the LCOE. With every 10 % increase of annual 

energy yield the technology costs of onshore wind turbines 

fall about 4.65 € / MWh on average. 

In the next step the variation of the production costs was 

conducted, corresponding to the PHM function of lowering 

the O&M expenses. 

This time a fixed typical onshore turbine characteristic was 

set as object of investigation, which is defined in Table 2. 

With an 80% reference yield of 2,537 MWh/kW/a the 2.45 

MW onshore turbine with specific investment costs of 1785 

€ / kW is typical for Southern German wind farm locations 

Deutsche WindGuard GmbH, (2013b). 

In a total of ten steps the annual operation costs were 

decreased in steps of 5% relating to the initial configuration. 

Corresponding to the formulas, every 5 % economization in 

the annual operating costs – mainly maintenance costs – 

reduces the technology costs by about 1.28 € / MWh. As 

shown in Figure 13 this variation has a linear decreasing 

effect on the LCOE. It has to be said that an operating cost 

reduction of about 50 % might be difficult to reach with 

PHM support – furthermore the operating costs will have 

fixed cost components which will have to remain – however 

the trend and influence of this parameter can be derived in 

that part. 

 

Table 2: Turbine param. for LCOE effects var. Ct 

 

 

Figure 13: Effect on LCOE by reducing the operating costs. 

 

Last but not least the lifetime of the wind turbine project 

was varied addressing the PHM function of optimal lifetime 

management. The lifetime enhancement was modelled in 

ten steps increasing 5 years with every step - starting with 

the default lifetime of 20 years. Due to the fact that the 

operating costs of older wind plants will rise, the calculation 

used a linear increase of operation costs of 1.2 € / MWh per 

decade extra lifetime as shown in Table 3. 

As shown in Figure 14 on average every five years lifetime 

enhancement reduces the LCOE of onshore wind energy by 

about 1.53 € / MWh. It well could be that in reality the 

operating costs do not increase in a linear manner with 

every decade. Assuming proper use of the installed PHM 

system might lead to a lower increase of operating costs of 

older wind turbines. The vision of lifetimes of 50 years and 

beyond has so far not been technically proved in the wind 

energy market, but considering typical civil engineering 

buildings with a similar number of load cycles – e.g. bridges 

– from a macro economic standpoint it is worthwhile to 

work on that vision enabled to PHM systems. This vision is 

especially challenging for PHM engineers because from a 

technical point of view wind turbines can be defined as aero 

generation systems including many mechanical and electro 

technical elements with different fault modes to be detected 

and managed via PHM systems. Certainly the human safety 

level must not be influenced in a negative way considering 

enhanced lifetimes of wind turbines. 

Table 3: Increase of operating costs over lifetime 

 

Power 2,45 MW

Specific investment costs 1785  €/kW

Reference yield 2,537 MWh/kW/a

Turbine characteristic

Lifetime
Ct - Operating costs 

€/MWh

Year 1 … 10 25,1

Year 11 … 20 26,3

Year 21 … 30 27,5

Year 31 … 40 28,7

Year 41 … 50 29,9

Year 51 … 60 31,1

Year 61 … 70 32,3
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Figure 14: Effect on LCOE by enhancing the lifetime. 

 

Finally Figure 15 displays all three investigated PHM 

functions at wind turbines and their optimizing effect on the 

wind energy production costs in the energy system. 

Theoretically the effects of the functions in the LCOE 

parameter study here were separated, but in reality the 

effects will have to be combined – e.g. enhancing the 

turbine’s lifetime in reducing operation loads can certainly 

also lead to reduced maintenance and repair costs because 

e.g. the main shaft bearings see lower load amplitudes – 

which would lead to further LCOE cost optimizations 

enabled to those generated synergies of PHM functions. 

 

 

Figure 15: Summary of LCOE optimizing effects of PHM 

functions at wind turbines. 

6. CONCLUSION 

The last paragraph is dedicated to a short summary of the 

main findings of the contributed work here as well as a 

quick forecast for future research activities. 

As pointed out in chapter 2 the global wind industry is 

already an important business branch in Europe, especially 

in Germany, France and UK. Under the provision of 

supporting policies its positive development will continue in 

the coming decades. 

Furthermore, mainly due to the aging overall wind park and 

limited locations in Europe in the future there will be a 

business migration in the wind industry from new 

installations to O&M services. The O&M market for wind 

turbines is not yet settled and offers various opportunities 

for market entries of new players. The Independent Service 

Providers especially, currently use this situation and cause 

dynamic market development. As for onshore wind turbines, 

they currently occupy the lion’s share in the O&M area. 

As we saw in the cost structure of a wind turbine project in 

chapter 4, the supporting structure, beside the rotor blades 

and the powertrain is a core element. The operating costs of 

a turbine are dominated by the O&M expenses, increase 

with the turbine’s lifetime and represent a center leverage 

point to optimize wind turbine systems with PHM. 

Chapter 5 presented the concept of Levelized Cost of 

Energy as a method to evaluate cost effectiveness from a 

macro economic standpoint and to compare wind energy 

with other energy conversion technologies. It was derived 

that PHM systems should be developed in three dimensions 

for the use of economizations of wind turbines, they are: 

Lower the O&M expenses, increase power output and 

increase the lifetime of wind turbines. 

A conducted parameter study analyzed the three PHM 

functions and their effects on the macro-economic 

production cost of wind energy separately. Increasing the 

energy yield as well as enhancing the lifetime of wind 

turbine projects had crucial effects on the cost effectiveness. 

However in reality those effects should be combined in a 

suitable way in a PHM system for wind turbines to leverage 

reasonable and connected synergies. 

Future research activities should continue considering wind 

energy as a main pillar in our energy system and therefore 

develop technologies enabling cost effective energy 

production from renewable energy sources. PHM systems 

are a core tool to reach that goal in case of wind turbines. 

Knowledge already acquired from PHM systems in the 

automotive, aviation and space area will have to be merged 

for the application for wind turbines. 

 

 

 

 

Dataset

1 60 % Yref 93,35 €/MWh -5 % Ct / 80 % Yref 75,11 €/MWh +5 a / 80 % Yref 69,89 €/MWh

2 70 % Yref 83,70 €/MWh -10 % Ct / 80 % Yref 73,83 €/MWh +10 a / 80 % Yref 65,67 €/MWh

3 80 % Yref 76,45 €/MWh -15 % Ct / 80 % Yref 72,55 €/MWh +15 a / 80 % Yref 62,85 €/MWh

4 90 % Yref 70,54 €/MWh -20 % Ct / 80 % Yref 71,27 €/MWh +20 a / 80 % Yref 60,82 €/MWh

5 100 % Yref 65,37 €/MWh -25 % Ct / 80 % Yref 69,99 €/MWh +25 a / 80 % Yref 59,36 €/MWh

6 110 % Yref 61,78 €/MWh -30 % Ct / 80 % Yref 68,71 €/MWh +30 a / 80 % Yref 58,26 €/MWh

7 120 % Yref 58,77 €/MWh -35 % Ct / 80 % Yref 67,43 €/MWh +35 a / 80 % Yref 57,44 €/MWh

8 130 % Yref 56,21 €/MWh -40 % Ct / 80 % Yref 66,16 €/MWh +40 a / 80 % Yref 56,79 €/MWh

9 140 % Yref 54,05 €/MWh -45 % Ct / 80 % Yref 64,88 €/MWh +45 a / 80 % Yref 56,30 €/MWh

10 150 % Yref 52,17 €/MWh -50 % Ct / 80 % Yref 63,60 €/MWh +50 a / 80 % Yref 55,91 €/MWh

LCOE var Energy yield LCOE var LifetimeLCOE var Operation costs
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NOMENCLATURE 

I0 total investment costs 

Ct operating costs at time t 

Yel annual energy yield 

i discount rate 

n year in operating life 
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ABSTRACT 

A planetary gearbox is widely used in various rotating 
systems because it can be used as a speed reducer or increaser 
without change in direction of shaft while transferring great 
driving power. Despite many attempts it is still challenging 
to diagnose potential faults of the planetary gearbox because 
of multiple contacts and axis rotation of planet gears resulting 
in complex vibration characteristics. This paper thus presents 
an original method to isolate vibration signals induced by the 
planet gears from the complex vibration signals for fault 
diagnostics of the planetary gearbox. First, an in-depth study 
on the vibration characteristics of planet gears is presented 
using the autocorrelation function of the vibration signal. The 
autocorrelation-based time synchronous averaging (ATSA) 
method is then developed for the isolation of the vibration 
signals produced by the planet gears. The vibration signals 
were utilized for extracting health related data which 
facilitate the efficient fault diagnostics of the planet gears. 
Case study with a wind turbine testbed showed that the 
proposed method can diagnose the root crack of the planet 
gears. 

1. INTRODUCTION 

A planetary gearbox is widely used in wind turbines (WTs) 
because it transfers great driving power without change in 
direction of shaft. However, it is at high risk because 
downtime of the most planetary gearboxes are severely long. 
For example, NoordzeeWind (2008) reported that planetary 
gearbox has the most critical downtime loss in wind turbines. 
This necessitates diagnostics of gearbox to prevent 
catastrophic failure with significant economic loss. Despite 
many attempts, however, it is still challenging to diagnose 

potential faults of the planetary gearbox because of multiple 
contacts and axis rotation of planet gears resulting in complex 
vibration characteristics.  

For robust diagnostics of the gearbox, vibration produced by 
the planet gears in the gearbox should be isolated from the 
complex vibration signal. Widely used vibration isolation 
tool is time synchronous averaging (TSA). Principle of TSA 
is to divide the vibration signal into multiple segments whose 
length correspond to one rotation of the gear and conduct 
ensemble averaging for them. This requires very simple 
processing, however, TSA for planet gear requires more 
advanced approach because 1) the sensory signal is mixed up 
by multiple contacts in the planetary gearbox, and 2) rotating 
inner components change relative distance of the planet gears 
from a sensor because the vibration sensor is fixed on the top 
of the gearbox housing. 

To overcome the presented challenges, McFadden and 
Howard (1990) proposed to extract the signal only when the 
planet gear of interest passes the vibration sensor with the 
help of narrow-ranged Square window function. Likewise, 
most advanced TSA involves extraction of vibration when 
the planet gears of interest is adjacent to the vibration sensor. 
Various kinds of window functions were developed for 
advanced TSA. McFadden (1994) compared various kinds of 
window functions, and advanced the previous TSA 
(McFadden et al., 1990) by adopting narrow-ranged Hann 
window function. Samuel, Conroy and Pines (2004) adopted 
using narrow-ranged Tukey window which has flat top in 
shape pointing out that extracted signal with Hann window 
(McFadden, 1994) cannot represent the vibration signal of 
interest well because the Hann window does not have flat top 
which lead to distortion of the target signal. Although TSA 
with optimized size and shape of the window function can 
properly isolate the signal of interest for effective diagnostics, 
it cannot be used for planetary gearbox in WTs because 
stationary signal, which is necessary for TSA, is rarely 

Jong Moon Ha et al. This is an open-access article distributed under the 
terms of the Creative Commons Attribution 3.0 United States License, 
which permits unrestricted use, distribution, and reproduction in any 
medium, provided the original author and source are credited. 
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acquired in WTs. For example, a recent study which 
successfully performed diagnostics of planetary gearbox 
using a TSA with narrow-ranged Hann window used about 
700 carrier cycles of data which corresponds to 40 minutes of 
typical WTs’ operation (Lewicki, Ehinger & Fetty, 2011). 
Because 40 minutes of stationary operation cannot occur in 
WTs, TSA with more wide-ranged window function is 
needed. Although wide-range window function was designed 
to prevent any loss of data by Forrester (2001), Samuel, 
Conroy and Pines (2004) pointed out that such excessive 
wide-ranged window can distort the natural vibration 
characteristics of the planet gears.  

This paper proposes more advanced TSA for isolation of 
vibration produced by planet gears. Different from the 
previous studies, range of newly designed window function 
is in between range of narrow-range window function and 
that of wide-range window function. This paper suggests a 
guideline for determining range of window function of TSA 
with autocorrelation function. Developed TSA, thus, is 
referred to as autocorrelation-based TSA (ATSA). For 
demonstration of proposed ATSA, a testbed for planetary 
gearbox was designed. This testbed typically simulates a 
large scale of wind turbine with combination of two planetary 
gearboxes which have 20:1 and 4.08:1 of gear ratio 
respectively. A faulted planet gear was assembled to a 
gearbox with 4.08:1 of ratio to depict abnormal condition of 
the gearbox. Two kinds of health data were obtained from the 
results of ATSA, and they successfully classified condition 
of the normal and abnormal gearboxes.  

This paper consists of three parts. First, vibration isolation 
methods for a spur gear and planet gear are briefly reviewed. 
Second, autocorrelation-based time synchronous averaging 
(ATSA) is proposed. Finally, proposed ATSA is validated in 
demonstration section. 

2. REVIEW OF VIBRATION ISOLATION METHOD 

Vibration isolation methods help to investigate nature 
characteristics of vibration produced by the gear of interest 
which is originally buried by the other kinds of vibration 
sources. Most widely used technique is time synchronous 
averaging (TSA). In this section, basic TSA which can be 
used for spur gears is introduced. And then, advanced TSA 
for planet gears will be presented based on the previous 
studies. 

2.1. Time Synchronous Averaging for Spur Gears 

Every measured signal has multiple coherent and non-
coherent components from various sources. D. Hochmann 
and Sadok (2004) attempted to describe the synthesized 
sensory signal from the sensor with three main components: 
synchronous coherent signals ( (ݐ)ܵ ), non-synchronous 
coherent signals (ܰ(ݐ)), and non-coherent random signals 
  .((ݐ)ܴ)

 
Figure 1. Procedures of time synchronous averaging 

Time synchronous averaging (TSA) was developed to 
suppress the non-synchronous coherent signal and the non-
coherent random signal, and to estimate approximated 
synchronous coherent signal (ܵ(ݐ)തതതതതത). Basic TSA is composed 
of three main steps as shown in Figure 1. The first step is to 
resample the vibration signal to have same number of 
samples per rotation of the gear, where ݂௦  in Figure 1 
denotes the number of samples per rotation of the target gear 
(Blough, 2006). Linear interpolation method enables the 
resampling of signal by assigning constant number of 
samples per rotation of the target gear with the help of 
encoder (Decker & Zakrajsek, 1999). In second step, the 
vibration signal is divided into multiple segmented sets. Data 
length of every sets corresponds to one rotation of the gear. 
Third step is to perform ensemble averaging of the segmented 
sets. Because non-synchronous coherent signals (ܰ(ݐ)), and 
non-coherent random signals (ܴ(ݐ)) would have Gaussian 
noise characteristics, they converges to zero as the number of 
averaging increases. Whereas, synchronous coherent signals 
( (ݐ)ܵ ) remains its origin because each segmented sets 
correspond to one rotation of the gear which generate almost 
identical signal in respect to phase and magnitude. TSA 
resulting in the estimation of the synchronous coherent signal 
 :can be defined as (Barszca & Randall, 2009) (തതതതതത(ߠ)ܵ)
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2.2. Time Synchronous Averaging for Planet Gears 

Planetary gearbox is composed of sun gear, ring gear, carrier 
and planet gears as shown in Figure 2. In WTs, ring gear is 
fixed on the gearbox housing to make planet gears rotate 
around the sun gear with the help of rotating carrier. In this 
case, carrier is connected to the low speed shaft with high 
level of torque, and sun gear is connected to the high speed 
shaft with low level of torque. Because vibration sensors are 
fixed on the surface of the gearbox housing, relative distance 
of the planet gears to the sensor varies. Therefore, planet gear 
which dominantly produce signals to the sensor shifts. When 
the whole acquired signal is considered at a time, thus, 

 ( ) ( ) ( ) ( )v t S t N t R t    (1) 
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(a)                                           (b) 

Figure 2. (a): Planetary gearbox, (b): Inner side of the 
gearbox 

it is impossible to focus on diagnostics of a specific planet 
gear which lead to inaccuracy in diagnostics result. Therefore, 
TSA for planet gears involves the use of the window function 
for the purpose of extraction of vibration signal of interest. 
Various types of window function can serve as an extraction 
tool for TSA of the planet gears. Among them, Hann window 
(McFadden, 1994, Lewicki,  Ehinger & Fetty, 2011, Hood & 
Darryll, 2011), Tukey window (Samuel et al., 2004, Smidt, 
2009) and Cosine window (Forrester, 2001, Yu, 2011) were 
most widely used. Figure 3 illustrates the mentioned window 
functions. As can be seen through the figure, Hann and Tukey 
window covers just a few teeth of the gear whereas Cosine 
window covers entire range. After defining the window 
function, TSA can be conducted. Procedures of advanced 
TSA for the planet gears are illustrated in Figure 4. First, 
window function extracts the vibration made by the planet 
gear of interest. The principle of the first step is that window 
function gives weight to the signal only when the planet gear 
of interest passes the vibration sensor. Second, mapping of 
the extracted vibration signal is required because of the teeth 
sequence which is the natural characteristics of the planetary 
gearboxes. Teeth sequence of the planet gear, ܲ,(݊), is 
defined as a function of carrier rotation, which can be defined 
as (Samuel et al., 2004): 

 , ( ) mod( , ) 1n p c c r pP n n N N   (2) 

 
                      (a)                                             (b) 

Figure 3. Various types of window function 

 

 
Figure 4. Procedures of TSA for planet gear 

Where ݊  is the number of carrier rotation starting from 
location of the sensor, ܰ and ܰ is the number of teeth on 
the ring gear and planet gear respectively. Function of 
mod(ܽ, ܾ) calculates the remainder of ܽ/ܾ. Thus equation (2) 
derives teeth number of the planet gear which made the 
extracted vibration signal. With this information, the 
extracted vibration signal is transformed to the teeth domain 
as shown in Figure 4; Mapping to the teeth domain. In the 
final step, every transformed signals are aligned and averaged 
to make TSA signal. 

3. AUTOCORRELATION-BASED TIME SYNCHRONOUS 
AVERAGING 

In this section, autocorrelation function of sensory signal 
from the vibration sensor is introduced. It helps to understand 
vibration characteristics, and gives a guideline for defining 
efficient range of window function. For explanation of the 
proposed methods, a planetary gearbox with sun gear (31 
teeth), ring gear (95 teeth), carrier and three planet gears 
(31teeth) was used as an example case. 

3.1. In-depth Study on Vibration Characteristics Using 
Autocorrelation Function 

Autocorrelation function can be used to characterize 
vibration characteristics of the planetary gearbox. Before 
presenting detailed representation of the autocorrelation 
function, understanding intuitive operating characteristics of 
the planetary gearboxes would be helpful. Figure 5 illustrates 
what happens in the gearbox as the gearbox operates. 
Suppose that the gear of interest (Gଵ) was located under the 
vibration sensor at the initial state where a diamond mark 
indicates meshing point (Figure 5 (a)). As carrier rotates 
counterclockwise, position of the planet gears also revolute 
counterclockwise as well. Since then, the planet gear of 
interest will recede from the sensor whereas another planet 
gear will approach the sensor. At one rotation of the planet 
gear (݊ = 1 ), vibration of Gଷ  will dominate the sensor 
signal instead of the gear of interest because it will be almost 
under the sensor (Figure 5 (b)). Figure 5 (c) reveals that the 
planet gear of interest will be adjacent to the sensor by 
distance of two teeth to dominate the sensory signal again at 
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       (a)                    (b)                  (c)                  (d) 

Figure 5. Autocorrelation function of vibration signal 

three rotation of the planet gear (݊ = 3). At 95 rotation of 
the planet gear (݊ = 95), every planet gears and meshing 
teeth will reset to the initial state as shown in Figure 5 (d). 
The minimum number of rotations for reset to the initial state 
is called as hunting tooth ratio (HTR) (Samuel, Conroy & 
Pines, 2004). Intuitively, it can be expected that vibration 
signal gathered from Figure 5 (a), Figure 5 (c) and Figure 5 
(d) would have similarity in phase and magnitude because the 
meshing conditions are similar. Whereas, signal from Figure 
5 (b) would have different vibration pattern without similarity 
and it can result in improper TSA. This kind of signals are the 
most challenging issue in using wide-range window function. 

The task is to extend range of the window function for TSA 
while preventing similarity loss. Autocorrelation function 
can quantitatively characterize this phenomenon to define 
useful range for the window function. The definition of the 
sample autocorrelation function (ܴ௩௩) is mean of the signal 
ݐ)ݒ) multiplied by itself with time lag τ ((ݐ)ݒ) + ߬)), defined 
as (Bendat & Piersol, 2010): 

 This function gets high value when phase of the lagged 
signal (ݐ)ݒ + ߬)) has similarity to that of the original signal 
 Autocorrelation function, thus, can be used as an .((ݐ)ݒ)
identifier of similarity of the lagged signal. Figure 6 shows 
an example of autocorrelation function of vibration from a 
vibration sensor along with rotation of a specific planet gear. 
In the figure, ݂௦  denotes the number of samples per one 
rotation of the planet gear, and ݊ is the number of rotation 
of the planet gear relative to the ring gear. As can be seen, the 
autocorrelation function has multiple peaks at some integer 
rotation of the planet gear. First peak of autocorrelation 
function is found at three rotation of planet gear (݊ = 3) 
which corresponds to Figure 5 (c). At one 95 rotation of the 
planet gear (݊ = 95) which is relevant to Figure 5 (d), the 
autocorrelation function reveals higher value meaning that 
much similarity is assured. Based on these findings, it can be  
said that the similarity of the vibration signal can be assured  

 
Figure 6. Autocorrelation function of vibration signal 

when the planet gear of interest is near the vibration sensor, 
and it gives a guideline for defining range of the window 
function for TSA.  

3.2. ATSA with Autocorrelation-based Window 
Function 

Autocorrelation-based TSA (ATSA) is proposed in this 
section to take the signals into averaging based on similarity 
of the vibration. To identify position of the planet gear where 
the high level of similarity is guaranteed, teeth number of the 
ring gear is traced when high value of autocorrelation 
function is measured. For this purpose, teeth sequence of the 
ring gear should be formulated as a function of rotation of the 
planet gear as (Samuel, Conroy & Pines, 2004):  

Where ܲ,൫݊൯ is teeth sequence of the ring gear, ݊ is the 
number of rotations of the planet gear which corresponds to 

 

 ( ) [ ( ) ( )]R E v t v tvv     (3) 

 , ( ) mod( , ) 1n r pr pr p rP n n N N   (4) 

Table 1. Teeth sequence of ring gear corresponding to 
rotation of planet gear when autocorrelation function is 

high 
 

 ࢘,ࡼ ࢘ ࢘,ࡼ ࢘ ࢘,ࡼ ࢘
0 1 80 11 64 85 
46 2 31 12 15 86 
92 3 77 13 61 87 
43 4 28 14 12 88 
89 5 74 15 58 89 
40 6 25 16 9 90 
86 7 70 81 55 91 
37 8 21 82 6 92 
83 9 67 83 52 93 
34 10 18 84 3 94 

    49 95 
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Figure 7. ATSA with optimized range of window function 

x-axis in Figure 6, and ܰ and ܰ denote the number of teeth 
on the planet gear and ring gear respectively. At the initial 
position, teeth sequence is 1 because the planet gear of 
interest is in mesh with teeth number one of the ring gear 
under the vibration sensor. Table 1 summarizes teeth 
sequence of the ring gear when the autocorrelation function 
has high values. It can be noticed that all of the calculated 
teeth numbers of the ring gear are around teeth number one 
of the ring gear ( ܲ,=1) on which vibration sensor is located. 
Based on this findings, meaningful boundary of the ring gear 
can be defined as between teeth number 16 and 81 which are 
highlighted in Table 1. Defined range can provide a guideline 
for determining range of the window function in TSA.  

Tukey window function whose range was optimized based on 
autocorrelation function is illustrated in Figure 7. Vibration 
sensor was expressed as circle mark, and boundaries of the 
defined range was marked as diamonds. Defined window 
function covers wider range compared to the narrow-ranged 
window functions but has narrower range compared to the 
wide-range window function in Figure 3. Defined window 
function can serve as an extraction tool in TSA procedures 
which was introduced in Section 2.2. The remaining steps for 
advanced TSA, which was illustrated in Figure 1, can be 
conducted to make ATSA signal. 

4. DEMONSTRATION 

Testbed was designed to simulate large-scale wind turbine 
consisting of three stage of planetary gear sets. A planetary 
gearbox with 4.08:1 of gear ratio which corresponds to third 
stage of the large-scale gearbox is of interest in this study. 
Before validate the proposed ATSA using test signal, analytic 
signal was additionally designed to simulate a vibration 
signal from a planetary gearbox with 4.08:1 of gear ratio. 
This is for the purpose of  verification of the ATSA. For 
comparison study, recently developed TSA method by 
employing a Tukey window with 5 teeth range was used 
(Samuel, Conroy & Pines (2004)). 

4.1. Extraction of Health Data 

 For evaluating performance of the proposed ATSA, some of 
additional signal processing procedures are required to 
extract health related data referred to as health data. First, 
residual signal (RES) can be calculated by removing 
fundamental gear mesh frequency (GMF) and their 
harmonics from ATSA signal. RES contains pure sidebands 
of the GMF and their harmonics. Various health data from 
RES is very meaningful because a lot of researches about 
diagnostics of gearboxes have focused on monitoring of the 
amplitude of sidebands (Samuel & Pines, 2005). As the faults 
within a gearbox worsen, the magnitude of unexpected 
frequency out of sidebands can grow. Second, difference 
signal (DIF) is obtained from RES by excluding sidebands of 
fundamental GMF and their harmonics as well. If we note 
that RES is obtained by excluding fundamental GMF and 
their harmonics, it is clear that DIF ideally should not contain 
any normal vibration components and should have normal 
Gaussian distribution when it is in normal condition. As the 
faults within a gearbox worsen, the magnitude of unexpected 
frequencies which are from out of sidebands can grow 
Therefore, diagnostics of a gearbox can be performed by 
tracking the shape and energy of DIF. 

Health data used in this paper are 1) forth moment of residual 
signal (M4) (Zakarjsek, Townsend & Decker, 1993), 2) 
energy ratio (ER) (Samuel & Pines, 2005) which are defined 
as:  

Where N is the number of samples in a data set, ܴܧ ܵ and 
ܨܫܦ  are  ݅௧  sample of RES and DIF signal respectively, 
ோாௌߤ  is a mean value of RES and ݕ௦  is amplitude of 
regular meshing components including fundamental meshing 
frequency and their harmonics. ܴܵܯ calculates root mean 
square. As a fault in a gearbox occurs, variance of the 
sideband can grow which leads to increase in M4 (Zakarjsek, 
Townsend & Decker, 1993). Moreover, failure of the gearbox 
can increase the ER which represents magnitude of the 
unexpected component in vibration signal (DIF) compared to 
the normal vibration signal (ݕ௦) (Samuel & Pines, 2005). 

4.2. Analytic Signal 

An analytical signal was designed for verification of the 
proposed algorithm. Vibration produced by each planet gear 
was assumed to be a pure cosine wave, and defined as: 

  4

1

14
N

i RES
i

M RES
N




   (8) 
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(a)                                             (b) 

Figure 8. Design of analytic signal (a) abnormality of teeth 
number 14 on the first planet gear, (b) Transfer path of the 

first planet gear  

where ݒ is vibration signal produced by ݅௧ planet gear, ݂௦ 
is the number of samples per one rotation of the planet gear, 
and ܰ denotes the number tooth of the planet gear which is 
31 in this study. It was also assumed that an abnormality can 
be described as having a higher amplitude than a normal one 
when the faulty gear tooth meshes with other gears. In this 
study, abnormality was added to the tooth number 14 of 
planet 1 (ݒଵ) as shown in Figure 8 (a). There are three planet 
gears, and all the gears produce the same vibration at each 
position except for the faulted gear tooth. However, each 
planet gear has different transfer path. Transfer path of ݅௧ 
planet gear can be defined as:  

Where ݂ is rotating frequency of the carrier, and ݅ is ranging 
from one to three which is the number of planet gears. Figure 
8 (b) shows how the transfer path changes. The ݅௧ transfer 
path makes the sensory signal produced by the ݅௧ planet gear 
highest when it passes the vibration sensor. Whereas, the 
magnitude of ݅௧  transfer path decreases as the ݅௧  planet 
gear recedes from the sensor. Moreover, Gaussian noise was 
added to the signal to consider reality. After all factors are 
combined, analytic signal can be defined as: 

Figure 9 and Figure 10 compares the residual signals (RES) 
came from TSA signal and ATSA signal using 1200 seconds 
of data and 60 seconds of data respectively. RES were 
calculated by excluding gear mesh frequencies from the TSA 
or ATSA. As can be seen from Figure 9, both RESs 
calculated from TSA and ATSA graphically distinct 
abnormality of the signal in the teeth domain. When the size 
of the data decreases, however, abnormality of the planet gear 
is invisible when the narrow-ranged window function was 
employed for TSA as shown in Figure 10 (a). In contrary, 
RES from ATSA reveals abnormality of the gear in teeth 
domain even if small amount of data was used for signal  

 
(a)                                              (b) 

Figure 9. Residual signal using 1200 sec of data (a): TSA 
with 5 teeth range Tukey window, (b): ATSA with 

optimized range of Tukey window 

 
(a)                                              (b) 

Figure 10. Residual signal using 60 sec of data (a): TSA 
with 5 teeth range Tukey window, (b): ATSA with 

optimized range of Tukey window 

processing as shown in Figure 10 (b). This is because the 
ATSA employed wider range of extraction window function 
which lead to efficient use of the vibration data without loss 
while preventing data distortion.  

4.3. Testbed Signal 

Absence of normal and abnormal response data from WTs 
makes it difficult to achieve the objective of this research. 
Thus, a small-scale wind turbine testbed which has similarity 
to a 2.5MW WTs was designed for the research outlined in 
this paper. Gearbox 1, which has 3 stages of planetary gear 
set can be substituted with combination of gearboxes 2 and 3 
which have simpler dynamics characteristics than gearbox 1. 
Gearbox 3 which has one stage of planetary gear set is of 
target system in this paper. The main considerations for 
designing the testbed were as follows. First, the composition 
is almost identical to that of gearbox in WTs so that the 
testbed has similarity to the WTs. Moreover the testbed can 
operate with a closed-loop controller which enables 
implementation of rotor speed and scaled torque measured 
from a WT to the testbed. And this testbed was designed to 
facilitate simple assembly of the gear units with defect into 
the gearbox. In this case, 1.17mm of crack with 0.05mm of 
width was machined with wire-cut electro discharge 
machining as shown in Figure 12 (Jung, Yun, Lee & Fu, 
2012), and assembled to the gearbox 3. The gearbox rotated 
in 1600 rpm at sun gear with 4Nm of torque.  

 (1 cos(2 ( ( 1) / 3))) / 2pi ca f t i     (6) 
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Figure 11. Wind turbine testbed (2kW) 

 
Figure 12. Fault seeding to gearbox 

In the testbed, it was difficult to see abnormality in the teeth 
domain using the residual signal (RES) unlike the case study 
with the analytic signal. Thus, some of health data, M4 and 
ER, derived from residual signal (RES) and difference signal 
(DIF) were used to present the advantage of ATSA.  

Figure 13 and Figure 14 show comparison between health 
data from conventional TSA and ATSA signals. Health data 
from normal and abnormal gearbox are expressed with circle 
and cross marks respectively. The results have a common 
trend that health data from the abnormal system is larger than 
the health data from the normal system. However, there is no 
monotonic increase of health data by failure of the system. 
But combination of the health data enable effective 
diagnostics of the system. When 60 seconds of operating data 
were used, health data from normal and abnormal condition 
have distinct difference in the both TSA and ATSA cases. 
However, it can be noticed that health data with ATSA have 
more distinction line than the health data with TSA when the 
size of data decreases as shown in Figure 14. 

5. CONCLUSION 

Autocorrelation function was used for in-depth study on 
characteristics of vibration signal. As a results, it was found 
that sensory signal from the sensor which is fixed on gearbox 
housing is dominated by planet gear near the sensor. 
Autocorrelation function provided significant range in which 
vibration by the planet gear of interest can be effectively 
captured with the sensor. Thus, provided significant range 

 
 (a)                                               (b) 

Figure 13. Health data using 60sec of data (a): TSA with 5 
teeth range Tukey window, (b): ATSA with optimized range 

of Tukey window 

 
Figure 14. Health data using 20 sec of data (a): TSA with 5 

teeth range Tukey window, (b): ATSA with optimized range 
of Tukey window 

suggested a guideline for defining range of window function 
for the TSA. TSA with optimized range of window function, 
referred to as ATSA, was developed to perform an ensemble 
average of data based on similarity of vibration pattern. The 
validation study was made by using analytical signal and 
testbed signals. Among various available health data, forth 
moment of residual signal (M4), and energy ratio (ER) were 
employed for the validation study. To produce sample signals 
for the validation study, the testbed was operated in 1600 rpm 
at sun gear which corresponds to about 400 rpm at carrier. 
The test generated 400 carrier cycles for 60 seconds and 144 
carrier cycles for 20 seconds. When first stage of the gearbox 
in WTs is of target for the diagnostics, 25 minutes of rated 
operation will be required for 400 carrier cycles, which is 
impractical in real field. The result shown than ATSA had 
better performance when the size of data was not sufficient 
for conventional TSA. When ATSA is used, size of data can 
be reduced to one third for the TSA although some error can 
be made. This kind of error would be reduced when multiple 
health data are used for diagnostics. 

In the future work, multiple health data should be considered 
for diagnostics of the gearbox. Furthermore, classification 
method can be employed to quantitatively evaluate 
performance of the ATSA compared to the TSA. To 
effectively verify advantage of the proposed method, 
quantitative measure for performance of ATSA can be 
formulated as a function of size of data to define minimum 
operating duration of WTs necessary for the proposed 
method. 
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ABSTRACT 

Physics-based and data-driven models are the two major 

prognostic approaches in the literature with their own 

advantages and disadvantages. This paper presents a 

similarity-based data-driven prognostic methodology and 

efficiency analysis study on remaining useful life estimation 

results. A similarity-based prognostic model is modified to 

employ the most similar training samples for RUL 

estimations on each time instance. The presented model is 

tested on; Virkler’s fatigue crack growth dataset, a drilling 

process degradation dataset, and a sliding chair degradation 

of a turnout system dataset. Prediction performances are 

compared utilizing an evaluation metric. Efficiency analysis 

of optimization results show that the modified similarity-

based model performs better than the original definition. 

1. INTRODUCTION 

Prognostics is an essential part of condition-based 

maintenance, described as forecasting the remaining useful 

life of a system. There are two major prognostics 

approaches in the literature 1. Physics-based 2. Data-driven 

models. They both have their own advantages and 

disadvantages. Data-driven models employ routinely 

collected condition monitoring data and/or historical event 

data instead of building a mathematical model based on 

system physics or human expertise. They attempt to track 

the degradation of an asset using forecasting or projection 

techniques (e.g. regression, exponential smoothing, and 

neural networks), also rely on the past patterns of 

deterioration to forecast the future degradation. Since data-

driven prognostics have no elaborate information related to 

asset or system, it has been considered as a black-box 

operation (Zhang et al., 2009). A detailed literature review 

on data-driven prognostics was conducted by Si et al., 

(2011) . Artificial Neural Networks (ANN) (Gebraeel and 

Lawley, 2008), Hidden Markov Models (HMM) and 

derivations (Camci and Chinnam, 2010), regression models 

(Guclu et al., 2010), Bayesian & Gaussian Processes (Saha 

et al., 2010) are employed in order to estimate the remaining 

useful of a component or system. Similarity-based 

prognostic approaches can also be categorized in data-

driven prognostics. Details of the similarity-based 

prognostic models are discussed in section 2.4. 

Physics-Based Models typically involve describing the 

physics of the equipment and failure mechanism. 

Mathematical models are usually employed which is 

directly tied to health degradation. In order to provide 

knowledge rich prognostics output; physics-based models 

attempt to combine defect growth formulas, system specific 

mechanistic knowledge and condition monitoring data. They 

assume that an accurate mathematical model for component 

degradation can be constructed from the first principles. 

Several examples of degradation modelling and physics-

based prognostics, specific to the component or system, are 

found in the literature (Kacprzynski et al., 2002; Byington et 

al., 2004; Qiu et al., 2002).  

This paper presents a data-driven prognostic methodology. 

Contribution of the paper is to modify a similarity-based 

prognostic approach which performs better prognostic 

results compared to its original definition. Comparison and 

the efficiency of the remaining useful life estimation results 

are discussed in the paper. The rest of the paper is organized 

as follows. In section 2, the details of the used datasets and 

the methodology are given. The prognostic and optimization 

results are discussed in section 3. Following that are 

conclusion and future works. 

2. METHODOLOGY 

This section provides the datasets used in prognostic 

modelling, the similarity-based prognostic approach 

methodology, and the modified version of it.  

Omer F. Eker et al. This is an open-access article distributed under the 

terms of the Creative Commons Attribution 3.0 United States License, 

which permits unrestricted use, distribution, and reproduction in any 

medium, provided the original author and source are credited. 
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2.1. Virkler’s Fatigue Crack Growth Dataset 

In the structural health management (SHM) field, fatigue 

cracks are defined as one of the primary structural damage 

mechanisms caused by cyclic loadings. Cracks at the 

structure surface grow gradually. Therefore prediction of 

fatigue life or fatigue crack growth in structures is 

necessary. 

The Virkler fatigue crack growth dataset (Virkler et al., 

1979) contains 68 run-to-failure specimens. Each specimen 

used for the experiments is a center cracked aluminum sheet 

of 2024-T3. Specimens had a notch of 9mm initial crack and 

the experiments were stopped once the crack lengths 

reached around 50mm. Each specimen has 164 crack length 

observation points. Degradation for all specimens is shown 

in Figure 1. 

 

Figure 1. Crack length propagation samples under the same 

loading conditions 

2.2. Drill-bit Dataset 

Drilling processes are considered to be one of the most 

commonly used machining processes in industry (Lianyu Fu 

and Ling, 2002). For instance, up to 50% of all machining 

operations in the U.S. involve drilling (Furness et al., 1999). 

Drill bit breakage, excessive wear during the drilling 

process may cause fatal defects in the product. Drilled 

surface quality may affect the quality of the product. 60% of 

rejected parts are often granted to poor surface quality 

(Ertunc et al., 2001). Therefore, it is important to predict the 

failure of drill bit for obtaining good products.  

The failure prediction for drill bits has been reported in 

(Camci and Chinnam, 2010; Baruah and Chinnam, 2005). 

Hidden Markov (HMM) based methods have been used for 

failure prediction in their methods. The dataset was 

collected by Chinnam et al., (2003). 

Figure 2, shows the data acquisition system for drilling 

process. The dataset was collected from a HAAS VF-1 CNC 

machine. They used thin drill-bits to accelerate the aging 

process. The drill-bit dataset have twelve run-to-failure 

samples. The failure for each case is the breakage of the thin 

drill bit during the penetrating into work piece. Thrust-force 

and torque signals are collected during the actual drilling 

process. Concatenated thrust and torque signals, collected 

during the life of a drill bit, are displayed in Figure 3. In this 

figure, the degradation of a drill bit from brand new state to 

the failure state can be observed. This dataset will be used 

for comparison of the modified data-driven prognostic 

approach. 

 

Figure 2. Experimental setup for data collection during 

drilling process (Camci, 2005).  

 

Figure 3. Trust-force and torque data from a drill bit 

2.3. Turnout Dataset 

Turnout systems are remote controlled electro-mechanical 

systems enabling trains to change their tracks as displayed 

in Figure 4. They are considered to be one of the most 

important components of the railway structure. The standard 

railway turnout system is a complex device with many 

potential failure modes. The dataset consist of five different 

sensors showing the degradation profile of ten different run-

to-failure turnout mechanisms (Eker et al., 2011). We 

utilized the force sensor data among the other sensory 

information provided since they claimed the force sensor is 

capable of representing degradation process better than the 

rest of the sensors (Camci et al., 2014). They employed an 

exponential degradation model to organize the samples 
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collected from different discrete health states since there 

was no prior information about railway turnout degradation. 

They selected ‘dry slide chair’ as a failure mode for the 

turnout system. The dataset will be used for prognostic 

modelling and comparison. The dataset was collected under 

the project number ‘108M275(1001)’ supported by 

TUBITAK (The Scientific and Technological Research 

Council of Turkey) in Turkey. The dataset is open to public 

and can be downloaded from their research group website 

(Camci et al., 2010). 

 

 

Figure 4. Electro-mechanical turnout system 

2.4. Similarity-Based Prognostics (SBP) 

Zio and Di Maio, (2010) developed a novel similarity-based 

prognostics methodology for estimating the remaining 

useful life components of nuclear systems. Estimations of 

RUL requires evaluating the similarity between the test 

sample (i.e. ‘ ’) and the training samples (i.e. ‘     ’) as 

shown in Eq. (2). This is done by calculating the point wise 

Euclidean distances in between ‘      ’ sequences of 

observations. Distance score calculation in between training 

sample and the test sample at the     time point shown in Eq. 

(1). Final RUL estimation of a test sample at a time instance 

(i.e. ‘ ’) is achieved by taking the similarity weighted sum 

of training samples’ remaining useful life values recorded 

on the same time instances as shown in Eq. (3). 
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‘ ’ is the arbitrary parameter can be set to shape the desired 

interpretation of similarity whereas ‘ ’ defines the number 

of latest observations involved in similarity calculations. 

The smaller is the  , indicates the stronger the definition of 

similarity. 

2.5. Modified SBP 

This subsection discusses in detail the modifications made 

on the similarity-based prognostic model. The modifications 

have been made in the RUL estimation (i.e. Eq. (3)), in 

which the most similar K percent number of the training 

samples are utilized rather than using whole training set. 

The most similar K percent of training samples varies for 

every test sample and even it might vary for every time 

instance in a test sample. The best number K is required to 

be optimized by checking an error function, evaluating the 

prognostics efficiency. We calculated root mean squared 

error (RMSE) of RUL estimation results for performance 

evaluation. A genetic algorithm is employed to find the best 

number ‘K’ in terms of minimizing the RMSE values out of 

RUL estimations, shown in Eq. (4). Each K value provides 

its minimum RMSE value with the optimized ‘ ’ and ‘ ’ 

parameters.  

 

                   
    (4) 

 

Comparison of different ‘K’ percentage values is discussed 

in the next section. 

3. RESULTS 

The optimization of K percentage values for their best ‘ ’ 

and ‘ ’ parameters is shown in Table 1. By looking at the 

table, the lower RMSE from the RUL estimations for the 

Virkler dataset can be obtained when the most similar 18 

numbers of training samples (38%) are utilized whereas this 

can be achieved in 44% and 100% for Drill-bit and Turnout 

datasets respectively. RMSE values of different percentage 

levels are shown in Figure 5. In the figure, K = 100% means 

all training samples are utilized in RUL calculation where it 

represents the original definition of the approach in the 

literature. Improvement in the estimation errors is 

anticipated as the percentages of training samples involved 

more in the RUL predictions. However as shown in 

Virkler’s and drill-bit dataset plots in Figure 5 errors start to 

build up when K is around 40%. Drill-bit and Virkler 
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datasets show similar profile where the minimum RMSE 

values are obtained when 40% of the training samples are 

utilized in similarity weighted sum calculation of RUL 

values. However, the lowest error for the turnout dataset 

obtained at 25% and 100% levels.  

 

Table 1. Optimization results for different datasets 

Dataset     

# of 

training 

samples 

Best # 

of 

training 

samples 

K 

(%) 

Virkler 1.8e4 13.03 47 18 38 

Drill-bit 6 0.013 9 4 44 

Turnout 5 0.39 8 8 100 

 

Figure 5. Optimization of the K percentage for different 

datasets 

4. CONCLUSION & FUTURE WORK 

This paper presents a modification on a pure data-driven 

similarity-based prognostic approach. The original model 

modified so that the most similar training samples to the test 

sample are involved in RUL estimation. Genetic algorithm 

is applied to optimize the parameters involved in similarity 

and RUL estimations. Results show that the modifications 

lessen the root mean squared error of the RUL estimations 

in two out of three datasets. Future studies will be on 

integration of a physics-based model with the modified 

similarity-based approach to achieve improved prediction of 

remaining useful life. And also the modified model 

prognostic performance will be compared with other 

prognostic approaches. 
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ABSTRACT

Data-driven prognostic approaches like Gaussian Process
combined with Unscented Kalman Filter (GPUKF) are
promising methods for predicting the Remaining Useful Life-
time (RUL) of a degrading component. Whereas the Gaus-
sian Process (GP) is appropriate to derive a suitable degrada-
tion model by means of a set of training data, the Unscented
Kalman Filter (UKF) employs this model to determine the
prediction and its uncertainty.

Since a degradation process is highly stochastic, it is assumed
that by applying more sets of training data the accuracy and
precision of the GPUKF is increased. In order to examine the
performance enhancement two different approaches are in-
vestigated in this paper: First, a single GP is trained with all
available data sets. The second approach combines several
GPs (each created with a data set of one degradation process)
by extending the GPUKF with a Multiple Model Method.
The development of a third prognostic approach aims at the
investigation of the UKF as a suitable tool for the prognostic
algorithm. Therefore, a third method applies a Particle Filter
in combination with the GP.

For the evaluation of the aforementioned prognosis algo-
rithms according to their precision and accuracy a set of
prevalent performance metrics like the Prognostic Horizon
and the Mean Average Percentage Error of a prediction is an-
alyzed. The validity of the determined results is increased by
considering the variance of certain metrics over several units
under test. Moreover, particular focus is set on the exami-
nation of the performance change caused by the use of more
training data sets. In order to quantify this process known
metrics are extended. The evaluation is based on simulated
data sets, which are generated by an exponential degradation
model.

Christian Preusche et. al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

The analysis of the implemented algorithms indicates that the
applied metrics are in a comparable range. However, the three
approaches reveal a different behaviour concerning the con-
vergence of the performance values according to the number
of training data. In particular cases there is even a decline in
accuracy and precision attend by a rising number of training
data.

1. INTRODUCTION

In recent years the prognosis of the condition of component
parts with a high relevance to safety has become a key tech-
nology in Condition-Based Maintenance (CBM), especially
in application fields like aerospace or power generation. Al-
though the use of a CBM system is aimed for cost reduction
in the overall maintenance cycle, the initial implementation is
cost-intensive, since a profound knowledge and observation
of the examined element’s degradation processes is essential.

Here, data-driven methods can be beneficial, as the origin
and the mechanism of a failure is irrelevant for the gener-
ation of prognosis models. An additional advantage is the
generic coding for possible applications of data-driven algo-
rithms in comparison to model-based methods, which need a
specific model for every degradation process. Beside other
data-driven methods like the widely spreaded artificial Neu-
ronal Networks or the Support Vector Machine for regression,
the Gaussian Process (GP) became a state of the art regres-
sion estimator due to its simplicity and the ability to forecast
model uncertainties.

The examinations in this paper focus upon the evaluation of
three different prognosis methods, which all base on the GP
for regression modelling. The first two algorithms use the
Unscented Kalman Filter (UKF) for state estimation adapted
from the results of (Anger, Schrader, & Klingauf, 2012),
whereas the idea to combine a GP with a UKF was first intro-
duced by (Ko, Klein, Fox, & Haehnel, 2007) for an observa-
tion model of a robotic blimp. In (Anger et al., 2012) it was
proven that the combination of a GP with a UKF (GPUKF) is

1

European Conference of the Prognostics and Health Management Society 2014

327



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

generally capable of predicting even highly stochastic degra-
dation processes using the example of a rolling-element bear-
ing. Additionally, a second concept was introduced by ap-
plying several GPUKFs with different models which are
connected by a superior algorithm, the Interacting Multiple
Model (IMM). By means of the IMM in combination with a
GP regression (GPMMM) the robustness of the predictions
was significantly increased, since it is able to forecast differ-
ent damage courses w.r.t. the training data sets. Thus, the
central question of this enquiry is, if it is more beneficial to
separate the available set of training data into different mod-
els or to set up one single model with all data points.

Drawbacks in the prediction uncertainty of the aforemen-
tioned GPUKF and GPMMM led to a third algorithm, a
combination of a GP regression model with a Particle Filter
(GPPF). It is shown that the prognosis of the RUL by means
of the GPPF is a more straight forward approach according
to the handling of variances. Again the idea of this combina-
tion has its seeds in the localization, since Ferris et al. used
a similar algorithm for location estimation of people within
buildings in (Ferris, Hähnel, & Fox, 2006).

For the evaluation of these different algorithms, performance
metrics are necessary. In (Saxena et al., 2008) and (Saxena,
Celaya, Saha, Saha, & Goebel, 2009) several metrics con-
cerning the accuracy, precision and robustness of predictive
algorithms are summarized. In section 4 well-known metrics
like Mean Absolute Percentage Error (MAPE) or Prognostic
Precision (PP) are extended by their values w.r.t. the applied
number of training data sets. Since one major drawback of
data-driven approaches is the need of training data, savings
are possible, if these extended metrics do not indicate an in-
crease in the prediction performance after a certain amount of
training data.

This paper is divided into six sections: first, the three afore-
mentioned algorithms GPUKF, GPMMM and GPPF are in-
troduced in section 2. After that the model of the simulated
degradation data is described, whereupon one major demand
was simplicity. The evaluation and especially the applied per-
formance metrics are described in section 4 and the results are
summarized in section 5. We conclude in section 6.

2. PROGNOSIS ALGORITHMS

Three different prognostic concepts are compared in this pa-
per, whereupon all base on the Gaussian Process regression
modelling. One motivating question for the approaches is:
”Is it more beneficial to train one GP with all available data
sets or to establish many models by means of every single
data set separately?”. There are many benefits and drawbacks
assumed, such as: If one GP is trained with many data sets,
which result from a similar degradation process, the regres-
sion model inherits more information about the process and
thus is less prone to process noise. On the other hand in

case of highly stochastic degradation, the probability to find a
match between trained models and tested degradation courses
raises, when the regression models are established separately.

Thus, this section starts with the basics of GP regression
modelling that was introduced in (Rasmussen, 2006). After-
wards the two algorithms GPUKF and GPMMM are shortly
described. Since the UKF shows drawbacks concerning the
prognostic uncertainty calculation, a third algorithm based on
a Particle Filter is introduced.

2.1. Gaussian Process for regression modelling

Regression modelling tools like the GP enable the opportu-
nity to reproduce processes without the application of any
parametric model. Since the GP defines a Gaussian distri-
bution over a function, see (Rasmussen, 2006), the main ad-
vantage of regression modelling with a GP is furthermore the
potential to identify the model’s uncertainty according to the
variance of the distribution.
Thus, the aim of the GP regression modelling is to establish a
function f(X) so that a noisy process

y = f(X) + ε, (1)

can be described w.r.t a given training data set D =
{(x1, y1), (x2, y2), ...(xn, yn)}, where X = [x1, x2, ..., xn]T

is an n×m input matrix with m the number of inputs and n
the length of the single input vector xi. y is an n-dimensional
vector of scalar outputs and ε represents a noise term, which
is drawn from a Gaussian distribution N (0, σ2).

A Gaussian distribution can be described by its mean µ and
covariance Σ. Thus, the GP defines a prior which is a zero-
mean Gaussian distribution over the given outputs y of the
training data D, as follows

p(y) = N (0; K(X,X) + σ2
nI). (2)

Here, σ2
nI is a Gaussian noise caused by ε. The entries of the

kernel matrix K indicate the deviation of the inputs among
each other and are defined by the applied covariance function
k(xi, xj). Although the squared exponential is a standard ker-
nel function, in this paper it is extended by a linear and con-
stant term as follows

k(xi, xj) = σ2
f exp(−1

2
(xi − xj)W(xi − xj)T )

+σ2
nδij + σlxi · xj + σc, (3)

where σ2
f is the signal variance and W is a diagonal matrix

that contains the distance measure of every input. By means
of the other parameters σl and σc, the linear and constant de-
viation can be tuned separately.

The meanGPµ and the covarianceGPΣ is then expressed for
a given test input x∗ and test output y∗ w.r.t. the training data
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D by the following equations

GPµ(x∗, D) = kT∗ [K + σ2
nI]−1y (4)

for the mean and

GPΣ(x∗, D) = k(x∗, x∗)− kT∗ [K + σ2
nI]−1k∗ (5)

for the covariance, respectively. For reasons of clarity the
abbreviations K(X,X) = K and k∗ the covariance function
between the test input x∗ and the training input vector X are
used. Obviously, the mean prediction in equation 4 is a lin-
ear combination of the training output y and the correlation
between test and training input. The covariance is the differ-
ence of the covariance function w.r.t. the test inputs and the
information from the observation k(x∗, x∗).

All in all, the regression modelling with the applied GP
requires the optimization of five so-called hyperparameters
θ = [W σf σn σl σc] for the kernel function and the process
noise. This can be done by standard optimization algorithms
as conjugate gradient descent.

For the purpose of this paper, the degradation of the Unit Un-
der Test (UUT) is considered as a 1-dimensional state speci-
fied by x. Using equation 1 a stochastic dynamic degradation
process can be written as

xk+1 = xk + ∆xk + εk. (6)

The GP regression modelling is then applied on the state tran-
sition ∆xk so that the input X is the current degradation state
xk and the output y is the state transition. With the training
data set D = {x,∆x} the next degradation state is written as

xk = xk−1 +GPµ(xk−1, D) (7)

and the covariance GPΣ(xk−1, D), both fully describe the
Gaussian distribution of the GP. One example of the degrada-
tion modelling is given in figure 1.

2.2. Combining GP and an Unscented Kalman Filter

The aforementioned dynamic model of a stochastic degrada-
tion process is the basis for the first prognostic algorithm,
where one GP is trained with all available training data. Since
it is expected that the different degradation courses which
have to be forecast are quite similar, the application of all
training data in one GP is assumed to be beneficial, as the
GP contains more information about the degradation process.
Additionally, for uncertainty estimations of the new degrada-
tion state w.r.t. measurements and the applied model, an UKF
is necessary.

Similar to equation 1, a nonlinear dynamic system in the kth

time step can be described as

xk = g(xk−1) + εk (8)
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Figure 1. Example of dynamic degradation modelling using
Gaussian Process

with the state transition function g, the 1-dimensional degra-
dation x and an additive Gaussian noise term ε drawn from
a zero-mean Gaussian distribution ε ∼ N (0, Qk) with the
process noise Qk as covariance.

The basis of the UKF is the scaled unscented transformation
introduced in (Julier, 2002). Instead of a linearization pro-
cess of the transition function g (as in case of the Extended
Kalman Filter), sigma points χ[i] are defined w.r.t. the covari-
ance Σ and the value of degradation x of the previous time
step

χ
[0]
k = xk−1

χ
[i]
k = xk−1 + (

√
(n+ λ)Σk−1)i i = 1, ..., n (9)

χ
[i]
k = xk−1 − (

√
(n+ λ)Σk−1)i−n i = n+ 1, ..., 2n,

where λ is a scaling parameter to spread the single sigma
points. According to the standard UKF, these sigma points
are transformed by the transition function g. Since the ap-
plied algorithm plans to use the mean function of the GP (see
equation 6), the transformed sigma points are as follows

χ̄
[i]
k = χ

[i]
k +GPµ(χ

[i]
k , D). (10)

The mean and covariance of the next time step are then gen-
erated by

xk =

2n∑

i=0

w[i]
m χ̄

[i]
k (11)

Σk =

2n∑

i=0

w[i]
c (χ̄

[i]
k − xk)(χ̄

[i]
k − xk)T+

+ GPΣ(xk, D) (12)
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with the weights for mean value wm and covariance wc, re-
spectively. Instead of the process noise Qk, the covariance
function of the GP is used. Since this algorithm is only
employed for prognosis, a correction step as in the standard
UKF-algorithm is omitted.

The entire prediction process is sketched in figure 2.

Initial xk−1 and Σk−1

Defining Sigma Points χ[i]
k

State transition of χ[i]
k into

χ̄
[i]
k according to trained GPµ

Entire set of
training data

Calculation of xk and Σk

Threshold?

Determine RUL and
error boundaries

yes

no

k
=
k

+
1

Figure 2. Basic schematic of the GPUKF prognostic ap-
proach

2.3. Extension via a Multiple Model Approach

Instead of training one GP with all available data points the
second algorithm separates the data sets and creates several
trained GPs for degradation prediction. Again, the UKF is
used for uncertainty estimation. The superior algorithm that
connects the different prognostic models is called Interact-
ing Multiple Model (IMM), which was introduced in (Li &
Jilkov, 2003). Since a degradation process is highly stochas-
tic, the prognostic accuracy is expected to increase by the ap-
plication of various models that could be similar to the tested
damage case.

Considering equation 8, the extension to the multiple model
approach follows as

xk = g(xk−1,m
i) + εk, (13)

where additionally mi is the i prognostic model of M avail-
able models. The first steps of the IMM algorithm consist of
a reinitializing step with the calculation of a mode probability

ξik−1 of every ith model

ξik−1 = p(mi
k|y1:k) for i = 1, ...,M

=

M∑

j=1

hijξ
j
k−1 (14)

with the entries hij = p
{
mk = mj |mk−1 = mi

}
of the

transition matrix H. The application of the transition matrix
H prevents the prognostic approach of insisting on one model,
as it offers the possibility of a change in the mode probabil-
ity from model i to j during every time step. Therefore, the
transition matrix H describes a Markov chain, whereupon H
is assumed to be time invariant.

In comparison to other hybrid estimators as the Autonomous
Multiple Model the IMM uses the results of every integrated
filter by the application of a weighting factor according to

ξ
j|i
k−1 = p(mi

k−1|y1:k−1,m
i
k)

=
hj|iξ

j
k−1

ξik−1

. (15)

Herewith an individual reinitializing value for the state for
every filter

x̄ik−1 = E[xk−1|y1:k−1,m
i
k]

=

M∑

j=1

x̂jk−1ξ
j|i
k−1 (16)

and similarly a covariance Σ̄ik−1 is computed. W.r.t. these
initial values the several models mi predict the degradation
state of the next time step, independently. In the end the re-
sults of the i filters are fused w.r.t. the model probability ξik

x̂k =

M∑

i=1

x̂ikξ
i
k (17)

Σk =

M∑

i=1

[Σik + (x̂k − x̂ik)(x̂k − x̂ik)T ]ξik. (18)

The entire algorithm is sketched in figure 3. In comparison
to the first algorithm, the GPMMM requires a previous state
estimation to identify the model probability ξik that remains
constant during each prediction. According to the likelihood
Lik, which depends on the residuum eik = zik− ẑik of the mea-
sured and estimated state, respectively, the probability that i
is the correct model is calculated as

ξik =
ξik−1L

i
k∑M

j=1 ξ
j
k−1L

j
k

(19)

at the beginning of every prediction.
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Figure 3. Basic schematic of the GPMMM prognostic ap-
proach

One major problem that comes along with the application of
the UKF in combination with the model of equation 10 is
an observable drift of the sigma points, which can also be
identified in several plots concerning the position estimation
in (Ko et al., 2007). Consequently, considering equation 12
the covariance of the respective filters rises and the drift is
intensified. Since this process is repeated in every time step,
the covariance diverges especially in case of early predictions
that results in a possible negative degradation, i.e. bettering,
of the examined element.

To counteract the drift of the sigma points, the weighting fac-
torw[i]

c was reduced so that the prediction uncertainty remains
within an acceptable limit.

2.4. Combining GP and a Particle Filter

The particle filter is established as a flexible mathematical
method to represent and manage uncertainties of a long-term
prediction, see (Orchard & Vachtsevanos, 2009) or (Saha,
Goebel, & Christophersen, 2009). The problems of the afore-

mentioned prognosis approaches in handling the uncertainties
of the prediction motivate to combine the GP with a Particle
Filter (GPPF). Likewise, the GPPF approach includes various
degradation behaviors by means of an arbitrary number of dy-
namic degradation models, each represented by an individual
GP.

In this section only a brief introduction of the operating prin-
ciple of the particle filter is given. The reader is encouraged
to follow (Arulampalam, Maskell, Gordon, & Clapp, 2002)
for more detailed information. Differences to the basic filter
and enhancements due to the supporting of multiple progno-
sis models are highlighted.

The essential idea behind the particle filter is to estimate the
Probability Density Function (PDF) of the UUT’s degrada-
tion by means of a weighted set of particles. With an appro-
priate amount of particles the current and future PDF of the
degradation can be estimated. In the suggested approach an
individual particle n is characterized by its level of degrada-
tion xn,k at time k and a parameter jn, which is independent
of the time and assigns a particle to a ith prognostic model.

Figure 4 illustrates the basic schematic of the implemented
prognostic approach. In the initialization step, the degrada-
tion xn,0 and the parameter jn of each particle is defined.
Given a total amount ofN particles andM trained prognostic
models each model is equally represented by N/M particles.

During the prediction step each particle is transferred from
the state xn,k−1 to the state xn,k using the training data set
D of the assigned prognostic model jn. Given the last degra-
dation of a particle xn,k−1, the mean function GPµ and co-
variance function GPΣ the evolution of each particle can be
written as:

xn,k = xn,k−1 +N (µ,Σ) (20)
µ = GPµ(xn,k−1, D)
Σ = GPΣ(xn,k−1, D).

When more information about the degradation of the UUT ac-
cumulates over time, the measured degradation zk is applied
to update the weight of each particle wn,k and to determine
the model probability ξik. The weight of a particle is updated
by using the normal probability density function and the pre-
vious weight:

wn,k = wn,k−1 ·
1√

2πσ2
· e

(
− (xn,k−zk)2

2σ2

)

, (21)

where σ is a known noise distribution of the measured degra-
dation. After updating all particles the weights are normal-
ized (

∑N
n=1 wn,k = 1). In order to update the model proba-

bilities ξik, the weights of particles assigned to the same model
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Figure 4. Basic schematic of the GPPF prognostic approach

i are summarized and normalized

ξ̂ik = ξik−1 ·
N∑

n=1

a(n)

a(n) =

{
wn,k jn = i
0 jn 6= i

ξik =
ξ̂ik∑M

m=1 ξ̂
m
k

. (22)

One major problem by using a particle filter is that after sev-
eral iterations all but some particle weights are close to zero.
To avoid this situation, the resampling step is executed. A
helpful indicator to test whether a resampling of the particles
is needed or not is the Effective Sample Size (ESS). Regard-
ing (Arulampalam et al., 2002), ESS can be calculated by

ESS =
1

∑N
n=1 w

2
n,k

. (23)

If ESS passes a defined threshold, particles with a low prob-
ability are replaced by particles with a high probability.
Thereby, it is assured that each model i is still represented
by the same amount of particle as before. Consequently, par-
ticles of a prognostic model, which inappropriately describes
the current degradation behavior, profit from a well matching

model. As a result the resampling does not only prevent the
degeneration of particles but also the degradation of models.

In cases of long-term prediction is required, the prediction
step is executed iteratively until all particles pass a predefined
failure threshold of the system. Given the prediction equation
20 and a prognosis model (see figure 1) it is obvious that a
particle passes the threshold at some time. In other words,
the predicted PDF of the degradation will always indicate a
deterioration of the UUT. The problem of a possible negative
degradation described in section 2.3 is prevented by using the
GPPF approach.

Considering the estimated EoLn of each particle the ex-
pected RUL and their uncertainty limits are determined. The
probability of a failure at time k is determined by the proba-
bility of the particles, which passed the threshold at this time,
and the probability of the assigned prognosis models. Figure
5 illustrates an obtained distribution of the EoLn using the
particle filter approach trained with three training data sets.
The estimated and real RUL as well as the upper and lower
predicted limits are marked. Since the obtained distribution
cannot be classified as normal distribution, an investigation
by means of the expected value and the standard deviation is
not appropriate. Instead it is preferred to rely on the median
and the percentiles to specify the RUL and uncertainties.
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Figure 5. Distribution of the predicted EoL and determination
of the estimated RUL including upper and lower limits (GPPF
is trained with three data sets)

3. SIMULATED DATA

For a performance investigation of the presented prognostic
algorithms, a set of training and test data is needed. This sec-
tion introduces the developed mathematical model which is
applied to generate a data pool containing various degrada-
tion courses, each simulating a run-to-failure behavior of an
individual UUT.

6

European Conference of the Prognostics and Health Management Society 2014

332



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

The object of the derived model is to describe an exponen-
tial failure process of a UUT including a stochastic part to
assure an analogy to reality. Moreover, an important require-
ment we set up is to keep the mathematical model as simple
as possible. This should encourage the reader to rebuild the
model and compare the presented results in section 5 with
other prognosis algorithms.

The equation of the mathematical model can be written as
following:

zk = zk−1 +
ln(100)

100
· e(ak−1·k) +N (0, bk−1)

ak = ak−1 +N (0, υa)

bk =
zk−1

bS
. (24)

The course of the degradation zk is subject to several effects.
First, the state a influences the exponential course by vary-
ing each step according to a noise term, defined by a nor-
mal Gaussian distribution with zero mean and variance υa.
Furthermore, the second noise term N (0, bk−1) simulates an
instability of the UUT reasoned by the advanced fault, imple-
mented by the dependency of the variance b on the degrada-
tion.

For the generation of a data pool, the failure threshold is set to
a degradation level of 100, the model was designed to reach
the limit in approximately 100 time steps. The noise values
are defined as υa = 8 · 10−4 and bS = 70, the initial level of
the parameter are y0 = 1, a0 = 5 · 10−2 and b0 = 1 · 10−3.
Figure 6 shows an example of four obtained UUTs.
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Figure 6. Samples of simulated degradation courses gener-
ated by the developed mathematical model

4. EVALUATION CONCEPT

During recent years much effort was put into the definition of
metrics to assess the performance of prognostic methods and
to make them comparable with each other. Since the perfor-
mance of a data-driven prognostic approach depends on the
number of available historical run-to-failure data (Anger et
al., 2012), the evaluation should not only consider the individ-
ual performance metrics but the change of those metrics when
given more training data. It is assumed that not always better
results are achieved, when applying more historical data. In
some cases, a degradation of the metrics is expected, since in-
appropriate training data may irritate a prognosis algorithm.
However, prognostic methods are rarely investigated regard-
ing their ability in handling various training data. The pur-
pose of the following evaluation concept is to analyse the
change of performance metrics according to the number of
training data and to figure out an appropriate way to quantify
this process.

For the evaluation we included four metrics, namely MAPE,
MAD, PH and PP, to cover accuracy as well as precision prop-
erties of the three prognosis methods. A brief description
of the metrics is given in section 4.1. The procedure of the
evaluation is explained in 4.2, whereas a way to quantify the
change of the performance is described in section 4.3.

4.1. Performance Metrics

The applied metrics are based on the suggestions given by
(Saxena et al., 2008) or (Saxena et al., 2009). Some notations
of the metrics domain are given in the following glossary:

P Time of the first prediction
EoL End of Life
i Prediction index i = 1, 2, ..., I
I Total number of predictions
l UUT index l = 1, 2, ..., L
L Total number of UUTs
λ Normed time of the entire range (EoL− P )
rl(i) Estimated RUL of prediction i for the lth UUT
rl∗(i) Real RUL of prediction i for the lth UUT
∆l(i) Error between predicted RUL and true RUL

∆l(i) = rl∗(i)− rl(i)

4.1.1. Mean Average Percentage Error

The Mean Absolute Percentage Error (MAPE) of a prediction
testing the lth UUT is specified by

MAPEl =
1

I

I∑

i=1

∣∣∣∣
100 ·∆l(i)

rl∗(i)

∣∣∣∣ . (25)

The value of MAPE determines the predicted error w.r.t the
real RUL.
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4.1.2. Mean Absolute Deviation

The Mean Absolute Deviation (MAD) describes the spread of
the prediction error and quantifies the precision of a method.
The metric can be written as

MADl =
1

I

I∑

i=1

∣∣∆l(i)−M l
∣∣ , (26)

where M is the median of the errors M l = median(∆l).
Using multiple model prognostic methods a high value of
MAD indicates that the method does not show a clear ten-
dency towards a prognosis model. When a method changes
frequently, the favored model for each prediction the error
consequently spreads.

4.1.3. Prognostic Horizon

The Prognostic Horizon (PH) is determined by the time when
the predicted RUL remains stable within a given constant er-
ror bound. The upper and lower accepted error limit depend
on the accuracy value α, therefore, the metric can be written
as

[1− α] · rl∗ ≤ rl(i) ≤ [1 + α] · rl∗. (27)

Figure 7 illustrates the PH. The predicted RUL approaches
the true RUL over the time and finally stabilizes for λ ≥ 0.6.
The PH is defined by the remaining time until the system fail-
ure occurs. In the following evaluation, the PH is expressed
as normalized time range. It is clearly visible that the higher
the PH the better the performance of a method. Throughout
the evaluation the accuracy value was set to α = 0.1.

4.1.4. Prognostic Precision

Whereas the PH observes the estimated RUL the Prognostic
Precision (PP) considers the uncertainty of the RUL, which is
specified by the lower and upper predicted limit of the RUL.
The metric is specified by the time the limits remain stable
within a constant error bound. Figure 7 shows the determina-
tion of PP, the limits of the prediction converge after λ ≥ 0.7.
Consequently, the metric allows a statement about how the
prognosis method is able to reduce the uncertainty of a fore-
cast as more information accumulates over time.

4.2. Evaluation Procedure

In order to investigate the performance change depending on
the number of training data sets, the evaluation of the three
methods was organized as follows: By means of the model
equations presented in section 3 we generated a data pool of
40 UUTs, which was subdivided in training and test data. The
training data contains 15 degradation courses, whereas the
test data consists of 25 UUTs.
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Figure 7. Illustration of the prognosis horizon and prognosis
precision

As a first step, we trained each prognosis method by the first
training data set and determined the presented metrics for all
25 test data sets by using the estimated RUL and uncertainties
of nine predictions at the time λ = 0.1, 0.2, ..., 0.9. Then we
included the next training data set and tested again all 25 data
sets. This procedure was repeated until all 15 training data
sets were available for the three prognostic methods. The ob-
tained results for a specific metric, e.g. MAPE, can be sum-
marized as shown in diagram 8.
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Figure 8. Course of the MAPE at an increasing number of
training data sets (comparison of two prognostic methods)

The results lead to a distribution of the MAPE metric, since
the performance naturally varies from one tested UUT to an-
other. The figure illustrates the evolution of this distribution
for two prognostic methods. The distribution cannot be con-
sidered as a Gaussian distribution. It is helpful to rely on the
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median and percentiles when discussing the distribution. In
the following analysis the 10th and 90th percentile are used.
Accordingly, the displayed distribution in the figure covers
80 percent of all predictions or in other words it presents the
results of 20 UUTs.

4.3. Enhancement of Metrics

By comparing the courses of the medians in figure 8, method
1 reveals a better performance using less training data sets
but is easily outperformed by the second method. Whereas
method 2 improves the metrics as more historical data is
available, the performance of the first method even deteri-
orates at the beginning and benefits later from the training
data. This deterioration indicates difficulties of method 1 in
handling the trained run-to-failure data and selecting the ap-
propriate model for the prediction. According to the course
of the median, one tends to rely on the second method since
a better performance is reached even with less training data.
Involving the distribution in the decision shows that method 2
has a higher range in which the performance is located. This
means that the second method reached more often worse per-
formance values by the prediction of the RUL. This motivates
to involve the course of the median as well as the distribution
in order to assess the performance of prognostic methods.

For further discussion we enhance the aforementioned nota-
tions by the following:

N Total number of training data sets
n Number of applied data sets for the prediction
MAPE(n)m Median of the distribution (testing L UUTs)
MAPE(n)d Difference between the upper and lower

percentile of the distribution (testing L UUTs)
MAPEm,N Rating of MAPE(n)m n = 1, 2, ..., N
MAPEd,N Rating of MAPE(n)d n = 1, 2, ..., N

This is done by the example of the performance met-
rics MAPE. Of course, this notation can be transferred to
other metrics. Instead of taking the MAPE metrics to as-
sess the performance, we examine the obtained values for
MAPEm,N and MAPEd,N . Thereby, the change of MAPE
over the number of training data is taken into account. More-
over, the range within the performance value varies over the
number UUTs is considered. In the following, we introduce a
straight-forward method to quantify both values. Again, this
approach is assignable to other metrics.

In a first attempt to determine the values appropriately, the
mean values of MAPE(n)m and MAPE(n)d are consid-
ered. In this way, all reached performance values are indepen-
dently of the number of used training data. Thus, deteriora-
tion or improvements of the observed metric are not covered
by this method. To include the course of the metric, we sug-
gest to calculate the values by means of the weighted mean

value w.r.t the number of training data sets. The equations
can be written as:

MAPEm,N =

∑N
i=1(i ·MAPE(i)m)

∑N
i=1 i

(28)

MAPEd,N =

∑N
i=1(i ·MAPE(i)d)∑N

i=1 i
. (29)

Weighting the performance by the number of training data
has several effects: First, the performance using less data has
a lower influence on the final result. Since the performance
at the beginning strongly depends on the order of trained data
sets this is a desired consequence. A change in the training
order would have a high impact on the determined values.
Additionally, with an increasing number of used training data
sets a prognosis method should exhibit an improvement or
at least a stable behavior of the performance. Therefore, the
weighted mean downgrades occurred deterioration in case of
more historical data.

Figure 9 illustrates the difference of the results for PHm,N

obtained by the mean value and weighted mean value. In the
diagram the course of the median PH(n)m of two progno-
sis methods is displayed. Whereas the PHm,15 value deter-
mined by the mean assesses both methods almost similarly,
the weighted mean leads to a better distinctness, as the sec-
ond method shows no stable improvement of the prognosis
horizon.
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Figure 9. Course of the PH at an increasing number of train-
ing data sets (comparison of two prognostic methods)
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5. RESULTS AND DISCUSSION

Table 1 summarizes the obtained results of the three prog-
nostic approaches. The performance values are determined
by the weighted mean according to the introduced evaluation
concept. As we expected, the results show similar values in
most categories which is explained by the fact that the three
prognostic methods are based on the same regression mod-
elling tool and training data sets. However, since the prog-
nostic approaches manage the trained prognosis models in a
different way, it is worth investigating the evolution of the
performance according to the available training data sets.

Performance GPUKF GPMMM GPPF

MAPEm,15 12.07 13.12 11.80
MADm,15 1.91 3.41 2.34
PHm,15 0.88 0.62 0.89
PPm,15 0.34 0.66 0.45

MAPEd,15 31.60 28.62 27.68
MADd,15 10.21 12.94 11.16
PHd,15 0.71 0.71 0.68
PPd,15 0.80 0.73 0.64

Table 1. Enhanced performance metrics of the three progno-
sis algorithms

Figure 10 shows the improvement of the MAPE(n)m value
over the training data. All prognostic algorithms strongly
benefit from the first training data sets and settle down at a
similar mean absolute error. It is interesting to note that in-
stead of remaining stable on the achieved performance level,
the three methods behave differently with a rising knowledge
about the system. Whereas the GPPF is able to further im-
prove the metric, the performance of the GPMMM approach
deteriorates. Regarding table 1, this leads to a reduction of
MAPEm,15 value. The GPMMM also reveals a weakness
w.r.t the MAD metric displayed in figure 11. In contrast
to the other approaches, the GPMMM exhibits less preci-
sion with a raising number of historical data. Given that the
MAD value can be considered as an indicator of a prognos-
tic method’s tendency towards models, the GPMMM seems
to struggle with the selection of a correct prognostic model.
Consequently, the MAPE and MAD value of the GPMMM
increase. Furthermore, this impact is also observable by look-
ing at the dissatisfactory PH value. One explanation is the
applied transition matrix H that - in the case at hand - per-
mits a fast transition from model i to another model j so that
GPMMM alternates between several models. The increased
system knowledge has less influence on the GPUKF, which is
reasoned by the manner the training data is stored. Including
an additional training data set does not essentially change the
basic orientation of the one applied prognosis model.
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Figure 10. Course of the MAPE at an increasing number of
training data sets
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Figure 11. Course of the MAD at an increasing number of
training data sets

It is evident that the GPMMM reveals the best PP value,
which indicates that the predicted lower and upper RUL limit
enter the defined error bound earlier. This is reasoned by the
fact that the variance of the forecast is limited artificially (see
section 2.3). Thus, the predicted lower and upper limit of the
RUL are close. Hence, we learned that the used evaluation
concept lacks of a metric which specifies the quality of the
predicted error bound. In the current concept, keeping the
variance as low as possible will always end in a good perfor-
mance. A metric which assesses the meaningfulness of the
variance is not implemented.

Another aspect of the evaluation is the investigation of the
distribution values in Table 1. As described in section 4.3
the values indicate the range within the corresponding metric
over the 25 tested UUTs is spreaded. GPPF reaches better
results than the other approaches in three of the four criteria.
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Nevertheless, there is no noticeable difference to the other
methods and all values show that a considerable part of the
tested UUTs is predicted with a deviating performance than
indicated by the weighted means of the median’s course. In
other words, whereas the PHm,15 values point to a high accu-
racy of the methods, the PHd,15 values reveal that this perfor-
mance is not always achieved. Especially considering safety
relevant systems, this issue should not be neglected.

6. CONCLUSION AND OUTLOOK

In this paper we have presented three data-driven prognosis
algorithms. Each algorithm is based on the Gaussian Process
to generate prognosis models by means of training data sets.
Nevertheless, the way they rate and select suitable models for
the estimation of the RUL differs.

One purpose of this paper was to suggest a method to include
the training process of a prognosis algorithm in the evalua-
tion process. A simple way is presented to assess the trend
of performance metrics at an increasing number of provided
training data sets. Moreover, the presented evaluation con-
cept considers the fact that a prognosis method does not con-
stantly reach the same accuracy and precision by testing sev-
eral UUTs.

Another purpose was to investigate the training process of
three data-driven prognosis methods. The results show that
the prognosis methods do not automatically benefit from
more knowledge about the degradation processes of a system.
A particularly motivation was, whether a single GP approach
or a Multiple Model Method is preferable when training an
arbitrary number of training data sets. The obtained results
indicate that GPUKF reaches slightly better performance, es-
pecially since the applied GPMMM approach reveals a weak-
ness by managing a high number of prognosis models. In
contrast, the single GP approach converges towards a constant
performance. Combining the Gaussian Process with a Parti-
cle Filter shows the best results and provides a more straight
forward possibility to handle the model uncertainties in com-
parison to the UKF. Of course, the conclusion are strongly
depending on the chosen data pool and evaluation concept.

As a result effort is going to put to an enhancement of the
mathematical degradation model and thus to generate various
data pools to obtain a more comprehensive fundament for the
evaluation. We plan to enhance the presented model by an
additional load input and to replace the fixed failure thresh-
old by a hazard model, which simulates varying failure limits
of UUTs. Furthermore, in order to increase the informative
value of the results, other regression modelling concepts like
Relevance Vector Machines etc. will be examined under same
conditions.

We do not claim the presented evaluation concept near com-
plete, since there is still enough room for improvement. Fo-

cus of future work is to include more performance metrics.
Especially, a metric to determine the quality of the predicted
uncertainty is required. An emerged drawback is that the as-
sessment of a prognosis method suffers from the increased
number of available performance indicators, since one met-
ric value is replaced by two. A further bottleneck of the de-
scribed evaluation concept is that a comprehensive data pool
is necessary. Using simulated data this should be no problem.
However, generating such a data pool by means of real data
is a long and costly work.

ABBREVIATIONS

CBM Condition Based Maintenance
ESS Effective Sample Size
GP Gaussian Process
IMM Interacting Multiple Model
MAD Mean Absolute Deviation
MAPE Mean Average Percentage Error
MMM Multiple Model Method
PDF Probability Density Function
PF Particle Filter
PH Prognosis Horizon
PP Prognosis Precision
RUL Remaining Useful Lifetime
UKF Unscented Kalman Filter
UUT Unit Under Test
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ABSTRACT 

Neural network (NN) is a representative data-driven method, 

which is one of prognostics approaches that is to predict 

future damage/degradation and the remaining useful life of 

in-service systems based on the damage data measured at 

previous usage conditions. Even though NN has a wide 

range of applications, there are a relatively small number of 

literature on prognostics compared to the usage in other 

fields such as diagnostics and pattern recognition. 

Especially, it is difficult to find studies on statistical aspects 

of NN for the purpose of prognostics. Therefore, this paper 

presents the aspects of statistical characteristics of NN that 

are presumable in practical usages, which arise from 

measurement data, weight parameters related to the neural 

network model, and loading conditions. The Bayesian 

framework and Johnson distribution are employed to handle 

uncertainties, and crack growth problem is addressed as an 

example. 

1. INTRODUCTION  

Prognostics illustrated in Figure 1 is to predict future 

damage/degradation and the remaining useful life (RUL) of 

in-service systems based on the damage data obtained at 

previous usage conditions, which facilitate condition-based 

maintenance known as cost effective maintenance strategy 

in company with diagnostics. Once a damage model (black 

solid curve) is determined based on damage data at previous 

times under a given usage condition (black dots) or under 

the various usage conditions (grey dots), RUL which is 

remaining time/cycles before required maintenance can be 

predicted by progressing the damage state until it reaches 

the threshold. In general, prognostics methods can be 

categorized into data-driven (Schwabacher, 2005), physics-

based (Luo, Pattipati, Qiao & Chigusa, 2008), and hybrid 

(Yan & Lee, 2007) approaches, based on the usage of 

information. Data-driven approaches use information from 

collected data to identify the characteristics of damage state 

without using any specific physical model; physics-based 

ones combine the physical model describing the behavior of 

damage with measured data; and hybrid ones integrate the 

other two methods to improve the prediction performance. 

Since the physical model describing the behavior of damage 

rarely exists, data-driven approaches have a wide range of 

applications. It includes NN (Chakraborty, Mehrotra, 

Mohan & Ranka, 1992; Yao, 1999), Gaussian process 

regression (Seeger, 2004; Mohanty, Teale, Chattopadhyay, 

Peralta & Willhauck, 2007), relevance vector machine 

(Tipping, 2001), least square regression (Tran & Yang, 

2009), etc. Among these algorithms, NN is a representative 

data-driven method, in which a network model learns a way 

to produce a desired output such as future damage level 

reacting to given inputs such as previous damage level and 

usage conditions instead of physical model. The learning 

process is the same as finding weight parameters associated 

with the network model by minimizing the mean square 

error between measurement data and network outputs, 

which is called training process, and the data used for 

training expressed as dotted markers in Figure 1 is called 

 
Figure 1. Illustration of prognostics. 
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training data. 

In general, weight parameters are obtained as deterministic 

values by using an optimization process, and prediction 

uncertainties are added with confidence bounds based on 

nonlinear regression and/or the error between NN outputs 

and training data (Chryssoloiuris, Lee & Ramsey, 1996; 

Veaux, Schumi, Schweinsberg & Ungar, 1998; Yang, Kavli, 

Carlin, Clausen & Groot, 2000; Leonard, Kramer & Ungar, 

1992). It, however, is difficult to find global optimum of 

parameters due to measurement noise, a small number of 

data compared to the number of parameters, and the 

complexity of damage growth, which can yield a significant 

error in prediction results. On the other hand, Bayesian NN 

(BNN) (Freitas, 2003; Neal, 1995) has been proposed to 

resolve local optimum problem, which provides distribution 

of prediction results caused by measurement error and 

uncertainty in parameters that are identified as distributions 

based on Bayes’ theorem instead of deterministic values 

given by an optimization process. There are no literatures 

that employ BNN for the purpose of prognostics, though. 

Liu, Saxena, Goebel, Saha, and Wang (2010) repeated NN 

process 50 times to predict battery’s RUL, which is similar 

to BNN in a sense of employing randomness of weight 

parameters. 

In addition to general statistical aspects mentioned in the 

previous paragraph, additional issues that are presumable in 

practical usages are also addressed. Data used for input 

variables have mostly been considered as deterministic 

values, but they can be distributed. In such a case, there are 

no clear damage indicators, many numbers of damage data 

are given at the same usage conditions from the same 

system, and usage conditions such as loading conditions can 

also have uncertainties and need to be considered as 

distributions. This case as well as general statistical aspects 

will be considered with a crack growth example. 

The paper is organized as follows: in Section 2, the process 

of NN is explained for the purpose of prognostics with a 

crack growth example; and in Section 3, statistical aspects 

are considered based on the understanding of NN, followed 

by discussions and conclusions in Section 4. 

2. NEURAL NETWORK  

2.1. Typical Network Model 

A typical architecture of NN is feed-forward neural network 

(FFNN) (Svozil, Kvasnička & Pospíchal, 1997), which is 

illustrated in Figure 2. In the figure, circles represent nodes 

(also called neuron or unit), and each set of nodes in the 

same column is called a layer. The nodes in the input and 

output layer, respectively, represent input variables and 

response variable. Since the given information for data-

driven approaches are only measurement data, previous 

damage data and the current damage data are, respectively, 

usually employed for input and output variables. And then, 

the number of nodes in the hidden layer can be adjusted to 

properly express the mechanism between input and output 

by receiving signals from input layers and forwarding them 

to the output layer. Even though the network model that 

includes selecting the number of hidden nodes, hidden 

layers and input nodes has an effect on the prediction results, 

it is not considered here because the network problem is a 

different issue from statistical ones as well as trial-and-error 

methods are often used to determine a suitable network 

model. 

Once the network model is determined, the model is 

functionalized using transfer functions and weight 

parameters. Transfer functions characterize the relationship 

between each layer, and several types of transfer function 

are available such as sigmoid, inverse, and linear function 

(Duch & Jankowski, 1999). Usually, the tangent sigmoid 

and pure linear functions are employed as a common way. 

Weight parameters include weights for the interconnected 

nodes and biases that are added to inputs of transfer 

functions (Liu et al., 2010; Firth, Lahav & Somerville, 

2003), which are shown as rectangles and ellipses in Figure 

2, respectively. The process of finding the weight 

parameters is called training or learning, and to accomplish 

that, usually many sets of training data are required. 

In general, FFNN is often called a back-propagation neural 

network (BPNN) because weight parameters are obtained 

through the learning/optimization algorithm (Rumelhart, 

Hinton & Williams, 1986) that adjusts weight parameters 

through backward propagation of errors between actual 

output (training data) and the one from the network model 

based on gradient descent optimization methods. In other 

words, FFNN and BPNN are, respectively, to calculate the 

response forward and to update weight parameters based on 

the response backward. Once the network model learns 

enough the relationship between inputs and output, it can be 

used for the purpose of prognosis. In the following, the 

process of NN-based prognostics becomes specified with 

crack growth example. 

2.2. The Process of NN with a Crack Growth Example  

Figure 3 shows an example of NN-based prognostics for a 

 
Figure 2. Illustration of typical network model: FFNN. 
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crack growth problem. The star markers are assumed as 

crack growth data measured at every 100 cycles in a 

fuselage panel under repeated pressurization loadings, 

which are generated based on Paris model (Paris & Erdogan, 

1963) with true damage growth parameters 
true 3.8m  , 

10

true 1.5 10C   , the initial half crack size 
0 10 mma  , 

load magnitude  =80 MPa, and random noise that is 

uniformly distributed between 1.0 mm and 1.0 mm. 

Note that the true values of parameters are used only for the 

purpose of generating measurement data in this paper. 

The network model is constructed based on aforementioned 

FFNN with two input nodes, one hidden layer with one 

node; and thus, the number of total weight parameters 

become 5 including three weights ( 2 1 1 1   ) and two 

biases (1+1). For input variables, damage data (
2 1,k kx x 

) at 

the previous two 100 cycles are used, and the current 

damage data (
kx ) becomes the output, k  is the current time 

index. If 16k   (the current cycle is 1500 cycles), 14 sets of 

input and output data are available, which are the training 

data used to obtain weight parameters via optimization 

process. Then future damages ( 1 2 3, , ,...p p p

k k kx x x   , superscript 

p represents predicted value in opposition to measured one) 

are predicted based on the obtained weight parameters and 

the previous damage data, i.e., input variables. According to 

the previous damage data used as inputs, prediction methods 

can be divided into short term prediction and long term 

prediction. Short term prediction is one-step ahead 

prediction since it uses only measured data for input, e.g., 

1 2,k kx x   are inputs to predict 3

p

kx  . On the other hand, 

long term prediction is multi-step ahead prediction since it 

utilizes predicted results as inputs, e.g., 1 2,p p

k kx x   are inputs 

to predict 3

p

kx  .  

Future damage prediction results are shown in Figure 3. In 

the figure, thick dotted curve and thick dashed curve are, 

respectively, the median of short term prediction and long 

term prediction obtained by repeating NN 30 times, and 

their thin curves mean 90% confidence intervals. The wide 

range of long term prediction interval means that the results 

become significantly different whenever the NN process is 

performed due to the local optimum problem, even though 

the training simulation results shown as circles are close to 

the training data shown as gray star makers. Nevertheless, 

NN can be used for the purpose of prognostics by 

employing proper statistical methods. Although repeating 

the process to obtain statistical distribution can be a way, a 

more logical method is introduced in the next section. 

3. STATISTICAL ASPECTS IN NN 

In the following subsections, different statistical aspects that 

are presumable in practical usages are considered according 

to given information. 

3.1. Prediction Uncertainty 

The first case is a common condition caused by noise in 

measurement data and parameter identification, and it is to 

identify the weight parameters as distribution based on 

Bayesian framework. Bayesian inference is a statistical 

method in which observations are used to estimate and 

update unknown parameters such as weight parameters in 

the form of a probability density function (PDF). Bayesian 

inference is based on the following Bayes’ theorem (Bayes, 

1763):  

     | |p L pz z                            (1) 

where   is a vector of unknown parameters, z  a vector of 

observed data,  |L z   the likelihood,  p   the prior PDF 

of  , and  |p z  the posterior PDF of   

z . The likelihood is the PDF value of z  conditional on 

given  , and the prior information can be given, assumed, 

or not considered. The reliability of posterior PDF increases 

as more data are used, which gives more accurate and 

precise prediction results of damage and RUL. 

Figure 4 shows the comparison between repeating NN 

(RNN) and BNN. Figure 4 (a) and (b) are the same 

condition as the previous example in Section II.B but with a 

larger level of noise,  5 mm. Figure 4 (c) and (d) are also 

crack growth problem, but they are based on Huang’s model 

(Huang, Torgeir & Cui, 2008) that express crack growth 

under variable amplitude loading condition, which is 

employed to show the case of complex damage model. In 

both cases, large noise and complex model, BNN 

outperforms RNN in terms of accuracy and precision of 

future damage prediction. The two cases means severe 

prediction conditions, but such conditions are more likely to 

be in real damage data. If the damage data have small level 

of noise and the damage growth increase monotonically, it 

will be more efficient to use RNN as Liu et al. (2010) did. 

There are two reasons why: (1) the results obtained by 

 
Figure 3. Example of NN-based prognostics with crack 

growth example. 
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repeating NN more than 30 times do not much change with 

other attempts, which gives more reliable results compared 

to use NN just one time with confidence bounds, and (2) 

since it grows hard to identify the distribution of weigh 

parameters as the number of parameters depending on 

network model increases, BNN is interrupted to construct 

network model flexibly. 

3.2. Input Variable Uncertainty 

Input variables of NN are composed of damage data and 

usage conditions that are considered as deterministic values, 

and never considered as distributions. However, input 

variables can be distributed in such cases: many number of 

damage data are given at the same usage conditions from 

the same system, usage conditions such as loading 

conditions are uncertain, and there are no clear damage 

indicators. Johnson distribution (Johnson, 1949) having four 

parameters, four quantiles corresponding to probabilities 

0.0668, 0.3085, 0.6915 and 0.9332, is employed to predict 

future damage distribution. Figure 5 shows examples of 

Johnson distribution in cases of normal and beta distribution. 

The black solid curves are exact PDF from each distribution, 

and the bars are the results from Johnson distribution using 

four quantiles represented as red star markers. Johnson 

distribution can express any other distribution types when 

the four quantiles are correctly given. 

The same crack growth example as the previous one is again 

employed to demonstrate the case of random input variable. 

Distributed synthetic data are generated from the load 

magnitude   =78 MPa, the perturbation of Paris model 

parameter m  and small noise level: 

   ~ 3.8 0.027, 3.8 0.027 , ~ 1, 1  mmm U noise U    , 

whose result is shown in Figure 6. Each cycle has 5000 

samples as the measurement data, whose distribution at 0, 

 
a) RNN with large noise 

 
b) BNN with large noise 

 
c) RNN with complex model 

 
d) BNN with complex model 

Figure 4. Comparison example of NN-based 

prognostics with crack growth example. 

 
a) standard normal distribution 

 
b) beta distribution with α=2, β=5 

Figure 5. Example of Johnson distribution. 
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800, 1500, and 2200 cycles are shown in Figure 6 (b) with 

their true damage size shown as black squares. It is shown 

that the shape of distributions is changed as cycle increases. 

Four quantiles whose example at 2500 cycles is shown as 

red star markers in Figure 6 (a) are used for input variables. 

Since there were two input variables and one output variable 

in the previous study, total number of input and output 

variables becomes eight and four, respectively. 

Figure 7 shows damage prediction results at 1500 cycles. In 

Figure 7 (a), the median of future damage growth is very 

close to the true one, and 90% confidence interval also 

covers damage distribution at every cycle. Figure 7 (b) and 

(c) show comparison of damage distribution between 

predicted one and measured one at 1600 and 2400 cycles, 

and their errors at four quantiles are listed in Table 1. The 

maximum magnitude of error is 5.75% at 2400 cycles that is 

900 cycles ahead prediction from 1500 cycles. These results 

show that NN using Johnson distribution is applicable for 

prediction of damage distribution. 

Lastly, Figure 8 shows real measurement data from the 

bearing provided by the Center for Intelligent Maintenance 

Systems (Lee, Qiu, Yu, Lin & Rexnord Technical Services, 

2007). Vibration signal is monitored using accelerometer 

during one second with 20 kHz sampling rate at specific 

intervals. The distributions in Figure 8 (a) and Figure 8 (b) 

are, respectively, observed from a bearing without failure 

and a bearing with failure. While the distribution of the case 

without failure does not changes much, the distribution with 

failure gets wider and its mode shift to the value greater than 

zero as cycles increase. Even though it has not been fully 

explored to consider the change of distribution as the 

damage indicator (there are no clear criteria of damage 

threshold yet), the results in this section show that this 

 
a) measured data at every 100 cycles 

 
b) distribution of measured data 

Figure 6. Distributed synthetic data. 

Table 1 Errors between prediction results and measurement 

at 1500 cycles. 
Cycles 1600 1800 2000 2200 2400 

6.7

% 

measurement 0.0186  0.0210  0.0239  0.0276  0.0327  

prediction 0.0186  0.0210  0.0240  0.0279  0.0332  

error (%) 0.03  0.02  0.58  0.95  1.82  

30.9

% 

measurement 0.0196  0.0221  0.0253  0.0296  0.0354  

prediction 0.0197  0.0225  0.0261  0.0308  0.0374  

error (%) 0.63 1.54  2.89  4.18  5.75  

69.1

% 

measurement 0.0207  0.0237  0.0278  0.0333  0.0413  

prediction 0.0207  0.0237  0.0276  0.0329  0.0402  

error (%) 0.10  0.01  0.59  1.35 2.66 

93.3

% 

measurement 0.0218  0.0251  0.0296  0.0363  0.0463  

prediction 0.0218  0.0253  0.0299  0.0363  0.0453  

error (%) 0.32 0.82 0.78  0.09  2.20  

 
a) damage growth prediction 

 
b) damage distribution at 1600 cycles 

 
c) damage distribution at 2400 cycles 

Figure 7. Damage prediction results. 
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method has a possibility to be employed for prognosis when 

there are no clear damage indicators like this bearing 

problem. 

4. CONCLUSION 

The goal of this paper is to address the aspects of statistical 

aspects in NN that are presumable in practical usages. As 

the first case, RNN and BNN are compared in terms of 

prediction uncertainty that is general statistical aspect 

related with noise in measurement data and weight 

parameters in NN model. BNN outperforms RNN under 

severe prediction conditions such as large level of noise in 

data and complex damage growth. In another case, random 

input variables are handled by employing Johnson 

distribution to NN. Future damage distribution are well 

predicted, and the results show that the method considering 

the change of distribution has a possibility to be employed 

for prognosis when there are no clear damage indicators. 
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ABSTRACT

The primary role of a machine tool is produce the good qual-
ity parts, but a machine tool goes always through a process of
degradation and wear which will affect the accuracy and pre-
cision of machining and the quality of products. Therefore,
monitoring the degradation of machine tool and quantifying
its health is very important. The degradation level of a ma-
chine can be qualified by an index which is called health in-
dicator (HI). Based on the HI, fault prognosis can provide the
Remaining Useful Life (RUL) of machine which is useful for
an effective maintenance policy, thus, that helps to increase
efficiency of operations and manufacturing. However, the HI
is not usually predetermined in most Discrete Manufacturing
Processes (DMP). This paper presents a new method of HI
extraction based on the degradation reconstruction. The HI is
then modeled with a stochastic process. For the online super-
vision, the RUL is estimated for each inspection time.

1. INTRODUCTION

Fault prognosis of industrial systems is one of central issues
of Condition Based Maintenance (CBM). It is important to
minimize the downtime of machinery and production, and
thus to increase efficiency of operations and manufacturing.
Till now, the production units in most DMP use a strategy
of Preventive and Corrective Maintenance which is less effi-
cient than the CBM, and few studies are conducted on this
subject. There is not yet an efficient method which is capable
to extract the underlying state of DMP tools because of their
complex processes, which are highly non-linear, time varying
and usually exhibit batch-to-batch variation disturbances.

In semiconductor manufacturing, a survey of data-driven prog-

Thi-Bich-Lien Nguyen et al. This is an open-access article distributed un-
der the terms of the Creative Commons Attribution 3.0 United States Li-
cense, which permits unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are credited.

nosis of (Thieullen, Ouladsine, & Pinaton, 2012) shows that,
most of the HI are calculated as the values of the indexes
such as Squared Prediction Error (SPE), Hotellings T2, Ma-
halanobis distance, etc. In this paper, the health index is not
built from these indexes but from the trend of critical points
of sensors. Based on the same principles of reconstruction-
based fault identification (Yue & Qin, 2001), (Gang, Qin,
Ji, & Zhou, 2010), a method of degradation detection and
identification is proposed. The EWMA Hybrid-wise Multi-
way PCA (E-HMPCA) (Zhang, 2008) which is an extension
of Principal Component Analysis (PCA) is used to perform
degradation detection and diagnosis for the batch process ma-
chine. This is because E-HMPCA combines the advantages
of both batch-wise and variable-wise unfolding approaches.
Moreover, the EWMA algorithm considers the time depen-
dencies. The index SPE is calculated and is compared to its
upper control limit (UCL) to detect the degradation. The sig-
nificant sensors which carry the degradation information of
machine are localized and their critical points are identified
based on an optimization algorithm. The HI is then extracted
for the failure prognosis.

This paper proposes a new fault prognosis method for DMP
tools, as illustrated in the schema of Figure 1. The on-line
supervision is supported by the off-line analysis. A degrada-
tion reconstruction is executed to determine the set of criti-
cal points of processes which are considered representing the
tool’s underlying state. Then an indicator of degradation is
extracted from the evolution of these points and is modelled
with an adequate stochastic process to predict the Remain-
ing Useful Life (RUL). In on-line supervision, the value of
RUL is updated for each inspection time. A real case appli-
cation using data collected in STMicroelectronics Rousset is
presented to illustrate the efficiency of the proposed method.

The remaining of this paper is organised as follows. Sec-

1
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Figure 1. Schema of fault prognosis

tion 2 presents the off-line analysis where 2.1 provides the
formulation of health index contribution, 2.2 describes the
degradation modelling based on an adequate process. The
online supervision procedure is proposed in section 3. Sec-
tion 4 presents a real case application using data collected in
STMicroelectronics. Section 5 gives the conclusion.

2. OFF-LINE ANALYSIS

2.1. Heath indicator extraction

2.1.1. Identification of degraded sensors

From the measurement of machine during processing a set of
products, a data matrix X of three dimensional matrix I ×
J ×K is obtained, respectively I is number of products, J is
the number of sensors and K is the number of observations
(sampling time).

Suppose that the first n products (n < I) are considered re-
specting the good quality norm. These n products are thus
used to build the degradation detection index.

The data of these n products is unfolded according to batch-
wise, it is then mean-centered and rearranged in a variable-
wise structure, it becomes a ((n × K) × J) matrix. This
hybrid-wise unfolding combines the advantages of both batch-
wise and variable-wise unfolding approaches. Then the algo-
rithm EWMA is employed for considering time dependen-
cies.

After the unfolding step, X ((n×K)× J) is decomposed by
PCA:

X = TPT (1)

where T and P are score and loading matrices. npc is the
number of the more significant principal components which
are sufficient to explain the variability of data. The matrices
of npc first columns of T and P are signed respectively T̂
and P̂ . C̃ is the projection matrix onto the residual subspace:

C̃ = (I− P̂ P̂T ) (2)

Call ek (J × n) and Xk (n × J) are respectively the projec-
tion on the residual subspace and the data matrix of the kth

observation of all the batches. The relation between them is
given as:

ek = C̃XT
k (3)

Signing:

XE,k = λ

k∑

j=1

(1− λ)k−jXj (4)

EWMA is used to filter the covariance matrix SE,k and the
residual subspaces projection eE,k as:

eE,k = λek + (1− λ)eE,k−1 = λ

k∑

j=1

(1− λ)k−jej

= λ

k∑

j=1

(1− λ)k−jC̃XT
j

= C̃ ×
(
λ

k∑

j=1

(1− λ)k−jXT
j

)
= C̃XT

E,k (5)

The coefficient λ (0 ≤ λ ≤ 1) represents the degree of
weighting decrease that determines the weight of older data
in the calculation.

Degradation detection indices Call Xnew,k (1× J) is the
kth observation of a new batch Xnew (K × J). Xnew,E,k is
calculated in the similar way:

Xnew,E,k = λ

k∑

j=1

(1− λ)k−jXnew,j (6)

and

enew,k = C̃XT
new,k (7)

enew,E,k = λenew,k + (1− λ)enew,E,k−1

= C̃XT
new,E,k (8)

In E-HMPCA, fault detection is ensured by classical PCA de-
tection index as Squared Prediction Error (SPE) for each ob-
servation k:

SPEE,new,k = eTnew,E,kenew,E,k (9)

The process is considered reliable if SPE is under their upper
control limit (UCL):

UCLSPEE,k =
vE,k
mE,k

χ2
2m2

E,k/vE,k
(10)
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wheremE,k and vE,k are the mean and variance of the SPEE,k
at the observation k of training data.

Degradation estimation via reconstruction The degrada-
tion reconstruction estimates the normal values X∗ by elimi-
nating the effect of a degradation direction Fr on the SPE. A
reconstruction Xr,k from Xk (k is the index of observation)
can be calculated as follows:

Xr,k = Xk − ΞrF̂r,k (11)

where F̂r,k is the estimated degradation magnitude along degra-
dation direction matrix Ξr such that Xr,k is closest to the
normal region. From (Mnassri, El Adel, & Ouladsine, 2013),
the F̂r,k and the projection of the reconstructed sample onto
SPE-subspace is given:

F̂r,k =
(

ΞTr C̃Ξr

)−1
ΞTr C̃X

T
k (12)

C̃
1
2XT

r,k =
(
I− C̃ 1

2 Ξr
(
ΞTr C̃Ξr

)−1
ΞTr C̃

1
2

)
C̃

1
2XT

k (13)

Singular value decomposition of C̃
1
2 Ξr:

C̃
1
2 Ξr = Ξ0

rDrV
T
r (14)

Call er,k is the ek after reconstruction.

er,k = C̃XT
r,k

= (I − Ξ0
rΞ

0
r
T

)C̃XT
k (15)

After the EWMA filter, the residual subspaces become:

er,E,k = λ
∑k
j=1(1− λ)k−jer,k

= λ
∑k
j=1(1− λ)k−j(I − Ξ0

rΞ
0
r
T

)C̃XT
k

= (I − Ξ0
rΞ

0
r
T

)C̃XT
E,k

= (I − Ξ0
rΞ

0
r
T

)eE,k (16)

The index SPE after reconstruction of a new batch Xnew at
observation k is:

SPEr,E,new,k = eTr,E,new,ker,E,new,k (17)

The degradation direction matrix Ξr is considered the true
degradation variables if the SPE is below their new UCL,
which are given as follows:

UCLSPEr,E,k
=

vr,E,k
mr,E,k

χ2
2m2

r,E,k/vr,E,k
(18)

where mr,E,k and vr,E,k are the mean and variance of the
SPEr,E,k at the observation k of training data. Notice that

the subscript r designates one set among the assumed de-
graded variable sets. The total number of possible sets of
J sensors is:

C1
J + C2

J + ...+ CJ−1J = 2J − 2

is really large when J ≥ 8. To reduce the number of can-
didate variable sets, an analysis of the SPE-contribution may
help. An illustration of this is provided in section 4.

2.1.2. Health indicator extraction

After subsection 2.1.1, the degraded sensors set {J s} = {j1, ..., jS}
is determined where S is the number of sensors. The critical
points are then identified via an algorithm with the idea: the
critical point of a degraded sensor js is the observation inter-
val kj at which the variance is the maximum:

kjs = arg max
k
{V ar(X̃js

i,k), i = n+ 1→ I} (19)

where X̃js
k =

Xjs
i,k−m

js
k

σjs
k

, Xjs
i,k is the measurement of product

i at observation k of sensor js; mjs
k = mean(Xjs

i=1→n,k),
σjsk = standard deviation (Xjs

i=1→n,k). With this algo-
rithm, the point (js, kjs) is considered representing the degra-
dation dynamics of the process. It is because a machine which
carries the degradation process, this process will come out
in some way of the evolution of the degraded sensors. The
variance of the measurement Xj

i,k from the beginning of de-
graded batch n+1 (because the first n batches are considered
as good quality) to the last batches I is the most logical way
which presents this degradation process.

The measure value of them is Xjs
i,kjs

with i ∈ 1, ..., I . They
are then arranged in a new matrix Xc:

Xc =




Xj1
n+1,kj1

Xj2
n+1,kj2

. . . XjS
n+1,kjS

Xj1
n+2,kj1

Xj2
n+2,kj2

. . . XjS
n+2,kjS

...
...

. . .
...

Xj1
I,kj1

Xj2
I,kj2

. . . XjS
I,kjS




(20)

Xc is then mean-centered and unit-deviation scaled and is de-
composed by PCA:

Xc = TcP
T
c (21)

Each point of {j1, ..., jS} set has a progressively increasing
or decreasing evolution, but the increasing is just an inverse
trend of decreasing and vice versa. Therefore, the trend of all
these points can be presented in a vector, that is the first PC
of Xc, assigned I0:

I0 = XcPc1 (22)

3
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where Pc1 is the first eigenvector of Pc.

2.2. Analysis of health indicator dynamics

Applying the health index extraction presented in the previ-
ous section, a common form of the indicator is provided in
Fig. 2, called I0 (applied on a real data provided by STMi-
croelectronics). It is highly noisy with a large variance over
time. We might think that I0 can be modelled with the Wiener
process, which considers the HI as:

I0(t) = x0 + µt+ σB(t) (23)

where x0, µ, σ are constant, B(t) is the Brownian movement.
(23) can be rewritten as followings:

I0(t+ 1) = I0(t) + µ
(
(t+ 1)− t

)
+ σB(1)

⇔ I0(t+ 1)− I0(t) = µ+ σB(1) (24)

thus, the variance of ∆t = I0(t+ 1)− I0(t) does not depend
on t. Figure 3 shows ∆t of I0, which demonstrates that ∆t is
dependent on t. Therefore, the Wiener process is not adequate
to modelling this raw HI.

Figure 2. Raw health index I0

Figure 3. Variation of I0 between (t+ 1) and t

Therefore, it is necessary to choose an another method for HI
modelling.

2.2.1. Filtering:

A real health indicator is always monotonic over time because
we assume that the degradation is not reversible. However,

Figure 4. Health indicator I1

under the influence of perturbations of machine, of environ-
ment and significant disturbances of quality of input products,
I0 is not monotonic. First, a low-pass filter (e.g: an average
filter with a window size of 10) is used to eliminate high fre-
quency noises, the result is called I1 and given in the Fig. 4.

Then, if I1 increases progressively, the higher values reflect
the degradation better than their lower neighbour values and
inversely if I1 decreases progressively. Therefore, an algo-
rithm is proposed to eliminate disturbances and to monotonize
the indicator: I1 is analysed to structure a top curve It which
is then considered as health indicator if I1 increases or a
bottom-curve Ib if I1 decreases. This algorithm is presented
for an increasing index as follows (for a decreasing indicator
it is the same but replacing ”maximum” by ”minimum” and
replacing the signs by their opposite sign):

Step 1: Searching the maximum peaks of I1
{I1(i), i = 1→ I} is divided into several subsets:
{I1,u(i), i = 1 + wu→ w + wu}, u,w are integers
w > 1 (e.g:w = 10), u = 0, 1..., [I/w]
• If ∃u : max(I1,u(i)) > max(I1,u−1(i), I1,u+1(i))

=⇒ max(I1,u(i)) is a maximum peak
=⇒ It = It ∪max(I1,u(i))

Step 2: Monotonizing It
• Eliminating minimum peaks of It:

It(i) ≤ min(It(i− 1), It(i+ 1)) (this step is executed several
times till there is no minimum peak on It)

• Eliminating It(end) if It(end) ≤ It(end− 1)
After this step, the last value of It is the maximum. Signing imax is
the index of product of this last value. It(imax) = I1(imax) and
I1(imax) is also the maximum value of I1

Step 3: Interpolating and extrapolating It by linear method for all
product i, i ∈ {1, ..., imax}

2.2.2. Health index modelling

Gamma process is widely used for the deterioration mod-
elling because it is suitable to model gradual damage mono-
tonically accumulating over time such as wear, crack growth,
degrading health index, etc. which is presented clearly in a
survey of Gamma process (Van Noortwijk, 2009). Therefore,
in this work, Gamma process is chosen to model Y .

4
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A random quantity Y has a gamma distribution with shape
parameter ν > 0 and scale parameter u > 0 if its probability
density function is:

Ga(y|ν, u) =
uν

Γ(ν)
yν−1exp(−uy), y > 0 (25)

where Γ(a) =
∫∞
t=0

ta−1e−tdt. It is assumed that the ex-
pected deterioration can be described as a power law between
cumulative deterioration and time:

E(Y (t)) =
ν(t)

u
=
ctb

u
(26)

Consider a gamma process with shape function ν(t) = ctb

and scale parameter u. A data set consists of inspection times
ti, i = 1, ..., n where 0 = t0 < t1 < ... < tn, and cor-
responding of the cumulative deterioration yi, i = 1, ..., n,
where 0 < y0 ≤ y1 ≤ ... ≤ yn.

The parameters (u, c, b) of the gamma process have been es-
timated by combining the methods of least squared and maxi-
mum likelihood (Bakker & van Noortwijk, 2004). First, b can
be estimated using the least-squares method:

b =

∑n
i=1 log( titn )log( yiyn )
∑n
i=1[log( titn )]2

(27)

Then the parameters u and c can be estimated by using the
method of moments (Van Noortwijk, 2009)

ĉ

û
=

∑n
i=1 δi∑n
i=1 wi

=
yn
tbn

= δ̄ (28)

yn
û

(1−
∑n
i=1 w

2
i

[
∑n
i=1 wi]

2
) =

n∑

i=1

(δi − δ̄wi)2 (29)

where wi = tbi − tbi−1, δi = yi − yi−1.

3. ON-LINE SUPERVISION

For on-line supervision: assigning in is the index of product.
For a new product in processed on machine, the obtained data
is used to calculate the health indicator and to estimate the
RUL. We repeat again that the time unit here is the duration
of processing a product on machine, thus, it is also the index
of product.

3.1. Extraction of HI and filtering

From the equation (22), the value of raw health index at prod-
uct in is calculated as:

I0(in) = Xc(in)× Pc1 (30)

whereXc(in) =
(
X̄j1
in,kj1

X̄j2
in,kj2

. . . X̄jS
in,kjS

)
, each

value X̄js
in,kjs

is computed from the raw measurement value

Xjs
in,kjs

of online data as follows:

X̄js
in,kjs

=
Xjs
in,kjs

−mjs
kjs

djskjs
(31)

mjs
kjs
, djskjs are respectively mean and standard deviation of

the critical points (js, kjs) of off-line data, Pc1 is the eigen-
vector given in subsection 2.1.

The curve I0 for 1→ in is then similarly filtered and the ob-
tained health index called Yn(1→ inmax), see 2.2.1.

3.2. RUL estimation

A failure threshold L is predefined. Supposing that the health
index is increasing (if it decreases, the method is the same but
with opposite signs). When Yn exceeds the normal operating
threshold TN , the prognosis model is launched. The cumula-
tive distribution function (cdf) of time to failure (Van Noortwijk,
2009) with the upper threshold L is:

F (t) = Pr{TL ≤ t} = Pr{X(t) ≥ L}

=

∫ ∞

x=L

fX(t)(x)dx =
Γ(ν(t), Lu)

Γ(ν(t))
(32)

where Γ(a, x) =
∫∞
z=x

za−1e−zdz

At the moment tn, the value of X(tn) is known as xn. The
definition of the RUL at time tn can be represented by the
first passage time of {X(t), t ≥ tn} crossing L as htn =
inf{htn : X(tn + htn) ≥ L|X(tn) < L}. The cdf of RUL
can be written:

F (htn) = Pr{X(tn + htn) ≥ L}
= Pr{X(tn + htn)−X(tn) ≥ L− xn}

=

∫ ∞

x=L−xn

Ga(ν(htn + tn)− ν(tn), u)dx

=
Γ(ν(htn + tn)− ν(tn), (L− xn)u)

Γ(ν(htn + tn)− ν(tn))
(33)

The probability density function (pdf) of RUL is:

f(htn) =
δ

δhtn
[
Γ(ν(htn + tn)− ν(tn), (L− xn)u)

Γ(ν(htn + tn)− ν(tn))
] (34)
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The expected RUL is:

E(htn) =

∫ ∞

htn=0

htnf(htn)dhtn (35)

The value of xn is updated for the online supervision, which
updated the RUL estimation.

4. APPLICATION

This section provides the result of application of the pro-
posed method on real industrial data from STMicroelectron-
ics. Measured variables are sampled at 1 second intervals
during a process, for 351 observations of totally 19 sensors
for one month of production, which represents about 1000
wafers from the first wafer to the last one. The data is pre-
processed by Dynamic Time Warping technique to obtain the
common length trajectories.

4.1. Off-line analysis

4.1.1. Health indicator extraction

The first two hundred wafers n = 200 are used to build the
UCL of SPE. The last batch is considered bad quality. Fig. 5
gives the result of degradation detection. The violations be-
fore k = 20 are characterized as in short duration, appear on
step/phase changes and not repeatable unit-to-unit, therefore,
they are spurious violations. Meanwhile, the violations from
k = 118 to k = 351 exhibit the drift of machine’s quality, this
is because of their long durations and their unit-to-unit repeat
since the last wafers. The most observation at which the SPE
is significant is k = 351. Thus, the contribution of SPE at
this observation is investigated. The candidature sensors are
1, 2, 9, 10, 12 and 18.

Figure 5. Degradation detection and SPE contribution

The result of degradation reconstruction on these sensors are
given in Fig. 6. We see that there are 4 cases whose recon-
struction make SPE under the threshold UCL. The set of case

3 is the set which consists the common sensors of the others
cases. Thus, the significant sensors are {9, 10, 18}. The crit-
ical point of these sensors are determined as given in Fig. 7.
Then the HI extracted from these points are shown in Fig. 2.

Figure 6. Reconstruction of degradation

Figure 7. Variance of observation points of sensors

4.1.2. Analysis of health indicator dynamics

Applying the filtering proposed in 2.2.1, the health index Y is
given in Fig. 8. The normal operating threshold is predefined
TN = −0.5 and the failure threshold is predefined L = 2.3.

The parameter result of health indicator modelling is u =
604.7, c = 0.94 and b = 1.15.

6
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Figure 8. Health indicator

4.2. Online supervision

Assuming that the reference HI represents all the system dy-
namics of degradation in the considered operating mode; to
validate the prognosis model, the online data is generated by
a simulator which takes into account the dynamics of histori-
cal data. One profile of online HI is given in Fig. 9 compared
to the off-line one (shifting forward with n=200). At each in-
spection time in, the available online data is known only for
t = 1, ..., in. When Yn(inmax) > TN , (see section 3.1), the
degradation alarm launches the prognosis model.

Figure 9. Online data

At each inspection time in, the real failure time is 731 thus
the real RUL is (731 − in). Hence, the estimate RUL (the
expected RUL, equation (35)) and the real RUL can be com-
pared as given in Fig. 10. The result shows that the RUL esti-
mation of almost inspection times gives a small error. This er-
ror is really small during i = 260→ 430 and i = 530→ 660
due to the updating of last value of Y in the equation 33.

However, from i = 673, the error becomes larger. The reason
for this is found in Fig. 9, that the degradation (Y -online)
decelerates during i = 673→ 704 then it re-accelerates. The
degradation is much fluctuating during some small intervals
but the average rate of Y -online is generally fitted to Gamma
process, that’s why the error is smaller before i = 673. This
profile is a particular example, which implies that the method
adapts to the available data but an improvement of the pro-
posed method is necessary to overcome the influences of lo-
cal fluctuations.

Figure 10. Estimation error

The root mean squared error of RUL estimation is 49 time
units (equivalent to the duration of processing 49 wafers or
nearly 2 lots in STMicroelectronics manufacturing) is a small
error.

5. CONCLUSION

This paper proposed a method of health indicator contribution
for discrete manufacturing processes based on degraded sen-
sors identification via degradation reconstruction. The Gamma
process is used for HI modelling. An application of the pro-
posed method on a real industrial case shows a small error
of RUL estimation for the online supervision. A further im-
provement of the proposed method is necessary to overcome
the influences of local fluctuations of HI in some particular
situations.
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ABSTRACT

This paper presents an overview of various aspects of uncer-
tainty quantification in prognostics and health management.
Since prognostics deals with predicting the future behavior
of engineering systems and it is almost practically impossible
to precisely predict future events, it is necessary to account
for the different sources of uncertainty that affect prognostics,
and develop a systematic framework for uncertainty quantifi-
cation and management in this context. Researchers have de-
veloped computational methods for prognostics, both in the
context of testing-based health management and condition-
based health management. However, one important issue is
that, the interpretation of uncertainty for these two differ-
ent types of situations is completely different. While both
the frequentist (based on the presence of true variability) and
Bayesian (based on subjective assessment) approaches are
applicable in the context of testing-based health management,
only the Bayesian approach is applicable in the context of
condition-based health management. This paper explains that
the computation of the remaining useful life is more meaning-
ful in the context of condition-based monitoring and needs to
be approached as an uncertainty propagation problem. Nu-
merical examples are presented to illustrate the various con-
cepts discussed in the paper.

1. INTRODUCTION

Prognostics is the art of predicting the future behavior of en-
gineering systems, analyzing possible failure modes, and es-
timating the remaining useful life (RUL) of such systems.
Since it is practically impossible to precisely predict future
events and future behavior, it is imperative for an efficient and
accurate Prognostics and Health Management (PHM) sys-
tem to account for the different sources of uncertainty that
are associated with system behavior and quantify the com-

Shankar Sankararaman et al. This is an open-access article distributed un-
der the terms of the Creative Commons Attribution 3.0 United States Li-
cense, which permits unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are credited.

bined effect of these sources of uncertainty on prognostics
and remaining useful life prediction in order to facilitate risk-
informed decision-making.

Existing methods for prognostics and health management can
be broadly classified as being applicable to two different types
of situations: testing-based prognostics and condition-based
prognostics. Methods for testing-based prognostics are based
on rigorous testing before and/or after operating an engineer-
ing system (offline), whereas methods for condition-based
prognostics are based on monitoring the performance of the
engineering system during operation (online). Researchers
have developed computational methods for both testing-based
and condition-based prognostics and health management. Both
data-driven methods and model-based approaches been pur-
sued for these purposes. While some of the initial research
efforts did not explicitly account for the effects of uncertainty,
some of the later efforts have exclusively focused on uncer-
tainty quantification and management in prognostics.

Several researchers have developed methods for uncertainty
quantification in crack growth analysis (Sankararaman, Ling,
Shantz, & Mahadevan, 2011; Sankararaman, Ling, & Ma-
hadevan, 2011), structural damage prognosis (Farrar & Lieven,
2007; Coppe, Haftka, Kim, & Yuan, 2010), electronics (Gu,
Barker, & Pecht, 2007), and mechanical bearings (Liao, Zhao,
& Guo, 2006), primarily in the context of offline testing. Such
approaches may be applicable to smaller components since
it is possible and affordable to perform laboratory tests un-
til these components fail. However, it may not practically
feasible to extend this approach to large scale expensive sys-
tems that cannot be tested. Further, the estimation of re-
maining useful life is more significant in an online health
monitoring context where the performance of a system un-
der operation needs to be monitored and its remaining useful
life needs to be calculated. Engel et. al (Engel, Gilmartin,
Bongort, & Hess, 2000) discuss several issues involved in
the estimation of remaining useful life in online prognostics
and health monitoring. Though some of the initial studies
on remaining useful life prediction lacked uncertainty mea-
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sures (Celaya, Saxena, Kulkarni, Saha, & Goebel, 2012), re-
searchers have recently started investigating the impact of un-
certainty on estimating the remaining useful life. For exam-
ple, there have been several efforts to quantify the uncertainty
in remaining useful life of batteries (Saha & Goebel, 2008)
and pneumatic valves (Daigle & Goebel, 2010) in the con-
text of online health monitoring. Different types of sampling
techniques (Daigle, Saxena, & Goebel, 2012) and analytical
methods (Sankararaman, Daigle, Saxena, & Goebel, 2013)
have been proposed to predict the uncertainty in the remain-
ing useful life.

A review of the aforementioned articles reveal that there ex-
ist several challenges in applying uncertainty quantification
methods for prognostics. The primary challenge lies in the
understanding the philosophical differences between testing-
based health management and condition-based health man-
agement, since these differences significantly influence the
interpretation of uncertainty (Sankararaman & Goebel, 2013c;
Celaya, Saxena, & Goebel, 2012). Such interpretation is key
to guide different types of decision-making activities during
the operation of engineering systems.

The paper focuses on providing an overview of the state-of-
the-art in the topic of uncertainty quantification and manage-
ment in prognostics and health monitoring. To begin with,
the significance of uncertainty in prognostics is explained in
detail in Section 2. Then, the various aspects of uncertainty in
testing-based health management and condition-based health
management are discussed in detail in Section 3 and 4, and
the differences between these two approaches are clearly ex-
plained. It is also explained that the prediction of remaining
useful life is more meaningful only in the context of condition-
based health management, and this topic is discussed in fur-
ther detail. Numerical examples are presented in Sections 3
and Section 4, to illustrate the various concepts discussed in
this paper. Finally, conclusions are presented in Section 5.

2. SIGNIFICANCE OF UNCERTAINTY IN PROGNOSTICS

In an ideal scenario, it would be possible to perfectly and pre-
cisely predict the behavior of engineering systems and facil-
itate decision-making with a significant amount of trust and
confidence. However, this is not possible in practical engi-
neering applications. First of all, it is almost impossible to be
able to accurately predict the operating conditions and envi-
ronmental conditions under which the system operates. Fur-
ther, the future loading demands on the system cannot be pre-
cisely known in advance; for example, the future behavior of
a simple electric vehicle depends upon several factors such as
the driving terrain, climatic conditions, desired speed and ac-
celeration, characteristics, properties, and parameters of the
internal batteries, remaining charge, etc. While some factors
are internal to the engineering system, other factors are ex-
ternal to the system. In order to be able to account for all of

these factors and perform prognostics, it is necessary to ac-
knowledge the presence of uncertainty in all of these factors
and develop a systematic framework in order to account for
these uncertainties in prognostics.

When information regarding uncertainty is used for decision-
making, it can lead quantifying the amount of risk involved
in different types of decisions. Risk consists of two important
components: the likelihood of occurrence of adverse events
and the cost associated with the occurrence of adverse events.
While the latter can be easily quantified by analyzing the dif-
ferent types of losses that occur due to such occurrence of
adverse events, the former can only be quantified by rigor-
ously accounting for the different sources of uncertainty in
prognostic and decision-making activities.

It is a common misconception that the effect of uncertainty
can be included at latter stages of the analysis when the fun-
damental deterministic problem has been solved without ac-
counting for uncertainty. It is necessary to account for un-
certainty right from the initial stages of system-level concep-
tion through analysis, design, testing, and operations. During
these stages, there are several types of activities that need to
be performed in order to accurately account for the effect of
uncertainty in prognostics.

In the context of prognostics and health management, uncer-
tainties have been discussed from representation, quantifica-
tion, and management points of view (Hastings, D. and Mc-
Manus, H., 2004; Orchard, Kacprzynski, Goebel, Saha, &
Vachtsevanos, 2008; Tang, Kacprzynski, Goebel, & Vachtse-
vanos, 2009). While these three are different processes, they
are often confused with each other and interchangeably used.
In this paper, the various tasks related to uncertainty quantifi-
cation and management are classified into four, as explained
below. These four tasks need to performed in order to ac-
curately estimate the uncertainty in the RUL prediction and
inform the decision-maker regarding such uncertainty.

1. Uncertainty Representation and Interpretation: The
first step is uncertainty representation and interpretation,
which in many practical applications, is guided by the
choice of modeling and simulation frameworks. There
are several methods for uncertainty representation that
vary in the level of granularity and detail. Some common
theories include classical set theory, probability theory,
fuzzy set theory, fuzzy measure (plausibility and belief)
theory, rough set (upper and lower approximations) the-
ory, etc. Amongst these theories, probability theory has
been widely used in the PHM domain (Celaya, Saxena,
& Goebel, 2012); even within the context of probabilistic
methods, uncertainty can be interpreted and perceived in
two different ways: frequentist (classical) versus subjec-
tive (Bayesian). While the former interpretation of un-
certainty implies that uncertainty exists only when there
is natural randomness across multiple nominally identi-
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cal experiments, the latter facilitates associating uncer-
tainty even with events that are not random and such un-
certainty is simply reflective of the analyst’s regarding
the occurrence or non-occurrence of such events.

2. Uncertainty Quantification: The second step is uncer-
tainty quantification, that deals with identifying and char-
acterizing the various sources of uncertainty that may af-
fect prognostics and RUL estimation. It is important that
these sources of uncertainty are incorporated into models
and simulations as accurately as possible. The common
sources of uncertainty in a typical PHM application in-
clude modeling errors, model parameters, sensor noise
and measurement errors, state estimates (at the time at
which prediction needs to be performed), future loading,
operating and environmental conditions, etc. The goal
in this step is to address each of these uncertainties sep-
arately and quantify them using probabilistic/statistical
methods. The Kalman filter is essentially a Bayesian tool
for uncertainty quantification, where the uncertainty in
the states is estimated continuously as a function of time,
based on data which is also typically available continu-
ously as a function of time.

3. Uncertainty Propagation: The third step is uncertainty
propagation and is most relevant to prognostics, since
it accounts for all the previously quantified uncertain-
ties and uses this information to predict (1) future states
and the associated uncertainty; and (2) remaining useful
life and the associated uncertainty. The former is com-
puted by propagating the various sources of uncertainty
through the prediction model. The latter is computed us-
ing the estimated uncertainty in the future states along
with a Boolean threshold function which is used to in-
dicate end-of-life. In this step, it is important to under-
stand that the future states and remaining useful life pre-
dictions are simply dependent upon the various uncer-
tainties characterized in the previous step, and therefore,
the distribution type and distribution parameters of future
states and remaining useful life should not be arbitrar-
ily chosen. Sometimes, a normal (Gaussian) distribution
has been assigned to the remaining useful life prediction;
such an assignment is erroneous and the true probability
distribution of RUL needs to be estimated though rig-
orous uncertainty propagation of the various sources of
uncertainty through the state space model and the EOL
threshold function, both of which may be non-linear in
practice.

4. Uncertainty Management: The fourth and final step is
uncertainty management, and it is unfortunate that, in
several articles, the term “Uncertainty Management” has
been used instead of uncertainty quantification and/or prop-
agation. As a result, there are few publications that di-
rectly address the issue of uncertainty management. In
general, uncertainty management is a term used to refer

to different activities which aid in managing uncertainty
in condition-based maintenance during real-time opera-
tion. There are several aspects of uncertainty manage-
ment. One aspect of uncertainty management attempts
to answer the question: “Is it possible to improve the
uncertainty estimates?” The answer to this question lies
in identifying which sources of uncertainty are signifi-
cant contributors to the uncertainty in the RUL predic-
tion. For example, if the quality of the sensors can be
improved, then it may be possible to obtain a better state
estimate (with lesser uncertainty) during Kalman filter-
ing, which may in turn lead to a less uncertain RUL pre-
diction. Another aspect of uncertainty management deals
with how uncertainty-related information can be used in
the decision-making process. Future research needs to
significantly focus on the different aspects of uncertainty
management and develop computational methods for this
purpose.

Most of the research in the PHM community pertains to the
topics of uncertainty quantification and propagation; few ar-
ticles have directly addressed the topic of uncertainty man-
agement. Even within the realm of uncertainty quantification
and propagation, the estimates of uncertainty have sometimes
been misinterpreted. For example, when statistical principles
are used to estimate a parameter, there is an emphasis on
calculating the estimate with the minimum variance. When
this principle is applied to RUL estimation, it is important
not to arbitrarily reduce the variance of RUL itself. Celaya
et al. (Celaya, Saxena, & Goebel, 2012) explored this idea
and explained that the variance of RUL needs to be carefully
calculated by accounting for the different sources of uncer-
tainty. The calculation of RUL is, arguably, the most im-
portant component of a prognostics and health management
system, and this topic of discussed in detail, in the rest of
this paper. Though the majority of this paper focuses on cal-
culating RUL in the context of condition-based monitoring,
some fundamental principles of testing-based health manage-
ment are discussed, particularly from the perspective of un-
certainty quantification, in order to explain the philosophical
differences between these two approaches.

3. TESTING-BASED HEALTH MANAGEMENT

In testing-based prognostics (referred to as “reliability-based
testing” in some publications), the remaining useful life is
typically calculated by testing multiple nominally identical
specimens of the engineering component/system. It may be
noted that the term “remaining” in “remaining useful life”
may not be applicable to all types of testing. This is because,
testing is typically carried out before the engineering system
is under operation. The term “time-to-failure” is more appro-
priate for testing-based health management. It is important
not to confound “time-to-failure” and “remaining useful life”.
The appropriate interpretation of the latter will be clarified
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in the next section, while discussing about condition-based
health management.

Assume that a set of run to failure experiments have been
performed with high level of control, ensuring same usage
and operating conditions. The time to failure for all the n
samples (ri; i = 1 to n) are measured. It is important to
understand that different time-to-failure values are obtained
due to inherent variability across the n different specimens,
thereby confirming the presence of physical probabilities or
true randomness. The various factors that contribute are:

1. Inherent variability in properties and characteristics of
the nominally identical specimens

2. Inherent variability across the loading conditions experi-
enced by each of the individual specimens

3. Inherent variability in operating and environmental con-
ditions for each of the individual specimens

Assume that these random samples belong to an underly-
ing probability density function (PDF) fR(r), with expected
value E(R) = µ and variance V ar(R) = σ2. The goal
of uncertainty quantification is to characterize this probabil-
ity density function based on the available n data. Theoret-
ically, an infinite amount of data is necessary to accurately
estimate this PDF; however, due to the presence limited data,
the estimated PDF is not accurate. Hence, lack of infinite
data adds some additional uncertainty to the aforementioned
list of sources of uncertainty. Statistical approaches, both
frequentist and subjective, express uncertainty regarding the
estimate itself. However, frequentist and subjective analysts
quantify and express this uncertainty in completely different
ways. The following discussion is based on the assumption
that the underlying PDF fR(r) is Gaussian, since closed form
expressions for uncertainty are readily available for this case.
Whenever appropriate and necessary, remarks are provided
for non-Gaussian distributions.

3.1. Confidence Intervals: Frequentist Approach

Since R is Gaussian, estimating the parameters µ and σ is
equivalent to estimating the PDF. In the context of physical
probabilities (frequentist approach), the “true” underlying pa-
rameters µ and σ are referred to as “population mean” and
“population standard deviation” respectively. Let x̄ and s de-
note the mean and the standard deviation of the available n
data. As stated earlier, due to the presence of limited data,
the sample parameters (x̄ and s) will not be equal to the cor-
responding population parameters (µ and σ). The fundamen-
tal assumption in this approach is that, since there are true
but unknown population parameters, it is meaningless to talk
about the probability distribution of any population param-
eter. Instead, the sample parameters are treated as random
variables, i.e., if another set of n data were available, then
another realization of x̄ and s would have been obtained. Us-
ing the sample parameters (µ and σ) and the number of data

available (n), frequentists construct confidence intervals on
the population parameters.

Confidence intervals can be constructed for bothµ and σ (Haldar
& Mahadevan, 2000). Consider multiple nominally identical
specimens of an engineering component. The term “nom-
inally identical” implies that there is inherent variability in
the properties and behavior of these specimens. Suppose that
these specimens have been subjective to failure analysis, and
their time-to-failure times are available. If the true probabil-
ity distribution of time-to-failure across multiple specimens
is assumed to be Gaussian, the (1 − α)% confidence interval
of the mean run-to-failure time can be calculated as:[
x̄− tα

2

s√
n

, x̄+ tα
2

s√
n

]
,

where x̄, s, and n denote the sample mean, sample standard
deviation, and number of samples respectively. If the run-
to-failure times are given by {100, 105, 98, 110, 92, 97, 85,
120, 93, 101}, then µ = 100.10, s = 9.87, n = 10, and the
95% confidence interval on the mean run-to-failure is given
by [93.98, 106.22]. Using the properties of the chi-square
distribution (χ2), the confidence interval on the variance can
be calculated as:[
(n−1)s2

χ2
1− α

2

, (n−1)s2

χ2
α
2

]
.

For this numerical example, the corresponding confidence in-
terval on the standard deviation is given by [6.79, 18.02].
While the above expressions for confidence intervals on mean
and standard deviation are applicable only to Gaussian distri-
butions, similar confidence intervals can also be constructed
for other types of distributions; in general, it is easier to con-
struct confidence intervals for mean than it is for standard
deviation (or equivalently, variance).

Nevertheless, it is important that these confidence intervals be
interpreted correctly. To begin with, the above confidence in-
tervals will decrease as more data is available; therefore, the
width of these confidence intervals is simply related to the
number of data. The actual uncertainty in the run-to-failures
times is given only by the estimate of the standard deviation,
and this uncertainty is the result of variability (in material
properties, operating conditions, etc.) across all the nomi-
nally identical specimens. Further, as stated earlier, the inter-
pretation of confidence intervals may be confusing and mis-
leading. A 95% confidence interval on µ does not imply that
“the probability that µ lies in the interval is equal to 95%”;
such a statement is wrong because µ is purely deterministic
and physical probabilities cannot be associated with it. The
random variable here is in fact x̄, and the confidence inter-
val is calculated using x̄. Therefore, the correct implication
is that “the probability that the estimated confidence interval
contains the true population mean is equal to 95%”. Thus, it
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is easy to understand that, the width of the confidence inter-
vals is indicative of lack of infinite data and the actual value
of the standard deviation is indicative of the uncertainty in R.

A practical challenge is that, in many applications, it may
not be possible to know what type of probability distribution
(for example, Gaussian distribution had been “assumed” in
the above discussion) needs to be assumed to in order to cal-
culate the above confidence intervals; obviously, the proce-
dure for calculation of confidence intervals depends on the
choice of distribution type (Gaussian, Weibull, lognormal,
etc.), and the presence of such distribution type uncertainty
further adds to the confusion regarding the interpretation of
confidence intervals. As the sample size increases, the confi-
dence intervals for the mean and standard deviation may get
narrower. This may be misleading since the confidence inter-
vals should be interpreted only based on the underlying as-
sumption of distribution type (which might have been wrong
to begin with). Computational methods are being developed
to deal with distribution type uncertainty (Sankararaman &
Mahadevan, 2013a), however they have not been implemented
in prognostics and health management applications.

3.2. Probability Distribution: Bayesian Approach

Alternatively, it is also possible to address the problem of
computing fR(r) purely from a subjective (Bayesian) point of
view. One important difference now is that the Bayesian ap-
proach does not clearly differentiate between “sample param-
eters” and “population parameters”. The probability distribu-
tion of µ is directly computed using the available data (recall
that this was impossible in the frequentist approach since µ
is the underlying mean that is precise but unknown), and this
uncertainty is referred to as the analyst’s degree of belief for
the underlying true parameter µ. Similarly, the probability
distribution of σ can also be computed using Bayes’ theorem.

Consider a set of time-to-failure times, given by ri (i = 1 to
n). In order to compute the probability distribution of µ and
σ, the first step is construct their joint likelihood as (Sankararaman
& Mahadevan, 2011):

L(µ, σ) ∝
m∏

i=1

fR(ri|µ, σ) (1)

The maximum likelihood estimate of the parameters P can
be calculated by maximizing the above expression. Instead of
maximizing the likelihood, the entire likelihood function can
be used to construct the PDF of the distribution parameters.
Further, sometimes time-to-failure data may also be available
in terms of intervals. For example, intermittent inspections
may be performed to check whether failure has occurred in
a specimen; if failure is found to have occurred between 10
minutes and 11 minutes, the resultant time to failure is ac-
tually an interval. The above likelihood-based approach can
also be extended to account for interval data, in order to com-

pute the uncertainty in the distribution parameters.

This approach is generally applicable for any type of para-
metric probability distribution, where the probability density
function (PDF) can be expressed as fR(r|P ). If R is Gaus-
sian, then P represents the vector of mean and standard de-
viation. Let f(P ) denote the joint PDF of the distribution
parameters P . It is easy to apply Bayes theorem, choose uni-
form prior density (f ′(P ) = h), and calculate the joint PDF
as:

f(P ) =
hL(P )∫
hL(P )dP

=
L(P )∫
L(P )dP

(2)

Note that the uniform prior density function can be defined
over the entire admissible range of the parameters P . For ex-
ample, the mean of a normal distribution can vary in (−∞, ∞
) while the standard deviation can vary in (0, ∞) because the
standard deviation is always greater than zero. Both these
prior distributions are improper prior distributions because
they do not have finite bounds.

For the above numerical example, i.e., if the run-to-failure
times are given by {100, 105, 98, 110, 92, 97, 85, 120, 93,
101}, the probability distribution of µ and σ can be calculated
as shown in Figs. 1 and 2.
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Figure 1. PDF of µ

Recall that one realization of the parameters (µ and σ) uniquely
define the PDF fR(r). However, since the parameters are
themselves uncertain, R is now represented by a family of
distributions (Sankararaman & Mahadevan, 2011, 2013b). This
family of distributions will shrink to the true underlying PDF
as the number of available data increases, and asymptotic
PDF (as the number data increases) is simply reflective of
the variability (in material properties, operating conditions,
etc.) across all the nominally identical specimens. Alterna-
tive to the family of PDFs approach, a single unconditional
PDF of X , which includes both the variability in X and the
uncertainty in the distribution parameters P , as:

f ′
R(r) =

∫
fR(r|P )f(P )dP (3)
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Figure 2. PDF of σ

Note that the RHS of Eq. 3 is not conditioned on P anymore.
Some researchers refer to this PDF f ′

R(r) as the predictive
PDF (Kiureghian, 1989) of R. The predictive PDF for the
above numerical example is shown in Fig. 3.
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Figure 3. Predictive PDF of R

Note that the predictive PDF f ′
R(r) will indicate the presence

of larger uncertainty in R than the original PDF fR(r), be-
cause the former accounts for the lack of infinite data. As
the number of data increases, f ′

R(r) will tend towards fR(r).
Of course, this is true only when the correct distribution type
was assumed for R; in many cases, the choice of distribution
type (referred to as “statistical model” by some researchers)
is a challenge by itself, and contributes to additional uncer-
tainty (Sankararaman & Mahadevan, 2013a).

4. CONDITION-BASED HEALTH MANAGEMENT

Most of the discussion pertaining to testing-based prognostics
is not applicable to condition-based monitoring and prognos-
tics. The distinctive feature of condition-based monitoring
is that each component/subsystem/system is considered by
itself, and therefore, “variability across specimens” is non-
existent. Any such “variability” is spurious and must not be
considered. At any generic time instant tP at which prognos-

tics needs to be performed, the component/subsystem/system
is at a specific state. The actual state of the system is purely
deterministic, i.e., the true value of each state is completely
precise, however unknown. Therefore, if a probability distri-
bution is assigned for this state, then this distribution is sim-
ply reflective of the analyst’s knowledge regarding this state
and cannot be interpreted from a frequentist point of view.
Thus, by virtue of definition of condition-based monitoring,
physical probabilities are not present here, and a subjective
(Bayesian) approach is only suitable for uncertainty quantifi-
cation.

The goal in condition-based prognostics is, at any generic
time instant tP , to predict the remaining useful life of the
component/subsystem/system as condition-based estimate of
the usage time left until failure. Such computation needs to
be, ideally, performed in real-time. In other words, the per-
formance of the system during its operation needs to be an-
alyzed, possible failure modes and future degradation needs
to be prediction, and the remaining useful life needs to be
computed while the system is under operation. These calcu-
lations help in operational decision-making activities such as
path planning, mission routing, etc.

The following prognostics architecture can be used to achieve
these goals. First, measurements until time tP are used to
estimate the state at time tP . Then, using a degradation-
prediction model (that may be model-based or data-driven),
future state values (corresponding to time instants greater than
tP ) are computed, and the first time time instant at which a
failure threshold is true is calculated; this information is then
used to calculate the remaining useful life. In order to forecast
future state values, it is also necessary to assume future load-
ing conditions (and operating conditions), and this is a major
challenge in condition-based prognostics. Typically, the an-
alyst subjectively assumes statistics for future loading condi-
tions based on past experience and existing knowledge; thus,
the subjective interpretation of uncertainty is clearly consis-
tent across the entire condition-based monitoring procedure,
and therefore, inferences made out of condition-based moni-
toring also need to be interpreted subjectively. The prediction
of degradation (forecasting of future state values) is stopped
when failure is reached, as indicated by a boolean threshold
function that checks whether failure has occurred or not. This
indicates the end-of-life (EOL) and the EOL can be directly
used to compute the remaining useful life (RUL) prediction.
Note that it is important to interpret the uncertainty in EOL
and RUL subjectively.

4.1. Illustrative Example

Consider a generic engineering component whose health state
at any time instant is given by x(t). Consider a simple degra-
dation model, where the rate of degradation of the health state
(that decreases with time, due to the presence of damage) is

6

European Conference of the Prognostics and Health Management Society 2014

359



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

proportional to the current health state. This can be mathe-
matically expressed as:

ẋ(t) ∝ x(t), (4)

where the constant of proportionality is a negative number.
Since differential equations are usually solved by considering
discrete time instants, the above equation can be rewritten as:

x(k + 1) = a.x(k) + b, (5)

where k represents the discretized time-index. The condition
that “the constant of proportionality in Eq. 4 is negative” is
equivalent to the condition that “a < 1 in Eq. 5”. For the sake
of illustration, let a denote the loading on the system, b denote
the model of the degradation model above, and let a and b be
constant and time-invariant. In practical examples, more than
one variable may be necessary to represent the loading con-
ditions and there may be multiple model parameters and state
variables; further, the loading variables and model parameters
may also be time-varying, just like the state x.

In order to compute the remaining useful life, it is necessary
to chose a threshold function that defines the occurrence of
failure. Since x(k) is a decreasing function, the threshold
function will indicate that failure occurs when the state value
x becomes smaller than a critical lower bound (l), and the
first time instant at which this event occurs indicates the end
of life, and this time instant can be used to calculate the RUL.
Therefore, the remaining useful life (r, an instance of the ran-
dom variable R) is equal to the smallest n such that x(n) < l.
Therefore RUL can be calculated as

r = inf{n : x(n) < l}, (6)

For a given value of x(0) (or x(tP ), where tP denotes the
time at which prediction needs to be performed), a, b, it possi-
ble to calculate the end-of-life and remaining useful life using
the above set of equations. However, in practical conditions,
all of these are uncertain. However, note that the uncertainty
in x(0), a, b are related only to the knowledge regarding this
particular unit and not an ensemble of units; recall that an en-
semble of nominally identical units was considered earlier in
Section 3. The presence of these uncertainties leads to un-
certainty in the RUL prediction. This leads to the obvious
question: How to compute the uncertainty in RUL? Prior to
answering this question, the next subsection lists the different
sources of uncertainty in generic condition-based prognostic
applications.

4.2. Sources of Uncertainty

Typically, researchers have classified the different sources of
uncertainty into different categories in order to facilitate un-
certainty quantification and management. While it has been
customary to classify the different sources of uncertainty into

aleatory (arising due to physical variability) and epistemic
(arising due to lack of knowledge), such a classification may
not be suitable for prognostics in the context of condition-
based monitoring and RUL prediction because, as mentioned
earlier, “true variability”’ is not present in condition-based
monitoring. A completely different approach for classifica-
tion, particularly applicable to condition-based monitoring, is
proposed in this paper.

1. Present uncertainty: Prior to prognosis, it is important
to be able to precisely estimate the condition/state of the
component/system at the time at which RUL needs to be
predicted. Typically, damage (or faults) are expressed
in terms of states, and therefore, estimating the state is
equivalent to estimating the extent of damage (or fault).
This is related to state estimation and is commonly ad-
dressed using filtering. Output data (usually collected
through sensors) is used to estimate the state and many
filtering approaches (Kalman filtering, particle filtering,
etc.) are able to provide an estimate of the uncertainty in
the state. In the illustrative example, the state uncertainty
is equal to the uncertainty associated with x(0). Practi-
cally, it is possible to improve the estimate of the states
and thereby reduce this uncertainty, by using better sen-
sors and improved filtering approaches. It is important to
understand that the system is at particular state at any
time instant, and the aforementioned uncertainty sim-
ply describes the lack of knowledge regarding the “true”
state of the system.

2. Future uncertainty: The most important source of un-
certainty in the context of prognostics is due to the fact
that the future is unknown, i.e. the loading, operating,
environmental, and usage conditions are not known pre-
cisely, and it is important to assess this uncertainty be-
fore performing prognosis. In the illustrative example,
the future uncertainty is equal to the uncertainty regard-
ing the loading value, i.e., a, from the time of prediction
until the time of failure. If there is no uncertainty re-
garding the future, then there would be no uncertainty
regarding the true remaining useful life of the engineer-
ing component/system. However, this true RUL needs to
be estimated using a model; the usage of a model imparts
additional uncertainty as explained below.

3. Modeling uncertainty: It is necessary to use a func-
tional degradation model in order to predict future state
behavior, i.e. model the response of the system to an-
ticipated loading, environmental, operational, and usage
conditions. Further, the end-of-life is also defined us-
ing a Boolean threshold functional model, that is used to
indicate whether failure has occurred or not. These two
models are jointly used to predict the RUL, and they may
either be physics-based or data-driven. It may be practi-
cally impossible develop models that accurately predict
the underlying reality. Modeling uncertainty represents
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the difference between the predicted response and the
true response (that can neither be known nor measured
accurately), and comprises of several parts: model pa-
rameters, model form, and process noise. While it may
be possible to quantify these terms until the time of pre-
diction, it is challenging to know their values at future
time instants. In the illustrative example, Eq. 5 repre-
sents the degradation model, x(n) < l represents the
Boolean threshold function that indicates failure, b is a
model parameter, and the uncertainty in b corresponds
to one aspect of modeling uncertainty. Another aspect
is the choice of the “linear” form of the model in Eq. 5;
the underlying physical phenomena may differ from this
assumption.

4. Prediction method uncertainty: Even if all the above
sources of uncertainty can be quantified accurately, it is
necessary to quantify their combined effect on the RUL
prediction, and thereby, quantify the overall uncertainty
in the RUL prediction. It may not be possible to do this
accurately and this leads to additional uncertainty. For
example, when sampling-based approaches are used for
prediction, the use of limited number of samples causes
uncertainty regarding the estimated probability distribu-
tion.

4.3. Computing Uncertainty in RUL

The goal in condition-based prognostics is to meaningfully
integrate the degradation equation along with the failure thresh-
old equation, and account for the different sources of uncer-
tainty in x(0), a, and b, and thereby, estimate the uncertainty
in the remaining useful life. For any given realization of x0,
a, and b, it is possible to compute the first time instant (in-
dicates the end-of-life) at which the failure threshold criteria
will be valid, i.e., calculate the smallest value of n at which
x(n) < l. The challenge is to compute the combined effect
of uncertainty in x(0), a, and b on RUL, and estimate the
probability distribution of RUL.

It can be easily demonstrated that the state value at any future
time instant can be expressed as a function of the initial state
x(0), as:

x(n) = an.x(0) +

j=n−1∑

j=0

ajb (7)

Note that that x(n) is decreasing and failure happens when
x < l. Therefore, the remaining useful life (r, an instance
of the random variable R) is equal to the smallest n such that
x(n) < l. Therefore RUL can be calculated as

r = inf{n : an.x(0) +

j=n−1∑

j=0

ajb < l}, (8)

Assuming that the chosen time-discretization level is infinites-

imally small, it is possible to directly estimate the RUL by
solving the equation:

ar.x(0) +

j=r−1∑

j=0

aj.b = l. (9)

The above equation calculates the RUL (r) as a function of
the initial state x(0), a and b. Even if the only considered
source of uncertainty is the state estimate x(0) (that is, a and
b are constants), RUL R follows a Gaussian distribution if
and only if it is linearly dependent on x(0). In other words,
R follows a Gaussian distribution if and only if Eq. 9 can be
rewritten as:

α.r + β.x(0) + γ = 0 (10)

for some arbitrary values of α, β, and γ. If it were possible to
estimate such values for α, β, and γ, the distribution of RUL
can be obtained analytically.

In order to examine if this is possible, rewrite Eq. 9 as:

x(0) =
1

ar
(l −

j=r−1∑

j=0

aj .b) (11)

While x(0) is completely on the left hand side of this equa-
tion, r appears not only as an exponent in the denominator
but is also indicative of the number of terms in the summa-
tion on the right hand side of the above equation. Therefore,
it is clear that the relationship between r and x(0) is not lin-
ear. Therefore, even if the initial state (x(0), a realization of
X(0)) follows a Gaussian distribution, the RUL (r, a real-
ization of R) does not follow a Gaussian distribution. Fur-
thermore, it is not even possible to analytically estimate the
distribution of RUL. Thus, it is clear that even for a simple
problem consisting of linear state models, an extremely sim-
ple threshold function, and only one uncertain variable that is
Gaussian, the calculation of the probability distribution of R
is neither trivial nor straightforward.

Practical problems in the prognostics and health management
domain may consist of:

1. Several non-Gaussian random variables that affect the
RUL prediction,

2. A non-linear multi-dimensional state space model,

3. Uncertain future loading conditions

4. A complicated threshold function that may be defined in
multi-dimensional space.

The fact that the distribution of RUL simply depends on quan-
tities such as degradation model and model parameters, thresh-
old function, state estimate, future loading conditions, etc.,
implies that it is technically inaccurate to artificially assign
the probability distribution type (or any statistic such as the
mean or variance) to RUL. It is important to understand that
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RUL is a dependent quantity and that the probability distri-
bution of RUL needs to be accurately estimated using com-
putational approaches. It has been illustrated the the problem
of computing the uncertainty in the RUL prediction can be
posed as an uncertainty propagation problem (Sankararaman
& Goebel, 2013b), and therefore, it may be helpful to investi-
gate statistical uncertainty propagation techniques in order to
accomplish this goal.

4.4. Uncertainty Propagation Methods

The most commonly used uncertainty propagation technique
is Monte Carlo sampling (Caflisch, 1998), which is based on
drawing random samples of independent quantities, and com-
puting corresponding realizations of the dependent quantity
(in this case, the RUL). For instance, in the conceptual exam-
ple, if x(0) follows a Gaussian distribution (with mean and
standard deviation equal to 975 and 50 respectively), a fol-
lows a uniform distribution (with lower and upper bounds of
0.990 and 0.995), and b follows a uniform distribution (with
lower and upper bounds of -0.005 and 0 respectively), then
the RUL (defined by Eq. 6, where l = 50) can calculated as
a probability distribution, using Monte Carlo sampling. Us-
ing unit discretization (i.e., the time interval between the kth

and (k + 1)th instants is equal to one second) for solution,
the resultant probability density function (PDF) is shown in
Fig. 4. It is clear that this distribution is not a typical paramet-
ric distribution (such as normal, lognormal, etc.) and that is
why rigorous uncertainty propagation methods are necessary
to accurate estimate this PDF.

200 300 400 500 600 700
0

1

2

3

4

5
x 10

−3
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Figure 4. RUL: Conceptual Example

While Monte Carlo sampling can be accurate, it is compu-
tationally expensive and time-consuming, and therefore, re-
searchers have focused on developing advanced methods that
are computationally cheaper. These approaches include Latin
hypercube sampling (Loh, 1996), adaptive sampling (Bucher,
1988), importance sampling (Glynn & Iglehart, 1989), un-
scented transform sampling (Van Zandt, 2001), etc. Alter-
natively, there are analytical methods such as the first-order
second moment method (Dolinski, 1983), first-order reliabil-
ity method (Hohenbichler & Rackwitz, 1983; Sankararaman
& Goebel, 2013a), second-order reliability method (Der Ki-

ureghian, Lin, & Hwang, 1987), etc. In addition, there are
also methods such as the efficient global reliability analy-
sis (Bichon, Eldred, Swiler, Mahadevan, & McFarland, 2008)
method which involve both sampling and the use of analyti-
cal techniques. All of these methods empirically calculate the
probability distribution of RUL; while some of these meth-
ods calculate the PDF (fR(r)) of RUL, some other methods
calculate the CDF (FR(r)), and some other methods directly
generate samples from the desired probability density func-
tion (fR(r)). Due to some limitations of each of these meth-
ods, it may not be possible to accurately calculate the actual
probability distribution of R. Accurate calculation is possi-
ble only by using infinite samples for Monte Carlo sampling.
Any other method (for example, the use of a limited, finite
number of samples) will lead to uncertainty in the estimated
probability distribution, and this additional uncertainty is re-
ferred to as prediction-method uncertainty. It is possible to
decrease (and maybe eventually eliminate) this type of un-
certainty either by using advanced probability techniques or
powerful computing power.

It is necessary to further investigate the aforementioned un-
certainty propagation methods, and identify whether they can
be applied to prognostics health monitoring. Some earlier
publications have investigated the use of certain methods such
as Monte Carlo sampling, unscented transform sampling, first-
order reliability methods, etc. in this regard.

5. CONCLUSION

This paper presented an overview of uncertainty quantifica-
tion in prognostics and health management in engineering
systems. First, the significance of the uncertainty in prognos-
tics was explained, and the need for a systematic approach
to account for uncertainty in prognostics was discussed. It
was explained that four different activities — uncertainty rep-
resentation and interpretation, uncertainty quantification, un-
certainty propagation, and uncertainty management — need
to be performed in order to rigorously include the effects of
uncertainty in prognostics and provide useful information for
decision-making under uncertainty. Researchers have pur-
sued two different approaches for prognostics, and these two
approaches are based on testing and condition-based assess-
ment. The philosophical differences between these two ap-
proaches were explained and it was demonstrated that the
concept of remaining useful life is more meaningful in the
context of condition-based assessment since the engineering
system is under operation. Further, these differences are used
to analyze the interpretation of uncertainty in prognostics.

Probability and uncertainty can be interpreted in two ways.
The frequentist interpretation of uncertainty is applicable in
the presence of true randomness, as is the case in testing-
based health management. The Bayesian (subjective) inter-
pretation of uncertainty is applicable even while talking about
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events that may not be random, and therefore, this interpreta-
tion is applicable for both testing-based health management
and condition-based health management. In fact, only the
Bayesian interpretation of uncertainty is applicable in condition-
based health management. Techniques such as Kalman filter-
ing, particle filtering, etc. that are commonly used in condition-
based prognostics are collectively known as Bayesian track-
ing algorithms, not only because they use Bayes theorem but
also because they are based on the subjective interpretation
probability. Numerical examples were discussed in order to
illustrate the effects of uncertainty interpretation on prognos-
tics.

The final goal of this paper was to investigate methods for
computation of remaining useful life, in the context of condition-
based prognostics. It was illustrated that it is not possible to
analytically calculate the uncertainty in the remaining use-
ful life prediction even for certain simple problems involving
Gaussian random variables and linear state-prediction mod-
els. Therefore, it is necessary to resort to computational method-
ologies for such uncertainty quantification and compute the
probability distribution of remaining useful life prediction.
While different types of uncertainty quantification method-
ologies were discussed, there are still several challenges that
exist in this regard (Sankararaman & Goebel, 2014), and fur-
ther research is necessary to investigate the applicability of
these methods to prognostics and health monitoring applica-
tions.
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ABSTRACT 

In Condition-Based Maintenance (CBM), Fault Detection 
(FD) systems monitor the health state of the components 
and aid the operator to decide whether a maintenance 
intervention is necessary. A FD system is a decision-aid tool 
typically based on i) a reconstruction model that estimates 
(reconstructs) the values of measurable signals in normal 
conditions, and ii) an analyzer of the differences (residuals) 
between the measured and reconstructed values: abnormal 
conditions are detected when residuals are statistically 
significant. The performance of the reconstruction model is 
influenced by several sources of uncertainty which can 
influence the operator decision: 1) measurement errors, 2) 
intrinsic stochasticity of the physical process, 3) uncertainty 
on the settings of the model parameters, and 4) uncertainty 
on the model output due to incompleteness of the training 
data. The objective of the present work is the quantification 
of the overall uncertainty affecting the model 
reconstructions. The proposed novel approach for 
uncertainty quantification relies on the estimation of 
Prediction Intervals (PIs) by using Order Statistics (OS) for 
a pre-defined confidence level. The proposed approach is 
verified with respect to an artificial case study; the obtained 
results show that the approach is able to guarantee the 
desired level of confidence on the correctness of the 
detection and provide the decision maker with the required 
information for establishing whether a maintenance 
intervention is necessary.  

Keywords: Signal Reconstruction, Fault Detection, 
Uncertainty, Prediction Intervals, Auto-Associative Kernel 

Regression, Order Statistics, Scale Factor. 

1. INTRODUCTION 

Recent developments in data processing and computational 
capabilities are encouraging industries such as nuclear, oil 
and gas, chemical, automotive and aerospace to apply 
Condition-Based Maintenance (CBM) (Campos, 2009) for 
increasing system availability, reducing maintenance costs, 
minimizing unscheduled shutdowns and increasing safety 
(Thurston & Lebold, 2001).   

A typical scheme of CBM can be described as follows: a 
Fault Detection (FD) system continuously collects 
information from sensors mounted on the component of 
interest (Ahmad & Kamaruddin, 2012; Montes de Oca, Puig 
& Blesa, 2012) and delivers a decision regarding its health 
state (either normal or abnormal conditions). In case of 
abnormal conditions, an alarm is triggered and the decision 
maker decides whether it is necessary to perform a 
maintenance action or it is possible to postpone it. In this 
work, we consider a FD system architecture based on an 
empirical reconstruction model and a decision tool. 

Different empirical models have been used with success to 
estimate (reconstruct) the expected values of the signals in 
normal conditions. Typical examples include Artificial 
Neural Networks (ANNs) (Hines, Wrest & Uhrig, 1997; 
Safty, Ashour, Dessouki & Sawaf, 2004; Rahman, 2010), 
Auto-Associative Kernel Regression (AAKR) (Chevalier, 
Provost & Seraoui, 2009; Baraldi, Canesi, Zio, Seraoui & 
Chevalier, 2010; Baraldi, Di Maio, Pappaglione, Zio & 
Seraoui, 2012), Evolving Clustering Method (ECM) (Zhao, 
Baraldi & Zio, 2011), Principal Component Analysis (PCA) 
(Garcıa-Alvarez, 2009; Baraldi, Zio, Gola, Roverso & 
Hoffmann, 2011), Independent Principal Component 
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Analysis (Ding, Hines & Rasmussen, 2003), Support Vector 
Machines (SVMs) (Zavaljevski & Gross, 2000; Batur, Zhou 
& Chan, 2002; Laouti, Sheibat-Othman & Othman, 2011) 
and Fuzzy Similarity (Baraldi, Di Maio, Genini & Zio, 
2013). 

The decision tool is typically constructed on the analysis of 
the differences (residuals) between the measured and the 
reconstructed values of the n signals at time t, ( )testx t  and 

( )testx t
 , respectively, in order to decide whether the 

component is in normal or abnormal conditions (Figure 1). 
In practice, two possible cases may arise at time t: a) 
reconstructions are similar to measurements, 

( ) ( )test testx t x t
   b) reconstructions are different from 

measurements, ( ) ( )test testx t x t
  . In the former case, the 

component is recognized to be in normal conditions (nc) and 
the alarm is not triggered, whereas in the latter case 
abnormal conditions (ac) are detected and the alarm is 
triggered.  

 
Figure 1. Traditional FD system. 

Independently from the choice of the reconstruction model 
and of the method adopted to analyze the residuals, different 
sources of uncertainty may influence the performance of the 
FD system and can cause false or missing alarms (Helton, 
1994; Zheng & Frey, 2005; Aven & Zio, 2012).  

In this context, the present work focuses on the analysis of 
the uncertainty in the signal reconstruction phase of the FD 
process. In particular, we consider the following sources of 
uncertainty: 1) the measurement errors, 2) the inherent 
variability (stochasticity) of the physical process, 3) the 
uncertainty on the settings of the reconstruction model 
parameters, and 4) the uncertainty on the reconstruction 
model output due to incompleteness of the training data. 
The objective is the quantification of the overall uncertainty 
which the reconstructions provided by the empirical model 
are subject to. To this aim, we propose a novel method 
based on the estimate of Prediction Intervals (PIs) by using 
Order Statistics (OS) theory. For illustration purposes, we 
adopt the AAKR technique to build the reconstruction 
model, but the approach proposed is general and can be 

applied to any other techniques for developing the 
reconstruction model. 

The method for the quantification of the uncertainty on the 
signal reconstructions is verified with respect to an artificial 
case study representing the behavior of a component during 
operational transients. This situation, characterized by a 
non-stationary behavior of the signals, has been chosen due 
to the criticality of the FD task during operational transients 
(Baraldi et al. 2012). In particular, the time evolution of 4 
signals during various start-up transients have been 
simulated and used to assess the performance of the method 
in the quantification of the uncertainty on the 
reconstructions. Artificial data have been used in order to 
allow testing the approach on a large number of different 
simulated transients and, thus, to evaluate its capability of 
correctly quantify the uncertainty on the reconstruction. 

The remaining of this paper is organized as follows; in 
Section 2, a description of the four sources of uncertainty to 
which a FD system is subject is provided. In Section 3, a 
reconstruction model for signal reconstruction during 
operational transients is developed, and a method for 
estimating the PIs of the reconstruction is proposed. In 
Section 4, an artificial case study representing the 
component behavior during typical start-up transients is 
introduced and, in Section 5, the results of the application of 
the proposed method are discussed. Finally, some 
conclusions are proposed in Section 6. 

2. SOURCES OF UNCERTAINTY IN FD SYSTEMS 

The reconstructions provided by an empirical model, e.g., 
AAKR (Chevalier et al., 2009; Baraldi et al., 2010; Baraldi 
et al., 2012), are subject to the following 4 sources of 
uncertainty (Lin & Stadtherr, 2008; Baraldi et al., 2011; 
Ramuhalli, Lin, Crawford, Konomi, Braatz, Coble, 
Shumaker & Hashemian, 2013): 
 

1. the measurement errors, which can be due to systematic 
or random errors of the sensors; 

2. the inherent variability (stochasticity) of the physical 
process, which causes different evolutions of the signal 
during identical operational transients: e.g., during two 
different start-up transients of the same component in 
the same environmental and operational conditions, 
different signal evolutions are observed. 

3. the uncertainty on the correct setting of the AAKR-built 
model parameters. In practice, according to the AAKR 
method, signal reconstructions are built on the basis of 
a measure of similarity between the test pattern and 
“neighbouring” training patterns (Appendix A.1). The 
computation of the similarity measure is based on a 
kernel function characterized by a parameter, called 
bandwidth, whose value is typically set by following a 
trial and error procedure on some validation data. 

4. the uncertainty caused by the incompleteness of the 
training data. The performance of an empirical signal 
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reconstruction model built by AAKR is remarkably 
influenced by the quality and quantity of the training 
patterns (Appendix A.1). 

3. RECONSTRUCTION MODEL AND UNCERTAINTY 
QUANTIFICATION 

A typical reconstruction model receives in input at time t a 
vector ( ) ( ,1), ( , ),..., ( , )test test test testx t x t x t j x t n   



containing the test measurements of n signals, j=1,…,n. On 
the basis of historical measurements performed in normal 
conditions, the reconstruction model produces in output a 

vector ( ) ( ,1), ( , ),..., ( , )test test test testx t x t x t j x t n   
   

containing the values of the input signals expected in case of 
normal conditions at the present time t. For the sake of 
simplicity, the signal index j will be omitted from the 
notations ( , )testx t j and ( , )testx t j

, and will be used 
only when strictly required.  

3.1. Reconstruction of operational transients 

In Baraldi et al. (2012), different approaches to the problem 
of signal reconstruction during operational transients have 
been compared. The obtained results have shown that in 
order to reduce the computational efforts and to increase 
model reconstruction accuracy, it is useful to develop a final 
reconstruction model made by several reconstruction 
models, each one dedicated to a different operational zone 
of the component. To this aim, the training patterns are split 
into different sets, according to the different operational 
zones. Then, for each operational zone, a dedicated AAKR 
model is built using the corresponding training set. Once the 
reconstruction model has been built, it can be used on line 
for the signal reconstruction task by sending the test pattern,

( ),testx t
to the corresponding reconstruction model (Figure 

2). In this case, looking at the signal value it is possible to 
select the corresponding AAKR model. However, for more 
complex case studies, where discontinuity of the 
reconstructed variable should be avoided when the model 
change, one can rely on other algorithms like Takagi-
Sugeno concept and Bayes approaches for AAKR model 
averaging. 
 

 
Figure 2. Scheme of AAKR model selection. 

It is worth mentioning that abrupt signal changes that might 
be induced by AAKR model switching have been 
accommodated in our approach because different models 
have different thresholds on detection and triggering the 
alarm. 

3.2. Uncertainty quantification using PIs 

The uncertainty on the signal reconstruction provided by an 
empirical model can be quantified by using PIs. With 
respect to a component in normal conditions, a PI with 
confidence level 1-σ is defined as an interval, 

( ), ( )lower upperx t x t  
 

, such that the probability that the 

measurement of signal j at time t, xtest(t), falls within the 
interval is equal to 1-σ (Eq. (1)) (Office of Nuclear 
Regulatory Research, 2007; Rasmussen, Wesley Hines & 
Gribok, 2003). In other words, assuming that the component 
is in normal conditions: 

  ( ) ( ), ( ) 1test lower upperp x t x t x t     
 

 
  (1) 

In order to assess the correctness and effectiveness of the 
estimated prediction intervals, two indicators are usually 
considered: the coverage, i.e., the fraction of patterns in a 
validation set which actually fall within the prediction 
interval and the prediction interval width. Desiderata are 
that a PI with confidence 1-σ has coverage of at least 1-σ 
and width is as small as possible.  

Satisfactory PI estimates of time series data have been 
obtained by using nonlinear regression techniques such as 
Artificial Neural Networks (ANN), Neural Network Partial 
Least Squares (NNPLS), Kernel Regression (KR) and 
Evolving Clustering Method (ECM)) (Rasmussen et al., 
2003; Zhao et al., 2011; Ak, Li, Vitelli & Zio, 2013; Zhao, 
Tao, Ding & Zio, 2013). In applications developed for the 
nuclear industry, PIs associated to normal component 
operations have been calculated, using Eq. (2) (Rasmussen 
et al., 2003; Office of Nuclear Regulatory Research, 2007): 

 , /2( ) ( )upper lower test
Nx t x t t A B   

 
(2) 

  1,...,( )
val

val
m NA var x t  

  

  
2

1
( ) ( ) /

valN
val val

m m val
m

B x t x t N


  
 

 

where, ( )val
mx t  is the value of signal  j measured at time 

tm after the beginning of the transient of a validation set, 
( )val

mx t
is the signal reconstruction value of signal j 

provided by the empirical model at time tm of a validation 
set, Nval is the number of patterns in a validation set 

MODEL SELECTION
Test transient 

AAKR MODEL 1
OPERATIONAL ZONE 1

AAKR MODEL 2
OPERATIONAL ZONE 2

…( )testx t
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containing time series measurements performed in normal 
conditions, N is the number of training patterns used to train 
the empirical model, 1-σ is the confidence level (0≤ σ≤1), 

/2
Nt  is the t-distribution value for a given σ and number of 

training patterns.  

It is important to mention that the patterns in the validation 
set are different from those in the training set, the former 
being used to optimize the kernel bandwidth parameter (see 
Appendix A.3 for more details) and to calculate the PIs, and 
the latter to train the reconstruction model, and that the 
quantity A B is typically referred to as prediction 
error. In this work, it is denoted as ε. 

In this work, a confidence level, 1-σ equals to 95% is 
considered. It is worth mentioning that this latter value has 
been chosen as per the Nuclear Regulatory Commission 
guidelines that require using the 95th percentile largest 
uncertainty estimate (Office of Nuclear Regulatory 
Research, 2007; Denning, Aldemir & Nakayama, 2012). 
However, setting up the confidence level depends upon the 
industrial application. In that case, the value of /2

Nt   for 
N>30 is close to 2. Notice that from the point of view of the 
FD, the higher is the confidence level, 1-σ, the larger is the 
obtained prediction interval and the lower is the expected 
false alarm rate (γ). On the other side, the larger is the 
prediction interval, the higher is the expected missing alarm 
rate (β) and the longer is the detection delay time. 

A drawback of performing PIs quantification using Eq. (2) 
is that the prediction interval width is independent from the 
test patterns, ( )testx t

. This is not satisfactory since the 
empirical model performance may vary in different zones of 
the training space, according to the density and information 
content of the training patterns available to build the model. 
Thus, prediction interval widths are expected to be different 
for different patterns ( )testx t

, with smaller PI width when 
the test pattern is in a zone characterized by a high density 
of training patterns. 

Furthermore, when the AAKR is applied to the 
reconstruction of operational transients, Eq. (2) typically 
leads to very large PIs for all measurements. This is due to 

the term  1,...,var ( )
val

val
m Nx t 


which, even in the case of 

reconstructions very close to the signal measurements, can 
be large due to the variability of the patterns in the 
validation set.  

To overcome these limitations, in the present work we 
propose to: 

1. reduce the variability of the patterns in the validation 
set by considering, for the computation of the PI at time 
tk, k=1,...,Np, only the reconstructions in the validation 

set performed at time tk after the beginning of the 
transient, with Np equals to the number of patterns in 
each test, validation and training transients. Thus, 
instead of considering, as in Eq. (2), the variance of all 
the Nval reconstructions of the validation set, the 
variance is computed by considering the NV<Nval 
reconstructions referring to patterns measured only at 
time tk. 

2. replace /2
Nt  with a scaling parameter called scale factor 

(α) which is used to rescale the prediction error ε, so 
that, at each time tk it yields a PI with a specified 
coverage and with an acceptable width (Bouckaert, 
Frank, Holmes & Fletcher, 2011). The proper number 
NV of measurements to estimate the PIs with a given 
coverage 1-σ is selected relying on Order Statistics 
(OS), according to Secchi, Zio and Di Maio (2008). In 
this regard, using the 95% confidence level; the number 
NV of measurements used to estimate the PIs at each 
time tk is estimated and is equal to 59. 

In practice, at time tk after the beginning of the transient, for 
a reconstructed signal j, ( )test

kx t
, Eq. (2) becomes (for 

large values of NV): 

 
 , ( ) ( )upper lower testx t x t C D   

 
(3) 

  1,...,ˆ ( )val
i NV kC var x t

 
 

  
2

1

ˆ ( ) ( ) /
NV

val val
i k i k

i
D x t x t NV



 
 

 

The method goes along the following steps. It entails an 
offline procedure for quantifying the scale factor α, and an 
online procedure for FD.  

Step 1: Offline signal reconstruction. Using N training data, 
the AAKR-built model provides the reconstruction 
ˆ ( )val

i kx t of signal j in the i-th validation transient of length 
Np, i=1,…,NV, (i.e., N=Np*NT, where NT is the number of 
training transients each of length Np). These historical 
measurements are collected into the matrix X  whose 
generic element x(tk,j) is the measured value of signal j at 
time tk, k=1,…,Np. 

Step 2: Residual calculations. At each k-th time, the 
absolute difference between the measured value and its 
reconstruction of signal j is calculated as 

( ) ( ) ( )val val
i k i k i ke t x t x t 

of the i-th validation 

transient, i=1,…, NV. 

Step 3: Prediction error calculations. At each time k, the 
prediction error of signal j is calculated as 

European Conference of the Prognostics and Health Management Society 2014

368



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014 

5 

   ( ) var ( ) ( )val val
k k k k kt x t bias x t    by 

calculating the variance  var ( )val
k kx t

 (Eq. (4)) and the 

bias  ( )val
k kbias x t

 (Eq. (5)) of the NV reconstructions 

of signal j (for large values of NV): 

 
 

 
2

1 1
( ) ( ) /

var ( )

NV NV
val val
i k i k

i ival
k k

x t x t NV
x t

NV
 

 
 

 
  


 

(4) 

  
 2

1
( ) ( )

( )

NV
val val
i k i k

val i
k k

x t x t
bias x t

NV




 


 

(5) 

Step 4: Scale factor calculations. At each time k, α is 
calculated as the 95th percentile of the NV αi(tk), i=1,…, NV 
where αi(tk)=ei(tk)/ε(tk). The coverage capability depends on 
the number of the NV validation transients used. The 
advantages of using the scale factor are: 1) the trade-off 
between the coverage and the width is satisfied; 2) the 
technique is independent from the reconstruction method 
applied (Bouckaert et al., 2011); and 3) α deals with the 
uncertainty caused by the AAKR-built model. In practice, at 
each time k, if the AAKR reconstructions are inaccurate, 

then, the α values are large (i.e.,  

( ) ( ) ( ) , 1,...,val val
i k i k i ke t x t x t i NV  

is large) in 

order to achieve the desired coverage level (1-σ), and vice 
versa. 

In order to guarantee a certain coverage 1-σ (i.e., (1-σ) of 
the measurements xtest(tk) of signal j in normal conditions are 
within the PI at each time k), we need to find a scale factor 
such that (1-σ) of the αi(tk) are lower and the remainder 
higher than α. This value is denoted as αS(tk) where S
stands for “Sorted” and is found by sorting the NV available 
αi(tk) (Bouckaert et al., 2011), where NV is properly defined 
by OS (Wald, 1947; Secchi et al., 2008). For σ = 0.05; the 
correct scale factor may be denoted as α95 percentile(tk). 

Finally, within the online FD, for any test measurement 
xtest(tk) of a given signal j at each time k, Eq. (3) can be re-
written as: 

 , 95( ) ( ) ( ) ( )upper lower test percentilex t x t t t   
 (6) 

4. CASE STUDY  

In this work, an artificial case study has been designed to 
generate transients representative of the start-up behavior of 
a component (Baraldi, Di Maio & Zio, 2013). Each 
transient, fi (x(t, 1),...,x(t, 4)), is four-dimensional (i.e., n= 4 

signals) and has a time horizon of Np=101 time steps, in 
arbitrary units of measurements.  

With respect to normal conditions, 5500 transients 
representing the start-up of the component have been 
simulated. The signal evolutions are characterized by a 
sigmoid behavior ( )nc

i kx t , k=1,…,101, i=1,…,5500 given 
by Eq. (7): 

 3( ) 2 1 10
2

nc k
i k

tx t a erf        
    

(7) 

where α, μ and ζ are random parameters in arbitrary units. In 
practice, the simulations have been performed by sampling 
random values of the parameter ζ from a Gaussian 
distribution ζ~N(0,1) and of the parameters α, μ from 
uniform distribution functions with lower and upper bounds 
reported in Table 1.  

Figure 3 shows the obtained evolutions of the four signals in 
the 5500 transients, 1:5500 ( )nc

i kx t


.   

   
Figure 3. Simulated time evolution in normal conditions of 

the 4 signals in 5500 start-up transients. 

Among them, we have used NT=300 transients to train the 
AAKR-built model, NV=59 transients as validation set to 
optimize the value of the model parameter, i.e., the kernel 
bandwidth h, and for calculating the scale factors αi(tk). The 
remaining transients are used to verify the performance of 
the proposed method. 

Furthermore, 50 additional abnormal conditions transients 
(Eq. (8)) have been simulated in order to reproduce the 
signal behaviours in abnormal conditions (Figure 4) by 
assuming a different time evolution for one signal randomly 
chosen among the four available. It is worth mentioning that 
this situation, characterized by assuming only one signal in 
abnormal conditions to create the abnormal transients has 
been chosen due to the criticality of the FD task under this 
assumption, i.e., this situation is considered the most 
challenging case. 

 3( ) 10ac
i k kx t a t    (8) 
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where a  is a random parameter whose values are sampled 
from a uniform distribution with lower and upper limits 
reported in Table 1. 

Table 1. Limits of the uniform distributions from which the 
parameters in Eq. (7) and Eq. (8) have been sampled. 

 

Parameter Lower bounds Upper bounds 
a 0.45 0.55 
μ 2.2 2.7 
a  0.3 0.4 

 

 
Figure 4. Simulated time evolution in abnormal/normal 

conditions of signal 1 and the other three signals, 
respectively, in 50 start-up transients. 

4.1. Reconstruction model  

The final model for the reconstruction of signals during 
start-up transients is made by 5R  AAKR-built 
reconstruction models, each one dedicated to a different 
operational zone. The different operational zones are 
defined according to the time elapsed from the start of the 
transient and are reported in Table 2. In order to develop the 
overall reconstruction model, the training patterns are split 
into different sets, according to the time at which they have 
been measured. Then, for each operational zone, an AAKR 
model is built using the corresponding training set. Once the 
FD system has been built, it can be used on line for the 
signal reconstruction task by sending the test pattern to the 
corresponding reconstruction model. 

Table 2. Definition of the five operational zones and their 
optimal h values for the four signals. 

 

Zone 
# 

Time 
period Operative conditions h 

values 
1 1-20 Slow start up 0.05 
2 21-40 Fast start up 0.05 
3 41-60 Start converging to a steady state 0.01 
4 61-80 Almost  steadiness 0.009 
5 81-101 Steady state (nominal value) 0.005 

The AAKR models have been trained and their parameters 
optimized as described in Appendix A.3. In particular, the 
parameter h values have been identified by optimizing the 

accuracy of the signal reconstructions in normal conditions 
and their robustness in abnormal conditions. The obtained 
optimal values of parameter h in the different operational 
zones are reported in Table 2. 

5. VERIFICATION OF THE PROPOSED METHOD FOR 
UNCERTAINTY QUANTIFICATION 

In this Section, the results obtained by applying the method 
for PI estimation to the case study of Section 4 are 
presented. In Subsection 5.1 the PIs obtained by applying a 
traditional approach for PI estimation, based on a single 
AAKR-built reconstruction model and Eq. (2), are 
compared to those obtained by using the proposed method. 
Subsection 5.2 presents the results of an extensive test 
performed in order to understand whether the obtained PIs 
with confidence level 95% provide satisfactory coverage 
levels, i.e., the fraction of patterns in a validation set that 
actually falls within the quantified prediction interval is at 
least equal to 95%, whereas in Subsection 5.3 the ability of 
the method to properly represent the four sources of 
uncertainty affecting the signal reconstructions (namely, 
measurement errors, intrinsic stochasticity of the physical 
process, uncertainty on the correct setting of the AAKR 
parameter, and uncertainty caused by the incompleteness of 
the training data) is discussed. 

5.1. PI estimation 

The PIs obtained in the reconstructions of signal 1, xtest(tk,1), 
of a test transient by considering a single AAKR-built 
reconstruction model and Eq. (2), are shown in Figure 5. 
Notice that, as expected, the obtained PI widths are constant 
and very large. This is due to the fact that, according to Eq. 
(2), the PI widths are independent from the test patterns, 
xtest(tk, 1), and are computed by considering the variance,

 1,...,var ( ,1)
val

val
m Nx t 


, of the reconstructions of patterns 

taken in different zones of the operational transients, and 
thus characterized by an high variability of signal values. 

 
Figure 5. PIs of the reconstruction of 21 patterns obtained 

using Eq. (2). 

Figure 6 shows the results obtained by applying the 
procedure of Section 3 to a similar transient. Notice that the 
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PI widths are variable during the time evolution and with a 
reduced width with respect to those obtained in Figure 5. 

 
Figure 6. PIs of the reconstruction of 21 patterns obtained 

using the proposed method. 

It is worth noticing that the PI widths of the reconstructions 
in zone 1 (time from 1 to 20) are smaller than those obtained 
in zone 3 (time from 41 to 60). This is due to the variability 
of the training patterns used to train the AAKR-built 
reconstruction model, which is lower at the beginning of the 
transient. 

5.2. Verification of the prediction interval coverage 

In order to verify whether the coverage of the obtained 
prediction intervals with confidence level 95% is 
satisfactory, i.e., of at least 95%, we have performed an 
extensive test using 5000 normal conditions test transients. 
Figure 7 shows the coverage of the obtained prediction 
intervals for the first signal, xtest(tk, 1), at different times 
after the beginning of the transient. The test has been 
performed using NV value equal to 59. In practice, we have 
counted how many times the signal measurement falls 
within the prediction interval at the different times. 

 
Figure 7. Coverage of the PI with a level of confidence 95% 

at different times considering 59 validation transients. 

Notice that the obtained coverage values are, as expected, 
close to the confidence level 95%, as it is confirmed by the 
overall coverage throughout all the transient length which is 
equal to 94.6%. 

To investigate the impact of the number of validation 
transients to the overall coverage, the same test has been 

performed with a random number of validation transients, 
NV=20, lower than 59. As expected, the overall coverage 
drops down to 88% (Figure 8). This is indeed due to the 
inadequate use of OS. If the number NV had been taken 
larger than 59, the overall coverage would be exceed the 
95%. 

 
Figure 8. Coverage of the PI with a level of confidence 95% 

at different times considering 20 validation transients. 

5.3. PI capability of quantifying the different uncertainty 
sources 

In this Subsection, without any loss of generality, we focus 
on the signal reconstruction problem during the first 
operational zone of the component transient. The evolutions 
of the NT=300 training transients used to train the AAKR 
model in zone 1 are shown in Figure 9. 

In order to verify the capability of the PI estimates of 
properly quantifying the effect of different sources of 
uncertainty, we have performed the following experiments: 

1) variation of the measurement error 
2) variation of the intrinsic stochasticity of the 

physical process 
3) variation of the AAKR bandwidth parameter value  
4) variation of the number of transients used to train 

the AAKR model. 

Experiments 1), 2), and 4) require generating new sets of 
transients, whereas in experiment 3) different AAKR-built 
models are generated and trained using the same set of 
transients illustrated in Section 4. 

 
Figure 9. Training transients of signal 1 (zone 1). 
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5.3.1. Variation of the measurement error 

Five different sets of transients characterized by different 
values of the measurement error have been simulated. In 
practice, a noise characterized by different standard 
deviations has been added to the signals generated 
according to Eq. (7) and Eq. (8). Table 3 reports the five 
levels of standard deviation considered. The simulated 
transients have been used to train the AAKR model, to find 
the prediction intervals according to the proposed method 
and to compute the overall coverage of the prediction 
intervals. For each level of noise, we have repeated the 
AAKR development of the model and the PI estimation five 
times using different random partitions of the available 
transients in training, test and validation sets. The same 
cross-validation procedure is applied also in Subsections 
5.2.2, 5.2.3 and 5.2.4. In what follows, we present the 
average of the five obtained coverage values and their 
standard deviations.  

Table 3. Five levels of standard deviation characterizing the 
noise in the signals generated by Eq. (7) and Eq. (8). 

 

Noise Levels Standard Deviations values 
1 0.5 
2 1 
3 1.5 
4 2 
5 2.5 

Figure 10 (top) shows the overall coverage obtained 
considering the different measurement noise levels. Notice 
that the obtained coverage values are close to 95% and that 
the coverage is not influenced by the measurement error. 
Figure 10 (bottom) shows the average width of the 
prediction interval. As expected, the higher is the 
measurement noise, the larger is the prediction interval 
width. This experiment confirms the ability of the proposed 
method to properly quantifying the effect of the 
measurement error on the PI estimate: the method is able to 
achieve the desired coverage level regardless of the level of 
the noise, by adjusting the PI width. 

 
Figure 10. Overall mean coverage (top) and PI width 

(bottom), considering different measurement noise levels. 

5.3.2. Variation of the intrinsic stochasticity of the 
physical process 

In the considered artificial case study, the stochasticity of 
the physical process is represented by the variation of the 
parameters α, μ, and a  in Eq. (7) and Eq. (8), which 
determines the transients behaviour. In order to simulate 
different levels of stochasticity in the process, we have 
sampled the values of these parameters from different 
probability distributions. Table 4 reports the considered 
distributions in the four cases: the larger is the range of the 
uniform distributions, the higher is the stochasticity of the 
process. 

Table 4. Distributions from which the parameters of Eq. (7) 
and Eq. (8) are sampled, in the considered four cases 

characterized by different levels of process stochasticity. 
 

Case # a μ a   
1 U(0.48,0.53)  U(2.33, 2.58)  U(0.33,0.375)  
2 U(0.45,0.55)  U(2.2, 2.7)  U(0.3,0.4)  
3 U(0.435,0.58)  U(2.08, 2.835)  U(0.28,0.425)  
4 U(0.4,0.6)  U(1.95, 2.95)  U(0.25,0.45)  

The overall coverage obtained in the four cases is shown in 
Figure 11 (top): the model achieves satisfactory coverage 
values regardless the level of stochasticity of the process. As 
in the previous case, this is obtained by adjusting the PI 
width (Figure 11 (bottom)): the wider the range of the 
uniform distributions of the parameters of the equations 
governing the transients behaviour, i.e., the higher the level 
of stochasticity in the process, the wider the width of the 
PIs. 

 
Figure 11. Overall mean coverage (top) and PI width 

(bottom), considering different cases of process 
stochasticity. 

5.3.3. Variation of the AAKR bandwidth parameter 
value 

In this experiment, the same set of transients illustrated in 
Section 4 have been used to train eight different AAKR 
models characterized by different values of the bandwidth 
parameter, h, (h = 0.005, 0.009, 0.02, 0.05, 0.3, 0.5, 0.9, 
1.5). 
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The overall coverage of the prediction intervals with 
confidence 95% obtained by the eight different AAKR 
models is shown in Figure 12 (top). Notice that the obtained 
coverage values are close to the target of 95%. Figure 12 
(bottom) shows that very small and very large values of h 
are characterized by large PI widths. This is due to the fact 
that the corresponding reconstruction models are 
characterized by bad performances and, thus, in order to 
obtain the desired coverage, the prediction interval is 
enlarged. Furthermore, it is interesting to observe that the PI 
width is minimum for the value of h=0.05, which minimizes 
the reconstruction error (see Appendix A.3). 

 
Figure 12. Overall mean coverage (top) and PI width 
(bottom), considering different AAKR-built models 
characterized by different values of the bandwidth 

parameter. 

5.3.4. Variation of the number of transients used to train 
the AAKR model 

In order to investigate the effect of the uncertainty caused 
by the incompleteness of the training data, different AAKR 
models have been developed using different numbers of 
training transients. In particular, we have trained three 
AAKR models based on 100, 300 and 500 training 
transients, NT. In each case, the optimal h value has been 
identified by considering the Mean Squared Error, MSE (see 
Appendix A.3). 

The overall coverage obtained in the three cases is shown in 
Figure 13 (top). As expected, the coverage is close to the 
target value of 95% and the PI width tends to decrease as 
the number of training transients increases (Figure 13 
(bottom)). This latter effect is due to the fact that model 
accuracy tends to increase with the number of patterns used 
to train the empirical model (see Appendix A.1). 

 
Figure 13. Overall mean coverage (top) and PI width 

(bottom), considering different number of training 
transients. 

6. CONCLUSIONS 

In this work, a novel method to quantify the uncertainty to 
which signal reconstructions are subject has been 
developed. Uncertainties are quantified in the form of 
prediction intervals which have been estimated using Order 
Statistics (OS) theory. The capability of the methods to deal 
with measurement errors, intrinsic stochasticity of the 
physical process, uncertainty on the settings of the model 
parameters and uncertainty on the signal reconstructions due 
to incompleteness of the training data has been shown with 
respect to an artificial case study regarding the monitoring 
of a component during start-up transients.  
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APPENDIX 

Appendix A.1 Auto-associative Kernel Regression 
(AAKR) 

Auto-associative kernel regression (AAKR) is a non-
parametric, empirical modelling technique that relies on 
historical measurements of the signals taken during normal 
conditions of the component to predict (reconstruct) the 
current signal measurements vector at a given time t, 

( )testx t
= [xtest(t, 1), xtest(t, j),…, xtest(t, n)], j=1,…,n; where 

n is the number of measured signals e.g., pressure, 
temperature, vibration, etc. as a weighted sum of those 
historical observations. The historical measurements 
performed at past time tk, k=1,...,N are collected into the 
matrix X  whose generic element x(tk, j) is the measured 
value of signal j at time tk  (Baraldi et al. 2012; Baraldi, 
Canesi, Zio, Seraoui & Chevalier, 2011; Di Maio, Baraldi,  
Zio & Seraoui, 2013).  

AAKR technique requires three different sets of data:  

1. Historical data (often called training data) which are 
historical measurements of the signals taken during 

normal conditions of the component used to 
train/develop the model for accurate reconstructions. 

2. Validation data which are historical measurements of 
the signals taken during normal/abnormal conditions of 
the component used to optimize the model parameters, 
such as the kernel bandwidth h, as we shall show in the 
following. 

3. Test data which are the measurements taken at current 
time t to perform a real-time health assessment of the 
component.  

In Figure 14, a sketch of the procedure for predicting one 
test measurement at time t: ( )testx t

 = [xtest(t, 1), xtest(t, 2)] is 
provided. Historical data which fall within the bandwidth h 
have a large impact on the reconstructed values ( )x t .  

 
Figure 14. AAKR basic principle. 

In more details (Baraldi et al. 2011), the j-th component at 
time t of ( , )testx t j

is given by Eq. (9): 
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Weights w(tk) are similarity measures obtained by 
computing the Euclidean distance between the current 
sensor measurement xtest(t, j) and the k-th observation of  

X , Eq. (10): 
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and inserting it in the Gaussian kernel Eq. (11): 
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where h  is the Gaussian kernel bandwidth. 

In order to provide in Eq. (10) a common scale across the 
different signals measuring different quantities, it is 
necessary to normalize their values. In the present work, the 
signal values at time t are normalized according to Eq. (12): 

ReconstructionHistorical measurements Test measurement

h

( ,1)testx t

( ,2)testx t
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(12) 

Where, xtest(t, j) is a generic measurement of signal j, μ(j)  
and σ(j) are the mean and the standard deviation of the j-th 

signal in X : 
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A.2 Performance Metrics 

In order to evaluate the performance of AAKR model, the 
following criteria should be considered (Baraldi et al. 2011): 

1. The accuracy which is the ability of the model to 
correctly and accurately reconstruct the signal values of a 
component in normal conditions: An accurate Fault 
Detection (FD) system allows reducing the number of false 
alarms (γ). The accuracy metric is typically defined as the 
Mean Squared Error (MSE) between the model 
reconstructions and the signal measured values. 

Let 
test

ncX be a matrix of measured data whose generic 
element ( , )test

nc kx t j represents the k-th time measurement, 
k=1,...,Np, of the j-th measured signal, j=1,...,n, taken during 
normal conditions, and ( , )test

kx t j
its reconstruction in nc; 

then, the MSE with respect to signal j is given by Eq. (14): 
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A global accuracy measure that takes into account all the 
monitored signals and test patterns is defined by Eq. (15): 
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Notice that, although the metric is named accuracy, it is 
actually a measure of error and, thus, a low value is desired. 

2. The robustness which is the ability of the model to 
reconstruct the signal values of a component in abnormal 
conditions: a robust AAKR model reconstructs the value of 
a measured signal as if the component is in normal 

conditions thus, allows reducing the number of missing 
alarms (β). The robustness metric is here defined as the MSE 
between the model reconstructions and the mean of the 

historical data X . 

Let 
test

acX be a matrix of measured data whose generic 
element ( , )test

ac kx t j represents the k-th time measurement, 
tk, k=1,...,Np, of the j-th measured signal, j=1,...,n, taken 
during abnormal conditions, and ( , )test

kx t j
its 

reconstruction in nc and let  
mean

X be a mean matrix of the 
NT training transients, with length Np, computed at each 
time tk, k=1,...,Np whose generic element ( , )mean

kx t j
represents the mean of the k-th time observations performed 
at tk, k=1,...,Np, of the j-th measured signal, j=1,...,n, taken 
during normal conditions; then, the robustness  MSE  with 
respect to signal j is given by Eq. (16):  
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A.3 Kernel’s Bandwidth (h) Optimization  

The value of the kernel bandwidth has to be optimized to 
have a balance between the AAKR accuracy and robustness. 
That is, the optimum bandwidth h value that minimizes the 
product (Eq. (17)) between the global model accuracy, MSE, 
and the global model robustness, MSEac: 

  x acObjective Function MSE MSE  (17) 

Without loss of generality, the optimization of the AAKR 
model parameter, i.e., the kernel bandwidth h, is hereafter 
presented with respect to only the operational zone “1”. A 
cross-validation approach can serve the scope of optimizing 
the objective function; for the sake of saving computational 
time, in this work a large set of data of the training and 
validation transients have been used, i.e., we have used 
NT=300 transients to train the AAKR-built model and 
NV=59 transients as validation set to optimize the value of 
the model parameter, h. Figure 15 shows the objective 
function (Eq. (17)) obtained when 11 potential settings of h 
(0.005, 0.007, 0.009, 0.01, 0.05, 0.09, 0.10, 0.15, 0.20, 0.25, 
0.30) are used. It is worth noticing that the optimal 
bandwidth value for the first operational zone is close to 
0.05. The optimum h values of the remaining four 
operational zones are estimated using the same procedure. 
The obtained optimal values of parameter h of the five 
operational zones are reported in Table 2. 
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14 

 
Figure 15. Reconstruction error (objective MSE function) 

versus kernel’s bandwidth (h) values. 

A local optimum value of h and a misleading setting of h 
may lead to inaccurate reconstructions that have to be 
tackled by properly quantifying the reconstructions model 
uncertainty. As an example, in Figure 16 it can be seen that 
with a small bandwidth (h = 0.2) large weights (similarities) 
are assigned to historical data whose distance is very close 
to zero, whereas with a larger bandwidth (h = 1.5), the 
weight assignment is less specific (Office of Nuclear 
Regulatory Research, 2007).  

 
Figure 16. Gaussian Kernel Function with two h values. 
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ABSTRACT

A general framework to approach the challenge of uncertainty
propagation in model based prognostics is presented in this
work. It is shown how the so-called Point Estimate Meth-
ods (PEMs) are ideally suited for this purpose because of the
following reasons: 1) A credible propagation and represen-
tation of Gaussian (normally distributed) uncertainty can be
done with a minimum of computational effort for non-linear
applications. 2) Also non-Gaussian uncertainties can be prop-
agated by evaluating suitable transfer functions inherently.
3) Confidence intervals of simulation results can be derived
which do not have to be symmetrically distributed around
the mean value by applying PEM in conjunction with the
Cornish-Fisher expansion. 4) Moreover, the entire probability
function of simulation results can be reconstructed efficiently
by the proposed framework. The joint evaluation of PEM
with the Polynomial Chaos expansion methodology is likely
to provide good approximation results. Thus, non-Gaussian
probability density functions can be derived as well. 5) The
presented framework of uncertainty propagation is derivative-
free, i.e. even non-smooth (non-differentiable) propagation
problems can be tackled in principle. 6) Although the PEM
is sample-based the overall method is deterministic. Com-
putational results are reproducible which might be important
to safety critical applications. - Consequently, the proposed
approach may play an essential part in contributing to render
the prognostics and health management into a more credible
process. A given study of a generic uncertainty propagation
problem supports this issue illustratively.

This work includes unpublished elements of the Ph.D.-Thesis
(Schenkendorf, 2014).

1. INTRODUCTION

Model based approaches in fault diagnosis and identification
(FDI) have become quite popular in last decades. The value,

René Schenkendorf et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

however, of any derived mathematical model is directly linked
to its predictive power. That is, to describe the essential fea-
tures of interest as credibly as possible. In consequence of
a potential model misspecification and measurement uncer-
tainties the statistics of model based results has to be taken
into account adequately. This is especially true in the field of
prognostics and health management. For instance, the derived
remaining useful life (RUL) of an analyzed device might suf-
fer in its significance without any information of its credi-
bility. The underlying problem of uncertainty propagation,
however, is challenging for many real life applications. In
this paper it is demonstrated how Point Estimate Methods
(PEMs) are ideally suited to tackle the problem of uncertainty
propagation efficiently, i.e. utilizing a minimum of computa-
tional effort but ensuring a good approximation power even
for highly non-linear applications - which is usually the case
in RUL calculation.

The remainder of this paper is organized as follows. In Sec-
tion 2 the general problem of uncertainty propagation is ad-
dressed. In Section 3 the basics of the Point Estimate Meth-
ods are summarized. Moreover, it is discussed how non-
Gaussian uncertainties can be considered in the PEM frame-
work. Global sensitivities are addressed in 4. The proposed
framework of uncertainty propagation is illustrated in Section
5. Finally, the conclusion is given in Section 6.

2. UNCERTAINTY PROPAGATION

The continuously rising number of articles devoted to prob-
lems of uncertainty propagation/management in the field of
PHM (Saha, Goeble, Poll, & Christophersen, 2009; Daigle &
Goebel, 2010; Daigle, Saxena, & Goebel, 2012; Lapira, Bris-
set, Davari, Siegel, & Lee, 2012; Williard, He, Osterman, &
Pecht, 2013; Sankararaman & Goebel, 2013; Sankararaman,
Daigle, Saxena, & Goebel, 2013; Daigle & Sankararaman,
2013; Kulkarni, Biswas, Celaya, & Goebel, 2013; X. Zhang
& Pisu, 2014) is an excellent indicator for the significance of
this topic but highlights that there are still unsolved issues to
the same extent. Before introducing the PEM framework as

1
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a versatile tool for uncertainty propagation, general problems
in uncertainty propagation are briefly summarized.

To a certain extent, variability exists in any physical system.
The uncertainty quantification as well as its adequate repre-
sentation might be challenging in itself. Thus, to have a start-
ing point only problems are going to be analyzed which act in
the probabilistic framework exclusively. In general, the prob-
ability theory provides a comprehensive framework which,
however, may suffer in practicability in the presence of non-
linearity. Consequently, there is a keen demand in a credible
determination of probability density functions (PDFs) which
are associated to computational results in PHM. The concepts
of uncertainty propagation can be divided into analytical and
in approximate methods, respectively. Analytical approaches
might be suitable to illustrate the general concept of uncer-
tainty propagation for deliberately chosen problems, but they
suffer from practicability to the most real life applications.

2.1. Analytical Expressions

In general, the uncertainty propagation describes how a ran-
dom variable, ξ, is transferred by a (non)-linear function, g(·),
to the quantity of interest, η, according to

η = g(ξ) (1)

Occasionally, ξ and η are referred to as the input and the out-
put of an uncertainties propagation problem. For the pur-
pose of readability, the proposed methodologies are intro-
duced without loss of generality for 1-dimensional problems,
i.e., ξ ∈ R1 and η ∈ R1. Additionally, unless otherwise
specified, a standard Gaussian distribution of ξ is assumed,
ξ ∼ N (0, 1). One possible way to represent the uncertainty
about η consists in calculating the associated probability den-
sity function, pdfη . Assuming a monotonic function, g(·),
an analytical solution of the resulting PDF can be derived in
principle (Breipohl, 1970; Hines, Montgomery, Goldsman, &
Borror, 2003)

pdfη = pdfξ
(
g−1(η)

) ∣∣∣∣
dg−1(η)

dη

∣∣∣∣ (2)

Any non-monotonic function has to be split up into mono-
tonic sub-parts that are transferred separately (Breipohl, 1970;
Hines et al., 2003).

Another point of interest might be in characteristic quantities
of the associated PDF, i.e, statistical moments of pdfη can be
used as an alternative to characterize the induced uncertainty
about η (Kay, 1993; Hines et al., 2003). For instance, the
mean, E [g(ξ)] , and the related variance, σ2

η , are frequently
analyzed and can be determined by

E [g(ξ)] =

∫

Ω

g(ξ)pdfξdξ (3)

σ2
η =

∫

Ω

[g(ξ)− E [g(ξ)]]
2
pdfξdξ (4)

Here, Ω represents the integration domain, i.e., in case of
probability theory it is equivalent to the sample space (Maitre
& Knio, 2010). Throughout this work, also higher statistical
moments are applied, e.g., the third, µ3, and the fourth central
moment, µ4, are considered as well and expressed by

µ3 =

∫

Ω

(g(ξ)− E [g(ξ)])
3
pdfξdξ (5)

µ4 =

∫

Ω

(g(ξ)− E [g(ξ)])
4
pdfξdξ (6)

Unfortunately, the proposed analytical solutions of the PDF
and/or statistical moments of η can be solved only for a lim-
ited number of uncertainty propagation problems (Breipohl,
1970; Stengel, 1994; Hines et al., 2003). In practice, however,
approximate methods have to be applied. Here, the Taylor se-
ries expansion and sample-based approaches are of current
interest and reviewed subsequently.

2.2. Basic Approaches in Approximate Methods

In real life, the complexity of g(·) - if at all available explic-
itly - prohibits results in closed-form. Consequently, approx-
imate methods aim: (1) to replace g(·) by handy surrogate
functions, ĝ(·), which facilitate closed-form solutions of Eq.
(2)-(6). Or alternatively (2), to solve these integral expres-
sions by numerical routines approximately.

2.2.1. Taylor Series Expansion

To solve equations similar to Eq. (2)-(6) in closed-form the
mapping function, g(·), is approximated by a surrogate func-
tion, ĝ(·), first. Here, the most common approach is the Tay-
lor series expansion. Under the assumption that g(·) is suf-
ficiently differentiable, the uncertainty propagation function
can be expressed by a superposition of Taylor terms:

η ≈ ĝ(ξ) =

N∑

i=0

∂ig

∂ξi

∣∣∣∣
ξ=E[ξ]

(ξ − E[ξ])i

i!
(7)

Generally, this sum is limited to a certain extent, N << ∞,
which may introduce an approximation error but ensures a
manageable computation demand. In the field of uncertainty
propagation, therefore, the first-order Taylor expansion can
be considered as a standard approach with good reasons.

2
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According to Eq. (1), the first-order Taylor series approxi-
mation is expanded at ξ = E[ξ] as shown below assuming
without loss of generality a one-dimensional problem.

η ≈ η̂ = g(ξ) +
∂g

∂ξ

∣∣∣∣
ξ=ξ

(ξ − ξ) (8)

Here, the resulting function, η̂, acts as a surrogate of the orig-
inal function, η. Now, by evaluating η̂ instead of η, the deter-
mination of statistical moments can be performed easily. For
instance, the resulting mean E[η̂] is expressed by

E[η̂] = g(E[ξ]) (9)

In addition, the expectation of the squared difference of Eqs.
(8) and (9) results into the variance expression of η̂ according
to

σ2
η̂ =

(
∂g

∂ξ

∣∣∣∣
ξ=ξ

)2

σ2
ξ (10)

Obviously, the statistics about η is approximated by a lin-
earization scheme and, therefore, only valid under serious
constraints:

“The Taylor series will be a good approximation
if g(·) is not too far from linear within the region that
is within one standard deviation of the mean.”

A. M. Breipohl (Breipohl, 1970)

Naturally, the utilization of higher-order terms in the Tay-
lor series expansion improves the accuracy gradually. For
instance, it has been shown that even an incorporation of a
moderate number of higher-order terms leads to a significant
improvement in accuracy (Xue & Ma, 2012), but . . .

“In practice, even the second order approxima-
tion is not commonly used and higher order approx-
imations are almost never used.”

U. N. Lerner (Lerner, 2002)

The same is true, in case of non-Gaussian distributions and/or
correlated random variables, see (Kay, 1993; J. Zhang, 2006;
Mekid & Vaja, 2008; Anderson, 2011; Mattson, Anderson,
Larson, & Fullwood, 2012) and references therein.

Additionally, the Taylor series is limited to problems of dif-
ferentiable transfer functions, g(·). At first, that means, the
transfer function has to be known explicitly. Therefore, black-
box type functions cannot be addressed immediately. Sec-
ondly, even in case of explicit expressions, functions might
be non-differential at all, e.g, the maximum function belongs

to those terms. Hence, the Taylor series is likely to suffer in
precision as well as in applicability.

3. POINT ESTIMATE METHODS

The method of Unscented Transformation (UT), which had
been introduced by Julier and Uhlmann in 1994 (Julier &
Uhlmann, 1994), have become quite popular in non-linear fil-
ter theory over the last two decades. The mathematical basics
of UT, however, date back approximately 60 years in time
(Tyler, 1953) to the so-called Point Estimate Methods. For-
mulas had been of interest to solve multi-dimensional inte-
gration problems over symmetrical regions, e.g., symmetric
probability functions (Evans, 1967, 1974). Due to this sym-
metry, numerical integration techniques can be derived which
at best scale linearly to an n-dimensional integration prob-
lem. The general basics of PEMs are shortly summarized be-
low following the annotations given in (Tyler, 1953; Lerner,
2002).

In Point Estimate Methods, the fundamental idea is to choose
sample points, ξi, and associated weights, wi, in relation to
the first raw moments of the random input variable, ξ. Here,
the so-called Generator Function,GF [·], (Tyler, 1953; Lerner,
2002) is of vital importance. A GF describes how sample
points are directly determined in Rn by permutation and the
change of sign-combinations. For instance, the first three GFs
are illustrated with a problem inR3:

GF [0] = {(0, 0, 0)T } (11)

GF [±ϑ] = {(ϑ, 0, 0)T , (−ϑ, 0, 0)T , (0, ϑ, 0)T ,

(0,−ϑ, 0)T , (0, 0, ϑ)T , (0, 0,−ϑ)T }
(12)

GF [±ϑ,±ϑ] = {(ϑ, ϑ, 0)T , (−ϑ,−ϑ, 0)T , (ϑ,−ϑ, 0)T ,

(−ϑ, ϑ, 0)T , (ϑ, 0, ϑ)T , (−ϑ, 0,−ϑ)T ,

(ϑ, 0,−ϑ)T , (−ϑ, 0, ϑ)T , (0, ϑ, ϑ)T ,

(0,−ϑ,−ϑ)T , (0, ϑ,−ϑ)T , (0,−ϑ, ϑ)T }
(13)

Here, the scalar parameter, ϑ, controls the spread of the sam-
ple points, ξi, in Rn. Generally, for the purpose of solv-
ing a n-dimensional integration problem, the idea is to use
a weighted superposition of function evaluations at GF-based
sample points, g(ξi), according to

∫

Ω

g(ξ)pdfξdξ ≈ w0g(GF [0]) + w1

∑
g(GF [±ϑ]) + . . .+

wn
∑

g(GF [±ϑ,±ϑ, . . . ,±ϑ︸ ︷︷ ︸
n times

])

(14)

3
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In practical applications, however, a balance has to be found
between the total number of used sample points and the re-
sulting precision in calculation. As only a finite number of
raw moments of the input random variable, ξ, is considered,
the transfer function, g(·), is approximated by monomials of
finite degree (Evans, 1967; Lerner, 2002). For instance, by
taking account for the first two non-zero raw moments of
ξ (still assuming a standard Gaussian distribution), the re-
lated monomials of the transfer function, g(·), are g(ξ) = 1
and g(ξ) = ξ[i]2 (any element of the random vector, i ∈
{1, . . . , n}; ξ ∈ Rn, could be evaluated due to symmetry,
ξ[i] = ξ[j] ∼ N (0, 1); i, j ∈ {1, . . . , n}; ξ ∈ Rn). Thus,
the transfer function is approximated correctly for monomi-
als of order three. This approximation scheme is labeled as
PEM3 in what follows. Remember that any odd power term
is zero in association to Gaussian distributions. In this par-
ticular case, only the first two Generator Functions, GF [0] ∩
GF [±ϑ], can be parametrized by solving the following equa-
tion system

w0 + 2nw1 =

∫

Ω

1pdfξdξ = 1 (15)

2w1ϑ
2 =

∫

Ω

ξ[i]2pdfξdξ = 1 (16)

In consequence, for ϑ 6= 0, the related weights can be calcu-
lated via

w0 = 1− n

ϑ2
(17)

w1 =
1

2ϑ2
(18)

As shown in (Julier & Uhlmann, 2004) higher-order moments
of the analyzed PDF can be used for the quantification of ϑ
additionally. For instance, considering the 4’th raw moment
of the standard Gaussian distribution leads to

2w1ϑ
4 =

∫

Ω

ξ[i]4pdfξdξ = 3 (19)

Therefore, applying ϑ =
√

3 might be an optimal choice in
case that the probability distribution of η is close to the nor-
mal distribution, but different values might be appropriate as
well depending on the problem at hand.

After a proper selection of points, ηi = g(ξi), and associated
weights, w0 & w1, the mean and the variance of η can be
determined approximatively according to

E[η] ≈ η = w0η0 + w1

2n∑

i=1

ηi (20)

σ2(η) ≈ w0(η0 − η)(η0 − η)T+

w1

2n∑

i=1

(ηi − η)(ηi − η)T
(21)

In the same manner also higher order moments of η can be
approximated according to

µ3 ≈ w0(η0 − η)(η0 − η)T (η0 − η)+

w1

2n∑

i=1

(ηi − η)(ηi − η)T (η0 − η)
(22)

µ4 ≈ w0(η0 − η)(η0 − η)T (η0 − η)(η0 − η)T+

w1

2n∑

i=1

(ηi − η)(ηi − η)T (η0 − η)(η0 − η)T
(23)

Naturally, the general precision of the PEM approach can be
increased gradually by considering higher order raw moments
of ξ. For instance, an approximation scheme can be applied
which represents monomials of g(·) correctly up to the preci-
sion of 5 via

E[g(ξ)] =

∫

Ω

g(ξ)pdfξdξ ≈ w0g(GF [0])+

w1g(GF (±ϑ)) + w2g(GF (±ϑ,±ϑ))

(24)

This approximation scheme is labeled as PEM5 subsequently.
In this case, the number of generated sample points, ξi, cor-
relates to 2n2 + 1 for a n-dimensional integration problem.
Here, for the purpose of parametrization of wi and ϑ an equa-
tion system can be derived taking into account monomials of
degree 5 or less

w0 + 2nw1 + 2n(n− 1)w2 =

∫
1pdfξdξ = 1 (25)

2w1ϑ
2 + 4(n− 1)w2ϑ

2 =

∫
ξ[i]2pdfξdξ = 1 (26)

2w1ϑ
4 + 4(n− 1)w2ϑ

4 =

∫
ξ[i]4pdfξdξ = 3 (27)

4w2ϑ
4 =

∫
ξ[i]2ξ[j 6= i]2pdfξdξ = 1 (28)

Therefore, the four unknowns can be uniquely determined by

4
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the previous equation system as

ϑ =
√

3 (29)

w0 = 1 +
n2 − 7n

18
(30)

w1 =
4− n

18
(31)

w2 =
1

36
(32)

Obviously, in case of an 1-dimensional input problem, ξ ∈
R1, the PEM3 and PEM5 scheme become equivalent for ϑ =√

3. In this very special constellation the PEM3 scheme has
the same precision as PEM5. This might be one reason why
the approximation potential of PEM3 is sometimes overrated
in n-dimensional input problems. Alternatively, the following
considerations may provide an assessment of the associated
approximation power in a readily comprehensible manner.

First, the Eq. (21) is reformulated according to

σ2
η ≈

(
w0g(ξ0)2 + w1

2n∑

i=1

g(ξi)
2

)
− g(ξ)2 (33)

σ2
η ≈ g(ξ)2 − g(ξ)2 (34)

Obviously, by calculating the variance, σ2
η , any sample-based

approach has to provide a good approximation of g(·) - but
of g(·)2, too. Here, the Taylor expansion is in favor as it is
sufficient to represent g(·) appropriately. This issue is illus-
trated in Fig.(1) by an generic 2-dimensional problem, g(ξ) =
ξ[1]c1ξ[2]c2 . In case of, g(ξ)2 = ξ[1]2c1ξ[2]2c2 , monomi-
als of order 4 and higher show up for ci > 1, ∀i = 1, 2.
Thus, the application of PEM3, which is correct up to mono-
mials of order 3, suffers in precision. In summary, only the
PEM5 scheme outperforms the 2. Order Taylor expansion
for multi-dimensional input problems and is applied in sub-
sequent considerations for this very reason. (Technical Re-
mark: The same is true when applying PEM3 and PEM5 as
an inherent part of Kalman Filtering. Only PEM5 is likely to
outperform a so-called second-order Extended Kalman Fil-
ter.)

3.1. Non-Gaussian Inputs

So far only the standard Gaussian distribution has been con-
sidered. In principle, the PEM concept can be applied for
any symmetric distribution. That means, distribution specific
sample points and weights can be determined by adapting Eq.
(15)-(16) and Eq. (25)-(28), respectively.

In most practical applications, however, one is usually inter-

ested in an easy to implement, robust, as well as efficient
algorithm. Therefore, a more practicable framework might
be desirable. Instead of adapting the weights and sample
points according to the distribution at hand, pdfξ′ , a (non)-
linear transfer function can be derived, q(·), which renders
a standard Gaussian distribution into the desired distribution,
ξ′ = q(ξ). Here, the inverse Rosenblatt transformation (Lee
& Chen, 2007) is applied to represent given PDFs associated
to ξ′ by random variables of standard Gaussian distributions,
ξ. Generally, the transformation can be expressed by

ξ′ = q(ξ) = F−1 (Φ(ξ)) (35)

Here, F−1(·) represents the inverse of the cumulative distri-
bution function (CDF) of the desired random variable ξ′, and
Φ(·) denotes the CDF of the standard Gaussian random vari-
able ξ. In the same manner even correlated random variables
can be transformed into independent standard Gaussian rep-
resentatives (Mandur & Budman, 2012). Moreover, empirical
(data driven) probability density functions might be incorpo-
rated as well, see (Schöniger, Nowak, & Franssen, 2012) for
details. In conclusion, the PEM becomes applicable for cor-
related non-Gaussian random variables. For example, in Tab.
1 some resulting transformation functions are given for fre-
quently used PDFs. Additional transformation formulas can
be found in (Isukapalli, 1999).

Type of pdfξ′ Transformation: q(ξ) =
Normal(µ, σ) µ+ σξ
Uniform(a, b) a+ (b− a)

(
1
2 + 1

2 erf(ξ
√

2)
)

Log-normal(µ, σ) exp(µ+ σξ)

Gamma(a, b) ab
(
ξ
√

1
9a + 1− 1

9a

)3

Exponential(λ) − 1
λ log

(
1
2 + 1

2 erf
(
ξ√
2

))

Table 1. Probability density function transformation formulas
adapted from (Isukapalli, 1999). Here, the term erf means the
error function.

Obviously, in most cases, the transformation function, q(·),
is a non-linear expression. Hence, as an inherent part of the
original uncertainty propagation problem, η = g(q(ξ)), the
overall non-linearity may become more severe. That means,
PEMs may suffer in precision to a certain extent additionally.
In many practical applications, however, this precision flaw
might be acceptable in the light of the easiness in implemen-
tation. The numerical results given in Sec. 5 confirm the
usefulness of the transformation approach convincingly.

3.2. Non-Gaussian Outputs

The problem of an adequate representation of the resulting
output uncertainty, η,is addressed in this subsection. As shown
previously, an approximation of the mean, E[η], and the vari-
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Figure 1. Benchmark of approximate methods: light gray circles represent the approximation power of the method given in
the caption of the sub-figures. Dark gray circles represents the approximation power of PEM5, which is considered as the
gold standard. In general, a high number of circles indicates a good approximation power, i.e., the associated monomial,
η = ξ[1]c1ξ[2]c2 , is approximated correctly. First row is devoted to the mean approximation. Here, the best performance shows
the PEM5 approach followed by PEM3, 2. Order Taylor, and, 1. Order Taylor expansion. Second row is devoted to the variance
approximation. Here, the best performance shows the PEM5 approach followed by 2. Order Taylor, PEM3, and, 1. Order
Taylor expansion.

ance, σ2
η , can be determined by PEM. Commonly, a Gaus-

sian PDF associated to the simulation result is parameterized
by these two quantities. In cases, however, where the actual
distribution of η diverges strongly in comparison to a Gaus-
sian PDF misleading inferences might be expected. Here, the
additional information of higher order moments of η, e.g.,
skewness, µ3, and the kurtosis, µ4, provided by PEM (Eq.
(22)-(23)) might be used as correction factors. For instance,
by considering confidence intervals related to η the Cornish-
Fisher expansion might be put in operation according to

qcfp = qp +
(q2
p − 1)µ3(η)

6σ3(η)
+

(q3
p − 3qp)µ4(η)

24σ4(η)
−

(2q3
p − 5qp)µ

2
3(η)

36σ6(η)

(36)

Here, qcfp is a corrected confidence limit associated to a con-
fidence level p, for more details see (Usaola, 2009) and refer-
ences therein.

Moreover, the entire PDF of η can be reconstructed efficiently
by combining PEM with the Polynomial Chaos Expansion
(PCE) concept. In uncertainty analysis, PCE has become
quite popular in the last two decades. The essential idea is
to represent a random variable, η, by a weighted superposi-
tion of an infinity number of basis functions, Ψi(·),(Maitre &
Knio, 2010) according to

η = g(ξ) =

∞∑

i=0

aiΨi(ξ) (37)

Similar to the Taylor series expansion computational feasibil-
ity has to be addressed. Therefore, the expansion in Eq. (37)
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is implemented in a truncated form

η̂ =

lpce∑

i=0

aiΨi(ξ) (38)

By a proper choice of basis functions, Ψi(·), the determina-
tion of the unknown coefficients, ai, can be simplified. In
particular, different sets of orthogonal basis functions are pro-
vided depending on the associated PDF of the random in-
put variable, ξ. For instance, Hermite polynomials are uti-
lized in case of a Gaussian distribution. In literature, differ-
ent approaches are known to determine the coefficients, ai,
see (Templeton, 2009; Maitre & Knio, 2010) and references
therein. Here, the focus is on the least-square approach solely
as PEM can be utilized here, too. In practical implementa-
tions, a residual, r(ξ), emerges due to the truncation of PCE
terms, lpce <<∞,

r(ξ) = g(ξ)−
lpce∑

i=0

aiΨi(ξ) (39)

Now, the expected sum of squared errors can be defined as a
suitable cost function

JPCE =

∫

Ω

[r(ξ)]2pdfξdξ (40)

The additivity of the expectation operator enables the follow-
ing reordering

JPCE =

∫

Ω

g(ξ)2pdfξdξ − 2

∫

Ω

g(ξ)

lpce∑

i=0

aiΨi(ξ)pdfξdξ+

∫

Ω



lpce∑

i=0

aiΨi(ξ)




2

pdfξdξ

(41)

The minimum of this cost function can be found by differ-
entiation of Eq. (41) with respect to ai, and by setting the
resulting derivative equal to zero. Here, due the orthogonal-
ity of Ψi the mathematical expression results in

∂JPCE
∂ai

= −2

∫

Ω

g(ξ)Ψi(ξ)pdfξdξ+

2ai

∫

Ω

Ψi(ξ)
2pdfξdξ

!
= 0

(42)

Therefore, the ith coefficient can be calculated according to

ai =

∫
Ω
g(ξ) Ψi pdfξ dξ∫

Ω
Ψi(ξ)2 pdfξ dξ

(43)

In case of Hermite polynomials, the denominator can be de-
termined immediately, see (Maitre & Knio, 2010) for details.
The numerator of Eq. (43), however, has to be derived nu-
merically. Obviously, instead of solving one of the original
integrals, Eq. (2)-(6), a modified integration problem has
to be tackled. Here, a proper quantification of the coeffi-
cients, ai, ensures an optimal parametrization of PCE, Eq.
(38). By combining PCE with PEM5 an overall number of
2n2 + 1; (ξ ∈ Rn) function evaluations has to be performed.
Subsequently, associated moments of η̂ can be calculated an-
alytically, e.g., the mean and the variance are determined by

E[η̂] = a0 (44)

σ2
η̂ =

lpce∑

i=1

a2
i

∫

Ω

Ψi(ξ)
2pdfξdξ (45)

In addition, a PDF approximation of η̂ can be derived in com-
bination with Monte Carlo simulations and standard Kernel
density estimation algorithm which are available in standard
computation/statistic tools, e.g., routines available in MAT-
LAB or in R!. Please bear in mind that η̂ is an algebraic ex-
pression of ξ, Eq. (38). Therefore, MC simulations based on
η̂ can be performed at low computational costs. In summary,
PCE benefits from its versatility and its good convergence be-
havior, see (Maitre & Knio, 2010) for additional details.

4. GLOBAL SENSITIVITY ANALYSIS

To assess the influence of the uncertain quantities (called in-
puts in what follows), ξ, on simulation results, η(t), related
sensitivities have to be analyzed. Whenever the considered
inputs are almost certainly known, i.e. the variance of ξ is
low, the sensitivities can be determined by a local approach
evaluating the Sensitivity Matrix (SM)

SM(tk) =
∂η(tk)

∂ξ

∣∣∣∣
ξ

(46)

Usually, this is not the case and global methods which take
the scatter of inputs explicitly into account have to be applied.
Variance-based approaches are tailored to cope with this situ-
ation well. Hence, treating inputs, ξ, and the output, η(t), as
random variables, the amount of variance that each element,
ξ[i], adds to the variance of the output, σ2(η(t)), can be quan-
tified.
The ranking of an input ξ[i] is done by the amount of output
variance that disappears, if this input ξ[i] is assumed to be
known, σ2(ξ[i]) = 0. For any input ξ[i], which is assumed
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to be known, a conditional variance, σ
−i

2(η|ξ[i]), can be de-

termined. Here, the subscript −i indicates that the variance
is taken over all inputs other than ξ[i]. As ξ[i] itself is a ran-
dom variable in reality, the expected value of the conditional

variance, E
i

[
σ
−i

2(η|ξ[i])
]

, has to be determined. Here, the

subscript E
i

indicates that the expected value is only taken

over the input ξ[i]. Finally, the output variance, σ2(η), can be
separated (Saltelli, Ratto, Tarantola, & Campolongo, 2005)
into the following two additive terms

σ2(η) = σ
i

2(E
−i

[η|ξ[i]]) + E
i
[σ
−i

2(η|ξ[i])] (47)

The variance of the conditional expectation, σ
i

2(E
−i

[η|ξ[i]]),

represents the contribution of input ξ[i] to the variance σ2(η).
The normalized expression in Eq. 48 is known as the first
order sensitivity index (Sobol’, 1993) and is used in the fol-
lowing for sensitivity analysis.

Sηi =
σ
i

2(E
−i

[η|ξ[i]])
σ2(η)

(48)

The integrals associated to σ2(η), E
−i

[η|ξ[i]], and σ2(η|ξ[i])
are commonly evaluated by Monte Carlo (MC) simulations
(Sobol’, 2001). MC simulations, however, come along with a
prohibitively computational load. Thus, the PEM method-
ology is put in operation to reduce the computational de-
mand significantly. In detail, the overall variance, σ2(η), is
determined by the PEM5. A total number of 2n2 + 1 sam-
ple points have to be evaluated and analyzed. Subsequently,
the evaluated samples can be reused to calculate the variance
of the conditional expectation, σ

i

2(E
−i

[η|ξ[i]]), immediately.

That means, the total number of function evaluations corre-
lates to 2n2 + 1, i.e., PEM5 renders the Global Sensitivity
Analysis into a feasible approach which can be applied with
a manageable computational effort to real life scenarios. By
implementing the proposed strategy, precision demands are
fulfilled automatically, i.e., determined variances are related
to monomials of precision 5, whereas the expectations are as-
sociated to monomials of precision 3.

5. CASE STUDY

The proposed concepts are demonstrated by a generic uncer-
tainty propagation problem according to

η(t) = g(ξ′, t) = ξ′[1]e−ξ
′[2](e−ξ

′[3]t) (49)

which may describe the progress in degradation of a technical
device. The independent elements of the random vector, ξ′,
are associated to a non-standard Gaussian, an Uniform, and

Log-Normal distribution, respectively. The detail specifica-
tions of the applied distributions (Fig. 2) are given by

ξ′[1] ∼ N (5, 0.1) (50)
ξ′[2] ∼ U(1, 3) (51)
ξ′[3] ∼ lnN (1, 0.12) (52)

By applying feasible transfer functions, qi(·), the problem of
uncertainty propagation is based on standard Gaussian distri-
bution, ξ[i] ∼ N (0, 1); ∀i = 1, 2, 3, solely:

η(t) = g(q(ξ), t) = q1(ξ[1])e−q2(ξ[2])(e−q3(ξ[3])t) (53)

Obviously, by applying PEM5 there is a need for evaluating
g(·) 19 times (ξ ∈ R3, 2 · 32 + 1 = 19). In comparison to
Monte Carlo simulations (10.000 simulation runs), the pro-
posed PEM5 concept provides working results in approximat-
ing the mean and the variance of η by a minimum of computa-
tional load. The indirect approach, i.e. deriving PCE first and
utilizing its coefficients to represent the first two moments of
η, provides similar results with the same computational ef-
fort. The numerical outcome is illustrated in Fig. 3(a) and
3(b), respectively.

0 1 2 3 4 5 6
0

2

4

ξ′

p
df
ξ
′

Normal
Uniform

Log-Normal

Figure 2. Assumed input uncertainties: ξ[1]′ ∼ N (5, 0.1),
ξ[2]′ ∼ U(1, 3), and ξ[3]′ ∼ lnN (1, 0.12).

In principle, with those approximated values confidence in-
tervals, CI(t) = E[η(t)] ± qp · σ2

η , can be derived. Due
to a potential non-Gaussian distribution associated to η sym-
metric confidence intervals might lead to misinterpretation in
the prognostic framework as indicated by Fig. 4(a). Here,
confidence intervals corrected by higher-order statistical mo-
ments, i.e. by applying PEM5 and the Cornish-Fisher expan-
sion jointly, might be more credible as demonstrated in Fig.
4(b). Moreover, the indirect approach based on PCE mim-
ics the real uncertainty propagation problem adequately (Fig.
4(c)), too. The entire PDF of η(t) might be derived econom-
ically by Monte Carlo simulations which evaluate the PCE
based surrogate expression, ĝ(·), but not a potential CPU-
intensive function, g(·). Corresponding snapshots at t = 0.2
and t = 1.0 are illustrated in Fig. 5 and Fig. 6, respectively.
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Figure 3. Here, the relative approximation error is illustrated
in percentages. PEM5 as well as PCE have an excellent ap-
proximation power in relation to the mean, E[η]. In case of
the variance, σ2

η , PEM5 shows an improved convergence in
comparison to PCE.

Here, the non-Gaussian distribution is captured adequately by
PCE.

Finally, global sensitivities are analyzed. Assuming the same
configuration given in Eq. (50)-(52) the impact of each ξ[i] to
the overall variability/uncertainty of η(t) is shown in Fig. 7.
Here, too, the corresponding Sobol’ indices are derived very
efficiently. In detail, a total number of 2·32 +1 = 19 function
evaluations is sufficient - a remarkable low computational de-
mand in the field of global sensitivity analysis.

6. CONCLUSION

The PEM is identified to be a credible as well as practical con-
cept for the purpose of uncertainty propagation/management.
It is demonstrated how PEM can e applied to non-Gaussian
distributions by evaluating suitable transfer functions inher-
ently. Moreover, the universal concept of PEM provides an
efficient calculation of global sensitivities. Therefore, PEM
is a versatile approach which may contribute to tackle an ur-
gent issue in PHM - the reliable propagation of uncertainty in
prognostics and health management.
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η
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(a) Original PEM5 99%-Confidence Intervals
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(b) Cornish-Fisher corrected 99%-Confidence Intervals
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η
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)
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(c) PCE based Monte Carlo simulations, i.e., instead of applying g(·) its effi-
ciently to evaluate surrogate ĝ(·) is used

Figure 4. Benchmark Monte Carlo simulation vs. approxi-
mate concepts. The 99%- CI derived by PEM5 encloses the
MC simulations, see (a). The performance can be improved
by applying Cornish-Fisher, see (b). Here, the 99%- CI en-
capsulates the Monte Carlo simulations more reliably. The
MC simulations based on PCE (c) fits to original MS simula-
tions given in (a) and (b) quite well.
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APPENDIX

Following Hermite polynomials have been applied:

Ψ0(ξ) = 1

Ψ1(ξ) = ξ[1]

Ψ2(ξ) = ξ[1]2 − 1

Ψ3(ξ) = ξ[1]3 − 3ξ[1]

Ψ4(ξ) = ξ[2]

Ψ5(ξ) = ξ[2]2 − 1

Ψ6(ξ) = ξ[2]3 − 3ξ[2]

Ψ7(ξ) = ξ[3]

Ψ8(ξ) = ξ[3]2 − 1

Ψ9(ξ) = ξ[3]2 − 3ξ[3]

Ψ10(ξ) = ξ[1]ξ[2]

Ψ11(ξ) = ξ[1]2ξ[2]− ξ[2]

Ψ12(ξ) = ξ[2]2ξ[1]− ξ[1]

Ψ13(ξ) = ξ[3]

Ψ14(ξ) = ξ[1]2ξ[3]− ξ[3]

Ψ15(ξ) = ξ[3]2ξ[1]− ξ[1]

Ψ16(ξ) = ξ[2]ξ[3]

Ψ17(ξ) = ξ[2]2ξ[3]− ξ[3]

Ψ18(ξ) = ξ[3]2ξ[2]− ξ[2]

Ψ19(ξ) = ξ[1]ξ[2]ξ[3]

Following coefficients have been utilized:
∫

Ω

Ψ0(ξ)2 pdfξ dξ = 1

∫

Ω

Ψ1(ξ)2 pdfξ dξ = 1

∫

Ω

Ψ2(ξ)2 pdfξ dξ = 2

∫

Ω

Ψ3(ξ)2 pdfξ dξ = 6

∫

Ω

Ψ4(ξ)2 pdfξ dξ = 1

∫

Ω

Ψ5(ξ)2 pdfξ dξ = 2

∫

Ω

Ψ6(ξ)2 pdfξ dξ = 6

∫

Ω

Ψ7(ξ)2 pdfξ dξ = 1

∫

Ω

Ψ8(ξ)2 pdfξ dξ = 2

∫

Ω

Ψ9(ξ)2 pdfξ dξ = 6

∫

Ω

Ψ10(ξ)2 pdfξ dξ = 1

∫

Ω

Ψ11(ξ)2 pdfξ dξ = 2

∫

Ω

Ψ12(ξ)2 pdfξ dξ = 2

∫

Ω

Ψ13(ξ)2 pdfξ dξ = 1

∫

Ω

Ψ14(ξ)2 pdfξ dξ = 2

∫

Ω

Ψ15(ξ)2 pdfξ dξ = 2

∫

Ω

Ψ16(ξ)2 pdfξ dξ = 1

∫

Ω

Ψ17(ξ)2 pdfξ dξ = 2

∫

Ω

Ψ18(ξ)2 pdfξ dξ = 2

∫

Ω

Ψ19(ξ)2 pdfξ dξ = 1

12
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ABSTRACT 

Bond Graph (BG) methodology is used to model the 

dynamic uncertain systems. Uncertainty is considered on the 

system parameters in form of intervals. The uncertain 

parameters are allowed to deviate within their prescribed 

interval limits. Single fault hypothesis is considered in this 

work such that the parameter undergoing degradation is 

known a priori. A new method for generation of interval 
valued thresholds is briefly described in the framework of 

BG models in Linear Fractional Transformation form. The 

diagnostic module is formed using such thresholds which 

detect the beginning of degradation of a parameter in the 

real system. The new concept of Interval Extension of 

Analytical Redundancy Relations (IE-ARRs) is introduced 

which consider the parametric uncertainties and the 

evolution of degrading parameter in real time. Then, the 

Centre and Range method for fitting linear regression 

models to interval symbolic data is adapted to fit piece wise 

linear models to the interval valued times series data of IE-

ARRs. Further, the new concept of generation of failure 
thresholds from a nominal system model is introduced and 

developed. Finally, the fitted linear model is used to 

estimate the remaining useful life of the parameter under 

degradation. Simulations are carried out on an example DC 

motor model. Linear and non-linear parametric degradations 

are considered. Results are presented in form of simulations.  

1. INTRODUCTION 

Health monitoring of systems is essential and significantly 

necessary in ensuring the correct operation of complex 

engineering systems.  

Mayank Shekhar Jha  et al. This is an open-access article distributed under 

the terms of the Creative Commons Attribution 3.0 United States License, 

which permits unrestricted use, distribution, and reproduction in any 

medium, provided the original author and source are credited. 

The integral task of system health monitoring includes both 

the diagnostics and prognostics. Diagnostics involves 
detection of fault and its subsequent isolation whereas 

prognostics deal with the prediction of 

 the remaining useful life of the different components or 

subsystems of the system. 

1.1 Diagnosis of Uncertain Systems: Bond Graph and 

Interval Approaches 

Bond Graph (BG) approach is a powerful tool for dynamical 

modeling and has established its efficiency for real 

applications. Further, because of its causal and structural 

properties, BG has been extensively used for Fault 

Detection and Isolation (FDI). A large body of research 
exists in the area of model based diagnosis in the framework 

of BG based approaches for modeling multi energetic 

dynamic systems. Various efficient algorithms have been 

implemented in dedicated software due to its graphical 

aspect which renders a clear insight into the physics of the 

system (Ould Bouamama, Staroswiecki, & Samantaray, 

2006 ). 

Recently, successful robust diagnostic methods have been 

developed using BG models in Linear Fractional 

Transformation (LFT) (Djeziri, Merzouki, & Ould 

Bouamama, 2007). The LFT representation of a global 

model can be derived from a BG model, by replacing each 
uncertain element by its LFT BG model. This form had been 

initially introduced in (Kam & Dauphin-Tanguy, 2005)for 

modelling and further for robust fault diagnosis (Djeziri, 

Merzouki, & Ould Bouamama, 2006). There in, procedures 

to generate robust Analytical Redundant Relations (ARRs) 

from a bond graph LFT model in derivative causality has 

been well developed .When used for FDI purpose, absolute 

values have been considered on the parameter uncertainties 

in the previous approaches. Adaptive thresholds that are 

robust to parameter uncertainties are generated, inside 
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which the behavior of the system can be considered as 

healthy. For diagnosis of uncertain systems, bounding 

approaches have been developed where the parametric 

uncertainty is considered in the form of interval models. 

Early work on treatment of uncertain parameters as intervals 

and subsequent usage for diagnosis is found in works of 
Adrot (2000). The approach, called bounded approach, 

represented these uncertainties by a set of possible values 

for which only their bounds were known. Ragot, Alhaj Dibo 

and Maquin (2003), proposed an interval technique for the 

detection and the isolation of sensor faults in the case of a 

static linear model .The similar case is treated for dynamic 

systems by  (Ragot & Maquin, 2003).They treated the 

problem of data validation in the case of certain systems 

with uncertain measurements through interval approach. In 

the works of (Fagarasan, Ploix, & Gentil, 2004) interval 

calculation laws are used to generate the exact estimated 

output, bounds of the estimates are computed using 
traditional numerical integration techniques from the 

uncertain parameter interval vertices, assuming that 

monotonic property holds. Thus, the envelopes generated, 

are primarily by the estimation of state or parameter. 

1.2 Fault Prognosis using Time Series Data 

In past one decade, there has been an exceeding surge in 

research for the development of fault prognostic methods. 

Prognosis methods can be developed in three categorized 

approaches namely: data-driven, physics based and hybrid 

approaches. Data-driven approaches mainly use information 

from previous collected data (training data) to identify the 
characteristic of currently measured damage state and to 

predict the future trend.  Physics-based approaches assume 

that a physical model describing the behavior of damage is 

available, and combine the physical model with measured 

data to identify model parameters and to predict the future 

behavior (Yang, 2002), (James & Hyungdae, 2005) and 

(Ming, 2012). Hybrid approaches combine the above-

mentioned two methods to improve the prediction 

performance (Mohanty, Teale, Chattopadhyay, Peralta, & 

Willhauck, 2007).The data driven methods have been well 

developed from the point of view of time series prediction 

techniques. Method for predicting future conditions of 
machine operation, based on the time series prediction 

technique, associated with a classification tree and 

regression is proposed in (Trana, Yanga, Oha, & Tanb, 

2008). (Wu, Hu, and Zhang( 2007), proposed an extension 

of the basic Autoregressive Integrated Moving Average 

(ARIMA) approach, using bootstrap forecasting for machine 

life prognosis. Greitzer and Pawlowski (2002),propose a 

method of fault prognosis, based on a regression function, 

whose number of used points varies so that the prognosis 

remains consistent with the recent measures. 

1.2.1 Prediction Using Interval valued data 

Prediction techniques using interval data in symbolic form 

have been approached and developed by the communities of 

artificial intelligence, multivariate analysis and pattern 

recognition. They have been successful in dealing with 

prediction problem when the considered data is in interval 

form (Billard & Diday,2003). Such data arises in many 

situations such as recorded data for financial forecasting, 

daily interval temperatures at meteorological stations, daily 
interval stock prices etc. From the point of view of health 

monitoring of uncertain systems, such data are interesting 

and exploitable when the uncertain parameters are treated as 

intervals. 

Linear regression models for predicting interval data was 

first approached in  (Billard & Diday,2000), where the 

Centre method of fitting a linear regression model to 

symbolic interval data sets from the Symbolic Data 

Analysis(SDA) perspective is presented. It consists of fitting 

a linear regression model to the mid-points of the interval 

values assumed by the interval variables in the learning set 

and this model is applied to the lower and upper bounds of 
the interval values of the independent interval variables to 

predict the lower and upper bounds of the dependent 

variable, respectively. Minmax method (Billard & Diday, 

2002), assumes independence between the values of lower 

and upper bounds of the dependent data intervals which are 

then estimated by different vectors of parameters. However, 

both of these methods consider information carried by mid-

points only. As such, they fail to capture the influence of 

interval range on the estimation of parameters. This in turn, 

affects the prediction ability. 

The Centre and Range approach to fitting a linear regression 
model to symbolic interval data was proposed in (Lima Neto 

& De Carvalho, 2008). There in, the problem was 

investigated as an optimization problem, which sought to 

minimize a predefined criterion. The approach considered 

the minimization of the sum of the mid-point square error 

plus the sum of the range square error, and the 

reconstruction of the interval bounds based upon the mid-

point and range estimates. The lower and upper bounds of 

the interval values of an interval valued variable, linearly 

related to a set of independent interval-valued variables 

were predicted for independent data sets. It is shown that 

including information given by both center and the range of 
an interval data improves the model prediction performance 

very considerably. 

1.3 Assumptions, Proposed Approach and Organization 

of the Work 

In this work, BG methodology is used to model the dynamic 

uncertain systems. Uncertainty is considered only on the 

system parameters in form of intervals. The uncertain 

parameters are allowed to deviate within their prescribed 

interval limits. Single fault hypothesis is followed such that 

the parameter undergoing degradation is known a priori. In 

section 2, the new method of generation of interval valued 
thresholds proposed in (Jha, Dauphin-Tanguy, & Ould 

Bouamama, 2014) is briefly described in the framework of 
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BG-LFT models. The diagnostic module is formed using 

such thresholds which detect the beginning of degradation 

of a parameter in the real system. In section 3, the new 

concept of Interval Extension of ARRs (IE-ARRs) is 

introduced which considers the parametric uncertainties and 

the evolution of degrading parameter in real time. Then, the 
Centre and Range method (Lima Neto et al, 2008) for fitting 

linear regression models to interval symbolic data is adapted 

to fit piece wise linear models to the interval valued times 

series data of IE-ARRs. The procedure is explained in the 

subsequent subsection 3.2. Further, the new concept of 

generation of failure thresholds from a nominal system 

model is introduced and explained in subsection 3.3. 

Finally, the fitted linear model is used to estimate the 

remaining useful life of the parameter under degradation. In 

section 4, the developed method is validated using a 

pedagogical DC motor example. Linear and non-linear 

parametric degradation of physical components are 
considered. Results are presented in form of simulations. 

Finally conclusions are drawn in section 5.   

2. ROBUST DIAGNOSIS THROUGH BG-LFT MODELS 

Diagnosis based on BG-LFT models is considered in this 

section. Recently the authors have proposed a novel way of 

generating thresholds over ARR where the uncertainties are 

modeled as intervals (Jha, Dauphin-Tanguy, & Ould 

Bouamama, 2014). The novelty there comes in the treatment 

of uncertain part in form of intervals and using the obtained 

Interval Extension Functions (IEF) for generation of robust 

optimized thresholds which are adaptive and non-
symmetrical in general.  

2.1 Generation of Interval valued robust thresholds 

A system parameter 
i  with deviations as 

li,  and 
ui,  

in the negative and positive side respectively over its 

nominal value 
ni,  is represented in Eq.(1). For the 

parameter 
i , the Interval Uncertainty denoted as ][ i in 

Eq.(2) is obtained by bounding the uncertainties 
i  over its 

nominal value
ni , .For example, for an uncertain resistance 

parameter R with nominal value of 10 Ohm bounded in the 

interval as [8 Ohm, 13 Ohm], the nominal parameter is 

denoted as 10nR Ohm, uncertainty interval is 

3,2],3,2[][  ul RRR .Then, 

],[][ unln RRRRR  ]13,8[]310,210[ 

. 

 uinilinii ,,,, ,][          (1) 

],[][ ,, uilii  
 

uili ,, 0,0    

      (2) 

In general, in the framework of BG-LFT modeling, where 

},,,,,{ RSTFGYICRi  , a residual R  is derived from 

LFT-BG with preferred derivative causality, so that the 

knowledge of initial conditions is not necessary for real time 

evaluation. Residual R is composed of two completely 

separated parts: a certain residual r and the uncertain part b 
as shown in (4),(5),(6) and (7) where TFn and GYn are 

respectively the nominal values of TF and GY moduli. Rn; 

Cn; In and RSn are the nominal values of physical BG 

elements R, C, I and RS. SSeand SSf are the signal sources 

(measurement signals from real system) andδR ,δI, δC, 

δRS,δTF, δGY are values of multiplicative uncertainty. Natural 
interval extension function IEF (Moore, 1996), B of the 

uncertain part b is formed by replacing each parameter 

multiplicative uncertainty with its prescribed interval 

uncertainty as in Eq.(8).The IEF, 

),],],......[[],([ ,,2,1 SSfSSeB nqnn    where q  is the 

number of uncertain elements considered, agrees with the 

uncertain ARR function ),,....( ,,1 SSfSSeb nqn    such 

that Eq.(8) is satisfied for each of the degenerate intervals 

],],.......[,[],,[ ,,,2,2,1,1 nqnqnnnn  .Through 

Extended Fundamental Theorem of Interval Analysis 

(Moore, 1996), Eq.(9) is satisfied for every interval set of 
Interval Uncertainty. 
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(8) 

When the system shows nominal behavior, an envelope 

around the residual R may be defined by the range of the 

function B . Under non-faulty conditions, the nominal 

residual r is around zero(theoretically). From Eqs.(5,6,7,8,9) 

the residual R can be written as in Eq.(10) and from Eq.(9), 

it is bounded by the interval valued thresholds B as shown 

in Eq.(11). Note that in this work, signals from dualised 

sensor effort sources and flow sources SSfSSe, respectively 

are not considered in the interval form following the 

hypothesis that sensor measurements are not considered 

faulty. 
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(11) 

Finding the most optimum thresholds narrows down to the 

problem of finding the exact range of IEFs (Armengol, 

1999).  The main limitation is that IEFs do not have some of 

the properties of real number arithmetic, for instance, the 

distributive property. This means that the exact range of a 
function is not always computable. However, the computed 

range is never an under-bounded one. The exact range is 

obtained if there are no multi-incident interval variables 

in ),,,.......,( ,,2,1 SSfSSeb nqnn   .The determination of 

the exact range of a function is a problem when there are 

multi-incident variables because each incidence is 

considered as an independent variable. In this case, this 

problem is similar to a global optimization one (Hansen, 

1992). 

3. FAULT PROGNOSIS THROUGH LINEAR REGRESSION OF 

INTERVAL EXTENSION ARRS (IE-ARRS) 

Consider the scenario when a set of faulty parameters of the 
system undergo degradation and rest of the uncertain 

parameters deviate within their prescribed limits. In such 

cases, point data valued ARRs are not capable of capturing 

the sufficient information provided by such deviating 

uncertain parameters. To deal with such cases, Interval 

Extension ARRs (IE-ARRs) are proposed in this work 

which captures system information in form of interval data 

where the uncertain parameters are modelled in form of 

intervals.   

3.1. Interval Extension ARRs (IE-ARRs) 

Interval-valued functions are obtained by selecting a real-

valued function f  and computing the range of 

values )(xf takes as x varies through some interval X.  By 

definition (Moore, 1996), the result is equal to the set image 

)(Xf . 

Interval extensions of ARRs can be obtained by bounding 

each uncertain parameter involved in the ARR, within its 

prescribed interval limit. This is done by considering the 

uncertainties on the negative and positive sides 
li,  and 

ui, respectively, over the nominal value 
ni ,  of the ith 

uncertain parameter
i , to obtain the interval form ][ i  as in 

Eq. (2). In Eq. (12) consider ai as any ARR with m 

independent parameters such that q ( mq  ), of them are 

uncertain, TuuU ...],[ 21 is the input vector, T

mq ]...,...[ 1   is 

the nominal parameter vector and TyyY ,...],[ 21 is the 

output vector. The corresponding Interval Extension (IE), 
IEai is obtained by bounding each uncertain parameter 

within their interval limits as shown in Eq.(12).In the BG 

framework, consider r in Eq.(5), which represents the point 

valued ARR with uncertain parameters with their nominal 

values nnnnnn RSGYTFICR ,,,,, . 

0....),,),....

).,...,,.....((,(),,(

1

21
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The IE, R is formed by considering each uncertain 

parameter as intervals Eq. (13). Note that the dualised signal 
sources (sensor measurements) are not considered faulty or 

uncertain. Also, it must be noted that IE of ARRs consider 

the parameter with uncertainties in the interval form ][ i , 

whereas for the generation of interval valued thresholds in 

Eq. (9), only the  parametric uncertainties are considered in 

the interval form ][ i . 
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3.2 Fitting a Linear Regression Model to Time Series 

Interval Valued Data 

One way to represent this type of data is through the mid-

point and range of interval (Lima Neto & De Carvalho, 

2008).When such data are collected in chronological 

sequence, the time series of interval valued data is obtained. 

At each instant of time, t=1,2,3,….n, where n is the number 

of intervals observed in the time series , tlx ,  and tux ,  

with 
tutl xx ,,  , are the upper and lower bounds of the 

interval respectively. The method employed here uses two 

time series: the interval mid-point series
cx ; and the half 

range interval series 
rx  . Considering the interval time 

series in Eq.(14) , mid-point and  half-range time series can 

be represented as in Eq.(15). 
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(14) 

 

(15) 

In this work, the centre and range method (Lima et al., 

2008) is adapted to fit a linear regression model to interval 

valued time series data.  
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Let }.......,{ 21 keeeE  be the set of time indexed data 

described by interval valued dependent variable Y and 

independent time variable T such that for each 

)..1( kiEei  , },,:],{[],[ ,, baRbabayyY iuili   and 

 ],[ ,, iuili ttT . Parameter vector  , is estimated using 

the information contained in the mid-points and ranges of 
the intervals. 

Let 
c

iY and 
c

iT respectively, assume the value of the mid-

point of the interval valued variables Yi and Ti. Also let 
c

iY and 
r

iT  assume the value of the half range of  interval 

valued variables Yi  and Ti. 

Then, each ei is represented as interval quantitative 

feature ),( c

i

c

ii ytw   and ),( r

i

r

ii ytr   where, 
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(16) 

are the observed values of 
crc YTT ,, and 

rY respectively. 

Consider the dependent variables 
cY and Yr related to the 

independent time variable Tc and Tr according to the 

following linear regression relationship, 

r
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(18) 

The sum of squares of deviations is given in Eq. (19). It 

represents the sum of the mid-point square error plus the 

sum of the range square error, considering independent 

vectors of parameters to predict the mid-point and the range 

of the intervals. 
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Values of 
rcc

010 ,,  and 
r

1  that minimize S are found 

by differentiating Eq. (19) with respect to the parameters 
and setting the result equal to zero as in Eq. (20). It gives set 

of equations as shown in Eq. (21).The estimated parameter 

set ̂  can be obtained by solving Eq.(21), as in Eq. (22). 

Note that imprecision on the independent time variable has 

been accommodated by modeling it in form of intervals. 

This way, imprecision arising due to sensor/measurement 

(acquisition) delay can be taken into account. In cases where 

the time variable is not treated as an imprecise quantity, the 

upper and lower bound remain the same resulting in the 

interval centre being equal to the time value at that instant as 

i

c

i tt   and the time interval range equal to zero. It is a 

special case when the Centre-Range method reduces to the 
Centre method (Lima et al). 

3.3 Remaining Useful Life Estimation 

Beginning of degradation is indicated by the diagnostic 

module when the point valued ARRs go outside the interval 

valued thresholds, developed in section 2. Once, 

degradation is indicated, IE-ARRs are taken into account. 

With single degrading parameter, the IE-ARR evolves into 

time as the degradation proceeds. 
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(22) 

3.3.1 Parametric Failure Threshold 

For prediction of RUL of the degrading parameter, the value 

of the IE-ARR at the parametric failure state must be 

known. This is not known beforehand from the real system. 

It can however be provided by the system model. Let us 

denote the degrading parameter candidate as 
deg . Its value 

at failure must be fixed. This can be fixed based upon 

system performance, stability or user defined 

conditions/thresholds. This value can be bounded in interval 

form as per the user/system dependant conditions. Let us 

denote such a value as 
faildeg, . Then the deviation that the 

parameter must go in order to reach the failure state is 

nfailfail deg,deg,deg,   . Thus, it provides the value 

of parametric failure deviation
faildeg, . 

Consider the interval thresholds in Eq. (9) generated in 
section 2, which form the envelop around the residual under 

nominal system condition. When the same expression is 
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considered with the value of failure deviation
faildeg, , 

parametric failure thresholds are obtained as Eq. (23), where 

the parametric uncertainty-interval form is considered for all 

the uncertain parameters sensitive to the corresponding 
residual. Also, unlike the diagnostic thresholds where sensor 

measurements from real system (SSe, SSf) are used, Bfail 

considers the corresponding outputs from nominal system 

model which has all the respective parameters in nominal 

state. Due to the considered parametric uncertainty of each 

uncertain parameters, upper and lower bounds of 
failB are 

generated as Eq.(24). 
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3.3.2 RUL Estimation 

The degradation information provided in form of interval 
valued data from the IE-ARRs is used to fit a linear 

regression model in a sliding window framework. Let the 

time window length be k. The interval time series data of 

degradation be obtained as }....,,{ 21 kjjjj eeeeE  , 

where for each time indexed )( kjijei  , 

],[ ,,, uifaillfailii BBY 
 

and ],[ ,, uilii ttT  . rc TT , and 

cY , rY are to be obtained using Eq. (16). The parameter 

vector ̂  is estimated using Eq. (22). Once ̂  is obtained, 

the degradation can be approximated by the piece wise 

linear model of degradation for the k time instants in the 

present jth time window. The regression model is fitted with 
parameter failure value to assess the RUL in jth time window 

as, 
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(26) 

The time window is shifted to t=j+1 for next k time instants 

and a similar routine is followed. 

Thus, the value of the RUL can be obtained in the bounded 

form based on the piece wise linear approximation of 

degradation in sliding time window framework. The routine 

is repeated to obtain the RUL in the next time window. It 

should be noted that the RUL estimated, corresponds to the 

linear approximation of degradation. As such, in cases of 

gradual linear degradation an approximate constant value of 

RUL is obtained in interval form. However, in cases of non-

linear or accelerated degradation, a distribution of RUL will 

be obtained. Analysis of such a distribution form has not 
been done here. The choice of window length is important 

in determining the correct linear approximation of 

degradation as in, a large window width is better in cases of 

gradual-linear degradation. This aspect has not been 

analyzed in this work and forms the future perspective.  

4. SIMULATIONS AND RESULTS: 

The proposed methodology is applied over a DC-motor 

model. Fig.1 shows the model schema and Fig.2 its 

associated BG in integral causality. The integral causal 

model is used for simulation purpose. The model parameters 

are taken as: Ra = 2.4 Ω, the resistance of stator; La = 0.84 

H , the inductance of the stator; ke= 0.14 N-m/A, the motor 
constant; Jm = 0.08 kg m2, the moment of inertia of rotor; fm 

= 0.01 Ns/ m , coefficient of friction of motor shaft, with the 

inputs Ua(t) being the input voltage of 220 V in magnitude 

and )(t
 
being the load torque of 5 N m in magnitude. The 

observed outputs are: im(t) current of inductor, and m (t) 

being the angular velocity of the motor shaft (rad/s). 

Considered model has uncertain parameters as La, ke, f,  Jm 

and Ra. Single fault hypothesis is followed with the 

assumption that sensors/measurements are not faulty. 
Parametric degradation of the electrical resistance Ra is 

considered and simulated under various cases of 

degradation. Simulations have been carried out on 

SIMULINK® which is integrated with MATLAB® .Interval 

computations have been carried out through INTLAB, 

(Rump, 1998) a toolbox designed for MATLAB 

environment. It allows the more traditional infimum-

supremum as well as the midpoint-radius representations of 

intervals. 

 
Figure1. Schema of DC motor 
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Figure 2. Integral causal BG model of DC motor 

Consider the BG-LFT model in preferred derivative 

causality of DC-motor in Fig.3. The fictive inputs 

),,,,(, mmeaai fJkLRiw   are related to fictive outputs 

),....(, mai fRiz   as follows. 
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where 
mmeaa JfkLRa  ,.,,.,. are the multiplicative 

uncertainties on the respective parameters. 

 
Figure 3: BG-LFT model of DC Motor 

The ARR relations are derived from the model as, 
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(29) 

where b1 and b2 represent the uncertain part of each residual 

R1 and R2 with 
i  denoting the additive uncertainty on 

parameter 
i .Then, each additive uncertainty is bounded in 

interval form to form the interval valued thresholds B1 and 

B2 respectively as Eq. (30) and Eq. (31). 

Since Ra is sensitive to R1 only, R2 is not considered for 

subsequent analysis. La and ke are considered to deviate 

within their interval limits but do not undergo any kind of 

degradation:  
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(31) 

4.1Case I: No Degradation. 

All the three parameters Ra, La and ke which are sensitive to 

R1 deviate within their interval limits. Fig.5 shows the 

interval thresholds generated from Eq. (30) such that 

],[ ,1,11 ul BBB 
 

where the considered allowed interval limits are: 

2.0*,1.0*,5.0*

,1.0*,1.0*,2.0*

neuenelenaua

nalanauanala

kkkkLL

LLRRRR




. 

Fig. 5 shows the simulated residual R1 which is generated 

from the real system with uncertain parameters deviating 

inside their prescribed interval limits. It is under the 

thresholds indicating no fault or degradation. The residual is 

different from zero indicating that parameters deviate within 
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prescribed limits. Note that for the purpose of illustration, 

there is no noise considered in the simulations, assuming 

that sensor measurements are present with negligible noise. 

 
Figure 5. Residual r1 under nominal conditions 

4.2 Case II: Gradual and Linear Degradation in 

Winding Resistance Ra 

A degradation of the form )1()( tRtR
naa   is considered 

in the real system model, where 45.2  e . Fig. 6 shows 

the degradation profile. The diagnostic threshold should be 

crossed at t=400s when
uanaa RRR  . The failure value 

of Ra is set to be  3
, failaR  so that  6.0

failaR . 

Failure value is expected to be reached at  t=1000s. Failure 

thresholds which consider model inputs can be formed 

following Eq. (23) as in Eq. (32), where the  measurement 
inputs are from the nominal system model. 
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Fault detection: Detection of the degradation on Ra is done 

by the diagnostic thresholds B1 as shown in Fig.7. As 

expected, the thresholds are crossed by the residual at 

t=400s indicating the beginning of degradation. Failure 

thresholds failRaB ,  are formed from the inputs of a nominal 

system model. 

Fault prognosis: As soon as the degradation is detected, the 

prognostic module is triggered on. The Interval Extension of  

r1, denoted by IEr1  is considered from there-on i.e. after 

t=400s as, 

}]{.,.[}.{
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(33) 

Fig.7 shows the evolution of r1 and IEr1  as the degradation 

proceeds in time. Failure threshold 

],[ ,,,,, ufailRalfailRafailRa BBB   considered for the estimation of 

RUL is also shown in the same figure. Fig. 8 shows the data 

of Fig. 7 between time 420s and 530s presenting the various 

intervals for better clarity.  

Linear regression model is then fitted to the interval data of 

IEr1 in a sliding window of length k=5. Fig. 9 shows the 

obtained RUL in the interval form. As expected, the RUL is 

bounded around 1000s in interval form. Thus, for linear-

gradual degradations, this approach is efficient in estimating 

the RUL . 

 

Figure 6. Linear Degradation induced in Ra 

 
Figure 7. Detection of Degradation at t=400s. 

 
Figure 8: IEr1 profile zoomed 
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Figure.9 RUL estimation for Case:II  

4.3 Case III: Gradual and Non-Linear Degradation of 

Ra 

A non-linear, gradual degradation of the form 
t

naa eRR .001.0  is considered on Ra.  The diagnostic 

threshold should be crossed at t=95s when 

1.0*
nanaa RRR  (so that its maximum limit for 

allowed deviation is reached).The failure state value is 

prefixed as  0.3
, failaR , the expected RUL is 223s. 

Fault detection and Prognosis: Fig. 10 shows the simulation 

of the residual which crosses the thresholds at t=95s, 

indicating the beginning of degradation. Once degradation is 

detected, IEr1 is considered upon which the linear regression 

model is fit in sliding window of length stk *5  where st 

is the sample time, taken as 0.01 s here. Fig.11 shows the 

estimated bounded RUL .It is noticed that the RUL evolves 

in time starting from 250s. It is estimated by approximation 

of the non-linear degradation through a linear fit model. At 

each instant, the obtained RUL depends upon the linear 

approximation of nature of degradation in that time window.  

The linear approximation is helpful in prediction with 

sufficient accuracy.  

 
Figure 10. Detection of Degradation and IEr1 profile 

 

Figure 11. RUL estimation (Case: III) 

5. CONCLUSION 

The proposed interval valued thresholds are successful in 
detecting the beginning of parametric degradation in linear 

cases and gradual non-linear cases. The diagnostic module 

formed by interval valued thresholds; is derived from LFT 

model in derivative causality which detects the beginning of 

degradation. This in turn, enables the prognostic procedure 

where in, Interval Extensions of ARRs are used to carry the 

parametric degradation information in form of interval 

valued data time- series. Such IE-ARRs consider parametric 

uncertainty intervals of non-degrading uncertain parameters 

allowing them to deviate within their prescribed limits. For 

gradual, linear parametric degradation, the Centre and 
Range method can accurately predict the RUL as taking into 

account the imprecision brought in by the deviating 

uncertain parameters. For gradual, non-linear degradation, 

this method predicts the RUL by approximating the 

degradation as a linear model in sliding time window 

framework, with sufficient accuracy. This work does not 

consider noise brought in by sensor measurements or any 

external disturbances. Also, it lacks in being robust to 

outliers while approximating the linear model of 

degradation. Thus, further development is motivated . The 

proposed method needs to be developed to deal with non-

linear cases, accurately. It should be noted that this 
methodology is developed in the BG framework of 

modeling, as it enables a simplified and holistic approach 

towards multi energetic uncertain dynamic systems. 
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ABSTRACT 

Circumstances in shipping have rapidly changed within the 

past few years. The large increase of fuel cost, the decrease 

in the price of fares, the rapid progress in 

telecommunications, the crew reduction per vessel, the new 

environmental restrictions and the reinforcement of Green 

Shipping significance are facts that make remote monitoring 

and the evaluation of the vessel engines’ performance an 

imperative need. The challenges occurring from changing 

the typical vessel engine monitoring and maintenance model 

are many, such as: equipment installation on moving 

vessels, lack of long-term vessel availability, experienced 

and trained crew being on land, many different types or ages 

of vessel and vessel manufacturers. 

An extremely advantageous solution with proven positive 

results for this specific matter is the use of monitoring 

systems consisting of wireless smart sensors. These systems 

provide flexibility, adaptability, scalability and easy 

installation. The only system of this kind available in the 

global market, adjusted for Shipping and specifically for 

monitoring vessel engines, is the LAROS platform by 

NOMIA S.A. (member of Prisma Electronics SA). 

In this paper we will present the current status of 

maintenance in maritime vessels and the abovementioned 

new innovative remote monitoring of a vessel’s operational 

status electronic platform, which can greatly reduce the 

operational costs, enhance the operational vessel status and 

ensure the high quality of service a maritime company 

provides, as well as improve its environmental policy.  

 

 

 

Moreover, a case study of performance analysis regarding a 

vessel with the LAROS platform on board will be presented, 

showing the possibilities and the dynamics of vessel 

performance monitoring. 

1. INTRODUCTION 

For the last 30 years the model of Condition Based 

Maintenance (CBM) in Industrial Production Lines has been 

implemented with spectacular results in operating costs, 

environmental effects, productivity and safety. Predictive 

Maintenance (PdM) and its predecessor, Preventive 

Maintenance (PM), is a great factor of product quality 

assurance and cost reduction in all kinds of applications. 

PdM evaluates the condition of equipment by monitoring 

the condition of various critical parameters and plays an 

important role in production lines, quality control systems, 

health and food industry, goods transportation etc. 

Additionally, by employing Wireless Sensor Network 

(WSN) technology for Condition Monitoring (CM) and data 

transmission, PdM systems have been further developed and 

have become more efficient and smart, due to the inherent 

characteristics of WSNs, such as compactness, ease of 

installation, low power consumption, local data processing 

and storing. WSNs have found their way to the market and 

are becoming a core factor of PdM systems. As a 

consequence, the total revenues for wireless sensors and 

transmitters in industrial applications in 2009 reached 

$526.7 million and are likely to reach $1.8 billion in the 

next four years (Thusu, 2010). 

Goods and raw transportation is a key factor of the global 

economy, especially today where the global market is 

continuously growing, so the need for effective, qualitative 

and low cost transportation is becoming greater. Maritime 

companies have adopted control systems on modern vessels, 

in order to keep the functionality of their vessels in a high 

Serafeim Katsikas et al. This is an open-access article distributed under the 
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state and reduce maintenance and repair costs, since they 

present a large portion of the operational costs. The need of 

operational cost reduction, of vessels’ reliability increase 

and of vessel crew reduction leads to the implementation of 

more sophisticated control and maintenance systems. The 

maintenance of maritime vessels is a subject of major 

interest for everyone that is involved in Maritime. Every 

unscheduled day of vessel maintenance costs a maritime 

company an average cost of at least $20.000, not including 

the repair costs. So it can be seen clearly that vessel 

maintenance is an important factor for the proper operation 

of a maritime company. 

In our days, based on the new technologies it is possible to 

develop CBM systems in maritime industry. The cost in 

time and money to implement an on-line CBM system can 

be significantly reduced based on Wireless Sensor Networks 

for CM purposes.  For the last 5 years, there are some pilot 

projects and a number of companies that offer condition 

analysis services to maritime companies. These off-line 

techniques can be used in a number of cases. With the new 

communication technologies it is possible to develop 

systems for on-line condition analysis which further 

maximize and enhance the benefits. A CBM system, based 

on wireless sensor nodes for monitoring various parameters 

which reflect the operational status of a vessel’s engine or 

critical parts, will send a direct report to the maritime 

company headquarters when a fault or critical situation is 

inspected. In this way, the technical superintendents of the 

maritime company will have the ability to estimate the 

criticality of the situation and proceed rapidly to certain 

action steps to face the problem. This can lead to prevention 

of unpredictable machinery failures, repair time reduction, 

fewer spare parts usage. Regarding the vessels performance 

condition, wireless sensor nodes (Emmanouilidis Katsikas, 
Pistofidis and Giordamlis., 2009) can be easily installed to 

efficiently monitor various engine critical parameters, such 

as engine performance (produced torque and power), fuel 

and lubricant consumption, quality of fuel and exhaust 

emission, water temperature of the cooling system of the 

engine etc. By transmitting the available data to the 

company’s headquarters’ engineers, performance analysis 

can be easily made, so decisions and suitable actions can be 

taken in very short time and this can lead to significant 

vessel’s working costs reduction due to fuel and lubricant 

consumption reduction and optimization of vessel’s 

performance in general. Last but not least, the positive 

environmental impact of the reduction of fuel consumption 

can be a great factor for adopting this type of systems. As 

can be seen, adoption of a WSN system for condition 

monitoring on a vessel can have great benefits for a 

maritime company. 

This paper is structured as follows. Section 2 presents the 

current status of vessels’ maintenance and operation 

monitoring. Section 3 presents the idea of adopting WSNs 

for CBM purposes, how this can be implemented and which 

can be the benefits. Section 4 describes the proposed 

solution named LAROS, a system for monitoring and 

diagnosing the operational status of a vessel and presents a 

use case. Section 5 presents the financial benefits of 

adopting LAROS for vessel maintenance and performance 

monitoring purposes. Finally in section 6 few conclusions 

are presented. 

2. VESSELS MAINTENANCE CURRENT STATUS 

In order to define the needs of the maritime companies that 

can be accommodated by a CBM model, we must analyze 

the operational procedures and the methods that are 

currently used. 

2.1. Company Structure 

Depending on the number of the ships, the fleet is organized 

into groups of 5 to 10 ships. For each group, there is a fleet 

manager with his technical and mechanical team. The fleet 

manager coordinates the execution of the scheduled tasks, 

observes the vessels’ operational condition and is 

responsible to solve any technical or operational problem. 

The fleet managers report to the operational and to the 

technical manager of the company. The operational manager 

is responsible for the operational schedule of the ships and 

the technical manager is responsible for the operational 

condition of the ships. Finally the operational and technical 

managers’ report to the general manager the maintenance 

schedules and the new buildings of ships. Figure 1 presents 

the typical structure of a maritime company, analyzed 

above. 

 

Figure 1. Typical Structure of a Maritime Company 

The vessel crew technicians either on a scheduled time basis 

or when an alarm from the control system appears, record 

some basic parameters from the control system’s sensors.  

This report is given to the captain, who along with other 

data are sent to the fleet manager. The fleet manager along 

with its team revises a scheduled maintenance plan and 

provides solutions to technical problems. These decisions 

are sent to the captain for execution. So, the fleet manager 

has overview of the ships’ conditions based on oral 

communication with the vessel captain and on periodical 
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reports of various factors from the ships engineers, see 

figure 2. 

 

Figure 2. The information flow diagram during a scheduled 

inspection or an alarm 

2.2. Current Maintenance Model in Maritime 

Regarding the maintenance operations, the model that is 

followed today and defined by the international regulations 

is the following: the various vessel parts, at least the critical 

ones, have a certain operation life cycle, based on asset’s 

OEM specifications and after this period these parts must be 

changed, no matter their actual operational condition. No 

matter if a specific part is in good condition and can be 

further used without risking the vessel’s operating status, it 

must be changed. 

2.3. Disadvantages of the Current Maintenance Model 

At the above mentioned model of information flow, the 

inspections of the engines and other critical parts are 

basically time scheduled. Additionally, there is a very 

considerable human factor in the reports, since various 

reports are based on the data that the vessel crew records. 

Also the communication between the fleet manager and the 

engineers is not direct. 

So, this type of communication presents the following 

problems. 

 The ship technicians carry out scheduled 

inspections and the results are not always accurate 

due to sensors fault or false measurements by the 

crew. 

 The fleet manager has periodical indirect 

communication with the captain. The description of 

each situation is subjective and depended on the 

captain’s approach. 

 The decisions taken for the determination of repair 

actions and maintenance by the engineering team 

are not based on actual and real-time data, but on 

incomplete and unreliable data. Moreover, it is 

rather difficult to measure the effects of the 

execution of the various actions. 

 The various part maintenance actions are working-

time scheduled, no matter the actual condition of 

the parts. 

As a consequence of the maintenance model disadvantages 

reported above, the scheduled maintenance results in high 

cost of spare parts and maintenance procedures. The 

incomplete technical reports offer limited and unreliable 

data and cause difficulties in decision making and crew 

evaluation. Moreover, in most vessels there is no monitoring 

of the fuel and oil consumptions compared to the vessel 

instantaneous performance, or in most occasions depends on 

human observation, something that is in many occasions 

debatable, so a common policy to reduce fuel and oil 

consumption is difficult to be determined. Furthermore, the 

absence of a prognosis system makes it difficult to prevent 

breakdowns and provokes high cost and time-consuming 

repair procedures. 

2.4. Environmental Impact 

Maritime fuel oil type use is nowadays defined in several 

Sulphur Emission Control Areas (SECAs) by International 

Maritime Organization (IMO) in order to reduce specific 

vessel engine exhaust emissions such as CO, SO2, NOX. In 

the near future more SECAs are going to be defined and 

stricter rules are going to be adopted for maritime vessel gas 

emissions. 

Moreover, monitoring the chemical composition of the 

vessel gas emissions can provide a detailed analysis of the 

burning process that can help a maritime company reduce 

the gas emissions, reduce the fuel consumption and optimize 

the engine’s burning process. So, the operational costs of a 

vessel will be reduced due to lower consumption, but also 

the vessel gas emissions will be reduced, so there is a 

reduced environmental impact. 

2.5. Vessel Maintenance Current Status Conclusions 

As analyzed above, after recent research experience and 

operation analysis of maritime companies, the two main 

problematic issues they face is the absence of a complete 

remote monitoring system of the fleet as well as the 

environmental consequences of the vessels operation. 

3. CONDITION BASED MAINTENANCE FOR VESSELS 

3.1. Introduction 

In all kind of industrial, manufacturing and transportation 

services, maintenance costs are among the most 

considerable factors of the operational costs. In plant 

production lines, transportation services, etc. maintenance 

requires significant time and amount of money. Efforts for 

reducing the maintenance costs through various 

technological solutions and asset management strategies 

have been presented (Holmberg, Jantunen, Adgar, Mascolo, 
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Arnaiz and Mekid., 2010). The basic strategy of 

maintenance is Corrective Maintenance, where an asset is 

operated until it fails or breaks and then is replaced. A more 

advanced one is Preventive Maintenance or time-based 

maintenance or scheduled maintenance, where maintenance 

actions take place on regular, prescheduled time, based 

mostly on asset’s OEM specifications. This kind of 

maintenance can be considered “over-maintenance”, due to 

in many occasions assets are replaced before completing 

their actual life cycle. In recent times, where cost is a key 

factor for the sustainability of an enterprise, maintenance 

costs are driven to be as less as possible. So, a new type of 

maintenance has arisen, where all actions take place just 

before an asset reaches the end of its life cycle. This kind of 

maintenance is called Condition Based Maintenance and its 

most advanced representative is called Predictive 

Maintenance (Neelamkavil, 2010). In this kind of 

maintenance, critical parameters of a process, machine or 

asset are continuously monitored and analyzed in real-time 

and maintenance is performed just before breakdown. By 

adopting this type, maintenance takes place only when 

necessary, so asset availability costs, maintenance time and 

operational costs are reduced, efficiency is increased and 

generally the time and money spent for maintenance are 

reduced. 

CBM refers to a maintenance strategy that recommends 

maintenance decisions based on the information collected 

through CM. The main steps that CBM consists of are: data 

acquisition, data processing and maintenance decision-

making (Jardine, Lin and Banjevic, 2005). Technologies, 

human skills and various layers of communication are 

involved in the CBM process in order to make timely 

decisions about the maintenance requirements of critical 

equipment and to organize the available condition data, such 

as diagnostic and performance data, maintenance histories, 

operator logs and design data (Cheng, 2007). 

According to recent advances, new regulations by 

international maritime organizations and insurance 

companies are going to be adopted in the recent future that 

will allow the use of assets further to OEM specifications, if 

these assets are monitored regarding their operating 

condition and good operational condition is concluded.  

3.2. Benefits of Vessel’s Operational Status by Using 

CBM 

In our days, maritime companies have to face the limited 

crew number, the low technical quality of the crew and the 

big competition in rates along with the increase of the fuel 

and assets costs. Additionally, they need to increase the 

reliability and reduce the environmental impact that a vessel 

creates due to its inherent operation. These are the basic 

reasons for adopting a CBM model in Maritime. 

A very important issue is the reduction of fuel and lubricant 

costs. This can be achieved by monitoring the fuel quality 

and the fuel and lubricant consumption, as well as the 

exhaust emissions; various sensors can monitor the fuel 

loading process, the fuel and lubricant consumption and the 

exhaust gases for identifying the chemical composition and 

quality of fuel oil and lubricants. This can lead to detailed 

reports for the fuel consumption process, in order to identify 

possible actions for reducing these costs. 

Another issue is the frequency and context of the reports 

that are sent from the vessel to the maritime headquarters. 

The reports are sent in a steady daily basis, so the engineers 

at the headquarters are not informed in real-time when a 

maintenance task must take place. Also, the reported values 

have been instantly taken and no long asset operation 

monitoring time is adopted.  So, as can be easily 

understood, they are not able to safely estimate a critical 

situation when needed. An on-line remote health monitoring 

system can be a trustful source of information crucial to take 

decisions, reschedule the maintenance plan and provide 

specific repair instructions to the crew.    

By adopting an additional CBM system that works 

independently from the vessel’s control system, provides a 

safe diagnosis method in an alarm situation. The engineers 

have extra information for the problem that has arisen in 

order to take the right decision. This can lead to reduction of 

the costs and time required for the repair actions. 

In Maritime, Preventive Maintenance is the main 

maintenance model, where various parts are being replaced 

or repaired on steady time basis, based on the technical 

specifications of the parts. This leads, as abovementioned, to 

unneeded replacements and maintenance actions that cost 

more time and money. A PdM system that collects sensor 

data and processes them with advanced algorithms, can 

provide maintenance alarms only when is truly needed. So, 

the parts are repaired or replaced when they reach the end of 

their life cycle and the maintenance costs and time are 

greatly reduced. This can also lead to increase of the time 

interval between drydockings, where drydocking is called 

the process of removing the vessel from the water in order 

to enable work to be performed on the exterior part of the 

ship below the waterline. Moreover, unscheduled vessel 

immobilization due to engine failure that costs a great 

amount of money is greatly reduced.  Another advantage is 

the independence of the maintenance tasks from the human 

factor, since sensor data are directly sent to the vessel’s 

Bridge and Headquarters, without human interference. 

A critical issue for a maritime company is when wants to 

buy a used vessel. The old vessel maintenance technical 

reports are probably destroyed and a great amount of money 

and time is spent for the appropriate inspection before the 

transaction. A system that can help in extracting critical data 

before the transaction, as well as during the early operation 

phase is really helpful in order to effectively monitor the 

general operational vessel status. 
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The communication expenses are another main issue of a 

vessel’s expenses, because the costs depend on the volume 

of data that are sent. So, sending technical reports and 

communicating, when a breakdown occurs, burdens the 

communication expenses. Adopting a system that sends 

updates only when the operational status is changed or data 

only when required reduces this kind of expenses. 

Moreover, the safety of the vessel’s crew during operation, 

as well as during maintenance can be increased with a 

monitoring system. For example by monitoring the presence 

of explosive and toxic gases during maintenance may 

prevent life threatening cases for the maintenance crew. At 

last by monitoring the environmental impact of a vessel 

operation via continuous monitoring of the fuel 

consumption and exhaust gases a maritime company can 

manage more effectively and reduce fuel consumption and 

improve its environmental policy. 

Also a common monitoring system (independent from the 

type and age of a maritime enterprise vessels), may strongly 

simplify all the internal processes of the enterprise and 

manage more effectively the human resources.  

As can be easily understood an operational status 

monitoring system can provide great benefits at a maritime 

company, ensure the high quality of maintenance and 

operation of ships, reduce operational, repair and 

maintenance costs, increase crew safety, promote the 

environmental policy of the company, as well as ensure the 

high quality of service that the company provides 

3.3. Wireless Sensor Networks for Vessel Maintenance 

Purposes  

Advances in wireless communications, digital electronics, 

MEMS technology, miniaturization, low power circuit 

design and computing enhanced the effort of developing 

sensor nodes that are small size, lightweight, compact, 

autonomous, rather cheap, have low power needs, 

communicate wirelessly and can process and store the 

sensor data locally (Karl and Willig, 2003; Akyildiz, Su, 

Sankarasubramaniam and Cayirci., 2002). Their inherent 

compactness, autonomy, low power consumption, data 

processing and storing capability and wireless 

communication have given a great leap forward for 

implementing an effective monitoring tool for maintenance 

purposes.  

But why using a WSN for monitoring a vessel’s engine 

status? One main reason is the low cost and ease of 

installation of a WSN. For deploying a WSN no wires are 

needed for communication purposes between the sensor and 

the coordinator (gateway). The deployment of extra wires 

for the sensor network purposes are an additional concern, 

with significant cost in money and time, difficulties in 

expansion or changes of the network and drawback for the 

sensor deployment. This leads to a considerable amount of 

new wires, which add complexity on the sensor network 

installation process, as well as on the overall complexity of 

the sensor network. Furthermore, a wireless sensor node is 

much easier to be recollected when for various reasons, such 

as the placement of a new one with different specifications, 

this is needed. 

When installing a sensor network for developing an 

effective maintenance model many factors are going to 

change on the way to finally achieve this, because the 

process of developing a maintenance model is a continuous 

one. You don’t just install the sensors and you are done. The 

amount of sensors needed, as well as where to be installed, 

what specifications they should have etc. are more or less 

assumed at the beginning of the development of a 

maintenance model. On the way to finally have an effective 

maintenance model, the sensor network must be easily 

adoptable and expandable. The above mentioned are the two 

main factors for adopting a WSN compared to a wired one. 

4. LAROS PLATFORM STRUCTURE DESCRIPTION 

LAROS is a hardware and software platform that monitors 

various critical parameters at a vessel in order to identify the 

vessel operational status. It is not a control system; most of 

the ships, especially the new ones, have very advanced 

control systems with more than 300 sensors. LAROS is a 

monitoring system based on collection of data and signals 

from sensors, instruments and systems that are present in a 

vessel. The platform is specifically developed in order to be 

able to collect most of the signal and data types that are 

available in the various systems that are present in a vessel, 

either these are just simple analog/digital signals from 

sensors (i.e. voltage, current, pulses etc.) or complicated 

data types from various control interfaces (data extracted 

from various serial protocols). It can be installed on all kind 

of vessels, whatever the vessel’s age and type is. Monitoring 

is direct with the maritime headquarters via satellite link. 

 

Figure 3. LAROS system vessel basic components along 

with the main control system. 
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LAROS is completely independent from the main control 

system. It consists of several smart collector nodes most of 

them wireless and each one with the ability of preliminary 

local processing of the selected data. Furthermore, it is fully 

adaptable, expandable and configurable in order to be able 

to add new services and procedures and has an inherent 

distributed nature. All these collector nodes take real-time 

measurements, estimate the status based on pattern 

recognition algorithms and send the results wirelessly to a 

server located somewhere inside the vessel via a gateway, 

see figure 3. Each node can have either single or multiple 

inputs, depending on the type of the input, either from 

sensors of the same type and/or system or from different 

ones. Moreover can be powered either with AC or with DC 

voltage supply. The nodes can be easily placed at any 

metallic surface, thus eliminating the need for any 

mechanical modifications. 

After data processing a variety of conclusions can be 

derived concerning the vessel’s operational status. In case 

any change is observed, a notification in the form of either a 

report or an alarm will be sent to the headquarters of the 

maritime company. Along with the notification, the Fleet 

Manager and the technical team will acquire detailed 

measurements from the sensor network in order to plan the 

appropriate actions. A more detailed description of the 

LAROS system is shown in figure 4. 

 

Figure 4. LAROS system vessel basic components along 

with the main control system 

The collector nodes monitor various parameters, such as 

engine performance parameters (RPM, torque, power, fuel 

oil and lubricant oil consumption, various pressures and 

temperatures), engine’s cooling water and sea temperature 

since sea water is used as water for the cooling system, the 

opening rate of the fuel’s supply valves, the propeller’s shaft 

vibration, as well as the electric generators’ produced power 

and operating pressures, the exhaust gas temperature and 

chemical composition, the turbochargers’ rpm and incoming 

and outgoing air temperatures, bearings’ temperatures etc. 

Moreover a variety of navigation and weather parameters 

are recorded, such as vessel’s speed, drafts, inclination, 

geographical position, wheel position, water longitudinal 

and transverse speed, wind angle and speed, environmental 

temperature and humidity. 

With all this variety of parameters monitored, the operating 

and performance status of the vessel can be greatly analyzed 

and various actions can be followed in order to enhance 

performance, monitor and reduce fuel consumption, reduce 

gas emissions, extend assets lifetime. 

The sensors that are used employ various technologies like 

MEMS, photonic, organic electronics and mechanical. The 

sensor nodes or collectors are based on either a 

microcontroller with embedded software or a digital signal 

processor (DSP) for more demanding signal analysis 

applications like vibration and acoustic analysis. The 

operating system is developed with main characteristics: the 

low power consumption, the increased communication 

reliability, the improved system adaptation and the reduced 

time and complexity for the development of new 

applications. 

The wireless network is an implementation of the ZigBee 

protocol based on the IEEE 802.15.4 standard. There is a 

gateway that sets and coordinates the wireless network and 

all the collector nodes are connected to this gateway, either 

directly, or in case there cannot be a direct connection with 

the help of other collectors or routers. As has been pointed 

in other research projects (Kdouh, Brousseau, Zaharia, 

Grunfeleder and El Zein, 2012) the connectivity between 

wireless collectors inside a vessel, where metallic surfaces 

are the common, is not a problem even when the collectors 

are placed in different rooms, where theoretically it is very 

difficult to have an unproblematic connection. The 

collectors transmit the processed data via the gateway in 

order to be stored to a MIMOSA-type database at a server 

located inside the vessel. The data can be accessed by the 

captain and the vessel’s engineers. Reports, alarms and all 

the monitored parameters are sent via satellite link to the 

main server at the company headquarters, in order to be 

available to the Fleet Manager and its team of engineers for 

further evaluation. 

To the abovementioned stands the advantage and 

uniqueness of LAROS platform compared to similar 

solutions by other vendors. LAROS is adaptable in order to 

collect signals and data from most of the various different 

sensors, instruments, systems and controls inside a vessel, 

not just offer a solution for collecting and monitoring a short 

range of data, such as for example Fuel Oil consumption 

monitoring or just Main Engine (M/E) Torque and Power 

monitoring. Independent of the various systems, LAROS 

has the ability to collect data from them and give to the 

engineers all these data to a single unified platform, where 

doing data analysis provides much more information and 

knowledge for the vessel performance and maintenance. 
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5. A USE CASE OF THE LAROS PLATFORM 

IMPLEMENTATION 

We will present here some experimental measurements and 

results of the LAROS platform installed on a container 

vessel. At figure 5 you may see the architecture of the WSN 

installed at a vessel regarding the vessel’s performance. The 

installed platform can of course be customized to the 

Maritime Company’s specific needs. The platform monitors 

various engine performance parameters such as Main 

Engine RPM, torque, power and fuel oil consumption, 

turbochargers’ rpm. Moreover, in order to have specific 

navigation data, vessel’s drafts and two-axis inclination are 

continuously monitored, as well as wheel position, vessel’s 

speed, water longitudinal and transverse speed, wind angle 

and speed from the bridge various instruments. 

A data analysis and monitoring software tool is also 

provided presenting all these data, in all kind of waveforms, 

analyses them, produces alarms if needed and gives specific 

guidelines. Moreover, certain customized rules can be 

inserted in this software. By these means a comprehensive 

and analytical monitoring overview for performance 

analysis and maintenance is available. 

 

Figure 5. LAROS system network architecture 

5.1. Specific Fuel Oil Consumption (SFOC) Analysis 

On the next figures you may see an analysis that is 

performed for a certain period of time with the help of the 

LAROS data analysis and monitoring software by the 

maritime company headquarters engineers. The goal is to 

measure the SFOC (Specific Fuel Oil Consumption) for this 

vessel. For this reason, we present the M/E power over time 

at a diagram, see figure 6. 

 

Figure 6. Main Engine produced power vs time 

In order to find the vessel’s SFOC, we have to find a certain 

time period where the power produced by the vessel’s 

engine has the minimum deviations, so is rather stable. We 

find this time period and we focus at it, see figure 7. 

  

Figure 7. Main Engine produced power vs time for the 

specific time period 

For this time period, we check that specific rules are true, 

that are: 

 Minimum vessel’s inclination distribution. 

 Minimum vessel’s speed distribution. 

 Minimum M/E RPM distribution. 

We can see that the abovementioned rules are true for this 

time period, see the figures 8 to 11. 

 

Figure 8. Vessel’s inclination at x-axis for this time period 
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Figure 9. Vessel’s inclination at y-axis for this time period 

 

Figure 10. Vessel’s speed distribution for this time period 

 

Figure 11. M/E RPM distribution for this time period 

So, for this specific period, safe results can be obtained 

regarding the vessel’s SFOC, see figure 12. 

 

Figure 12. M/E Heavy Fuel Oil (HFO) consumption for this 

time period 

Moreover, various statistics concerning the parameters 

monitored can be extracted, see figure 13. 

 

Figure 13. M/E Power, RPM & Speed statistics for this time 

period 

By studying the vessel’s performance at this period of time, 

the SFOC can be extracted and can be compared with the 

SFOC that the vessel’s manufacturer has provided by the 

sea trials. If the SFOC extracted by this kind of analysis has 

great difference to the sea trials, further reasons can be 

investigated, like wind speed and direction, vessel’s drafts, 

vessel’s rudder angle. 

In the below figures you may see another time period where 

the M/E power had low deviation, so it was chosen for a 

SFOC analysis as well. 

 

Figure 14. Main Engine produced power vs time for the 

specific time period 
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Figure 15. Vessel’s speed distribution for this time period 

But, as it can be clearly seen, due to high fluctuations of 

vessel’s speed during the period under consideration, safe 

results cannot be obtained in this case. 

6. FINANCIAL BENEFITS FROM ADOPTING LAROS 

PLATFORM 

As it is rather obvious, when a maritime company uses 

LAROS system, its engineers are provided with a very 

powerful tool for various parameters overview that can help 

them for vessel performance analysis. Moreover, it is better 

to predict and prevent a situation of lowered operational 

capability, than to deal with the consequences after an 

incident has occurred. This statement implies a simple logic 

that can be supported by actual numbers, showing the 

benefits for a maritime company that will choose to change 

its philosophy towards the predictive maintenance. The 

operational expenses are defined at a ratio of 37% by the 

crew payment expenses, 40% by the communication, 

maintenance, repair and fuel expenses, while the rest 

represent insurance expenses, tolls, docking, loading and 

unloading procedures. LAROS targets the percentage that 

represents the communication, maintenance, repair and fuel 

expenses. 

A great amount of maritime companies are based at three 

geographical areas; Greece, Japan and North Europe. These 

three areas represent 47% of the global fleet. This market 

spends about 11 billion dollars every year for maintenance, 

repair and fuel costs. We estimate that the use of a fully 

deployed LAROS system will lead to an up to 40% 

reduction of maintenance and repair costs, along with 

reduction of vessels’ operational cost by 15%, reduced 

possibility of engine breakdown and increased crew and 

cargo safety. Along with the direct economic benefits the 

maritime enterprise that will choose to embody the LAROS 

architecture will also have a solid and reliable control on all 

environmental issues that emerge from an operational 

vessel. In terms of efficiency, along with an optimized 

maintenance schedule, the key economical features are 

listed below:  

 Fuel consumption cost reduction by 8% 

 Repair costs by 40% 

 Maintenance costs by 40% 

The statistical analysis we have conducted is based on the 

most recent market data and provides interesting 

conclusions about the actual profits of a potential adoption 

of LAROS system. The figure that follows shows a linear 

prediction regarding the reduction of operational costs per 

year.  Additionally, one must take into account the long 

term development of this solution. LAROS is not a 

monolithic solution but an expanding and continuously 

adaptive system to meet all the new needs that will emerge 

during the operation of a fleet. It works as “multiplication 

factor” in the whole effort to minimize operational costs and 

organize systematically a maintenance schedule. 

 

Figure 16. Cost reduction when using LAROS platform 

7. CONCLUSIONS 

The development of Wireless Sensor Networks with 

intelligent characteristics, like data processing capabilities, 

along with the development of new communication 

protocols has enabled the use of WSNs on a new market like 

Maritime. WSNs as part of a Condition Monitoring system 

can be employed in order to monitor the condition of 

various engine parameters and extract conclusions about the 

vessel operational and performance status. These data can 

be also available to the headquarters engineering team in 

real-time, in order to have a more complete and 

comprehensive solution for every problem that occurs.  This 

can lead to a significant reduction of a vessel’s operational 

expenses, as well as the environmental impact. 

LAROS platform has all the abovementioned characteristics 

that can provide to a maritime company a complete 

monitoring system for Condition Based Maintenance and 

performance analysis. 

NOMENCLATURE 

CBM Condition Based Maintenance 

PdM Predective Maintenace 

PM Preventive Miantenace 

WSN Wireless Sensor Networks 

CM Condition Monitoring 

SECAs Sulphur Emission Control Areas 

IMO International Maritime Organization 

M/E Main Engine 

SFOC Specific Fuel Oil Consumption 

RPM Revolutions Per Minute 
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HFO Heavy Fuel Oil 
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ABSTRACT 

Condition Based Maintenance (CBM) is a well-known 
concept and it has been demonstrated that it is the way 
ahead to prognostic maintenance for failure avoidance and 
for the reduction of maintenance cost. 

This paper presents an application for Condition Based 
Maintenance, with a specific focus on State Detection, 
according to MIMOSA OSA-CBM reference architecture. 
The papers aims at presenting peculiarity of development of 
such a kind of solution when considering the use of Smart 
Sensors instead of traditional devices. 

Indeed, breakthrough in CBM is expected from the 
development of ICT and embedded systems. This 
technology supply integrated chips implementing all the 
necessary circuitry to manage field data capture, data 
processing, local diagnosis, local feedback (where possible) 
and information transfer to the upper control levels. These 
so-called smart sensors exploit new technologies of micro 
sensors (MEMS, micro electro mechanical systems) and 
wireless communication together with the computing power 
of a microprocessor.  

In particular, applications related to maintenance and human 
safety appear to be very promising due to the unstructured 
nature of these domains, where self-configuring networks of 
intelligent devices can better comply with an ever changing 
and partially unpredictable environment. 

A test case is deployed on a typical manufacturing 
equipment: a robot. The objective of the test case presented 
by the paper is not to develop new diagnostic algorithms, 
but to implement some statistical analysis within a 
monitoring infrastructure built with Smart Sensors.  

The case of analysis that the paper will present grounds on 
the use of wireless sensor devices for temperature measures 
gathered on the electric motors of the robot. Then, data are 
transmitted through a wireless network to a receiver unit 
that accomplishes also elaboration by using statistical 
methods and then, thanks to a web-service communication, 
results are made available to external requests and users. 

An advisory is generated when something is out of the 
normal behaviour of the equipment. Finally, the user can 
check this information through the Human Machine 
Interface available via web-service.  

1. INTRODUCTION 

In order to reduce the expenses for maintenance, new 
technologies can provide proper capability to support the 
decision making process through proper monitoring of the 
factory to manage maintenance, production and logistic 
issues. Service oriented architecture (SOA) is a solution that 
is nowadays analysed by many researchers and that 
promises an interesting solution for the issues related to 
controlling of the plant. To this end, some European funded 
projects related with SOA and the issues related to 
monitoring of plant condition are mentioned herein. 
SOCRADES (Cannata et al. 2008,  www.socrades.eu) and 
SODA (www.soda-itea.org) mainly focused on SOA and 
wireless based communication infrastructures for intelligent 
embedded systems. AESOP (http://www.imc-aesop.eu/) 
proposed a SCADA/DCS infrastructure based on a service 
oriented architecture. This enables a cross-layer service-
oriented collaboration between services on the same level 
and among different levels of the enterprise. Other 
objectives of AESOP are to investigate the limits of SOA in 
enterprise architecture and to propose a transition path from 
legacy systems to SOA based ones. EMMON 
(www.artemis-emmon.eu) targets the realization of large 
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scale monitoring of huge geographical areas in real time, 
using wireless sensor devices in specific scenarios (water 
pipelines, urban quality of life, forest and marine 
environments, civil protection). While the above-mentioned 
projects are focused on monitoring through SOA system and 
embedded devices, the project DYNAMITE 
(http://dynamite.vtt.fi) targeted maintenance related issues, 
and in particular it emphasized on predictive maintenance, 
supporting the concept of e-maintenance with ICT tools 
such as PDA, CMMS and web services  (Muller et al., 
2008); the project adopted also the MIMOSA OSA-CBM 
reference architecture, that is an implementation of ISO-
13374 functional specification. 

Indeed, the present paper presents a part of a research 
developed in the scope of a European funded project on this 
topic, namely eSONIA, that aimed at further developing the 
results obtained in the above mentioned research projects, 
while targeting practical implementation issues. 

The specific objective of the eSONIA project was to 
overcome the traditional monitoring activity. Within the 
project view, traditional monitoring and data gathering 
techniques have been extended with the ability to elaborate 
raw data and offer high value information as web services at 
various levels. This allowed to avoid the use of large 
centralized systems to collect data where processing is 
concentrated, while the use of embedded devices improved 
the data collection possibility. The project demonstrated that 
Web Services and embedded devices can serve to improve 
the re-configurability and the interoperation of the 
monitoring devices while supporting the smooth transition 
between the legacy device and the new technology ones. 

The paper shows how smart sensors may be adopted for 
monitoring activities and provides feedback to the scientific 
community about how they can be used for supporting 
Condition Based Maintenance (CBM), in particular the 
State Detection activity. As explained by MIMOSA a CBM 
program consists, in fact, of the following modules 
(MIMOSA OSA-CBM, Bengtsson, 2003): 

1. Data Acquisition (DA) has the purpose to collect data 
and properly format them to store/transmit information 
to upper levels; 

2. Data Manipulation (DM) serves to clean and preprocess 
data, typical operations are: normalization, smoothing, 
outlier removal, missing data imputation, etc.; 

3. State Detection (SD) works to monitor the machine 
state by checking if the machine parameters are 
compliant with target ranges; it can generates alarms 
and warnings when compliancy is not reached; 

4. Health Assessment (HA) receives data from the SD 
module or other HA modules and it detects through an 
analysis if the health state of the system or sub-system 

has degraded; moreover, it can suggest possible fault 
causes. 

5. Prognostic Assessment (PA): this module works on the 
results of the previous modules; it is used to calculate 
the future health of an asset and the calculation of the 
Remaining Useful Life (RUL) is possible by taking into 
account also the future usage profile. 

6. Advisory Generation (AG): this module receives data 
from HA and PA modules, and it generates suggestions 
on recommended action(s) related to the maintenance 
how to run the asset under actual conditions; 

7. Presentation, this module presents the outputs from the 
SD, HA, PA and AG modules to the user through a 
Human Machine Interface (HMI). 

At a glance, the importance of Smart Sensors for the 
maintenance is due to the possibility to build or configure 
custom devices dedicated to the monitoring and diagnostics 
of equipment. Furthermore, Smart Sensors are enhanced by 
the use of MEMS technology that allows including many 
different types of micro sensors into the device or into a 
single chip. In this way, the broad spectrum of applications 
and the power of a comprehensive data acquisition system is 
made available in the small and self-contained package of 
the smart sensor (Garetti et al., 2007). This allows 
concentrating within the sensors the activity of Data 
Acquisition and first Data Manipulation, leaving to other 
levels of the architecture the duty of carrying on State 
Detection. 

The paper aims, thus, at demonstrating how this can be 
achieved practically within a manufacturing environment, 
considering a test case. To this end, it is structured as 
follows: paragraph 2 details the benefits for the overall 
approach proposed by eSONIA project and presents the 
proposal for an heterogeneous implementation of the 
mentioned technologies, allowing the integration of new 
solutions with existing ones. Paragraph 3 explains how the 
condition-based maintenance management module, which is 
included in the proposed architecture, is built. Paragraph 4 
explains how a demonstrator has been deployed for 
implementation of the research outcomes, showing the role 
of the maintenance management functions. Eventually, 
paragraph 5 concludes the paper envisioning future 
challenges in this research field. 
2. BENEFITS OF THE SOA ARCHITECTURE FOR CONDITION 

BASED MAINTENANCE 

The use of Service-oriented Architecture (SOA) and Web 
Services (WS) is introducing interesting opportunities in 
factory automation; in fact, they allow to make incremental 
adoptions of new application and technologies, while 
avoiding a green field approach or to make big investments 
in order to update automation system. Therefore, new 
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automation solutions based on SOA and WS approach could 
run in parallel to already existing ones. 

eSONIA solution grounded on a conceptual description of 
the architecture. SOA is a flat architecture where all the 
services can interact together. This consequently makes the 
control architecture almost flat from an hardware and 
software point of view, but cannot overcome, of course, a 
certain hierarchy among the functionalities that the service 
carries on. Figure 1 shows how embedded solutions 
communicate with Application tools. 

 

 
Figure 1. eSONIA conceptual implementation scheme. 

Following this architectural approach, already existing 
“Applications” and “Traditional devices” can still be used 
on a brand new technology-based architecture simply  
integrating them by ad-hoc gateway services (see number 4 
in the circle), thus enabling the co-existence of Web Service 
devices and traditional devices (e.g. PLC). This approach 
allows a smooth and incremental transition to an entire 
Service Oriented Architecture. On such a kind of 
architecture “Application Tools” (see number 2 in  Figure 1) 
and “User & Business Applications” (see number 3 in 
Figure 1) are services hosted on computer servers. On 
“Embedded Device Level”, many “Embedded Solutions” 
(see number 1 in Figure 1) can run web services hosted on 
embedded devices to provide various functions. SOA, 
differently from traditional one, allows each Embedded 
Solution (so the physical device) to interact with other 
Embedded Solutions on other devices, implementing a low 
level/distributed monitoring and control capability. 

Thus, transformation from raw data to information is 
accomplished at embedded systems level, then information 
is transmitted to the higher level of the architecture 
represented by “application solutions” or “user & business 
applications” (see Figure 1). The interaction between 
embedded solutions and, for example, application tools are 
based on the capability of the service oriented architecture. 

3. THE ESONIA CONDITION-BASED MAINTENANCE 
MANAGEMENT MODULE 

Maintenance Management tools in the scope of the 
proposed architecture are mainly related to condition based 
maintenance. The main idea of CBM is to use the 
information on asset health retrieved from on-line sensing 
techniques (i.e. embedded sensors) to minimize the system 
downtime and the risk of failure.  

The MIMOSA functions, presented in Section 1, can be 
seen as independent modules that can be built in a Service 
Oriented Architecture. In this way, each module can be 
“encapsulated” in a web service.  

Scientific contribution provided by this paper on this aspect 
is related to the proof of concept that eSONIA project 
guaranteed. Indeed, what is presented herein represents a 
validation of the use of smart sensors for CBM within an 
industrial environment. To sustain the use of such 
technology within an industrial environment, specific 
attention has been paid to identification of industrial needs 
and building of a solution compliant with standard (i.e. ISO-
13374) and sufficiently easy to be adopted by practitioners. 
Interoperability issues, communication problems, software 
development for the smart sensor boards adopted have been 
tackled in order to achieve a functioning solution that could 
act as demonstrator, neglecting a specific improvement of 
the state of the art ICT solutions. Nevertheless effort spent 
on this should not be neglected by readers interested in 
replicating the solution proposed herein. 

In order to achieve the proof of use of smart sensors for 
CBM, the MIMOSA modules have been deployed in the 
eSONIA project in order to build the following functions. 

Malfunction advisory generator represents a first function 
and it is realized on the basis of the State Detection (SD) 
module. It is deployed to trigger alarms when the value of a 
parameter overcomes a predefined threshold, then the 
function provides a list of the related warnings or alarms. 
Each advisory is completed with certain information and 
KPIs. The main scope of this function is to show advisories 
about maintenance problems (i.e. machine malfunctions) 
and provide related information and KPIs. To this end, 
proper advisories are generated, providing the operator with 
the necessary and updated information to understand the 
problem that is occurring. Operationally, the user can utilize 
the function as follows: 

• He/she configures the malfunction advisories; namely 
he/she should choose the thresholds of the KPIs on a 
machine/equipment or section of the plant; 

• He/she can read advisories: if a fault happens, the system 
generates malfunction advisories according to the set 
thresholds; 
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• He/she can select a machine/equipment or a plant section 
and list all the recent and past advisories. 

A second function of the eSONIA maintenance management 
modules is represented by health state reporting. The 
purpose of the application related to this function is to 
properly present the health state report of a selected machine 
or a section of the plant. This tool presents to the user 
updated health state reports, which are helpful to take a 
decision on maintenance actions. This function strongly 
grounds on Health Assessment function derived by 
MIMOSA framework. 

The use of the web service introduces a flexible approach in 
the realization of an application based on the two presented 
functions. In particular, it is important to underline that the 
services are interoperable, in this way it is possible to 
combine different services to obtain a new and more 
complete one. Moreover, the access can be granted to all 
network devices (e.g. other services of computers). Web 
services can be accessed from machine and from user 
through a common browser. In the first case the information 
are transmitted by means of XML data format, in the latter 
case the information can be included in a html page to 
obtain an user friendly data presentation (Lastra et al., 2006;  
Lobov et al. 2009).  

The test case presented in the next section 4 focuses on a 
part of the eSONIA maintenance management module, in 
particular on the realization of the data acquisition, data 
manipulation, state detection and health assessment by 
means of embedded devices. 

4. APPLICATION DOMAIN: AUTOMOTIVE MANUFACTURING 
DOMAIN  

Different use cases have been addressed by eSONIA project 
and different applications have been analyzed (see Macchi 
et al. 2011 for further information). Herein, the test case 
related with the manufacturing application domain is 
described.  

The objective of the test case is to implement proper 
existing diagnostic algorithms as web services, neglecting to 
develop new ones.  

The application has been implemented on a welding robot 
with the purpose to support the operator in detecting 
malfunction state; the robot has been equipped with MB851 
wireless sensing boards connected to sensing probes. This 
solution allowed placing the sensing probes very close to the 
electric motor windings and the welding actuator. Figure 2 
shows the board the probe. 

 

 
Figure 2. Wireless sensing board MB851 (on the left) and 

the sensing probe (on the right), please note that images are 
not scaled. 

An overview of the functional architecture is provided by 
Figure 3. Data are collected from the field through the 
sensing probes (label number 1), then Data Acquisition 
function (DA) is performed (label number 2) by wireless 
sensing boards.  

 
Figure 3. Functional architecture of the test case. 

 

Data are gathered by a receiver node (label number 3) that 
provides data manipulation (DM) and State Detection (SD), 
then data are published on the network through web 
services. Bi-directional flow of information indicated by the 
arrows in Figure 3 refers to the type of communication 
between the different nodes, i.e. the requests made by the 
web-services.  

Label number 4 indicates the Health Assessment (HA) 
function. The operator can access the SD and HA outputs 
through the HMI device browser (label number 6), which is 
connected to the Ethernet network through the robot control 
cabinet (label number 5). 

An hardware oriented view of the architecture is shown in 
Figure 4. 
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Figure 4. Hardware architecture of the test case. 

 

The wireless sensing probes collect several kind of data, 
such as accelerations, angular speed, magnetic field and 
temperatures; in the presented test case the temperatures 
were sampled. Wireless sensing board, namely MB851, 
provides Data Acquisition (DA) functions. The boards are 
battery powered. In order to avoid a fast discharge due to 
computation energy demand, it was decided to use them 
mainly for data acquisition and transmission, so neglecting 
data manipulation, because data manipulation would request 
a too high energy demand to such boards. A longer battery 
operating time has been preferred for this application.   

Data Manipulation (DM) is provided down way the data 
stream by another device. In fact, all data are transmitted 
through ZigBee wireless network (IEEE 802.15.4) to a 
receiver node, which is wired to a computing board. This 
last board is based on the Tsunami Interface Baseboard for 
TAO-3530 and it is intended to provide a complete data 
manipulation (DM), a State Detection (SD) function and to 
provide also web service access to other devices on the 
network. In particular, the Tsunami board is connected on 
the Ethernet network and acts as a sort of gateway for the 
sensors. Hence, Tsunami board can be considered part of the 
architecture of smart sensors. In this way, the Tsunami 
board allows to have a sensing network uncoupled from the 
output requests. Moreover, it has enough computational 
capacity to provide web service access to each data stream 
of the nodes. Otherwise, the web services had to be 
published on each node of the sensing network and this will 
increase battery consumption, changing the technical 
requirements of the sensing boards. 

Through the web service it is possible to access the 
collected data simply by means of a browser equipped 
device. In fact, in the test case, it was possible to connect the 
operator’s HMI to the so-realized sensing network. 
However, the information provided after Data Manipulation 
function is not user friendly. In order to overcome this 
limitation a State Detection (SD) function is used to produce 
easy-to-read KPIs, so the operators can quickly be informed 
on the asset warnings and alarms. In other words, the SD 
function quickly detects abnormal deviation of working 

parameters (e.g.: an over-temperature status) and/or an 
abnormal dynamic behavior (e.g.: an heating trend on the 
equipment), then it produces and indicator to measure “how 
much” the parameters are in the expected range and, in 
faulty cases, it generates a warning/alarm message to the 
operator. As in the DM function, the computing results of 
SD are published on the network in form of web services. 
Health Assessment (HA) module is, instead, implemented 
and run on a high computational device, namely a desktop 
computer, that is connected on the Ethernet network, in 
order to get data from SD and DM web services. The 
desktop computer host HA because computational 
constraints of the TAO-3530. HA, as SD and DM modules, 
elaborates data and provides an output through the web 
service technology. Overall, the operator can easily retrieve 
information from HA and SD functions from the browser of 
the already-in-use device, and so have a quick and complete 
feedback on the robot health state. 

Figure 5 shows an example of the web page generated for 
the HMI, focusing on the information coming from one 
single sensing probe. State Detection function runs as a web 
service on the TAO-3550, the graph shows the actual level 
of the monitored variable while some KPIs are indicated on 
the page.   

 

 
 

Figure 5. Example of the web page as shown on the robot 
remote controller (HMI). Information is related with State 

Detection 

 

The information available on the network are formatted into 
an html page (see HTML 4.01 Specification) to be displayed 
in a user-friendly way on a common browser (see Figure 5 
and Figure 6).  

Figure 6 shows another example of the web page available 
to the operator. The whole represented area covers all the 
possible working condition of the robot; an indicator will 
point out a sub-area so indicating, in a quick and user- 
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friendly way, the fault. In fact, each sub-area is associated to 
a robot working condition and a fault cause. The HA 
function is designed based on Principal Component 
Analysis (PCA) theory and tailored using history sample 
data on the machine behavior, according to the research 
presented in Fumagalli et al. (2014). 

Figure 7 provides the legenda on how to read the HA 
information provided on the robot controller.  

 

 
 

Figure 6. Example of the web page as shown on the robot 
remote controller (HMI). Information is related with Health 

Assessment. 

 

 
 

Figure 7. Explanation on how to read the result showed by 
HA functionality. 

 

Within the presented test case, the setting of the parameters 
of the Smart Sensors was done by the researchers involved 
in the eSONIA project. This represents one key issue to be 

considered when the proposed solution is transposed from a 
test case within an industrial environment to an operating 
environment, when real production is performed. In the 
latter case, in fact, maintenance operators would be the ones 
called to deploy such architecture within the specific 
application context. In this case, the key aspect for setting 
up of the system is the identification of the right physical or 
statistical model to be used for state detection and health 
assessment, considering the specific machines where smart 
sensors are installed.  

5. CONCLUSIONS 

The paper presented the condition-based maintenance 
management module within the context of the eSONIA 
project, in particular it focused on the developed tools, 
based on smart sensors and web services. The tools have 
been adopted in the eSONIA Service Oriented Architecture 
and it was demonstrated how it is possible to smoothly 
introduce the presented technologies in a real industrial 
environment. In fact, the tools have been designed 
considering that they can be used in an already-working 
environment, so new functionalities can be introduced in the 
system with a minimum effort to configure the legacy 
system. Moreover, the tools consider the possibility to 
interact with IT systems that are external sources to the 
proposed architecture. To this end, it was shown how it is 
possible to easily share information on the network from 
machine to machine and that it is also possible to properly 
format the information to obtain a machine to human 
communication. 

Overall, the monitoring architecture presented within 
eSONIA project and, in particular, the condition-based 
maintenance management module discussed in this paper, 
demonstrate a smooth migration from an existing 
monitoring architecture towards a new one, based on new 
technologies (i.e. smart sensors), while avoiding deep and 
high cost upgrades of the existing infrastructure. The test 
case provides feedback to the scientific community about 
how smart sensors and Web Services can be used for 
supporting CBM.  

Further research can be envisioned on the improvement of 
configurability of the upper layers of MIMOSA (i.e. SD and 
HA), enabled by the use of smart sensors that cover lower 
layers (i.e. DA and DM). Configurability of the upper layers 
may depend on an analysis of diagnostic and prognostic 
techniques. Such analysis should consider the definition of 
diagnostic and prognostic techniques, their functional 
features and how these features can be exploited in the 
MIMOSA architecture. MIMOSA, in fact, is a good 
guideline that can be further enhanced with such analysis, in 
order to get an easier adoption by industry.  
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ABSTRACT

A direct method of measuring corrosion on a structure us-
ing a micro-linear polarization resistance (µLPR) sensor is
presented. The sensor includes three electrodes, where each
electrode is fabricated on a flexible substrate to create a circuit
consisting of gold-plated copper. The first two electrodes, or
the counter and reference electrodes, are configured in an in-
terdigitated fashion with a separation distance of 8mil. The
flex cable contains a porous membrane between the pair of
electrodes and the structure. A third electrode, or the work-
ing electrode makes electrical contact to the structure through
a 1mil thick electrically conductive transfer tape placed be-
tween the electrode and structure. The reference and counter
electrodes are electrically isolated from the working electrode
and physically separated from the surface of the structure by
1mil. The flex cable can be attached to the structure through
the use of adhesives or in the case of placement in a butt joint
or lap joint configuration, by the joint itself. Corrosion is
computed from known physical constants, by measuring the
polarization resistance between the electrolytic solution and
the structure. A controlled experiment using the ASTM G85
Annex 5 standard verifies the precision and accuracy of sen-
sor measurements by comparing the estimated mass loss with
witness coupons.

1. INTRODUCTION

Recent studies have exposed the generally poor state of our
nation’s critical infrastructure that has resulted from wear
and tear under excessive operational loads and environmen-
tal conditions. SHM (Structural Health Monitoring) Systems
aim at reducing the cost of maintaining high value struc-
tures by moving from SBM (Scheduled Based Maintenance)
to CBM (Condition Based Maintenance) schemes (Huston,

Douglas Brown et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

Figure 1. AN110 installed on a C-130H

2010). These systems must be low-cost, simple to install with
a user interface designed to be easy to operate. To reduce the
cost and complexity of such a system a generic interface node
using low-powered wireless communications has been devel-
oped. This node can communicate with a myriad of common
sensors used in SHM. In this manner a structure such as a
bridge, aircraft, or ship can be fitted with sensors in any de-
sired or designated location and format without the need for
communications and power lines that are inherently expen-
sive and complex to route. Data from these nodes is trans-
mitted to a central communications Personal Computer (PC)
for data analysis. An example of this is provided in Figure 1
showing an embedded AN110 SHM system installed on a C-
130H aircraft.

The µLPR presented in this paper improves on existing LPR
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technology by using the structure as part of the sensor system.
Further improvements are realized by narrowing the separa-
tion distance between electrodes, which minimizes the effects
due to solution resistance. This enables the µLPR to operate
more effectively outside a controlled aqueous environment,
such as an electrochemical cell, in a broad range of applica-
tions (eg. civil engineering, aerospace, petrochemical).

The remainder of the paper is organized as follows. Sec-
tion 2 provides the background into different corrosion sens-
ing technologies, LPR theory, and the new 3-electrode µLPR
sensor design. Section 3 describes the experimental proce-
dure used to evaluate the new sensor design through a con-
trolled ASTM G85-A5 test. Section 4 presents the results of
experimental testing. Finally, the paper is concluded in Sec-
tion 5 with a summary of the findings and future work.

2. BACKGROUND

Corrosion sensors can be distinguished by the following cat-
egories, direct or indirect and intrusive or non-intrusive. Di-
rect corrosion monitoring measures a response signal, such
as a current or potential, resulting from corrosion. Exam-
ples of common direct corrosion monitoring techniques are:
corrosion coupons, electrical resistance (ER), electrochemi-
cal impedance spectroscopy (EIS), and linear polarization re-
sistance (LPR) techniques. Whereas, indirect corrosion mon-
itoring techniques measure an outcome of the corrosion pro-
cess. Two of the most common indirect techniques are ul-
trasonic testing and radiography. An intrusive measurement
requires access to the structure. Corrosion coupons, ER, EIS,
and LPR probes are intrusive since they have to access the
structure. Non-intrusive techniques include ultrasonic testing
and radiography.

Each of these methods have advantages and disadvantages.
Corrosion coupons provide the most reliable physical evi-
dence possible. Unfortunately, coupons usually require sig-
nificant time in terms of labor and provide time averaged data
that can not be utilized for real-time or on-line corrosion mon-
itoring (Harris, Mishon, & Hebbron, 2006). ER probes pro-
vide a basic measurement of metal loss, but unlike coupons,
the value of metal loss can be measured at any time, as fre-
quently as required, while the probe is in situ and permanently
exposed to the structure. The disadvantage is ER probes re-
quire calibration with material properties of the structure to
be monitored. The advantage of the LPR technique is that
the measurement of corrosion rate is made instantaneously.
This is a more powerful tool than either coupons or ER where
the fundamental measurement is metal loss and some period
of exposure is required to determine corrosion rate. The dis-
advantage to the LPR technique is that it can only be suc-
cessfully performed in relatively clean aqueous electrolytic
environments (Introduction to Corrosion Monitoring, 2012).
EIS is a very powerful technique that can provide a corrosion

rate and classification of the corrosion mechanism. Disadvan-
tage with EIS is sophisticated instrumentation in a controlled
setting is required to obtain an accurate spectrum. In fielded
environments, EIS is susceptible to noise. Additionally, in-
terpretation of the data can be difficult (Buchheit, Hinke-
bein, Maestas, & Montes, 1998). Finally, ultrasonic testing
and radiography can be used to detect and measure (depth)
corrosion through non-destructive and non-intrusive means
(Twomey, 1997). The disadvantage with the ultrasonic test-
ing and radiography equipment is the same with corrosion
coupons, both require significant time in terms of labor and
can not be utilized for real-time or on-line corrosion monitor-
ing.

2.1. LPR Theory

Corrosion occurs as a result of oxidation and reduction re-
actions occurring at the interface of a metal and an elec-
trolyte solution. This process occurs by electrochemical half-
reactions; (1) anodic (oxidation) reactions involving dissolu-
tion of metals in the electrolyte and release of electrons, and
(2) cathodic (reduction) reactions involving gain of electrons
by the electrolyte species like atmospheric oxygen, O2, H2O,
or H+ ions in an acid (Harris et al., 2006). The flow of elec-
trons from the anodic reaction sites to the cathodic reaction
sites creates a corrosion current. The electrochemically gen-
erated corrosion current can be very small (on the order of
nanoamperes) and difficult to measure directly. Application
of an external potential exponentially increases the anodic
and cathodic currents, which allows instantaneous corrosion
rates to be extracted from the polarization curve. Extrapo-
lation of these polarization curves to their linear region pro-
vides an indirect measure of the corrosion current, which is
then used to calculate the rate of corrosion (Burstein, 2005).

The electrochemical technique of LPR is used to study corro-
sion processes since the corrosion reactions are electrochem-
ical reactions occurring on the metal surface. Modern corro-
sion studies are based on the concept of mixed potential the-
ory postulated by Wagner and Traud, which states that the net
corrosion reaction is the sum of independently occurring ox-
idation and reduction (Wagner & Traud, 1938). For the case
of metallic corrosion in presence of an aqueous medium, the
corrosion process can be written as,

M+ zH2O
f↔
b

Mz++
z
2

H2 + zOH−, (1)

where z is the number of electrons lost per atom of the metal.
This reaction is the result of an anodic (oxidation) reaction,

M
f↔
b

Mz++ ze−, (2)

and a cathodic (reduction) reaction,

zH2O+ ze−
f↔
b

z
2

H2 + zOH− (3)

2
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It is assumed that the anodic and cathodic reactions occur at a
number of sites on a metal surface and that these sites change
in a dynamic statistical distribution with respect to location
and time. Thus, during corrosion of a metal surface, metal
ions are formed at anodic sites with the loss of electrons and
these electrons are then consumed by water molecules to form
hydrogen molecules. The interaction between the anodic and
cathodic sites as described on the basis of mixed potential the-
ory is represented by well-known relationships using current
(reaction rate) and potential (driving force). For the above
pair of electrochemical reactions (2) and (3), the relationship
between the applied current Ia and applied potential, Ea, fol-
lows the Butler-Volmer equation,

Ia = Icorr

[
e2.303(Ea−Ecorr)/βa − e−2.303(Ea−Ecorr)/βc

]
, (4)

where βa and βc are the anodic and cathodic Tafel parameters
given by the slopes of the polarization curves ∂Ea/∂ log10 Ia
in the anodic and cathodic Tafel regimes, respectively and
Ecorr is the corrosion, or open circuit potential (Bockris,
Reddy, & Gambola-Aldeco, 2000). The corrosion current,
Icorr, cannot be measured directly. However, a priori knowl-
edge of βa and βc along with a small signal analysis tech-
nique, known as polarization resistance, can be used to in-
directly compute Icorr. The polarization resistance technique,
also referred to as linear polarization, is an experimental elec-
trochemical technique that estimates the small signal changes
in Ia when Ea is perturbed by Ecorr ± 10mV (G102, 1994).
The slope of the resulting curve over this range is the polar-
ization resistance,

Rp ,
∂Ea

∂ Ia

∣∣∣∣
|Ea−Ecorr |≤10mV

. (5)

ASTM standard G59 outlines procedures for measuring po-
larization resistance. Potentiodynamic, potential step, and
current-step methods can be used to compute Rp (G59, 1994).
The potentiodynamic sweep method is the most common
method for measuring Rp. A potentiodynamic sweep is con-
ducted by applying Ea between Ecorr±10mV at a slow scan
rate, typically 0.125 mV/s. A linear fit of the resulting Ea vs.
Ia curve is used to compute Rp. Note, the applied current, Ia,
is the total applied current and is not multiplied by the elec-
trode area so Rp as defined in (5) has units of Ω. Provided that
|Ea−Ecorr|/βa � 1 and |Ea−Ecorr|/βc � 1, the first order
Taylor series expansion ex u 1+ x can be applied to (4) and
(5) to arrive at the Stern-Geary equation,

Icorr =
B?

Rp
, (6)

where,

B? =
βaβc

2.303(βa +βc)
(7)

Knowledge of Rp, βa, and βc enables direct determination of

Icorr at any instant in time. The corrosion rate, Rloss, can be
found by applying Faraday’s law,

Rloss (t) =
Bcorr

Rp (t)
, (8)

where,

Bloss =
B?

FAsen

(
AW

z

)
, (9)

such that F is Faraday’s constant, z is the number of electrons
lost per atom of the metal during an oxidation reaction, Asen
is the effective area of the sensor, and AW is atomic weight.
The total mass loss, Mloss, due to corrosion can be found by
integrating (8),

Mloss (t) =
ˆ t

t0
Rloss (τ)dτ. (10)

Finally, since Rp is not measured continuously (10) needs to
be discretized for the sample period Ts,

Mloss (t)
∣∣∣∣
t=NTs

= Ts

N

∑
k=1

Rloss (kTs) (11)

2.2. Sensor Design

Each electrode is fabricated on a flexible substrate to create
a circuit consisting of a noble metal, typically gold-plated
copper. The first two electrodes, counter and reference elec-
trodes, are fabricated with a thickness of 2mil configured in a
interdigitated geometric layout with a separation distance of
8mil. The flex cable contains an insulated / porous scrim ma-
terial between the pair of electrodes and the structure. A third
electrode, or working electrode, is placed in close proximity
to the counter and reference electrodes and makes electrical
contact to the structure by placing a 1mil thick electrically
conductive transfer tape between the electrode and structure.
The flex cable, shown in Figure 2, can be attached to the struc-
ture through the use of adhesives or in the case of placement
in a butt joint or lap joint configuration, the holding force is
provided by the joint itself. Corrosion is computed by mea-
suring the polarization resistance between the electrolytic so-
lution and the structure using the three electrodes and apply-
ing (11).

3. EXPERIMENTAL PROCEDURES

3.1. Tafel Measurements

ASTM standard G59 outlines the procedure for measuring
the Tafel slopes, βa and βc. First, Ecorr is measured from
the open circuit potential. Next, Ea is initialized to E corr-
250mV. Then, a potentiodynamic sweep is conducted by in-
creasing Ea from Ecorr−250mV to Ecorr +250mV at a slow
scan rate, typically 0.125 mV/s. Finally, a Tafel curve is plot-
ted for Ea vs. log10 Ia. Values for βa and βc are estimated

3
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(a)

(b)

(c)

Figure 2. The µLPR sensor (a) as fabricated on a flexible cir-
cuit, (b) illustration identifying each electrode, and (c) using
the structure as the third electrode.

from the slopes of the linear extrapolated anodic and cathodic
currents.

3.2. Sample Preparation

New samples were cut to length and uniquely stamped with
stencils close to the edge of both faces of the sample. The
samples were then cleaned using an alkaline cleaner, TURCO
4215 NC-LT – 50 g/L for 35min at 65◦C. Afterward, the sam-
ples were rinsed with Type IV reagent grade deionized water
and immersed in a solution of 70% (v/v) nitric acid for 5min.
The samples were then rinsed again in the deionized water
and air dried. The weights were recorded to the nearest fifth
significant figure and the samples were stored in a desicca-
tor. After massing, the samples were assembled in a lap-joint
configuration and coated with 2mil of epoxy-based primer
and 2mil of polyurethane.

3.3. Accelerated Testing

Corrosion tests were performed in a cyclic corrosion chamber
running the ASTM G85-A5 test. This test consisted of two
one-hour steps. The first step involved exposing the samples
to a salt fog for a period of one-hour at 25◦C. The electrolyte
solution composing the fog was 0.05% sodium chloride and
0.35% ammonium sulfate in deionized water. This step was
followed by a dry-off step, where the fog was purged from the
chamber while the internal environment was heated to 35◦C.
Electrical connections for the flex sensors were made to an
AN110 positioned outside the sealed chamber by passing ex-
tension cables through the bulkhead in the chamber. Temper-
ature, relative humidity, and µLPR data was acquired at 1min
intervals.

3.4. Sample Cleaning

3.4.1. Lap-Joint Panels

Lap joints were removed from the environmental chamber
and disassembled. Following disassembly, the polyurethane
and epoxy coatings on the aluminum panels were removed by
placing them in a solution of methyl ethyl ketone. After im-
mersion for 30min the panels were removed and rinsed with
deionized water. These panels were again alkaline cleaned
with a 35min immersion into a constantly stirred solution of
50 g/L Turco 4215 NC-LT at 65◦C. This was followed by a
deionized water rinse and immersion into a 90◦C solution of
4.25% phosphoric acid containing 20 g/L chromium trioxide
for 10min. Following phosphoric acid treatment the panels
were rinsed with deionized water and placed into a 70% ni-
tric acid solution for 5min at 20◦C. Plates were then rinsed
with deionized water, dipped in ethanol, and dried with a heat
gun. This cleaning process was repeated until mass values for
the panels stabilized. These values were then compared with
mass loss values calculated from the µLPR data.

3.4.2. Control Coupons

Control samples, free of any corrosion, were weighed before
and after being subjected to the same cleaning process as the
corroded samples to determine the extent of metal loss re-
sulting from the cleaning procedure. Corroded samples were
lightly brushed with nylon bristles. The corroded samples
were then placed in a solution of TURCO 4215 NC-LT –
50 g/L for 1 hour at 65◦C. Afterward, in accordance with
ASTM G1, the standard practice for preparing, cleaning, and
evaluating corrosion test specimens, the samples were placed
in a 90◦C solution of 4.25% phosphoric acid containing 20 g/L

chromium trioxide for 10min. Next, the samples were placed
in 70% (v/v) nitric acid for 5min at 20◦C. Following this step
the samples were rinsed with deionized water. Finally, the
samples were dipped in ethanol, dried, and stored in a desic-
cator cabinet.

4. RESULTS

This experiment ran over a period of 230 hours, where the
environment inside the chamber was varied in temperature
and humidity to promote corrosion. Once the experiment be-
gan, the Tafel constants were acquired while the panels were
undergoing a wetting cycle. The Tafel constants were ac-
quired and plotted as applied voltage vs. the logarithm of
the applied current magnitude, shown in Figure 3. From this
plot the Tafel constants were computed as, βa ≈ 0.40 V/dec

and βc ≈ 0.15 V/dec. The corrosion constant, Bloss, was com-
puted using (9) with the material properties for AA2024-T3
and sensor properties defined in the nomenclature. Panels 1-
4 were removed 33, 130, 170, and 230 hours into the experi-
ment, respectively. Plots of the measured temperature and hu-
midity vs. time are provided in Figure 4. The corrosion rate,

4
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Figure 3. Tafel plot of the µLPR sensors.
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Figure 4. Plots of (a) temperature and (b) relative humidity
vs. time.

shown in Figure 5, was computed from Rp measurements us-
ing (8).

The total corrosion, shown in Figure 6, was computed for
each panel by applying (10) to integrate the corrosion rate
with respect to time. The error bars correspond to the stan-
dard deviation observed at the time when the mass loss was
computed. Finally, the measured and computed corrosion
from the µLPR measurements were compared in a scatter
plot, shown in Figure 7. The error bars in the y-direction
correspond to observation error. These results indicate the
measured corrosion correlated with the computed corrosion
to within 95% confidence (two standard deviations of the ob-
servation error).
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Figure 5. Computed corrosion rate vs. time.
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Figure 6. Computed corrosion vs. time.
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Figure 7. Measured vs. computed corrosion.
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5. CONCLUSION

A new µLPR sensor design was presented for direct corro-
sion monitoring in Structural Health Management (SHM) ap-
plications. The new design improves on existing technolo-
gies by (1) using the structure as part of the sensor measure-
ment, (2) improving sensor lifetime by making the electrodes
from a non-corrosive material, and (3) improving on sensor
performance by reducing the separation distance between the
working, reference, and counter electrodes. Corrosion tests
were performed in a cyclic corrosion chamber running ASTM
G85-A5 salt-fog test. The results indicate the µLPR sensor
data correlated with the measured mass loss to within 95%
confidence (two standard deviations of the observation error).
This demonstrates the µLPR sensor can accurately measure
the change in the corrosion rate as a function of time for a
given electrolyte condition. Future work includes:

• Demonstrate µLPR sensor accurately measures the cor-
rosion rate as a function of solution conductivity. This
is important as the environment (in terms of bare metal
surfaces) will experience wet-dry cycles.

• Establish the µLPR sensor can accurately measure corro-
sion in atmospheric conditions where corrosion rates are
lower than in an “accelerated corrosion chamber” (i.e.
what is the lowest rate of corrosion that the sensors can
measure when a monolayer of electrolyte is present).

• Investigate the surface morphology of the coupons us-
ing a scanning electron microscope (SEM) and correlate
their measured corrosion rate as a function of their cor-
rosion behavior (e.g. pitting vs. uniform corrosion) as
determined by the µLPR sensor data over time.
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NOMENCLATURE

βa V/dec 0.40 anodic Tafel constant
βc V/dec 0.15 cathodic Tafel constant
τ s - time variable
dτ s - time step
k - - sample index

t s - time
t0 s - initial time
z - 3 electron loss
Asen cm2 4.233×10−2 sensor area
AW g/mol 2.899×101 atomic weight
B? V/dec 4.95×10−2 constant
Bloss Ω·g/cm2/s 1.170×10−4 constant
Ea V - applied potential
Ecorr V - corrosion potential
Ia A/cm2 - applied current
Icorr A/cm2 - corrosion current
F C/mol 9.649×104 Faraday’s constant
Mloss g/cm2 - mass loss
N - - total samples
Rloss g/cm2/s - corrosion rate
Rp Ω - polarization resistance
Ts s 60 sample period
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ABSTRACT 

Power transformer is a critical component in energy 

transmission, and its failure can cause catastrophic social loss. 

Among many techniques to prevent the transformer failures, 

ones using vibration signals show good capability of 

detecting the mechanical faults. For on-site power 

transformers, numerous vibration sensors are installed to take 

into account vibration uncertainty which comes from sizable 

and complex transformers and random operating condition. 

It, however, brings about the high maintenance cost of 

sensing system as well as superfluous data obstructing 

precise diagnostics. This study proposes sensor positioning to 

detect mechanical faults of power transformers. Thirty six on-

site power transformers in nuclear power plants were 

employed. Their vibration signals are processed based upon 

the principles of transformer vibration. Vibration 

characteristics are analyzed in terms of spectrum analysis, 

vibration contour plot and high vibration locations. Then the 

sensor network design framework is proposed which adjusts 

the number of sensors and their locations to measure high 

vibration signals robustly under vibration uncertainty. It is 

demonstrated that the designed sensing system evaluates the 

health status of the power transformers successfully with the 

significantly reduced number of sensors. 

1. INTRODUCTION 

Power transformer, used in a transmission network to step-up 

or–down a voltage with above 200MVA rating, is the one of 

key components in power plants. It is also one of the most 

frequently failed components due to the harsh operating 

condition such as high temperature, high electric loads, 

nonstop operation, and outdoor installation. Moreover, 

deterioration and being high capacity increase the failure rate 

even more. As the unexpected failure of power transformers 

can cause the plant shut down with tremendous capital loss, 

the power transformer should be monitored and maintained 

properly.  

For this purpose, enormous researches have been investigated 

and these were reviewed by Wang, Vandermaar, and 

Srivastava (2002), Duval (2002) and Saha (2003). The 

commonly used techniques are (1) dissolved gas analysis 

(DGA), (2) power factor analysis, (3) internal temperature 

measurement, (4) thermography, (5) partial discharge testing 

(PD), (6) degree of polymerization, and (7) frequency 

response analysis test (FRA). Among them, the diagnostics 

using vibration signals is one of the most effective methods 

to detect mechanical faults such as joint loosening, 

winding/core movement, wear crack and high vibration. 

According to Lee, Jung, and Yang (2003), the mechanical 

failures are important because of their high portion of total 

failures (about 40% in Korean nuclear power plants) with 

little researches against them compared with the other 

chemical and electrical failures. In order to diagnose the 

transformers, Ji, Cheng, and Li (2005), Ji, Luo, and Li (2006) 

and Ji, Zhu, and Li (2011), used core vibration signals by 

analyzing the correlation between electrical signals and core 

vibration. Bartoletti, Desiderio, Di Carlo, Fazio, Muzi, 

Sacerdoti, and Salvatori (2004) classified the transformers 

health condition with health-related parameters from the 

spectrum of a transformer tank vibration. Garcia, Burgos, and 

Alonso (2006) proposed the tank vibration model which is a 

function of current, voltage and temperature. Hu, Wang, 

Youn, Lee, and Yoon (2012) proposed two health indices and 

a copula-based health grade system from tank vibration 

spectrum signals. Li, Zhao, Zhang, and Lou (2012) employed 

hidden Markov model to diagnose the mechanical faults of 

on-load tap changer (OLTC) and Borucki (2012) measured 
Joung Taek Yoon et al. This is an open-access article distributed under 

the terms of the Creative Commons Attribution 3.0 United States License, 
which permits unrestricted use, distribution, and reproduction in any 
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the vibration of transient state and analyze in time-frequency 

domain to distinguish the 4 health states.  

Above researches have proven that the vibration signals are 

effective to detect the mechanical faults in transformers. In 

order to apply these researches to on-site power transformers, 

the one of things required is a sensor network (SN) design 

that is to design the type, number and locations of the sensors. 

In general, field experts install numerous vibration sensors on 

the transformer tank to cope with the vibration uncertainty 

coming from its large size, complexity and variant operating 

conditions. The sensing system with numerous sensors has 

high failure rate with low reliability and high 

install/maintenance cost. Also it may acquire health-

irrelevant superfluous data obstructing precise transformer 

health assessment. Above researches suggested to install few 

sensors based upon a transformer structure and vibration 

mechanics without the quantitative analysis on transformer 

vibration characteristics. Only Garcia et al. (2006) install the 

sensor of which the vibration is most similar to that of inner 

winding. This method has limitations that 1) it is hard to be 

applied in the operating transformers of which the inner part 

is not accessible and 2) can be prone to measure a core 

vibration which is correlated with mechanical faults in core. 

Therefore this paper aims at developing the framework of SN 

design capable of detecting the mechanical faults of power 

transformers using the minimized number of sensors. The rest 

of this paper is organized as follows: Section 2 explains 

transformer vibration principle, employed target power 

transformers and data acquisition method; Section 3 analyzes 

the characteristics of power transformer vibration with 

acquired vibration data; Section 4 proposes the framework of 

SN design; Section 5 shows the diagnostics of mechanical 

faults in power transformers followed by the conclusions in 

Section 6.  

2. OVERVIEW OF TRANSFORMER VIBRATION AND DATA 

ACQUISITION  

2.1. Principles of transformer vibration 

Transformer vibration originates from an inner core and 

winding shown in Fig. 1. Their vibrations are induced by 

magnetostriction and electromagnetic force respectively. 

Magnetostriction, shape changing of a ferromagnetic 

material due to alternating magnetic field, yields the core 

vibration. And electromagnetic force, interaction force 

between winding current and leakage flux, results in the 

winding vibration. Two forces are respectively proportional 

to the squared voltage and current of electrical signal. 

Therefore, the excitation frequency of the core and winding 

is twice frequency of alternating current. Additionally it is 

known that the core has higher harmonic frequencies due to 

the nonlinearity of core magnetostriction.  

2.2. Description on target power transformers 

In this study, the thirty six power transformers in two nuclear 

power plants are employed. They are almost homogeneous in 

terms of a same manufacturer, same type (single phase, oil-

filled, shell type), and similar power capacity. They are 

divided into six groups according to their tank surface 

structure and install year ranging from the oldest 1988 to the 

newest 2003. Table 1 summarizes the informations above 

with repair history and the number of installed sensors 

explained in next subsection.  The power transformers 

operate at 100% full power and their electrical signals are 

overall steady with 60Hz frequency.  

Table 1. Information about target power transformers 

Group 1 2 3 4 5 6 

Plant α plant β plant 

Unit # 1, 2 3, 4 5, 6 1, 2 3, 4 5, 6 

Char. 
single-phase, same manufacturer,  

oil-filled, shell type 

Capa. (MVA) 362*3 353*3 396*3 360*3 353*3 396*3 

Install year 88 96 03 86 93 01 

Replaced O X X O O X 

# of sensors 44 48 48 44 36~40 38~40 

2.3. Data acquisition 

In order to measure the transformer vibrations, it is desirable 

to install sensors inside where the vibration originates from. 

However highly intense electromagnetic field, inner-filled oil 

and high temperature make it impossible. Instead, the sensors 

were installed on the tank surfaces of the power transformers. 

As the vibration of core and winding is transmitted to the 

surfaces through the inside oil, it is possible to measure the 

inner parts vibrations indirectly. The tank surface was 

reinforced with rib structures to reduce the vibration, thus the 

sensors were installed in the grids of the four side surfaces as 

shown in Fig. 2. According to the accessibility of the power 

transformers, the numbers of installed sensors are slightly 

different as shown in Table 1. In this study, B&K 4381 and 

PCB 357B33 charge type accelerometers and charge 

amplifiers (RION UV-06A) were used.  

 
Figure 1. Core, winding and electromagnetic signals 
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Based upon the transformer vibration principle in Section 2.1, 

we know that the power transformer vibrates at low to 

medium frequency range and its spectrum data is informative 

to assess the condition of the core and winding where most 

mechanical failures occur. Thus, vibration velocities at every 

1.25Hz up to 2000Hz were measured. Depending on the test 

availability of each transformers, the vibrations were 

measured for three times with the interval of 10 and 6 months. 

As a result, 108 measurements (=36 transformers*3 

measurements) were conducted and each measurement 

include the spectrum data from multiple sensors.  

3. POWER TRANSFORMER VIBRATION CHARACTERISTICS 

This section analyzes the vibration characteristics of the 

power transformers in terms of spectrum signals, vibration 

signal trend, vibration contour plots and operation years. This 

helps the understanding of overall transformer behavior and 

the development of the SN design framework which the goal 

of this research.   

3.1. Spectrum signal characteristic 

Fig. 3 shows the spectrum signals from the sensors #1 and 2 

of unit #1 phase A transformer in plant α. This transformer is 

one of the oldest ones, and should be mainly concerned. The 

operation year in figure 3 is the duration from the transformer 

install to the measurement. The obervations are listed below. 

 Peak signals occur at every 120Hz which is twice 

frequency of electrical signal (60Hz), highly according 

with Section 2.1.  

 In general, 120Hz fundamental signals has the largest 

value and subsequent harmonic signals become smaller 

as shown in Fig.3 b). There are exceptions as well like 

Fig. 3 a). 

 In Fig. 3, sensor 1 installed 30cm apart from sensor 2 has 

under half 120Hz amplitude of sensor 2. For 120Hz 

signals from whole sensors of the same transformer, the 

maximum and minumum values are 34.3 and 0.19 

mm/sec. Therefore, it is concluded that the transformer 

vibration signals strongly depend on their sensor 

locations.  

3.2. Vibration signal trend 

Fig. 4 shows the 120 and 240Hz signals, representative of 

fundamental and harmonic signals, from the right-side 

sensors of the same transformer. The numbers in legend 

indicate the operation years.  

 The signals do not increase as the operation year 

increases. This is because the measurement interval, 

maximum 1.3 years, is too short to observe transformer 

health degradation comparing to its design lifetime 30-

50 years.  

 Regardless of the operation years, signal are mixed up 

overall. It means that the vibration signals have 

randomness and high amplitude signals are robust to the 

randomness. The vibration randomness comes from 

uncertainty factors such as manufacturing defect, 

  

a) left side b) Front side 

Figure 2. Sensor install on the a) left and b) front side tank 

surfaces of power transformer 

  
a) sensor #1 b) sensor #2 

Figure 3. Spectrum signals of unit #1 phase A transformer 

in α plant (group 1) 
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maintenance, measurement time (temperature & 

humidity), measurement error, electrical signal input.  

 For the other uncertainty factors, it is known that sensor 

install position error is allowable within 5cm (Ji et al., 

2011), the transformer temperature does not affect the 

vibration severely (Canadian electricity association, 

1997), and the electrical signal input is highly steady. 

3.3. Vibration contour plots 

In order to analyze vibration aspect specifically, the 

normalized contour plots of 120 and 240Hz signals from the 

right-side sensors of unit #1 transformers in α plant is 

depicted in Fig. 5.  

 Although three transformers have the exactly same tank 

surface structure, their vibration aspect are different. The 

difference comes from the uncertainty factors discussed 

in Section 3.2. 

 For 120Hz, the high vibrations are concentrated on an 

upper region consistently. 

 For 240Hz, whereas, the high vibrations are scattered in 

whole region and do not maintained through time flow. 

The reason why 240Hz signals have high randomness is  

3.4. Aging effect on vibration 

As the measurement interval is too short to observe the health 

degradation, whole 36 transformers are compared together. 

The Fig. 6 plots the root mean square (RMS) and maximum 

value of whole measurements along their operation time. It is 

found that the scale of maximum values are about three times 

that of RMS values meaning that each vibration measurement 

consists of small amplitudes values for the most part. That is, 

the transformer vibration can be characterized by the high 

amplitude values. This inference can be verified by the more 

obvious signal increase of 120Hz maximum value along the 

operation time compared with that of 120Hz RMS value. The 

reason why 240Hz signals do not increase as 120Hz ones is 

that it is only affected by the core health degradation whereas 

120Hz by core, winding, joint loosening, and other 

mechanical faults.  

4. SENSOR NETWORK DESIGN FRAMEWORK 

This section propose the SN design framework in order to 

diagnose the mechanical faults in power transformers with 

the minimized number of sensors. The analyzed transformer 

vibration characteristics in Section 3 can be summarized as 

follows. 

 The transformer vibration has the fundamental 

frequency of 120Hz and harmonic frequencies at every 

120Hz.  

 Many uncertainties prevail in the transformer vibration 

making vibration aspects in an identical transformer 

different and signals mixed up.  

 Only few sensor points give high amplitude signals 

which are resistant to uncertainty factors and 

characterizing the vibration condition of transformers.  

 High amplitude points are concentrated on upper surface 

region consistently for 120Hz and scattered for 240Hz.  

Thus, the designed SN needs to (i) be robust to the vibration 

uncertainty such as moving high amplitude location and (ii) 

detect the high amplitude signals of 120Hz and 240Hz signals 

which are relevant to the mechanical health condition of 

power transformers. To make it realized, multiple sensors 

should be utilized, meanwhile their quantity can be 

minimized using the consistency of high vibration locations, 

especially for 120Hz. The procedures to design the SN are 

listed below.  

 
a) 120Hz b) 240Hz 

Figure 6. RMS and maximum values of whole vibration 

measurements 
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Figure 5. Normalized vibration contour plot unit #1 

transformers in α plant (group 1) 
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(1) Determine target relative signal levels 𝛿𝑓for fundamental 

and 2nd harmonic frequencies respectively. In this study, 

𝑓 = 120, 240Hz. 

(2) For all measurements and two frequencies, extract sensor 

locations sets {𝑖}𝑗
𝑓
 measuring the signal above the target 

relative signal level 𝛿𝑓. 

 Find {𝑖}
𝑗
𝑓

 such that 
𝑆𝑖,𝑗

𝑓
−min

𝑖
𝑆𝑖,𝑗

𝑓

max
𝑖

𝑆
𝑖,𝑗
𝑓

−min
𝑖

𝑆
𝑖,𝑗
𝑓 ≥ 𝛿𝑓  (1) 

where 𝑆𝑖,𝑗
𝑓

 indicates the signals at 𝑓  frequency from 

𝑖th sensor of 𝑗th measurement.  

(3) Find an intersection sensor location set {𝑘}  having at 

least one sensor location in common with the extracted 

sensor location sets {𝑖}𝑗
𝑓
 in step (2).  

 Find {𝑘} such that 𝑁({𝑘} ∩ {𝑖}𝑗
𝑓

) ≥ 1 for all 𝑗 & 𝑓 (2) 

(4) In case of multiple intersection sensor location sets {𝑘}𝑙, 

choose one set having the highest mean detectability 

which is the overall measure of detecting relatively high 

amplitude signals.  

 argmax
𝑙

  mean
𝑓,𝑗

max
𝑖

𝑆
𝑖={𝑘}𝑙,𝑗
𝑓

−min
𝑖

𝑆𝑖,𝑗
𝑓

max
𝑖

𝑆
𝑖,𝑗
𝑓

−min
𝑖

𝑆
𝑖,𝑗
𝑓  (3) 

The designed SN is capable of measuring the relatively high 

signals above 𝛿𝑓  for all measurements, and has high 

probability of detecting the high amplitude signals in 

following new measurements, that is robust to the 

transformer vibration uncertainty. As the result of SN design, 

the number of used sensors for different target relative signal 

levels is plotted in Fig. 7. As the target relative signal level 

rises, the required number of sensors increase. The increment 

in the number of sensors is larger for 240Hz signals having 

more uncertainty compared with 120Hz signals. Fig. 8 show 

the designed sensor positioning for group 1 transformers at 

different target relative signal levels. For the low target level, 

the important sensor locations are selected first and then 

additional sensors are installed in other locations for the 

higher target level.  

In order to demonstrate the performance of the designed SN, 

the maximum values from the whole sensors and the designed 

SN with 𝛿120, 𝛿240 = 0.7 from 6 groups are plotted in Fig. 9. 

The designed SN can detects the 70% above signals for all 

measurements. With respect to the maximum amplitudes, it 

can detect 87.7% of 120Hz and 64.9% of 240Hz maximum 

values while reducing the number of sensors about 75%.  

5. DIAGNOSTICS OF MECHANICAL FAULTS  

This section shows the diagnostics of mechanical faults in 

power transformers based upon the designed SN. From 

Section 2 and 3, the high vibration signals at fundamental and 

2nd harmonic frequencies are related to the mechanical 

health states. If the fundamental frequency signals increase 

only, the mechanical faults of the winding can be predicted. 

If the 2nd harmonic signals increase, that of the core can be 

predicted. And when both arise, both faults can be predicted 

as well.  

In this study, the two health indices are proposed; 

fundamental health index (FHI ) and harmonic health index 

(HHI ) which are the maximum values of acquired signals at 

fundamental and 2nd harmonic frequencies respectively. 

 𝐹𝐻𝐼 = max
𝑖∈{𝑘}

𝑆𝑖
120 (4) 

 𝐻𝐻𝐼 = max
𝑖∈{𝑘}

𝑆𝑖
240 (5) 

where 𝑆𝑖,𝑗
𝑓

 is the signals at 𝑓 frequency from 𝑖th sensor of 

𝑗th measurement and {𝑘} is the sensor sets of designed 
SN. According to the vibration principles in Section 2,1, 
FHI is related to the health condition of the winding and 
core and HHI is related to that of the core. Fig. 10 plots 
two health indices of power transformers using the 
designed SN ( 𝛿120, 𝛿240 = 0.7 ). The diagnostics results 
are listed below.  

 The newest transformers in two power plants (group 3 

and 6) have low health indices.  

 Group 4 in has high FHI without changing HHI, meaning 

that winding health condition has degraded. The 

transformers in group 4 were replaced by field experts 

due to its health degradation. 

 
Figure 7. The number of sensors used in SN design for 

allocated target relative signal levels (group 1) 
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 Group 1 and 5 have high HHI and low FHI similar to that 

of the newest transformers group 3 and 6 are estimated 

to have the core in bad health condition. Those 

transformers were replaced by field experts due to its 

health degradation. 

 The middle aged group 2 locates between the oldest 

group 1 and the newest group 3. 

The diagnostic results coincide with the repair history and 

operating times, demonstrating the performance of the 

proposed SN design framework and two health indices.  

6. CONCLUSIONS 

This paper proposed the SN design framework for 

mechanical fault detection of power transformers. Using the 

acquired vibration that from the on-site power transformers 

in nuclear power plant, the characteristics of the power 

transformers are analyzed in various respects. The proposed 

SN design framework adjusts the number of sensors and their 

locations to be robust to the vibration uncertainty and detect 

high amplitude signals of fundamental and 2nd harmonic 

frequency relevant to the mechanical health condition of 

power transformers. The fault diagnostic of power 

transformers is conducted based upon the designed SN with 

the proposed two health indices, FHI and HHI. From the 

accordance of diagnostic results with the repair history and 

operating times, the proposed method are proved to be 

suitable for mechanical fault diagnostic for power 

transformers. Moreover, the designed SN consists of 

significantly reduced number of sensors, and this saves the 

data size by measuring health-relevant data and the cost of 

sensor install/maintenance.  
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ABSTRACT 

Preventing downtimes in machinery operation is becoming 

fundamental in industrial standards. The most common 

strategy to avoid costly production stoppages is the 

preventive maintenance, combining it with reactive 

maintenance in detected malfunctions. Condition-based 

maintenance can reduce costs, and help maintaining the 

quality of the produced goods. Gearboxes, as crucial 

elements in industrial machinery, are conventionally 

monitored using accelerometers, which are expensive and 

can be hard to install in place to provide useful information.  

Motor current signature analysis overcomes these 

inconveniences. This analysis technique provides a non-

intrusive method, and it is based on readily available 

signals. Changes in the input voltages are related with 

variations of the speed and/or load of the electric motor. The 

health state of the gearbox can be examined through an 

exhaustive analysis of the input currents.  

A gear prognosis simulator (GPS) test bench has been used 

to perform an extensive experimentation campaign. This test 

bench is particularly convenient due to the flexibility it 

provides. Different sets of sensors can be placed in different 

positions, and multiple combinations of speeds and loads 

can be established. Three damage categories in the gears 

have been analyzed, high damage, moderate damage and 

little damage. The test parameters have been selected to 

simulate the working conditions of electromechanical 

actuators and machine tools. Constant speed and transient 

tests have been performed. In the transient tests, fast speed 

changes are performed to produce acceleration, to 

investigate the concomitant changes produced in the signal. 

The analysis has been performed in both the time and the 

frequency domain, and complementarily, using the wavelet 

decomposition. The results obtained allow discerning the 

different type of defects on the gears, thus allowing 

detecting the different fault conditions and enabling the 

assessment of the health state of the gearbox. 

1. INTRODUCTION 

Regarding machinery maintenance, different strategies are 

usually followed. The most ordinary trend is the preventive 

maintenance, combined with reactive or corrective 

maintenance. There is a great pressure for a better 

equipment management; a cradle-to-grave strategy to 

preserve equipment functions, avoid the consequences of 

failure, ensure the productive capacity and maintain the 

quality of produced goods (Dhillon, 2002). The use of so-

called condition-based maintenance tries to help achieve 

these objectives. The main obstacle for the implementation 

of condition-based maintenance is the cost and the 

knowledge required to properly install sensors. Sensors and 

other monitoring techniques are not so standard and require 

costly and, sometimes, hard implementations.  

Machinery internal signals, in some cases, are readily 

available, and can give information of the health state. 

Avoiding the expenditure and implementation problems of 

adding sensors. Internal signals give an economical 

approach to condition monitoring; although they may 

require complex signal processing. Internal signals are 

typically controlled in most of the machines and could be 

available in an easy way.  

Gear boxes are crucial elements in industrial machinery. A 

defect can cause costly downtimes. Gearboxes have been 

monitored in the past, using the vibration signal (Randall, 

2002). But using the vibration signal involves installing 

accelerometers, with which are often costly and hard to 

install. This research has been carried out to monitor the 
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health state of gearboxes using electrical motor current (Kar 

& Mohanty, 2006). If a fault condition does exist, the 

effective load torque varies with the rotor position. 

Subsequently, these variations produce spectral components 

in the current consumed by the driving motor (Hachemi 

2000). As a first approach to the use of internal signals, in 

this paper the current signal is obtained by means of 

external sensors. 

In this paper we present the investigation carried on a 

gearbox test rig. Three health states are included in this 

investigation (Severe damage, Medium damage and little 

damage. The current is analyzed extracting features form the 

signal, and by previously using a wavelet decomposition, 

showing the suitability of the preprocessing technique.  

The investigation carried out in this paper constitutes a step 

forward in our quest for using internal signals for condition 

based maintenance in gear boxes. The information obtained 

in this research will permit the identification of fault 

conditions, hopefully allowing in a close future to 

implement prognosis. The possibilities of using the time-

frequency domain analysis are being explored. 

2. EXPERIMENTAL 

For the procurement of experimental results a Gear 

Prognostics Simulator (GPS) test rig was used, from Spectra 

Quest. The data obtained from the test rig are of capital 

importance as it is in effect, real machinery. So it is perfect 

for the validation of our algorithms. The most suitable 

working conditions were selected. In this way the translation 

from the test rig to actual machinery may be less costly. It is 

remarkable that it permits the testing of defects that can be 

hard or impossible to be tested in real machinery. 

The GPS consists mainly of two confronted motors, a 

reduction gear box for the load motor and the monitored 

gearbox. One of the motors acts as a drive and the other 

motors acts as the load. The drive motor provides the speed 

that is commanded by the control. And the load control 

supplies de torsion load applied to the gearbox. Both motors 

are three-phase, two pair of poles asynchronous motors. 

 

Figure 1 Description of the Gear Prognostics Simulator Test 

rig. 

The monitored gear box is composed by three shafts with 

different gears. The gear that is being tested in this work is 

right the first one after the motor.  

The test rig allows a fast gear change, so different gears 

with different defects have been studied. Another property is 

the adaptability of the gear box that permits the installation 

of diverse sensors. Hence accelerometers, current sensors, 

torque sensors, load cells and encoders have been installed. 

There are several factors that affect the tests. Operating 

conditions don’t only affect the test, but also the current 

signals measured. Speed and load are two of those operating 

parameters, to avoid their effects they are set to 1500 rpm 

and no load condition. To reduce the effect of other 

unwanted contributions the tests are carefully performed 

using the same conditions. For reassurance in avoiding the 

effect of parameters that could not have been identified and, 

to get statistical robustness, several repetitions of each gear 

test are performed. 

2.1. Gears tested 

A collection of gears have been tested. All of them are spur 

gears. Different gears with different faults are present in this 

collection. 

Several sensors are installed in the test rig, accelerometers, 

current sensors, torque sensors and encoders. In order to 

classify the faulty gears, the signal obtained from the 

acelerometers has been analyzed. Unsupervised learning 

techniques combined with tribological expertise have been 

applied to the tests, after a vibration signal pre-processing, 

in order to find hidden similarities and to group them. As a 

result, three different categories have been identified: severe 

damage, moderate damage and little damage. 

Gear number Health assessment 

0003G Severe damage 

0005G Severe damage 

0007G Severe damage 

0010G Severe damage 

0011G Little damage 

0012G Moderate damage 

0013G 
Moderate damage and 

little damage 

0014G Little damage 

Table 1. Classification of the gears using the information 

from the accelerometers. 

2.2. Test procedure 

Each test was done with a length of 15 seconds to allow the 

slowest gear in the gear box to be able to perform at least 10 

revolutions. 

Each test condition was repeated 15 times to enable 

statistical robustness. And each repetition was independent 

to the rest as between two repetitions the speed is taken to 

zero, and the test is re-launched. But all of the tests were 
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performed in the same speed and load conditions, thus 

eliminating the influence of these two parameters. 

3.  DATA PROCESSING TECHNIQUES 

At naked eye differences between little damage and severe 

damage gear’s current is indistinguible, hence making data 

processing mandatory. 

 

Figure 2 Current raw signal from the 0003G, U channel. 

The data that have been processed are the data from the 

channel U of the drive motor. 

Two types of analysis were performed. One for the case of 

the raw signal, in the time domain, and another one for the 

time-frequency domain of the wavelet decomposition signal. 

In the case of the raw signal analysis, 14 features from the 

signal were obtained. The features are: rms, average, peak 

value, crest factor, skewness, kurtosis, median, minimum, 

maximum, deviation, variance, clearance factor, impulse 

factor, shape factor (Chandran, Lokesha, Majumder, 

Raheemv, 2012). They have been obtained from the each 

repetition, and a median of all of the results is calculated. 

On the other hand, time-frequency domain analysis is 

performed, in comparison with frequency analysis, it 

overcomes problems such as frequency resolution and 

magnitude accuracy (Cusidó, Romeral, Ortega, Rosero, 

García Espinosa, 2008), (Peng & Chu, 2004). In the work 

carried out, constant speed signals have been analyzed. 

Several wavelet decomposition levels have been studied. 

And in each level the 14 features that were achieved for the 

time domain case, are also achieved. Also another feature is 

calculated, this feature represents the difference between 

one level and the next (Subasi, 2007). Before the average of 

the features of the different levels a one-way analysis of the 

variance was performed. The objective is to reduce the 

number of levels and the number of features. 

In this way the variables with the biggest F number, have 

more difference between the group variability than among 

within the same group, thus revealing the feature that 

exposes the most difference between the different gears. 

4. RESULTS 

Both time domain analysis and time-frequency domain 

analysis are compared. 

4.1.  Time domain analysis 

After analyzing the several features, we arrive to the 

conclusion that not all of them provide useful information. 

Out of the 14 features just half of them give results, good 

enough to differentiate the good condition gears, and the 

gears with faults. The useful features are: Average, 

deviation, maximum, median, peak value, root mean square 

and variance. 

Among those the most significant feature is the variance.

 

Figure 3 Variance of the raw signal. 

In this case the difference between the good condition gears 

(0011G and 0014G), and the rest (high damage, and 

moderate damage) is most obvious. It is of about 2 or 3 

units. In the case of comparing it in percentage points, the 

difference is not that pronounced. 

It is to be highlighted that the moderate damage gears are 

not discriminated. 

The root mean square value also gives a remarkable 

difference. However the difference in percentage points is 

more remarkable, but the absolute variation is not that 

evident. 

 

Figure 4. Root mean square of the raw signal. 
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4.2. Time-frequency domain analysis 

The mother wavelet used was a daubechies 44 (Rafiee, 

Rafiee, Tse, 2010).  

As stated before a one-way analysis was performed. All of 

the gears were introduced in the one-way analysis, instead 

of the gears representing the failure groups. In the next table 

the results of this one way analysis are shown. 

Level 1 Level 2 

Variables F-test Variables F-test 

Shape factor 328.5494 Skewness 159.9297 

Variance 287.8911 Average 73.0568 

Crest factor 241.6040 Ratio 60.8824 

Peak Value 54.8416 Peak Value 10.8254 

Impulse factor 12.5476 Crest factor 10.4561 

Clearance factor 10.97 Deviation 7.3155 

Rms 4.1327 Clearance factor 4.4491 

Skewness 2.8228 Impulse factor 3.4263 

Deviation 2.264 Median 2.9218 

Minimum 1.3558 Shape factor 1.5086 

Average 1.159 Maximum 1.4948 

Median 0.9807 Minimum 1.0227 

Maximum 0.9549 Variance 0.8998 

Kurtosis 0.6377 Rms 0.7296 

  Kurtosis 0.507 

Table 2. Table with the F tests. 

The results of the one-way analysis test unveiled that the 

best levels for the decomposition are the levels 1, 4 and 15. 

The most interesting variables for level 1 are crest factor, 

peak value, shape value and variance. In the case of level 4 

are average, skewness and ratio. And last but not least 

important for the case of the level 15 decomposition the best 

variables are the clearance factor, the median, the ratio and 

the variance. 

Going through a thoughtful analysis to find among those 

variables that pointed out the one-way analysis, the ones 

that provided the most information were selected. 

In the next image the difference between the gears is 

noticeable. 

 

Figure 5. Variance of the signal obtained in the level 15 

wavelet decomposition. 

It is also remarkable that the results are more in 

concordance with the classification of the accelerometer 

data than the analysis of the raw signal. The gear 13 was 

classified as having some results as moderate damage and 

others as little damage, and as we can see in the image 

above the dispersion of this results are in between the high 

damage area and the little damage area. It is also visible that 

the gear number 12, classified as moderate damage, has got 

slightly different values than the gears categorized as high 

damage. This can also be seen in other variables. And the 

difference is bigger in value than in the case of the time 

domain analysis, providing an easier differentiation. 

 

Figure 6. Ratio of level 4 wavelet decomposition. 

Though in this case, due to the dispersion of the signal the 

difference may not be that easily noticeable. 

As a result the time-frequency domain produces a 

differentiation between the gears with a greater match with 

the results obtained from the vibration analysis.  

5. CONCLUSION 

It has been shown that the analysis of the signals obtained in 

the wavelet analysis produces better results than the analysis 

of the raw signal for the differentiation of the different states 

of the gears, analyzing the motor current signal. This paper 

is a step forward for the use of internal signals of machinery 

in condition based maintenance for gear boxes. Providing a 
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non intrusive an easy to implement method. The final goal 

is that the manufacturers implement this method and 

provide more accurate information on the state of the 

machinery, provide recommendations on the problems that 

the client may have and to provide information on the use, 

so that future designs can be improved. There is still space 

for more improvement, as the technique will be further 

perfected. The mother wavelet will be optimized; data from 

the frequency components of each decomposition level will 

be analyzed.  
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ABSTRACT

Separation between non-deterministic and deterministic com-
ponents of gearbox vibration signals has been considered as
important signal processing step for rolling-element bearing
fault diagnostics. In this paper, the performance of bear-
ing fault detection after applying various discrete components
removal (DCR) methods is quantitatively compared. Three
methods that have become widely used, namely (i) time syn-
chronous average, (ii) self adaptive noise cancellation (SANC)
and (iii) cepstrum editing, were considered. The three DCR
methods with different parameter settings have been applied
to vibration signals measured on two different gearboxes. In
general, the experimental results show that cepstrum editing
method outperforms the other two methods.

1. INTRODUCTION

Detecting bearing faults on rotating machinery based on vi-
bration signals is often a challenge due to the high energy
(dominating) signals; originating from various machine ele-
ments including gears, screws, and shafts; that can mask weak
signals (i.e. non-deterministic) generated by bearing faults.
These dominant signals are deterministic, meaning that they
will appear as discrete components in the frequency domain.
When bearing faults detection is of interest, it is therefore
important to remove these discrete components prior to ap-
plying further signal processing. Several methods have been
proposed in literature for separating discrete components and
non-deterministic components (i.e. residual signals) useful
for bearing fault detection. Recently R. Randall and Sawalhi
(2011) have presented a new method for separating discrete
components from a signal based on cepstrum editing. The

B. Kilundu et al. This is an open-access article distributed under the terms of
the Creative Commons Attribution 3.0 United States License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

choice of setting parameters when applying these methods
can have a significant effect on the residual signals. A quali-
tative comparison of different methods has also been recently
performed by R. Randall et al. (2011). However, to the au-
thors’ knowledge, the effects of different parameters setting
on the performance of bearing fault detection have not been
discussed yet elsewhere. To fill this gap, this paper aims at
discussing the effects of parameters setting and eventually
providing a quantitative comparison. The performance of
bearing fault detection after applying different DCR methods
is analyzed. Here, two other methods are evaluated and com-
pared to the cepstrum editing method, namely synchronous
average and synchronous adaptive noise cancellation (SANC).

The paper first presents the 3 discrete component removal
(DCR) methods and discusses adjustable parameters for each
one, and second, applies the methods to vibration signals mea-
sured on two gearboxes: (i) an industrial gearbox which is a
part of a transmission driveline on the actuation mechanism
of secondary control surface in civil aircraft and (ii) a lab-
oratory gearbox used in the PHM09 data competition. The
residual signals obtained from these three methods are pro-
cessed following the optimized envelope analysis by using
spectral kurtosis for determining the optimal frequency band
for demodulation. Bearing detection performance is assessed
on the envelope spectrum.

2. DISCRETE COMPONENT REMOVAL METHODS (DCR)

There exist a number of methods for separating signal compo-
nents with different pros and cons, such as time synchronous
averaging (TSA), linear prediction, adaptive and self-adaptive
noise cancellation (SANC), discrete/random separation (DRS),
and the recently developed method, i.e. cepstral editing. The
three methods considered in this work are briefly discussed in
the following subsections.

1
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2.1. Synchronous adaptive noise cancellation (SANC)

SANC is an adaptive filtering method where the filter coef-
ficients w are adaptively updated according to the scheme
shown in Figure 1. The filter coefficients are updated such
that the prediction error e(n) obtained by subtracting the fil-
tered signal y(n) from the original signal x(n) is minimized.
The input of the filter d(n) is a delayed version of the orig-
inal signal. SANC allows separation between determinis-
tic and non-deterministic signals. The reason is that a non-
deterministic signal is not correlated to previous sample un-
like deterministic signal. However, one needs to ensure that
the delay should be greater than the time of decorrelation of
the non-deterministic signal but it should exceed the decorre-
lation time of the deterministic part. The filter output y(n) is
the deterministic signal containing gears and shaft signals and
the output error represents the non-deterministic part contain-
ing bearing signals

The most used adaptation algorithm is the celebrated least
mean-square (LMS) developed by Widrow and Hoff (Widrow,
Hoff, et al., 1960). It is characterized by its robustness and a
low computational complexity. Its recursive procedure com-
putes the output of the filter and compares it to the original
signal. The error is used to adjust the filter coefficient as
shown in Eq. (1)

w(n+ 1) = w(n)− µ.e(n).d(n) (1)

where
y(n) = wTd is the filter output,
e(n) = x(n)− y(n) is the output error,
d(n) is the delayed signal,
w(n) = [w0(n), w1(n), . . . wM−1]

T are the filter coefficients
at the time index n,
x(n) = [x(n), x(n− 1), . . . x(n−M + 1)]

T is the input sig-
nal,
µ is the step size parameter that must be selected properly to
control stability and convergence.

The use of SANC implies the choice of 3 parameters and its
performance relies on them:

• the prediction depth or time delay L
• the step size µ
• the filter length M

Antoni and Randall (2004) have discussed optimal settings of
these parameters giving general guidelines, also presented in
(R. Randall et al., 2011). The delay L should be chosen large
enough to exceed the memory of the noise but not so long to
destroy the correlation, which can be a bit disturbed in case of
slight speed fluctuation. The length of the filter M should not
exceed the signal length to have enough time for adaptation.
The step size µ represents the convergence rate and will be a
trade off between the desired accuracy and the computational
cost. A low step size value results in high accuracy.

Z-L

w +

Input  signal 
x(n)

Delayed signal 
d(n)=x(n-L) Error e(n)

-
y(n)

Figure 1. SANC filter process.

2.2. Time synchronous average (TSA)

Time Synchronous average (TSA) is a signal processing method
aiming at extracting components from a signal that are phase-
locked to the shaft revolution by means of averaging several
signal segments. The segments can represent one or several
shaft revolutions. TSA cancels or significantly reduces the
presence of non-synchronous phenomena, which can com-
prise bearing signals and background (white) noise. In order
to perform TSA, the shaft position information is needed for
re-sampling the signal in the angular domain. This informa-
tion can be retrieved from a tachometer or encoder signal. If
the tachometer is not located on the shaft of interest, transfor-
mation is needed to convert angular positions of the shaft with
the tachometer to angular position of the shaft of interest.

In the absence of tachometer signal, Bonnardot et al. (2005)
have reported a technique allowing TSA using a virtual tachome-
ter signal generated from accelerometer signal. However, this
tachometer-less technique presents some limitations since it
requires a very low variation of the speed. TSA can also
be used for discrete component removal by subtracting the
synchronous signal from the original signal. The remaining
or the residual signal contains non-deterministic components
comprising bearing signals. The adjustable parameter is the
number of average which is related to the number of revolu-
tions in averaged segments.

2.3. Cepstrum editing

The cepstrum editing method gives some advantages com-
pared with all the techniques noted previously. One notable
advantage of the editing cepstral method is that it can be used
to remove the selected frequency components in one opera-
tion, without order tracking as long as the speed variation is
limited, but it can leave some periodic components if desired.
In some applications where the sidebands are not harmonics
of the shaft speed, families of uniformly spaced sidebands
can be removed with the editing cepstral method. The de-
tailed explanation and the performance of the latter method
can be found in (R. Randall & Sawalhi, 2011). The following
paragraphs will briefly revisit the method.

2

European Conference of the Prognostics and Health Management Society 2014

438



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

Let y be the measured vibration signal and Y (f) be the cor-
responding frequency domain signal. By definition, the cep-
strum of this signal C(τ) is calculated by taking the inverse
Fourier transform of the logarithm of Y (f), i.e.

C(τ) = F−1 [log (Y (f))] , (2)

with F−1 denoting the inverse Fourier operation.

In the same way that the word ”cepstrum” was coined from
”spectrum” by reversing the first syllable, the term ”quefrency”
is used for the x-axis of the cepstrum (even though it is time),
”rahmonic” means a series of equally spaced peaks in the cep-
strum domain (resulting from a series of harmonics or side-
bands in the log spectrum) and ”lifter” represents a filter ap-
plied to the cepstrum (Bogert, Healy, & Tukey, 1963).

Based on the cepstrum definition, it is quite simple to deduce
the rationale behind the editing cepstral based DCR method.
Given the fact that in the frequency domain, the response sig-
nal Y (f) is a multiplication of the excitation signalX(f) and
the frequency response function H(f), i.e.

Y (f) = X(f)×H(f), (3)

by taking the logarithm of the response signal Y (f), Eq. (3)
can thus be written as:

log (Y (f)) = log (X(f)) + log (H(f)) . (4)

Furthermore, by taking the inverse Fourier transform of Eq. (4):

F−1 [log (Y (f))] = F−1 [log (X(f))] + F−1 [log (H(f))] .
(5)

It is clear now from Eq. (5) that in the cepstrum domain, the
excitation signal and the transfer path are additive. This im-
plies that the unwanted excitation signal (e.g. gear and shaft
related signals) can be removed (i.e. edited) in the cepstrum
domain. The cepstral editing based DCR method developed
by (R. Randall & Sawalhi, 2011; Sawalhi & Randall, 2011)
is schematically shown in Figure 2.

Figure 3 further illustrates the editing process in the cepstrum
domain. To remove unwanted rahmonics corresponding to
periodic components (i.e. gear signals), the lifter width ∆
should be chosen appropriately. Up to now, there is no an
automatic way for determining the lifter width ∆. The (con-
stant) width is typically selected visually based on inspection
of the resulting signal.

3. EXPERIMENTAL STUDY

3.1. Description of test rigs

To compare the cepstrum editing DCR method to TSA and
SANC and assess the effect of parameters setting on perfor-
mance for bearing faults detection, two sets of experimental

Input

 signal
Phase

Log

amplitude

Real 

cepstrum

Edited 

cepstrum

Edited log 

amplitude 

cepstrum

Edited log 

cepstrum

Complex 

spectrum

Time domain 

signal

FFT

IFFT

Edit

FFT

+

+

Exp.

IFFT

Figure 2. Schematic diagram of the editing cepstral method
for removing selected families of harmonics and/or sidebands
from time domain signals, reproduced from (R. Randall &
Sawalhi, 2011).

Figure 3. Liftering to remove unwanted rahmonics, repro-
duced from (Gao & Randall, 1996).

data from gearboxes are used (hereafter called dataset#1 and
dataset#2).

3.1.1. Test rig#1

Dataset#1 is measured on an industrial gearbox which is a
part of a transmission driveline of the actuation mechanism
of secondary control surface in civil aircraft shown in Fig-
ure 4. The test rig was designed to simulate the actual op-
eration conditions during the life cycle of the aircraft control
system which implies the gearbox would experience a range
of speed and torque conditions. It is driven by an electrical
motor. A second motor acted as a generator is used to apply
load to the system. The nominal speed of the motor is 710
rpm. The gearbox consists of two spur bevel gears, each with
17 teeth producing a gear ratio of 1:1. Two angular contact
bearings are used to support the gears.

The characteristic bearing fault frequencies for the operating
speed of 60 rpm (1 Hz) and for the operating speed of 710
rpm (11.83 Hz) including, (i) ball pass frequency of inner race
(BPFI), (ii) ball pass frequency of outer race (BPFO), ball

3
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(a)

(b)

Figure 4. (a) The transmission gearbox test rig of a civil aircraft, (b) The gearbox layout and sensors location.
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damage frequency (BDF) and fundamental train frequency
(FTF), are listed in Table 1. All vibration data are acquired
using accelerometers fixed on the outer case of the gearbox.
The sampling frequency is of 5 kHz.

Table 1. Theoretical bearing fault frequencies for dataset#1.

Fault frequencies [Hz]
Rotation speed 60 rpm 710 rpm

BPFI 7.03 83.2
BPFO 4.96 58.8
BDF 4.37 51.2
FTF 0.41 4.9

3.1.2. Test rig#2

Dataset#2 has the particularity of being measured on a multiple-
shaft gearbox. These data were used for tghe PHM09 data
competition on gearbox fault diagnosis. The gearbox test
setup used for generating these data is depicted in Figure 5.
On this gearbox setup, two different gear geometries can be
used including spur and helical gears. The dataset analyzed
in this paper is collected for which the gearbox is assembled
with spur gears. The gearbox configuration is as follows:

• Input shaft: input pinion of 32 teeth,
• Idler shaft: 1st idler gear of 96 teeth,
• Idler shaft: 2nd (output) idler gear of 48 teeth,
• Output shaft: output pinion of 80 teeth.

Vibration data are acquired by means of two Endevco 10 mV/g
accelerometers (Sensor resonance frequency > 45 kHz). One
of the two accelerometers is mounted on the input shaft side
and the other one is mounted on the output shaft side. The
external load is applied thanks to a magnetic brake. Data
are sampled synchronously from the two accelerometers. The
sampling frequency is of 200

3 kHz. A tachometer generating
10 pulses per revolution is attached on a properly selected lo-
cation. The vibration signal analyzed here was collected at 50
Hz shaft speed, under high loading. The characteristic fault
frequencies of the bearing of interest are given in Table 2 for
two speeds.

Table 2. Theoretical bearing fault frequencies for dataset#1.

Fault frequencies [Hz]
Rotation speed 60 rpm 3000 rpm

BPFI 4.947 247.4
BPFO 3.052 152.6
BDF 3.984 199.2
FTF 0.382 22.89

3.2. Results and discussion

Data from the two test rigs have been processed to remove
discrete components using the different methods presented

Figure 5. Gearbox diagnosis setup used in the PHM09 data
competition.

above. The residual signals containing non deterministic com-
ponents are further processed using the envelope analysis pro-
posed in R. B. Randall (2011). Note that the demodulation
frequency band used in the envelope analysis is determined
by means of spectral kurtosis analysis using the fast kurtogram
algorithm (Antoni, 2007).

3.2.1. Fault indicator

To assess the performance of bearing fault detection, a fault
indicator is define as the amplitude of peak at the fault fre-
quency normalized with respect to the DC value in the enve-
lope spectrum. In dataset#1, the concerned fault is a bearing
outer race fault while the fault present in dataset#2 is located
on the inner race.

3.2.2. Analysis of dataset#1

The SANC is performed with different values of delay and
filter length. The step size is kept equal to 0.01. The delay L
is chosen among the following values: 100, 200, 500, 1000,
1500, 2000, 5000 and 10000, while the filter length M = 12.
The results show the best performance with L = 100 as
shown in Figure 6 (i.e. highest fault indicator value). Then
this best delay value is used with various filter lengths to cal-
culate the corresponding fault indicator values as shown in
Figure 7.

The cepstrum editing method is also applied to dataset#1 with
different normalized liftering widths chosen among the fol-
lowing values: 0.02, 0.04, 0.08, 0.16 and 0.32. It is impor-
tant to notice here that the normalized liftering width is de-
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Figure 6. Effect of SANC delay on bearing fault indicator.
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Figure 7. Effect of SANC filter length on bearing fault indi-
cator.

fined as the ratio of the lifter width with respect to the period
of discrete component of interest. The fault indicator values
corresponding to the selected liftering widths are shown in
Figure 8.
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Figure 8. Effect of cepstrum editing lifter width on bearing
fault indicator.

The results obtained with TSA using different number or shaft
revolutions per segment are shown in Figure 9. By analyzing
the best fault indicator values resulting from the above differ-
ent DCR methods, it comes that the cepstrum editing method
gives the best fault indicator. Figure 10 shows the envelope
spectra of residuals signals obtained for the 3 DCR methods.
One can notice the low background noise achieved with the
cepstrum editing method. This can be also concluded by ob-
serving the kurtosis values of the corresponding residual sig-

nals listed in Table 3. As shown in Figure 11, the cepstrum
editing method leads to the most impulsive residual signal.
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Figure 9. Effect of TSA number of revolutions on bearing
fault indicator.
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Figure 10. Comparison of envelope spectrum for dataset#1.

Table 3. Kurtosis of the residual signals of dataset#1.

Kurtosis
TSA residual 4.0158

SANC residual 4.3990
Cepstrum residual 5.0627

3.2.3. Analysis of dataset#2

Similar to the analysis on dataset#1, the SANC is performed
with different values of delay and filter length. The step size
is kept equal to 0.01. The delay L is first chosen among the
following values: 100, 200, 500, 1000, 1500, 2000, 5000 and
10000 while the filter length M = 12. The results show the
best performance withL = 2000 as shown in Figure 12. Then
this best delay value is used with varying filter length to cal-
culate the fault indicator as shown in Figure 13.

The cepstrum editing method is applied to dataset#2 with dif-
ferent liftering widths chosen among the following values:
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Figure 11. Normalized residual signals for dataset#1 obtained
after applying 3 DCR methods.
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Figure 12. Effect of SANC delay on bearing fault indicator
for dataset#2.
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Figure 13. Effect of SANC filter length on bearing fault indi-
cator for dataset#2.

0.02, 0.04, 0.08, 0.16 and 0.32. Subsequently, the fault indi-
cator values for the corresponding liftering widths are calcu-
lated as shown in Figure 14.
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Figure 14. Effect of cepstrum editing lifter width on bearing
fault indicator.

The result obtained with TSA using different number or shaft
revolution per segment is shown in Figure 15. In line with the
results obtained from dataset#1, the cepstrum editing method
also provides the best performance for dataset#2. Figure 16
shows the envelope spectra of residuals signals obtained for
the 3 DCR methods. It is seen in the figure that the cep-
strum editing method highlights the fault frequency better
than the other methods. The kurtosis values of the corre-
sponding residual signal are given in Table 4. This indicates
that the cepstrum editing leads to the most impulsive signal
as it can also be seen in Figure 17.

Table 4. Kurtosis of the residual signals of dataset#2.

Kurtosis
TSA residual 3.9653

SANC residual 4.0478
Cepstrum residual 6.7035
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Figure 15. Effect of TSA number of revolutions on bearing
fault indicator.
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Figure 16. Comparison of envelope spectrum for dataset#2.
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Figure 17. Normalized residual signals for dataset#2 obtained
after applying 3 DCR methods.

4. CONCLUSION

The performance of three different discrete component re-
moval (DCR) methods, namely (i) time synchronous averag-
ing (TSA), (ii) self adaptive noise cancellation (SANC) and
(iii) cepstrum editing, has been quantitatively compared in
this paper. For the comparison purposes, two metrics, i.e. the
peak values at the fault frequencies of the envelope spectrum
and the kurtosis of the time domain signal, were considered.
These metrics have been extracted from the vibration signals
measured on industrial and laboratory gearboxes by apply-

ing the three DCR methods with different parameter settings.
The optimal parameter setting of each DCR method was de-
duced by visual inspection on the values of the two metrics.
The higher the metric value is, the better the performance of
a DCR method will be. The experimental results show that
the values of the two metrics based on the cepstrum editing
method are higher than those of the other two DCR methods.
This suggests that the cepstrum editing method outperforms
the other considered methods.
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ABSTRACT 

Bearings with an insufficient amount of lubricant can lead to 
early field failures, especially in applications which fail due 
to lubricant degradation, such as cooling fans used for 
thermal management of electronics. A reduced amount of 
lubricant can accelerate the wear process in the bearing, 
since there is not enough lubricant film thickness to support 
the operating load on the bearing. Qualification of bearings 
in cooling fans is carried out by time-truncated tests, where 
cooling fans have to operate without failure for a pre-
determined period of time. Under-lubricated bearings can 
survive without failure in these tests leading to the usage of 
these bearings in the field resulting in field returns and 
warranty claims.  

A non-linear dynamic model of a ball bearing is developed 
to simulate the transfer of load from the inner race to the 
outer race of the bearing as well as the acceleration signal as 
a function of time. An under-lubricated bearing condition is 
simulated in this model by changing the load transmitted to 
the outer race due to the reduced amount of lubricant. The 
simulated acceleration signal of the under-lubricated bearing 
condition is compared with that from the normal bearing to 
develop a fault-characteristic feature. The changes observed 
in the fault-characteristic feature from the simulation is 
validated by comparing with that obtained from experiments 
conducted on bearings with varying amounts of grease, 
ranging from none to the nominal amount specified by the 
manufacturer. The vibration level of these bearings was 
monitored at various operating speeds during the 
experiment. The changes observed in the fault-characteristic 
feature from the experiment due to a reduction of the 
lubricant in the bearing were similar to that observed in the 
simulations. This study resulted in the development of an 
experimental methodology and a fault-characteristic feature 

which can be used as a method for rapid acceptance testing 
of bearings. The dynamic model developed in this study can 
be used to determine the fault-characteristic feature for any 
bearing design. 

1. INTRODUCTION 

Bearings are used in machinery where the components in 
relative motion have to be supported on a stationary 
structure. For example, ball bearings are used to support a 
rotating shaft on a fixed structure. Bearing failures are the 
foremost cause for breakdown in rotating machinery: 40-
50% of all industrial motor failures have been reported to be 
caused by bearings (Nandi, Toliyat, & Li, 2005), 43% of all 
cooling fan failures in electronic devices have been 
attributed to bearing failures (Kim, Vallarino, & Claassen, 
1996), and longer down time during maintenance in wind 
turbines has been attributed to bearing failures (Ribrant & 
Bertling, 2007). Bearing fault diagnostics has been carried 
out to detect faults on the bearing components: the inner 
race, outer race, cage and the rolling elements. This is 
carried out by analyzing vibration signals obtained from a 
faulty bearing and comparison of the results with a bearing 
having no faults (Tandon & Choudhury, 1999). An 
insufficient lubrication condition in a bearing is also a fault 
condition which has not been studied extensively. 
Lubricants are used in the bearing to reduce the friction 
between bearing surfaces in relative motion. An improper 
lubrication condition in the bearing can be an over-
lubricated condition, an under-lubricated condition or one 
with no lubricant in the bearing. The first case can increase 
the power required to maintain the motion of the rotating 
surfaces, since the excess lubricant increases the viscous 
drag forces in the bearing. The last two cases can accelerate 
the degradation process in the bearing since the lubricant 
film thickness is not sufficient to support the load acting on 
the bearing elements. 

The relevant literature which pertains to bearing fault 
detection of an improper lubrication condition consists of 
the following two studies. Detection of bearings without any 
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and reproduction in any medium, provided the original author and 
source are credited. 
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lubricant has been accomplished using envelope analysis of 
their vibration signals (Boškoski, Petrovčič, Musizza, & 
Juričić, 2010). The frequency band selection for the 
envelope analysis was carried out based on spectral 
coherence and spectral kurtosis analysis. The amplitudes at 
the fundamental train frequency (FTF) and the ball spin 
frequency (BSF) were higher for the bearing without any 
lubricant compared to that with lubricant. Detection of an 
over-lubricated condition in the bearing has also been 
carried out in the literature (Morinigo-Sotelo, Duque-Perez, 
& Perez-Alonso, 2010). Tests were conducted on bearings 
with excess lubrication which were allowed to operate for 
30 days, during which the excess lubricant was expelled 
from the bearing. The frequency spectrum of the stator 
electrical current of the motor driving the bearing was 
analyzed to detect the excess lubrication condition. 
Differences were observed in the amplitudes of the FTF and 
BSF in the electrical current spectrum between the excess 
lubricated and normal lubricated case of the bearing. Neither 
of these studies addressed the issue of detecting a bearing 
condition containing lubricant between the nominal amount 
and none at all. A reduction in the lubricant from the 
nominal amount can reduce the life of the bearing, resulting 
in earlier failures than that specified by the manufacturer. 
Qualification tests carried out on bearings can fail to detect 
this fault condition, especially if the test is a time-truncated 
test, where the bearing has to operate without failure for a 
specified period of time. An example of such a qualification 
test is the IPC-9591 standard used to qualify bearings used 
in cooling fans for electronics applications. Hence, the 
detection of an improper lubrication condition is of value in 
acceptance testing of bearings, and these tests would have to 
be carried out in a limited time in such a scenario. A model-
based approach is adopted in this study for detection of an 
improper lubrication condition in a bearing. A dynamic 
model of the ball bearing components is created to simulate 
the rotational motion between the different components of a 
ball bearing. A fault condition is simulated using this model 
and the acceleration signal is compared with that of the 
normal lubrication condition. The simulation results are 
compared with results obtained from experiments using 
inadequately lubricated bearings. 

2. BEARING MODEL 

A dynamic model of the components of a ball bearing is 
developed assuming that the outer race is fixed. The 
transmission of forces between the individual components is 
modeled using a spring and damper system. In order to 
model the forces and deformation in the rolling contact 
between the components, Hertzian contact theory is used. 
The contact force for a point contact is given by the 
following relation: 

 1.5
b bf k δ=   (1) 

where kb is the nonlinear bearing stiffness corresponding to 
the bearing deformation δ. The nonlinear bearing stiffness is 
a function of the bearing material and the bearing geometry. 
For point contact between two bodies made of the same 
material, the relation between contact deformation and 
contact force is given by the following relation: 

 ( )2 2
3

2 11.5 1
3 b

K f
E

ρ
δ ν

πµ
  

= −        

∑   (2) 

In this relation, bearing material properties are the Young’s 
modulus (E) and the Poisson’s ratio (ν). The Hertzian 
coefficients Σρ and 2K/πµ can be obtained from standard 
bearing tables based on the bearing contact geometry 
(Eschmann, Hasbargen, Weigand, & Brändlein, 1985). 
These coefficients are a function of the radius of curvature 
of the inner race, outer race and ball surfaces which are in 
contact. The contact deformation (δ) is obtained based on 
the displacement of the bearing in the x- and y-directions. 

A force balance is carried out on the components of the 
bearing assuming a two degree-of-freedom system as shown 
in Figure 1. 

 
Figure 1. Schematic of two degree-of-freedom model of 

bearing system. 
 
The governing equations of motion for this two degree-of-
freedom system are shown in (3)-(6). The subscripts b1 and 
b2 in these equations correspond to the bearing located on a 
shaft s as shown in Figure 2. The bearings are located in a 
bushing and are held in position by means of a spring and 
washer. The shaft supported by the bearings is driven by a 
brushless DC motor which can rotate at a maximum speed 
of 4800 rpm. 

 ( ) ( )1 1 1 2 1 2 1- - 0s sb b b b b b b xm x k x x q x x f+ ++ =     (3) 

 ( ) ( )2 2 2 1 2 1 2- - 0s sb b b b b b b xm x k x x q x x f+ ++ =    (4) 

 ( ) ( )1 1 1 2 1 2 1- -s sb b b b b b b ym y k y y q y y f l+ ++ =    (5) 
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 ( ) ( )2 2 2 1 2 1 2- -s sb b b b b b b ym y k y y q y y f l+ ++ =     (6) 

The mass of the bearing is represented by m, transverse 
stiffness and damping of the shaft due to the axial load 
supported by the bearing is given by k and q, and load acting 
on each bearing is represented by l. 

 
Figure 2. Schematic of bearing assembled on a shaft. 

 
Solving the governing equations (3)-(6) as a function of 
time, the displacement of the bearing is calculated, from 
which the contact deformation δ is obtained. The contact 
deformation is calculated for each rolling element as shown 
in Figure 3 when the rolling element enters the load 
distribution zone shown in Figure 1. The relationship 
between contact deformation and bearing displacement is 
given by the following relation (Sawalhi & Randall, 2008): 

 cos sinx y b bx yδ δ δ ϕ ϕ= + = +   (7) 

The angular position of the jth ball after a time increment dt 
is calculated from the cage rotational frequency using (8). 

 ( )2 1
1 cos

2
b s

j
b p

j D dt
n D

π ω
ϕ α

 −
= + −  

 
  (8) 

where nb is the number of balls, Db is the ball diameter, Dp 
is the pitch circle diameter of the balls, α is the contact 
angle and ωs is the shaft rotational frequency. 

 
Figure 3. Relation between contact deformation (δ) and 

bearing displacement x and y. 
 

In order to include the damping in the ball contact due to the 
presence of the lubricant, equation (1) is modified to include 
a viscoelastic damping contribution in addition to the elastic 

Hertzian component as shown below (Machado, Moreira, 
Flores, & Lankarani, 2012): 

 n n
b bf k δ χδ δ+=    (9) 

where χ is the contact damping factor, δ is the rate of 
change of contact deformation and n = 1.5 in the case of a 
ball bearing.  

3. MODEL SIMULATION 

The system of equations explained in the previous section is 
used to develop a model in Matlab/Simulink®. This model is 
solved to obtain the time domain acceleration signal using 
the ode4 solver which is based on the Runge-Kutta method. 
The bearing parameters which are used in this model for 
simulation are shown in Table 1. The operating load acting 
on each bearing is 0.69 N.  

Table 1. Bearing parameters used for simulation 

 
An under-lubricated condition of the bearing results in the 
bearing elements operating in a boundary layer lubrication 
regime. This is due to a reduction in the lubricant film 
thickness supporting the load acting on the bearing. This 
results in the contact of asperities during relative movement 
of the surfaces, which causes the Hertzian pressure 
distribution to rise to 1.5 times that observed in an ideal 
Hertzian contact (Stachowiak & Batchelor, 2013). The 
under-lubricated bearing operation is simulated in the model 
by increasing the bearing stiffness and at the same time 
decreasing the damping in the contact due to the reduced 
lubricant film thickness. The values for the bearing stiffness 
and damping were estimated by calibrating the model based 
on the vibration signals measured from the experiment, 
which is discussed in the next section.  

4. EXPERIMENTAL SECTION 

The bearings used in this study were mounted in a fixture as 
shown in Figure 2 and were held in place by a spring-
washer locking system. Vibration signals were measured 
while the bearings were operated at different speeds using a 
DC motor. The motor had a maximum speed of 4800 rpm. 
The speed of the cooling fan could be reduced down to 2160 
rpm using a controller governed by a pulse width 
modulation (PWM) signal.  

Bearing parameters Value 
Number of rolling elements (nb) 6 
Diameter of rolling elements (db) 1.588 mm 
Pitch diameter of bearing (dp)  5.5 mm 
Contact angle (α) 10.4° 
Mass of bearing (mb) 0.76 g 
Young’s modulus (E) 210 GPa 
Poisson’s ratio (ν) 0.3 
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Bearings which contained the nominal amount of grease as 
specified by the manufacturer are referred to as 100% 
bearings in this study. The same experimental set up was 
used to test specially manufactured bearings which 
contained a reduced amount of grease. Bearings containing 
half of the nominal amount of grease are referred to as 50% 
bearings, and bearings containing a quarter of the nominal 
amount of grease are referred to as 25% bearings. Analysis 
of the vibration signals was carried out to develop a 
procedure to distinguish the bearings containing the nominal 
amount of grease from the others. Figure 4 shows root mean 
square (rms) acceleration of the bearings for different 
operating speeds. The highest vibration level for the 100% 
bearing was observed at 3815 rpm. For the 50% and 25% 
bearing, the highest vibration level was shifted to 3960 rpm. 
Another trend which can be observed is that the vibration 
level of the 50% bearing is higher than that of the 100% 
bearing at 3960 rpm, whereas the vibration level of the 25% 
bearing is similar to that of the 100% bearing. 

 
Figure 4. Box plot of rms acceleration at different bearing 
rotational speeds. The edges of the box at each data point 
are the 25th and 75th percentiles of the measurements and 
the whiskers correspond to +/-2.7σ assuming the data is 

normally distributed. 
 

A feature for fault detection due to a reduction in the 
lubricant level of the bearing was developed based on the 
shift in the vibration level from one operating speed to 
another operating speed. The 100% bearing is used as a 
reference to develop this feature. The speed at which the 
maximum vibration level is observed is selected as the 
reference speed (3815 rpm from Figure 4). The speed at 
which the maximum vibration level is observed for the 
under-lubricated bearing is then selected to develop the fault 
feature, which is the ratio of the vibration level observed at 
3815 rpm to the vibration level at the speed at which 
maximum vibration is observed for the underlubricated 
bearing. Figure 5 shows the fault feature used for 
classification. When this ratio is greater than 1 the bearing 
can be classified as a 100% bearing. A bearing with a ratio 

less than 1 can be classified as a faulty bearing. This fault 
feature can be used for classification of bearings with 
reduced amount of lubricant from that of the nominal 
bearings. This fault feature is quick to measure and can be 
readily implemented in an acceptance test scenario for 
bearings. 

 
Figure 5. Fault feature for classification of amount of grease 

in a bearing 

5. MODEL CALIBRATION 

In order to explain the variations in vibration level with a 
reduction in the lubricant in the bearing, the bearing 
stiffness and damping values were calibrated in the model to 
identify the values which will generate the same vibration 
level as that observed in the experiment. The contact 
damping factor is a function of the coefficient of restitution 
of the elements in contact which can significantly change 
the vibration level in the bearing (Machado et al., 2012). 
The viscoelastic damping term in (9) is related to the 
coefficient of restitution, which can influence the vibration 
level of the bearing. 

The stiffness and damping of the experimental set up was 
calculated by means of an impact test. Figure 6 and Figure 7  

 
Figure 6. Time domain acceleration signal during  

impact test 
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show the time domain and frequency domain response of 
the acceleration signal during the impact test. Since the 
acceleration signal is measured in only one direction, the 
stiffness and damping is calculated by treating the 
experimental setup as a single degree of freedom system. 
These values are included in the bearing model to 
incorporate the effects of the test structure in the simulation. 
Calibration of the bearing contact stiffness and bearing 
contact damping was carried out while simulating different 
rotational speeds of the bearing using the model. 

 
Figure 7. Frequency domain of acceleration signal  

during impact test. 
 

Model calibration carried out on bearing contact damping 
indicated that it did not cause any significant changes in the 
bearing acceleration level. However, bearing contact 
stiffness of bearings with reduced lubricant was higher than 
that of the 100% bearing as shown in Figure 8.  Bearing 
stiffness values for the 50% and 25% bearings were fairly 
constant indicating the boundary layer lubrication regime is 
exerting a significant influence on the bearing contact 
stiffness. This contact bearing stiffness for 50% and 25% 
bearings was 1.5 times that of the 100% bearing on average, 
as shown in Figure 9. This is in agreement with the Hertzian 
contact stiffness increase for boundary lubrication in 
comparison with hydrodynamic lubrication (Stachowiak & 
Batchelor, 2013). 

This increase in contact stiffness due to reduction of 
lubricant can be used to generalize the results of this study 
such that the fault feature can be developed for any bearing 
assembly. The first step in the fault feature development is 
to find the global maximum of the rms acceleration level for 
the 100% bearing within its operating speed range, which is 
the numerator of the fault feature developed in this study. 
The second step is to use the dynamic model developed in 
this study to determine the bearing contact stiffness for the 
100% bearing. The third step is to simulate the under-
lubricated bearing case by increasing the bearing contact 
stiffness calculated in the previous step by a factor of 1.5. 
From this simulation, the global maximum of rms 
acceleration for an under-lubricated bearing can be 
identified, which is the denominator of the fault feature. 
 

 
Figure 8. Bearing stiffness values for different lubricant 

levels and different rotational speeds 

 
Figure 9. Ratio of bearing stiffness to the bearing stiffness 

of a 100% fan, at different operating speeds 
 

Using this method, the fault feature can be developed for 
any bearing design, without the need to make measurements 
on under-lubricated bearings. 

6. CONCLUSION 

A fault characteristic feature to distinguish an under-
lubricated bearing from a bearing with the normal amount of 
lubrication has been developed in this study. This feature 
has been developed based on the observation that the 
operating speed at which the maximum vibration level of 
the bearing is observed shifts to a different operating speed 
with a variation in the lubricant quantity in the bearing. This 
feature can be measured quickly and non-destructively, 
making it suitable for applications in lot acceptance or 
screening. 
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A dynamic model of a bearing was newly developed for this 
investigation, since existing models in the literature do not 
address the problem of under-lubrication in bearings. This 
model is used to identify the effect of the bearing contact 
stiffness and contact damping on the acceleration signal at 
various lubricant levels. Sensitivity analysis of bearing 
contact damping indicated that no significant changes in the 
bearing acceleration level are observed. The reason for this 
behavior could be due to the low external load acting on the 
bearing. Bearing contact stiffness was found to change with 
the reduction in the lubricant level of the bearing. The shift 
in vibration level with a reduction in the lubricant level in 
the bearing is due to the fact that the contact forces in the 
bearing change, resulting in a shift in the frequency domain 
characteristics of the dynamic system. This explained the 
patterns observed in the vibration level as a function of 
operating speed due to reduction in lubricant level in the 
bearing. For the 25% and 50% bearings this contact stiffness 
was found to be 1.5 times that of the 100% bearing. Future 
work anticipated on this topic will involve the validation of 
this classification procedure with different bearing designs 
and at various lubrication levels. 
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ABSTRACT 

Despite all the attention received by maintainers, undetected 

roller bearings failures are still a major source of concern in 

relation with reliability losses and high maintenance costs. 

Because of that, bearing condition assessment through 

vibration monitoring remains an intensive topic of scientific 

research, focusing on the definition of monitoring strategies  

that allow early stage damage detection, failure causes 

identification and remaining life prediction. Next to the 

developments on signal processing, new opportunities of 

advanced monitoring platforms are devised as those based 

on Wireless Sensor Networks (WSNs). The combination of 

integrated sensing, embedded computing and wireless 

communication provides interesting elements on the 

development of a new generation of vibration monitoring 

systems. The algorithms for bearing assessment remain a 

crucial point for achieving a balance between efficient 

monitoring strategies and highly flexible monitoring 

platforms. Though current trends on signal processing for 

mechanical vibrations focuses on the development of robust 

techniques, the constraints of embedded processing in 

relation to energy and memory consumption hamper their 

implementation on WSN.  

The present paper discusses the problem of bearing 

condition characterization from the basis of extraction of 

damage features associated with the specific stage of its 

deterioration process. This, other than data driven methods, 

allow to find the best compromise between robustness of the 

bearing assessment algorithm and the applicability of the 

algorithm on a WSN. Two cases are presented as validation 

of this approach: an artificial damage on a lab setup and a 

train bearing, for which the possibilities for detection, 

diagnostics and prognostics are discussed. The advantages 

and constraints of the use of autonomous wireless sensor 

nodes is discussed as final part of the paper. 

1. MONITORING STRATEGIES   

On the design and development Vibration Monitoring 

Systems (VMS),  the authors (Sanchez et al, 2013) have 

proposed a design framework following a systems 

engineering approach. The framework is based on the 

hypothesis that the success of a VMS depends on the 

agreement among the choice of appropriate monitoring 

strategies that satisfy the maintenance requirements, and the 

physical components and algorithms that shape the 

monitoring platforms that carry out the selected strategies. 

In other words: to make a WSN based VMS a success, it is 

of crucial importance to revisit the physical characteristics 

of damage and vibrations in bearings. 

According to the framework, a VMS is called to support on 

the damage detection (existence),  diagnostics (origins) and 

remaining life prognostics (evolution). It is generally 

accepted that autonomous detection of abnormal vibration 

response can be achieved by a proper selection of alarm 

thresholds for vibration levels. Identifying the causes of the 

abnormal signals requires deeper understanding of the 

failure modes and failure mechanisms that may be taking 

place in the system. Lastly, the prediction of remaining 

useful life builds on top of the failure status diagnostics by 

the quantification of the actual loading as caused by the 

actual usage of the system (Tinga, 2013).  

These VMS functions as described in the previous 

paragraph are of incremental nature. However this does not 

imply that all the VMS must fulfill the functions of 

detection, diagnostics and prognostics. For the case of 

bearings, accurate diagnostics becomes relevant when 

restoring maintenance actions (such as re-lubrication, 

balancing, etc.) can be taken for extending the bearing life. 

Prognostics becomes relevant for cases where no on-service 

restoring actions are possible, and bearing replacement is 

the only option left. Furthermore, prognostics is not only 

based on predicting the deterioration of the component, it 

also involves/requires the definition of safe vibration limits 

without compromising the operation and integrity of the 

machine. 

A. Sanchez Ramirez (Andrea Sanchez Ramirez) et al. This is an open-

access article distributed under the terms of the Creative Commons 
Attribution 3.0 United States License, which permits unrestricted use, 

distribution, and reproduction in any medium, provided the original 

author and source are credited. 
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1.1. Failure Mechanisms and Bearing Life Prognostics  

A physics approach on prognostics is defined by the balance 

between the load-carrying-capacity of a material and the 

actual loading experienced the system. Several bearing 

prognostics models, including the classical fatigue life 

rating of roller bearings follow similar reasoning, by using 

the bearing dynamic load for a rated fatigue life C, the 

equivalent load rating P and the life equation exponent p 

into the well-known  L10 life equation Eq. (1).  

     (
 

 
)
 

     (1) 

Classical fatigue life is based on the traditional spalling due 

to subsurface fatigue, for which cracks are initiated below 

the surface and propagate towards the surface. As Lugt 

(2012) states “…the L10 basic rating life equation 

constitutes the foundation of all national and international 

standards for fatigue life rating of roller bearings, 

subsequent theories and developments.” (pp 286) 

Besides the material related failure mechanisms, surface 

initiated failures are significant contributors to bearing life 

shortening. Surface distresses generated by loaded asperities 

cause micro-spalling, while the over-rolled wear particles 

create dents in the surfaces leading to stress concentrations 

which again lead to spalls and fatigue.  Lubricant 

rheological flow properties, as in the case of grease 

lubricated bearings, are also a main decisive factor on the 

bearing life, for which the lubricant life is expected to be 

considerable shorter than the material life (Lugt,2012).  

 

1.2. Vibration as Failure Mode  

 

Although the definition of developing failure mechanisms is 

central to life prognostics, in practice direct quantification of 

failure mechanisms is difficult, therefore practitioners must 

rely on indirect measures for its quantification. This poses 

the main justification of the use of vibration response as an 

“useful indicator” of the developing failure mechanisms. It 

must be noticed the word response is included for 

highlighting the fact that measured vibrations are due to the 

effect of a force on a system. Given the multiple forces 

acting on bearings and the complexity of the system itself, it 

is expected that discussion about the vibration response is 

everything but straightforward.  

 

A functional approach as guideline for decomposing the 

vibration signal as support of the bearing deterioration 

assessment is proposed. Tinga (2012) defines failure mode 

as the manner in which a system or component functionally 

fails, that is, describing to what extent a certain function 

cannot be fulfilled anymore (pp 3). For the sake of 

generalization, the case of bearings can be described by two 

simple functions. Firstly, to enable free relative motion 

between two components, named hereafter free rotation. 

The second function relates to ensuring the correct 

distribution of the concurrent forces, named as structural 

support. These two functions are considered as the basis of 

the vibration signal as descriptor of the bearing failure as 

presented in Table 1. 

  

 

 
The starting point of the discussion on vibration response 

characterization is by recognizing that that even under 

perfect conditions, bearings are an intrinsic source of 

vibrations. As described by Liew and Lim (2005) the 

change of the number of rolling elements and their position 

in the load zone gives rise to periodical variation of the total 

stiffness of the bearing assembly, which leads to varying-

compliance vibrations. In other words, small levels of 

vibrations are acceptable, and for some cases even positive, 

as they act as the mechanism for lubricant replenishment on 

heavily starved contacts (Lugt,2012). 

 

The free rotation function is of particular relevance for the 

new generation of bearings for low energy consumption and 

friction, which use thinner oils and grease lubrication. 

Instabilities on the lubrication film become very critical for 

the fulfillment of the free rotation function. Although the 

relation between vibration and shock loads for bearing 

lubrication is not fully defined, there is a general consensus 

that such loads may alter the film thickness and affect the 

contact dynamics of the rolling elements (Wijnant, 1998), 

Table 1. Bearing Vibration Classification 

Vibration 

Level   

Failure mode Description 

 

Normal:  
Structural 

Support 

 

Varying compliance   

(normal Vibrations) 

 

 

Change in bearing stiffness  
and load asymmetry 

 

Incipient: 

Free Rotation 

 

Lubrication 

problems 

 

Film thickness instabilities 

Mixed lubrication regimes 

Increase friction forces 

Incipient: 

Structural 

Support   

 

Short duration 

pulses due to metal-

to-metal contact 

Changes on local stresses 

due to local defect or 

increased loading 

Moderate:  
Structural 

Support 

 

Resonance due to 
Impulsive  Response  

 

Localized impacts due to 
cracks on races-rolling 

elements excite bearing 

structural modes 

 

Severe:  

Structural 
Support 

 

Surface 

deterioration 
becomes distributed 

due to extended  

superficial cracks 
and spalling. 

Bearing functioning 

becomes instable and  auto 
excited. Danger to  

compromise integrity of 

related components. 
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and lead to some other failure mechanism such as fretting 

corrosion. Lubrication thickness disturbances have a direct 

effect on the rheological flow properties of the lubricant, 

and therefore the bearing life (Lugt, 2012). 

 

The support function refers to distortions on the bearing 

load distribution due to defects on the bearing contact 

surfaces. The presence of surface defects such as superficial 

cracks or added material due to over-rolled wear particles 

has significant effects on the vibration response of the 

bearings. Local superficial  defects cause abrupt changes on 

the contact stresses which generates short duration pulses at 

very high frequencies. As the severity of the defect 

progresses, the energy released by the impacts becomes 

higher, and therefore more sensible to be monitored. The 

accurate characterization of an impulse response relies on 

the identification of the natural frequencies and modes 

excited during the impact. These are valuable indicators of 

how the system responds to the effect of the loads. For 

instance, the rolling elements display natural frequencies in 

the range of hundreds of  kilohertz (Swartjes,1995) while 

for the bearings and machine components modes at lower 

frequencies are excited (Wensing,1998). 

 

As consequence of the discrete impact loading, wear 

develops throughout the contact element surfaces, which is 

typical of advanced bearing damage. Tandon and 

Choudhury (1999) state that variation in contact force 

between the rolling elements and raceways due to 

distributed defects result in an increased vibration level. 

Also the behavior of the signal changes. By increasing the 

occurrence of the impact loading, the leading edge of the 

impact response is buried in the delay of the previous 

impact. Therefore the superposition of impact responses 

turns into higher overall vibration levels with higher 

stochastic behavior. Figure 1 presents a comparison of the 

time signal between a discrete surface damage and 

distributed damage.  

 

 

Figure 1. Time signal from bearings at incipient and 

advanced  surface damage.  

2. ALGORITHMS FOR BEARING EVALUATION  

The complexity of bearing failure and the fact that the 

vibration signal captured at the bearing location may  

contain additional information regarding other machine 

components reflects the complexity of vibration analysis. 

The definition of appropriate steps for extracting 

information about the bearing deterioration from the 

vibration signal is presented in the following sections. The 

procedure is depicted on the Figure 2 and will be discussed 

in the next subsections.  

2.1. Preliminary considerations  

The failure evaluation of a bearing involves multiple factors 

such as the kinematic and dynamic characteristics of the 

system itself, the response to environment and the effects of  

developing failure mechanisms and failure modes. These 

factors are included in the proposed procedure depicted in 

Figure 1. All steps in this figure will be elaborated next. 

 

 

Figure 2. Flowchart for steps on  bearing evaluation  

 

2.1.1. (Step 1) System Characterization 

There is a wide range of signal processing techniques that 

can be used to decompose vibration signals from 

mechanical sources. Nevertheless, the application of such 

techniques without knowledge of the monitored system and 

specific criteria on the evaluation may be daunting. Step 1 

refers to the specification of the monitored system, both for 

machines and structures. It includes the definition of 

operational conditions, kinematic data for participating 

mechanisms and the influence of environment. Existing 

knowledge of the particular failure mechanisms and failure 
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modes expected through the operational life is also of 

valuable aid.  

 

2.1.2. (Step 2)  Signal Processing: Conditioning, Domains 

and Transformation 

To support the choice of signal processing for enhancing the 

damage-related features within the vibration signal, the 

following criteria are proposed for selecting techniques and 

domain transformations to apply to the signal:  

i) Enhanced signal quality 

ii) Display the signal on the domain that represent the 

best its dominant characteristics  

iii) Decompose the signal according to the specifically 

sought features 

Enhancing signal quality is fundamental for accurate 

characterization of different vibration phenomena, 

especially those associated to early damage. Although noise 

is usually highlighted as undesired for the signal, it should 

be realized that there are different sources of noise, such as: 

a) random noise, as caused by random excitation forces, b) 

mechanical noise due to the transmission path from the 

vibration source to the measurement point, and c) numerical 

noise due to the processing techniques. The first category 

can be actively reduced by using appropriate averaging 

techniques, while the second is inherent to the complexity of 

mechanical systems. Numerical noise has to be considered 

for each technique. 

The following two criteria are satisfied by mathematical 

transformations, which are used for maximizing certain 

features of the vibration signals according to the intrinsic 

characteristics and the likelihood to identify a damage. 

There are several domain transformations involved in the 

monitoring problem, from the transduction of physical 

quantities (displacement, velocity, acceleration, strain, etc.) 

to voltages. Once the signal is digitalized, the starting 

domain is the time domain, for which the initially captured 

quantity, represented by a voltage, is presented as it occurs 

on time.  

After the time domain, further domain transformation are 

used to extract particular features of the signal according to 

its changing nature (Randall, 2011). For instance Fast 

Fourier Transform (FFT) for constant frequency excitation; 

Short Time Fourier Transform (STFT) for slow fundamental 

frequency changes; the wavelet domain and Hilbert domain 

are employed for signals with high level of nonlinear and 

non-stationary behavior. The modal domain is an important 

transformation for the analysis of spatially distributed 

systems for which the principal coordinates define the prime 

motions of a body.  

Other types of transformation refer to the derivation of new 

signals within the domain. The derivation of analytic signals 

for Hilbert transform, Intrinsic Mode Functions (IMF) for 

Empirical Mode Decomposition (EMD) and residuals for 

Wavelet transformations are examples of transformations 

within the domain. Given the large range of algorithms and 

steps to consider, defining specific target features to base 

the analysis on results in a practical  guide towards the 

signal decomposition. 

2.2. Blind Identification Strategy  - Features Extraction 

Step 3 deals with the selection of specific features to aid in 

the problem of  understanding vibration signals and how 

these relate to the normal and abnormal functioning of a 

bearing. Generally, mutliple features have to be taken into 

account. All features must be monitored (blind 

identification), potentially leading to excessive resource 

requirements of a WSN. A smart way of performing this 

blind identification is therefore considered to be a crucial 

element in the VMS designTable 2 presents an overview of 

vibration features according to the machine characteristics, 

environment and damage influence. 

2.2.1. (Step 3.1) Intrinsic features   

Prior to the actual processing of the signal, one should ask 

what are the most relevant physical mechanisms that 

originate the signal observed. A first attempt to answer this 

lies the definition of the expected frequency components 

displayed on the signal. Four different types of vibration 

sources from mechanical machines can be distinguished:  a) 

fundamental frequency, b) power related c) structural 

resonances d) random sources as presented on Table 2. 

 

 

The fundamental frequency refers to the rotational speed of 

the shaft the bearing is supporting. This may be already 

Table 2. Bearing Vibration Classification 

 Feature Example 

Fundamental 

Frequency 

Amplitude  High Forces 

 

Harmonic 
Distortion 

Nonlinear Forces 
 

Frequency Shift Change operation  

Mechanism 

related 

Harmonic 

Distortion  

Unbalance.  

Nonlinear Forces 
 

Amplitude 

Modulation  

Critical speed 

 (Compressor) 

Frequency Multiplication     
Beat phenomenon 

Frequency/Phase 

Modulation 

Torsional Vibration 

 

Structure 

Related 

Impulse Response – 
Excited 

Related to Resonance 

Random 

Vibrations 

Broadband 

vibration 

Related to field  

interaction 
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difficult to identify for machines with transmissions or 

changing rotation speeds.   

Power related frequencies relate to the power transferences 

happening at the machine. These can be due to punctual 

forces as in the case of gear transmission, for which the 

forces as concentrated on specific points of the mechanism. 

Other type of power-related frequencies are those due to 

distributed forces as in the case of rotors.  

Structural frequencies are usually not excited under normal 

machine operation, however these are likely to be displayed 

during transient responses. Impact damages are the most 

common source of natural frequencies excitation. 

Recognition of natural frequencies from an operational 

vibration spectrum is in general a not a straight forward 

process.  

2.2.2. (Step 3.2) Environmental Influence  

The effect of environment on the normal behavior of the 

bearing response depends on the specific case. Environment 

can refer to the variation of the main input forces of the 

machine, both in a deterministic or non-deterministic 

fashion. Such changes can lead to nonlinear behavior of the 

features discussed in previous step. 

A practical consideration of environment influence relates to 

the problem of alarm definition. For machines with 

continuously changing input forces, the signal response is 

often normalized for detection purposes. The vibration 

signature with environmental factors  can also be updated by 

learning algorithms on the node or externally. 

2.2.3.  (Step 3.3a) Damage Features  

Deviations on the vibration pattern that do not arise as 

consequence of environmental factors are presumed to be 

related to failure or damage on the system. The more 

knowledge available on the physics involved in the failure 

mechanism, the better the chances to find a relation with the 

vibration signal and its evolution. Some of the disturbances 

due to damage are listed below:  

 Amplitude increment 

 Fundamental frequency instabilities 

 Harmonic distortion 

 Amplitude modulation 

 Frequency modulation 

 Impulse response 

 Broad band and narrow band noise 

 

The specifics of how some of these features are related to 

bearing damage depend on the failure modes, however the 

specifics are largely influenced by the characteristics of the 

systems the bearings are contained in. Detailed explanation 

of the treatment of a particular damage feature is presented 

in section 3. The main advantage of defining specific 

features to base the  monitoring strategy on is the possibility 

to reduce the signal complexity in discrete characteristics.  

2.2.4. (Step 3.3b) Pattern Evolution  

Once the signal is decomposed on specific signal features, 

such features have to be monitored independently. Tracking 

the evolution of distinctive features provides valuable 

information of the remaining life estimation, especially for 

the cases when it is normalized with the loading conditions.  

2.2.5. (Step 4) Evaluation 

The following steps provide the ground for gathering 

information on the bearing condition. The evaluation  steps 

refer to the goals of the monitoring system, once again back 

to the detection, diagnostics or prognostics.  Some of the 

possible results of the evaluation are: 

 System operation is within acceptable levels. 

 The system condition is stable, and there are no 

symptoms of accelerated deterioration. 

 The system is underperforming,  resetting of the 

system condition is required. 

 System condition is worsening. Maintenance 

intervention must be planned according to usage 

expectations.  

3. VALIDATION – CASE STUDIES  

The proposed steps are applied for two bearing cases. The 

first one relates to artificial damage of a bearing running on 

an simple mechanical setup with little operational and 

environmental disturbances. This simple case highlights the 

classical failure modes of bearings referring to race damage 

and rolling elements damage. The second case refers to train 

bearing monitoring, which displays strong influence of the 

operation and environment.  

3.1. Bearing with Artificial Damage 

A simple bearing test setup was used for validation of 

impulsive behavior due to surface defects (Cisi. et al, 2013). 

The set of data composed by a pristine signal and three 

artificial defects on the inner race, outer race and rolling 

elements. The setup was run under stable conditions of load 

and speed, therefore the signals are expected to behave on a 

rather stationary manner. No environment disturbances were 

relevant during the data acquisition. 
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Figure 3. Feature treatment for signals with impulsive 

behavior.  

 

Based on the discussion of superficial defect (section 1.2), 

the impulsive feature is used to elaborate the signal 

processing around it. Figure 3 presents the detailed 

treatment for the damage feature as presented in step 3.3a. 

Figure 4 a, b, c, d presents the time data signal from the four 

cases. Figure 4.a corresponds with the bearing without 

defect or pristine condition. A reference line is extracted as 

an equivalent sinusoidal signal with the same peak to peak 

amplitude as the pristine condition (red line). Surface 

damage is introduced by creating a small scratch on the 

outer race (Figure 4.b) and inner race (Figure 4.c). 

Advanced damage is achieved by affecting the surface of 

the rolling elements (Figure 4.d).  The time signals are very 

distinctive of the evolution of bearing damage as discussed 

in section 1.2.  

The pristine condition shows low amplitude levels and no 

apparent damage feature is depicted on the time signal. 

Localized superficial defects  lead to very distinctive impact 

response modulated by the bearing kinematic 

characteristics, namely the inner race and outer race failure 

frequencies. The amplitude of the vibration signal increases 

considerably at the moment of the impulse, as compared to 

the normal value represented by the red line of the pristine 

condition. For the advanced damage condition, although the 

impacts become less defined, the overall vibration in 

comparison with the pristine condition increases 

significantly.  

 

 

 

 

 

Figure 4. Time domain signal for a) Pristine, b) Outer race 

damage, c) Inner race damage, d) Rolling element damage. 
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Table 3 presents some statistical quantities related to the 

signals. It can be seen that  kurtosis, zero-peak and rms 

value can also be used as a measure for the impulsiveness of 

the signal. On actual signals, evaluating kurtosis for specific 

frequency ranges around structural frequencies is suggested 

(Randall, 2011). 

  

Subsequently, the frequency content of the signal is 

analyzed by performing an FFT on the time signal. For this 

case, the impact oscillating –carrier- frequency is identified 

as the highest peak of the frequency domain, around which a 

band pass filter is defined, see Figure 5. The filtered signal 

is subjected to an rectification and enveloping treatment as 

presented in Figure 6.a. The frequency displayed in the 

spectrum of the enveloped signal corresponds to the 

modulating frequency of the inner race as presented in 

Figure 6.b. Analysis of the signal displaying the rolling 

elements damage did not result in clear carrier and 

modulating frequencies as predicted for an adavanced 

damage stage. 

 

 

Figure 5. Power Spectral Distribution for bearing signal 

displaying outer race defect.   

 

 
Figure 6. a) Envelope from the rectified time signal for the 

outer race damage b) Fourier representation of the 

enveloped signal.   

3.2. Train Wheel Bearing 

The second validation case of the proposed bearing 

identification algorithm corresponds to the case of train 

bearings. Suspension bearings are very sensitive 

components since these are subjected to heavy loading from 

the train weight and dynamic loading due to the wheel-rail 

interactions. For this case, the bearings correspond to a CRB 

type from SKF which offer low friction characteristics and 

high clearance to withstand moderate impacts and changes 

on operational temperature. They also contain good 

lubrication conditions to protect against fretting corrosion 

(Railways SKF, 2012). From the monitoring perspective, 

train bearings display several challenges because of the 

difficulty in separating the influence of operation (weight of 

the wagon, speed), environment (wheel-rain interaction) and 

the bearing condition itself.  
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Table 3. Summary Statistical Analysis 
Feature Pristine  Inner 

Race 

Outer 

Race 

Rolling 

Element 

Mean:             0.0595 0.0046 0.3665 0.013 

Variance:           0.0056 0.3575 0.3665 4.247 

Kurtosis 2.7642 5.2911 7.5950 3.871 

Zero-Peak 0.298 3.062 1.605 10.11 

rms 0.0738 0.59 0.313 1.027 

 

a b c 
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Figure 7. a) Train Bearing 1 at 5.3 m/s, b) Train Bearing 1 at 

13m/s c) Train Bearing 4 at 5.3m/s  

 

Figure 7 present three typical vibration signals from two 

different bearings  of the same wagon. Figure 7.a and Figure 

7.b correspond to the same bearing but during different train 

speeds (5.4m/s and 13.2m/s respectively). Figure 7.c 

corresponds to a suspected bearing during the captured at 

the same time as the first signal. For this signal it is already 

possible to see the increment on the overall vibration values 

and the peak amplitude. For the analysis, small periods from 

the signal are taken for further study, as indicated by the 

colored bands in the spectra. Table 4 presents a summary of 

the events for the analysis of rms and kurtosis values.  

3.2.1. Detection 

Following the proposed methodology, the signal is 

subjected to feature extraction, for which the normal 

operational conditions and the influence of the environment 

are analyzed. 

Table 4. Rms and Kurtosis for different events 

for the train bearing signals 

 Description Train 

Speed  

[m/s] 

Rms 

 (g) 

Kurtosis 

a Random Excitation 5 0.53     5.72 

b Stable response 5 0.15     3.18 

c Impact  5 0.49   15.81 

d Impact  13 3.15     4.95 

e Stable response  13 0.48     2.92 

f Repetitive Impact 5 0.71   21.82 

g Repetitive Impact 
Random Excitation 

5 1.72    5.71   

 

Step 3.1 - Operational Influence 

Events b and e are used for comparison of the rms and 

kurtosis values of the bearing 1 under stable operation. 

Although there is a significant increment on the rms value  

(0.15g - 0.48g) , the kurtosis levels remains relatively stable 

(3.18 - 2.9). The comparison of the spectral density at the 

both events (Figure 8) shows a correlation on the energy 

distribution but with marked amplitude differences. 

  

Figure 8. PSD comparison for stable operation of 

bearing 1 at 5m/s and 13 m/s.  

 

Step 3.2 – Environment Influence 

For understanding the environment influence, two different 

type of events are analyzed. The first influence relates to a 

random excitation as shown in event (a), for which both rms 

and kurtosis change relatively much in comparison to the 

stable response (rms 0.53g, K 5.72). The power spectral 

density shows in Figure 9 the increment of the vibration 

response at frequencies above 6000Hz.    

 

Figure 9. Environmental disturbance of stochastic 

nature for bearing 1.  
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wheel-rail contact. The characteristics of the impulse 

response are valuable to understand the impact of such 

sudden loads for exciting natural frequencies of the system.  

Figure 10 a, b, c relate to the impact events c (rms 0.49g, K 

15.81)), d (rms 3g, K 4.9) and f (rms 0.71g, K 21).  

 

Figure 10. Environmental disturbance of impulsive 

behavior for a) bearing 1 at 5m/s  b) bearing 1 at 13 

m/s, c) bearing 4 at 5m/s.  

 

From the comparison of the different events, again the 

strong influence of environment on the kurtosis level of the 

signal can be seen. However, the impact occurrence on the 

third case is an important indicator that the impact behavior 

is related to an intrinsic damage of the bearing. 

 

 

 

Figure 10 Cont. Environmental disturbance of impulsive 

behavior for a) bearing 1 at 5m/s  b) bearing 1 at 13 m/s, c) 

bearing 4 at 5m/s. 

Step 3.3 –Bearing Damage 

After completing the assessment of the occurrence of 

impacts due to bearing damage, a demodulation procedure is 

performed (Figure 11). The envelope spectrum reveals a 

modulation at 19.34Hz with harmonics, which corresponds 

to the circular frequency of each rolling element as it spins 

also known as Ball Spin Frequency (BSF). This was 

calculated for a CRB Bearing with pitch diameter of 

136.186mm, rolling element diameter of 18.158mm, 

number of rolling elements 21 and rotational speed of 

320rpm (SKF, 2014). 

3.2.2. Step 4. Evaluation    

The last step on the strategy aims at the evaluation of the 

bearing condition in relation to the possible damage. From 

the analysis of impact response at events c, d and f, it 

becomes interesting to look at the frequencies excited 

during the impact response. Those relate to how the system 

is responding to the sudden loads, both intrinsic and 

extrinsic.  

 

Figure 11. Enveloping analysis for suspect bearing . 

0 0.02 0.04 0.06 0.08 0.1 0.12
-5

0

5

Time(s)

A
c
c
e
le

ra
ti
o
n
 (

g
)

Wheel bearing vibration - Sensor 1 @ 5.4m/s 

0 2000 4000 6000 8000 10000 12000 14000
10

-10

10
-5

10
0

Frequency (Hz)

|Y
(f

)|2

FFT 

0.05 0.1 0.15 0.2 0.25

-10

0

10

Time(s)

A
c
c
e
le

ra
ti
o
n
 (

g
)

Wheel bearing vibration - Sensor 1 @ 13m/s 

1000 2000 3000 4000 5000 6000 7000 8000 9000

10
-5

10
0

Frequency (Hz)

|Y
(f

)|2

FFT 

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
-10

-5

0

5

Time(s)

A
c
c
e
le

ra
ti
o
n
 (

g
)

Wheel bearing vibration - Sensor 4 @ 5m/s 

0 2000 4000 6000 8000 10000 12000 14000
10

-10

10
-5

10
0

Frequency (Hz)

|Y
(f

)|2

FFT 

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5
Enveloping Time for sensor 4 @ 5m/s  

0 20 40 60 80 100 120 140 160 180 200
0

0.05

0.1

0.15

0.2

X: 19.34

Y: 0.08873

Enveloping Spectrum

European Conference of the Prognostics and Health Management Society 2014

460



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014 

10 

Figure 12 present the signal decompositions using a filter of 

500Hz, for low band-pass (red) and high band-pass (blue). It 

is up to the specialist on train dynamics to analyze the 

incidence of those signals for the quantification of load-

carrying-capacity and actual loading. 

 

Figure 12. Signals decomposition. Red-below 500Hz, 

blue above 500Hz.  a) bearing 1 at 5m/s  b) bearing 1 

at 13 m/s, c) bearing 4 at 5m/s. 

 

4. IMPLICATIONS FOR AUTONOMOUS WIRELESS SENSOR 

NODES 

The case of the train bearing highlights the particularities of 

using Autonomous Wireless Sensors for vibration 

monitoring. For this application, the possibility to sample at 

25.6KHz allows very detailed analysis of local resonances 

above the structural range. Therefore the possibility of 

detecting incipient damages in bearings is increased.   

 

Furthermore, the definition of simple features to base the 

evaluation strategy upon provides a guideline for selecting  

signal processing algorithms adaptive to the signal current 

characteristics. Features-based algorithms are suitable for  

optimization of  for efficient usage of the node processing 

and energy resources.  

 

High sampling and specialized algorithms for bearing 

evaluation derive into inexorable high energy load and 

increasing complexity for such autonomous nodes. To 

enable its execution using embedded platforms, the nodes 

must incorporate smart operation management systems 

suitable to tune the power and memory requirements for 

signal acquisition and processing and communication.  

 

5. CONCLUSION 

The term blind identification, does not imply that physics 

knowledge of the monitored object is no longer required. On 

the contrary, a blind identification strategy for bearing 

assessment on WSN relies on concise understanding of the 

bearing failure process and associated mechanisms that 

allows the identification of the current damage state 

although some specific or historic data may be missing.  

 

From the general understanding of the failure mechanisms 

taking place during the deterioration process, the more 

specific failure modes that are likely to be displayed due the 

intrinsic design features, operation and environment 

disturbances associated to a specific bearing application can 

be understood.  

 

The present article discusses the multiple physical 

phenomena related to bearing degradation. It has been 

shown that it is unlikely that a unique signal processing 

technique could capture such complexity. Instead, the 

authors propose the construction of a monitoring strategy 

based on fundamental features of the vibration signal, which 

are modified by the effect of loading, environment or 

damage. The simplicity of such distinctive features enables 

the design of flexible, but yet robust monitoring systems, 

bringing the implementation of VMS based on wireless 

sensor networks within reach.  

The feature used for the case of bearing assessment is 

impact behavior, both as a response to extrinsic factors such 

as in the case of environment loading, and due to bearing 

intrinsic surface damage. Although the phenomenological 

description exhibits similarities for those cases, the effects 

on the system are particularly different. Still, the 

identification of the natural frequencies excited by the 

impact is a valuable indicator of the impact loading on the 

general system. 
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ABSTRACT

Microelectromechanical systems (MEMS) offer numerous ap-
plications thanks to their miniaturization, low power consump-
tion and tight integration with control and sense electron-
ics. They are used in automotive, biomedical, aerospace and
communication technologies to achieve different functions
in sensing, actuating and controlling. However, these mi-
crosystems are subject to degradations and failure mecha-
nisms which occur during their operation and impact their
performances and consequently the performances of the sys-
tems in which they are used. These failures are due to dif-
ferent influence factors such as temperature, humidity, etc.
The reliability of MEMS is then considered as a major obsta-
cle for their development. In this context, it is necessary to
continuously monitor them to assess their health status, de-
tect abrupt faults, diagnose the causes of the faults, anticipate
incipient degradations which may lead to complete failures
and take appropriate decisions to avoid abnormal situations
or negative outcomes. These tasks can be performed within
Prognostics and Health Management (PHM) framework.
This paper presents a hybrid PHM method based on physical
and data-driven models and applied to a microgripper. The
MEMS is first modeled in a form of differential equations.
In parallel, accelerated life tests are performed to derive its
degradation model from the acquired data. The nominal be-
havior and the degradation models are then combined and
used to monitor the microgripper, assess its health state and
estimate its Remaining Useful Life (RUL).

1. INTRODUCTION

Current maintenance strategies have progressed from break-
down maintenance, to preventive maintenance, then to con-
dition based maintenance CBM (Aiwina, Sheng, Andy, &
Joseph, 2009).

Haithem Skima et. al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

CBM is a maintenance program that recommends mainte-
nance decision based on the information collected through
condition monitoring. It consists of three main steps: data ac-
quisition, data processing and maintenance decision making.
The key process of CBM is Prognostic and Health Manage-
ment (PHM), an approach that estimates the Remaining Use-
ful Life (RUL) of systems based on their current health state
and their future operating conditions. Prognostic approaches
can be categorized into three classes, namely model-based
(also called physics-based approach), data-driven and hybrid
prognostic approaches (Jay et al., 2014).
Model-based prognostics deal with the prediction of the RUL
of components by using mathematical or physical models to
describe the degradation phenomena. Data-driven prognos-
tics aim at transforming sensory data into relevant models
of the degradation behavior (Medjaher, Tobon-Mejia, & Zer-
houni, 2012). In general, hybrid prognostic approach benefits
from both categories to overcome their drawbacks, for ex-
ample, (Hansen, Hall, & Kurtz, 1995) proposed an approach
which fuses the outputs from model-based and data-driven
approaches. Prognostic results obtained from this approach
are claimed to be more reliable and accurate (Jay et al., 2014).
PHM approaches can be applied to MEMS to improve the re-
liability and availability of systems in which they are utilized,
to avoid failures and to reduce maintenance costs. However,
the miniaturization of these microsystems makes the imple-
mentation of PHM approaches more specific.
This paper presents a hybrid prognostic method applied to
microgripper MEMS. Firstly, in section 2, an overview of
different categories of MEMS and their common degrada-
tion/failure mechanisms are given. In section 3, the proposed
method which aims at assessing the health state of MEMS
and estimating their RUL is introduced. In addition, the de-
scription, modeling of an electrostatic micro-gripper and the
results of accelerated life tests are provided in section 4. From
the obtained experiments, an empirical model of the micro-
gripper degradation is learned. This model is then combined
with the analytical behavior model of the microgripper to as-
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sess its health state and estimate its RUL. Finally, a conclu-
sion is given in section 5.

2. OVERVIEW OF MEMS AND THEIR FAILURE MECHA-
NISMS

MEMS are introduced in 1989 when Professor Howe (Howe,
1989) from university of California at Berkeley first used the
acronym to describe the hybrid use of microelectronics and
mechanical components to piezo-actuate and create electrical
signals. A MEMS is a system that integrates several mechan-
ical, optical, thermal and fluidic elements using electricity as
an energy source in order to perform measurement and / or
actuating functions in structures having micrometric dimen-
sions. MEMS devices have the ability to sense, control and
actuate on the micro scale, and generate effects on the macro
scale. They can be grouped in four main categories (D. Tan-
ner, 2009)

• Class 1: no moving parts (pressure sensors and micro-
phones).

• Class 2: moving parts with no rubbing or impacting sur-
faces (gyroscope, accelerators and RF oscillators).

• Class 3: moving parts with impacting surfaces (micro-
mirror).

• Class 4: moving parts with impacting and rubbing sur-
faces (micro-motors).

MEMS technology has grown from laboratory research projects
to global commercialization (Walraven, 2005) and thanks to
their miniaturization, low power consumption and tight inte-
gration with control and sense electronics (Shea, 2006), MEMS
are more and more utilized in numerous applications as shown
in Table 1.

Categories Examples
Micro-sensors Pressure sensors, accelerometers,

gyroscopes, thermal sensors, op-
tical sensors, micro-bolometers,
magnetometer, and microphones.

Micro-actuators Electrostatic, piezoelectric, ther-
mal, magnetic.

RF MEMS Metal contact switches, tunable
capacitors, tunable filters, RF
switches, micro-resonators.

Optical MEMS micro-mirrors, optical switches,
Optical reflectors, attenuators.

Fluidic MEMS Pumps, valves.
Bio MEMS DNA chips, microsurgical in-

struments, intra-vascular devices,
mchip, microfluidic chips.

Table 1. MEMS applications and examples.

(b)(a)

(d)(c)

Figure 1. Failure mechanisms illustration: (a) stiction of the
finger on the substrate, (b) stiction in electrothermal actuator,
(c) contamination in a comb-drive, and (d) finger fracture
(D. M. Tanner et al., 2000), (Dardalhon, 2003), (Mir, Rufer,

& Dhayni, 2006)

Most of MEMS are designed with some basic parts such as
cantilever beams, membranes, springs, hinges, etc (Merlijn van
Spengen, 2003). These parts are subject to degradation and
failure mechanisms due to several influence factors (tempera-
ture, humidity, vibration, noise, etc). Common failure mech-
anisms identified and known until now concern stiction, wear,
fracture, creep, delamination, contamination, adhesion, fa-
tigue, degradation of dielectrics, and electrostatic discharge
(D. Tanner, 2009), (Merlijn van Spengen, 2003), (Shea, 2006),
(McMahon & Jones, 2012), (Matmat, 2010), (Huang, Vasan,
Doraiswami, Osterman, & Pecht, 2012), (Zaghloul et al., 2011),
(Li & Jiang, 2008). Figure 1 shows some of these failure
mechanisms.

MEMS failure modes can be classified according to two strate-
gies: they can be categorized as failures related to manu-
facturing or to utilization (Matmat, 2010), or as mechanical,
electrical and material based failures (Shea, 2006), (McMahon
& Jones, 2012), (Ruan et al., 2009), (Müller-Fiedler, Wagner,
& Bernhard, 2002). The two classifications are shown in Ta-
bles 2 and 3 .

3. PROPOSED METHOD

The main steps of the proposed method are summarized in
Figure 2.
This method can be applied to different categories of MEMS,
it aims at combining both degradation and nominal behavior
models in order to detect and diagnose faults, estimate their
health state and predict their RUL. The degradation model is
obtained experimentally through accelerated life tests ((Ruan
et al., 2009), (Shea, 2006)) and the nominal behavior model
is derived by writing the corresponding physical equations.

2
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Figure 2. Main steps of the proposed hybrid prognostic method.

Mechanical Electrical Material
Delamination Degradation of

dielectrics
Stiction

Fracture Electrostatic dis-
charge ESD

Contamination

Fatigue Electro-migration
Creep Electrical short

circuit
Wear Electrical stiction
Stiction
Plastic deforma-
tion
Adhesion

Table 2. Mechanical, electrical and material based failure
modes.

The estimated health state which can be represented by the
parameter values is compared to the failure threshold which
is obtained experimentally by observing the response of the
MEMS when performing accelerated life tests to calculate the
RUL. As shown in Figure 3, the RUL value corresponds to the
difference between the failure time and the current time.

Figure 3. RUL estimation.

Related to utilization Related to manufactur-
ing

Stiction Stiction
Delamination Contamination
Fatigue Fracture
Creep Electrical short circuit
Wear
Electro-migration, ESD
Adhesion
Electrical short circuit
Fracture

Table 3. Failure modes related to manufacturing or to utiliza-
tion.

4. EXPERIMENTAL SETUP AND RESULTS

4.1. Description of the experiments

The experimental platform designed to perform accelerated
life tests of three microgripper MEMS is shown in Figure 4.
The microgripper FT-G100 used in this application and shown

Figure 4. Overview of the experimental platform.

in Figure 5 is designed by the Swiss company Femtotools
based in Zurich. The main feature of the FT-G100 is the ma-
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nipulation of micro and nano objects with two arms (the first
is moving, the second is static). The initial opening of the two
arms is 100 µm and can be controlled with nanometer preci-
sion. The maximum actuation voltage of the microgripper
is 200 V. This device consists of two mechanisms: an elec-
trostatic actuation mechanism containing a comb-drive actu-
ator and an actuated finger. In addition, a sensory mechanism
comprises a capacitive force sensor. The comb-drive actua-
tor contains 1300 electrodes: 650 moving electrodes and 650
static electrodes. The shuttle is the moving part of the actua-
tor. The capacitive sensor consists of 400 electrodes.

Figure 5. Microgripper FT-G100 used in the accelerated life
tests.

In response to a voltage Vin applied to the comb-drive actu-
ator, an electrostatic force Felec is generated. This force is
proportional to the square of the input voltage and its analyt-
ical expression is given by Eq. (1):

Felec =
Na.e.hz

2.g
.V 2

in (1)

where Na = 1300 is the number of electrodes in the comb-
dive, e = 8.85 pF/m is the air permittivity, hz = 50 µm
is the thickness of the electrodes and g = 6 µm is the gap
between the fixed and the mobile electrodes.
The platform is constituted of a voltage source (an ARDUINO
device which generates a square signal of 5 V magnitude and
frequency equal to 25 Hz), a voltage amplifier, a distributor
for supplying the voltage to the three microgrippers, an in-
terferometer and a micrometric adjustment support to fix the
MEMS when taking measurements. The acquisition of mea-
surements is the same for the three microgrippers and for each
one of them the following steps are applied: (a) fix the micro-
gripper on the support, (b) adjust the interferometer reflection
(50 % minimum), (c) the reflected signal is acquired at a fre-
quency equal to 25 kHz, with 16384 points, (d) store the result
in different files in a dedicated computer for later use.

4.2. Physics-based model and parameters identification

The time response obtained experimentally from a new micro-
gripper is shown in Figure 6. It corresponds to a second order
dynamic system. The microgripper can then be modeled as a

mass-spring-damper (MSD) system.
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Figure 6. Time response of a new microgripper.

The governing equation of such a system is given in Eq. (2).

Felec =Mẍ+ fẋ+ kx (2)

where Felec is the electrical force actuating the mobile arm, x
is the displacement, f is the friction coefficient, k is the stiff-
ness of the arm and M is its mass. By applying the Laplace
transform on Eq.(2) and by putting U(t) = V 2

in(t), one gets
the canonical transfer function given in Eq.(3):

H(p) =
X(p)

U(p)
=

η

k

1 +
f

k
p+

M

k
p2

=
K

1 +
2ξ

wn
p+

1

w2
n

p2

(3)

In Eq. (3), K =
η

k
is the static gain of the microgripper,

wn =

√
k

M
its natural frequency and ξ =

f

2.
√
k.M

its

damping coefficient.
According to Eq. (3), the parameters which can vary are the
natural frequency wn, the friction coefficient f and the stiff-
ness k. The variation of the two first parameters depends on k
which can vary significantly due to cycling. In the next sub-
sections, and in order to study the degradation of the MEMS,
only the variation of its stiffness will be studied.

4.3. Experimental results

This subsection is devoted to the presentation of experimental
results, the degradation model and RUL estimation.
The experiment remained running for more than two months.
During the accelerated life tests, the measurements were per-
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formed every 2 160 000 cycles and at each measurement the
value of the stiffness k is estimated from the time response
of the corresponding microgripper. At the end of each ac-
celerated life test, which duration is more than 140 million
cycles, the evolution of the stiffness k is plotted as a function
of number of cycles as shown in Figure 7.

The experimental measurements are performed for three mi-
crogrippers in the same conditions to ensure the repeatability
of the parameter k. The first 20 million cycles are considered
as a transient phase (interesting to study for infant mortalities
but is not considered here for the prediction of RUL) and can
be neglected in the model identification. Figure 7 shows the
low standard deviation between the values of the stiffness k
of the three microgrippers.
Before starting the identification of the degradation model,
the averages of k are plotted as a function of number of cy-
cles as shown in Figure 8.
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Figure 7. Experimental results.

4.3.1. Degradation model

The experimental measurements are approximated by a sixth
order polynomial which better represents the shape and gives
more accurate as shown in Figure 8. The mathematical equa-
tion of the green curve is estimated by using Matlab (Eq. 4).

k(n) =

6∑

i=0

(ai.n
i) (4)

where k is the stiffness, ai the constants of the approximated
polynomial (Table 4) and n is the number of cycles.
Equation (4) represents the polynomial degradation model of
the microgripper. This model will be used in the next subsec-
tion to estimate the RUL.
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Figure 8. Six order polynomial approximation.

i ai i ai
0 7.18 4 −6.03× 10−30

1 4.55× 10−7 5 3.35× 10−38

2 −2.24× 10−4 6 −7.12× 10−47

3 5.02× 10−22

Table 4. Numerical values of the polynomial coefficients.

4.3.2. RUL results and discussion

The polynomial degradation model obtained experimentally
through accelerated life tests is combined with the nominal
behavior model of the microgripper in order to monitor its
health state and estimate its future state. The time responses
shown in Figure 9(a) are given by injecting the number of
cycles in the nominal behavior model. The parameters of the
system such as the settling time, the static gain, the natural
frequency and the damping coefficient can be estimated. To
assess the health state of the MEMS, only the settling time ts
is studied. Table 5 shows the values of k and ts for different
number of cycles n. The settling time is estimated from the
time responses (Figure 9(a)) and is plotted as a function of
number of cycles as shown in Figure 9(b).

n(106) k(N/m) ts(s)
70 10.7367 0.102
100 9.4625 0.106
130 8.3890 0.109
150 7.8573 0.111

Table 5. Stiffness and settling time values.

The failure time Tf is obtained by fixing a settling time limit,
which corresponds in this application to 150 million cycles.
The RUL is then calculated as the difference between Tf and
the current time t (Eq. 5). Figure 10 shows the stochastic
estimation of RUL.

RUL = Tf − t (5)

5
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5. CONCLUSION

In this paper, a hybrid prognostic method of microgripper
MEMS has been proposed. It is based on the combination
of two models: an analytical behavior model obtained by
writing the physical equations and a degradation model de-
rived from accelerated life tests. The method is applied to
assess the health state of the MEMS and estimate its RUL.
By injecting the degradation model in the nominal behavior
model, the time response is given and its parameters can be
estimated. The latter information are then used to assess the
health state of the MEMS, define a failure threshold and cal-
culate the RUL.
The proposed method has been applied on a set of only three
MEMS with constant operating conditions. It can be im-
proved by performing experiments with more MEMS and
varying the influence factors (temperature, humidity, vibra-

tion, etc) to have a degradation model which can be more
representative, reliable and accurate.
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ABSTRACT 

Semiconductor Industry (SI) is facing the challenge of  short 

product life cycles due to increasing diversity in customer 

demands. As a result, it has transformed into a high-mix low 

-volume production line that requires sustainable production 

capacities. However, significant increase in the unscheduled 

equipment breakdowns, limits its success. It is observed that 

in a high-mix low-volume production, product commonality 

is inversely proportional to failure occurrences and number 

of corrective actions in each failure. This provides evidence 

of misdiagnosis for equipment failures and causes. 

Moreover, equipment is believed to be the only source for 

product quality drifts that increase the unscheduled 

breakdowns and result in unstable production capacities. In 

this paper, we propose two defense lines against increasing 

unscheduled equipment breakdowns due to misdiagnosis. 

We argue that product quality drift can be traced to product 

itself, process and maintenance events, besides equipment. 

The Bayesian Belief Network (BBN) is proposed using 

symptoms, collected across drift sources, that improves 

equipment breakdown decisions by accurately identifying 

the source of product quality drift. The misdiagnosis of 

equipment failures and causes, if equipment is found as a 

source of drift, is another significant factor for increasing 

unscheduled equipment breakdowns. Existing failures and 

causes diagnosis approaches, in the SI, model equipment as 

a single unit and use fault detection and classification (FDC) 

sensor data. We also argue that these are the key reasons for 

the misdiagnosis because of neglected facts that production 

equipment is composed of multiple modules and FDC 

sensors undergo reliability issues in a high-mix low-volume 

production line. Therefore, to improve these misdiagnosis, 

another BBN is proposed that uses statistical information, 

collected from the equipment database, at the module level. 

These BBN models are evaluated in a thermal treatment 

(TT) workshop at the world reputed semiconductor 

manufacturer. The BBN model for the identification of the 

source of product quality drift (failure mode) demonstrates 

97.8% prediction accuracy; whereas, module level BBNs for 

equipment failures and causes diagnosis are found 45.7% 

more accurate than equipment level BBN. 

1. INTRODUCTION 

The SI has revolutionized our daily lives with integrated 

circuit (IC) chips and on the average we use more than 250 

chips and 1 billion transistors per day per person. These 

chips are installed in almost all the equipment around us 

ranging from dish washer, microwave ovens and flat screens 

to office equipment. The sales revenues in the SI are 

characterized with cyclic demand patterns and positive 

compound annual growth rate (CAGR) of 8.78% (Figure 1). 

This ensures that demand driven downfalls will follow a 

cumulative growth. It also motivates the SI to continuously 

introduce new technologies and improve their existing 

processes to address the challenge of high-mix low-volume 

production and capture maximum market share. 

 

Figure 1 - Global sales revenues of SI
1
 

                                                           
1 The data is collected from the well known technology research centers (i) 
Gartner {www.gartner.com} and (ii) isuppli {www.isuppli.com} 

Asma ABU SAMAH et al. This is an open-access article distributed under 

the terms of the Creative Commons Attribution 3.0 United States License, 
which permits unrestricted use, distribution, and reproduction in any 

medium, provided the original author and source are credited. 
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The demand for integrated circuits (ICs) is mainly driven by 

end-user markets from electronics industry (EI) e.g. data 

processing, automotive industry, consumer electronics, 

communications and industrial sector (Ballhaus, Pagella, & 

Vogel, 2009). The SI forms a part of this complex 

interaction among these multiple industrial sectors (Yoon & 

Malerba, 2010; Kumar, 2008). Wireless communication and 

consumer electronics are leading market segments whereas 

automotive is a potential emerging segment. At present, the 

automotive market is only 8% of the total SI market but is 

expected to dominate in near future. Demand is 

continuously increasing not only in volume but also in 

diversity. This diversity has witnessed significant growth 

that ultimately leads to short product life cycles (Shahzad, 

Hubac, Siadat, & Tollenaere, 2011). 

 

(a) 

 

(b) 

Figure 2 - Product mix , commonality and differentiation vs. 

equipment utilization
2
 

The Figure 2 above presents equipment utilization for a 

thermal treatment (TT) workshop at the world reputed 

semiconductor manufacturer. This data is aggregated at the 

quarter level and spans over last six years (2008Q1 to 2014 

Q1). It is also manipulated for the confidentiality purposes; 

however, scale is kept constant to keep the original trends. It 

can be seen that during 2008Q1 and 2012Q2, production 

capacities are significantly larger than both scheduled and 

unscheduled breakdowns (Figure 2a). In this period, we can 

observe a slight increase in the product mix that decreases 

production capacities. The data till 2014Q1 shows that with 

the fluctuation of the product-mix, the production capacities 

                                                           
2 The production line data from thermal treatment (TT) production line is 

manipulated with a constant for confidentiality while not losing the insight 
in reduced production capacities. 

suffers unstability and a notable decline. The Figure 2b 

presents the impact of product differentiation and 

commonality for two consecutive quarters on the equipment 

utilization. The difference in product mix is plotted on 

secondary y-axis. This can be positive or negative and 

ranges from -25% to +38%; whereas, product commonality 

is plotted on the primary y-axis for each current quarter, that 

ranges from 49% to 92%. It can be observed that production 

capacities increase with an increase in product commonality 

and are inversely related to unscheduled breakdowns. 

Therefore, the production learning curves against demand 

diversity can be improved by reducing not only unscheduled 

breakdowns but also by stabilizing them. In last two years, 

high product mix and short product life cycles that result in 

product differentiation has reduced TT workshop production 

capacities to 30%. It is because of unscheduled equipment 

breakdowns that result in the waste of resources and global 

productivity due to interruption in the time constraint 

production schedules. However, corrective maintenance due 

to these breakdowns is unavoidable.  

 

(a) 

 

(b) 

Figure 3 - Failure counts, durations and occurrences 

Further analysis on the failure durations (primary y-axis), 

occurrences, and number of repair actions (secondary y-

axis) in each failure are plotted and presented in Figure 3, 

using data collected from TT equipment. The data is plotted 

for two significant failures: (a) elevator boat rotation and (b) 

OCAP_SPC and it is manipulated due to confidentiality. It 

can be seen that failure count and average number of repair 

actions in each failure occurrence are inversely proportional 

to product commonality. However, OCAP (out of control 

action plan) failure occurrence is relatively higher (30%) 
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than elevator boat rotation. The increase in number of repair 

actions in a failure occurrence provides significant evidence 

for misdiagnosis that is one of the key factor for increasing 

unscheduled equipment breakdowns in a high-mix low-

volume production lines e.g. SI.  

In addition to equipment failures and causes misdiagnosis, 

we also argue that misdiagnosis can occur while identifying 

the source of product quality drifts. In a highly complex 

production environment as SI, we believe that the source of 

such drifts can be equally traced to other elements such as 

products, process, equipment and maintenance; however, at 

present it is believed to be the equipment. This paper is 

divided in 4 sections. Section-2 presents related literature 

review on equipment failure-cause diagnosis in general and 

specially in the SI, and the evidence that equipment is taken 

as the only source of product quality drift. The proposed 

methodology and the case study are presented in section-3 

whereas BBN models and analyses results are presented in 

section-4. Finally, we conclude this paper with discussion 

and perspectives. 

2. LITERATURE REVIEW 

For clear orientation, we refer to the SEMI standard 

definition
3
 of failure as an unplanned event that changes an 

equipment (system) to a condition where it cannot perform 

its intended function. Whereas, cause or fault is the reason 

behind the occurrence of failure in the equipment. It is 

different than the source of product quality drift, referred as 

failure mode (FM), in this paper.  The FM is the category of 

cause behind a product quality drift. For example, due to the 

type of TT equipment (batch cluster) where multiple lots are 

processed together; a drift might occur due to the influence 

of different product combinations. In such situation, the FM 

is the product and not equipment; therefore, equipment must 

not be stopped for the failures and causes diagnosis, and 

associated corrective maintenance actions. In this regard, 

section 2.1 presents analysis on the product quality drift 

sources. The section 2.2 presents the existing equipment 

failure-cause diagnosis in the SI and section 2.3 presents the 

choice of BBN as our target approach for modeling the FM 

identification and equipment failures and causes diagnosis.  

2.1. Source of Product Quality Drift Analysis 

Analysis of the source of product quality drift can be related 

to Root Cause Analysis, a study to diagnose the sources of 

problems in processes for directing counteractive actions 

(Rooney & Heuvel, 2004).  Doty (1996) and Smith (2004) 

used the classification by Ishikawa and Loftus (1990) to 

divide the root causes into six assignable categories of Man, 

Machine, Method, Material, Measure and Environment to 

                                                           
3SEMI International Standards: Compilation of terms (Updated April 

2014), retrieved  on 4th June 2014 from: 

http://www.semi.org/en/sites/semi.org/files/docs/CompilationTerms0414.p
df  

explain abnormal situations in statistical process control 

strategies. It is a qualitative method, used frequently in the 

diagnosis domain, but requires long brainstorming sessions 

with experts and is performed on the occurrence of each 

new excursion. Therefore, it cannot be used in the complex 

production environment. Weidl, Madsen, and  Israelson 

(2005) model industrial process and product failure control 

system using generic object oriented Bayesian Network that 

proposes corrective maintenance actions with explanation of 

root causes. Their set of root causes contains all possible 

hypotheses on failure sources or conditions coming from 

equipment sensors and  process operations. Sarkar (2004); 

Demirli and Vijayakumar (2010) have combined cluster 

analysis with engineering knowledge to classify big set of 

equipment failure events into small number of categories 

and use the knowledge to identify root causes for each 

cluster.  

These above researches are important as they provide the 

possibility of finding the true source of product quality drift. 

However, the problem for process and product is always 

associated to an equipment and then further investigation is 

made to find other probable causes. As a matter of fact, in 

the SI, a product quality drift is associated to a failure in the 

equipment; whereas, in reality, it can be traced to other 

assignable causes as demonstrated by Ishikawa diagram. We 

suggest to combine the advantages of the qualitative method 

(Ishikawa diagram) with probabilistic approach (BBN) to 

improve decisions on equipment stoppage against product 

quality drifts. This will act as a first line of defense to 

accurately identify the source of product quality drift and 

reduce unscheduled equipment breakdowns. The details can 

be found in sections 3.1 and 4.1. 

2.2. Equipment Failure and Cause Diagnosis in the SI 

Recent IT revolutions have enabled huge data volumes with 

improved artificial intelligence (AI) techniques for failure 

diagnosis. The commonly used techniques to optimize the 

production operations are advanced process control (APC) 

methods that include run to run (R2R) loops, statistical 

process control (SPC) and fault detection and classification 

(FDC). Chen and Blue (2009) have proposed an approach 

using EWMA (exponentially weighted moving average) 

chart as a function of variance and covariance of relevant 

parametric distributions to classify the bad equipment. It is 

comparable to FDC approach that uses SPC to model 

temporal patterns and to monitor and detect shifts or drifts 

in the equipment signals (Yue & Tomoyasu, 2004; Lacaille 

& Zagrebnov, 2007; He & Wang, 2007). This approach is 

objectively different than the above approaches as it 

integrates all sensors to generate one single index that 

reflects the overall equipment health against product quality. 

(Chang, Song, Kim, & Choi, 2012) proposed a fault 

detection and classification methodology for the SI using a 

sequential SVDD (support vector data description) classifier 
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algorithm. It is a probabilistic modeling used in addition to 

statistical approach 

A careful analysis of the existing approaches, methods and 

techniques, highlights that till today, to model a failure and 

cause diagnosis, sensors data are used. In addition, above 

discussion also highlights that the diagnosis models model 

equipment as a single unit for failures and causes diagnosis; 

whereas, an equipment is composed of  multiple modules. 

2.3. Bayesian Belief Network (BBN) as Modeling Tool 

The methods used for failure and cause diagnosis range 

from univariate and multivariate statistical to artificial 

intelligence (AI) and machine learning (ML) methods. 

There do exist hybrid methods; however, most promising 

and suitable technique found in literature is the BBN. The 

advantage of using Bayesian network is its inherent ability 

for deduction and inter-causal reasoning (Kjærulff & 

Madsen, 2006). The deductive (causal) reasoning takes into 

account the causal links between variables, from causes to 

effects using dynamic detection evolution. The inter-causal 

reasoning is interesting and powerful ability of BBN where 

evidence on one possible cause disapproves other possible 

causes. In addition to their ability to represent causal 

relationships, BBN has the capacity to perform data learning 

efficiently in uncertain environments, involving small 

amount of data and short temporal change of states. It can 

be used to represent compact joint probability distributions 

(Margaritis, 2003).  

The Bayesian network based approach has recently become 

focus for dynamic maintenance management and failure 

diagnosis in the SI. Yang and Lee (2012); Bouaziz, Zamaï, 

and Duvivier (2013) applied BBN for diagnostics and 

prognostics in the semiconductor manufacturing with an 

objective to investigate the causal relation among equipment 

conditions and their affects on product quality. Moreover, 

there do exist published methods and algorithms to adapt 

the BBN to fit to specific case studies in the SI (Roeder, 

Schellenberger, Schoepka, Pfeffer, Winzer, Jank, & Pfitzer, 

2011). In the process industry, Isham (2013) proposed a 

BBN to compute dynamic probabilities and update the Fault 

Semantic Network. Its focus is on predicting real time risk 

based accident forecasting in oil and gas sector. Another 

important use of BBN is as a classifier and isolater of faults 

(Verron, Li, & Tiplica, 2010). Weber and Jouffe (2006) 

present a detailed review of BBN application in the domains 

of reliability, risk analysis and maintenance.  

A traditional BBN consists of a set of nodes representing 

random variables (V), set of arcs (A) connecting these nodes 

to form a directed acyclic graph (DAG) (equation 1) and 

conditional probability distributions (CPD) tables to 

quantify the probabilistic relationships between nodes. The 

BBN is a graphical representation of joint probability 

distribution (equation 2) that represent dependent and 

conditionally independent relationships.  

Directed  Acyclic Graph,  )A,V(G                    (1) 
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This probabilistic representation of a system in a graphical 

form allows monitoring relationships among different 

variables. The CPD table is constructed based on the Bayes 

rule (equation 3) which states that for given 2 events A and 

B, the probability of A given B is the function of conditional 

dependence of B to A and respective probabilities of having 

A and B events together. It is an efficient feature to model 

causal relationships between a set of event.  

)B(P

)A(P)A|B(P
)B|A(P                                    (3) 

The distribution changes when the states of the nodes in G 

experience a change of events (called evidence). 

Propagation algorithm is used to fuse and propagate the 

impact of new evidence and beliefs through BBN so that 

each proposition eventually will be assigned a certainty 

measure, consistent with the axioms of probability theory 

(Pearl, 1988).    

It is a powerful method for probabilistic knowledge 

representation and inference under uncertainty. The 

maintenance personnels make decisions to stop the 

production equipment, in case of product quality drift, under 

uncertainty. Therefore, BBN is the approach that offers 

probabilistic contextual information to make accurate 

decisions. It must be noted that every bad decision adds to 

unscheduled equipment breakdowns.  

In this paper we focus on presenting a methodology to :   

 Identify the failure modes (source of product quality 

drift) as either product, process, equipment or 

maintenance. Therefore, we first develop a BBN that 

identifies the failure modes (section 4.1), accurately. 

 Develop integrated failure-cause diagnosis BBN 

models at the module and equipment level (sections 

4.2 and 4.3). The existing equipment level BBNs are 

based on FDC sensors data that is no more reliable 

due to high-mix low-volume production. 

 Use product, process, maintenance and equipment 

data/information. The key advantage of this data is 

that it is not subjected to reliability issues like FDC 

sensors (Blue, Roussy, Thieullen, & Pinaton, 2012).  

3. PROPOSED METHODOLOGY 

In this section, we elaborate the proposed methodology used 

to achieve the previously discussed objectives, followed by 

the description of case study, data processing and a brief 

presentation of BBN learning strategies. 

European Conference of the Prognostics and Health Management Society 2014

473



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014 

 

5 

 

3.1. Proposed BBN Based Methodology 

In step-1, we start with the classification of potential 

symptoms from product, process, equipment and 

maintenance databases. The FDC sensor signals within 

equipment database are not directly used as symptoms; 

however, decisional data/information based on these signals 

is used as potential symptoms, failures and causes. It is due 

to the fact that emerging sensor reliability issues are linked 

with high-mix low-volume production and could result in 

unstable models. The FM are modeled as a function of 

symptoms and resulting BBN for FM identification serves 

as first defense against unscheduled equipment breakdowns. 

It help equipment engineers to make accurate decisions on 

stopping the equipment if the product quality drift is not 

related to product, process or maintenance. The step-2 in 

this methodology advocates to model equipment failures 

and causes as a function of symptoms using module level 

BBNs. We also model the equipment level BBN in step-3 to 

assess the assumption that module level BBNs are more 

accurate in failure-cause diagnosis than the equipment level 

model. The equipment level BBN is modeled and proposed 

to be updated upon new excursions where any structural 

change between two consecutive equipment level BBNs will 

be used as the signal to revise the module level BBNs, with 

expert's intervention. This loopback step is not completed in 

this case study; however, diagnosis results from module and 

equipment level models are compared based on their 

accuracies as the final step of this methodology.  
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Figure 4 - Proposed 4-step methodology for integrated 

failures-causes diagnosis 

3.2. Description of the Case Study for Thermal 

Treatment (TT) Workshop 

As a case study, we consider TT workshop equipment, used 

to grow oxide and deposit nitride layers on the surface of 

silicon wafer as dielectric, respectively. This equipment uses 

low pressure chemical vapor deposition (LPCVD) as the 

technique to deposit nitride layers. It is also used for 

annealing (heat treatment) after production steps to stabilize 

the crystalline structure of a silicon wafer, prior to the next 

steps. The equipment type in this production line is batch 

cluster with two process chambers known as reactors 

(Figure 5). The structure of the TT equipment is presented 

in Figures 5a and 5b, below. The reactor, wafer handling 

robot (WHR) and work in progress (WIP) are the three main 

modules. Each of these modules is further composed of 

many sub modules (Figure 5b). In this case study, we 

consider three modules Reactor1, Reactor2 and Mainframe 

for demonstration with an assumption that these constitute 

the whole equipment. The integrated failure-cause diagnosis 

BBN models at module and equipment levels are therefore 

developed for these equipment modules. 

 

(a)                                     (b) 

Figure 5 - View of the vertical LPCVD (Selen, 

Timmermans & Bolscher, 2009) 

3.3. Data Processing  

The dataset used in this case study spans six months (from 

week 27
th

 to week 52
nd

 of 2013) and are collected across 

product, process, equipment and maintenance databases for 

TT equipment. These are used in symptoms, failures and 

causes identification. The symptoms are classified into four 

categories and are used to generate the BBN to accurately 

identify the FM as the function of symptoms (section 4.1) as 

well as the development of an integrated failure-cause 

diagnosis BBN models at the module and equipment level 

(sections 4.2 and 4.3).  
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3.4. Bayesian Belief Network Learning 

The BBN networks can be obtained either through experts 

knowledge or based on data learning. In the proposed 

methodology, the latter option is used.  The BBN models 

are learned with BayesiaLab 5.3 using equivalence class 

(EQ), Taboo and Taboo order algorithms that use minimum 

description length (MDL) as an objective function. The brief 

summary of BBN learning with these methods is presented 

in Table 1. The models are learned first using EQ followed 

by optimization with Taboo and Taboo order. The model 

with lowest MDL score is accepted for further analysis. All 

BBN models are learned and tested using 75-25 cross 

validation strategy. The evaluation of BBN networks 

performance is presented in section 4.  
 

Function Algorithm Strength References 

BBN structure 

building 
Equivalence Class (EQ) Reduce search space efficiently 

(Chickering, 2002; Munteanu & 

Bendou, 2001) 

BBN structure 
optimization 

Taboo Taboo Order 
Capacity to refine 
a developed model 

Ability for exhaustive 

search with accurate results 

(given additional time) 

(Glover, 
1986) 

(Teyssier & Koller, 
2005) 

BBN structure choice 
(function objective) 

Minimum Description 

Length (MDL) 
Target : Lowest MDL 

score 

Tradeoff between accuracy and complexity : 
application to  multiply connected belief network 

(Lam & Bacchus, 1994) 

Table 1 - Learning Bayesian network structure with BayesiaLab

4. MODELLING AND ANALYSIS RESULTS 

In this section, we present the modeling and analysis results 

of BBN models as proposed in the methodology (section 

3.1). 

4.1. Classification of Symptoms and FM Identification 

(Step-1) 

The identification and classification of potential symptoms 

from the database is the most difficult and complex task. It 

is because one needs to have multidisciplinary expertise 

from product, process, equipment and maintenance 

domains. This difficulty was addressed by a task force with 

experts from each discipline. The brainstorming sessions 

resulted in the formalization of well known Ishikawa (a.k.a. 

Fishbone) diagram (Ishikawa & Loftus, 1990) to find 

potential symptoms across product, process, equipment and 

maintenance areas. The results are presented  in Figure 6. 

Symptoms are classified in four axes as product, process, 

equipment and maintenance. The TT equipment is of batch 

cluster type; hence, they process multiple lots in a given 

step. Therefore current/previous product combinations 

might influence the product quality. Number of reworks, 

wait time before process and defect distribution from 

previous steps are also identified as key product symptoms 

linked with product quality drift. The process capability 

(Cp) and process capability index (Cpk) are the key process 

symptoms. It is also identified that not only current recipe 

but also previous recipe and their respective process steps 

combinations could be strongly linked with product quality. 

The FDC sensor signals from equipment database are not 

directly considered; however, decisional information based 

on these signals is a good candidate for potential symptoms. 

The key symptoms are equipment capability (Cm) and 

equipment capability index (Cmk); however, overall 

equipment efficiency (OEE) indicators and counters are the 

additional symptoms included . The counters are the meters 

associated with equipment modules (process chambers and 

mainframe), used for triggering preventive maintenance. 

The last category of symptoms is the maintenance where 

reliability, availability and maintenance (RAM), and failure 

indicators are identified as the key symptoms. The data is 

collected for these symptoms against product quality drifts. 

The data for OEE, RAM, process and equipment capability, 

and failure indicators are aggregated on weekly basis 

whereas rest of the data is instantaneous for a given product 

and process step.  
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Figure 6 - Classification of symptoms 

The BBN to identify potential failure modes (equipment, 

product, process and maintenance) is learned with 

BayesiaLab, using symptoms as recognized in Figure 6. The 

model is presented in Figure 7 where FMs are modeled as 
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the function of symptoms. In this paper, the concept of 

prediction is used to represent inference results of a target 

node.  

 

Figure 7 - BBN model for FM identification  

The symptoms in this model are grouped into four 

categories as differentiated with different colors. The green, 

pink, yellow and light brown represent process, product, 

equipment and maintenance related symptoms, respectively. 

The target node is the failure mode. The objective of 

showing this graph (Figure 7) is to present the complexity of 

resulting network. The proof of concept and few results are 

presented in Figures 8 and 9. It can be seen that, BBN 

identifies product (64%) or maintenance related (36%) for a 

given set of symptoms as shown in the Figure 8. Hence, in 

this situation, maintenance personals should not stop the 

equipment. 

 

Figure 8 - Proof of concept: product as the FM  

Similarly, the Figure 9 shows that maintenance is found as 

the only reason against given symptoms; hence, BBN model 

suggests to stop the equipment for further investigation on 

failures and causes. The precision and reliability matrices of 

the BBN model to identify the FM are presented in Figure 

10. It can be seen that this model offers 97.8% precision on 

75-25 cross validation strategy. In this strategy, 75% data is 

used to learn the model whereas 25% data (randomly 

selected) is used for precision and reliability measures.  

 

Figure 9 - Proof of concept: maintenance as the FM 

 

Figure 10 - Precision and reliability of FM BBN 

 

Figure 11 - Prediction accuracy with ROC curves 
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Figure 11 shows FM prediction accuracy evaluation using 

receiver operating caracteristic (ROC) curves, a graph to 

plot true positive rate (Y-axis) against false positive rate (X-

axis). Its index represents the surface under the ROC curve 

divided by the total surface and in this graph it represents an 

99.88% average accuracy with 0.02% of false positive 

prediction. The capability of FM identification model with 

gain curves is presented in Figure 12. The yellow line 

(Figure 12c) presents that 31% of the test cases have 

‘equipment’ as FM whereas the red curve represents the 

capability to predict them correctly in comparison with 

random prediction represented by the blue curve. The x-axis 

represents rate of individual cases taken into account for 

prediction whereas y-axis represents rate at which they are 

predicted accurately with target failure mode. The Gini 

index represents the gain over random model and is 

computed by dividing the area below red curve and above 

blue curve with the area under blue curve. The FM 

identification capability for product and process are higher 

than the equipment and maintenance. The relative Gini 

index is computed by dividing the area within triangle 

formed due to crossing of red, blue and yellow lines with 

area under blue curve.  

 

Figure 12 - FM identification model capability with gain 

curves 

4.2. Module Level Failures-Causes Diagnosis BBN 

Models (Step-2) 

The FM identification model, presented in previous section, 

is the first step towards reducing unscheduled equipment 

failure breakdowns. This is complemented by failures and 

causes diagnosis through BBN model, developed at module 

level where data on failure and causes are collected from the 

world reputed semiconductor manufacturer for the LPCVD 

process equipment (sections 3.2 and 3.3). For 

demonstration, we have used three modules (i) Reactor1, (ii) 

Reactor2 and (iii) Mainframe. The reactors are the process 

chambers where multiple lots are processed together for 

annealing, oxidation or metrication depositions (section 

3.2). The Mainframe module is also referred as WIP module 

(see Figure 5) .    

 

The BBN model for Reactor1 is presented below in the 

Figure 13 whereas BBN models for other modules are not 

presented due to space restrictions. The target nodes Failure 

Code1 and Failure Code2 are modeled as the function of 

symptoms; however, causes are also allowed to be directed 

from these symptoms. The color scheme for symptom 

classes is same as presented in section 4.1 whereas  causes 

and failure codes are added with new colors (orange and 

blue respectively). The nodes not connected in these models 

are found with zero influence on either failure codes or 

causes.  

 

Figure 13 - Failure-Cause BBN diagnosis models for 

Reactor1 

The example as proof of concept from the learned models is 

shown below in the Figure 14 for Reactor1. The equipment 

failures-causes diagnosis made by BBN model is presented 

as the function of symptoms in green rectangle.  

 

Figure 14 - Result from module level Reactor1 model 
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The prediction capability for learned models are presented 

below in Figure 15. The results show that learned models 

have high precision and accuracy. Besides this, it can also 

be observed that accurate prediction capabilities are also 

very high in terms of Gini indices. 

 

Figure 15 - Gain curves for BBN models 

4.3. Equipment Level Failures-Causes Diagnosis BBN 

(Step-3) 

To find out, whether module level BBN models are more 

accurate than equipment level BBN model, we developed an 

equipment level diagnosis model to find failure and causes. 

The symptoms from FM identification model (section 4.1) 

plus failures and causes from module level BBNs (section 

4.2) are used to develop equipment level BBN model. 

Besides this, we add one node 'Module' to diagnose failure 

for a given module in the equipment. The model is 

presented below in the Figure 16. It can be seen that all 

nodes are connected. The nodes that have zero influence in 

module level BBNs, appear connected in this network that 

add confusion and influence the equipment level failures-

causes diagnosis. Confusion is also caused by the given fact 

that similar modules, Reactor1 and Reactor2 share common 

failures such as OCAP_SPC. Each module have different 

occurrences of OCAP_SPC but in this network, they 

overlap. It is also observed from the proof of concept that 

for given symptoms, all modules have 33.33% probability 

of occurrence that confirms the added confusion. 

 

 

Figure 16 - Failure-Cause diagnosis BBN model at 

equipment level 

Some of the prediction accuracy results for the equipment 

level BBN model are presented in Figures 17 with gain and 

ROC curves. The results clearly show the declined gain and 

increasing false positive that significantly reduces the 

diagnosis capability of the equipment level BBN model.  

 

Figure 17 - Gain and ROC curves for equipment Level BBN 

model  

4.4. Comparison of Diagnosis Accuracy for Equipment 

vs. Model Level BBN Models (Step-4) 

The diagnosis accuracy from equipment and module level 

BBNs are presented in Figure 18. The accuracy is computed 
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as an average of reliability and precision for each BBN 

model. It shows that module level BBN has almost overall 

99.7% prediction accuracy in comparison to 54% for 

equipment level model. The gain obtained in diagnosis with 

module level BBNs is 45.7% that is significant and can help 

in reducing unscheduled equipment breakdowns. The likely 

reason for misdiagnosis by equipment level BBN is the 

commonality in failures between different modules that add 

confusion. Hence, it's evident to get accuracy over 

equipment level BBNs when failures-causes diagnosis are 

modeled at module levels. 

  

Figure 18 - Gain in prediction accuracy for module level 

BBNs over equipment level 

5. DISCUSSION AND PERSPECTIVES 

Above results advocate the hypothesis that misdiagnosis is 

the reasons for increased unscheduled breakdowns. It is due 

to the fact that existing failure diagnosis approaches model 

equipment as a single unit and use FDC sensor data. These 

approaches also make an assumption that product quality 

drifts are due to equipment failures, but in actual practice, 

the causes can equally be traced to maintenance, product or 

process. In the SI, equipment are composed of multiple 

modules that share symptoms, failures and causes. Besides 

this fact, the variability of sensor data could easily trigger a 

misdiagnosis and result in unstable model.  

In the proposed methodology, we first modeled the failure 

modes against product drifts as a function of symptoms. It is 

the first step towards reducing unscheduled breakdowns. 

Then failure and cause diagnosis is modeled at module 

level. An equipment level BBN model is also learned in the 

same way and is found to be less accurate in comparison 

with the module level BBNs. It provides clear evidence that 

failure-cause diagnosis must be modeled at module level 

and produces more accurate results when used with data 

other than FDC in high-mix  low-volume production lines. 

The BBN models, developed in this paper as a proof of 

concept, are static in nature; however, real advantage lies in 

transforming these models into dynamic BBNs. The 

developed BBN models can also be used with FDC sensors 

data as complimentary indicators when faced with a 

situation where BBN model for FM identification give equal 

probability to all failure modes (product, process, equipment 

and maintenance). Therefore, it is possible to extend this 

work in future. The cost of maintaining these models for a 

complete workshop and ultimately a production line could 

be very high. Therefore, we believe that generalization of 

these models can be made for similar type of equipment 

with common failure behaviors.  
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ABSTRACT 

The Semiconductor Industry (SI) is facing the challenge of 

high-mix low-volume production due to increasing diversity 

in customer demands. This has increased unscheduled 

equipment breakdowns followed by delays in diagnosis and 

ineffective maintenance actions that reduce the production 

capacities. At present, these challenges are addressed with 

mathematical approaches to optimize maintenance actions 

and their times of intervention. However, few studies take 

into account the ineffectiveness of maintenance actions, 

which is the key source for subsequent breakdowns. Hence, 

in this paper, we present a methodology to detect poorly 

executed maintenance actions and predict their 

consequences on the product quality and/or equipment as 

the feedback for technicians. It is based on the definition of 

maintenance objectives and criteria by experts to capture 

information on the extent to which the objective is fulfilled. 

Data collected from maintenance actions is then used to 

formulate Bayesian Network (BN) to model the causality 

between defined criteria and effectiveness of maintenance 

actions. This is further used in the respective FMECA 

defined for each equipment, to unify the maintenance 

knowledge. The key advantages from the proposed 

approach are (i) dynamic FMECA with unified and updated 

maintenance knowledge and (ii) real time feedback for 

technicians on poor maintenance actions.  

1. INTRODUCTION:  

The SI is characterized by fastest change in smallest period 

of time and has become a 300+ B$ industry in less than 60 

years (Stamford, 2012; Dale, 2012). The demand in SI is 

mainly driven by end-user markets (Ballhaus, Pagella, and 

Vogel, 2009); hence, increasing diversity in customer 

demands with short product life cycles has resulted into a 

high-mix low-volume production. It increases unscheduled 

equipment breakdowns followed by delays in diagnosis and 

ineffective maintenance actions that reduce production 

capacities. This fact is shown in Figure 1, where 

unscheduled equipment breakdown is plotted against 

product mix using data collected from a world reputed 

semiconductor manufacturer for 2013. The blue curve 

represents number of different products whereas red curve is 

unscheduled equipment breakdown duration, in second.  It 

can be seen that the variation of product mix has an 

important impact on production capacities; therefore, it is 

necessary to reduce variability of unscheduled breakdowns 

due to this fluctuation. 

 

Figure 1. Product mix vs unscheduled breakdown 

This complexity is treated in literature with mathematical 

approaches to optimize maintenance actions and their times 

of intervention. Vassilis and Christo (2013) used a Bayesian 
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classifier to recommend problem types based on historical 

case associated to specific event using sensor data. Multi-

agent based approaches are also used in maintenance to 

dynamically schedule the actions (Aissani, Beldjilali, and 

Trentesaux, 2009). Weber and Jouffe (2006); Weild, 

Madsen, and Israelson (2009); Yang and Lee (2012); and 

Efthymiou, Papakostas, Mourtzis, and Ghyryssolouris 

(2012) present an application of Bayesian network for 

dynamic condition monitoring and diagnostic in order to 

support condition based maintenance (CBM) in the complex 

SI and aircraft industries. However, none of these above 

approaches take into account the effectiveness of the 

maintenance actions performed by technicians that serve as 

key source for variability in production capacities. Medina-

Oliva and Weber (2013) proposed probabilistic relational 

model (PRM) with key performance indicators (KPIs) to 

monitor and report human effectiveness against 

maintenance strategies. The proposed approach, in this 

article, is different as we predict consequences of poorly 

executed maintenance actions as feedback to technicians, on 

product quality and equipment.  

In this paper, we introduce the notion of defined criteria for 

maintenance functions based on equipment and maintenance 

types by experts. These are updated in failure mode effect 

and criticality analysis (FMECA) followed by maintenance 

checklists. The responses collected from technicians, while 

executing maintenance actions, serve as the knowledge base 

to model the consequences due to ineffective actions. This 

proposed methodology is implemented in dielectric (DIEL) 

workshop at the world reputed semiconductor manufacturer. 

The data is used to develop Bayesian network (BN) with an 

unsupervised learning that models causality between criteria 

and effectiveness of maintenance actions. The key benefits 

of the proposed approach are (i) dynamic FMECA to unify 

the maintenance knowledge and (ii) real time feedback to 

technicians on poorly executed maintenance actions. It also 

helps to renew experts' knowledge on equipment against 

increasing unscheduled due to fluctuations in product mix. 

This approach is not limited to SI and can be applied to any 

production line facing the challenges of reduced production 

capacities due to unscheduled equipment breakdowns. 

This paper is divided in 3 sections. Section 2 presents a 

literature review on existing approaches and methods. The 

proposed methodology based on BN, case study and results 

are presented in section3. We conclude this article with the 

discussion and perspectives in section 4. 

2. LITERATURE REVIEW 

The review has been performed across three axes: (i) 

maintenance strategies, (ii) maintenance actions predictions 

and (iii) approaches to take into account the human factor 

during maintenance in the SI and complex production lines. 

2.1. Design and Manufacturing Operations in SI 

The design and manufacturing process of integrated circuit 

(IC) chip is presented in Figure 2 (Shahzad, Hubac, Siadat, 

and Tollenaere, 2011). In this process, customers request 

new products that go through a complex design using CAD 

tools and design libraries (reusable blocks of circuits). These 

are simulated to assess their compliance with technology 

specifications. Upon validation, design moves to the mask 

preparation step. These masks are glass plates with an 

opaque layer of chrome carrying target chip layout. They 

transfer product layout on silicon wafer through repetitive 

sequence of deposition, lithography, etching and polishing 

steps. The next step is called frontend manufacturing where 

thousands of transistors are fabricated on the silicon surface 

along with a network of interconnected wires to form an IC 

chip. The silicon wafers are then tested, cut, packaged and 

shipped to customers a.k.a. backend process. This complex 

manufacturing process consists of approximately 200+ 

operations, 1100+ steps and 8 weeks of processing time,. 

The cost of a production facility in SI with 600 production 

and metrology equipments is around 3.5 billion US dollars 

(Shahzad, Tollenaere, Hubac, and Siadat, 2011). The 

production capacity of a SI production line is measured in 

wafers manufactured per week. The case study performed in 

this paper is completed in 12 inches wafer production 

facility.  

 

Figure 2. Design and manufacturing process for an IC chip 

2.2. Maintenance Strategies 

In the SI environment, maintenance is a key issue to keep 

such a high level of production and control capacity. The 

common maintenance practices in the manufacturing 

domain are corrective (run to failure), preventive (time and 

usage based) and predictive maintenances (Mili, Bassetto, 

Siadat, and Tollenaere, 2009). The corrective maintenance 

strategy is not suitable for the semiconductor manufacturing 

because it destabilize the production system; however, till 

now, the SI has relied on preventive maintenance (PM) as 

an alternative maintenance strategy to optimize capacities 

while ensuring product quality. The key disadvantages of 

PM are over and under maintenance. It decreases capacities 

due to maintenance when equipment is still in good health 

Gate Length (L)Gate Width (W)

Source Drain

is
o

la
ti

o
n

Gate

Drain Source

NPN Transistor

Dielectric

PNP Transistor

Gate

Metal Lines 1

Metal Lines 2-5

Metal Lines 6-7

Passivation Layer

Via 1-4

Via 5-6

European Conference of the Prognostics and Health Management Society 2014

482



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014 

3 

and adds additional costs due to delayed maintenance. 

Besides these strategies, a new strategy known as predictive 

maintenance (PdM) is proposed, where maintenance actions 

are triggered depending on the condition of the equipment 

and in anticipation (prediction) of potential failure before 

they occur. This strategy has evolved in two forms as (i) 

non-predictive condition based maintenance (CBM) and (ii) 

predictive CBM. The non-predictive CBM is similar to the 

PM strategy but with the difference that maintenance 

decisions are taken based on surpassing thresholds on the 

key parameters used to monitor the health of equipment, 

instead of time based or usage based approach (Susto, 

Pampuri, Schirru, and Beghi, 2012); (Krishnamurthy, Adler, 

Buonadonna, Chhabra, Flanigan, Kushalnagar, Nachman, 

and Yarvis, 2005). The predictive CBM is far superior to 

PM and non-predictive CBM. It is because the maintenance 

actions are based on continuously monitoring equipment 

health followed by failure predictions and pre-failure 

interventions. 

At present, unscheduled breakdowns are addressed with the 

mathematical approaches to optimize maintenance actions 

and their intervention time. Vassilis et al. (2013) employed 

Bayesian classifier to recommend problem types based on 

historical cases associated to specific event with sensor data. 

Weber and Jouffe (2006); Weild et al. (2009); Yang and Lee 

(2012); Efthymiou et al. (2012); and Bouaziz, Zamai, and 

Hubac (2012) used BN for dynamic condition monitoring 

and diagnostic to support condition based maintenance 

(CBM) in complex (e.g. SI and aircraft) industries. Mili et 

al. (2009) implemented dynamic FMECA based method to 

unify maintenance actions and prevent risks with qualitative 

information. Hubac and Zamai (2013) presented dynamic 

adjustment of maintenance policies based on CBM strategy 

approach allow to dynamically control and quantify 

equipment reliability in high mix flow industry. This shows 

that CBM is the dominant maintenance strategy being used 

to optimize maintenance actions. The mathematical and BN 

approaches are also found to be used for modeling purposes. 

However, none of these approaches take into account the 

effectiveness of maintenance actions that has emerged as a 

source of variability in dynamic environment like SI.  

2.3. Maintenance Actions Predictions 

In the past, it was very difficult to predict equipment failures 

due to the unavailability of fault detection and classification 

(FDC) and maintenance data; however, today its availability 

with artificial intelligence (AI) techniques has enabled the 

failure prediction. There are several PdM based 

maintenance approaches proposed in recent papers for the 

SI e.g. classification methods (Baly & Hajj, 2012), filtering 

and prediction approaches (Susto, Beghi, and DeLuca, 

2011); (Schirru, Pampuri, and DeNicolao, 2010) and 

regression methods (Hsieh, Cheng, Huang, Wang, and 

Wang, 2013); (Susto, Pampurin, Schirru, and Beghi, 2012). 

An innovative approach, integrated failure prediction 

(Susto, McLoone, Pagano, Schirru, Pampuri, and Beghi, 

2013), is presented with the hypothesis that the data 

collected is based on full maintenance cycle runs in 

compliance with runs to failure policy. Here, the objective is 

to capture the evolution of failures from initial safe 

conditions. However, this approach does not take into 

account the influence of parent-child relation between 

different equipment modules and suggest to model failure 

evolution for each module. It is also adapted from support 

vector machine (SVM) technique, a very well know 

classification method in machine learning (ML). Not all the 

equipment monitoring parameters are relevant in predicting 

a specific failure; hence, different approaches are used for 

the combination of relevant parameters e.g. discriminated 

analysis to get linear combination of parameters (Gertsbakh, 

1977). Similarly, a linear combination function of 

parameters with the maximum contribution to the tool 

condition can also be found with principal component 

analysis (PCA) or singular value decomposition (Stamatis, 

Mathioudakis, and Papailiou, 1992). The predictive CBM 

needs accurate model for equipment failure predictions. The 

most commonly used techniques are AI and ML based 

predictive CBM with different types of data; however, none 

of them use effectiveness of maintenance actions as criteria 

for prediction. 

2.4. Human Factor in Maintenance 

This paper highlights the importance of such factors to 

implement an effective predictive maintenance process. 

There are few studies that use effectiveness of actions in the 

equipment maintenance. Trucco, Cagno, Ruggeri, and 

Grande (2007) focus more on risk analysis associated to 

human and organizational factors and in their study used a 

fault tree analysis (FTA) with BN model. In this framework, 

Léger, Weber, Levrat, Duval, Farret, and Iung (2009) also 

proposed a methodology to integrate operator and human 

actions for probabilistic risk assessment. Medina-Oliva et al. 

(2013) takes into account the notion of human effectiveness. 

They propose a probabilistic relational model (PRM) to 

integrate maintenance system interactions with enabling 

system, and impact of maintenance strategies and human 

effectiveness on production line performance. 

Our approach is different as we focus on detecting poorly 

executed maintenance actions and predicting their 

consequences on the product quality and equipment, as 

feedback to technicians. It provides an opportunity for 

continuous improvement. This approach also offers dynamic 

unification of maintenance knowledge as well as a source to 

renew knowledge of maintenance experts. The BN is taken 

as the target modeling method due to its structural ability for 

causality. This study is based on hypothesis that ineffective 

maintenance actions is one of the reason for decreasing 

unscheduled equipment breakdowns in the SI, challenged 

with high-mix low-volume production. The next section will 

detail our proposal approach. 
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3. PROPOSED METHODOLOGY 

The proposed 3-step methodology is presented in Figure 3 

below. In this methodology, step-1 corresponds to the 

criteria and consequence definition for maintenance actions, 

depending on the effectiveness of human by maintenance 

experts. The checklists for the target equipment and 

maintenance type are modified to capture information on the 

extent to which the associated objectives are fulfilled. The 

initial BN between maintenance functions, objectives, 

criteria, failure modes, effects and causes is developed using 

experts' knowledge from FMECA. Moreover, updated 

checklists are deployed on the production line to capture 

qualitative and quantitative information as evidence to 

evaluate the believed causality by experts. The BN is then 

learned from this collected data with supervised learning in 

step-2. This is compared with the knowledge based BN and 

any structural changes found are fed to step-1 for knowledge 

unification and renewal in the FMECA. The learned BN is 

continuously updated with the new evidence collected from 

the production line and is fully capable to detect and notify 

not only the effect of product mix, but also feedback to the 

technicians as potential consequences. 

  
Figure 3. Proposed three-step methodology 

3.1. Including Human Factors with Proposed Extension 

in FMECA (Step-1) 

The FMEA approach was initially conceived by US military 

(MIL-18372) to find failure modes of system components, 

evaluate effects and propose counter measures. The formal 

description of FMEA is given by the New York Academy of 

Sciences (Coutinho, 1964). This was further extended as the 

FMECA by NASA to ensure desired reliability of the space 

systems (Jordan, 1972). There are different diversifications 

of this approach (Reifer, 1979) as software failure mode and 

effects analysis (SWFMEA), design FMEA, process FMEA 

and system or concept FMEA etc. The traditional 5-step 

FMECA process is presented in Figure 4, below. 

 

Figure 4. Proposed FMECA with objectives and criteria 

It starts with clear description of the scope e.g. maintenance 

type (preventive maintenance) followed by important 

functions identification for further analysis (step-1) by 

experts. The potential failure modes, effects and causes are 

listed along with occurrences, severity and detection (step-

2). We propose the inclusion of objectives and criteria 

definition for each identified function and inclusion of 

criteria levels while calculating risk priority number (RPN). 

The severity, occurrence and detection are multiplied 

followed by division with criteria level for RPN (step-3). It 

is because RPN decreases if a criterion linked to the defined 

objectives is fulfilled at highest criteria level, a.k.a. 

objective fulfillment index (OFI). The RPN is assigned with 

threshold that triggers the priority to select failure modes for 

operational fixes (step4). The results are finally evaluated 

and reviewed (step-5). This 5-step process is repeated until 

RPN number falls below the threshold. 

The proposed approach is implemented and tested in one of 

the eight workshops (dielectric DIEL) in SI production line. 

In this production area, a thin film of electrical insulation is 

deposited on the wafers. These layers serve to insulate 

different zones with transistors and interconnections. This 

deposition is completed with chemical vapor deposition 

(CVD) process using plasma technology at temperature < 

400°C to avoid structural changes in previous layers. This 

workshop is one of the critical workshops in SI production 

line and is often turn into bottleneck with reduced 

production capacities and increasing unscheduled equipment 

breakdowns. Hence, the role of effective maintenance 

actions becomes critical. The DIEL equipments use multiple 

recipes and chemical gases due to high-mix low-volume 

production that destabilizes the equipment. The FMECA 

analysis is done on all equipment by experts for each type of 
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Figure 5. FMECA analysis on PM procedure to clean process chamber 

 

maintenance. In this case study, we have selected PM-

FMECA in DIEL workshop to clean process chamber, for 

the purpose of demonstration. Each FMECA is then 

translated into checklist that comprises a sequence of 

maintenance actions. The key functions in this PM are 

equipment and personal security, ventilation of the process 

chamber, dismantling foreline, leak test with helium etc. We 

present FMECA analysis for PM procedure to clean process 

chamber (Figure 5). In this analyses, we presented only 

three functions (i) personal and equipment security (Figure 

5a), (ii) HE (helium) purge (Figure 5b) and (iii) process 

chamber ventilation due to space limitations (Figure 5c). 

However, the severity, occurrence and detection values have 

been changed due to confidentiality.  

The objectives (functions), criteria definition and criteria 

levels are the columns added in addition to traditional 

FMECA columns, by the experts. The defined criteria levels 

(1 to 3) are the objective fulfillment indices (OFI) which are 

judged and responded by technicians during PM. The 

normalized RPN*
1
is computed with and without OFI that 

clearly reflects the decrease in the associated risk due to 

human actions effectiveness (Figure 6). In this figure, 

failure modes are plotted along x-axis and normalized RPN* 

on y-axis for confidentiality reason. The three functions in 

FMECA analysis are associated to an objective, whereas 

each objective is linked with multiple fulfillment criteria 

and levels to capture the effectiveness of maintenance 

actions. The criteria are defined at chamber or equipment 

levels, where applicable. It can be observed that, for the PM 

procedure under discussion, detection is already optimized 

with strong preventive controls where risk values, range 

from 1-2 and 1-4, respectively, for functions 2 and 3 (see 

Figure 6).  

However, these are quite high for function 1. It is because, 

this function depends on the effectiveness of maintenance 

actions performed by technicians. The proposed approach 

enables us to reduce the risk associated with human factor 

for all maintenance action in a given maintenance 

                                                           
* The RPN values are normalized for confidentiality purposes. 

(a) 

(b) 

(c) 
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procedure. The benchmarked target RPN* with OFI are 

modest, whereas effective RPN* with OFI actually achieved 

in the case study are highly significant and result in 

optimizing the production capacities due to unscheduled 

equipment breakdowns (see section 4). 

 

Figure 6. Comparison of normalized RPN* and RPN*/OFI 

FMECA is very effective in collecting experts' knowledge 

and risk quantification; however, its static nature cannot 

predict in real time the failure modes and their effects on the 

equipment and products. For this reason, Bayesian network 

modeling approach is selected as the target method due to 

its inherent abilities to model causal relations between 

variables from FMECA (Garcia & Gilbert, 2011). The 

effectiveness of FMECA structure to build causal nets like 

Bayesian network is also demonstrated by (Lee, 2001) and 

(Weber, Suhner, and Iung, 2001). The BN is an artificial 

intelligence (AI) technique for probabilistic reasoning under 

uncertainty (Kjærulff & Madsen, 2006); (Jensen and 

Nielsen, 2007); (Pourret, Naïm, and Marcot, 2008). 

Bayesian networks are institutive approach for modeling 

human like decision-making problem with probabilistic 

reasoning under uncertainty. The Bayesian network (graph) 

comprises of the nodes (random variables) and directed 

edges (links, arcs) between nodes. The directed edges 

represent the influence of nodes in the network.  

The conditional probabilities computed from the input data 

corresponds to the quantitative part of the Bayesian model. 

The structure of the Bayesian network (graph) is the 

qualitative model that represents causal dependence and 

inter-dependence between variables. The name “Bayesian” 

is conceived from Mr. Thomas Bayes’ surname (Peter, 

2012), who proposed formulae to compute conditional 

probabilities (a.k.a. Bayes theorem) (equation 3.1). The 

formalism is read as probability of an event A knowing the 

evidence on the occurrence of event C and is also referred as 

“Bayes condition”. 
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In the BN, prior probabilities are provided in the absence of 

evidence, whereas conditional probabilities are dynamically 

updated with new information as input to a network, a.k.a. a 

posteriori probabilities. For n variables, 2n-1 joint 

probabilities result in huge numbers; however, resulting 

Bayesian network encodes knowledge so that key and less 

important information is easily identified (Pearl, 2000). The 

Bayesian network is developed with minimum computations 

and is easy to understand (Kjærulff & Madsen, 2006). It is 

an efficient method, because of inherent assumption of 

interdependence about variables; hence, it requires expert 

intervention for the definition of the structure (directed 

edges). 

The advantages of using Bayesian network is its inherent 

ability to deduce the inter-causal reasoning (Kjærulff & 

Madsen, 2006). The Bayesian network is gaining popularity 

due to its graphical structure with probabilistic networks to 

express causal interactions and direct/indirect relations. The 

notion of causality empowers Bayesian network with the 

human like reasoning under uncertainty. The ability of the 

Bayesian networks to handle causal independence, results in 

efficient inference even with large number of variables. 

They have superiority over rule based systems (RBS) due to 

their capabilities for deductive, abductive and inter causal 

reasoning. The Bayesian network is an interesting choice for 

statistical modeling due to its efficient learning and 

inference algorithms (Zou & Bhanu, 2005). 

 

Figure 7. Experts' knowledge based BN model 

Initial BN model is developed based on experts' knowledge 

from FMECA file. The data collected to build initial BN, 

presented in Figure 7, are three principle PM objectives, the 

criteria to fill each objective, failure modes and their effects 

on equipment and products. As per proposed methodology 

(Figure 2), this static knowledge based BN structure will be 

compared with the learned BN model using data collected 

from the production line maintenance operations. The expert 

knowledge based BN model is divided into four classes of 

nodes with different colors as maintenance objectives (red), 

criteria (orange), failure modes (green) and effects 

(SandyBrown). It is based on the a priori probabilities which 

are computed from severity, occurrence and detection 

values, and the prior from experts. In this BN model, solid 

nodes are discrete variables whereas dotted nodes e.g. 
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chamber temperature, SCCM (see figure 6-b) and pressure 

are continuous variables which are discretized. The 

direction of the associations is drawn as per knowledge from 

FMECA. This BN is implemented using Bayesialab 5.0 and 

for demonstration purposes the chamber pressure node is set 

as the target variable for interactive inference, as presented 

in Figure 8. This figure contains an example to exploit the 

experts knowledge modeled as a static BN model. 

The Figure 8a predicts potential failure modes for a given 

set of values for objective and criteria nodes. It shows that, 

in the presence of backstreaming, pressure <7.5 Torrs, 

temperature <80, and SCCM between 1500 and 2001, the 

likely failure modes are cold chamber, backstreaming error 

and RF errors. Similarly, figure 8b presents that, for the 

same criteria and objective settings, likely effects are 

defectivity, abort and high deposition rate. The experts can 

interactively change the probabilities to analyze the 

knowledge discovery by this static BN model. Moreover, 

this model is based on initial experts judgment and do not 

take into account the effect of changing equipment 

behaviors due to changing high-mix of products. In next 

section, we learn this BN from the data collected across the 

production line in DIEL workshop. 

 
(a) 

 
(b) 

 

Figure 8. Experts' knowledge based BN model 

3.2. BN Model for Effectiveness of Maintenance Actions 

and Analyses Results (Step-2) 

The PM checklist modified form the revised FMECA 

(Figure 6). It is approved and deployed on the production 

line as a pilot case study for four months prior. In this 

period, revised PM checklist is executed 223 times on 15 

equipments in the DIEL workshop. The historic data of 

maintenance checklist executions, equipment states and 

parameters such as RF, pressure and chamber temperature, 

and product measurements like defectivity and deposition 

rate are collected to learn new model. In order to learn new 

BN structure using these data, three unsupervised learning 

algorithms (EQ, Taboo and Taboo order) were used working 

on a set of heuristics to reduce the search space. The 

objective function used in these algorithms is the minimum 

description length (MDL). It takes into account 

"correlation" plus structural complexity of the causal 

network and establishes "automatic significance thresholds" 

(Rissanen, 1978); (Bouckaert, 1993). These algorithms 

result not only in the network, but also in the associated 

conditional probabilities. The MDL score is used as a 

criteria to select the lowest score network.  

The equivalence class (EQ) is an efficient algorithm for 

structural learning as it significantly reduces search space. It 

is based on the assumption that two BN structures are said 

to be equivalent if the set of distributions that can be 

represented with one of those structures are identical to the 

set of distributions that can be represented with the other 

(Chickering, 2002); (Munteanu & Bendou, 2001). The 

Taboo search algorithm is useful in refining the network 

based on a given structure; hence, it gives better results 

when initial structure is developed with experts’ knowledge 

or using some other unsupervised learning algorithm. This 

algorithm also has the capability to learn network from 

scratch but in this case, it is less efficient than EQ. 

Therefore, we use it in combination with EQ where EQ 

provides an initial structure followed by Taboo to improve it 

based on the MDL score. Taboo order (Teyssier & Koller, 

2005) is an exhaustive search algorithm that offers more 

accurate results, but takes more time than simple Taboo 

search. This method searches the space in the order of 

Bayesian network nodes by choosing parents of a node 

between nodes appearing before it, in the considered order. 

The learned network serves as a reference network and is 

cross validated using 50 randomly generated datasets, based 

on the distribution of responses collected through survey 

from employees with added noise. As a result, we retain the 

network with best fit. The threshold in our case is 75%. The 

learned BN along with its contingency fit are presented in 

Figures 9a and 9b. The learned BN using unsupervised 

learning in Bayesialab is presented below in Figure 9. The 

dataset is divided into randomly selected 75 and 25% rows 

for learning and testing. The contingency fit is observed to 
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be 77 and 72%, respectively. The threshold of 75% is used 

as a criteria to accept the model. 

 
             (a) 

 
          (b) 

Figure 9. BN learned from Data using unsupervised learning 

3.3. Knowledge Discovery: (Step-3) 

The structural difference in experts' knowledge (Figure 7) 

and learned (Figure 9a) BN models is presented below in 

Figure 10. The learned BN model shows new knowledge as 

new arcs from potential failures to causes. It must be noticed 

that the checklist flow execution error/failure in the BN 

model learned from production line data results in chamber 

and equipment contaminations.  The plasma and backstream 

error are found to be correlated with defectivity. It is 

important to note that while learning BN model from data, 

certain arcs were forbidden. e.g. arcs from criteria, failure 

modes and effects are not allowed to loopback towards 

objectives. Similarly, the arcs from failure modes and 

effects towards criteria are also not allowed. The color of 

each node in this new BN model corresponds to its 

respective class (objectives, criteria, failure modes, effects). 

 

Figure 10. Structural difference in BN models and 

knowledge discovery 

 

(a) 

 

(b) 

Figure 11. Learned BN model for knowledge exploitation 

and feedback to technicians 
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The newly learned BN model based on data collected from 

production line is set to similar test settings as presented in 

Figures 8a and 8b, above. Figure 11a predicts plasma error, 

backstreaming, cold chamber, MFC and RFC failures 

against backstreaming and cold chamber as identified by 

static BN model for the same objective and criteria settings. 

Figure 11b predicts defectivity, abort, flow setpoint issue 

and high deposition rate as potential effects against abort, 

defectivity, and high deposition rate. The new knowledge 

generated from this learned BN models (Figure 10) serves 

dual purpose as it provides continuous renewal of experts' 

knowledge and updates FMECA. This BN model also 

generates feedback with predictions on likely failure modes 

and effects based on the level of fulfillment of defined 

criteria. 

4. CONCLUSIONS, DISCUSSION AND PERSPECTIVES 

The new BN model was deployed on the production line to 

provide feedback to technicians during maintenance, on 

potential failure modes and effects, if the expected criteria 

level is not reached. The data collected on failure 

occurrence and normalized RPN* upon subsequent 

deployment of this methodology, over a four months 

experiment, is presented in Figures 12a and 12b. RPN* has 

greatly decreased because the said BN model has improved 

not only detection, but also reduced failing actions 

occurrences by providing feedback to technicians. 

 (a) 

 
(b) 

 Figure 12. Impact of proposed BN based methodology on 

risk and failure occurrences 

The proposed methodology demonstrates that effectiveness 

of maintenance actions by technicians has a strong impact 

on the subsequent risk, failure occurrences and ultimately on 

the equipment unscheduled breakdowns. This study has also 

concluded that providing feedback to maintenance personals 

on the consequences of their actions improves failure 

occurrences that have direct impact on the production 

capacities. It also highlights the need to renew experts’ 

knowledge with high-mix low-volume impacting the 

equipment behaviors. 

There remain some open ended issues e.g. what is the 

learning time or excursion frequency, before the BN model 

predictions and structural changes are used to renew experts 

and FMECA knowledge? Similarly, it should be interesting 

to introduce a multi-agent based technology to share the 

knowledge, captured through BN model on one equipment, 

for other similar equipments in the same workshop. We still 

need to find an answer that the proposed BN model should 

be developed at an equipment level or one generic model for 

all the equipments in a production line would be efficient. 

These questions are presently investigated by the authors. 
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ABSTRACT 

This work focuses on the estimation of the Remaining 

Useful Life (RUL) of aluminum electrolytic capacitors used 

in electrical automotive drives under variable and non-

stationary operative conditions. The main cause of the 

capacitor degradation is the vaporization of the electrolyte 

due to a chemical reaction. Capacitor degradation can be 

monitored by observing the capacitor Equivalent Series 

Resistance (ESR) whose measurement, however, is heavily 

influenced by the measurement temperature, which, under 

non-stationary operative conditions, is continuously 

changing. In this work, we introduce a novel degradation 

indicator which is independent from the measurement 

temperature and, thus, can be used for real applications 

under variable operative conditions. The indicator is defined 

by the ratio between the ESR measured on the degraded 

capacitor and the ESR expected value on a new capacitor at 

the present operational temperature. The definition of this 

indicator has required the investigation of the relationship 

between ESR and temperature on a new capacitor by means 

of experimental laboratory tests. The prediction of the 

capacitor degradation and its failure time has been 

performed by resorting to a Particle Filtering-based 

prognostic technique. 

1. INTRODUCTION 

The aluminium electrolytic capacitor is one of the most 

critical components of electric systems, leading to almost 

30% of the total number of failures in such systems 

(Wolfgang, 2007). Its main failure mode is caused by the 

vaporization of the contained electrolyte, which involves a 

loss of functionality, and produces a reduction of the 

capacity and an increase of the Equivalent Series Resistance 

(ESR) of the component: for this reason, the ESR is 

typically used as degradation indicator. This degradation 

mechanism is driven by the temperature experienced by the 

component: higher the temperature, faster the degradation. 

Generally the failure threshold of the capacitor is defined as 

the double of the initial ESR value, and a physical model of 

the ESR evolution has been proposed for capacitors working 

at constant temperature (Perisse et al., 2006, Abdennadher et 

al., 2010, Gasperi, 1996).  

In this work, we consider capacitors used in Fully Electrical 

Vehicles (FEVs), which are characterized by continuously 

changing operative conditions, also of temperature, so that 

the measured value of the capacitor ESR is continuously 

changing. Thus, we propose a new degradation index for the 

electrolytic capacitor, which is based on the ratio between 

the ESR measured on the degraded capacitor and the ESR 

expected value on a new capacitor at the present operational 

temperature. Its computation has required to perform a 

series of laboratory experiments for the identification of the 

relationship between the ESR and the temperature in a new 

capacitor. The main advantage of this new degradation 

index is that it is independent from the measurement 

temperature and, thus, can be used for real applications 

under variable operative conditions. The physical 

degradation model and the novel proposed degradation 

index have been exploited for the prediction of the RUL of a 

capacitor under non-stationary operative conditions by 

means of a particle filtering algorithm.   

Marco Rigamonti et al. This is an open-access article distributed under 

the terms of the Creative Commons Attribution 3.0 United States 
License, which permits unrestricted use, distribution, and reproduction 

in any medium, provided the original author and source are credited. 
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The remaining part of the report is organized as follows: in 

Section 2 the capacitor degradation model is presented; 

Section 3 shows the particle filtering model for the RUL 

estimation; in Section 4, the experimental test setup for the 

parameters estimation and the obtained results are 

presented; in Section 5 the developed methodology is 

applied to a case study; finally, in Section 6 some 

conclusions and remarks are drawn.   

2. CAPACITOR DEGRADATION MODEL 

The aluminum electrolytic capacitor is one of the most 

critical components of electric systems: thus, its failure 

modes and degradation mechanisms have been deeply 

investigated in literature (Perisse et al., 2006, Abdennadher 

et al., 2010, Ma & Wang, 2005, Gasperi, 1996, Celaya et al., 

2011). In particular, in Abdennadher et al. (2010) a physical 

model describing the evolution of the health state of the 

component is presented. 

2.1. Degradation indicator 

The degradation of the capacitor is mainly due to the 

chemical reactions occurring inside the component, which 

cause the vaporization of the contained electrolyte, leading 

to a loss of functionality. Component degradation can be 

identified by monitoring the ESR: higher the degradation, 

higher the measured ESR value.  

2.2. ESR evolution equation  

According to Abdennadher et al. (2010), the ESR for a 

capacitor aging at constant temperature T
ag

 is given by: 

                                    
                   (1) 

where ESR0(T
ag

) represents the initial ESR value of the 

capacitor at temperature T
ag

, t the age of the capacitor and 

C(T
ag

) a temperature-dependent coefficient which defines 

the degradation speed of the capacitor. In particular, the 

temperature coefficient C(T
ag

) can be expressed as: 

                     
   

                  
  
 

 
          

         
        (2) 

where Lifenom represents the nominal life of the capacitor 

aged at the constant nominal temperature (Tnom), and the 

temperatures are expressed in Kelvin degrees. A detailed 

description of the semi-empirical procedure adopted for the 

definition of the macro-level physical model of Eqs. (1) and 

(2) can be found in Perisse et al. (2006). 

It has to be emphasized that the measured ESR value 

depends on the measurement temperature: this means that if 

we measure the ESR value on the same degraded capacitor 

at a temperature T
me

 different from that at which the 

capacitor is degrading (T
ag

), the measured value of ESR will 

be different. The relationship between the initial ESR for a 

new capacitor and  the ESR measurements temperature T
me

 

for a new capacitor is (Abdennadher et al., 2010): 

                               
            

 ⁄        (3) 

where ,  and   are parameters characteristics of the 

capacitor. 

3. A PF APPROACH FOR RUL ESTIMATION  

Unfortunately, the relationship defining the influence of the  

measurement temperature T
me

 on the ESR for a degraded 

capacitor is unknown. Thus, since the FEV capacitor 

typically works at variable temperatures, the ESR cannot be 

directly used as degradation indicator for a capacitor 

experiencing different operational conditions such as those 

of FEV. For this reason, in order to define a degradation 

indicator which is independent from the temperature, in the 

present work we introduce a new degradation indicator 

defined by the ratio between the ESR measured at 

temperature T
me

 and its initial value at the same temperature 

T
me

: 

                                              
   ⁄         (4) 

where ESR0(T
me

) is computed by using Eq. (3). Notice that, 

according to this new degradation indicator, if we consider a 

degraded capacitor and we measure its ESR value at 

different temperature, we obtain exactly the same ESRnorm 

value, which is independent from the temperature of the 

measurement and it expressed as a percentage. The failure 

threshold, i.e. a value of ESRnorm such that if it is exceeded 

the capacitor is considered failed, is set equal to ESRnorm = 

200%. The rationale behind this choice is that the failure 

threshold for any capacitor is typically defined as the double 

of its initial ESR value (Venet et al., 1993). The new 

degradation indicator allows overcoming the lack of 

knowledge on the relationship between the temperature and 

the measured ESR for a degraded capacitor. Thus, it is now 

possible to represent the degradation process as a first order 

Markov Process between time steps tk-1 and tk; the new 

degradation equation is, then, defined as: 

                                  
      

  
              (5) 

where     
  

 represents the aging temperature at time tk-1 and 

k-1 models the process noise.  

Eq. (5) represents the degradation state evolution and is 

independent from the measurement temperature T
me

. There 

is only a dependence from the temperature T
ag

 experienced 

by the capacitor in the coefficient C(T
ag

) defining the speed 

of degradation, which can be computed by using Eq. (2).  

The equation linking the measured ESR and ESRnorm is: 
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                (    

 
  
  

 )           (6) 

where   
   represents the measurement temperature at time 

tk and k  represents the measurement noise.  

Figure 1 sketches the PF approach to prognostics based on 

the following three steps: 

1. the estimation of the equipment degradation state at the 

present time based on a sequential Monte Carlo method; 

the state of the system is defined by the ESRnorm value. 

The PF approach requires the definition of a process 

equation, which in this case is given by Eq. (5), and a 

measurement equation, which is given by Eq.(6) 

2. the prediction of the future evolution of the degradation 

state by Monte Carlo simulation 

3. the computation of the equipment RUL.  

 
Figure 1. Sketch of the PF approach to fault prognostics 

 

More details on the application of the PF approach to 

prognostics can be found in Baraldi et al., (2013).  

Notice that we resort to a PF instead that to a classic 

Kalman Filter framework because in Eq. (5) we cannot 

express the noise as a Gaussian additive term. In practice, 

the Gaussian noise, to which the aging temperature T
ag

 is 

subject, affects the aging coefficient C(T
ag

) (Eq. (2)) and, 

then, Eq. (5), thus becoming a non Gaussian additive term. 

4. PARAMETER ESTIMATION 

According to the Particle Filtering model described in 

Section 3 and used for the RUL prediction, we need the 

relationship between the initial ESR and the temperature for 

a new capacitor described by Eq. (3). Since the parameters 

,  and  of Eq. (3) are characteristic of the particular type 

of capacitor, we have performed experimental tests in order 

to identify the ,  and  values for the considered 

capacitor. 

4.1. Experimental Design 

We considered a capacitor of the ALS30 series in pristine 

conditions. ESR measurements have been taken using a 

FLUKE PM6306 RLC meter directly connected to the 

capacitor in a Votsch Industrietechnik climatic chamber . 

The experimental test procedure has been based on the 

following three steps: 

 Setting of the desired temperature  

 Once the stationary conditions are reached in the 

chamber, the temperature is maintained for 20 minutes 

in order to allow the internal layers of the capacitor to 

heat up.  

 The ESR is measured at different frequencies, between 

10 kHz and 1 MHz.  

The procedure has been repeated at different temperatures in 

the range [12°C, 110°C], which is expected to be 

experienced by the FEV capacitor. The ESR measurements 

have been performed at steps of 15°C. 

4.2. Results 

The obtained experimental laboratory results are shown in 

Figure 2, where the ESR measurements performed on a new 

capacitor at different temperatures and frequencies are 

reported.  

 

 
Figure 2. Experimental curve describing the variation of the initial ESR value ESR0(T

me
), in Ohm, at different measurement 

frequencies 
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Notice that the ESR at a given temperature tends to increase 

when the frequency is increased from 10 kHz to 20 kHz, 

whereas further increasing of the frequency does not modify 

numerically the ESR measurements. Since the degradation 

index ESRnorm defined in Eq. (4) is based on the ratio 

between the measured value of ESR and its initial value at 

the corresponding temperature, the most advantageous 

choice would be the measurement frequency with the 

highest associated absolute values of the ESR, which in this 

case corresponds to the 20 kHz curve. The rationale behind 

this consideration is that if we assume the same 

measurement noise, then its influence would be lower for 

the largest absolute values of the ESR. 

Then, by resorting to an exponential regression method we 

have identified the following values for the experimental 

parameters  and 

=0.0817      =0.037     =30.682°C              (7) 

Notice that these values can be used for modelling the 

degradation of the tested capacitor (ALS30 Series 

Electrolytic capacitors from KEMET) and cannot be 

employed on different types of capacitors.

5. CASE STUDY 

In this Section, the application of the method described in 

Sections 3 and 4 to the degradation process of a capacitor 

used in a FEV is discussed. Since, at the present time, real 

ESR data collected on a degrading capacitor operating on a 

FEV are not available, the developed method has been 

applied to a numerically simulated capacitor life. Notice that 

laboratory experiments are being performed at CEIT 

facilities within the European Project HEMIS (www.hemis-

eu.org), whose objective is the development of Prognostics 

and Health Monitoring System (PHMS) for the most critical 

FEV components. The objective of the tests is to collect data 

describing the capacitor degradation process in 

environmental conditions similar to those of a FEV (Celaya 

et al., 2012).  

5.1. Simulation of the temperature profiles experienced 

by a FEV 

Since real data describing the temperature profile 

experienced by a capacitor in a FEV are currently not 

available, we have simulated possible temperature profiles. 

According to the suggestions of motor experts, we have 

considered that the temperature variations experienced by 

the capacitor during its life are mainly caused by the 

variation of the environmental external temperature. The  

temperature profile simulations are based on the following 

assumptions: 

 the FEV is operating 4000 hours in a year (1000 hours 

each season); 

 the seasonal mean temperatures experienced by the 

FEV capacitor depend from the season and are: 

Twinter=70°C, Tspring=85°C, Tsummer=95°C, Tautumn=80 °C; 

 in order to take into account temperature oscillations, 

the real temperature value experienced by the FEV is 

sampled from a Gaussian distribution with mean value 

equal to Twinter, Tspring, Tsummer, Tautumn depending on the 

season, and standard deviation equal to 2°C for all 

cases. 

 

Figure 3. Average Temperature Profile 

5.2. Simulation of a capacitor life 

According to the above assumptions, considering the 

ALS30 Series electrolytic capacitor, whose nominal life at 

the nominal aging temperature of 85 °C is reported to be of 

20000 hours, we have simulated a capacitor life which will 

be considered as the “real” degradation trajectory. In 

practice, starting from the initial value ESRnorm=100%, by 

using Eq. (5) and the simulated temperature profile we have 

numerically simulated the time evolution of the capacitor 

degradation (ESRnorm) until the failure time, i.e., according 

to Section 3, the time at which the ESR of the capacitor 

reaches the double of its initial value. In Eq. (5), the process 

noise ωk is due to the intrinsic uncertainty of the physical 

degradation process, and it is a normally distributed random 

variable with mean set equal to zero and standard deviation 

set equal to 2%Furthermore, we have simulated the values 

of 7 ESR and T
me

 measurements during the capacitor life 

(taken every 2500 hours, starting from t=3000 h to t=18000 

h). The measured ESR values have been obtained by 

applying Eq. (6) to the numerically simulated degradation 

indicator values ESRnorm, considering the measurement noise 

k as a normally distributed random variable with mean 

equal to zero and standard deviation equal to 0.02  The 

measurement temperature values T
me

 have been simulated 

by adding an artificial Gaussian noise (µ = 0°C; σ = 2°C) to 

the expected temperature profile shown in Figure 3. Figure 

4 shows the simulated values of the considered 7 ESR 

measurements. The obtained simulated capacitor life will be 

referred to as the “true” capacitor life, considering the 
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numerically simulated ESR measurements as the real 

available ESR measurements. 

 

 
Figure 4. Numerical simulation of the measured ESR value 

ESR(t,T
me

)  

5.3. Application of the method and results 

The prognostic method described in Section 3 has been 

applied to the simulated capacitor life of Section 5.2 

described by the 7 ESR and temperature measurements. The 

application of the PF method has been done with fixed 

number of particles equal to 1000; the process noise k and 

the measurement noise k have been sampled from Gaussian 

distributions characterized by (µ = 0%; σ = 2%) and (µ = 

0; σ = 0.02), respectively. The prognostic method 

provides a prediction of the RUL in the form of a 

probability density function. 

 

 

 

 

 

 

 

 

 

Figure 5. Evolution of the RUL prediction pdf according to the measurement number 
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In Figure 5, the real RUL of the component is represented 

by the solid line. Notice that the range of variability of the 

predicted RUL is clearly reducing from a large width at the 

first measurement (t=3000 h) to a narrow width at the last 

measurement (t=18000 h). This reduction of the RUL 

uncertainty is due to the acquired knowledge of the 

degradation provided by the ESR measurements, which 

allows updating the degradation probability distribution and 

leads to a more accurate assessment of the component 

degradation state. This can be clearly observed in Figure 5, 

where the evolution of the RUL pdf as time passes is shown. 

It is also interesting to notice in Figure 6 that the expected 

RUL value (dark solid line) remains close to the true RUL 

value (black dashed line), indicating the accuracy of the 

method, and that the true RUL value is always within the 

10
th

 and the 90
th
 percentiles of the distribution (light solid 

lines). It is worth noting that the predicted RUL is closer to 

the 10
th

 percentile than the 90
th

 percentile: this is due to the 

fact that the Gaussian measurement noise to which the aging 

temperature T
ag

 is subject causes a non-symmetric           

non-gaussian effect on the coefficient C(T
ag

) in Eq. (5). 

 

 

 

Figure 6 RUL prediction uncertainty representation 

6. CONCLUSION 

In this paper, we have addressed the problem of predicting 

the RUL of an aluminum electrolytic capacitor used in 

FEVs. Given the non-stationary operative conditions and the 

varying operational temperature experienced by capacitors 

in FEVs, we have proposed a new degradation index 

independent from temperature. The index is defined by the 

ratio between the ESR measured at temperature T
me

  and its 

initial value at the same temperature T
me

. In order to 

compute the proposed degradation index ESRnorm, 

experimental tests have been expressly designed and 

performed for the estimation of the parameters of the 

physical relationship between the temperature and the initial 

value of the ESR for a new capacitor. Resorting to the ESR 

physical evolution model, we have then applied a particle 

filtering framework to predict the capacitor RUL. The 

obtained results encourage a further development of the 

method in order to allow its application to the prediction of 

the RUL of a capacitor operating in FEVs. Once the 

proposed framework will be completely developed, we 

intend to compare its performance with respect to different 

machine learning techniques in order; finally, a sensitivity 

analysis will be performed for the complete characterization 

of the proposed method.    
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ABSTRACT

The paper presents a joint predictive maintenance and spare
parts provisioning policy for gradually deteriorating multi-
component systems with complex structure. The decision-
making process related to maintenance, spare parts ordering,
as well as inspections scheduling is based on both RUL pre-
diction and structural importance measure. Moreover, eco-
nomic dependency between components is studied and inte-
grated in decision rules. In addition, the impacts of the system
structure on components deterioration process are also inves-
tigated. This dependency may have a significant influence
on the RUL estimation of components. In order to evalu-
ate the performance of the proposed joint predictive policy,
a cost model is used. Finally, a numerical example of a 6-
component system is introduced to illustrate the use and the
advantages of the proposed joint maintenance and spare parts
provisioning policy.

1. INTRODUCTION

Maintenance involves preventive and corrective actions car-
ried out to retain a system or restore it to an operating con-
dition. Optimal maintenance strategies aim to provide opti-
mum system reliability/availability and safety performance at
lowest possible maintenance costs. In recent years, condi-
tion monitoring and prognostic information are new trends
being exploited for maintenance optimization. The use of
prognostic information is often dedicated to estimate/predict
the remaining useful life (RUL) that may be more advan-
tageous for making decisions related to maintenance, spare
parts ordering, as well as inspections scheduling. Several

Kim-Anh Nguyen et. al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

joint maintenance and spare parts inventory strategies using
RUL prediction have been introduced in the literature. How-
ever, they are applicable to a limited class of systems such as
mono-component systems (Elwany & Gebraeel, 2008; Boud-
har, Dahane, & Rezg, 2013; L. Wang, Chu, & Mao, 2008), se-
ries structures systems with identical components (W. Wang,
Pecht, & Liu, 2012; Van Horenbeek, Scarf, Cavalcante, &
Pintelon, n.d.; L. Wang, Chu, & Mao, 2009; Xie & Wang,
2008). Today, with the development of industrial manufac-
turing, the structures of systems become more and more com-
plex in inter-connections with a large number of different
components. The inter-connections could be a mixture of
well-known basic connections. The above problem remains
widely open.

To face with this issue, the aim of this paper is to propose
a joint predictive maintenance and spare parts provisioning
policy for gradually deteriorating multi-component systems
with complex structure. The decision-making associated with
maintenance, spare parts ordering, and inspections schedul-
ing is based on both components RUL and their correspond-
ing importance measure. In fact, RUL provides the informa-
tion about the future health of a component, while the struc-
tural importance measure gives a structural importance rank-
ing of a component in the system. Both information should
be taken into account in spare parts provisioning and mainte-
nance decision-making. Moreover, economic dependency be-
tween components is studied and integrated in decision rules.
In addition, the impacts of the system structure on compo-
nents deterioration process are also considered. This may
significantly influence on the components RUL estimation
(Nguyen, Do Van, & Grall, 2013a, 2013b). In order to eval-
uate the performance of the proposed policy, a cost model is
used. Furthermore, a simulation approach is developed to find
the optimal decision values of the system’s inspection time,

1
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of preventive maintenance and spare part ordering thresholds
corresponding to each component.

This paper is organized as follows. Section 2 is devoted to the
system description and deterioration modeling. The reliabil-
ity/RUL prediction of components and their structural impor-
tance are described and discussed. Section 3 focuses on the
description of inspection, maintenance, spare part ordering
operations and related costs. The proposed joint predictive
maintenance and spare parts provisioning policy is described
in Section 4. In order to evaluate the performance of the pro-
posed joint policy, a cost model is presented in Section 5.
Section 6 is devoted to illustrate the use and the advantages of
the proposed joint policy for 6-component system with com-
plex structure. Some numerical results are, in addition, dis-
cussed here. Finally, the last section presents the conclusions
drawn from this work.

2. SYSTEM DESCRIPTION AND PREDICTIVE RELIABIL-
ITY CALCULATION

2.1. Deterioration modeling framework

This paper considers a multi-component system whose com-
ponents are non-identical, inter-connected according to a com-
plex configuration which could be a mixture of several com-
mon basic connections (i.e. connection in series, in parallel,
in k-out-of-n), and deteriorate gradually as shown in Fig. 1.
To study such systems, the concepts of minimal cut sets, crit-
ical and non-critical components should be introduced. The
definitions are given as follows:

1. A Minimal cut set (MCS) is a minimal set of components
for which when all components of the set are failed, the
system is then failed (Rausand & Høyland, 2004);

2. A component is said to be “critical” if a failure of the
component, while the other components being in func-
tioning state, lead to a failure of the system and “non-
critical” otherwise.

Additionally, in order to model the deterioration of each com-
ponent i (i = 1, 2, . . . , N ) of the system, the following gen-
eral assumptions are considered:

1. The deterioration level of the component i at time t can
be measured and described by a scalar random variable
Xi
t . Without any maintenance operation on the compo-

nent i, the deterioration trajectory, (Xi
t)t≥0, is a stochas-

tic process and increases monotonically over time;
2. The initial deterioration level, Xi

0, is equal to zero, then
the component i is considered as new one. The higher
Xi
t , the closer the component i to failure. The component

i is considered to be failed if Xi
t exceeds a predefined

critical thresholdDi and its failure time is then expressed
by T if = inf{t ∈ R+|Xi

t ≥ Di}. The Di can be seen
as a deterioration level which must not be exceeded for
economical or security reasons;

3. The deterioration increments considered between any two
consecutive instants, ∆xi, are supposed to be stationary,
nonnegative, and statistically independent.
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Figure 1. Description of the deterioration process (Xi
t)t≥0

for component i without maintenance activities.

In this study the deterioration of each component of the sys-
tem is assumed to be evolved like a homogenous Gamma pro-
cess, whose characteristic is clearly monotonically increas-
ing. It has been used widely to describe the degradation be-
haviors in several physical degradation process, e.g. (Grall,
Dieulle, Bérenguer, & Roussignol, 2002; Van Noortwijk, 2009).
For the Gamma deterioration process, the random increment
∆xi which is considered between two consecutive inspected
times, t and s (t > s), follows a Gamma probability density
function (pdf), fαi (t−s),βi

(x), with shape parameters αi and
scale parameter βi, with αi, βi ∈ R+∗:

1

Γ[αi (t− s)] β
αi (t−s)
i xαi (t−s)−1 e−βi x I{x≥0} (1)

where: Γ(t) =
∫ +∞

0
ut−1 exp(−u) du denotes the Euler

Gamma function. The parameters αi and βi can be estimated
from monitored degradation information of the component i.
The mean deterioration rate and variance are determined by
αi/βi and αi/β2

i , respectively. Various deterioration behav-
iors from almost-deterministic to very-chaotic can be mod-
eled by such a stochastic process.

Finally, as mentioned above, if a non-critical component (that
is present in the MCS of order greater 1) fails, it does not lead
the system to a failure. However, if the component is not
replaced as soon as possible, this may be cause to conduct
some other components to idle states. More precisely, these
components are disabled even if they are not failed. It is also
supposed that the degradation level of components being idle
state remains unchanged (Nguyen et al., 2013a).

2
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2.2. Predictive reliability calculation

At time t, the reliability Ri(t) of component i is defined as
the probability that the component i is in an operational state
between times 0 and t:

Ri(t) = P[T if > t] = 1− P[T if ≤ t] = 1−
t∫

0

fi(u)du, (2)

where: T if is the random variable of time of failure of com-
ponent i and fi(u) is its pdf. For the time-based reliability,
an item is only considered in two states functioning or failed.
Such a consideration only reflects average characteristics of
the reliability; it cannot take into account information related
to the condition (i.e. deterioration level) of the item during its
operating process. Assume now that component i is function-
ing at time s, let Ri(t|Xi

s = xis) be a conditional reliability
of the component i at instant t given its deterioration level at
instant s < t, Xi

s = xis. It can be determined by:

Ri(t|xis) = P[Xi
t < Di|xis] = 1−

+∞∫

Di−xi
s

fαi (t−s),βi
(x)dx

= 1− Γ
[
αi (t− s), βi (Di − xis)

]

Γ[αi (t− s)] , (3)

where Γ(α, σ) =
∫ +∞
σ

xα−1 exp(−x) dx is incomplete Gamma
function. Ri(t|xis) or Ri(t|s) is also called the predicted re-
liability and computed at time s. Model parameters (αi, βi)
can be estimated from complex data, see e.g. (Do Van, Lev-
rat, Voisin, Iung, et al., 2012; Le Son, Fouladirad, Barros,
Levrat, & Iung, 2013). The predicted reliability will be used
for decision making in maintenance as well as spare part pro-
visioning. Detail description will be presented in Section 4.

2.3. Importance measure

The importance of each component in a multi-component sys-
tem may be assessed by the measure of structural importance
which was proposed by (Birnbaum, 1969). It allows taking
into account the topology importance of the logic position of
components in a multi-component system to perform various
decisions (Nguyen et al., 2013b). The structural importance
measure is defined as follows:

Let vi be a binary variable that describes the state of compo-
nent i, (i = 1, . . . , N ), such that vi = 1 if the component i is
operating and 0 otherwise; and let v = (v1, ..., vi, ..., vN ) be
the state vector of the considered system. Then, the system
state can be described by a binary/structure function Ψ(v) =
Ψ(v1, ..., vi, ..., vN ). Where, Ψ(v) = 1 if the system is oper-
ating and Ψ(v) = 0 if the system is in a failed state.

The structural importance measure expresses the relative pro-
portion of the 2N−1 possible state vectors which are critical

state vectors for component i and is denoted IiB . A state vec-
tor is considered as critical for component i if for this state
vector a change in the value of vi causes a change of the struc-
ture function value. IiB is defined for component i as:

IiB =
δΨ(i)

2N−1
, (4)

where:

1. δΨ(i) is the total number of critical state vectors for com-
ponent i, i.e.

δΨ(i) =
∑

(·i,v)

[Ψ(1i, v)−Ψ(0i, v)]

(hence 1 ≤ δΨ(i) ≤ 2N−1);

2. (.i, v) represents all the possible 2N−1 state vectors when
the state of component i is fixed and can be either (1i, v)
component i is running or (0i, v) if it has failed.

In this paper, the structural importance measure is used to
make decisions related to maintenance and spare parts order-
ing. Detail descriptions are presented in Section 4.

3. MAINTENANCE AND SPARE PARTS ORDERING OPER-
ATIONS, AND RELATED COSTS

Inspection operation
In this framework, we assume that a failure of a component is
instantaneously revealed by the self-announcing mechanism
(e.g. by using smart-sensor) and the deterioration level of
working components in system can only be known through
periodic inspections at dates tk = kδt, with δt is a fixed
inter-inspection interval and k ∈ N. The inspection opera-
tion is assumed instantaneous, perfect, non-destructive, and
is incurred a cost cins for each component.

Maintenance operations
Two possible maintenance activities upon each component
are preventive replacement (PR) before a failure and correc-
tive replacement (CR) after a failure, which can restore com-
pletely the component to ”as good as new” state. Both PR
and CR activities can be performed at either inspection times
or opportunistic maintenance times (i.e. system shutdown
times). Also concerning maintenance time, each maintenance
activity usually takes a time interval however it is often very
small with respect to the time interval between two consec-
utive inspections. Therefore, in this work the maintenance
durations are assumed to be negligible. In some cases, the
failed system should be restored as soon as possible. So,
some failed components are needed to be replaced immedi-
ately. An emergency order with negligible lead-time is then
required if spare parts of the failed components are not avail-
able. As a result, an emergency ordering cost ce is incurred
for each component in these cases. In other cases, the sys-
tem should be left in failed state to wait for the arrival of

3
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spare parts. Then, a system downtime may appear from the
system’s failure occurrence time until restored system time.
Hence an unavailability cost rate, cd,f , is incurred for every
unit time when the system elapsed in failed state.

1. When performing a PR on component i, a PR cost, Cip,
is incurred and calculated by:

Cip = cip + cms, (5)

where: cip represents a specific PR cost; cms is the fixed
set-up cost for maintenance, incurred once a time for all
PR/CR activities. The set-up cost can be composed by
the preparation costs (e.g. rent tools, labors, dissemble,
etc.) and the cost of crew traveling. This cost depends on
the characteristic of each system. It can be shared when
several components are replaced at the same time.

2. Similarly, when performing a CR on component i, a CR
cost, Cic, is incurred and calculated by:

Cic = cic + cms + ceIie, (6)

where: cic is a specific CR cost. A failure can have disas-
trous consequences, not only on the incurred cost due to
unplanned interventions for example, but also on the en-
vironment as well as humans impact, hence it is reason-
able to be assumed that cic > cip; ce represents the emer-
gency ordering cost of spare part for a component; Iie is
indicator function to indicate that if Iie = 1, spare part
of component i is emergently purchased and if Iie = 0,
spare part of component i is not requested.

Spare parts ordering
The spare parts provisioning operation is of continuous time
(S−1, S) type of inventory policy which was been applied in
several reports in the literature (Moinzadeh & Schmidt, 1991;
Armstrong & Atkins, 1996). S is maximum stocking level.
The inventory policy is suitable for systems for which de-
mand rate is low but components are expensive (Moinzadeh
& Schmidt, 1991). In our work, the studied system consists
ofN non-identical components which requestN independent
inventory policies (S − 1, S) corresponding to each compo-
nent. We assume that the maximum number of spare parts is
only one. It is either available in stock or present on an out-
standing order for each component of the system at any time.
This means that the maximum stocking level is S = 1 for
each component at every time. Under this policy, a possible
normal order (upon an inspection cycle) with a lead-time L
is regularly placed just after each inspection time tk for all
components of the system. It is assumed that the lead-time L
is constant and much lower than the inter-inspection interval.
Spare parts of the normal order is delivered at two different
dates that are named date1 and date2, respectively. Date1 in-
cludes a time interval L after tk (i.e. at tk + L) and date2 is
at the next inspection time tk+1. Let n1 ≥ 0 denote the num-

ber of spare parts at date1 and n2 ≥ 0 denote the number of
spare parts at date2, with n1 +n2 ≤ N . Then, total cost for a
normal order per an inspection cycle including set-up cost for
placing an order, specific ordering costs, and transportation
costs is determined as follows:

Co =
[
cos +

( n1∑

i=1,i6=j
cio + c1,ship

)
Ii{n1>0}

︸ ︷︷ ︸
delivered at date1

(7)

+
( n2∑

j=1,j 6=i
cjo + c2,ship

)
Ij{n2>0}

︸ ︷︷ ︸
delivered at date2

]
I{n1+n2>0},

where:

• cos is the set-up cost for taking an order;
• cio or cjo is the specific ordering cost of component i or

component j, with i 6= j;
• c1,ship and c2,ship are transportation costs correspond-

ing to ordered spare parts delivered at date1 and date2,
respectively. Where, c(.),ship is calculated by:

c(.),ship =

{
c0,ship + cd,ship(n(.) − n0) if n(.) > n0,

c0,ship for otherwise,
(8)

where: (.) can be 1 or 2; c0,ship is minimal transportation
cost (deterministic cost) for one delivery time; n0 is the
minimal number of spare parts at which a minimal trans-
portation cost c0,ship is incurred; cd,ship is transportation
cost per spare part. It is calculated for spare parts only if
their package exceeds the minimal number n0.

In addition, after the ordered spare parts have been delivered,
some of them may be utilized immediately for PR and/or CR
activities, and the remainder is kept in the stock. For spare
parts being in the stock, their deterioration is assumed to re-
main unchanged, that means they are kept ”as-good-as-new”.
The inventory holding cost for each spare part correspond-
ing to each component per a time unit is kh cio, where kh is
inventory holding rate per a spare part per a time unit.

4. JOINT POLICY OF PREDICTIVE MAINTENANCE AND
SPARE PARTS PROVISIONING

At each time tk = k δt with k ∈ N, the inspection is made on
all functioning components of the system except components
which have been selected for PR at the latest inspection time
but have not been preventive replaced until the current inspec-
tion time. Thank to inspection operations, the deterioration
level of each component can be measured. More precisely,
for each component i, its the deterioration level at inspection
times tk, Xi

tk
= xitk , is determined.

The main idea of the proposed joint predictive maintenance
and spare parts provisioning policy is to use jointly the struc-

4
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tural importance measure and predictive reliability/RUL for
selecting the spare parts provisioning and preventive mainte-
nance actions. In fact, at each inspection time the decision
rules for component i spare part ordering threshold Rio and
PR threshold Rip are determined based on both structural im-
portance and predictive reliability/RUL of the component. In
this way, it is reasonable to be assumed that Rio ≥ Rip. Con-
sequently, parameters of the proposed joint policy are needed
to be optimized including δt, Rip and Rio, with i = 1, ..., N .

4.1. Maintenance policy

Maintenance activities can only be performed at inspection
times (planned maintenance) or when system fails (unplanned
maintenance) given that the necessary related spare parts are
available. Each planned or unplanned maintenance date is
considered as a maintenance opportunity for executing to-
gether several preventive and/or corrective maintenance ac-
tions. In fact, at each maintenance opportunity, all function-
ing preventive components which have been selected for PR
action and failed components are maintained together if their
corresponding spare part (SP) are available. In this way, dif-
ferent maintenance decision rules are proposed for both pre-
ventive and corrective maintenance activities.

Maintenance decisions at tk
Each inspection time tk = k δt (with k = 1, 2...) the in-

spection and maintenance decisions for each component i
(i = 1, ..., N ) are the following:

• If component i has already failed, it is correctively re-
placed if its SP is available;

• If component i is functioning, an inspection operation is
firstly carried out, i.e. the deterioration level of the com-
ponent is measured, xitk . Secondly, the predictive relia-
bility of the component i Ri(tk+1|xitk) is estimated (see
again subsection 2.2). The main idea to build preventive
maintenance decision rules for component i is to jointly
consider its structural importance and predictive reliabil-
ity. To this end, a fixed PR thresholds, Rip (0 < Rip ≤ 1),
is introduced as follows:

Rip = Kp I
i
B , with 0 < Kp ≤

1

min
i=1,...,N

(IiB)
, (9)

The coefficient Kp is the same for all components. IiB is
the importance measure of component i and is calculated
by Eq. (4).
Finally, the preventive maintenance decision rules is the
following:

– IfRi(tk+1|xitk) ≤ Rip, then component i is selected
for preventively replacement action. It is immedi-
ately replaced if its spare part is available otherwise
the component will be replaced at a maintenance
opportunity when its SP is available;

– If Ri(tk+1|xitk) > Rip, no maintenance action is
carried out on component i.

Maintenance decisions between (tk, tk+1)
This is concerned with unplanned maintenance which could

occur randomly between (tk, tk+1) (i.e. the system fails). If
the failure of component i does not lead the system to failed
state, then no corrective maintenance action on the failed com-
ponent i is carried out and the decisions related to this com-
ponent will be placed at the next maintenance opportunity.
Otherwise, if the failure of component i leads the system to
failed state, then the decision rules of the system restoration
are the following:

• If the component i is critical one, and
– if its spare part is available, a corrective replacement

is immediately carried together then the system is
immediately restored;

– if the spare part of i is present on an outstanding
order, then the system is left in failed state and will
be restored as soon as when the ordered spare part
of i is delivered;

– if the spare part of i neither available nor present
on an outstanding order, then an emergency order is
placed for the spare part of i. The system will be
restored right away the arrival of this spare part;

• If the component i is non-critical one, and
– if there is at least one spare part of a MCS that con-

tains the component i which is available, then the
system is immediately restored;

– if there is not any spare part of the MCS (that con-
tains the component i) available; but if at least one
spare part of this MCS is present on an outstanding
order, then the system is left in failed state and will
be restored as soon as possible when the ordered
spare parts is delivered.

– if there is not any spare part of the MCS available
or present on an outstanding order, then the spare
part of i is emergently ordered. The system will be
restored immediately the arrival of this spare part.

4.2. Spare parts provisioning policy

At every time, it is assumed that the maximum number of
spare parts is only one which is either available in stock or
presenting on an outstanding order for each component of the
system. By inspection operations, a normal order is placed
right away after the time tk for the (k + 1)-th inspection cy-
cle, in which a spare part if any of a component can only be
delivered at either date1 or date2. The delivery is illustrated
in Figure 2.

At time tk, spare parts ordering rules are as follows:

1. If component i has failed and if its spare part is not avail-
able, spare part of i will be delivered at date1;

5
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1date2 kt +ºkt

L L

date1

The (k+1)-th inspection cycle

Figure 2. Illustration of delivery of a normal order.

2. If operating component i, butRi(tk+1|xitk) ≤ Rip and its
spare part is not available, then spare part of i will also
be delivered at date1;

3. If the predictive reliabilityRi(tk+1|xitk) is higher the PR
threshold Rip but lower or equal the ordering threshold
Rio, then spare part of i will be delivered at date2. The
ordering threshold introduced here is formulated as:

Rio = Ko I
i
B , with 0 < Ko ≤

1

min
i=1,...,N

(IiB)
, (10)

Each IiB only depends on the system configuration and re-
mains unchanged with time. Therefore, the optimal PR thresh-
oldRi∗p and the optimal ordering thresholdRi∗o for each com-
ponent i can be determined from the global optimal coeffi-
cients K∗p and K∗o , respectively. Kp, Ko and δt are the deci-
sion parameters of the proposed joint predictive policy which
have to be optimized. For this purpose, a cost model is pro-
posed to evaluate the performance of the joint policy based
on the long-term mean cost rate criteria. It is presented in the
next section.

5. PERFORMANCE EVALUATION OF PROPOSED JOINT POL-
ICY

Accumulative total cost until time t of whole system includes
costs of CR and PR (including set-up costs of maintenance),
inspection costs, downtime costs, spare parts ordering costs
(including set-up costs of the purchase, transportation costs),
and inventory holding costs:

CT (t) = Ccorr(t) + Cprev(t) + Cins(t)︸ ︷︷ ︸
CM (t): costs related to maintenance

(11)

+ Cdowntime(t) + Co(t) + Chold(t)︸ ︷︷ ︸
CI(t): costs related to inventory

To assess the performance of the proposed joint policy, the
long-term expected average costs of maintenance and inven-
tory per unit time is considered. It is defined as:

C∞T (Kp,Ko, δt) = lim
t→∞

E[CM (t)] + E[CI(t)]

t
(12)

If t is large enough, Eq. (12) can be rewritten as follows:

C∞T (Kp,Ko, δt) ' E[CM (Nm δt)] + E[CI(Nm δt)]

#Operating time of system
, (13)

where: #Operating time of system =Nm δt - #Total downtime
of system, Nm is the number of inspection times in [0, t] of
whole system.

To develop a cost model for evaluating the policy perfor-
mance, the additional following notations will be used in this
section:
I{xi

t≥Di} indicates whether component i is failed at time t
before any decision is made.
If xit ≥ Di, I{xi

t≥Di} = 1: failed;
if xit < Di, I{xi

t≥Di} = 0: functioning;
IiPS(t) indicates whether component i satisfies PR

condition (0 < Ri(t+ δt|xit) ≤ Rip) at time t.
IiPS(t) = 1: satisfying; IiPS(t) = 0: otherwise;

IiCR(t) indicates whether component i is correctively
replaced at time t. IiCR(t) = 1: replaced;
IiCR(t) = 0: otherwise;

IER(t) indicates whether there is a component that
must be made emergency CR at time t.
IER(t) = 1: emergency CR;
IER(t) = 0: no emergency CR;

Iistock(t) indicates whether spare part of i is avaiable
in stock at time t. Iistock(t) = 1: available;
Iistock(t) = 0: unavailable;

Iioutstd(t) indicates whether spare part of i is present on
an outstanding order at time t. Iioutstd(t) = 1:
present; Iioutstd(t) = 0: not present;

IiOD1,k indicates whether, in k-th cycle, a purchase
decision for spare part of i with date1 is placed.
IiOD1,k = 1: ordered; IiOD1,k = 0: not ordered;

IiOD2,k indicates whether, in k-th cycle, a purchase
decision for spare part of i with date2 is placed.
IiOD2,k = 1: ordered; IiOT1,k = 0: not ordered.

Inspection cost Cins(t)
At each time tk, the inspection is made on all functioning
components of the system except for components satisfying
PR condition at latest inspection time but for which any re-
placement action has been carried out until the current in-
spection time. The total inspection cost over the time span t
is formulated:

Cins = cins

N∑

i=1

Nm∑

k=1

Iiins(tk), (14)

where, Iiins(tk) indicates whether an inspection action on the
component i should be implemented at time tk. Iiins(tk) = 1
means that an inspection is needed and Iiins(tk) = 0 other-
wise. Iiins(tk) is defined as follows:
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Iiins(tk) =





0 either I{xi
tk
≥Di} = 1 or

(
IiPS(tk−1) = 1

but any replacement action (PR or CR)
has been carried out until the current

inspection time tk
)

;

1 otherwise.

Corrective and preventive replacement costs
Ccorr(t) + Cprev(t)
Between two inter-inspection times (the inspection time is not
including), an intervention to restore the system if and only
if the system has been failed. Therefore, total replacement
cost can be separated into a replacement cost at inspection
times and a replacement cost outside of inspection times (op-
portunistic maintenance times). Let M ∈ N denote the total
number of intervention times in order to restore the system
from failed state without inspection times. And let tm repre-
sent the m-th intervention time on the system (tm 6= tk). If
M 6= 0, the total replacement cost of the system during its
mission is formulated as follows:
M∑

m=1

( N∑

i=1,i 6=j

cipIiPR(tm) +

N∑

j=1,j 6=i

cjcI
j
CR(tm) + cms + ceIER(tm)

)

+

Nm∑

k=1

( N∑

i=1,i 6=j

cipIiPR(tk) +

N∑

j=1,j 6=i

cjcI
j
CR(tk) + cms

)
(15)

where:

• At inspection time tk, IiPR(tk) and IjCR(tk) are defined
as follows:

IiPR(tk) =





1 if
(
I{xi

tk
≥Di} = 0 and Iiins(tk) = 1

and IiPS(tk) = 1 and Iistock(tk) = 1
)

,

or
(
I{xi

tk
≥Di} = 0 and Iiins(tk) = 0

and Iistock(tk) = 1
)

,

0 otherwise;

IjCR(tk) =

{
1 if I{xi

tk
≥Di} = 1 and Iistock(tk) = 1

0 otherwise.
• At time tm 6= tk, if it is assumed that the failure occur-

rence of components of the system are not simultaneous,
the failed system is restored if there is at least one nec-
essary spare part for CR action (i.e. the spare part can
be either available in stock or bought emergently or the
ordered spare part has just been delivered). The system
is failed due to:
(i) a critical component i. Then IER(tm) is defined:

IER(tm) =





1 if its spare part i is not available
and outstanding in any current order,

0 otherwise.

(ii) a non-critical component i. Then IER(tm) is de-
fined:

IER(tm) =





1 if there is neither any spare part of
components in MCS that contains the
component i is available nor
presenting on outstanding order,

0 otherwise.

In addition, other failed components and functioning com-
ponents that satisfied PR condition at latest inspection
time but for which any replacement has been made until
the current time (tm) are also opportunistically replaced
at this instant. Therefore, the indicators IiPR(tm) and
IjCR(tm) are determined as follows:

IiPR(tm) =





1 if
(
I{xi

tm
≥Di} = 0 and

IiPS(tk < tm) = 1 and
IiPR(tk < tm) = 0 and

Iistock(tm) = 1
)

,

0 otherwise.

IjCR(tm) =

{
1 if I{xj

tm
≥Lj} = 1 and Ijstock(tm) = 1,

0 otherwise;

Note that after each preventive replacement of the component
i at t = tk or t = tm, IiPS(t) should always be reset zero.

Downtime cost Cdowntime(t)
It is assumed that lead-time for emergency orders is negli-
gible. Thus, in the k-th inspection cycle, the downtime of
system is equal zero during from (tk−1 + L)+ to (tk − L)−.
The downtime of system can only occur in the period from
t+k−1 to tk−1 + L and in the period from tk − L to tk. Thus
the downtime of the system in the k-th inspection cycle is
determined as:

Cdowntime(t) = cd,f

Nm∑

k=1

(tef1,k + tef2,k) (16)

where tef1,k is the time elapsed by the system in the failed
state in the period from t+k−1 to tk−1 + L, and tef2,k is the
time elapsed by the system in the failed state in the period
from tk − L to tk in the k-th inspection cycle.

Ordering cost Co(t)

Nm∑

k=1

[( n1∑

i=1,i6=j
cioIiOD1,k + c1,ship

)
I{n1>0,k} (17)

+
( n2∑

j=1,j 6=i
cjoI

j
OD2,k + c2,ship

)
I{n2>0,k} + cos

]
I{n1+n2>0,k}

where, IiOD1,k and IjOD2,k can be defined as follows:
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IiOD1,k =





1 if
(
I{xi

tk−1
≥Di} = 1 or IiPS(tk−1) = 1

)

and Iistock(t) = 0,
0 for otherwise;

IjOD2,k =

{
1 if Rjp < Rj(tk|xik−1) ≤ Rjo and Ijstock(t) = 0,
0 for otherwise;

c1,ship and c2,ship are the transportation costs are calculated
as Eq. (8).

Spare parts holding cost Chold(t)

Chold(t) =

N∑

i=1

ci0 kh

Zi∑

zi=1

tihold,zi (18)

where:

• Zi total number of spare parts of component i that are
used to replace (preventively and correctively) during the
system’s mission;

• tihold,zi holding time interval of zi-th spare part. It is
determined by:

tihold,zi = tioutput,zi − tiinput,zi (19)

where, tioutput,zi and tiinput,zi are instants when zi-th
spare part is stocked and taken away from the inventory,
respectively.

Determining optimal solutions of proposed joint policy
The optimal solution of the joint policy (Kp,Ko, δt) can be
obtained by minimizing the expected global average cost per
unit of time of whole system C∗,∞T (Kp,Ko, δt) i.e.:

C∞T (K∗p ,K
∗
o , δt

∗) = min
Kp,Ko,δt

C∞T (Kp,Ko, δt)

subject to: 0 ≤ L < δt, (20)

Kp ∈
(

0,
1

min
i=1,...,N

(
IiB
)
]
,

Ko ∈
(

0,
1

min
i=1,...,N

(
IiB
)
]
,

Ko ≥ Kp.

The numerical calculation can be done by Monte Carlo simu-
lation. The optimal PR thresholds Ri∗p and the optimal order-
ing thresholds Ri∗o corresponding to each system component
is directly derived from the optimal value K∗p and K∗o , re-
spectively.

6. NUMERICAL EXAMPLE

The main aim of this section is to validate and to analyze the
performance of the proposed joint policy of maintenance and
spare parts provisioning. For this end, a study is performed
on a 6-component system whose the degradation evolution
of each component is assumed to be a gamma process. The

system structure is shown in Figure 3.

2

1 3

4 5

6

Figure 3. Reliability block diagram of the system consist of
six components.

The parameters related to all components such as deteriora-
tion parameters, prefixed failure thresholds, ordering costs,
preventive and corrective replacement costs, and importance
measures are listed in Table 1. The parameters related to the

Table 1. Parameters for each component.

Comp. αi βi Di cio cip cic IiB
1 0.8 1.25 40 120 36 96 0.15625
2 1.3 1.8 38 120 36 96 0.15625
3 0.8 1.5 45 180 54 144 0.28125
4 0.6 0.9 42 150 45 120 0.09375
5 0.7 0.8 39 150 45 120 0.09375
6 0.5 1.3 50 250 75 200 0.46875

system are inspection cost cins = 3, set-up cost of mainte-
nance operation cms = 30, downtime cost rate cd,f = 30,
emergency ordering cost ce = 100, set-up cost for placing an
order cos = 3, minimal transportation cost for a delivery time
c0,ship = 30, transportation cost for one spare part cd,ship =
5, minimal number of spare parts of an order n0 = 2, inven-
tory holding rate per a spare part per time unit kh = 0.004,
and lead-time L = 10 time units. The components of the
system are s-independent and their parameters have been ar-
bitrarily chosen for the purpose of the numerical study.

6.1. Experimental results

The PR thresholds are used to determine components that
should be preventively replaced and the ordering thresholds
are to determine components that should be ordered to pre-
pare available spare parts for next preventive replacements.
In this proposed joint model, an order is placed just after in-
spection time tk with the two possible delivery dates, where
date2 is to prepare available spare parts for PRs at tk+1 while
date1 (that is earlier than date2) is to replenish as soon as
possible spare parts if PRs and/or CRs cannot be performed
at tk on corresponding components due to the unavailability
of spare parts. The lack is partly due to the uncertainty in the
RUL prediction. Clearly the spare parts are required at date1
to reduce the system’s breakdown and the emergency order-
ing costs, but on the other hand they may make the inventory
holding costs increase. Hence, it is necessary to choose care-
fully the appropriate decision parameters of Kp, Ko, and δt
in order to balance these costs.
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According to a set of all given parameters, in order to find the
optimum decision parameters (i.e. K∗p , K∗o , and δt∗), the ex-
pected global average cost rateC∞T is evaluated with different
values of Kp, Ko, and δt by using Eq. (11) and Eq. (13)-(20).
The obtained minimum global average cost rate is 20.129
with three corresponding decision parameters: K∗p = 1.51,
K∗o = 3.63, and δt∗ = 45, i.e. C∗,∞T (1.51, 3.63, 45) =
20.129. The optimal PR thresholds corresponding to each
component are inferred from the K∗p by using Eq. (9), such
that: R1∗

p = R2∗
p = 0.24, R3∗

p = 0.42, R4∗
p = R5∗

p = 0.14,
and R6∗

p = 0.71. Similarly, the optimal ordering thresholds
corresponding to each component are inferred from the K∗o
by using Eq. (10), such as: R1∗

o = R2∗
o = 0.56, R3∗

o = 1,
R4∗
o = R5∗

o = 0.34, and R6∗
o = 1. The results show that the

PR threshold of the critical component is much higher than
that of the non-critical components. The same conclusion is
drawn for the ordering thresholds. The ordering threshold of
each component is much higher than its PR threshold. It is
also noted in this case that the optimal ordering threshold of
component 3 and component 6 are equal to one, this means
that the spare part of the two components must be regularly
replenished at each inspection date tk.

Figure 4 shows the cost surface considering at the δt∗ = 45
as a function of the PR coefficient Kp and the ordering coef-
ficient Ko. The surface is clearly convex.
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Figure 4. Cost surface of the proposed joint policy as a
function of the Kp and the Ko considering at δt∗ = 45.

6.2. Comparison of the joint and separate optimized ap-
proach

Considering the benefits form the proposed joint model un-
der the jointly optimized approach, a comparison with a tradi-
tional maintenance model and a traditional provisioning model,
which are separately optimized, is performed. Under the sep-
arately optimized approach, the expected mean cost rate of
the maintenance model, C∞M , depends only on the inspection
cost, the preventive and corrective replacement costs, and the

set-up cost; while the expected mean cost rate of the inven-
tory model, C∞I , depends solely on the downtime cost, the
costs related to spare parts ordering, and the inventory hold-
ing cost. Figure 5 shows the average cost rate as a function
of the inter-inspection time interval for the joint and separate
optimization with the same given parameters.
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Figure 5. Relation of the total average cost rate between the
joint and separate optimization.

The obtained results clearly show that the cost of jointly op-
timized policy, in most situations, is lower than that of their
separately optimized counterparts (i.e. the sum of C∞M and
C∞I ). This is because all cost parameters associated to the
maintenance and the inventory are simultaneously considered
in the joint model, hence achieving more appropriate values
for the decision variables.

The relative cost difference between the two approaches varies
from 2% to 3.5%, and of course, this difference is dependent
upon the input parameters of the system. In the next para-
graph, the influences of some main parameters such as the
lead-time, the holding cost, and the set-up cost on the pro-
posed joint policy are studied.

6.3. Sensibility analysis

To investigate the influences of the lead-time on the total av-
erage cost of the proposed policy, the numerical experiments
are carried out for the different values of the lead-time. Fig-
ure 6 exhibits the optimum values of C∗,∞T increase when the
lead-time increases from 1 to 21 time units (the other given
parameters remains unchanged).

The results obtained from the sensibility analysis show that
when the lead-time increases, it leads to decrease the opti-
mal inter-inspection time interval and increase the optimal PR
thresholds as well as the optimal ordering thresholds. This
means that: the system should be inspected more frequently,
the components need to be preventively maintained earlier

9
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Figure 6. Influence of the lead-time on the proposed joint
policy.

(compared to their lifetime), and the spare parts also need
to be ordered earlier so as to prevent a failure of components
which may lead to the system failure.

The effect of the inventory holding rate is shown in Table 2,
where the total average cost increases significantly as the in-
crease of the inventory holding rate.

Table 2. Optimal results with given inventory holding rates.

kh δt∗ K∗p K∗o C∗,∞T
0.0 46 1.69 3.81 19.39
0.004 45 1.51 3.63 20.12
0.008 45 1.51 3.45 21.46
0.012 44 1.33 3.45 22.53
0.016 44 1.33 3.10 23.52
0.020 43 1.33 3.10 24.62

Herein, when the inventory holding rate kh is varying from 0
to 0.02 with increments of 0.004, the optimal ordering thresh-
olds (as well as the optimal PR thresholds) decrease to reduce
the inventory levels. Besides, δt∗ also decreases. This shows
the system should be inspected more frequently in order to
reduce the risk due to the decrease of the inventory levels.

Table 3 shows the influence of the set-up cost of the mainte-
nance cms on the total average cost when the cms varies from
0 to 100 cost units.

It is surprising that the higher the set-up cost is the higher the
total average cost is. When the cms increases, the optimal PR
thresholds as well as the optimal ordering thresholds increase,
which indicates that the components of the system tends to be
preventively maintained earlier. At the same time the optimal
inspection cycle decreases slightly. Consequently, there are
more selected components in a group for the PR activities in
order to save set-up cost.

Table 3. Optimal results with given maintenance set-up
costs.

cms δt∗ K∗p K∗o C∗,∞T
0 46 1.33 2.92 19.55
20 45 1.33 3.28 20.21
40 45 1.51 3.63 20.68
60 45 1.69 3.81 21.03
80 45 1.86 3.81 21.59
100 44 1.86 3.98 22.16

7. CONCLUSION

In this paper, a joint predictive maintenance and spare parts
provisioning policy for multi-component systems with com-
plex inter-connections is proposed. Predictive reliability/RUL
of components and their structural importance measure are
jointly used and integrated in maintenance and spare parts
decision-makings. Moreover, both economic and structural
dependencies are investigated and considered in the proposed
policy. This allows a better modeling of multi-component
system. In addition, to evaluate the performance of the pro-
posed joint predictive policy, a cost model is used. Finally,
Monte-Carlo simulation approach is implemented in order to
final the optimal decision parameters. The numerical results
show that the proposed joint policy is more appropriate than
when considering maintenance policy and spare parts provi-
sioning one separately. The joint combination of predictive
reliability and structural importance measure can provides a
powerful tool for decision-making on maintenance et spare
parts provisioning.
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NOMENCLATURE

N number of components of the system
i index for components, with i = 1, 2, ..., N
Xi
t = xit deterioration level of component i measured at

time t
(Xi

t)t≥0 stochastic process describing the deterioration
of component i over time t

αi, βi shape and scale parameters of Gamma distribu-
tion for component i

cip specific preventive cost for component i
cic specific corrective cost at failure for component

i (generally cic > cip)
cins inspection cost for each component
cms set-up cost for a maintenance operation
cd,f loss cost per time unit incurred by the system in

the failed state due to shortage of spare parts
cos set-up cost for placing an order and independent

of the ordered quantities of spare parts
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cio spare part ordering cost for component i
ce emergency ordering cost for one spare part
c0,ship minimal transportation cost for a delivery
cd,ship transportation cost per a spare part
n0 minimal number of spare parts of an order at

which a cost c0,ship is incurred
kh inventory holding rate per a spare per time unit
δt inter-inspection time interval (inspection cycle)
L lead-time for a regular order, L > 0
tk k-th inspection time, tk = k δt and k ∈ N
Ri(t|s) predictive reliability of component i at time t

given that component i has survived for time s
IiB structural importance measure of component i
Kp preventive replacement coefficient
Ko spare parts ordering coefficient
Rip PR threshold defined for component i
Rio ordering threshold defined for component i
CT (t) cumulative total cost at time t
CM (t) cumulative maintenance cost at time t
CI(t) cumulative inventory cost at time t
Nm number of inspection times of the whole

system within [0, t]
C∞T long-term expected total average cost rate
C∞M long-term expected maintenance average cost rate
C∞I long-term expected inventory average cost rate
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ABSTRACT 

During the past few years industrial predictive maintenance 

has benefited from new developments in hardware and 

software systems. A key conclusion is that to maximize 

results, these systems need to be smarter with learning 

capabilities. Moreover, wireless sensor networks have led to 

a new revolution in the field of e-maintenance, offering new 

possibilities in measurement collection, aiming to empower 

monitoring with more advanced features. In what way can 

wireless sensor networks be applied to industrial 

maintenance? How can novelty detection be implemented 

on these systems? How can such systems scale up to offer 

distributed intelligence? This paper presents the WelCOM 

research program’s approach on the aforementioned matters 

answering many questions that relate to intelligent sensor 

systems in the field of e-maintenance and proposing flexible 

architectures for the implementation of these systems. 

 

1. INTRODUCTION 

e-Maintenance empowers maintenance engineering and 

management with ICT tools that streamline the delivery of 

maintenance services, from the field level of measurements 

collection all the way up to maintenance decision support 

(Holmberg, 2010). It contributes to the aim of sustainable 

development in society and the proper function of a whole 

range of engineering assets, ranging from factories and, 

power plants to transport and built infrastructure. Well-

established maintenance practices can lead to improve the      

 

efficiency of resources and production management, while 

supporting the quality and safety procedures and minimize 

environmental impact, thus contributing to the sustainability 

of the enterprise. Maintenance activities, such as repairs and 

service actions, only take place when actually needed, 

which is the essence of Condition-Based Maintenance 

(CBM). The development of low-cost and micro-size 

integrated sensors for taking machinery measurements, the 

upgrade in hardware capabilities for managing the process 

of condition data collection and transmission and the 

development of advanced methods for condition data 

management, processing and analysis, including machine 

learning and decision support tools, compose the framework 

for the current state of the art in condition monitoring within 

e-Maintenance. Empowered by wireless communications 

and networking, maintenance tools are made available in the 

form of flexible web-services, delivered to multiple device 

types, including tablets and other portable computing 

devices, while e-collaboration methods enable greater 

information and knowledge sharing, facilitated by the 

infrastructure of an e-Maintenance network (Figure 1).  
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Figure 1: E-maintenance network 
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This paper presents technological developments that support 

the integration of e-Maintenance components by distributing 

monitoring and detection tasks to an ad hoc network of 

wireless sensor nodes. It is argued that the delegation of 

computing tasks to a lower physical level of data generation 

and processing, coupled with elements of learning and 

intelligence can upgrade the efficiency of condition 

monitoring infrastructure, while maintaining great 

deployment flexibility. Our research builds on earlier 

development of wireless sensing solutions (Emmanouilidis, 

Katsikas and Giordamlis, 2008) and a structured approach 

for incremental learning that takes advantage of increasing 

availability of condition monitoring data to support event 

detection and diagnostics (Emmanouilidis, Jantunen and 

MacIntyre, 2006). Within an e-maintenance architecture 

(Pistofidis, Emmanouilidis, Koulamas, Karampatzakis, & 

Papathanassiou, 2012), our reported work focuses on 

upgrading the capability of hardware-integrated solutions to 

efficiently support wireless condition monitoring by 

embedding more advanced computational features at the 

level of sensor nodes.  

In Section 2, we present an analysis and brief outline of our 

development work on distributed and wireless condition 

monitoring. Coupling the computational capabilities of 

sensor nodes with machine learning features compose a 

powerful framework for implementing distributed and 

intelligent wireless condition monitoring, which pose new 

challenges for integrated learning capabilities in sensor 

nodes. These challenges are discussed in section 3. The 

concluding remarks are summarized in section 4.  

2. DISTRIBUTED WIRELESS CONDITION MONITORING 

2.1. Condition Monitoring and Wireless Sensing 

CBM seeks to perform an early detection of deterioration 

and potential malfunctions to guide maintenance activities 

decisions. The asset is maintained or repaired as soon as 

some machinery condition parameters are detected to 

exceed a normal or expected range of values. Acting upon 

the detection and diagnostic recommendations, prognostics 

seek to determine the most probable time of failure in order 

to properly schedule preventive actions (IAEA, 2007), 

reducing costs and increasing quality and profits. Condition 

monitoring functions by acquiring data that relate to 

parameters, which constitute indicators of machinery 

condition. Among the typically measured physical 

parameters are temperature, pressure, voltage/current/power, 

RPM, torque, acceleration/Velocity/displacement.  

Our reported work deals with the development and 

integration of more advanced features that leverage on the 

capacity of wireless sensor networks to delegate computing 

at the sensor node level. We distinguish two categories of 

such advanced features, namely:  

 Level 1: Data enrichment and pre-processing. In 

vibration monitoring, these include pre-processing of 

the original time series to produce transformed 

representations in new domains, typically in the 

Frequency (spectrum), quefrency (cepstrum), or even 

joint time-frequency representations (e.g. wavelets). 

Even before such transformations take place, pre-

processing such as filtering and smoothing is needed, 

while the spectrum is best estimated after some 

windowing function is applied to reduce spectral noise. 

Event detection and diagnostics applied on the 

transformed signal is still a hard problem. Feature 

extraction is applied at the pre-processing level to yield 

specific parameters that when considered independently 

or most commonly jointly, are more likely to yield 

discriminatory information and this aid the detection 

and diagnosis tasks. A word of caution is applicable 

here, as even the most informative parameter, when 

considered in isolation, may not provide sufficient 

information, whereas a parameter not-directly 

associated with the expected detection outcome may 

still convey crucial information. It is the combination of 

individual features that often conveys adequate 

discriminatory information, rather than the individual 

features themselves (Emmanouilidis, Hunter, MacIntyre 

and Cox, 2001).  

 Level 2: Event detection and diagnostics. Acting upon 

extracted feature set combinations, rather than either on 

the original time series or individual features is 

recognized as the key to performing efficient event 

detection and diagnostics. Although it is possible to set 

simple alarm levels on parameters (e.g. vibration 

amplitude at a certain frequency or the overall RMS 

vibration in a frequency band exceeding a certain 

level), these constitute primary but not sufficient 

indicators. One reason for that is the cautionary remark 

mentioned earlier. But another important one is that is 

that machinery malfunction manifests itself in different 

ways, even for the same equipment type, depending on 

the actual equipment size, the positioning of sensors on 

the monitored equipment and even variations in the way 

the vibration signal propagates through the body of the 

monitored machinery. It is therefore often important to 

calibrate any pattern recognition technique applied for 

detection and diagnostics on the basis of evidence of 

data and extracted parameters from readings taken from 

the specific monitored machinery. This is where 

machine learning becomes important, both for 

detection, as well as diagnostics tasks.  

Wireless condition monitoring solutions typically do not 

include such processing features, although Level 1 features 

have long being available and Level 2 ones are have become 

increasingly available on wired counterparts. In our reported 

work, Level 1 features are integrated within the wireless 

sensor network, that is within the sensing node. Based on 
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features now calculated within the sensor node, new 

computing and machine learning requirements are posed, so 

as to integrate Level-2 features within the wireless sensing 

solution. The main requirements for such features, when 

employed in a wireless sensing solution context is to 

balance the potentially discriminatory power they may 

convey (individually or jointly) with low computing 

requirements. The right trade-off can be achieved by 

studying the problem at hand, which therefore implies the 

need to customize solutions by taking actual representative 

measurements from the monitored machinery.  

This is consistent with observations that condition 

monitoring techniques are more efficient when perfectly 

tailored for the particular problem and usually when safety, 

capital value and potential losses in service or production 

are of critical importance (Holmberg et al., 2010).  

2.2. Intelligent Sensors and Distributed Monitoring 

Compared to conventional sensors, intelligent sensors are 

capable of more advanced functions than plain data 

collection. By combining sensing and computing at the chip 

level through micro-electromechanical (MEMS) technology 

and overall advancement in microelectronics, intelligent 

sensors can perform self-calibration based on the data 

collected and adaptive threshold techniques may be 

deployed for a more accurate condition monitoring. An 

intelligent sensor is perfectly capable of performing 

advanced data processing and signal analysis in the time and 

frequency domains. Bringing a network of such sensing 

nodes together has the potential to greatly scale-up the level 

of information processing and the impact on the 

performance of the performed monitoring. The enabling 

factors for such an upgrade are already in place, as 

communication between different sensors can be achieved 

by existing networking protocols. Coupling the networking 

capabilities with the individual processing power and 

sensor-embedded learning capabilities bring a major leap in 

forward for condition monitoring, that of distributed 

intelligent condition monitoring.  

Distributed condition monitoring relies on the individual 

node's ability to function as an agent. An agent can adjust its 

functionality depending on its environment variables. The 

agent perceives its environment via sensors and acts 

accordingly via actuators. An agent that aims at optimizing 

certain performance measures, taking the form of an 

objective function, is called rational (Montoya et al., 2010).    

In a sensor network implementation, many intelligent 

sensors or nodes, work in parallel to perform condition 

monitoring and notify base stations via a communications 

infrastructure. The nodes consist of basic components with 

simple interfaces. However, connected together in a 

network, the processing performance increases 

exponentially. The nodes play the role of the agents in a 

Multi-Agent system and the Intelligence is distributed 

among them, thus giving rise to a case of Distributed 

Intelligence (Montoya et al., 2010). 

Low cost peripheral / distributed processing capabilities 

have been already utilized in large industries for many 

years, following the evolution of microcontroller and 

specialized distributed control system (DCS) and wired 

fieldbus technologies. However, the installation costs of 

complete systems were high mainly due to the sensor and 

power/communication wiring costs. It is the introduction of 

low-power and low-cost wireless interfaces and embedded 

sensors (MEMS) that now widens the distributed 

intelligence pattern applicability and the architectural 

alternatives for a basically data collection / health 

monitoring system. Still, for the definition of a concrete 

system’s distributed architecture, key tradeoffs have to be 

set among important extra-functional properties such as 

power, timeliness and communication/processing bandwidth 

budgets, as well as fault tolerance, availability and 

installation/maintenance cost characteristics [Giannoulis et 

al, 2012].  

Knowing the non-linear cost increase for a certain 

improvement in the quality of sampling electronics, as well 

as the higher energy and performance costs of wireless 

transmission compared to processing, the principal pattern is 

to push towards the periphery, functionality blocks such as 

local signal processing for the improvement of signal 

characteristics, calculation of reduced size (compared to the 

raw signal) sets of important properties, information quality 

improvements by fusion of data from other related sensors 

or neighboring sensor nodes, and execution of knowledge 

extraction algorithms, as long as the overall system cost and 

chosen performance metrics for the required scalability 

range are better than just sending the output of a block to a 

centrally located collecting, storage and processing system. 

[Pistofidis et al, 2012].       

2.3. Signal Processing 

Any intelligence built-in a sensor network has to be based 

on a primitive set of digital signal processing capabilities of 

the node’s microcontroller and its A/D converters. Although 

such processing may be trivial for wired solutions, only 

limited such work has been reported as integrated in 

wireless condition monitoring implementations. Next we 

present such features built in our wireless condition 

monitoring implementation. 

2.3.1. A/D Converter’s Characteristic Improvement 

The A/D converter’s precision and integral 

nonlinearity (INL) factor affect the effectiveness of the 

node. For 4-20 mA current loop measurements poor, linear 

behavior of the A/D converter can lead to inaccurate results. 

In our approach, before initialization of the node’s main 

functionality, the first step of an intelligent sensor should be 

the linear improvement of the A/D converter’s 
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characteristic. An external well-designed D/A converter can 

be used as the force of calibration by feeding the A/D 

converter with key values used for calculating the A/D 

converter’s output differences from the expected values. 

The flow diagram in Figure 2 describes the calibrating 

procedure before the main functionality of the intelligent 

sensor (Texas Instruments, 1999). 

 

 

Figure 2: Calibration with an External D/A Converter 

 

2.3.2. Signal Smoothing 

In many cases, in order to make decisions from observing or 

processing the measured data, or to capture important 

patterns, signal smoothing might be useful in order to cancel 

out spikes and noise in the data set and generally increase 

signal-to-noise-ratio. For this purpose four techniques are 

considered depending on the applications: 

 Low-pass digital filter. 

 Exponential moving average, with which the applied 

smoothing percentage (alpha parameter) can be 

controlled and no particularly large window is needed 

for smoothing.  

 Moving median with a 3-sample window, with which a 

substantial smoothing is achieved with the profound 

elimination of undesired spikes. 

 

Figure 3 shows the effect of applying an exponential 

moving average (alpha parameter = 0.15) and a moving 

median filter on raw data. 

  

 

Figure 3: Exponential Moving Average 

 

 The Savitzky–Golay filters are low- pass filters that 

smooth the signal with the use of local least-squares 

polynomial approximation. The main asset of this type 

of filters is that they smooth noisy data, while 

preserving the shape and height of the peaks and spikes 

(Schafer, 2011).   

2.3.3. Vibration Analysis 

In our approach, for the purpose of vibration analysis, the 

accelerometer’s data is collected by the A/D converter and 

via the microcontroller’s DMA controller, is saved in RAM 

at a sampling rate much greater than the Nyquist rate. Upon 

completion of the collection, the microcontroller’s CPU is 

interrupted and a series of actions take place: 

1. DC bias removal, by subtracting the mean value from 

each data sample.  

2. Filtering the data with a window function, Hanning, 

Hamming, Blackman or Bartlett. The aforementioned 

window functions are quite effective and require less 

computational complexity that others, as shown in table 

1 (LDS Inc., 2003). 

 

Table 1: Window comparison 

 

 

 

3. Calculating the FFT of the filtered data, using a 
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algorithm with bit- reversal permutation, depending 

whether the goal is speed or memory efficiency. 

4. Calculating the amplitude of the complex numbers that 

were the result of step 3, thus providing the amplitude 

response. Results are buffered and sent to the network 

coordinator or base station via a communication 

protocol implemented in the nodes’ firmware. Figure 4 

shows  an 8-kHz, 128-sample sine wave from a 

waveform generator, filtered with a Hanning window 

and figure 5 its amplitude response. 

 

 
Figure 4: 128-sample sine wave, 8 kHz, filtered with 

Hanning window 

 

 

Figure 5: Amplitude response of a 8-kHz 128-sample sine 

wave 

 

5. Calculating velocity by integrating acceleration (figure 

6), using the cumulative trapezoidal rule, as shown in 

figure 7. The resulted outcome is buffered and sent via 

communication protocol to the network coordinator. 

 

Figure 6: acceleration, raw data after DC bias removal 

 

Figure 7: Velocity, output from cumulative trapezoidal rule 

 

2.3.4. Periodicity Detection 

Periodicity detection is a powerful mining tool in 

automotive, aviation and manufacturing industries for 

condition monitoring. All rotating parts of machines can be 

studied and a change in the periodic structure of the 

machine vibrations can be detected for the prevention of 

machine wear or potential failure (Vlachos et al., 2005). 

Two basic tools combined together provide information on 

periodicity: FFT for potential periods or period hints and 

autocorrelation for the verification of these period hints 

(Vlachos et al., 2005).  

FFT gives the amplitude frequency of the signal and by 

setting an amplitude threshold, any frequency exceeding 

that threshold, becomes a hint. Figure 8 shows a 

superposition of two sine wave signals, with frequencies of 

40 kHz and 80 kHz respectively. Figure 9 shows the 

amplitude response and the two main signal frequencies. By 

applying a desired threshold, these two frequencies or 

periods are selected as hints. The threshold setting algorithm 

could begin with an initial high value for the threshold and 

gradually decreasing it with a certain step. More advanced 

adaptive threshold algorithms could be implemented. 

Finally, the period hints are compared to the values that 

represent the autocorrelation hills and if the hints and the 

hills are equal or if they differ at a maximum of 30%, then 
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the detected periods are the time values of the hills, thus 

refining the period hints (figure 10). 

 

Figure 8:Signal for periodicity detection 

 

 

Figure 9: Amplitude Response 

 
 

Figure 10: Biased Autocorrelation, two dominant periods 

verified and refined 

2.3.5. Novelty Detection 

An algorithm has been designed and developed to detect 

absolute differences between consecutive samples, that 

exceed a specified threshold and that may be crucial. The 

algorithm classifies the detected novelties into spikes, if 

there is a sudden change and return to normal and stage 

changes, if  a more permanent change occurs and the values 

thereafter belong to a different range.  The algorithm also  

calculates the time of occurrence, duration of these 

novelties, starting and ending values for state changes, 

starting and maximum values for spikes. The threshold 

setting algorithm begins with an initial high value for the 

threshold and gradually decreases it with a certain step, as in 

the case of periodicity detection. The initial value or upper 

threshold limit (UTL), as well as the final value or lower 

threshold limit (LTL), are automatically set with the use of  

Eq. (1) and Eq. (2)   (Bakar et al., 2006):  

  

    3 /     -  3 /    2    (1)

    -  3 /   (2)

UTL m N m N m

LTL m N

 



      

  

 

 

where, 

 m = mean value of data samples 

σ = standard deviation of data samples 

N = total  number of data samples 

 

Figure 11 shows engine turbo charger RPM raw data and 

figure 12 the novelties detected by the algorithm. Dashed -

line novelties are classified as spikes and dotted - line 

novelties as state changes. Figure 13 shows the results of the 

algorithm when applied on draft force measurements. 

Because of the noisy nature of these measurements, 

Savitzky- Golay filtering is applied before the algorithm and 

the new results are shown in figure 14, where the most 

important novelties now stand out. The classification is 

parameterized and state changes can be considered as 

spikes, by altering a parameter that affects the time duration 

of a spike. Figure 15 shows this effect. Especially, the state 

change that appeared at the 500-700 time unit range of 

figure 14 is now classified as spike in figure 15. 
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Figure 11:  Main engine turbo charger RPM measurements 

 

 

Figure 12: Main engine turbo charger RPM  Novelties 

detected  

 

 
Figure 13: Draft force novelties detected 

 
 

Figure 14: Draft force novelties detected after Savitzky-

Golay smoothing 

 
Figure 15: Resulted graph after increasing the spike width 

parameter 

3. FURTHER WORK 

The next and most intriguing element of an intelligent 

wireless sensor network is the ability of learning. Learning 

is the added value of an intelligent sensor that leads to 

higher levels of decision-making and guidance for the 

maintenance manager. This is an on-going activity and our 

considerations cover two categories of Machine Learning: 

Classification and Clustering, which are further described as 

supervised or predictive and unsupervised or descriptive 

learning respectively.  

Supervised learning uses a known data set to make 

predictions and to classify an unknown data object based on 

a model derived from the training set. In other words, the 

training set consists of pre-classified patterns and the goal is 

to label a new and unlabeled pattern. The model is derived 

from the use of the pre-classified patterns as the basis for 

learning the class descriptions, which in turn are used for the 

classification of new data. (Jain et al., 1999).  An effective  
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method under consideration is the Naive Bayes Classifier, 

because of its over-simplified assumptions and, yet, very 

positive outcome (Katsouros et al. 2013).  This classifier is 

based on Bayes’ theorem -from statistics theory- and 

produces results regardless of the presence or absence of a 

particular feature of the class (Murphy, 2012).   

On the other hand, unsupervised learning makes predictions 

about unknown data without any training set, whatsoever. 

Its purpose is to discover interesting patterns in the data, a 

concept called Knowledge Discovery (Murphy, 2012). This 

form of data analysis can be realized with Cluster Analysis 

or Clustering, where the decision is to allocate patterns in 

known clusters or even form new clusters when this 

assignment does not appear to be credible. This approach 

can be applied to event detection. When readings and 

consequently a set of features are assigned to known 

clusters, then the condition state of monitored machinery 

can be said to belong to a known condition (Emmanouilidis 

et al., 2006). Typically this belongs to a normal operating 

condition. Depending on the problem formulation it may 

also belong to an unknown condition. Using the terms 

'known' and 'unknown' here imply the association of a 

known condition with a condition for which representative 

readings have already been recorded. An unknown 

condition for the monitoring system is one that 

representative readings have not been recorded yet. This is 

an essential level of processing for event detection.  

A detected event may either correspond to a situation where 

an unknown condition has been detected, or to one that a 

measurement is assigned to an abnormal condition, on the 

basis of pre-existing evidence. Clustering therefore can offer 

this first level of processing, that is essential of any event 

detection mechanism. Once data is assigned to 'unknown' 

category, the next step is to perform data labeling, that is to 

label the newly formed cluster by assigning it to a certain 

condition. There is a wide range of clustering techniques 

that can be applied in such tasks. In all cases a critical issue 

to be addressed is to define an appropriate distance metric, 

such as the Minkowski metric. Nonetheless, in many cases 

the set of parameters upon which a decision has to be 

reached can be of very heterogeneous nature and in such 

cases other heterogeneous distance metrics, such as 

Hausdorff distance  may be  applicable (Jain et al., 1999).  

4. CONCLUSION 

This paper presented work that achieved to upgrade the 

capability of hardware-integrated solutions to efficiently 

support wireless condition monitoring by embedding more 

advanced computational features at the level of sensor 

nodes. We have presented the trends and progress in the 

intelligence of wireless sensor networks and have proposed 

some key points that contribute to this concept and to the 

evolution of e-maintenance. It is our belief that the 

integration of such potent hardware solutions in wireless 

condition monitoring, with advanced signal processing and 

learning features has the potential to offer a significant 

upgrade in the ability to deliver distributed and intelligent 

wireless condition monitoring solutions. Such developments 

would constitute a powerful addition to the e-maintenance 

solutions and are being developed as part of an e-

maintenance platform that aims to provide technical or 

managerial staff with smart choices and solutions, as well as 

valuable information and services at any point in time, 

leading to higher confidence in decision-making processes 

and improved maintenance performance. 
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ABSTRACT

In this paper we introduce a novel model-based reliability
analysis methodology to guide the best maintenance practices
for the different components in complex engineered systems.
We have developed a tool that allows the system designer to
explore the consequences of different design choices, and to
assess the effects of faults and wear on critical components
as a result of usage or age. The tool uses pre-computed
simulations of usage scenarios for which performance met-
rics can be computed as functions of system configurations
and faulty/worn components. These simulations make use
of damage maps, which estimate component degradation as
a function of usage or age. This allows the designer to de-
termine the components and their respective fault modes that
are critical w.r.t. the performance requirements of the design.
Given a design configuration, the tool is capable of providing
a ranked list of critical fault modes and their individual contri-
butions to the likelihood of failing the different performance
requirements. From this initial analysis it is possible to deter-
mine the components that have little to no effect on the prob-
ability of the system meeting its performance requirements.
These components are likely candidates for reactive mainte-
nance. Other component faults may affect the performance
over the short or long run. Given a limit for allowable failure
risk, it is possible to compute the Mean Time Between Failure
(MTBF) for each of those fault modes. These time intervals,
grouped by component or Line Replaceable Units (LRUs),
are aggregated to develop a preventive maintenance sched-
ule. The most critical faults may be candidates for Condition-
Based Maintenance (CBM). For these cases, the specific fault

Bhaskar Saha et. al. This is an open-access article distributed under the terms
of the Creative Commons Attribution 3.0 United States License, which per-
mits unrestricted use, distribution, and reproduction in any medium, provided
the original author and source are credited.

modes considered for CBM also guide sensor selection and
placement.

1. INTRODUCTION

Preventive maintenance has been the main stay of indus-
try (civilian as well as military) for a long time (Barlow &
Hunter, 1960). This was based on the assumption that be-
cause mechanical parts wear out, operational reliability was
directly linked to duration of use or age. However, rigorous
run-to-failure experiments have shown that there is signifi-
cant variability in lifetimes even for the same components
installed in similar set ups and tested under identical condi-
tions. Reasons for this range from manufacturing variations,
intrinsic defects to non-use or age related failure effects. This
has naturally increased the focus on Condition-Based Main-
tenance (CBM) (Jardine, Lin, & Banjevic, 2006).

CBM, however, has its own disadvantages like high de-
sign cost, added sensors and data collection components, in-
creased system complexity and sources of error. What is
needed for complex engineered systems is an optimum mix
of reactive, time- or interval-based, condition-based, and pre-
dictive maintenance practices. Because maintenance costs
can be a significant factor in the overall cost of a system
or product, even up to 60-80% in military systems (Dallosta
& Simcik, 2012), it is essential that maintenance be consid-
ered early in the design when flexibility is high and design
change costs are low (Ender, Browne, Yates, & O’Neal,
2012). Changes made in production may be several orders
of magnitude higher than those made early in the design cy-
cle (FitzGerald, 2001). Keeping these objectives in mind,
we have developed a model-based reliability analysis tool
for complex engineered systems (Honda et al., 2014). This
approach is system focused, i.e., it is more concerned with

1
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maintaining system function than with individual component
operation. The tool allows the system designer to explore the
consequences of different design choices, and to assess the
effects of faults and wear on critical components as a result
of operational stress.

Recent years have seen developments in simulation and opti-
mization methods for fleet-level system reliability. Once such
method (Mourelatos et al., 2011) calculates system reliabil-
ity by probabilistically combining component reliability dis-
tributions for non-repairable as well as repairable systems,
while assigning repair and maintenance costs to component
failures. This work is complementary to the approach pre-
sented here that allows a simulation-based way for comput-
ing the system reliability distribution from individual compo-
nent reliability distributions. However the reliability calculus
presented in (Mourelatos et al., 2011) works primarily for se-
rially configured systems where the any component failure
results in system failure. This contrasts with the approach
here of using simulations to compute the effect of compo-
nent failure on system performance. Researchers have also
tried to leverage models within a broader application of sys-
tems engineering to link models for mobility or survivability
to models for reliability, maintainability, and availability or
procurement and lifecycle sustainment cost. A notable ef-
fort in this direction is the Framework for Assessing Cost
and Technology (FACT) web service developed for the US
Marine Corps (Ender et al., 2012). FACT allows near real-
time analysis for exploring design parameter trade-offs that
affect the overall performance, reliability, and cost of a sys-
tem design. The model-based reliability analysis technology
described here can be thought of as a scalable model-based
reliability analysis capability that can be integrated with a
system engineering decision support framework like FACT.

The tool presented here builds on the Fault-Augmented
Model Extension (FAME) technology (de Kleer et al., 2013)
described in the following section. The reliability analysis
mechanism uses pre-computed simulations of mission seg-
ments for which performance metrics can be computed as
functions of system configurations and faulty/worn compo-
nents. These simulations make use of damage maps, which
estimate component degradation as a function of mission
stress. This allows the designer to determine the components
and their respective fault modes that are critical w.r.t. the per-
formance requirements of the design.

In fact, given a design configuration, the tool is capable of
providing a ranked list of critical fault modes and their indi-
vidual contributions to the likelihood of failing the different
performance requirements. Finally, recommendations can be
made for the ideal maintenance strategy for each of the com-
ponents. For cases where preventive maintenance is appro-
priate the tool helps to compute the time or mission intervals
for scheduling purposes. For cases where CBM or predic-

tive maintenance is applicable, the tool provides prior distri-
butions of component failure that may be used in a Bayesian-
learning or similar filtering/machine learning frameworks. As
of now this technology is applied to systems and components
described in the Modelica modeling language.

Results are presented based on the reliability analysis work
done for the DARPA Advanced Vehicle Make (AVM) pro-
gram. The system model considered here is a simplified driv-
etrain corresponding to a tracked military vehicle comprising
an engine, a power transfer module (PTM) with a torque con-
verter, a cross-drive transmission, drive shafts, final drives,
battery, and a fuel tank.

The internal combustion (IC) engine model contains a torque
map and fuel consumption map, heat generation, a thermo-
stat and a starter motor. This engine model can be instan-
tiated with different parameters including fuel map, torque
map, friction map, engine inertia, crank speed, fuel type and
thermostat parameters. The transmission model includes a
mechanical model that splits the energy between the left hand
side and right hand side drive shafts (i.e. tracks) and models
the gear changes (shifts). It also models steering, braking and
coolant subsystems.

The system boundary of this drive train model is at the final
drives. Track models, controllers, and high fidelity coolant
systems are not part of this design. In order to perform a
simulation, we added additional surrogate components such
as stimulus, load conditions and environment components in
a test bench. The key test components are the road load
and the surrogate coolant models. Controllers are not part
of the system therefore time based signals are provided for
each mission to the engine and transmission control ports. A
schematic of this drivetrain is shown in Figure 1. Each com-
ponent in this system design can be instantiated with different
parameters, which gives flexibility to evaluate the reliability
of different discrete design points (i.e. design configurations).

Figure 1. Schematic of sample AVM drivetrain (courtesy
DARPA).

2
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A mission is defined as a sequence of terrain blocks made
up of differing surfaces, like asphalt, concrete and soil, and
variation in gradients. The terrain profile is derived by sam-
pling from a set of terrain power spectral density functions,
which concisely describe an infinite set of possible terrain
profiles with smooth roads, sand, boulders, etc. The distribu-
tions ensure that low-impact cyclic loads as well as rare but
high-impact loads are realistically represented for the class of
vehicle under consideration. A typical terrain profile is pre-
sented in Table 1.

In order to explain the insights for maintenance or system
health management (SHM) strategy that may be gained us-
ing reliability analysis methodology described above, the fol-
lowing two sections will provide some details of the FAME
technology and the reliability analysis tool. More details are
available in (de Kleer et al., 2013) and (Honda et al., 2014).

2. FAULT-AUGMENTED MODEL EXTENSION (FAME)

The DARPA AVM program aims at developing a design
flow that lets system designers adapt their designs through a
tightly integrated build-test-modify loop with multiple points
of feedback in a model-based design and simulation environ-
ment. In order for this workflow to yield reliable system de-
signs, it is essential for designers to have the ability to ana-
lyze faults, fault propagation, and system-level impact. The
FAME-based reliability analysis tool provides this capability.

FAME is based on the insight that most faulty behaviors are
based on a few underlying fault mechanisms. FAME takes
nominal component behavior descriptions (from Modelica
model libraries) and parameterizable fault mechanism models
as input, and deploys a model transformation mechanism to
automatically generate a comprehensive set of fault-inducible
component models. This technique when applied to a sys-
tem design comprising Modelica component models results
in a fault-inducible design where the effects of component
faults can be investigated at the system level. A rough esti-
mate of the reduction in modeling effort may be had by ana-
lyzing faults at the component level. The FAME technology
is capable of modeling more than 7000 unique faults span-
ning nearly 1200 leaf-level components. Leaf-level compo-
nents, like the Modelica Standard Library clutch model (Mod-
elica.Mechanics.Rotational.Components.Clutch), are those
that are not assemblies of simpler components, i.e. the
equation block in these Modelica models comprise dynamics
equations rather than equations that denote connections be-
tween components. Component assemblies and other higher-
level components inherit the fault behaviors of the compo-
nents they are comprised of.

For the FAME model transformation process we leveraged
the JModelica Modelica parser framework, and the JastAdd
technology on which it is built, to inject faults into the nom-
inal component model library (de Kleer et al., 2013). A
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Figure 2. Basic FAME (Fault-Augmented Model Extension)
architecture.

Java program incorporating JastAdd and JModelica runs over
the supplied library, recognizes fault-susceptible component
models, re-writes them as needed to provide fault behavior,
and outputs the modified library to a new location. These
Modelica component fault models include a generic param-
eter named damage amount or a component-specific param-
eter, e.g. coefficient of friction for a brake, that determines
the severity of the fault. The value of this parameter is de-
termined by stochastic physics-of-failure models that capture
the degradation or catastrophic fault modes of the associated
components. These stochastic models are pre-simulated in a
Monte Carlo framework incorporating model uncertainties as
well as the expected spectrum of usage over the lifetime of the
component. The results are stored as damage-parameter maps
that are indexed by model material and geometric parameters
and level of usage. The system-level Modelica models and
simulations are detailed enough such that the variations in
the component damage for any given age or usage shows up
as distributions over the performance metrics. Figure 2 shows
the basic architecture of this approach.

3. RELIABILITY ANALYSIS

The FAME reliability analysis tool supports analyses of sys-
tem reliability and performance under both continuous wear
and catastrophic failure of critical system components. It
also scores design configurations according to reliability met-
rics and provides feedback to the designer about preferable
choices of components or design configurations. “Reliabil-
ity” describes the ability of a system to operate while meet-
ing all requirements for a specified period of time or number
of missions. Reliability is often quantified in terms of like-
lihood of failure, e.g. Mean Time to Failure (MTTF), Mean
Time between Failure (MTBF), and Failures in Time (FIT)
which captures system unreliability. The tool captures relia-
bility using the metric Overall Probability of Mission Failure.
In particular, the tool helps the designer to discover answers
to the following questions:
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Table 1. Typical mission terrain and speed profile

Terrain Speed (mph) % Distance (miles)
High Quality Paved Roads (Concrete) 40 3 3.50
Secondary Pavement (Concrete) 40 3 3.50
Rough Pavement (Concrete) 40 4 4.50
Loose Surface (Concrete) 35 8 9.25
Loose Surface w/ Washboard (Concrete) 30 10 11.50
Belgian Block, Cobblestone (Concrete) 30 2 2.25
Trails (Hard Soil) 25 30 35.00
Cross-Country (Hard Soil) 15 40 46.50
TOTAL 100 116 .00

• What system configurations are most reliable?

• Which component failure modes causes critical perfor-
mance loss?

• Why is a particular component failure mode critical?

• What performance metrics are most at risk?

• How do these factors vary with number of missions?

Figure 3 shows the main user interaction elements of the tool
marked in red. The main actions to be taken by the user are:

1. Select system configuration

2. Pick fault mode

3. Set number of missions

4. Set required probability for meeting requirements

5. Select graphs to gain insight.

The tool lists the individual probabilities of meeting each
requirement, as estimated from simulations of the fault-
augmented Modelica system model, as well as a pass/fail flag
for the likelihood of meeting all requirements. These feed-
back are denoted by the top two blue boxes in Figure 3. The
designer can also press radio buttons to investigate insight
graphs for performance metrics of interest. The selector panel
is shown inside the red box marked 5 and the insight graphs
are in the blue box at the bottom. A set of three insight graphs
are shown per performance metric:

• Damage amount vs. Number of Missions
Damage incurred by wear is a probabilistic amount es-
timated by mission stress factors and system properties.
The left graph shows percentiles for amount of degrada-
tion for the selected component as a function of number
of missions. The operation of the drivetrain was simu-
lated several million times over a mission defined as a
sequence of terrain blocks. Statistical variations in com-
ponent parameters result in component-specific damage-
parameter maps, which are used to estimate damage in-
curred after a given number of missions.

• Performance metric vs. Damage Amount
The middle graph shows how damage to the selected
component impacts the selected performance metric.
Damage to a component ranges from 0 (perfect condi-
tion) to 1 (total failure). This range is sampled and the
corresponding fault simulations are carried out to pop-
ulate this graph. In the example shown in Figure 3,
the middle graph shows that, due to increased frictional
losses in the PTM torque coupler component, the accel-
eration time to reach 10 kph increases with the damage
amount (coefficient of friction).

• Probability of meeting performance requirement vs.
number of missions
The right graph shows the calculated probability of
achieving the selected performance metric after the target
number of missions. In the example shown in Figure 3,
the curve shows that, due to increased frictional losses
in the PTM torque coupler component, the probability of
meeting the desired acceleration time of 3 secs to reach
10 kph decreases with the number of missions. The red
vertical dashed line at the target of 150 missions inter-
sects the curve at a probability of 0.76. This is less than
the target probability of .9 shown by the cyan dashed hor-
izontal line. The requirement probability of .9 intersects
the curve at about 130 missions.

The designer can also investigate the Figure-of-Merit (FOM),
listed beside each configuration in the red box 1 (Figure 3).
The FOM is calculated as the probability of mission failure
(failure to meet at least one requirement) under the likelihood
of a single component failure, aggregated across all compo-
nents. The probability of component failure, and hence the
probability of mission failure, is a function of the number of
missions. The designer can click on a probability of mission
failure value to view a breakdown of the failure probability
in terms of components subject to wear/faults, as shown in
Figure 4. From this graph, the designer can determine the
component(s) most likely to be responsible for potential mis-
sion failure.
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Figure 3. FAME reliability analysis user interface (tool available at http://fame-deploy.parc.com:2040/).

The FOM breakdown graph lists component reliability for the
ten most serious component faults. Component reliability ex-
presses the probability that the component’s failure will cause
an overall mission failure after the set number of missions,
and is color-coded to show the impact of the component’s
failure on the various performance metrics. In the example
shown in Figure 4, the Engine.Inertia.Bearing.Friction fault
(high engine bearing friction) is certain (probability = 1) af-
ter the set number of missions to retard acceleration-time-to-
15km/hr to more than the required value listed in the require-

ments table on the main user interface (as shown in Figure 3).
Similarly, other component faults are catastrophic w.r.t the
same or one of the other performance metrics. In the case of
the two fatigue failure faults, three performance metrics are
shown to fail simultaneously because the simulation model
does not move under gear or shaft failure.
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Figure 4. Figure-of-Merit (FOM) probability breakdown in terms of component failures.

4. MAINTAINABILITY ANALYSIS

As a logical extension of the above analysis, the designer can
outline an appropriate maintenance strategy using this tool.
Each high-level component, subassembly, or line-replaceable
unit (LRU), e.g. engine, PTM, cross-drive transmission, has
multiple fault modes. Each mode has a critical damage
amount defined as the minimal damage amount that results in
failing any one of the performance requirements. The critical
damage amount for a component fault mode is determined by
the first performance metric that fails as a result of this dam-
age. This can be represented as:

dci,j = min
k
dci,j,k (1)

where,
dc: critical damage amount
i: index for high-level component or LRU
j: index for component fault mode
k: index for performance requirement.

At the LRU level, the minimum of these critical damage
amounts can be computed over all associated fault modes.
This would provide the critical damage at the LRU level.

dci = min
j
dci,j, (2)

From the Damage amount vs. Number of Missions graph (left
graph in Figure 3), the number of missionsmc

i corresponding
to dci can be interpolated. Essentially, mc

i is the maintenance
interval, conceptually similar to MTTF for the LRU, and can
be used to determined a maintenance schedule. It is impor-
tant to note that this number is dependent upon the desired
probability of meeting the performance requirements.

Table 2 shows these numbers for the different configurations
and different acceptable risk levels for mission failure. Ac-
ceptable risk of mission failure is defined as follows: in order
to set the risk at 10%, set the desired probability of meet-
ing requirement to 0.9 for all requirements. The drivetrain
example considered here had six unique configurations. Con-
figurations 4 and 6 are missing from the table since these con-
figurations fail to meet at least one of the requirements from
the start of their mission life. Overall, configuration 2 seems
to be the best in terms of system uptime between necessary
maintenance events (maintenance interval), and hence main-
tenance cost, followed closely by configuration 5.

5. MAINTENANCE STRATEGY

5.1. Change in Maintenance Interval with Allowable Risk

From Table 2 it can be seen that the engine maintenance in-
terval is not changed much by changing the acceptable risk
of mission failure. By comparison, the cross-drive transmis-
sion and the PTM correlate strongly with changing risk level.
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Table 2. Estimated maintenance intervals for drivetrain example (numbers represent missions)

Configuration No. 1 2 3 5

Components/LRUs
Caterpillar C9 Caterpillar C9 Caterpillar C9 Caterpillar C9

Allison X200-4A Allsion XTG411-A Allison X200-4A Allison X200-4A
Final Drive 3.0 Final Drive 3.0 Final Drive 3.3 Final Drive 2.7

Acceptible risk of mission failure 10% (Desired probabilities of meeting requirements all set to 0.9)

Cross-drive Transmission 56 56 12 56
Engine 50 65 38 61
Power Transfer Module (PTM) 96 82 86 96
Left Final Drive >8000 >8000 >8000 >8000
Right Final Drive >8000 >8000 >8000 >8000
Road Wheel >8000 >8000 6 >8000

Acceptible risk of mission failure 5% (Desired probabilities of meeting requirements all set to 0.95)

Cross-drive Transmission 42 42 11 42
Engine 49 65 24 61
Power Transfer Module (PTM) 63 63 63 63
Left Final Drive >8000 >8000 >8000 >8000
Right Final Drive >8000 >8000 >8000 >8000
Road Wheel >8000 >8000 6 >8000

Acceptible risk of mission failure 1% (Desired probabilities of meeting requirements all set to 0.99)

Cross-drive Transmission 25 25 10 25
Engine 49 61 36 57
Power Transfer Module (PTM) 28 28 101 28
Left Final Drive >8000 >8000 >8000 >8000
Right Final Drive >8000 >8000 >8000 >8000
Road Wheel >8000 >8000 4 >8000

This is shown more clearly in Figure 5. The final drives
seem unaffected by the risk level, likely because of not be-
ing stressed significantly in the usage scenario selected. The
road wheels have a similar story, except in the case of con-
figuration 3 where it is overstressed. Some simple inferences
can be drawn here about the appropriate maintenance strate-
gies for different LRUs. The cross-drive transmission and the
PTM seem good candidates for scheduled maintenance due
to the correlation of their critical damage levels, dci ’s with
number of missions. The engine does not show such a strong
correlation and hence it is better managed using a condition-
monitoring or CBM approach.

In addition to the simple inferences above, there is some more
key information that we can extract from the FAME simula-
tions and use for maintenance strategy. We need to consider
not only frequency of failure and consequence of failure, but
also the predictability of failure (as measured by variance in
failure time for the population,) and cost and ease of main-
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Figure 5. Maintenance interval vs. acceptable risk of mission
failure for configuration 2.

7

European Conference of the Prognostics and Health Management Society 2014

527



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

Table 3. Estimated maintenance intervals (in missions) for engine faults under 1% risk of mission failure

Engine fault Maintenance interval Requirement affected
Engine.Inertia.Bearing.Friction 49 acceleration to 10 kph
Engine.DriverPulley.Bearing.Friction 125 acceleration to 10 kph
Engine.DrivenPulley.Bearing.Friction 80 acceleration to 15 kph
Engine.Pump.Bearing.Friction 80 acceleration to 15 kph

tenance/repair/replacement. Note that ease of maintenance is
related to design choice, so it is part of the methodology to
improve maintainability.

5.2. Ordering Component Faults by Importance

The correlation of the maintenance interval with the accept-
able risk of mission failure provides only a guide to the se-
lection of maintenance strategy for any given LRU. What is
needed is to order the importance of fault modes for each
component. This will determine which fault mode needs to
be monitored carefully, and which ones could be lower pri-
ority. As an example, consider the engine component, which
has 4 important fault modes in the drivetrain system consid-
ered. Table 3 shows the maintenance interval of these 4 fault
modes along with the performance requirement affected in
each case. The acceptable risk for mission failure is 1% for
this table.

From the fault-specific maintenance interval values it is clear
that a good monitoring system for the engine crankshaft bear-
ing (Engine.Inertia.Bearing) is needed to track frictional wear
and tear. The pulleys are less critical and may be checked
during scheduled maintenance. However, since they do af-
fect performance requirements reactive maintenance is not
advised. This is a good example that can be used to check the
validity of the inferences that can be drawn from the reliabil-
ity analysis tool. While the maintenance specifics of military
Caterpillar C9 engines is not known, heavy duty engines of-
ten have oil debris sensors that measure the contamination of
the oil due to wear and tear of moving metal parts. Commer-
cial vehicle engines typically recommend manual inspection
of timing belts that connect the driven pulleys to the driver
pulley. Belt slip is the primary cause of frictional losses at the
pulleys. It should be noted that the maintenance strategy in-
ferred from the reliability estimates automatically generated
by the tool corresponds with field-tested expertise.

5.3. Ease of Maintenance

Another key point to note from Table 2 is that the cross-drive
transmission fails more frequently in configuration 3 as com-
pared to the other design configurations. Ease of maintenance
is a factor here. If this is the configuration chosen by the
designer (reliability or maintainability are not the only con-

siderations), then care should be taken in the design to make
this LRU easily accessible for maintenance and repair. Most
military vehicles have a requirement on the time duration for
specific maintenance actions since harsh operational and en-
vironmental conditions can make the simplest of maintenance
extremely difficult or impossible (DES JSC TLS POL REL,
2009).

5.4. Stochasticity of Fault Modes

Some component fault modes are more deterministic than
others. In terms of maintenance, more deterministic fault
modes are better candidates for scheduled maintenance. Con-
sider the engine pump bearing example shown in Figure 6.
The left plot shows that there is not much variance in the
wear characteristics of a population of these bearings (all the
percentile curves are close to each other). Consequently, the
right plot shows that the probability of meeting the associated
requirement dips sharply near the 170 missions mark. This
fault is a good candidate for scheduled maintenance since
there is not much variability in the number of missions be-
fore failure. A safe maintenance interval like 150 missions
(probability of failure < 1%) may be chosen in this case.

By comparison brake slip due to friction wear tends to have
a more gradual transition to failure as shown in Figure 7.
This fault mode has more variation in how the particular
component degrades with usage. It probably needs a CBM
approach informed by a sensor to monitor brake pad wear.
Indeed, brake pad wear sensors had been invented decades
back (Wiley & Williams, 1980) with application in military
land vehicles.

6. CONCLUSION

This paper introduces a novel stochastic model-based reliabil-
ity and maintainability analysis framework with applications
to a broad class of complex engineered systems. A few exam-
ples of suggested maintenance strategies were presented for
individual component fault modes as well as for components
at the LRU-level. Cases where additional sensors make sense
were identified. Some validation of these suggested main-
tenance strategies was provided based on real world main-
tenance practices. However, it is important to note that no
comprehensive maintenance strategy was presented. This pa-
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Figure 6. Reliability analysis of engine pump bearing friction wear.

Figure 7. Reliability analysis of brake friction wear.

per represents an initial step towards facilitating design-for-
reliability and design-for-maintainability in the model-based
design paradigm. Although no comprehensive maintenance
strategy was presented, such a strategy is the subject of cur-
rent research, where higher fidelity models that include man-
ufacturing and material variability are planned to be used.

The FAME reliability analysis tool is available online at
http://fame-deploy.parc.com:2040/. Interested readers are en-
couraged to try out the tool and send comments to the authors.
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ABSTRACT 

Acting upon the data involved in typical diagnostics and 

prognostics tasks is often confounded by the complexity of 

the corresponding situation and needs to take into account 

domain-specific or even installation-specific knowledge 

considerations. While domain knowledge is often captured 

in various forms, such as is typically done in Fault Modes, 

Effects and Criticality Analysis (FMECA), the 

contextualisation of the captured data and related knowledge 

to a corresponding situation, in other words a situated-aware 

modeling of data and knowledge, is often missing. Our 

research leverages the efficiency of maintenance support for 

mobile actors. Investing in modern service provision 

technologies, this work targets the effectiveness of capturing 

and sharing field expertise. An analysis of both the 

modeling specification and the functional requirements for 

such an approach. is provided. The semantics of “Failure 

Context”, a context that guides user’s navigation towards 

relevant diagnostics and maintenance-related knowledge, 

are mapped into an appropriate data schema. Based on this, 

a system capable of managing the core information of the 

Failure Context, while offering adequate tools that support 

experts to build on, browse through, and reach contextually-

relevant decisions is implemented. The development follows 

a reference-annotation design pattern to deliver on spot 

capture and enrichment of maintenance-related knowledge. 

Thus, the developed system provides the means for the 

effective management and exploitation of 'micro-knowledge 

fragments', associated with FMECA-related entities and 

knowledge. This is a significant enabler for the effective 

elicitation and management of field-captured expertise, 

enabling the enrichment and validation of maintenance-

related knowledge.  

1. INTRODUCTION 

E-Maintenance has emerged from the fusion of maintenance 

practice with information and communication (Liyanage, 

Lee, Emmanouilidis, & Ni, 2009).Currently, a wide range of 

systems, from shop-floor sensing platforms to executive 

decision support tools have established their role and added 

value in scaling maintenance performance and tuning the 

optimization of its background economy (Mouzoune & 

Taibi, 2013, 2014). 

E-Maintenance initially focused on technology integration 

efforts. The design scale of embedded systems and the 

versatility of SoC (System on a Chip) architectures enabled 

the integration of more powerful sensing infrastructure. 

Through time and advancements, sensor grids effectively 

evolved into self-aware WSNs (Wireless Sensor Networks) 

and e-Maintenance systems managed to align with the 

benefits of IoT (Internet of Things) trends (Emmanouilidis 

& Pistofidis, 2010a). Smart wireless sensors with embedded 

intelligence continue to be one of the main pillars of e-

Maintenance and the reference implementation of Wireless 

Condition Monitoring (Emmanouilidis & Pistofidis, 2010b). 

Aiming to produce schemas that provide optimal descriptive 

performance, data modeling has progressed at a different 

pace than software and hardware integration. Early on, 

standards, such as MIMOSA
1
, achieved a solid coverage for 

a valid base of related concepts. Upon these standards 

research efforts targeted focused industrial testbeds, 

bringing insight into how to fuse data in order to compose 

maintenance knowledge (Savino, Brun, & Riccio, 2011).  

Following the state of web 2.0 and mobile technologies, e-

Maintenance reaches now to support users that exhibit a 

continuously context-changing access profile. Service-

                                                           
1
 MIMOSA Standard - http://www.mimosa.org/ 

Petros Pistofidis et al. This is an open-access article distributed under the 

terms of the Creative Commons Attribution 3.0 United States License, 

which permits unrestricted use, distribution, and reproduction in any 

medium, provided the original author and source are credited. 
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oriented maintenance has allowed the compilation of tools 

into mutli-user web portals, where access is provided 

through flexible dashboard interfaces (Mouzoune & Taibi, 

2014). Accommodating the needs of a mobile user and 

furthermore the needs of a shop-floor maintenance actor, 

modern e-Maintenance systems facilitate context-adaptive 

engines to compile portable views that support management 

over detailed and structured maintenance knowledge 

(Pistofidis & Emmanouilidis, 2012).  

Filtered visualizations of maintenance data and knowledge 

navigation assistance have significant value, especially 

when personnel is expected to act/decide/perform on-spot 

and at a highly responsive and reliable level. Decision upon 

maintenance actions, at any level, should be driven by facts 

and evolving field expertise. Such knowledge is tacitly 

shared among maintenance experts but its elicitation, 

management and exploitation is not well-addressed by 

established maintenance and asset management solutions.  

To effectively manage shared knowledge, a process should 

be tuned to assist in its recording, management and 

evolution. This process needs to balance the synergy 

between two tasks: (i) proper provision of previously 

established knowledge entities as a reference and (ii) means 

for its effective review, evaluation and enrichment by fusion 

agents. On an industrial shop-floor, maintenance engineers 

and technicians can act as knowledge fusion agents, while 

an evolving FMECA-related information structure as 

reference for diagnostics-support.  

Many e-Maintenance solutions focus on the efficiency of 

handling maintenance data and rigid knowledge. In practice 

knowledge is indirectly produced when a semantic map is 

placed upon solid data, commonly termed as metadata. 

Maintenance metadata management is less than adequately 

addressed in most software systems supporting maintenance 

and asset management. The majority of e-Maintenance 

systems opt to expand the descriptive scope of their models 

rather than introduce an extra layer of semantics. This 

decision eventually leads to an impressive support for 

standards, schemas and data formats, along with a huge 

volume of flat data, which are nonetheless too complex for 

human actors to process at any significant level. Data 

analytics emerge to serve with domain agnostic engines, 

aimed at porting and tuning mathematical models to test 

their ability in inferring maintenance knowledge from silos 

of maintenance history data. When working directly on flat 

data, this pattern may produce semi-functional mechanisms 

of maintenance intelligence that offer limited efficiency, 

while introducing overwhelming computational costs. 

Furthermore, it is a pattern that leaves experts largely 

unexploited, with limited contribution to shared knowledge 

and expertise. The engineers are called to study the findings 

extracted from monitored parameters of a past event. The 

context for such an event is often poorly recorded and the 

engineer lacks the necessary insight that was present when 

dealing with the problem in the first instance. 

This paper presents research that addresses the mentioned 

requirements by employing modern technologies and 

delivering a metadata-oriented approach on managing 

maintenance knowledge. Maintenance insight can be 

collected on the shop-floor, prior to any back-office 

computation and act as the foreground of maintenance 

intelligence. As a data preparation stage, it benefits from the 

experts’ fully contextualized cross-examination of approved 

maintenance profiles. To fulfill this task, the expert is 

provided with appropriate tools to review and annotate 

related data. An annotation schema of maintenance tags 

enables the user-labeling of events. The way this is achieved 

is explained by presenting the system behavior of an e-

maintenance user that utilizes metadata and fuses shop-floor 

generated expertise with a constantly evolving unit of 

maintenance intelligence.  

The remainder of the paper is structured as follows. The 

next section presents related work and emphases the need 

for more efficient on the field knowledge recording and 

management. Section 3 analyses the modeling principles for 

the refined semantics of a Failure Context, while section 4 

outlines the design features for a portable implementation of 

a maintenance-support tool. Section 5 presents the 

developed Intelligent Maintenance Advisor (IMA), focusing 

on the way it is tuned to handle the underlying knowledge in 

an industrial lifts manufacturing application case. A 

summary of the main conclusions and future work targets is 

provided in section 6.   

2. CONTEXT-AWARE MAINTENANCE SERVICES 

Service-Oriented Architectures have evolved into software 

patterns that adapt service-provision and service-

consumption to the specific needs of application domains. 

E-Maintenance has progressed through various solution 

designs, where different environments were employed as 

hosts of software agents and services. Identifying which 

SOA-ready devices are currently available and how they can 

functionally participate (functional roles: client, server etc.) 

in a modern SOA solution, is a key step when researching 

new SOA approaches for e-Maintenance (Cannata, 

Karnouskos, & Taisch, 2010).  

Wireless connectivity has become a feature for the majority 

of e-Maintenance solutions. Apart from sensors and SOA 

architectures, e-Maintenance is currently investing on 

extensive utilization of portable devices. Portable data 

visualization, analysis and remote management has greatly 

surpassed the expectations of many problem spaces and is 

being studied as one of the main pillars for mobility in e-

Maintenance (Emmanouilidis, Liyanage, & Jantunen, 2009). 

Migrating software logic away from servers and PC stations, 

both in terms of background analysis and client access, has 

allowed maintenance to port its functions in high trending 

technologies such as mobile (native and web) applications 

(Campos, Jantunen, & Prakash, 2009).  
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The management of physical asset management data has 

matured from digital repositories of periodic reports to 

massive distributed silos of monitoring parameters and 

domain knowledge. During the last years, while embedded 

interoperability followed a slow maturity pace, backend 

analytics of Big Data are making leaps of evolution. Many 

enterprise solutions rushed to benefit from the domain 

insights that could be offered by the constantly growing 

toolset of cloud analytics. The cloud can now be used for 

orchestrating complex tasks such as predictive maintenance 

planning and prognostics (Lee, Lapira, Bagheri, & Kao, 

2013). The volume of aggregated data is transforming what 

was formerly perceived as a costly burden into a valuable 

corporate asset with significant exploitation prospects. 

Apart from volume size and physical distribution, e-

Maintenance data have undergone an important semantic 

transformation. Widely accepted schemas, such as 

MIMOSA (www.mimosa.org), follow strict cycles of re-

composition, where extensibility and conformance to 

specifications is assessed and validated. One of the core 

concepts in simplifying the provision of complex services is 

the development of Context models. Context-awareness is a 

feature that requires the capturing, clustering and 

interpretation of refined semantics. These must include 

parameters that compile meaningful context snapshots, 

which in turn can drive desired adaptations of the system’s 

functionality. Deciding the synthesis of useful contexts for 

the maintenance domain and extracting the rules and 

correlations that can effectively boost the performance of 

maintenance tasks is an intensive modeling process 

(Nadoveza & Kiritsis, 2013; Pistofidis & Emmanouilidis, 

2013). Expanding context modeling further than location 

awareness and commonly accepted semantics, means 

producing domain-specific knowledge patterns that can act 

as triggering mechanisms of service adaptations. The end 

result is highly enriched information that can drive the 

provision of context-adaptive maintenance services.  

A good example of such a context study is the field 

knowledge that populates an FMECA (Failure Modes, 

Effects and Criticality Analysis) data model. Managing 

FMECA knowledge with software tools has been a part of 

many modern commercial e-Maintenance systems (PTC 

Windchil FMECA
2
, ReliaSoft Xfmeca

3
). The majority of 

them emphasize in supporting a constantly updated list of 

FMECA standards (i.e. MIL-STD 1629
4
, IEC 60812

5
, BS 

5760-5
6

, SAE ARP 5580
7

, SAE J1739
8

), offering 

                                                           
2 PTC Windchil FMECA - http://www.ptc.com/product/windchill/fmea 
3 ReliaSoft Xfmeca - http://www.reliasoft.com/xfmea/ 
4 https://src.alionscience.com/pdf/MIL-STD-1629RevA.pdf 
5 http://webstore.iec.ch/preview/info_iec60812%7Bed2.0%7Den_d.pdf 
6 http://www.techstreet.com/products/1087481 
7 http://standards.sae.org/arp5580/ 
8 http://standards.sae.org/j1739_200208/ 

excessively complex desktop clients to access, enter and 

update the appropriate data. For many e-Maintenance suites, 

update and evaluation of the FMECA model, are tasks 

where only maintenance engineers and technical managers 

are authorized to contribute to. This pattern usually results 

in FMECA updates that primarily focus on how executive 

engineers perceive failures and not on how shop-floor 

technician experience and address failure. Furthermore, the 

maintained FMECA model is usually designed and utilized 

in a manner similar to its hardcopy counterpart: as a static 

digital report/table that records causality of failure events. 

This access model is lacking interactivity and feedback from 

the field practice it is designed to assist.  

The majority of the above e-Maintenance systems 

disconnect the model of knowledge management from the 

one of reporting components. Usually, the intention to 

capitalize in capturing field expertise is translated into long 

non-contextualized forms for every different maintenance 

task. System’s interaction with maintenance personnel is 

largely depended on exhaustive reports that require more 

time and information than currently available to the user.  

This approach suffers from the following drawbacks: 

• Repeated Knowledge – Indirect reference to relevant 

assets, tasks or personnel in entities already associated 

with a direct link – commonly known as referencing 

loops. Many modern systems overload the referencing 

volume of their schemas to compensate for complexity 

and to achieve faster response. Such an approach can 

create consistency issues, in terms of valid maintenance 

correlations and information loops. Reliability issues 

can prove to be a deal-breaker for a diagnostics system. 

• Rigid Encapsulation - Maintenance feedback, is often 

stored into records of a ticketing/reporting component. 

The schema holds their semantics tightly grouped in 

report-instances, limiting flexibility and blocking the 

scaling and reuse of knowledge, unless additional data 

services are built to manage them. Browsing a history 

of long non-validated reports, populated with unrelated 

data to the task at hand, is not an efficient way to handle 

knowledge reuse and provide decision support. The 

ability to pick modules of expert feedback and on-the-

fly compile a targeted report history can be vastly 

superior.  

• Underpowered Fusion - When conducting an FMECA 

analysis, history of maintenance assessments constitutes 

a primary source of background reference knowledge. 

Former model versions can be fused with insight 

extracted from validated events and shop floor facts. 

Modern systems employ off-line data analytics to 

cluster and classify reported observations and remarks. 

Models that do not employ solid connections between 

reported and approved knowledge are often in greater 

need of such analytics to drive the inference or creation 

of such correlations. Instead of introducing demanding 
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prerequisites for data analytics, fusion can be designed 

to occur transparently and on-line, in parallel to model 

population and feedback provision. Semantic tags 

constitute a state-of-the-art web methodology for 

clustering and classification of knowledge. Their 

adoption for maintenance knowledge can prove to bring 

many benefits to both its management and analysis. 

Nonetheless, the above potential is still left largely 

unexploited by e-Maintenance solutions. Effective 

collection of expertise relies heavily on parameters such as 

expert’s context, concise input and connection with a valid 

knowledge base. These were core targets for our research.  

3. REQUIREMENTS FOR DIAGNOSTIC MODELING 

Building the model of an application-focused context is 

essentially a process of classification for semantics 

associated with a decided core entity set. The selected 

semantics must compile a meaningful framework that can 

provide insight into the state of both the entities and their 

relationships. Our research evaluates the semantics that 

compose a new context of maintenance diagnostics. This 

context serves as knowledge map for information linked to 

assets’ failures. Next, the design specifications and data 

modeling for capturing such a context are described.  

Conducting a successful FMECA analysis, produces a data 

table that constitutes a highly enriched unit of field 

knowledge. This reference unit is the result of an 

engineering study that involves many steps of documenting 

existing knowledge. FMECA quality is bound by the 

validity and the timely nature of the processed data. Aging 

repositories of outdated information can severely impact the 

performance of the supported diagnostics. Considering that 

both the functional behavior and condition state of a single 

machine can significantly change between different 

production profiles or life-cycle periods, implies that 

reference information, which can decisively influence a 

critical maintenance assessment, must be constantly re-

evaluated based on qualitative feedback. 

Compact Diagnostics Reference and Feedback – 

Whenever a user is prompt for an assessment, it is always 

helpful to provide a starting reference point. This reference 

information must be well connected and compact, 

facilitating the navigation on its semantics and browsing of 

its content. Modeling the user feedback must be similarly 

concise and well-framed. To effectively support the full 

scope of maintenance inspection and practice, reporting 

from current software tools tend to become excessively 

complex, often resulting in partially and incorrectly filled 

reports. Modeling the user feedback with semantics that 

simplify entry and leverage its value is crucial for balancing 

the users predisposition to the process, especially when a 

mobile maintenance actor needs ready-to-use and highly 

descriptive semantics to support a swift and valid entry. 

Feedback to Approved Diagnostics – FMECA modeling 

semantics should be differentiated from the users’ feedback. 

Most systems provide distinct entity sets to model the core 

diagnostics and the reported feedback. Creating a modeled 

intermediate, acting as the bridge between them, is a very 

useful feature for data maintenance and one that can be 

effectively incorporated in the form of Approved Data. 

Approved Data include user entries, identified as 

information of higher value and thus handled as reference 

points. Labeling mechanics for such a process can be 

supported by models enabling sharing and cross evaluations 

of assessments. Approved Data function as the pool of 

candidate knowledge that will be inserted to the Reference 

Diagnostics, during the scheduled FMECA re-evaluation.  

Diagnostics Data Provenance – User diagnostics are 

tightly connected with time locality. Being a core dimension 

of all context interpretations, time can reveal patterns that 

impact maintenance diagnostics decisively. Every data 

entered in a maintenance system, or any modern software 

system for that matter, is time-stamped and the action is 

logged. Apart from system administration reasons and the 

obvious significance of knowing the time of an event, the 

meta-interpretation of a timeline from legacy data has 

proven to offer many new insights. Data Provenance refers 

to the ability to trace and verify the creation of data. It 

documents the inputs, entities and processes that influence 

data of interest, in effect providing a historical record of the 

data and its origins. Data Provenance of maintenance 

assessments can identify patterns that can constitute 

valuable evolving knowledge. The proper modeling of 

entity correlations can empower the fusion of such 

timelines, allowing highly informative overviews of events, 

thus providing to the maintenance actor the right context.  

4. THE SEMANTICS OF FAILURE CONTEXT 

Modeling FMECA has been addressed by various standards 

that approach the process through different design 

perspectives. The proposed model builds a framework of 

diagnostics utilizing MIMOSA as a starting point for the 

modeling of core related semantics. Extending upon these 

semantics, our model brings more depth in specific aspects 

of failure causality and proposes a new schema for 

structuring the user’s reported feedback. MIMOSA is a solid 

schema with an extended range of supported maintenance 

sub-domains. While the depth of its entity-tree provides 

descriptive accuracy, it can also overload systems with 

unexploited dimensions of maintenance details. These may 

introduce a significant overhead. Our goal is to produce a 

model effectively tailored for a service-oriented backend 

logic that handles requests of mobile maintenance actors. 

Such architectures and content provision patterns require 

modular semantics, appropriate for fast composition and 

processing of enriched mashups. In order to achieve data 

management efficiency, the proposed context schema adopts 

a subset of MIMOSA semantics, customized to offer a 
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balanced and lightweight handling of its depth.

concepts that participate in the core entity

proposed failure context include (Figure 1): 

• Assets: The entity whose properties

attributes of an industrial asset. These included 

registry data, classification attributes, 

and components hierarchy pointers. 

• Agents:  This entity corresponds to system actors

communicate data for both FEMCA 

annotation semantics. Though initially

human actors, it’s modeled to support integrat

actuators, such as sensors and external systems.

• Actions: The entity that focuses in the description of 

maintenance actions. These are modeled

solution steps/packages that address prevention or 

correction of the recorded failure modes.

• Events: The most essential component of the failure 

context. It addresses the modeling of both failure modes 

and the associated failure mechanisms

mechanisms lead to failure modes and feature 

causes or effects. Extending the MIMOSA hypothetical 

event entity, we propose a schema that supports scaled 

effects semantics, assessing the quality of their impact.

Following the MIMOSA taxonomy of events, both Failure 

Modes and Failure Mechanisms are modeled by the same 

entity; the Hypothetical Event. While MIMOSA chooses to 

omit them, the proposed Hypothetical 

includes occurrence and detection scale to assess frequency 

and detection potentials. Along with severity

attributes can drive an RPN-based (Risk Priority Number) 

evaluation of Failure progress. MIMOSA offers a generic 

and flexible approach for causality relationships

Hypothetical Events through unclassified links. T

proposed version provides direct and fixed

attributes that map causes and effects upon 

impact. While Causes are associated with

through one attribute, Effects are separated in three classes

• Symptoms - They constitute effects of low significance 

for the related Asset and its environment.  They provide 

the means to model “observations” as part of formally 

captured Failure Mode knowledge

constitute events whose description can be 

characterized as vague, abstract and not easily 

quantifiable. Nevertheless they facilitate the integration 

of uncharted insight inside the reference model of 

Failure Modes.  

• Functional Failures - These events model effects 

directly connected with specific functions of the related 

asset. Their role is to distinguish between events

manifest the dynamic change of functional beha

from events that describe a static status

They can be particularly useful in the analysis of 

propagating failures, where functional participation of 
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with Failure Modes, 
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for the related Asset and its environment.  They provide 

ions” as part of formally 

knowledge. Symptoms 

events whose description can be 

, abstract and not easily 

Nevertheless they facilitate the integration 

inside the reference model of 

These events model effects 

with specific functions of the related 

between events that 

change of functional behavior, 

static status or condition. 

can be particularly useful in the analysis of 

propagating failures, where functional participation of 

assets in process workflows can produce chains of 

effects.  The timeline of such e

parallel progression and connection 

• Final Results - These effects include the Failure 

Mode’s most critical results. They

events, that significantly impact the condition of the 

asset and its parent/child components. 

final and usually irreversible failure status

invoke attention for the state of

These events must be well documented, since they 

constitute the most decisi

identification of a Failure Mode.

Figure 1. The knowledge dimensions of

Our research offers a new method for capturing the 

feedback of maintenance staff. The model invests on a data 

preparation process that can greatly enhance

building maintenance reports with multiple 

approved FMECA table, we capitalize in 

defined correlations. Supporting further modularity, we 

break these reports to smaller referencing units.

fusion increasingly advertises the need to scale down 

exhaustive schemas and port semantics

knowledge units with metadata profil

goal in modeling the Failure Context.

annotation system is modeling user feedback by 

1. Maintenance Tags: Tags are 

applied to maintenance data objects 

annotations ( 
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assets in process workflows can produce chains of 

The timeline of such effects can reveal the 

and connection of failure modes.  

These effects include the Failure 

They are descriptions of 

events, that significantly impact the condition of the 

ld components. They record a 

irreversible failure status, and should 

for the state of interfacing assets. 

ell documented, since they 

sive evidence for the 

a Failure Mode. 

 

dimensions of the Failure Context 

a new method for capturing the 

The model invests on a data 

preparation process that can greatly enhance analytics. By 

uilding maintenance reports with multiple references to an 

capitalize in the creation of pre-

Supporting further modularity, we 

reports to smaller referencing units. Context 

the need to scale down 

port semantics to refined 

profiles. This is exactly our 

the Failure Context. The diagnostics 

annotation system is modeling user feedback by combining: 

Tags are keywords that can be 

data objects as descriptive 
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2. Figure 2). Their descriptive goal may vary and 

classified in categories of keywords. 

scope of tags in generic domains is usually unframed 

and their use can facilitate the creation of a tag cloud. 

maintenance tag cloud is a simple and effective way to 

cluster semantics and infer their likely adoption

3. Maintenance Remarks: Maintenance personnel are 

asked to input their evaluation in qualitative and 

quantitative manners. For an assessment, the 

importance of a tag can be augmented by a small note 

that provides more analysis, or a numeric value that 

quantifies belief. More automated response patterns, 

such as checkboxes and selection options are 

favored to assure interfacing simplicity and fast 

This form of micro-knowledge fragments, if effectively 

managed and mined can become extremely valuable. 

Figure 2. Managing the context of maintenance reference 

and annotations. 

One of our aims is to offer a versatile schema that

capturing and use of maintenance micro

means of tags, with support for optional remarks

allows the creation of tag templates configured to map tacit 

knowledge embedded in maintenance practice. Tag 

instances are provided by staff in the form of annotations or 

metadata for approved diagnostics (FMECA core entities). 

Their title, category and compatibility can be configured and 

updated by maintenance engineers. Each tag template can be 

profiled to support the optional addition of: (i) textual notes, 

(ii) numeric values and (iii) a status lock. These optional 

fields are used to leverage the tags knowledge value and 

provide engineers with better insight on how they can 

expand and adjust the semantics of available tag templates.

Essentially this tagging process enables the instant sharing 

of assessments between maintenance professionals.

timeline of such maintenance tags creates a layer of 

metadata upon the validated knowledge of recorded failures 
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ontext of maintenance reference 

One of our aims is to offer a versatile schema that supports 

micro-knowledge by 

with support for optional remarks. The model 

allows the creation of tag templates configured to map tacit 

knowledge embedded in maintenance practice. Tag 

staff in the form of annotations or 

metadata for approved diagnostics (FMECA core entities). 

Their title, category and compatibility can be configured and 

updated by maintenance engineers. Each tag template can be 

of: (i) textual notes, 

(ii) numeric values and (iii) a status lock. These optional 

fields are used to leverage the tags knowledge value and 

provide engineers with better insight on how they can 

expand and adjust the semantics of available tag templates. 

ging process enables the instant sharing 

maintenance professionals. The 

timeline of such maintenance tags creates a layer of 

metadata upon the validated knowledge of recorded failures 

modes and mechanisms. This collection of metadata and 

their direct connection to approved diagnostics 

extended and validated FMECA. Furthermore, access and 

navigation in such layered maintenance information can 

provide the appropriate context 

completion of challenging maintenance 

5. INTELLIGENT MAINTENANCE ADVISOR 

Next we analyse the functional requirements of the 

WelCOM-IMA tool, the adopted design and implementation 

technologies, as well as its final implementation. 

step, the provided e-Maintenance services 

their focus is explained. The competitive advantages of a 

software tool that can manage the 

mapped onto industrial needs, using case

5.1. E-Maintenance Mobility 

Mobile e-Maintenance involves 

devices, offering wide displays and powerful

processors. The rapid evolution of mobile Operating 

Systems and their development frameworks, offer a fluid 

experience even for the most demanding web applications 

and enterprise portals. Our goal is to exploit such potentials 

and address the needs of mobile maintenance personnel

Greater control over richer information

of e-Maintenance mobility used the 3

industrial PDAs to provide sample histo

Instrumentation PDAs could also

harmonics and graphs. In most cases, 

handle and (rarely) process a greater volume of data

introduced vendor-locked hardware/software specs 

high cost. Recent medium-range 

GBs of local cached data, thus are 

maintenance model, within a single

performance of high speed memory 

efficiency, as it defines the complexity of 

instantly accessed and processed

Diagnostics can handle structured data with multiple 

requirements for handling similarly complex metadata. 

Therefore, mobile e-Maintenance should move much further 

than the provision of sample history.

Better connection patterns – Wireless communication is 

the main link between mobile components and e

Maintenance servers. A good example of how easily can a 

modern device facilitate mobility, is the fact that many 

industries and application domains have utilized tablets for 

remote desktop administration of suites and software tools 

that are physically installed on back

personnel can receive a fully compiled environment of a 

maintenance dashboard that is actually run 

a remote machine. Modern E-Maintenance portals offer 

total control over the workflow, configuration and 

invocation of e-Maintenance backend processing

diagnostics), physically distributed (hosted) in optimally 
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llection of metadata and 
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FMECA. Furthermore, access and 

maintenance information can 

context for the successful 

maintenance tasks.    
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, the adopted design and implementation 

technologies, as well as its final implementation. As a first 

Maintenance services are described and 

The competitive advantages of a 

the Failure Context are 

, using case-scenarios. 

 potent smart portable 

and powerful multi-core 

The rapid evolution of mobile Operating 

frameworks, offer a fluid 

experience even for the most demanding web applications 

se portals. Our goal is to exploit such potentials 

of mobile maintenance personnel: 

Greater control over richer information – Early versions 

Maintenance mobility used the 3-inch displays of 

industrial PDAs to provide sample history and brief reports. 

could also visualize spectrum 

In most cases, the ability to store, 

handle and (rarely) process a greater volume of data 

hardware/software specs with 

tablets are able to hold 

thus are capable of hosting a 

within a single native application. The 

performance of high speed memory affects the solutions' 

defines the complexity of data that can be 

instantly accessed and processed by the mobile actor. 

structured data with multiple 

similarly complex metadata. 

Maintenance should move much further 

sample history. 

Wireless communication is 

main link between mobile components and e-

A good example of how easily can a 

modern device facilitate mobility, is the fact that many 

n domains have utilized tablets for 

remote desktop administration of suites and software tools 

that are physically installed on back-office stations. Mobile 

receive a fully compiled environment of a 

maintenance dashboard that is actually run and executed on 

Maintenance portals offer 

total control over the workflow, configuration and 

Maintenance backend processing (i.e. 

, physically distributed (hosted) in optimally 
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integrated services. The developed system brings this kind 

of control to mobile users, through wide-screen tablets. 

Intuitive Interaction and Multi-Access Environments – 

The majority of enterprise systems that participate in SOA 

architectures, currently invest in providing flexible 

interfaces for each employed access profile. This essentially 

means that their client environment is upgraded, both in 

terms of content visualization and navigation, to 

accommodate the needs of a mobile user too. Web 

technologies currently capitalize in the design of touch-

friendly, personalized and context adapted interfaces for 

portable devices. Modern 10-inch tablets, while thinner and 

lighter than any industrial PDA, offer solid build and a 

generous layout for intuitive web environments. The 

proposed system aims to couple the versatile access context 

of a 10 inch tablet with Web 2.0 technologies to produce a 

well-balanced tool for managing maintenance knowledge. 

Though native applications exhibit a slightly better 

interaction experience, the mobile web version was favored 

because (Pistofidis & Emmanouilidis, 2012): 

• Mobile web apps can run on every tablet irrespective 

to its operating system (android, iOS, wp8). Native 

applications constitute OS-locked implementations and 

require extensive re-engineering for cross-platform 

compatibility. Web applications can be upgraded to 

hybrid applications, enjoying the benefits of both. 

Accessing web applications from different devices 

requires no additional porting, as services and interfaces 

support uniform access from any available browser.  

• Mobile web apps do not require installation and do 

not ask for any kind of access to personal account 

information. Recent mobile browsers can boost their 

performance in compiling even the most demanding 

and visually loaded interfaces.  

• Mobile web apps offer more options for efficient 

scaling. Since they do not invest on local (portable 

device) logic, web applications tip the balance of 

complexity to the backend servers. This design feature 

is aligned with current trends in Cloud and Big-Data. 

Scaling and load balancing of backend logic is a much 

easier and streamlined process in web application SOA 

designs. Furthermore, web apps offer extensive scaling 

potential for the frontend e-maintenance interfaces too. 

Web applications can employ many versatile patterns 

and rich frameworks, to integrate different clients and 

service outputs into the same user environment. Such 

technologies allow for less coding and a more robust 

implementation when, for example, integrating CMMS 

functionality to an E-Maintenance platform. 

Faster Input and Sharing - Social networks are 

dominating the digital extension of many personal and 

professional communication spaces. Users, whether at home 

or at work, require the provision of tools that allow them to 

provide input at a real-time manner and with many sharing 

options. Social network portals and their multi-user virtual 

environments are the most valid testbeds where analysts 

identify the interaction patterns that users adopt and favor. 

Some very interesting and useful points can be identified, 

from the popularity of certain actions by their mobile users: 

• Users are most likely to complete fields that require 

short and concise feedback, than long detailed text. 

• Users want to engage the process of feedback with the 

shortest possible navigation path. 

• Users want to indicate approval and positive feedback 

with direct annotations. 

• Users want to organize social assets into virtual 

collections, using annotations and tags. 

• Users want to share in such environments and expect 

validation, acceptance or feedback from other users. 

• Users prefer to view and manage a timeline/feed of 

events that summarize the status of the social context 

they have configured to participate in. 

Indifferent to the above, most e-Maintenance systems have 

attempted to collect and map field expertise with exhaustive 

forms. Especially when addressing mobile maintenance, 

long forms and inefficient navigation lead to user rejection. 

Very often the usage of such mobile tools by technicians is 

done much later than it is supposed to and often after a 

maintenance task is completed, thus out of context input is 

likely. Our research uses the mentioned points and 

specifications to create a web tool designed and developed 

to encourage mobile use of FMECA-oriented knowledge. 

5.2. Implementation Technologies for IMA 

This work presents the development and functionality of a 

web application that benefits from mobile web and mobile 

cloud technologies, the WelCOM Intelligent Maintenance 

Advisor. Implementation details follow next.  

Back-end logic – These components execute the 

background management of maintenance diagnostics. To 

implement WelCOM-IMA’s web services we employed the 

flexibility of a Node.js platform, a runtime environment that 

can execute Javascript at the backend. At the core of 

Node.js, the V8 Chrome engine that allows support and 

integration of libraries/modules that can address a vast range 

of application requirements. Express.js is such a library and 

it facilitates the development of web applications on top of 

Node.js. Node.js can very efficiently virtualize both 

application and server instances. Thus, load balancing for 

the maintenance services of IMA can be easily incorporated 

with no re-engineering. All the services that address the 

creation, browsing and annotation of the system’s Failure 

Context, are implemented with the flexibility offered by 

Javascript. This is aligned with a design decision to benefit 

from the synergy between Javascript components and JSON 

models, across frontend and backend logic. 
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Front-end interfaces – The interfaces of a system denote 

its support for various access patterns. WelCOM

targets mobile actors and thus utilizes technologies that 

excel in producing mobile optimized web views. Tweaking 

and customizing the components of a rich web template, our 

frontend client employs HTML5, CSS and Javascript to 

build a fluid and touch friendly client interface.

IMA facilitates jQuery along with a rich set of other 

Javascript frameworks, to provide adequate control over 

maintenance data and offer intuitive user experience. 

template scripting language JADE powers a backend engine 

that dynamically compiles WelCOM IMA’s interfaces. This 

engine makes the WelCOM IMA a fully modular and 

customizable client, able to comply with various needs in 

terms of maintenance data visualization and entr

Physical Data Model – Modeling maintenance semantics is 

an essential process for the design of any e

solution. Many implementations still use relation

databases for the physical instantiation of data 

XML maintenance schemas have dominated the formats of 

exchanged knowledge for many years, due to 

lightweight, human-readable and easily parsed structure. 

MIMOSA publishes and maintains a very thorough and 

descriptive XSD schema for all the entities it supports. SOA 

architectures, especially ones with enterprise web 

components, are rapidly shifting from XML data to JSON 

data. JSON syntax is even more lightweight than XML and 

can be optimally parsed and processed by any programming 

technology. JSON is a technology coupled with the concept 

of mashups. A mashup implies the easy and fast integration 

of multiple data sources to produce enriched 

units that can be transferred and consumed uniformly and in 

a multipurpose manner. JSON mashups are 

of refined information, and thus currently drive the models 

of many knowledge management systems. WelCOM

uses JSON to enable capturing FMECA-related information 

inside JSON data. The handling efficiency of JSON

frontend and backend Javascript components

by the use of a noSQL database, namely 

consumption of MongoDB’s virtual collec

WelCOM-IMA components, offers the 

efficiency required by mobile templates and Node.js

Extending upon a subset of MIMOSA’s entities, we have 

produced a Schema (Figure 3) that elaborates the attributes 

and the correlations of FMECA related maintenance data 

and tags. Hypothetical Event is the entity that maps all type 

of events participating in the Failure Context. While Failure 

Mechanisms and Failure Modes are both types 

the instances of the former act as an initial stage for the 

instances of the later. While Failure Modes are events with a 

with causes, effects and solutions associated with them, 

Failure Mechanisms are events that lack such information 

but may be linked to a Failure Mode. If at some point the 

significance and the profile of a Failure Mechanisms are 

upgraded to include causality and proposed solutions, then 
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and Javascript to 

build a fluid and touch friendly client interface. WelCOM-

IMA facilitates jQuery along with a rich set of other 

adequate control over 

user experience. The 

ripting language JADE powers a backend engine 

that dynamically compiles WelCOM IMA’s interfaces. This 

engine makes the WelCOM IMA a fully modular and 

customizable client, able to comply with various needs in 

terms of maintenance data visualization and entry.  

Modeling maintenance semantics is 

the design of any e-Maintenance 

implementations still use relational 

data their models. 

XML maintenance schemas have dominated the formats of 

for many years, due to their 

easily parsed structure. 

a very thorough and 

the entities it supports. SOA 

architectures, especially ones with enterprise web 

components, are rapidly shifting from XML data to JSON 

data. JSON syntax is even more lightweight than XML and 

can be optimally parsed and processed by any programming 

technology coupled with the concept 

the easy and fast integration 

data sources to produce enriched information 

can be transferred and consumed uniformly and in 

 flexible modules 

of refined information, and thus currently drive the models 

of many knowledge management systems. WelCOM-IMA 

related information 

inside JSON data. The handling efficiency of JSON with 

and backend Javascript components, is supported 

namely MongoDB. The 

virtual collections, by 

the transaction 

and Node.js.  

Extending upon a subset of MIMOSA’s entities, we have 

) that elaborates the attributes 

and the correlations of FMECA related maintenance data 

and tags. Hypothetical Event is the entity that maps all type 

of events participating in the Failure Context. While Failure 

Mechanisms and Failure Modes are both types of this entity, 

the instances of the former act as an initial stage for the 

instances of the later. While Failure Modes are events with a 

with causes, effects and solutions associated with them, 

Failure Mechanisms are events that lack such information 

may be linked to a Failure Mode. If at some point the 

significance and the profile of a Failure Mechanisms are 

upgraded to include causality and proposed solutions, then 

the appropriate attributes are populated. In such a scenario, 

while the event’s place in the FMECA structure remains the 

same, its diagnostic value is upgraded. This is a process that 

gradually builds an Asset Fault Tree. New Failure Events 

are better perceived and profiled with causes, effects and 

solutions, when employing the versatility 

entity. Users are able to evaluate and tag all event data and 

assets. Sorting and fusing this tag

point the FMECA review process to the right direction. 

Figure 3. WelCOM IMA core entities

5.3. Instantiation in an Application 

WelCOM-IMA is a part of an e-maintenance platform and 

comprises part of the platform’s knowledge management 

functionality. It aims to serve the management and delivery 

of diagnostics knowledge to shop-floor staf

architecture is designed to integrate software components 

that operate on different systems contexts, such as sensors, 

servers and portable devices (Pistofidis, Emmanouilidis, 

Koulamas, Karampatzakis, & Papathanassiou, 2012)

Starting from the sensor-embedded pre

monitoring parameters, WelCOM middleware manages,

processes and enriches a maintenance model to deliver 

higher level services for maintenance support and planning. 

The WelCOM piloting takes place at KLEEMANN Lifts, a 

manufacturing industry the delivers complete lifts solutions 

and an international presence in the lifts industry, holding 

more than 2% of the global market. The industrial unit that 

holds key production and business value is the company’s 

latest Electric Elevator. The testing tower at Kleemann's 

industrial facilities in Kilkis provides one o

that are populating the system with FMECA

information, whereas other primary and secondary 

production machinery are currently being studied in the tool. 
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pplication Case 

maintenance platform and 

comprises part of the platform’s knowledge management 

functionality. It aims to serve the management and delivery 

floor staff. The WelCOM 

architecture is designed to integrate software components 

that operate on different systems contexts, such as sensors, 

(Pistofidis, Emmanouilidis, 

Koulamas, Karampatzakis, & Papathanassiou, 2012). 

embedded pre-processing of 

monitoring parameters, WelCOM middleware manages, 

processes and enriches a maintenance model to deliver 

higher level services for maintenance support and planning.  

The WelCOM piloting takes place at KLEEMANN Lifts, a 

manufacturing industry the delivers complete lifts solutions 

nce in the lifts industry, holding 

more than 2% of the global market. The industrial unit that 

holds key production and business value is the company’s 

latest Electric Elevator. The testing tower at Kleemann's 

industrial facilities in Kilkis provides one of the test cases 

that are populating the system with FMECA-related 

information, whereas other primary and secondary 

production machinery are currently being studied in the tool.  
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Figure 4. WelCOM-IMA Core Entities Directory

The WelCOM-IMA instantiation in this 

study employed use case scenarios to document how the 

user can browse and enrich maintenance knowledge

also extending the available options for entity types and 

tags. The tool offers a core entity set that holds the reference 

maintenance knowledge. After inserting 

authentication the user is presented with a directory of 

FMECA core entities. A brief description of entity 

semantics and a button link to the appropriate instantiation 

form are seen in this first screen (Figure 4). 

5.3.1. Navigation through Diagnostics Context

The modeled knowledge is provided as a fully connected 

map of diagnostics. The user is able to list the instance

every entity and navigate through them following patterns 

of maintenance relationships (causality, 

solution, taxonomy etc.). Moving from agent to 

asset to event and from event to event (Failure Mechanism 

to Failure Mode), a user can browse details of the 

documented failure profiles of assets. At 

navigation of the produced view is supported by 

and highlighted buttons, drop down option lists

configurable data-tables with paging and search tools.

the maintenance map, the shop-floor technician

the details of events that match current evaluation and/or 

observations. Through them the search will

identifying a Failure Mode associated with most of 

acknowledged events (as effects or causes). 

screen presents a rich set of FMECA-oriented semantics.

Causality attributes support the root-cause analysis of the 

on-going failure and the suggested maintenance action aid

the decision on how to address it (Figure 5). 

5.3.2. Maintenance Knowledge Enrichment

The developed system addresses the needs of both mobile 

technicians and office engineers, thus it was important to 

close the distance between them, offering a sharing space 

for collaborative exchange of maintenance insight. It 
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this industrial case 
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maintenance knowledge, while 

also extending the available options for entity types and 
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Context 

The modeled knowledge is provided as a fully connected 

map of diagnostics. The user is able to list the instances of 

following patterns 

relationships (causality, supervision, 

oving from agent to asset, from 

from event to event (Failure Mechanism 

wse details of the 

documented failure profiles of assets. At every step the 

produced view is supported by profiled 

s, drop down option lists and fully 

with paging and search tools. Using 

floor technician can traverse 

the details of events that match current evaluation and/or 

search will lead to 

with most of related 

or causes). A Failure Mode 

oriented semantics. 

cause analysis of the 

the suggested maintenance action aids 

).  

Maintenance Knowledge Enrichment 

The developed system addresses the needs of both mobile 

technicians and office engineers, thus it was important to 

e distance between them, offering a sharing space 

for collaborative exchange of maintenance insight. It 

supports their ability to offer fast and efficient 

prompting them to simply acknowledge and flag pre

semantics. Feedback is summarized by descriptive tags to 

assets, agents, events and solutions. Each tag can signify a 

state, an action, an observation or an alarm, in short 

anything that matters in the context of diagnostics. A basic 

set of offered tags, includes “Confirm” (tagging the 

detection of a failure event), “Working here” (on

maintenance action and proximity to an asset), 

“Observation” (logging of an observation). 

Figure 5. Information screen for an Asset Failure Mode.

Additionally, a “Confirm” tag may carry a certainty numeric 

value. All tags support input of textual notes, offering 

assessment details (Figure 6). Analysis of the collected 

textual notes can reveal semantics for different applications, 

maintenance departments, policies, or even 

WelCOM-IMA offers the means to create new tag templates 

where engineers and maintenance directors can configure 

the semantics and the (optional) input profile of new tags 

(Figure 6). Configuration fields include taxonomy with tag 

categories, a description, a set of compatible entities and the 

support for numeric value, textual note and a status lock. 

These templates, upon creation, are instantly available for 

shop-floor and managerial personnel to use them and best 

capture/translate their assessments. 

to be swift and easy. WelCOM-IMA provides a “Label” 

drop list, in every interface that presents ins
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 The annotation task has 

IMA provides a “Label” 

drop list, in every interface that presents instances that can 
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be tagged. This drop list offers the ability to annotate the 

instance with a new tag, or view the annotation history of 

this specific instance. Choosing to add a new tag, the user is 

presented with a touch-friendly interface listing all ava

tags that support the entity of the assessed instance. While 

the brief description and the category informative of the 

underlying semantics, a side-form facilitates the direct input 

of additional feedback, for each supported tag (

The simple touch of the tag’s button concludes the tagging 

process and records the new assessment as a timestamped 

entry in the instance’s annotation history. 

engineers can now view the annotation history of each asset 

and failure event. WelCOM-IMA provides three forms of 

annotation timelines: (i) instance-oriented, (ii) user

and (iii) global. Each one enables a different view over 

assessments that can drive different sets of conclusions.

Figure 6. Configuring a new tag template.

Figure 7. Use of supported annotation tags.
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Figure 8. Annotations global timeline

The interpretation of these timelines can have a big impact 

in the performance of on-spot diagnostics. Having access to 

a timeline of annotations correlating assets and events is a 

tool that “connects-the-dots” of a Failure’s Context (

8). The time locality of events, the focused tag semantics 

and the annotated knowledge, offer a perception boost to the 

context-switching mindset of mobile personnel. 

6. CONCLUSION 

Studying the annotation history of a failure event or an asset 

empowers maintenance professionals to extract valuable 

patterns of machinery behavior. The ability to manage the 

underlying structured knowledge and perform 

the collective micro-knowledge of staff operating on the 

shop floor, constitute a powerful enabler that upgrades the 

level of knowledge management, by incorporating into the 

loop maintenance mobile actors. WelCOM

effective method to facilitate 

participation of all maintenance 

evolution of maintenance events and knowledge

IMA enables the organization and collaborative evaluation 

of maintenance assessments based on semantic tags. 

Following a bottom up approach in knowledge composition, 

it delivers a tool that profiles, instantiates and shares the 

building blocks of failure diagnostics. Therefore, it 

adapt the maintenance meta-model to semantics tuned for a 

specific application. This constitutes a significant enabler 

for the elicitation and management of field

knowledge, a feature often missing in 
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ABSTRACT 

Research within the Cardiff Marine Energy Research Group 

(CMERG) has considered the integrated mathematical 

modelling of Tidal Stream Turbines (TST). The modelling 

studies are briefly reviewed. This paper concentrates on the 

experimental validation testing of small TST models in a 

water flume facility. The dataset of results, and in particular 

the measured axial thrust signals are analysed via time-

frequency methods. For the 0.5 m diameter TST the 

recorded angular velocity typically varies by ± 2.5% during 

the 90 second test durations. Modelling results confirm the 

expectations for the thrust signal spectrums, for both 

optimum and deliberately offset blade results. A discussion 

of the need to consider operating conditions, condition 

monitoring sub-system refinements and the direction of 

prognostic methods development, is provided.  

1. INTRODUCTION 

Research within the Cardiff Marine Energy Research Group 

(CMERG) has established a series of generic design 

guidelines for the developing commercial deployment of 

Tidal Stream Turbines (TST). Design considerations were 

reported by O’Doherty, Mason-Jones, O’Doherty, Evans, 

Woolridge and Fryett (2009). The mathematical models 

combine Computational Fluid Dynamics (CFD), structural 

Finite Element Analysis (FEA) to provide Fluid-Structure-

Interaction (FSI) results. Non-dimensionalised power and 

thrust curves, along with flow visualisations, are produced 

for a variety of configurations and flow conditions. The 

non-dimensionalised research was reported by Mason-

Jones, O’Doherty, Morris, O’Doherty, Byrne, Prickett, 

Grosvenor, Owen, Tedds and Poole (2012).The progress 

and outputs of the modelling studies are briefly reviewed in 

section 1.1. 

The mathematical models are validated via the testing of 

scale model (0.5 m diameter) turbines in a water flume 

facility at Liverpool University. A dataset of results was 

available for a particular set of performance and monitoring 

evaluation tests. For these a three blade turbine was used, 

with a constant plug flow of 0.94 m.s-1 and at a range of 

controlled conditions within the power curve profiles. 

Previous studies and testing had compared results for 

designs with varying numbers of blades and had confirmed 

the optimum blade angle setting for the 3 blade option. 

Recent studies have used profiled flow conditions and with 

the addition of surface waves.  

For the dataset considered in this paper, the recorded signals 

were angular velocity, servo motor current (used to oppose 

flow generated motion and hence to estimate generated 

power) and the overall axial thrust. Tests were split between 

an ‘optimum’ setup (three identical blade angles) and an 

‘offset’ setup. For the latter, one of the three blades was 

deliberately set at other than its optimum pitch angle. This 

condition was deemed to represent potential blade faults, 

whereby one damaged or deteriorated blade would 

contribute less than usual to the generated power output. 

From a condition monitoring viewpoint such deviations in 

performance were expected to also be detectable in the more 

accessible axial thrust signals.  

The experimental signals are described in detail in section 3, 

along with the limitations of the signals, with respect to 

time-frequency analysis (section 4). 

In section 4, traditional frequency spectrum plots are 

initially presented. The frequency spectrums obtained 

included components, for any given set of test conditions, 

observed at the rotational frequency (ωr) and at either or 

both 2.ωr and 3.ωr. Thrust measurements, from the turbine 

supporting structure, are more easily made in comparison at 

rotating elements and their potential to form a constituent 

part of an integrated TST monitoring system is explored. Roger Grosvenor et al. This is an open-access article distributed under 

the terms of the Creative Commons Attribution 3.0 United States 
License, which permits unrestricted use, distribution, and reproduction 

in any medium, provided the original author and source are credited. 
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With the aim of more robust detection of individual blade 

problems, methods of improving the frequency spectrum 

resolutions were required. In particular synchrosqueezing 

time-frequency methods were assessed and are presented in 

section 4.4.  

1.1. Review 

Tidal energy can provide a highly predictable and 

sustainable level of energy. One of the emerging 

technologies is the use of submerged tidal stream turbines 

(TST), which for example, may be seabed mounted. UK 

tidal stream technologies are increasingly being installed 

and tested as full-scale devices. The first example was the 

Marine Current Turbines (MCT) 11m diameter, 2 blade 

horizontal axis Seaflow device. The 300 kW capability from 

a tidal flow of approximately 2.8 ms
-1

has increased to 1.2 

MW for the subsequent SeaGen project. TST technologies 

are rapidly developing, different designs are being proposed, 

and experimental performance testing is also carried out at 

small scale, with support from sophisticated mathematical 

modelling. A review of research progress is provided by Ng, 

Lam and Ng (2013). 

1.2. Modelling 

For horizontal axis tidal turbines (HATT) the computational 

fluid dynamics (CFD) models have been considered in a 

non-dimensionalised manner and have led to generic power 

and thrust performance curves for use by designers. The 

non-dimensional performance curves were validated via 

experimental testing at the water flume facility in Liverpool 

University.  

Figure 1 [Myers and Bahaj (2012)] shows the general 

arrangement for a HATT installation and summarises the 

main parameters and effects of interest.  

 

 

 

 

M 

 

Figure 1. Horizontal Axis Tidal Turbine (HATT) [Myers & 

Bahaj (2012)] 

The CFD models have been extended to include Fluid- 

Structure Interactions (FSI). Accordingly the 2 way 

coupling between fluid flows and structural deflections are 

used to improve the simulation results for realistic flow and 

installation conditions. The experimental testing has also 

been developed to allow profiled flow testing, in addition to 

the original plug flow testing. The addition of surface waves 

has also been developed for the water flume facility at 

Liverpool University. 

The experimental testing to validate the range of 

mathematical modelling activities has provided an 

opportunity to assess potential condition monitoring and 

prognostics methods. Of particular relevance, to such 

aspects reported in this paper, are models used to investigate 

the interactions between the turbine blades and the 

supporting structures. There are observable shadow effects 

as the blades pass in front of the supporting structure. As 

will be reported in section 4.1, cyclic variations in the axial 

thrusts are produced as a consequence of such effects. It is 

the cyclic variations that are investigated, with frequency 

domain and time-frequency domain methods, as an potential 

contributing sub-system to a TST condition monitoring 

system. The modelled effects have been reported by Mason-

Jones, O’Doherty, Morris and O’Doherty (2013). The 

contributions of such models are reported in section 4. 

1.3. Condition Monitoring & Prognostics 

Condition monitoring and fault diagnosis is considered to 

be elemental in developing marine current turbine energy 

extraction. Tidal energy technology has yet to be proven 

with regard to long term operational availability and 

reliability. It is accepted that the harsh marine 

environments and problems with accessibility for 

maintenance may exasperate availability and reliability 

problems. Bahaj (2011) noted that minimising uncertainty 

surrounding the operation and maintenance of such devices 

will be crucial in improving investor confidence and 

achieving economically viable power extraction. 

Experience within the wind energy sector, for example as 

reported by Hameed, Ahn and Cho (2010), Yang, Tavner, 

Crabtree and Wilkinson (2010) and Tian and Jin (2011), 

has suggested that online condition monitoring and fault 

detection could minimise maintenance costs and improve 

availability of the energy extraction technology. As such 

condition monitoring and fault diagnosis hardware and 

software architectures should at this stage seek to be 

general and adaptable 

 

Figure 2 [Grosvenor and Prickett (2011)] outlines 

constituent components for such a generalised TST 

monitoring system. The investigations reported in this 

paper focus on the use of supporting structure based 

sensors. In particular, the potential of time-frequency 

analysis methods applied to the background cyclic 

variations in the supporting structure are considered.  

 

2. EXPERIMENTAL TESTING 

A series of scale model turbines have been developed by the 

CMERG group for water flume testing. For the tests 

reported and analysed in this paper a 0.5 m diameter, 3 
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blade turbine was used. Each blade pitch angle was 

adjustable and from previous testing, not reported here, the 

optimum blade pitch angle had been determined to be 6
o
 for 

the configuration in use. This prior testing information was 

also utilized to simulate a blade fault. In this case one of the 

blades was deliberately offset, to a pitch angle of 15
o
. 

 

 
Figure 2. Constituents of a Generalised TST Monitoring 

System. 

The water flume was configured and operated to provide 

plug flow conditions (constant flow with water depth) and 

an average axial flow velocity of 0.94 m.s
-1

.  

A direct drive servo motor was used to generate controllable 

torques in opposition to those from the flow and turbine 

blades. Accordingly tests were achievable for a range of 

conditions from within the turbine performance curve. 

These ranged from the peak power conditions down to the 

free-wheeling condition with negligible power output. These 

were classified by a percentage of maximum torque 

measure, with 19 settings ranging from 45% downwards in 

2.5% steps to 0% of maximum torque. The servo motor was 

capable of delivering a maximum torque of approximately 

4.92 Nm. As stated, the tests were performed for both 

optimum blade settings (6
o
-6

o
-6

o
) and with one blade 

deliberately offset (6
o
-15

o
-6

o
).  

For each individual test data was recorded for between 90 

and 150 s. The recorded signals consisted of the servo motor 

current (used to calculate power outputs), the angular 

velocity of the turbine and the total axial thrust.  

Figure 3 show the general setup for the water flume tests. 

The junction between the vertical turbine support tube and 

the horizontal supporting frame was fitted with a force 

block. The strain gauge arrangement of the force block 

enabled the measurement of the total axial thrust.  

3. EXISTING DATASETS 

Accordingly the analysed dataset consisted of a total of 38 

test cases, equally split between optimum blade and offset 

blade setups. Figure 4 summarises the test configurations 

for the turbine power curves.  

 

 

 

 

 

 

 

 

 

 

Figure 3. Liverpool University Water Flume and 

Experimental Setup. 

 

These are plotted as power coefficient, Cp, vs tip speed ratio, 

TSR. The former is the ratio of actual power compared to 

theoretical power. TSR is a normalized measure, for a given 

turbine, of the angular velocity. The performance reducing 

effect of the one offset blade is evident.  

 

Figure 4. Power Curves for Experimental Datasets 

Example results are shown in Figure 5. The upper plot 

shows the thrust signal variations during a 90 s test for 

optimum and offset blade cases, for 30% and 32.5% torque 

settings. The lower plots shows the angular velocity 

fluctuations for the same cases. 
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Figure 5. Example Experimental Results: Axial Thrust and 

Angular Velocity Signals for Optimum and Offset Cases. 

Figure 6 shows an extract of the datasets of Figure 5. The 

zoomed time axis is equivalent to approximately 5 turbine 

rotations for the conditions considered..  

 

Figure 6. Zoomed Axial Thrust and Angular Velocity 

Signals 

There are some cyclic variations apparent in the signals and 

these observations were the basis for the time-frequency 

analyses. 

The datasets were not ideal for such analysis methods. The 

axial thrust was sampled at approximately 47.6 Hz. The 

angular velocity was sampled at only 1.75 Hz. For any 

particular test case there was also evidence of quantisation 

effects in the digitized thrust signals.  

For the range of conditions in the 38 datasets the 90 s 

recordings represented between 192 and 359 turbine 

rotations, for angular velocities between 128 and 239 

rev.min
-1

. When the analysis is aimed to provide 

information per blade per revolution these characteristics 

potentially pose considerable limitations.  

In commercial installations the TST power generation will 

be controlled to produce the maximum power within the 

prevailing flow conditions and constraints. For the condition 

monitoring approaches to be applicable they need to be 

insensitive and/or adapt to the prevailing flow conditions. 

The datasets spanning a range of angular velocities, and 

hence TSRs, for in this case a fixed flow velocity were 

utilised to assess this aspect. 

4. ANALYSIS 

4.1. Axial Thrust Modelling 

Figure 7 shows the steady-state output from a CFD model 

used to predict the constituent and total thrust for a HATT. 

The CFD results shown are for a 3 bladed full size (10 m 

diameter) turbine, with the blades set at optimum pitch 

angles. Plug flow with a velocity of 3.086 ms
-1

 was used 

with operating conditions pertaining to a TSR of 3.61.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. CFD Modelling of Thrusts 

(Thrust data) 

Angular Velocity 
data

Total 
Thrust 

3 x Blade 
Thrusts 
(offset by 
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0
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each other) 

Hub 
Thrust 
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For the full size turbine the latter equates to an angular 

velocity of 21.3 rev.min
-1

.  

The thrust models were developed for the ANSYS fluid 

flow (CFX) platform. The fluid domain box was 50 m 

square and 150 m long and was established with appropriate 

plug flow boundary conditions. The mesh, for the multiform 

reference form (MRF) cylinder, of 12 m diameter and 4.5 m 

length, (surrounding the 3 bladed turbine model), consisted 

of 4.6 M cells.  

The models are computationally intensive and settle to give 

steady state results. Figure 7 shows the thrust components 

for 1 turbine revolution. As expected the blade effects, 

passing and shadowing the support tube, are offset by 120
o
 

from each other. The small contribution, from the flow 

impinging on the hub, is not included in the time-frequency 

analysis. The total axial thrust displays relatively small 

cyclic variations, when compared to the mean axial thrust. 

Figure 8 shows the thrust profile for 3 blades for 2 turbine 

revolutions.  

 

Figure 8. CFM Model of Blade Thrusts and Individual 

Blade Frequency Spectrum. 

 

Figure 8 also shows the frequency spectrum for an 

individual blade, for 8 constituent terms all of which are at 

multiples of the fundamental frequency. The average thrust 

value is not plotted.  

4.2. Frequency Analysis 

The 38 experimental datasets were initially analysed by 

using standard Fast Fourier Transform (FFT) functions with 

the Matlab environment. The obtained spectrums were 

investigated to determine whether differences between the 

optimum blade and offset blade subsets were reliably 

detectable.  Figure 9 shows a composite waterfall spectrum 

plot, for the 19 optimum blade tests. The percentage of 

maximum servo motor torques ranged from 0% 

(freewheeling) to 45% (close to peak power generation). 

The frequency spectrums are shown as amplitude
2
 plots.  

 

Figure 9. Waterfall Thrust Amplitude
2
 Frequency Spectrum 

for 19 Optimum Blades Tests. 

The rotational frequency (ωr) was readily detectable, from 

the total axial thrust signals, and strongly correlated with the 

recorded angular velocities. For the optimum blade results 

shown the ωr  values ranged from 2.50 to 3.98  Hz. These 

are in accordance with the mean angular velocities, that 

ranged from 150 to 239 rev.min
-1

. The harmonics, 2.ωr and 

3.ωr were generally detectable. The 3.ωr components were 

expected (discussed in section 5.1) and are in agreement 

with the thrust modelling exercise. There were some 

potential differences in the patterns observed for 2.ωr 

components when comparing optimum blade and offset 

blade results. The discussed data limitations and the time 

varying turbine rotational velocities during testing were 

deemed to reduce the clarity of such observations. 

Accordingly the angular velocity fluctuations were analysed 

and time-frequency methods were utilised.  

4.3. Angular Velocity Fluctuations 

The 38 datasets were subjected to simple statistical analysis. 

Figure 5 (section 3) is an example of typical time domain 

angular velocity data. For the optimum blade tests the 

typical fluctuations were found to be ± 2% of mean values. 

For the offset blade test the fluctuations were generally 

larger and a typical value was ± 2.5% of mean values. 

4.4. Time-Frequency Analysis 

In light of the angular velocity analysis the spectrogram 

function within Matlab was used to obtain time-frequency 

plots. By optimizing the spectrogram parameters, including 

the number of FFT points, the overlap extent and 

windowing, the plots typically provided observable ωr, 2.ωr 

and 3.ωr components. Due to the dataset limitations the 

spectrogram plots were not obtainable with sufficient 

resolution in either the time or frequency axes, and are not 

presented here.  
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Other approaches, including order analysis and time series 

analysis are also currently being investigated, and are not 

reported. Rather, the application of an emerging time-

frequency method known as synchrosqueezing is assessed 

for the turbine data.  

A small number of research groups have developed and 

reported on the synchrosqueezing, and have made available 

toolkits for use within Matlab. Iatsenko, McClintock and 

Stefanovska (2013) reported on one such toolkit. Reported 

applications include the condition monitoring and fault 

diagnosis of gearboxes. The latter was reported by Li and 

Liang (2012).  

Iatsenko et al (2013) described synchrosqueezing as a 

nonlinear transformation of windowed Fourier transforms 

and wavelet transforms. Synchrosqueezing is used to 

increase the data concentration and allows for extraction and 

reconstruction of the analysed signals components. They 

made detailed comparisons with other methods, for a variety 

of test signal cases/types. 

In the analysis reported here the Matlab toolkit developed at 

Lancaster University, and reported by Iatsenko et al (2013), 

was used. The algorithm may be applied to time domain 

signals, for which the sample rate is specified as an input 

parameter. Other parameters provide choices for the type 

and combinations of plots that are produced. To reduce the 

computational overheads either or both minimum and 

maximum frequencies of interest can be specified.  

A parameter ‘f0’ has a unity default value. However by 

varying the value of ‘f0’ resolution of the overall frequency 

spectrum results can be improved. Alternatively ‘f0’ may be 

used to improve the time resolution, at the expense of the 

spectrum resolution. The latter was found to provide 

determination of the time-varying rotational frequency due 

to velocity fluctuations.  

Iatsenko et al. (2013) reported that ‘f0’ is a critical value in 

time-frequency analysis and confirm that it determines a 

tradeoff between time and frequency resolutions. The 

optimal ‘f0’ setting depends of the signal analysed, however  

determining the time-frequency area of interest enables an 

automatic procedure for the selection of parameters within 

the algorithm. 

The two plots that were utilized in analyzing the turbine 

data were (i) a coloured-coded  time-frequency spectrogram 

plot and (ii) a time-averaged Synchronised Windowed 

Fourier Transform (SWFT) plot. 

Figure 10 shows an example result for (i), for optimum 

blades at 30% torque. The sample rate was 47.6 Hz, the 

frequency range was set to 2.6 – 3.4 Hz and the ‘f0’ value 

was 0.75. For the 4286 samples in the 90 s thrust signals 

these settings produced 41 time distributed spectrums. The 

lower plot of Figure 10 shows a composite plot for the 41 

spectrums obtained and the variations due to angular 

velocity changes.. The algorithm is shown to determine the 

variations in the rotational frequency, which is inversely 

proportional to the angular velocity fluctuations, during the 

test duration. 
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Figure 10. Synchrosqueezing Results for Optimum Blades 

at 30% of Maximum Torque. 

The synchrosqueezing algorithm was also applied with 

different parameters in order to produce type (ii) plots, i.e. 

time averaged SWFT plots. In such cases the frequency 

range was set to 0 – 10 Hz and the ‘f0’ parameter was set as 

2. Figure 11 shows comparative results obtained for 4 of the 

datasets. These examples are for the cases shown previously 

in Figure 5, i.e optimum and offset blades at 30% and 

32.5% of maximum torque settings. 

Figure 12 shows the spectrum results, for torque settings 

between 20 and 45%. For both the optimum blade and offset 

blade cases the rotational frequency, ωr , was consistently 

detected. The variation in the amplitude of this component 

with the operating conditions, determined via the percentage 

torque settings, was consistent with the FFT results of 

Figure 9. However there is no consistent pattern for the 2.ωr 

and 3.ωr components. Neither is there any distinct difference 

for the optimum and offset datasets considered.  

It is, for example, merely a coincidence that the spectrums 

of Figure 11 shows 3 main components for the optimum 

blade results used as examples and that only 2 main 

components are apparent for the offset blade examples.  
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Figure 11. Comparison of Thrust Amplitude Frequency 

Spectrum Results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. Comparison of Frequency Components for 

Optimum and Offset Blades. 

There are benefits in using the synchrosqueezing toolbox; 

the time average spectrums produced show the harmonic 

components more distinctly. Conversely, with the settings 

used to produce Figure 10, the time varying angular 

velocities can be evaluated directly from the thrust signal.  

Further insights into the spectrum results obtained with 

respect to the 2.ωr and 3.ωr components are provided in 

section 5. These emanate from an extension of the thrust 

modelling. Such results are being produced by CMERG 

from further simulations using the blade thrust CFD models. 

These are not yet available, and an estimated approach is 

used in this paper to support the discussions.    

5. DISCUSSION 

5.1. Cyclic Axial Thrusts 

Figure 8 (section 4.1) showed the CFD model blade thrusts 

for a full-scale 3 bladed TST, for 2 turbine rotations and 

with a zoomed thrust axis. The CFD model assumes that the 

blades are identical and that all geometries are appropriately 

symmetrical. This is reflected in the total axial thrust 

variations (now for 1 turbine rotation) shown in Figure 7 

(section 4.1). Included in Figure 8, were the FFT computed 

frequency spectrum plots for an individual blade. In this 

discussion the FFT spectrum for the total thrust cyclic 

variations are now considered.  

The upper plot of Figure 13 shows the thrust amplitude 

spectrum for the combined axial thrust values. As stated, 

perfect symmetries and setups pertain to the CFD 

simulations and the 3 blades are offset from each other by 

exactly 120
o
. Accordingly the frequency vectors from the 3 

blades cancel each other out, except for those at 3.ωr and 

multiples thereof. This provides an immediate inconsistency 

with the spectrums for the experimental results. 

The tolerances pertaining to the experimental scale-size 

model were thus considered. The manufacture of the turbine 

was to a high standard, however small eccentricity and other 

non-symmetries are likely. More particularly, the turbine 

was designed to have adjustable blade pitch angles. These 

were adjusted, and set as appropriate between tests, using a 

surface table and standard angle templates. There was some 

reliance on the skill and judgment of the experimenter.  

To simulate this relatively small adjustment was made for 

one of the blades to create some asymmetry compared to the 

ideal case shown in Figure 8. For the results discussed here 

the adjustment consisted of a 10% reduction in the mean 

thrust level combined with a 10% reduction in the range of 

thrusts for blade 2. The FFT amplitude spectrum results then 

obtained for the total thrust are shown in the lower plot of 

Figure 13.  

The difference is then that all ωr , 2.ωr and 3.ωr components 

can be seen in the spectrum, and are in closer agreement 

with the experimental results.  

The simulated adjustment in this example is small compared 

to the difference in thrust values that would apply for the 

deliberately offset blade. For the offset blade the change to a 

15
o
 pitch angle is far more substantial, if judged by the 

reduced power performance at such a setting, as was seen in  

Figure 4 (section 3). 
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Figure 13. Comparison of Thrust Amplitude Frequency 

Spectrum for Symmetrical Blades and with Simulated 

Effects due to Tolerances. 

5.2. Prognostics 

The analysis of the potential use of one constituent of 

developing TST condition monitoring systems has been 

presented and discussed. The total thrusts acting on a TST 

support structure are more accessible than measurements 

from rotating elements. The latter will be vital for the 

monitoring systems and some developments towards this 

are discussed in section 5.3.  

For the experimental datasets, with their far from ideal 

characteristics, there are results of interest from the time-

frequency analyses. The synchrosqueezing methods 

improved the extraction of useful spectrum information 

from those datasets. In particular the angular velocity 

fluctuations were obtainable directly from the thrust signals.   

The full-scale deployment of TSTs will inevitably mean that 

the operation and monitoring of each individual TST will be 

heavily site specific. The logging of operational conditions 

is a vital element of prognostic systems and the recording 

and analysis of structural thrust signals is believed to have a 

role to play in such systems.  

5.3. Future Developments 

The next generation of 0.5 m diameter scale-model TST is 

about to be deployed for water flume testing. The number of 

signals to be captured is to be extended, and the sample 

rates and resolution of the existing signals will be greatly 

improved. The additions include sensing of rotating 

components. A strain gauge based blade torque sensor has 

been developed. A 3-axis MEMS accelerometer has been 

included and the servo motor drive will provide an encoder 

output. The latter will improve the synchronization of 

recorded signals to turbine rotations. Researchers such as 

Bechhoefer, Wadham-Gagnon and Boucher (2012) have 

reported experiences with 3-axis MEMS accelerometers for 

wind turbine monitoring. Wider scale wind turbine 

performance monitoring has also been reported, for example 

by Uloyol and Parthasarathy (2012). 

6. CONCLUSIONS 

The use of support structure thrust signals as a constituent 

part of a TST monitoring system has been investigated. The 

limitations of the existing experimental datasets have been 

quantified and assessed. CFD models have been used to 

justify the cyclical patterns observed in the thrust signals. 

The models have been adapted to allow for manufacturing 

tolerances and small misalignments. These adaptations have 

enabled a closer correlation between the observed and 

modelled frequency components. The next generation of 

scale TSTs to be tested will provide more appropriate data 

characteristics. The longer term, site specific, monitoring of 

such signals will provide operating profile information for 

subsequent prognostics models.  
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ABSTRACT 

Condition monitoring remains an important technology for 

equipment life cycle management. Historically, online 

condition monitoring systems are installed only on the most 

critical assets within a power plant, process plant, or 

manufacturing facility.    Less critical equipment, while vital 

to operation of the plant, are only monitored or tested 

periodically using manual route based technologies.  This 

historical practice leaves equipment specialists with a small 

amount of time for analysis of collected sensory data 

(vibration, temperature, oil, power, etc.) as they spend the 

vast majority of working hours collecting equipment 

sensory data.  Fortunately, data acquisition technology has 

evolved, making it possible to transform standard and 

advanced machinery measurements from manual collections 

to online collections, increasing time for specialists to 

analyze, and yielding opportunities for automated 

diagnostics and prognostics.  By taking advantage of 

automation, the ability of equipment owners and operators 

to lower life cycle costs and increase reliability of plant 

equipment is greatly improved.   

The transition from manual route based measurements to a 

fleetwide surveillance program touches many elements from 

sensors to networked data acquisition nodes to servers to 

historians and predictive technologies.  Within power 

generation plants, installation costs, information technology 

strategies, and long term vision come together to create 

higher machine reliability at lower operational cost and new 

automation in performance monitoring, diagnostics, and 

advisory generation.  With automation, comes increased 

sensory data from pumps and turbines that require new tools 

for data management, data mining, and data transformation 

into actionable information.  A case study reviews the open 

and extensible data architecture of a fleetwide monitoring 

system deployed, the ongoing efforts, and current benefits 

delivered to the power generation industry participants.   

1. MOTIVATION FOR FLEETWIDE MONITORING 

Fleetwide Monitoring (FWM) is the implementation of 

applications for monitoring, maintaining and optimizing 

generation (and other) assets from a centralized location  

(Hussey, 2010).  Fundamentally, FWM involves monitoring 

assets within a fleet of assets to detect operational and 

equipment problems earlier enough to mitigate damage, 

manage risk, identify performance problems, and manage 

business and market conditions or risks.  A key part of 

FWM involves the use of advanced online monitoring 

technologies developed in the 1990s and 2000s and first 

applied in aerospace, transportation, and petrochemical 

applications.  The goal of FWM is intelligent top-down 

approach to plant maintenance and scheduling.  The goal is 

accomplished by the move toward centralized monitoring 

and diagnostic centers, the integration of advanced 

monitoring applications, and continued use of existing 

monitoring and maintenance technologies.  The efforts 

supporting the goal will be facilitated by emerging standards 

supporting interoperability of equipment and technologies 

from multiple vendors.   

1.1. Aging and New Power Plants 

The power generation industry is undergoing a transition 

from traditional power using Nuclear and Coal to more 

efficient gas turbine combined cycle technologies (EIA, 

2011).  The United States Power Industry has relied on 

Nuclear and Coal based power generation for the majority 

of base load demand for many years, Figure 1.  As of March 

2011, 51% of all generating capacity is over 30 years old 

(Cook, 2013). 

 

 
Figure 1.  Age and capacity of electric generators. 
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To keep these older generation assets producing power, 

additional maintenance is required.  Adding to the 

maintenance challenges in power generation, the majority of 

new assets brought online in the last 20 years are natural gas 

based, Figure 2. Combustion turbine and combined cycle 

power generation plants are more economical to operate, 

given the lower price in natural gas.  However, natural gas 

plants incorporate newer technology that is more complex 

and often more costly to repair.  As a result of older power 

plants aging, and newer plants being more complex, a 

growing need for FWM coupled with automated diagnostics 

and prognostics is needed.   

 

 
Figure 2.  Newer power plants are natural gas plants. 

1.2. Change in Operational Patterns Underscore 

Reliability Needs 

Base load demand is now predominately provided by 

combined cycle gas turbine and steam turbine operations.  

Larger coal plants are now used to meet peak demand and 

smaller coal plants are being decommissioned.  The result of 

this operational change is the combined cycle plants have 

higher reliability and availability demands.  Further, the 

operating coal plants are experiencing reliability challenges 

as they operate differently than their design, that is they 

cycle on and off as compared  to continuous operation.     

As a result of these increasing reliability demands, the 

executive teams at power generation plants are challenged 

to leverage new technologies to address increasing 

reliability demands and workforce optimization.  These 

power generation companies are collaborating with the 

Electrical Power Research Institute (EPRI) to address 

reliability needs from an industry perspective.   

1.3. The Change from Manual Data Collection to 

Automatic Surveillance 

A core objective of FWM is to greatly reduce the time 

equipment specialists spend collecting condition indicating 

sensory data, and as a result to increase the amount of time 

specialists spend analyzing sensor data and results from 

automated analysis, Figure 3.  This change from manual 

sensory data collection is intended to result in improved 

consistency in diagnostics thru automation and 

standardization.  Other improvements include better fusion 

of technology exam sensory data with process data.  The 

end result is expected to be a more integrated monitoring 

and diagnostics center with improved visualization, enabling 

engineering and specialist workforces to perform higher 

value tasks.   

 

 
Figure 3.  Workforce optimization thru online monitoring. 

 

In comparison to manual route based data collection, Figure 

4, online monitoring systems overcome several 

disadvantages.   The first overcome disadvantage of manual 

route based sensory data collection is sparse data collection 

schedules.  With manual route based exams, specialists visit 

the machines on schedules perhaps just once per month or 

once per quarter.  These schedules may be interrupted by 

unplanned higher priority needs of the plant.  In a large 

power generation enterprise, for example, staff and time is 

needed for nearly 60,000 manual exams per month.  A 

second overcome disadvantage is equipment availability for 

an exam.  The equipment may not be in operation during the 

specialist physical visit.   

 

 
Figure 4.  Manual technology exam measurements. 

 

Third, there is a high probability of missing an event, as the 

symptom of degradation may not adequately show itself 

during the periodic visit.   Fourth, when the technical exam 

sensor data is collected, it often remains on the specialist’s 

computer, until such time as the specialist determines it is 

important to report during a face to face meeting.  In other 

words, an individual’s limited view of the overall equipment 

may prevent data from being reported at a face to face 

meeting.  And perhaps most importantly, over 60% of 

specialist manpower is used to collect sensory data, with 

limited time left for analyzing and reporting equipment 

health.  
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The goal of intelligent top-down approach to plant 

maintenance and scheduling is met by the implementation 

of centralized monitoring and diagnostics centers.  These 

centers require continuous updates of equipment 

performance and condition.  To reach the goal then, the 

technology exams that are now performed manually will 

become automatic and online.   

2. FLEETWIDE ASSET MONITORING SYSTEMS 

ARCHITECTURE 

There are several aspects to the implementation of an online 

fleetwide asset monitoring systems.  These include field 

communications, measurement coverage, data management, 

installation costs, and interoperability. Field 

communications is imperative to FWM as it allows data 

acquisition systems to report equipment conditions in real-

time.  The data acquisition systems also must cover all of 

the traditional condition and performance monitoring 

technologies, as well as allow for new advanced monitoring 

technologies.  With the addition of FWM, terabytes of 

sensory data become available.  Tools to manage the data, 

extract information, and guide diagnostics and prognostics 

applications are paramount.  With careful planning, 

selection of sensors and server technology, the installation 

costs of FWM applications can be mitigated.  Since a FWM 

system has many components, interoperability of 

components from different vendors brings flexibility to 

integrate existing systems with new technologies.   

2.1. Field Communications 

Many plants are deploying wireless communications 

networks within the physical plant.  These networks allow 

plant personnel to access documentation, email, and task 

related applications using portable computing technology 

such as tablet computers.  This business communications 

network is convenient for implementation of an online 

monitoring system.   

To implement a FWM system, automatic data collection 

nodes, capable of measuring sensors from multiple 

technologies, are added to the business computer 

communications network, whether this is wired or wireless, 

Figure 5.  By placing the data acquisition systems on the 

business computer network, the data acquisition systems 

avoid interfering with control systems, and face less 

interference evaluation.  Figure 6 shows a sample data 

acquisition system including data acquisition hardware, 

power supplies, fuses, and communication equipment.   

 

 
Figure 5.  Data acquisition system on the business network. 

 

 
Figure 6.   Sample data acquisition hardware cabinet. 

2.2. Flexibility of Measurements 

Measurement technologies for condition monitoring are 

prescribed in standards including the ISO 17359 condition 

monitoring standard (ISO, 2003).  Measurements mentioned 

in the standard include temperature, pressure, flow, current, 

voltage, vibration, acoustic emissions, oil, and speed.  Data 

acquisition systems must be able to digitize these physical 

phenomenons from a variety of sensors both those making 

dynamic and static measurements. Dynamic measurements 

are of physical phenomenon that changes rapidly such as 

vibration, motor currents, and pressure.  Static 

measurements include oil, temperature, flow, and loads.  

Dynamic measurements may utilize analog to digital 

sampling rates in the 10’s of thousands of measurements per 

second.  These systems are designed to continuously 

monitor sensors, in order to overcome the problem of 

missing an equipment degradation indication.   

2.3. Data Management at the Data Acquisition Level 

A challenge in FWM, is managing the large amount of data 

being acquired.  For example, just monitoring two critical 

feed water pump shafts with two bearings can produce over 

one terabyte of data per week with continuous sampling.  To 

overcome this sensory data deluge, the continuous 

monitoring data acquisition systems must be designed to 

record and transfer sensory data on an event bases, Figure 7.   
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Figure 7.   Data acquisition system software diagram. 

 

To determine when a sensory data recording event has 

occurred, these networked systems must be both data 

acquisition and analysis network nodes (DAAN).  Several 

FWM hardware vendors now offer an embedded 

architecture that implements embedded analysis for data 

reduction, Figure 7.  This evolution has occurred as more 

online hardware has deployed, and end user and information 

technology (IT) feedback has been gathered.   With this 

architecture, data is filtered at the DAAN, producing only 

sensory data with new information.   

Both dynamic and static measurements are made with their 

time stamps synchronized.  Some sensory values may come 

from communications to local control systems.  As the 

sensory values arrive in memory, the DAAN analyzes the 

time stamps and values of sensory measurements to 

determine an event based trigger.  With a trigger identified, 

sensory time waveform data is recorded to local on-board 

storage and placed in an out box directory for later transfer 

onto the network.  The format of the time waveform 

recording is an open format such as the National 

Instruments TDMS format, UFF58 binary, or some other 

format that is documented and facilitates interoperability 

between vendors.   

It should be noted that the DAAN, when recording data to 

its local disk,   has provided metadata including equipment 

hierarchy, sensor calibration information, sensor location, 

time stamps, and other pertinent information to facilitate 

data search, off-line analysis, and peer to peer comparisons.  

The equipment and sensor location hierarchy should follow 

an information model commonly used in industry. This 

allows for interoperability of Data Acquisition systems and 

for downstream prognostics applications (Monnin et all, 

2011) For condition monitoring there is not a formal 

standard, yet some good examples to build from.  These 

include OSA-CBM, the IEC 61970 Common Information 

Model (CIM), and ISA-95 equipment model.   

In a FWM application, 100’s of DAANs may be added to 

the business or maintenance network.  These DAANs 

themselves then need to be managed.  A server class 

computer, also residing on the business network, is 

responsible for managing the DAANs, noting the health of 

sensors and data acquisition hardware as well as retrieving 

sensory data recordings from them, Figure 8.    

 
Figure 8.   Data acquisition node, network, and server. 

 

The server tasks include discovery of monitoring devices, 

insuring correct configuration of the monitoring devices, 

managing network and communications security, and 

monitoring the health of the DAAN as well as the attached 

sensors.  These tasks are performed using both standard and 

proprietary vendor specific communications protocols to 

detect, configure, manage, and retrieve data from the 

DAANs.   

2.4. Data Management at the Maintenance Server 

The maintenance server has the responsibility of hosting 

specialist visualization and analysis software.  With these 

tools, vibration analysts in particular can retrieve vibration 

time waveforms to perform comprehensive visual and 

comparative analytics within a single rotating machine and 

components or across machine peers.  The maintenance 

server also has the responsibility of transferring condition 

indications to the plant historian where DAAN collected 

condition indicators are later correlated with process and 

operations data, Figure 9.  

 

 
Figure 9.  High level architecture of monitoring system. 

 

Analysis of sensory data from the DAANs, and supporting 

control systems occurs in multiple locations, and ranges 

from threshold alarms, to advanced signal processing of 

time waveforms, to automated diagnostics, and health 

prediction, Figure 10.  To optimize the overall process of 

tracking equipment health, reliability, and availability; a 

European Conference of the Prognostics and Health Management Society 2014

555



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014 

5 

distributed analytical architecture provides both advanced 

calculations capabilities and data fusion opportunities.  By 

distributing analytics amongst the DAAN, Maintenance 

Server, and Enterprise Historians; the amount of raw 

sensory data is reduced by conversion to key condition 

indicators, and threshold alarms  

 

 
Figure 10.   Data management and analytics architecture. 

 
With sensory data and condition indicators available from 

multiple assets, automation of diagnostics and prognostics 

becomes possible. Since the entire event driven sensory data 

is labeled with equipment hierarchy metadata, similarity 

analysis with similar equipment, is now possible.  When 

comparisons to fault signatures, operational states, and peer 

equipment are made; the sensory data is managed and 

reduced to actionable information.    

2.5. Managing Installation Costs 

By comparison to traditional condition monitoring 

technology, the costs of data acquisition equipment, sensors, 

networking equipment and server computers can add up 

quickly.  However, with the advent of multi-mode sensors, 

proliferation of sensory data acquisition technologies, the 

industrial adoption of wireless networks, and the lowering 

cost of computer technologies; the industry has an 

opportunity to install FWM systems at lower costs than 

previously available.   

Vibration sensors for example are now available from 

industrial suppliers with both temperature and vibration in a 

single sensor.  These same vendors also offer tri-axial 

sensors (three directional vibration sensors in one) in 

industrial grade packaging.  These multi-mode sensors 

reduce cabling and conduit equipment and labor costs.   

Data acquisition systems are available from a number of 

vendors, and the market these vendors participate in is 

growing as a result of global drive to automate sensory data 

collection in a broad base of fields.  This market trend is 

driving down the costs of data acquisition equipment.  

Further, many data acquisition systems offer the ability to 

monitor multiple sensing technologies from multiple assets 

or machines in a single device.  These data acquisition 

systems also include the ability to filter data, only recording 

sensory data periodically and on event, thereby reducing the 

cost of data analytics and storage.   

Wireless technologies are quickly being adopted in many 

fields.  These include industrial networking supporting 

business network applications in the field, as well as 

wireless data acquisition and sensory technologies.  This 

adoption is expanding the offerings from a larger number of 

vendors, as well as best practices and services for installing 

and managing wireless networks.  With a larger field of 

wireless technology suppliers and practitioners, the cost of 

the wireless infrastructure is lowering while the reliability is 

improving.   

Finally, the cost of computer server technology needed to 

host maintenance server applications is quickly reducing, 

while improving information technology management tools.  

These trends lower both the cost of hardware, and also the 

installation and maintenance costs of the computing 

infrastructure.   

Coupling with the lower cost of components, careful 

planning to sequence installation activities will also help 

lower installation costs.  For example, have multiple 

machines of a similar type instrumented at the same time 

will breed economies of scale.  If possible, specifying the 

FWM technologies be installed at the initial construction of 

the plant or unit can have nearly a seven times reduction in 

installation costs.   

2.6. Interoperability 

The power generation community, with the support of EPRI 

continues to strive to open interoperable systems.  EPRI 

promotes evolution of equipment models, data storage 

formats, and hardware data acquisition technology that 

strive towards interoperability between vendors.  This effort 

is illustrated in the EPRI Fleetwide Monitoring for 

Condition Assessment publication (Shankar, 2006)  

2.7. Systems Architecture Summary 

In summary, the networked automatic sensory data 

collection system performs many tasks.  The system resides 

on a business network, to reduce interference with 

operations.  The DAANs have built in analytics and 

intelligence to determine when to record sensory data and to 

determine its own operational status and health.  The server 

computer managing the network aggregates sensory data 

from all DAANs, publishes condition indicators to a plant 

historian, and provides search, retrieval, and analytics of 

collected data recordings.   

Technology costs from the sensor, to the DAAN, to the 

server computing technology are advancing with cost 

benefits, ease of installation and operation improvements, 

and greater computer power to automate diagnostics and 

health prediction functions.   These technology trends, 
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coupled with proven online monitoring systems 

architectures, yield a new opportunity for online fleetwide 

monitoring. 

3. AUTOMATING ALERTS, DIAGNOSTICS, AND 

PROGNOSTICS 

Once the DAAN’s are installed on selected equipment, it is 

possible to aggregate sensory data (at the maintenance 

server) and to implement exception reporting, also known as 

anomaly detection.  When any asset is instrumented with 

degradation indicating sensors, it is possible to build thresh-

holding alarms (warning, alert, and danger level alarms) 

based on either industry standards per equipment class, or 

based on statistical deviation from established norms.  For 

example, it is recommended practice to monitor all sensors, 

and results of calculations from sensor values (condition 

indicators) to create a baseline of normal operation. By 

using the baseline, it is possible to set threshold alarms on 

individual sensor values or condition indicators at intervals 

of standard deviation from expected normal values (ISO 

2003).   

This practice of using standard deviation alarms or 

equipment class standards can be referred to as thresh-

holding predictive maintenance.  With thresh-holding and 

trending alarms, the trended rate of change becomes an 

indication of future performance or health of a machine and 

also a prediction of maintenance needs.   

A more advanced approach is to utilize a combination of 

trends, a combination of sensory values and condition 

indicators, which together form a pattern of normal or 

abnormal operation.  These patterns can then be used to 

track actual pattern movement with expected patterns 

allowing the difference or residual to indicate the “error” or 

health degradation (CCJ, 2014).  The patterns can be 

defined with one piece of equipment, and then used as a 

fault signature for other pieces of equipment with similar 

components and function.  What is learned from one pump 

can be applied to similar pumps in similar operating 

conditions.  There are several such anomaly detection, or 

advanced pattern recognition products on the market which 

accomplish this specific task.  Examples include Instep 

PRiSM™ and General Electric’s SmartSignal™ trend 

analysis applications.  These products are popular in the 

power generation and petrochemical industries.   

4. CASE STUDIES 

4.1. Attributes of a Successful Fleetwide Monitoring 

Program 

There are many case studies in the field of condition 

monitoring; some are fleetwide monitoring case studies.  In 

successful cases, the selection of assets, monitoring 

technology, repeatable test conditions, and defined 

exception reporting are key aspects of a successful condition 

monitoring program.  In fact, the most successful programs 

implement best practices such as those described in the ISO 

17359 standard (ISO, 2003).  In addition, there must be 

organizational buy-in to the condition monitoring program.  

This buy-in is best undertaken at the management level, 

where reporting of activities and program impact are 

expressed in economic terms.   

In its Fleetwide Monitoring for Equipment Condition 

Assessment report (Shankar, 2006), the Electrical Power 

Research Institute (EPRI) calls out five primary challenges 

to fleetwide monitoring (FWM).  The first challenge is 

standardization: in equipment evaluation technologies, 

terminology of equipment and sensing types, and company 

maintenance procedures.  The second is identifying a cost 

justification that can be used to obtain management “buy-

in”, or formal acceptance to invest in fleetwide monitoring.  

Thirdly, there exists a challenge to build visibility across the 

organization and to promote best practices, centralization of 

management and monitoring.  Centralization fosters 

collaborative efforts across company organizations and 

identification of best practices and technologies.  A fourth, 

and perhaps most important challenge, is alarm 

management.  In particular, a mechanism to validate alarms 

prior to planning a response is critical in building 

confidence in the program.  The fifth challenge is the 

integration of multiple monitoring technologies, to obtain 

the benefits of each and to create a holistic view of 

monitored equipment.   

To address these challenges, EPRI is working with its 

member power generation companies to document best 

practices and specific cases.  As an example, there is a 

specific EPRI project focused on cost benefit analysis.  

Within the project cost benefits are categorized as direct 

benefits and indirect benefits.  Direct benefits include the 

reduction in time and expense necessary to maintain 

equipment.  This benefit arises by using improved 

knowledge and understanding of equipment health. Indirect 

benefits result from avoiding a reduced power event or 

unscheduled downtime.  The indirect benefits include the 

cost avoidance of significant equipment damage.   

4.2. Southern Company’s First Plant 

Southern Company embarked on their fleetwide monitoring 

program in the late 2000’s with the adoption of several 

EPRI recommendations and products (Hussey, 2010).  

Southern Company operates over 280 power generation 

units at 73 power plants including gas turbine, combined 

cycle, steam (coal), hydro and solar, Figure 11.  While 

meeting the specific business model and company culture, 

Southern Company implemented the first phase of their 

fleetwide monitoring and diagnostics (M&D) center, 

beginning in 2007.   

 

European Conference of the Prognostics and Health Management Society 2014

557



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014 

7 

 
Figure 11:  Southern Company power generation map. 

 

There are five core goals of the Southern Company M&D 

center.  First, is to establish a higher frequency monitoring 

program with sensory and condition indicating data arriving 

in minutes as opposed to once per week or longer.  This first 

goal required the addition of continuous monitoring 

equipment as described earlier in this paper.  The second 

goal is for the selected equipment to be monitored around 

the clock.  The third goal is to mitigate the loss (through 

retirement) of experienced resources.  By centralizing the 

M&D center, knowledge from experienced resources can be 

captured in various “best practices” documentation.  A 

fourth component of the M&D center is a multidisciplinary 

focus including operations, maintenance, instrumentation 

and engineering.  Fifth, and finally, a core goal is to 

establish a partnership with operations in order to eliminate 

any animosity that may arise from the new oversight the 

M&D center would have with the equipment under 

operations control.   

Initially, just one plant was monitored for 1.5 years to 

document results and to provide guidance for future 

condition monitoring programs. Online condition 

monitoring hardware and FWM applications were added to 

critical steam turbine and gas turbine generators.    The 

benefit to cost ratio was estimated to be a 4:1 and three 

additional plants were added to the centralized M&D center 

pilot.  In 2010, management authorized expansion of the 

fleetwide monitoring program to 17 plants or about 1/3 of 

the entire fleet.   Subsequent to this roll-out of turbine 

generator FWM applications, Southern company has begun 

to take advantage of lower cost sensing and data acquisition 

hardware, following developing recommended EPRI 

requirements.  This allows Southern company to extend its 

FWM program to balance of plant equipment.   

Several lessons are taken from Southern Company’s 

experiences.  The first is to start slowly.  There are a number 

of complexities in change and management aspects of a 

fleetwide program.  It is recommended to start small, 

perhaps at a single plant and even specific issues of a 

specific equipment type.  Goals should be set with respect to 

the issues and equipment reliability measures.  From these 

goals, the appropriate applications technology can be 

selected with the best promise of meeting the goals.   

The second lesson from Southern Company is to get 

executive “buy-in”.  Executive support is very important in 

both the establishment and on-going improvements to the 

M&D center.   

A third lesson is to select participating staff with multi-

disciplinary skills.  These skills include operations, 

instrumentation, controls, engineering and maintenance 

experience and training.  With multi-disciplinary skills, 

team members are more easily able to engage and interact 

with other business and functional units within the 

enterprise.   

The fourth lesson arising from Southern Company’s M&D 

efforts is to invest in a proven information technology (IT) 

infrastructure to manage both data and knowledge obtained 

during the growth of Southern’s FWM program.  This 

infrastructure includes intelligent data acquisition, 

networking, and server hardware and software.  According 

to Southern Company, the level of sophistication of smart 

trending (pattern recognition software) and data acquisition 

equipment maps to the success of an online condition and 

performance monitoring program.   

4.3. Luminant Energy Mining Operations 

Luminant is the largest power generation company in Texas.  

It operates eight natural gas driven plants (combustion 

turbines), five coal plants, and one nuclear power plant.  

Supporting its steam generation coal plants, it operates nine 

surface coal mines, Figure 12.  While Luminant sports a 

state of the art M&D center in Dallas, Texas, many of its 

condition monitoring programs are rooted in its mining 

operations (Lawson, 2010).   

 

 
Figure 12:  Luminant power generation map. 
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Luminant’s Mine Maintenance Support Services (MMS) is 

the core group behind its condition monitoring program.  

Over the past several decades, the MMS group has utilized a 

range of technologies including vibration, oil, ultrasonic, 

infrared, and strain to monitor condition and degradation of 

mining equipment used in support of steam power 

generation plants.    The MMS team is made of personnel 

with a broad range of skills including electrical, mechanical, 

maintenance, and computer systems, and project 

management.   

In the four years leading up to the article, MMS efforts have 

produced an 18% savings in maintenance spend.  These 

efforts produce a condition of maintenance (COM) report 

that feeds into allocation of maintenance funding, allowing 

Luminant to do the right maintenance at the right time.   

The Luminant team produces a series of reports indicating 

the health or “maintenance need grade” of core equipment 

assets.  These reports are both tabular in nature sharing 

multiple metrics as well as graphical, including equipment 

mimics and trends.  Further, Luminant has collected a 

significant amount of sensory and condition indicating data 

that helps evolve the internal procedures and processes for 

condition monitoring.  Luminant even shares its sensory 

data with OEMs to help evolve the design of equipment it 

uses.   

Luminant’s lessons are similar to those of Southern 

Company.  One similar approach is getting the “buy-in” 

from management to support funding and growth of the 

program.  Another similarity is the multi-disciplinary skills 

represented within the monitoring and maintenance team.  

Luminant adds both visual and numerical reporting to its 

elements of success.   

Luminant finally leverages its IT infrastructure to house, 

manage, and mine the many years of sensory and condition 

indicating data it has collected.  This accumulation of 

sensory and condition indicating data is a prime example of 

a Fleetwide application.   

4.4. Duke Energy Fleetwide Implementation 

Duke Energy has deployed DAANs, condition indicating 

analytics, as well as anomaly detection and visualization 

tools within several of their power generation plants in 

North America, Figure 13.  Each of these plants has 

deployed 20 or more DAAN nodes per power generation 

block (Cook, 2013).  Each plant has a computer server 

managing the DAANs, calculating condition indicators and 

reporting these condition indicators to the OSIsoft PI™ 

Historian.  Instep Software’s PRiSM™ software is at work 

building data driven models of normal behavior for anomaly 

detection.   

 

 
Figure 13: Duke Energy power generation M&D map. 

 

There are a series of steps Duke Energy has followed to 
implement SmartGen (a monitoring and diagnostics 
program) at each of its plants, Figure 14.  The core steps 
include Planning, Enclosure Drawings, Site Design, Site 
Install, Software Integration, and Plant Turnover.  The 
components of each major step are shown here as a 
suggested guide.   

 

 
Figure 14:  Steps to implementation of a fleetwide 

monitoring program. 
 

There are several lessons learned from the work at Duke 

Energy’s gas turbine power generation plants.  Deployment 

of automated sensory data collection on the fleetwide scale 

requires significant resources for planning and 

implementation.   Implementation managers are needed at 

each facility to manage the sequence, personnel resources, 

and equipment resources that come together to roll out the 

DAANs, server software, and enterprise connectivity.   

Hardware installations can proceed ahead of software 

installation, especially identification of sensor types and 

locations and the subsequent installation.  Server 

installations should be timed to coincide with DAAN 

installation.  Once sensors and DAANs are installed, a 

validation process is needed to validate sensory 

measurements and calculated condition indicators match 

traditional manual based activities.   

As the anomaly detection occurs on the OSIsoft PI™ 

Historian, validation on both condition indicators and PI 

representation of the condition indicators must occur prior 

to building data driven models.  This is similar to any data 

science or predictive analytics application, data integrity is 

of high importance.   

Personnel at all sites are excited and bought into the 

prospect of automated data collection, assisted/automated 

diagnostics and predictive techniques.  Site persons continue 

to ask for more automation, more sensory types, and greater 
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equipment coverage.  Regular implementation process 

meetings focused on streamlining the implementation 

process, and on streamlining feedback are recommended.   

The biggest lesson learned is that the system is working as 

expected.  Already, visibility of equipment reliability has 

greatly improved, and plans are now being made to track 

maintenance savings and availability improvements.  With a 

track record of plant installations, the roadmap for 

addressing additional plants is established, and can be built 

upon.  Duke Energy is well on its way to complete its 

fleetwide monitoring and diagnostics center.  Duke’s efforts 

promise to result in maintenance savings and availability 

improvements, while increasing equipment health visibility 

and optimizing logistics of maintenance.   

5. CONCLUSION 

There are many factors which impact the success of an 

online fleetwide condition monitoring program.  Starting 

small and leveraging common condition monitoring 

technologies simplifies initial FWM applications and 

reduces risk.  With initial success, it is then possible to 

include the sophistication of the data acquisition and 

analysis node, the sophistication of automated diagnostics 

and prognostics (the analytics), and to articulated expected 

return on investment.  Buy-in from senior management, 

along with multi-disciplinary M&D staffing, and thought 

out project plans are also important to the success of the 

FWM efforts.  The case studies of Southern Company, 

Luminant, and Duke Energy each articulate these lessons.  

Given the continued evolution of monitoring technologies, 

including the embedded analytics of DAANs, and the in-line 

technology used for automated diagnostics and prognostics; 

there exists great promise for those organizations 

considering fleetwide asset monitoring.   
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ABSTRACT 

In order to detect incipient failures due to a progressive 

wear of a primary flight command electromechanical 

actuator, prognostics could employ several approaches; the 

choice of the best ones is driven by the efficacy shown in 

failure detection, since not all the algorithms might be 

useful for the proposed purpose. In other words, some of 

them could be suitable only for certain applications while 

they could not give useful results for others.  

Developing a fault detection algorithm able to identify the 

precursors of the above mentioned electromechanical 

actuator (EMA) failure and its degradation pattern is thus 

beneficial for anticipating the incoming failure and alerting 

the maintenance crew such to properly schedule the 

servomechanism replacement. 

The research presented in the paper was focused to develop 

a prognostic technique, able to identify symptoms alerting 

that an EMA component is degrading and will eventually 

exhibit an anomalous behavior; in particular four kinds of 

failure are considered: friction, backlash, coil short circuit, 

rotor static eccentricity. To this purpose, an innovative 

model based fault detection technique has been developed 

merging together several information achieved by means of 

FFT analysis and proper "failure precursors" (calculated by 

comparing the actual EMA responses with the expected 

ones). To assess the robustness of the proposed technique, 

an appropriate simulation test environment was developed.  

The results showed an adequate robustness and confidence 

was gained in the ability to early identify an eventual EMA 

malfunctioning with low risk of false alarms or missed 

failures. 

1. INTRODUCTION 

Prognostics is a discipline whose purpose is to predict the 

moment in which a certain component loses its functionality 

and is not further able to meet desired performances. It is 

based on analysis and knowledge of its possible failure 

modalities and on the capability to individuate the first signs 

of aging or wear and, then, evaluate the magnitude of such 

damage (fault detection / evaluation). The above mentioned 

data will be then used as input of a proper failure 

propagation model. 

The use of this discipline in aeronautics, as in many other 

technological fields, could be very useful if applied to 

maintenance, since it lowers both costs and inspection time. 

In order to optimize these advantages, the discipline known 

as Prognostics and Health Management (PHM) has born: its 

purpose is to provide real-time data on the current status of 

the system and to calculate the Remaining Useful Life 

(RUL) before a fault occurs or a component becomes unable 

to perform its functionalities at a desired level. The 

advantages gained by means of PHM strategies are evident 

comparing the features of a system conceived according to 

this discipline with the ones of a classical design. 

The primary flight controls are a critical feature of the 

aircraft system and are therefore designed with a 

conservative safe-life approach which imposes to replace 

the related components subsequently to a certain number of 

flight hours (or operating cycles): obviously, this approach 

is not able to evaluate the effective status of the items (and 

estimate the ability to operate still correctly) but merely 

requires the aforesaid maintenance operations. 

In particular, the aforesaid design criterion is not able to 

evaluate possible initial flaws (occurred during 

manufacturing) that could generate a sudden fault which 

could compromise the safety of the aircraft and don't allow 

to replace only the really failed components (with the 

related inefficiencies and additional costs).  
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Figure 2. Proposed EMA block diagram developed in 

MATLAB/Simulink® environment. 

It is composed by six different subsystems: 

1. an input block that generates the different position 

commands (Com); 

2. a subsystem simulating the actuator control electronics, 

that close the feedback loops and generates as output 

the reference current I_ref (ACE); 

3. a subsystem simulating the power drive electronics and 

the trapezoidal BLDC electromagnetic model, that 

evaluates the torque developed by the electrical motor 

as a function of the voltages generated by the three-

phase electrical power regulator (BLDC EM Model); 

4. a subsystem simulating the EMA mechanical behavior 

by means of a 2 degrees of freedom dynamical system 

(EMA Dynamic Model); 

5. another input block simulating the aerodynamic torques 

acting on the moving surface controlled by the actuator 

(external forcing TR); 

6. a block simulating the EMA monitoring system 

(Monitor). 

The proposed numerical model is also able to simulate the 

effects due to conversion from analogic to digital of the 

feedback signals (ADC), electrical noise acting on the signal 

lines and position transducers affected by electrical offset. 

 
Figure 3. BLDC EM Model block diagram. 

Figure 3 shows the numerical simulation algorithm that 

implements the brushless DC motor electromagnetic model: 

it is composed by three blocks representing the reference 

current generator, the three-phase PWM inverter system and 

the BLDC motor electromagnetic model. 

The BLDC EM Model block diagram has been developed 

according to the mathematical models and the assumption 

proposed by Çunkas and Aydoğdu (2010) and Halvaei 

Niasar, Moghbelli and Vahedi (2009). 

The trapezoidal back-EMF and the electrical current 

waveforms of the three-phase BLDC motor, evolving as a 

function of rotor position (theta_r), are shown in figure 4. 

 
Figure 4. Phase back-EMF and current waveforms of a 

three-phase BLDC motor. 

The motor driving is performed by means of the PWM 

current control block (figure 5) that compares the reference 

phase currents (I_ref_a, I_ref_b, I_ref_c) with the motor’s 

actual phase currents (Ia, Ib, Ic); indeed, the considered 

block diagram does not implement the structure and the real 

operation of the three-phase PWM inverter: its behavior is 

simulated by means of a relay block, having proper 

thresholds (that user might select), for each phase. 

 
Figure 5. PWM block diagram. 

The output of this subsystem, as shown in figure 6, is a three 

components rotating voltage vector representing the 

corresponding phase voltages Va0, Vb0 and Vc0. 

 
Figure 6. Example of dynamic evolution of the three-phase 

voltages regulated by PWM block. 
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As happens for the I_ref calculation, at a same instant a 

phase has a positive value, another has a negative value 

having the same modulus of the positive one and the 

remaining one must be null (the proposed model realizes 

this last statement only on a mean value). The three 

components show the typical 120 degrees displacement. 

The EM model (shown in figure 7) calculates the three-

phase currents (Ia, Ib, Ic) and the developed mechanical 

torque TM as a function of the PWM three phase voltages 

(Va0, Vb0, Vc0) and the effective rotor velocity DThM. 

The considered BLDC motor has a three-phase winding 

topology with star connection: it has three resistive (R) – 

inductive (L) branches on which a counter-electromotive 

force2 (back-EMF) acts. As reported in [2], the back-EMF 

phase voltages are implemented by using Simulink look-up 

table functions. It must be noted that the three back-EMF 

constants ke_i (one for each of the three branches) may also 

take into account some possible electrical failures (like 

partial coil short circuit or rotor static eccentricity) by 

modifying the parameters of the functions f(u) (figure 9):  

these values, multiplied by the effective rotor velocity 

DThM, provide the corresponding real back-EMF values. 

 
Figure 7. EM Model block diagram. 

Since phase currents are known, total motor torque can be 

computed; this calculation is carried out by the subsystem 

TM (shown in figure 7): the sum of the three phase currents, 

multiplied by their respective back-EMF constants ke and 

by the number of polar couples, gives the corresponding 

value of the total motor torque TM.3 

It must be noted that, in order to validate the just illustrated 

numerical model, the dynamic response developed by the 

aforesaid system under certain operating conditions (control 

input, boundary conditions and entities of different faiths) 

was compared with data obtained from the literature. 

                                                           
2  In nominal conditions (no failure considered) the back-EMF acting e.g. 

on the phase “a” is a function of the rotor position ThM having the 

amplitude of ea = ke·DThM, that ke is back-EMF constant of the 

considered phase. In case of electrical failure (such as coil short-circuits 

or static eccentricity) the back-EMF constants may be suitably modified 

by means of three functions f(u) (one for each motor phase) properly 

conceived in order to simulate the effects of these failures. 

3  The so obtained mechanical motor torque TM is limited by means of a 

Simulink Saturation block in order to take in account the actual 

performance of the real system. 

In particular, the back-EMF and phase current waveforms, 

related to different values of the rotor angular velocity, and 

the dynamic responses of the BLDC caused by various 

command inputs have been compared with corresponding 

cases reported in literature by Lee and Ehsani (2003), 

highlighting a satisfactory compliance between simulations 

and literature data. 

 
Figure 8. EMA Dynamic Model block diagram. 

Figure 8 shows the subsystem simulating the EMA 

mechanical behavior: it is composed of two non-linear 

second order dynamic models linked together by means of 

an instantaneous model simulating the elastic reaction 

(Treaz) dues to shaft stiffness4: the first dynamic system is 

related to the group including motor and gears, while the 

second one represents the final user. The BLDC Motor and 

User subsystems implement the second order dynamic 

models simulating respectively the behaviors of BLDC 

motor/gear reducer and final user (i.e. the aircraft command 

surface controlled by the EMA). This type of simulation 

algorithm, widely explained by Borello, and Dalla Vedova 

(2012), is also able to simulate the effects of the dry friction 

forces developed in rotor bearings, gear reducer, hinges and 

screw actuators; in particular, the frictional torque is 

calculated by means of the numerical model proposed by 

Borello, Maggiore, Dalla Vedova and Alimhillaj (2009). 

 
Figure 9. Mechanical Transmission block diagram. 

The Mechanical Transmission subsystem shown in figure 9 

simulates the behavior of the transmission shaft linking 

together gear-motor assembly and final user, calculating the 

corresponding reaction torque (Treaz) as a function of ThM 

and ThU (respectively motor and user position) and Ktr 

(transmission shaft stiffness) taking into account the effects 

of the mechanical backlashes. 

                                                           
4  It must be noted that the description of the general architecture of the two 

d.o.f mechanical system employed in the present work and its 

mathematical model are reported in references [8] and [13]. 
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Figure 10. Monitoring Model block diagram. 

3. RELATED MONITORING MODEL 

The above Simulink model, as explained in the previous 

section, is able to simulate the dynamic behavior of an 

actual electromechanical servomechanism taking into 

account the effects due to command inputs, environmental 

boundary conditions and several failures. So, even with 

proper limitations, this model allows simulating the 

dynamic response of the real system in order to evaluate the 

effects of different faults and designs, analyses and tests 

different diagnostic and prognostic monitoring strategies. 

In order to conceive a smart system able to identify and 

evaluate the progressive failures, it is necessary to compare 

its dynamic behaviors with the ones provided by an ideal 

system operating in nominal conditions (in order to neglect 

the effects due to the aforesaid failures). To this purpose, a 

new numerical model (more simplified and compact than 

the previous one), dedicated to monitoring operations, has 

been developed. As shown in figure 10, the Monitoring 

Model controller represents a simplified version of the 

proposed EMA numerical model having the same logical 

and functional structure; such a model, with respect to the 

detailed one, is able to give similar performance, although 

less detailed, requiring less computational effort and 

reduced computational time. 

The Controller calculates the output reference current I_ref 

as a function of the motor angular position ThM, the motor 

angular velocity DThM and the commanded position Com. 

In order to simplify the electromagnetic numerical model, 

the three-phase BLDC motor has been modelled as an 

equivalent single-phase electromagnetic motor and the 

driving torque TM is directly obtained multiplying the 

current Cor by a torque constant GM. The difference 

between reference (I_ref) and actual currents (Cor) enters a 

SIGN block that returns the corresponding phase supply 

voltage +/-Vdcm (respectively, when reference current is 

higher than actual current or vice versa); these values, 

decreased of back-EMF, calculates (by means of a transfer 

function modelling the resistive-inductive circuit) the actual 

phase current Cor used in feedback for motor torque 

computation TM. A saturation block is provided to take into 

account the corresponding torque limits. 

In the aim to simplify the actuator mechanical model, the 

gearmotor-user assembly has been degraded to a simpler 1 

d.o.f. non-linear second order dynamic system (neglecting 

the effects due to system inertias, transmission shaft 

stiffness and backlashes and reducing the inertial and 

viscous terms to the same shaft) and all the friction torques 

acting on the actual system are ignored. 

4. EMA FAILURES AND DEGRADATIONS 

Since EMA have been only recently employed in 

aeronautics, their cumulated flight hours or on-board 

installations are not so much to permit to obtain reliable 

statistics about more recurring failures. However, it is 

possible to discern between four main categories of failures: 

1. mechanical or structural failures; 

2. BLDC motor failures; 

3. electronics failures; 

4. sensor failures. 

The present work has been mainly focused on the effects of 

mechanical failures due to progressive wear, that causes an 

increase of backlash and friction, and on two typical BLDC 

motor failures: the coil short-circuits ad the bearing wear 

generating rotor static eccentricity. Electrical and sensor 

failures are not less important than the other ones, but their 

evolutions are usually very fast (if not instantaneous) and 

the corresponding failure precursors are often difficult to 

identify and evaluate; nevertheless, it is the intention of the 

authors to study these types of failure in a next work. 

As known, dry friction phenomena always occur when two 

surfaces are in relative motion: when friction coefficients 

increase due to wear, reaction torque becomes higher and 

the motor must provide higher torques to actuate the control 

surface. As shown by Borello, Maggiore, Villero and Dalla 

Vedova (2010), increased dry friction, while still not 

causing the seizure of the entire system, reduces the 

servomechanism accuracy and, sometimes, influences the 

system dynamic response generating unexpected behavior 

(stick-slip or limit cycles). The mechanical wear could also 

generate backlash in EMA moving parts such as gears, 

hinges, bearings and especially screw actuators. 
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These backlashes, acting on the elements of the mechanical 

transmission, reduce the EMA accuracy and can lead to 

problems of stiffness and controllability of the whole 

actuator, as shown by Borello and Dalla Vedova (2006). 

BLDC motor failures are mainly seen as progressive coil 

short-circuits or bearing wear generating rotor static 

eccentricity. Short-circuits usually start between a few coils 

belonging to the same phase (coil-coil failure). Since into 

short-circuited coils the voltage remains the same and the 

resistance decreases, a high circulating current arises, 

generating a localized heating in conductor: this heating 

favors the extension of the failure to adjacent coils. If this 

kind of failure is not promptly detected it could propagate 

and generate phase-phase or phase-neutral damages. 

The static eccentricity of a rotating body consists in a 

misalignment between the rotor rotation axis and the stator 

axis of symmetry; this misalignment is mainly due to 

tolerances and imperfections during motor construction or to 

a gradual increase of wear of the rotor shaft bearings. 

When this failure occurs, the motor having more than one 

polar couple generates a periodically variable magnetic flux, 

since the air gap varies during its 360° degrees turn. 

 
Figure 11. Reference system for the definition of air gap. 

In case of static eccentricity, the air gap changes during a 

spin of the rotor (figure 11) and its behavior can be 

represented by the function: 

�
� �  

where �, is the clearance between stator and rotor (without 

considering misalignment) and the second term represents 

the variation of the air gap with ϑ related to the 

misalignment �; in terms of motor performances, provided 

torque is lower than in nominal conditions; instead, spectral 

analysis reveals sub-harmonics increasing for higher 

eccentricities. The rotor static eccentricity and the partial 

stator coil short circuit effects have been modeled by means 

of a simplified numerical algorithm. Since the both failures 

change the magnetic coupling between stator and rotor, the 

algorithm simulates the aforesaid failures modifying values 

and angular modulations of the back-EMF coefficients5.  

                                                           
5  The proposed algorithm, implemented by means of the functions f(u) 

contained in the BLDC EM Model block diagram reported in figure 7, 

acts on the three back-EMF constants Cei (one for each branch) 

modulating their trapezoidal reference values Kei as a function of coil 

short circuit percentage, static rotor eccentricity ζ and angular position ϑr. 

� � �  

The so obtained constants (ke_a, ke_b, ke_c) are then used 

to calculate the corresponding counter-electromotive forces 

(ea, eb, ec) and to evaluate the mechanical couples (Cea, 

Ceb, Cec) generated by the three motor phases (figure 7). 

5. FAULT DETECTION/EVALUATION ALGORITHMS 

As already said, prognostics is an engineering discipline 

whose purpose is to predict an incipient failure of a certain 

component, allowing possible interventions before the 

initial flaw propagates. The failure detection/evaluation 

could be achieved by means of a proper algorithm (typically 

applied to a numerical model) able to detect the failures and 

predict their evolution. This fact underlines a limit of 

prognostics: it could predict only failures which presents a 

gradual growth and it is not able to detect sudden faults. 

Prognostics algorithms can have several complexity levels, 

from the simplest based on heuristic criteria to the most 

complex involving physical failure models. Developing a 

prognostic algorithm able to identify the precursors of an 

EMA failure and its degradation pattern is thus beneficial 

for anticipating the incoming failure and alerting the 

maintenance crew such to properly schedule the EMA 

replacement. This avoids a servomechanism failure in 

service, thereby ensuring improved equipment availability 

and minimizing the impacts onto the logistic line.  

To this effect, a model based failure detection/evaluation 

technique was developed that fuses several information 

obtained by comparing actual with expected responses of 

the EMA to recognize a degradation and estimate the 

remaining useful life. The choice of the best algorithms able 

to detect and evaluate a particular kind of incipient failure is 

driven by their ability to detect the failure itself, so proper 

tests are needed. The proposed algorithm is based upon: 

1. Fourier spectral analysis (by means of FFT); 

2. Correlation coefficient. 

The Fourier Transform (FT) is a mathematical instrument, 

based upon the theory of Fourier series, which has many 

applications in physics and engineering (Welch 1967). 

Fourier Transform of a function f(t) is often calculated by 

means of the Discrete Fourier Transform (called DFT).  

Unlike the typical FT, the DFT requires as input a discrete 

function; this restrains the DFT to the analysis of a function 

on a limited and discrete domain. It must be noted that the 

input values of DFT are finite sequences of real or complex 

numbers, feature that makes it ideal for data processing on 

electronic calculators; in particular, this method is employed 

to analyze the frequencies composing a certain numerical 

signal by means of proper algorithms constituting the Fast 

Fourier Transform (FFT) (as shown by Cardona, Lerusse 

and Géradin 1998). In order to achieve the spectral analysis 

of the dynamic response of the actuation system to a given 

command, a dedicated numerical algorithm (based upon the 

FFT MATLAB implementation) has been conceived.  
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As mentioned earlier, the other instrument used to detect 

incipient failures or wear conditions is the correlation 

coefficient C. This coefficient, as proposed by Borello, 

Dalla Vedova, Jacazio and Sorli (2009) and Dalla Vedova et 

al. (2010), is defined as: 

� �

�

�

�
��

�

where �  is the set of observed data and 	  is the 

theoretical data: in this work, they are respectively the 

results of the model that simulates the actual system and the 

data from the monitoring model. The data considered in the 

two vectors, depending on the case, could concern positions, 

velocities or other physical magnitudes of the system. 

The data representing the dynamic response of the actual 

system (fault sensitive) are compared with the results 

provided by the monitoring system (that simulates ideal 

conditions, since no progressive failures are considered): the 

more the failure is considerable, the more the results 

obtained from the simulated actual system differ from the 

theoretical data6. This difference, in order to be useful for 

prognostic analysis, should have a monotonic trend related 

to the corresponding failure increase. In order to allow a 

direct correlation between the growth of a defined failure 

and the corresponding value of the correlation coefficient, it 

is necessary to identify a physical magnitude (sensitive to 

the aforesaid failure) that, with increasing failure itself, 

generates a monotonic and easily detectable trend of C; to 

this purpose, the authors have conceived another dedicated 

numerical algorithm (developed in MATLAB environment) 

implementing equation (3). 

6. FAILURES EFFECTS OF THE EMA BEHAVIOR 

In order to recognize the effects produced by a failure on the 

dynamic behavior of the considered actuation system, the 

dynamic responses generated under such conditions are 

compared with those reported in nominal conditions (i.e. 

considering the nominal values of parameters and failures). 

The proposed EMA model has been tested with several 

simulations in nominal conditions (NC): the compliance 

between the actual behaviors of a real EMA and the 

corresponding simulated results have been evaluated by 

means of many types of Com; subsequently, these results 

have been compared with the system behavior in failure 

conditions. A step command input (figure 12) generates a 

dynamical response that, in NC (having proper values of dry 

friction torque and mechanical backlash and neglecting any 

phase short circuit or rotor static eccentricity), puts in 

evidence the system stability margin, the non-linear effects 

due to saturations and the position errors due to frictions 

                                                           
6 If the vector of observed data exactly corresponds to the theoretical data, 

C is equal to 1. If this correspondence does not occur, the more the 

discrepancy between the two data sets is noticeable, and the more the 

value of C is different from 1: its value could be higher or lower than 1. 

(this is because the authors model integrates the dry friction 

algorithm in a dynamic system able to take into account also 

the hard stops effects and their mutual interactions); by this 

way it is possible to discern between static and dynamic 

friction conditions and evaluate their effects on the system. 

Figure 13 puts in evidence the EMA numerical model 

ability to simulate the actual dynamics of the three-phase 

currents (Ia, Ib, Ic) taking into account the effects due to 

PWM regulation ad phase commutation, such as “two-phase 

on” effect shown by Haskew, Schinstock and Waldrep 

(1999) or Hemanand and Rajesh (2006). 

 
Figure 12. Example of system dynamic behavior in 

condition of step position command. 

 
Figure 13. Related reference and actual phase. 

The ramp response analysis reveals that the proposed model 

is able to simulate both a high-slope ramp response (Fig. 14) 

and a stick-slip phenomenon (Fig. 15); the first case 

underlines the limits of the actuator in terms of maximum 

speed, while the latter shows what occurs when the ramp 

slope is lower enough to emphasize the frictional effects. 

Furthermore, the model allows to evaluate the incipient 

motion resolution of the servomechanism, i.e. the smallest 

command value producing an actuator’s response. 

Obviously, this value becomes higher as frictional 

contribution is more significant, that is when the 

servomechanism undergoes increasing wear conditions. 

European Conference of the Prognostics and Health Management Society 2014

567



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014 

8 

 
Figure 14. Example of system dynamic behavior in 

condition of high slope ramp command. 

 
Figure 15. Example of system dynamic behavior in 

condition of very low slope ramp command. 

At the same way, several periodic inputs have been 

examined confirming the model ability to simulate the 

behavior of the real actuation system and its sensitivity to 

nonlinear effects, command inputs (in terms dynamic 

response related to amplitude and frequency input) and 

external loads. The most interesting results are provided by 

FFT analysis performed on positions and velocities of motor 

and user. The algorithm employed to perform this task 

correctly records the most important spectral contribution of 

the analyzed magnitudes as a function of the corresponding 

command frequency: its amplitude is related to the 

command semi-amplitude. If the given command has an 

amplitude or a frequency too wide to be properly followed 

by the servomechanism, this analysis also records odd 

multiple harmonics of the command frequency (which 

typically appear if signals distortions have a half-wave 

symmetry). Checked the compliance of the proposed 

numerical model in NC, several analysis have been 

performed considering the four possible failures. 

Firstly, the effects of wear conditions (friction and backlash) 

have been evaluated: the friction torque is defined as a 

percentage of the maximum motor torque, while the 

mechanical transmission backlash is modeled as localized 

downstream the gear reducer. 

The high-slope ramp command provides significant results: 

1. In terms of FFT analysis on velocities, the fundamental 

frequency recorded in nominal conditions is around 

2040 Hz. This value slightly decreases as frictional 

effects increase, since angular velocity is reduced by 

friction. The amplitude related to this frequency 

monotonically increases with friction and increasing 

non-monotonic multiple harmonics arise (the second 

and the third ones have been recorded during FFT 

analysis). Backlash is not detected with FFT algorithm; 

2. The investigation on the correlation coefficients reveals 

that on user position and velocity a negligible increase 

with friction has been found, while a definite 

decreasing monotonic trend can be recorded for motor 

torque. The same analysis performed on backlash has 

not provided any employable data, from a prognostic 

point of view. The correlation coefficient for reference 

current is always 1 for a ramp input, since the actuator 

follows a velocity regime and this fact is independent 

from the kind of failure implemented on the model. 

Further analysis concern the sinusoidal response (the input 

has a frequency of 20 Hz and an amplitude of 0.001 rad): 

1. FFT analysis cannot detect nor friction nor backlash, 

since only the command frequency prevails; 

2. All the correlation coefficients generally show 

negligible variations (lower than 1%), regardless of 

changes in command frequency or amplitude. The 

exceptions are motor torque and reference current, 

which show similar monotonic, decreasing trends as 

friction grows: this behavior is due to the higher torque 

needed to follow the command. This trend, clearer for  

friction and less remarked for backlash, is similar for 

both the wear effects. 

Secondly, the effects of electrical failures on the 

performances of the servomechanism have been evaluated, 

considering coil short-circuit and rotor static eccentricity. 

A typical behavior of the system undergoing electrical 

failures is the rise of sub-harmonics on the spectra of 

angular velocities. This phenomenon is clearly recorded 

with the FFT analysis on the high-slope ramp command:  

1. 1/3 and 2/3 multiple of the fundamental harmonic are 

related to short-circuits; the 1/3 harmonic provides the 

most important contribution in terms of amplitude when 

the failure ratio is above 0.02; 

2. 1/6 and 1/2 multiple harmonics concern the rotor static 

eccentricity. In this case, the 1/6 harmonic is the 

prevailing term for misalignments higher than 1%. 

These sub-harmonic values could be explained by means of 

this relation: 

�


,�
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where 	  is the fundamental frequency recorded by FFT 

motor velocity analysis, �,	  is the motor velocity in Hz, 

p=4 is the number of polar couples, n=3 is the number of 

phases. For sub-harmonics induced by coil failures, it is 

clear that they arise due to differences in the n motor phases, 

so the spectral analysis detects significant contributions at 
�


	 . The rotor static eccentricity, instead, is 

represented on the spectrum as combined by a sub-harmonic 

related to the number of polar couples p (i.e. the 1/6 sub-

harmonic, for this motor) and the 1/2 sub-harmonic. The 

latter represents the effect of the eccentricity on a certain 

polar couple. In both cases the sub-harmonic amplitudes 

show a monotonic trend: this result allows to detect a 

possible electrical failure with a simple observation of FFT 

spectra. In this case, only the correlation coefficient for 

motor torque shows monotonic trends for both the failures. 

The sinusoidal command provides the following results: 

1. As for wear detection, the FFT analysis fails due to the 

predominance of the command frequency; 

2. Significant results are provided by the analysis on 

correlation coefficients: in particular, a significant 

decreasing monotonic trend can be recognized in 

reference current for coil failures. 

Finally, the open-loop step response has been evaluated: all 

the analyzed magnitudes show monotonic trends in terms of 

correlation coefficients for both failures, but the variations 

are not significant enough to be employed in prognostics.  

7. FAILURE MAPS 

After the analysis performed on a single acting failure, this 

work focuses on the effects due to the simultaneous 

presence of different kinds of failures acting on the system. 

To the purpose to achieve a timely identification and 

evaluation of these failures, the authors developed a new 

faults detection technique based on failure maps (FMs). 

A failure map constitutes the graphical representation of 

how a system-representative parameter varies as a function 

of two different types of failures; in other words, if the 

measurement of the parameter of the real system is 

available, this instrument allows to suppose which extent a 

certain couple of failures has on the actuator. More exactly, 

a failure map displays the first failure � on x-axis and the 

representative parameter � on y-axis. Each map represents 

a set of curves � �  which are parameterized with the 

second failure �. A proper choice of � is crucial in order 

to obtain a useful failure map. Firstly, this parameter should 

be a function of both �and �. It is preferable a parameter 

which is highly sensitive to changes in failure levels. In 

particular, its dependence from the two kinds of failure 

should be monotonic, i.e. the curves plotted on the maps 

should not intersect: this feature is the most important, since 

it allows to detect a specific area on the map containing all 

the possible failure levels. 

The proposed prognostic technique, in order to identify 

system conditions with high enough accuracy, requires more 

than one of these maps for a specific couple of failures. 

When several maps are employed, it is important that they 

are independent from each other. Independent maps can be 

obtained when the actuator undergoes different command 

inputs: in this way, the parameter represented on each map 

is a magnitude that is not related to the others. By using 

three independent maps, i.e. representing three different 

parameters � , �  and � , an accurate area containing the 

possible failures is identified. The considered inputs are: 

1. A sinusoidal input with a frequency of 20 Hz and an 

amplitude of 0.001 rad; 

2. A high-slope ramp command at 10 rad/s; 

3. A step command with an amplitude of 0.005 rad, with 

the actuator in open-loop configuration. 

By using the results found during the single failure analysis 

to find the most suitable parameter for the map drawing, all 

the possible failure combinations have been investigated.  

It must be noted that, in many cases, the FMs were not 

suitable for prognostics; for few couples there were not 

enough independent maps (as for the couple coil failure – 

rotor static eccentricity, with only two employable maps). 

A couple on which the method has been successfully tested 

was the friction – coil failure couple, allowing to obtain 

more independent maps. Among these, three were chosen to 

apply the FMs method ( �= friction, �i= coil failure ratio).  

The first map (figure 16) concerns correlation coefficient C 

for reference current, �, obtained with sinusoidal input. 

The second map (figure 17) represents the correlation 

coefficient C for user position, � , when a step input is 

given to the open-loop system (OL). 

Finally, the last map (figure 18) shows the response to a 

high-slope ramp input in terms of the correlation coefficient 

C for user velocity, �. 

 

Figure 16. Correlation coefficient C failure map related to 

reference current – Sinusoidal input. 
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Figure 17. Correlation coefficient C failure map related to 

user position – OL Step input. 

 

Figure 18. Correlation coefficient C failure map related to 

user velocity – High slope ramp input 

After the maps have been obtained, they can be employed 

for the proposed procedure, which is now explained in 

detail. Firstly, the numerical model is simulated as affected 

by a known level of both friction and coil failure ratio, 

considering the three different command inputs: this step 

provides the parameters �, � and �. As these values will 

employed on the failure maps, a certain statistical 

dispersion, equal to a ±5% of the maximum variation 

between the curves of each map is taken into account.  

Then, the first map is employed with the entering value of 

� and an initial large area containing the possible failure 

levels for �  and �  is obtained. These two intervals are 

inserted  on the second map, which requires also the value 

�: their intersection provides narrower intervals of the two 

kinds of failure. The procedure applied on the third map (on 

which � is considered) is the same seen for the second one. 

This method have been successfully employed on a number 

of combinations of friction and coil failure ratio, always 

resulting on an enough accurate detection of the failure 

levels acting on the actuator. 

The example shown in figure 19 is referring to a friction 

torque equal to four times the nominal value (4·NC), a 4% 

of the coil failure ratio and a rotor static eccentricity ratio 

equal to 0.05: the X represented the supposed failure level. 

 

Figure 19. Example of application of Failure Maps 

It must be noted that the correlation coefficients considered 

are not significantly sensitive to the variations induced in 

the system by low levels of backlash or rotor static 

eccentricity; so, the levels of friction and coil short-circuit 

could be properly recognized neglecting their effects. 

8. CONCLUSIONS 

This work focuses on the research of system-representative 

parameters which are suitable for prognostic activities and 

on the development of a technique, allowing a prompt 

detection of gradually-increasing failures on aircraft 

actuators. The study has been performed on a numeric test 

bench (simulating the behavior of a real EMA actuator) that 

implements four kinds of failure: friction, backlash, coil 

short circuit, rotor static eccentricity; by means of proper 

simplifications, the aforesaid numerical model was then 

reduced obtaining the monitoring model. The proposed 

failure detection/evaluation algorithm has been developed 

mixing together the information derived from the spectral 

analysis of signals (performed by means of the FFT 

algorithm) and by direct comparison between EMA and 

monitoring model (through the correlation coefficient C); 

by means of these tools suitable fault precursors, useful for 

early recognition and quantification of the damage, have 

been identified. Finally, proper failure maps have been 

drawn to perform the analysis of combined failures. This 

method have been successfully applied to many different 

combinations of considered failures, guaranteeing always an 

enough accurate detection/estimation of their levels. 
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ABSTRACT 

With the increasing complexity from an evolving Smart Grid, 

the significance of providing real-time situational awareness 

and the ability to leverage advanced reasoning and prediction 

for control and automation will become key differentiators 

for service providers. Similar techniques are being applied 

within prognostics and health management (PHM) 

applications and are providing value by predicting and 

assuring system reliability, performing real-time detection 

and diagnosis of failure, and presenting current and predicted 

system states to users to aid in decision making. With the 

overlap in application and requirements for advanced 

software techniques, the smart grid industry is compelled to 

investigate products and processes applied to PHM across 

other domains. However, the complexity of grid 

management, the speed of technology development, the 

dynamic nature of electric power supply and demand – each 

of these contribute to the necessity for applying advanced 

reasoning capabilities that provide more flexibility to 

developers and users.  Such advanced capabilities allow for 

leveraging all available information, enabling accurate 

predictions of future conditions and availability, and 

incorporating the necessary knowledge for making high level 

decisions.  Object oriented, model-based reasoning systems 

have demonstrated value within the PHM community for 

handling such complexity, and in this paper the authors 

discuss a pragmatic approach for applying these next 

generation PHM techniques to the smart grid.   

1. INTRODUCTION 

Many years of PHM research in the aerospace industry has 

resulted in the development and validation of various 

learning algorithms and expert system reasoning platforms 

for the purposes of monitoring and predicting the health of 

complex aircraft systems (Ferrel, 1999).  Among other things, 

such PHM systems have demonstrated the ability to detect 

anomalies from real-time comparisons between measured 

and expected process values (potentially derived from 

physics models), recognize and characterize fault signatures, 

utilize rules and algorithms for isolating root causes, make 

predictions about future health and remaining useful life, 

incorporate policy and mission objectives for generating 

advice, and automate actions according to real-time state 

assessment for ensuring safety, maximizing availability, and 

optimizing productivity (Vatchsevanos, Lewis, Roemer, 

Hess, & Wu, 2006), (Walker, 2010).  Recently the application 

of aerospace PHM techniques has expanded to virtually every 

other industry where concern of availability and a desire to 

minimize the costs associated with repair exists (Walker, 

Kapadia, 2009).  Advanced reasoning techniques are 

especially of value in applications where there is high data 

dimensionality, an availability of disparate information 

across subsystems or geographic regions, the need for making 

predictions based on recognized patterns, and/or the 

opportunity to optimally reconfigure systems based on well 

understood cost functions.  One such industry where PHM 

technological advancements are readily applied is that of the 

so-called energy smart grid.   

For smart grid, one of the key objectives is to effect real-time 

reconfigurations of the electrical grid (generation and 

distribution) based on the ability to proactively monitor and 

predict load demand.  Additional input for making such 

decisions might also come from predictions and assessments 

of infrastructure health, allowing for reconfigurations of the 

grid based on component failure or anticipated outages.  

Advanced reasoning systems could also incorporate policy-

based rule logic that would guide such reconfigurations based 
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on real-time knowledge of criticality measures, service 

agreements, or current pricing trends.   

Forecasting in smart grid applications is typically performed 

by applying pattern recognition algorithms over historical 

usage data, in conjunction with making real-time predictions 

of availability of conventional and renewable energy sources.  

Similar pattern recognition techniques are often utilized by 

advanced reasoning systems for classifying fault signatures 

or making predictions regarding the onset of failure 

(Patterson-Hine, Aaseng, Biswas, Narashimhan, & Pattipati, 

2007).  PHM systems equipped with such advanced 

reasoning are therefore immediately applicable to the smart 

grid. Furthermore, anticipating and forecasting demand in 

such systems can also be utilized to augment predictions of 

component remaining useful life based on the effects of the 

anticipated usage. 

Often the automated decisions required of smart grid 

management systems involve the processing of information 

that is aggregated across many grid components (e.g. meters, 

switches, and converters) and spans wide geographic areas.  

These are also characteristics of many large scale enterprise 

or fleet-wide PHM systems, as the goal of such systems is not 

just to assess the health of specific assets (vehicles, plants, 

processes, facilities), but to aggregate such health 

information into a higher level health assessment of the 

enterprise (or overall mission capability).  Such systems are 

often architected in a distributed fashion and include 

supervisory level reasoners for aggregating information and 

performing high level management functions like generating 

reports, initiating maintenance actions, automating inventory 

and management of spares, and producing and presenting 

executive advisories.  

While recent advances stemming from PHM research have 

successfully been applied for use in the smart grid 

marketplace, most of the engineered solutions are constrained 

by a lack of flexibility in the selection and configuration of 

learning and reasoning algorithms to be employed.  Typically 

the inferences and predictions associated with the smart grid 

management problem require the application of multiple 

algorithms and reasoning approaches.  However, a review of 

prominent research demonstrates that many of the smart grid 

solutions are restricted to single algorithms and characterized 

by rigid policies (NIST, 2012). Very often an algorithm that 

is selected or tuned for one application requires tweaking in 

order to produce similar results in another.  It should also be 

noted that modification and extensibility of such systems 

typically requires costly reengineering efforts. 

One PHM technology that can be used to overcome the 

limitations of current smart grid management solutions is that 

of the model-based reasoning platform. Model-based 

reasoning platforms that support rapid specification of logic 

through graphical programming languages not only can be 

used to reduce the cost of developing, testing, and validating 

software, but they also lend themselves as add-ins for 

extending existing solutions with limited or constrained 

flexibility. When such reasoning systems are built on top of 

goal-oriented expert systems technology, the user is readily 

able to abstract the management problem to even higher 

levels.  The authors have coined the term “Objective Oriented 

3rd Generation Expert Systems” to refer to such advanced 

model-based reasoning systems. 

In the following sections we present some detail regarding 

the existing challenges presented to the smart grid 

management system provider, and provide insight as to how 

Objective Oriented 3rd Generation Expert Systems can be 

used to overcome those challenges.  The implication is that 

such reasoning systems can be used to enable the full benefits 

of PHM to smart grid management providers, since the 

objectives of the smart grid are so inextricably linked to the 

measured and predicted health of the components, 

infrastructure, and topology of the grid. 

2. CHALLENGES 

Smart grids, which use intelligent transmission and 

distribution networks to deliver electricity, aim at improving 

the electric system’s reliability, security and efficiency 

through two-way communication of consumption data and 

dynamic optimization of electric-system operations, 

maintenance, and planning (Khurana, Hadley, Lu, & Frincke, 

2010). The underlying requirements of smart grids indicate a 

dependency on massive communications between 

components involving an enormous amount of data.  This 

suggests the inevitability of an increase in fault propagation 

through the network, and an urgent demand for various 

technological enhancements that can assist in assessing the 

health of smart grids.  At a high level, the design of smart grid 

PHM algorithms and products can be categorized into 2 

areas: real time analysis and reasoning based prediction.  

2.1. Real time analysis 

Based on wide area situational awareness, smart grid 

management systems should be expected to be able to receive 

and analyze large amounts of real-time data and information 

from disparate sources.  Such systems should also support 

increased adaptability when facing ever changing conditions. 

For example, pattern recognition and classification 

techniques can be effective in re-assignment of grid nodes 

dynamically and automatically when the load or the 

availability of renewable energy sources changes (Lu, 

Tinker, Apon, Hoffman, & Dowdy, 2005).  However, with 

the real-time changes in the grid come changes in the 

amounts, quality, and availability of data – suggesting that 

the pattern recognition algorithms and event detection rules 

themselves be adaptable.   

2.2. Reasoning prediction 

The power of expert systems allows smart grid system 

designers to reason over the system process using embedded 
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domain expertise, generic rule based logic, and advanced 

model-based reasoning even in the presence of incomplete 

information. This combination of capabilities enables process 

health and performance prediction involving higher level 

abstractions of data and information, providing the end users 

with improved situational awareness and understanding.  The 

ability to transform data and information into knowledge and 

understanding stems from the expert system’s ability to 

leverage software models of the entire domain – including 

object associations, relationships, and roles (refer to Figure 

1).  From the system maintenance side, outage and 

node/equipment failure propagation can be prevented in 

advance, if historical event data is available. For energy 

management, demand from smart appliances and supply from 

renewable energy sources can be anticipated by investigating 

the pattern characterization of weather, human activity 

agenda, etc.  Such advanced reasoning capabilities typically 

involve the incorporation of many business rules which not 

only need to accommodate ever changing conditions, but also 

ever changing objectives. 

 

Figure 1. Reasoning – From data to wisdom. 

The plethora of choices and the need for a wide variety of 

approaches presents some dilemmas for the smart grid 

management provider. Several of these are briefly discussed 

in the following paragraphs. 

Dilemma 1 – Compatibility of multiple ‘smart’ designs 

There are plenty of ‘smart’ designs appearing in the smart 

grid market, most of which focus on different objectives. For 

example, some applications focus on the efficiency, 

reliability, security and stability of the grid. Others focus 

more specifically on the energy efficiency, demand response, 

and load control for residential, commercial and industrial 

purposes (NIST, Technology, Measurements, and Standards 

Challenges for the Smart Grid, 2013). Some smart grid 

designs build up specific scenarios for the grid, which are not 

compatible with each other in many cases. The uncertainty of 

each promised scenario is often not clear or is difficult to 

compare.  This general lack of compatibility presents some 

challenges to the implementer of smart grid PHM solutions, 

although such apparent incongruity can be successfully 

addressed with improved architectures equipped with 

advanced reasoning capabilities. 

Dilemma 2 – Changing user objectives 

It is also difficult for smart grid management system 

users/suppliers to define or clarify their objectives at an early 

design stage. Furthermore, it is typical that requirements and 

objectives have changed by the end of the development cycle.  

As in most industries, smart grid suppliers have to adjust their 

objectives with market requirements and local policies. In 

many cases their specific designs will need to target specific 

codes and standards. In other cases, the users/suppliers may 

have to satisfy multiple codes and standards– all while 

enduring rapidly changing local policies and grid market 

conditions. In addition, the grid has to stay open to new 

emerging grid technologies which introduce new data, 

requiring potentially new event detection approaches, and 

resulting in changes to policy and objectives. In general, as 

the smart grid evolves, users and providers place increasing 

demands on higher level management capabilities that 

involve new modeling constructs and policies. Smart grid 

management providers have to adjust with all of these 

challenges and opportunities in a short time and can be 

plagued by technologies that are not sufficiently flexible or 

extendable.  

Dilemma 3 – Requirements for higher level management 

system interoperability 

Another trend occurring across the smart grid landscape is the 

emergence of new alliances and the requirements for 

interoperability between management systems. One example 

is the trend for crossover corporations that combine services 

between multiple industries. In China, a new corporation has 

been proposed that combines the telecom industry with the 

smart grid in order to minimize the service line cost and share 

end user resources. In another case the convergence of solar, 

smart grid and healthcare IT in one offering or platform is 

also raising the attention and funding of the investors 

(Prabhu, 2013)  Modifying or incorporating logic that 

addresses such interoperability is a challenge for most 

reasoning system platforms. 

Dilemma 4 – Expensive design implementation 

To embrace a novel PHM design with the existing grid 

system, there is much effort required prior to implementation. 

Design options vary, and with somewhat fluid requirements, 

implementation time can be excessive.  Meanwhile, test 

requirements for PHM systems can be severe (Vatchsevanos, 

Lewis, Roemer, Hess & Wu, 2006). According to a typical 

solution delivery framework (SDF), the original design 

should be adjusted, tested and verified in the existing system 

environment. This process is always time consuming and 

costly. Ideally, the designers of smart grid management 

systems can make use of tools that allow for minimizing the 

labor associated with designing, implementing and testing 

solutions in the presence of such difficulties. 
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Dilemma 5 – Too much information 

Due to the large numbers of components, the dynamic nature 

of supply and demand, and the increase in digital information 

being shared across the infrastructure, smart grid reasoning 

systems produce extremely large numbers of advisories and 

events.  Since the goal of smart grid health management 

systems is to increase situational awareness, this inundation 

of alarms and information actually acts to degrade operator 

situational awareness. But ever increasing data and 

information is an unavoidable consequence when you 

consider the advancements being made with smart meters, 

new sensing technologies, and the proliferation of networked 

infrastructure components. When you add the requirement of 

real-time health monitoring of the grid and its components, 

the situation becomes even worse. The smart grid PHM 

designer requires tools that will aid in the reduction of alarms 

and events, principally through filtering, correlation and 

alarm subsumption. 

Dilemma 6 –Advanced PHM out of reach 

While the smart grid PHM designer expects to achieve 

benefits like root cause isolation (through the deployment of 

fault models), the ability to leverage supervised and 

unsupervised learning, and meaningful predictions regarding 

remaining useful life, very often these advanced capabilities 

remain out of reach.  Ideally, the tools available to the smart 

grid PHM designer would enable higher level management 

capabilities such as Condition Based Maintenance. For 

example, advanced PHM systems should support real-time 

determinations regarding the most appropriate responses to 

current and predicted conditions.  Typical responses might 

include differentiating between maintain, repair, and replace 

actions. To simplify decision making involving ‘smart’ 

designs and products, and to bring more opportunities for grid 

service providers, Objective-Oriented 3rd Generation Expert 

Systems can be utilized. These kinds of systems provide a 

powerful and reconfigurable environment that can speed up 

overall design and testing times as well as providing state-of-

the-art reasoning capabilities. Objective-Oriented 3rd 

Generation Expert Systems will be discussed in greater detail 

in the next section. 

3. OBJECTIVE-ORIENTED THIRD GENERATION EXPERT 

SYSTEMS  

Objective-Oriented 3rd Generation Expert Systems are used 

to create model-based reasoning solutions for interpreting 

data in real-time. Such systems can also readily leverage 

knowledge derived from historical data, and apply that 

knowledge to making better predictions.  Model-based 

reasoning in such advanced reasoning systems can pave the 

way for a wider use of PHM design in smart grid management 

platforms by providing the tools needed to address the 

challenges mentioned in Section 2. In this section we discuss 

the main advantages of using Objective-Oriented 3rd 

Generation Expert Systems and how they can be applied to 

address the problems associated with delivering smart grid 

management solutions.  

3.1. Compatibility 

Objective-Oriented 3rd Generation Expert Systems can easily 

interface to standard supervisory control and data acquisition 

software (SCADA) and distributed control systems (DCS), 

making it possible to quickly set up data sources for your 

application. The software also supports standard databases 

such as Oracle and SQL server. Standard simulation designs 

can be captured and validated in graphical software 

development environment, allowing the instant re-use of pre-

existing designs. Whole infrastructures and processes can be 

modeled and simulated very quickly by using the wealth of 

reconfigurable graphical tools. These features can be used for 

operator training, education, process optimization, and also 

to validate and test a hypothesis.  

Re-configurability 

Vast libraries of mathematical and statistical functions are 

available for easy integration in an application. These can be 

used to analyze large quantities of real-time data such as the 

data generated by the sensors deployed over a smart grid. The 

main advantage of using such libraries is that algorithms can 

be quickly reconfigured or interchanged. Figure 2. shows a 

typical palette from which functions can be readily selected 

and used within an application. Most data mining and 

analysis applications rely on machine-learning algorithms to 

find patterns in the data and extract the valuable knowledge 

required for situational awareness. However, testing different 

machine learning algorithms on the same application can be 

very complex and time-consuming. 

 

Figure 2. A palette of data mining functions. 

With model-based platforms, different algorithms can be 

easily applied to the same application, making it possible to 
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quickly test different approaches to your solution or to 

simultaneously apply multiple algorithms to the same 

problem.  The platform can also enable real-time model 

selection and switching based on system state. 

The re-configurability of Objective-Oriented 3rd Generation 

Expert Systems allows system designers to quickly adapt 

their software to changes in the technology, the objectives, 

and policies.  

Objective-Oriented Design 

One of the important aspects of modern reasoning systems is 

the ability to be configured based on user-defined objectives. 

Objective Oriented platforms typically leverage a graphical 

software development suite with vast auto configuration 

features that drastically reduce the amount of engineering 

time required to create or re-configure applications. Creating 

applications using model-based platforms results in a better 

cost-benefit ratio than in-house IT development, especially if 

developing software is not the core expertise or goal of your 

company. 

Advanced Reasoning Capabilities 

By adopting model-based reasoning, Objective-Oriented 3rd 

Generation Expert Systems provide a platform for accurate 

fault modelling and root cause analysis. Figure 3 shows the 

implementation of a Bow-Tie rule in one such expert system. 

Reasoning engines are used to analyze the model and 

automatically detect anomalies or even predict them ahead of 

time. These model-based reasoning capabilities can also be 

used to make automated decisions, for example: Condition-

Based Maintenance (CBM) of equipment.  CBM determines 

when maintenance should be carried out on equipment in 

order to ensure that the whole system keeps running without 

faults for as long as possible.  

 
Figure  4. A bow tie rule. 

Another added value that Objective-Oriented 3rd Generation 

Expert Systems can offer is Advanced Alarm Management 

(AAM). The generation of too many events and alarms in a 

system can confuse an operator and hinder their situational 

awareness rather than aiding it. The advanced reasoning 

mechanisms that are gained by adopting a PHM design allow 

AAM solutions to actively reduce the quantity of alarms 

presented to the operator and improve the quality of the alarm 

messages presented. Figure 6. shows an example of alarm 

grouping where alarms that provide the same information are 

grouped together (subsumed) so as to avoid presenting 

duplicate information to the operator. All of this is done at an 

advanced level that is often not possible with DCS and 

SCADA systems. 

 

Figure 5. A simple analysis rule using SVM. 

In order to provide the advanced reasoning capabilities 

required for smart grids, Objective-Oriented 3rd Generation 

Expert Systems should allow the implementation of a 

combination of rule-based schemes. Rules can be used to 

make applications react to abnormal situations in real-time. 

The decision making process can be based on logic, statistics, 

machine learning, or a combination of these and other 

algorithms. Figure 5 shows an example of how a Support 

Vector Machine (SVM) can be used to classify a situation 

based on readings from a set of data points in a model-based 

platform. The parameters are read from the data points, 

arranged into a row vector, and fed into a SVM block that 

computes what label best classifies the information shown in 

the input vector. The output is used to set a variable that can 

then be used in another rule for decision making. 

 

Figure 6. Alarm grouping. 

4. CONCLUSION 

The benefits and capabilities of PHM systems developed and 

demonstrated across multiple industries are readily 

applicable to the health and prognostics management of the 

electric grid.  In addition, most of the algorithmic and 

reasoning technologies associated with assessing and 

predicting complex system health are also directly associated 

with the requirements and objectives of modern day service 

providers. These objectives include the assessment and 

prediction of optimal grid configuration in the presence of 

dynamic conditions associated with recent modernizations. 

Unification between existing smart grid management 

solutions and an overall grid PHM capability seems highly 

appropriate.  However, the proliferation of new information 

and the demand for improved service in the presence of ever 
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changing requirements present significant challenges to the 

developers of smart grid management systems.  One proven 

solution to these challenges is the incorporation of advanced 

reasoning capabilities derived from Objective Oriented 3rd 

Generation Expert Systems. Such systems provide significant 

benefits to the smart grid management system developer, 

including rapid deployment; extensibility; scalability; and 

iterative, incremental development.  
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ABSTRACT 

Using condition monitoring to track machine health and 

trigger maintenance actions is a proven best practice. By 

monitoring machinery health, costly failures are avoided 

and downtime due to outages is reduced. This results in an 

improved OEE (Overall Equipment Effectiveness). Many 

papers discuss the implementation of condition monitoring 

to prevent failures and optimize maintenance interventions. 

However, much less attention is paid to the use of condition 

monitoring information in order to optimize production 

capacity of a machine or a plant. This optimization is often 

translated in production plants by maximizing the 

production capacity (speed) and minimizing machine’s 

downtime. As energy consumption is becoming more and 

more an important decision criterion in modern 

manufacturing plants, the former optimization needs to take 

this parameter into account. As such a trade-off has to be 

made between the gain in capacity and the cost of the 

additional energy consumed. Therefore, in this paper we 

will develop a multi-objective optimization of OEE to allow 

multiple-criteria decision making. More precisely, the goal 

of this paper is to establish the link between condition 

monitoring information and production capacity 

optimization by continuously adjusting production 

parameters (i.e. production speed) taking into account the 

machine’s condition and the energy consumption. 

1. INTRODUCTION 

Condition-based maintenance (CBM) and predictive 

maintenance (PdM) approaches have been extensively 

developed these last two decades (Mobley, 1990; Sholom, et 

al. 1998). The technical approach consists on monitoring the 

condition of an asset through a condition monitoring system 

and triggers a maintenance action when the condition 

monitoring signal crosses a critical value in case of CBM 

policy or uses this condition monitoring signal together with 

a prognostics model to predict when a maintenance action is 

needed in case of PdM policy (Blair, et al 2001; Goh, et al 

2006, Bey-Temsamani, at al. 2009). Maintenance 

optimization based on these policies often consists of 

finding the optimal threshold, associated to the condition of 

the monitored asset, where maintenance should be triggered. 

In our previous works, this concept was successfully 

validated on packing machines (Van Horenbeek, et al. 2011) 

and extended with an optimal threshold determination 

taking into account the product quality. In this respect the 

end-user may decide to tolerate more degradation of the 

monitored asset if he judges the product quality is still 

acceptable. In some other industrial applications, the end-

user prefers to control the degradation of the monitored 

assets by fixing a threshold on the condition monitoring 

signal (e.g. by implementing a thermal protection). In this 

case, if no optimization is implemented, a risk of ‘too often’ 

production stops could rise. In our previous work (Bey-

Temsamani, et al. 2013), maximization of steel production 

capacity using temperature monitoring of production assets 

proved a production gain up to 21%. The technical approach 

followed in that work consists of optimizing the production 

(machine) speed taking into account the remaining time to 

trigger the thermal protection and the needed time to finish 

the product. If the first time is lower than the second, the 

machine speed should be adjusted accordingly. Although 

this approach would results on a high productivity gain, this 

does not mean a high profit could be obtained. Higher speed 

means directly higher energy consumption. The evolution of 

the energy price these last years is monotonically increasing. 

Therefore taking the energy consumption in the  
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Figure 1. OEE concept and the six big production losses.

 

optimization scheme seems logical. In this paper we will 

extend our previous work by developing a multi-objective 

optimization taking into account production speed and 

energy optimization. This paper is structured as following. 

In Section 2, the OEE approach is explained. In Section 3, 

Run by Run (RbR) production concept is described. Single-

objective and multi-objective OEE optimizations applied to 

RbR production are explained in Section 5. Results of 

validation on a steel cord production machine are given in 

Section 6. Finally, conclusions are summarized in Section 7. 

2. OVERALL EQUIPMENT EFFECTIVENESS (OEE) 

Different measures of productivity exist in the available 

literature. The overall equipment effectiveness (OEE) 

concept has been widely used as a quantitative tool essential 

for measurement of productivity (Muchiri and Pintelon 

2008). The OEE measurement tool evolved from the total 

productive maintenance (TPM) concept introduced by 

Nakajima (1988) and is defined as a measure of total 

equipment performance, that is, the degree to which the 

equipment is doing what it is supposed to do. It is a three 

part analysis tool in order to determine equipment 

performance based on its availability, performance and 

quality rate of the output. It is used to identify the related 

equipment losses for the purpose of improving and 

optimizing the total productivity and performance of the 

considered system. Six major categories of losses are 

identified within the OEE concept; these are depicted in 

Figure 1, and can be summarized as follows: 

 Breakdown losses categorized as time losses and 

quantity losses caused by equipment failure or 

breakdown. 

 Set-up losses occur when production is changing 

over from one item to another. 

 Idling and minor stoppage losses occur when 

production is interrupted by temporary malfunction 

or when a machine is idling. 

 

 

 

 Reduced speed losses refer to the difference 

between equipment design speed and actual 

operating speed. 

 Quality defects and rework are losses in quality 

caused by malfunctioning production equipment. 

 Reduced yield during start-up are yield losses due 

to machine start-up 

Based on the definition of the six big losses, OEE can be 

defined as follows: 

            (1) 

 

Where: 
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             ( )
            (2) 
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            (3) 
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By considering the six major losses defined in OEE an 

optimal performance of the process can be achieved by 

monitoring the availability, performance and quality rates. 

This can be done by defining an efficient maintenance 

schedule (Availability), a qualitative product output 

(Quality) and an optimal production speed (Performance). 

In order to optimize OEE in this paper, we target to reduce 

two specific losses (i.e. breakdown losses and reduced speed 

losses) defined within the OEE concept by considering 

condition monitoring information. This extension shows a 

direct added value when applied to the Run by Run (RbR) 

production concept (see Section 3). At every production run, 

the production speed can be optimized using the condition 

monitoring signal (avoid to reach risk zone for the 

monitored asset). This will result in minimal downtime 

losses due to failures and minimal speed losses. In order to 

be able to optimize OEE with regard to speed and  
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Figure 2. Run by Run (RbR) production concept 

 

breakdown losses several important parameters have to be 

monitored, these are: 

 Production versus time in each run 

 Production speed versus time in each run 

 Condition monitoring information on the 

degradation of the machine 

 Degradation threshold beyond which normal 

operation of the machine is impossible 

3. RUN BY RUN (RBR) PRODUCTION CONCEPT 

The Run by Run (RbR) production concept is schematically 

shown in Figure 2. For every run, the production output 

(e.g. produced wire length measured as spool length at a 

given speed) and the condition monitoring signal (e.g. 

temperature of the bearing) are monitored. Based on these 

collected information from previous production runs, 

modeling the temperature using only its value at the start of 

the run and the production speed become possible. In our 

previous work (Bey-Temsamani et al., 2013), modeling the 

monitored temperature at a given run based on historical 

data was perfectly possible with a coefficient of 

determination (R
2
=0.9815) between modeled and measured 

temperature. This way it becomes possible to predict the 

temperature at the end of the run already at the start of the 

run. On the other side, production output (e.g. produced 

wire length) is possible to predict at the beginning of the run 

if the production set-point and the current production speed 

set-point are known. Once these two models are defined, the 

remaining time to reach condition monitoring signal 

threshold and remaining time to finish the production in a 

run are determined.  

4. OEE OPTIMIZATION OF RBR PRODUCTION 

 Single-objective optimization of OEE 4.1.

As explained in Section 3, The production speed 

optimization consists of proposing a production speed for 

the current and future cycles that maximizes machine’s 

capacity without the risk of crossing the condition 

monitoring signal threshold. This threshold was determined 

by off-line analysis to avoid bearings overheating. Based on 

the condition at the start of the run and the production 

length, the condition during and at the end of the run can be 

determined, for a given speed, by a predictive model. This is 

a physics-based parametric model whose parameters were 

estimated using Restricted Maximum Likelihood Estimator 

(RMLE). The determination of the optimal production speed 

v
*
, while avoiding the crossing of the condition monitoring 

signal threshold, can be formulated as a constrained 

maximization problem as follows and is also illustrated in 

Figure 2 and 3. 

   {   { |[  (    )     (       )]   (   

  )    (      )}                        (5) 

 

Where v is the production speed for the next production run, 

lp is the production set point for the next production run and 

di is the initial degradation at the start of the production run. 

tr is defined as the time to finish the production run and is 

function of v and lp. tth is defined as the time to reach the 

degradation threshold and is function of v, lp and di. 

This single-objective optimization of OEE based on 

condition monitoring information for run-by-run production 

systems is thoroughly described in (Bey-Temsamani, et al. 

2013). 
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This single-optimization problem is also described in Figure 

3 which illustrates the different times to finish production 

and to reach the critical threshold of the condition 

monitoring signal. The same information is depicted in 

Figure 4 where variations versus production time are 

depicted. In Figure 4, tr, tth, denote, respectively, the time to 

finish production and the time to reach the critical threshold  

(defined here as a failure) of the condition monitoring signal 

versus the production speed v and the production time t. 

This graph also indicates the optimal speed v* where tr, tth 

need to be compared. The goal would be to set the optimal 

machine speed v* such as the time to reach the temperature 

threshold tth would be just lower than the time to finish the 

production spool tr. 

 Multi-objective optimization of OEE 4.2.

The major drawback of the OEE concept is that the increase 

in OEE is never linked to the necessary investment or cost 

in order to achieve this increase. In other words maximizing 

OEE (i.e. Section 4.1) in a single-objective problem 

structure could lead to major cost increases to reach the 

necessary increase in OEE. Hence, a trade-off should be 

made between the increase in OEE and corresponding costs 

of achieving these improvements. Therefore, extension of 

the approach described in Section 4.1 is needed. This 

extension consists of constructing a multi-objective 

optimization problem where two objective functions are 

minimized, these are energy consumption cost and lost 

capacity cost (i.e. OEE as described in Section 4.1), which 

can generally be combined into a single objective of profit 

maximization (i.e. if the cost of energy and lost capacity are 

known). Both functions depend on the production speed in 

the sense that when the production speed increases, the 

energy consumption increases and the lost capacity 

decreases. The multi-objective optimization problem can be 

formulated as follows: 

 

   (  ( )    ( ))          (6) 

        (    )  (   (       ) 

     
      

 

Where f1(v) is the function that describes the energy 

consumption in relation to the production speed and f2(v) is 

the production capacity in relation to the production speed. 

In the case study covered in this paper,   ( )  is derived 

from collected energy-speed data as depicted in Figure 6. 

  

 
 

Figure 3 : Optimization problem formulation 
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Figure 4. Production speed maximization problem
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Figure 5. Machine / production set-up 

5. VALIDATION ON STEEL PRODUCTION MACHINE 

In this section the results of validating the multi-objective 

OEE optimization approach on RbR production are given.  

The ultimate goal would be to set the production (machine) 

speed such that the productivity is maximized AND the 

energy consumption is minimized (maximizing the profit 

function described in Section 4.2. An illustration of the set-

up is given in Figure 5. The optimization algorithm could 

run in parallel to the machine’s controller or be integrated in 

the machine’s controller. In this work, the machine was 

emulated using data recorded in the production plant. The 

inputs to the optimization algorithm are the condition 

monitoring signals and its associated threshold, the 

production process values, and the energy consumption. In 

this work as energy was not recorded directly in production 

plant, it was calculated using some expert-knowledge from 

the production plant. This is shown in Figure 6 where R
2
  

 

denotes the coefficient of determination. The output of the 

optimization block is the optimal machine’s speed set-point.  

The production profit is defined as: 

                   

Where: 

 PR: production rate (m/min) 

 PU: profit unit (€/m) 

 ER: energy consumption (kW/min) 

 CU: cost energy (€/kW) 

The optimization has been validated on more than 6500 

hours production data records. In Figure 7 the estimated 

production profits without optimization, with single-

objective optimization and with multi-objective 

optimization are respectively shown. 

 

 

 

 
Figure 6. Energy consumption versus machine speed 

 

The results of both the single-objective (Section 4.1) as 

multi-objective (Section 4.2) optimization approach are 

compared to a reference scenario. The reference scenario is 

based on real measured production data. The results in terms 

of production per time unit (i.e. production capacity) and 

profit per time unit are shown in Figure 7 and Table 1. First 

of all, it is clear that the optimized solutions always 

outperform the reference scenario. This clearly illustrates 

the added value of using condition monitoring information 

to optimize the production speed of the machine. In terms of 

production capacity the single-objective approach is the 

optimal one (+28.18% compared to reference). This is the 

case because within the concept of OEE the better solution 

is always the one with the highest speed without considering 

costs. However, when considering the cost of energy 

consumption into the optimization problem it is clear that 

the multi-objective optimization outperforms the single-

objective optimization in terms of profit per time unit 

(+4.89% compared to reference for multi-objective 

optimization versus +1.67% for single-objective 

optimization compared to reference), although the 

production capacity is lower. Hence, an additional increase 

in profit per time unit of 3.17% can be gained by 

considering multi-objective optimization rather than single-

objective optimization with limited focus on OEE (i.e. 

production capacity) maximization without considering 

relevant costs. As such a trade-off is made between the gain 

in capacity and the cost of the additional energy consumed  

Speed 
set-point

Machine Mechanics

Production set-point / 
Process value

Optimization

Condition monitoring 
(e.g. bearing’s 
temperature)

Threshold for condition 
monitoring signal

Machine Controller

Energy 
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Figure 7. Production/time unit  and profit/time unit versus time for three different scenarios. 

 

Capacity (m/min.) Profit 

Reference Single-objective Multi-objective Reference Single-objective Multi-objective 

71,43 91,56 85,47 40,70 41,38 42,69 

 +28.18% +19.66%  +1.67% +4.89% 

Table 1: Production capacity (m/min.) and profit (€/min.) for the three different scenarios.

 

in the multi-objective optimization approach. Therefore, it is 

of major importance to consider costs associated to a 

possible increase in OEE to make a well thought and 

optimal decision. 

6. CONCLUSIONS 

Industrial productivity profit maximization was discussed in 

this paper using single-objective and multi-objective 

optimization concepts by considering condition monitoring 

information. These concepts were validated on a concrete 

industrial example where production speed and energy 

consumption were used in the optimization constraints 

while at the same time avoiding catastrophic failures. As 

such the usefulness of condition monitoring information is 

extended from purely avoiding breakdowns to process and 

production optimization. Hence, a multi-objective 

optimization model of OEE (Overall Equipment 

Effectiveness) regarding production speed and energy 

consumption is proposed in this paper. The results clearly 

illustrate the importance to consider the trade-off between 

the gain in capacity and the cost of the additional energy 

consumed by increasing the production speed. The results 

indicate a significant gain in profit by applying the 

developed model to the case study of a production machine. 

This paper establishes the link between condition 

monitoring information and production capacity 

optimization by continuously adjusting production 

parameters (i.e. production speed) taking into account the 

machine’s condition and the energy consumption. 
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ABSTRACT 

Prognostics and health management (PHM) represents a 

paradigm shift from legacy condition based maintenance 

(CBM) frameworks by expanding the potentials to 

accurately and robustly detect and diagnose incipient system 

faults. The ultimate goal of PHM is reliably predicting 

system failure times to allow for efficient maintenance 

scheduling either autonomously or by human decision 

makers (DM). In many industrial settings today the output 

from PHM systems constitutes a decision support system 

(DSS) used to aid DM, as entirely autonomous systems have 

not seen widespread industrial integration. However, there is 

relatively little support for engineers designing PHM 

systems in terms of human factors and how to provide the 

information in a way that actively supports human decision-

making and this gap may result in limited use of PHM 

system by maintainers. The reliability of the information 

presented is a critical factor in the user acceptance and trust 

in a system. As a first step in developing such guidance, this 

paper reviews the implementation of other DSS and presents 

a design framework whereby PHM reliability levels are 

mapped against a suggested level of human input to the 

decision making process regarding required maintenance. 

The aim is to provide engineers with a guide to the level to 

which they should consider human factors and the 

presentation of information in the design of their PHM 

system. Fundamental to the suggested paradigm is that the 

uncertainties within a PHM system can be quantified, and as 

uncertainty increases, the requirement for DM to access 

additional information not explicitly tied to the PHM output 

increases. This information can form both explicit and tacit 

knowledge of a system or indeed industrial contexts 

surrounding decision implications, such as acceptable 

maintenance intervention windows in busy production 

schedules. As the complexity of a system or component 

being monitored is likely to affect the uncertainty within the 

PHM system associated with it, we are considering the 

overall cumulative uncertainty of a model output as the 

metric through which the required level of human input can 

be inferred. Coupled to this is the fact that increased model 

uncertainty is a causal factor in distrust and potential non-

use of the model in industrial applications. It is the authors’ 

belief therefore that designing for increased human-model 

interaction concurrent with increasing model uncertainty 

may lead to a better engagement with PHM decision support 

capabilities, thereby offering the full advantages that PHM 

has to offer. The framework presented in this paper is an 

initial step towards facilitating the design of more usable 

and useful PHM systems. 

1. INTRODUCTION 

Human factors (HF) considerations remain wholly 

underutilised within PHM framework design. More 

specifically, a human factors integration (HFI) approach, as 

outlined in ISO standard 9241-210 (International Standards 

Organisation, 2010) is rarely if ever considered as part of 

the PHM design process. Although much of the 

technological developments in the field to date relate to 

mathematical and computational scheme advancements, HF 

is a discipline which cannot be overlooked if maintenance 

decision support is to continue its necessary evolution in the 

coming years. 

Recent developments in measurement devices, data storage 

capacities, data processing, and computational capabilities 

have occurred concurrently with advancements in industrial 

internet technologies. These developments are encouraging 

high risk industries in particular, such as the military, 

Darren McDonnell et al. This is an open-access article distributed under 

the terms of the Creative Commons Attribution 3.0 United States 
License, which permits unrestricted use, distribution, and reproduction 

in any medium, provided the original author and source are credited. 

European Conference of the Prognostics and Health Management Society 2014

585



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014 

2 

nuclear, oil and gas, chemical, automotive, pharmaceutical, 

and aerospace to adopt Prognosis and Health Management 

(PHM) systems for increasing system availability, 

minimizing unscheduled shutdowns, reducing maintenance 

costs, and increasing safety (Walker & Kapadia, 2009). In 

these high risk industries detecting and isolating faults and 

subsequently predicting the remaining useful life (RUL) of 

critical components is a crucial task. If logistical support 

services, predominantly maintenance activities and 

associated spare parts inventory management, are to operate 

as efficiently as possible to achieve this goal, active 

contributions from multiple disciplines are required. These 

are typically cited as being from the engineering sciences, 

computer science, reliability engineering, communications, 

management sectors etc. (Vachtsevanos, Lewis, Roemer, 

Hess, & Wu, 2006).  The main bulk of current research 

activity in industry and academia towards PHM focuses on 

the availability of run-to-failure data, accelerated ageing 

environments, real-time prognostics algorithms, uncertainty 

representation and management (URM) techniques, 

prognostics performance evaluation, and methods for 

verification and validation (Saxena, Roychoudhury, & 

Celaya, 2010). Performance assessments of PHM systems 

currently evaluate the technical and economic feasibility of 

diagnostic and prognostic technologies (Vachtsevanos et al., 

2006), with little to no consideration given to end-user 

requirements or ergonomic issues. While this work is 

critical and valid from a technical standpoint, we propose 

that the human factors discipline also has a key role to play 

in the efficacy of PHM systems, particularly if they are to 

have a defining role in new global industrial systems.  The 

authors believe it is necessary to take a holistic view of 

PHM system design and implementation if they are to enjoy 

widespread industrial integration in the coming years and 

lessons can be learned in this regard from DSS developed 

for other applications. Even though many successful R&D 

activities in the PHM domain are carried out by numerous 

major companies such as GE, Boeing, Lockheed, and 

Honeywell, PHM still lacks widespread acceptance as a 

technology standard (Vachtsevanos et al., 2006). 

2. PHM OVERVIEW 

Prognostics and Health Management (PHM) has been 

defined as ‘an approach to system life-cycle support that 

seeks to reduce/eliminate inspections and time-based 

maintenance through accurate monitoring, incipient fault 

detection, and prediction of impending faults’ (Kalgren, 

Byington, Roemer, & Watson, 2006). To do so, different 

information and data sets relating to the past, present and 

future behaviour of the equipment in question are required. 

An accurate PHM system requires the availability of 

sufficient and relevant statistical equipment failure data. 

However, the common scarcity of such data, particularly of 

critical components in the nuclear industry for example, has 

led to the development of numerous approaches based on 

different sources of information and data, modelling and 

computational schemes, and data processing algorithms 

(Zio, 2012).  A typical PHM scheme consists of three main 

facets, Fault Detection (D), Fault Diagnosis (FD), and Fault 

Prediction (FP). Fault detection normally includes fault 

isolation, which is a task to locate the specific component 

that is faulty. Fault detection in a broader sense indicates 

whether something is going wrong in the monitored system, 

and fault diagnosis determines the nature of the fault after it 

has been detected. Prognostics deals with fault prediction, 

and is a task to determine whether a fault is impending and 

estimate how soon and how likely that fault is to occur. 

Diagnostics therefore can be defined as posterior event 

analysis and prognostics as prior event analysis. Prognostics 

is much more efficient than diagnostics in achieving zero-

downtime performance. Diagnostics, however, is required 

when fault prediction of prognostics fails and a fault occurs, 

and is important from a root cause analysis (RCA) 

perspective to avoid future failures of a similar nature 

(Jardine, Lin, & Banjevic, 2006). 

2.1. Fault Detection 

Within fault detection, several empirical signal 

reconstruction models have been explored to estimate the 

expected values of measured variables under both changing 

and steady state process conditions, such as: Auto-

Associative Kernel Regression (AAKR) (Baraldi, Di Maio, 

Pappaglione, Zio, & Seraoui, 2012); Artificial Neural 

Networks (ANNs) (Hines & Garvey, 2006); Evolving 

Clustering Method (ECM) (Zhao, Zio, & Baraldi, 2011); 

Principle Component Analysis (PCA) (Garcıa-Alvarez, 

2009; Jain, Duin, & Mao, 2000); Independent Principle 

Component Analysis for redundant sensor validation (Ding, 

Hines, & Rasmussen, 2003); Support Vector Machines 

(SVMs) (Laouti, Sheibat-Othman, & Othman, 2011); and 

Fuzzy Similarity (Baraldi, Di Maio, Genini, & Zio, 2013). 

For robust determination of anomaly detection certainty 

several methods can be found in the literature. For example, 

in threshold-based methods (Montes de Oca, Puig, & Blesa, 

2012; Puig, Quevedo, Escobet, Nejjari, & de las Heras, 

2008), the process of an anomaly is concluded when the 

residual values exceed a predefined threshold. Another 

example is using statistical methods such as sequential 

probability ratio test (SPRT) (Hines & Garvey, 2006) in 

which  anomaly detection is concluded if the probability 

distribution function of the residual differs from the 

probability distribution function calculated during normal 

conditions. However, these methods have some practical 

difficulties such as setting of the threshold value in 

threshold-based methods and some parameters (e.g., SPRT), 

and when no information about the confidence on FD 

outcomes (e.g., threshold-based) is provided.  
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2.2. Fault Diagnostics 

System diagnostics lead to increased overall equipment 

effectiveness (OEE) in a number of ways. This is because 

when an alarm is triggered due to an identified system 

event, a decision must be taken to (Zio, 2012): 

 

 Ignore the alarm. This increases the chances for 

potential accidents and catastrophic equipment failure 

in the case of a true alarm event. 

 Stop the equipment. This will lead to additional utilised 

manpower resources, lost production time, and extra 

costs in the case of a false alarm. 

 Further manual investigations without stopping the 

system, which, in the case of false alarms, again leads 

to extra costs and manpower.  

 

An automated event diagnosis system is therefore used after 

an event detection module concludes that there are sufficient 

abnormal conditions in a system at a time t, in order to 

identify the root cause(s) of the occurred abnormality, on 

the basis of the observed signals which are representative of 

the system behaviour. This can be considered as a 

classification problem in which specific classes of event are 

associated with specific values of observed measured 

variables (Baraldi, Di Maio, Rigamonti, & Zio, 2013; 

Venkatasubramanian, Rengaswamy, Yin, & Kavuri, 2003). 

2.3. Fault Prognosis 

Upon fault detection and diagnosis, prognostics becomes a 

fundamental task of a PHM system which aims to reliably 

and accurately forecast the RUL of the equipment/system 

(Kalgren et al., 2006) so that it may function for as long as 

its design intended (Zio, 2012).  RUL is typically a time, 

cycle, or some other specific context driven expression. The 

RUL is the prediction of a component or systems 

functional/operational usage expectancy based on measured, 

detected, modelled, and/or predicted health state. The RUL 

is dependent on the intended set of operating conditions or 

mission to be performed (Kalgren et al., 2006). 

It is not pertinent within this work to give a further detailed 

treatise of PHM and its constituents. For this purpose the 

interested reader is referred to the work of Zio (2012) and 

Vachtsevanos et al (2006).  

3. PHM AND THE FOURTH INDUSTRIAL REVOLUTION 

PHM must meet the challenge facing industry in the first 

half of the 21
st
 century. This challenge, commonly labelled 

‘Industry 4.0’, (German Federal Ministry of Education and 

Research, 2013) is what has been termed as the fourth 

industrial revolution, where future industrial production will 

be characterised by industrial internet driven smart factories 

centred around adaptability, resource efficiency and 

ergonomics. ProcessIT Europe, an innovation centre 

focusing on manufacturing automation solutions for EU 

process industries, outline the elements expected to be key 

in the expansion of large-scale automation systems required 

to drive Industry 4.0 (ProcessIT Europe, 2013). Among 

these are improvements in automation system functionality 

to enable the integration of traditionally separated systems, 

along with greater internet compatibility and open 

standards, such as those developed under EU funded 

projects SIRENA, SODA, SOCRADES, and AESOP 

(Bohn, Bobek, & Golatowski, 2006; Deugd, Carroll, Kelly, 

Millett, & Ricker, 2006; Souza, Spiess, Guinard, Moritz, & 

Karnouskos, 2008; Karnouskos, Colombo, Jammes, 

Delsing, & Bangemann, 2010). Machine to machine 

communications (M2M) using Internet of Things (IoT) 

principles will form the so called Cyber-Physical Systems 

(CPS) predicted to enable new automation archetypes and 

improve plant operations in terms of increased OEE. One 

component of this is a need for improvement in human-

machine interface development, which must continue to 

improve the possibilities for efficient plant operations 

through the visualisation, virtualisation, and simulations of a 

plant and its automation systems (ProcessIT Europe, 2013). 

GE outlined their own similar initiative titled ‘The Industrial 

Internet’ (Evans & Annunziata, 2012). Central to this 

initiative is an integration of three fundamental elements 

which embody the essence of the Industrial Internet, 

‘Intelligent Machines’, ‘Advanced Analytics’, and ‘People 

at Work’. Evans and Annunziata (2012) argue that human-

machine interaction will be a critical step in blending the 

hardware and software components required to support the 

minimal input and undesired output of future industrial 

automation systems. 

Lee and Lapira (2014) argue that adoption of the IoT 

ideology within Industry 4.0 presents a unique opportunity 

for organisations to create tools and technologies that can 

identify and quantify organisational uncertainties, to 

determine an objective estimation of the assets and 

processes and the resultant manufacturing readiness of the 

organisation. The authors argue that interactive PHM 

systems are the next phase in the industry’s evolution that 

will provide transparency in the factory, giving DM the 

opportunity to proactively implement mitigating or 

countermeasure solutions to prevent production losses.  

Tying into this, ISO 9241-210 (International Standards 

Organisation, 2010) describes six key principles to ensure 

that the design of such interactive systems are user centred, 

which are: 

 

 The design is based upon an explicit understanding of 

users, tasks and environments. 

 Users are involved throughout design and development. 
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 The design is driven and refined by user-centred 

evaluation. 

 The design process is iterative. 

 The design addresses the whole user experience. 

 The design team includes multidisciplinary skills and 

perspectives. 

 

In terms of addressing the whole user experience, the 

standard outlines the following: 'the concept of usability 

used in ISO 9241…can include the kind of perceptual and 

emotional aspects typically associated with user 

experience’. This is an important point, as for a system to be 

fully utilised, it has to be more than ‘easy to use’, it has to 

engage with users in multiple ways. One of the best 

examples of this is through operator trust in a system. This 

concept is discussed later in the paper.  

4. UNCERTAINTY IN PHM 

The ultimate goal of PHM is to increase component 

availability, reduce maintenance costs, minimise 

unscheduled shutdowns, and increase safety. The 

importance of uncertainty quantification in this context 

should not be understated. Monitoring the health state of 

systems, subsystems, and components, the classification of 

the different types of faults that may occur in these 

components, and estimating the RUL along with other 

prognostic metrics such as the End-of-Prediction (EoP) time 

index,  can be extremely helpful to support DM in assessing 

whether maintenance intervention is necessary or not. In 

ever more complex environments, operators need to quickly 

make thousands of decisions to maintain optimal decision 

performance. Although this challenge can be overcome by 

enabling a DSS to perform select operations with human 

consent (Evans & Annunziata, 2012),  without quantifying 

the associated uncertainties, remaining life projections have 

little practical value within PHM systems (Engel, Gilmartin, 

Bongort, & Hess, 2000).  It is the comprehension of the 

corresponding uncertainties that is at the heart of being able 

to develop a business case that addresses prognostic 

requirements. The assumption of data monitoring without 

uncertainty is particularly problematic, as this forces 

maintenance planning to become an exercise in decision 

making under uncertainty with sparse data (Sandborn, 

2005).  

As stated previously, PHM systems are usually 

implemented in three stages for the holistic health state 

management of a component of interest: fault detection, 

fault diagnosis, and system lifetime prognosis. Several 

methods have been widely developed in the last few decades 

to increase the reliability of PHM systems. In this paper, we 

define the reliability of the PHM system models as the 

cumulative reliability of the following; 

Fault Detection: the ability to confidently monitor the health 

condition of a system with low false and missing alarm rates 

with respect to the detection of normal or abnormal 

conditions. 

Fault Diagnosis: the ability to identify the fault type/class 

with a low misclassification rate 

Fault Prediction: the ability to predict the probability of 

system failure and the RUL with low inaccuracies, taking 

into account the set of missions needed to be completed. 

This cumulative information will provide the organisation 

with the information required to decide if maintenance 

intervention is necessary and if so, when to perform 

maintenance actions (Zio, 2012). It is worth mentioning that 

assessing the reliability of the PHM system is made a priori 

during model development using the previously mentioned 

methods dedicated to each part of the PHM system. In this 

respect, the different sources of uncertainty which exist 

within the varied fault detection, diagnosis, and prognosis 

methodologies have to be taken into account. For example, 

those sources may influence the performance of the PHM 

system, causing false or missing alarms, and hence impact 

the overall reliability. In the false alarm case, the output of 

the PHM system indicates that a healthy component is 

experiencing abnormal conditions, causing potential 

unwarranted downtime, whereas in the missing alarm case 

the output of the PHM system indicates that an unhealthy 

component is operating under normal conditions, potentially 

leading to catastrophic unexpected failures of the 

component/system with associated large downtimes, high 

cost, as well as possible safety and environmental 

implications  (Zhao et al., 2011). 

For these reasons, it is necessary to manage the different 

sources of uncertainty that may arise in the PHM system 

stages. In practice, the possible sources of uncertainty that 

may arise in a PHM system are: 

 

 Uncertainty in the signal measurements: incomplete, 

noisy, and imprecise measurements 

 Uncertainty in the models adopted at each data 

management stage, such as: 

 Model Structures: un-modelled phenomena, 

approximations, simplifications, hypotheses, 

assumptions, etc.  

 Model parameters: the Kernel Bandwidth in Auto 

Associative Kernel Regression (AAKR) methods, the 

threshold parameter in threshold-based methods 

classification and detection algorithms such as Support 

Vector Machines (SVM) etc.  

 Uncertainty due to the inherent stochasticity of the 

physical processes: stochasticity in the current and 
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future states of the system, unforeseen future loads and 

environmental conditions etc. 

 Human decision errors relating to the decisions made 

given the PHM system output 

 

Uncertainty quantification research currently, both in 

industry and academia, focuses on the shortcomings in the 

availability of run-to-failure data, accelerated ageing 

environments, real-time prognostics algorithms, uncertainty 

representation and management (URM) techniques, 

prognostics performance evaluation, and methods for 

verification and validation (V&V) (Saxena et al., 2010).  

Essentially, the inherent uncertainties which propagate 

through PHM systems mean that the PHM output can never 

be perfectly reliable (Aven, Baraldi, Flage, & Zio, 2014; 

Gertler, 1998; Jardine et al., 2006; Sankararaman & Goebel, 

2012).  Even if it were, in practice a PHM system is being 

applied in complex industrial environmental contexts and 

there will almost always be human DMs at the system 

interface who may choose not to follow the guidance of the 

PHM system, because of a possible lack of trust in the 

system output or because they have knowledge extraneous 

to the modelled parameters. Context drivers in this regard 

include financial pressures to delay maintenance activities, 

unexpected environmental conditions which could affect the 

reliability/uncertainty of the algorithms, a change in the 

maintenance policies of the organisation, cost of shutting 

down at a particular time, resource availability, time 

available for production intervention activities (including 

time of the year), audit timing within regulated industries, 

management interests, corporate politics etc. With this in 

mind, it is important to consider the application of the PHM 

system within the overall socio-technical system of the 

maintenance organisation. Only by providing a PHM system 

that is calibrated against the actual usage of the system can 

the full benefit be achieved. 

Sandborn (2005) asks; given that the forecasting ability of 

PHM is fraught with uncertainties in the sensor data 

collected, the data reduction methods, the models applied, 

the material parameters assumed in the models, etc., how 

can PHM results be interpreted so as to provide value?  

Sandborn argues that this problem partly reduces to one of 

determining optimal safety margins and prognostic 

distances for health monitoring. This determination is 

intrinsically contextually driven. Engel, Gilmartin, Bongort, 

and Hess (2000) also argue that the calculation of system 

RUL in PHM systems alone does not provide sufficient 

information to form a decision or to determine corrective 

action. They state that without comprehending the 

corresponding measures of the uncertainty associated with 

the calculation, DSS outputs have little practical value. 

5. HUMAN FACTORS OVERVIEW 

Human factors is defined as ‘the scientific discipline 

concerned with the understanding of the interactions among 

humans and other elements of a system, and the profession 

that applies theoretical principles, data and methods to 

design in order to optimize human well-being and overall 

system performance’ (International Ergonomics 

Association, 2000). Within multiple high risk industries 

such as nuclear, oil and gas, and the medical domains, there 

is an existing recognition of the importance of HF, not just 

from a safety perspective, but also from a systems 

performance perspective. A recent directorate of the Nuclear 

Installations Inspectorate (NII) of the Health and Safety 

Executive (HSE) of Great Britain (2010) outlines how HF 

needs to be incorporated in all industrial projects in the 

field, throughout the full project lifecycle, to achieve both 

the aims of increased safety and reliable energy production. 

The objective is again reiterated about considering HF as an 

integral part of all projects, and not just an afterthought.  

The issue that we see repeated is that if the requirements of 

system operators are only accounted for at the end of system 

design, then it is unlikely that it will be a useable system.  

PHM systems aim to be highly autonomous up until the 

point that a decision is required regarding maintenance 

intervention. In this way PHM systems can assist 

maintainers to determine the optimum time to perform 

maintenance given a host of constraints, providing the 

operator with confidence bounds on the availability of 

critical assets to meet production schedules.  Ideally 

autonomous diagnostic and prognostic capabilities are to be 

implemented within an integrated maintenance and logistics 

system that supports critical complex systems throughout 

their lifetimes (Vachtsevanos et al., 2006). However, there 

is little to no evidence that it has as yet proven possible in 

practice to achieve this level of autonomy, and some degree 

of human intervention is typically required. In fact, a 

complete prognostic health management system still does 

not exist (Saxena et al., 2010). For this reason this paper 

draws on the human factors discipline in order to propose a 

set of design rules for the incorporation of human factors 

into PHM, particularly with regards to data visibility during 

the decision making process.  

5.1. Human Factors in PHM 

The application of human factors has traditionally been in 

safety critical industries, where a variety of methods and 

techniques are applied to understand human interactions 

within a system and the potential for human error, and 

recommendations are made to improve the system, 

environment, organisation or tasks to improve human 

performance. It has long been recognised that maintenance 

tasks are vulnerable to human error, particularly in the 

aircraft maintenance domain (Australian Government Civil 

Aviation Authority, 2013; Ben-Daya, Duffuaa, Raouf, 
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Knezevic, & Ait-Kadi, 2009; International Civil Aviation 

Organization (ICAO), 2003; Latorella & Prabhu, 2000; 

Rankin, Hibit, Allen, & Sargent, 2000) and maintenance of 

the protection systems in nuclear industries 

(Khalaquzzaman, Kang, Kim, & Seong, 2011; Rasmussen, 

1975). In these instances human factors principles have been 

applied in order to reduce both the rate and impact of human 

errors. 

However, there has not been a strong input from human 

factors in the domain of PHM. Most of the PHM literature, 

when it considers human interactions within the system at 

all, considers that a benefit of PHM is the potential 

reduction in required maintenance interventions, thereby 

reducing the opportunity for human errors in the 

maintenance process ( e o,  it gibbon, Puttini,   de Melo, 

2008). While true, this view of human factors does not 

consider the possibility of harnessing human intelligence 

and reasoning abilities to improve the overall maintenance 

system, or of modelling human interactions with the system 

to improve both the prediction of faults and effectiveness of 

the system output. Only Zhao, Tian, and Zeng (2013), and 

Yu, Syed Zubair, and Yang, (2013) suggest that human 

factors could be included as an uncertainty in the PHM 

system itself, although ultimately both works neglected to 

use HF as a modelling parameter. Research in this area 

could investigate the feasibility of incorporating some of the 

existing HRA techniques in a PHM model, or could use 

another approach whereby there is feedback from the 

maintainer/installer in order to generate a confidence 

interval for the possibility of human error having occurred. 

Despite the potential in these areas, in this paper, we 

propose a more general framework for the level of human 

interaction with a PHM system based on the calculated 

reliability (or inversely speaking the calculated 

uncertainties) of the PHM system, and from this the 

requirements for the outputs from the PHM algorithms and 

the feedback to the human maintainer. There are several 

papers that consider the important issue of the user interface 

through which PHM analysis is displayed to the 

maintenance staff (Bechhoefer & Morton, 2012; Mathur, 

Cavanaugh, Pattipati, Willett, & Galie, 2001; Saxena et al., 

2010). Mathur et al  (2001) recognise that human factors 

considerations need to guide the development of interface 

components and accessibility requirements. They provide an 

example of a web-based design of servers which support a 

distributed, multi-platform, three-tier architecture. Saxena et 

al (2010) detail four key parameters driving the 

requirements for prognostics from a technical engineering 

perspective, but alludes to the fact that classifying software 

requirements based on functionality, e.g. feature set, 

capabilities, generality, security, and usability e.g. human 

factors, aesthetics, consistency, and documentation,  is also 

important. Bechhoefer and Morton (2012) studied the lack 

of adoption of condition monitoring systems relating to 

wind turbines in the renewable energy sector. They 

concluded that as no single condition indicator (CI) can 

detect all failure modes, a user display requirement is 

necessary to view, threshold, and trend information that 

incorporates more than just spectral data or one CI. They 

specify the need for a data reduction methodology that is 

intuitive and user friendly, citing the use of the health 

indicator (HI) concept, which is the integration of several 

condition indicators into a single value. The HI provides the 

health status of the component to the end user. In contrast to 

these works, which focus on providing a user friendly 

interface at the end of the system, we propose that early 

consideration of how the operator will use system outputs in 

practice should drive the whole philosophy of the PHM 

system and hence influences not just the design of the 

interface, but the decisions on what data to present and at 

what level of detail. 

5.2. PHM as a Decision Support System 

Sandborn (2005) states that methods used to obtain and 

store large amounts of information has largely been 

perfected, and as a result, a sort of information overload is 

prevalent, where it is not uncommon that a lot more 

information exists than organisations know how to use. 

Sandborn states that the trick now is to figure out how to 

make decisions based on that information. The goal of 

applied PHM technology is to provide decision support. 

Therefore, the final form of the output from a PHM system, 

driven by the context of the user, is actionable information 

that supports improved decision making (Kalgren et al., 

2006). Decision Support Systems (DSS) are designed to 

support the intelligence, design, or choice phases of human 

decision makers (DM) (Mintzberg & Simon, 1977).  

A comprehensive study was conducted by Ketteler (1999) 

on the requirements for equipment monitoring and decision 

support systems in the machining/manufacturing domain 

regarding their reliability, flexibility, and user friendliness, 

using the input of industries from Japan, the USA, Canada, 

and Europe. Data from machine builders, end-users, and 

monitoring system suppliers was collected and analysed. 

The main conclusions are applicable across multiple 

industries, dealing with the theme of industrial integration, 

and lack thereof, of online decision support capabilities 

aiding maximum throughput. Ketteler concludes that less 

than 38% of end-users were at the time satisfied with 

available monitoring systems, the main reasons for this 

being the lack of system reliability, too many false alarms, 

and the complicated nature of the monitoring systems. 

Reliability was defined as high detection rates with low 

false alarms. While the number of satisfied end-users may 

have increased in the preceding decade, Ketteler’s 

conclusions on end-users general expectations leading to 

their satisfaction in monitoring systems and DSS are still 

applicable today. The most important expectations for end-

users when using DSS were less downtime of the 

production equipment, less scrap production, higher 
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productivity, easier DSS operability, and less false alarms. 

Given the need for greater operability, DSS and associated 

technologies need to move out of the realm of esoterica, 

enabling full implementation and management 

environments within organisations. Many analytics 

technologies still focus on the technical aspects with 

insufficient regard for the monitoring of model performance 

and the sharing of information in a collaborative 

environment. Although this is one of the less glamorous 

aspects of predictive technologies, in many ways it is one of 

the most important, as without the establishment of the 

confidence levels in predictive models the technology will 

always be underexploited and untrusted (Butler, 2013).  

5.2.1. Human Factors Considerations in Decision 

Support Systems 

Human interaction with automation as a whole, of which 

PHM can be considered a branch, and the use of DSS has 

been widely researched in human factors. Many lessons can 

be learned by PHM system designers from the introduction 

of automated systems in the aviation industry for example, 

and there is a large volume of knowledge which exists in the 

HF literature on the subject. One of these lessons is whether 

total system safety is always enhanced by allocating 

functions to automatic devices rather than human operators 

(Wiener & Curry, 1980). Research on DSS information 

output indicates that DSS which indicate the status of a 

system are preferable to those that advise operators on how 

to respond (Crocoll & Coury, 1990). Similar findings in 

high-risk industries where the information is imperfect 

suggest that status displays are better than command 

displays (Sarter & Schroeder, 2001). DSS which incorporate 

a high degree of decision autonomy have failed frequently 

in industrial settings, as discussed earlier. In theory, a DSS 

acts as a ‘prosthesis’ to aid a human DM who is purportedly 

characteristically flawed and inconsistent in his/her decision 

making. As such, more precise algorithms are the preferred 

research objectives of PHM, as opposed to a greater 

understanding of the power of human cognition (Salvendy, 

2012). This type of reasoning is common in the PHM 

literature. However, the level of automation required with 

such an approach conflicts in reality with the amount of 

situations the algorithms must face. The great danger here is 

that a DSS will make wrong decisions about situations it has 

not been modelled to compute. Tied to this is the fact that 

removing the responsibility of decision making from a 

human DM in high-risk industrial settings has been shown 

to have negative consequences as people will simply blame 

erroneous decisions on the automation.  

This phenomenon has been labelled as automation bias 

(AB), essentially the tendency to over-rely on automation, 

and has been studied in various academic fields. Although 

most research shows overall improved operator and system 

performance with the use of automation, there is often a 

failure to recognise the new errors that DSS can introduce. 

This problem can also be described as automation-induced 

complacency or insufficient monitoring of automation 

output. User factors which directly influence AB include 

operator trust and confidence in the DSS. Environmental 

mediators include workload, task complexity, and time 

constraints, which pressurise the cognitive resources of the 

end users. Mitigating factors of AB includes implementation 

factors such as training and emphasising user accountability, 

and DSS design factors such as the position of the advice on 

the screen, updated confidence intervals of the DSS output, 

and the provision of information versus recommendation 

(Goddard, Roudsari, & Wyatt, 2012). The ‘information 

versus recommendation’ degree of automation where the 

DM is used to critique the output of a DSS has met with 

more success in terms of industrial integration, particularly 

in high-risk situations (Salvendy, 2012). For example, 

Guerlain et al. (1999) created a DSS for blood type 

identification in a blood bank. When used as a critiquing 

tool, where the DSS presented the users with different 

hypotheses regarding the data available rather than defined 

solutions, the operators made correct decisions 100% of the 

time. This was in contrast to a DSS which did not allow the 

operators to critique the decisions, which led to wrong 

decision being made between 33% and 63% of the time. 

This gives us an interesting insight into the power of human 

cognition, one of a number of seemingly intangible elements 

important for successful businesses (Pecht, 2008). With 

regard to the power of human cognition in the decision 

making process, it has been written that the human 

recognition process relies heavily on context, knowledge, 

and experience. The effectiveness of using contextual 

information in resolving ambiguity and recognizing difficult 

patterns is therefore the major differentiator between the 

recognition abilities of humans and systems (Jain et al., 

2000). With this in mind, the fundamental research issue in 

building intelligent DSS should centre on linking the 

domain-specific knowledge of experts with the normative 

power of analytical decision techniques to improve the 

quality of decisions (Yam, Tse, Li, & Tu, 2001). It has been 

said that the complex human decision process largely 

follows a Bayesian approach, as given a set of information, 

human decision makers tend to duplicate Bayesian 

predictions if they are provided adequate information in 

appropriate representations (Martignon & Krauss, 2003). 

The strength of this approach is demonstrated in recent 

research which illustrated that human reasoning in complex 

situations, in this case complex ribonucleic acid (RNA) 

folding schemes related to HIV and cancer research, 

outperformed specifically formulated RNA folding 

algorithms almost by an order of magnitude. The research 

focused on allowing humans to come up with complex 

folding patterns for RNA through a crowdsourcing 

application, and not only were humans able to develop 

better models of RNA folding than previous computer 

algorithms, but design rules formulated by the online 
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community have even been used to construct a new 

algorithm, EteRNABot, and in some cases represent 

completely new understandings about RNA folding that 

have yet to be explained mechanically (Lee et al., 2014). 

Formal methodologies have been developed, called 

knowledge-based expert systems, in an attempt to capture 

human knowledge to draw conclusions in a formal 

methodology framework. An expert system is a DSS that 

essentially mimics the cognitive behaviour of a human 

expert. It consists of a knowledge base, a set of if–then–else 

rules, and an inference engine which searches through the 

knowledge base to derive conclusions from given facts 

(Venkatasubramanian, Rengaswamy, & Kavuri, 2003). This 

essentially forms a sort of indirect fusion approach, which 

uses information sources like a-priori knowledge about the 

environment and human input into a DSS (Teti, Jemielniak, 

O’Donnell,   Dornfeld, 2010). Again we see however that 

the problem with this kind of knowledge representation is 

that it does not have any understanding of the underlying 

physics of the system, and therefore fails in cases where a 

new condition is encountered that is not defined in the 

knowledge base. Therefore, this kind of knowledge is 

referred to as ‘shallow’ since it does not have a deep, 

fundamental understanding of the system which it is 

attached to (Venkatasubramanian, Rengaswamy, & Kavuri, 

2003). 

Similarly Billings (1991) describes what he terms as 

‘human-centred automation’ in the aviation industry. 

Automation systems in Billings definition include systems 

which have intelligence, or some capacity to learn and then 

to proceed independently to accomplish a task. Such 

reasoner systems are evidenced frequently in PHM 

literature. Billings argues that the quality and effectiveness 

of an automation system depends largely on the degree to 

which the system takes advantage of the combined strengths 

of humans and automation technologies, and equally 

compensates for the weaknesses of both elements. Though 

Billings admits that humans are far from perfect sensors, 

decision-makers and controllers, he argues that they possess 

a number of vital attributes which automation systems do 

not. These are that humans are excellent detectors of signals 

in the presence of noise, can reason effectively given 

uncertainties, are capable of abstraction and conceptual 

organisation, can cope with failures not envisioned by 

system designers, possess the ability to learn from 

experience and thus the ability to respond quickly and 

successfully to new situations, recognise and bound the 

expected, cope with the unexpected, and to innovate and to 

reason by analogy when previous experience does not cover 

a new problem. Humans thus provide a degree of flexibility 

with regards to decision making and system control that 

cannot be attained by computational DSS alone, except in 

narrowly and well defined, well understood domains and 

situations. These uniquely human attributes each provide a 

reason to retain the human in a central position in systems 

which are neither directly controllable nor fully predictable 

(Billings, 1991).  

The reliability of automation and decision support tools has 

long been understood to be a key factor in the success of the 

tool (Wickens & Dixon, 2007). Madhavan and Wiegmann 

(2007a) and  Wickens and Dixon (2007) both conducted a 

meta-analysis of numerous research studies relating the 

reliability of diagnostic automation and its effect on the 

performance of human operators. The main conclusion from 

both studies indicates that below an optimal threshold of 

70% reliability, performance degrades to the point that DSS 

are largely disused. Balfe et al (2012) describe a set of 

principles for automation systems, designed for rail 

automation but applicable to other domains. Among these 

are the importance of reliability of the automation, and 

feedback to the human operator in terms of making the base 

information, raw data that has been transformed in to useful 

information, visible and providing understandable outputs to 

the operator. Bechhoefer and Morton (2012) explicitly 

mention the need for end-user confidence in PHM systems 

to be high in order to preserve the value of the system. They 

refer to the need to reduce false alarm rates (type I errors) 

and increase the sensitivity to actual faults (type II errors), 

i.e. increasing PHM system reliability. They also specify 

that to achieve widespread deployment of CMS, it is 

necessary to change the perception of end-users by 

convincing them of the value proposition supporting PHM. 

One of the facets enhancing a strong proposition that they 

note is an improved user interface, greater system reliability, 

and greater access to more actionable information.   

5.2.2. Trust in Decision Support Systems 

A review of trust in automation systems was conducted by 

Balfe (2010), of which DSS can be considered a branch.  

Table 1 below outlines the key findings from research on 

the factors leading to operator trust in automation systems. 

It can be argued that the usage of DSS under uncertainty 

relies on the same tenets to realise integration into the 

working environment. Balfe (2010) concludes that the effect 

of system uncertainty on trust and subsequent usage has 

been conclusively proven, and that evidence exists to 

support the notion of human competence as a key dimension 

in trust as understanding automation systems can improve 

the rating of trust. 
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Table 1: Summary of key research on trust in automation, 

adapted from (Balfe, 2010) 

Key Finding Author 

There is a correlation 

between trust in and usage of 

automation. 

(De-Vries, Midden, & Bouwhuis, 

2003; Muir & Moray, 1989) 

High reliability and 

competence are fundamental 

requirements for trust in 

automation. 

(Muir & Moray, 1989; 

Wiegmann, Rich, & Zhang, 2001) 

Operator self-confidence and 

the usefulness of the 

automation also influence 

usage. 

(Lee & Moray, 1992, 1994) 

For complex systems, 

explicit feedback is required 

to develop trust. 

(Dzindolet, Peterson, Pomranky, 

Pierce, & Beck, 2003; Sarter, 

Woods, & Billings, 1997; 

Sheridan, 1999) 

Trust must be well calibrated 

to ensure optimal use of 

automation. 

(Lee & See, 2004; Madhavan & 

Wiegmann, 2007b) 

Accurate mental models are 

important to ensure correct 

calibration of trust. 

(Sheridan & Parasuraman, 2006) 

Individual differences 

influence trust. 
(Merritt & Ilgen, 2008) 

 

Decision making given large uncertainties has been widely 

studied in the medical literature, many of whose conclusions 

on DSS integration into the working environment agree with 

those of Balfe (2010). One example of this is evidence 

based medicine (EBM), where clinicians integrate 

individual clinical expertise with the best available external 

clinical evidence from systematic research. Combining both 

individual expertise with external evidence allows clinicians 

to improve the accuracy and precision of diagnoses and 

prognoses (Sackett, Rosenberg, Gray, Haynes, & 

Richardson, 1996). EBM has led to the creation of clinical 

decision support systems (CDSS), interactive computer 

software systems designed to aid doctors with medical 

decisions, designed to impact clinician decision making 

about individual patients at the point in time that decisions 

are made (Berner, 2007). They are similar in scope and 

design to their industrial counterparts, albeit the system 

inputs are clinical metrics related to the human body. This 

same approach can be utilised by maintenance and 

management personnel involved in decision making related 

to defective components or equipment. Uckun, Goebel, and 

Lucas (2008) and Popov, Fink, and Hess (2013) draw 

similar comparisons. 

While CDSS have many proven benefits, their uptake by 

GPs (general practitioners) is limited. Shibl, Lawley, and 

Debuse (2013) researched how and why GPs accept DSS 

via a UTAUT (Unified Theory of Acceptance and Use of 

Technology) based model. The insights into the reasons 

why GPs do not use DSS are transferable to other industries 

for the development of strategies to enable greater 

widespread adoption of DSS. Shibl et al. (2013) conclude 

that the four main factors influencing DSS acceptance and 

use include usefulness, facilitating conditions (including 

training), ease of use, and trust in the DSS output. Similarly, 

Alexander (2006) concludes that a clinician's level of trust 

in CDSS is affected by how knowledge is represented, the 

CDSS’ ability to make reasonable decisions, and how they 

are designed. Again, usage issues arise if end-users do not 

understand how to use the CDSS. 

Dreiseitl and Binder (2005) investigated how physicians 

react when faced with DSS suggestions that contradict their 

own diagnoses. They found that in 24% of the cases in 

which the physicians' diagnoses did not match those of the 

DSS, the physicians changed their diagnoses. Physicians 

were significantly less likely however to follow the decision 

system's recommendations when they were confident of 

their initial diagnoses. They conclude that given 

uncertainties, people are most likely to trust their own 

judgement. False trust leads to wrong diagnoses, therefore 

uncertainty quantification is critical. Quality assurance and 

validation of such systems is therefore of paramount 

importance. 

The challenge of increasing system reliability concurrent 

with decreasing system complexity allowing greater 

usability cannot be understated. For while the algorithms 

and methods behind the three facets of PHM, detection, 

diagnosis, and prognosis, must become more robust and 

potentially more complex as they seek to reduce and 

ultimately eliminate uncertainties, so too must their outputs 

become flexible, reconfigurable, and subjectively easy to 

interpret. While one can argue that this approach would 

dictate the use for a ‘black box’ style methodology to DSS, 

this too is also not favourable. This is because the 

complexity of the mathematical models involved, coupled 

with end-user perception of high missed detection and false 

alarm rates, leads to mistrust and eventual non-use of DSS. 

Consequently a more open interface is required where PHM 

outputs are viewed as non-esoteric. This essentially means 

the transformation of data to usable information, useable 

information being context driven. As such the management 

of DSS must be addressed to providing the right information 

in the right form to the right people at the right time in the 

right place to support maintenance-related decision-making 

across different organisational levels (ProcessIT Europe, 

2013).  Uckun et al. (2008) similarly state the need for PHM 

to become less of an art and more of a science. They 

conclude that one of the main issues with PHM today is the 

lack of standardisation governing the research, and that it is 

often impossible to derive actionable conclusions based on 

the research results. 
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6. PROPOSED DESIGN FRAMEWORK 

The aim of PHM systems is to provide information for 

maintenance decisions and ideally, the information would 

be totally reliable. However, although a perfectly reliable 

PHM system is a noble aim, it is unfortunately unlikely to 

always be possible. The uncertainties within any system 

mean that a PHM methodology acting as a DSS can never 

be perfectly reliable, either due to technical difficulties in 

creating an accurate model or external factors which 

influence the reliability of the output. With this in mind, it is 

important to consider the application of the PHM system 

within the overall socio-technical system of the maintenance 

organisation and develop the system against a design 

philosophy appropriate for the context of use. 

The design framework presented here is intended to assist 

the developer of a PHM system in considering the feedback 

requirements based on the expected reliability of the PHM 

algorithms and hence set a design philosophy. This is a 

crucial first step in correctly setting the user requirements 

and designing the HMI. We propose that as the level of 

reliability of the algorithm increases, the required feedback 

to the operator decreases as per a simple proportional 

relationship. It is important to note that in this paper we deal 

with this concept purely in the notional sense. The reliability 

of the PHM system is intended to be calculated after it has 

been developed, and before the detailed design of the user 

interface for presenting the results. This is an adaptation of 

the well-known pilot control and management continuum 

developed by Billings (1991) for NASA, which directly 

relates levels of automation and human involvement in 

flight control systems for pilots. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Proposed Design Framework 

Figure 1 describes this proportional relationship and 

suggests five categories of PHM system. The categories 

begin with a low PHM reliability and a corresponding high 

level of human involvement. In this case the system would 

probably not benefit from a PHM system at all; however 

this decision must be made at a local level. At the other end 

of the scale, very high PHM reliability (e.g. very low levels 

of model uncertainty) could successfully achieve an 

autonomous PHM system in which human input is not 

required.  

The lower level of reliability considered in this model is 

suggested to be 70%, on the basis of the previously 

discussed research (Madhavan & Wiegmann, 2007a; 

Wickens & Dixon, 2007) which provides evidence that 

automation below this level is not useful. The same research 

by Wickens & Dixon (2007) describes how the benefits of 

automation increase as the reliability level increases and on 

the basis of their analysis, we describe a suggested banding 

of the reliability levels to support the model in Table 2. The 

banding is intended as a guide and not a hard and fast rule. 

 

Table 2: Banding of Reliability Levels 

 

Reliability Feedback Required 

< 70% Manual Monitoring 

70-80% Component Condition Data 

80-90% PHM Recommendation 

90-99% PHM Decision 

>99% Autonomous PHM  

 

 

Each of these bandings is described below: 

 

 Manual Monitoring – below a 70% reliability threshold 

it is proposed that traditional methods of system 

maintenance are employed, such as corrective and/or 

scheduled maintenance approaches. The development 

of a PHM system with such an amount of present 

uncertainties is unlikely to add significant value to the 

maintenance decision process; 

 Component Condition Data – between 70% and 80% 

reliability, it is proposed that a PHM DSS use 

component condition data in conjunction with 

traditional methods of system maintenance to provide 

an additional data source to aid human decision makers. 

This generates requirements in terms of the data 

presented to the decision maker which must be at a 

sufficient level of detail for them to interpret. A 

combination of these two elements might take the form 

of scheduled maintenance intervals, in which 

maintenance will always be performed, interspersed 

with the use of CBM technologies to help ensure the 

component does not fail between maintenance 

windows. 
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 PHM Recommendation – when reliability levels are 

expected to reach 80%, the PHM system can provide a 

primary recommendation on proposed maintenance 

actions, and there is no need for the inclusion of 

traditional maintenance approaches. The 

recommendation should be provided in conjunction 

with supporting information for a final decision by the 

human decision maker, and at the lower levels of the 

reliability band should be presented alongside 

alternative hypotheses. Again, this suggests 

requirements on presentation of the PHM analysis in a 

manner which facilitates the human decision maker in 

interpreting the data; 

 PHM Decision – above 90% reliability, a decision can 

be made by the DSS and be provided to the human 

decision maker for confirmation. Supporting 

information is not required at this stage and the human 

decision maker would be expected to seek out 

additional information if they believed it was necessary 

with regard to a particular decision. The interface 

requirements are perhaps less demanding in this case, 

but is still necessary to provide access to interpretable 

data when required; 

 Autonomous PHM – if the reliability of the PHM 

system is proven to be above 99%, the system can be 

considered for implementation as an autonomous 

system, with directions for maintenance interventions 

passing directly from the system to the maintenance 

team, without the involvement of any human decision 

maker. There is also scope in such a system to 

coordinate with inventory management systems and/or 

a logistics knowledgebase for complete synchronisation 

of the maintenance effort. Such a system would be 

particularly efficacious in the self-maintaining systems 

envisioned as the next generation in intelligent 

industrial equipment enabling the fourth industrial 

revolution (Lee, Ghaffari, & Elmeligy, 2011) 

 

Identification of the correct banding is key to developing the 

correct design philosophy and presenting the PHM data to 

the human decision maker in a way which optimises 

operator trust in and use of the system. However, regardless 

of the banding, the system should still facilitate the user in 

‘drilling-down’ in to the source data in order to support 

understanding and trust in the system. Again, this is to avoid 

the use of a ‘black-box’ style approach. The design 

framework detailed here proposes that the source data can 

become gradually more hidden as reliability increases. We 

believe this framework can act as a useful guide for PHM 

system designers, and that further research is needed in the 

area if PHM is to continue its advance to becoming a 

standard industrial methodology in the coming years. 

7. CONCLUSION 

In this paper we conducted a comprehensive review tying 

together for the first time the literature within the HF, 

automation, decision support, and PHM domains. We have 

presented unique findings from these disciplines across 

multiple domains that will aid in the acceptance, widespread 

industrial integration, and ultimate end-use of PHM systems 

which act as maintenance DSS. Some of the key findings in 

this paper include the factors which govern the acceptance 

of automation and DSS technologies in multiple 

applications, including presentation of information 

considerations and developing operator trust in those 

systems. From the knowledge and insights gained we 

demonstrated how such HF elements must be considered 

from the outset of system development, and why it is 

important to consider the application of a PHM system 

within the overall complex socio-technical-economic 

contexts existing within today’s organisations. We 

presented a theoretical blueprint which is a useful first step 

in designing and deploying successful PHM systems in 

industry, where using a quantitative assessment of PHM 

reliability, based on PHM system uncertainties, one can 

alter the system outputs to cater for the needs of both end-

users and the organisation as a whole.  

While an important step in bridging the gap for the first time 

between human factors and PHM, this work represents early 

theoretical research. Further research activity can be focused 

towards the identification of applicable industrial case 

studies to provide empirical evidence in support of the 

model, generating a more detailed model of guidance for 

implementation of PHM systems, and combining HF 

metrics as inputs into PHM systems in order to increase the 

reliability of decision outputs. In addition, the different 

types of uncertainty (e.g. false positive and false negative 

rates in diagnosis, accurate prognosis horizons in prediction, 

receiver operating curves, etc.) may have different 

implications for how the information is presented. Future 

work will look at the sources of uncertainty in terms of 

detection, diagnosis, and prognosis and expand the model 

presented here to include guidance on the human factors 

concerns relating to different types of uncertainty.  
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ABSTRACT 

The market for civil and military aerospace applications 
shows an increasing demand for service-based contracting 
("Performance Based Contracting" - PBC). These 
contractual-concepts are based on guaranteed performance 
indicators over a fixed period, enabling a share of the 
financial risk between the system provider and the operator. 
The realization of efficient condition monitoring capabilities 
and reliable prognostics for prediction of spares and 
personnel demands has been identified as one key enabling 
factor for a successful implementation of PBC-concepts. To 
ensure an optimal incorporation of the diagnostic & 
prognostic functions needed for this purpose, the integration 
has to be considered as a standard design task during the 
development and certification phase, rising the need to adapt 
existing development processes. This adaption includes the 
extension of certification guidelines, definition of dedicated 
requirements and realization of innovative verification 
strategies. During the last years Airbus Defence & Space 
was working on the definition of a development process for 
integration of an innovative health management strategy 
into new aircraft systems to support condition-based 
operations. Following a summary of condition monitoring 
and prognostic techniques, selected requirements and 
guidelines for development of diagnostic & prognostic 
functions will be presented and discussed. 

1. INTRODUCTION 

For the civil aerospace sector, the highly competitive 
situation and simultaneously continuously growing market 
are motivating factors for the development of new and 
attractive business models. The global competition has also 
an increasing relevance for the military sector but the only 
annually available funding of the governmental customers is 
an additional regulating factor. To realize new development 

programs under these conditions and in despite of more and 
more limited budgets, future activities have to ensure 
minimized and predictable costs for development and 
operation & support. PBC-concepts are one possible 
solution to reduce the financial and operational risk for the 
operator, while providing technical sophisticated systems. 
The main attributes of such PBC-concepts are therefore 
defined through cost efficiency and operational 
performance, whereas the respective contents of the contract 
are application specific. 

Beside the system design itself, the strategy for maintenance 
and on-demand provisioning of resources is one of the 
fundamental aspects to control operation & support costs 
and system availability (Lee et. al, 2008). Hence 
provisioning of spare parts and qualified personnel at the 
right place and the right time without any oversupply to 
avoid excessive costs for personnel, production and 
logistics, is one major challenge for the successful 
implementation of PBC-concepts (Reimann et. al, 2009). 
This demand can be fostered through an efficient health 
management system with failure prognosis capabilities 
(Jazouli & Sandborn, 2011 and Wilmering & Ramesh, 
2004). A maximum capitalization of the information 
provided by the health management system can only be 
achieved with an integrated solution for condition-based 
maintenance and mission management. An appropriate 
development process is a mandatory prerequisite to integrate 
these capabilities into a new system design. The 
establishment of such a process for the development and 
certification of integrated diagnostic & prognostic functions 
to enable condition-based decision-making is still an 
ongoing task. The majority of publications in the field of 
Prognostics & Health Management (PHM) are discussing 
modelling, simulation and algorithms for various 
applications. Only very few authors have discussed the topic 
of validation & verification as part of a development process 
to an extent that can be applied to aerospace applications 
(Kacprzynski et. al, 2004, Leao et. al, 2008 and Saxena et. 
al, 2010). The aim of this paper is to detail an approach that 

Heiko Mikat et al. This is an open-access article distributed under the 
terms of the Creative Commons Attribution 3.0 United States License, 
which permits unrestricted use, distribution, and reproduction in any 
medium, provided the original author and source are credited. 
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allows for inclusion and verification of design requirements 
for PHM functions into the development process for new or 
legacy systems. After an introduction to the principles of 
Condition-Based Operations a review of the current status 
within the emerging field of diagnostics & prognostics will 
be given. According to the main aim of the paper, the status 
reviews are followed by the derivation of appropriate design 
requirements and established validation & verification 
strategies. 

2. DESIGN ELEMENTS OF CONDITION-BASED OPERATIONS 

The main elements of condition-based operations as 
considered by Airbus Defence & Space are depicted in 
Figure 1: 

1. On-board health management functions and data 
transmission. 

2. Evaluation of health management information using 
prognostic functions to enable predictive decision 
support. 

3. Decision Support including evaluation of different 
options for dynamic mission and maintenance 
scheduling. 

4. Performance Based Logistics for an optimized resource 
and supply chain management. 

5. Certification of condition-based decision-making and 
configuration control to ensure continued airworthiness. 

On-board

Functions
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Decision

Support Performance

Based

Logistics

Certification

Technology

Challenges
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Figure 1. Design elements of condition-based operations 

The main technology challenges can be seen in the 
development of on-board monitoring functions, 
regularizations for data security, integration of off-board 
functions for predictive maintenance and mission 
management and the on-demand strategy for supplier and 
logistic supply chain management. Apart from the 
technology maturation, all design elements need to be 
developed under the guidelines of the respective authorities 

to ensure certifiability for new products and continued 
airworthiness for upgrades of legacy systems. The field of 
diagnostics & prognostics is one important contributor for 
the realization of condition-based operations, as the 
information from the health management system is one of 
the main inputs to dynamically optimize maintenance and 
mission planning. 

As for the development of other on-board and off-board 
functions, diagnostics & prognostics also require the 
definition of verifiable design requirements. Airbus Defence 
& Space has developed a virtual framework to support the 
validation & verification of design requirements for a health 
management system (Mikat et. al, 2012). The model 
described in (Mikat et. al, 2012) has been validated against a 
certified environment and the requirements and concepts 
described in this paper are now an integral part of the 
framework to support the development of diagnostic & 
prognostic functions. The implementation is done as shown 
in Figure 2. The contents of this paper are discussing 
selected requirements and concepts from the elements 
marked with "Requirements Application". 
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Figure 2. Development process for diagnostic & prognostic 
functions 

The following chapters will focus on a status review of 
condition monitoring in general and prognostics as an 
integral part for condition-based operations. The main 
requirements for definition of diagnostic & prognostic 
functions that can be applied to any design task from this 
field are presented and discussed. The discussion includes 
the implementation of a general approach to evaluate the 
performance of prognostic concepts. 
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2.1. Condition Monitoring 

Today's condition monitoring systems for aircraft 
applications are based on a combination of Built-In-Tests 
(BIT) and health monitoring systems (Srivastra, 2009). 
Therefore dedicated instrumentations and data analysis 
concepts are considered during the system design stage. The 
BIT shall ensure that all relevant failure modes become 
evident to the flight operator. Different classes of BITs 
("Power-Up BIT" during component or system start, 
"Continuous BIT" during continuous operation and 
"Initiated BIT" during specific operating conditions) are 
considered and evaluated according to a predefined 
monitoring concept. The results from the BIT monitors are 
compared with specified thresholds, to decide whether the 
respective function can be supported as required. 
Repeatability and reliability of the BIT is ensured by the 
fixed test procedures and thresholds for unacceptable 
conditions that have been defined and verified during 
component and system qualification. The evaluation of BIT 
information is a mandatory input to continuously verify the 
airworthiness of the operating system. 

In addition to BITs, selected parameters and conditions are 
subject to a continuous monitoring and assessment of the 
remaining margin to predefined damage or performance 
thresholds (COndition Monitoring function - COM). 
Examples are the "Usage Monitoring" for structural parts 
(Hunt & Hebden, 1998) or "Engine Trend Monitoring" for 
jet engines (Kühl & Pakszies, 2011). 

The main difference between these two approaches can be 
seen in the high reliability of the BIT to distinguish between 
two conditions (operative or non-operative) and the 
capability of the COM to continuously quantify changes in 
the operating conditions before a failure or malfunction 
occurs. The impact of BIT and COM on maintenance 
intervals and the useful life consumption is shown in Figure 
3. The BIT would indicate the failure when the predefined 
threshold is exceeded, causing an operational interruption 
due to a failure event, while the COM avoids the failure and 
maximise the availability by the initiation of a preventive 
maintenance action. The waste of useful life Ε can be 
minimized with increasing accuracy of the diagnostic & 
prognostic function. For real world applications E will 
always be greater than zero, affecting the useful life 
consumption of the monitored equipment adversely but 
avoiding unacceptable degradation levels. Therefore the 
design aim for COM functions should be to maximize the 
component utilization (which is equivalent to minimizing 
Ε), while also ensuring a simple and robust monitoring 
concept with a minimum impact on the system design and 
operation. 
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Figure 3. Condition Monitoring concepts and impact on the 
operating system 

2.1.1. Classification of Condition Monitoring 

In general condition monitoring techniques can be classified 
into data-driven and model-based approaches (Venkat et. al 
Part I, 2003 and Schaab, 2010): 

Data-drivenData-driven

QualitativeQualitative

Model-basedModel-based

QuantitativeQuantitativeQualitativeQualitative QuantitativeQuantitative
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Figure 4. Classification of diagnostic approaches 

The class of qualitative data-driven approaches is robust and 
easy to implement. Limit checking and plausibility checks 
are used for numerous industrial applications (Münchhof, 
2006). These concepts require usually no complex 
algorithms and the main effort can be seen in the derivation 
of reasonable thresholds to decide whether the monitored 
function is satisfying its requirements or not. 

The quantitative methods are utilizing extensive datasets 
with and without failure signatures to identify whether the 
observed process has a nominal or faulty behaviour. The 
health assessment is done based on pattern recognition 
algorithms, by analyzing selected features from the 
collected data (Venkat et. al Part III, 2003). The concept for 
feature generation is very problem specific and needs to 
ensure that the fault signature is evident to the algorithms 
for pattern recognition. Commonly used classification 
methods include but are not limited to Bayesian Decision 
Theory (Pipe, K., 2003), Neural Networks (Ypma, 2001) 
and Support Vector Machines (Schaab, Harrington & 
Klingauf, 2007). 
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Model-based approaches are utilizing a logical or 
mathematical description of the monitored process to 
compare the expected behaviour with actual measurements. 
The results of this comparison are used to derive estimates 
for the actual health status. 

Qualitative models are an abstracted version of the 
underlying process and are used if no detailed physical 
modeling is needed or the complexity of the process does 
prohibit the model development (Venkat et. al, Part II, 
2003). One example are logical graphs, which include 
information about the cause-effect relationship of failure 
modes that can be used for fault detection and isolation 
(Chung-Chien & Cheng-Ching, 1990). 

Quantitative model-based methods are based on a detailed 
mathematical model, which represents a virtual redundancy 
of the monitored process. The models are used to derive a 
residual, which describes in case of a fault occurrence the 
difference between the nominal and faulty behaviour. The 
residual is then used to isolate and quantify deteriorations or 
malfunctions of the process. Various examples like parity 
equations (Isermann, 2006), recursive Bayesian estimation 
(Crepin & Kreß, 2000) or parameter estimations techniques 
(Isermann, 1992) have been discussed. 

Following the above given definition for BITs and COM, 
the BIT can usually be seen in the context of qualitative 
methods, enabling detection and isolation of an already 
occurred failure. The capability to detect, isolate and 
quantify a deviation from the nominal behaviour requires a 
deeper analysis of the monitored process and therefore 
COM approaches would be expected to come from the field 
of quantitative methods. 

2.1.2. Development of Condition Monitoring 

The development of the above mentioned capabilities needs 
the establishment of design requirements for validation & 
verification of the diagnostic performance. To support this 
task, the following qualitative requirements have been 
identified as relevant for the development of Diagnostic 
Functions (DF) for all COM monitored items: 

• The DF shall indicate the minimum detectable damage 
size. 

• The DF shall quantify the remaining margin until the 
damage size exceeds a maximum allowable limit. 

• The DF shall enable root cause isolation on component 
level. 

• The DF shall provide the confidence level of damage 
size quantification. 

• Each DF shall be provided with a value for the critical 
damage size of the monitored feature. 

Once the requirements for DFs have been defined, the 
particular monitoring concepts and applied algorithms 
combination is very problem specific, therefore the task 
needs a case by case solution. The following set of 
quantitative requirements is considered as a generic baseline 
to verify the diagnostic performance of DFs: 

• The system shall ensure a Diagnostic Capability Rate 
(DCR) of more than X%. 

• The DF shall achieve a probability of detection of more 
than X%. 

• The number of COM false alarms shall be less than X% 
of all COM failure detections. 

• All DF shall ensure an error for damage quantification 
of less than X%. 

• All DF shall ensure an uncertainty for damage 
quantification of less than X%. 

• All DF shall ensure a probability of failure detection of 
more than X%. 

The following definitions are used for these requirements: 

• The DCR is defined as (FRD = Failure Rates of 
components with diagnostic capabilities; FRSYS = 
System Failure Rate): 

 
100⋅= ∑

SYS

D

FR

FR
DCR  (1) 

• Probability of detection shall be defined as the 
probability to detect the minimum detectable damage 
size. 

• Uncertainty of damage quantification shall be defined 
as the X% probability for correct damage assessment. 

• Probability of failure detection shall be defined as the 
probability to detect an exceedance of the maximum 
allowable damage size. 

The capability to quantify incipient failures is seen as a 
prerequisite for prognostics, as the output from the DF will 
be used to predict the future state of the degradation. 

2.2. Prognostics 

The task of prognostics is to determine the point in time, 
from where on the specified requirements of a function 
cannot be satisfied anymore. The criterion of failure can be 
defined through an unacceptable deviation from any 
operating condition or the loss of functionality. 

2.2.1. Classification of Prognostics 

The different concepts for the implementation of 
prognostics can be divided into data-driven, model-based 
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and hybrid approaches (Schwabacher, 2005, Medjaher et. al, 
2013 and Goebel, Saha & Saxena, 2008): 
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Figure 5. Classification of prognostic approaches 

The Reliability Analysis is based on a statistical evaluation 
of collected failure modes and correlation with recorded 
operating conditions to derive an estimate of the useful life 
for a given usage profile. No information about the real 
status will be used. Conservative assumptions can minimize 
the risk of failure but the useful life consumption is 
overestimated and a mismatch between the real and 
theoretical usage profile rises the risk for a failure during 
operation (Jaloretto et. al, 2009). The Weibull analysis is 
one of the most popular methods for Reliability Analysis 
(Groer, 2000). 

Trend Monitoring uses time series regression of selected 
features to extrapolate an observed trend to a predefined 
threshold. With a meaningful selection of features, it is 
possible to gain sufficient knowledge about the real status of 
the system and about the future trend of the health status. As 
Trend Monitoring is usually adapted to the incoming 
observations, the potential for inclusion of prior knowledge 
is limited (Maio & Zio, 2010). Trend monitoring is applied 
if the degradation process is not sufficiently known or the 
used parameters are built up by numerous processes and no 
comprehensive data-base for the development of damage 
propagation models is available. Various methods from the 
field of auto-regression are common practice for Trend 
Monitoring tasks (Pandian & Ali, 2010). 

The Lifetime Analysis establishes a direct link between the 
current condition and the Remaining Useful Life (RUL) of 
the monitored item, without considering the real path of the 
degradation process (Gebraeel & Lawley, 2008). 

Concepts from the data-driven Process Analysis domain are 
utilizing collected information about the degradation path 
and relevant operating conditions to identify a suitable 
damage propagation model. The identified model is then 
used to predict the degradation trend as a function of 
operating conditions and the current health status, until a 
predefined threshold is exceeded. Commonly used methods 
are Neural Networks (Rao et. al, 2012), Support Vector 
Machines (Khawaja & Vachtsevanos, 2009) or Fuzzy-
Inference Systems (Javed et. al, 2011). The Gaussian 
Process is a quite new and powerful method for data-model 
identification through non-parametric regression (Liu et. al, 
2013). The strength of data-driven process analysis can be 
seen in the wide field of applications and in the fact that no 

or only very limited prior knowledge about the underlying 
process is needed to derive a suitable model. Restrictions 
are mainly resulting from the limited applicability for 
extrapolation beyond the training data sets and the black-
box character of the identified models. Additionally it 
cannot be guaranteed that the identified solution represents a 
global optimum of the problem, causing single fractions of 
the training data to have a higher weighting. Especially in 
the case of prognostics, this can cause divergence of the 
results (Wang & Wang, 2012). 

Model-based techniques utilize detailed knowledge about 
the relationship between measurements, design parameters 
and the degradation trends to derive functional or physical 
models. The identification of model parameters and states 
shall enable an exact assessment of the monitored indicator 
and related uncertainties (model errors, measurements 
errors, bandwidth of operating conditions). For optimal 
support of the respective tasks, different models are used for 
identification (process model) and prediction (damage 
model) (Daigle et. al, 2012). The monitored state and all 
related uncertainties are estimated with the process model. 
The damage model is used to determine the degradation 
path until a predefined criterion is met. The most popular 
approaches are using recursive Bayesian estimators like the 
Kalman Filter for linear models (Celaya et. al, 2011), 
Extended Kalman Filter (Bechhoefer, 2008) and Unscented 
Kalman Filter for nonlinear models (Zhang & Pisu, 2012) 
and particle filter for non-Gaussian distributed variables and 
states (Zhu et. al, 2013). 

Hybrid estimation schemes with multiple-model approaches 
optimize the local applicability of single models, improving 
quality of the overall prognostic performance and robustness 
(Li & Jilkov, 2003 and Chen, 2011). 

Expert systems are based on a detailed technical 
understanding of the relationship and interactions between a 
Condition Indicator (CI) and the RUL. Fixed model 
structures or predefined decision trees are used to generate 
the estimate, without the capability to adapt the model 
structure to a new observation. With sufficient knowledge 
and experience, these approaches can enable an optimized 
prognosis but have a very limited robustness against model 
and measurement uncertainties (Brotherton, 2000). 

Hybrid approaches combine the strengths from data- and 
model-based concepts to provide an optimized solution for 
the prognostic task. Common implementations are 
compensating measurement uncertainties or performing 
parameter estimation for data-driven concepts with adaptive 
filtering (Liu et. al, 2013) or provide data-modules to extend 
model structures with elements that cannot be modelled 
(Anger, Schrader, & Klingauf, 2012). 

A qualitative overview about the fields of application for 
data-driven, model-based and hybrid concepts in general is 
depicted in Figure 6. 
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Figure 6. Areas of application for prognostic concepts 

All mentioned prognostic approaches can be classified into 
two main categories: 

• Lifetime calculation 

• Failure prognosis 

Only approaches that are enabling the prediction of the path 
for a CI under consideration of future operating conditions 
are accounted for the category of failure prognosis. This 
includes trend monitoring, selected data-driven process 
analysis concepts as well as model-based approaches, which 
are using damage propagation models or suitable expert 
systems. 

Exact determination of the CI and related uncertainties for 
damage quantification through appropriate DFs are a 
prerequisite for failure prognosis. The period for which the 
prognosis can satisfy certain accuracy and precision 
requirements is called prognostic horizon and indicates the 
potential for predictive measures like spare parts ordering or 
maintenance scheduling. For a definition of prognostic 
horizon the reader should refer to section 7 or to Saxena, 
Celaya, Balaban, Goebel, Saha B., Saha S. and 
Schwabacher 2008. 

Every failure prognosis accumulates and integrates all 
uncertainties for damage quantification, prediction of 
damage trends and impact of future operating conditions: 
Prognostics deals therefore with uncertainty. In the last step 
of the DF, before the prognosis is started, uncertainties 
come from the imperfect data acquisition and representation 
of the underlying process of damage quantification as well 
as uncertain knowledge of future inputs. Since these sources 
of uncertainty cannot be avoided, the full prognostic task 
deals with variables like remaining useful life and end of 
life that are random in nature. For these reasons, every 
prognostic algorithm must account for these inherent 
uncertainties. Moreover every conceived algorithm 
contributes to increase the uncertainty of the overall 

framework: the conceived algorithm has in fact just a partial 
knowledge of the state of the system at the time in which a 
prediction is initialized, of the future input statistics, of the 
description of the underlying process and above all it does 
not know exactly which model the system will follow 
during the time interval of prediction. 

All the above-mentioned considerations make then the 
prognostic process a highly stochastic task. The final aim of 
the full prognostic process is to support the risk 
management for predictive planning, by means of the 
reliable determination of the expected RUL and related 
confidence limits: therefore making decisions based on 
uncertain information needs the characterization of the 
uncertainty itself. Hence, a failure prognosis shall provide 
not simply the trend of a CI but the whole time-dependent 
probability density function of the predicted feature, with an 
over time increasing variance (Lybeck et. al, 2007). 

The way in which uncertainty is handled is therefore of 
paramount importance: however not so many papers in the 
literature are dealing with uncertainty propagation 
(Sankararaman et. al, 2011, Saha, Quach & Goebel, 2012, 
Luo e. al, 2008, Edwards, Orchard, Tang, Goebel, & 
Vachtsevanos, 2010, Daigle, Saxena, & Goebel, 2012 and 
Candela, Girard, Larsen & Rasmussen, 2003) as far as the 
authors knowledge is concerned. In what follows a 
discussion regarding this topic will be provided. In 
particular, the problem of propagating the first two 
statistical moments (mean and variance) of a CI will be 
addressed together with the final derivation of the time-
dependent probability of failure information (giving then the 
expected RUL, End of Life and the corresponding 
confidence limits). 

First task of a generic prognostic process is to forecast the 
statistics of the CI: that is in other words to derive for future 
time instants its mean and variance or, if possible, the full 
Probability Density Function (PDF), that provides also the 
moments of higher order of the distribution. 

Assuming that a model equation is available for the process 
describing the CI, the propagation of its statistics could be 
accomplished by considering the general equation (Eq. 3) 
proposed in the ISO Guide to the Expression of Uncertainty 
in Measurement (ISO/IEC Guide 98-3, 2008): an example 
of a generic model equation is here considered. The model 
equation is a function of Z number of inputs zζ, namely: xχ 
(χ=1, 2, …, X); the time index kt and the value that the 
function itself assumed a time-step before (a generic lag-
dependency of course can here be considered). 
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Considering the simplified circumstances in which inputs 
have no cross-correlation, the uncertainty u of the CI can be 
expressed by means of the following equation: 
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In which the uncertainty corresponding to each input 
propagates through the partial derivative with respect to the 
input itself; the derivative can be therefore thought as a 
sensitivity factor. Following the test-case suggested by 
(Eq.4), in  
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Figure 7 the result from the uncertainty propagation of a 
model equation with X=2 is shown (reasonable ux1 and ux2 
values have been assumed regarding the inputs uncertainty, 
30% and 15% of the respective definition's domains of x1 
and x2), whilst time index is considered a certain 
information). 
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More in detail, the upper couple of pictures shows the 
prediction for a model equation with R=S=5 (highly non-
linear; see Eq. 4) whilst the lower couple of pictures has 
R=S=2. The upper pictures stress the possible issues with 
this approach (in what follows as uncertainty has been 
always considered three times the value of the 
corresponding standard deviation): the reliability and 
accuracy of the uncertainty propagation decreases as the 
non-linearity of the system increases. The more the system 
has a non-linear behavior, the more the uncertainty 
propagation through the use of the partial derivatives fails, 

since the first derivative alone is not able to capture the full 
dynamic. As a matter of fact, the predicted uncertainty takes 
values apart from the real ones that are calculated by means 
of a Monte-Carlo simulation.  Moreover, the approach here 
used, and based on the ISO Guide above mentioned, tackles 
only situations, in which we have at our disposal a closed 
form equation. If a recursion takes place, for example if a 
state-space-based system is used in which the previous state 
estimation is used as input to the current estimation step, 
then the approach, as here has been presented, is not 
applicable. 
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Figure 7. Mean and variance propagation 

However, the above requirements are not always fulfilled, 
and therefore for many models the predictive density can 
only be approximated using Monte-Carlo sampling, local 
expansions or variational approaches. In these cases a 
Bayesian approach is generally followed (Daigle, Saxena, & 
Goebel, 2012 and Candela, Girard, Larsen & Rasmussen, 
2003); the Bayesian kernel methods have proven to be very 
efficient nonlinear models (Rasmussen, 1996 and 
Quinonero-Candela & Hansen, 2002) with flexible 
approximation capabilities and high generalization 
performance. As known, recursive sequential Bayesian 
filters are probabilistic approaches adopted to estimate an 
unknown PDF recursively over time; they make use of a 
mathematical process model and of incoming 
measurements. The estimation consists of two steps, namely 
prediction and correction: within the prediction step, the 
system state is projected in time towards a future state using 
the process model; then, by means of the incoming 
measurements, the statistics of the system are updated. The 
described framework could then be adapted within a 
prognostic task, applying a multi-step ahead prediction, 
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assuming no more measurements will be available. The 
mathematics beneath the Bayesian filter remains the same, 
but the correction step. In fact, having no measurements, the 
error is assumed to be zero. This way the mean and variance 
of a CI are reasonably forecasted. 

Remaining within the Bayesian modelling, in (Daigle, 
Saxena, & Goebel, 2012) a different approach is proposed. 
Here the authors have developed a sample-based algorithm 
for predicting the remaining useful life distribution, 
accounting for the different sources of uncertainties. By 
adopting the unscented transformation (Julier & Uhlmann, 
2004), the method allows one to sample from future input 
trajectories, maintaining at the end of the prediction the 
statistics as well. Moreover, having the unscented 
transformation deterministically accomplished, RUL 
predictions are deterministically bounded as well (and this is 
- in safety-critical systems - of great importance, if we think 
to the verification, validation, and certification protocols in 
the aerospace domain). In (Candela, Girard, Larsen & 
Rasmussen, 2003), Gaussian Process and Relevant Vector 
Machine approaches are used to propagate uncertainty. The 
paper aims to increase the prediction reliability by taking 
into consideration also the uncertainty associated to 
predicted values that are recursively used within the 
multiple-step ahead forecasting. A novel analytical 
expression is in fact derived for the predicted mean and 
variance. 

Regardless of the approach followed, the first task of a 
prognostic process is to forecast the statistics of the CI, so 
that one has at his disposal the PDF of CI for future time 
(PDFCI,t). In order to determine the so called Probability of 
Failure (PoF) of the unit under investigation, the statistics 
(in terms - for example - of the Cumulative Distribution 
Function - CDF) of the value assumed by the CI 
corresponding to failed conditions CDFCI has to be known; 
this can be derived experimentally or assumed with 
common engineering sense. 

This way PoFt, indicating the probability that the monitored 
component fails at time t, can be derived: 

 
∫

∞=

=

∂⋅⋅=
CI

CI

CItCIt CICDFPDFPoF
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,
 (5) 

From this distribution could be derived then the expected 
RUL (that is corresponding to the time at which the PoF i.e. 
is equal to 0.5 or 50%) and/or other needed confidence 
limits. In the following figure, the resulting PoF is shown, 
together with two different forecasted PDFs of the CI and 
the probability density function from which the CDFCI is 

derived.

 

Figure 8. Failure Prognosis with distributed threshold 

To maximize the use of prognostics, the expected RUL has 
to be estimated with high accuracy and low uncertainty. The 
quality of prognosis increases with the prognostic horizon 
and the level of convergence of the expectation value and 
confidence limits against the real degradation path. The 
most important aspect for capitalization of prognostics is the 
accurate RUL estimation when the spare parts are ordered 
and condition-based maintenance is scheduled. The 
potential for optimization of the logistic and maintenance 
process is inversely proportional to the deviation between 
the real and predicted values and the related uncertainties. 
These interrelations are depicted in Figure 9. 
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Figure 9. Impact of prognostic performance on logistics and 
maintenance scheduling 

2.2.2. Development of Prognostics 

The development of prognostics can be seen as a special 
case of software development, as the verification of the 
prognostic capabilities usually is very cost and time 
consuming and requires many test cases to prove the 
accuracy and precision of prediction. Since legacy systems 
usually do not provide the type and quality of information 
that is needed to support the development of failure 
prognosis, then the need to perform destructive testing for a 
new system design will highly adversely affect the 
development cost and time schedule for the certification of 
the operating system. The limiting factors for the realization 
of a predictive decision support are shown in Figure 10. The 
overall limit for the development of prognostic concepts is 
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represented by the technology's maturation regarding data 
collection and available prognostic algorithms; for this 
reason the particular design, expressed through the required 
prognostic performance, will be defined by the application 
for economical, mission or safety critical functions. 
Moreover, due to the fact that autonomous mission support 
functions would require on-board applications, the 
integration into the off-board environment will enable the 
usage of more computing resources, extending so the list of 
applicable concepts and access to stored data. 
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Figure 10. Considerations for development of Prognostics 
As discussed in section  2.2.1, a variety of different 
approaches exist to implement Prognostic Functions (PFs). 
The quality/quantity of available degradation data and prior 
knowledge about the physics of degradation are determining 
whether data-driven or model-based approaches should be 
favored. After the initial decision about the type of solution 
that will be followed, a concept is needed to investigate 
advantages and disadvantages of different implementations 
and assess their prognostic performance during the design 
phase. Airbus Defence & Space has developed a framework 
to support these tasks and to enable prioritization of the 
most suitable prognostic approach without consideration of 
cost elements (see Figure 11). 
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Figure 11. Framework for assessment of prognostic 
performance 

The shown process aims for a stepwise evaluation of 
selected performance metrics, successively enhancing the 
database for prognosis by increasing the number of used 
training datasets. The verification of prognostic capabilities 
is done for each test dataset k = 1:Q, whereas each single 
set is composed of i = 1:N time increments for starting the 
prognosis. 

In what follows, a set of general definitions will be provided 
(see Figure 12) regarding the conceived process: up to time 
t0, diagnostic information is collected and used to derive the 
current health status and uncertainties for damage 
quantification, the item fails at EoL with a real remaining 
useful life of RUL. The prognosis starts at t0 and estimates 
the predicted remaining useful life RUL*, with EoP (End of 
Prediction) as the point in time when the forecasted 
indicator distribution (the PDF of CI) is such that the 
cumulative of the PoF exceeds 50%. The upper and lower 
confidence limits of RUL* predictions are denoted by 
RULUL* and RULLL* respectively (UL (or ul): Upper Limit; 
LL (or ll): Lower Limit). 

t0

RUL EoL

RUL* EoP

RULLL*
t

RULUL*

t0

RUL EoL

RUL* EoP

RULLL*
t

RULUL*

 

Figure 12. Definitions for prognostics 

According to the general approach for system identification 
tasks, a prerequisite for performance evaluation is to classify 
the available data into "known" training data and 
"unknown" test data. All training data can be used for the 
development of prognostic concepts, while the test data 
should be used for verification of the prognostic 
performance. The classification into training and test data 
should follow a structured approach, to ensure that the 
information content is comparable and the results are 
representative for the achievable performance of the tested 
prognostic concept. Dedicated test cases for evaluation of 
limitations and robustness can be added at a later stage. 

To simplify the comparison of results for different test runs 
k, the time dependency of the datasets can be normalized, by 
replacing the usage time T (in calendar time, cycles or 
operating hours) by a unitless value λ for all time 
increments: 

 [ ]1,...,0
,:1

,:1 λλ ==
k

kN
kN RUL

T  (6) 

with: 
kk tT 0,1 =   
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kkN EoLT =,
  

The prognostic error ε needs to be calculated for each 
individual test run and λ-step of RUL*i,k: 

 
kikki RULRUL ,, *−=ε  (7) 

The same is required for the upper and lower confidence 
limits of RUL predictions: 

 
kiULkki RULRULul ,, *−=ε  (8) 

 
kiLLkki RULRULll ,, *−=ε  (9) 

For a consistent prognosis, the relative difference between 
EoL and EoP should reduce towards zero with increasing 
damage size, as the equipment approaches EoL. To account 
for that higher relevance of later predictions (increasing λ), 
an exponential scaling factor ρ is introduced: 

 { }( )( )wkNkNkN ⋅−= ,:1,:1,:1 maxargexp λλρ  (10) 

Where w denotes a factor for relevance weighting of the 
different predictions (see Figure 13). 
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Figure 13. λ relevance weighting for performance criteria 

Based on the contents of (Saxena et. al, 2008), the following 
criteria have been derived to support the identification of the 
most suitable prognostic approach: 

1. Mean Absolute Percentage Error (MAPE): 
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2. Sample Standard Deviation (SSD): 
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The SSD criterion is applicable for Gaussian distributions of 
εi,k. 

3. Mean Absolute Deviation from Median (MAD): 
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with: )(~
,:1 kNk medianεε =   

The MAD criterion is applicable for non-Gaussian 
distributions of εi,k. 

4. False Positives (FP): 
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The FP criterion identifies the predictions that would cause 
an unacceptable early replacement, affecting operational 
availability adversely. 

5. False Negatives (FN): 

 
∑

= 



≥∀=
<∀=

=
N

i kikFNi

kikFNi

kFNik ll

ll
FN

1 ,,

,,

, 0,0

0,1

εδ
εδ

δ  (15) 

The FN criterion identifies the predictions that would cause 
an unacceptable late replacement, affecting safety adversely. 

6. αααα-λλλλ Performance: 

The α-λ metric is used to identify the point in time from 
where on the predicted RUL remains within the confidence 
limits given by f1 and f2 (Eq. (16) & Eq. (17), see shaded 
region in Figure 14): 
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Two performance values can be derived from the α-λ 
analysis (see Figure 14): 

Prognostic Accuracy (PA): 

Point from where on the average of RUL predictions 
remains stable within the given α-limits (λPA,k). 

Prognostic Precision (PP): 

Point from where on both confidence limits of RUL 
predictions remain stable within the given α-limits (λPP,k). 

 

Figure 14. α-λ plot with α = 10% 

7. Prognostic Horizon (PH): 

The PH-metric indicates the point in time (λPH,k) from where 
on the predictions stay stable within the confidence limits 
given by g1 and g2 (Eq. (18) & E. (19), see shaded region in 
Figure 15): 
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Figure 15. Prognostic Horizon plot with α = 10% 

The resulting performance values pl,1:M are simply the 
arithmetic means of the applied "Prognostic Performance 
Metrics". 

Additional criteria are needed if the evolution of the 
prognostic performance with an increasing number of 
training datasets j = 1:M  shall be considered. These criteria 
are defined as "Data Frame Size Metrics" to account for the 
dimensions of the training datasets. Therefore the weighted 
average υl of each criterion pl,1:M and each training dataset 
m1:M is used to assess the capability for continuous 
improvement during the life cycle: 
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with { }( )( )wmmq jjj ⋅−= dim(maxarg)dim(exp   

Where qj denotes a weighting factor, addressing more 
relevance to the datasets including more information with 
dim(mj) as the dimension of training data used in dataset mj. 

If a unique resulting performance value is needed to 
simplify the comparison of different approaches, a weighted 
average of all criteria υ1:L can be used. The individual 
weighting should reflect the relevance of the respective 
criterion. Independent of the type of application, the FN and 
PH criteria shall have a high weighting, as they are 
representing the risk for failure during operation and the 
prognostic lead time for predictive planning. 

Similar to other conventional design tasks from the field of 
HW or SW development, prognostics do also need the 
definition of design requirements, which can be used to 
perform validation & verification during the design stage of 
a new system. To support this task, the following qualitative 
requirements have been identified as relevant for the 
development of PF: 
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• The unit for RUL estimations (time-based, cycle-based 
or calendar-based) shall be predefined for each PF. 

• The PF shall enable prognosis from entering into 
service without availability of comprehensive data sets. 

• The PF shall provide capabilities for continuous 
improvement over the life cycle of the operating 
system. 

• The PF shall enable evaluation of different future 
operating profiles. 

• Determination of a suitable condition indicator for 
damage quantification and related uncertainties shall be 
the task of a diagnostic system and be provided to the 
PF. 

• The process for achieving prognostic capabilities as 
well as the prognosis itself must not be real-time 
capable. 

• The PF shall provide uncertainty estimates for RUL 
predictions to support risk analysis for logistics and 
maintenance scheduling. 

• Evaluation of selected criteria shall enable assessment 
of the prognostic performance and design requirements. 

These conceptual requirements can be seen as general 
design guidelines for the development of PF. One major 
issue for the development of prognostics is the need to 
verify the capability to predict future states with a 
predefined accuracy and robustness. Therefore quantitative 
requirements are needed in addition to the set of qualitative 
ones given above, that enable the evaluation of uncertain 
test results. Based on previous studies regarding suitable 
approaches for performance assessment of prognostic 
functions (Saxena et. al, 2008), Airbus Defence & Space has 
derived a set of quantitative requirements that can be used 
for verification of the performance of any PF: 

• The system shall ensure a Prognosis Capability Rate 
(PCR) of more than X%. 

• The absolute Percentage Error (PE) of RUL predictions 
shall always be less than X% of the actual RUL. 

• The Uncertainty of RUL Predictions (PU) shall always 
be less than X% of the predicted RUL. 

• The prognostic function shall achieve a False Positives 
Rate (FPR) of less than X%. 

• The prognostic function shall achieve a False Negatives 
Rate (FNR) of less than X%. 

The following definitions are used for these requirements: 

• The Prognosis Capability Rate PCR is defined as (FRP 
= Failure Rates of components with prognostic 
capabilities; FRSYS = System Failure Rate): 

 
100⋅= ∑

SYS

P

FR

FR
PCR  (21) 

• The Percentage Error of RUL predictions PE is defined 
as: 
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−
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• The Uncertainty of RUL Predictions PU is defined as: 
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• False Positives Rate is defined as: 

 
%100%50 X

RUL

RULRUL
FPR PoF −<⋅−=  (24) 

• False Negatives Rate is defined as: 

 
%100%50 X

RUL

RULRUL
FNR PoF +>⋅−=  (25) 

These requirements are covering all relevant aspects that are 
needed to verify the performance and robustness of a PF 
during the development stage and for performance 
monitoring during service. 

3. CONCLUSION 

The implementation of enhanced health monitoring and 
failure prognosis functions is one prerequisite to enable 
condition-based operations. The motivation for the 
development of such capabilities is driven from the need to 
establish competitive solutions for aerospace applications, 
enhancing availability and mission reliability, while 
reducing operation & support costs. The development of an 
integrated health management system requires dedicated 
requirements and processes for identification of the optimal 
problem specific solutions for diagnostics & prognostics 
and to enable validation & verification during the system 
design stage. The concept for requirements definition and 
prognostic performance evaluation presented in this paper 
has been successfully applied during preceding development 
programs. Future research activities will focus on the 
extension of the requirements framework with concepts for 
cost-benefit analyses to further maturate the development 
framework for diagnostic & prognostic functions. 
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NOMENCLATURE 

Symbols 

α Accuracy value for performance evaluation 
ε Prognostic error 
Ε Waste of useful life 
L Number of Prognostic Performance Criteria 
mj Training dataset for prognostics 
M Number of datasets for training of prognostics 
p Prognostic performance criterion 
Q Number of datasets for testing of prognostics 
T Operating Time 
υ Data frame size metric 

Abbreviations 

BIT Build-In-Test 
CDF Cumulative Distribution Function 
CI Condition Indicator 
COM COndition Monitoring Function 
DCR Diagnostics Capability Rate 
DF Diagnostic Function 
EoL End of Life 
EoP End of Preditiction 
FN False Negatives 
FP False Positives 
FPR False Positives Rate 
FNR False Negatives Rate 
LL (ll)  Lower Limit 
MAD Mean Absolute Deviation from Median 
MAPE Mean Absolute Percentage Error 
PA Prognostic Accuracy 
PBC Performance Based Contracting 
PCR Prognostics Capability Rate 
PDF Probability Density Function 
PE Absolute Percentage Error of RUL predictions 
PF Prognostic Function 
PH Prognostic Horizon 
PHM Prognostics and Health Management 
PP Prognostic Precision 
PU Uncertainty of RUL predictions 
RUL Remaining Useful Life 
RUL* Remaining Useful Life predictions 
SSD Sample Standard Deviation 
UL (ul) Upper Limit 
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ABSTRACT 

Modern aircraft are designed to be fault-tolerant. Current 
maintenance systems provide diagnosis of existing faults, 
capabilities to do trend monitoring, but no information 
about the real-time remaining tolerance margin knowing the 
existing faults, and regarding next incoming MMEL (Master 
Minimum Equipment List) items that impact aircraft 
dispatch capabilities. 
This paper presents a new concept of aircraft preventive 
diagnosis based on failure conditions graphs with the 
associated logical framework. The complete method was 
successfully applied by Airbus on A380 use cases. The first 
part of the present paper gives the formal logical definitions 
for the aircraft preventive diagnosis and remaining margin, 
distance, risk rate. The second part gives an application 
example based on the landing gear system of an aircraft and 
also the lessons learnt from Airbus on A380. Finally, the 
last section provides a logical integration of preventive 
diagnosis with prognosis that opens new perspectives. 

1. INTRODUCTION 

Aircraft manufacturers design modern aircraft to be fault-
tolerant. Historically, the first reason for that came from 
safety considerations. Availability is the second reason. 

Aircraft are designed with high reliability equipment and 
with system redundancies. Nonetheless, failures can still 
occur, and flight delays or cancellations lead to higher 
operating costs for airlines. For an aircraft, the MEL 
(Minimum Equipment List) is a document certified by 
airworthiness authorities enabling the pilot-in-command to 
determine whether a flight may be commenced or continued 
from any intermediate stop, should any instrument, 
equipment or systems become inoperative. “Experience has 
proved that some unserviceability can be accepted in the 
short term when the remaining operative systems and 
equipment provide for continued safe operations” (refer to 

Attachment G to ICAO Annex 6). The primary objective of 
the MEL is to, therefore, reconcile an acceptable level of 
safety with aircraft profitability, while operating an aircraft 
with inoperative equipment. The MMEL (Master Minimum 
Equipment List) is an operational document, based on the 
JAR OPS-1. It is an approved deviation of the aircraft Type 
Certificate. 

Aircraft manufacturers took benefit from last technologies 
and last interdependent systems architectures in order to 
make the aircraft able to fly under MMEL conditions, 
although some faults without impacting effect may remain 
present. This has been possible thanks to more and more 
cooperative aircraft systems, that are more and more 
interconnected, sharing modular avionics, exchanging 
hydraulic power, electrical power, mechanical forces. On 
the one hand, this gives the possibility to define alternative 
system’s functioning modes in case of fault and then a more 
fault-tolerant aircraft, but, on the other hand, this makes 
aircraft diagnosis more difficult. Indeed, it is much more 
complex to isolate failures when failures propagate and even 
more when faults accumulate. 

2. BACKGROUND 

It is undesirable for aircraft to be dispatched with 
inoperative equipment and such operations are permitted 
only as a result of careful analysis of each item to ensure 
that the acceptable level of safety, as intended in the 
applicable JAR, is maintained. A fundamental consideration 
is that the continued operation of an aircraft in this condition 
should be minimized. Therefore, the airline operators need 
help from aircraft diagnostic systems in order to isolate 
failures, identify faults and manage the fault-tolerance 
remaining margins on the aircraft. 

The last on-board maintenance systems provide some 
information enabling preventive maintenance. On Airbus 
A380 aircraft, the centralized maintenance system provides 
the list of pending items to fix before they combine with 
next failures and lead to MMEL items impacting aircraft 
dispatch. The aircraft condition monitoring system generates 
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the terms of the Creative Commons Attribution 3.0 United States 
License, which permits unrestricted use, distribution, and reproduction 
in any medium, provided the original author and source are credited. 

European Conference of the Prognostics and Health Management Society 2014

617



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014 

2 

preventive reports that include aircraft parameters enabling 
the airline to do trend monitoring on some parameters, so 
that preventive maintenance can be done upon preventive 
conditions. Ground tools like Airbus AIRMAN provide 
statistical functions enabling analysis of the history of 
aircraft maintenance messages over the aircraft fleet. These 
statistical indicators can be used to trigger preventive 
maintenance actions. 

Nevertheless, none of these systems provide information 
about the real-time remaining tolerance margin before the 
occurrence of the next impacting MMEL item, in terms of 
additional remaining failures of line replaceable units, 
failure combination, and quantified risk. This status about 
the remaining margins is very important for the preparation 
of an optimized preventive maintenance planning and the 
associated maintenance job orders. 

3. NEED FOR AN INTEGRATED LOGICAL FRAMEWORK AND 
RELATED WORK 

To answer these expectations, it is needed to find a 
framework that: 

• Enables to reason on failure combinations and 
propagation in the aircraft, 

• Enables to abduce remaining tolerance margins 
that are possible thanks to remaining healthy 
equipment in the aircraft, 

• Can be extended to Prognostics so that aircraft 
diagnostic and prognostic reasoning are integrated, 
ensuring logical consistency, and taking benefit 
from integrated and common aircraft knowledge, 

• Enables to quantify risk with respect to future 
aircraft dispatch, integrating information from 
Diagnostics and Prognostics. 

The main contribution of this paper is to define a logical 
framework that answers these needs. 

The logical framework defined in the rest of this paper is 
based on the theory of model-based diagnosis defined by 
Reiter et al. (1992) that settled fundamental concepts of 
consistency-based diagnosis, worked on and improved by 
the DX’ research community for more than 20 years. 

Many research works have been done on Diagnostics, on the 
one hand, and on Prognostics on the other hand. Few of 
them propose to integrate Diagnostics reasoning with 
Prognostics reasoning, for instance in (P. Ribot, Y. Pencolé, 
M. Combacau, 2008, 2009), (N. Belard, Y. Pencolé, M. 
Combacau, 2011), or (I. Roychoudhury & M. Daigle, 2011). 
But, to the best of our knowledge, very few enable to reason 
on multiple failures combining with multiple degradations 
propagating in a fault-tolerant system, and to quantify 
remaining risks as it is needed there. 

4. LOGICAL FRAMEWORK 

4.1. Definition 1. (Aircraft) 

An aircraft is a triple (SP, AO, DM) where: 

• SP, the aircraft system pattern, is a finite set of first-
order sentences 

• AO, the accusable objects, is a finite set of constants 
• DM, the detection mapping, is a finite set of first-order 

sentences 

4.2. Definition 2. (Accusable Object) 

An accusable object is a logical constant designating an 
object that can be suspected by the diagnostic function. 
Accusable objects are organized according to the following 
groups: 

• Hardware Fault Candidates, including the line 
replaceable units handled by line maintainers 

• Software Fault Candidates, including the software that 
can be loaded by line maintainers 

• Wiring Fault Candidates 
• Regular Inoperative Conditions 
 Example: System safety test in progress. 

• Environmental Conditions 
 Example: Icing conditions. 

• Operational Conditions 
 Example: Overspeed. 

• On-going Maintenance Conditions 
 Example: Circuit-breaker open and locked. 

4.3. Definition 3. (Predicate Ab(.)) 

We adopt Reiter et al. convention that Ab(a)  is a literal 
which holds when Accusable Object a is behaving 
abnormally. 

Ab(. ) is a unary predicate. Semantically, Ab(. ) represents 
the abnormality of an Accusable Object; while ¬Ab(. ) 
represents its normality. 

4.4. Definition 4. (Failure Condition) 

A Failure Condition is a logical constant that designates a 
condition having an effect on the airplane and/or its 
occupants, either direct or consequential, which is caused or 
contributed to by one or more failures or errors, considering 
flight phase and relevant adverse operational or 
environmental conditions, or external events. 
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4.5. Definition 5. (Dispatch Condition) 

A Dispatch Condition is a logical constant that designates 
the set of conditions to be fulfilled as specified by MMEL, 
in order to allow aircraft operation with a specific 
inoperative item. 

Example of dispatch condition: Cargo Door Inoperative In 
Closed Position. 

A Dispatch Condition may have one Dispatch Status that 
can be: 

• no dispatch (also denoted “NO GO”) 
• dispatch under conditions (maintenance (m) or 

operational (o), it is also denoted “GO IF”),  
• dispatch (also denoted “GO”). 

4.6. Definition 6. (Observation) 

An observation is a logical constant. 

Observations are of two main types: automatic reported 
observations (e.g. ECAM messages on Airbus A380) and 
human observations (e.g. check done during the pre-flight 
inspection). 

Examples of observations:  

• ECAM Message APU FAULT 
• Human inspection reporting an Hydraulic leakage in 

brake circuit 
• First-order assertion of the Aircraft Condition 

Monitoring System: Command Voltage > 5V 
• Built-In Test Software Fault Report Code reported by a 

sub-system of the aircraft: 3231F542. 

4.7. Definition 7. (Predicate Reported(.)) 

The logical predicate 𝑅𝑒𝑝𝑜𝑟𝑡𝑒𝑑(. ) applies on Observations 
and is defined as follows: 𝑅𝑒𝑝𝑜𝑟𝑡𝑒𝑑(𝑜) is a literal which 
holds when Observation o is reported. 

4.8. Definition 8. (Detection Mapping) 

A Detection Mapping is a finite set of first-order sentences 
{DMi}i complying with the following production rules: 

Let 𝑂𝑖  be an Observation and 𝐹𝐶𝑖  be a Failure Condition 

 𝐷𝑀𝑖 = (𝐹𝐶𝑖 ⊨ 𝑅𝑒𝑝𝑜𝑟𝑡𝑒𝑑(𝑂𝑖)) (1) 

 𝐷𝑀𝑖 = (¬𝐹𝐶𝑖 ⊨ 𝑅𝑒𝑝𝑜𝑟𝑡𝑒𝑑(𝑂𝑖)) (2) 

4.9. Definition 9. (System Pattern) 

A System Pattern is a finite set of first-order sentences 
{SPi}i complying with the following production rules: 

Let 𝐴𝑂𝑖  be some Accusable Objects. Let 𝐹𝐶𝑖 , 𝐹𝐶𝑗 , 𝐹𝐶𝑘  be 
some Failure Conditions. Let 𝐷𝐶𝑝 , 𝐷𝐶𝑞 , 𝐷𝐶𝑟  be some 
Dispatch Conditions. 

 𝑆𝑃𝑖 = �𝐴𝑏(𝐴𝑂𝑖) ⊨ 𝐹𝐶𝑗� (3) 

 𝑆𝑃𝑖 = �𝐹𝐶𝑖 ⊨ 𝐹𝐶𝑗� (4) 

 𝑆𝑃𝑖 = �𝐹𝐶𝑖∧𝐹𝐶𝑗 ⊨ 𝐹𝐶𝑘� (5) 

 𝑆𝑃𝑖 = �¬𝐹𝐶𝑖∧𝐹𝐶𝑗 ⊨ 𝐹𝐶𝑘� (6) 

 𝑆𝑃𝑖 = (𝐹𝐶𝑖 ⊨ 𝐷𝐶𝑛) (7) 

 𝑆𝑃𝑖 = �𝐷𝐶𝑝 ⊨ 𝐷𝐶𝑞� (8) 

 𝑆𝑃𝑖 = �𝐷𝐶𝑝∧𝐷𝐶𝑞 ⊨ 𝐷𝐶𝑟� (9) 

5. FROM FAULT TOLERANCE TO MARGIN VERSUS EFFECTS 

5.1. Definition 10. (Aircraft Diagnosis) 

Let 𝑅 be a set of reported Observations. 

𝑅 = {𝑅𝑒𝑝𝑜𝑟𝑡𝑒𝑑(𝑜𝑖)/𝑜𝑖 𝑖𝑠 𝑎𝑛 𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛} 

A diagnosis ∆ for an aircraft (𝑆𝑃,𝐴𝑂,𝐷𝑀) with given 
reported Observations R, is a set of Accusable Objects such 
that: 

 𝑆𝑃 ∪ 𝐷𝑀 ∪ �� 𝐴𝑏(𝑓)
𝑓∈∆𝐹

� ∪ �� ¬𝐴𝑏(ℎ)
ℎ∈∆𝐻

� ⊨ 𝑅 (10) 

 ∆= ∆𝐹 ∪ ∆𝐻  

 ∆𝐹 ∩ ∆𝐻= ∅  

 

∆𝐹 is called the set of faulty Accusable Objects, ∆𝐻 is called 
the set of healthy Accusable Objects. 

5.2. Definition 11. (Aircraft Preventive Diagnosis) 

Let 𝐷𝐶 be a set of Dispatch Conditions. 

Let 𝑅 be a set of reported Observations. 

𝑅 = {𝑅𝑒𝑝𝑜𝑟𝑡𝑒𝑑(𝑜𝑖)/𝑜𝑖  𝑖𝑠 𝑎𝑛 𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛}. 

A preventive diagnosis ∆𝑃  preventing from 𝐷𝐶  for an 
aircraft (𝑆𝑃,𝐴𝑂,𝐷𝑀) with given reported Observations R, 
is a set of Accusable Objects such that: 

 𝑆𝑃 ∪ 𝐷𝑀 ∪ � � 𝐴𝑏(𝑓)
𝑓∈∆𝑃𝐹

� ∪ � � ¬𝐴𝑏(ℎ)
ℎ∈∆𝑃𝐻

� ⊨ 𝑅 ∪ 𝐷𝐶 (11) 

 ∆𝑃= ∆𝑃𝐹 ∪ ∆𝑃𝐻  

 ∆𝑃𝐹 ∩ ∆𝑃𝐻= ∅  
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∆𝑃𝐹 is called the set of preventive faulty Accusable Objects, 
∆𝑃𝐻  is called the set of preventive healthy Accusable 
Objects. 

5.3. Solving Aircraft Diagnosis or Aircraft Preventive 
Diagnosis 

A possible solving process for Aircraft Diagnosis or Aircraft 
Preventive Diagnosis can be the General Diagnostic Engine 
(GDE, J. de Kleer and B. C. Williams, 1987), as proven in 
(N. Belard, 2012). 

5.4. Definition 12. (Remaining Margin) 

Let 𝐷𝐶 be a set of Dispatch Conditions. 

Let 𝑅 be a set of reported Observations. 

Let 𝐴𝑐 be an aircraft (𝑆𝑃,𝐴𝑂,𝐷𝑀). 

Let 𝐷 be the set of all Aircraft Diagnosis for 𝐴𝑐 with given 
reported 𝑅. 

Let 𝑃  be the set of all Aircraft Preventive Diagnosis 
preventing from 𝐷𝐶 for 𝐴𝑐 with given reported 𝑅. 

For a given ∆𝑃  in P, a Remaining Margin 𝜇  is a set of 
Accusable Objects in 𝐴𝑂 such that: 

 𝜇 =  {𝑜𝜖𝐴𝑂}  

 ∃∆𝑃𝜖𝑃 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ∀𝑜 ∈ 𝜇, 𝑜𝜖∆𝑃 𝑎𝑛𝑑 𝐴𝑏(𝑜) (12) 

 ∄∆∈ 𝐷 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ∀𝑜 ∈ 𝜇, 𝑜 ∈ ∆ (13) 
In other words, all objects o are suspected within an aircraft 
preventive diagnosis but the objects o are not suspected in 
any aircraft diagnosis. 

5.5. Definition 13. (Remaining Distance) 

The Remaining Distance 𝑑𝜇  of a Remaining Margin 𝜇  is 
defined as the cardinality of 𝜇: 

 𝑑𝜇 = |𝜇| (14) 

5.6. Definition 14. (Remaining Risk Rate) 

Let suppose that a failure rate is attributed to every 
Accusable Object in the aircraft. 

𝑜𝜖𝐴𝑂 → λ(𝑜)𝜖]0,1[ 

The Remaining Risk Rate 𝜌𝜇  of a Remaining Margin 𝜇 is 
the scalar product of the failure rates of all Accusable 
Objects in the Remaining Margin: 

 𝜌𝜇 = � λ(𝑜)
𝑜𝜖𝜇

 (15) 

6. REPRESENTATION BASED ON ORIENTED GRAPHS 

For a more intuitive representation that is easier to handle 
by aircraft systems engineers, we use oriented graphs to 
represent the logical model defined by a given aircraft with 
reported observations. 

The industrial method to build the oriented graphs was 
defined by Airbus and is available in (Cheriere et al, 2010, 
2012). 

6.1. Oriented Graph of an Aircraft 

Let Ac be an Aircraft (SP, AO, DM). 

The oriented graph for the aircraft Ac is composed such that 
the nodes are defined by: 

• Ab(A) where A is any Accusable Object,  
• Failure Conditions,  
• Dispatch Conditions, 
• Reported(o) where o is any Observation,  
• Logical connector AND 
• Logical connector OR 
• Logical NOT 
And the oriented edges are defined by the entailments given 
in the System Pattern and the System Mapping, knowing 
that the logical connectors “AND”, “OR”, and “NOT” are 
treated as logic gates. 

NB: Other Gates like “XOR” (exclusive OR), ≥N (N true at 
least) can be obtained thanks to the usual basic logic gates. 

6.2. Interface Failure Condition 

Any Failure Condition node in the Aircraft Graph that has 
no successor is named Interface Failure Condition. 

Indeed, the Aircraft Graph may cover only a part of all 
aircraft systems and these nodes stand for the interfaces with 
external systems. 

6.3. Example 

6.3.1. Introduction 

Let’s base the example on an aircraft landing gear system. 
The Figure 1 depicts an example of landing gear system of 
the Airbus A380. 
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Figure 1. A380 body and wing landing gears. 

Source: Wikipedia, Florian Lindner, March 2014 
 

The position of a landing gear door is sensed thanks to 
proximity sensors. The Figure 2 shows the principle of a 
proximity sensor. 

 
Figure 2. Principle of Proximity Switch Sensor. 

Source: Crane Aerospace and Electronics, March 2014. 
www.craneaerospace.com 

 

The Proximity Switch Sensor is connected to a remote data 
concentrator that is an avionics unit providing the sensor 
with electrical power. The sensor gives a different current if 
the target (fixed on aircraft body) is close or not to the 
sensor (fixed on the actuated door). This information is used 
within the control loop of the door by the corresponding 
side of the landing gear control system. 

For a same position, there are two redundant proximity 
switch sensors that are reporting to two redundant remote 
data concentrators. 

Proximity 
Sensor 1

Proximity 
Sensor 2

Remote Data 
Concentrator 1

Remote Data 
Concentrator 2

 
Figure 3. Redundancy Principle for the Feedback of 

Proximity Sensors 
 

As soon as the door position is lost from one redundant side 
of the system, the pilot will be informed of this failure by a 
dedicated ECAM message displayed in the cockpit. 

The aircraft dispatch with no landing gear available control 
is not allowed by the Minimum Equipment List. 

It means that it is not allowed to dispatch the aircraft with 
the ECAM message "LOSS OF LANDING GEAR 
CONTROL 1+2". 

6.3.2. Accusable objects 

If we limit our Aircraft to the objects at stake in Figure 3, 
the list of accusable objects is: 

• 𝐴𝑂11: Hardware Proximity Sensor 1 
• 𝐴𝑂21: Hardware Remote Data Concentrator 1 
• 𝐴𝑂31: Software hosted on Remote Data Concentrator 1 
• 𝐴𝑂41: Wiring from Proximity Sensor 1 to Remote Data 

Concentrator 1 
• 𝐴𝑂51: Wiring from Proximity Sensor 1 to Remote Data 

Concentrator 2 
• 𝐴𝑂61: On-going Maintenance Condition: Remote Data 

Concentrator 1 initiated test in progress 
The objects are symmetrical for the side 1 and the side 2. 
The side 2 will give the symmetrical set of accusable 
objects. 

• 𝐴𝑂12: Hardware Proximity Sensor 2 
• 𝐴𝑂22: Hardware Remote Data Concentrator 2 
• 𝐴𝑂32: Software hosted on Remote Data Concentrator 2 
• 𝐴𝑂42: Wiring from Proximity Sensor 2 to Remote Data 

Concentrator 1 
• 𝐴𝑂52: Wiring from Proximity Sensor 2 to Remote Data 

Concentrator 2 
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• 𝐴𝑂62: On-going Maintenance Condition: Remote Data 
Concentrator 2 initiated test in progress 

6.3.3. Failure Conditions 

In the example, the failure conditions that would be 
considered are: 

• 𝐹𝐶11: Inconsistent current from Proximity Sensor 1 
• 𝐹𝐶21: Current provided by Proximity Sensor 1 is not 

processed by Remote Data Concentrator 1 
• 𝐹𝐶31 : Current provided by Proximity Sensor 1 is 

incorrectly acquired by Remote Data Concentrator 1 
• 𝐹𝐶41: Loss of electrical continuity between Proximity 

Sensor 1 and Remote Data Concentrator 1 
• 𝐹𝐶51: Loss of electrical continuity between Proximity 

Sensor 1 and Remote Data Concentrator 2 
• 𝐹𝐶61 : Position information provided by Proximity 

Sensor 1 is incorrectly processed by Remote Data 
Concentrator 1 

• 𝐹𝐶71 : Feedback of door position on side 1 does not 
correspond to real door position 

• 𝐹𝐶80 : Door position information are inconsistent 
between Side 1 and Side 2 

The side 2 will bring symmetrical failure conditions (replace 
1 by 2). 
• 𝐹𝐶12: Inconsistent current from Proximity Sensor 2 
• 𝐹𝐶22: Current provided by Proximity Sensor 2 is not 

processed by Remote Data Concentrator 2 
• 𝐹𝐶32 : Current provided by Proximity Sensor 2 is 

incorrectly acquired by Remote Data Concentrator 2 
• 𝐹𝐶42: Loss of electrical continuity between Proximity 

Sensor 2 and Remote Data Concentrator 1 
• 𝐹𝐶52: Loss of electrical continuity between Proximity 

Sensor 2 and Remote Data Concentrator 2 
• 𝐹𝐶62 : Position information provided by Proximity 

Sensor 2 is incorrectly processed by Remote Data 
Concentrator 2 

• 𝐹𝐶72 : Feedback of door position on side 2 does not 
correspond to real door position 

6.3.4. Dispatch Conditions 

In the example, let’s consider the dispatch conditions: 

• 𝐷𝐶10 : The landing gear system cannot determine the 
real door position on side 1. 

• 𝐷𝐶20 : The landing gear system cannot determine the 
real door position on side 2. 

• 𝐷𝐶30 : The landing gear system cannot determine the 
real door position on side 2. 

From the Minimum Equipment List, the dispatch condition 
𝐷𝐶30  has a NO DISPATCH status, i.e. the airline is not 
authorized to fly the aircraft with this condition. 

6.3.5. Observations 

In the example, the possible observations are: 

• 𝑂𝐵𝑆11 : LOSS OF LANDING GEAR CONTROL 1 
(ECAM Message) 

• 𝑂𝐵𝑆21: Conversion of Proximity Sensor 1 current by 
Remote Data Concentrator 1 is not plausible. (Built-In 
Test Report From Side 1) 

• 𝑂𝐵𝑆31: The Proximity Sensor 1 is disconnected from 
Remote Data Concentrator 1 (Human Observation) 

• 𝑂𝐵𝑆41: The Proximity Sensor 1 is disconnected from 
Remote Data Concentrator 2 (Human Observation) 

• 𝑂𝐵𝑆12 : LOSS OF LANDING GEAR CONTROL 2 
(ECAM Message) 

• 𝑂𝐵𝑆22: Conversion of Proximity Sensor 2 current by 
Remote Data Concentrator 2 is not plausible. (Built-In 
Test Report From Side 2) 

• 𝑂𝐵𝑆32: The Proximity Sensor 2 is disconnected from 
Remote Data Concentrator 1 (Human Observation) 

• 𝑂𝐵𝑆42: The Proximity Sensor 2 is disconnected from 
Remote Data Concentrator 2 (Human Observation) 

• 𝑂𝐵𝑆50 : ACMF Parameter LG_CTL_1=FAILED and 
ACMF Parameter LG_CTL_2=FAILED 

• 𝑂𝐵𝑆60: LOSS OF LANDING GEAR CONTROL 1+2 
(ECAM Message) 

6.3.6. Oriented Graph of the Aircraft 

The corresponding oriented graph for the example is given 
on Figure 4. 

 
Figure 4. Oriented Graph of the Example 
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6.3.7. Aircraft Diagnosis 

On the example, let’s assume that R is the set of following 
reported Observations: 

𝑅 = {𝑅𝑒𝑝𝑜𝑟𝑡𝑒𝑑(𝑂𝐵𝑆21),𝑅𝑒𝑝𝑜𝑟𝑡𝑒𝑑(𝑂𝐵𝑆11)} 

Then the diagnosis ∆  for the aircraft (𝑆𝑃,𝐴𝑂,𝐷𝑀)  with 
given reported Observations R, is: 

∆= {𝐴𝑏(𝐴𝑂21)} 

The Figure 5 illustrates the propagation path that stands for 
all entailments from 𝐴𝑏(𝐴𝑂21)  to 𝑅𝑒𝑝𝑜𝑟𝑡𝑒𝑑(𝑂𝐵𝑆11)  and 
𝑅𝑒𝑝𝑜𝑟𝑡𝑒𝑑(𝑂𝐵𝑆21). 

This figure illustrates that the graphical representation is an 
easy way to understand and follow how failure can 
propagate. When engineers design new aircraft, it is a 
powerful mean to share knowledge and to brainstorm on 
failure scenarios. 

For diagnostic tool, it is a convenient representation to 
display details in deep troubleshooting mode. Indeed, graph 
is a familiar way to figure out the path from one point to 
another point. 

 
Figure 5. Nodes involved in the propagation path 

(highlighted in yellow)  

6.3.8. Aircraft Preventive Diagnosis 

On the example, let consider the Dispatch Condition 𝐷𝐶30 
that has a NO DISPATCH status. The Aircraft Preventive 
Diagnoses preventing from 𝐷𝐶30  for the aircraft 
(𝑆𝑃,𝐴𝑂,𝐷𝑀) with given reported Observations R are: 

• ∆𝑃1= {𝐴𝑏(𝐴𝑂21)∧𝐴𝑏(𝐴𝑂12)} 
• ∆𝑃2= {𝐴𝑏(𝐴𝑂21)∧𝐴𝑏(𝐴𝑂32)} 
• ∆𝑃3= {𝐴𝑏(𝐴𝑂21)∧𝐴𝑏(𝐴𝑂62)} 
• ∆𝑃4= {𝐴𝑏(𝐴𝑂21)∧𝐴𝑏(𝐴𝑂22)} 
• ∆𝑃5= {𝐴𝑏(𝐴𝑂21)∧𝐴𝑏(𝐴𝑂42)} 

6.3.9. Remaining Margins and Distances 

From the Aircraft Diagnoses and Preventive Aircraft 
Diagnoses previously determined, let’s give the 
corresponding remaining margins and distances: 

• For ∆𝑃1 , the Remaining Margin is µ𝑃1 = {𝐴𝑂12}  and 
𝑑𝜇𝑃1 = 1. 

• For ∆𝑃2 , the Remaining Margin is µ𝑃2 = {𝐴𝑂32}  and 
𝑑𝜇𝑃2 = 1. 

• For ∆𝑃3 , the Remaining Margin is µ𝑃3 = {𝐴𝑂62}  and 
𝑑𝜇𝑃3 = 1. 

• For ∆𝑃4 , the Remaining Margin is µ𝑃4 = {𝐴𝑂22}  and 
𝑑𝜇𝑃4 = 1. 

• For ∆𝑃5 , the Remaining Margin is µ𝑃5 = {𝐴𝑂42}  and 
𝑑𝜇𝑃5 = 1. 

6.3.10. Remaining Risk Rate 

If we suppose that each accusable object 𝐴𝑂𝑖  is attached 
with a respective failure rate λ𝑖 , then the remaining risk 
rates for the remaining margins in the example are 
respectively: 

• Let λ12 be the failure rate of 𝐴𝑂12. Given the remaining 
margin µ𝑃1 , let’s apply the equation (15) of the 
Definition 14. (Remaining Risk Rate). It yields to: 
𝜌𝜇𝑃1 = λ12  

Likewise, we get the other remaining risk rates: 

• 𝜌𝜇𝑃2 = λ32 

• 𝜌𝜇𝑃3 = λ62 

• 𝜌𝜇𝑃4 = λ22 

• 𝜌𝜇𝑃5 = λ42 

This enables to assess the risk that 𝐷𝐶30 occurs in the next 
flights, and to decide to do preventive maintenance on 
𝐴𝑂21, in order to keep an acceptable risk rate. 

By this way, the risk of NO DISPATCH can be managed 
optimally according to the operational conditions of the 
airline. 

For instance, let’s suppose that: 

max (λ12, λ32,λ62, λ22, λ42) > 𝑅  

where 𝑅 is the maximum threshold accepted by the airline 
before triggering preventive maintenance. Then it is worth 
to repair the accusable object 𝐴𝑂21  in order to gain 
tolerance margins against the dispatch condition 𝐷𝐶30. 

The aircraft will continue its flight operations, being 
allowed to fly without any operational interruption, 
complying with airline (and passengers) expectations. 
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7. APPLICATION ON A380 AND LESSONS LEARNT 

This approach was applied on Airbus A380 aircraft to model 
several systems and a real-time diagnostic algorithm enables 
to compute the Aircraft Diagnosis and Aircraft Preventive 
Diagnosis based on the aircraft model and the real-time 
observations collected from aircraft in real-time. 

The Figure 6 depicts the principle of this real-time 
application. 

On-board 
Systems

On-board 
Maintenance 

System

On-board 
Flight 

Warning 
System

Communication 
System

Diagnostic 
Engine

Ground Segment
Graphs

Aircraft 
Diagnosis

Aircraft 
Preventive 
Diagnosis

HMI

Figure 6. Principle of the real-time processing  
applied on A380 

The integrated aircraft graph includes more than 170,000 
nodes.  

Observations are automatically downloaded from aircraft to 
Airbus ground segment, even if the aircraft is still in-flight. 
These observations are the ones automatically detected by 
on-board systems: Continuous Built-In Tests reports, Flight 
Warning ECAM (Electronic Centralized Aircraft Monitor) 
messages, but also Aircraft Condition Monitoring 
Parameters that can be requested from Aircraft upon 
demand by the Human Operator. The Aircraft Diagnosis and 
the associated Aircraft Preventive Diagnosis are computed 
by a Diagnostic Engine reasoning on the oriented graph 
model. 

This experience enabled to identify the following lessons 
learnt: 

• This approach enables to get a very accurate diagnosis 
taking benefit from in-service experience. Indeed, the 
graph model can be updated on ground segment 
according to best in-service feedbacks. 

• This Preventive Diagnosis enables to identify the risky 
upcoming Dispatch Conditions, so that Airbus is able to 
advice the airline about the best preventive maintenance 
to perform in order to avoid any delay, flight 
cancellation or high unscheduled maintenance costs. 

• Nevertheless, the experience showed that Preventive 
Diagnosis results need to be handled by Airbus 

Operators with very good overall knowledge of the 
aircraft and very high knowledge of the in-service 
experience, in order them to trigger the advice to 
Airline at the best time.  

The fundamental problem is about predicting the time of 
next Dispatch Condition occurrence. 
That is why it is needed to take benefit from Prognostics in 
order to provide indication about remaining lifetime before 
the Dispatch Condition occurs. This remaining lifetime can 
be used to organize the preventive maintenance from 
logistics (spare procurement, tools...) to operations (in the 
best conditions when the aircraft is back at its main base for 
instance). 

8. INTEGRATION WITH PROGNOSIS 

A way to solve this problem is to integrate the present 
preventive diagnosis approach with Prognostics that brings 
the capability to determine the remaining useful life before 
the occurrence of faults on accusable objects that are in the 
Remaining Margin. 

For this, let’s introduce additional logics. 

8.1. Definition 15. (Degradation Condition) 

A Degradation Condition is a logical constant that 
designates a condition that is an intermediate step on the 
way to a Failure Condition. 

8.2. Definition 16. (Additional Production Rules in the 
Detection Mapping) 

Let’s extend the Detection Mapping defined in paragraph 
4.8 with the following production rules: 

Let 𝑂𝑖  be an Observation and 𝐷𝑒𝐶𝑖  be a Degradation 
Condition 

 𝐷𝑀𝑖 = (𝐷𝑒𝐶𝑖 ⊨ 𝑅𝑒𝑝𝑜𝑟𝑡𝑒𝑑(𝑂𝑖)) (16) 

 𝐷𝑀𝑖 = (¬𝐷𝑒𝐶𝑖 ⊨ 𝑅𝑒𝑝𝑜𝑟𝑡𝑒𝑑(𝑂𝑖)) (17) 

8.3. Definition 17. (Additional Production Rules in the 
System Pattern) 

Let’s extend the System Pattern defined in paragraph 4.9 
with the following production rules. 

Let 𝐴𝑂𝑖  be some Accusable Objects. Let 𝐷𝑒𝐶𝑖 , 𝐷𝑒𝐶𝑗 , 𝐷𝑒𝐶𝑘 
be some Degradation Conditions. 

 𝑆𝑃𝑖 = �𝐴𝑏(𝐴𝑂𝑖) ⊨ 𝐷𝑒𝐶𝑗� (18) 

 𝑆𝑃𝑖 = �𝐷𝑒𝐶𝑖 ⊨ 𝐷𝑒𝐶𝑗� (19) 

 𝑆𝑃𝑖 = �𝐷𝑒𝐶𝑖∧𝐷𝑒𝐶𝑗 ⊨ 𝐷𝑒𝐶𝑘� (20) 

 𝑆𝑃𝑖 = �¬𝐷𝑒𝐶𝑖∧𝐷𝑒𝐶𝑗 ⊨ 𝐷𝑒𝐶𝑘� (21) 
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8.4. Definition 18. (Remaining Useful Life Before Failure 
Condition) 

Let’s define the following logical relation between 
Degradation Condition and Failure Condition using modal 
S5 logics (where ◊ means possibility). 

Let’s extend production rules of the System Pattern defined 
in paragraph 4.9 with the following one: 

Let 𝐷𝑒𝐶𝑖  be a Degradation Condition and 𝐹𝐶𝑛be a Failure 
Condition. 

 𝑆𝑃𝑖 = ◊(𝐷𝑒𝐶𝑖 ⊨ 𝐹𝐶𝑛)𝑅𝑈𝐿 (22) 

Meaning that it is possible that the Degradation Condition 
DeCi entails the Failure Condition FCn after the time 
duration RUL (Remaining Useful Life) has elapsed. 

Then we can use the set of Kripke S5-structures where all 
possible worlds after RUL time has elapsed are such that  

 (𝐷𝑒𝐶𝑖 ⊨ 𝐹𝐶𝑛) (23) 

These worlds are accessible by worlds modeled by  Eq. (22) 
before RUL time has elapsed. 

Depending on the amount of different RULs expressed in 
the System Pattern, the number of accessible worlds 
increases. In other words, Prognostics enables to identify the 
future accessible worlds that model the aircraft. 

8.5. Definition 19. (Remaining Useful Life Before 
Dispatch Condition) 

Let 𝐷𝐶 be a set of Dispatch Conditions. 

Let 𝑅 be a set of reported Observations. 

𝑅 = {𝑅𝑒𝑝𝑜𝑟𝑡𝑒𝑑(𝑜𝑖)/𝑜𝑖  𝑖𝑠 𝑎𝑛 𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛}. 

Let’s consider a preventive diagnosis ∆𝑃  preventing from 
𝐷𝐶  for an aircraft (𝑆𝑃,𝐴𝑂,𝐷𝑀)  with given reported 
Observations R, as defined in paragraph 5.2. 

Let’s 𝜇  be a Remaining Margin for ∆𝑃 , as defined in 
paragraph 5.4. 

Let’s 𝑂 be an accusable object included in 𝜇. 

From the System Pattern, let 𝐷𝑂  be the set of Dispatch 
Conditions such that: 

𝐷𝑂 = �
𝐷𝑒𝐶 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡:

∀𝐷𝐶𝑖 ∈ 𝐷𝐶, (𝐴𝑏(𝑂) ⊨ 𝐷𝑒𝐶)and�◊(𝐷𝑒𝐶 ⊨ 𝐷𝐶𝑖)𝑅𝑈𝐿𝑖�
� 

𝐷𝑂 may be empty. 

If 𝐷𝑂 is not empty, it enables to point out a subset of {𝑅𝑈𝐿𝑖}. 

The Remaining Useful Life Before Dispatch Condition is 
defined as: 

 
Undefined if 𝐷𝑂 = ∅ 

𝑀𝑖𝑛(𝑅𝑈𝐿𝑖),∀𝑖, otherwise 
(24) 

8.6. Graph representation 

The Oriented Graph will be extended with new nodes 
standing for Degradation Conditions and new edges 
representing the entailments and possibilities added in 
paragraphs 8.2, 8.3, and 8.4. 

8.7. Illustration of RUL on the example 

Let’s take the landing gear example again. 

And let enrich the System Pattern with the Degradation 
Condition: 

• 𝐷𝑒𝐶1: Degraded Contact between Proximity Sensor 2 
and its target 

And with the following knowledge: 
• 𝐴𝑏(𝐴𝑂12) ⊨ 𝐷𝑒𝐶1 
• ◊(𝐷𝑒𝐶1 ⊨ 𝐹𝐶12)𝑅𝑈𝐿1 
The Figure 7 presents the enriched graph. 

 
Figure 7. Oriented Graph of the Example, with the 

Degradation Condition 𝐷𝑒𝐶1 
(in green bottom left on Figure 7) 

Taking the same hypotheses as paragraph 6.3.8, the Aircraft 
Preventive Diagnosis preventing from 𝐷𝐶30 for the aircraft 
(𝑆𝑃,𝐴𝑂,𝐷𝑀) with given reported Observations R will be: 

• ∆𝑃1= {𝐴𝑏(𝐴𝑂21)∧𝐴𝑏(𝐴𝑂12)} 
• ∆𝑃2= {𝐴𝑏(𝐴𝑂21)∧𝐴𝑏(𝐴𝑂32)} 
• ∆𝑃3= {𝐴𝑏(𝐴𝑂21)∧𝐴𝑏(𝐴𝑂62)} 
• ∆𝑃4= {𝐴𝑏(𝐴𝑂21)∧𝐴𝑏(𝐴𝑂22)} 
• ∆𝑃5= {𝐴𝑏(𝐴𝑂21)∧𝐴𝑏(𝐴𝑂42)} 
As well for ∆𝑃1 , the Remaining Margin is µ𝑃1 = {𝐴𝑂12} and 
𝑑𝜇𝑃1 = 1. 

And it yields to 𝐷𝐴𝑂12 = {𝑅𝑈𝐿1}. 
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The Remaining Useful Life Before Dispatch Condition is 
equal to 𝑅𝑈𝐿1. This enables to project the remaining time 
that is available to do preventive maintenance. 

9. CONCLUSION AND PERSPECTIVES 

Starting from a logical framework to formalize the problem 
of preventive diagnosis for airlines, the present paper 
proposed to define the Aircraft Diagnosis and Aircraft 
Preventive Diagnosis. Then the useful concepts of 
Remaining Margin, Remaining Distance and Remaining 
Risk Rate were defined. This paper proposed a graph 
representation of the logical aircraft model. These concepts 
were applied by Airbus on A380 aircraft successfully. The 
experience enabled to identify the need of integrating 
Aircraft Diagnosis, Aircraft Preventive Diagnosis with 
information coming from Prognostics. To do this, the 
logical framework was extended with concepts enabling to 
introduce the concept of Remaining Useful Life and to do 
an integrated and consistent logical reasoning with it. 

This work could be followed by an extension to concepts of 
confidence depending on the uncertainty attached with the 
RUL value that is up to interest for the human decision to 
order preventive maintenance. Indeed, Modal Logics and 
validity could help to define a confident diagnosis that 
would be a true diagnosis in all possible worlds identified 
by Prognostics. 

Moreover, the Graph theory and its applications in 
Neuroscience and Biology could help to figure out further 
concepts and algorithms for preventing from future Dispatch 
Conditions. Indeed, shall we imagine that an Aircraft 
System Pattern is in fact a very big molecule (of nodes) and 
that Degradations are in fact chemical reactions changing 
the composition of this big molecule in time?  
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ABSTRACT 

The “s or more threshold trespassings out of N consecutive 

watch periods” detection verification strategy is known to 

offer advantages in terms of threshold value not too extreme 

under the constraint of low false alert rate, PFA. Typically 

PFA < 5%. The definition of PFA here considered is P(No 

degradation|Alert). It means the probability that there is no 

degradation given that degradation has been detected. The 

alert threshold placement has previously been addressed in 

the case where the abnormality score with no degradation 

has a stationary distribution and may be approached with a 

continuous non parametric Parzen distribution. This is 

illustrated on an abnormality score of the daily lubricant 

consumption estimation of an aircraft engine. The watch 

period is a day. The N consecutive watch periods are seven 

consecutive service days. The s or more trespassings are six 

or more trespassings out of seven consecutive days. In such 

configuration, the threshold is 0.21 l/h, which is inside the 

observed distribution. With an abnormality alert strategy 

with no verification, i.e. s = N = 1, the threshold is a more 

extreme value of 0.31 l/h which is outside the observed 

distribution. Two steps were considered. Step 1: Learning of 

the abnormality score distribution with no degradation by a 

non parametric Parzen fit. Step 2: Threshold set by quintile 

interpolation on the adjustment. This is extended to the case 

where the abnormality score with no degradation has a 

discrete distribution close to a Dirac distribution. This is 

typically the case for abnormality scores based on “out of 

range” counts for measurement chains along M clock 

increments of a watch period, corresponding to a flight 

cycle. With no degradation, most of the counts during a 

flight, but not all, are zero. Another example is an 

abnormality score based on a rough quantification of the 

time, “t SAV open”, between the open command and the 

start of movement of a starter air valve, during a watch 

period corresponding to a start sequence. With no 

degradation, most of the t SAV open of a start sequence are 

reported “zero”. Only a few start sequences trespass the few 

first quantification times. In these discrete cases close to 

Dirac the Parzen adjustment is no longer acceptable. A 

discrete degradation detection threshold, l, is set as a “l 

events or more count out of M” clock increments of a watch 

period, at each watch period for an “s out of N watch 

periods” confirmation strategy under the same constraint of 

P(No degradation| Alert) < PFA. This is done according to a 

binomial as well as a Poisson distribution on the number of 

events. Like in the continuous case two steps are considered. 

Step 1: Estimation of the ratio of discrete events with α 

confidence level based on the number, r, of events during a 

learning phase of I time increments over watch periods with 

no degradation. Step 2: Alert threshold set as the limit, l, on 

a watch period of size M for a “s out of N limit 

trespassings” detection strategy. 

1. INTRODUCTION 

This paper concerns PHM, Prognostics and health 

management (Sheppard, Kaufman, Wilmer, 2009). 

Embedded airframe systems are considered. In this area, 

prognosis usually starts with the detection of degradations 

which are precursors of “no go” conditions. It is classical to 

extract, each watch period, corresponding typically to a 

flight cycle or a flight day, a set of health indicators. These 

indicators may be then normalized on ground as differences 

between expected values, according to the recorded context 

parameters, and observed values (Lacaille, 2009). 

Jean-Remi Massé et al. This is an open-access article distributed under 

the terms of the Creative Commons Attribution 3.0 United States 
License, which permits unrestricted use, distribution, and reproduction 

in any medium, provided the original author and source are credited. 
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Abnormality scores are built from a set of different health 

indicators or as the value of a single health indicator.  

Degradation detection thresholds on the abnormality scores 

are set, in a learning mode on a dataset of flight cycles with 

given hardware and software with no degradation. A 

concern for alert threshold choice is to find a compromise 

between not too many false alerts and sufficient detection. 

Typically, the probability of false alert (PFA) should be less 

than 5%. The definition of PFA here considered is P(No 

degradation|Alert). This is the probability of the considered 

embarked system to have no degradation given that a 

degradation alert has been emitted. PFA expresses the needs 

of the airlines’ line maintenance seeking to limit unfounded 

component removals leading to “No fault found”. False alert 

is different from the popular false positive detection 

(Wickens, 2002). Probability of false positive detection 

(PFP) is P(Alert|No degradation) . This is the probability of 

the considered embarked system to have a degradation alert 

given that it has no degradation. A link between PFP and 

PFA can be expressed using Bayes rule (Hmad et al., 2011). 

PFP =  
PFA

1−PFA
∙ P(Alert|Degradation) ∙

P(Degradation)

1−P(Degradation)
   (1) 

where: 

 P(Degradation) is the probability per watch period of 

the considered degradation to occur. A watch period is 

typically a flight cycle or a flight day. A typical value 

for such probability is 10-6. 

 P(Alert|Degradation), called “probability of detection” 

or probability of “true positive”, is the probability of the 

considered embarked system to have a degradation alert 

given that it has a degradation. This probability is 

expected to be close to 100 %, under the constraint of 

PFA being small enough, typically 5 %. 

Consequently, in such typical aeronautical environment, the 

operational requirement of PFA < 5% induces the 

requirement of PFP < 5 . 10-8. This induced requirement is 

orders of magnitude less than the usual academic 

considerations for false positive ratio upper limit. 

The matter of this study is to set alert thresholds on the 

abnormality scores. It is supposed that the distributions of 

the abnormality scores are stationary when there is no 

degradation. The purpose is to base the alert thresholds on a 

change of the distribution. Such change of distribution is 

considered as degradation. The constraint on PFA or PFP 

explained above is applied. Two situations are considered. 

In the first situation, the distribution of the abnormality 

score with no degradation may be approached with a 

continuous non parametric Parzen distribution (Silverman, 

1986). This is illustrated by an abnormality score based on 

an estimation of the daily lubricant consumption. In the 

second situation, the distribution of the abnormality score 

with no degradation is close to a Dirac distribution. Most of 

the values are the same, in general zero. Only a few values 

are different. This is illustrated by abnormality scores based 

on “out of range” counts for measurement chains during a 

flight cycle. With no degradation, most of the counts during 

a flight, but not all, are zero. Another example is an 

abnormality score based on a rough quantification of the 

time, “t SAV open”, between the open command and the 

start of movement of a starter air valve, during a start 

sequence. With no degradation, most of the t SAV open of a 

start sequence are reported “zero”. When there are no SAV 

degradations, only a few start sequences trespass the few 

first quantification times. In these discrete cases close to 

Dirac the Parzen adjustment is no longer acceptable. The 

considered distributions are binomial or Poisson 

distributions on the number of events count during a watch 

period. 

2. “S OUT OF N” VERIFICATION STRATEGY 

In order to come back to more academic considerations than 

PFP upper limit of 5 . 10 -8, an “s out of N” verification 

strategy is set. This means that an alert is emitted only if 

there are s trespassings of a given threshold on the 

abnormality score out of N consecutive watch periods. Such 

verification strategy is used in aeronautics (Pipe, 2011). It is 

considered to “not invoke this compromise” between PFP 

and probability of detection requirements.  

N consecutive watch periods are considered under the 

hypothesis, H0, of a stationary distribution of the 

abnormality score with no degradation. An elementary 

threshold is set on this abnormality score such as the 

probability to trespass this threshold under H0 is Pe. Then, 

the probability to trespass this threshold s times out of N 

may be calculated under H0 according to a binomial 

distribution of parameters N and Pe. Conversely, Pe may be 

adjusted such that under H0 the probability to trespass the 

threshold s times out of N is less than the required PFP. The 

value for Pe may be calculated as 

Pe = (s,N−s+1)
−1 (PFP)     (2) 

where (s,n−s+1)
−1 is the inverse beta cumulative distribution 

function with parameters s and (N-s+1). This is a 

consequence of the well known property of eulerian 

functions (Coullet 1988) that 

(s,N−s+1)
−1 (PFP) is also {p| 1 − F N,p(s − 1) = PFP}  where 

FN,p  is the binomial cumulative distribution function with 

parameters N and p.  

It appears that for N and s > 1 Pe is orders of magnitude 

higher than PFP. Typically, with a “s out of N”, N=9 and 

s=7 verification strategy, according to equation (2), Pe =

(s,N−s+1)
−1 (5 .10−8)  = {p| 1 − Fs−1,N(p) = 5 .10−8}  5,5. 

10-2. 

For consistency, (1,1)
−1  being the identity function, it can be 

noticed that when s=1 and N =1, the “1 out of 1” alert is the 

basic alert with no verification.  

Other examples are developed further. Two situations are 

considered. 
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3. FIRST SITUATION: CONTINUOUSLY ADJUSTABLE 

ABNORMALITY SCORE DISTRIBUTION. 

In the first situation, the distribution of the abnormality 

score with no degradation may be approached with a 

continuous non parametric Parzen distribution (Hmad et al., 

2011). This is illustrated by an abnormality score based on 

an estimation of the daily lubricant consumption (Figure 1).  

 

 

Figure 1. Daily lubricant consumption estimation with no 

degradation. 

The concern of alert threshold set for continuously 

adjustable abnormality score distributions has been 

addressed by the authors in several papers (Masse, Hmad, 

Boulet, 2012, Massé, Hmad, Grall, Beauseroy, 2013; Hmad, 

et al., 2013). In these contributions, the observed CDF of the 

abnormality score with no degradation may be fit with a 

Parzen non parametric continuous CDF.  

A Parzen fit (Hmad et al., 2013) is appropriate for 

continuous abnormality scores such as engine lubricant 

consumption (Demaison, Flandrois, 2010). This is 

confirmed on the example of figure 1 by the p-value of the 

Kolmogorov Sirnov test which is much higher than the 

usual limit of 5 %. (Figure 2). 

 
Figure 2. Parzen adjustment of an observed CDF of an 

engine lubricant daily consumption with no 

overconsumption. 

The abnormality detection threshold is then the quantile of 

1-PFP with no verification strategy or 1-Pe with a 

verification strategy.  

Figure 2 shows two abnormality score thresholds:  

 0.31 l/h for a “one shot” with no verification 

abnormality alert strategy with PFP = 5.10-8 

 0,21 l/h for a “6 out of 7” alert verification strategy 

with Pe = 4.4.10-2 ≈ (6,7−6+1)
−1 (PFP). 

In the first case, with no verification strategy, the threshold 

is outside the observed distribution. In the second, with 

verification strategy, the threshold is inside the observed 

distribution. This is better in terms of threshold accuracy. 

In terms of probability of detection, P(Alert|Degradation), 

the other side of the requirements, it can only been imagined 

at that stage what would be the consumption distributions at 

a level with impact on operations (Figure 3). Translations in 

mean have just been applied to the initial observed 

distribution with no overconsumption. These over 

consumptions are stated in the maintenance manual. 

 
Figure 3. Histograms of the daily consumptions with no 

over consumptions and alert thresholds of figures 1 and 2 to 

be compared to imagined over consumption histograms. 

With the no verification threshold, 90% of the mean over 

consumption (0.38 l/h) are alerted and 100% of strong over 

consumptions (0.76 l/h) are alerted. With the ‘’6 out of 7’’ 

verification threshold, 97 % of the mean over consumptions 

are alerted and 100% of strong over consumptions are 

alerted.  

Using formula 1, a posterior evaluation of PFA may be 

estimated, close to 5% in all cases, due to the high levels of 

probabilities of alerts. 

4. SECOND SITUATION: ABNORMALITY SCORE 

DISTRIBUTION CLOSE TO A DIRAC DISTRIBUTION 

4.1. Use cases 

The novelty of the present study is when the abnormality 

score distribution is close to a Dirac distribution.  

Such situation is encountered with an embedded redundant 

sensing system monitored by an abnormality score based on 

SST (Selection status) counting (Foiret, 2013). At each 

clock increment the status, “regular” or “out of range” is 

European Conference of the Prognostics and Health Management Society 2014

629



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014 

4 

issued. The abnormality score, extracted at each flight is the 

number k of transitions from “regular” to “out of range” or 

from “out of range” to “out of range”. In the case with no 

degradation, most of the flights have k = 0 such transitions 

among m clock increments. In the example of figure 2 

among 750 flights, only one has k=1 and one has k=18. All 

the others have k=0. It is not appropriate to adjust a Parzen 

non-parametric distribution to an observed distribution on 

only three values with one prominent. 

 

Figure 4. Example of a “close to Dirac” abnormality score 

distribution with no degradation. 

Such situation of a distribution of the abnormality score 

close to a Dirac distribution may also be encountered with a 

continuous abnormality score with a rough sampling.  

 
Figure 5. Parzen adjustment of an observed CDF of 

abnormality score with no degradation close to a Dirac 

CDF. 

This is the case with a starter air valve (SAV) where the 

health indicator, “t SAV open” is the time between the open 

command and the start of movement. When there is no 

degradation of the SAV, t SAV open is mainly reported 0 

seconds. In fact, the time increment is 0.125 second. 

Consequently, a “0” report means that t SAV open is less 

than 0.125 second, which is often the case with no 

degradation. For instance, considering 50 starts with no 

SAV degradation, 43 were reported “0” for t SAV open, 5 

were reported  between 0.125 and 0.25 second, one between 

0.375 and 0.5 s and one between 0.5 s and 0.625 s (Figure 

5). 

A Parzen fit is no longer appropriate for such continuous 

abnormality scores with rough sampling. This is confirmed 

by the p-value of the Kolmogorov Sirnov test which is much 

lower than the usual limit of 5 %. 

4.2. Principle 

It is more appropriate to consider, rather than a threshold on 

a continuous score value, the number of times, k, out of M 

clock increments, during a flight that an undesirable event 

has occurred. In the example of figure 4, the undesirable 

events considered are  

 The shift from the status “0k” to the status “out of 

range value” on one channel or “out of range gap” 

between two channels 

 The confirmation of the status “out of range value” 

on one channel or “out of range gap” between two 

channels.  

In the example of figure 5, the undesirable event considered 

is a t SAV open increment of 0.125 s. 

Therefore, it is referred to a binomial or a Poisson 

distribution. Two steps are established: Estimation and 

threshold set.  

 Estimation of the undesirable event ratio, �̂�, or ̂ on 

a dataset of flights with no degradation with given 

hardware and software. 

 Threshold, l, set on the number, k, of events out of 

M trials where the ratio of undesirable events is 

higher than �̂� or ̂ with a probability of error  

o < PFP, where PFP is defined by formula 

(1) for a “one shot” abnormality alert 

strategy 

o < Pe, where Pe is defined by formula (2) 

for a “s out of N” trespassing alert 

verification strategy. 

4.3. Estimation 

Estimation, �̂�𝛼, with a confidence level α, typically α = 50% 

or 90 %, of p, the ratio of unexpected events, in accordance 

with a binomial distribution of the number of unexpected 

events among the I cumulated time increments on a dataset 

of flights with no degradation with given hardware and 

software: 

�̂�𝛼 =  {𝑝|1 − 𝐹I,𝑝(𝑟) = 𝛼} = 𝐵𝑟+1,I−𝑟
−1 (𝛼)  (3) 

where: 

 𝐹I,𝑝 is the binomial CDF of parameters I and p 

 𝐵𝑟+1,I−𝑟
−1  is the inverse beta CDF of parameters r+1 

and I-r  

 r is the number of unexpected events observed 

during the I time increments. 
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On figure 4, I = 750 flights x 1200 time increments in 

transient phase = 900000 increments. The unexpected event 

occurrence number is r = 1 + 18 = 19. With these data, 

�̂�90 % = 2,88 10-5, �̂�50 % = 2,19 10-5 . The maximum 

likelihood estimation is �̂�𝑀𝐿= 
r

I
  �̂�44 %=2,11 10-5. 

Estimation, ̂α, with a confidence level α, typically α = 50% 

or 90 %, of , the occurrence rate of unexpected events, in 

accordance with a Poisson distribution of the number of 

unexpected events among the 𝑡𝑐 cumulated time increments 

on a dataset of flights with no degradation with given 

hardware and software: 

̂α= {|1 − F∙tc
(𝑟) = α}= 𝑟+1,𝑡

  −1

𝑐
(α) = 

2∙𝑟+2
2 (α)−1

2∙𝑡𝑐
 (4) 

where: 

 F∙tc
 is the Binomial CDF of parameter  ∙ tc 

 𝑟+1,𝑡
  −1

𝑐
 is the gamma CDF of parameters r+1 and tc 

 
2∙𝑟+2
2 −1

 is the inverse chi-square CDF with 2.r + 2 

degrees of freedom 

 r is the number of unexpected events occurrence 

during the 𝑡𝑐 cumulated time increments. 

On figure 4, the 𝑡𝑐 cumulated time increments = 750 flights 

x 1200 time increments in transient phase = 900000. The 

unexpected event occurrence number is r = 1 + 18 = 19. 

With these data, ̂90 %= 2,88 10-5, ̂50 %= 2,19 10-5 . The 

maximum likelihood estimation is ̂ML = 
𝑟

𝑡𝑐
  ̂44 % = 2,11 

10-5. 

On this example �̂� and ̂ are equal. 

4.4. Threshold set 

Set of a threshold, l, on the number k, of unexpected events, 

out of M time increments, during a flight cycle for which it 

may be considered that the ratio of unexpected events is 

higher than �̂� or ̂ with a probability of error lower than:  

 Pa defined by formula (1) for a “one flight” 

trespassing detection strategy or  

 Pe defined by formula (2) for a “s out of N flights” 

trespassing detection verification strategy. 

Set of a threshold according to a binomial reference. The 

threshold l, out of N clock increments for a flight for 

detection of a increase of p in reference to �̂� is set such as  

P(No degradation|Detection) < PFA, typically, PFA = 5 %.  

𝑙 = 𝑀𝑖𝑛{𝑘|1 − 𝐹𝑀,𝑝(𝑘 − 1) ≤ PFP or Pe} =

𝑀𝑖𝑛{𝑘| 𝑘 ,   𝑀−𝑘+1(�̂�) ≤ PFP or Pe}  (5) 

where: 

 𝐹M,𝑝 is the binomial CDF with parameters M and �̂� 

  𝑘 ,   M−𝑘+1 is the beta CDF with parameters k and 

M-k+1. 

In other words, l is the limit on the number of occurrences 

of the unexpected event out of M clock increments for 

rejecting the hypothesis that the true ratio of unexpected 

events, p, is equal or more than �̂� with a probability of error 

less than PFP or Pe.  

In the previous example, for M = 6000 observation 

increments per flight and �̂�=2,19 10-5 per increment 

If Pa = 5.10-8 for a “one flight” abnormality detection 

strategy then l = 6 unexpected events out of 6000 

observation increments per flight. 

If Pe  5,5. 10-2 for a “7 trespassing of l out of 9 flights” for 

detection then l = 2 unexpected events out of 6000 

observation increments per flight. 

Set of a threshold according to a Poisson reference. The 

threshold l on the number, k, of unexpected events during a 

flight of duration t, for detection of a increase of  in 

reference to ̂ is set such as P(No degradation|Detection) < 

PFP, typically, PFP = 5 %. may also be set according to a 

Poisson reference: 

𝑙 = 𝑀𝑖𝑛{𝑘|1 − 𝐹̂∙𝑡(𝑘 − 1) ≤ PFP or Pe}

= 𝑀𝑖𝑛{𝑘| 𝑘,𝑡 (̂) ≤ PFP or Pe} 

= 𝑀𝑖𝑛{𝑘|
2∙𝑘
2 (2 ∙ ̂ ∙ 𝑡) ≤ PFP or Pe}  (6) 

where: 

 𝐹̂∙𝑡is the Poisson CDF of parameter ̂ ∙ t 

  k,   t  is the gamma CDF of parameters k and   t 

 
2∙k
2  is the chi square CDF with 2 ∙ k degrees of 

freedon 

In the previous example, for a flight duration t = 6000 time 

increments, and ̂=2,19 10-5 per time increment 

If PFP = 5.10-8  for a ‘’one flight’’ abnormality detection 

strategy then l = 6 unexpected events per flight.  

If Pe  5,5. 10-2 for a “7 trespassing of l out of 9 flights” for 

detection then l = 2 unexpected events per flight. 

On this example both approaches lead to the same 

thresholds. 

4.5. Operational illustration 

This is illustrated on the example of figure 5 concerning the 

abnormality score based on t SAV open, the time between 

open command and start of movement of a starter air valve. 

Annoyingly, the 50 starts with no degradation represented 

on figure 5 have been followed twice by a SAV removal for 

reason of no opening. The t SAV open are reported on 

figure 6. Both estimation windows with no degradation 

conclude on a negative Parzen fit as on figure 5. Therefore a 

close to Dirac distribution estimation is set according to § 

4.3 “Estimation”. The first estimation is run on 50 starts 

with no degradation, represented on figure 5 and figure 6. 

The input parameters are: 

 I = 50 flights x 130 time increments per flight = 

6500 time increments. 
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 r = 5 x 1 time increment + 1 x 3 time increments + 

1 x 4 time increments = 12 undesirable events 

 

Figure 6. Example of figure 5 continued twice to SAV 

removal foreseen by degradation detection and affirmation. 

According to formula (3) or (4) of § 4.3 “Estimation”, the 

frequency of occurrence of undesirable event may be 

approached by �̂�50% ≈  ̂50% ≈ 1.95 . 10−3. 

Two alerts are set: 

 A detection alert based on a 4 trespassings out of 5 

consecutive flights  

 An affirmation alert based on a 7 trespassings ot of 

9 consecutive flights.  

According to formula (2) of § 2. “s out of N verification 

strategy”, Pe  10-2 for 4 out of 5 detection alert verification 

strategy and Pe  5.51 . 10-2 for 7 out of 9 affirmation alert 

verification strategy. According to formula (6) of § 4.4 

“Threshold set”, the thresholds are 3 and 1 t SAV open 

increments. 

With these parameters, both SAV removals are foreseen 

(Figure 6).  

The profiles of distribution change before SAV removal are 

different. In the first case, it may be explained by an 

electromechanical intermittent contact. In the second case, 

by a mechanical seize root cause. 

 

 
Figure 7. t SAV open observed on several engines. 

Degradations leading to removals were reported on engine 

A only. 

Except the outstanding case with two SAV removals of 

engine A, all the other cases represented on figure 7 did not 

lead to SAV removal. Consequently, it is expected that the 

detection and affirmation strategy does not alert for possible 

degradation. Watching the profiles, a doubt is possible with 

engines C and E, which scatter the values of t SAV open.  

 

Figure 8. Parzen adjustment of the observed CDF of t SAV 

open on the 50 first flights. 

The Parzen Kolmogorov fit test allows continuous 

adjustment on engine C (Figure 8). 
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Figure 9. t SAV open through 700 starts of engine C. No 

detection or affirmation are alerted. 

Fortunately, no detection or affirmation are alerted (Figure 

9). 

Engine E, unfortunately, presents an occurrence ratio 

change after the estimation window. This leads to detection 

and affirmation alerts. 

Figure 10. t SAV open through 900 starts of engine E. Even 

though no SAV is reported, there is obviously an occurrence 

ratio change after the estimation window. 

 

 

 

 

5. CONCLUSION 

Many PHM solutions may be killed at entry into service for 

two reasons: 

 The first alarm is not appropriate (thresholds too 

low) 

 The first “no go” condition is not predicted 

(thresholds too high). 

The process presented in this paper avoids such 

inappropriate thresholds.  

The Kolmogorov Smirnof test of a non parametric 

continuous Parzen fit of the abnormality score distribution 

allows discriminating continuous distributions from 

distributions close to a Dirac distribution.  

This second situation is processed in two steps: Occurrence 

ratio estimation and alert threshold set. Both are based on 

the count of unexpected events during watch periods such as 

flights or flight days. Both refer to a binomial distribution or 

a Poisson distribution.  

The process is completely manageable in terms of maximal 

false positive detection of the distribution change. The 

process is generic and may be used as in-service fleet follow 

up of a set of abnormality scores. Only the abnormality 

scores which have a change in distribution are highlighted. 

Two levels of alert were set: Detection alert, based on a 4 

out of 5 threshold trespass verification and affirmation alert 

based on a 7 out of 9 verification.  

The operational deployment however is based on two 

assumptions: 

 The abnormality scores distributions are stationary 

with no degradation 

 A change of the abnormality score distribution 

means degradation up to operational event to be 

predicted. 

The operational illustration demonstrated a counter example 

of the assumptions. A starter air valve had a change in 

distribution which meant not degradation up to valve stuck.  
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ABSTRACT 

The durability and reliability of producing high quality 
power for long periods of time have the potential to be the 
leading marketing factors for future hydrogen and fuel cell 
power sources. In the past few decades, several researchers 
have been devoted to investigating diagnostic techniques for 
fuel cell systems. However, in commercial fuel cell 
applications, on-line diagnosis is urgently required so that 
fuel cell degradation can be detected at its early stage, and 
mitigation strategies can be performed to recover fuel cell 
performance. In this paper, on-line diagnosis of fuel cell 
flooding is investigated. For this purpose, a generalised fuel 
cell stack model is developed, and water mass balance 
equations are used to study water balance inside the fuel cell 
stack. Moreover, with these equations, the flooding 
indicator is proposed and its relationship with liquid water 
inside the stack is evaluated. Results demonstrate that the 
proposed indicator is sensitive to the liquid water in the 
stack, thus can be used for flooding diagnosis. Furthermore, 
the expectation of the proposed indication in the cell 
flooding case is also presented. The advantage of this 
method is that parameters in the flooding indicator can be 
determined with measurements from tests, thus quick 
diagnosis can be made during the practical fuel cell 
operation. 

1. INTRODUCTION 

In the last few decades, hydrogen and fuel cells have 
emerged as potential initiatives that could serve as 
alternative energy sources, with characteristics of being 
zero-emission energy conversion and power generation 
devices. They are currently being engineered for a range of 
applications including automotive, stationary power, 
aerospace and customer electronics. 
 
However, fuel cell reliability and durability is one of the 
barriers which block the wider application of fuel cell 
systems. A possible solution for this problem is effective 
diagnostic techniques. In the past few years, several studies 

have been devoted to the diagnosis of fuel cell systems 
using both model and non-model based techniques (Fouquet 
et al. 2006, Giurgea et al. 2013, Hernndez et al. 2010, 
Onanena et al. 2013, Steiner et al. 2011, Zheng, 2013), and 
most of them have been verified with numerical or 
experimental studies. Meanwhile, there is only limited 
investigation about successful application of on-line 
diagnostic methods for commercial fuel cell systems 
(Ingimundarson et al. 2008, Narjiss et al. 2008, Li et al. 
2013). Narjiss, et al.  presented a method of using an 
isolated DC/DC power converter and digital signal 
processor to measure fuel cell harmonic impedance, thus 
fuel cell degradation related to gas feeding and membrane 
humidification could be detected by monitoring the 
measured impedance. Ingimundarson, et al.  used hydrogen 
mass balance equations to detect the leak of hydrogen based 
on measurements from tests directly. Li, et al.  employed a 
combination of Fisher discrimination analysis and a 
Gaussian mixture model to distinguish normal and faulty 
fuel cells using individual cell voltage measurements.  With 
these techniques, fuel cell degradation can be detected and 
isolated during its operation, thus strategies can be taken to 
maximise fuel cell lifecycle performance. However, it 
should be noted that as processing of measurement data is 
required in these studies, with designed signal processors in 
the test configuration or signal processing techniques after 
collecting the measurements, these processings may be 
time-consuming in the real application, and can not give 
instant alert for the fuel cell degradation.Therefore, further 
studies are still required to investigate the on-line diagnostic 
techniques for fuel cell systems. 
 
In this study, the on-line diagnosis of fuel cell flooding is 
investigated. The proposed indicator can give instant 
information about accumulated liquid water during the stack 
operation, and location of excess water can also be 
indicated. Therefore, the proposed indicator can not only 
detect the fuel cell stack flooding, but also show the amount 
of accumulate water inside the fuel cell stack, which can be 
used to quantify the level of flooding.  As water 
management is one of the key points for fuel cell 
performance, enough water should be kept in the membrane 
for the passage of hydrogen ions, but too much water will 

Lei Mao et al. This is an open-access article distributed under the terms 
of the Creative Commons Attribution 3.0 United States License, which 
permits unrestricted use, distribution, and reproduction in any medium, 
provided the original author and source are credited. 
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block the reaction sites, thus preventing reactant gases 
within the fuel cell (Knowles et al. 2010, Schmittinger et al. 
2008, Wu et al. 2008). Moreover, flooding is an aging factor 
for fuel cell, that is, its performance will be reduced 
gradually. However, if flooding is not detected and 
mitigated at its early stage, it will lead to irreversible 
damage to the membrane, causing failure of the fuel cell 
(Ous and Arcoumanis, 2013, Rama et al. 2008).  
 
In the paper, the water balance equations at the anode and 
cathode will be presented, these equations are commonly 
used in fuel cell system models (Khan and Lqbal, 2005, 
Pukrushpan, 2003, Mann et al. 2000), discussed in section 2. 
With these equations, water accumulation rates are 
calculated to study the water balance inside the fuel cell 
with a numerical study described in Section 3. Furthermore, 
section 4 proposes a flooding indicator, which can be used 
in practical fuel cell applications as it can be easily obtained 
using measurements during fuel cell operation. Numerical 
results show that the indicator can represent the liquid water 
condition inside the fuel cell, and sensitivity of the indicator 
is also studied. Section 5 predicts the performance of the 
proposed flooding indicator under the fuel cell flooding 
case, based on its performance under normal fuel cell 
operation. Finally, conclusions are given and further work is 
suggested. 

2. FUEL CELL STACK MODEL 

The Proton Exchange Membrane (PEM) fuel cell typically 
includes two porous electrodes separated by a proton 
conducting membrane, which is impermeable to gases but 
can allow proton to pass through it. Catalyst is commonly 
used to separate electrodes from the membrane. 
 
During fuel cell operation, hydrogen enters the cell on 
anode side while air enters on the cathode side. A catalyst 
on the anode side splits hydrogen atoms into electrons and 
positive charge hydrogen protons. The protons can pass 
through the membrane while electrons pass the electrical 
circuit to reach the other side. Voltage is created across the 
cell by passed protons. A catalyst on the cathode side will 
react passed protons, electrons, and oxygen to form water 
and also product heat. 
 
According to previous studies (Khan and Lqbal, 2005, 
Pukrushpan, 2003), a fuel cell model can be developed to 
express the behaviour of the fuel cell. In the fuel cell model, 
the water condition inside the cell should be considered, and 
the water balance equations are usually used for this 
purpose. Based on these investigations, the water balance 
equations at the cathode and anode sides should be 
expressed separately (Eqs. 1 and 2 respectively): 
 
dmw,ca

dt
= Wv,in,ca + Wl,in,ca + Wv,gen + Wv,membr −

Wv,out,ca − Wl,out,ca                                                             (1) 

 
dmw,an

dt
= Wv,in,an + Wl,in,an − Wv,membr − Wv,out,an −

Wl,out,an                                                                               (2) 
 
Where m is the gas mass (kg), W is the gas mass flow rate 
(kg/s). Subscripts used in the equations have different 
meanings, ‘ ca ’ and ‘ an ’ mean cathode and anode, 
respectively, ‘ in ’ represents inlet flow terms,  ‘ out ’ 
represents outlet flows, ‘reacted’ means reacted gas, ‘ l’ 
represents liquid water, while ‘v’ means water vapour, and 
‘membr’ represents water vapour across the membrane.   
From Eqs.(1) and (2), the water accumulation rates at the 
cathode and anode can be calculated. It should be noted that 
inlet water vapour, inlet liquid water, generated water 
product can be measured directly, outlet water vapour and 
liquid water can be obtained using measurements during 
fuel cell operation, and water across the membrane should 
be determined with the model. 

3. INVESTIGATION OF WATER ACCUMULATION INSIDE THE 
FUEL CELL USING THE WATER BALANCE EQUATIONS 
PUBLICATION BY THE ANNUAL SOCIETY OF THE 
PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 

3.1. Development of the Fuel Cell Model 

With the water balance equations in section 2, water balance 
inside the fuel cell can be investigated. In this study, a 
generalised fuel cell model is developed, which includes 
modules determining anode and cathode flows, a module 
which evaluates membrane condition, and a module 
calculating fuel cell voltage. Fig. 1 shows the block diagram 
of the developed fuel cell model, details of the model, such 
as detailed differential equations, and determination of 
model parameters, can be found in other studies (Ous and 
Arcoumanis, 2013, Rama et al. 2008, Khan and Lqbal, 
2005). 
 

 
Figure 1 Fuel cell model block diagram 

3.2. Verification of Developed Fuel Cell Model 

Before using the developed model for analysis, its 
performance is verified with polarisation curves from 
previous studies (Khan and Lqbal, 2005). Table 1 lists the 
input parameters from tests in the reference paper, and Fig. 
2 depicts the comparison of the polarisation curves from test 
data in the reference and the data from the developed model. 
It can be observed that the polarisation curves match well, 
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which indicates the developed model can express the fuel 
cell stack behaviour with good quality.  
 

Table 1 Input parameters for fuel cell model from Khan and 
Lqbal, (2005) 

 
Parameter Value 
Number of fuel cells 54 
Active electrode area of 
single cell 

46.5cm2 

Hydrogen flow rate 1.15 stoich 
Air flow rate 2.0 stoich 
Hydrogen pressure 3.5 bar 
Air pressure 3.5 bar 

 

 
Figure 2 Comparison of polarisation curves from the model 

and test in Khan and Lqbal, (2005) 

3.3. Investigation of Water Accumulation Inside the Fuel  
Cell 

With the developed fuel cell stack model, the water balance 
at the cathode and anode can be evaluated with Eqs. (1) and 
(2). It should be mentioned that as the performance of the 
developed model has only been verified under normal 
operations, its performance under degradation conditions 
needs further verification, thus in this study, only the normal 
operation condition is used for analysis. Moreover, a 
constant current value of 20A is employed in the analysis, 
this value can give high cell voltage and low parasitic power 
demand, leading to about 50% system efficiency at full load, 
which is commonly used in practical fuel cell systems. 
 
Fig. 3 depicts the cell voltage, and water accumulation rates 
at the anode and cathode with a cathode relative humidity 
(ratio of the partial pressure of water vapour in the mixture 
to the saturated water vapour pressure at same temperature 
and pressure) of 1, which can give optimal fuel cell 
performance. It can be observed that without fuel cell 
degradation, the individual cell voltage will reach a stable 
value, and the water accumulation rate approaches zero. 
However, unbalanced water content and increasing trend of 
cell voltage can be found at the beginning, which is 

indicated in the figure reflecting the warm up stage and the 
stable state of the fuel cell stack (shown by the bold vertical 
line). The reason for this is that the fuel cell stack requires 
some time to reach the balanced state.  
 

 
(a) Cell voltage 

 
(b) Anode side                                         

 
                     (c) Cathode side 

Figure 3 Cell voltage and water accumulation rates under 
normal cell condition 

 
By increasing the cathode relative humidity to 2 (under this 
condition, water will be accumulated inside the fuel cell 
stack, but the stack voltage will not decrease, this can be 
seen from Fig. 4a), more water may be kept at the cathode 
side, the performance of the cell model is analysed and 
results are shown in Fig. 4. From the results, the same value 
of cell voltage at the steady state stage can be seen, which 
indicates no degradation exists in the fuel cell. In this case, 
the water accumulation rates are still zero, meaning 
balanced water at the anode and cathode, even with liquid 
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water inside the cell. However, it should be noted that in this 
case, the fuel cell system requires a longer time to reach the 
stable state, which means the fuel cell system does not work 
under the optimum operation condition due to the increased 
cathode relative humidity. 
 

 
                                  (a) Cell voltage 

 
(b) Anode side                                                                      

 
                       (c) Cathode side 

Figure 4 Cell voltage and water accumulation rates under 
normal cell condition with increased current 

 
According to the results, it can be concluded that under fuel 
cell normal operation, water balance at the anode and 
cathode can be observed and water accumulation rates are 
zero. From these results, the flooding indicator is proposed 
for on-line diagnosis (as all parameters can be acquired 
directly and indirectly during operation, which is described 
in section 2), and its sensitivity to liquid water inside the 
fuel cell stack will be studied in following sections. 

4. PROPOSED FLOODING INDICATOR AND ITS 
RELATIONSHIP WITH LIQUID WATER INSIDE THE FUEL 
CELL 

As described in section 2, all terms in Eqs. (1) and (2) can 
be determined with measurements during fuel cell operation 
except water across the membrane, thus in order to use the 
water balance equations for on-line diagnosis, water across 
the membrane should not be used. 
 
According to results in section 3, under normal operation 
conditions, Eqs. (1) and (2) should be zero, meaning zero 
water accumulation rates at anode and cathode. Therefore, 
the water accumulation rates can be used in this study to 
determine excess water inside the fuel cell stack, and the 
flooding indicator is proposed as the difference between the 
inlet and outlet water amount, which can be expressed by 
modifying Eqs. (1) and (2). 
 
FL_ca = Wv,in,ca + Wl,in,ca + Wv,gen − Wv,out,ca − Wl,out,ca     (3) 
 
FL_an = Wv,in,an + Wl,in,an − Wv,out,an − Wl,out,an                   (4)    
 
Where FL_ca, and FL_an are the flooding indicators for the 
cathode and anode sides, respectively. All other variables 
are as described in Eqs. (1) and (2). 
 
Fig. 5 depicts the flooding indicator using Eqs. (3) and (4), 
and liquid water inside the anode and cathode with cathode 
relative humidity of 1. Results demonstrate that under 
normal conditions, flooding indicators from Eqs. (3) and (4) 
are the same, meaning balanced water condition inside fuel 
cell stack. Moreover, in this case, liquid water can not be 
found inside the cell, although at stack warm up stage, 
liquid water inside fuel cell stack can be observed. 
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 (a) Flooding indicator from anode     

 
          (b) Flooding indicator from cathode 

 
(c) Liquid water at anode                        

 
                                (d) Liquid water at cathode 
 

Figure 5 Flooding indicators and liquid water at 
anode and cathode 

 
The sensitivity of the flooding indicator with liquid water 
inside fuel cell stack is investigated by increasing the 
cathode relative humidity to 2, flooding indicators are 
calculated and shown in Fig. 6, and liquid water at anode 
and cathode are also depicted. 
 

  

   (a) Flooding indicator from anode          

 
                       (b) Flooding indicator from cathode 

    
   (c) Liquid water at anode                       

 
                  (d) Liquid water at cathode 
 

Figure 6 Flooding indicators and liquid water at 
anode and cathode with increased relative humidity 

 
From figure 6(a) and 6(b), flooding indicators are about 10 
times larger than that from the lower cathode relative 
humidity, but values from the anode and cathode are still the 
same, meaning water balance inside cell. Moreover, from 
Fig. 6(d), liquid water can be observed inside the cathode at 
stack steady state stage, although this does not cause a 
voltage drop and cell degradation, this further confirm that 
the fuel cell stack system does not work in the optimum 
operation condition. It should be noted that in this case, only 
the cathode relative humidity is increased, thus accumulated 
liquid water at anode is not found as shown in Fig. 6(c). 
 
Moreover, with further increased cathode relative humidity, 
liquid water inside the cathode and corresponding flooding 
indicator are determined, and their relationship is depicted 
in Fig. 7. It should be mentioned that in these cases, the 
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water accumulation rate is still zero, which means no 
degradation within the fuel cell stack. 
 

 
Figure 7 Relationship between liquid water inside cathode 

and flooding indicator 
 

From figure 7, the flooding indicator will increase clearly 
with increased liquid water inside the cathode side, which 
further confirms the possibility of using the proposed 
indicator for evaluating liquid water inside the fuel cell 
stack, when the accumulated liquid water inside the fuel cell 
stack reach a certain level, fuel cell stack begins 
degradation. It should be noted that when the indicator is 
employed for flooding diagnosis, its threshold value should 
be determined to define the amount of liquid water causing 
fuel cell stack flooding, this value may change for different 
fuel cell stack systems. Moreover, it will be mentioned in 
the next section that the proposed indicator will give 
different values at anode and cathode sides in flooding case 
due to unbalanced water condition inside the fuel cell stack. 
 
The results can also be explained from a theoretical point of 
view. Under normal operation condition, water 
accumulation rates at the anode and cathode are zero, thus 
the flooding indicator is actually the water across the 
membrane based on Eqs. (1) and (2). Based on previous 
studies (Ous and Arcoumanis, 2013, Wang et al. 2013), with 
an increase of reactant relative humidity, the water activity 
of the membrane will be increased, which will lead to a 
higher rate of water flux across the membrane.  
 
Based on these results, it can be concluded that the proposed 
flooding indicator is sensitive to liquid water inside the fuel 
cell stack and can be used to indicate the liquid water 
condition. With increased liquid water inside fuel cell stack, 
flooding indicator will increase significantly. Moreover, as 
the required parameters in Eqs. (3) and (4) can be monitored 
continuously during fuel cell stack operation, the indicator 
can provide instant information about the accumulated 
liquid water inside the stack. 

5. EXPECTATION OF PERFORMANCE OF PROPOSED 
FLOODING INDICATOR IN THE FUEL CELL FLOODING 
CASE 

According to the results in sections 3 and 4, water 
accumulation rates at the anode and cathode are zero, and 
the flooding indicator equals the water across the 
membrane, thus cathode and anode flooding indicators 
should be the same under normal fuel cell stack operation, 
indicating the balanced water condition within fuel cell 
stack. 
 
However, with fuel cell stack flooding, excess water will be 
kept inside the fuel cell stack, leading to an unbalanced 
water condition. In this case, the water accumulation rate 
should be increased, and by comparison of Eqs, (1)-(4), the 
flooding indicator should include water across the 
membrane and the water accumulation rate, thus its value 
will not follow the trend shown in Fig. 7 and should be 
increased significantly.  
 
As described before, the flow rates of inlet water vapour and 
liquid water can be measured directly during fuel cell stack 
operation, and flow rates of outlet water vapour and liquid 
water, and generated water product inside fuel cell stack, 
can be determined using measurements from tests, including 
anode and cathode pressures, and current. Therefore, during 
fuel cell stack operation, the proposed flooding indicator can 
be monitored continuously, and a sudden increase of the 
flooding indicator value indicates excess water inside the 
fuel cell stack, thus flooding can be diagnosed. 
 
Further, as the flooding indicator can be calculated at the 
anode and cathode using Eqs. (3), (4), respectively, the 
location of the fuel cell stack flooding can also be 
determined, since flooding can cause a higher value of 
indicator due to a faster water accumulation rate. 
 
The performance of proposed indicator in on-line fuel cell 
stack flooding diagnosis is currently being investigated with 
measurements from a practical fuel cell stack system, and 
the results can be used to further validate the effectiveness 
of the flooding indicator.  

6. CONCLUSION 

In this paper, the mass balance equations at the anode and 
cathode are employed to indicate the water condition inside 
fuel cell stack, and the flooding indicator is proposed as on-
line method to detect excess liquid water in the fuel cell 
stack, which can be used for diagnosis of fuel cell stack 
flooding.  
 
Under normal operation conditions, the water accumulation 
rates at the anode and cathode are observed to be zero with a 
numerical study. Based on this, the flooding indicator is 
proposed as the difference between inlet and outlet water 
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amounts to express the liquid water condition at the anode 
and cathode. Under the normal operation condition, the 
proposed flooding indicator equals water across the 
membrane, and its performance is investigated using 
numerical studies by changing the cathode relative 
humidity. From the results, the flooding indicator is 
sensitive to the liquid water condition, it will be increased 
significantly with an increase of liquid water inside fuel cell 
stack.  
 
Moreover, the performance of the proposed indicator in fuel 
cell stack flooding is predicted. Under the flooding 
condition, the flooding indicator includes water across the 
membrane and water accumulation rate, and excess water 
inside fuel cell stack will cause sudden increase of proposed 
indicator. By monitoring the flooding indicator during fuel 
cell stack operation, it is possible to detect the existence of 
stack flooding, and location of flooding can also be 
determined. 
 
Further work will be performed to verify the effectiveness 
of this flooding indicator using test data from a practical 
fuel cell stack system, and the flooding indicator will be 
studied with a fuel cell stack model, which will be modified 
to express the fuel cell stack flooding scenario. It should be 
mentioned that in the practical application, the 
measurements will contain noises, thus before applying 
proposed indicator for diagnosis, signal processing 
techniques may be required to minimize the noise effect. 
Moreover, as in the practical fuel cell stack system tests, 
multiple degradation factors may occur simultaneously, thus 
a more robust flooding indicator will be investigated in 
order to work under more complex conditions. 
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ABSTRACT

This paper presents a model-based approach for the deriva-
tion of fuzzy diagnosis rules. These are used to classify data
of faulty system behavior in order to identify root causes. The
data is gained from an extended simulation model of a multi-
functional fuel cell system for aircraft use. Faulty behavior is
implemented into each component and a bottom up simula-
tion is carried out. The data gained is classified according to
root causes. This means that each data vector is assigned to a
class representing one type of simulated fault. The classified
data is then fed into an evolutionary optimization procedure.
There it is weighted and separated into training and validation
data.

Inside the optimization procedure, the structure of the fuzzy
diagnosis rule is represented by a chromosome that has a dis-
crete and a real valued part. The discrete part describes the
selection of a signal and the real valued part states parameters
of the membership function for each signal. Based on train-
ing data, a genetic algorithm optimizes both parts and a set
of optimal binary and real valued parameters is gained. By
that, one fuzzy diagnosis rule at a time is identified that best
fits a set of fitness functions. On basis of this rule, weights
of the training data are updated afterwards. This is done in
order to guide the genetic algorithm in the next run to data
vectors that are not covered effectively yet. Each run of the
algorithm gives a new fuzzy diagnosis rule. The performance
of the set of all rules that are gained so far is evaluated by use
of validation data. Subsequently, a new run is started. This
process continues until a stop criterion is reached. A set of
optimal fuzzy diagnosis rules is gained in the end.

1. INTRODUCTION

The increasing scarcity of resources and growing demands on
the European aviation’s social, economical and environmen-

Christian Modest et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

tal impact have led to the formation of scenarios and goals
for the years 2020 (European Commission, 2001) and 2050
(European Commission, 2011). Besides a drastic reduction
of greenhouse gases and noise, low door-to-door travel times,
low accident rates, and a reliable transport function at low
operating costs are demanded. In more detail, all European
flights should arrive within one minute of the planned ar-
rival time. Comparing this goal with data of the year 2012
(European Organisation for the Safety of Air Navigation,
2013b), 16.7% of all European flights had a delay of more
than fifteen minutes. This was mainly due to technical is-
sues (European Organisation for the Safety of Air Naviga-
tion, 2013a), which caused maintenance actions to happen
and high cost to arise. The fulfillment of the future goals for
European air traffic is thus far from being reached. This is
even intensified with respect to new complex technologies to
be integrated into the system’s architecture of future aircraft.

An approach of current research deals with the integration
of fuel cells (FC) on board of short range aircraft. FC en-
able the generation of electrical power without the emission
of greenhouse gases and noise. In order to use these ecologi-
cal benefits, a current concept consists in the replacement of
the Auxiliary Power Unit (APU). The APU is a combustion
engine that is mainly used to deliver electrical power during
ground phase. However, the provision of the same amount of
power using FC results in a highly increased system weight.
Hence, in order to make sure, that the use of FC is not only
ecologically beneficial, but also economically feasible, the in-
tegration of FC has to be done in a multifunctional way. This
means that all products of the FC have to be used. By that, FC
do not only deliver electrical power, but also oxygen depleted
air for tank inerting and fire suppression, as well as process
water (Enzinger, 2010).

A simplified integration of FC into an aircraft architecture on
basis of an Airbus A320 is shown in Figure 1. In this con-
cept, FC are used to provide electrical power during ground
operation for the conventional on-board systems as well as
for an electrical taxiing system. Another product of the elec-

1
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trochemical process is humid oxygen depleted air. This is
cooled down, dried and used for kerosene tank inerting. The
resulting heat flow is conducted to the wing’s leading edge
for anti-icing and the water is fed to the on board water sys-
tem. A complex system architecture and many challenges
arise thereby.

Cargo hold
fire suppression

Fuel tank
inerting

De-Ice
+ Anti-Ice

H2
storage

Process water

Main engine water injection

Fuel cell system

Wiring system

Electrical taxiing

Figure 1. Integration of fuel cell technology into the overall
aircraft systems architecture.

Summarizing the current status, FC on board of future air-
craft can drastically reduce the emission of greenhouse gases
and noise, and contribute to the fulfillment of future goals of
European air traffic. This is achieved beneficially by a multi-
functional integration strategy. However, the complex system
architecture and the ambitious operational goals for the year
2050 lead to many challenges. Without proving that a mul-
tifunctional fuel cell system (MFFCS) can be operated and
maintained beneficially there will be no chance to bring it on
board of future aircraft. Hence, efficient health management
functions are required. Tasks to be performed are reasoning
about causes and effects, and early failure detection amongst
others. This leads to challenges like optimal sensor place-
ment, and the definition of built-in-test procedures. Handling
these issues in a manual way is laborious, cost intensive and
prone to human errors. A systematic and model-based devel-
opment process is therefore needed. This is addressed in this
paper in terms of fuzzy diagnosis rules. These are used for in-
ferring causes of detected failures and malfunctions as a new
type of a built-in-test procedure.

This paper is organized as follows. In Section 2, the con-
cept of fuzzy diagnosis rules is introduced and motivated. A
model-based approach to gain an optimized set of rules is
shown in Section 3. Results of a study on a multifunctional
fuel cell system are depicted in Section 4. The content of
the paper is summarized in Section 5 and an outlook on open
topics is given.

2. MOTIVATION

A multifunctional fuel cell system has to function efficiently,
but also to be operated economically. Hence, a poor avail-
ability of operation can be a major drawback for a successful
integration on board of future aircraft. Due to that, there is
a distinct need to detect failures and malfunctions as early
as possible, and identify root causes to an adequate level, so
that economic damage can be avoided. These actions can be
supported by means of a diagnosis function that works with
diagnosis rules (Modest & Thielecke, 2012). These consist of
a premise holding an indicator, and a conclusion suspecting
or clearing candidates of root causes. In order to clarify this
concept, basics are explained in the following.

An indicator of a diagnosis rule can have the discrete values
{−1, 0, 1} representing the colors {Low, Nominal, High}.
An example is given in Figure 2 where two signals are shown.
E001 represents a measurement of fuel cell current, and
TX3A represents a measurement of air temperature. At the
instant of time tF a failure at the component level is simu-
lated. A change in system behavior can be observed after-
wards. This change is evaluated with respect to thresholds
and persistence times. By that, at the instant of time tD,1 the
indicator E001 gets the color Low, and at the instant of time
tD,2 the indicator TX3A gets the color High.
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Figure 2. Measurements of faulty behavior and indicators
with discrete values.

The indicators are used to match premises of two types of
discrete diagnosis rules. These are suspect and clear rules
where the first one has the following form:

if E001 = Low then suspect {LRU A,.., LRU K}. (1)

Suspect rules are used as starting point of the reasoning pro-
cess. By means of this type of rule a set of potential root
causes, e.g. a line replaceable unit (LRU) or a specific failure
mode on the component level, is generated and hypotheses
are gained. These hypotheses can fully explain the indicator
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color. In order to test the necessary condition for the partic-
ular hypothesis, further indicators and clear rules are used.
These have the following form:

if TX3A = High then clear {LRU C, LRU D, LRU E}. (2)

By means of several clear rules the necessary condition for all
the suspected candidates is tested so that the final diagnosis is
inferred. According to the required level of detail, this can be
a set of components including the real root cause. However,
requiring a very detailed level of isolation, e.g. having a final
diagnosis of only one suspect, could lead to a high amount of
indicators needed and by that to many sensors to be integrated
into the system. An approach for avoiding this necessity can
consist in using indicators having not only discrete but fuzzy
values. By that, not only exceeding of a threshold is taken
into account but also the level of exceedance. An example for
that is shown in Figure 3.
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Figure 3. Taking into account the level of exceedance of a
threshold for discrimination between failures. a) Failure A.
b) Failure B.

In the example, there are two failures simulated. These lead
to the same indicator color which isE001 = Low. Based only
on this information, the root cause can’t be inferred exactly.
However, taking into account the level of exceeding of the
threshold, now offers the possibility to discriminate between
the failures. The level of absolute exceeding of the thresh-
old for Failure A is smaller than for Failure B. These levels
are used to derive several fuzzy sets that are then used as the

premise of a diagnosis rule whose conclusion is a suspected
component. This states a fuzzy diagnosis rule. An example
looks like follows:

if E001 = Low with Exceeding = a1E001

then suspect LRU A with certainty εLRUA.
(3)

In Equation 3, the term a1E001 is a fuzzy set that is related
to the exceeding of a threshold. With respect to the pattern,
that matches the premise, the rule’s conclusion is the suspect
LRUA with certainty degree εLRUA. Compared to Equation
1 only one suspect is left. Clear rules are omitted in this
new concept. In the next section, a model-based approach to
derive the required fuzzy sets in an optimized way and gain a
set of fuzzy diagnosis rules is presented.

3. FUZZY DIAGNOSIS RULES

Fuzzy diagnosis rules are used to match and classify faulty
system behavior during operation. Knowledge about this be-
havior is gained on basis of an extended system model. This
enables the simulation of failures at component level. Effects
at system level are gained through different types of sensors
and are structured in a matrix format. This is shown in Sec-
tion 3.1. The effects are evaluated by using fuzzy inference.
The basics are presented in Section 3.2. There, matching de-
gree and membership function are explained and it is shown
which parameters have to be determined for the derivation
of fuzzy diagnosis rules. These parameters are gained in an
optimized way on basis of an evolutionary optimization pro-
cedure. This is introduced in Section 3.3. The entire process
for the derivation of fuzzy diagnosis rules is shown in Section
3.4.

In general, a fuzzy diagnosis rule should have the following
structure:

if fvi = Ai with Exceeding = ai
and ... and fvj = Aj with Exceeding = aj
then suspect FMx with certainty εFMx

.

(4)

The premise of the rule makes use of features fvi of the ith
dimension of the feature vector fv . These are matched to
colors Ai that belong to a predefined color space, and fuzzy
sets ai. Both are conjunct for a set of features. Each of the
fuzzy sets is characterized by a membership function that de-
termines the degree of each input fvi belonging to the specific
fuzzy set ai. This structure is used to assign features to a class
FMx that belongs to the set of all the failures FM that are
taken into account. This is done with certainty εFMx

.

In order to determine the required features fvi and the param-
eters of the fuzzy sets ai, data about faulty behavior is re-
quired. This is gained on basis of an extended system model
which is shown in the next section.

3
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3.1. Extended system model

In order to derive fuzzy diagnosis rules, data about faulty sys-
tem behavior is required. This data is gained from an ex-
tended simulation model which is based on a dynamic nom-
inal system model (Grymlas & Thielecke, 2013). This has
been derived by using the Matlab toolbox Simscape. This
allows for an a-causal modeling of physical behavior using
equations. An overview of the model is given in Figure 4.

Compressor Pipe

H2-Tank

H2-Valve

FC-Stack A

Environment
Air data

Air data

H2-Sensor

m,p,t,xi ,xiH20 02

.

FC-Stack B

Air-Valve

Figure 4. Extended system model of a MFFCS.

The system model consists of two fuel cell stacks that are
supplied with pressurized air by a compressor and with hy-
drogen by a H2 tank. Different pipes and valves are used for
transportation and control. The oxygen depleted air of both
fuel cell stacks is merged, transported and separated for fur-
ther tasks. This could be kerosene tank inerting and cargo fire
suppression. Processing the air is done by using pipes and
valves. The hydrogen that has not been used in the electro-
chemical process inside the fuel cells is fed back to the hy-
drogen supply. Pumps, valves and pipes are used therefore.

The nominal system model is extended with faulty behavior
on the component level. Examples are leakages of pipes, jam-
ming of valves and dedicated failure modes of fuel cells. An
example of a failure model of a pipe of the air supply is shown
in Figure 5.

Pipe

Env.

Capacity

Valve

physical
port

failure mode
port

kv

Figure 5. Failure model of a pipe.

The failure model of the pipe consists of a block represent-
ing the pipe’s capacity and a valve that is connected to the
environment. The integration into the overall model is done
by using three ports. Two of them are physical conserving
and bidirectional whereas the failure mode port is directional.
By means of a time controlled failure signal, the valve can be
opened in order to simulate a leakage. This is done by adapt-
ing the specific flow coefficient kv that is influencing the mass
flow ṁair through the valve (Herwig, 2006). This is shown
in Equation 5.

ṁair = kv ·
√
ρair,in · pair,out

Tair,in
· (pair,in − pair,out). (5)

After implementing all failure modes in the overall model, a
bottom up simulation is carried out. The respective effects
of each failure are observed by using sensors, that have been
placed at several positions inside the model. An example is
shown in Figure 4. By means of air data sensors, information
about mass flow, pressure, temperature as well as 02 and H20
fractions are gained. These values are evaluated with respect
to thresholds like it is shown in Equation 6. This approach
is used in order to increase the distance between the data sets
of all the failure modes which facilitates the classification in
later steps.

pFC1,in∗ =
pFC1,in − thresh.pFC1,in

thresh.pFC1,in

. (6)

An example of how the evaluated effects of different failure
modes look like is depicted in Figure 6. There, data is shown
for 12 failures of the air supply system of both the fuel cell
stacks. Only 7 data lines can be seen. This is due to the fact
of overlapping failure modes showing the same effect. This
is the case for different levels of friction of air pipes for this
particular feature.
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Figure 6. Data of faulty system behavior.

Each line in Figure 6 represents one failure mode that has
been simulated. This will be explained in more detail in Sec-
tion 4.1. In the next steps, it will be worked with the re-
spective failure data. Therefore, the data is transferred into a
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matrix format which is shown in Table 1.

All available data is sampled at fixed instances of time by us-
ing a unique time vector for all failure modes. At each step
of sampling, all features fvi , e.g. pFC1,in∗ and TFC1,in∗, are
aggregated in a row of the matrix. Hence, a row always holds
a vector of features fv for a specific failure mode. The type
of failure mode is represented by the Class variable in the last
column. This procedure is done for all sampling points and
repeated for all failure modes. The respective data is concate-
nated in the end.

The class variable c has a range from one to 12 which rep-
resents 12 failure modes that are taken into account in this
study. The task of the fuzzy diagnosis rule is to classify the
data vectors fv so that the correct conclusion, meaning the
correct class c can be inferred. This is done by using fuzzy
inference which is explained in the next section.

Index pFC1,in∗ ... TFC1,in∗ Class c
1 14.8043 ... 57.7561 1
2 14.8043 ... 57.7561 1
3 14.8042 ... 57.7561 1
...
543 26.1362 ... 11.0998 2
544 26.1362 ... 11.0998 2
545 26.1362 ... 11.0999 2
...
4000 -12.6088 ... 11.0999 12

Table 1. Classified data of faulty system behavior.

3.2. Fuzzy Inference

Fuzzy inference is used by a set of fuzzy diagnosis rules in
order to match features and derive conclusions. It is based
on fuzzy sets in the rule’s premise. These sets can be for-
mulated by using two different approaches. The first one is
descriptive with a linguistic variable from a color space. This
means that each rule uses the same color for a given feature
if it is in a certain range. An example would be a range of
[0.1..0.4] for feature fv1 which could be assigned to the color
Low. A drawback is that the range is fixed and holds for all
rules. Hence, the second approach is approximative where
each rule is allowed to define its own fuzzy sets rather than
using predefined colors. This means that each rule can work
with its own range of feature values. Although this shows a
lack of interpretability, it offers more granularity and by that
leads to better results. This approach is used in this study.

The matching degree µn(fv) of a fuzzy diagnosis rule n and
feature vector fv states the compatibility between fv and the
premise. It is defined as follows (Cox, 1994):

µn(fv) =

N∏

i=1

µni (fvi ). (7)

In Equation 7, the term µni (fvi ) is the membership grade of
rule n in dimension i of the feature vector fv . This is im-

plemented as a double sided Gaussian membership function
having the form (Cox, 1994):

µni (fvi ) =





exp{−(fv
i −mn,i

l )2

(σn,i
l )2

}, fvi < mn,i
l ,

1, mn,i
l ≤ fvi ≤ mn,i

r ,

exp{−(fv
i −mn,i

r )2

(σn,i
r )2

}, fvi > mn,i
r .

(8)

In Equation 8, the terms mn,i
l and mn,i

r are the centers of the
left and right Gaussian functions with widths σn,il and σn,ir .
This applies for rule n and feature i.

During derivation of the fuzzy rule base, the rule consequent
cn of rule n has to be determined. This is done by calculation
of the dominating class c of all the classes F among all in-
stances fv with class label cf which are covered by the rule’s
premise:

cn = arg maxc=1:F

∑

fv,cf=c

µn(fv). (9)

The approach of Equation 9 is called maximum voting
scheme. It uses overlapping and cooperating fuzzy sets rather
than only maximum matching.

After having fixed all rule consequents cn and having derived
the entire rule base, Equation 9 is adapted to have the form:

cmax = arg maxc=1:cn

∑

n,cn=c

µn(fv). (10)

Based on Equation 10, inferring a solution to the classifica-
tion problem by using the derived rule base is again done by
using maximum voting. This time however, the decision is
made by summing up the matching degrees µn(fv) for one
given feature vector fv and the conclusion cn of rule n. The
maximum argument then gives the overall conclusion cmax.

The degree of certainty ε of correct classification of class c is
calculated as the ratio of the sum of matching degrees µn(fv)
for c = cmax and all available feature vectors fv referred to
the overall matching degree, irrespective of the rule’s conse-
quent:

εc =

∑
fv,c=cmax

µn(fv)∑
fv µn(fv)

, µn(fv) > 0. (11)

In order to identify those parameters of the fuzzy inference
so that the desired behavior of correct classification with a
high degree of certainty is achieved during operation, fuzzy
modeling is used. This can be done manually but is com-
plex and prone to failure. The use of automatic approaches
for the derivation of membership functions and rule base is
motivated thereby.

In literature there are mostly non technical but medical and
geographical approaches that use evolutionary algorithms to
automatically and optimally construct rule base and member-
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ship functions (Herrera, Lozano, & Verdegay, 1995) (Andres
Pena-Reyes & Sipper, 1999) (Gonzles & Francisco, 1997)
(Stavrakoudis, Theocharis, & Zalidis, 2009). An overview
is given in the next section and one approach is chosen.

3.3. Optimization Procedure

As a form of an evolutionary algorithm, the genetic algorithm
(GA) is used in this study. The GA is an iterative procedure
that uses a population of individuals where each individual is
represented by a genome. This encodes a solution inside a
given problem space that comprises all feasible solutions to
the problem under study (Coello, Lamont, & van Veldhuizen,
2007). In general, the GA always starts with an initial popu-
lation of individuals and evolves towards optimized individu-
als by using genetic operators inspired by nature. For details
please refer to (Coello et al., 2007).

In literature there are basically three approaches for using ge-
netic algorithms to derive parameters of membership func-
tions and fuzzy rules (Michalewicz, 1996) (Gonzles & Fran-
cisco, 1997). These are explained briefly in the following.

The Michigan Approach In the Michigan approach, each
individual of the GA represents a single rule and respective
membership functions. The fuzzy inference system is repre-
sented by the entire population of individuals. Due to the fact
that several rules participate in the inference process the ac-
tive rules are in constant competition for the best action to be
proposed and cooperate to form an efficient fuzzy rule-based
system. The cooperative-competitive nature of this approach
is one drawback as it complicates the decisions on which of
the rules are ultimately responsible for an optimal behavior.
By that an effective policy to build adequate fitness values is
necessary (Michalewicz, 1996).

The Pittsburgh Approach In the Pittsburgh approach,
each individual of the GA represents a candidate for the entire
fuzzy rule-based system. This means that it holds a prede-
fined number of rules with respective membership functions.
Genetic operators are used to generate new generations of the
entire system. A benefit of this approach is that an evaluation
is easily possible as the entire system is encoded in one in-
dividual. A major drawback though is a high computational
cost as well as the fact that the number of rules has to be de-
fined in advance.

The Iterative Rule Learning Approach In the Iterative
Rule Learning approach each individual represents a single
rule of the rule base to be derived. The GA is used sequen-
tially to determine a single optimal rule in each run. This is a
partial solution to the entire problem. In order to solve that,
the GA is used in an iterative manner in order to discover new

rules and check each time if all cost and performance crite-
ria are already fulfilled. If this is the case the process stops.
In order to prevent the discovery of redundant rules there are
approaches to remove covered data sets as well as to penalize
covered data sets (Gonzles & Francisco, 1997). The benefit
of this approach is that it combines the benefits of the Michi-
gan and the Pittsburgh approaches which is the speed and the
simplicity of defining and applying optimization criteria.

The iterative rule learning approach is chosen in this study.
This generates one rule at a time in an iterative manner. The
rule is represented by a genome. This is a finite set of symbols
which is split into a real valued part representing parameters
of the membership function and a binary valued part repre-
senting the features that are chosen. An example is depicted
in Equation 12.

[| 0 | 1︸︷︷︸
Binary part

||m1
l | ∆m1| σ1

l | σ1
r | m2

l | ∆m2| σ2
l |σ2

r︸ ︷︷ ︸
Real-valued part

] (12)

In Equation 12, a genome is shown that represents a fuzzy
diagnosis rule. There are two features available where the
first one is not active in the current case. Each binary value is
related to four real valued parameters. These are part of the
membership function and have been introduced previously.
The parameter ∆m1 is the difference between the left and
right center of the Gaussian membership function:

∆m1 = m1
r −m1

l ,m
1
r > m1

l .

An important aspect of the iterative rule learning approach is
the penalization of covered data sets. The approach of Boost-
ing is applied for that, as proposed in (Stavrakoudis et al.,
2009). Basically this means, that initially all data sets are
weighted with a single factor wfv . This can be a value of
one. After each run of the GA, the rule error of the current
rule is determined for each feature vector fv . Features that
are classified correctly are reduced in their weight whereas
misclassified features keep their former weight. For more de-
tails please refer to (Hastie, Tibshirani, & Friedman, 2009).

The weights wfv are included in the fitness function of the
GA where the overall fitness function consists of three sub
functions. These are introduced in the following.

The set of fuzzy diagnosis rules should exhibit a low rate of
misclassification. This is taken into account using the factors
ω+ and ω−.

ω+ =
∑

wfv · µn(fv),∀fv ∃ cfv = cn. (13)

ω− =
∑

wfv · µn(fv),∀fv ∃ cfv 6= cn. (14)

By means of Equation 13, a weighted sum of membership
grades is gained for those features that are classified cor-
rectly. Misclassified features are taken into account by means
of Equation 14.
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Using ω+, the class coverage is defined as first factor f1 of
the overall fitness function:

f1 =
ω+

∑
wfv

,∀fv ∃ cfv = cn. (15)

Using Equation 15, correctly classified features are taken into
account. In order to have a rule that supports a high amount
of feature vectors fv , factor n is defined as the ratio of ω+

related to the sum of the weights of all features covered by
the rule, independent of the class label:

n =
ω+

wfv
. (16)

By means of Equation 16 the class support f2 is defined as
follows:

f2 =

{
1, if n > kcov

n/fcov, otherwise.
(17)

By using the factor f2 the generality of the rule is enforced.
Depending on the number of classes, a value of fcov ∈
[0.2, 0.5] is proposed in (Stavrakoudis et al., 2009). As a last
factor the rule consistency is introduced. This means that the
rule should not only possess a high number of correct classi-
fication but likewise a low number of misclassification. This
is addressed by means of factor f3:

f3 =

{
0, if kc · ω+ < ω−

(ω+ − ω−/kc)/ω+, otherwise.
(18)

A value of fc ∈ [0, 1] is proposed in (Stavrakoudis et al.,
2009). All factors are normalized so that the overall fitness
function is defined as the product of f1, f2 and f3:

f = f1 · f2 · f3. (19)

3.4. Fuzzy Diagnosis Rule Generation Algorithm

The previous sections introduced basics of fuzzy inference
and an optimization procedure that is used to train fuzzy di-
agnosis rules. These tasks are integrated into an algorithm
that is explained in the following. An overview is given by
Figure 7.

A model of a MFFCS is used to gain data of faulty system
behavior. This is split into training data (TD) and validation
data (VD), where TD is used for training of rules and VD
for testing the current performance of classification. The rule
base is initially empty. According to the iterative rule learn-
ing approach, one fuzzy diagnosis rule is trained at a time by
using the fitness function from Equation 19 for evaluation. In
a post processing step, the binary part of the genome is ana-
lyzed further. All non zero entries are sequentially set to zero
and it is checked if the fitness value remains constant. If this
is the case, there is no need for the related feature. Hence,
the total number of required features and sensors can be re-
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Figure 7. Process for the derivation of optimized fuzzy diag-
nosis rules.

duced. By means of VD, the current performance is tested.
If it is above an initial threshold and higher than the previ-
ous performance, the rule is accepted and added to the rule
base. In a boosting step, the current rule error is calculated
on basis of the misclassified data, and the weights of TD are
updated. The process continues in a loop until a stop crite-
rion is reached. In the current case this is the number of runs
of the algorithm. In the future, this can also be coupled to
the performance. If the process stops, all genomes are trans-
formed into the structure of Equation 4 and a fuzzy diagnosis
rule base is gained.

4. RESULTS

This section depicts the results that are obtained by applying
the algorithm from Section 3.4 to a MFFCS. In Subsection
4.1, failure modes that have been taken into account are high-
lighted and sensors are shown that provide data about faulty
system behavior. Afterwards, in Subsection 4.2 results of the
optimization procedure are discussed and examples of the de-
rived rule base are presented.
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4.1. Failure modes

In the current study, 12 different failure modes have been
taken into account. These are given by six components where
each component contains two failure modes. These compo-
nents are part of the air supply of both the fuel cell stacks as
it is shown in Figure 8. An overview of the failure modes is
depicted in Table 2.

Component Failure Mode Class. c

Compressor Increased friction 1
Jamming 2

Pipe A Increased leakage 3
Highly increased leakage 4

Pipe B Increased leakage 5
Highly increased leakage 6

Pipe C Increased leakage 7
Highly increased leakage 8

Air-Valve A Jamming in closed position 9
Jamming in half opened position 10

Air-Valve A Jamming in closed position 11
Jamming in half opened position 12

Table 2. Failure modes that have been taken into account.

In order to detect the failure modes and classify the related
data, 10 sensors Si have been placed in the system. These
provide 12 measurements as shown in Figure 8. Measure-
ments range from pressure p of air and hydrogen, mass flow
ṁ, electrical current I to the fraction of oxygen x02 and
gaseous water xH20 in the air. By means of the optimization
procedure, those features are identified that are really needed
for data classification.

4.2. Fuzzy diagnosis rule base

In total, 250 runs of the fuzzy diagnosis rule generation algo-
rithm have been performed and a classification performance
of 99.2% has been reached. This is achieved by 15 rules.
These are split into three rules that are used for inference of
classification 3, two rules for classification 4 and one rule for
every other classification. Measurements of current by means
of sensors S3 and S7 as well as measurement of mass flow ṁ
by means of sensor S9 are not required to achieve the result.
After termination of the algorithm all rules are transformed
into the format shown in Equation 4. In order to clarify the
result, an example is given in the following.

Two rules are used for inferring a highly increased leakage of
pipe A which is class 4. These are the rules 8 and 11 of the
rule base. Rule 8 uses three features. These are provided by
sensors 4, 6 and 9. Rule 11 uses one feature which is provided
by sensor 9. The structure of rule 8 is shown in Equation 20
and the structure of rule 11 in Equation 21.

Rule 8: if S4 : xH20∗ = High with Exceeding = a84
and S6 : p∗ = Low with Exceeding = a86
and S9 : p∗ = Low with Exceeding = a89

then suspect c = 4 with certainty ε4.

(20)

In a cooperative manner, rule 11 supports the inference of the
conclusion of rule 8.

Rule 11: if S9 : p∗ = Low with Exceeding = a119
then suspect c = 4 with certainty ε4.

(21)

Both the rules use the feature S9 : p∗ which is shown in Fig-
ure 9. There are depicted effects which are based on a simula-
tion of an increased leakage and a highly increased leakage of
pipe A. At an instant of time tF = 30s those failures are ac-
tivated. Based on that, a decrease of S9 : p∗ can be observed
that is followed by an increase which is based on control ac-
tion.
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Figure 9. Effects of increased and highly increased leakage
of pipe A.

At time tD both the failures are detected by means of indica-
tor color S9 : p∗ = Low. Inferring the root cause starts at
this moment. For this task, only a small part of the data range
is used by the fuzzy sets a89 and a119 . This is shown in Figure
10 where a detailed view of Figure 9 is given.
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Figure 10. Detailed view of effects increased and highly in-
creased leakage of pipe A.
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Figure 8. Sensor locations and components with faulty behavior that have been taken into account in the study.

Rule 8 uses a data range that covers data for both classes 3
and 4. The result that can be inferred is not sufficient so that
rule 11 is used for support. The respective data range covers a
part of the data range of rule 8 but only the part that is unique
for class 4.

An interesting aspect of rules 8 and 11 is that both use data
of the hydrogen supply in terms of S9 : p∗ in order to infer
failures of the air supply. They don’t use the feature S2 : p∗
that has been shown in Figure 6 as an illustrative example of
raw data of faulty behavior. Based on only S2 : p∗ it was
obvious that both the classes 3 and 4 could not be inferred as
the effects overlap. By means of the rule generation algorithm
this result is confirmed and optimal features are gained for
separation. Instead of using S2 : p∗ the feature S9 : p∗ is
more valuable although not a part of the air supply. If the
rules would have been created in a manual way, this feature
would therefore probably not be used although giving good
results. Furthermore, a manual generation of the fuzzy sets in
an optimized way would have been hardly possible.

5. CONCLUSION

Multifunctional system concepts and ambitious goals for the
future of European air traffic require powerful health manage-
ment technologies to ensure a safe operation and a high avail-

ability. This paper introduced a model-based approach for the
derivation of fuzzy diagnosis rules for multifunctional fuel
cell systems. These rules are used for the inference of root
causes of detected failures and malfunctions. A fast and reli-
able troubleshooting is gained by that. In order to clarify the
background of the paper, the concept of a multifunctional fuel
cell system has been explained in detail in the beginning. The
importance of dealing with health management functions has
been emphasized and the general concept of fuzzy diagnosis
rules has been introduced afterwards. Subsequently, a novel
approach to derive a fuzzy rule base was depicted. An ex-
tended system model has been used to gain knowledge about
effects of failures and malfunctions. These effects have been
allocated a unique class label which represents the underly-
ing root cause. Data of faulty system behavior was gained
and stored in a matrix. In an evolutionary optimization pro-
cedure, fuzzy sets have been trained on basis of the matrix
data so that the correct class label can be inferred. Based
on a case study, a rule base of 15 rules has been derived in
the end. An example illustrated two rules and showed that
the novel approach gives valuable results. Compared to other
classification procedures, a traceable and human interpretable
approach has been introduced.

The case study of this paper dealt with the air supply system
of two fuel cell stacks. The approach has also been applied to
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the entire multifunctional fuel cell system including the fuel
cell stacks. However, in order to clarify the basic approach
and the general procedure to derive the rule base, only a small
part of all failure modes and malfunctions has been dealt with
in the case study. A further paper on the application of the
approach on specific fuel cell failures is in progress and will
come in future. Furthermore, in future work, the proposed
approach could be extended to also deal with early failure
detection as a first step of prognosis. Degraded behavior can
be simulated therefore in different levels up to failures and
malfunctions. The respective data can then be dealt with by
using the approach described in this paper.

NOMENCLATURE

A color variable
I current
N Number of rules
R Rule
a fuzzy set
m mass
ml left center of Gaussian function
mr right center of Gaussian function
T temperature
c class variable
p pressure
fv feature vector
f fitness function
h height
i dimension
kv specific flow coefficient
x fraction
ε certainty factor
µn matching degree of rule n
ρ density
σ width
ω classification factor
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ABSTRACT 

The diagnosis and prognosis capabilities are the key points 
of PHM (Prognosis Health Management) research. Most of 
the endeavor and investment are being oriented to get and 
improve these capabilities: new sensors, measurement 
techniques, communication/data solutions, detection 
algorithms, decision algorithms and reliability calculate 
tools. Nowadays it is actually possible take advantage of 
these capabilities to improve systems operation and 
maintenance. In spite of this, massive industrial application 
is still far away. Many of industrial sectors barely have 
heard about of PHM and its potential, or only have 
introduced classical CBM (Condition Based Maintenance) 
tools -vibration analysis, ultrasound, thermography- to 
specific and local maintenance applications.  

In this paper a comprehensive understanding of the problem 
of transferring PHM into industrial environments and its 
relevance is introduced. It's also argued the need of develop 
a methodological approach as a key point for getting a broad 
applying of PHM-based solutions. To do this, the main 
challenges to be addressed are listed and analyzed.. 

1. INTRODUCTION 

Nowadays it is actually possible to take advantage of the 
capabilities of ICT (Information and Communications 
Technology) to improve systems operation and 
maintenance. Among others, a most accurate description of 
the degradation processes is now available. How deep can 
we characterize the system states? Is it possible to take 
maintenance decision based on objective knowledge about 
these current and future states? PHM goes lot further than 
other maintenance management tools to answering these 
questions.  

 

A PHM solution (PHM-based solution), in a first approach, 
can be defined as the process of determining the current 
state of a system in terms of reliability and prediction of its 
future state. Generally it combines sensing and 
interpretation of environmental, operational, and 
performance parameters to assess the health of a product 
and predict RUL (Remaining Useful life) (Zio et. al, 2010). 
But owing to its relevance and development, PHM has 
become a new engineering discipline. This is strongly 
defended by different authors and institution, especially the 
PHM Society. Attending to this approach, PHM is a 
discipline that relies on the use of in-situ monitoring and 
advance methods of analysis (include fault detection, 
diagnostics, prognostics, and health management) to assess 
system degradation trends, and determine remaining useful 
life, allowing system to be evaluated in its actual life cycle 
conditions and mitigate the system-level risk (Sun et al 
2012).  

PHM is considered by the different authors as the key factor 
to definitely promote a qualitative jump toward intelligent 
maintenance. Lee et. al (2006), give to PHM and e-
maintenance a fundamental role in maintenance 
development, where maintenance actions are synchronized 
with the overall operation of the system as well as the 
necessary maintenance resources and spare parts. Ly et. al. 
(2009), explain how to develop solutions for PHM 
effectively and efficiently will take a tremendous effort to 
coordinate all levels of managements from engineers to the 
top corporate level (maintenance managers, project officers, 
program managers,…). The entire enterprise must be 
coordinated in order to make PHM effective over the 
lifecycle operation of any system from the design, 
manufacturing, operational and logistical domains.  

So, why these powerful improvements are not being applied 
extensively? Despite the great advances achieved in the last 
decade in the technologies included within the PHM topic, 
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the terms of the Creative Commons Attribution 3.0 United States 
License, which permits unrestricted use, distribution, and reproduction 
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massive industrial application is still far away. In every 
CBM/PHM solution (as it is referenced by Vatchevanos el 
al. 2006), high technological fields have to be combined and 
adapted. A successful implementation required a deep 
knowledge of involved technology, methods and algorithms, 
besides great expertise in the particular application field. It 
possible to conclude that there are two general challenges in 
this development process: the coordination between 
corporate levels (alignment of technology uses with the 
business model and with profit generation) and the design of 
methodologies and frameworks to support its 
implementation efficiently (complex application scenarios 
by signals number, technologies, process dynamic or human 
interferences) 

In parallel to this, the maintenance strategies evolution has 
to be considered. From “run to fail” or corrective 
maintenance to a new strategies with high level of 
proactiveness, that take advantage of technologies to 
prevent the failures and avoid their effects. In this shift, two 
aspects have to be considered: the improvement of the 
maintenance engineering and its tools and, on the other 
hand, the very development of the systems to maintain. 
Jardine et al. (2006) explain how preventive maintenance 
has become a major expense of many industrial companies. 
They argue how the rapid development of modern 
technology has made that products have become more and 
more complex while better quality and higher reliability are 
required. And this makes the cost of preventive maintenance 
higher and higher. Because of this, more efficient 
maintenance approaches such as CBM are being 
implemented to handle the situation. In this point, it is 
necessary to clarify that actually two different views about 
the CBM can be considered. One is the classical CBM, 
comprising the well-known use of techniques as vibration, 
thermography, ultra-sound, etc., which has a great 
implantation in the industry. On the other hand, new 
concepts have been introduced, as CBM+ (Ly et al 2009) or 
PdM (Predictive Maintenance) (Gupta et al. 2012), trying to 
introduce a more comprehensive view of condition and 
health system management, which includes the 
understanding and employ of prognosis technological 
capabilities. Condition based maintenance referred by 
Jardine is closer to the last one, and it also point out to the 
proactive maintenance approach introduce by other authors. 

The concept of “proactiveness” or “proactive maintenance” 
is driving the evolution of maintenance (Lopez-Campos et 
al. 2013). PHM and "e-maintenance" are the levers of this 
development (Lee 2006). This approach is also included in 
the definition of e-maintenance introduced by Muller et al. 
(2009) when they talk about "Maintenance support includes 
the resources, services and management Necessary to enable 
proactive decision process execution". 

Following this introduction, Section 2 outlines the main 
factors of industrial application of PHM-based solutions, 

making an introduction of the benefits that it can provide in 
contrast with the complexity of its implementation. In 
Section 3 it is argue the necessity of methodological 
approaches for optimize and assurance the results of this 
solution. A review of interested standards is included and 
principal aspects for building a practical methodology are 
listed. Finally, in Section 4 the conclusions of this paper are 
summarized. 

2. CHALLENGES AND BENEFITS OF PHM INDUSTRIAL 
APPLICATIONS 

Crucial questions when introducing these advances within 
an organization/system-for asset management, maintenance 
or equipment design tasks- are the follows: true benefits of 
the introduction of these tools are obtained? Is it worth it for 
the company drives their development in terms of 
competitiveness and profitability through these types of 
improvements? 

Clearly, the application of any new maintenance 
development is based on the fact it provides a cost reduction 
and/or improved system reliability to, in last term, optimize 
the system life cycle cost (Crespo2006).Now, it is not 
sufficient to justify the industrial use of PHM. PHM-based 
solutions imply complex technological developments, so it 
is necessary to be more precise making it clear to the 
company how these improvements are achieved and where 
they will have to work (assets, human resources formation, 
technology investment, etc). In this sense, it is important the 
expected results of the implementation of these 
improvements are aligned with the strategic objectives and 
according with the capabilities and resources of the 
company. The concept of e-maintenance, when it is 
analyzed from the view of its contribution with the e-
business management strategies, play an important role in 
connecting the capabilities provided by the PHM-based 
solutions with business strategies (Figure.1) 

.  

Figure 1. An enterprise view of e-maintenance (Lee 2004) 
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It seems then necessary, in order to promote a more 
extended use of PHM techniques, extract and show in a 
sorted way the positive results of the incorporation of these 
advancements in the industry. In order to do this, in this 
paper two different but complementary perspectives have 
been used: new capabilities/improvements for maintenance 
task execution and potential specific benefits that can be 
provided by PHM applications along system life cycle. 

2.1. Improvement and Benefits of PHM Applications 

2.1.1. New capabilities/improvements 

PHM is related to the effective introduction of new 
capabilities at the service of maintenance management 
among others life cycle product stages. This approach helps 
us to understand the scope in maintenance evolution 
provided by these technologies. Muller et al. (2008), 
analyzing the potential improvements in the e-maintenance 
concept application context (we have exposed above, the 
close relation between PHM-solutions and e-maintenance), 
introduce the following references to the maintenance tasks 
evolution: 

• Remote and on-line maintenance: 
• Cooperative/collaborative maintenance: 
• Maintenance documentation/record and knowledge 

capitalization and management 
• Fault/failure analysis and predictive maintenance 
Remote and on-line maintenance: here we introduce the 
capability to remotely link to a factory’s equipment 
allowing remote maintenance actions as diagnosis, through 
data collection and analysis. This reduces the manpower 
cost and introduces tools to diagnose the faults and to 
improve the preventive maintenance thanks to the machine 
performance monitoring. The connection of field monitoring 
with decision centers adds value to the top line, trim 
expenses, and reduce waste (Crespo and Gupta, 2006). 

Cooperative/collaborative maintenance: the opportunity to 
implement an information infrastructure connecting 
dispersed subsystems and actors. In many cases, very few 
technicians manage the key information of the system. As a 
result the company doesn’t really control some critical 
aspect of their facilities. There is also a lack of information 
exchange between different actors. Implementing these 
strategies allows a strong cooperation between different 
human actors, different enterprise areas (production, 
maintenance, purchasing, etc.) and also external 
stakeholders (suppliers, customers, machine manufacturers, 
etc.).It provides maintenance management with a 
transparent, seamless, and automated information exchange 
process to access all the documentation in a unified way, 
independently of its origin (equipment manufacturer, 
integrator, and end-user) Information exchange process 
within the company is formalized, making the technical 

knowledge of the system is documented in the company 
(performance, maintenance, reliability) and not only in the 
hands of some good technicians. It also improve  
transparency and efficiency levels into the entire company 
and it can be an adequate support of business process 
integration (Hausladen and Bechheim, 2004), contributing 
to the acceleration of total processes, to an easier design, 
and to synchronize maintenance with production, 
maximizing process throughput, and minimizing downtime 
costs 

Maintenance documentation/record and knowledge 
capitalization and management: One of the most urgent 
industrial problems is how to realize knowledge-based 
operation and maintenance of plants. It has to collect, 
record, and store information regarding degradation modes, 
degradation sections of the machine, degradation frequency, 
degradation time and place, time required preventing, cost 
required to prevent, suggested and/or applied maintenance 
practices, etc. This knowledge capitalization aims at 
creating a corporate memory (i.e. a structured set of 
knowledge related to the firm experience in a field domain) 
of enterprise (Rasovka et al 2005)PHM solutions give as a 
result accurate and wide information about systems 
condition and, at the same time, it implies a great 
knowledge of the system and its behavior.. 

Fault/failure analysis and predictive maintenance: This is 
the aspect more directly related to PHM. In order to 
properly analyze it, in the following paragraphs we are 
going to delve in the prognosis and PHM capabilities and its 
benefits. 

2.1.2. Benefits of PHM 

Gupta et a. (2012) argue that this techniques or solutions 
deepens the benefits of condition-based maintenance: (1) 
increasing the availability (avoid operational interruptions 
thanks to early detection capabilities reduce maintenance 
times by a better scheduling with less unscheduled 
maintenance); (2) reduction of direct maintenance cost 
(optimization of the use of each component, replacing it 
when it has reached almost all its full potential and better 
control on the maintenance scheduling: at the right place, at 
the right moment with associated resources to conduct the 
maintenance actions) 

Ly et al. (2009) talking about differences between reactive, 
preventive and proactive maintenance, point out the main 
problems of schedule maintenance, which is the most 
extended practice in the industry: high cost, labor intensive; 
unnecessary maintenance operations performed when really 
not needed; does not prevent catastrophic failure. They also 
include high rates for false diagnostic indicators, and present 
some indicators such as: ReTest OK (RTOK), Could Not 
Duplicate (CND), No Evidence Of Failure (NEOF), No 
Fault Found (NFF). Finally argue that news approaches 
mitigate many of these problems and offer benefits 
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including: decrease false alarms; increase operational 
availability and mission reliability; reduce logistics 
footprint; maximize return on capital invested, as measured 
by quantitative and non-quantitative benefits. 

A more exhaustive analysis of the benefits of the prognosis 
is presented by Sun et al. (2012).They argue that prognosis 
can bring benefits in all stages of the system life-cycle 
process:(a) benefits for system design and development; (b) 
benefits in production; (c) benefits for system operations; 
(d) benefits in logistics support and maintenance; (e) 
benefits in phase-out and disposal (f); benefits in reducing 
Life-Cycle Costs (LCC). In general the approach given by 
Sun is very close to the principles of LCC analysis and it is 
in the line of other interesting work as Takata et al. (2004). 
In this sense is important remind the relevance of the first 
life cycle steps, since it is estimated that around 65% of 
improvement margins, the opportunities to create value, are 
decisions that can be taken during the early stages of the life 
cycle of the system (Crespo, 2006) 

(a) In the system design, engineers can improve and 
optimize the design from the collected and stored useful 
historical information provide by an effective prognosis 
(system usage patterns, operating conditions, 
environmental conditions, known failure modes, and 
possible deficiencies). This information also could 
optimize test design and execution. These tasks 
consume a lot of resources (time and cost). In addition, 
prognostics can assist in constructing a logistics support 
system.  

(b) In production phases, prognosis is a powerful tool for 
quality control process. The monitoring and prognostics 
of manufacturing equipment status can provide more 
information about equipment itself than traditional 
quality control, thus promoting the quality control 
process and quality assurance. In this phase is also 
analyzed the role of suppliers and OEMs (original 
equipment manufacturers) working with system 
manufacturers in the sense of "collaborative 
maintenance" explained above, provide component-
level prognostics solutions. 

(c) System operation: Getting an advance time of even a 
few minutes before failure could be very significant, 
and could enhance system safety, especially for systems 
whose failure might cause a disastrous accident. 
Prognosis also provides active control of system 
reliability. Actual operating conditions may be quite 
different from what the system was designed for, and 
will affect the life consumption and operational 
reliability of the system. The monitoring capability of 
PHM makes it possible to take active control actions 
regarding environmental and operational conditions. 
With PHM, operators can determine the remaining life 
and extended life, and develop replacement plans for 
systems and their sub-systems and reduce the 

occurrence of No Fault Found (NFF). Intermittent 
failures are impossible to assess using traditional 
prediction methods, resulting in the supply and 
maintenance chains suffering NFF problems, and 
prognosis is the most suitable approach to mitigate NFF 
risk. Finally warranty management and service is also a 
field where PHM and e-maintenance can have great 
influence, as is also discussed by Gonzalez-Prida et al. 
(2012) 

(d) Regarding benefits in logistic support and maintenance, 
prognosis provides a foundation for PdM (predictive 
maintenance) or CBM, more powerful than traditional 
predictive plans (an interesting discussion can be 
consulted on Gupta et a. 2012). That results in 
minimized unscheduled maintenance, eliminated 
redundant inspections, reduced scheduled regular 
maintenance, extended maintenance cycles, improved 
maintenance effectiveness, decreased ground test 
equipment requirements, and reduced maintenance 
costs. Regarding to logistic issues, predictive logistics 
is expected to optimize the performance measures of a 
system, and improve the planning, scheduling, and 
control of activities in the supply chain. Others 
interesting benefits are: reduce maintenance and 
inspection and repair-induced failures, avoid costs in 
direct and indirect maintenance manpower and increase 
maintenance effectiveness. These benefits can be 
followed and assessed using graphical tools as 
presented by Barberá et al (2012) 

(e) Phase Out and disposal: With PHM, a system’s full-
life-cycle data, including installation, operation, and 
maintenance, can be managed and used to optimize 
end-of-life processing operations. Parts removed can be 
classified for treatment according to their life history 
and RUL. Here is included the consideration about that 
a system with prognostics capability can meet the 
requirements of modern society: energy saving, 
emission reduction, and a green environment.  

(f) Reducing Life-Cycle Costs. As it is said above the 
approach used by Sun et al. (2012) is very close to LCC 
analysis. Here, in this point, it is specifically dedicated 
to the direct life-cycle cost reduction. Prognosis provide 
cost avoidance opportunities, especially for total 
ownership cost of critical system (reduce regular 
inspection costs, unnecessary replacement of 
components with remaining life) 

(g) Replacement cost: The product/system useful life 
optimization has a great impact in replacement cost. 
This could be one of the most quantitative important 
benefits, with a best ROI (Return of Investment), 
depending on the company sectors. The cost benefit 
analysis indicates that investments in this area are likely 
to have large payoffs. 
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2.2. Introduction to PHM-application complexity 

Industrial maintenance management has always been a 
complex activity that involves handling a large amount of 
information. Furthermore, in maintenance evolution new 
capabilities have been incorporated at the service of 
reliability and maintenance engineering. And manage more 
capabilities means more complexity. Tools like RCM and 
other significant efforts to develop frameworks, standards 
and methodologies (Lopez-Campos, 2011), have allowed 
enormous improvements through a better understanding of 
the maintenance task and the development of the 
maintenance management itself. However, better 
maintenance does not mean simpler maintenance. Actually, 
these techniques involve many resources and knowledge. 

Likewise, the application of computerized tools and 
technologies of information and communication (ICT) -
always present in the history of the maintenance function 
since the first personal computers in the 50s (Kans 2009) - 
has become in the essential support for modern 
maintenance, but it also introduces more level of 
complexity. And this is a great problem that companies have 
to deal. 

The conclusion is that PHM-based solutions implementing 
is a very complex task. So, despite the benefits that can be 
achieved, this complexity imposes significant entry barriers, 
technical and economical. In Figure 2 main complexity 
factors that every PHM-based solution has to integrate are 
presented. 

 

 
Figure 2. Complexity factors of industrial PHM-applications 
 

Data treatment, communication and interfaces: An integral 
software / hardware solution has to be designed to bear the 
full cycle of information flow (Lopez-Campos et al, 2013): 
sensors, signal digitization, data capture and 
communications field level, processing basic detection 
algorithms, data storage, controls interfaces / alarm analysis 

interfaces. Furthermore, we must add the relation with 
others hardware/software present in the systems and the 
relation with information systems for the management 
process as CMMS (Computerized Maintenance 
Management System) or ERP (Enterprise Resource 
Planning). 

High specific technological knowledge: it is necessary to 
combine and adapt different high-technology fields. We 
have just mentioned above the specific area of knowledge of 
software/hardware/communications. To this must be added 
the areas of technology equipment, measurement 
techniques, mathematical methods for fault detection, 
reliability engineering and finally the analysis of economic 
controls and ROI. A deep knowledge in every technology, 
method or algorithm is essential for a successful 
implementation, in addition of the knowledge in the 
application field (Cheng, Azarian, &Pecht, 2010). This is 
why it is required the effective implementation of a 
cooperative/collaborative open framework, in the sense it 
has been discussed in the previous section. This has to be 
support and interface for the necessary interrelation between 
different areas and technicians 

Strategic and holistic view and business value: Finally, it is 
necessary to make the results of the investment in PHM-
based solutions visible to the organization, assuring they 
responsive to management strategies. This is not a simple 
task. Especially if you consider that implementation times 
can be high and the design and development of these 
solutions combine multiple resources, implies high direct 
costs and interfere with the normal operation of the 
production process (Crespo 2006). All of this requires the 
management commitment and a deep knowledge of the 
process and its objectives by the involved staff. Although 
this is a well-known aspect to consider when an 
improvement process is implemented (as in the processes 

All this requires the commitment of the management and the 
knowledge of the process and its objectives by the staff. 
This is a well known aspect in the implementation of 
improvement process as international quality standards. 

3. JUSTIFICATION OF THE NEED OF METHODOLOGICAL 
APPROACH 

The massive introduction of PHM techniques (within "e- 
maintenance" concept) in the industry, as mentioned above, 
implies the companies to know the utility of these tools and 
the benefits they provided, for the business, in last term. In 
addition the company has to incorporate the required 
knowledge by these new techniques and translate it into new 
skills of its staff. The other important aspect is the 
integration with business and production management, 
which includes the integration with other management tools 
and software. 
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PHM can be use in a specific solution for a particular case. 
It can provide great benefits in the short/medium term, 
especially when it deal with critical system or failure. But 
most ambitious approaches must include the design and 
implementation of a general strategy that combines different 
PHM-based solutions with more conventional maintenance 
options into a proactive maintenance plan (Lopez-Campos 
et al, 2013) It means that PHM applications have to be 
linked to the maintenance plan. In this sense Vachtsevanos 
et. al (2006) introduce a final module of its proposal of 
integrated system architecture for machine diagnosis and 
prognosis for CBM, a maintenance scheduler module. Other 
hand, different authors have proposed frameworks and 
methodologies to organize maintenance management in an 
industry, facility or system (Moubray 1997, Crespo 2006, 
Waeyenbergh & Pintelon 2009). These are practical 
approaches that try to help to engineers to schedule 
maintenance in real cases, giving a sequential process to use 
the different maintenance engineer tools and defined the set 
of various maintenance interventions (corrective, 
preventive, condition based, etc.) Other relevant aspect that 
is present in these methodological references is the role they 
give to the maintenance plan as main objective of the 
process and point where every decision is integrated within 
the overall maintenance strategy according to the company 
resources constrains. Taken these frameworks as reference 
of how industry treats the maintenance management 
process, we might conclude that it is necessary to link PHM 
result with the design and re-adaptation of maintenance plan 
and how integrate PHM with the rest of maintenance 
interventions within the overall maintenance strategy. It is 
also important point out the value of methodological 
approaches in the industry to develop an efficient and 
effective maintenance.  

Standards are also references to consider that can be used to 
support PHM applications. Although  few standards exist of 
direct relevance to prognostic systems and PHM system 
(Sheppard et al 2008) the close ties between PHM and 
traditional diagnostic and maintenance systems, several 
standards for the maintenance and diagnostic communities 
can be applied to PHM. Standards provide users with some 
guidelines to help them to accomplish their expected 
missions. In this sense, two main important approaches o 
standards groups could be distinguish: 

• Information flow structure. 
• Requirements and advices to assurance a good solution 

and the confidence of the results. 
In relation with the first group, Ly et al. (2009) argue that 
CBM/PHM systems must have open systems architecture in 
order to maximizing the investment and remark the 
international institutions that are working to develop 
standards are key enablers to the architecture: Institute of 
Electronic and Electrical Engineers (IEEE), Society of 
Automotive Engineers (SAE), Machinery Information 

Management of Open Standards (MIMOSA), International 
Organization for Standardization (ISO). Here we can 
highlight the reference to ISO17334 and MIMOSA (CBM-
OSA). An example of a practical interpretation and use of 
these standards is presented by Lopez-Campos et al. (2013). 
Other interesting references that we must also consider are 
specialized standards in hardware/software solutions as ISO 
18435, IEC 62264 or some most specific ISO and IEEE 
standards. 

In the second group it could be included standards as ISO 
17359, ISO 13381 or even PAS 55 and ISO 14224. The ISO 
17359 reference focuses on the general procedures and 
requirements to be considered when setting up a condition 
monitoring based program. It has to be highlight the fact 
this standard, like others standard referenced in it (ISO 
17359 include an exhaustive list of condition monitoring 
standards), rely on traditional CBM approaches and they 
will must be adapted for support PHM based approaches in 
a most suitable way. The standard ISO 13381-1 defines 
failure prognostics, details the steps of the prognostics 
process, gives indications on the monitoring system and on 
how to estimate the confidence interval associated with the 
calculated RUL and proposes some mathematical tools 
which can be used to model the degradation (Tobon-Mejía  
et al, 2010).The rest of the mentioned standards in this 
paragraph introduce methodologies, aims and requirements 
to be included in a development of a overall solution, from 
the point of view of the general system performance and 
strategic or business approach. 

Finally, there are a lot of references in the PHM specialized 
literature of frameworks to help PHM system developers 
and integrators for faster system development and 
deployment (Kunche et al. 2012). These frameworks 
address the problem of implementing a PHM solution from 
a technical point of view, but not the maintenance 
management issues. 

We can conclude that there is a lot of background 
information and references. The problem is that it is difficult 
to access and manage this all these references in an orderly 
manner. This complicates in some way the industrial 
application of certain techniques, especially linked to the 
most advanced PHM. The problem is even bigger when 
working with complex systems with multiple signals and 
information systems. General methodological approaches 
have to be proposed to guide industry in the design process 
of new maintenance strategies where PHM potential has 
more relevance. In these proposals it is necessary to address 
how PHM is integrated with the maintenance strategies and 
the complete implementation process, from a need of a 
PHM solution is identified to maintenance plan execution. 

What is presented below in this section is not the 
methodology itself, which will be subject to next research 
works. It is presented, preliminarily, the relevant aspects to 
be considered to implementing a PHM solution. They are 
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presented providing an initial order to link these tasks in the 
following figure: 

 

 
Figure 3.Relevant aspect include in a methodology 

construction 
 

Preparatory task and implementation plan: It is necessary to 
request the relevant information over the facilities to be 
analyzed and the management systems that assist them. Also 
is necessary to create the work team. One of the most 
important constraints of this kind of approaches is related 
don’t get an appropriated working team. This problem is 
well describing in references about RCM application 
(Crespo 2006). In fact much of the success of the process is 
precisely at this stage. Within these tasks may be included 
team formation.It is essential to establish a planning and 
allocation of resources to the project, including participation 
of required technical profiles. Also you have to make it very 
clear project phases, from design of the solution until the 
maturation phase after implantation. 

Determination of asset hierarchy: The first point of this step 
is the analysis of operational context and the environment in 
which the system is integrated. You need to understand as 
clearly as possible the relation of the systems with the 
environment in which they are integrated. Issues such as the 
relation of the system with the overall productive process 
are valued. Describing the application environment it is also 
defined whether the PHM-based solution is used for product 
/system design (product/system design improvements) for 
the operation phases of the assets (process 
performance/control improvements) or both. After that, to 
establish the asset hierarchy, a criticality analysis is 
performed. It includes determination of criteria for 
evaluating the systems according to their severity. This 
approach introduces in the process of generate a PHM-based 
solution a link with strategic criteria. Finally, the analysis of 
CMMS systems is included, since they are necessary to 
obtain reliability data to evaluate the systems criticality. 

RCM Analysis Critical equipment: In order to obtain all the 
benefits that PHM offers, it is necessary to implement it in 
an appropriated manner, selecting the most adequate items 
and the frontiers of the system to be maintained using this 
policy. Reliability Centered Maintenance (RCM) can be 
useful in this sense (Lopez-Campos et al 2013). The RCM 
approach contains a variety of methodologies such as: 
FMEA (Failure Mode and Effect Analysis), RBD 
(Reliability Block Diagram), RP (Reliability Prediction), 
FTA (Fault Tree Analysis) and ETA (Event Tree Analysis). 
As pointed out by several authors, the use of RCM 
technique is necessary for the proper selection of the CBM 
processes and technologies. This conclusion must be 
translated to PHM applications (Sun 2012, Cheng 2010, 
Gomez 2012, Vachtsevanos 2006) RCM analysis helps in 
selecting the optimal maintenance policy for every 
maintainable item: diagram Input-Process-Output 
determination of operating standards for each of the systems 
/ functions, functional loss, failure modes and failure mode 
criticality 

Signals and detection methods assignment for critical failure 
modes. From the information generated above, the 
possibilities to follow and detect each critical failure mode 
are analyzed. This includes the analysis of signals presents 
in the system, the analysis of the possible symptoms 
associated with each failure, the introduction of 
measurements technologies employed in classical CBM 
approaches and the use of advanced detection strategies, i.e, 
PHM detection tools. It is in this section where the 
contributions of the research on PHM detection methods 
will be discussed. From this point, with the support of 
information and advices from the standards, the platform 
software/hardware for running the PHM solution is 
designed (Lopez-Campos 2013). This platform can combine 
commercial solutions with ad hoc developments, both 
hardware and software. 

Algorithms to support making-decision: This section 
includes the choice of models for calculating RUL, the 
economical estimation risk and comparison based on these 
data from different maintenance strategies. The calculation 
or estimation of the RUL is, jointly with detection 
algorithms, the main PHM solutions contribution. When 
PHM tools are used, is necessary to distinguish those that 
are used in each case. The methodology has to help to know 
what tools we have available, how they are used, when it is 
used and how the different results are related within the 
general system to be developed. 

Transferring results to the maintenance plan and business 
indicators. A key module of the platform that will have the 
responsibility of PdM decisions, which will be integrated 
into the maintenance plans. Based on the results, the specific 
actions for being incorporated into the maintenance plan 
will be proposed and included in the CMMS. Finally a set of 
KPI's to control the process of improvements and its impact 
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over the operation and business performance is also 
necessary. 

Following the efficiency and effectiveness of maintenance. 
One of the key aspects of effective proactiveness is the 
ability to interpret the results of the actions and maintenance 
policies. So, in this section a practical performance control 
of the implemented actions is proposed. In this sense, one 
possibility is programming graphical tools supporting 
decision-making process. This achieves an accurate and 
efficient management of assets and resources in an 
organization, even when there is a large number of elements 
with functional configuration that is highly complex 
(Barbera et al 2012). To obtain actual applications of 
analytical models, practical, functional, innovative, and 
simple tools can be generated. Figure 4 present and example 
of GAMM method (Graphical Analysis for Maintenance 
Management) proposed by these authors, where they used 
two graphics to present jointly maintenance operation data 
and level of system reliability at the moment maintenance 
intervention. This will help to make tactical and operational 
decisions easier. New graphical tool on the basis of data 
related to the interventions sequence performed to a piece of 
equipment in during a time horizon. It must provides easy 
access to certain variables patterns showing useful 
information for maintenance management and decision 
making in the short, medium, and long term. 

 

 

 
Figure 4.GAMM method. Example of programmable 

graphical method for following efficiency and effectiveness 
of maintenance plan execution (Barberá et al. 2012) 

4. CONCLUSIONS 

In this paper the general context of PHM industrial 
application has been presented, summarizing benefits and 
challenges. Finally the main factors that have to be 
considered for designing a practical methodology for 
implementing a PHM-based solution have proposed. The 
issues exposed in this paper are a first step in a much larger 
investigation, that will be focused, necessarily, on analyzes 
of PHM implementation in real cases. This will help to 
verify the practical utility of these solutions in different 
sectors and situations andit will let incorporate to the 
analysis the real constraints that these processes can 
incorporate. 
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ACRONYMS 

ALS Autonomic Logistic System 
CBA Cost-benefit Analysis 
CBM Condition-based Maintenance  
CND Could Not Duplicate 
ETA  Event Tree Analysis 
FMEA Failure Modes and Effects Analysis 
FTA Fault Tree Analysis  
GAMM Graphical Analysis for Maintenance Management 
ICT Information and communications technology 
KPI Key Point Indicator 
LCC Life-cycle Costs 
MTTR  Mean Time to Repair 
NEOF No Evidence Of Failure 
NFF No Fault Found 
PdM Predictive Maintenace 
PHM Prognostics and Health Management   
PM Preventive Maintenance 
RBD Reliability Block Diagram 
ROI Return on Investment   
RP Reliability Prediction 
RTOK Re-test Ok   
RUL Remaining Useful Life 
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ABSTRACT

So-called reliability adaptive systems are able to adapt their
system behavior based on the current reliability of the system.
This allows them to react to changed operating conditions or
faults within the system that change the degradation behavior.
To implement such reliability adaptation, self-optimization
can be used. A self-optimizing system pursues objectives, of
which the priorities can be changed at runtime, in turn chang-
ing the system behavior.

When including system reliability as an objective of the sys-
tem, it becomes possible to change the system based on the
current reliability as well. This capability can be used to con-
trol the reliability of the system throughout its operation pe-
riod in order to achieve a pre-defined or user-selectable sys-
tem lifetime. This way, optimal planning of maintenance in-
tervals is possible while also using the system capabilities to
their full extent.

Our proposed control system makes it possible to react to
changed degradation behavior by selecting objectives of the
self-optimizing system and in turn changing the operating pa-
rameters in a closed loop. A two-stage controller is designed
which is used to select the currently required priorities of the
objectives in order to fulfill the desired usable lifetime.

Investigations using a model of an automotive clutch system
serve to demonstrate the feasibility of our controller. It is
shown that the desired lifetime can be achieved reliably.

1. INTRODUCTION

Self-optimizing mechatronic systems are a class of intelli-
gent technical systems that are able to autonomously adapt
their behavior if user requirements or operating conditions
change (Gausemeier, Rammig, Schäfer, & Sextro, 2014). To
this end, the current situation is monitored and the objectives

Tobias Meyer et. al. This is an open-access article distributed under the terms
of the Creative Commons Attribution 3.0 United States License, which per-
mits unrestricted use, distribution, and reproduction in any medium, provided
the original author and source are credited.

of the system are determined. Using model based multiob-
jective optimization, for which a model of the dynamical be-
havior of the system is used, optimal system configurations
are calculated before operation of the system. To adapt the
system behavior during operation, the self-optimizing system
selects among these optimal system configurations.

In order to use self-optimization to ensure that the require-
ments regarding reliability of the system are met, a suitable
selection process has to be implemented. To adapt the sys-
tem behavior advantageously with regard to system reliabil-
ity, it has to be possible to lower work load or wear on critical
components by selecting appropriate optimal system config-
urations. Thus it is also necessary to include system degra-
dation in the objective functions used for the multiobjective
optimization.

To control the remaining useful lifetime, the whole system
history has to be taken into account as well. This could not
be achieved by directly including remaining useful lifetime in
the model used for multiobjective optimization, as then each
objective function evaluation would require a simulation of
the whole system lifetime. Such a simulation requires a lot of
computing effort, rendering this approach impossible. Thus
a process to take the system history into account separately
during operation is required. For this, our presented self-
optimization based remaining useful lifetime controller can
be used.

2. MAINTENANCE PLANNING

The big advantage of actively controlling the reliability of
a system becomes apparent if the whole life-cycle including
maintenance is considered. Within the scope of this section,
it is assumed that after maintenance, a system is as-good-as-
new. Traditionally, maintenance was conducted as either cor-
rective of preventive maintenance (Birolini, 2007). In correc-
tive maintenance, system functionality is reestablished once a
failure occurs. This strategy is cheap at first, but once a failure
occurs and the system is unavailable, maintenance has to be
conducted as soon as possible, making the repair expensive. It
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Figure 1. Maintenance planning techniques and their effect
on usable lifetime.

also comes with the risk of catastrophic failures which make
it unsuitable for many systems. This approach maximizes the
usable lifetime, as can be seen in Fig. 1. Availability, how-
ever, is limited due to unnecessarily long unscheduled main-
tenance.

Preventive maintenance, on the other hand, allows a high avail-
ability of the system by retaining system functionality. This
is achieved by conducting maintenance before a failure oc-
curs, making the maintenance schedulable and thus highly
efficient. Usually, suitable maintenance intervals are deter-
mined using stochastic models for large fleets of systems (Joo,
Levary, & Ferris, 1997). This approach has the advantage
of achieving high availability with planned maintenance in-
tervals, but usable lifetime until maintenance is lower than
usable lifetime until failure. This increases the cost of opera-
tion due to earlier maintenance than necessary. Also it is best
suited for large fleets of identical systems and can hardly be
implemented for unique machinery.

In order to overcome these drawbacks, condition based main-
tenance can be used. According to (Jardine, Lin, & Ban-
jevic, 2006), a condition based maintenance program con-
sists of three steps: Data acquisition, data processing and
maintenance decision making. In the first two steps, the cur-
rent state of the system is assessed. After evaluation, effi-
cient maintenance policies are recommended. A condition
based maintenance program is comprised of two important
aspects: Diagnostics and prognostics. In diagnostics, exist-
ing faults are detected, isolated and identified before they

ω1
ω2 Θ2

FN
μ

Friction
plates

Engine Driven
system

Figure 2. Basic structure of clutch system.

lead to a failure. Prognostics, on the other hand, deals with
the prediction of future faults. The main objective is to es-
timate the time until a fault occurs or the probability of it
occuring. Using this information, the system can be operated
without wasting usable lifetime for overly cautious mainte-
nance intervals and also without requiring unscheduled main-
tenance. While this is advantageous over corrective and pre-
ventive maintenance, it remains a reactive method in which
the system degradation drives the scheduling of maintenance
operations and which makes planning of inspection and main-
tenance complex (Chena & Trivedi, 2005).

By combining information about the current system reliabil-
ity with a feedback to system operation, it becomes possible
to adjust system behavior according to its current reliability.
This allows reversal of the usual approach. It now becomes
possible to schedule maintenance operations with the system
adapting its behavior and its degradation accordingly. The
proposed closed loop control allows for such operation.

3. APPLICATION EXAMPLE

A single plate dry clutch has already been introduced as ap-
plication example in (Meyer, Sondermann-Wölke, Kimotho,
& Sextro, 2013) and is used again in this contribution. This
type of clutch is commonly utilized in passenger vehicles to
connect an internal combustion engine to the drivetrain. The
basic outline of the clutch system is shown in Fig. 2. It con-
sists of two friction plates with coefficient of friction µ, of
which the input plate is connected to the engine while the
output plate is connected to the driven system, e.g. a gear-
box. The input and the output plates are rotating at speeds
ω1 = 1 rad

s and ω2 respectively. To engage the clutch, both
plates are pressed against each other by the force FN , thus
transmitting torque Tf from the input plate to the output plate
and in turn applying this torque to the driven system.

The system dynamics can be modelled with

Tf (t) = FN (t) · µ (∆ω (t)) · reff , (1)

ω̇2 (t) =
1

Θ2
· (Tf (t)− d2 · ω2 (t)) , (2)

µ (∆ω) = µ0 ·
2

π
· arctan

(
∆ω

ω̂

)
(3)

2

European Conference of the Prognostics and Health Management Society 2014

665



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

0 0.5 1 1.5 2 2.5
0

5

10

15

20

25

30

f
2

f
1

k  = 1
f
1,1

 = 3.81
f
2,1

 = 2.04
t
r,1

 = 2.64 s
α  = 1.864

k  = 84
f
1,84

 = 28.3
f
2,84

 = 0.0226
t
r,84

 = 9.96 s
α  = 1254

α
1

1

84 k  = 49
f
1,49

 = 9.77
f
2,49

 = 0.0564
t
r,49

 = 9.36 s
α  = 173.2

49

k  = 40
f
1,40

 = 6.15
f
2,40

 = 0.182
t
r,40

 = 6.89 s
α  = 33.86

40

Figure 3. Pareto front of clutch system with two objective
functions: f1: minimize wear and f2: Minimize accelera-
tions, i.e. maximize comfort. Note that the duration of an
actuation cycle tr has a great effect on both objectives.

where µ0 = 1 is the nominal coefficient of friction, ∆ω =
ω2−ω1 is the difference in revolutionary speed of the plates,
ω̂ = 0.1 rad

s is the accuracy parameter, reff = 1 m is the
effective radius of the plates, Θ2 = 1 kg

m2 is the moment of
inertia of driven system, d2 = 1N ·m · s

rad is the damping factor
of the driven system. Arbitrary values, which do not model a
particular system, were chosen to demonstrate the proposed
control method.

Also in (Meyer et al., 2013) it was shown that using multi-
objective optimization techniques, a control trajectory for the
actuation force FN (t) can be computed to actuate the clutch
system. Multiobjective optimization techniques attempt to
minimize user defined objective functions by adapting sys-
tem parameters. Typically, it is not possible to minimize mul-
tiple objective functions at once, but instead as one objective
function value is lowered, another objective function value
rises. This leads to the so-called Pareto front, which con-
sists of all optimal compromises between multiple objective
functions. To each point on the Pareto front, system parame-
ters are given in the Pareto set. To compute Pareto front and
Pareto set, a genetic algorithm which comes with the Matlab
global optimization toolbox has been used.

The required objective functions are included in a full model
of the system dynamics. For our system, the objective func-
tions are f1, which represents the power loss in the clutch Pf
and in turn corresponds to the wear rate of the clutch plates,
and f2, which represents e.g. comfort of vehicle passengers:

f1 =

∫ t0+tr

t0

(Pf (t))
2

d t =

∫ t0+tr

t0

(TF (t) ·∆ω (t))
2

d t,

f2 =

∫ t0+tr

t0

(ω̇2 (t))
2

d t.
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Figure 4. Pareto set of clutch system with 84 possible actua-
tion trajectories FN (t).

To compute the values of these objective functions, the dy-
namical model of the system is simulated over the period
t = t0 . . . t0 + tr using trajectories for FN (t) as simulation
input.

The duration of the actuation cycle and the shape of the trajec-
tory are the optimization parameters. To include these in the
optimization procedure, the trajectory was subdivided into 16
sections with equal durations. For the trajectory to begin with
a completely disengaged clutch and end with a completely en-
gaged clutch, FN (t0) = 0 N and FN (t0 + tr) = 100 N are
assumed. The optimization parameters are then the total du-
ration of the actuation cycle tr and the shape computed by us-
ing 15 intermediate values FN

(
t0 + 1

16 · i · tr
)
, i = 1 . . . 15.

Linear interpolation is used between these values. This way,
the Pareto front shown in Fig. 3 with the corresponding Pareto
set shown in Fig. 4 is obtained. A short total duration of
the actuation cycle yields low energy losses but high accel-
erations, as opposed to a long duration, which yields inverse
results. Each trajectory is a trade-off between these two ob-
jectives.

4. CONTROLLING THE RELIABILITY

In prior works (Meyer et al., 2013), a basic controller for
the reliability of the clutch system was presented. However,
the approach outlined therein was limited in its effectiveness
since it did not take the inherent non-linearities and deviations
between multiobjective optimization model and real system
into account. It was not capable of handling deviations that
required a great change from the nominal working point. The
approach presented in the remainder of this contribution over-
comes these drawbacks and offers better generalizability to
other engineering problems.

A two-stage controller design has been favored for the possi-
blity to be designed separately for high-frequency perturba-
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Figure 5. Full two-stage control loop.

tions on the inner loop and for low-frequency perturbations
on the outer loop.

While priorities of objectives of a self-optimizing system may
be selected arbitrarily, the system behavior does not neces-
sarily reflect this immediately. On the one hand, an adapta-
tion usually takes some time to take full effect; on the other
hand the system model used for multiobjective optimization
and the real system might deviate from one another, thus if a
working point is chosen based an pre-calculated optimal sys-
tem configurations, which are based on the system model, the
actual system might behave differently. This leads to differ-
ences between desired objectives and achieved objectives.

To overcome these shortcomings, Krüger et al. developed a
closed loop control for the objectives of a self-optimizing sys-
tem (see (Krüger, Remirez, Kessler, & Trächtler, 2013)), col-
loquially called “Pareto controller”. The purpose of this con-
troller is to ascertain a pre-selected system configuration is
actually being used, despite of perturbations or deviations be-
tween optimization model and actual system. To this end, the
desired system configuration is selected with a so-called α-
parameterization, which can be defined individually for each
system. Suggestions are made, e.g. to use a Simplex-based
method or to calculate the ratio among two objectives. In the
course of this paper, we define the α-parameterization as fol-
lows, it is also included in Fig. 3:

α =
f1

f2
.

The desired parameterization value αdes is used as controller
input. The current value of the α-parameterization, αcur is
required for the controller to calculate the used value αused
according to the difference between αcur and αdes. Once
αused has been calculated, the parameters of the system are
determined by the so-called s-transform and set in the sys-
tem. After a certain time, the resulting system behavior is
evaluated to determine the current value αcur of the α-pa-
rameterization.

It is assumed that the behavior adaptation and evaluation of
the actual system behavior takes some time to take full effect.
For this reason, the Pareto controller works in discrete time
on a slow time scale, where one discrete time step is the con-
stant time period required for the full behavior adaptation and
evaluation process. For this reason, in the abstract model of
the system, the output is delayed by the unit delay 1

z .

This Pareto controller is used as inner loop of the full con-
trol loop. It is not able to take the full lifetime information
into account and serves the purpose of reliably achieving the
desired system behavior.

The outer loop, on the other hand, is responsible for control-
ling the remaining useful lifetime. For this, an abstract model
of the system adaptation process is required. As the inner
loop already controls the desired behavior, the outer loop does
not need to take actual system parameters into account but in-
stead relies on using the α-parameterization as system input.
System output and controlled variable is the remaining use-
ful lifetime RUL. The reference input is denoted by RULdes.
However, the relationship between α and RUL is highly non-
linear. The difference in remaining useful lifetime ∆RUL (α)
over a single actuation cycle i can, however, be approximated
using the system model. This is called the r-transform:

∆RUL (α) = r (s (α)) .

To obtain the current remaining useful lifetime, an integral
element z

z−1 in the dynamic system, and a unit delay 1
z for the

evaluation of the current remaining useful lifetime are added,
as shown in Fig. 5.

As controller for the remaining useful lifetime, a P controller
was chosen. An integral element is not required to correct
for steady state errors due to the integrating properties of the
wear process. It calculates the r-transformed desired α-pa-
rameterization r (s (αdes)) according to:

GRUL =
r (s (αdes))

RULdes − RUL
= Kp,RUL (4)

4
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This discrete controller can be implemented in the same dis-
crete time used for the Pareto controller. The controller out-
put is then converted by the inverse r-transform s−1

(
r−1
)

to
give αdes.

The reference input generated for the RUL-controller needs
to be strictly monotonically decreasing. If it was not, an actu-
ation cycle with no or even negative wear would be required,
which is physically impossible. The chosen reference input
begins with RULdes (new system) = 100% and ends with
RULdes (end of specified lifetime) = 0%. Linear interpo-
lation is chosen for intermediate cycles. The reference input
can be altered during operation in case of changed require-
ments. An adaptation of system behavior is then conducted
by means of the control loop.

5. SETUP OF THE CONTROLLER FOR THE APPLICATION
EXAMPLE

When controlling the remaining useful lifetime, the system
behavior is adapted by changing system objectives. However,
it needs to be ascertained that these objectives are met. As
was mentioned in the basic introduction of the control loop
in section 4, a specifically designed closed loop control by
Krüger et al. (Krüger et al., 2013) is used. This control loop
as well as the RUL-controller that builds on it are working
in discrete time, their stepsize is big compared to the system
dynamics. Since the clutch system has discrete events, one
step corresponds to one full actuation cycle. Due to this, the
stepsize of both controllers is 1 cycle.

5.1. Pareto controller

The basic idea of the closed loop Pareto controller is to define
the desired system behavior using a so-called α-parameteri-
zation. The value of this parameterization is used as reference
input αdes for the controller. The actual current value αcur is
computed from signals or measured variables of the system.

At first, the α-parameterization needs to be defined. For the
clutch system, which pursues two objectives only, the frac-
tion of both objective values is used, i.e. α = f1

f2
. This ap-

proach has several advantages over more complex parameter-
izations, e.g. the Simplex-based parameterization suggested
in (Krüger et al., 2013). First, it is very simple to calculate,
thus requiring low computational time. Second, and more
importantly, no knowledge about the Pareto front, such as an
approximating function, number of known points or values at
the edges, is required. This makes evaluating the currently
achieved value αcur independent of any assumptions about
other possible working points.

The α-value needs to be transformed into a set of parameters
to be used by the actual system. For this, the s-transform is
used. It determines the desired Pareto point from the Pareto
front and selects the Pareto set, which contains all system pa-

rameters, accordingly. For the clutch system, linear interpo-
lation between pre-calculated Pareto points is used. This is
done in three steps: At first, the two Pareto points closest to
the desired α-parameterization αdes are searched. In the next
step, the two sets of parameters are selected from the Pareto
set Pset. Last, linear interpolation is used for each pair of
parameters to obtain the final parameter.

To determine the closest Pareto point, the α-paramterization
value for each pre-calculated Pareto point is calculated. For
this, k = 1 . . . n, k ∈ N, n ∈ N Pareto points are assumed:

αk =
f1,k

f2,k
.

The following two steps are conducted at runtime. At first, k
closest to the currently desired value αdes is searched:

min
k

(|αk − αdes|) .

Once this is known, linear interpolation among two points
with α-values closest to the desired value αdes is conducted
to find system parameters W from the Pareto set Pset:

P (αdes) =





(Pset,k+Pset,k+1)·αdes

αk+αk+1
,

if 1 < k < n and
|αk − αk−1| < |αk − αk+1|,

(Pset,k−1+Pset,k)·αdes

αk−1+αk
,

if 1 < k < n and
|αk − αk−1| > |αk − αk+1|,

Pset,k, else.

The advantage of this approach is that even though a limited
number of Pareto points is known from numerical multiob-
jective optimization, a close approximation for intermediate
values can be found. This is important in subsequent steps,
since all controllers developed herein have continuous output
values and expect the system, i.e. s-transform, clutch system,
objective evaluation, and s−1-transform, to accept such and
work continuously as well.

With linearly interpolating between Pareto points, it is as-
sumed that all computed possible solutions Pset to the op-
timization problem are similar. Proof that this assumption
holds is difficult, but clear indications can be seen in Fig. 4.

The s−1-transform, on the other hand, is very simple once
current values of the system objectives f1,cur and f2,cur are
determined by evaluating measured variables or signals from
the system:

αcur =
f1,cur

f2,cur
.

With these transformations all set, the actual controller can
be parameterized. It was created according to (Krüger et al.,
2013) without modifications. The controller parameters were
chosen as Kp = 0.05 and Ki = 0.05.

The controller reference input is the desired α-parameteriza-
tion αdes. It is set by the outer loop which controls the re-
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maining useful lifetime of the system and induces a behavior
adaptatation by changing αdes.

5.2. RUL controller

The purpose of the outer control loop is to determine the cur-
rently required desired α-parameterization αdes from the de-
sired remaining useful lifetime RULdes and the current re-
maining useful lifetime RUL.

At first, the remaining useful lifetime RUL needs to be de-
termined. This is highly application-specific. A model-based
approach has been selected to estimate the remaining useful
lifetime of the friction plates. It is based on the assump-
tion that clutch plate wear is proportional to friction energy
Ef (Fleischer, 1973). For each actuation cycle i with time
span t = t0,i . . . t0,i + tr, where tr is the duration of the ac-
tuation cycle, the wear w (i) occuring during this cycle is:

w (i) = pf ·∆Ef (i) = pf ·
∫ t0,i+tr

t0,i

Pf (t) d t

= pf ·
∫ t0,i+tr

t0,i

TF (t) ·∆ω (t) d t. (5)

The proportionality factor is assumed to be pf = 1 for normal
wear behavior. Due to e.g. errors in manufacturing or materi-
als, it might deviate, thus requiring a changed operating point
in order to fulfill the specified lifetime.

To estimate the remaining useful lifetime, all actuation cycles
need to be taken into account. To do so, the sum of the wear
occuring in each cycle w (i) is summed over all prior m cy-
cles, i.e. i = 1 . . .m, i ∈ N,m ∈ N. The remaining useful
lifetime RUL for the next cycle m+ 1 can then be estimated
by taking the maximum amount of wear wmax of the clutch
into account. This results in the following relation:

RUL (m+ 1) = 1−
(∑m

i=1 w (i)

wmax

)
. (6)

To convert the RUL-controller output to a desired value of the
α-parameterization, the inverse r-transform s−1

(
r−1
)

needs
to be defined next. Since ∆RUL (α) can not easily be com-
puted analytically, the main cause of wear needs to be deter-
mined. As was shown in eqns. 5 and 6, the remaining use-
ful lifetime mainly depends on the friction energy ∆Ef , thus
∆RUL (α) ∼ ∆Ef .

To setup the inverse r-transform, the friction energy for each
pre-calculated α-parameterization ∆Ef (α) is computed by
simulating the system model for one full clutch cycle. The
resulting relationship between α-parameterization and ∆Ef
is shown in Fig. 6.

Using a least-squares approach, an approximating function
was fitted to obtain a computationally effective s−1

(
r−1
)
-
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Figure 6. Compensation of nonlinear behavior.

transform. An exponential ansatz was chosen:

αapprox = q1 · eq2·∆Ef .

The parameterized approximating function (q1 = 0.3714,
q2 = 0.5536) is also shown in Fig. 6.

The objective-based controller for the remaining useful life-
time is implemented according to eq. 4. As proportional gain
parameter, Kp,RUL = 1000 was chosen.

6. SIMULATION RESULTS

To evaluate the feasibility of the proposed approach, simula-
tions that span the whole lifetime of the clutch system were
conducted. For this, a model of the dynamic behavior of the
clutch system according to eqns. 1, 2 and 3 was used.

An artifical fault was introduced into the system model: Af-
ter 200 regular clutch cycles, the wear proportionality factor
was changed from pf = 1 to pf = 2. This way, the simu-
lated wearing process was accelerated; the plates wear twice
as fast as they did previously. As can be seen in Fig. 7, the
system behavior is adapted accordingly. At first, a slight de-
viation between desired and obtained RUL can be observed;
however, the system lasts for the required 500 cycles.

In another test of the behavior adaptation process, the require-
ments for the system were changed at 200 cycles. The system
is now required to last for 600 cycles instead of 500 cycles,
as was the initial requirement. As can be seen in Fig. 8, the
adaptation process enables the system to successfully adapt
its behavior to changed requirements.

As was shown, an adaptation to either changed system degra-
dation processes or to changed requirements is possible. The
controlled system fulfills the desired properties regarding re-
liability.

6

European Conference of the Prognostics and Health Management Society 2014

669



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

0 100 200 300 400 500
0

0.5

1

RU
L

 

 
Desired RUL
Static system
Reliability−controlled

0 100 200 300 400 500
0

200

400

600

Cycles

α
−p

ar
am

et
er

iz
at

io
n

 

 
Desired
Used
Current

Figure 7. System behavior if a fault occurs. At 200 cycles,
the proportionality factor pf was changed to simulate a clutch
system wearing twice as fast as was anticipated for a normal
system.

The adaptation to accelerated wear processes and changed
user requirements comes at the expense of degrading perfor-
mance of the system. In case of the clutch system, the value of
the α-parameterization is lowered for both adaptations. This
leads to lower, i.e. better values of the objective minimize
wear and to higher, i.e. worse values of the objective mini-
mize accelerations. As can be seen in Fig. 4, the main dif-
ference between different working points is the duration of
the actuation trajectory. A system running in nominal oper-
ating mode, i.e. before 200 cycles are reached, has an actu-
ation duration of approximately 9.5 s, giving a comfort value
f2 = 0.039. If changed user requirements are to be taken into
account, the actuation duration is shortened to approximately
8.9 s, lowering the comfort value to f2 = 0.064. In order to
compensate accelerated wear processes, the selected working
point requires an even faster actuation duration of approxi-
mately 6.9 s at a comfort value f2 = 0.25. These lower val-
ues signify a quicker and less comfortable acceleration ma-
neuver, which is required to react on these great variations in
system behavior or requirements. Even though the difference
in comfort value suggests severely limited operating poten-
tial, the benefit of reaching pre-defined reliability goals will
in most cases outweigh the loss in comfort.

7. CONCLUSION & OUTLOOK

The behavior adaptation process of an intelligent system is
modelled abstractly. A two-stage control loop was designed
with the inner loop controlling the desired system behavior
whereas the outer loop controls the remaining useful lifetime.
To this end, an existing controller for the inner system behav-
ior is implemented. For the outer loop, a new controller is
added. Simulation results show, that the adaptation of the
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Figure 8. System behavior for changed requirements. At 200
cycles, the system requirements are changed; it is now ex-
pected to sustain 600 actuation cycles.

system behavior based on the remaining useful lifetime suc-
cessfully adapts the behavior if either the system behavior or
the requirements change. In both cases, the desired useful
lifetime can be accomplished.

While simulations show that the system degrades as desired,
experimental validation is still required. Since the behavior
adaptation and experiments that span the whole system life-
time are complex, the setup of a dedicated test rig is currently
being pursued.
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ABSTRACT 

The largest variable cost to aircraft’s manufacturers and 

flying companies is unscheduled maintenance. Therefore, 

developing efficient and modular PHM system capable to 

scale different architectures topologies for in flight and on 

ground health monitoring could be cost effective, since it 

brings indication and warning prior to damage occurring.  

In this paper, we propose an innovative diagnostic and 

prognostic health system based on a combination of 

modular acquisitions interfaces and processing units.  

An embedded JTFA (Joined Time-Frequency Analysis) 

method based on STFT (Short-Time Fourier Transform) or 

Wigner-Ville transforms are used to extract a relevant 

signature.  The proposed algorithms and PHM system 

technology are applied for diagnosis of mechanical flows in 

a high speed rotating gear of a demonstrator machine. A 

detailed description of data management and rooting from 

vibration sensors to the processing unit will be exposed.   

Finally, a proof-of-concept experiment will be designed to 

demonstrate the integration of all the described system 

elements to detect any damage or anomaly into the 

monitored structure. 

1. INTRODUCTION  

Health management and damage assessment of rotary 

structures is one of the major issues that face Helicopter’s 

and turbofan’s manufacturers. In this context, PHM 

applications can actually provide a wide range of benefits 

for complex systems such as transmission gear boxes or jet 

engine turbine.  

For the time being, main and engine accessories are 

systematically replaced either upon failure or after a pre 

calculated time of use. These maintenance procedures which 

are typified in many reports (FAA report DOR/FAA/CT-

92/29) create huge cost of maintenance and materials (Cf. 

Figure 1).  

Therefore, forecasting the remaining useful life of these 

subsystems can improve flight safety and reduce 

exploitation cost by reducing unscheduled events and 

regular maintenance (Heng et al 2009). Moreover, a 

constant monitoring of critical subsystems reduces 

preventive aircraft grounding which increase airplanes 

readiness.  

 

Figure 1. Maintenance, repair, and operations (MRO) cost 

distribution in (%) (PIPAME report) 

Hamza E. Boukabache et al. This is an open-access article distributed 

under the terms of the Creative Commons Attribution 3.0 United States 
License, which permits unrestricted use, distribution, and reproduction 

in any medium, provided the original author and source are credited. 
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In aircraft industries, real time monitoring of vibration 

(Lastapis et al 2007, Dempsey et al. 2007) is systemically 

used to detect machine faults including structure flaws, 

impacts, cracked rotors or oil degradation. Due to the 

complex nature of the inspected systems, analytical studies 

based on predictive behavior models show their limit quite 

quickly. Additionally, it has been shown by Lewicki et al. 

2010 and Bechhoefer et al. 2011 that there is no single 

condition indicator (CI) which is sensitive to every failure 

mode. 

So, in most methods, the diagnostic is simply based on 

comparison of vibration amplitudes or frequencies to a 

baseline. However, in the case of some complex machines, 

such as helicopter blades or turbofan, the detection of 

abnormal behavior is in essence complicated by the fact that 

changes in operational conditions makes acquired vibration 

non stationary. Because of that, classical vibration based 

diagnostics techniques which focus either on time domain or 

frequency domain are not suitable. In such cases an efficient 

approach to monitor (CI) condition indicator may be based 

on (JTFA) Joined Time-Frequency Analysis (Klein 2013). 

The current paper proposes an automated solution for 

feature extraction. Health indicators such as temperature, 

pressure or vibration are acquired using on board sensors 

through avionics buses or analog interfaces. Hence, there is 

no need to plug external non-qualified sensors. To inform 

operators of needed repairs, the system is capable through 

embedded processor to evaluate the global health using 

evaluative and dynamic thresholds.  

For the purpose of this article, We focused our studies, on 

the joined time frequency analysis of abnormal vibration 

behavior thought the instrumentation of piezoelectric 

sensors. Using an embedded processor, an analysis 

algorithm based on smart comparisons between different 

signatures will be exposed. Damage assessment approach is 

in fact based on a smart differentiation between classified 

signatures acquired prior and after to the damage. The 

healthy signature, in the other hand is extracted using a 

statistical characterization of the studied machine. 

Finally in the last section, we will demonstrate the 

flexibility that network embedded modular system 

architecture may bring to PHM in aerospace. 

2. JOINED TIME-FREQUENCY ANALYSIS AND FEATURE 

EXTRACTION METHODS : 

Based on JTF analysis, feature extraction methods can be 

computed using different techniques of signal processing. 

This section provides a short description of the considered 

methods:  

1. Short-Time Fourier Transform: STFT is widely 

used for JTF analysis. It splits a time domain signal f(t) 

into small segments and applies a window function 

W(t) to each one before computes a FFT (Fast Fourier 

Transform) of each segment :  

      
 (    )  ∫ [ ( )   (    )]          

 

 (1) 

Since it uses a typical Fourier transform, this method 

requires a stationary signal over each segment interval. 

So to analyze semi-transient signals, the required 

segments lengths could be adapted dynamically to the 

observed system. In this case, the major consideration 

is to correctly balance between time and frequency 

resolution (Qian et al 1999). In fact, due to 

Heisenberg-Gabor uncertainty principle, a wide 

window W(t) gives good frequency resolution and poor 

time resolution. In opposite a narrow time slice gives a 

good time resolution and poor frequency resolution. 

These two cases could be problematic for fast transient 

signals. 

2. Wavelet Analysis is mostly used to localize the exact 

time of a specific vibration event. This approach is 

widely used as a JTFA technique for Lamb wave 

triangulation and feature extraction (Boukabache et al. 

2013). Basically, Wavelet Transform (WT) contains 

informations similar to STFT. However due to the 

special proprieties of the used wavelet, the resolution 

in time is much higher at high frequencies. The 

resolution difference between STFT and Wavelet 

Transform is shown in Figure 2. 

 

 

Figure 2. Time-Frequency sampling resolution 

representation of different JTF methods 
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3. Bilinear Time-Frequency Distribution using 

Cohen’s Class Distribution Function: (CCDF) was 

firstly proposed in 1966 in the context of quantum 

mechanics (see Cohen 1966).  It is a generalized time-

frequency representation method that utilizes bilinear 

transformations thought the use of a kernel function : 

   (   )  ∬   (   ) (   )     (     )    
 

  

 (2) 

Where Ax is the ambiguity function and   is the kernel 

function which could include Choi-Williams 

Distribution (Lazorenko 2006) Wigner-Ville 

Distribution (Boashash 1987) or Zhao-Atlas-Marks 

(Rajagopalan et al. 2006). The main primary advantage 

of CCDF is its capability to analysis non stationary 

signals. This technique could therefore be applied to 

transient vibration data collected through high speed 

transition conditions.  However, the bilinear-

transformation needs a careful investigation of used 

window function otherwise it suffers from inherent 

cross-term contamination which degrades the clarity 

for most practical signals. 

Therefore based on these points and the study of (Byington 

et al, 2011) the authors chose a STFT as a JTFA method. 

Compared to the other techniques, STFT offers the best 

compromise between resolution performance and embedded 

computational time. In fact, efficient FFT algorithms 

already exist for embedded CPU or FPGA which makes 

STFT time calculation quite efficient. In addition, small 

amount of data is needed to computes the algorithm which 

lighten aircraft data bus traffic. 

3. THE PROPOSED PHM SYSTEM  

In order to monitor several airplanes systems without 

overloading the weight with additional sensors, we 

developed new system architecture, capable to interact with 

existing embedded avionics and embedded sensing units 

(See Figure. 3). 

The presented technology is built around harsh networked 

electronic modules (see Figure 3 and 4) where each one is 

dedicated to a specific task such as: 

 Sensors instrumentation and acquisition (Temperature, 

Strain, Pressure,  Acceleration and Deformation) 

 Multiple avionics protocol communication interfaces 

(ARINC429, CAN, Ethernet, RS422 …. ) to connect 

the PHM system with on board calculators 

 Waveform and signal generation (current, voltage, 

resistive load …) to simulate avionics sensors behavior 

or to provide calibrated stimulus. 

Based on embedded CPUs, each module has lightweight 

signal processing capabilities to execute basics algorithms 

such as filtering or buffering.   

 

Figure 3. Synoptic of the proposed PHM modular system 

 

Moreover using hot swap and reconfiguration capabilities, 

the modules can be plugged and unplugged freely without 

damaging the PHM System. The theoretical maximum 

number of plugged modules is in fact only limited by the 

internal network bus bandwidth. Hence, this architecture 

allows high level of scalability to manage aircraft life cycle. 

  

Figure 4. Synoptic of the proposed PHM modular system 
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In addition, a central processing and control unit with 

advanced calculation capabilities manages the whole 

network scheduling and behavior. This command module is 

also responsible of sensors data collection, storage and 

processing as well as, the execution of JTFA 

diagnostic/prognostic algorithms. In fact, collected data 

could be exploited on ground with a post treatment for 

precise analysis or during flight using empiric thresholds for 

immediate alarm annunciations. The modular scalability of 

the proposed PHM architecture, allows immediate on flight 

installation to monitor in real time undesired events.  

4. PROOF OF CONCEPT  

4.1. Experimental setup  

For the purpose of this article, we used as an experimental 

machine: a phonic wheel developed to characterize a 

turbojet engine rotating speed. During its operating, the 

produced vibration is measured using a PZT piezoelectric 

sensor of 5mm radius pasted directly onto the external frame 

of the demonstrator. In the meanwhile, rotating speed is 

acquired using an inductive sensor (See Figure 5). 

 
Figure 6. Data acquisition chain  

The phonic wheel is actually driven by an electric brushless 

motor capable to reach a realistic rotating speed of 

10000RPM. When activated, the rotation of the wheel 

generates vibrations signature that produces local micro 

deformations. Hence, according to the applied strain, the 

piezoelectric sensor generates charges Q(t). To be 

exploitable, these charges are converted into a voltage signal 

using a simple charge converter (See Figure 6).  

 

 

Figure 7. Photo of the experimental setup 
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Figure 5. Experimentation setup 
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Analog acquired values are digitalized using a Delta Sigma 

24bits ADC inside the sensors module (See Figure 6), then 

buffered, eventually filtered using a low pass FIR filter and 

finally transmitted when the command module requests it.  

At the last stage of the process, the data is buffered into a 

hardware FIFO synthetized into an FPGA and finally 

handled by the processor to compute an STFT based JTFA 

analysis.  

To synchronize the global system and schedule each task of 

the process, the command module controls the wheel speed 

using short time impulse orders and acquires the rotation 

speed using the inductive sensor.  Hence, the command 

module applies to the mechanical system a strictly similar 

operating condition which allows the extraction of a 

relevant signature.  

4.2. Experimental results 

To demonstrate the detection capabilities of the described 

PHM system, in steady states conditions and pseudo 

stationary operational conditions, we performed two 

representatives’ experiments. 

 

Figure 8. Healthy vibration baseline at 1000RPM 

 

Figure 9. Abnormal vibration signature at 1000RPM 

4.2.1. Abnormal behavior in steady state operation mode 

In this configuration, the command module stabilizes the 

phonic wheel around fixed speed and acquired generated 

vibrations using the PZT sensors after 5s.  

Using equation (1) a simple spectrogram is computed 

through the calculation of the squared STFT magnitude.  

             { ( )}(    )   |     
 (    )|  (3) 

A relevant signature baseline (See Figure 8) is therefore 

extracted using Eq. 3 then compared to an abnormal 

signature acquired for the same operating conditions. For 

this experience, we simulated a machine degradation using a 

faulty contact with the shaft. In this case, data analysis 

shows a clear spectrogram response modification. Beside to 

the initial low frequencies (<500Hz) shown clearly in figure 

8, the mechanical default add to the spectrogram higher 

spikes frequencies around 1kHz. In addition, it is interesting 

to notice that magnitudes of low frequencies are the same in 

the two figures 8 & 9.   

 

Figure 10. Healthy baseline: Power Spectrogram 

Representation (dB/Hz) in 2D at 1000RPM 

 

Figure 11. Abnormal signature: Power Spectrogram 

Representation (dB/Hz) in 2D at 1000RPM 
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Figure 12. Normalized healthy baseline signature 

 

Figure 13. Normalized damage response 

In all the experimentations, we used a Hamming windowing 

to compute de DFT. The calculation of the power 

spectrogram representation presented in figures 10 & 11 

shows the need to have same scaling. Actually, with this 

representation, the coloration map doesn’t allow any 

thresholding. To solve this issue, we recalculate a common 

scale to both signatures using a simple normalization. The 

results are shown in figures 12 & 13. Using this simple 

algorithm, we are capable to detect any magnitude variation 

versus to the baseline (presented in figure 12) using a simple 

threshold fixed to 1.1. 

4.2.2. Abnormal behavior in pseudo transient operation 

mode 

In real operational condition, the speed or the load may vary 

with time. In this case, the previously presented algorithm 

does not suit. To simulate such behavior, the command 

module sends to the phonic wheel a series of orders to 

increment its speed by step of 2.5seconds to reach a 

maximum speed of 7000RPM.  

 

Figure 14. Healthy 3D baseline signature between 600 and 

7000RPM 

 

Figure 15. Damaged 3D signature between 600 and 

7000RPM 

In this configuration the command module verifies for each 

step that the needed speed was reached before acquiring 

1second of vibration data. For these conditions, we may 

split the entire experimentation time into small segments 

where stationary conditions are verified. The segments 

intervals could be downsized depending on the acceleration 

capabilities of the motor. In other words, the more the 

acceleration is, the smaller the intervals are set. 

While, semi-stationary conditions are verified for each 

segment, we computed for each interval, a simple power 

spectrum density algorithm; then we extracted for each 

rotation speed the location and the magnitude of the 

produced frequency peaks. The resulted data are plotted in 

figures 14 and 15. However, the 3D representations are 

quite difficult to analyze. To simplify and automatize the 

diagnosis, we extract statistically from the baseline (See 

Figure 14) a list of relevant frequency peaks. Then, we plot 

in 2D representation the magnitude of theses peaks versus 

the rotation speed.     
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Figure 16. Healthy baseline between 700 and 6200RPM 

 

Figure 17. Abnormal signature between 700 and 6200RPM 

 

Figure 18. Damaged signature between 700 and 6200RPM 

The produced signatures could therefore be quickly studied 

using a pre-calculated abacus (See. Figure 16). Using this 

simple representation, the diagnosis is quite quick to 

perform. The thresholds are calculated statistically for a 

healthy behavior then compared to degraded signatures. In 

the example of figure 17, the frame of the phonic wheel has 

been burden with 25g. The signature stills basically the 

same, even if we notice a thin shift of spikes magnitudes at 

high rotation speed. In the example of figure 18, a faulty 

contact has been introduced onto the shaft of the phonic 

wheel. The signature response has been completely 

modified.  

5. CONCLUSION 

A scalable aerospace PHM technology based on embedded 

networked modules was proposed. The system was designed 

for in flight and on ground aircraft health management. 

Beside its capacity to spy most of avionics buses, the system 

is capable to monitor mechanical machineries in order to 

detect an abnormal event and predict an eventual failure. In 

this paper the proposed system was successfully tested on a 

representative mechanical rotating machine.  

In addition, we presented a method for analysis and 

diagnosis vibro-acousitic data acquired using piezoelectric 

sensor. The method was successfully demonstrated for 

stationary data and pseudo-transient variations. Using a 2D 

representation of RPM-spectrogram, we managed to 

diagnosis abnormal behavior onto a phonic wheel. Actually, 

the developed algorithms were specially studied to be 

suitable for an embedded integration. 

NOMENCLATURE 

CCDF    Cohen’s Class Distribution Function 

CI Condition Indicator  

CPU       Core Processing Unit 

DFT Discrete Fourier Transform  

JTFA Joined Time Frequency Analysis 

FFT Fast Fourier Transform  

FIFO First In First Out 

FIR Finite Impulse Response 

FPGA    Field-Programmable Gate Array 

PZT Lead Zirconate Titanate 

PSD       Power Spectral Density  

RPM Rotation per Minutes 

STFT Short Time Fourier Transform 

WT Wavelet Transform  
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ABSTRACT

The objective and originality of this work are twofold. On one
hand, it considers the degradation modeling and Remaining
Useful Life (RUL) estimation for the closed-loop dynamic
systems, which have not been addressed extensively in the
literature. On the other hand, the paper examines how the
prognosis result impacts the maintenance process. Indeed,
due to their natural ageing and/or non desired effects of the
operating condition, actuators deal with the loss of effective-
ness which is a source of performance degradation of closed-
loop system. In this paper, we consider a control system
with classical Proportional-Integral-Derivative controller and
stochastically deteriorating actuator. It is assumed that the
actuators are subject to shocks that occur randomly in time.
An integrated model is proposed which jointly describes the
states of the controlled process and the actuators degradation.
The RUL can be estimated by a probabilistic approach which
consists of two steps. First, the system state regarding the
available information is estimated online by Particle Filtering
method. Then, the RUL of the system is estimated by Monte
Carlo simulation. To illustrate the approach and highlight the
impact of the prognosis result on the maintenance process, a
well-known simulated tank level control system is used. The
maintenance decision rule is based on the quantiles of RUL
histogram. In order to evaluate the performance of the main-
tenance policy, a cost model is developed.

1. INTRODUCTION

Respecting the growing demand of safety, reliability and avail-
ability of industrial production process, research activity on
maintenance modeling has intensively evolved during the last
decades. In the context of Condition-Based Maintenance (CBM),
system health monitoring information is used to determine its

Danh Ngoc Nguyen et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

current status and based on this information one can perform
maintenance actions to avoid failure (Dieulle, Bérenguer, Grall,
& Roussignol, 2003; Van Noortwijk, 2009; Huynh, Barros,
& Bérenguer, 2012). However, the CBM approach does not
consider specific knowledge about future usage of the sys-
tem which can be useful information to improve the deci-
sion marking (Khoury, Deloux, Grall, & Berenguer, 2013).
In this way, a predictive maintenance which combines the
prognosis and CBM maintenance seem to be an appropriate
approach (Vachtsevanos, Lewis, Roemer, Hess, & Wu, 2006;
Do Van, Levrat, Voisin, Iung, et al., 2012).

Generally, prognosis is defined as the prediction of future
characteristic of the system such the Remaining Useful Life
(RUL) (Si, Wang, Hu, & Zhou, 2011; Sikorska, Hodkiewicz,
& Ma, 2011). According to (Jardine, Lin, & Banjevic, 2006)
the prognostic approaches can be classified into three main
categories: statistical approaches, artificial intelligence ap-
proaches and model-based approaches. Many studies are de-
voted to the RUL estimation of systems, subsystems or com-
ponents (see reviews by (Peng, Dong, & Zuo, 2010),(Si et al.,
2011).

In spite of that, according to the best knowledge of the authors
the degradation modeling and RUL estimation process for
closed-loop dynamic system such as feedback control system
has not been addressed extensively. Indeed, the degradation
or wear of components can lead to the gradually decreasing
of the control system performance during its operation. One
objective of this paper is to propose a probabilistic approach
to assess the RUL of feedback control system with stochas-
tically deteriorating actuator within a random environment.
The other objective of the paper is to examine the use and
the impact of prognostic information on the predictive main-
tenance decision-making process. In order to deal with the
complex interaction between the deterministic behavior of the
feedback control system and the stochastic degradation pro-
cess, a Piecewise Deterministic Markov Process is adopted to
describe the whole deteriorating closed-loop system. In this

1
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framework, the distribution of the RUL of the system is com-
puted by using a two-step stochastic model-based technique.

The remainder of this paper is organized as follows. Sec-
tion 2 is devoted to the description of the system character-
istics. Section 3 describes the approach for computing the
Remaining Useful Lifetime which is relevant to system state
estimation using the available condition monitoring informa-
tion. To illustrate the methodology and also highlight the use
of prognostic result in the maintenance process, a specific
case study is introduced in Section 4. Some numerical re-
sults are also discussed here. Finally, conclusion drawn from
this work and possible ways for further studies are given.

2. SYSTEM MODELING AND ASSUMPTIONS

This section is devoted to describe the characteristics of a de-
teriorating feedback control system whose actuator stochasti-
cally degrades through time due to its natural degradation and
the impact of the operating condition. The stochastic evolu-
tion of set-point which depends on the operating mode is also
characterized. No additional sensor is devoted to the moni-
toring of the actuator degradation, the measurement of con-
trolled output is then used to assess the RUL.

2.1. General structure of a deteriorating feedback control
system

Consider a dynamical process which can be described in state-
space representation as:

{
ẋ(t) = f(t, x(t), u(t))

y(t) = h(t, x(t), u(t)) + ε(t)
(1)

where x(t) is the state vector of process, u(t) denotes con-
trol force acting on the process, y(t) is the measurement of
output. Process dynamic function f and process output func-
tion h can be nonlinear. Here, it is assumed that measure-
ment noises (εt)t∈R+

are independent random variables with
a probability density g, not necessarily Gaussian, independent
of the process state (xt)t∈R+ .

The objective of a conventional feedback control system is
to maintain the process output y(t) within a desired range
defined by a set-point. Such objective can be achieved by
the feedback structure with a classical Proportional-Integral-
Derivative (PID) controllers which are widely used in indus-
trial applications thanks to their simplicity and performance
(Aström & Hägglund, 1995), see Figure 1 for a general scheme
of a feedback control system.

The PID controller output uc(t) is given by:

uc(t) = KP

[
e(t) +

1

TI

∫ t

0

e(τ)dτ + TD
de(t)

dt

]
(2)

where e(t) is the error signal defined as e(t) = yref(t)− y(t)

with yref(t) the desired set-point (the reference output), KP

is the proportional gain, TI is the integral time and TD is the
derivative time of the PID controller. The adjustment of these
three parameters for an optimal system response is exten-
sively studied in control system design (Aström & Hägglund,
1995).

Controller Actuator Process
set-point (y

ref
)

error (e) controller output (u
c
) control variable (u)

-

measured output (y)

degradation 

process

Sensor

measurement noise (ϵ)

Figure 1. General block diagram of a feedback control system
with notations

The output of actuator which is the real control variable act-
ing on the process is defined as a function g depending on
the required value uc(t) of the controller and on the actual
capacity of actuator C(t). g is a decreasing function w.r.t.
C(t):

u(t) = g(uc(t), C(t)) (3)

At the initial stage of working, the actuators operate perfectly,
i.e. C(t) = c0 where c0 is the initial nominal capacity of ac-
tuator. In reality, the natural ageing or wear of the parts of
the actuator and/or the non desired effects of the operating
condition are unavoidable, lead to the decreasing of the ac-
tuator’s effectiveness C(t) in time and subsequently reduces
the control system performance.

2.2. Set-point evolution and operating modes

The evolution of set-point (the mission profile) presents the
environmental conditions the system evolves in. According
to the demand e.g. of the production process, the desired set-
point may change. The random evolution of the set-point is
described by a time-homogeneous Markov chain with a fi-
nite state space rset = {r1, r2, . . . , rm} describing e.g. the
m production phases. Moreover, depending on a operating
mode, the transition rate of set-point may be different.

Let Y ref(t) be the set-point at time t. The evolution of the
stochastic process {Y ref

t , t ≥ 0} in the operating mode k is
expressed by the transition probability matrix P k with the
(i, j)th element equal to:

pkij(t) = P(Y ref
s+t = rj | Y ref

s = ri) (4)

Figure 2 exemplifies the evolution of a set-point which takes
value in 2-states space and corresponds to 2 operating modes
denoted OM1 and OM2. One can find that the change of
set-point occurs more frequently in the operating mode OM2
which is more stressful.

2
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Figure 2. An example of set-point evolution within two oper-
ating mode

In practical situation, the set-point and the operating mode
is well known at each time and its evolution is easy to iden-
tify. In this work, only one set of PID controller parameters
is chosen for all known value of set-point rset.

2.3. Actuator degradation behavior

It is assumed that an actuator is subject to shocks that occur
randomly through time. Each shock impacts a random quan-
tity of damage to the actuator. Hence, the capacity of the
actuator by time t before its failure can be expressed as:

C(t) = c0 −D(t) (5)

where c0 is the initial capacity of the actuator, D(t) describes
the accumulated deterioration of the actuator at time t (in ca-
pacity unit)

On the one hand, the actuator is less efficient through time
because of its natural degradation. On the other hand, the
evolution of set-point also impacts the degradation process
of actuator. For example, in a centrifugal pump, an increased
demand of pump flow will cause bearing friction and impeller
wear to increase at a faster rate.

Natural degradation Due to the natural ageing or wear of
the mechanical and/or electrical parts, the actuator capacity
decreases through time. At each time ξndi that a shock occurs
according to a Poisson process with intensity λnd, the actua-
tor capacity C(t) decreases a quantity Wnd

i which follows a
uniform distribution on [0; ∆nd].

Impact of operating condition As describe in 2.2 the op-
erating conditions which represents the environmental con-
ditions the system evolves in. Their impact on the degrada-
tion of the actuator is modeled through another shock pro-
cess. The shock instant ξomi follows a Poisson process with
intensity λom which takes a value corresponding to the ac-
tual operating condition OMi. At each time ξomi the capacity
of the actuator C(t) decreases of a quantity W om

i which fol-
lows a uniform distribution on [0; ∆om]. The more frequently
the set-point changes in a operating mode OMi, the more fre-

quently damage shock occurs. This is represented by a big
value of λomi .

Under this modeling assumption, the degradation impacts the
actuator only at discrete times. In case where the actuator has
a monotone gradual degradation behavior, other processes
should be considered e.g. the homogeneous Gamma pro-
cess (Van Noortwijk, 2009).

2.4. Piecewise Markov Deterministic Markov Processes

In order to take into account the complex interaction between
the stochastic degradation process of actuator and the deter-
ministic behavior of control system, this paper considers the
point of view of Piecewise Markov Deterministic Markov
Processes (PDMP) which has been first introduced by (Davis,
1993). PDMPs were used to model fatigue growth in (Chiquet,
Limnios, & Eid, 2009) and corrosion in (Brandejsky, De Saporta,
Dufour, & Elegbede, 2011).

The whole behavior of deteriorating closed-loop system at
time t can be resumed by a random variable as:

Zt =




xt
Ct
λomt
t


 (6)

with xt is the physical state variable of controlled process, Ct
is the actual capacity variable related to the actuator degra-
dation, λomt is a covariate representing the current operating
mode of the system and t is the time. The time t is included
for the process to be homogeneous in time especially because
of the time-varying set-point.

Between two successive shocks reducing the actuator capac-
ity as described by the actuator degradation model, the re-
sponse of closed-loop system is described by differential equa-
tions which combine the process dynamic characteristic and
PID controller behavior. Interest readers can refer to (Cocozza-
Thivent, 2011; Lorton, Fouladirad, & Grall, 2013) for the de-
tailed definition of a PDMP.

2.5. Condition monitoring model

In this work, no additional sensor is devoted to the monitor-
ing of the actuator degradation. The controlled system output
is considered as the only available healthy information. As
known that a significant part of the dynamic behavior of the
system is shown in the transient period which occurs immedi-
ately after a change of set-point, only observations of system
output which characterizes the dynamics of deteriorating con-
trolled system is taken in this period (see (Nguyen, Dieulle, &
Grall, 2013) for more details of condition monitoring model).

Let introduce the time of prediction Tprog > 0 which is the
time at which the system health can be estimated given all
the collected knowledge and a residual lifetime can be de-

3
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rived. If n is the total number of observations until Tprog,
the observation dates and corresponding system output will
be respectively denoted 0 < T1 < . . . < Tn ≤ Tprog
and Y1, Y2, . . . , Yn where the observation Yi is defined from
Eq. (1) as:

Yi = h(Ti, x(Ti), u(Ti)) + ε(Ti) (7)

3. RUL ASSESSMENT METHODOLOGY

The Remaining Useful Life at time t RULt is defined as the
remaining time (from t) before the system can no longer ful-
fill its requirement anymore:

RULt = inf(s ≥ t, Zs ∈ F)− t (8)

where F is the failure zone which refers to the set of unde-
sired system states. In the context of the feedback control
system, the actual capacity of the actuator has to be greater
than a minimal capacity level which relates to the objectives
of control system design.

The system state process (Zt)t≥0 is a Piecewise Determinis-
tic Markov Process and as shown in (Lorton et al., 2013) the
distribution of the RUL of the system conditionally to online
available information up to time Tprog can be computed by a
two-step approach as:

P(RULTprog > s|Y1 = y1, . . . , Yn = yn)

=

∫
Rz(s)µy1,...,yn(dz)

(9)

where:

• µy1,...,yn(dz) is the probability law of the system state at
time Tprog regarding the available observations y1, . . . , yn:

µy1,...,yn = L(ZTprog |Y1 = y1, . . . , Yn = yn) (10)

• Rz(s) is the reliability of the system at time s knowing
that the initial state value is z:

Rz(s) = P(Zu /∈ F ∀u ≤ s|Z0 = z) (11)

The detail of the approach will be given in the next para-
graphs. On one hand, it require the estimation of probability
law µy1,...,yn(dz). On the other hand, it involves the estima-
tion of the conditional reliability knowing ZTprog .

3.1. Step 1: Particle Filtering State Estimation

The main task is to estimate the conditional density, p(zTk
|y1:k)

which represents the probability law of the state at time Tk
given the measured value y1:k = y1, . . . , yk of the observa-
tion process Y1:k = {Yi, i = 1, . . . , k} for any k ≤ n. Let
ZT0

be the initial state of the system.

Particle filtering is used here to allow for numerical compu-
tation of the filtering density p(zTk

|y1:k). The key idea is

to approximate the targeted filtering density by a cloud of
Ns i.i.d. random samples (particles) {z(i)Tk

, i = 1, . . . , Ns}
with associated weights {w(i)

Tk
, i = 1, . . . , Ns}, which satisfy

∑
i w

(i)
Tk

= 1, so that the target distribution at time Tk can be
approximated by

p(zTk
|y1:k) ≈ p̂(zTk

|y1:k) =

Ns∑

i=1

w
(i)
Tk
δ
z
(i)
Tk

(dzTk
) (12)

where δ
z
(i)
Tk

(dzTk
) is the Dirac delta mass located in z(i)Tk

.

The used particle filter is similar to the Generic Particle Fil-
ter in (Arulampalam, Maskell, & Gordon, 2002) with deter-
ministic re-sampling method because it seems to be a com-
putationally cheaper algorithm (Kitagawa, 1996). Indeed, re-
sampling is used to avoid the problem of degeneracy of the
algorithm that is, avoiding the situation that all but one of the
importance weights are close to zero (Doucet & Johansen,
2009). The algorithm uses the prior distribution p(zTk

|z(i)Tk−1
)

based on the simulation of the actuator degradation process
and the deterministic behavior of the controlled process which
is derived from Eq. (1) to Eq. (5) using a discretized scheme
of Eq. (1) and Eq. (2).

Therefore, the real-time state estimation procedure, given the
sequence of measurement y1:k can be resumed by the algo-
rithm in Algorithm 1.

3.2. Step 2: RUL estimation

The second step of the presented methodology for the RUL
computation requires the estimation of the system reliabil-
ity starting from the prognostic instant Tprog and knowing
the approximated pdf of the system state at Tprog as given
by Eq. (12). Actually, the reliability is computed with the
classical Monte Carlo method. The histogram of the RUL is
obtained straightforwardly. The mean value or quantiles of
the RUL can also be derived. The procedure is illustrated by
Algorithm 2.

4. RUL PROGNOSIS AND ITS IMPACT ON MAINTENANCE
PROCESS: A CASE STUDY

In the previous section, a methodology to compute the con-
ditional pdf of the RUL of a dynamic system was described.
Here, it is illustrated on a well-known feedback control sys-
tem: a double-tank level control system. A predictive main-
tenance decision rule which uses the RUL information is also
presented which will be compared with an age remplacement
strategy.

4.1. Description of the case study

Consider a double-tank level system with cross-sectional area
of the first tank S1 and the second one S2. Water or other

4
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Algorithm 1 Generic particle filter for system state estimation.
Initialization: ∀i = 1, . . . , Ns.

Draw particle z(i)T0
according to the initial condition of system

Assign corresponding weight w(i)
T0

= 1
Ns

At step k (corresponding to time Tk): Given
{
z
(i)
Tk−1

, w
(i)
Tk−1

}Ns

i=1
, do

(a) Importance sampling

Based on the system description (presented in Sections 2), draw particles z̃
(i)
Tk
∼ p(zTk

|z(i)Tk−1
)

(b) Weight update

Based on the likelihoods of the observations yk collected (Eq. (7)), assign weights w
(i)
Tk

= w
(i)
Tk−1

p(yk|z̃(i)Tk
)

(c) Weight normalisation

w
(i)
Tk

=
w

(i)
Tk∑Ns

i=1 w
(i)
Tk

(d) Re-sampling decision

If N̂eff = 1∑Ns
i=1(w

(i)
Tk

)2
< Nthresh then perform deterministic re-sampling:

{
z̃
(i)
Tk
, w

(i)
Tk

}Ns

i=1
⇒
{
z
(i)
Tk
, 1
Ns

}Ns

i=1

(e) Distribution

p(zTk
|y1:k) ≈∑Ns

i=1 w
(i)
Tk
δ
z
(i)
Tk

(dzTk
)

Repeat till the prognostic instant Tprog is reached

Algorithm 2 RUL estimation.

Given
{
z
(i)
Tn
, w

(i)
Tn

}Ns

i=1
, Ndepart number of departure points,

Ntraj number of simulation trajectories for each point
For j = 1, . . . , Ndepart do
• Generate uniform sample: uj ∼ U(0, 1)

• Select departure point:

zselectedj = z
(k)
Tn

with
∑k−1
l=1 w

(l)
Tn
≤ uj <

∑k
l=1 w

(l)
Tn

• For k = 1, . . . , Ntraj do
Simulate the trajectories according to the
system description (presented in Sections 2)

End
End
Obtain the empirical distribution of RUL

incompressible fluid (i.e. the mass density of fluid ρ is con-
stant) is pumped into the first tank at the top by a pump motor
drives. Then, the out flow from the first tank feeds the second
tank.

The relation between the inlet flow rate and the pump motor
control input u is represented as a first order system (Chen &
Chen, 2008):

dqin
dt

= − 1

τa
qin +

Ka

τa
u (13)

where τa is the time constant of pump motor, Ka is the servo
amplify gain (with the initial gain Kainit

). The pump sat-
urates at a maximum input umax and it cannot draw water
from the tank, so u ∈ [0, umax].

The fluid leaves out at the bottom of each tank through valves
with the flow rates according to the Torricelli rule:

qj,out = Kvj

√
2ghj , j = 1, 2 (14)

where hj is level of tank j, g is the acceleration of gravity and
Kvj is the specified parameter of the valve j.

Using the mass balance equation, the process can be described

5
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by following equations:




dh1(t)

dt
=

1

S1
qin −

Kv1

S1

√
2gh1(t)

dh2(t)

dt
=

Kv1

S1

√
2gh1(t)− Kv2

S2

√
2gh2(t)

(15)

The water level of tank 2 is measured by a level measurement
sensor and controlled by adjusting the pump motor control
input which is calculated by a PID controller. The overall
tank level control system is shown in Figure 3.

h1 S1

Tank 1

h2 S2

Tank 2

qin

q1,out

q2,out

V1

V2

PID controller Driver
Set-point

Level measurement sensor

-
u Degradation 

process

Figure 3. A double-tank level control system

Degradation process Due to degradation of the pump, its
capacity C(t) = Ka(t) = Kainit

− D(t) stochastically de-
creases according to the presented model in Section 2.3. To
have simple and comprehensible case study, we suppose that
the set-point admits only two values r1 and r2 with r1 < r2.

It is assumed that the system evolves in a two-states operat-
ing mode: the normal mode (OM1) and the stressful mode
(OM2). At each Tchange time duration the operating mode
can change. The evolution of operating mode is described by
a Markov chain as represented as Figure 4 where set-point
changes more frequently in OM2.

OM1 OM2Pr11

Pr21

Pr12

Pr22

Figure 4. Operating mode Markov chain

The sojourn times in the different values of system set-point
are characterized by a continuous-time Markov chain whose
the transition rate matrix corresponding to the operating mode
OMi is:

Pi =

(
−αi αi
αi −αi

)
(16)

where the parameters αi describe transition rates of set-point
of the operation mode OMi. Set-point changes more fre-
quently in mode OM2 so α2 > α1.

Failure zone of the system According to Eq. (13) and Eq. (15),
the steady states are obtained at instant tss if

u(tss) =
S1

S2

Kv2

Ka(tss)

√
2gh2(tss) (17)

Since u(tss) ≤ umax then

Ka(tss) ≥
S1

S2

Kv2

umax

√
2gh2(tss)

that means the actual capacity of the actuator must be greater
than a minimal capacity defined in the control system design
phase. In this case of study, this accepted value is defined as:

Kamin
=
S1

S2

Kv2

umax

√
2gmax

i
ri =

S1

S2

Kv2

umax

√
2gr2 (18)

Thus, the RUL of the system is the remaining time before the
process Z enters in the failure zone which is defined as:

Ka(t) ≤ Kamin
(19)

Under all these considerations, the behavior of water tank
level control system can be summed up using the process
Z = (Zt)t∈R+ , where Zt is given by:

Zt = (Ka(t), h1(t), h2(t), λom(t), t) (20)

The current state of the system at time t is then a five-component
vector Zt, which includes the current capacity of the pump,
the water levels of two tanks, the current operating mode and
the current time t.

4.2. Numerical illustrations

Numerical values for double-tank level control system are
summed up in Table 1.

Figure 5 represents one trajectory of the process Z until the
failure of system. The evolution of set-point with successive
change of set-point values is illustrated in Figure 5(a). The
water level of tank 1 and tank 2 h1(t) and h2(t) are reflected
in Figure 5(b) and Figure 5(c). Figure 5(d) shows real (unob-
servable) value of actuator capacity Ka(t).

As depicted in Figure 5, the actuator fails completely (i.e.
Ka = 0) at 22129.4 time units, but the failure of system here
is 15102.6 time units. One can find that after the system fail-
ure instant the water level of tank 2 (the controlled variable)
cannot track the evolution of desired set-point.

The only available health information of the system is the
noisy observations of the water level of the tank 2 which
are recorded during the transient periods whenever the set-
point changes. For instance, let consider the prognostic time
Tprog = 8875.2 time units i.e. at 64th change instant of the
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Figure 5. A trajectory of the water tank level control system
until failure of actuator: (a) Set-point, (b) Water level of tank
1, (c) Water level of tank 2 and (d) Actuator capacity

Table 1. Double-tank model

Physical parameters
S1 = 25 Kv1 = 8 τa = 1

S2 = 20 Kv2 = 6 g = 9.82

umax = 100 σ = 0.05

PID controller parameters
KP = 12.9896 TI = 99.8432 TD = 2.3727

Initial condition: t = 0
h1(0) = 0 h2(0) = 0 Kainit = 5.0

Natural degradation
λnd = 10−3 ∆nd = 0.5

Operating mode evolution
Pr11 = 0.75 Pr12 = 0.25 Tchange = 250

Pr21 = 0.75 Pr22 = 0.25

Varying set-point
α1 = 0.006 r1 = 25 λom

1 = 5.10−4

α2 = 0.01 r2 = 40 λom
2 = 10−3

∆om = 0.3

set-point, this health information is shown in Figure 6.
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Figure 6. Noisy observations of water level of tank 2

The first step of the method is to compute the conditional state
of the system knowing the noisy measurement of h2 until the
prognostic time Tprog. Approximations of the pdfs are repre-
sented in Figure 7(a) for the water level of tank 1, Figure 7(b)
for the water level of tank 2 and Figure 7(c) for the actuator
capacity with Ns = 500 particles.

The last step of the method is to compute the distribution of
the RUL of the system starting at Tprog knowing the approxi-
mated pdf of the system state at Tprog. The RUL distribution
has been obtained by Monte Carlo simulation with 2500 tra-
jectories describing the system evolution from its state at the
prognostic time until its failure. The resulting RUL is de-
picted in Figure 8.
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Figure 7. Conditional distribution of the system state at time
Tprog = 15046.8 time units given the noisy measurements of
h2 for Ns = 500 particles
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Figure 8. Remaining Useful Lifetime of the water tank level
control system at time Tprog = 8875.2 time units

4.3. Maintenance strategies

To show how the prognosis information can be incorporated
in maintenance decision-making, this section will compare a
predictive maintenance which uses the on-line available in-
formation and an age based remplacement strategy. A cost
model which is the long-run expected maintenance cost rate
including the unavailability cost is developed in order to eval-
uated the performance of these maintenance strategies.

Predictive maintenance In this paragraph, a predictive main-
tenance policy is considered. Under this maintenance strat-
egy, the system is replaced upon failure (corrective replace-
ment action) or at a specified maintenance date which is cal-
culated using the RUL information (preventive maintenance
action). Both maintenance actions put the system back in as-
good-as-new state, the interventions take negligible times and
their costs are fixed. It is assumed that the replacement ac-
tions can only be performed at the opportunities (the instants
of possible changes of operating mode, i.e. each time dura-
tion Tchange). Therefore, there are a system inactivity after
the stoppage of the system and an additional cost is incurred
by the time di from the stoppage until the next replacement at
a cost rate Cd which may correspond to production loss per
unit of time.

The preventive maintenance date is updated through the work-
ing time of the system. Indeed, at each change of the set-
point, the associated RULs and the next maintenance time can
be re-computed using the previously described methodology
with the new arrival condition information. At each prognos-
tic time Tprog the maintenance date which is the RUL of the
system with a given failure probability η can be written using
Eq. (9) as:

RUL(Tprog, η) = sup{ν : P(RULTprog
< ν|

Y1 = y1, . . . , Yn = yn) ≤ η} (21)
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where η is a decision parameter to be optimized. For a trade-
off between the result accuracy and time computation, 500
particles and 2500 trajectories for RUL computation are cho-
sen.

To assess the performance of the maintenance policy, a widely
used criterion which is the expected maintenance cost per unit
over an infinite time span is considered

C∞Pred(η) = lim
t→∞

CPred(t, η)

t
(22)

where CPred(t, η) is the cumulative maintenance cost at time
t can be described as:

CPred(t, η) =

Np(t)∑

i=1

Cp +

Nc(t)∑

j=1

Cc + Cd.d(t) (23)

whereNp(t),Nc(t) are respectively the number of preventive
maintenance and of corrective replacement in [0, t]; d(t) is the
total inactivity time of the system in [0, t].

This cost criterion is then evaluated by stochastic Monte Carlo
simulation. The optimal value of decision parameters η is ob-
tained by miminizing the expected cost rate, i.e.,

C∞Pred(η
∗) = min

η
{C∞Pred(η), 0 < η < 1} (24)

Table 2. Maintenance costs

Cc Cp Cd

200 150 5

With the maintenance costs summarized in Table 2, the op-
timal values of η = 0.45 with the cost rate C∞Pred(η

∗) =
0.08989 (see Figure 9).
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Figure 9. Long run expected maintenance cost per unit of
time

Age-based remplacement strategy Like previously described
predictive maintenance strategy, the maintenance actions are
also executed only at the opportunities. The different point
is that the system is preventively replaced at a specified date
which does not change through the working time of the sys-
tem. This specified date tPrev is the parameter to be opti-
mized.

Figure 10 illustrates the evolution of the system degradation
behavior and the maintenance policy.

State (Zt)

Time (t)
0

tprev tprev

di

di

Figure 10. Illustration of considered systematic maintenance

The cumulative maintenance cost at time t in this strategy is:

CPrev(t, tPrev) =

Np(t)∑

i=1

Cp +

Nc(t)∑

j=1

Cc + Cd.d(t) (25)

whereNp(t),Nc(t) are respectively the number of preventive
maintenance and of corrective replacement in [0, t]; d(t) is the
total inactivity time of the system in [0, t].

The long run expected maintenance cost per unit of time is:

C∞Prev(tPrev) = lim
t→∞

CPrev(t, tPrev)

t
(26)

This cost criterion is then evaluated by stochastic Monte Carlo
simulation. The optimal value of preventive replacement age
t∗Prev is obtained by minimizing the expected cost rate, i.e.,

C∞Prev(t
∗
Prev) = min

tPrev

{C∞Prev(tPrev), tPrev > 0} (27)

As represented in Figure 11, the optimal values of t∗Prev =
4750 with the cost rate C∞Prev(t

∗
Prev) = 0.03722.

On the considered case study, the opportunist age-based rem-
placement policy and the predictive one efficiencies are very
close to each other. This shows the effect of maintenance
opportunities in the structure of the decision rule. Indeed,
as represented in Figure 11, the age-based strategy can eas-
ily take into account the effects of maintenance opportunities.
The local optima on the expected cost rate are coincide with
the opportunities dates which lead to the cancel the inactiv-
ity cost. On the other hand, the predictive maintenance does
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Figure 11. Evolution of long run expected maintenance cost
per unit of time

not take directly into account the existence of maintenance
opportunities and the decision rule is not well suited. As the
cost of inactivity per unit of time is very high compared to
the unit replacement cost the predictive maintenance cost is
slightly higher tant the age-based one.

5. CONCLUSION

The present paper proposes a modeling framework using PDMP
that shows the ability to combine the deterministic behavior
of a feedback control system with the stochastic degradation
process for the actuator. On the one hand, the actuator is less
efficient through time because of natural degradation process.
On the other hand, the set-point level impacts also the degra-
dation process of actuator. Particle filtering technique is used
to estimate on-line the state of considered system regarding
only the noisy observations of closed system output. By using
a methodology based on the assumption of Markov property,
the Remaining Useful Lifetime can be deduced with Monte
Carlo simulation. A simulated double-tank level control sys-
tem was used as a case study to illustrate the efficiency of the
proposed approach and the use of the prognostic information
in order to optimize the decision-making process. A predic-
tive maintenance whose the decision rules use the RUL es-
timation is compared with an age-based remplacement strat-
egy. The long run expected maintenance cost per time unit
is then used to assess the performance of two strategies. The
results show the useful of RUL information on maintenance
decision-marking process. However, the impact of mainte-
nance opportunities should be taken into account in the struc-
ture of predictive decision rule.
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ABSTRACT 

In order to minimize the occurrence of unexpected costly 
flight failures modern aircraft engines industry focuses 
especially on increasing product’s availability. In this work, 

we propose to monitor the health of a Variable Stator Vane 
(VSV), subsystem controlling the amount of airflow through 
the High Pressure Compressor (HPC), allowing optimum 
compressor performance. This control of airflow prevents 
the engine from stalling. The proposed methodology is 
based on an original approach for real time on-board Passive 
Fault Tolerant Control (PFTC). The objective of the 
proposed PFTC is to provide acceptable performance and 
preserve stability when faults occur. The method relies on 
the design of a specific Robust Virtual Sensor in a Linear 
Parameter Variable (LPV) polytopic framework. The 
robustness to model uncertainties is ensured by a Neural 
Extended Kalman Filter (NEKF) accommodating, in real 
time, the model prediction. In the proposed methodology, an 
off-line closed-loop identification scheme is first used to 
elaborate a multi local linear state space models, after that a 
multi-model observer based on Linear Matrix Inequalities 
(LMI) optimization is used to build the virtual sensor. The 
NEKF is added to circumvent online model accuracy 
problems.   The efficiency and limit of the approach are 
shown and discussed through simulations on a complete 
numerical engine test bench. 

1. INTRODUCTION 

Over the past decades, dependability has gradually become 
one of the key challenges for the aeronautical industry. The 
concept of dependability was introduced in the mid-80s by 
Laprie. (1985). According to his concept, dependability 

encompasses two features: threats and means. In 
aeronautics, threats are events that can affect dependability, 
such as faults and failures. Means are ways to increase  
dependability, namely removal, prevention, tolerance and 
forecasting. 
During the last 30 years, System Health Monitoring (SHM) 
has emerged and has been extensively developed in order to 
improve the system dependability. SHM gives the system 
the capability to prevent, detect, diagnosis, respond to, and 
recover from conditions that may interfere with the nominal 
system operation. In this work, we are interested in 
developing SHM for a key subsystem of the aircraft 
engines, namely the Variable Stator Vane (VSV).  
The purpose of the VSV system is to control the amount of 
airflow through the High Pressure Compressor to provide 
the optimum compressor performance. The control of 
airflow is aimed to prevent the engine from stalling. The 
actuators work in pairs as part of a closed-loop electro-
hydraulic system to constantly adjust the position of the first 
stages of the VSV. The off-line closed loop VSV actuation 
composed of a servovalve, a cylinder and a LVDT (Linear 
Variable Differential Transformer) sensor. The LVDT is 
connected to the controller through harnesses which are 
subject to vibrations. Consequently, this can engender 
sensor failures and jeopardize the availability of the VSV 
position, thereby threatening the stability and degrading the 
performance of the jet engine. 
In the current economic context, a material redundancy is 
used to ensure the availability of measures. This solution no 
longer profitable, therefore, we would like to implement an 
original architecture control by replacing the material 
redundancy by an analytical one, but in our context this is 
not straight. For this, we propose a Fault Tolerant Control 
approach aiming to simplify the complexity of the control 
architecture by reducing the material redundancy while 
maintaining the reliability, dependability and performance 
of the nominal operation. 
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terms of the Creative Commons Attribution 3.0 United States License, 
which permits unrestricted use, distribution, and reproduction in any 
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2. PROBLEM  STATEMENT 

Fault Tolerant Control (FTC) attends to be an integral part 
of any SHM applications. FTC has the following 
characteristics: (i) the ability to accommodate automatically 
faults in components, actuators and sensors, (ii) the ability 
to keep the overall system stable and acceptable 
performance in the case of failure. An FTC system is a 
control system able to accommodate automatically for 
system failures. Hence the main task to be tackled in 
achieving fault-tolerance is the design of a controller with a 
suitable structure to maintain the overall system stability 
and acceptable performance. FTC may be called upon to 
improve the system reliability, maintainability and 
survivability. FTC systems have appeared since the early 
1980s. Nowadays, FTC has gained in popularity among 
industrial and academic researchers. Several survey paper 
and books have appeared (Patton 1997), (Blanke, 
Staroswiecki et al. 2001), (Zhang et al 2008). Generally 
speaking, FTC systems can be classified in two types: 
passive (PFTCS) and active (AFTCS). 
The passive methods, or reliable control, aim to achieve the 
insensitivity to some specific anticipated faults by making 
the system robust with respect to them. The controller is 
fixed and requires neither Fault Detection nor Diagnosis 
schemes (FDD) nor controller reconfiguration. In this 
approach, often fault-tolerance is achieved by considering 
faults as uncertainties that the controller can deal with. 
Hence, we assume that the faults occur in a predefined 
subset, and the controller should be designed to optimize the 
worst fault performed (Liao et al. 2002; Yang et al. 2010)). 
In the aeronautical context, PFTC is increasingly introduced 
in control architectures  et al. 2012; Richter et al. 2011) in 
order to optimize the Time Between Overhaul (TBO) and 
consequently, to reduce the Delays and Cancellations 
(D&C) which have a significant economic impact. 
It is important to highlight that our PFTC approach is 
applied to control a closed-loop actuation Variable Stator 
Vane which returns a servo-actuator position. The physical 
non-linear equations describing the operation of the servo-
actuator VSV depend on non-measurable variables. 
Moreover, the complexity of these equations makes them 
non-embeddable for a real time computation of a VSV 
position. 
In this paper, a real time on-board PFTC approach is 
proposed to control closed-loop actuation in spite of faulty 
sensor. The main purpose of the PFTC approach is to ensure 
availability of a feedback signal, while maintaining the 
performance of the nominal operation (De Oca et al 2010) 
without retuning on-line the parameters of the controller. 
The reconfiguration bloc contains a virtual sensor that 
estimates in real time the system’s perturbations and 

compensates them.  
In an industrial process, especially jet engine industry, the 
parameters of the controller are tuned off-line for the 
nominal operation. Changing them on-board with the 

occurrence of the fault is not allowed, this is why the PFTC 
approach is chosen in expense of the Active Fault Tolerant 
Control (AFTC) approach (Stubberud 2006), where the 
parameters of the controller are re-tuned in real time in 
order to adapt the controller. 
Several approaches have been proposed to deal with PFTC 
in case of occurrence of partial sensor failure, which means 
that the sensor is available but provides a wrong feedback 
signal to the controller (De Oca 2010; De Oca et al. 2012; 
Richter et al. 2011). In this paper, we propose a new 
approach of PFTC for a total sensor failure, where total loss 
of feedback VSV position signal occurs, and this for a 
nonlinear system approximated by a multi-model system. In 
case of a total loss of the sensor, we ensure the availability 
of the feedback VSV position signal by a Multi-Input Multi-
Output (MIMO) estimation of lost signal. At this stage, we 
consider the inaccuracy of the MIMO estimation as a sensor 
fault, which is compensated by the virtual sensor bloc 
reconfiguration. 
The multi-model representation allows transforming non-
linear sub-systems in a set of linear sub-systems in which 
theories of linear systems are applicable, while guaranteeing 
the stability of the overall system during the transition from 
an operating point to another one.  
In order to construct our multi-model, we propose an off-
line closed-loop identification that will be performed at 
several points of interest covering the entire operating 
domain. This is a specific method for system, such as a jet 
engine, that cannot be disconnected from the controller for 
economic and safety raisons. The purpose of this stage is to 
obtain a local linear state representation applicable for an 
operating point of the servo-actuator VSV. 
In this paper, we propose two kinds of identifications. The 
first identification Single-Input Single-Output (SISO) aims 
to bring out the state space representation of VSV behavior.  
The second one MIMO aims to get MIMO state space 
representation using a heterogeneous state vector, which is a 
concatenation of VSV position and other variable 
geometry’s measures affecting the VSV position.  
These two states space representations are used for the 
synthesis of a multi-model observer based on LMIs 
optimization. The observer built with the MIMO state space 
representation allows getting a MIMO VSV position 
estimation, which is used as an input signal for the virtual 
sensor. The second observer built with the SISO state space 
representation aims to estimate the sensor fault through the 
virtual sensor.  
The LPV system receives a great interest in the nonlinear 
modelling literature (Bezzaoucha, et al. 2013, De Oca 2010, 
De Oca et al. 2012, Richter, et al. 2011, Bezzaoucha 2013). 
Indeed, the LPV framework can be seen as a “middle 

ground” between linear and non-linear dynamics. It 
concerns linear dynamical systems state-space 
representations of which depend on exogenous non-
stationary parameters. LPV model consists of an indexed 
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collection of linear systems, in which the indexing 
parameter is exogenous, i.e. independent of the state. 
On the other hand, the LPV framework allows us to 
extrapolate the identification from multitude local linear 
sub-systems, to the overall non-linear system. Thereby, 
from a mapping of the identified linear local sub-systems for 
several operation points we obtain one identified overall 
system describing the behavior of the servo-actuator for all 
operating phases. . 
Moreover, sub-systems identified from simulations on a 
complete numerical engine test bench are subject to 
uncertainties. This could degrades the accuracy of the 
estimator used in the virtual sensor, and consequently, can 
jeopardize the stability of the overall system VSV. To 
circumvent this problem, we propose a Neural Extended 
Kalman Filter, which compensates the lack of information 
given by the state-space representation resulting from the 
experimental identification. We find in the literature some 
works (Kramer et al.2008, Owen et al. 2003, Stubberud 
(2006), Lobbia et al. 1995) dealing with the robust 
estimation using NEKF. Otherwise, NEKF is used to adapt 
in real-time the prediction model of the reference input 
signal.  
This paper is structured as follows: First, we present VSV 
system and a closed-loop identification method of the VSV. 
After a synthesis of an observer for a LPV multi-model 
system is proposed. These results are used for the PFTC 
approach trough the virtual sensor, and finally, the 
robustness is addressed through the NEKF (Figure 1). 
 

 

Figure 1: Architecture of a Robust PFTC applied to VSV 
actuation 

 

3. DESCRIPTION OF THE SERVO-ACTUATOR 

3.1. Physical description of the VSV 

Before identifying the servo-actuator VSV, it is necessary to 
bring the physical equation describing the behaviour of the 
VSV, so that we could determine the order of the system. 
The VSV system comprises a servovalve and a cylinder 
(Figure 2). A servovalve is a device aiming to transform the 
electric energy to hydraulic one. It is a control interface 
between the control and the cylinder that provide a suitable 
fuel flow to the cylinder. 
The specifications of the closed-loop servo-actuator VSV 
impose to choose a three stages architecture, made of two 
stages servovalve called pilot stage, and a distribution slide. 
A command current drives the two stages servovalve, 
providing a fuel flow and a difference of pressure. These are 
used to actuate the slide distributor which the position is 
controlled through a spring by a feedback force.  
A servovalve comprises a static part and a dynamic part. 
According to Tafraouti (2006), the dynamic part is 
represented by a second-order system. And the static part is 
non-linear function depending on non-measurable variables.  
The static part of the servovalve depends on its differential 
pressure, which is constant for a given operating point. 
Thus, we assume that non-linear equation describing the 
static part of the servovalve is a constant. Consequently, we 
model the behaviour of the servovalve in a given operating 
point by a second order system. 
 The servo-actuator comprises a servovalve and a cylinder 
which can be modelled according to (Tafraouti 2006) by a 
first order system. Thereby we model the servo-actuator 
VSV by a third order system. 
 

 

Figure 2: Control architecture of the VSV system 

3.2. Identification 

In this section, the off-line MIMO and SISO identification 
are presented 
In a jet engine, there are variables geometries, which may 
affect each other's. We would like to exploit the correlation 
between these variable geometries to build a multi-model 
observer. In this work, we bring out the coupling between a 
VSV position and another variable geometry.  
After an influence study, we selected a VBV position 
(Variable Bleed Valve) ( Figure 3) reflecting the opening of 
a valve to remove the excess of the air between the Low and 
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High compressor, which can be the origin of stalling and 
thus a serious damage of the Low compressor blades. 
 

 

Figure 3: VSV and VBV equipment 
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where: 
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)  is the MIMO state vector,      and     are 

respectively the VSV and the VBV position 
 

  (

    

    

) is the MIMO control current,       and      are 

respectively  the VSV and the VBV control current. 
 
The off-line MIMO identification (1) allows to bring out the 
matrix     ,      ,      ,      , using the Prediction 
error Method Algorithm. 
On the other hand, we use the same method to identify the 
non-linear behavioral equations of the VSV and VBV by a 
third order system. This identification aims to obtain, for 
each operation point, a SISO state space representation, 
used is LPV Takagi-Sugeno framework. 

4. ROBUST PASSIVE TOLERANT CONTROL 

4.1. Multi-model observer 

We brought out in the previous section the necessity to use 
LPV framework to identify the overall non-linear VSV 
system.  
In this work, we introduce a Takagi-Sugeno formalism 
which is an interpolation of local linear subsystem using a 
convex transformation (Bezzaoucha et al. 2013, Bezzaoucha  
2013). Several articles (Akhenak et al. 2007, Marx et al. 

2013, Bezzaoucha 2013) deals with Takagi-Sugeno 
formalism and use it to: (i) model and design diagnostic 
strategy, (i) develop control’s laws, (iii) study the stability 
of  non-linear systems. 
We brought out in the previous section local identified 
subsystems for each operating point. We use a Takagi-
Sugeno formalism to write the overall non-system 
describing the behaviour of the VSV for a set of operating 
point. 
 

{
  
 

  
  ̇( )  ∑  ( ( ))(   ( )     ( ))

 

   

 ( )  ∑  ( ( ))(   ( )     ( ))

 

   

 

 
 
(2) 

 
where:  ( )      is the overall system state vector, 
 ( )      is the overall system output and  ( )      in 
the control input, with   number of subsystems 
The overall non-linear system is an aggregation of the local 
linear subsystems by a weighting sum. Thereby, the 
linearity is transferred from the subsystems to the weighting 
functions.    ( ( ))         , satisfying the convex sum 
property. 
The purpose of the Takagi-Sugeno formalism is to use the 
linear framework for the synthesis of the observer and study 
the stability and extrapolate to the overall non-linear system 
using the convex sum. The weighting functions   ( ( )) 
depend on a decision variable  ( ). In our application,  ( ) 
is measurable and allows us to determine the operating point 
In this paper, we propose to use the LPV framework to 
bring out the transition between the sub-systems. 
The parameters of the matrix (           ) of sub-systems 
vary according to a function  ( ) dependent on time. 
Thus, we obtain Takagi-Sugeno formalism with time 
varying parameters, which guarantee a smooth transfer from 
a subsystem to another. This representation has not only the 
advantage to be mathematically equivalent to the overall 
non-linear system, but also to be easier to handle.  
 

{
 
 

 
  ̇( ) ∑  ( ) (  ( )( )) ( ( ( )) ( )  ( ( )) ( ))

 ( )

 ( ) ∑  ( ) (  ( )( )) ( ( ( )) ( )  ( ( )) ( ))
 ( )

 

 
(3) 

 
Instead of having an observer and a controller for each 
subsystem, the LPV Takagi-Sugeno representation defined 
in Eq. (3) allows to build a common strategy of observation 
valid for the overall nonlinear system.  
The stability analysis and the observer synthesis are based 
on Lyapunov theory by minimising   -gain under LMI 
constraint  
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{
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(4) 

 
Let us find   a common observer gain for all subsystems 
such as  ̂( )   ( ) 
Let define the error estimation  ( )   ̂( )   ( ) written 
in the Takagi-Sugeno formalism:  
 

 ̇( )  ∑∑  ( ( ))  (  ( )) (      ) ( )

 

   

 

   

 (5) 

 
The gain of the multi-model observer    is found such as 
 ̇( ) is stabilized 
Let define a Lyapunov function: 
 
Theorem: A system is stable, if there is a positive 
Lyapunov function such as  ̇( )   . 
 ( )    ( )  ( ) (6) 

with           a positive symmetric matrix. 
 ̇( )

 ∑∑   ( ( ))  ( ( ))
 

   

 

  

  ( )( (      )

  (      ) 
 ) ( ) 

 
(7) 

with: 

 
Knowing that    ( ( ))   . 
 
 ̇( )               

     
       

         
(9) 

 
In order to linearize Eq.(9), we define      . Thereby, we 
obtain   LMIs 
 

{
          

     
  

 
            

   

 

 
(10) 

 
Finally, we obtain the multi-model          
We use this method to synthetize the two observers 
introduced above. 

4.2. Virtual sensor 

In this subsection, we propose a PFTC strategy based on 
virtual sensor (Figure 4). This contains a multi-model LPV 
observer based on LMIs constrains, aiming to estimate in 
real time, faults of a VSV estimation based on MIMO 
identification. 
Moreover, virtual sensor contains a bloc reconfiguration 
which is used to compensate the faults estimated the multi-
model LPV observer. (De Oca 2010, De Oca et al. 2012, 
Nazari et al. 2013, Richter et al. 2011) propose a PFTC for 
LPV system. 
In this paper, we propose an original method of 
reconfiguration without on-line re-tuning the parameters of 
the controller.  
In general, PFTC approach supposes that the measure is 
available. Here in this work, we treat a case of a complete 
loss of the VSV sensor. Up to our knowledge (De Oca  
2010, De Oca et al. 2012), the PFTC has not been used for 
thiscase. We ensure the availability of the input signal of the 
virtual sensor through MIMO VSV estimation.  
This MIMO VSV estimation has the inconvenient to be 
inaccurate in the transient phases. This can have a negative 
effect for the stability of the overall VSV system. That is 
why we use a virtual sensor to estimate and compensate 
these inaccuracies that we consider as sensor fault.  
We consider a following subsystem with a faulty sensor for 
a given operating point: 
 

{

 ̇( )    ( ( )) ( )    ( ( )) ( )

 ( )     
( ( )) ( )    ( ( )) ( )

 

 
(11) 

With     output subsystem matrix including the fault 

The virtual sensor applied to the polytopic LPV system can 
be written as following: 
 

{
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(12) 

 
with   ( ) the state vector of the virtual sensor state space 
and    the multi-model observer gain 
de Oca and Puig (2010) brings out a reconfigurabilty 
condition: 

    (  ( ( )))       (
  ( ( ))

 ( ( ))
) (13) 

Consider the coefficient of  reconfigurabilty P: 

{
 
 

 
 ∑  ( ( ))   

 

   

    ( ( ))                 

 
 
(8) 
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  ( ( ))   ( ( ))  ( ( ))
 
(  ( ( ))  ( ( ))

 
)
  

 (14) 

Thereby, we obtain the output corrective matrix and output 
signal. 
  ( ( ))   ( ( ))     ( ( ))  ( ( )) (15) 

  ( ( ))    ( ( ))  ( ( )) (16) 

and thereby, we obtain the corrected output signal 

  ( )    ( ( ))  ( )  ( ( )) (17) 

 

Figure 4: PFTC diagram 

 

4.3. Robustness-Neural Extended Kalman Filter 

Kalman filter has received a great attention in aeronautical 
industry. In this paper, we propose a robust observer for 
inaccurate state space representation using a Neural 
Extended Kalman Filter. 
Neural Extended Kalman Filter (Kramer et al. 2008, 
Stubberud 2006, Stubberud et al. 1995) is a robust and 
adaptive state estimator, with an approximate knowledge of 
the state space representation, or the physical equations 
describing the behaviour of the system. 
This robust estimation method is often used for the complex 
system where a simplification is imposed as an 
embeddability constraint. This simplification may 
jeopardises the precision of the estimation and consequently 
affects all applications using the estimation ,like synthesis 
of observer for diagnostic or reconfiguration, control 
laws…etc. 
In this paper, we propose to use an adaptive robust method, 
which consist of setting in real time, the parameter of the 
state-space representation in order to guarantee the 
robustness of estimation against the inaccuracy engendered 
by the identified model equations (Figure 5). 
Consider a non-linear state space representation: 
 

{

      (     )    

    (     )    

 (18) 

 
where:   and   are nonlinear functions,    and    are 
respectively the  noise process and the measure noise. 
Let remind the extended Kalman filter: 

{
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  ̂     
      

  ( ̂     )
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   )
  

 ̂     ̂        (    ( ̂     ))

     (    
  ( ̂     )
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 ̂       ( ̂      )

    ( ̂     )

       (
  ( ̂      )

  ̂   
)    (

  ( ̂      )

  ̂   
)    

  (19) 

We assume that the measure and process noises are 
Gaussian. 
where: 

       state of the system 
       output of the system 
  Kalman gain 
  Covariance matrix of the measured noise 
  Covariance matrix of the process noise 
  Covariance matrix of state estimation error 
  Prediction function of the state 
  Output function 

 
In our case, the function    is non-linear and embeddable. 
Thus, we approximate it by an off-line closed loop 
identification   , which is added to an on board learned 
neural  network  (Kramer et al. 2008, Stubberud 2006, 
Lobbia et al. 1995) 
 

 (     )   (     )     (        ) (20) 
 
We assume that the function   is linear and we note: 

  
  

  ̂     
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We define a new state vector, which a concatenation of state 
vector of the system and the adjustable parameters of the 

neural network and we note   
  (    )
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(22) 
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 ̅      (  
    

     
)
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(24) 

According to the Eq. (22) the matrix   is adjusted in real 
time by the partial differential of the neural network on the 
state vector.  

 

Figure 5: Robust PFTC diagram 

5. SIMULATION RESULTS 

We use a jet engine simulator to simulate a flight scenario 
defined by a set of operation points. For this, we apply a 
flight maneuverer equivalent to what imposes the pilot 
through the control yoke during a flight. Indeed, each 
control yoke position determines target value of a fuel 
quantity which induces high pressure compressor's speed 
and thus low pressure compressor's speed and a certain 
configuration of variables geometries such as VSV position. 
Consider a flight maneuverer in which we include a VSV 
sensor failure. 
In Figure 7, we simulate a maneuver with a faulty VSV 
sensor shown in Figure 6. 
 

 

Figure 6 : Effect of the intermittent contacts on VSV sensor 

 

Figure 7 : Control of the VSV position using a faulty sensor 
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Figure 8: Control of the VSV position in the nominal 
operation and with a PFTC  

 

Figure 7, shows the effect of a periodic random switch in 
the electric input of the VSV sensor, which provide 
intermittent contact of the VSV sensor feedback signal. This 
kind of failure is the most probable to occur during a flight, 
and it may jeopardize the stability of the close-loop VSV 
actuation, and consequently engender irreversible damage in 
high pressure compressor. 
In the Figure 8, we simulate the same maneuver, but we 
replace the faulty sensor by the model using a Robust 
Passive fault Tolerant Control approach. 
We use a PFTC approach as soon as sensor failure is 
detected. Figure 8 shows the control of VSV actuation using 
an analytical VSV model as feedback signal, with a PFTC 
approach described below. 
We notice in the Figure 8, oscillations. These are due to the 
inaccuracies of the analytical VSV model feedback signal. 
Indeed, the controller is tuned for the nominal operation, 
and it is not designed to reject model inaccuracies. 
Consequently, we tune controller off-line taking into 
account these model inaccuracies, not only in order to reject 
oscillations but also to reach performance requirements 
imposed in the specifications. Once tuned off-line, 
controller is unchanged on-line during the operation, 
respecting thereby the constraints which led us to choose the 
PFTC approach instead of the AFTC approach. 

 

Figure 9: Control of the VSV position in the nominal 
operation and with a PFTC approach with new controller 

Figure 9 shows the control of the VSV position using the 
PFTC with the new adjusted controller rejecting thereby the 
oscillations engendered by the analytical VSV model 
inaccuracies.  

To test the robustness of the PFTC approach using the 
NEKF, we add uncertainties to the SISO identified state 
space matrix: 

{
 
 

 
 
                    

                    

                    

 
 

(25) 

where,   ,    are additive uncertainties modeled by 
Gaussian noise. 

We replace the identified matrix in PFTC algorithm by the 
matrix defined in Eq.(25). 

 

Figure 10: Control of the VSV with uncertain state space 
matrix-Robust PFTC 
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Figure 10 shows the rejection of state space matrix 
uncertainties using NEFK. Indeed, in spite of adding 
uncertainties to state space matrix, we obtain an analytical   
VSV model with an acceptable accuracy. 

6. CONCLUSION 

In this present paper, a Robust Passive Fault Tolerant 
Control approach was proposed in a LPV framework using 
LPV Takagi-Sugeno formalism. This approach is applied to 
jet engine equipment, a Variable Stator Vane actuation 
which is subject to sensor failure on-board. That may 
jeopardize the stability of the closed-loop actuation, 
affecting thereby the performance and the operability of the 
jet engine. 

The work proposed in this paper, allows guaranteeing the 
availability of the feedback information to VSV position, 
with acceptable performance and operability of the jet 
engine, in spite of the inaccurate  VSV model. 

In a jet engine, there are several systems of closed-loop 
actuation with sensors subject to failure. We will propose in 
a future paper an extension of the work for the VBV 
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ABSTRACT 

This paper presents a research of deformations influence on 

duplex ball bearings dynamic behavior. Despite the 

common use of duplex ball bearings, bearings sub-

components deformations are not thoroughly investigated. 

In order to investigate these effects, this study integrates the 

outcome of a 3D dynamic model, developed for assessment 

of the defect pattern and experimental results from a full 

scale CH-53 Swashplate test rig.  

The ability to withstand high radial and bi-directional axial 

loads makes duplex bearings common in aircraft 

applications and specifically in helicopter rotors. The 

swashplate of the CH-53 is constructed of duplex angular 

contact ball bearings. Two spacers, internal between the 

static inner rings and external, between the rotating outer 

rings support the bearing rings. A structural defect is formed 

by a faulty external spacer, thus causing a lack of support to 

the top bearing and deformation of the outer rings. 

Model results indicate that the lack of support has a defect 

pattern in both radial and axial directions. Test rig data 

acquired by accelerometers was analyzed by several 

diagnostic techniques including order tracking, envelope 

analysis and dephased algorithm in order to recognize the 

simulated pattern.   

1. INTRODUCTION  

Duplex (paired) bearings are used in a wide range of 

applications. The ability to withstand high radial and bi-

directional axial loads makes duplex bearings common in 

aviation applications, specifically in helicopter rotors.  

                                                                                           

The CH-53 swashplate is constructed of duplex angular 

contact ball bearings in a back-to-back arrangement (Figure 

1). The bearings allow smooth relative motion between the 

static plate and a rotating plate while absorbing torques from 

the pitch control rods. The bearings are separated by two 

spacers, internal between the static inner rings and external 

between the rotating outer rings (Figure 2).  

 

Figure 1. Cross section of a CH-53 Swashplate 

 

 

Figure 2. Magnified section of the angular-contact ball 

bearings and the spacers separating the rings 

Mor Battat et al. This is an open-access article distributed under the 

terms of the Creative Commons Attribution 3.0 United States License, 

which permits unrestricted use, distribution, and reproduction in any 

medium, provided the original author and source are credited. 
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This study focuses on the recognition of deformation of the 

bearings outer rings caused by buckling of the external 

spacer. As shown in Figure 3, integration of dynamic model 

results and seeded test experiments serve as the 

methodology of the research. Time history data generated 

by the model was analyzed in order to define the fault 

expected pattern. Vibration signals generated by the 

experimental systems will be analyzed based on the model 

results in order to recognize the fault signature.  

Development of diagnostic tools on a test stand is a 

complicated process due to environmental factors. These 

factors include structural dynamics, mounting, location, 

components history and reciprocal influence. This approach 

is designed to address the complexity of algorithms 

development based on test rig data. The integration of a 

physical model and hierarchical test systems is a method 

designed to assist in recognition of the fault pattern in the 

different experimental systems. 

 

Dynamic 
model 

Data analysis

Defect pattern

Small
 scale

 specimen

Full
 scale test

 rig

CH-53 
Ground

 run

Sensor 
location 

optimization

CI’s and 
algorithms

Validation

ExperimentsExperiments

Results
 comparison

ModelModel

 

Figure 3. Research methodology- integration of model 

results and experiments at different scales 

1.1. Research Background 

A 3D dynamic model (Kogan et al., 2012) has been 

developed for assessment of the defect pattern and for 

comprehension of common effects such as radial load and 

misalignment. Time history data simulated by the model 

was analyzed in order to define the expected fault pattern. 

Comparing the dynamic model results with vibration signals 

generated by different test systems is planned in phases. It is 

assumed that when advancing from one phase to another the 

measured data will simulate more realistically the signal and 

the environment of the helicopter rotor head. As a result, the 

difficulty to recognize the fault pattern is expected to 

increase from one phase to another, demanding more 

complex algorithms. Progress in phases is performed to 

guarantee the recognition of the defect signature among the 

variety of signals generated by the helicopter during a flight. 

The experimental phases include a small scale specimen, 

full scale test rig and a CH-53 helicopter ground test. 

Further background of this work is presented in the paper 

(Battat at el., 2013) and includes description and results of 

the small scale specimen. 

2. DYNAMIC MODEL 

A 3D dynamic ball bearing model was developed by Kogan 

et al (2012) to study the effect of anomalies in bearing sub-

components on the bearing dynamic behavior. The non-

linear model was developed using Hertzian contact theory 

and has the ability to simulate effects of radial and axial 

loads, shaft unbalance, localized faults, and ring 

deformation. The algorithm was implemented numerically 

in MATLAB. Model validation by the small scale specimen 

was described in referenced work. 

In order to simulate the bearings outer rings deformation, 

analytic approximation of the sagging was done. This 

approximation takes into account applied load, length of the 

defect, number of effected balls and structural parameters.  

3. TEST RIG 

In order to examine the effect of defects on the dynamic 

behavior of the CH-53 swashplate bearings, a specific test 

rig was constructed. The main purpose of the full scale test 

rig was to simulate the original work environment of the 

swashplate bearings without the environmental noise. The 

reduction of noise will help in recognition and isolation of 

the searched pattern. 

The rig (Figure 4) is composed of an original CH-53 

swashplate and provides a good simulation of the bearings 

support structure under laboratory conditions. The rotating 

plate is set in motion by a transmission of gears and a cog 

belt driven by an electric three phase motor. Controlled by a 

variable frequency drive, the motor is set to rotate the plate 

up to 189 RPM (3.15 Hz), the CH-53 main rotor speed. 

Table 1 lists the bearings parameters. 
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Table 1. Test rig bearings parameters 

Pitch diameter       [  ] 

Ball diameter     [  ] 

Number of balls    

Outer race rotational speed     [   ] 

Contact angle      

Defect angular length     

 

 

Figure 4. Full scale test rig and sensors locations 

An aluminum external spacer separates the bearings outer 

rings. Unlike local defects, the buckling phenomenon is 

correlated with a relatively large length dimension. Hence, 

in order for the fault to be presented an arc length of nearly 

    was inserted to the external spacer. The defect is formed 

by milling both vertical ends of the spacer for a 300 mm arc 

(Figure 5). Milling the external spacer causes a lack of 

support to the bearings outer rings in the presence of axial 

load.  

Simulation of the axial load on the swashplate is carried out 

using a hydraulic cylinder. By producing tension in the main 

shaft the piston loads the rotating plate, thus axially loading 

the bearing’s outer rings. Figure 6 demonstrates the path of 

the load through the test rig. 

 

 

Figure 5. Faulty external spacer separating the bearings 

outer rings. Lack of support is simulated by milling the 

spacer’s vertical ends. 

 

Figure 6. Load transformation over the test rig 

The rotational speed of the plate is measured by a magnetic 

speed sensor. Vibration signals were collected by triaxial 

piezoelectric accelerometer positioned at several locations 

marked on Figure 4. The accelerometers are mounted with 

one of their axes parallel to the rigs axial axis (line of 

action). Data was collected in several rotational speeds and 

piston pressures in both healthy and faulty swashplates.  

4. MODEL RESULTS 

During a ball passage through the outer ring deflected zone, 

the load acting on the ball drops and the ball support of the 

outer ring is reduced. In order to compensate for the support 

reduction, the balls outside the deflected zone are 

overloaded. The interruption caused by interaction of a ball 

with the deflected zone causes a periodic impact.  
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Cycle domain of the simulated results is presented in Figure 

7. The axial direction coincides with the bearing axis, while 

Radial 1 and Radial 2 are directions of measurement located 

in the bearing plane. Model results simulate a sensor located 

at the center of the inner ring. Since the defect location 

varies with the shaft rotation shaft speed modulation is 

created in the radial directions. 

Further analysis was performed using Power spectral 

density (PSD). The spectrum of the axial acceleration 

reveals peaks at harmonics of the Outer race Ball Pass 

Frequency (BPFO). BPFO harmonics are presented in 

Figure 8 as the repetitive high peaks. The spectrum of the 

radial acceleration reveals peaks at shaft speed sideband 

around the BPFO harmonics (Figure 9). In order to obtain a 

closer to reality simulation, a small value radial load was 

inserted. This modification is expressed by an additional 

sideband. 

 

Figure 7. Simulated results: acceleration of the inner ring 

 

 

Figure 8. Simulated results: Order of a faulty duplex bearing 

under combined load. Axial, radial 1 and radial 2 are in 

green, blue and purple respectively  

 

Model simulations present the defect signature as BPFO 

harmonies with adjacent shaft speed sidebands. The BPFO 

is calculated for       [     ] and is clearly visible as the 

main peak in the axial direction. Background sidelobes are 

significantly lower than the radial sidebands and therefore 

are not part of the pattern. Following harmonics present a 

similar image. Therefore this pattern was used for 

comparison to BPFO harmonics of the experimental results.  

 

Figure 9. Simulated results: order of the BPFO first 

harmonic. Axial, radial 1 and radial 2 are in green, blue and 

purple respectively 

5. EXPERIMENTAL RESULTS 

Test rig results present a significantly more complex image. 

Vibration sensors are sensitive to data from a variety of 

elements in the system. In addition, effects of misalignment 

unbalance and transfer functions are present. Use of order 

tracking, envelope analysis and signal dephase are described 

in this section. These are applied in order to separate the 

fault pattern from the noisy environment. 

Figure 10 presents the order representation (PSD of the 

resampled signal) of the measured signal of a piezoelectric 

tri-axial sensor mounted at location 1. 

 

Figure 10. Measured data: Order representation of the tri-

axial data at location 1. Axial, radial 1 and radial 2 are in 

green, blue and purple respectively 
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Data was acquired at various locations (marked on Figure 

4). The data was examined and location 1 was selected as 

the bearing was most noticeable in its signals. Through 

examining the analyzed data, it was found that the BPFO 

order is estimated at       and the inner race Ball Pass 

Frequency (BPFI) order is estimated at 47.03. The 

proximity of the bearings tones to a harmonic of the shaft 

speed causes a difficulty in recognition of the bearing tone 

and its sidebands in the vicinity of the first harmonic (see 

Figure 11). This illustrates the difficulties in recognizing the 

pattern in a realistic environment. A clear image of the 

defect pattern is obtained at the BPFO 7
th

 harmonic and is 

presented in Figure 12. Unlike the model results, both the 

PBFO harmony and the shaft speed sidebands are presented 

in all measuring directions. The main reason for this is 

inherent in the behavior of the transfer function and related 

to the proximity of the sensor to the bearing.  

 

Figure 11. Measured data: Order of the BPFO first 

harmonic. Axial, radial 1 and radial 2 are in green, blue and 

purple respectively 

 

 

Figure 12. Measured data: Order of the BPFO 7th harmonic. 

Axial, radial 1 and radial 2 are in green, blue and purple 

respectively 

 

5.1. Advanced analysis 

An advanced analysis is used to identify the fault in noisy 

environment. The dephase algorithm (Klein et-al, 2012) 

attenuates peaks synchronous to the rotating speeds of shafts 

(gear mesh frequencies, shaft harmonics). By that, weak 

signals related to bearings that have been masked by other 

vibration sources might become visible. Figure 13 presents 

the dephased signal marked in green against the background 

of the order signal (in orange). The second BPFO harmonic 

was masked by the cog belt signal at order   . Accordingly, 

BPFO sidebands are unrecognized without the dephased 

analysis. Figure 14 presents the dephased signal of the axial 

direction centered at the third BPFO harmonic.  

 

  Figure 13.Measured data: axial direction of the second 

BPFO harmonic. Order of the dephased signal (green) 

against the background of the order signal (orange).  

 

 

Figure 14. Measured data: Order of the dephased axial 

direction, third BPFO harmonic 

 

Envelope analysis is a known technique for identification of 

bearing faults. The envelope signal was calculated based on 

the dephased signal and is presented in Figure 15 and Figure 

16. The order representation of the envelope shows a clear 

bearing pattern and good agreement with the model results. 
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Figure 15. Measured data: Order of the envelope axial 

direction, second BPFO harmonic 

 

 

Figure 16. Measured data: Order of the envelope axial 

direction, third BPFO harmonic 

6. CONCLUSION 

This study focuses on the recognition of deformation faults 

in duplex ball bearings. Deformation of the bearing outer 

ring is a result of axial loading along with buckling of the 

external spacer. This study integrates the results of a 3D 

dynamic model, developed for assessment of the defect 

pattern, and results from experimental systems.  

The dynamic model simulations present the defect signature 

as BPFO harmonics in the axial direction with adjacent shaft 

speed sidebands in the radial directions.  

A small scale specimen was designed for preliminary results 

of the rings deformation. Experiments of the small scale 

specimen are presented in previous work (Battat at el., 

2013) and are in good agreement with the model results. 

The full scale test rig was constructed to simulate more 

realistically the signals generated by the swashplate.  

Experiments conducted on the test rig confirm the increase 

in noise sources and present the difficulty in recognizing the 

pattern in a realistic environment. The results present the 

defect pattern masked by noises, unbalance and effects of 

transfer function. Evident pattern can be observed in 

specific BPFO harmonics (e.g. the 7
th

 harmonic) in which 

the presence of shaft harmonics is attenuated. Use of the 

dephased algorithm was required in order to recognize 

bearing tones and their sidebands around the BPFO first 

harmonics. A clear bearing pattern was observed by use of 

envelope analysis calculated based on the dephased signal. 
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ABSTRACT 

Electromagnetic relays provide a well proven solution to 

switching loads in a variety of applications.  However, 

relays are known for their limited reliability due to 

mechanical wear of internal switching elements, essentially 

the life of the relay may be determined by the life of the 

contacts. Failure to trip, spurious tripping and contact 

welding, can in critical applications such as control systems 

in avionics and signaling for rail networks, cause significant 

costs due to downtime as well as safety implications.  

Prognostics provides a way to assess the remaining useful 

life of an electromagnetic relay based on its current state of 

health.  

In this paper, the cause of failure and degradation for 

electromagnetic relays used in avionic power controllers are 

examined. A first principle model of an electromagnetic 

relay, including contact wear is proposed.  The degradation 

observations and measurements form the basis for 

developing a model based remaining useful life prediction 

algorithm. Our overall aim is to derive a simple but accurate 

model of the relays contact degradation, and provide 

prediction of performance changes within the component. 

 

1. INTRODUCTION  
 

The electromagnetic relay has been around for a very long 

time, approximately 160 years and is essentially an 

electrically operated switch; the basic principle of most 

relays is to use an electromagnet to operate a mechanical 

switching mechanism. Relays are used for the control of 

circuits via a low power signal and offer a complete 

isolation between the control and the controlled circuit.  

Other advantages are their ability to deal with high surge 

currents and high voltage spikes, as well as having no 

leakage current. However, their main disadvantage is the 

life expectancy, which is low compared with their solid state 

counterpart. 

Relays have many applications, amongst the first uses were 

in telephony and telephone exchanges as well as early 

computing. Modern uses are still many and varied, with 

applications such as amplifying a digital signal, switching 

large amounts of power with a small operating power; 

industrial control of machine tools, transfer machines, and 

other sequential control; detection and isolation of faults on 

transmission and distribution lines by opening and closing 

circuit breakers (protection relays); isolation of the control 

circuit from the controlled circuit and logic functions . 

Amongst these applications are signaling in the rail network 

and the main emphasis of this work, the use of relays to 

control the power to a Full Authority Digital Engine Control 

(FADEC) on an aero engine. However, relays are known for 

limited reliability due to mechanical wear of internal 

switching elements, and essentially the life of the relay, 

may be determined by the life of the contacts. Failure to 

trip, spurious tripping and contact welding, can, in critical 

applications such as control systems for avionics and 

signaling in rail networks cause significant costs due to 

downtime as well as safety implications.   

Prognostics provides a way to assess the remaining useful 

life (RUL) of an electromagnetic relay based on its current 

state of health and its anticipated future usage and operating 

conditions. In this paper, we examine the causes of contact 

wear on electromagnetic relays used in an avionic power 

controller. A first principle model of an electromagnetic 

relay contact wear is proposed. Our overall aim is to derive 

a simple but accurate model for electromagnetic relay 

contact degradation. 

 

2. REVIEW OF ELECTRICAL CONTACTS AND 

FAILURE MODES 
 

The reliability of electromagnetic relays has been the 

subject of research for many years; however over the last 

eight years, research has started to appear on the prediction 

of reliability within relays based on monitoring their 

dynamic parameters.   

The traditional reliability assessment methods for 

electromagnetic relays are based on censored failure time 

data; this provides very little reliability information (Fang et 

al., 2006). In order to predict the life of the relay, a metric of 

degradation need to be defined, methods explored include 

dynamic contact resistance, pick-up time, over-travel time, 

the rebound duration, closing time, the fluctuation 

coefficient respectively as the predicted variables of the 

First Author (Andrew Wileman) et al. This is an open-access article 

distributed under the terms of the Creative Commons Attribution 3.0 
United States License, which permits unrestricted use, distribution, and 

reproduction in any medium, provided the original author and source are 

credited. 
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abrasion failure, bridging failure and the contamination 

failure (Qiong et al. &  Xuerong et al., 2010). 

The effects of the environment on the reliability prediction 

can be a major contributory factor, the failure process and 

failure mechanisms of electromagnetic relay may totally 

change along with the environment. 

As well as the environment, influence factors such as 

material transfer to the contact gap, the combined influence 

of the arc energy and the contact surface morphology to the 

degradation rate of the contact gap, and use of fatigue 

cumulative damage theory has been explored to establish a 

failure physical degradation model of the electromagnetic 

relay contacts (Xuerong et al., 2012). Multiple degradation 

parameters may be required to give an accurate metric of the 

failure mechanism.  

Due to the complexity of defining a model that can predict 

degradation throughout the electromagnetic relay, most 

methods of assessing reliability have been based around 

time series and regression techniques. (Qiong et al., 2010) 

showed by using time series analysis and by measuring 

characteristic parameters as predicted variables, the life of 

relay can be obtained. However, the conclusions showed the 

predicted accuracy is greatly influenced by the complex 

variations of characteristic parameters, and as a result it 

sometimes becomes too low to be accepted. Life prediction 

based on wavelet transform and ARMA (auto-regression 

moving average) time series was proposed to improve this 

(Yu, Q., 2009).   

A linear regression analysis method has been used to 

establish the linear degradation model which regards the 

operation time as the independent variable and the predicted 

variables of the failure mechanisms as the dependent 

variable (Xuerong et al., 2012).   

The work carried out by (Fang et al., 2012) proposes the 

analyses of the uncertainty of bounce time of contacts for 

the relay and its use in predicting operating reliability. It 

changes the contact bounce time into a symbolic series 

according to the threshold function. The analysis indicates 

that series entropy of bounce time for bad contacts descend 

as time goes on; the law can be used to predict the operating 

reliability. 

The work above has been developed on ascertaining the 

reliability of relays via various methods, however, very little 

work has been carried out so far in producing a prognostic 

solution.  

 

2.1. Failure and degradation modes in relays 

 

The following table outlines the failure modes associated 

with general relays (Fujitsu Components Engineering 

Reference: Relays, 2009). 

 

 

 

 

 

Table1. Failure modes in electromagnetic relays 

 

Parts Stress Failure 

Symptoms 

Failure Mode 

Contact Voltage, 

Current, 

Temp. 

Vibration, 

Humidity, 

Shock, 

Dust, Gas 

Transfer and 

wear of contact 

due to arc 

discharge 

Weld and 

bridging of 

contact 

Sticking 

contact 

Corrosion 

(oxidation, 

sulfurization) 

Foreign matter 

(dust etc) 

Deposits 

Poor release 

Poor contact 

Increased 

contact 

resistance 

Noise 

Change in 

operate/release 

time 

Poor dielectric 

strength 

 

Winding As above Corrosion 

Foreign matter 

Voltage 

fluctuation 

Lead wire 

vibration 

Breakage of 

coil 

Burning of coil 

Poor working 

release 

operation 

Change in 

operate/release 

time 

Change in 

operate/release 

voltage 

Malfunction 

Structural 

parts 

As above Fatigue and 

creep of spring 

Abnormal 

wear 

Seizure 

Foreign matter 

(dust) 

Deposition of 

worn contact 

materials 

Corrosion 

Poor contact 

Poor release 

Change in 

operate/release 

time 

Change in 

operate/release 

voltage 

Insulation 

resistance 

Enclosure As above, 

Chemicals 

Damage by 

external force 

Chemical 

damage 

Damage 

(cracks etc.) 

 

Pursuing manufacturer’s data shows that general relays have 

a life electrical life expectancy of around 100,000 operations 

minimum with a resistive loading (this is greatly reduced 

with inductive loads) and a mechanical life expectancy in 

the order of one million and in some cases 10 and 100 

million operations.  The reason the electrical life is so low, 

compared with the mechanical life is because the contact 

life is application dependant. The electrical rating applies to 
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contacts switching at their rated loads (Holm, 1967). If 

however, a set of contacts is used to switch a load less than 

the rated value, the contact life may be significantly higher. 

The rated electrical life also takes into account arc 

destruction of the contacts. Arc suppression may be used to 

lengthen the life of the contact. 

As well as arcing, sparking may cause damage at voltages 

and currents less than those required for arc ignition. The 

spark is due to capacitive discharge, and compared to a arc 

is weak, and contributes less to the damage of the contact. 

Contact life is deemed to have reached failure when the 

contacts stick or weld together, or if excessive material 

transfer has taken place to either one of both contacts and a 

good electrical contact make is no longer possible. These 

failure modes are due to successive switching operations 

and of material loss due to splattering. 

The material transfer takes place as a result of joule heating.  

As the contact area separates, the area of the contacts 

diminishes.  The load current is then force to flow through 

an ever more constricted area, and this causes a buildup of 

heat, which reaches such a point where the contact material 

is melted and then boils. With a dc load, this liquefied 

material tends to deposit on the cathode of the contact, 

simply due to the fact that it is cooler than the anode.  

Material transfer also occurs as a result of arcing, with the 

transfer being opposite to above and depositing the molten 

metal on the anode of the contact. 

Material loss due to boiling and arcing is from splattering 

during contact bounce on the closure of the contacts. 

Although the amount of material loss is minuscule, over 

tens or hundreds of thousands of operations it becomes 

significant. 

 
2.2. Contact bouncing 

 

The making of the contacts is not usually finished at first 

touch, but as a consequence of bouncing (where the force of 

contacts impacting together causes them to bounce apart), 

the members make and break their contact several times 

before they reach a permanent state of contact. This can 

have implications due to the many disturbances bouncing 

brings. The exactitude of contact make is lost, and the 

material transfer by arcs and bridges is increased, since each 

bounce is the same as a new switch operation. A contact is 

particularly vulnerable to damage by re-bounce when the 

current begins with a high inrush as in the case of inductive 

loads, such loads may result in current in excess of eight 

times the normal operating current (McBride, 1991) 

 

2.3. Arcing in a d.c. circuit and material transfer 

 

An arc is produced from stored energy in a circuit due to the 

inductance L. If the current was to suddenly drop to zero in 

a circuit by the parting of the electrical contacts, then the 

stored energy in circuit inductance would result in large 

over voltages given by 

 

    
  

  
  (1) 

 

In a d.c. circuit the duration of the arcing time is related to 

the magnitude of the arc voltage VA compared with the 

circuit voltage VC. When VA>VC a finite time is required to 

dissipate the 0.5LI
2
 energy stored in the circuit inductance.   

One of the most important consequences of arcing is the 

effect that the arc has on the erosion of the contact material.  

The contact erosion occurs because with stationary arcs both 

the cathode and the anode under the arc roots are heated to 

the boiling point of the contact material (Slade, 1999).  The 

amount of erosion per contact operation depends upon may 

parameters as summarized by Slade (1999), e.g., 

 

1. the circuit current 

2. the arcing time 

3. the contact material 

4. the contacts size and shape 

5. the contacts opening velocity 

6. the contact bounce on make 

7. the open gap 

8. arc motion on the contacts 

Contact erosion is further complicated by mechanical 

stresses seen by the contact as a result of opening and 

closing. Slade (1999) defines that in principle the mass lost 

per operation of contact should be given by  

 

mass loss = f(total power input into the contacts) 

 

      (2) 

 

However, this simple equation presents complexities that 

prevent it ever being established.  Firstly, how is mass loss 

defined?  The total mass loss from a contact is a mixture of 

the following components: 

 

Metal vapor evaporated from the arc roots + 

Metal droplets ejected from the arc roots – 

Metal re-deposited back onto the contact faces – 

Metal deposited from the opposite contact. 

 

As well as the mass loss, calculation of the total power input 

into the contacts can be difficult, in terms of measurement 

of arc voltage VA and circuit current IC. 

Hence calculation of contact erosion is still a topic of 

research, there is a great deal of literature on contact 

erosion, but it tends to be application specific and subject to 

guidance when used for design. 

Tables are available giving constant values for example see 

Holm (1967), for mean values of coefficients characterizing 

the arc material transfer on making or breaking contact 

during a long series of operations, ranging from 0.03 to 1.1.  
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For the relay being used in this work, the contact material is 

a silver alloy consisting of Silver (Ag) and 40% Nickel (Ni).  

Hence from the table a material transfer rate   = 0.6 and the 

loss  due to evaporation from arcing is β=0.8. 

To conclude, a degree of arcing can be useful to remove 

oxides and film that collect on the contacts of the relay, but 

excessive arcing causes reduced life and where arcing 

suppression is recommended by manufactures, it cannot be 

eliminated altogether and prediction of how long relay 

contacts will last. 

 

3. DERIVATION OF DAMAGE AND PROGNOSTIC 

MODEL FOR ELECTRICAL SWITCHING 

CONTACTS 
 

A framework for developing a electromagnetic relay contact 

prognosis takes the form of below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  Prognostic framework 

 

3.1. Electrical contact resistance 

 

Any solid surface studied through a microscope will show 

even the most seemingly smooth finish is in fact undulating. 

The micro-surface will be composed of peaks and valleys, 

whose height variations, shape and other geometric 

considerations vary considerably. When a contact is made 

between two metals, surface asperities of the contacting 

members will penetrate the natural oxide and other surface 

contaminant films, establishing localized metallic contacts 

and thus, conducting paths. As the force increases, the 

number and the area of these small metal to metal contact 

spots will increase as a result of the rupturing of the oxide 

film and extrusion of metal through the ruptures. These 

spots, termed a-spots, are small cold welds providing the 

only conducting paths for the transfer of electrical current. 

A direct consequence of this is a porous contact where 

infiltrating oxygen and other corrosive gases can enter to 

react with the exposed metal and reduce the metallic contact 

areas. This will eventually lead to disappearance of the 

electrical contact, although the mechanical contact between 

the oxidized surfaces may still be preserved (Slade, 1999). 

Since electrical current passes only where the small contact 

spots (also known as a-spots) are electrically conducting 

(e.g., where electrically insulating films on the contact 

surfaces are displaced), electrical current is highly 

constricted as it passes across the interface, as illustrated in 

Figure. 2. Current constriction gives rise to a contact 

resistance very much like constriction of a water hose 

increases resistance to water flow. For a circular constriction 

of radius a, the constriction resistance RC is given as  

 

   
 

  
 (3) 

  

Figure 2. Schematic diagram of contact a-spots and current 

flow in an electrical contact 

The contact resistance RC between two conductors of 

resistivity ρ1 and ρ2, held together with a force F, is given as 

(Holm, 1967; Slade, 1999; Braunovic et al., 2006) 

   
       

 
 
  

 
 (4) 

where H again, is the Vickers' micro-hardness of the softer 

of the two materials and F is the contact force. 

Because the metals are not clean, the passage of electric 

current may be affected by thin oxide, sulphide, and other 

inorganic films usually present on metal surfaces. 

Consequently, the total contact resistance of a joint is a sum 

of the constriction resistance (Rs) and the resistance of the 

film (Rf) 

 

Electrical/Thermal Stress 

Electro-Magnetic Relay 

Accelerated Ageing Experiments 

Degradation - Contact wear, increased contact 

resistance due to arcing/Joule heating causing 

material transfer and material loss. 

Modelling of Contact Degradation 

Kalman Filter 

Prognostic at Component Level 

Physic Based Model 
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              (5) 

 

   
 

         (6) 

 

where σ is the resistance per area of the film. 

The contact resistance is the most important and universal 

characteristic of all electrical contacts and is always taken 

into account as an integral part of the overall circuit 

resistance of a device. Therefore, although it is significantly 

smaller as compared with the overall circuit resistance, the 

changes in the contact resistance can cause significant 

malfunctions of the device. This is because the contact 

resistance can vary significantly with the changes in the real 

contact area, contact pressure variations, resistive film non-

uniformity, and other factors (Braunovic et al., 2006). 

 

3.2. Effects due to switching 

 

As we are only interested in the switching of direct currents, 

phenomenon related to this is considered here. In the case of 

d.c., the arc has no natural weak phase like a.c., where the 

arc passes through zero, therefore the switch has to 

extinguish the un-weakened arc at full current. 

The function of the switch arc can be described as the 

generation of an emf Va (the arc voltage) and a current Ia 

both of opposite direction to the emf E and current I of the 

system.  If ta is the life time of the arc, the available energy, 

W, of the system shall be consumed by the arc during this 

time with the consequence that, at t=ta, the current through 

the switch is zero. 

 

     
  
 

     
 

 
            

  
 

    (7) 

 

where 
 

 
    is the inductive energy of the system, 

   
  
 

     is the energy that the system produces during ta 

and     
  
 

   is the energy consumed in the resistance, R, 

of the system as discussed in Holm (1967). 

 

3.3. Modelling of contact degradation 

 

In order to derive a model of the contact wear the heating 

due to arcing (Holm, 1967) from above is as   

   
  
 

     

Differentiating this equation gives: 

 
  

  
          (8) 

 

This equation gives what is termed the Joule heating 

through the contact. 

Further to this, the consideration of material loss and 

transportation need to be considered.  The loss factor ϒ 

depend upon the latent heat of evaporation and the factor β 

indicates how many bonds of a molecule are lost (Holm, 

1967; Weißenfels &Wriggers, 2008). This factor depends on 

the choice of the materials and also on the temperature and 

can range from 0 to 1. Lower values have to be used, if each 

of the contact member possesses different materials. If the 

difference of the heat of evaporation between both materials 

is very high, the factor β decreases. If both members have 

the same material the value is around 0.2, and if the 

temperature is very high, at arcing for instance, the factor is 

close to one. 

Equation 8 now becomes 
  

  
 

 

 
   

This is now the equation for the computation of wear, 

         

 
  

  
 

 

 
             (9) 

 

This wear is equivalent to the damage occurring due to the 

contact resistance changing through degradation. 

Introducing a new variable to represent the damage 

 

                              (10) 

 

The resistance across the contact can be related to Ohms 

law, where          
        

        
, where Vcontact is the voltage 

measured across the contact and Icontact is the current flowing 

through the contact.   

Substituting for         ,    
       

 
 

  

 
 an equation for 

the rate of damage due to Joule heating may be derived and 

can be determined by the relation. 

 

         

  
                   

                              
        

       

 
 

  

 

   

  

      (11) 

where   is the voltage across the contact when it is open. 

 

The above equation now gives the Joule heating equivalent 

to the voltage appearing across the contact given a derived 

theoretical contact resistance for the contact.  This equation 

will form the basis for modeling of how the degradation will 

occur across the contact given a measurement of contact 

voltage, due to Joule heating.  The degradation will increase 

in proportion to the voltage increasing across the contact. 

A dynamic model may now be derived to enable a physical 

model of contact wear to be estimated. 

  
  

  
 

 

 
         

can be re-written as a discrete equation by introducing the 

first order approximation for the change in wear the above 

equation may be written as  
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which gives 

 

        
 

 
              (12) 

 

similarly, the same procedure may be applied for the 

degradation equation. 

 

         

  
                 

        

       
 

   
 

 

  
            

       

  
                 

        

       
 

   
 

 

 

which gives 

 

  
            

                        
        

       

 
 

  

 

     (13) 

 

following the framework in figure 1.,this now allows a state-

space dynamic model to be formed,  this is needed for the 

Kalman filtering (Grewal & Andrews, 2008). The general 

discrete state space model takes the form of below: 

 

               

           

        (14) 

 

where x is the state vector, y is the measurement vector, u is 

the input or 'control' vector, A is the "state (or system) 

matrix", B is the "input matrix", C is the "output matrix" and 

D is the "feed through (or feed forward) matrix", if the 

system does not incorporate feed thorough this is usually 

zero. Furthermore, v and w are normal random variables 

with zero mean and Q and R variance.  Q is the model noise 

variance and is estimated from the model regression 

residuals and was used for the model noise in the Kalman 

filter implementation. The measurement noise R, is 

computed from experimental results. 

 

3.4. Prognostic prediction process 

 

The prediction process is concerned with how the estimate 

    will vary when time changes from    to     is predicted. 

   
     

       

    
      

    

      (15) 

where the first equation predicts the estimate and the second 

equation predicts the error covariance. 

 

The equations of state are: 
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The state model is given in matrix form as below: 

 
  

  
     

 

 
  

  

  
    

    
    

 
         

  

    
 
 
   

 
 
  

 

      (17) 

where Rc replaces 
       

 
 

  

 
 and    is         .  Inserting 

values for H,       and using the maximum contact force 

allows a plot of the contact resistance and damage to be 

produced to verify the model 

Figure 3. Output from model 

 

 
Figure 4. Kalman Filter prediction of damage and contact 

resistance 
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In order to produce a forecast of the RUL, the Kalman filter 

forms a prediction of damage in terms of the future contact 

resistance from a present resistance measurement (figure 4). 

Manufactures literature gives the contact resistance when 

the contact operation is deemed unacceptable. The forecast 

of RUL, is the number of operations left to reach this point. 

4. CONCLUSION 

A great deal more work needs to be carried out to model 

failure modes in order to get a accurate prognostic model of 

relay contact failure.  As well as this, other components in 

the relay need to be explored and their involvement in the 

process of the predicting the remaining useful life.  
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ABSTRACT 

Separation of solids from fluid is a vital process to achieve 

the desired level of purification in industry. Contaminant 

filtration is a common process in a variety of applications in 

industry. Clogging of filter phenomena is the primary failure 

mode leading to replacement or cleansing of filter. Reduced 

performance and efficiency or cascading failures are the 

unfortunate outcomes of a clogged filter. For instance, solid 

contaminants in fuel may lead to performance reduction in 

the engine and rapid wear in the fuel pump. This paper 

presents the development of an experimental rig to collect 

accelerated filter clogging data and a physics-based 

degradation model to represent the filter clogging. In the 

experimental rig, pressure drop across the filter, flow rate, 

and filter mesh images are acquired during the accelerated 

clogging experiments. The pressure drop across the filter 

due to deposition of suspended solids in the liquid is 

modelled and employed in the degradation modelling. Then, 

the physics based degradation model simulated using 

MatLab is compared with the real clogging data and the 

effectiveness of the degradation model is evaluated. 

1. INTRODUCTION 

Filtration is basically described as a unit operation that is 

separation of suspended particles from fluid utilizing a 

filtering medium where only the fluid can pass 

(Cheremisinoff, 1998). Driving force for filtration is the 

pressure gradient generated across the filter. Solid-liquid 

filtration processes can be classified into three categories. 

These are: 1. deep-bed filtration, 2. cross-flow filtration, and 

3. cake filtration. Deep-bed filtration can be done using 

depth-filters. Depth filters retain the particulate through the 

porous packed bed. Sand filters are the common examples 

of depth filtration. In cross-flow filtration mechanism, slurry 

flows parallel to the filter medium where only clean liquid 

can pass to the other side leaving the particulate inside the 

filter. In cake filtration, the solid particles in suspension 

flowing through the filter media are retained building up an 

increasing thicker cake as shown in Figure 1. From now 

onward in this paper, we discuss in detail the cake filtration. 

 

Figure 1. Schematic representation of cake build up on filter 

medium (Abboud and Corapcioglu, 1993) 

Two types of cake filtration processes are common in the 

literature and industry. These are: 1. constant rate filtration, 

2. constant pressure filtration. Figure 2 depicts the flow rate 

and pressure behaviors in each operating condition. Regime 

A represents constant rate filtration where fluid flow rate of 

the system remains constant. Pressure drop across the filter 

increases as the cake builds up. In most cases cake becomes 

compressed and more compact as the pressure increases, 

leading to higher cake resistance. Regime B represents 

constant pressure cake filtration where flow rate of the 

system declines as the cake builds up. Eker et al. This is an open-access article distributed under the terms of 

the Creative Commons Attribution 3.0 United States License, which 

permits unrestricted use, distribution, and reproduction in any medium, 

provided the original author and source are credited. 
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Figure 2. Constant rate vs. constant pressure filtration 

Filtration phenomenon is interest of several engineering 

processes including automotive, chemical, reactor, and 

process engineering applications. Besides, several industrial 

applications such as food, petroleum, pharmaceuticals, 

metal production, and minerals embrace filtration process 

(Sparks, 2011). 

The goal of the filtration systems is to keep the rest of the 

system running smoothly. Filtration systems play a vital role 

in maintaining the process operating. Filtration and 

separation equipment plays a big portion in production of 

transport equipment manufacturing with 15.5 percentage. 

Modern commercial vehicles and automobiles have 

numerous types of filters including fuel, lubricant, and 

intake air (Sutherland, 2010). 

Sharing an important role with pumps, fuel filters filtrate 

dirt, contaminants in the fuel system such as paint chips, 

dust, or rust particulate which have been released from a 

fuel tank due to moisture, or other numerous type of dirt, 

have been delivered via supply tanker (Wilfong et al., 

2010). Consequences like engine and pump performance 

degradation due to increased abrasion and inefficient 

burning in the engine are the main motivators for fuel 

filtration. System flow rate and engine performance 

decreases once a fuel filter is clogged where it doesn’t 

function well in its desired operation ranges. In today’s 

conditions, fuel filters are replaced or cleansed on a regular 

basis. Monitoring and implementation of prognostics have 

the potential to avoid costs and increase safety. 

The rest of the paper is organized as follows. Section two 

provides a brief literature review of physics-based 

degradation modeling studies done on cake filtration 

processes. Section three discusses in detail the filter 

clogging experimental scenario under accelerated aging 

conditions. The methodology of clogging modelling is given 

in section four. Comparison of the simulation results with 

experimental data is discussed in section 5. The paper 

concludes with discussion of the results and future work. 

2. LITERATURE REVIEW 

Researches have been attracted to model the pressure drop 

and cake formation in cake filtration processes since early 

1930s. Darcy’s Law has been used for calculating the 

permeability of a filter septum (Wakeman, 2007). Darcy 

described the volumetric flow rate ( ) of a system as a 

function of pressure drop (  ), permeability ( ), cross 

sectional area to flow ( ), viscosity ( ) of the fluid, and the 

thickness ( ) as shown in Eq. 1. 

 

   
  

  
     (1) 

 

Kozeny-Carman (Carman, 1997) and Ergun (Ergun, 1952) 

equations are two commonly used formulations applied in 

the field of fluid dynamics to model the pressure drop of a 

fluid flowing through a porous medium. Detailed 

examination of the formulations is discussed in section four. 

(Tien and Ramarao, 2013) brought an issue that Kozeny-

Carman equations are questionable when it comes to 

porosity calculation of compressible and randomly packed 

filter cakes in gas-solid separation processes. They claimed 

that Kozeny-Carman is appropriate when it’s used only for 

pressure drop – flow rate correlations. (Tien and Bai, 2003) 

discussed a more accurate procedure of applying the 

conventional cake filtration theory. Conventional cake 

filtration theory has the capability of estimating the cake 

thickness, cake resistance, porosity, and pressure drop of the 

system.  

Cake thickness and compressibility of the cake have the 

highest influence on pressure drop across the filter. Several 

methods have been implemented in order to measure the 

cake thickness depending on the filter geometry including 

ultrasonic, electrical conductivity techniques, nuclear 

magnetic resonance micro-imaging, optical observation, or 

cathetometer measuring (Hamachi and Mietton-Peuchot, 

2001). (Ni et al., 2006) have modelled cake formation & 

pressure drop of a filtration mechanism in particle level 

(micro) where majority of the studies in literature are done 

in macro level. They simulated the cake filtration process 

using FORTRAN in both constant pressure and constant 

rate stages. 

3. EXPERIMENTAL SETUP & DATA COLLECTION 

This section discusses in detail the filter clogging 

experimental scenario & data collection for prognostic 

purposes under accelerated aging conditions. 

3.1. Design & Installation 

A peristaltic pump was installed in the system to maintain 

the flow of the prepared suspension as shown in Figure 3. 

The pump is a positive displacement pump providing 

constant flow rate where it takes the suspension with a 
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desired flow rate and pumps it through the filter, letting the 

suspension pour into the reservoir. A stirrer was installed in 

the system to ensure that particles were fully mixed. This is 

necessary as the particles, even though they are meant to be 

naturally buoyant, sink after a while leaving the water clean. 

Upstream and downstream pressure transducers are installed 

in the system to measure the pressure drop across the filter; 

this is considered as the main indicator of clogging. A 

magnetic flow-meter is installed in the system in order to 

measure the flow rate of liquid. 

Figure 3. Filter clogging rig system design 

A high quality macro lens camera is installed in the system 

and macro pictures of the filter were taken every two 

seconds. The mesh inside the filter can clearly be captured 

and it can be utilized in image processing applications for 

clogging rate calculations which gives the ground truth 

information of clogging where other sensory information 

can be compared with the clogging rate obtained from the 

macro picture dataset.  Polyether ether ketone (PEEK) 

particles have been selected to be used in accelerated aging 

experiments for clogging the filter. Distribution of the 

particles is shown in Figure 4. 

Figure 4. PEEK particle size distribution 

A box was designed to cover the filter area. The interior side 

of box was covered with a white colored material and a light 

source was directed inside the box to provide a constant 

uniform light so that the filter is isolated from varying 

environmental light. Components of the system were 

selected so that no other component will deteriorate other 

than the filter. Details of the system design and the data 

collected under different operation profiles can be found in 

(Eker et al., 2013). 

3.2. Data Collection 

This section provides the data collection details of 

accelerated clogging experiments. 

Operation profiles were kept the same for the six run-to-

failure accelerated aging experiments. 125 micron pore 

sized fuel filters have been utilized for clogging experiments 

in the lab environment. Suspension solid fraction rate was 

kept 0.14% for each experiment. Pressure and flow rate 

measurements have been collected. Each clogging 

experiment has been run and monitored until the filter has 

clogged where the pressure drop (e.g. Differential 

Pressure,                                         ) 

value has reached its peak value and remains stable where 

flow rate value has reduced to half as shown in Figure 5. 

Figure 5. Pressure drop and flow rate measurements 

 Fluctuations in pressure measurements are generated from 

the peristaltic pump reflecting the pump RPM shown in 

Figure 6. Final shape of the data is given by implementing 

low-pass filtering and sampling. One out of hundred data 

points has been selected in the sampling phase since data 

collection sampling rate defined was as 100Hz. Filtered and 

sampled version of all samples are shown in Figure 7 used 
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in degradation modelling in section four. Each curve in the 

figure represents a run-to-failure experiment measurement. 

A macro lens camera was set to take pictures once every 

two seconds during each clogging test. Filter mesh pictures 

will be employed in image processing phase and clogging 

rates will be calculated and correlated with pressure drop 

and flow rate measurements. 

Figure 6. Zoomed pressure plot of a sample 

Figure 7. Filtered and sampled clogging indicators 

4. METHODOLOGY 

This section gives the governing formulations developed in 

pressure drop modelling of an accelerated clogging of filter. 

In this study, the experimental rig is designed so that no 

other component is failed but the filter itself. Pressure drop 

across the filter, volumetric flow rate, cake thickness and 

porosity parameters are the main dynamic indicators 

showing the clogging level of a filter. These parameters 

need to be measured or derived from other parameters. In 

this study, correlations in between these parameters are 

modelled. 

As mentioned in the introduction, Kozeny-Carman and 

Ergun equations are the most used models to calculate the 

pressure drop of a fluid through a packed bed of solids. 

Solid particles deposited on the filter mesh stands for the 

packed bed phenomena in cake filtration.  

 

   
    

  
   

 

       

       (2) 

 

   
             

  
   

 
            

  

    
     (3) 

 

Where: 
   : Pressure drop 

  : Total height of the bed 

   : Superficial (empty-tower) velocity 

  : Viscosity of the fluid 

  : Porosity of the bed (or cake) 

   : Sphericity of the particles in the packed bed 

   : Diameter of the spherical particle 

ρ : Density of liquid 

 

Eq. (2) represents the well-known Kozeny-Carman model 

whereas Eq. (3) stands for the Ergun equation. Viscosity & 

velocity of fluid, cake thickness, and porosity of cake are 

directly proportional to the pressure drop across the filter in 

contrast with particle diameter and sphericity. The Ergun 

equation is a detailed version of the Kozeny-Carman 

equation. The first term in the Ergun equation represents 

viscous effect whereas the second term associates with the 

inertial effect. Inertial effect is not considered in Kozeny-

Carman model. 

Cake thickness and porosity are the dynamic cake structure 

parameters required to be modelled separately. Cake 

structure is assumed uniform which means cake thickness is 

uniform along the cake. Cake thickness growth show similar 

profile with the pressure drop values across the filter as 

confirmed by several studies in the literature. Therefore we 

modelled the cake thickness growth as logarithmic as shown 

in Eq. (4). ‘ ∑  ’ term stands for cumulative particle 

volume retained in the filter chamber where ‘ ’ is flow rate, 

‘ ’ is solid fraction of the suspension. ‘  ’ stands for 

filtration area. 

 

   
     

∑  

  
 

  
     (4) 
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Porosity ‘  ’ defined as the void fraction of a filtration 

mechanism. We derived a porosity model of the filter as 

shown in Eq. (5).  ‘
∑  

  
’ term gives the solid fraction of the 

cake where ‘  ’ is the maximum filtration volume can be 

filled in the filter chamber.  

 

    
 
   

∑  
  

 

  
    (5) 

 

‘  ’, ‘  ’, ‘  ’, and ‘  ’ are the parameters to be optimized 

by fitting the model to the dataset. Pressure drop across the 

filter can be determined once the cake thickness and 

porosity values are calculated respectively. Comparison of 

the simulation results with the clogging data is given in the 

next section.  

5. RESULTS 

Simulation results of filter clogging employing Eqs. (2-5) in 

comparison with the collected data are discussed in this 

section. Tests have been conducted by setting the pump at 

211 RPM to obtain 600 ml/min flow rate. Pump shows 

constant flow rate behavior until it reaches the critical 

clogging regime. The critical regime is reached in 500-600 

seconds as shown in Figure 7. Then the pump reaches to the 

maximum pressure level it can provide where it remains 

constant at the top pressure level. Approximately 90% of the 

filter lifetime can be considered under constant rate 

filtration regime. Then the system passes to the constant 

pressure filtration regime for the rest of its life time. 

Operational profile, the parameters chosen for the 

simulation, and the optimized parameters are summarized in 

Table 1.  

Table 1. Operation profile and fitted parameters 

Constant parameters Value 

PEEK particle density (     ) 1290 

Tap water density (     ) 998.23 

Solid fraction of the suspension (%) 0.14 

Mean particle diameter ( ) 5.8e-5 

Fluid viscosity (      ) 8.9e-4 

Filtration mesh area (  ) 0.001344 

Filtration volume (  ) 6.7e-06 

  

Optimized parameters Value 

   4e+4 

   899 

   1.2346 

   9.1464 

 

Figure 8. Experimental data vs. simulation 

Figure 8 plots show that the proposed simulation model of 

clogging fits to the data collected from the experimental test 

rig where the lines represents the simulation model and the 

circles are the pressure drop data points for each clogging 

experiment. Normalized root mean squared error (nRMSE) 

values are calculated for each simulation in order to evaluate 

the performance. The mean normalized RMSE value of six 
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experiments is 13.91%. Figure 9 depicts the porosity and 

cake thickness modelling plots for six samples. Porosity of 

the filtration starts with values close to 100% in the 

beginning of each experiment and decreases by time 

showing different degradation profile inversely proportional 

to the cake thickness simulation values. On the other hand, 

thickness of cake shows a logarithmic growth similar to the 

growth in pressure drop until the clogging regimes. 

Logarithmic growth in cake thickness during a cake 

filtration experiment is an expected type of degradation 

behavior which can be confirmed with the several studies 

conducted in the literature (Hamachi and Mietton-Peuchot, 

2001; Ni et al., 2006).  

Aim of the proposed methodology in this paper is to 

calculate the pressure drop across the filter given the 

varying flow rate. Flow rate of the filtration system varies 

during the experiments due to porosity change in the filter 

cake. Tracking and predictions of the future pressure drop 

levels can be achieved when the flow rate is constant since 

cake thickness and porosity is effected by the flow rate of 

the system. 

 

Figure 9. Cake thickness and porosity simulation 

6. CONCLUSION & FUTURE WORK 

This paper presents a data collection and physics-based 

degradation modelling of an accelerated filter clogging 

experimental rig. Data acquisition, especially for the 

pressure drop across the filter and the flow rate of the 

pumping system, has been conducted. Degradation 

modelling of the pressure drop due to retaining particles on 

the filter mesh has been modelled and efficiency of 

simulation results has been evaluated by comparing with the 

actual dataset. Results show that the effectiveness of the 

proposed degradation model is satisfactory in terms of 

identifying the current pressure drop level in the system. 

Future studies will be based on physics-based prognostic 

modelling of the cake filtration mechanism. Cake thickness, 

porosity, and the pressure drop will be modelled 

dynamically and utilized in prognostic modelling. 
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ABSTRACT

In the context of more electrical aircrafts, Permanent Mag-

net Synchronous Machines are used in a more and more ag-

gressive environment. It becomes necessary to supervise their

health state and to predict their future evolution and remain-

ing useful life in order to anticipate any requested mainte-

nance operation. Model-based prognosis is a solution to this

issue. Any prognosis method must rely on knowledge about

the system ageing. A review of existing ageing laws is pre-

sented. The generic ageing model proposed in (Vinson, Ri-

bot, Prado, & Combacau, 2013) is extended in this paper. It

allows representing the ageing of any equipment and the im-

pact of this ageing on its environment. The model includes

the possible retroaction of the system health state to itself

through stress increase in case of damage. The proposed

ageing model is then illustrated with Permanent Magnet Syn-

chronous Machines (PMSM). Two critical faults are charac-

terized and modeled : inter-turns short-circuits and rotor de-

magnetization. Stator and rotor ageing are well represented

by the proposed ageing model. The prognosis method de-

veloped in (Vinson et al., 2013) is extended to consider this

new generic ageing model. In order to test the prognosis al-

gorithm, ageing data are needed Since no real measurements

are available, a virtual prototype of PMSM is developed. It is

a realistic model which allows running a fictive but realistic

scenario of stator ageing. The scenario comprises apparition

and progression of an inter-turns short-circuit and its impact

on stator temperature, which value has an impact on the age-

ing speed. The prognosis method is applied successfully to

the PMSM during this scenario and allows estimating the Re-

maining Useful Life (RUL) of the stator and the machine.

Garance Vinson et al. This is an open-access article distributed under the

terms of the Creative Commons Attribution 3.0 United States License, which

permits unrestricted use, distribution, and reproduction in any medium, pro-

vided the original author and source are credited.

1. INTRODUCTION

In the context of the more electrical aircrafts, electrical mo-

tors such as permanent magnet synchronous machines are

more and more used for critical functions in the actuators,

such as landing gear extension/retraction, braking systems,

or flight control. They are often used in very aggressive envi-

ronments. The future transition from 270V to 540V of supply

voltages, and the increase in switching frequencies, also ap-

plies a lot of additional stress on the motors. In this aggressive

context, permanent magnet synchronous machines (PMSM)

may have more and more degradation and faults. In order to

ensure the operational availability of critical functions, one

option is to implement a Health-Monitoring module. This

Health-Monitoring module consists in a detection and diag-

nosis module, that allows assessing the current health state of

equipments, and a prognosis module, that allows predicting

the future health state of equipments, and their remaining use-

ful life (RUL). With prognosis, the maintenance action can be

anticipated in advance. The goal is to optimize maintenance

planning and avoid any operational interruption or flight de-

lays due to equipment faults.

Predicting the future health-state of equipments requires to

know how they are ageing. This knowledge can take several

forms, it can be based on experience, on degradation and age-

ing data obtained in service or in tests, or on ageing physical

models. Knowledge on system ageing can always be put into

the form of an ageing model, that can be more or less precise

but can be represented in a generic way. A generic ageing

model, partly published in (Vinson et al., 2013), allows rep-

resenting the behavior and ageing of any kind of equipment,

that may be heterogeneous and complex. This model has be

to extended to consider the impact of the ageing on its envi-

ronment. Then the model has to take into account the possible

retroaction of the system health state to itself through stress

increase in case of damage. The generic prognosis method
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proposed in (Vinson et al., 2013) has also to be extended to

deal with new aspects in the ageing model. An illustration is

proposed on PMSM, with the modeling of two critical pro-

gressive degradation: inter-turns short-circuits and rotor de-

magnetization. Ageing data are needed to test the prognos-

tic algorithms on PMSM, but real data are not available. A

complete PMSM virtual prototype is then developed to ob-

tain these ageing data. This is a precise model that repre-

sents a lot of phenomena linked to the ageing of PMSM. The

virtual prototype allows simulating a short-circuit virtual sce-

nario, from the start of the degradation to the increasing speed

of the short-circuit gravity and the associated loss of perfor-

mance until the end of life of the stator.

This paper is organized as follows. A survey of ageing laws

is presented in Section 2 that motivates the need of a generic

representation. The generic ageing model is presented in Sec-

tion 3 and is illustrated with two PMSM faults ageing mod-

els: inter-turns short-circuit and rotor demagnetization. The

generic prognosis method based on the model is extended on

Section 4. This section also presents the virtual protoype of

the PMSM and the application of the diagnosis and prognosis

algorithms on a virtual short-circuit scenario. Finally Section

5 proposes some conclusions and perspectives.

2. AGEING MODELS FOR PROGNOSIS

In order to predict the system RUL, prognosis requires knowl-

edge about the system ageing that is contained in a model.

This model describes the evolution of the system ageing state,

it is a priori known and used on-line for predictions. In the

literature, several prognosis methods already exist which rely

on different models:

• experience-based prognosis,

• data-driven prognosis,

• and model-based prognosis.

The choice of one of these methods depends on the level of

knowledge contained in ageing model and is mainly charac-

terized by the availability of sensors that allow obtaining on-

line data of the system state. Every approach has pros and

cons, and it is often useful to combine them.

2.1. Experience-based prognosis

Experience-based approaches, like case-based reasoning or

reliability analyses, are the only alternative when no sensors

nor physical knowledge of the system ageing is available.

This form of prognostic model is the simplest and only re-

quires failure history to determine the probability of failure

within a future time (Gebraeel, Elwany, & Pan, 2009). Relia-

bility techniques are used to fit a statistical distribution to the

failure data.

The Weibull law is often used due to its flexibility in relia-

bility analyses for mechanical or electrical components. It

can represent a time-dependent failure rate by describing the

different phases of a component life with three parameters.

(van Noortwijk & Klatter, 2002) models the cost of structure

replacement with Weibull distributions by applying the maxi-

mum likelihood estimation method on life data obtained from

broken structures. The main drawback of the Weibull law is

the difficulty of estimating these three parameters. The expo-

nential law is simpler as it depends on only one parameter, the

failure rate, which is constant. It can represent a component

ageing without wear, i.e. the abrupt failures. It is used a lot for

life duration of electronic devices. For progressive failure, the

Gamma law seems to be well suited. It can represent a failure

rate increasing in time and is used to model progressive fail-

ures like crack evolution in (Lawless, 2004) or erosion in (van

Noortwijk, Kallen, & Pandey, 2005). It is also possible to use

several laws simultaneously like in (Huynh, Castro, Barros,

& Berenguer, 2012) which combines a Gamma law with a

Poisson process to model progressive degradation and abrupt

failures.

Models used by experience-based approaches use available

data without dedicated effort. This approach does not take

into account the way the equipment is used, or its past. This

might be useful for the manufacturer, but not for the user that

is interested in one particular component.

2.2. Data-driven prognosis

Evolutionary and trend monitoring methods are used when

on-line observed data are available. These prognostic method

use on-line estimators or indicators to evaluate the system

current degradation state relying on the on-line observations.

To get the estimators, failure history is required (identifica-

tion of fault patterns). Such estimators may be obtained by

learning techniques (neural networks or Bayesian networks)

or by identifying parameters of classical estimators like for

Kalman filters (Hu, 2011).

Neural networks allow building a grey/black box ageing model

to estimate and predict the current and future trend of the

system degradation from specific indicators (Goh, Tjahjono,

Baines, & Subramaniam, 2006). Neural networks are used

in (Das, Hall, Herzog, Harrison, & Bodkin, 2011) to per-

form prognosis on systems of high-speed milling. (Adeline,

Gouriveau, & Zerhouni, 2008) tests and compares different

methods based on neural networks in terms of prediction pre-

cision, computation cost and requirements related to the im-

plementation. Fuzzy neural networks combines neural net-

works and fuzzy logic to deal with ambiguous, inaccurate,

noisy or incomplete data (El-Koujok, Gouriveau, & Zerhouni,

2010). Fuzzy systems use knowledge as expert rules. They

are recommended in case where no qualitative information

about the system degradation is available but only causal rules

describe fault propagation within the system. They can be au-

tomatically adjusted and do not require physics-based knowl-
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edge.

Ageing models can be represented by Bayesian networks that

are acyclic graphs defined by a set of nodes and relations with

conditional probabilities. Each node may represent a poten-

tial degradation mode of the system and transition probabili-

ties from a current mode to possible future modes result from

a learning phase. The RUL is then predicted from transition

probabilities of the network. Theory of Bayesian networks is

well explained in (Bouaziz, Zamai, & Duvivier, 2013) which

shows its relevant application in the semi-conductor indus-

try. (Weber, P.Munteanu, & Jouffe, 2004) uses dynamical

Bayesian networks and Markov chains to model the ageing of

a system composed of a pump and a valve. (Muller, Suhner, &

Iung, 2008) combines Bayesian networks with an event-based

approach to monitor degradation of an automatic mechanical

system of lamination. A priori knowledge is based on experi-

ence and trend monitoring is performed on line thanks to data.

Physics-based knowledge allows determining causal relations

of component degradations.

(Greitzer & Pawlowski, 2002) proposes a parametric model

of the vibration waveform for different faults (particularly for

bearing faults) on a diesel motor to apply a trend monitoring-

based prognosis approach. (Byington & Stoelting, 2004) per-

forms diagnosis and prognosis on an EMA of a flight control

system with a model whose parameters are estimated from

on-line data. Diagnosis estimates the current health state of

the system with classification tools. Prognosis computes the

rate of change of state at current time and anticipates it in

the future. In this study, prognosis is a simple temporal pre-

diction of the indicator evolution that does not take into ac-

count the equipment environment. (Lacaille, Gouby, & Piol,

2013) studies the wear of turbojets and proposes a simple al-

gorithm to build a degradation indicator from successive mea-

surements of exhaust gas temperature after each flight accord-

ing to the operating time.

Data-driven method transform a huge amount of noisy data

into a few relevant data for prognosis. The main drawback

is that the method efficiency highly depends on the quantity

and quality of data. In aeronautics, equipment are generally

very reliable, and preventive maintenance is realized before

the failure occurrence, so there are very few degradation data.

Tests can be done to obtain data, but they are costly, time

consuming, and destructive.

2.3. Model-based prognosis

Model-based prognosis relies on a deep knowledge of the

equipment ageing. The model provides more information by

extrapolating on-line data by physics-based reasoning. The

ageing model can be an analytical model, represented as a set

of equations which involve physical quantities correspond-

ing to environmental constraints (Onori, Rizzoni, & Cordoba-

Arenas, 2012; Bregon, Daigle, & Roychoudhury, 2012), or

a simulation model identified from tests results. In (Gucik-

Derigny, Outbib, & Ouladsine, 2011), the ageing model is

represented as a set of nonlinear differential equations with

multiple time scales (short for the system behavior dynamic

and large for its degradation). The fast dynamic state is es-

timated thanks to observers and the parameters of the ageing

model (i.e. the slow dynamic) are determined. The illustra-

tive example is an electromechanical oscillator. In (Khorasgani,

Kulkarni, Biswas, Celaya, & Goebel, 2013), the ageing of

electrolytic capacitors with temperature is represented by a

complex nonlinear physics-based model. Particle filtering

is then used to estimate the parameters of the degradation

model.

Physics-based ageing models can be divided into three types

depending on their output format. They can directly compute

the RUL or progressive evolution of degradation by evaluat-

ing the damage or a failure rate to anticipate the future behav-

ior of the equipment. (Venet, 2007) uses the Arrhenius law

to model the impact of temperature on the lifetime of liquid

electrolyte capacitors but it can also be applied for dielectric

components, semiconductors or batteries. The inverse power

law describes the impact of damaging factors on the compo-

nent lifetime like voltage on electronic components for exam-

ple. It can also be used for mechanical components subjected

to fatigue. A specific case of the inverse power law is the

Coffin Manson law that gives the number of cycles leading

to the rupture when components are subjected to temperature

variations. The generalized Eyring model allows taking into

account any type of damaging factor (like temperature, volt-

age, humidity, etc.) in ageing of electronic components or

mechanical components subjected to rupture. The Paris law

is used in (Pommier, 2009-2010) to model the damage for a

component by computing the crack propagation according to

the number of cycles. The Miner’s law models the accumula-

tion of linear damages due to fatigue. It can be used for metals

only until yield strength. The Wlher curve gives the number

of cycle leading to damage thanks to a characteristic param-

eter like maximal constraint for example. The american mil-

itary norm MIL-HDBK-217 gives the failure rates for some

components such as transistors, resistors, etc. For example,

the law Belvoir Research Development & Engineering evalu-

ates the failure rate of a solder joint. The Cox model, based

on a failure risk function, is mainly used in the medicine and

maintenance fields to study the impact of different variables

involved in the component degradation process.

A physics-based ageing model can also be determined from

tests performed in controlled conditions in order to identify

characteristic parameters of the system degradation. In this

case, the damage evolution is assumed to be measured from

tests. Moreover, simulation is interesting as no component

destruction nor deterioration is needed to study the system

degradation. The main difficulty consists in elaborating and

validating the ageing simulation model, since equipment are
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complex and faults are multiple and difficult to be understood

as a whole (Bansal, Evans, & Jones, 2005).

In some cases, it can be useful to combine different types

of information in a common ageing model. For example,

by combining failure history and physical laws, a statistical

physics-based model can be obtained. In such a model, phys-

ical stress is represented through a parameter of the statistical

law which is then adapted to the operational environment of

the component. The difficulty is to assign a physics-based law

to one or several parameters of the statistical law (Byington,

Roemer, & Galie, 2002; Brissaud, Lanternier, Charpentier, &

Lyonnet, 2007; Nima, Lin, Murthy, Prasad, & Yong, 2009;

Gebraeel et al., 2009). (Ray, 1999) builds a stochastic model

for the crack propagation in a metallic material from test data.

The non-stationary probability density function depends on

the instant of crack initiation and its actual size (in order to

deduce the speed of the crack propagation).

(Hall & Strutt, 2003) proposes a statistical model of physics

of failure that results fromMonte-Carlo simulations performed

with different parameters of the physics-based degradation

model. These values are then represented with the Weibull

distribution whose parameters are well chosen to fit data.

2.4. Synthesis

The choice of a prognostic method depends on available knowl-

edge, the presence of sensors or physics-based models that

allow monitoring and analyzing the real condition of the sys-

tem. This ageing knowledge can be represented as an expe-

rience, a known qualitative or quantitative model or an esti-

mated model obtained by learning and classification methods.

The prognostic model may vary from a very poor model (that

cannot handle on-line observations for example) to a very rich

one (that can handle on-line observations and can extrapolate

these observations in terms of physical reasons for the com-

ponent to fail in the future). In an industrial context such

as aeronautics, a lot of equipment is similar but no identical.

So in this paper, the challenge consists in defining a generic

ageing model, whatever the available knowledge about the

system degradation, in order to apply a generic model-based

prognosis method.

3. A GENERIC AGEING MODEL AND ITS APPLICATION

TO PERMANENTMAGNET SYNCHRONOUSMACHINES

3.1. The generic ageing model

In (Vinson et al., 2013) a structural and functional model is

presented. A system Σ is a set of n components Ci. Param-
eters p represent physical quantities in a component. There

are three kinds of parameters. Input parameters ip values

depend on the environment, private parameters pp belong to
only one component, and output parameters op are a com-

bination of input and private parameters through functional

relationships ar. The values of parameters at time t are p(t).
The rank r of a parameter p is the set of possible values, such
as ∀t , p(t) ∈ r(p). Components are connected through the
structure st via their input and output parameters to form the

system. Two parameters structurally connected are such as

ipi,j = st(opk,l) ⇒ ∀t , ipi,j(t) = opk,l(t). This structural
and functional model is represented on the first layer of the

modeling framework on Figure 1. The ageing model devel-

oped hereby enriches the functional model.

3.1.1. Damage and ageing laws

During operational life an equipment ages, it is damaged.

Ageing is due to stresses, that can be thermal, electrical, me-

chanical or chemical. Stresses are modeled with damaging

factors. The set of damaging factors of one component Ci is
Di = {df i

l }. The set of damaging factors of the system Σ is

DΣ =
⋃n

i=1Di. The value of a damaging factor at time t is
df(t). Ranks are defined for damaging factors, they are noted
r(df i

l ) and they are such as ∀t, v(df i
l , t) ∈ r(df i

l ).

The equipment ageing is characterized by its damage. Dam-

age is irreversible. It is null at the beginning of the equipment

life and increases with the ageing.

Since they do not vary for functional purposes and they are in-

trinsic to one component, we decide to use private parameters

and their values to represent the system and component health

state. A private parameter modification represents therefore a

damage. The damage ei,j at time t is modeled as the distance
between ppi,j(t) and the initial value ppi,j0 :

ei,j(t) = d(ppi,j0 , v(ppi,j , t)) (1)

with ppi,j0 = ppi,j(t0) and e
i,j(t0) = 0.

There is one damage per private parameter, but every com-

ponent may have several damages represented by different

private parameters.

The damage depends on stresses. The ageing law ag allows
the calculation of damage e as a function of the damaging

factor values df i
1, ...df

i
n:

{
ag : C× T −→ C
(df i

1, ...df
i
n, t) 7−→ ei,j(t) = ag(df i

1, ...df
i
n, t)

(2)

It is possible to define a global damaging factor as a combina-

tion of damaging factors, in order to have a unique parameter

for the ageing law, and to include known ageing laws (de-

scribed in Section 2) in this approach.
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3.1.2. The retroaction law

The stress that undergoes an equipment depends on its en-

vironment and depends also on its own damage. Indeed a

damaged component often has a more negative impact on its

environment and on itself. For instance the wear of a com-

ponent will increase the level of pollution in a mechanical

system, and pollution is certainly a stress for the component

and its environment.

This is modeled by the fact that damaging factors values de-

pend on the system health state. The function fdf assesses a

damaging factor rank. The rank may depend only on the sys-

tem environment. Otherwise, if the rank of a damaging factor

depends on the system health state, the function fdf is defined
as follows:

{
fdf : DΣ × Supp(df i

l ) −→ IR
df i

l 7−→ r(df i
l ) = fdf ({ex,y(t)}) (3)

We highlight that the damage depends on damaging factors

through ageing laws and that damaging factors depend on the

damage through the retroaction laws. Figure 1 presents both

the functional and structural model on the first layer and the

ageing model on the second layer. The two models communi-

cate through the private parameters, that is to say through the

health state: the ageing model affects the functional model.

Figure 1. Modeling of a system Σ damage: ageing laws and
retroaction laws.

All kind of knowledge can be represented with this generic

modeling framework, as will be shown on our industrial ap-

plication.

3.2. Application: the ageing model of PMSMs

3.2.1. The functional model of PMSMs

The functional and structural model of PMSMs is shown on

Figure 2. The PMSM has two components, the stator and

the rotor that are combined to perform the PMSM function:

to transform supply voltage Uab, Ubc, Uca into a given me-

chanical speed Ω, independently of the torque C applied by

the environment on the shaft of the PMSM. The stator trans-

forms the voltages into phase currents, Ia, Ib, Ic, indepen-
dently of the induced voltages Ea, Eb, Ec produced by the

rotor. The stator private parameters are the phase resistances

Ra,Rb,Rc and inductances La, Lb, Lc. The rotor transforms

the phase currents into a mechanical speed. Its private param-

eters are the magnets electromagnetic remanent field B, the
rotor inertia J and the friction coefficient Kf . The relation-

ships between parameters are explained in details in (Vinson,

Combacau, & Prado, 2012).

Figure 2. Modeling of the PMSM.

Thanks to a Failure Modes Effects Analysis and Criticity two

faults were selected as candidates for model-based prognosis,

corresponding with the two components of the PMSM: inter-

turns short circuits in the stator and demagnetization of a part

of the rotor.

3.2.2. The stator ageing : inter-turns short-circuits pro-

gression

A common and critical degradation of PMSM are short - cir-

cuits, and especially inter-turns short-circuits, that come from

the stator insulation ageing and degradation. A short-circuit

model is proposed in (Vinson, Combacau, Prado, & Ribot,

2012). There is the creation of a short-circuit loop in one of

the three phases, phase A for instance. Two fault parameters,

Rf and Sa, represent the gravity of the short-circuit. Rf is the

resistance of the insulation at the short-circuit point and pro-

gressively decreases until 0Ω in case of direct short-circuit.

Sa is the percentage of short-circuited turns and varies be-

tween 0 and 100%.

The private parameter that represents the damage of the sta-

tor is chosen to be the short-circuited phase resistance, Ra,

for the three following reasons. It varies with short-circuit, it

depends on the two fault parameters, Rf and Sa, and unlike

them it can actually be measured on a real PMSM. Ra, the

equivalent resistance of phase A with the short-circuit loop

of resistance Rf , is expressed as:

Ra(t) = Ra0(1− Sa(t)) +
Ra0Sa(t)Rf (t)

Ra0Sa(t) +Rf (t)
(4)
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The stator damage es is then:

es(t) = |Ra0 −Ra(t)|. (5)

During the stator ageing the damage es progressively increases.
Two thresholds are defined to estimate the gravity of the short-

circuit: the degradation threshold esd and the fault threshold

esp. According to the comparison between the damage value
and these thresholds, the stator is considered nominal when

es(t) < esd, degraded when esd < es(t) < esp, or faulty when
es(t) > esp.

Ageing law The insulation degradation is due to thermal

and electrical stresses. The damaging factors are the magni-

tude V and frequency f of the supply voltage, and the statoric
temperature TS : DFs = {V, f, Ts}.
Since no real ageing data are available to estimate the stator

ageing law, a law obtained in (Lahoud, Faucher, Malec, &

Maussion, 2011) is used for illustrative purpose. This law was

obtained with tests on insulation boards. We consider that the

shape of the law is correct for the stator, and the parameters

K1, K2, K3 and b values are adjusted to fit with realistic life
duration known from experience. L is the stator life duration

and depends on the stator temperature Ts:

L(t) = K1 +K2 × exp(−b× Ts(t)) (6)

The proposed ageing law ags is then :

es(t) = ags(Ts, t) =
K3

L(t)
(7)

For one particular PMSM V and f are constant so we con-

sider that the ageing law only depends on Ts. There is a cor-

relation between L and es that is known from experience.

Retroaction law Short-circuits increase the temperature Ts

because of the high currents that circulate in the phases and in

the short-circuit loop. The following retroaction law is pro-

posed:

Ts(t) = fs
df (e

s, t) =





70◦C if es(t) < esd

80◦C if esd < es(t) < esp

90◦C if esp < es(t)

(8)

This is the only retroaction function of the stator ageing model

since we consider that there is no influence of the short-circuit

on f and V .

3.2.3. The rotor ageing : demagnetization progression

Another degradation that may occur on PMSMs is rotor de-

magnetization, which means that the remanent electromag-

Figure 3. The Wohler curve and the mechanical ageing of a
rotor magnet.

netic field B of one or several magnets decreases. This can

be due to two kinds of degradation. Cracks or breaks of the

magnets induce air gaps, which consequence at the electro-

magnetic level is the diminution of B. High currents or high
temperature variations can modify the physical composition

of magnets which also leads to a diminution of their remanent

electromagnetic field B.

An analytical demagnetization model is proposed in (Vinson,

Combacau, Prado, & Ribot, 2012). The fault parameter is

the percentage of demagnetization of one magnet, which is

proportional to the loss of B of this magnet. The private pa-

rameter that represents the damage of the rotor is B. The

rotor damage er is then :

er(t) = |B0 −B(t)| (9)

At every effort cycle the fatigue of the magnet is accumu-

lated because it is sized to resist to the effort. There is a

macroscopically elastic deformation. The maximal number

of cycles that the magnet can bear being reached, it breaks

up. From this state, every part of the magnet undertakes a

similar ageing process than the first one until it breaks again.

During this evolution the brutal rupture of a magnet is ex-

pressed with the Wohler curve described on Figure 3. It rep-

resents the limit of endurance σ of a material as a function

of a number of fatigue cycles. When the limit is reached the

material breaks.

We assume that the more the magnet is broken the more it

becomes fragile. Calling Ni the date of the ith rupture, we

suppose that ∀i,Ni −Ni−1 > Ni+1 −Ni, because the dura-

tion between two breaks is shorter and shorter.

If the number of cycles between breaks i and i+ 1 is divided
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by a factor k > 1 compared with the number of cycles be-

tween breaks i−1 and i, the number of breaks increases more
and more rapidly. We define Tx = Ni+1

Ni as the acceleration

factor of the degradation. The number n of ruptures at time t
is defined as:

n(t) =
log(Tx)− log(Tx + t× (1− Tx))

log(Tx)
(10)

Every break devides the remanent induction of a factor K >
1, due to the air gap. We obtain a law giving the remanent

induction as a function of the number of use cycles. The pro-

posed rotor ageing law agr, is then:

er(t) = agr(t) = B0(1−Kn(t)) (11)

In this ageing law, the only considered damaging factor is the

time (i.e. the number of fatigue cycles). As a perspective, if

sufficient data are available, it would be possible to add other

damaging factors, such as short-circuit currents Icc or stator
temperature Ts, that may accelerate the rotor degradation.

4. THE PROGNOSIS

4.1. The generic prognosis method

A Health-Monitoring module is proposed in (Vinson et al.,

2013). It is based on the generic model of the system and

comprises a fault detection and diagnosis module. The prog-

nosis algorithm is developed in Figure 4 and Algorithm 1. Its

input is the result of diagnosis ∆Σ, which allows estimating

all the parameter values, even if they are not observable, at

current time t. The prognosis module predicts the future val-
ues of damaging factors thanks to retroaction laws (Equation

3). It then predicts the future values of private parameters

thanks to ageing laws (Equation 7), and the input and ouput

parameters values thanks to the knowledge of the future ex-

ternal solicitation of the system, and to the analytical laws

between parameters. The future values of damages are esti-

mated (Equation 1) and the time of degradation or fault can

be predicted. The principle of the prognosis operation are

presented on Figure 4.

The prognosis operation is similar to a diagnosis operation,

but realized in the future. The main difference is that pa-

rameters values are predicted instead of being observed. The

parameters or damaging factors are observable if their value

at current time is known, for instance they are measured with

sensors. The parameters or damaging factors are predictable

if their future value can be estimated thanks to the ageing

model or the functional model. The sets of predictable pa-

rameters and damaging factors arePpred ⊂ P andDFpred ⊂
DF .
The prognosis is a sequence of diagnoses realized at future

Figure 4. The prognosis algorithm.

degradation time ti, until the fault time tf :

ΠΣ(t) = {∆Σ(t),∆Σ(t1), . . . ,∆
Σ(tf )} (12)

The prognosis algorithm uses the generic formalism devel-

oped in this paper, as shown in Algorithm 1. It is developed

on Matlab and needs to be validated on degradation and fault

data. Since no real data are available, a virtual prototype is

built on Matlab Simulink.

4.2. Development of a virtual prototype

The virtual prototype is a very precise and complete func-

tional and ageing model of the PMSMs. It is used only for

simulation purposes in order to obtain a realistic set of data

to validate the prognosis algorithm, built with a simple func-

tional and ageing model of PMSMs. In the virtual prototype

the equation of dissipation of thermal power allows predict-

ing the stator temperature Ts. Phase resistances are computed

thanks to an ageing law that depends on Ts, V and f , and
thanks to the equation of copper resistivity that depends on

Ts. This coupled phenomena are represented on Figure 5.

Figure 5. Virtual prototype: relationships between stator tem-
perature and phase resistance

To model the virtual prototype we consider the following hy-

pothesis:
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Algorithme 1 Prognosis

Input: Σ, t,∆Σ

Output: ΠΣ(t)
Initialization: k ← 1
while RUL 6= 0 do

t← t+∆t
for all ppi,k ∈ PP do

r(ppi,k) = rΣx (pp
i,k) % values known from diagnosis

end for
for all df i

l ∈ DF do
r(df i

l ) = fdf ({r(ppi,k)})
end for
for all ppi,j ∈ PPi

pred do

r(ppi,j) = agi,j({df i
l })

end for
for all ipi,j = st(opk,l, t) ∈ IPi

pred do

ipi,j(t) = opk,l(t)
end for
for all opi,j ∈ OPi

pred do

opi,j(t) = ar({pi,k})
end for
for all ppi,j ∈ PPpred do

if ei,j ≥ ei,jx then
tk ← t
go out of loop

end if
end for
Diagnose the system at time tk
ΠΣ(t)← ∆Σ(tk)
k ← k + 1

end while
Return {ΠΣ}

• the ambient temperature is constant (the ventilation is

working well) ;

• the motor shell acts as a constant thermal resistanceRth2,

and a uniform temperature ;

• the insulator acts as a constant thermal resistance Rth1 ;

• the winding temperature is uniform ;

• only the steady state is considered since the transition

state is short.

Although these hypothesis are restrictive, building a more

representative model is one of this work perspectives.

Variation of the short-circuit resistance The ageing law

allows deducing the short-circuit resistance value Rf . The

health points PV are used to correlate the life durationLwith

Rf .

The initial number of health points PV0 corresponds with the

initial life duration value L0. Between t and t+dt the propor-
tion of consumed health points isPV (t)−PV (t+dt) = dt

L(t) ,

so

PV (t) =

∫ t

0

1

L(z)
.dz (13)

The integration of the ageing law can be done by approxima-

tion with a piecewise continuous function having the value

L(T (tk+1)) between times tk and tk+1:

{
PV (0) = 0

PV (tk+1) = PV (tk) +
(tk+1−tk)
L(T (tk+1))

(14)

To the best of our knowledge the law that gives the short-

circuit evolution as a function of health points does not exist.

We choose an exponential shape because we assume that the

degradation accelerates with time:

Rf (t) = Rf0(1− exp(−kPV (t)− PV0

PV0
)). (15)

Variation of phases resistivity At temperature T the resis-

tance R of a coil is R(T ) = (ρ(T ) × L)/s, where l is the
length of the cable and s is its section. T0 is the nominal

temperature, R0 = R(T0). Besides the short-circuited phase
resistance modification due to the short-circuit loop with re-

sistance Rf , the three phase resistances Ra, Rb and Rc re-

spect the following equation:

R(T ) = R(T0) +
l

s
× (ρ(T )− ρ(T0)) (16)

where the copper resistivity is ρ(T ) = 17.24 × (1 + 4.2 ×
10−3 × (T − 20))× 10−6.

Thermal power dissipation

Ts = (Rth1 +Rth2)× Pd + Ta (17)

The stator temperature is obtained from the dissipated sta-

tor thermal power Pd, that depends on phase resistance Ra,

Rb and Rc, on the short-circuit intensity through Sa and Rf ,

and on phase and short-circuit currents. The equation can be

found on (Vinson et al., 2013).

4.3. Application: Permanent Magnet Synchronous Ma-

chine prognosis

A short-circuit scenario is simulated on the virtual prototype.

The resulting fault resistance and stator temperature can be

seen on Figures 6 and 7. The short-circuit resistance de-

creases progressively with the short-circuit, until 0Ω when

the short-circuit is direct. Meanwhile, the stator temperature

progressively increases with the degradation.

During the degradation progression, phase currents are ob-

served on the virtual prototype. This allows the diagnosis

of the stator and the PMSM thanks to the diagnosis algorithm

developed in (Vinson, Combacau, Prado, & Ribot, 2012) which
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Figure 6. Evolution of the short-circuit resistance Rf during
an inter-turns short-circuit.

Figure 7. Evolution of the stator temperature Ts during an
inter-turns short-circuit.

uses a short-circuit indicator based on the phase currents. The

damage es is estimated thanks to the diagnosis algorithm, as
shown on the top left of Figure 8. The diagnosis module eval-

uates the health-state of the stator according to the damage

value: it is first nominal, the degraded, and then faulty (top-

right on Figure 8). The prognosis module is run every time

when a threshold is passed by the stator damage. It can pre-

dict the future values of the stator temperature Ts thanks to

the retroaction law described by 8 (bottom-left on Figure 8).

It can then predict the life duration L of the stator thanks to

the ageing law represented by Equation 7 (bottom-right on

Figure 8. Two predictions are realized with two different val-

ues of the parameter b (Equation 7), in order to represent un-
certainties on the ageing law. The real life duration can be

compared with the two predicted life duration.

5. CONCLUSION

In this paper a study about related work on existing ageing

models and prognosis methods was first proposed. It moti-

vated the idea of designing a generic ageing modeling frame-

work in order to represent every kind of known ageing law,

whatever the nature of available knowledge. The proposed

generic modeling framework contains all information to per-

form diagnosis and prognosis. Besides a diagnosis algorithm

presented in details in a previous paper (Vinson et al., 2013),

a prognosis algorithm based on this generic ageing model is

extended. It uses predictable parameters and damaging fac-

tors to estimate the future degradation and faults occurrences.
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Figure 8. Results obtained by the diagnosis and prognosis
algorithms on a short-circuit scenario.

An illustration is shown on Permanent Magnet Synchronous

Machines, which ageing is successfully modeled by the pro-

posed model. A virtual prototype is designed in order to ob-

tain ageing data, and is run with a realistic short-circuit sce-

nario. The end of life of the stator and the machine is pre-

dicted by the prognosis algorithm.

The developed modeling framework and prognosis algorithm

are intended to be applied to other critical equipment in aero-

nautics, such as hydraulic pumps or electromechanical actu-

ators. The efficiency of the method should be stated thanks

to real case studies. In order to adjust the proposed ageing

model with ageing and retroaction laws, it seems essential to

perform some degradation tests. The generic ageing model

we proposed is a common representation of ageing of any

equipment type. But the level of knowledge contained in the

model is directly characterized by the availability of sensors,

experience or physics-based models and may vary from one

component to another. The higher the level of knowledge

about ageing is, the more accurate the prognosis results. It be-

comes interesting to define and implement performance met-

rics for prognosis based on the level of knowledge contained

in out generic aging model in order to compare the results ob-

tained for the components and qualify the prognosis result at

the system level.
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ABSTRACT

In this work, a model-based prognostics methodology is pro-
posed to predict the remaining useful life (RUL) of compos-
ite materials under fatigue loads. To this end, degradation
phenomena such as stiffness reduction and increase in ma-
trix micro-cracks density are predicted by connecting micro-
scale and macro-scale damage models in a Bayesian filter-
ing framework. The proposed Bayesian filtering framework
also allows incorporating various uncertainties in the predic-
tion that are generally associated with material defects, sens-
ing and monitoring noise, modeling errors, etc., to name a
few. This, however, results in a explosion of search space
due to high dimensionality, and hence a high computational
complexity not conducive for real-time monitoring and pre-
diction. To reduce the dimensionality of the problem without
significantly compromising on prediction performance (pre-
cision and accuracy), a model tuning is first carried out by
means of a Global Sensitivity Analysis. This allows identify-
ing and subsequently down selecting the parameters for on-
line adaptation that affect prediction performance the most.
Resulting RUL estimates are then used to compute a time-
variant reliability index for composite materials under fatigue
stress. The approach is demonstrated on data collected from
run-to-failure tension-tension fatigue experiments measuring
the evolution of fatigue damage in CRFP cross-ply laminates.
Micro-cracks are considered as the primary internal damage
mode that are estimated from measurements obtained by ac-
tive interrogation using PZT sensors. Results are presented
and discussed for the prediction of growth in micro-cracks
density and loss of stiffness for a given panel along with the
reliability index calculation for the damaged component.

Juan Chiachı́o et al. This is an open-access article distributed under the terms
of the Creative Commons Attribution 3.0 United States License, which per-
mits unrestricted use, distribution, and reproduction in any medium, provided
the original author and source are credited.

1. INTRODUCTION

Composites are high-performance materials used extensively
in the construction of engineering structures, with a wide range
of applications such as aeronautical, marine and mechani-
cal structures. Most of these applications involve components
subject to cyclic loads, which make them susceptible to fa-
tigue degradation. This degradation leads to a progressive de-
crease of the performance reliability of the material, and ul-
timately, to the catastrophic failure of the structure. The pre-
diction forward in time of such fatigue degradation and the
reliability of the composite structure is of a paramount impor-
tance for safety and cost reasons, however it is still a partially
understood problem.

In contrast to metals, fatigue damage in composites is gov-
erned by complex multi-scale processes driven by internal
fracture mechanisms that ultimately lead to the alteration of
the macro-scale mechanical properties (Reifsnider & Talug,
1980; Jamison, Schulte, Reifsnider, & Stinchcomb, 1984).
The inherent complexity of this process implies uncertainty,
that comes not only from the variability of loading condi-
tions and material heterogeneity, but also from the incom-
plete knowledge of the underlying damage process. This un-
certainty can increase dramatically when dealing with full-
scale structures in real environments. Nevertheless, real time
measurements of the structural performance are now avail-
able through state-of-art Structural Health Monitoring (SHM)
techniques, and a large variety and amount of response data
can be readily acquired, processed and further analyzed to
assess various health-related properties of structures. Thus a
SHM-based prognostic approach is best suited to deal with
this uncertainty, and furthermore to accurately predict the ser-
vice life and the time-varying reliability of the composite struc-
ture.

In the last few years, the topic of fatigue damage prognostics

1
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is slowly gaining interest. There is an increasing number of
articles dealing with probability-based approaches for fatigue
damage prognostics (Myötyri, Pulkkinen, & Simola, 2006;
Cadini, Zio, & Avram, 2009; Guan, Jha, & Liu, 2011; Zio &
Di Maio, 2012; An, Choi, & Kim, 2013; Gobbato, Kosmatka,
& Conte, 2014), most of them in the context of metals. How-
ever the number of contributions for composites materials
is still very limited (J. Chiachı́o, Chiachı́o, Saxena, Rus, &
Goebel, 2013), precisely where the benefits of the probabilis-
tic SHM-based prognostic approach can be fully exploited to
deal with the variability and complexity of the fatigue damage
accumulation process.

Damage prognostics is concerned with determining the health
state of system components and predicting their RUL based
on predefined thresholds, given an evolutionary damage model.
As with diagnostics, prognostics methods are typically cate-
gorized as either model-based or data-driven, depending on
whether the damage model is based on physical first prin-
ciples, or, alternatively uses damage data to capture trends
of degradation. Model-based approaches provide RUL esti-
mates that are more accurate than data-driven approaches,
when suitable models are available (M. Daigle & Goebel,
2010). Specifically, model-based approaches have the abil-
ity to adapt to different systems (specimen, materials, condi-
tions, etc.) without much training, and furthermore, they can
incorporate monitoring data in a SHM context.

This paper integrates a model-based damage prognostics prob-
lem with reliability theory in application to fatigue in com-
posite materials, which distinguishes from the recent paper
presented by the authors at PHM2013 (2013 Annual Confer-
ence of the Prognostics and Management Society) (J. Chi-
achı́o et al., 2013). In that article, a model-based prognostics
framework was proposed to sequentially estimate the health
state as well as the parameters of the underlying damage model,
based on available SHM data. From this estimation, the RUL
of the estructure was computed. A Sequential Importance
Resampling algorithm (Arumlampalam, Maskell, Gordon, &
Clapp, 2002) was used for the joint state-parameter sequential
estimation, and an artificial dynamics approach (Liu & West,
2001; M. J. Daigle & Goebel, 2013) was adopted to improve
the predictability of the algorithm.

The new contributions of this research work with respect to
(J. Chiachı́o et al., 2013) are (i) the consideration of two
different-scale damage signatures to represent the health state
of the system: matrix-cracks density and longitudinal stiff-
ness reduction, and (ii) the prediction of the time-varying re-
liability of the structure, as a unified health indicator of the
system.

As a case study, SHM data from a tension-tension fatigue ex-
periment in a cross-ply CFRP laminate is used. Damage data
used in this example are taken from the Composite dataset,
NASA Ames Prognostics Data Repository (Saxena, Goebel,

Larrosa, & Chang, 2008), corresponding to laminate L1S19.
More details about these tests are reported in (Saxena et al.,
2011). Results shows the suitability and accuracy of the pro-
posed approach.

The rest of the paper is organized as follows. Section 2 dis-
cusses the theory behind fatigue damage in composites and
presents the proposed methodology for fatigue damage mod-
eling. The sequential state estimation problem by means of
particle filters is presented in Section 3. Section 4 formally
defines the prognostics problem and describes the methodol-
ogy to compute the time-varying reliability. Section 5 presents
the demonstration of the approach on real data of fatigue con-
sidering a cross-ply CFRP laminate. Finally, some conclud-
ing remarks are presented in Section 6.

2. FATIGUE DAMAGE MODELING

The progression of fatigue damage in composites involves a
progressive or sudden change of the macro-scale mechanical
properties, such as stiffness or strength, as a consequence of
different fracture modes that evolve at the micro-scale along
the lifespan of the structure (Jamison et al., 1984). In this
work the longitudinal stiffness loss is chosen as the macro-
scale damage variable, given that, in contrast to the strength,
it can be measured through non-destructive methods during
operation. This is of key importance for the filtering-based
prognostics approach proposed. At the micro-scale level, ma-
trix micro-cracking (J. A. Nairn, 2000) is selected as the dom-
inant fracture mode for the early stage of damage accumula-
tion. Matrix cracks usually initiate from internal defects in
90◦ plies during first loading cycles, and grow rapidly along
fibers direction spanning the entire width of the specimen
(J. A. Nairn, 2000). Continued loading leads to formation of
new cracks between the already formed cracks thereby pro-
gressively increasing the matrix-crack density of the ply un-
til saturation. This saturated state, usually termed as charac-
teristic damage state (CDS) (Reifsnider & Talug, 1980), is
long recognized as a precursor of more severe fracture modes
in adjacent plies, such as delamination and fiber breakage
(Lee, Allen, & Harris, 1989; Beaumont, Dimant, & Shercliff,
2006), which may subsequently lead to the catastrophic fail-
ure of the laminate. In addition, matrix micro-cracking may
itself constitute failure of the design when micro-crack in-
duced degradation in properties exceeds the predefined thresh-
old.

To accurately represent the relation between the internal dam-
age and its manifestation through macro-scale properties, sev-
eral families of damage mechanics models have been pro-
posed in the literature (Talreja & Singh, 2012). These mod-
els, that are based on first principles of admissible ply stress
fields in presence of damage, can be roughly classified into
1) computational methods, 2) semi-analytical methods and 3)
analytical methods. Among them, computational and semi-
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analytical methods have been shown to be promising, how-
ever they are computationally prohibitive in a filtering based
prognostics approach, where a large number of model evalu-
ations is required. Therefore, we focus here on the set of an-
alytical models, that depending on the level of assumptions,
they can be classified into shear-lag models (Garrett & Bai-
ley, 1977; Highsmith & Reifsnider, 1982), variational mod-
els (Hashin, 1985), and crack opening displacement based
models (Gudmundson & Weilin, 1993; Lundmark & Varna,
2005).

Shear-lag models use one-dimensional approximations of the
equilibrium stress field after cracking to derive expressions
for stiffness properties of the cracked laminate. Their main
assumption is basically that, in the position of matrix cracks,
axial load is transferred to uncracked plies by the axial shear
stresses at the interfaces. These models have received the most
attention in the literature and, as a consequence, a vast num-
ber of modifications and extensions can be found. However,
as stated by Talreja and Singh (Talreja & Singh, 2012), all the
one-dimensional shear-lag models are virtually identical, ex-
cept for the choice of the shear-lag parameter, as explained
later in this section. Variational models are based on a two-
dimensional approximation of the equilibrium stress field, that
in contrast to shear-lag analysis, is obtained from the Princi-
ple of Minimum Complementary Energy (Reddy, 2002; Dym
& Shames, 2013). Finally, COD-based models use a 3-D ho-
mogenization procedure derived from the study of the aver-
age crack-face opening displacement of a single matrix crack
as a function of the applied load, that can be calculated ei-
ther analytically (Gudmundson & Weilin, 1993) or numeri-
cally (Varna, Akshantala, & Talreja, 1999; Joffe, Krasnikovs,
& Varna, 2001; Lundmark & Varna, 2005). The reader is
referred to the recent work of Talreja and Singh (Talreja &
Singh, 2012) for a detailed overview of these models.

Variational and COD models are expected to better capture
the various complex damage mechanisms, since they involve
a more complex damage mechanics analysis, but it might be
at expense of more information extracted from the data (J. Chi-
achı́o et al., 2014). Then, if such models are utilized for future
prediction, as arises in prognostics, the results are expected
to significantly depend on the details of the available data.
In contrast, the most simple shear-lag model provide reason-
able accuracy results while it extracts less information from
data. To this end, it is expected to be less sensitive to the noise
on data. It is an example of the principle of Ockham’s razor
in the context of fatigue of materials, that has been shown to
hold true for composites materials by a recent study (J. Chi-
achı́o et al., 2014).

2.1. Stiffness reduction model

Following the unifying formulation of (Joffe & Varna, 1999),
the effective longitudinal Young’s modulus E∗x can be calcu-

lated in
[
φnφ

2
/90n90

/φnφ
2

]
laminates (where φ ∈ [−90◦, 90◦])

as a function of the crack-spacing in 90◦ layers for both,
shear-lag and variational models, as follows:

E∗x =
Ex,0

1 + a 1
2l̄
R(l̄)

(1)

In the last equation,Ex,0 is the longitudinal Young’s modulus
of the undamaged laminate, l̄ = l

t90
is the half crack-spacing

normalized with the 90◦ sub-laminate thickness, R(l̄) is the
average stress perturbation function, and a is a function of ply
and laminate properties, defined as follows:

a =
E2t90

E1tφ


1− ν(φ)

xy

ν(φ)
xy t90

E
(φ)
y

+
ν12tφ
E2

t90
E

(φ)
y

+
tφ
E1


 1− ν12ν

(φ)
xy

1− ν2
12
E2

E1

(2)

In the last equation, the superscript (φ) denotes: ”property
referred to the

[
φnφ

2

]
-sublaminates”. The reader is referred

to the Nomenclature section for a description of the ply and
laminate properties used in the calculations.

It should be noted that the matrix-cracks density is usually
termed as ρ = 1

2l , so that the normalized half crack-spacing l̄
can be expressed as a function of ρ as l̄ = 1

2ρt90
. For shear-lag

models, the function R(l̄) takes the next expression (Joffe &
Varna, 1999):

R(l̄) =
2

ξ
tanh(ξl̄) (3)

where ξ is the aforementioned shear-lag parameter. Depend-
ing on the choice of ξ, different shear-lag models, that have
been proposed in the literature, can be obtained. See (Talreja
& Singh, 2012) for further discussion about shear-lag anal-
ysis. In this paper, the ”classical” shear-lag model (Garrett
& Bailey, 1977; Manders, Chou, Jones, & Rock, 1983) is
adopted. For this model, ξ takes the following expression:

ξ =

√√√√G23

(
1

E2
+

t90

tφE
(φ)
x

)
(4)

2.2. Damage propagation model

Having identified the model to express the relationship be-
tween the effective Young’s modulus and micro-cracks den-
sity, the next step is to address the time evolution of the micro-
cracks density. To this end, the previously explained shear-lag
model is used to obtain the energy released per unit crack
area due to the formation of a new crack between two exist-
ing cracks, denoted here as G. This energy, known as energy
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release rate (ERR), can be calculated as (J. A. Nairn, 1989):

G =
σ2
xh

2ρt90

(
1

E∗x(2ρ)︸ ︷︷ ︸
Eq. 1

− 1

E∗x(ρ)︸ ︷︷ ︸
Eq. 1

)
(5)

where σx is the applied axial tension, and h and t90 are the
laminate and 90◦ sublaminate half-thickness, respectively. The
energy released calculated by Eq. (5) is further introduced
into the modified Paris’ law (J. Nairn & Hu, 1992) to obtain
the evolution of matrix-cracks density as a function of fatigue
cycle n, as shown below:

dρ

dn
= A(∆G)α (6)

where A and α are fitting parameters, and ∆G is the in-
crement in ERR for a specific stress amplitude, i.e., ∆G =
G(σx,max)−G(σx,min). Due to the complexity of the expres-
sion for ∆G, which involves the underlying micro-damage
mechanics model for the computation of E∗x(ρ), a closed-
form solution for Eq. (6) is hard to obtain. To overcome this
drawback, the resulting differential equation can be solved
by approximating the derivative using ”unit-time” finite dif-
ferences, considering that damage evolves cycle-to-cycle as:

ρn = ρn−1 +A (∆G(ρn−1))
α (7)

To summarize, a shear-lag damage-mechanics model is se-
lected to compute E∗x(ρ), i.e. the relationship between the ef-
fective longitudinal Young’s modulus (macro-scale) and the
matrix-cracks density (micro-scale). The evolution of matrix-
cracks density is modeled using the modified Paris’ law in
Eq. (7), that incorporates the damage mechanics model to
evaluate the increment in ERR.

3. FILTERING-BASED STATE-PARAMETER ESTIMATION

3.1. Stochastic embedding

For the purpose of filtering and prognostics, a probability-
based description of the deterministic models described in
Section 2 is needed. To this end, let consider a generic model
defined by a deterministic relationship g = g(u,θ) : RNi ×
RNd → RNo , between the model input u ∈ RNi and the
model output g ∈ RNo , given a set of Np model parame-
ters θ ∈ Θ ⊂ RNp . This damage model can be “embedded”
stochastically (Beck, 2010) by adding a model-error term v
that represents the difference between the actual system re-
sponse x and the model output g, as follows:

x = g(u,θ) + v (8)

The probability model chosen for the error term v in Eq. (8) de-
termines the probability model for the system output x. For
example, if v is assumed to be a zero-mean Gaussian distri-
bution, then the system output x will be also distributed as a

Gaussian, as shown below:

v = x− g(u,θ) ∼ N (0,Σ) =⇒ x ∼ N (g(u,θ),Σ)

where Σ ∈ RNo×No is the covariance matrix. Thus, a stochas-
tic damage model can be defined as a function of model pa-
rameters θ ∈ Θ, as 1

p(x|u,θ) =
(
(2π)No |Σ|

)− 1
2 exp

(
−1

2
(x− x̃)

T
Σ−1 (x− x̃)

)

(9)
where x̃ = g(u,θ). As discussed in Section 2, the progres-
sion of damage is studied at every cycle n by focusing on two
of its manifestations: the matrix-cracks density, ρn, and the
normalized effective stiffness, defined as Dn =

E∗x
Ex,0

. Then,
according to Eq. (8), the actual damage response can be rep-
resented by:

ρn = g1(ρn−1; u,θ)︸ ︷︷ ︸
Eq. 7

+v1 (10a)

Dn = g2(ρn; u,θ)︸ ︷︷ ︸
Eq. 1

+v2 (10b)

where subscripts 1 and 2 denote the corresponding damage
subsystems: matrix-crack density and relative stiffness reduc-
tion, respectively.

From Eqs. (10a) and (10b), the three main elements defining
the stochastic damage model in Eq. (9) are identified: (1) the
actual system output xn = [ρn, Dn], (2) the damage model g =
[g1, g2], and (3) the corresponding model error vector v =
[v1, v2]. A key concept here is the consideration of model er-
rors v1 and v2 as stochastically independent, even though the
models corresponding to the damage subsystems, g1 and g2,
are mathematically related, as shown in Section 2. This means
that the covariance operator Σ is a diagonal matrix, and there-
fore, the stochastic damage model of the overall system can
be readily expressed as a product of univariate Gaussians, as:

p(xn|u,θ) = p(ρn|ρn−1; u,θ)p(Dn|ρn; u,θ) (11)

where

p(ρn|ρn−1; u,θ) = N
(
g1(ρn−1; u,θ), σ2

v1

)
(12a)

p(Dn|ρn; u,θ) = N
(
g2(ρn; u,θ), σ2

v2

)
(12b)

The parameters σv1 and σv2 in Eq. 12a and 12b are the stan-
dard deviation of the error terms v1 and v2, respectively. Ob-
serve that the stochastic damage model provided in Eq. (11)
implicitly encloses a stochastic state transition equation, so
that Eq. (8) can also be expressed as:

xn = g(xn−1; un,θn) + vn (13)

1p(·) is used here to express a probability density function, whereas P (·) is
used to denote probability
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where a new variable zn = {xn,θn} ∈ Z ⊂ RNo×Np can
be suited defined as the system (health) state at time or fa-
tigue cycle n. As explained before, Eq. (13) can be expressed
probabilistically as:

p(xn|xn−1un,θn) = N (g(xn−1; un,θn),Σvn)

= N (g1, σ
2
v1n

)N (g2, σ
2
v2n

)
(14)

3.2. Filtering equations

Let suppose that the actual system response xn can be mea-
sured during operation and that, at a certain fatigue cycle n,
the measured system response can be expressed as a function
of xn as:

yn = xn + wn (15)

where yn =
[
ρ̂n, D̂n

]
is a vector of measurements for matrix-

cracks density and normalized effective stiffness, respectively,
and wn is a measurement error that can be defined as zero
mean Gaussian process, i.e., wn ∼ N (0,Σwn). Then, the
measurement equation defined in Eq. (15) can be expressed
in probabilistic terms as:

p(yn|xn) = N (yn; xn,Σwn) (16)

Note that, since the measurements of each subsystem (micro-
cracks and stiffness loss) are considered to be stochastically
independent, the covariance matrix will be a diagonal ma-
trix, and the measurement equation defined in Eq. (15) can be
readily expressed as:

p(yn|xn) = p(ρ̂n|ρn)p(D̂n|Dn) (17)

= N (ρ̂n; ρn, σw1n
)N (D̂n;Dn, σw2n

) (18)

Then, the focus of the filtering problem is on sequentially up-
dating the probability density function (PDF) of the system
state given a set of system measurements up to time n, y1:n,
i.e., p(xn,θn|y1:n) = p(zn|y1:n), using the previously de-
fined state transition equation and measurement equation. A
particle filter (Arumlampalam et al., 2002) is used to approx-
imate the joint state-parameter distribution by a set of discrete
weighted particles, {zin, ωin}Ni=1, as

p(zn|y1:n) ≈
N∑

i=1

ωinδ(zn − zin) (19a)

=

N∑

i=1

ωinδ(xn − xin)δ(θn − θin) (19b)

where y1:n = {y1,y2, . . . ,yn} denotes the sequence of
measurements,N denotes the number of particles, zin denotes
the estate estimate for particle i, and ωin the ”weight” of parti-
cle i. Particle filters are best suited to sequential estate estima-
tion in nonlinear systems with possibly non-Gaussian noise,
where optimal solutions are unavailable or intractable, as in

our problem. We employ the sampling importance resam-
pling (SIR) particle filter, and implement the resampling step
using systematic resampling (Arumlampalam et al., 2002). In
our problem, the system state is defined as zn = {ρn, Dn,θn}
and the measurements y1:n are compounded by simultaneous
measurements of both, micro-cracks density and normalized
effective stiffness y1:n = {ρ̂1:n, D̂1:n}. Thus, Eq. (19) can
be rewritten as:

p(ρn, Dn,θn|y1:n) ≈
N∑

i=1

ωinδ(ρn−ρin)δ(Dn−Di
n)δ(θn−θin)

(20)

As observed in Eq. (20), model parameters augment the state
vector, then the particle filter is being used to perform joint
state-parameter estimation. Here the parameters θn evolve
by some unknown random process that is independent of the
state xn, so that the particles with parameter values closest
to the true ones should be assigned higher weights, thus al-
lowing the particle filter to converge to the true values. In
this context, standard Sequential Monte Carlo (SMC) meth-
ods (Doucet, De Freitas, & Gordon, 2001) fail and it is nec-
essary to rely on more sophisticated algorithms. Although
this problem is still open in the specific literature (Liu &
West, 2001; Storvik, 2002; Kantas, Doucet, Singh, & Ma-
ciejowski, 2009), here we choose the “artificial dynamics”
approach (Liu & West, 2001) due to its pragmatism and sim-
plicity, by which model parameters performs a random walk
by introducing a small (and decreasing with n) artificial white
noise term, as θn = θn−1 + ξn. Thus,

p(θn|θn−1) = N (θn−1, σξn) (21)

To sequentially reduce the standard deviation of this artificial
error sequence, σξn, there are many alternative methods in
the literature (Kantas et al., 2009). In this paper, the recent
method proposed by (M. Daigle & Goebel, 2010; M. J. Daigle
& Goebel, 2013) is chosen by its simplicity and efficiency.

A pseudocode for a single step of the SIR filter proposed for
estimating Eq. (20) is provided in Algorithm 1.

Note that the proposed sequential state-parameter estimation
approach for damage prognostics in composites involves a
filtering problem defined over a multi-dimensional parame-
ter space Θ ⊂ RNp . It is clear that the higher Np is, the
higher the complexity and computational cost of the filter-
ing and prognostics algorithms. To this end, GSA (Saltelli,
Ratto, Tarantola, & Campolongo, 2006) is used to simplify
the model parameterization by identifying the subset of most
sensitive model parameters θ among the set of mechanical
and fitting parameters defining the damage models.

Through this study, the ply properties {E1, E2, t} together
with the Paris’ law fitting parameter {α} emerged as the key
parameters in terms of model output uncertainty. Then the set
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Algorithm 1 Particle Filter

1: At n = 0
2: Generate {

(
ρi0, D

i
0,θ

i
0

)
}Ni=1, sampling from prior PDFs

πθ(·), πρ(·) and πD(·), respectively.
3: Assign the initial weights: {ωi0 = 1/N}Ni=1
4: At n > 1
5: for i = 1→ N do
6: Sample from Eq. (21): θin ∼ p(·|θin−1)

7: Sample from Eq. (12a): ρin ∼ p(.|ρin−1,θ
i
n)

8: Sample from Eq. (12b): Di
n ∼ p(·|ρin,θin)

9: Update weights: ωin ∝ p(D̂n|Di
n)p(ρ̂n|ρin)ωin−1

10: end for
11: for i = 1→ N do
12: Normalize ωin ← ωin/

∑N
i=1

13: end for
14: {

(
ρin, D

i
n,θ

i
n

)
}Ni=1 ← Resample {

(
ρin, D

i
n,θ

i
n

)
, ωin}Ni=1

of updatable parameters was defined by adding the standard
deviation of the model error and measurement error to the last
choice, i.e., θ = {α,E1, E2, t, σv, σw}. The rest mechanical
and geometrical parameters act as static non-updatable input
parameters.

4. DAMAGE AND RELIABILITY PROGNOSTICS

4.1. Damage prognostics

As previously explained in Section 3.1, zn ∈ Z ⊂ RNo×Np
represents the actual health state of the structure, which may
enclose different degradation modes (e.g., micro-cracks, stiff-
ness loss, delaminations, etc). We define the useful domain as
the non empty subset U ⊂ Z of ”authorized” damage states
of our system. The complementary subset Ū = Z \ U repre-
sents degradation states that do not fulfill the design require-
ments, even though the system could still work.

For predicting the RUL of a composite laminate, we are in-
terested in predicting the time when the damage grows be-
yond the useful domain, using the most current knowledge
of the system state estimated by means of the particle fil-
ter (Eq. 20). The time or fatigue cycle at which it occurs is
known as the expected end of life (EOL).

To compute EOL as a probability, each particle (damage state)
is propagated forward in time using the stochastic damage
model as state transition equation, until the boundary of the
useful domain is reached. To this end, a threshold function
TU (zn) can be defined such that it that maps a given point in
the joint state-parameter space to the Boolean domain {0, 1}
(M. Daigle & Goebel, 2011), as follows:

TU (zn) =

{
0 if zn ∈ U
1 if zn ∈ Ū

(22)

Thus, the EOL of a given particle i at cycle n can be defined
as the time n′ > n such that TU (zn′) = 1 by first time.

Mathematically:

EOLin = inf{n′ ∈ N : n′ > n ∧ TU (zin′) = 1} (23)

Using the updated weights at the starting time n, a probabilis-
tic estimation of the EOL can be obtained as:

p(EOLn|y1:n) ≈
N∑

i=1

ωinδ(EOLn − EOLin) (24)

where ωin is the weight of the ith particle at time or cycle
n. Once EOLn is estimated, the remaining useful life can be
readily obtained as RULn = EOLn − n. Thus,

p(RULn|y1:n) ≈
N∑

i=1

ωinδ(RULn −RULin) (25)

An algorithmic description of the proposed prognostic pro-
cedure is provided as Algorithm 2. Note that the prediction
requires hypothesizing future inputs of the system un (recall
Eq. (14)). For simplicity but no loss of generality, we as-
sume in this work that no variation of inputs parameters are
expected on future states.

Algorithm 2 RUL prediction

1: Requires: {
(
ρin, D

i
n,θ

i
n

)
, ωin}Ni=1

2: Output: {EOLin, ωin}Ni=1
3: for i = 1→ N do
4: Calculate: TU

(
ρin, D

i
n,θ

i
n

)

5: while TU = 0 do
6: Sample from Eq. (21): θin+1 ∼ p(·|θin)

7: Sample from Eq. (12a): ρin+1 ∼ p(.|ρin,θin+1)

8: Sample from Eq. (12b): Di
n+1 ∼ p(·|ρin+1,θ

i
n+1)

9:
(
ρin, D

i
n,θ

i
n

)
←
(
ρin+1, D

i
n+1,θ

i
n+1

)
10: n← n+ 1
11: end while
12: EOLin ← n
13: RULin = EOLin − n
14: end for

4.2. Time varying reliability estimation

In addition to know the remaining useful life of the structure,
it is also of much interest to estimate and predict the probabil-
ity of the system to fulfill the design requirements, using the
most up-to-date information of the system at cycle n, y1:n. In
mathematical terms, the performance reliability of the system
at cycle n can be defined as (M. Chiachı́o, Chiachı́o, & Rus,
2012):

Rn|n(zn) = P (zn ∈ U|y1:n) =

∫

U
p(zn|y1:n)dzn (26)

where p(zn|y1:n) is the updated PDF of the system health
state at time n. Given that the event {zn ∈ U} is the comple-
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mentary of {zn ∈ Ū}, then P (zn ∈ U|y1:n) = 1 − P (zn ∈
Ū|y1:n); thus the reliability can be rewriten as:

Rn|n(zn) = 1−
∫

Z
TU (zn)p(zn|y1:n)dzn (27)

where TU is the threshold function previously defined in Eq.
(22). Using the particle filter approximation of p(zn|y1:n) de-
fined in Eq. (19), the last multidimensional integral can be
estimated as follows:

Rn|n(zn) ≈ 1−
∫

Z
T (zn)

N∑

i=1

ωinδ(zn − zin)dzn (28a)

= 1−
N∑

i=1

ωinTU (zin) (28b)

For a forward time reliability prediction at general cycle n+
`, where ` ∈ N > 1, a probability-based estimation of the
damage state at cycle n + ` is needed, i.e., p(zn+`|y1:n). It
can be accomplished by Total Probability Theorem using the
updated state of the system at cycle n, as (Doucet et al., 2001)

p(zn+`|y1:n) =

∫

Z

[
n+∏̀

t=n+1

p(zt|zt−1)

]
p(zn|y1:n)dzn:n+`−1

(29)
Note that last equation can be sampled by drawing one condi-
tional sample trajectory zjn+1:n+` = {zjn+1, z

j
n+2, . . . , z

j
n+`}

from the state transition equation, by means of conditional
sampling (Doucet et al., 2001). Thus, an estimate of the `-
step predictive ahead PDF can be expressed as

p(zn+`|y1:n) ≈
N∑

j=1

ωjnδ(zn+` − zjn+`) (30)

where ωjn is the weigh of particles updated at time n. Finally,
the reliability at cycle n+ ` using the updated information at
cycle n can be obtained as:

Rn(zn+`) = 1−
∫

Z
T (zn+`)p(zn+`|y1:n)dzn+` (31a)

≈ 1−
N∑

j=1

ωjn+`|nT (zjn+`) (31b)

5. CASE STUDY

The proposed framework is exemplified using SHM data ob-
tained from a set of carefully designed run-to-failure fatigue
experiments in cross-ply graphite-epoxy laminates. Both stiff-
ness data and NDE measurements of internal damage, such as
micro-crack density and delamination area, were periodically
measured during the fatigue test (Saxena et al., 2011). Torayca
T700G unidirectional carbon prepreg material was used for

15.24 cm × 25.4 cm coupons with dogbone geometry and
[02/904]s stacking sequence, whose mechanical properties are
listed in Table 1. A notch (5.1 mm× 19.3 mm) was created
in these coupons to induce damage modes others than matrix-
cracks, such as delamination, thereby introducing additional
sources of uncertainty and then demonstrating the proposed
framework under more realistic conditions.

Fatigue tests were conducted under load-controlled tension-
tension cyclic loading, with a maximum applied load of 31.13
KN, a frequency f = 5 Hz, and a stress ratio R = 0.14 (re-
lation between the minimum and maximum stress for each
cycle). Monitoring data were collected from a network of
12 piezoelectric (PZT) sensors using Lamb wave signals and
three triaxial strain-gages. Additionally, periodic X-rays were
taken to visualize and characterize subsurface damage fea-
tures, in particular, the micro-cracks density. This information
was then used to develop a mapping between PZT raw signals
and micro-cracks density, as reported in Larrosa and Chang
(Larrosa & Chang, 2012). More details about these tests are
reported in the Composite dataset, NASA Ames Prognostics
Data Repository (Saxena et al., 2008). Damage data used in
this example correspond to laminate L1S19 in (Saxena et al.,
2008).

Results for sequential state estimation for both micro-cracks
density and stiffness loss are presented in Figures 1a and 1b,
respectively. Every time new data arrive, the damage vari-
ables (ρn, Dn) together with model parameters θn are up-
dated using a SIR algorithm with N=500 particles. This infor-
mation is further used to propagate the models into the future
to compute the RUL, calculated as: RULn = EOLn−n, us-
ing the methodology described in Section 4.1. For this exam-
ple, the useful domain is defined as U = {(ρ,D) ∈ [0, 0.42]×
[1, 0.88]} ⊂ R2. The predictions of RUL are plotted against
time in Figure 1c.

Observe that the RUL prediction is appreciably inaccurate
within the first stage of the fatigue process. This stage cor-
responds to the interval of cycles required for data to train
model parameters. From this period, the prediction precision
clearly improves with time. We use the two shaded cones of
accuracy at 10% and 20% of true RUL, denoted as RUL∗ to
help evaluating the prediction accuracy and precision. Notice
also in Figure 1a that accuracy seems to depart from true RUL
at the final stage, which indicates that the model and its vari-
ance structure do not fully capture the damage dynamics to-
wards the end. Such behavior have been previously reported
in (Saxena, Celaya, Saha, Saha, & Goebel, 2010) and may
be related with the asymptotic behavior of the micro-crack
evolution, which requires more efficient algorithms for prog-
nostics in such cases.

To show the time-varying reliability prediction of the mate-
rial, a multi-step forward prediction of the health state is com-
puted every time new SHM data arrive, using the methodolo-
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gy described in Section 4.2. Figure 2 shows several examples
of time-varying reliability predictions at different cycles. Ob-
serve in figure 2a that the prediction gradually improves as
more SHM data are available. Note also that the prediction of
the cycle for which reliability vanishes is consistent with the
RUL estimation.

6. CONCLUSIONS

A SHM-based prognostics framework to predict the remain-
ing useful life and reliability of composites under fatigue con-
ditions is proposed. We consider physics-based models for
damage evolution due to the benefits for estimating the RUL
and reliability. Two damage variables, micro-cracks density
and stiffness loss, are simultaneously considered to represent
the health state of the laminate. The validity of this frame-
work is demonstrated on SHM data collected from a tension-
tension fatigue experiment using CFRP cross-ply laminate.
Reliability emerges as a suitable unified system-health indi-
cator for prognostics, as it encapsulates information of the
system health state while it allows predicting the RUL of the
system. More research effort is need to achieve more effi-
cient prognostic algorithms to improve the accuracy at the
final stage of the process, where damage typically reaches
an asymptotic behavior, and to incorporate other damage fea-
tures like delamination in the proposed model-based frame-
work.
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NOMENCLATURE

h Laminate half-thickness
E

(φ)
x Longitudinal Young’s modulus

E
(φ)
y Transverse Young’s modulus

ν
(φ)
xy In-plane Poisson ratio
t90 [90n90

]-sublaminate half-thickness
tφ [φnφ

2
]-sublaminate thickness

t Ply thickness
E1 Longitudinal Young’s modulus
E2 Transverse Young’s modulus
ν12 In-plane Poisson ratio
G23 Out-of-plane shear modulus
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Table 1. Ply properties used in the calculations.

Long. Modulus Trans. Modulus In-plane Poisson Out-of-plane Poisson Shear modulus Out-of-plane-Shear modulus Thickness
E1 [GPa] E2 [GPa] ν12 ν23 G12 [GPa] G23 [GPa] t [mm]
127.55 8.41 0.309 0.49 6.2 2.82 0.152
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Figure 1. Results for sequential estate estimation for (a) micro-crack density, (b) normalized longitudinal Young’s modulus and
(c) remaining useful life. At each cycle n, the filtered estimation is calculated using the data available up to that cycle.
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Figure 2. Time-varying reliability prediction at different cycles along the process. At each cycle n, the estimation is calculated
using the data available up to that cycle.
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ABSTRACT 

Significant R&D progress has been done in the area of SHM 

technologies in recent years. However real SHM application 

on aircraft board is still challenging and puts specific 

requirements on the SHM system design and operation.    

These challenges include assurance of reliable and provable 

damage detection capabilities, taking over decision-making 

responsibilities instead of a human inspector and other 

challenges related to on-board installation and operation 

during the flight.  Further, minimal weight and dimension, 

and system reliability and durability should be considered. 

Due to these challenging requirements the SHM has not 

been widely implemented in aerospace industry yet. 

The paper deals with system architecture and operational 

concept of SHM system for L-410 NG commuter aircraft.  

The SHM system is based on excitation, sensing and 

analysis of ultrasonic guided waves using PZT actuators / 

sensors. The SHM system is designed for monitoring of 

PSEs of metallic airframe that are hard to access or 

completely inaccessible for common inspection methods 

used in the aircraft maintenance. The design puts emphasis 

on integration of the SHM system within aircraft avionic 

system in order to achieve highly automated data acquisition 

and data transfer process to make the health data available 

for on-ground analysis. Finally, scenario of the SHM system 

operation in accordance to the L-410 NG maintenance plan 

is proposed in the paper. The scenario assumes replacement 

of common inspections that are done within regular 

maintenance checks by the automated inspections using 

SHM system. Challenges of the proposed scenario from the 

point of view of the aircraft certification and operation are 

discussed as well. 

1. INTRODUCTION 

Effort to utilize all aircraft parts and components efficiently 

leads to transition to on Condition Based Maintenance 

(CBM) philosophy with taking into account real operating 

conditions and load. In the area of aircraft structure, the 

CBM approach to aircraft maintenance is enabled by 

implementation of "Structure Health Monitoring" (SHM) 

system, which monitors actual state of aircraft structure 

parts. Maximum efficiency of SHM system application can 

be achieved if it is taken into consideration during aircraft 

design and development phase. This allows SHM system 

integration into avionics information systems, which is in 

compliance with current trends in the development of new 

aircraft and higher-order innovation in the elderly types. 

This paper describes the architecture of on-board SHM and 

its concept of operation. The work aims to establish a 

precedent of using this perspective SHM system and its 

installation on a small commuter aircraft. In particular, 

SHM system for the L-410 NG is being developing as a part 

of the aircraft modernization efforts where the damage 

tolerant design philosophy is applied for specified Principal 

Structural Elements (PSEs), which are prone to fatigue 

damage. The damage tolerance design philosophy is based 

on the scheduled inspection plan for fatigue cracks 

detection. Analysis, which was done in connection with the 

aircraft design under Damage tolerance philosophy, 

revealed advantageousness of the SHM methods application 

for PSEs with short inspection interval, PSEs with limited 

life or for PSEs prone to Multi-Site Damage (MSD), i.e. 

parts with multi-focal cracks growth, typically riveted lap 

joints in aircraft fuselages or wings. 

2. ON-BOARD SHM REQUIREMENTS 

The main function of the SHM is the aircraft structure 

monitoring during the whole aircraft life. This puts several 

requirements on the on-board SHM system design and 

installation: 

 Minimal impact on the aircraft design and 

manufacturing. Optimization of the sensor layout and 

sensor wiring to minimize need for modifications of the 
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adjacent structure has to be assured. The sensor 

installation process should be as simple as possible to 

minimize influence on the aircraft manufacturing and 

assembly. Optimally, it should be possible to install 

sensors on aircraft, which is already in operation. This 

requirement should be taken into account in design of 

sensor network distribution, connections, wiring and 

sensor bonding technology. 

 Low weight and small dimensions are the most 

important requirements on the SHM system design from 

the point of view of ecomonical utilization of the 

aircraft. Practical applicability of the SHM system and 

benefits of the application are strongly dependent on 

these parameters. Evaluation of SHM benefits against its 

weight influence on the aircraft payload has to be taken 

into account. 

 System modularity and installation versatility has to 

be assured due to a variety and high number of 

monitored aircraft structural areas. These system 

properties would minimize SHM design and installation 

costs. 

 Long-term system operation without maintenance need 

is required. The SHM system life has to exceed the life 

of the monitored structure in case of inaccessible areas 

monitoring. The system has to be designed with respect 

to all adverse environmental service conditions and 

safety requirements. Thus, reliable solution or functional 

system backup is required. 

 Automated operation and integration with overall 

avionics system is the key factor of its effective and 

advantageous deployment with regards to all system 

capabilities and benefits utilization. It includes high 

frequency/continuous monitoring on the individual 

aircraft. It results in an increase of safety of the aircraft 

operation in comparison to current approach. The current 

scheduled inspection plan is based on the assumed crack 

growth behavior dependent on supposed typical loading. 

On the other hand, the SHM provides information about 

the real state of the monitored structure. Further, high 

level of automation minimizes impact of human factor 

on the results of the inspection. 

All those described requirements have been considered 

during the on-board concept development including 

requirements resulting from standards and regulations 

related to the commuter category: EASA CS-23, RTCA 

DO-160, RTCA DO-178 and RTCA-DO 254. Further, the 

Guidance on Structural Health Monitoring for Aerospace 

(ARP6461) has been considered and appropriet 

recommendations have been applied during the SHM 

concept preparation. 

3. SHM SYSTEM ARCHITECTURE 

Scheme of the conceptual SHM system architecture is 

shown in the Figure 1. The system consists of on-board and 

on-ground parts. Each PSE selected for monitoring of its 

health is equipped with permanently installed sensor 

network, which is particularly designed and optimized for 

the PSE. The sensor network is controlled by SHM 

hardware (HW). The SHM HW is connected to Central 

Maintenance Computed (CMC), which controls the SHM 

system operation, i.e. initiates collection of the data for 

particular PSE, stores the data, provides indication of 

correct functionality of the monitoring system for individual 

PSE and allows transfer of the data to the ground unit for 

further processing and evaluation. The ground unit consists 

of a computational device with installed software for the 

signal processing and evaluation of the health of individual 

PSE, which includes defect indication, localization, and 

estimation of severity / size of the defect alternatively PSE 

Remaining Usage Life (RUL) estimation. 

 

Figure 1. General Concept of SHM system 

4. ON-BOARD SHM SYSTEM ARCHITECTURE 

The on-board part of the SHM system (Figure 2) can be 

described as a distributed modular system respecting 

structural design and PSEs selected for the monitoring. The 

modularity of the SHM system design allows various 

numbers of sensors connection in different net 

configurations. The redesign of elementary system modulus 

is not necessary in case of its application on different 

structural parts. The SHM system, for which the architecture 

is designed, is based on technology of generation / 

registration of ultrasonic surface waves using simple PZT 

actuators. However, the architecture is general enough to be 

implemented with other SHM technologies or their 

combinations. 
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Figure 2. On-board SHM System Architecture 

Particular application of the SHM on-board architecture 

consists of local PZT sensor nets, sensor switches and 

sensor control unit (SCU). Local sensor nets are attached on 

monitored structural parts and controlled by small 

lightweight switches localized in the vicinity of sensor nets. 

A BUS topology is used for the switches connection to the 

SCU. This topology allows connection of various numbers 

of sensor switches and sensor network complexity 

optimization. 

The SCU provides several functions. First group of 

functions relates to sensors signals generation, sensor signal 

responses registration, temperature measurement and sensor 

control. The measuring period and other required settings 

for different PSEs are individually set in dependance on the 

particular structural element criticality and localization. 

Further, the SCU performs data pre-processing, temporary 

storing and transfer/communication to the CMC with usage 

of a standard communication protocol (e.g. ARINC 429). 

The SCU is designed for the independent operation (data 

collection in defined intervals). This operational 

independence minimizes burdening of the CMC modulus, 

which main function is initiation and termination of the 

measurement by the SCU and transfer of measured data 

from SCU to the on-ground processing. .  

5. OPERATIONAL CONCEPT 

Nowadays, maintenance of the aircraft using damage 

tolerance philosophy for the structure design is 

characterized by scheduled structural inspections. General 

Visual Inspections (GVI) are done and Non-Destructive 

Testing (NDT) methods are used by maintenance staff to 

inspect structure in details. Threshold interval of the 

inspection introduction, interval of inspection recurrence 

and particular inspection method is defined for all PSEs. 

Any structural damage has to be detected before its critical 

level is reached causing aircraft failure.  

Certification and operation of the SHM system with 

deployment of its full capabilities is challenging nowadays. 

It is caused by no-existence of legislative allowing 

certification and operation of SHM for continuous on-board 

monitoring of aircraft structure damage, e.g. aircraft 

operation with known structure damage is not allowed. 

Therefore, we choose following strategy for the SHM 

system transition to real operation on the aircraft. 

An operational concept of the parallel periodical 

maintenance checks related to damage tolerance and SHM 

system measurements is used in the first phase of SHM 

implementation into L-410 NG maintenance manual (Figure 

3). SHM structural checks are carried out during the aircraft 

service in the automatic way. Data from sensors are 

automatically measured and stored on-board for further 

processing on the ground. The process of data transfer and 

evaluation is not fully automated. The pilot or maintenance 

crew assistance is needed for data transfer initialization and 

execution. The data processing and evaluation is done by 

maintenance or structure specialist on the ground and results 

are provided to maintenance staff.  

 

Figure 3. Operational Concept of SHM System in the first 

phase. 

Running SHM system as a parallel / alternative means of 

inspection to the standard inspection procedures allows for 

long term data collection and comparison of results 

provided by SHM to the standard inspection methods. This 

will allow building confidence in reliability, accuracy and 

durability of the SHM solution, which is critical from the 

point of view of qualification of the SHM technology for 

commercial application. The SHM system has to fulfill 

same certification requirements and regulations as NDT 

methods for the damage monitoring, (probability of 

detection - 90 percent with confidence level of 95 percent). 

The SHM system on-board installation brings additional 

requirements on high level of technical durability and 

functionality (e.g. durability of sensors and wiring > 30 

years, environmental resistance – meeting RTCA DO-160 

standard).  

  

The operational concept of fully automated & integrated 

SHM system will be implemented in the second phase. 

Schematic drawing of the concept is shown in the Figure 4. 
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Figure 4. Operational Concept of Fully Automated & 

Integrated SHM System 

Now the SHM system takes over the full responsibility in 

the area of the structural damage monitoring. All structural 

damage related inspections are fully covered by SHM 

system monitoring. It results in decrease of the burdening 

structural maintenance time. The life limitation of particular 

PSE is determined by the instant when a structural damage 

is detected by the SHM system. The structural health is 

monitored by the automated SHM system with arbitrary 

periodicity during all phases of the aircraft service. The 

periodicity of inspections can be very high resulting almost 

into continuous monitoring. In this case, the CMC provides 

automated and seamless data transfer to the ground for the 

following data processing and evaluation. There are several 

ways of the data dispatching from the aircraft to the ground: 

SATCOM (during flight) or WiFi (at the gate). 

The on-ground data processing is fully automated. 

Responsibility for correctness of diagnostic results is on the 

integrated SHM system, which significantly degrease 

requirements on expertise of the maintenance staff. This 

concept opens door for implementation of wide range of 

various maintenance and logistic support services including 

deployment of Remaining Usage Life (RUL) estimation for 

predictive maintenance usage, advanced maintenance and 

logistic planning, wide-fleet management and others. These 

services will be used not only by the maintenance 

organizations but they can be also advantageously used by 

operators and manufactures of aircraft. 

6. CONCLUSIONS 

The paper describes an approach to the SHM system 

application on the small commuter aircraft. Two main topics 

are discussed: SHM architecture and SHM operational 

concept. 

The most important feature of the proposed on-board SHM 

system architecture is its modularity. This allows for 

monitoring arbitrary PSE on the airframe, minimization of 

the SHM system weight, optimization of the SHM system 

architecture and facilitation of its installation and integration 

with structure. Further, the modular architecture provides 

scalability of the SHM solution even for large aircraft 

platforms. 

Two operation concept of the SHM system for 

implementation into the aircraft maintenance plan are 

discussed in the paper. In the first phase, the parallel SHM 

system operation to regular structural inspections is utilized 

for SHM system on-board introduction, installation issues 

fixing and its operation capabilities testing and verification. 

All SHM functions are not fully automated in this phase. 

The data transfer, data processing and heath status 

assessment requires involvement of the maintenance staff 

and structural specialist. 

The SHM system takes over the full responsibility in the 

second phase. All structural damage related inspections are 

replaced by the automated SHM system. Applied 

automation and integration level increases the SHM 

application potential. Besides minimization of maintenance 

tasks done by maintenance staff, it enables other services as 

fleet-wide maintenance management, advanced maintenance 

and logistic planning and implementation of predictive 

maintenance strategies. 

The SHM system development is still in progress. It is 

expected that results of current work will open way to the 

SHM system operational deployment in serial aircraft 

production. 
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EASA  European agency for civil aviation   

FAA  Federal Aviation Administration 

FH  Flight hour 

FPC  Flexible printed circuit 

GVI  General visual inspection 

MSD  Multiple side damage 

NDT  Non- Destructive Testing 

PSE  Principle Structure Element 

PZT  Lead Zirconate Titanate 

RUL  Remaining Usage Life 

SCU  Sensor Control Unit  

SHM  Structure Health Monitoring 
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ABSTRACT 

Composite materials are increasingly used in aeronautic; 

they offer many benefits such as mechanical strength, mass 

and consumption reduction. However, their process 

development needs to be known and controlled, in order to 

adjust the process parameters and optimize the 

characteristics of structures made from these materials. This 

paper is focused on impedance spectroscopy measurement 

and analysis technique to characterize material’s properties. 

In fact, the composites based on carbon fiber have electrical 

proprieties; therefore a three-dimensional modeling of the 

electrical conduction in the material is established by using 

a distributed allocation of an electrical resistance (RP) in 

parallel with a capacitance (CP). Then, thin electrodes (40 

μm thick) are inserted inside the material and a specific 

impedance measurement bench is developed to perform 

real-time measurements of RP and CP on unidirectional 

(UD) mono-ply and multi-plies samples. During curing (in 

an oven) the change in values of both RP and CP in different 

stages of the curing cycle is showed. Then, problems that 

occur during the curing cycle (layup defect, loss of vacuum) 

were detected by a large gap of the measured electrical 

parameters in comparison with the ordinary case. Therefore, 

by this electrical measurement, we present a way to ensure 

an automated real-time monitoring of the composite curing 

process. 

1. INTRODUCTION 

Carbon Fiber Reinforced Polymers (CFRP) are highly used 

for the high mechanical performances as regards with their 

low density. An answer in how optimize their properties can 

be found in the knowledge and the control of parameters 

linked to the material itself (voids, percolation network, 

fiber and resin ratios, etc.) and to the cycle (temperature, 

pressure, vacuum) during curing.  

In order to provide more elements to monitor composite 

cure process, various works have been undertaken by means 

of dielectric sensors, optical fiber sensors and piezoelectric 

sensors, etc. These techniques often required sensors to be 

embedded, thus could affect the mechanical properties of 

the structure or their use could be tricky. However, another 

interesting approach is to investigate the behavior of the 

material by considering the material itself as a sensor and 

measuring its electrical properties. Some studies are focused 

on the measurement of the resistance (R) or the capacitance 

(C) or better still on the measurement of the impedance (Z).  

Ryan, Carolyn and Karim (2002) propose to use the 

measurement of the capacitance as an indicator to reduce the 

curing time; but notify the need of further studies to 

determine a relationship between the change of capacitance 

and temperature or the degree of cure. Inada and Todoroki 

(2005) use two electrodes placed on the surface of the 

material. They consider the material as a parallel RC circuit 

and perform a frequency analysis of the dielectric 

permittivity to study the change of the capacitance. They 

established an estimate of the degree of cure, but they talk 

about errors that are caused by the decision of the end point 

of perfect cure.  

Shoukai and Chung (1999) burn out the ends of the material 

to expose the carbon fibers for the purpose of making 

electrical contacts. The exposed fibers are wrapped by 

pieces of copper foil, with silver paint between the copper 

and the fibers. They show that the resistance of the material 

depends on the direction of currant flow, temperature and 

pressure. Joung-Man, Sang-Il and Jin-Ho (2005) for their 

part, perform resistive measurements on a single carbon 

fiber embedded in an epoxy resin, they were able to assess 

the residual stresses and temperature during curing.  

The previous works of Marguerès, Camps, Viargues and 

Olivier (2013) have been show that it is possible to monitor 

the evolution of the behaviour of the material during its cure 

MOUNKAILA Mahamadou et al. This is an open-access article distributed 

under the terms of the Creative Commons Attribution 3.0 United States 
License, which permits unrestricted use, distribution, and reproduction in 

any medium, provided the original author and source are credited. 
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cycle by using flexible printed electrodes (inserted inside 

the material) and an associated acquisition system. They 

also consider the material as a parallel RC circuit and 

perform the impedance analysis to provide the online 

change of the resistance and the capacitance during curing. 

The evolution over time of the measured electrical 

parameters (R and C) matches the evolution of the 

rheological parameters studied by standard methods 

(obtained on a parallel plate rheometer); more than ten 

points of agreement were established. 

Indeed, the purpose of this paper is to continue previous 

studies of Marguerès et all (2013). The composite material 

studied is made from T700/M21 prepregs (pre-impregnated 

plies) used in aeronautic and space industry. This material 

has conductive and insulating parts (long carbon fiber and 

epoxy resin) and its electrical conduction properties depend 

on the fibers orientation. Firstly, a three-dimensional (3D) 

model of the electrical conduction is made to describe the 

material’s anisotropy. This model consists of a resistance 

and a capacitance connected in parallel (RP and CP). Thin 

copper electrodes (40 µm thick) inserted in the material, 

depending on the fiber orientation, serve as measuring 

elements. A specific impedance measurement bench has 

been developed to achieve real-time measurements of RP 

and CP. The sensitivity of this RP and CP depending on the 

different stages of the curing cycle to detect a defect is 

studied here. All this aims to provide a monitoring and 

possibly to real-time control the curing cycle to obtain the 

desired properties of the produced CFRP structures. 

2. MODELING OF ELECTRICAL CONDUCTION 

The used prepregs are unidirectional and 250 µm thick. The 

matrix is a M21 epoxy resin. The reinforcement is made of 

high strength carbon fibers (7 µm diameter). The studied 

materials are mono-ply samples but also unidirectional 

laminates (multi-plies with fibers oriented in the same 

direction). This unidirectional (UD) orientation confers 

anisotropic electrical properties. 

Thus, this material contains a conductor part (fibers) and an 

insulator part (resin). So it is suitable to perform impedance 

analysis using a frequency sweep (here from 10 Hz to 1 

MHz). The resistive conduction is linked to the conduction 

through the fibers and the percolation points, and it is 

predominant at low frequency. The capacitive conduction 

(through resin and voids) is predominant at high-frequency. 

To establish a three dimensional model of the electrical 

conduction inside the composite material, the axes of the 

electrical conduction are defined as follows:       

1. In the fiber plane (intra-ply): Two types of conduction 

are possible. A longitudinal conduction in the fibers 

(intra-fibers intra-ply conduction), and a transverse 

conduction which is perpendicular to the fibers 

orientation (inter-fibers intra-ply conduction). The 

longitudinal impedance measurements are delicate, 

because the low value of the corresponding resistance 

induces distortions on capacity measurement. That is 

why, in our model, only the resistive conduction along 

the fibers is considered (measured at 10 Hz). The intra-

fibers conduction corresponds to the current flow in the 

fibers and through the percolation points. But the inter-

fibers conduction is mainly due to the current flow 

through the percolation points. At high frequency only 

the inter-fibers capacitive conduction in the resin is 

considered and measured at 100 kHz. Finally, the 

longitudinal conduction is modeled as distributed 

resistances, while transverse conduction as resistances 

and capacitances in parallel (figure 1).            

2. In the thickness plane (inter-plies): The electrical 

conduction is considered as the same as the inter-fibers 

conduction (in red in figure 1). 

Finally, the complete electrical model equivalent to a 

unidirectional multi-plies composite material can be 

considered as a cascaded structure of hexapole nodes.   

 

Figure 1. 3D electrical conduction model  

of the multi-plies composite material. 

3. EXPERIMENTAL SET-UP 

The mono-ply sample is a prepreg placed on an epoxy 

substrate. The measuring electrodes are inserted between 

prepreg and substrate (see figure 2.a). The multi-plies 

samples contain up to 24 plies (10 x 10 cm
2
). Before curing, 

thin flexible electrodes (flexe) are inserted between two 

consecutive plies in order to reduce interfaces resistances 

(see figure 2.b). A flexe is a copper tape which is 40 µm-

thick, 6mm-wide and 20 cm-long. It is covered with 

polyimide film (kapton, 35 μm thick) at masking areas 

(outside the material). A frequency sweep of the sinusoidal 

current at constant amplitude, combined with the alternating 

voltage measurement (amplitude and phase), allows 

establishing frequency evolution of complex electrical 

impedance (Z) for our electrical model, as shown in the 

following equation:   
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Where : R is the resistance ; C the capacitance ; f the 

frequency ; ω the angular velocity ( f 2 ). 

 
From this expression, measurement at low frequency allows 

determination of resistance, while the capacitance 

measurement is optimal at high frequency. The developed 

acquisition bench allows real time measurement of the 

overall electrical impedance parameters RP and CP on 

samples during their curing process. 

2.a) 

 

 

2.b) 

Figure 2. Mono-ply (2.a) and  multi-plies (2.b) samples. 

4. PRELIMINARY STUDIES  

The post-curing measurements on the composite mono-ply 

and multi-plies samples were used to validate the model and 

to bring out the values levels of the measured parameters. 

The fibers resistivity in the longitudinal intra-ply 

measurement is 15.10
-5

 Ω.m; its determination is difficult 

because of the presence of significant contacts resistances 

RC (1 to 4 Ω) which disrupts measurement. These contacts 

resistances have random values with a large dispersion 

(400%) and impose 4-points measurement method. The 

transverse inter-fibers measurement shows a resistivity 

about 1.5 Ω.m and the transverse inter-plies measurement 

shows the higher values of resistances with a resistivity 

equal to 4.5 Ω.m. In both previous transverse inter-fibers 

and inter-plies cases, 2 points measurement method is used 

because contacts resistances effects are negligible. 

5. CURE MONITORING  

The real-time measurements were achieved during curing, 

in an oven, using mono-ply samples (for longitudinal intra-

fibers and transverse inter-fibers conductions) and multi-

plies UD samples (inter-plies conduction). 

The longitudinal intra-fibers measurements show sporadic 

variations of RP and CP; this is due to the low resistances 

values and also mainly the preponderance of the contact 

resistances between fibers and electrodes (as described 

above). Both transverse measurements show variations of 

RP and CP correlated to the changes in the material state. 

The figure 3 shows the results of transverse inter-plies RP 

and CP measurements during curing. The electrodes are 

inserted between plies 1 and 2, and plies 23 and 24 (figure 

2.b). As expected, the resistance RP decreases over time 

from 30 kΩ to few hundred ohms (220 Ω). This is due to the 

contacts improvements between fibers and electrodes and 

also to the increasing of the percolation network. The 

changes in CP during curing show two peaks; the first 

corresponds to the point of polymer liquefaction and the 

second to the gel point.  

 

     Figure 3. Changes in RP and CP during curing.  
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To prove the advantage of our measurements, we caused 

vacuum loss when curing. This incident is visible on the 

values of RP and CP (figures 4.a and 4.b). After curing, there 

is also a large difference between the values obtained in the 

curing with an incident and those measured under normal 

curing condition. Thus we have obtained, in the case with an 

incident, a resistance around 18 kΩ against 220 Ω in 

ordinary or normal curing.  

This loss of vacuum, caused by a bad layup, limits material 

compaction during liquefaction and it manifests itself by the 

high value of the resistance (less percolation points) or low 

value of the capacitance (more polymers between fibers). 

Therefore, it is possible to make a cure monitoring or to use 

a standard (benchmark) to determine the quality of a curing 

cycle. 

 

0 60 120 180 240 300
100

1k

10k

100k

1M

 Temperature

 With vacuum loss

 Ordinary cycle

 

Time (min)

0

50

100

150

200

R
e

s
is

ta
n

c
e

 (

)

T
e

m
p

e
ra

tu
re

 (°C
)

 

0 60 120 180 240 300
0

1n

2n

3n

4n

 

Time (min)

0

50

100

150

200

C
a

p
a

c
it

a
n

c
e

 (
F

)

T
e

m
p

e
ra

tu
re

 (°C
)

 

Figure 4. Loss of vacuum detection using RP (4.a) and CP 

(4.b) measurement during curing. 

6. CONCLUSION AND OUTLOOK 

Thanks to a simple and robust instrumentation, with flexible 

thin electrodes, an electrical impedance spectroscopy was 

carrying out inside of carbon composite material T700/M21. 

These electrodes associated with an acquisition system 

allow tracking material’s behaviors during curing in an 

oven. Over time evolution of the measured electrical 

parameters RP and CP is according to different states of the 

material. Then, a loss of vacuum was detected by a large 

gap of these electrical parameters. In fact, in manufacturing, 

incidents during layup or curing can cause errors in the 

matrix/fibre or voids volume fractions, or even structural 

defects (delamination, imperfect ply-drop etc.). Therefore 

this monitoring can be used to control or to optimize the 

manufacturing processes of composite materials.  

Furthermore, after curing these flexible electrodes facilitate 

access inside of material and can be used, either for 

monitoring the health of composite material during the 

phases of conditioning and service, or to access to 

nanoparticles that can be added in polymer.  
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ABSTRACT 

The use of composite structures in the space domain has 

increased significantly over the past years owing to its high 

strength to weight ratio. Because of the criticality and huge 

amount of money associated with these missions, there is an 

urgent requirement to monitor the structural integrity and its 

degradation by novel SHM techniques. 

In this paper we use ultrasonic guided wave technology and 

study the different possibilities of embedding piezoelectric 

sensors (PZT) into the carbon composites made by filament 

winding. We demonstrate the sensing capabilities of our 

developed sensor system to damages which can arise due to 

any accidental low-energy impact. A series of lab test was 

conducted on composite coupons to inspect the ability of 

PZT sensors to detect individual damages with high 

probability based on their distance from the impact location. 

The results show that PZT sensors are very promising in 

detecting all the damages caused by impacts with varying 

energies and can be a possible answer to needs of the 

structural health monitoring and non-destructive evaluation 

of advanced space structures. 

1. INTRODUCTION 

Composite materials are currently believed to be the cutting 

edge technology for the future space vehicles. There exist 

many different composite materials and many different 

ways of their manufacturing (Harris et al., 2002). The main 

advantage of composites is much lower weight and higher 

strength than classical metallic structures. Although they are 

utilized very often, there is still significant lack of 

understanding of their mechanical properties and related 

risks (Chiachio et al., 2012). Behavior of the composite 

materials is very complex and its proper investigation 

requires many experiments and theoretical modeling 

(Chiachio et al., 2013). 

Composite structures manufactured for space industry must 

meet strict criteria because their failure could cause fatal 

damage of the vehicle. Among some of the most critical 

composite space structures belong pressure vessels, which 

store propellant. A Composite Overwrap Pressure Vessel 

(COPV) is a vessel with metallic liner overwrapped by 

nonmetallic fibers. Maximal operating pressure in standard 

COPV can reach up to 300-400 Bars and therefore the 

whole structure must be absolutely flawless otherwise it 

would cause immediate burst. Details about COPV design 

can be found in (Ni & Chang, 2012). 

Currently, the COPVs for space industry are very carefully 

tested by various nondestructive techniques (NDT) directly 

after manufacturing. Apart from visual inspection, the 

COPVs are usually tested by acoustic emission, eddy 

currents, thermography, ultrasound, shearography etc. (Ni & 

Chang, 2012). These methods often require special test beds 

and highly skilled operators.  

However, the flawless state of the COPV after 

manufacturing does not imply the same flawless state before 

its final inflation for launching to space. During 

transportation of COPV from the manufacturer to assembly 

place and also following installation to the spacecraft 

(satellite, rocket…) there is a risk of an accidental damage 

on the tank. Typically, it can be accidental tool impact 

during installation or collision of the tank with any other 

object. Although these accidents have quite low energies, 

their consequences can be fatal. From the security 

perspective, the COPV should be tested before launching. 

However, it is not possible by conventional NDT methods 

because the whole tank’s surface is usually not accessible. 

Currently, this issue is mitigated by designing COPVs with 

security margins (winding redundant carbon layers …), 

which makes tanks more heavy and expensive. 

Another way of avoiding this issue is installation of suitable 

sensor system directly into COPV structure. Data from these 

  Cenek Sandera et al. This is an open-access article distributed under the 

terms of the Creative Commons Attribution 3.0 United States License, 
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integrated/embedded sensors can be processed and used for 

testing presence of defect or damage without any direct 

access to the tank. This approach is known as Structure 

Health Monitoring (SHM). There are currently several 

technologies which are able to monitor COPV directly 

without human interaction and among some of the most 

promising ones are Fiber Bragg Gratings (FBG) and 

Ultrasonic Guided Wave (UGW) method. FBG technology 

uses sensors embedded in optical fibers and monitor 

differences in the local stresses. FBG sensors were 

successfully integrated between metal liner and composite 

overwrap or directly into the overwrap of COPV for 

instance by (Grant, 2005) or (Pereira et al., 2013). The 

UGW uses piezoelectric sensors and propagate ultrasonic 

waves through the structure. For general review of UGW 

see e.g. (Raghavan & Cesnik, 2007). This approach has 

been used for monitoring many different types of structures 

and damages (e.g. fatigue (Peng et al.,2012) or metallic 

liners of the COPVs (Ottaviano, 2013)). 

The aim of this paper is to describe a series of experiments 

for detecting damages caused by low energy impacts by 

piezoelectric sensors (UGW) integrated in carbon fiber 

composite structures. These tests are designed to provide 

basic assessment of such detection system and its further 

possible use for structural health monitoring, condition 

based maintenance and fault adaptive control of COPVs 

(forced reduction of internal pressure etc.). 

2. COPV DESIGN AND TEST SPECIMENS 

Generally, COPVs consist of a metallic liner and a 

composite overwrap. Space applications usually use 

titanium liner because of its relative high strength, 

considerable corrosion and oxidation resistance and good 

fatigue characteristics. The liner’s main purpose is to 

prevent propellant leakage. The composite overwrap is 

wound from high performance carbon fibers and coupled by 

epoxy resin. Usually, there are several layers of winding in 

two main directions: hoop and helical (Tam & Griffin, 

2002). The top layer is sometimes covered by one more 

additional layer from glass fibers. The glass layer serves for 

protecting carbon layers and making the visual inspection of 

the tank surface easier. The proposed experiments were 

designed for investigating possibilities of embedded sensors 

between different layers of COPVs. 

2.1. Test coupons 

The test coupons for laboratory experiments were designed 

to represent only the carbon overwrap without the metal 

liner. The piezoelectric sensors have been embedded 

between various layers and their detection capabilities were 

verified. All the test coupons were cut out from a composite 

tube with diameter 226mm (see Figure 1). 

 

Figure 1. General drawing of the test coupon. 

 

Several different composite layouts with different sensors 

placement were tested. The main differences between the 

specimens are in different thickness of the carbon layers, 

presence of glass layer and sensors’ placement in between 

the different layers. Figure 2 shows one of the tested 

layouts. The bottom part of the depicted coupon consists of 

carbon helical winding. The top part is a glass layer and 

carbon layers with hoop winding. There are piezoelectric 

sensors (mounted on two flexible printed circuits) placed 

between the top and bottom part of the coupon. 

 

 

Figure 2. Example of a test coupon.  

 

The manufacturing process of the coupons starts with 

winding composite carbon fibres T700 with helical layout (4 

layers with fibres at 65˚) with no metal liner inside and then 

overwrapping it by radial winding (fibres in 90˚ with respect 

to the axis of the tube) in two further layers. The 

fibre/matrix material for each layer is carbon/epoxy it is 

additionally covered by glass/epoxy layer to provide 

protection to the real COPV. The prepared composite tube is 

cured at 40˚C and then it is cut to several pieces which are 

used as the test coupons. 

2.2. Sensor system 

The piezoelectric sensors are mounted on a thin flexible 

printed circuit (Kapton) to make the embedding process 

easier (replacing cables). The sensors are made of 

piezoceramic material (NCE51) and their dimensions are 

5×5×0.5 mm. Each coupon contained 5-6 sensors 

distributed on two flexible strips. The strips are placed 

between selected layers (see next section) during the 

manufacturing process and covered by resin. Embedding 
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sensors into carbon layers can significantly decrease 

strength of the overall composite structure but these 

experiments were intended mainly for verification of the 

sensors capabilities. The optimal layout for sensors would 

be subject of a consequent research and investigation. 

3. EXPERIMENTS SETUP 

Experiments were designed to investigate capabilities of 

piezoelectric sensors to detect low energy impacts. The 

manufactured test coupons went through a series of steel 

ball impacts with defined energies. Embedded sensors were 

used to collect signal before the impact and after the impact. 

The two signals were then compared to each other. 

COPVs must withstand very high internal pressure that 

causes also high stresses in the carbon overwrap. This 

phenomenon was simulated in the test coupons by 

introduction of artificial tensile load. Each state of the 

structure (before and after impacts) was measured under 

several different tensile load levels. 

Sensors are excited by 3 cycles of sinusoidal wave weighted 

by Gaussian window. Frequency of the wave is 200 kHz. 

The obtained signals are the values of voltage on the sensors 

recorded with respect to time. Sampling frequency is 

12MS/s. 

3.1. Processing of results 

The detection is considered to be successful if signals 

measured under one physical state are similar to each other 

but different from signals measured under varied physical 

states.  

For the sake of visualization, damage indices are computed 

for all measured signals by comparing them with the 

baseline signals. The damage index represents the observed 

variability (with respect to the baseline) and it is computed 

as overall energy extracted from Short Time Fourier 

Transform (window length 0.21ms). The visualization of the 

damage is consequently based on the computed damage 

indices and processed by adjusted version of WEMAT 

algorithm (Hedl et al., 2012). This algorithm triangulates 

observed damage indices on the whole plane. The extent 

and severity of the damage is not estimated directly from the 

data. The only analyzed information is its localization based 

on intensity of observed variability of the measured signals. 

Produced visualizations show estimated distribution of 

damage (source of the observed variability in the signals) in 

relative scale. Therefore it is possible to estimate position of 

the damage. 

3.2. Experiments description 

Three distinct test coupons were manufactured that mainly 

differ in sensor placement with each other (see description 

below). Each coupon was artificially damaged by impacts 

with different energies. Therefore, there is no direct 

comparison of the results between each specimen. The 

major outcome of the experiments is to examine how the 

ultrasonic waves interact with impact damages and what 

impact energies are provably detectable. 

3.2.1. Test coupon 1 

The first test coupon does not contain sensors embedded 

directly in the carbon layers. Sensors are placed below the 

final glass layer (see Figure 3). The hatched layers represent 

carbon layers. The top white layer represents glass layer and 

the two gray rectangles represent piezoelectric sensors. This 

layout does not affect strength of the composite structure but 

perhaps the ultrasonic waves cannot reach the underneath 

deep layers to detect damages. 

 

Figure 3. Schematic composition of the test coupons.  

 

The coupon 1 was tested by two impacts with energy 14J. 

This energy is approximately related to an accidental impact 

of a tool with weight 1 kg dropped from a height of 1.4 

meter. Each impact was aimed at different location to avoid 

interactions between the induced damages. 

3.2.2. Test coupon 2 

The sensors in the test coupon 2 were covered by one layer 

of carbon fibers and one layer of glass fibers (see Figure 4). 

This layout slightly changes mechanical properties of the 

composite structure. 

 

Figure 4. Schema of the test coupon 2 with sensors placed 

under one carbon layer. 

 

The test coupon 2 was tested by two impacts with the same 

energy 6J. This energy is approximately related to 

accidental impact of a tool with weight 0.6 kg dropped from 

1 meter height. The impacts were aimed at the same location 

as before to test the influence of progressively increasing 

damage. 

3.2.3. Test coupon 3 

The test coupon 3 has sensors embedded approximately in 

the middle of the coupon material thickness. The sensors are 

covered by two layers of carbon fibers and one addition 

layer of glass fibers (see Figure 5). 
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Figure 5. Schema of the test coupon 3 with sensors under 

two carbon layers. 

 

There were tested three impacts to the same location and 

each impact has twice time higher energy than the previous 

one. Particularly, the tested energies were 6 J, 12 J and 24 J. 

This test was designed to investigate influence of rapidly 

expanding damage. 

4. RESULTS 

Each of the impact damages was measured by the embedded 

sensors and visualized by WEMAT approach. The resultant 

images show intensities of observed signal variability over 

the test coupons. The red color signifies higher damage than 

the blue on the scale of expected damage. One test coupon 

contains 8 sensors and therefore there are 28 different sensor 

pairs. The WEMAT images are constructed from damage 

indices calculated for these 28 pairs and interpolated on the 

whole surface of the test specimen. The white dot represents 

exact location where the impact took place. It is used for 

verification of the obtained results.  

4.1. Test coupon 1 

The sensor system embedded in the coupon 1 was tested by 

two independent impacts with energy 14 J. The impacts 

significantly damaged the top glass layer in a way that 

visual inspection can easily detect it. The sensor system 

provably detected and localized both impacts and the results 

can be seen in Figure 6 and Figure 7. Figure 7 represents the 

observed damage by the second impact only, which means 

that it does not represent cumulative damage caused by both 

impacts together. 

 

Figure 6. Test coupon 1 – first impact (14 J). 

 

The observed variability in the signals could be caused only 

by the damage of the glass layer and therefore it is unclear 

whether this impact also broke the carbon fibers in the 

underneath layers. In this application, it is not crucial to 

monitor defects of the glass layer because it serves only for 

protecting and inspecting purposes. On the other hand, 

damages in the carbon layers are critical from the 

perspective of the overall strength of material and therefore 

they must be monitored very carefully. Nevertheless, due to 

significant extent of the damage, it is expected that the 

carbon layers suffered by damage too. 

 

 

Figure 7. Test coupon 1 – second impact (14J). 

4.2. Test coupon 2 

The test coupon 2 contains sensors under the last carbon 

layer. The energy of impacts was decreased (in comparison 

to the test coupon 1) to 6 J and the impact was repeated with 

the same energy at the same location. The result of the first 

impact can be seen in Figure 8.  The result indicates that the 

biggest damage is located 3 cm from the actual impact 

location. There are two possible explanations for this fact. 

The first one is that the impact really caused bigger damage 

in more distant locations (e.g. debonding of layers), and the 

second explanation is related with resolution of sensor 

system itself. It is not possible to perfectly localize all the 

possible damages by only eight sensors and therefore the 

obtained results must have some limit resolution. In 

whichever case, the results can be considered as successful 

and the detection is provable (if obtained precision is good 

enough for intended application). 

 

Figure 8. Test coupon 2 – first impact (6J). 

 

On the other hand, the second impact (same place and same 

energy) was not detectable at all. The damage did not 

increase its extent and therefore the measured sensor 

responses are exactly as same as after the first impact. 

4.3. Test coupon 3 

The third test coupon has the sensors embedded under two 

carbon layers, which mean that they are located 

approximately in the middle of the coupon’s thickness. The 

results from the first impact (6J) are comparable with the 
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results from the first impact on the test coupon 2 but with 

more precise localization.  

 

Figure 9. Test coupon 3 – second impact (12J). 

 

Figure 9 shows results from the second impact 12J (same 

location as the first impact). The damage is very precisely 

localized and detection is provable. The results show that 

the second impact significantly damaged the test coupon 

(unlike to the test coupon 2) and the embedded sensors were 

able to detect it even from more substantial depth. The third 

impact (24J) has the same characteristics but with wider 

detected extent of the damage. All three impacts were 

successfully detected and moreover the magnitude of the 

observed variability in the signals was increasing with 

increasing energy of impacts.  

5. CONCLUSION 

This paper summarizes results from conducted experiments 

on test coupons, which were designed as a simplified 

representation of the composite overwrapped pressure 

vessel. These experiments investigate possibility of 

detecting low energy impacts by embedded piezoelectric 

sensor system. 

In general, pressure vessels operate under very high internal 

pressures and therefore even very small damage can lead to 

critical consequences. It was shown that these small 

damages can be detected and localized by comparing 

measured ultrasonic signals with their baselines. 

The investigated test coupons contain sensors in three 

different layouts and the main difference between them is in 

depth of their placement. All the three layouts were able to 

detect all the tested impacts (from 6J to 24J) but the 

sensitivity is generally better when the sensors are closer to 

the surface. 

These experiments proved that health monitoring of carbon 

composites is feasible and they opened a way for developing 

complete monitoring system. The main advantage of using 

such system would be obtaining quick and reliable 

information about current state of the composite structure. 

This information can be further utilized for condition based 

maintenance or fault adaptive control. Composites and 

COPVs are extensively used in space industry, which 

requires the highest level of intelligent and autonomous 

systems. Currently, there is no known issue, which would 

prevent using this technology in space. Therefore, there are 

several possibilities how to use the collected information for 

better and safer operations of spacecrafts. 

Conducted experiments have demonstrated possibilities of 

detecting and localizing low energy impact damages. 

Further research should focus on determining the type and 

extent of these damages and estimating their severity. 
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ABSTRACT 

Integrated system health monitoring and management 

(ISHM) is a field of research and development where both 

academia and industry is highly focused on. Airbus Defence 

& Space has recognized that simulation is a key capability 

for developing ISHM technologies and is therefore in the 

process of developing a comprehensive simulation 

framework in that area. One significant building block is to 

invite 1st class technology providers, e.g. Universities and 

SMIs, to provide innovative technologies and support their 

integration into the simulation framework. This paper is a 

joint presentation of Airbus Defence & Space and Linova 

Software GmbH, an Airbus Defence & Space preferred 

software provider. The Open System Architecture for 

Condition-based Maintenance (OSA-CBM) and Open 

System Architecture for Enterprise Application Integration 

(OSA-EAI) are complementary reference architectures and 

represent an emerging standard for application domain-

independent asset and condition data management. The 

architectures address several challenges in building 

Prognostic Health Management (PHM) systems, which are 

commonly composed of disparate and distributed hard- and 

software components. Therefore, a common challenge to 

PHM systems is to be confronted with vast amounts of data 

which are exchanged over a heterogeneous collection of 

communication channels. Any such system’s success 

depends upon an open, uniform, and performance-optimized 

solution for data management. A solution that includes: data 

definition, data communication, and data storage. We will 

follow up on previous work and report on our experiences 

from implementing our second generation data management 

backbone based on binary OSA-CBM transmission. We also 

aim at implementing a fully OSA-EAI compliant database. 

We confirmed the general feasibility of OSA-CBM and 

OSA-EAI by previous work. We have now migrated our 

data management backbone to the current release of OSA-

CBM, which includes a standard binary transportation 

format. We report on our experience from implementing this 

format and discuss issues regarding message handling and 

Meta data overhead. In previous work we used a simplified 

and stripped-down implementation of OSA-EAI and our 

current goal was to be fully compliant with the OSA-EAI 

standard. In order to reach this goal, we have created a code 

generator which receives OSA-EAI-provided 

documentation artifacts as input. It produces compileable 

source code for a Java-based 3-tier OSA-EAI information 

system. We have identified issues with the OSA-EAI 

standard regarding completeness and handling, which we 

discuss, and suggest means for mitigation or enhancements 

to the standard. To underline the feasibility of our solutions, 

we provide empirical evidence drawn from our work. The 

conclusion is a summary of our experience and the direction 

of future work in the area of PHM system design for aircraft 

maintenance. In total, our contribution to the community is 

best seen from a practitioner’s perspective.  

1. INTRODUCTION – MIMOSA STANDARDS 

The paradigm shift from prevention towards prediction, 

which PHM systems impose to maintenance and operational 

processes of technical system, promise higher availability 

and higher operational capability, coupled with a reduction 

of overall maintenance costs. The challenges, which 

programs to introduce PHM systems in any application 

domain must face, are twofold. The enablers challenge 

deals with developing enabling technology, such as novel 

sensors, state detection, and health assessment 

methodologies and models for determining future life of 

(possibly deteriorated) components. The data challenge 

deals with integrating heterogeneous data from disparate 

and distributed sources into consolidated information and 

dependable decision support. It has therefore been 

recognized by the community that efficient data 

management solutions are crucial to success of PHM. Such 
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a solution should introduce a commonly accepted 

framework for data representation, data communication, and 

data storage. In other words, all solutions should be based 

on a commonly accepted and open standard in order to 

allow for seamless integration. In this writing we focus on 

the data challenge, i.e., the realization of a highly productive 

and standardized data management middleware 

The organization MIMOSA is a “non-profit [...] industry 

association, focused on enabling industry solutions 

leveraging supplier neutral, open standards, to establish an 

interoperable industrial ecosystem for Commercial Off The 

Shelf (COTS) solutions components provided by major 

industry suppliers” (MIMOSA). The organization performs 

standardization work by defining reference architectures for 

PHM data management, respectively, aspects of PMH data 

management. We have chosen to base our data management 

backbone on two of MIMOSA’s proposed standards, which 

are introduced in the following. 

1.1. OSA-CBM 

The Open System Architecture for Condition-based 

Maintenance (OSA-CBM) is an emerging reference 

architecture which has a chance of becoming the de facto 

standard for exchanging data in a condition monitoring 

system. Being an implementation of the ISO-13374 

functional specification, the architecture defines six 

functional layers.  Each layer is allocated different and 

unique functions of the data processing chain in a condition 

monitoring system (see Figure 1). 

 

Figure 1.OSA-CBM Reference Architecture 

This architecture focuses on the definition and 

communication of PHM data. Specifically, on the question 

as to which data entities and events can be exchanged 

between the layers during operation and the communication 

interfaces used for this purpose. The standard recommends 

the usage of XML messages, which are transported over 

HTTP, and for this purpose, a thorough collection of 

specifications for XML messages is provided. Recently, a 

binary transmission format for OSA-CBM messages has 

been added to the standard, and it is recommended to be 

used in embedded systems, or systems with limited 

computing resources (Löhr, Haines & Buderath 2012). In 

this writing, we will report about our experience in 

implementing the binary OSA-CBM format. 

1.2. OSA-EAI 

The reference architecture OSA-EAI is complementary to 

OSA-CBM and specifies comprehensive data storage 

architecture for asset management and configuration 

management systems. This architecture consists of: a 

physical relational data model (Common Relational 

Information Schema, CRIS), a corresponding logical object 

model (Common Conceptual Object Model), and CRUD 

interfaces (Create, Retrieve, Update, Delete) for all defined 

entities, as depicted in Figure 2. The data model is 

harmonized with OSA-CBM to facilitate storing data 

coming from all six OSA-CBM layers. Analogously to 

OSA-CBM, it is recommended that clients exchange XML 

messages transported via HTTP. For this purpose, the 

authors of the OSA-EAI standard provide a multitude of 

CRUD XML message specifications.  

 

Figure 2. OSA-EAI Reference Architecture 

The XML message specifications have been provided in 

XSD format. In this writing, we describe a Java code 

generator, which processes the XSD files and generates a 

fully functional client- and application tier upon the CRIS 

relational data model provided by MIMOSA. 

2. ENVIRONMENT 

Airbus Defence & Space is developing a comprehensive 

simulation framework for research in the areas of condition 

monitoring and prognostic health management. The 

framework includes airborne functions hosted on embedded 

systems, as well as ground-based functions hosted on PC-

based systems. The primary objective is to interconnect both 

airborne and ground-based systems using a uniform data 

management philosophy and, as far as possible, uniform 

communication protocols. The simulation environment 

consists of airborne and ground-based functions which are 

connected by a data management backbone upon OSA-

CBM and OSA-EAI.  

In the following section, we provide a brief technical 

overview, whereas a more detailed description can be found 

in Löhr, Haines & Buderath, 2012. The air segment of the 

simulation framework models systems and associated 

sensors for which IVHM capabilities shall be developed. At 

the core of the framework is a central IVHM data processor 

to which data gets pushed by OSA-CBM. The IVHM data 
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processor calculates IVHM information according to the 

OSA-CBM layer specifications, up to the health assessment 

layer (refer to Figure 3). 

 

Figure 3. Air Segment of Simulation Framework 

The central data processor supports download of data, which 

has been collected and calculated on board the aircraft, to 

the ground-based environment for further processing (e.g. 

during the aircraft’s turnaround). Once downloaded, the data 

is stored in a central data management component, which 

we call the CBM data warehouse (refer to Figure 4). 

 

Figure 4. CBM Data Warehouse 

The CBM data warehouse is based on the OSA-EAI 

reference architectures and it serves two major purposes: 

first, it hosts all current (i.e. short timeframe) and historical 

(i.e. long timeframe) condition data. Second, it provides 

services to distributed client applications that are involved 

in the PHM process.  

In our context, data management includes the entire data set 

life cycle: from initial instantiation of a sensor value, 

transportation to the IVHM data processor, downloading to 

the ground-based environment, on through to storage and 

further processing. 

3. OSA-CBM ENCODING IN THE AVIATION DOMAIN 

When implementing OSA-CBM for an on-board embedded 

system one has to consider the software certification context 

for in-flight software. In this regard, our implementation 

deviates from MIMOSA’s recommendation of transmitting 

OSA-CBM-encoded messages via a HTTP/TCP stack. 

Instead, we transport OSA-CBM messages via a UDP/IP 

stack.  In our work we apply OSA-CBM messaging from 

data acquisition layer up to health assessment layer and in 

the following sections we report about our experience in 

implementing the binary OSA-CBM messaging standard in 

the C programming language under specific restrictions. 

3.1. Programming Environment 

When fielding OSA-CBM compliant applications on 

embedded systems certified for in-flight usage, several 

issues are brought to the fore. Ultimately, two aspects 

defined the unique structure of our solution: resource 

limitation and non-dynamism. Computing hardware for 

avionics, due to qualification requirements, are generations 

behind present off the shelf computing hardware. 

Implementation rules for applications hosted on real-time 

operating systems (such as VxWorks) typically forbid 

dynamically allocating memory resources, as these 

operations are potentially non-deterministic and lead to 

memory leaks if not used carefully. This environment 

imposes further constraints on the solution space: due to 

qualification or certification requirements (depending on the 

risk class of the final system) all embedded code must be 

written in the C programming language. Furthermore, UDP 

must be used as the sole protocol for network 

communication.  

3.2. Starting Point 

In order to make our current work comparable to prior work, 

we transmit the same OSA-CBM event instances as 

described in Löhr, Haines and Buderath 2012. This is, a 

heavy load data event set which contains four 

heterogeneous OSA-CBM DMDataSeq events at 

individual sample rates of 160Hz, 360Hz and 1 kHz (in total 

2520 floats which corresponds to 10080 raw bytes). 

Additionally, we want to transmit a light load data event set, 

containing a single DMDataSeq event recorded at 20Hz 

(80 raw bytes). Both data event sets will be transmitted with 

a frequency of 1Hz. We have previously used these use 

cases to compare the standard XML-based OSA-CBM 

messaging protocol against a custom binary OSA-CBM 

messaging protocol, which we had designed at a point in 

time, where the standardized MIMOSA binary messaging 

protocol was not yet available to us. The ratio between 

transmitted data and usable payload, which shall act as a 

benchmark for the standardized binary messaging protocol, 

is given below. 

 MIMOSA XML Prop. Binary Ratio 

Heavy Load 165 345 bytes 40 792 bytes 4.1 

Light Load 1 827 bytes 576 bytes 3.2 

Table 1. Data Transmission Size Comparison 

As seen in Table 1 there is a significant reduction in the 

volume of data from XML-based transmission compared to 

binary transmission, ranging up to a factor of four. Also, 

processing the messages is less costly in binary mode 

(Swearingen, Kajkowski, Bruggeman, Gilbertson & 

Dunsdon, 2007).  
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3.3. Previous Work 

For the implementation of our use cases in standardized 

binary OSA-CBM, we expected no significant deviation 

from the ratio of transmitted data versus usable payload, as 

for our custom binary approach. We were however unsure if 

it would increase or decrease. Our custom binary format is 

not prepared for all optional or dynamic elements of an 

OSA-CBM message. We provided maximum boundaries for 

dynamic elements and implemented the subset of optional 

elements, which we need, as static fields. In contrast, the 

standard binary OSA-CBM format can deal with all optional 

and dynamic fields, but has to include metadata fields which 

control the interpretation of the byte stream.  

In our previous work we modeled OSA-CBM data as structs 

and captured their memory footprint for direct transmission 

to the receiver side. An example can be found in Figure 5. 

We transmitted OSA-CBM messages from a 32-bit Ubuntu 

sender system on an Intel processor to a 32bit VxWorks 

receiver system on a PowerPC. In order to overcome the 

platform differences we worked with artificial padding bytes 

so that the internal in-memory arrangement of our 

transmission structs was equal on both platforms. Also, we 

performed byte-swapping on the receiving platform to deal 

with high- and little-endian issues. This allowed us to easily 

cast the UDP package payload into the required structures 

(including pointer remapping) with a minimum of 

marshalling and un-marshalling effort. 

 

Figure 5. Data Event Set as Custom C Structure 

However, our approach was highly platform- as well as use 

case-dependent and did not cater for the full spectrum of 

OSA-CBM features.  The standard OSA-CBM binary 

protocol is platform independent as it 

- defines endianess 

- introduces a limited set of primitive data types 

with specified width and defines signdness 

- strictly serializes the OSA-CBM classes into a flat 

byte stream. Here, it benefits from the fact that no 

multiple inheritance is used  in the OSA-CBM 

classes 

3.4. Design and Implementation 

The high level design of our implementation consists of the 

following three core parts: 

- a representation of all OSA-CBM data types, Meta 

data elements, enumerations, constants, etc. as C 

language elements, such as enums, structs and 

defines. We modelled inheritance as already shown 

in Löhr, Haines & Buderath, 2012. 

- an encoder library, which receives an instance of 

an OSA-CBM data event (struct instances) as input 

and transforms it into an OSA-CBM-compliant 

binary byte buffer 

- a decoder library, which receives a binary byte 

buffer as input. It interprets the buffer form left to 

right, and instantiates and wires respective structs 

from left to right into an OSA-CBM compliant 

event structure 

We have chosen to not include the actual network 

transmission layer into our implementation. It depends on 

the deployment of how the encoded bytes are actually 

transmitted or the encoded bytes are received. Our C code 

implementation is subject to the restrictions pointed out in 

section 3.1, according to which we do not have dynamic 

memory allocation available. We require that the caller of 

the decoder or encoder provides a chunk of (statically) 

allocated memory, on which the en- or decoder operations 

work. All structs will be allocated within this static piece of 

memory, of which the allocation we assume to be external 

to the library. 

We model OSA-CBM data elements as C structs an enums, 

and have restricted the scope of implementation to OSA-

CBM data event elements. Other elements, such as 

Configuration, can be implemented analogously. Having the 

user of our library modifying the data event struct and its 

children directly is possible, but error prone. Meta data 

fields could be missed, or the structure might simply be 

incomplete or incorrect. To avoid such errors, we provide a 

comprehensive set of wrapper functions for creation of 

events in the correct structure and for setting attributes on 

this structure. The creation functions operate on the pre-

allocated static buffer. With these functions the user can 

create and populate an OSA-CBM data event set without 

having to deal with implementation details (such as pointer 

handling or OSA-CBM Meta data management). Also, the 

functions assure that the event is in a valid state at any time. 

An example will be given in the following. 

1. osacbmCreateNewDataEventSet: provided 

with a chunk of statically allocated memory, the 

function will create an empty OSA-CBM data 

event and return a handle for further manipulation 

2. addDMRealToDataEventSet: provided with a 

handle to an existing data event set, the function 

will add a new DMReal event to the given event 

set, hereby hiding all memory handling details. 

Also, the function returns a handle to the new 
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DMReal event for further manipulation (i.e., 

setting its value). 

3. addDMDataSeqToDataEventSet: 

analogously, this function will add a new 

DMDataSeq event to a given data event set. Using 

the returned handle, the DMDataSeq can be 

populated 

4. addValueToDMDataSeqEvent: given a 

handle to a DMDataSeq event, this function can 

populate the DMDataSeq event with a potentially 

infinite number  of values 

5. setNumAlertsForDMDataEvent: example 

for one or many functions which set specific 

attributes on a given event structure 

Having constructed the required event structure as described 

above, the actual encoding is just one additional function 

call. Additionally to the actual data event that should be 

encoded, our encoder’s entry function takes a pre-allocated 

buffer to which the resulting encoded byte stream shall be 

written. The encoder inspects the given struct and serializes 

it to the byte buffer. This approach is straight forward as it 

means implementing the pre-defined OSA-CBM 

specification. 

The resulting binary and OSA-CBM compliant content can 

then be transmitted with any medium, such as 

UDP/Ethernet, a serial line or AFDX, to only name a few 

examples. On the receiver side, the decoding process is 

essentially the inverse of the encoding process. The function 

osacbmDecodeOSACBMBinaryDataPacket receives 

the transmitted bytes and a handle to a statically allocated 

working buffer. Additionally to the decoded data even 

struct, the function returns a handle to an object modeling 

the OSA-CBM message properties. Using our wrapper 

functions, the user can inspect the content of the just 

received data event set; for example, for passing the data 

into a state detection or health assessment layer. 

3.5. Discussion of Results 

As described in section 3.2, we transmit a data event set 

containing four heterogeneous OSA-CBM DMDataSeq 

events at individual sample rates of 160Hz, 360Hz and 1 

kHz. The overall data event set has a frequency of 1Hz. The 

resulting data push represents 2,520 individual 

measurements being sent across the system every second. 

The second sample is a light load data event set, containing 

a single DMDataSeq event recorded at 20Hz; the 

corresponding overall data event set has a frequency of 1Hz. 

The heavy load event transmits 10080 raw bytes and the 

light low data set transmits 80 bytes. 

 
Prop. 

Bin. 

Std. 

Bin. 

Ratio gross/ 

net Std. 

Delta 

Prop. 

Heavy 

Load 
40 792 16 972 1.7 58% 

Light 

Load 
576  568 7.2 -1% 

Table 2. Performance of Binary OSA-CBM 

The figures in Table 1 illustrate the performance of our 

binary OSA-CBM implementation. For the heavy load event 

a reduction of 58% of total raw bytes has been achieved. For 

the light load data event set the number of raw bytes 

increased by 1% -- obviously, Meta data has less impact for 

large payloads than for small payloads. We explain the 

significant reduction for the heavy load data event by the 

possibility to allocate dynamic data sections in the binary 

OSA-CBM protocol. Our custom implementation used fixed 

blocks with a maximum length for dynamic data fields (e.g., 

strings, arrays) and left unused space populated with 

initialization data, whereas in binary OSA-CBM the length 

as well as the actually transmitted number of bytes may 

vary.  

4. OSA-EAI-COMPLIANT CBM DATA WAREHOUSE 

The ground segment of our simulation framework includes a 

central repository for data and information, called the CBM 

data warehouse. 

4.1. Motivation 

Design of the CBM data warehouse was driven by the 

following high-level requirements.  

1. act as a central information system  

2. provide a uniform and standardized interfaces 

3. maintain full traceability for in-service data  

The MIMOSA reference architectures define a uniform data 

management philosophy that allows for full traceability of 

virtually any sensor value and its derived information. 

Earlier work (Gorinevsky, Smotrich, Mah, Srivastava, 

Keller & Felke, 2010, and others) demonstrated the 

feasibility of using these architectures as a reference to build 

a comprehensive information system for the aerospace 

domain. We consequently considered the selection of OSA-

EAI and OSA-CBM as guidelines for the design of our 

CBM data warehouse as a promising approach to satisfy our 

high level requirements. 

4.2. Previous Work 

We have implemented a subset of the OSA-EAI standard for 

our initial version of the CBM data warehouse, as described 

in Löhr, Haines & Buderath, 2012. The subset was derived 

with the aim of providing data management for diagnostics 

and prognostics on our candidate systems. We concentrated 

on the ability to express system breakdowns (Assets, 

Segments, and Parent/Child relations) and the ability to 
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associate data from the data acquisition, data manipulation, 

and state detection layers. Additionally, each asset was to 

have an active history of health assessments and remaining 

useful life estimates. We customized the utilized OSA-EAI 

tables in a way that would simplify the generation of test 

and reference data. We made further customizations to map 

specific features of the aerospace domain and stripped the 

composite primary keys of each entity down to a single 

dataset id, allowing us to strip down foreign keys as well. 

This approach was shown to be feasible by Mathew, Zhang, 

Zhang and Ma Lin (2006). Finally, we only considered 

those columns of any table which we really required. As a 

result, our CBM data warehouse was fully compatible to 

OSA-EAI, as it represented a subset of the standard. 

However, it was not compliant to OSA-EAI and we began 

work towards implementing the OSA-EAI standard to its 

full extent. 

4.3. Approach and Architecture 

The OSA-EAI standard defines a magnitude of documents 

and IT-specific artifacts of which the core artifacts – at least 

for our work – are briefly described here: 

- CRIS: Common Relational Information Schema, a 

heavily normalized relational database schema. 

The standard provides CREATE statements for 

Oracle and other databases in the form of text files 

- XML Request Specification: a set of XSD 

document type definitions which represent the 

entirety of XML-based requests that a client can 

send to an OSA-EAI compliant database. Also, the 

responses are defined. 

The information sources above are the technical entry point 

for implementing an OSA-EAI database. Considering the 

proposed architecture from Figure 2 the implementation 

effort can therefore be summarized as follows. Instantiate 

the provided CREATE statements (porting the statements to 

the utilized RDMBS might be necessary). Create a server 

application which consists of a top layer listening for 

incoming XML messages via HTTP. The next layer inspects 

the parsed XML and routes the request to a more specific 

request processor. The request processor translates the XML 

content into an SQL statement (SELECT, INSERT or 

UPDATE) and executes the SQL statement against CRIS. 

Then, the result form the SQL statement, if any, is captured 

again by the request processor. If there is resulting data, the 

result set is worked off and the data it is wrapped into an 

XML document according to the XSD specification that 

corresponds to the initial request. The resulting XML 

response is finally serialized and appended to the output 

stream of the originating HTTP request – and as such 

received by the client. 

The implementation of the server application cannot be 

done without significant effort by boldly implementing the 

partially very complex XML request for up to 300 XSD 

documents, which have to be mapped against up to 400 

individual tables from CRIS. Instead of implementing the 

server application “by hand”, we thought of a tool that 

would generate the source code for the server application 

from the available artifacts (CRIS CREATEs and XSD 

documents). The architecture of such a tool is depicted in 

Figure 6. The code generator receives all available XSD 

documents as well as the CRIS description as input, parses 

and analyzes them, and finally generates code for any layer 

of the described server application. Also, the code generator 

is able to generate unit tests for the server.  

 

Figure 6. Code Generator for OSA-EAI 

4.4. Realization 

The OSA-EAI XML request specification is roughly 

grouped into the following three categories: 

- Tech-Doc: facilitate data exchange between an 

application with information which it needs to 

publish periodically 

- Tech-CDE: entity-centered, simple CRUD (create, 

update, retrieve and delete) operations 

- Tech-XML: region-centered complex query, 

update, and create operations 

For our work we initially focused on Tech-CDE and Tech-

XML because our motivation was to create the required 

services for managing the information content in the 

database. For this purpose, CRUD operations only are 

required. We started with an analysis of the XSD documents 

provided in order to infer the required steps and architecture 

of the code generator. Both request groups provide a central 

XSD file which defines all XSD types referenced by the 
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request definitions. In addition, Tech-CDE provides one file 

which contains all available retrieve requests (Tech-CDE 

Query) as well as one file which contains all available 

create, update, and delete requests (Tech-CDE Write). In 

contrast, Tech-XML provides a magnitude of files for each 

specific Tech-XML request. In total, there are 256 request 

files, of which the majority is Query definitions, followed 

by a few Create and Update definitions. The core difference 

between Tech-CDE and Tech-XML is that a Tech-CDE 

request is focused on one specific entity only. Relations to 

other entities are only considered by the respective foreign 

keys and entity-references are not fully resolved. It can 

therefore be seen as a relation-centric way of interacting 

with the database – just that one is not talking SQL, but 

XML. In contrast, Tech-XML defines requests which are 

based on a core entity upon which all provided filter 

parameters shall be applied. In addition to Tech-CDE the 

Tech-XML requests also resolve the entities which are 

referenced form the core entity. A response to a query 

request therefore not only contains the core entity’s data, but 

also the resolved attributes of any referenced entity. As a 

result from this analysis we chose to focus on Tech-XML 

only, at least for the first iteration, since we believed Tech-

CDE being a virtual subset of Tech-XML – at least from the 

perspective of what is required to talk to the underlying 

database. A significant result of our analysis was – as we 

hoped to confirm in the first place – that the 

request/response definitions all follow a common structure. 

This was the key prerequisite for designing the code 

generator. For the first iteration we made an important 

assumption: our aim was to only query or manipulate the 

core table that a specific Tech-XML is directed to. Although 

foreseen by the standard, we did not intend to resolve 

foreign key relations and thus we treated Tech-XML like 

Tech-CDE. We considered foreign key resolution as just an 

implementation effort. 

Our code generator produces Java code: a server application 

which performs the XML request handling and the mapping 

of XML to SQL and vice versa, and a Java client library 

which provides an interface for client applications. The 

client library encapsulates the XML-messaging and leaves 

transparent that the client is actually talking to a remote 

database via the network. We will describe the four major 

phases of code generation: 

Phase 1: Generate Model Classes 

In this phase, the code generator parses the XSD files and 

generates Java POJO (plain old java objects) classes which 

correspond to the type hierarchy imposed by the XSD 

definitions. These classes do not implement any business 

logic and act as model objects for marshalling and un-

marshalling XML or SQL result sets. For this task, we 

utilized the JAXB framework (refer to JAXB in the 

references section) which is an implementation of the Java 

API for XML Binding. The framework was able to create 

respective Java POJO code from the XSD files provided by 

MIMOSA. The generated model classes will both be 

utilized by the client library as well as the server application 

and thus act as common interface between the two parties. 

For example, from the XSD type asset_healthTYPE 

the class as depicted in Figure 7 will be generated (getters 

and setters have been omitted in the figure). 

Phase 2: Generate Client and Server Interfaces 

The interface that the client library exposes is not explicitly 

defined by the provided MIMOSA artifacts. We therefore 

chose to infer suitable method names from the request types 

as provided in the Tech-XML XSDs. For example, using the 

inherent substructure of the request element mim_6002, the 

interface method for this request type can be generated as 

follows: 

public Mim6002Ack query(Mim6002Req query); 

Phase 3: Generate Client/Server XML Transmission Code 

In this phase the generator “implements” the client interface 

methods by generating code that serializes the given request 

object to an XML string, wraps the string into an HTTP 

POST request and opens the server URL. At this stage, the 

client instance can already perform request validation based 

on the multiplicity and optionality information declared in 

the XSD. 

 

Figure 7. Example Generated POJO Class (getters and 

setters have been omitted for clarity) 
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For the server side, the generator creates code which 

receives the incoming HTTP POST request from a HTTP 

server socket, inspects the XML prefix in order to 

instantiate the correct XML parsing method (specific to the 

Tech-XML request type) for obtaining an object tree 

corresponding to the request. At this stage, the generator 

also produces code which serializes the object tree of the 

response into XML and streaming it to the output stream of 

the incoming request.  

Phase 4: Generate Database Queries 

The request object tree is inspected for the purpose of 

generating an SQL SELECT, INSERT or UPDATE 

statement depending on the content of the request. The type 

information of the objects themselves as well as Java 

annotations provided by JAXB provided enough 

information, to create syntactically and semantically valid 

SQL. For SELECT-type queries, the code generator 

produced code which inspects the result set from the 

database and – again, by utilizing the POJOs type and Meta 

information – which is able to translate the result set into a 

Tech-XML response object tree. As already explained in 

phase 3, this response object tree can then be serialized to 

XML and pushed to the requesting client. 

4.5. Discussion of Results 

The generation of POJOs was done by hooking up a single 

file into the JAXB framework. All dependent types and files 

were well referenced. We noticed however that the resulting 

class naming is somewhat odd – as already seen in Figure 7 

all POJOs have a *TYPE postfix, which is introduced by 

JAXB. We found this issue to be of cosmetic nature only. 

The generation of interface method names seemed straight 

forward at first. The multitude of method names however 

made the client interface rather confusing as the request 

number (e.g., 6002) has to be mapped mentally to what the 

request is actually doing (e.g., asset health).  

Compared to Tech-CDE it is not clear how the current 

catalog of Tech-XML requests was motivated. During the 

utilization of our generated application we were missing 

several request types for accessing specific areas of the 

OSA-EAI database model, such as the steps of solution 

packages. We were able to work around the missing 

requests by adding to the catalog following the already 

existing philosophy. We do not see this as a significant 

drawback of the OSA-EAI standard as the requests which 

are missing in Tech-XML can be found in Tech-CDE. It is 

however a strong indication that a productive application 

should implement both Tech-XML and Tech-CDE requests. 

We encourage the standardization committee to include the 

possibility of defining customer Tech-XML requests on the 

basis of standardized XSD request specifications. 

Tech-XML requests provide support for equality filtering 

(‘=’) on the attributes on an entity. It is also possible to get 

the N latest (chronologically) instances of an entity, which 

is necessary for PHM applications, e.g., the latest asset 

health assessment of a specific asset. What’s missing is 

support for filtering beyond attribute equality. We were 

missing the general possibility for range filtering (left-, 

right- and left-right-bounded) on numeric or date attributes 

(range filtering is possible for specific date attributes), and 

filtering by regular expressions on character attributes, or at 

least wildcards. The latter is a matter of interpreting the 

already existing search criteria on the server-server side, and 

does not require structural modification, but explicit 

conventions of how to populate the search criteria. The 

former can be realized by enhancing Tech-XML XSDs to 

include optional left and right bounding attributes for each 

Tech-XML search criteria. A negative filter (“get all entities 

which do not match”) is missing, but can be integrated 

analogously. 

We were also missing the possibility for grouping, or 

ranking, and aggregation within a single query. Our 

application requires retrieving the latest health and RUL for 

each asset and both information types are stored as time 

series per asset in respective tables. It is possible to write a 

single SQL query on table asset_health which returns 

the latest health grade per asset. In Tech-XML this is 

currently not possible, and one has to make one Tech-XML 

query per asset. Again, a solution to this issue is the 

enhancement of the Tech-XML query XML to include 

indicators on a search attribute, whether the result should be 

grouped or ranked by this attribute, and which aggregation 

functions should be used on the result columns. 

The “core” table of a Tech-XML request, i.e., the entry 

point into the data, is not highlighted in the request 

specification and cannot be uniquely inferred from the list of 

parameters. However, for the majority of requests, the first 

entity of the response specification corresponds to the core 

table that shall be queried. Here, we suggest a more explicit 

way of specifying the request parameters, i.e., which entity 

should actually be queried. 

For SQL code generation, the mapping between entity 

names to table names as well as entity attribute names to 

column names is not 1:1. For our generator we exploited  

the fact that both XML elements and database elements 

followed a specific naming schema that could be used for a 

bidirectional mapping – however, the naming schema is not 

documented, thus, subject to be changed (accidentally). We 

suggest to standardize a bidirectional mapping function 

(e.g., the current pattern) for entity/table and 

attribute/column names. We found that for the sake of 

request validation the consideration of the CRIS CREATE 

statements was needed for synchronizing multiplicity 

information from the XSD with primary and foreign key 

definitions on the database level.  
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4.6. Summary & Outlook 

Assuming that any graphical user interface will take the role 

of a client application we have shown that a fully functional 

OSA-EAI information system for Tech-XML requests can 

be generated from the provided MIMOSA documentation as 

is. The compiled system is able to run the entire request-

response cycle, starting from the assembly of the request on 

the client side, transmitting the request, issuing SQL against 

the CRIS database and sending back the results. Our 

implementation does not yet resolve foreign key relations 

but provides the foreign keys themselves for later referral. 

Since Tech-XML provides a different focus than Tech-CDE 

we conclude that a productive application must provide both 

Tech-XML and Tech-CDE interfaces to provide access to 

the full information content. Tech-CDE provides CRUD 

access for every entity and can therefore be considered as 

the “Swiss Army Knife” for OSA-EAI interaction. Tech-

XML provides convenience functions and the ability to 

resolve dependent entities in a single request. In further 

work we will extend our code generator to Tech-CDE 

request types. Given the more complex nature of Tech-

XML, we do not expect any significant issues for this 

endeavor. 

5. CONCLUSION 

We presented our experience from the realization of our 

next generation data management backbone for a simulation 

framework for PHM systems in the aerospace domain. For 

the airborne segment OSA-CBM-based communication was 

chosen. From previous work, where we evaluated XML-

based transmission, we were motivated to use binary 

transmission and defined a custom protocol. Recognizing 

the drawbacks of our approach we switched to the new 

available binary transmission standard of OSA-CBM 3.3.1. 

We have shown that the standard can be implemented in the 

C programming language under the restrictions of airborne 

software development. Furthermore, for this special 

environment, we have suggested a layered approach which 

provides simple creation as well as manipulation functions 

for OSA-CBM data, which hide the details of the underlying 

implementation. The ratio of transmitted event size to usable 

payload is about 25% of the XML-based approach 

(overhead for HTTP and TCP not included).  

The ground-based part of our data management backbone is 

centered on an information system, which we call the CBM 

data warehouse. It is designed compatible to the OSA-EAI 

reference architecture. Confirming the feasibility of OSA-

EAI by a prototype implementation of a stripped-down 

instance of OSA-EAI in previous work we describe here our 

experience from realizing a Java code generator for a fully 

functional OSA-EAI client-server application system. We 

could successfully show that the MIMOSA-provided 

artifacts provide enough suitable information to generate 

executable code in an automatic way. We further found that 

Tech-CDE and Tech-XML should be both implemented in a 

productive information as both request categories cover 

different aspects (however, they also have common areas). 

During the implementation of our code generator we found 

several issues regarding object naming and object mapping 

which we do not consider critical. We found that the request 

specification lacks comprehensive support for extended 

filtering and aggregation when assembling a request. By 

providing such support in a standardized way the response 

times and the network traffic could be reduced significantly. 
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ABSTRACT 

This paper presents the development of a diagnostic method 

which uses the measurement of motor currents in order to 

detect defects in electromechanical systems. It focusses on 

two main topics: the acquisition of experimental data, and 

the development of the diagnostic method. The data 

acquisition was crucial for the successful development of a 

dedicated signal analysis method. For this purpose, a test rig 

for generating experimental training data was created. The 

rig provides the ability to simulate a wide range of defects 

experimentally. Different types of artificial defects, such as 

bearing damage or misalignments, were used; these are 

described in detail in the second section of the paper. The 

experimental data was obtained under varying operational 

conditions. Using all possible settings of operational 

parameters for data generation would mean excessive 

experimental time and effort. Therefore, a special approach 

using the theory of “Design of Experiments” was applied. 

By using a fractional factorial design based on orthogonal 

arrays, the number of experiments could be reduced 

significantly. Details of this approach are given in the third 

section. The main ideas of the classification algorithm, 

including some of the results, are summarized in the fourth 

section. A special method using a combination of Principal 

Component Analysis and Linear Discriminant Analysis was 

designed for the correct detection of damage or 

misalignments. With this method, a successful classification 

of the systems’ health state could be obtained.  

1. INTRODUCTION 

Electric motors are usually inexpensive in comparison with 

the equipment of the powered process (e.g. a conveying 

system, a machine tool, or an assembly line). This is 

especially true for small engines with a power consumption 

below 1 kW. The use of additional sensors for such a motor 

increases the price of the component significantly. 

Therefore, such an approach to defect detection seems 

practically unfeasible in many cases. That is why 

monitoring the health conditions of electric motors is 

uncommon for industrial applications. However, in the case 

of a motor standstill, a stop of the entire process, for 

example a production line, may be required. In such a case, 

the monetary cost is usually significant. The problem may 

be prevented by collecting information about the motor 

condition and the dependent process from the motor’s 

internal physical quantities. Much research has been done 

on the development of methods for condition monitoring 

using motor currents. Stack, Habetler, and Harley (2004), 

for example, focus on categorizing bearing faults as either 

single-point defects or generalized roughness; they describe 

the detection fault signatures by investigating machine 

vibration and shaft current. Widodo, Yang, Gu, and Choi 

(2009) apply discrete wavelet transform to transient current 

signals, followed by a component analysis as well as a 

support-vector-machine-based classification. Tran, 

AlThobiani, Ball, and Choi (2013) use a decomposition of 

current signals via a Fourier-Bessel expansion and classify 

the features with a special class of neural networks. Zhen, 

Wang, Gu, and Ball (2013) present the application of so-

called “dynamic time warping”, a special time-domain-

based method, to motor current signals to detect common 

faults. In all these contributions, application-specific 

features are considered. However, in contrast to previous 

research, a generic approach to feature extraction using 

phasor description of motor current signals is pursued in the 

present paper (see Section 4). 

Christian Lessmeier et al. This is an open-access article distributed under 
the terms of the Creative Commons Attribution 3.0 United States 

License, which permits unrestricted use, distribution, and reproduction in 

any medium, provided the original author and source are credited. 
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For synchronous motors, the electric phase currents are 

measured to enable correct control of the motor operation. 

Hence, all currents are already known; they could thus be 

used to determine the current motor condition and its trend 

over time, offering the possibility of detecting defects with 

minimum resources by reusing these currents and without 

requiring additional sensors. The proposed method uses the 

motor’s phase currents for the detection of faults and 

damaged components, such as e.g. rolling bearings in the 

electric motor itself or in the powered equipment.  

To develop this diagnostic method, experimental data was 

required. The generation of suitable experimental data is a 

complex task, especially when the investigation focusses not 

on one specific type of damage, but rather on different types 

of defects in different components, as well as on 

combinations of such defects. The long-term aim is to 

integrate the proposed method into drive systems by using 

existing current measurements within frequency inverters in 

industrial applications. Therefore, systematically generated 

data of relevant damage and operational conditions must be 

available to develop the required diagnostic methods. 

This paper will describe the necessary test setup, the design 

of experiments, and the development of the algorithms to 

detect defects in commonly used machine components, such 

as rolling bearings and gears. It will focus especially on the 

creation of a sophisticated database, which is essential for 

the development of the diagnostic method.  

2. DEFECT SIMULATION VIA TEST SETUP 

To generate experimental data, a specific test rig was 

developed and constructed. The test rig is a modular system 

to ensure flexible use of different artificial defects (or 

inaccuracies). A defect is a “non-fulfilment of a requirement 

related to an intended or specified use” (DIN EN ISO 9000, 

2005). In this paper, defects are divided into two groups: 

damage and faults. Damage is constituted by defects which 

arise in a technical system after a period of time. They 

appear as a change in the shape of one or more components, 

e.g. fractures or pitting in gear wheels or bearings. The term 

fault is used for any defect that exists in a technical system 

from the start, such as assembly defects, as well as for any 

reversible defect which is forcibly introduced by the 

operational conditions, such as shaft deflection under high 

loads.  

The basic components of the test rig are the drive motor, a 

torque-measuring shaft, the test modules, and a load motor 

(see Figure 1). Different types of faults and damage could 

be generated using the test modules. An implementation of 

several defects in combination was also possible. The 

detection of defects was carried out using measured motor 

current signals from the test data.  

 
Figure 1. Modular test rig for generation of experimental 

data: drive motor (1), torque-measuring shaft (2), rolling 

bearing module (3), gear module (4), flywheel (5), load 

motor (6) 

 

2.1. Test Rig 

As described above, the test rig consists of different 

modules. The motor is a 425 W Permanent Magnet 

Synchronous Motor (PMSM) and is operated by an inverter 

with a switching frequency of 16 kHz. This inverter has a 

sensorless closed-loop structure. The motor phase currents 

were measured by a current transducer of the type MCTS 

60/ IT60-S with a conversion ratio of 1:600. The signals are 

filtered by a 12.5 kHz low-pass filter and converted from an 

analogue to a digital signal with a sampling rate of 100 kHz. 

These devices were used for proof-of-concept instead of the 

inverter’s internal ammeters because of their higher 

sampling rate and accuracy. 

In industry, power inverters with pulse-width modulation 

are commonly used for driving synchronous motors. 

Therefore, all experiments described in this paper were 

performed using an industrial power inverter, even though 

the motor current signals show significant noise because of 

the disturbances from the pulse-width modulation. In 

previous experiments, better defect detection results were 

obtained with an alternatively used sine-wave generator 

(Lessmeier, Piantsop Mbo’o, Coenen, Zimmer, & Hameyer, 

2012). Nevertheless, it was determined that it is possible to 

detect the defects despite noisy signals; thus, the noisy 

signals were chosen because of the prevalence of power 

inverters in industry. This practice-oriented selection 

ensures that an industrial application of the method 

developed here will be as easy as possible.  

To record the operational conditions and to have the 

possibility of supplementing the diagnosis with additional 

information, the following parameters were measured: the 

radial force on the rolling bearings, load torque, rotational 

speed, surface acceleration of the housing, and the 

temperatures of both oil and housing.  

The torque-measuring shaft has a nominal torque of 2 Nm 

and an accuracy of ±0.1 % of the nominal torque. It was 

used to measure and to record the torque synchronously to 

the motor currents. 

The rolling bearing module provides the possibility of using 

a specifically prepared test bearing under continuously 

adjustable variable radial loads and shaft tilting. The 
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assembly group consists of an outer and an inner housing. 

Only the inner housing with additional components is 

shown in Figure 2. The test bearing (1) is installed in a 

spherical bearing (2) to allow tilting of the outer ring in 

relation to the shaft. This tilting is forced by tilted discs (3) 

and pressure rings (4) on the outer ring of the test bearing. 

The self-aligning ball bearings (5) compensate force and 

deflection of the shaft by diverting it into the outer housing. 

The radial force on the test bearing is generated by 

tightening a screw between the outer housing and the thread 

(6). This force is measured and recorded by a load cell. The 

housing is sealed by radial shaft seals (7) and filled with oil 

through an inlet (8). 

 
Figure 2. Shaft and inner housing of the rolling bearing 

module 

 

In total, the following experimental conditions were 

implemented to generate faults in the rolling bearing test 

module under different conditions: 

1. Tilting of the shafts (vertical or horizontal) to 0.1°, 0.2°, 

0.3° or 0.5°; 

2. Different types of mechanical damage in the rolling 

bearings; 

3. Different rolling bearing types (6203 – ball bearing, 

N203 and NU203 – cylindrical roller bearings); and 

4. Different lubricants and lubricant filling levels.  

The gear module (Figure 3) consists primarily of a set of 

gear wheels (1) with a gear transmission ratio i = 1, each of 

them on a shaft (3) in a housing (4). The gear wheels can be 

changed for damaged ones, and can be tilted by changing 

the spacer ring (2) to an angled one. With different spacer 

rings, the housing of the second shaft can be tilted 

horizontally or vertically.  

The shaft offset because of gear and tilting is compensated 

by moving the subsequent modules of the powertrain. The 

positions are held by fixing and adjusting elements. So a 

change between different testing setups is easily possible 

without losing the alignment of the powertrain. 

 

Figure 3. Sectional drawing of the gear module 

 

The following experimental conditions were implemented to 

generate faults in the gear module: 

1. Tilting of the shafts and gear wheels due to loads by 

external forces as well as manufacturing inaccuracies 

(vertical [y-axis] or horizontal [z-axis]) to 0.5°.  

2. Different mechanical damage (e.g. wear, pitting, 

fracture). 

3. Different lubricants and lubricant filling levels. 

The flywheel and the load machine simulate the inertia and 

the load of the driven equipment, respectively. The load 

motor is a PMSM with a nominal torque of 6 Nm (Power of 

1.7 kW).  

Moreover, there are further test modules available for the 

test rig, such as a gearbox with planetary gears or an 

electromagnetic brake. These modules allow for follow-up 

investigations, which are, however, not in the focus of the 

present paper. 

2.2. Defects: Faults and Damage  

Before designing the test rig, the relevant defects were 

identified by a failure mode and effects analysis (FMEA) of 

a real system. Such a system may, for example, consist of a 

drum motor (Enge-Rosenblatt, Bayer, & Schnüttgen, 2012), 

and a conveyor belt. The failures identified as most relevant, 

which were therefore used for the experiments, are types of 

damage to bearings and gear wheels, as well as 

misalignments of the shafts due to loads or manufacturing 

inaccuracies. 

To reduce the number of experiments, the defects were 

selected based on the resulting values from the FMEA. 

These values indicate the defect importance in combination 

with a factor related to the chance of detection. The 

following defects were selected: 
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Rolling bearing module: 

- Tilting around the horizontal axis (y-axis)  

- Damage in cylindrical roller bearing N203 

Gear module: 

- Tilting around the horizontal and vertical axis 

Based on these evaluations, three levels were defined for 

each tilt defect (see Table 1).  

 

Table 1. Tilt levels of bearings and gear wheels 

Tilting of 

bearing 

Tilting of gear wheel 

[tilting axis] 

Name Angle Name Angle 

AN0 0 WF0 0 

AN2 0.2° WF1 [z-axis] 0.5° 

AN5 0.5° WF2 [y-axis] 0.5° 

 

Special artificial damage preparation is particularly 

necessary for the bearings in order to obtain reproducible 

test conditions. The types of damage were selected based on 

the completed FMEA while respecting the technical 

possibilities of their manufacturing. 

For the experiments, four cylindrical roller bearings with 

different levels of damage, which represent pitting, were 

selected (Figure 4). The damage was limited to the 

cylindrical roller bearings, with severe damage at the outer 

ring. These simplifications were chosen, because a better 

possibility of detection and therefore an easier development 

of the classification method was expected. One bearing 

without damage was used as a reference (numbered LS0). 

The damage type denoted by LS1 was manufactured 

manually using an electric engraver and is 2 mm long in the 

rolling direction over the entire width of the outer raceway. 

The damage types denoted by LS2 and LS3 were 

manufactured using a wire-cutting electrical discharge 

machine. LS2 is a cylindrical groove (radius = 8 mm) and a 

depth of 0.2 mm at the centre. The last type of damage is a 

repetition of LS2 at irregular intervals, covering 120° 

degrees of the outer ring. These damaged bearings were 

used in the rolling bearing module in the high-load zone of 

the outer ring.  

The damage introduced is based on investigations of 

damaged bearings from industrial applications. In particular, 

damage types LS1 and LS2 have a similar shape and size as 

the ordinary pitting of investigated bearings. Damage type 

LS3 is a severe damage type similar to the advanced 

damage caused by high numbers of cycles after the start of 

pitting. Because of this geometric similarity between the 

artificial defects and real bearing defects, it is assumed that 

a sufficient equivalence has been achieved in emulating real 

damage.  

 

Name Picture  

LS0 

 

LS1 

 

LS2 

 

LS3 

 
 

Figure 4. Outer rings of the prepared cylindrical roller 

bearings 

 

For future experiments, more damage types in bearings have 

been generated, including bearings from an accelerated 

lifetime test. These damage types are equivalent to damaged 

bearings from industrial applications. However, the artificial 

damage types were used for developing the diagnostic 

methods because they could be generated easily and 

quickly. In future experiments, the corresponding impact on 

the physical quantities of artificial and real damage has to be 

proven.  

2.3. Operational Parameters 

The test rig can be operated under different operational 

conditions (described by corresponding parameters of the 

test rig e.g. speed or load torque). To develop a detection 

method which is robust in the face of different operational 

conditions, it is also necessary to vary these parameters.  

The main operational parameters are the rotational speed of 

the drive system, the load torque, and the radial force on the 

test roller bearing. To ensure constant boundary conditions 

and comparability of the experiments, three fixed levels 

were defined for each parameter (Table 2). All three 

parameters were kept constant for the measurement time of 

each data set.  

 

Table 2. Levels of operational parameters 

Rotational speed Load torque Radial force 

Name [rpm] Name [Nm] Name [N] 

N04 400 M01 0.1 F04 400 

N09 900 M04 0.4 F10 1000 

N15 1500 M07 0.7 F20 2000 
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Another parameter is the temperature, which was kept 

constant at roughly 45°C during all experiments after 

warming the test rig before every measurement. 

3. DESIGN OF EXPERIMENTS 

The test rig was used to generate data experimentally for the 

purpose of distinguishing several defect phenomena from 

healthy system behaviour. For this purpose, an algorithm 

was developed and tested as described in Section 4. This 

algorithm must be robust and able to decide correctly under 

different operational situations. Hence, such an algorithm 

must be developed based on a broad data set, considering all 

defect phenomena in question as well as a variety of 

operational situations.  

In a real system, each of the defect phenomena (see Section 

2.2) and each of the operational parameters (see Section 2.3) 

can change any number of times. Each defect phenomenon 

would have to be investigated under different operational 

conditions in order to determine whether such a situation 

could be detected using only signals from electric phase 

currents. To consider the problem to its full extent, multiple 

measurements would have to be performed for all defect 

phenomena, in combination with all possibly occurring 

operational conditions. This would lead to an enormous 

number of experiments. A way around this dilemma is 

described in this section. It is based on completing a 

comparatively small number of experiments while still 

gathering all relevant information. 

From the mathematical point of view, two groups of input 

parameters must be distinguished when simulating different 

situations using a test setup. First, there is the group of 

defects. The main attribute of this group is that there is 

exactly one level of every input parameter which 

corresponds to a functioning system, while all other levels 

of the input parameters belong to a damaged system. This 

group of input parameters describes the health conditions of 

a system. Secondly, there are the operational parameters. 

These parameters can vary between different levels during 

the operation of a system without impacting the health 

conditions of the system.  

In Section 2.2, the most important levels of defect 

phenomena are described. This leads to a minimum of 4 

levels of pitting in bearings, at least 3 levels of shaft 

misalignment, and 3 levels of gear wheel misalignment. 

Taking only these levels into account for investigation, it 

results in 36 possible combinations. In Section 2.3, some 

carefully selected levels of operational parameters are 

defined, leading to 3 different levels for each of the 

parameters revolution speed, load torque, and radial force 

on the main bearing. This gives additional 27 combinations. 

In total, 36 * 27 = 972 different experiments would have to 

be performed to examine all possible combinations. Hence, 

despite taking into account only the most important levels of 

input parameters, the number of possible combinations is 

still too high. 

In order to significantly reduce the amount of work 

necessary for the experiments, the theory of Design of 

Experiments (DoE) was applied. This theory offers a broad 

range of approaches for carrying out experiments in a 

scientifically well-founded way (Box, Hunter, & Hunter, 

2005), (Dean & Voss, 2008), (Wu & Hamada, 2009). In this 

context, several assumptions are made concerning particular 

linear and non-linear relationships between the input 

variables and the (usually just one) output variable. Using 

such assumptions, it is possible to deduce the complete 

results logically from a few – well-chosen – experiments, 

with a very high degree of confidence. Often, a so-called 

fractional factorial design based on orthogonal arrays is 

used for this purpose.  

An example of such an approach is shown in Figure 5. It is 

assumed that there are 3 input parameters (x1, x2, x3). Each 

parameter can take 2 different values, one lower value 

(denoted by –1) and one higher value (denoted by +1). The 

3D representation on the left side of Figure 5 shows 2
3
 = 8 

different combinations, represented by the 8 corners of the 

cube. All of these combinations have to be investigated to 

generate a complete statement about the parameter’s 

influence on an output variable. But using an orthogonal 

array OA (4,2
3
) as shown on the right side of Figure 5, the 

effort can be reduced to 4 experiments. These experiments 

are represented by the 4 rows of the matrix. The disposition 

in 3D space can be seen on the left side, shown by the 4 dots 

at the cube’s corners. 

 

                   
Figure 5. Fractional factorial experiment schema for 3 

parameters: representation in 3D space (left), orthogonal 

array OA (4,2
3
) of parameter values (right) 

 

In the context of generating an appropriate experimental 

data set using the test rig, the DoE approach is used to select 

a well-suited set of combinations of defect phenomena and 

operational parameters. This procedure was applied in two 

separate steps. First, an orthogonal array for all possible 

combinations of defect phenomena was determined. 

Because the levels to be investigated were assumed to be 4 

by 3 by 3, the OA (12,4
1
3

2
) was found to be suitable, 
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resulting in 12 combinations of defect phenomena. The OA 

(12,4
1
3

2
) is shown in Figure 6. It consists of the lines 1 to 12 

of the left array.  

In a second step, an orthogonal array for all possible 

combinations of operational parameters was determined. In 

this case, each parameter was assumed to have 3 different 

levels. Hence, the OA (9,3
3
) was found to be suitable, 

resulting in 9 combinations of operational parameters. The 

OA (9,3
3
) is shown in Figure 6. It consists of the lines 1 to 9 

of the right array. These two steps lead initially to a total of 

108 necessary experiments. 

 

               

Figure 6. Results of Design of Experiments application: 

orthogonal array OA (12,4
1
3

2
) for defect phenomena (left), 

orthogonal array OA (9,3
3
) for operational conditions (right) 

 

The possibility of using only one DoE design for all 6 input 

parameters was also considered, but quickly rejected. Using 

the same numbers of levels introduced above, this would 

have led to an orthogonal array OA (12,4
1
3

5
). A number of 

12 experiments did not seem to be an appropriate 

investigation for such complex physical interrelations as 

those in the present case. 

From the mathematical point of view, the two DoE designs 

shown in Figure 6 were found to be suitable. However, for a 

good understanding of the physical interrelations, there are 

some slight disadvantages to these two designs. All 

phenomena appear solely in combination; thus, there is no 

phenomenon for which its influence can be investigated 

singly. Hence, for a better understanding of the influence of 

varying a single phenomenon, the idea of including 3 

additional experiments for the 3 defects and 3 additional 

experiments for the 3 operational parameters arose. Such 

additional experiments have no influence on the results of 

the two suitable DoE designs, as DoE theory was only used 

for decision support while planning the experiments.  

As additional experiments, the edges of the parameter space 

were used, meaning the maximum parameter level in each 

case. The 3 additional experiments for defect phenomena 

are shown in the last 3 rows (numbers 13 to 15) of the left 

table in Figure 6. The last 3 rows of the right table in Figure 

6 (numbers 10 to 12) show the additional experiments for 

operational parameters. Thus, 15 * 12 = 180 experiments 

were finally found to be necessary in total as a result of a 

DoE-based selection. 

All 180 experiments were carried out repeatedly, leading to 

at least 5 data sets of phase currents for each experiment. 

Based on these measurement results, a well-organized basis 

for development of an appropriate classification method 

could be established. 

4. CLASSIFICATION ALGORITHM AND RESULTS 

The goal of the research project was to find an algorithm 

which is able to distinguish between different defects (or 

health states) and operational conditions solely from 

measured electrical currents. For this purpose, two of the 

three phase currents of the synchronous motor were 

evaluated. For the classification approaches presented, all 

states and conditions found by DoE as well as the 

measurements from the test setup mentioned above were 

used. 

Since the motor investigated was a synchronous machine, 

the phase currents are directly related to the angle of 

rotation of the device. Therefore, it is useful to relate the 

currents measured to this angle as well. Two of the currents 

behave as a rotating phasor with an elliptical shape of the 

amplitude trace, due to the 120° relative phase shift. Figure 

7 shows the ideal trace as a dotted line. However, this trace 

will vary in real applications with the condition of the 

system and even with every cycle of rotation. During each 

experiment, a number of cycles were measured for each 

state and condition and each cycle was added to the phasor 

plot. Afterwards, the continuous angle of rotation   was 

divided into uniformly distributed sections in the range 
[    ] leading to intervals [       ] with a certain number 

of measurement samples in each interval. These sample 

groups are suitable for statistical analysis. As a result, a 

modified phasor is obtained which has only one data point 

within each interval. A combination of statistical values can 

be used to obtain an artificial phasor, as shown in Figure 7 

(solid line). This is simply derived using the mean value of 

all single phasors within one angular section. The amplitude 

of such a phasor with respect to the intervals can be used as 

a feature for classification purposes. This means n sections 

within [    ] yield n features which characterize the phasor 

and its corresponding measurement. 
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Figure 7. Ideal rotating phasor (dotted line) and artificial 

phasor determined using the mean value of original phasors 

within each section (solid line). 

 

The complete experiment evaluates different health states 

and operational conditions where each state is measured 

multiple times. This leads to a large number of feature sets, 

as each measurement corresponds to one set of features. 

Each set can be arranged in a feature vector. The number of 

features, i.e. the length of such a vector, is typically too 

large for complete classification or visualisation and may 

contain redundant information. Therefore, two approaches 

were applied to reduce the number of features, which are 

described in detail by Bayer, Bator, Enge-Rosenblatt, 

Mönks, Dicks, and Lohweg (2013), or by Paschke, Bayer, 

Bator, Mönks, Dicks, Enge-Rosenblatt, and Lohweg (2013).  

Principal Component Analysis (PCA), as discussed by 

Dunteman (1989) or Jolliffe (2002), and Linear 

Discriminant Analysis (LDA), as discussed by Mardia, 

Kent, & Bibby (1979) or Duda, Hart, & Stork (2000), were 

used to find structure in the data. Both methods lead to a 

reduced mathematical basis, which can be used to represent 

the original feature vectors by a linear combination. The 

related coefficients form a new and significantly reduced 

feature set, which can then be used for classification. The 

methods were examined separately to show different aspects 

of their usability. PCA turned out to be suitable for the 

recognition of unusual states throughout the entire test 

system. 

The PCA may be used to find any similarities in the data. 

The idea is to represent each state, i.e. the respective feature 

vector, by a linear combination of typical states. These 

states are equivalent to the first few principal component 

vectors provided by performing a PCA of all available 

measurement data. The vectors then span a new sub-space, 

which the feature vectors are projected into. The coordinates 

of projected feature vectors form the final, reduced feature 

set.  

If the conditions of the system are similar, data points will 

accumulate in the projected feature space and build clusters. 

Different health states as well as operating states will form 

independent clusters. Figure 8 shows the clustering for a 

particular health state class under different operating 

conditions, such as rotational speed or load. There were 12 

operating states in total, of which at least 8 can be seen in 

the figure. The remaining 4 states overlap with existing 

clusters, as only two axes of the feature space were used for 

visualisation. The results indicate that, in general, different 

states can be distinguished using the PCA approach. The 

variation within each cluster is sufficiently small, which is 

mandatory for reproducibility. 

 
Figure 8. Clustering of operational condition states within a 

health state class after performing PCA: The features 1 and 

2 are the first two of the reduced feature set. They already 

allow for the separation of at least 8 of 12 states measured in 

total. 

 

However, the clustering of operational states prevents a 

good classification of actual health states. Each health state 

would consist of sub-clusters produced by different 

operating conditions; hence, a health state cannot be 

described by a single cluster function, e.g. multivariate 

normal distribution. In reality, only health states as actual 

“classes” to be distinguished from each other are relevant 

here. The LDA provides a method of producing coherent 

health state clusters in the feature space independently of 

operational conditions. However, sample measurements 

from each class are required for LDA, which is usually a 

problem in practical applications. Since the experimental 

setup used here allows for damage and fault emulation, 

different health states are known from the measurement 

procedure. LDA offers a reduced mathematical basis for 

data representation, which ideally separates known and pre-

defined classes in the present application. For different 

health states, the results are shown in Figure 9.  
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Figure 9. Separation of health state classes after LDA: The 

features 1 and 2 are the first two of the reduced feature set. 

The notations of the health states are declared in Table 1 and 

Figure 4. 

 

Here, the clusters are independent of operation conditions. 

The separation of classes is not ideal for two reasons. First, 

at least 5 features are necessary to separate the 6 classes 

safely, but only two of the features, i.e. two axes, are used 

for visualisation. Second, some states may not be different 

enough for reliable classification. The LDA approach works 

quite well, but requires comprehensive knowledge about the 

system. In general, the results show that distinguishing 

health states would be possible. The classification itself is 

typically carried out using a fuzzy pattern approach. For 

example, the clusters may be described by particular 

multivariate normal distribution functions, which yield 

fuzzy membership values with respect to all known states. 

From this result, the most likely class membership can be 

determined for each measured state.  

In many practical cases, there is no reference data for pre-

defined health states. Even the consideration of operating 

conditions might be too costly in terms of effort. Therefore, 

the classification was restricted to the recognition of a 

previously trained, “good” state, regardless of operating 

conditions. The proposed method uses self-learning 

techniques and is based on PCA. The goal is to 

automatically find system states that are unusual and may 

represent arbitrary failures or defects. The challenge is to 

avoid false alarms caused by varying operating conditions. 

It must be assumed that the system is in a healthy condition 

during the learning phase and that all relevant operating 

conditions have appeared in the past. From the data 

gathered, one can construct a reduced mathematical basis 

using PCA. This basis spans a subspace that contains 

approximately all the measured data from the past. Any data 

measured in the future that lies outside this subspace 

represents an unknown state. This new state is then 

generated either by new operating conditions or by some 

defect or failure of the system. The geometric distance of a 

measured state to the known subspace was regarded as an 

error indicator. In Figure 10, the result obtained from the 

experimental setup is shown. The reference state 

LS0_AN0_WF0 has no artificial defects, and represents the 

system in good condition. Regardless of the operating 

conditions, the state is identified correctly. All other states 

shown are characterized by introduced defects, whereas the 

set of operating conditions was the same as for the reference 

state. The dashed line is determined by the variance of the 

error indicator produced using the reference state. It 

separates healthy states from defective states. This 

classification method works quite well and is mostly suited 

as an additional indication for maintenance service. 

However, it may not expose the actual defect or source of 

deviation. 

 
Figure 10. Indicator for unknown states of the system: 

LS0_AN0_WF0 is the reference health state, which also 

contains different operating conditions. 

  

To verify the robustness of the algorithms developed here, 

signals gathered directly from the frequency inverter were 

also evaluated. Typically, these signals exhibit more noise 

and the sample rate is reduced. However, the data analysis 

approach also proved to be effective under these 

circumstances. This provides the basis for a possible 

integration of the algorithms into the motor control or the 

automation system.  

5. CONCLUSION 

The paper presents the main steps in the development of a 

diagnostic algorithm for defect detection in technical 

systems driven by electric motors. For this purpose, only 

measurement signals from the motor’s electric currents are 

used. Additional sensors were applied to the system in order 

to obtain the process parameters, but were not used for 

detection of defects. Following this idea, the complete 

system of defect detection becomes a complex one in a 
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mathematical sense. However, such a system can be realised 

at low expense because of the absence of additional sensors. 

Often, the mathematical algorithms can be executed on the 

existent control unit of the motor. 

This paper focusses on three steps which are necessary for a 

successful preparation of such a complex algorithm for 

signal analysis. Firstly, a sufficient basis of measurement 

data is needed. This data was obtained using a test setup 

designed for this special purpose. The capabilities of this 

setup in mimicking particular defects are described in detail 

in the paper. Secondly, all possible operating conditions of 

such a motor have to be considered. This leads to enormous 

effort in order to measure all possible combinations of 

defects and operating conditions. Hence, specific methods 

for reducing this effort without risking loss of information 

have to be employed. Finally, a complex combination of 

different signal analysis methods has to be applied. Two of 

these primary methods are mentioned in the paper. 

Particular results of signal analysis and classification are 

shown. In doing so, the paper demonstrates that the method 

developed here works correctly under a broad range of 

circumstances. 

The present work focuses on synchronous motors. An 

expansion to other types of electric motors is part of planned 

future research. Furthermore, a combination of sensor-based 

information about the industrial process and the method 

discussed here, which is based on measurement of electric 

currents, is also worth being investigated. Last but not least, 

improved methods of introducing artificial damage in 

bearings are in progress. The defects are expanded to the 

inner rings and to ball bearings. Moreover, real damage 

from accelerated lifetime tests will be used to examine the 

impact of artificial bearing damage on the physical 

quantities as compared to real damage. The creation of a 

database with experimental data for a wide range of 

different bearing defects is another goal for future work.  
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NOMENCLATURE 

DoE Design of Experiments 

FMEA Failure mode and effects analysis 

i Gear transmission ratio 

LDA Linear discriminant analysis 

OA Orthogonal array 

PCA Principal component analysis 

PMSM Permanent magnet synchronous motor 
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ABSTRACT

Nowadays the economic, environmental and societal issues
concerning energy consumption require a deeper understand-
ing of the factors influencing it. The influencing factors could
concern the technical characteristics of the systems, the oper-
ational conditions and usage of equipment, the environmental
conditions, etc. To understand the main contributing factors
a knowledge model with the influencing factors is formalized
in the form of an ontology. This ontology model allows to
distinguish in a general way the main concepts (i.e. factors)
that show higher consumption trends. This way, a prelimi-
nary analysis reflecting the key influencing factors could be
perform in order to focus later on a deeper analysis with data
mining techniques. This paper focuses on the formalization
of an ontology model in the marine domain for energy con-
sumption purposes. Then, the approach is illustrated with an
example of a fleet of diesel engines.

1. INTRODUCTION

Managing energy consumption has become a key factor in en-
terprise concerns (Saidur, 2010), (Abdelaziz, Saidur, & Me-
khilef, 2011). Indeed, it impacts not only from an economical
point of view but from societal and sustainable development
point of view as well (Hepbasli & Ozalp, 2003). Indeed, en-
ergy consumption:

• Increases in the price of energy,

• Carbon impact taxes,

• Environmental impact...

Gabriela Medina-Oliva et al. This is an open-access article distributed un-
der the terms of the Creative Commons Attribution 3.0 United States Li-
cense, which permits unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are credited.

Hence when designing new systems, engineers aim at opti-
mizing and decreasing energy consumption. However, many
“old” systems are still in used and require attention for de-
creasing their energy consumption. Toward this aim, one so-
lution is to bring new technologies to “old” systems. For in-
stance, in the building domain, one has seen outer insulation,
heat pump as new technologies available for upgrading old
buildings. Nevertheless, such way is slowed down because
of:

• The upgrading cost may be too high regarding the price
of the “old” system or the economical capabilities of the
owner;

• The ratio number of old systems by upgrade providers
is always very high when a new technology emerge and
makes the time to upgrade all “old” system very long.

When regarding quality management in enterprise, it preaches
to learn from mistakes and to pool and share best practices.
From this last idea, one can think to apply it to energy con-
sumption reduction. Indeed, such a way does not suffer from
both drawbacks outlined earlier. It cost almost nothing to ap-
ply new procedures since they do not require hardware up-
grade and they can be widely spread using information tech-
nologies. However, it requires tools in order to support the
determination of the best practices. Such tools have to deal
with large/huge amount of data, multi-dimensional data, het-
erogeneous data, business knowledge structuring”. One way
is to use data mining techniques in order to highlight those
best practices. However, data could be heterogeneous since
it can come from different units with different characteristics.
Then the use of data mining techniques alone may provide
poor results, since they are only based on data. Moreover,
data mining always requires pre-analysis in order to struc-
ture data and ease the search. Another way lies in using data

1
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structuring techniques through knowledge modeling in order
to help expert to detect those best practices. The paper pro-
poses to explore this second way. It shows how an expert can
use an ontology to analyze from several points of view the en-
ergy consumption “trajectory” in order to detect what are the
key factors impacting the reduction or increase of energy con-
sumption. The purpose of this approach is not to replace data
mining techniques, but to provide an overview of the factors
affecting power consumption in order to help data miners and
statisticians identifying the relevant data that require deeper
analysis. This paper focuses on the formalization of an on-
tology model in the marine domain for energy consumption
purposes. Then, we show on an example how the analysis can
be conducted.

2. TOWARDS A SEMANTIC MODEL FORMALIZATION

To identify the factors that impact energy consumption one
common approach is data mining where artificial intelligence,
statistics and machine learning techniques helps to explore
and discover knowledge from data. However, some draw-
backs of data mining techniques is the time and efforts re-
quired to treat real process data due to:

• the noise and outliers values in the signals,

• the synchronization between the multiple data sources,

• the heterogeneity of signals since systems evolve in dif-
ferent environments, with different missions and thus mon-
itored signals show significant variations (Voisin, Medina-
Oliva, Monnin, Léger, & Iung, 2013).

To facilitate the work of data miners and statisticians and to
overcome some oh these drawbacks, we propose to use se-
mantic models that integrate the knowledge from experts of a
domain and provide common semantic to data. In that sense,
semantic models, such as ontologies, structure information
from a common understanding of experts. The structured
knowledge is based on the definition of the main concepts
related to a domain and on the relationships among those con-
cepts.

This paper focuses on the formalization of knowledge in the
marine domain for energy consumption purposes. To provide
the structure to the energy consumption of diesel engines in
the marine domain, an ontology model is used. An ontology
determines formal specifications of knowledge in a domain
by defining the terms (vocabulary) and relations among them
(Gruber, 2009). Ontologies are composed of classes, proper-
ties of the classes and instances:

• Classes describe concepts in the domain. In the marine
domain, examples of classes are “components” or “diesel
engines”. Subclasses represent concepts that are more
specific than the superclass (mother class). When a su-
perclass has a subclass, it means that they are linked by

a subsumption relation, i.e. “is a” relation, allowing a
taxonomy to be defined. Hence, a hierarchy of classes is
established, from general classes to specific ones.

• Properties are contained in a class definition and describe
relationships among the classes. For example, the class
“component” has property called “is monitored by” with
the class “performance indicator”. The property “is mon-
itored by” links the individuals of the class “component”
with the individuals of the class “performance indicator”.

• Instances are the set of specific individuals of classes.
For example, the engine “Baudouin 12M26.2P2-002” is
a specific individual that is part of the class “diesel en-
gine”.

Ontologies define through concepts or classes, the character-
istics of similarities among units and contexts, for instance,
by defining common characteristics in the operational and
contextual domains. The ontology gathers knowledge which
is shared on one hand by the Condition Monitoring/ Prognos-
tics and Health Management (PHM) community and on the
other hand by the naval community. Some of the capabilities
provided consist in (Noy and McGuinness, 2001): sharing
common understanding of the structure of information among
people or software agents, making domain assumptions ex-
plicit, defining concepts and knowledge and making domain
inferences to obtain non-explicit knowledge.

The ontology model was built through experts interviews lead-
ing to the identification of the concepts to be considered and
of the relationships among those concepts.

3. ENERGY ORIENTED SEMANTIC MODEL

The main factors that impact energy consumption are classi-
fied in:

• Maintenance factors

• Operation factors

• Environmental factors

An ontology model is formalized in order to structure knowl-
edge and relationships among concepts coming from experts.
The semantic model allows grouping data, building clusters
and making them comparable. The different clusters will al-
low to detect differences between the groups and to identify
specific directions for deeper investigation. A brief explana-
tion of the factors that were integrated in the ontology model
is presented in the following.

For the maintenance factors, it is well known that some degra-
dation modes imply higher energy consumption. So a clas-
sification of degradation modes is included in the ontology
model. The classification is built from the norm IEC 60812
(Analysis techniques for system reliability – Procedure for
failure mode and effects analysis (FMEA), 2006) (Figure 1).
The type of maintenance that is performed affects the energy
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consumption trends of equipments as well. Hence, it is in-
cluded and built from the norm EN 13306 (Maintenance ter-
minology, 2001) (Figure 1).

The operational context integrates the operational conditions
to which the units are exposed to. Operational conditions usu-
ally lead to different units’ behaviors (Medina-Oliva, Voisin,
Monnin, & Léger, 2014). In the naval domain, operational
context is break up into (Figure 2):

• The operation conditions (Figure 3): which include the
speed of the engine, torque as well as the engine oper-
ation temperatures, such as the engine outlet water tem-
perature. Moreover, engine speed are classified accord-
ing to expert’s rules into “low”, “medium” and “high”
speed engines. This rule is coded in the ontology; for in-
stance, the “low speed” engine are those whose speed is
lower than 200 rpm.

• The operation modes enumerate the working modes of
the machine. For instance, steady state during constant
speed or transient state during the acceleration/braking
phases, etc.

• The production conditions include how the user main-
tains and uses the equipment. For this reason, the type
of machine-operator is included (e.g. rough, smooth and
regular driving), as well as the number of stops made.
The lubrication and coolant consumption and types are
included as well, since they affect the engine performances.

• Machine configurations corresponds to the arrangement
or structure of the equipment. It can be in series or in
parallel. This factor is formalized in order to differentiate
behaviors of the power consumption evolution. Material
and performances will depend if the machine is used in
series with high demand (constantly) or if they are used
with a lower load in a parallel configuration.

• Mission of the engine depends on its usage. This factor is
quantified either by the distance travelled or by the work-
ing time. Also the usage of the engine will depend on the
mission of the ship. This is why different types of ships
were included (non-exhaustive list).

The environmental context describes the surrounding envi-
ronment of the engines as a third class of influencing factors.
The environment takes into account the weather conditions,
the chemical composition of water (pH, salinity), the environ-
mental temperature, water turbulence, etc. (Figure 4) which
might impact units functioning behavior.

Hence, the main classes of factors that influence power con-
sumption are formalized. This formalized knowledge is used
with the gathered data in order to understand the power con-
sumption behavior.

Power consumption influencing factors

Maintenance 

factors

Operation 

factors

Operation 

conditions

Speed

Stopped

Low speed

Medium speed

High speed

Very high speed

Speed direction

Positive

Negative

Environmental 

factors

Figure 3. Part of operation conditions: speed classes.

Power consumption influencing factors

Maintenance 

factors

Operation 

factors

Environmental 

factors

Dust

Environmental 

temperature

Humidity

Chemical 

composition 

of water

Water turbulence

Figure 4. Part of environmental factors.

4. ENERGY ORIENTED CAUSALITY RELATIONSHIPS

Once an ontology model is built, it allows querying on the
data stored in the database. The user (e.g. statistician) is able
to have a first approach suggesting plausible explanations of
some behaviors. To do that, one must first classify the studied
scenarios in two clusters: Low Consumption (LC) or High
Consumtion (HC) individuals. As a first approach the median
value of the power consumption indicator was used allowing
to divide the scenarios in two clusters. In Figure 5 the LC
individuals are colored in green and the HC individuals in
red.

After, the number of occurrences found for each concept are
counted. For example, if an instance has ran 50% of the work-
ing time in “low speed”, then 0.5 of individual is counted for
that concept. Once the occurrences of every individual are
counted for all the concepts in the ontology, bar charts repre-
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Figure 5. Definition of two clusters of individuals.

senting the differences trends of LC and HC individuals are
shown (Figure 6). These bar charts reflect the most important
factors influencing energy consumption at a first sight. This
way a pre-analysis tool to data mining is proposed. Such tool
helps to:

• search meaningful comparisons though the definition of
clusters,

• identify possible causality relationships through compar-
isons,

• identify where to investigate further.

To illustrate the added-value of this approach a case study of
a diesel engine used in the marine domain is studied.

5. CASE STUDY

To illustrate the feasibility of the proposed approach as well
as the added-value, a scenario is proposed. This scenario
shows how the ontology model is useful for statisticians be-
fore a deeper analysis for energy consumption purposes. The
scenario contains 33 identical individuals exposed to differ-
ent operational conditions. As a first step, the two clusters of
individuals are presented in Figure 5: LC and HC individuals.
The objective is to identify the key factors that influence the
most the power consumption. To do such analysis, the impact
of the concepts described in the ontology are investigated.

5.1. Speed classes (Figure 3)

According to the different speed classes defined by the ex-
perts, a bar chart is built showing the number of individuals
belonging to each class (Figure 6). The chart uses the ratio of
time spent in each speed class. For example if one individual
spent 50% of time in the class “stopped”, 25% in the class
“low speed” and 25% in the class “medium speed”, then the
corresponding fraction of the individual is associated to each
class. Finally all the fractions of individuals are summed for
each class.

As a result we can see that the HC individuals spent more
time in the medium and high speed classes (Figure 6). Deeper
analysis is needed in that sense.
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Figure 6. Bar chart with the distribution of individuals ac-
cording the different speed classes.
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Figure 7. Bar chart with the distribution of individuals ac-
cording the different speed direction classes.

5.2. Speed direction classes (Figure 3)

The speed direction was also considered. In Figure 7, it can
be seen that there is a slight difference between the LC in-
dividuals running in the positive direction and the HC ones.
The same behavior is found for the negative direction con-
cept. However there is few difference so it can be possible to
conclude that this concept is not interesting for further analy-
sis.

5.3. Torque classes (Figure 2)

From the torque classes’ analysis, it can be noticed that the
individuals that belongs to the very high torque classes have
a higher power consumption (Figure 8). Deeper analysis is
needed to understand the relation between the increment of
torque and power consumption.

5.4. Machine-Operator classes (Figure 2)

There are two types of machine-operators for the engines.
With this approach it is possible to notice a significant differ-
ence between both machine-operators (Figure 9): Machine-
operator Y produces higher power consumption. This factor
is interesting for further analysis.
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Figure 8. Bar chart with the distribution of individuals ac-
cording the different torque classes.
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Figure 9. Bar chart with the distribution of individuals ac-
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5.5. Operation modes (Figure 2)

The effect of the engine operation mode is also addressed. As
expected, individuals that are more in operation mode (and
thus more loaded) require more power (Figure 10).

5.6. Transient mode classes (Figure 2)

The analysis of the time spent in transient modes (accelera-
tion and braking) was also studied (Figure 11). Such opera-
tions modes are listed in the ontology (Figure 2). It is possible
to observe that LC individuals spent more time in acceleration
and braking modes. It is also known that the acceleration and
braking phases demand more load (regarding the inertia). So
such result is surprising. For this reason and in order to under-
stand better the effect of the acceleration/braking modes, this
factor needs to be further studied. For example the number
of acceleration/braking, the speed delta among the accelera-
tions/braking, etc. Maybe some correlated factors exist and
should be investigated such as the waiting/moving factors.

5.7. Operation condition - engine exhaust gases tempera-
ture (Figure 2)

Concerning engine exhaust gases temperature, it can be seen
a slight trend of more power consumption when the exhaust
gases temperature is very high (class 380-400◦C) (Figure 12).
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Figure 10. Bar chart with the distribution of individuals ac-
cording the different operation modes classes.
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Figure 11. Bar chart distribution with the distribution of indi-
viduals according the acceleration/braking time.

However, this trend is not clearly established and thus with
the existing information, it is not possible to draw conclu-
sions.

5.8. Environmental temperature class (Figure 4)

A final factor that was study was the effect of the environmen-
tal temperature on the power consumption (Figure 13). It can
be noticed that for lower temperature classes (¿25”éC and 25-
28 “éC), the power consumption is higher and for the higher
temperature classes, the power consumption is reduced.

With this preliminary analysis based on a semantic model it
is possible to focus the attention on the more relevant factors
that affect the power consumption. In this case-study some
factors were irrelevant such as the speed direction, the opera-
tion modes classes, and the exhaust gases temperature. On the
other side, factors that require deeper analysis are: the speed
and torque classes, the operator, the transient mode classes
and the environment temperature.
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Figure 12. Bar chart with the distribution of individuals ac-
cording the engine exhaust gases temperature.
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Figure 13. Bar chart with the distribution of individuals ac-
cording the environment temperature.

6. CONCLUSIONS

The proposed approach provides the basis for the analysis of
the influencing factors on performances. In this paper the tar-
get performance is the power-consumption. To do such anal-
ysis, an ontology model is formalized. The ontology contains
expert knowledge which is introduced as a part of the classes
(concepts) in the model. The classes allows to make clus-
ter to bring information for engineers/statisticians. Moreover,
the ontology model contains contextual information about the
operational and environmental conditions of the engines, al-
lowing to understand better some behaviors.

The influence of each cluster (represented as classes in the
ontology) on the power consumption can then be visualized.
This way, data-mining time and efforts are reduced. More-
over, the semantic model could integrate causality links that
could not always be explained with data.

Some experimentations have already been done as shown in
this paper. However, further experimentations have to be con-
ducted to show the feasibility and the added value of this
methodology. Moreover embedded knowledge could be re-
fined while implementing this solution to different industrial
systems.

As a future work, the analysis must take into account several

factors at the same time. Hence, we propose to use 3D bar
chart to show correlated influences of 2 factors. Moreover,
a semantic model to deal with the technical characteristics
of different units will be integrated, in order to use it from a
fleet-wide perspective (Medina-Oliva et al., 2014).
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Iung, B. (2013, Oct). Fleet-wide diagnostic and prog-
nostic assessment. In Annual Conference of the Prog-
nostics and Health Management Society 2013. New
Orleans, États-Unis.

BIOGRAPHIES

Dr Gabriela MEDINA-OLIVA is a Re-
search Engineer at PREDICT. She received
his PhD from the University of Nancy and
her M.S. in Reliability and Risk Analysis
from the University of Las Palmas Gran
Canarias in Spain. She has experience in
maintenance within the oil industry. More-
over, she has worked in the formalization of

knowledge with probabilistic tools for maintenance strategies
assessment. Her current work focuses on fleet-wide health

6

European Conference of the Prognostics and Health Management Society 2014

783



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

management. He is member of the French DIAG 21 Associ-
ation (www.diag21.com) and of the PHM Society.

Alexandre VOISIN is an associate profes-
sor of automatic control at the Lorraine Uni-
versity, France since 1999. He received an
engineering degree in Electrical Engineer-
ing in 1992. In 1999, he received his PhD
degree in Electrical Engineering from the
Lorraine University. His primary researches
were in the field of fuzzy logic and informa-

tion processing where he applied these techniques to subjec-
tive evaluation in the area of car seat comfort. Since 2003 he
is involved in a maintenance project dealing with dependabil-
ity, maintenance decision in a proactive maintenance strat-
egy. His researches are related to prognostics, health moni-
toring and fleet-wide opportunities for maintenance business
processes and engineering.

Dr. Maxime MONNIN is a Research En-
gineer at PREDICT Company where he is
responsible of the R&D Team. In 2007, he
received his PhD from the University of Va-
lenciennes. This research founded by the
French Procurement Agency (DGA), was
conducted in collaboration with NEXTER
and the Nancy Research Center for Auto-

matic Control (CRAN), and addressed system of systems
availability modelling and simulation. His research interests
focus on fleet-wide health management. He is member of the
French DIAG 21 Association (www.diag21.com) and of the
PHM Society.

Dr. Jean-Baptiste LEGER is CEO and
co-founder, in 1999, of the PREDICT com-
pany, France. He is graduated from Lorraine
University, France and his PhD thesis, pre-
sented in 1999, was on Formal Modelling
Framework for Proactive Maintenance Sys-

tems mainly based on Monitoring, Predic-
tive Diagnosis and Prognosis. He has close

to 20 years of experience on CBM and PHM systems. His
experience includes fault detection and isolation, condition
monitoring, fault tolerant control, prognostic, health manage-
ment, intelligent maintenance and e-maintenance. He is cur-
rently working on formal approach of CBM, PHM, HUMS,
IVHM and Therapy Systems. He is VP of the French DIAG
21 Association (www.diag21.com) and member of the PHM
Society. He participates to standardization working groups in
relation to PHM/IVHM (SAE, IEEE, BNAE).

Pr. Benot IUNG is full Professor of Prog-
nostics and Health Management (PHM) at
Lorraine University (France). He conducts
research at the CRAN lab where he is man-
aging today a research group on Sustainable
Industrial System Engineering. His research
and teaching areas are related to dependabil-
ity, prognostics, heath management, main-

tenance engineering and e-maintenance. In relation to these
topics he took scientific responsibility for the participation of
CRAN in a lot of national, European (i.e. REMAFEX, DY-
NAMITE) and international projects with China and Chile.
He has numerous collaborations with industry and serve on
the advisory board for PREDICT company. He is now the
chairman of the IFAC WG A-MEST on advanced mainte-
nance, the chairman of the ESRA TC on Manufacturing, a
fellow of the IFAC TC 5.1., a French Associate Member to
CIRP Federation and a founding Fellow to the ISEAM. Benot
Iung has (co)-authored over 150 scientific papers and several
books including the first e-maintenance book in Springer. He
has supervised until now 15 MA, 14 Ph. D. Students and
2 Post-Doctorate students. Benot IUNG received his B.S.,
M.S. and Ph.D. in Automatic Control, Manufacturing Engi-
neering and Automation Engineering, respectively, from Lor-
raine University, and an accreditation to be research supervi-
sor (2002) from this same University.

7

European Conference of the Prognostics and Health Management Society 2014

784



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

3RZHU�FRQVXPSWLRQ�LQIOXHQFLQJ�IDFWRUV

0DLQWHQDQFH�
IDFWRUV

'\VIRQFWLRQDO�
VWDWXV

'HJUDGHG�
PRGHV

0HFKDQLFDO�
GHJUDGDWLRQ�PRGHV

9LEUDWLRQ

*DOOLQJ

&RPSRQHQW�EORFNLQJ

&RPSRQHQW�EURNH

(OHFWURPHFKDQLFDO�
GHJUDGDWLRQ�PRGHV

6KRUW�&LUFXLW

2SHQHG�&LUFXLW

)DXOW\�RXWSXW�VLJQDO

)DXOW\�LQSXW�VLJQDO

+\GUDXOLF�3QHXPDWLF�
GHJUDGDWLRQ�PRGHV

%ORFNHG�FLUFXLW

/HDN

)DXOW\�VHDOV

%UHDNGRZQ

0DLQWHQDQFH�VWUDWHJ\

&RUUHFWLYH

3UHYHQWLYH

7LPH�EDVHG

8VDJH�EDVHG

&RQGLWLRQ�EDVHG

2SHUDWLRQ�
IDFWRUV

(QYLURQPHQWDO�
IDFWRUV
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ABSTRACT 

In most of industrial processes, the measurement are central 

to the process control and quality management. This become 

even truer when measurement data are used to develop and 

support PHM strategies. In this context, many software are 

installed in order to collect data for providing quality 

assessment at each step of the manufacturing process. 

However, measurement error or drift are not considered 

leading to downgrading / rejected products / suboptimal 

running conditions that comes from measurement drift not 

detected on time. In concrete, these lead to bigger penalty 

than losses of production due to stopping time for repairing 

sensors. Indeed, generally speaking, process data is the “raw 

material” for many business processes, starting from process 

control strategy, PHM strategies to Business Intelligence. 

Thus being able to ensure data quality and reliability is of 

first importance. Towards this end, methods and tools are 

required to support online measurement monitoring, 

predictive diagnosis and reliability enhancement. 

In this paper, a dedicated approach developed in 

collaboration with ArcelorMittal Research is presented. It 

consists in the development of intelligent software that 

would enable sensor measurement validation taking into 

account process parameters and operational conditions. An 

illustrative case study is extracted from an ongoing 

application developed for the finishing line in ArcelorMittal 

plant at Florange in France. Results regarding measurement 

reliability assessment as well as sensor failure anticipation 

will be described. 

1. INTRODUCTION  

Today, industrial measurement reliability is essential to 

answer the big challenges of European industries: improving 

product quality, creating high-added value products and 

improve process control. Indeed, industrial measurements 

are used to feed databases and then analyzed in order to 

improve process control. Therefore, the process control 

strongly depends on the reliability of measurements.  

Usually, measurements devices are monitored thanks to 

quality assurance and preventive maintenance. However this 

is not satisfying since it relies on punctual verifications of 

measurements reliability that covers only a fraction of 

instruments (less than 10%), and because controls are 

isolated. Such an approach does not guarantee full-time 

measurement reliability. 

Besides, many sensors management software and process 

monitoring software are available on the market, such as 

CompuCalTM/CompucalTM Plus, GESSICA, OPTI MU, 

HASTING, DECA, SPLI 4M, Wonderware Archestra IDE, 

which are mainly dedicated to:  

 management of instruments’ calibration and 

maintenance actions (planning, monitoring, cost 

evaluation, definition of procedure, assistance on 

calibration, etc), 

 database of instruments’ measurements (report on 

deviation, definition of uncertainty and capability, audit 

trail, etc), 

 process performance monitoring solutions based on 

Data Reconciliation and Validation, which enables to 

rely on reliable and accurate information. 

Measurements errors are highlighted, corrected. Such 

system computes a series of unmeasured data that are 

Jean-Baptiste Leger et al. This is an open-access article distributed under 

the terms of the Creative Commons Attribution 3.0 United States 
License, which permits unrestricted use, distribution, and reproduction 

in any medium, provided the original author and source are credited. 

European Conference of the Prognostics and Health Management Society 2014

787



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014 

2 

often key for performance improvement. These systems 

however do not run in real-time and in closed loop with 

control systems. 

In many cases such an approach does not allow identifying 

immediately a sensor drift. For example, during rolling, an 

out of gauge information does not allow discriminating a 

sensor drift from other causes such as rolling actuator failure 

or a problem linked to the metallurgical feature of the rolled 

product. These systems do not allow distinguishing 

individual sensor drift from the process, actuators and 

control systems behaviors.  

Lots of examples can be quoted to illustrate the damages 

caused by this lack of measurement reliability. In particular, 

changes in the condition of use of the sensors can influence 

the sensor measurement accuracy and have important 

consequences if they are not detected. For instance: 

 distance between the sensors and the target; 

 alignment of the temperature sensors in an oven can 

influence the measurement and consequently lead to 

over-heating;  

 dirtying of the sensor optic can lead to an abnormal 

measurement. 

These issues are encountered not only in steel industry but 

also in many other industries (glass production, polymer 

production, etc). That makes the challenges of ensuring the 

reliability of industrial measurements even more important 

since it will enable the rationalization of both energy and 

raw material use as well as maintenance costs. In particular, 

it will have the following impacts: 

 increase productivity (by decreasing unintended 

production line stoppage), 

 rationalize maintenance costs leading to a decrease of 

15% of maintenance time, 

 decrease non-conformity of final products and increase 

process control,  

 decrease energy consumption of production lines (by 

avoiding over-heating due to non-reliable temperature 

measurements), 

 decrease the early wear of tools (for instance an 

excessive roll force due to a faulty measurement can 

induce damage of the work rolls , mechanical 

transmission , ... )  

 optimizing the maintenance actions through the 

availability of a dedicated tool for anticipating and 

rationalizing the service operations of sensors. 

In parallel, sensor and measurement fault detection and 

diagnostic have rather constant interest in literature in 

various industrial domains. One can refer to (Samy et al. 

2011), (Reppa et al. 2012), (Lee et al. 2011), (Zhang et al, 

2012) for relevant and recent work focused on sensors and 

measurement fault detection and diagnostic. However, most 

of the results rely on complex modelling, or have been 

developed on top of simulation model (not reflecting fully 

industrial constraints) and for which the need on computer 

infrastructure to apply the approach (Miletic et al. 2008) is 

not fully addressed. 

All in all, since industrial measurements are used not only to 

feed database but also for supporting condition monitoring 

and analysis in order to improve process control, the 

reliability of measurements is still a key issue. 

Today, maintenance team does not dispose of tools allowing 

anticipating sensors failures. This means that those failures 

are discovered during the analysis of incident on production 

lines or during the analysis of out-of-specification products. 

For example in the hot strip mill of Seremange, 28% of 

production line stoppages are due to sensors failures (this 

represents more than 200000 Euros for only one production 

line in Seremange). 

However, as described in the European Factories of the 

Future 2020 Roadmap 1 , three of the six Research and 

Innovation Priorities are the creation of high-added value 

products, Adaptative and smart manufacturing systems – 

including control and monitoring – and Digital virtual & 

Resource efficient factory – including Prognostic and Health 

Management (PHM). 

Thus the enhancement of industrial measurement reliability 

is a sine qua none condition for industries to be able to 

improve product quality, create high-added value products, 

improve process control and enhance performance through 

PHM deployment.  

To tackle such issue and further develop and deploy PHM 

system, intelligent information technologies are required in 

order to enable sensor measurement validation taking into 

consideration steel process parameters correlation and 

operational conditions. To this aim, an integrated software 

platform is currently developed under the umbrella of the 

PRIME project (ERA-Net / Manu-Net program) in order to 

enhance the reliability of on-line and real-time industrial 

measurements. This innovative solution based on the 

CASIP/KASEM® platform integrates both an individual 

monitoring of sensors measurements and inter-

measurements consistency monitoring. 

Section 2 presents the scope and framework of the project. 

In section 3, the case study is introduced and the proposed 

method is presented along with its application. Finally 

section 4 concludes the work. 

2. PROJECT CONTEXT AND FRAMEWORK 

2.1. Outlook of the developed approach 

The PRIME (ERA-Net / Manu-Net program) project, aims 

at developing an integrated software platform in order to 

                                                           
1
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enhance the reliability of on-line and real-time industrial 

measurements.  

The project objectives follow a PHM approach in that sense 

that it aims at: 

 detect in a short delay and anticipate sensor failure 

 detect and localize abnormal measurements,  

 set a diagnosis and propose a solution to correct or 

compensate failures in a short delay; 

 propose, whenever it is possible, an alternative 

measurement solution to ensure service continuity; 

 Enhance the accuracy of production database 

Towards this end, a specific approach is developed in order 

not only to focus on measurement individually but also to 

enable a global and consistent consideration of measurement 

behavior.  

In concrete terms, the integrated platform will gather:  

 A toolbox for individual monitoring of sensors 

measurements: enabling the real-time, in situ 

monitoring of individual sensors measurements. 

 A toolbox for inter-measurements consistency: it will 

use physical relations between measured parameters as 

well as models in order to improve the inter-

measurement consistency, to identify confidence 

interval and to propose replacing measurements. 

The framework of the project comes from industrial 

statement and consideration. Sensors are not followed form 

a continuous point of view in spite of the impact of false 

measurement or drift measurement can affect the whole 

product quality. Furthermore, depending on the part of the 

process, inter-measurement relationships becomes 

mandatory to distinguish between sensor and process 

degradation. As results, the innovation of the project is 

based on the consideration of operational conditions and on 

the combination of these two complementary toolboxes that 

will enable to enhance measurement reliability through 

failure anticipation and dynamic corrective strategies 

application. Indeed, considering operation condition brings 

the necessary segmentation of data that enable process 

behavior to be compared over time since the condition of 

comparisons are known and well defined. This approach 

falls within the whole methodology developed at PREDICT.  

The toolbox for individual monitoring of sensors 

measurements enables a local approach of data validation. It 

integrates operational conditions in the validation process in 

order to provide on-line confidence value to raw data and 

allows early drift or abnormal value detection. The toolbox 

for inter-measurements consistency will thus benefit from 

the individually validated data and will concentrate on 

interrelationship between measurements.  

 

Figure 1. Framework of the proposed approach. 

Moreover inter-measurement validation will improve to 

distinguish between individual sensor drift from the process, 

actuators and control systems faulty behaviors since it relies 

on interrelation linking different measurements. 

As shown in Figure 1, on top of that, it is also expected to 

investigate a fleet-wide dimension for sensor measurement. 

The objectives of investigating the fleet dimension is to 

enlarge knowledge about sensors behavior in order to share 

this knowledge by means of the software platform. As a 

consequence solutions to fix problem can be more easily 

and quickly deployed over all the process measurement. The 

fleet dimension rely on the capacity to deal with 

similar/heterogeneous equipment (from sensor to large and 

complex equipment (e.g; engine…)), taking benefit form 

already developed approaches (Monnin et al. 2011a, Voisin 

et al. 2013).  

2.2. Software platform foundations and features 

In addition to the structuration of the underlying approach, a 

key success factor relies on the ability to provide within an 

integrated platform, the data processing means that will run 

on-line in an industrial environment with a smooth 

integration in the existing architecture and infrastructure. 

Towards this end, the project platform is based on the 

CASIP/KASEM® software platform designed and 

developed by PREDICT (Leger 2004, Monnin et al. 2011b). 

The platform has been designed to support Asset Health 

Management (AHM) including Condition Based Monitoring 

(CBM), Predictive Diagnostic, Prognostic & Health 

Management (PHM), Fault-Tolerant Control (FTC) and 

Proactive Therapy. Towards this end, the platform is built 

on top of a knowledge-based system. The database 

formalizes information and knowledge and makes it more 

synthetic and shareable between users (experts, technicians, 

and operators).  

For supporting the toolboxes, the platform is not limited or 

constrained by particular modelling techniques and 
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integrates a programing environment. That allows to 

develop and execute algorithms and gather data-

driven/statistics based algorithms as well as models 

(physical models, setting-up models…). Specific algorithm 

can be directly coded within the programming environment 

of KASEM®, while existing one can be integrated in the 

toolbox as DLL to be further used. Thus, starting from 

process raw data acquisition, algorithms are structured by 

means of sequence of treatments in order to provide real-

time and on-line monitoring (e.g. drift indices monitoring 

and detection).  

3. APPLICATION CASE AND RESULTS 

In this section, the proposed approach and technique for the 

individual monitoring toolbox is described along with their 

implementation within the KASEM® platform. In order to 

progress in the development of the toolboxes, the 

production site of ArcelorMittal in Florange has provided a 

data set reflecting the current situation in order to develop 

early demonstrator to show the potentiality of the supporting 

tools and techniques and highlight the added value of the 

approach with regard to the current situation. Focused on 

the application and capability of existing tools and methods, 

this paper does not deal with a strict comparative study. The 

presented results are evaluated with regard to the existing 

alarm system implemented on site.  

3.1. Hot strip mill case study 

The study takes place with the hot strip mill (Figure 2) of 

the production site which produces high-performance steel 

mainly for the automotive industry.  

 

Figure 2. Hot Strip Mill at Florange 

The proposed case study was concentrated on the finishing 

part of the process and more precisely on the finishing scale 

breaker (FSB) (Figure 3). Indeed the efficiency of the 

descaling directly impact the end product quality. Thus the 

descaling process is monitored thanks to the pressure 

measurement of the water supply circuit. Actually, a sensor 

failure can be detected by means of thresholds within the 

PLC.  

 

Figure 3. FSB supervision system screenshot 

The descaling process is controlled by means of the water 

supply circuit configuration according to the opened/closed 

valves and the outlet pressure is acquired and stored every 

3ms seconds. In normal condition when the valve is open 

the pressure in the corresponding line is around 10 bar and 

null when the valve is closed. Currently, a quality alarm is 

triggered by the PLC when the mean pressure on 1 second is 

less than 7 bar. 

In Figure 4, the red signal corresponds to the opening 

command of the valve and in black the corresponding 

pressure measured from line Ei (see Figure 3). Here, the last 

period before the sensor replacement is shown. It 

corresponds to one day of data and around 2 million of 

values for the pressure. 

 

Figure 4. Pressure signal from the KASEM visualization 

tool 

In this context, the work was focused in the scope of 

individual measurement monitoring in order to develop the 

first tool within the toolbox for individual measurement 

monitoring. In the next section the method applied and the 

corresponding results of monitoring and early detection are 

presented.  

3.2. Individual measurement monitoring and detection 

In order to develop monitoring and detection tool for the 

individual measurement, the proposed approach relies on 3 
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majors steps. First the operating conditions are determined. 

Then abnormal behavior are investigated and condition 

monitoring indices are defined and finally detection process 

is developed.  

According to the circuit presented in Figure 3, 7 binary 

signals are available (one for each valve and draining). 

Based on that, 34 combinations have been identified in the 

dataset and ranked according to (i) their duration time and 

(ii) their occurrence number. The 2 combinations with the 

highest duration where Ei is opened and Ei is closed are kept 

for further analysis. In spite of the applicability of the 

proposed approach in each of the combination, the highest 

duration combinations represent the most “current” process 

behavior and then the combinations in which the probability 

of encounter problem increase. Moreover, the corresponding 

amount of data provides more accuracy in the statistical 

approach to assess thresholds for detection. 

Even in normal conditions, the transient behaviors of the 

pressure can affect the detection. It becomes necessary to 

consider the pressure value in reliable open or close mode in 

order to avoid for instance peaks or delay when the valve 

opening or closing and concentrate on real expected value. 

Towards this end the opening and closing modes are re-

evaluated. In Figure 5 an example is provided where the 

new stopping condition (in blue) is evaluated to avoid, in 

this case, oscillations.  

 

Figure 5. Example of stopping condition recalculation 

In order to propose an accurate and robust monitoring and 

detection tool, statistical approaches have been used both for 

monitoring and detection. 

The statistical approach combines the evalutation of median 

and confidence interval. Given the high sample rate and 

pressure behavior, it is important to provide accurate and 

consistent indicators. Indeed, due to its easy computation 

and robustness property the median is a efficient way to 

summarize such time series data. In addition the confidence 

interval calculation allows to assess accurate threshold to 

built detections. Working with the median for each opening 

and closing sequence reduces effect of signal noise since it 

acts as a sliding median filter and allow to reduce fasle 

alarm and missed alarm. Thus for each conditions (i.e. valve 

opening and closing) theses statistical indices are computed. 

An example for 2 valve opening sequences is provided in 

Figure 6. 

 

Figure 6. Example of statistics calculation 

In this example, the upper level is set at 90% and the lower 

level is set at 10%. In order to provide generic toolbox, each 

of these parameters for the statsical indicators can be tuned.  

From these indicators, it is possible to defined the detection 

thresholds and algorithms. Indeed, by statistically 

summarising the behavior it allows to provide more robust 

and efficient detection. 

Towards this end, the upper and lower thresholds for 

detection have been defined according to the upper and 

lower confidence level obtained from the data set (Figure 7).
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Figure 7. Example of the evolution of the upper and lower levels in functioning mode (i.e. valve open)

Thus, the threshold obtained, as median of the upper and 

lower levels considered, are 8 bar for the lower threshold 

and 12 bar for the upper threshold. Since the thresholds are 

determined, the abnormal behavior detection can be set up. 

Given this process, only two steady states are achieved for 

the pressure (namely opening and closing) leading to fix 

upper and lower thresholds for each mode. In case of more 

complex process with different steady states, adaptatvies 

thresholds would have been defined and applied. 

For the detection, a first approach relies on considering the 

median of the pressure value as shown in Figure 6 and to 

trigger alert when the upper or lower thresholds are 

overpassed. The results of the simple approach are shown in 

Figure 8. For the period considered (~1,5 month) before the 

sensor replacement, the pressure signal leads to 17063 

values of median (i.e. 17063 valve opening sequences) and 

in that case, 370 detections have been triggered for both the 

upper and lower thresholds.  

 

Figure 8. Example of statistics detection 

Even if the median calculation for the detection can be set-

up on-line for real-time detection, another approach have 

been investigated to get closer to the process and sensor 

behavior.  

A moving window detection approach has been defined. 

Given that one valve opening sequence corresponds to 

around 2500 pressure values, a moving window of 300 

points have been defined. If 200 points in the window 

exceed the threshold then a alert is triggerd. Finally, given 

the process dynamic, there are around 50 valve opening 

sequences per hour. Then in order to avoid untimely alarms, 

we consider a consolidated detection that delivers the 

number of triggered alert (based on the moving window 

detection) every 50 opening valve sequences.  

3.3. Comparative results 

As stated in the introductory part of section 3, the purpose 

of this work within the project context was to show the 

potentiality of the supporting tools and technique and 

highlight the added value of the approach with regard to the 

current situation.  

Towards this end, the existing alarm rule (i.e. “alarm is 

triggered if mean pressure on 1 second is less than 7 bar”) 

was also integrated in the KASEM® platform in order to 

compare the detection. Additionally we also setup the 

consolidated detection every 50 opening valve sequences for 

the detection rule. The results are highlighted in Figure 9. 
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Figure 9. Detection results comparison over a 2.5 month period

.

The proposed approach has highlighted several benefits and 

improvements. The statistical evaluation of thresholds has 

permits to increase the lower threshold from 7 to 8 bar when 

valve is open. As a consequence, the early detection is 

greatly improved. Furthermore, by coupling the moving 

window detection with the consolidation per every 50 

functioning sequence that allows to reduce untimely alarms 

without loss of accuracy and consistency. All in all, by 

considering only the detection of the same abnormal 

behavior as the existing one, i.e. the loss of pressure when 

the valve is open; the proposed approach with the 

consolidated detection provide an efficient mean to 

continuously follow-up the sensor behavior. Given the 

process dynamic, by considering that 10 detections per 50 

opening valve sequences becomes critical, the implemented 

detection approach is able to early detect the sensor fault 

with around one month of anticipation compared to the 

existing alarm (cf orange arrows in Figure 9). From Figure 

9, the data set start in middle of March, since we haven’t get 

much data from early period, we were not able to assess if 

the proposed approach was able to provide much more early 

results.  

3.4. Generic and modular toolbox 

The approach has been developed in a generic way allowing 

to deploy the same detection method for the different 

operating modes and abnormal behaviors presented by the 

sensors. Indeed, for the closing valve sequence the same 

approach was applied. Upper and lower thresholds was 

identified by means of confidence level method. And the 

same detection method was deployed. Additionally, the 

peaks of pressure at opening were also studied as well as 

opening delays. Thus various monitoring indicators are now 

available for monitoring the sensor behaviors and included 

in the toolbox for individual monitoring of sensors. These 

indicators will also contribute to enhance the diagnosis 

capabilities of the platform. Figure 10 provides an example 

for the valve closing sequence. In this operating mode the 

upper threshold has been determined to 1 bar (by means of 

the confidence level approach as previously). The detection 

method presented here is the moving window on 300 points. 

The pressure signal is in black, the valve command in red 

and the detection in blue 

 

Figure 10. Example of moving window based-detection for 

the closing mode. 
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4. CONCLUSION 

In this paper, a robust and efficient detection approach for 

sensor monitoring has been presented. The statistical 

approach makes the detection more robust and consequently 

more meaningful by reducing false alarm. In addition the 

consolidation and frequency approach avoid untimely alarm 

without making the system too less sensitive. The 

implementation within the KASEM® platform has allowed 

a generic and modular toolbox to be developed. Each step of 

the method has been easily deployed to the other signals 

considered in the application (i.e. 6 pressure signals of the 

FSB system) and for the 2 operating modes.  

The efficiency and accuracy of the method has been 

assessed in real condition by comparison of the results with 

the existing alarm system running at the plant.   

Based on that, future work will investigate on the one hand, 

how this approach could contribute to the toolbox for inter-

measurements consistency. Especially when several 

indicators can be defined for the same sensor. In addition, 

inter-measurement methods could also allow to assess 

behavior within the confidence interval. For instance if a 

sensor start to tangent the higher or lower confidence level it 

could have impact on other measurement (in case of control 

loop for instance). On the other hand, other methods will be 

investigated thanks to different measurement sensor type 

with a focus on torque and force sensors. 

Thus, the combination of consistent continuous follow-up 

indicators, early detection and diagnostic features, the 

toolboxes within the platform will directly contributes the 

reliability enhancement of sensor measurement.  
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ABSTRACT

Using condition-based maintenance (CBM) to assess machin-
ery health is a popular technique in many industries, espe-
cially those using rotating machines. CBM is relevant in en-
vironments where the prediction of a failure and the preven-
tion and mitigation of its consequences increase both profit
and safety. Prognosis is the most critical part of this process
and the estimation of Remaining Useful Life (RUL) is essen-
tial once failure is identified. This paper presents a method of
synthetic data generation for hybrid model-based prognosis.
In this approach, physical and data-driven models are com-
bined to relate process features to damage accumulation in
time-varying service equipment. It uses parametric models
and observer-based approaches to Fault Detection and Iden-
tification (FDI). A nominal set of parameters is chosen for
the simulated system, and a sensitivity analysis is performed
using a general-purpose simulation package. Synthetic data
sets are then generated to compensate for information missing
in the acquired data sets. Information fusion techniques are
proposed to merge real and synthetic data to create training
data sets which reproduce all identified failure modes, even
those that do not occur in the asset, such as Reliability Cen-
tered Maintenance (RCM), Failure Mode and Effect Analysis
(FMEA). This new technology can lead to better prediction of
remaining useful life of rotating machinery and minimizing
and mitigating the costly effects of unplanned maintenance
actions.

1. INTRODUCTION

The use of Condition-Based Maintenance (CBM) has increa-
sed rapidly over recent years, largely because CBM can pre-

Madhav Mishra et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

dict failure in such a way that the profit and safety of the as-
set are increased. Once failure occurs, however, it is crucial
to continue the prognosis process, estimating the Remaining
Useful Life (RUL) of the asset.

Physical or theoretical models can be used for this purpose.
Theoretical models are determined from the physics of the
system and expressed by means of equations (Isermann &
Münchhof, 2011). These equations, either ordinary or partial
differential equations, can be classified as the following:

• Balance equations (i.e. chemical reactions)

• Physical or chemical equations of state (i.e. equations
that relate state variables)

• Phenomenological equations (e.g. Fourier’s law of heat
conduction)

• Interconnection equations (e.g. Kirchhoff’s current law)

Once a set of equations is obtained, the theoretical model is
defined. Complex equations are simplified by means of lin-
earizations, approximations with lumped parameters, and or-
der reductions, among others (Isermann & Münchhof, 2011),
making mathematical treatment feasible.

These models are very useful for describing the behaviour
of time-varying systems, taking into account different oper-
ating modes, transients, and variability in environmental con-
ditions. The greater the complexity of the model, the greater
the effort required to develop and validate it (Galar, Kumar,
Villarejo, & Johansson, 2013). This calls for more computa-
tional resources. Thus, a limit in the complexity of the physi-
cal model should be defined.

There are many physical models used for rotating machin-
ery. (Qiu, Seth, Liang, & Zhang, 2002) simplify a bearing
as a single Degree-of-Freedom (DOF) model using a mass-
spring-damping system. (Harsha, 2006) and (Purohit & Puro-
hit, 2006) take a 2 DOF approach when modelling a bearing

1
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to study the motion of the shaft in the plane of the bearing.
Other authors such as (Jain & Hunt, 2011) consider the dy-
namics of the rolling elements of a bearing by using a 3 DOF
model for the shaft and a 2 DOF model for each ball.

(Sawalhi & Randall, 2008) develop a 5 DOF model for a
rolling element bearing in which they consider the rolling el-
ements as angularly equidistant; they also propose a 6 DOF
model for a gear, and use the model to obtain the response of
a gearbox test rig. The work of (Baguet & Jacquenot, 2010)
combines a shaft-gear model and hydrodynamic journal bear-
ing model. In this case, a pinion-gear pair is represented by
means of two shaft finite elements with two nodes each; the
stiffness is calculated taking into account the tooth deflec-
tion and the foundation flexibility. (Abbes, Hentati, Maatar,
Fakhfakh, & Haddar, 2011) present a model that combines
the dynamics of a ball bearing and a gear transmission. They
introduce a time-varying stiffness matrix, where the number
of teeth in contact and the variability of periodic and mesh-
frequency based mesh stiffness are considered as varying pa-
rameters.

In all these approaches, a system model is at the centre of the
development process, from requirements analysis, through
design, implementation and testing. Today, nevertheless, the
model-based approach is also designed for maintenance pur-
poses, especially condition monitoring. The main advantage
of these approaches to CBM over data-driven approaches is
their ability to incorporate a physical understanding of the
monitored system (Luo et al., 2003). Data-driven models
miss the link between data and the physical world, thus ques-
tioning the reliability of the algorithm, but physical models
make the prediction of results intuitive because of their use
of case-effect relationships. Their main drawback is the ef-
fort required to develop them. Moreover, they require as-
sumptions regarding complete knowledge of the physical pro-
cesses; parameter tuning may require expert knowledge or
learning from field data. Finally, high fidelity models may be
computationally expensive to run.

2. MODELLING FAILURES

Physical models are used to estimate the response of systems
in both healthy conditions and failure conditions. The models
can be used to simulate component or system failures, and
with adequate modelling of the failure modes, the model can
be adjusted. In other words, different system responses can
be obtained, with and without failure, using the equation set
forming the physical model.

The literature notes several ways of modelling failure in the
field of rotating machinery. For example, (Rafsanjani, Abba-
sion, Farshidianfar, & Moeenfard, 2009) reproduce the tran-
sient force that occurs when a rolling element bearing comes
into contact with a defective surface creating a series of im-
pulses that repeat the characteristic frequencies of the ele-

ments of the bearing. (Kiral & Karagülle, 2003) amplify the
contact forces using a predefined constant when the bearing
contact is produced in a damaged area.

(Nakhaeinejad, 2010) proposes modelling faults as surface
profile changes instead of introducing mathematical impulse
functions based on fault frequencies. (Tadina & Boltežar,
2011) develop a 2D model of a bearing in which defects are
modelled as geometric changes. In this case, a fault in a race
is modelled as an ellipsoidal depression whereas a fault in a
ball is modelled as a flattened sphere.

For fault modelling of gears, (Chen & Shao, 2011) develop
a mesh stiffness model in which a gear tooth is divided into
thin pieces; the stiffness of each piece is calculated taking
into account bending, shear and axial compress (function of
fault properties). Then, the whole tooth stiffness is obtained
by integrating the stiffness of each slide. (Jiang, Shao, &
Mechefske, 2014) introduce spalling faults in a gear model
as a variation in the mesh stiffness of the teeth contact. The
length of the contact line is modified to change the value of
the stiffness.

However, it is difficult to predict the RUL once there is a spall
in the system. Thus, failure evolution and how some failure
modes initiate or aggravate others should be defined. Crack
propagation failure modes are the most commonly developed
behavioural models for prognostics (Sikorska, Hodkiewicz,
& Ma, 2011). For example, the Paris-Erdogan law (Paris &
Erdogan, 1963) can be used to define the evolution of the
growth of a sub-critical crack under a fatigue stress regime
and is expressed as:

(
da

dN

)

n+1

= C · (∆K)
m (1)

where a is the crack length, N is the number of load cycles, n
is the current iteration, ∆K is the range of the stress intensity
factor, and C and m are material constants. Following this
theory, as well as Forman and NASGRO 2/3 laws, (Drewniak
& Rysiński, 2014) provide an analytical gear teeth fatigue
life estimation. (Li, Kurfess, & Liang, 2000) use a stochastic
defect-propagation model to calculate the RUL of a bearing.

3. CREATION OF DATA SETS

System prognosis requires data which can be obtained from
two sources: an operating system using different sensors or a
physical model. In certain cases, the latter source has some
advantages, as for example, the case of an aircraft.

Data from an aircraft system can be recorded when the asset is
healthy, but once the Key Performance Indicator (KPI) of the
system reaches the maintenance threshold limit, maintenance
processes are carried out. Thus, data can only be acquired
until near time tm, the time when the limit is crossed, taking
into account some tolerance, as shown in Figure 1. The asset
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Figure 1. Trend analysis for the remaining useful life

will never be allowed to exceed the predefined safety thresh-
old limit (reached at an unknown time ts) for the following
reasons:

• Security: some faults put both the asset and the people
using it at risk.

• Cost: the development of a fault in a component of an
aircraft can be very expensive.

• Environmental issues: the effect of a fault can be detri-
mental for the environment.

Consequently, faulty conditions cannot be recorded from the
real system. However, such data can be created with a phys-
ical model. Failure modes can be defined using Reliability
Centred Maintenance (RCM) and Failure Mode and Effect
Analysis (FMEA), among others. When these failure modes
are modelled, the data generated are called “synthetic” data.

In conclusion, the final data set is formed by data generated
from both real systems and a physical model of the system.
As both physical-model and data-driven approaches are used,
a hybrid model is formed, as illustrated in Figure 2.

3.1. Semi-supervised learning

Classification techniques are divided into three groups: un-
supervised, supervised and semi-supervised learning. Unsu-
pervised classification or cluster analysis consists of a set of
techniques used to group individuals in unknown groups. The
objective is to relate p individuals to q groups in such a way
that each element is associated with only one group and the
distribution of each group is internally homogeneous. Super-
vised learning, also known as machine learning, begins with
data that belong to 2 or more groups. The objective is to ob-
tain a relationship between the inputs (data) and the outputs
(groups) in such a way that it is possible to assign a group to
a new data case.

Figure 2. Hybrid model approach

Semi-supervised learning falls between the two other methods.
Looking again at the aircraft, data can only be recorded when
the system is healthy. Figure 3 shows some healthy data tak-
ing into account two features. Newly acquired data near the
individuals in Figure 3 will belong to the healthy case, but if
not they will belong to a faulty case. Therefore, only healthy
and faulty cases can be distinguished.

Faulty data cannot be captured from the aircraft because of
the reasons already presented. When synthetic data are gen-
erated by a physical model, however, different failure modes
can be recognized besides the healthy case. This improves the
initial classification criterion. Data belonging to healthy (H)
and some faulty cases (F1, F2 and F3) can be seen in Figure 4.
Newly acquired data will belong to any of these cases.

Once the data set is created, semi-supervised learning is car-
ried out using such techniques as Support Vector Machine

H

Feature1

Fe
at

ur
e 2

Figure 3. Learning using healthy data recorded from the real
system
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Figure 4. Learning using both healthy data acquired from
the real system and synthetic data generated by the physical
model

(SVM), k Nearest Neighbour (kNN) and Neural Networks
(NN), among others.

4. TUNING PROCESS

When the learning process is completed, newly acquired data
can easily be classified using the aforementioned methods.
However, data that do not fit into any of the clusters defined
in the learning process can also appear. This state in which an
abnormal or unknown fault is produced is known as No-Fault-
Found (NFF). A graph illustrating this is shown in Figure 5.
Here, the new data do not belong to any of the predefined
groups (H, F1, F2 and F3) are labelled NFF. There are two
main reasons for the appearance of NFF data:

• The physical system is not sensitive to one of the studied
failure modes, and the acquired data do not reflect the
response of the physical system.

• The acquired data belong to a failure mode not previ-
ously identified.

The appearance of this kind of data must be used to update
the already established classification criteria. They are con-
sidered data related to another failure mode, and the semi-
supervised learning is repeated. The process of automatically
updating the classification criteria is called the tuning pro-
cess. A scheme of this process appears in Figure 6. New data
acquired from the real system are considered input data and
are classified according to the clusters previously obtained us-
ing synthetic and raw data. The output is used to retrain and
improve the classification method.

H

F1

F2

F3

NFF

Feature1

Fe
at

ur
e 2

Figure 5. No-fault-found case

Once the tuning process is developed, it gives a better under-
standing of failure evolution; consequently, the prognostics
process is more easily carried out.

5. CONCLUSIONS

The main purpose of the hybrid model is to compensate for
the weaknesses of data driven and physical models. Data-
driven techniques are based on complete data sets that do not
usually cover all the identified failure modes because of eco-
nomic, security or environmental reasons. Additional data are
needed from models based on knowledge to fill the gap. Phys-
ical models are able to represent the response of a system in

Input + Supervised
classification

Output

Synthetic
data

Physical model
of real system

Raw
data

Real
system

Figure 6. Tuning process of the classification method
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normal operating conditions and include fault modelling with
the objective of determining the behaviour of the system in
different faulty cases detected by different failure mode anal-
yses. It is not new to get data from physical models, but the
way these data are integrated in the system and how the phys-
ical model is tuned to increase the accuracy of these synthetic
data are certainly new. In addition, the system must be able
to produce data for all the failure modes identified by means
of FMEAs and other failure analysis techniques.

As a consequence of this interaction, “synthetic” data sets are
created. These, in combination with raw data acquired from
the real system, can be used in semi-supervised learning to
improve the accuracy of estimations using only the real data.
When newly acquired data suggest the presence of a failure
that has not been considered, the data are used to update the
learning process. The goal is to create the most complete
date sets covering all relevant failure modes to obtain better
remaining useful life estimation.
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ABSTRACT

The implementation in service of accelerometric health mon-
itoring systems of mechanical power drives has shown that a
considerable number of false failure alarms is generated. The
paper presents a combined application of several multivari-
ate statistical techniques and shows how a monitoring method
which integrates these tools can be successfully exploited in
order to improve the reliability of the diagnostic systems.

1. INTRODUCTION

Failure diagnostics via condition monitoring on mechanical
systems and components is a broad and very relevant topic.
Different approaches based on the development of specific
sensors and data-driven methods have been applied. For ex-
ample in (K. Liu, 2013) is described the construction of a
composite health index through the fusion of multiple sen-
sor data. In many cases the calibration of reliable data-driven
models is obstructed by the lack of data regarding the failure
modes of the mechanical system. In such circumstances so-
phisticated anomaly detection and decision mechanisms might
be required (see for example (Ramasso & Gouriveau, 2010)).

Our activity was performed under research contract granted
by AgustaWestland. It was focused on monitoring the health
conditions of mechanical power drives of helicopters. Ac-
celerometric monitoring systems have been previously installed
on several types of helicopters produced by AgustaWestland.
The adopted vibration monitoring methods are based on an-
alyzing analog signals provided by a set of accelerometers
(we refer the reader to (Randall, 2011) and especially (CAA-

Alberto Bellazzi, Giovanni Jacazio et al. This is an open-access article dis-
tributed under the terms of the Creative Commons Attribution 3.0 United
States License, which permits unrestricted use, distribution, and reproduc-
tion in any medium, provided the original author and source are credited.

PARER-2011/01, 2012)). Each power drive is monitored by
a single accelerometer. The accelerometric outputs undergo
Fourier spectral decomposition and the description of the lo-
cal (not global) properties of the energy distribution through
the spectrum of vibrational modes leads to a set of scalar
health indicators, which are supposed to detect specific dam-
ages. For example relevant physical indicators represent the
energy of the spectral components corresponding to the main
rotational frequency and its multiples, the energy contained
in a localised energy bands etc. Other indicators, obtained
from the second-level signal analysis, are related to local vari-
ations, correlations between specific spectral channels, local
shape factors and signal standard deviations. The monitoring
methodology of the health state of a component is based on
fixed critical thresholds for the values of each condition indi-
cator and damage alerts are generated when any of the indica-
tors exceeds the threshold for certain number of measures. In
other words the adopted monitoring method concerns a uni-
variate (independent) interpretation of the health indicators.

The implementation of this health monitoring system on power
drives in actual service has shown that a considerably high
number of false alarms is generated, thereby requiring addi-
tional troubleshooting workload.

The purpose of our research is to develop a health monitoring
method able to reduce to the very minimum the false posi-
tives. The efficiency of the existing diagnostic systems has
been improved via third-level multivariate treatment of the
condition indicators. A monitoring method which integrates
several multivariate statistical techniques has been developed
and implemented. The method is able distinguish with very
high level of statistical confidence true failure situations and
false anomaly alerts if these have been previously observed
and diagnosed on any other aircraft of the same type.
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2. EXPERIMENTAL SETUP

Our research was focused on mechanical power drives of heli-
copters which consist of an assembly of several gears rotating
on shafts supported by ball and roller bearings. AgustaWest-
land provided a large amount of data collected on sixteen air-
crafts of the same type flying in different conditions. Our ex-
perimental data set consists of several thousands of measure-
ments of the condition indicators of each mechanical com-
ponent and was collected over a period of several months
and hundreds of flight hours. Our study mainly concerned
the following set of power drives in which true (confirmed
by inspection of the power drive) and false alerts were de-
tected: TTO Pinion, characterised by twelve condition indi-
cators (CI), IGB Pin (12 CI’s), TGB Gear (12 CI’s), TRDS
(2 CI’s), 2nd Stage Pin RH Brgs (6 CI’s), Oil cooler Brg (6
CI’s), Hangar Ball Brg (9 CI’s).

In some cases (TRDS and the Hangar Ball Brg) the single-
valued thresholds of several health indicators were strongly
exceeded in a false alert state and a true damage provoked
a more moderate reaction of the monitoring system. These
cases were considered as particularly “critical” as the mono-
variate evaluation of the damage appears to be misleading.

In the rest of the article the set of N health indicators of a
mechanical power drive will be interpreted as an element in
a real N -dimensional vector space and called the vector state
of the power drive.

3. MULTILINEAR RE-CALIBRATION AND ANOMALY DE-
TECTION

The values of the standard health indicators, which charac-
terise the normal operational regime of a mechanical compo-
nent vary quite consistently between different aircrafts of the
same type. If compared to each-other, the vector states of the
same component in ordinary regime on different helicopters
form well-distinguished clusters inside the vector space of in-
dicators (a striking illustration is given on Fig. 1).

The fact that ordinary operational states of a power drive in-
stalled on different aircrafts cannot be compared, makes im-
possible the calibration of any sort of statistical model, based
on historical collection of vector states measured on a fleet of
helicopters. Moreover the mechanical components selected
for our investigation are typically subject to a very low num-
ber of failures. A calibration and a validation of a reliable
multivariate model on each single aircraft appears therefore
as extremely unrealistic.

Besides the set of component vector states, a historical collec-
tion of simultaneous measurements of the following param-
eters of operational condition of each aircraft was available:
Engine 1 Torque, Engine 2 Torque, Rotor Speed, Roll Angle,
Pitch Angle, True Airspeed, Radio Altitude, Vertical Speed,
Normal Acceleration, Density Altitude, Tail Rotor Torque,

Figure 1. PCA scores of normal operational states of TRDS
component on different helicopters (the marker is the “heli-
copter number”).

Main Rotor Torque, Roll Rate, Pitch Rate, Yaw Rate, Longi-
tudinal Acceleration.

It has been hypothesised that the accelerometric measure-
ments are influenced by the environmental state of the air-
craft. In order to test that hypothesis, canonical correlation
analysis has been applied on the available data set. It has been
observed that many components are characterised by three
or four canonical correlations with considerably high values
(over 0,5). This fact is quite relevant with respect to the in-
terrelations between the environmental vector state and the
component vector state. Unlikely in some cases (Hangar Ball
Brg) the canonical correlation profile is characterised by high
first (considered as accidental) and very low second canonical
correlation.

The established multi-correlation between the aircraft states
and component states led us to the construction of the fol-
lowing linear filter. A liner map f : R17 −→ RN (where
N is the dimension of the component vector) which provides
a “predicted” component vector state in correspondence to
each environmental state has been calibrated. The k-th row
of the matrix associated to this linear map represents the co-
efficients of a multiple liner regression of the k-th component
of the power drive vector over the set of environmental pa-
rameters.

If we compare Fig. 1 to Fig. 2, we observe that as a conse-
quence of re-calibration, scores of normal operational states
measured on different helicopters slightly concentrate and mix
together quite uniformly. Furthermore the shape of the clus-
ter of projections on the space generated by the first two prin-
cipal components becomes more ellipsoidal. This means that
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Figure 2. PCA scores of normal operational states of TRDS
of different helicopters after linear re-calibration.

the linear re-calibration procedure filters the deterministic im-
pact of the general state of the aircraft onto the accelerometric
measurements. Once filtered the influence of the specific ex-
ploiting regime of the aircraft, the variability of the normal
operational states of each mechanical component can be at-
tributed to a random noise process. In other words, the filtered
normal operational states of each power drive fit with a multi-
dimensional Gauss distribution. This fact was verified by var-
ious multivariate normality tests like Kolmogorov-Smirnoff,
Jarque-Bera etc. (see (Kolmogorov, 1936; A. Justel, 1997;
C. M. Jarque, 1987)). It has been observed that both the dis-
tributions of filtered normal operational states of a compo-
nent of a single helicopter and the filtered normal operational
states of a component installed on different helicopters can
be considered as Gaussian with a very high level of statistical
confidence (p-value around 2× 10−15).

Similar effects are observed for all the mechanical compo-
nents, for which the canonical correlation analysis reveals
considerable level of linear correlation. Linear re-calibration
makes vector states measured on different helicopters of the
same type comparable. A specific situation on an aircraft can
be compared to analogous situation on another aircraft.

The fact that filtered normal operational states of the power
drives are normally distributed, enables us to implement a
standard anomaly detection method based on the Mahalanobis
distance, i.e. the multidimensional Shewhart control chart
(see (Shewhart, 1931) and (Shewhart, 1986)).

A Shewhart control chart has been calibrated on the set of or-
dinary operational states of each mechanical component on
a single helicopter. A small portion (less than 2%) of ordi-

nary vector states exceed the control limit. The same control
chart was applied to normal operational states of the same
power drive, installed on other helicopters and bigger por-
tion of states was judged out of control (15% for the Hangar
Ball Brg). This means that even though linearly filtered data
are used, there are still residual differences in the ordinary
regime of mechanical components of different aircrafts. The
same control chart has been also validated in the context of
anomalous situations occurred on the same helicopter with
very good results. In the case of Hangar Ball Brg roughly
73% of the states were judged as anomalous.

In conclusion, anomaly detection method based on a She-
whart control chart must be calibrated on each single heli-
copter. A software tool implementing a multivariate self-
learning Shewhart control chart, which calibrates itself au-
tomatically on the ordinary regime of a single mechanical
component and highlights anomalous states, has been pro-
duced. The program computes automatically the upper con-
trol limit by means of a Gaussian approximation of the Fisher-
Snedecor distribution.

In many cases (especially TRDS and Hangar Ball Brg) the
Mahalanobis distance between states corresponding to false
alerts and the mean value of the normal regime exceeds the
distance of the true damage states. For this reason the mul-
tivariate self-learning Shewhart control chart is an excellent
tool for the detection of anomalous situations, but it is not suf-
ficient for the discrimination of true failure states and anomaly
alerts which do not correspond to a failure. Thus, additional
discrimination statistical tools, as described later, have been
applied.

4. METHOD

The linear re-calibration strongly reduces the differences be-
tween the normal operational regime of power drives installed
on different aircrafts. This fact enables us to apply a set
of standard multivariate statistical methods on a historical
database of a fleet of helicopters. For a detailed description
of those techniques we refer the reader to the following texts
(Ferrell, 1979; Rencher, 2002; Timm, 2002; W. K. Härdle,
2012; Izenman, 2008).

We adopt a geometric viewpoint on multivariate statistics,
since in our study an Euclidean approach provides some very
useful intuitions on multivariate methods (see, on this aim
(Wickens, 1995) and (Epps, 1993)). See also (Tyurin, 2009),
where is presented a more intrinsic (coordinate free) geo-
metric prospective on multivariate statistics. In this context
we developed our analysis in terms of projections onto rele-
vant subspaces. Our approach interprets (analogously but in-
dependently on (Gniazdowski, 2013)) correlations as angles
and further radicalises this viewpoint by identifying statisti-
cal variables in terms of real projective classes in the space of
random vectors.
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Figure 3. PCA scores of the states of a 2nd Stage Pin RH
Brgs.

4.1. Structure of variance

The complete set of available states (normal, true failures,
false alerts) of each mechanical component was processed by
Principal Component Analysis (PCA). This technique high-
lights existing spontaneous clusterings in the variance struc-
ture of the data set. On Fig. 3 is displayed an example of
scores of complete data sets on the subspace generated by the
first three principal components. In this and in each of the
following figures green dots represent scores of normal oper-
ational states, yellow orange and blue dots represent scores of
false alert states and red dots - true failure vector states.

In the “critical case” of Hangar Ball Brg the projections on
the subspace generated by the second and the third principal
components reveal a relevant spontaneous clustering of the
vector states.

PCA leads to a consistent dimensional reduction in the space
of states. Equations of linear and quadratic separation sur-
faces between the projections of the group clusters have been
easily worked out and simple control methods can be based
on the spontaneous clustering.

The structure of variance in the data sets has been further ex-
plored by applying multivariate discrimination methods like
Liner Discriminant Analysis (LDA) and Quadratic Discrimi-
nant Analysis (QDA)(see (W. K. Härdle, 2012)). The set of
component state vectors has been divided into three groups,
ordinary operational states, false alerts and true failures.

On Fig. 4 are displayed projections of TGB Gear states onto
the subspace generated by the first three linear discriminant

Figure 4. LDA scores of TGB Gear.

Table 1. Leave-one-out LDA re-classification of 2nd Stage
Pin RH Brg vector states

real \ classified as false alert normal true failure
false alert 74 0 0
normal 1 1869 0
true failure 8 67 495

functions.

The calibrated linear discriminant models were validated by
standard leave-one-out procedure using the complete data set
of the fleet. On Table 1, and Table 2 are displayed some ex-
amples of LDA re-classification results.

There is a well-known quadratic classifier based on the min-
imisation of the Mahalanobis distance (with some corrections)
(see (Rencher, 2002)). On Table 3 and Table 4 ere displayed
some examples leave-one-out quadratic discriminant valida-
tion results.

The results obtained by both LDA and QDA leave-one-out
cross validation are quite encouraging, especially because of
the small portion of miss-classified true failure states. In the
“critical” case of the Hangar Ball Brg both methods provide
statistically significative number of correctly classified true
failure states. This means that true failure can be unambigu-
ously detected.

4.2. Failure detection via canonical correlation

Canonical correlation analysis can be employed for detecting
anomalies. Suppose that the ordinary operative regime of a
process is characterised by a strong correlation between vec-
tor variables X and Y . In such case one estimates the values
of Y starting from known values of X by a suitable linear

4
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Table 2. Leave-one-out LDA re-classification of Hangar Ball
Brg vector states

real \ classified as false alert normal true failure
false alert 54 6 4
normal operat. 29 1513 20
true damage 5 49 117

Table 3. Leave-one-out QDA re-classification of 2nd Stage
Pin RH Brg vector states

real \ classified as false alert normal true failure
false alert 74 0 0
normal 0 1860 10
true failure 0 0 570

model. If Y assumes “unexpected” values i.e. its behaviour
contrasts with the established correlation, this fact can be con-
sidered as a manifestation of some anomaly.

In our study, has been tested the hypothesis that anomalous
behaviour of a mechanical component is uncorrelated with
the environmental data. We would expect that the linear cor-
relations between the environmental parameters and the com-
ponents health indicators should decrease in presence of anoma-
lous behaviour of the component. Therefore the data sets
of normal states and data sets containing anomalous states
have been compared in order to establish whether the rele-
vant (high) linear correlation coefficients decrease.

The situation which emerges from this procedure appears slightly
chaotic. For the TRDS the linear correlation is very strong
and the values of the coefficients drastically drop in mixed
regime which contains true failure states. For the IGB pin the
linear correlation is strong, the correlations in mixed regime
get certainly worse, but monitoring of that component did
not give evidence for real failures, so the measured anoma-
lies correspond to false alerts. The TGB gear is characterised
by relatively high values of the significant correlation coef-
ficients and its mixed regime contains a true failure, but it
seems that the second canonical correlation slightly improves
in mixed regime.

In conclusion, for components for which the linear correlation
with the environmental states is particularly high our theoret-
ical hypothesis is confirmed. This means that for those com-
ponents the canonical correlation method can be considered
as a supplementary anomaly detection resource.

4.3. Structure of covariance

In our study, a particular behaviour of the covariance matrix
of the vector states of some mechanical components in case
of anomalous measurements has been observed. The states of
true damage are often characterised by increased correlation
of certain vector components. The behaviour of the corre-
lation matrix appeared slightly different in the case of false

Table 4. Leave-one-out QDA re-classification of Hangar Ball
Brg vector states

real \ classified as false alert normal true failure
false alert 60 2 2
normal operat. 63 1430 69
true damage 2 33 136

Figure 5. Bartlett factor scores of the 2nd Stage Pin RH Brgs.

anomaly reports.

A possible explanation of this phenomenon could be given
if in the case of true failure, different health indicators re-
act simultaneously in a consistent and correlated way (fail-
ure states provoke an enhancement of certain elements of the
correlation matrix). On the contrary false alerts can be inter-
preted as anomalous measurements not necessarily induced
by a consistent reaction of the monitoring system.

Canonical factor models have been calibrated on the set of
state vectors. Typically the calibration of factor model based
on two factors was possible, but in some cases (Hangar Ball
Brg) the iterative procedure does not converge with two but
with three factors.

In terms of projections onto the space generated by the prin-
cipal factors, our hypothesis translates in the following way.
We expect that the projections of the normal operational clus-
ter (near by the origin) and true failure cluster (away from
the origin) onto the subspace generated by the principal fac-
tors show different characteristic profiles. The direction in
which failure states projections spread away from the origin is
indicative regarding the correlation modifications introduced
by the simultaneous reaction to a damage. The shape of the
cluster of ordinary operational states characterises the intrin-
sic covariance structure of the component. In this context we
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Figure 6. Bartlett factor scores of TGB Gear.

expect that anomalous or false alerts should reveal some sort
of irregular behaviour.

On Fig. 5 and Fig. 6 are shown the projections of the states of
the 2nd Stage Pin RH Brgs and the TGB gear. Clustering is
present in both cases. Projections (factor scores) of true fail-
ure states spread away from the origin in a direction, which
is characteristic for the modified covariance structure. Our
study substantially confirmed our theoretical hypothesis. It is
easy to work out linear or quadratic decision boundaries on
factor scores.

In the case of Hangar Ball Brg the factor scores of the or-
dinary operational states concentrate again near by the ori-
gin and the anomalous states spread far from it. Nevertheless
these projections do not reveal a striking separation between
true and false alert states.

We conclude that for some mechanical components, the co-
variance structure of the vector data set provides further re-
sources for defining discriminant procedures.

5. SPHERICAL STRUCTURE OF DATA SETS

Since (latent) variables was considered as real projective classes,
we have hypothesised that the correlation structure of the data
set can be better understood in terms of directions of the state
vectors. In this context the module of a vector state plays
a minor role as direction in a vector space can be identified
by a unit vector. In order to test our hypothesis, an original
”experiment” has been performed. Normalised state vectors
states has been considered, the set of N -dimensional vector
states arranges over an (N−1)-dimensional sphere and factor
models on the set of unit vector states have been calibrated.

Figure 7. Bartlett type scores of unit states of a 2nd Stage Pin
RH Brgs.

An obvious effect of our spherical re-definition is a sort of
compactification of the operational state clusters (Fig. 7). Our
hypothesis on the characteristic variations of the covariance
structure appears rather plausible. In fact points representing
ordinary operational states and true damage situations form
well-defined compact clusters.

Remarkably, as a result of our original approach, in this case
the discrimination between true and false alerts becomes much
more striking (compare Fig. 7 to Fig. 5). In this new situation
the definition of the linear discriminant conditions appears
even easier and precise with respect to the previous factor
models.

The typical behaviour of the unit states of a power drive is
that true damage states condense in a compact region inside
the scatter-plot cluster of states. It is often easy to work-out
a discriminant condition based on the affinity to that specific
compact region. On Fig. 8 is shown the case of a TGB Gear.

Other advantage of the normalisation of the vector states is
the elimination of the large spreading of false anomalous alerts
far from the mean value of the normal operational regime. In
this context LDA leads to precisely the same classification
results, but remarkably QDA of the unit vector states of the
“critical case” Hangar Ball Brg produces a slight improve-
ment (compare Table 5 to Table 4).

In conclusion, our mathematical experiment led to interest-
ing and in some cases unexpected, potentially useful results.
The principal factor analysis on unit states gives further, of-
ten relevant, information on the anomalous behaviour of some
mechanical components, and can be therefore integrated in a
control procedure.
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Table 5. Leave-one-out QDA re-classification of Hangar Ball
Brg unit vector states

real \ classified as false alert normal true failure
false alert 60 2 2
normal operat. 63 1432 67
true damage 2 33 136

Figure 8. Bartlett type scores of unit states of a TGB Gear.

6. INTEGRATED CONTROL PROCESS, IMPLEMENTATION
AND RESULTS

The statistical techniques tested over the available vector data
set are based on different mathematical constructions and there-
fore provide different results. For this reason the above tech-
niques have been combined in a software implementation of
an integrated control process in the following way:

1. Anomaly detection by means of a self-learning control
chart. A problem highlighted by the experts of AgustaWest-
land consists of the fact that the normal operational regime of
some power drives on certain helicopters is characterised by
very high values of the health indicators. Such values would
be considered as anomalous if compared to other helicopters
or to some a priori fixed threshold values. This ambiguity is
completely removed by the self leaning individual calibration
of the control chart. Any vector state judged in control con-
tributes to the real time re-calibration of the control chart i.e.
the control chart keeps learning.

2. Anomaly classification based on discriminant methods
calibrated and validated over the entire fleet. A vector state
judged as anomalous undergoes evaluation based on a set of
distinguished discriminant techniques which can regard both
the variance and the covariance structure of the calibration

data sets (PCA, LDA, QDA, factor scores). A state classified
as false alert does not generate an alert.

3. Evaluation. For different power drives, distinguished dis-
criminant methods appear as more efficient. A pre-alert status
is produced by a suitable combination of discriminant out-
puts. Such a combination is chosen in order to maximise the
efficiency of the control system.

The integrated control process was then applied on a series of
real cases contained in the historical database of AgustaWest-
land. In the case of the TGB gear and 2nd Stage Pin RH
Brgs the integrated discriminant method judges a state as true
failure i.e. generates a pre-alert if each discriminant method
classifies it as a true failure. With this requirement only 3% of
the measured states were miss-classified. In the most difficult
case of Hangar Ball Brg a pre-alert is produced in 13% of the
normal states, in 28% of the previous false alerts and in 65%
of the true failure states. The current univariate version of the
control system generates an alert if the values of the health
indicators exceed the alarm thresholds in a fixed proportion
(usually 2/3) in a number of consecutive measurements. In
the integrated method these proportions can be deduced di-
rectly from these last results. For example, in the case of
Hangar Ball Brg a suitable proportion appears 1/2.

An engineering software tool which implements both the con-
trol process and the calibration of the parameters of the con-
trol routine for each of the monitored power drives has been
produced.

7. CONCLUSION

Our considerations have highlighted the advantages of our
third-level multivariate approach. An efficient control pro-
cess is based on an integration of several classification tech-
niques. Even in those cases in which true failures and false
alerts show misleading univariate profiles, multivariate tech-
niques are able to distinguish them with very high level of
statistical reliability.

The elimination of the deterministic influence of the environ-
mental states of the helicopter, gives the possibility to com-
pare rigorously states measured on different helicopters in
different flight regimes. Once guaranteed this possibility, one
can calibrate classification and discriminant models on his-
torical data obtained from many helicopters and apply them
in a future control process. When relevant new data are col-
lected, the statistical models can be updated and improved by
re-calibration on a larger and more detailed data set. Once a
precise anomaly gets observed and diagnosed on one aircraft
of the fleet, it can be diagnosed elsewhere by means of its
specific multivariate health profile.

The results obtained by our research appear therefore as quite
positive and encouraging.
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ABSTRACT 

The purpose of this paper is to look into a more effective way 

for how condition based maintenance using on-line 

monitoring and prognostics can be applied to the 

components/systems in the field of a research reactor, which 

has been demanded to upgrade or modify the existing MMIS. 

The requirements of the contemporary diagnostics and 

prognostics herein are briefly introduced and then an 

assessment of the actual application to a research reactor is 

reviewed. 

1. INTRODUCTION 

The requirements for equipment qualification applied to the 

nuclear industry have been getting stricter and more 

challenging in particular since the Fukushima accident. This 

also strongly influences Research Reactors (RRs) as well as 

Nuclear Power Plants (NPPs). Most RRs have been recently 

forced to be modernized or refurbished for lifetime extension 

or uprating. On the other hand this demand could provide a 

great opportunity to realize the Condition Based Maintenance 

(CBM) where the diagnosis and prognosis technique is 

applied to the upgraded Human-Machine Interface (HMI) 

system. The health monitoring for the component and system 

is definitely considered important but the CBM using a 

suitable prognostic technique should be established in the RR 

in the near future as found in  (NUREG/CR-6895, 2006). 

The advantage of CBM is its direct contribution to minimize 

the cost and prevent unnecessary downtime compared with 

regular based maintenance. In addition, it also helps to 

minimize the risk of radiation exposure as low as reasonably 

achievable owing to less frequency of access to radiation 

zones and gain invisible benefit such as reducing public 

anxiety caused from a reactor shutdown. If only utilization of 

the on-line monitoring technology for system health and 

prognostics can be maximized, it will be readily possible to 

predict the estimated Remained Useful Life (RUL) to set up 

the optimized conditional maintenance plan using an on-line 

monitoring technique and verified prognostics. 

The most remarkable feature in a RR is to have different 

aspects from a NPP in the case of the operating conditions 

such as a specific temperature and pressure boundary. The 

condition in the RR is considerably moderated owing to 

lower temperature and pressure compared with the NPP case, 

and it is literally interpreted that the environmental conditions 

are not severe and therefore so many parts of requirement are 

under discussion in order to apply to the graded approach. 

These points are expected to make it easier for the RR to have 

more various experiments and available application. 

2. PROGNOSTICS AND CONDITION BASED MAINTENANCE 

Prognosis can be defined as the prediction of future health 

states and failure modes based on current health assessments, 

historical trends and projected usage loads on the equipment 

and/or process according to recent trends as shown in (Singer, 

R.M., K.C. Gross, J.P. Herzog, R.W. King, and S.W. 

Wegerich, 1996). These prognostics are inevitable factor to 

realize the CBM because the CBM is developed by 

considering the degradation progression. The main idea of 

CBM is to utilize the system’s or component’s degradation 

information extracted and identified from on-line monitoring 

instruments to minimize the system downtime by balancing 

the risk of failure and achievable profits. The decision 

making in CBM focuses on how effectively the predictive 

maintenance is performed as shown in (IAEA-TECDOC-

1625, 2009). 
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2.1. Diagnostic-Prognostic Process 

As mentioned above, the current failure mode, its cause and 

effect as well as its extent of degradation are very important 

for exact prognostics. To determine the RUL of a component, 

it is inevitable to know and understand the following 

necessary information in advance: (a) degraded state of the 

component, (b) cause of initiating the degradation, (c) 

severity level of the degradation, (d) degradation progress 

speed from its current state to functional failure (e) method to 

classify novel events related with degradation, and (f) other 

factors (e.g. measurement noise) affecting the estimate of the 

RUL as found in (ISO 13381-1, 2004). If these prerequisites 

are well prepared, it will be followed by a diagnostic-

prognostic process. It is significant to classify several steps 

into the diagnostics with using data preprocessing and 

prognostics with the RUL determination as shown in Figure 

1.  

 

Figure 1. Process step of diagnostics and prognostics. 

In diagnosis stage, faults including novel events are detected 

and abnormal operating conditions are reported upon fault 

detection. After fault isolation a specific component which is 

under failure is identified at the stage of fault identification, 

the extent and nature of the fault is estimated. In the prognosis 

stage, a time to failure is evaluated based on the fault 

identification and the appropriate confidence limit is 

calculated.  

2.2. Selection of Suitable Prognostic Model 

The CBM program is determined by decision making subject 

to the operating goal and management plan. The prognostic 

model should be carefully selected to take the characteristics 

of the system into account especially for the actual operating 

conditions. For this reason we have to consider the 

prognostics in detail and how to implement the prognostics 

model in a case by case manner.  

2.2.1. Prognostics Types by Implemented Sequence 

The prognostics type can be classified by three different 

activities such as existing failure mode prognostics, future 

failure mode prognostics and post-action prognostics, which 

are called steps 1 through 3 prognostics, respectively, as they 

involve an increasing level of modelling and implementation 

complexity. Step 1 provides estimates for the RUL of 

components subject to how each diagnosed failure mode is 

going. Step 2 evaluates the postulated effects of identified 

failure mode on other potential failure modes in order to 

evaluate the worst case scenario for the affected 

components/systems. Step 3 assesses how aforementioned 

models are affected by maintenance actions at last. As each 

prognostic level requires the accurate and reliable outputs 

from the preceding step the likelihood of success is sure to 

increase. This approach increases a potential enhancement to 

prognostic capability. 

2.2.2. Implementing Prognostics Model 

A modified classification approach is proposed here that was 

specifically designed for the RUL prediction as shown in 

Figure 2, which is categorized into four main groups and a 

few numbers of subgroups. Knowledge-based models assess 

the correlation between observed measurements and a 

databank of previously defined failures using an expert 

system or a fuzzy rule as mentioned in (G. Vachtsevanos, F. 

Lewis, M. Roemer, A. Hess and B. Wu, 2006). The 

determined life expectancy models literally estimate the RUL 

of components based on the deterioration under known 

operating condition using a stochastic model and statistical 

model such as an auto-regressive moving average and 

proportional hazards model. Artificial neural networks 

compute an estimated output for the RUL from a 

mathematical representation, which has been derived from 

observation data rather than through a physical 

understanding. Finally, the physical model represents the 

behavior of the degradation process based on physical laws 

as remarked in (G. Vachtsevanos, F. L Lewis, M. Roemer, A. 

Hess and B. Wu, 2006). 

 

Figure 2. Main model categories for RUL prediction 

Ultimately a model selection requires that all advantages and 

weak points be understood and more importantly how well 
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the actual system operating condition is reflected in the 

process of model selection.  

3. APPROACH FOR APPLICATION TO RESEARCH  REACTOR 

There are a number of approaches to realize the optimal 

condition based maintenance, and among them, an on-line 

monitoring instrument channel calibration is a very simple 

but effective way to adjust the maintenance term, although it 

is not exactly the tracking system condition.  It is used to 

identify invalid sensor data that seem faulty due to zero 

readings, missing data, jump, noise, etc. In addition, sensor 

anomalies, such as drift and a slow response can be accounted 

for in validating an array of raw data. Three channels of data 

from the pressure transmitter are herein introduced, which are 

used for measuring the hydrogen of the cold neutron source 

system in a RR.  

3.1. On-line Monitoring Data Analysis for the CNS 

These pressure transmitters in the CNS of an RR have three 

redundant sensors, which it means it can perform calibration 

monitoring, consistency checking, and signal validation. In 

addition, with redundant sensors, calibration monitoring can 

be performed using simple averaging techniques as proposed 

in (M.carnero, 2006). The deviation from the holistic mean 

among groups of transmitters can be monitored online, and 

upper/lower limits can be set to trigger alarms if the deviation 

exceeds that expected for drift candidacy. The signals are 

subject to pre-set limits of operation.  If a value were to 

exceed these limits, an alarm would be raised, thus indicating 

the drift. 

When analyzing the regularly sampled data through six 

months, as shown in Figure 3, each channel has shown the 

hydrogen value staying within a normal range through the 

whole duration except for certain outliers. There is a just a 

little deviation between the holistic mean and all channels of 

values.  

 

Figure 3. Collected data for on-line monitoring application 

The most important thing is to identify how much the drift of 

the instrument is in progress, and a drift analysis shows that 

the results from on-line monitoring are better than one from 

an off-line data analysis. This implies that the maintenance 

plan and period for a relevant sensor can be adjusted only if 

the uncertainty on this instrument is fully considered, which 

can affect both the performance and accuracy of on-line 

monitoring technique, which utilize the data gathered using 

the instrument channels as introduced in (A. Yamada & S. 

Takata, 2002). 

3.2. Diagnostics and Prognostics Applied to RR 

In a research reactor the critical rotating machines such as a 

Primary Cooling System (PCS) pump are monitored either 

continuously or by periodic vibration measurements. This is 

to monitor the shaft displacement and the vibration level of 

the PCS pump frame. The Vibration Monitoring System 

(VMS) is designed to provide an alarm signal to the Main 

Control Room when the vibration level exceeds the allowable 

limit as commented in (W. Wu, J.Hu and J. Zhang, IEEE, 

2007). It also provides information to be used in analyzing 

the status of the PCS pump, which incorporates the electrical, 

mechanical, operational, and environmental condition for 

detecting the symptom of the shaft crack, and misalignment 

and rotor balancing, as shown in Figure 4.  

 

Figure 4. VMS principle and configuration 

The change in the internal characteristics of a motor(eg. Short 

winding) will cause the real motor transfer function to 

change. In the case of mechanical fault detection, if it is 

assumed that an unbalance occurs, it causes the rotating 

rotor/stator gap to change, which will make the amplitude 

modulation shown in the sidebands appear around the line 

frequency in the spectrum, as shown in Figure 5. For more 

accurate fault detection, sufficient terms of the learn phase 

are needed, and after this initial learning, the VMS begins to 

be monitored as found in (S.J. Engel, B.J. Gilmartin, K. 

Bongort and A. Hess, IEEE, 2000). Through this VMS, we 

can recognize the symptoms of the component failure in 

advance before the fault is worse to exceed the tolerance. 

However, it was actually found to be a little difficult to 

predict the RUL in the only this manner. This results in 

difficulties to confirm the maintenance schedule which has to 
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be estimated upon the system performance. This is because 

the prognostics in an RR currently depend on a knowledge-

based system such as an expert system. 

  

 
Figure 5. Anomalies estimated from PSD 

3.3. Comparison of Prognostics Candidacy 

There are many prognostics available to the system in the RR, 

as aforementioned here, which has an advantageous 

condition of relatively low temperature, pressure, and 

radiation level. This enables us to have a large number of 

opportunities to try in the application of advanced 

prognostics. This is because the structure of the RR is simpler, 

which makes it easier for a design change than an NPP. To 

summarize this, the environmental condition is more 

moderate in an RR, and a simplified system, components, and 

structure for the experiment is considered the optimal 

conditions for testing and verifying whether the prognostics 

is available in various actual operating conditions.  

Table 1. Comparison between prognostics models. 

 

Table 1 shows a comparison of the prognostics model, which 

is narrowed down as suitable to apply to the system in the RR. 

From the viewpoint of RUL, it is the best way to adapt the 

Artificial Neural Network (ANN) or physical model, but in 

terms of cost and benefit, an expert system or reliability 

function is a good alternative to prognostics as proposed in 

(J. Lee, J. Ni, D. Djurdjanovic, H. Qiu, and H. Liao, 2006). 

3.4. Consideration of Uncertainty  

The obvious obstacle of acquiring the exact prediction of 

RUL as well as accurate diagnosis is the inherent uncertainty 

of the objective. In order to establish the condition based 

maintenance (CBM) with elegance, it is required to analyze 

uncertainty associated with the deterioration process and 

ambiguity of future operation. However it is a difficult task 

to deal with this uncertainty because it arises from a variety 

of sources, and is filtered through complicated non-linear 

system dynamics. In order to find out the resolution, several 

uncertainty representations such as interval mathematics, and 

fuzzy have been already introduced.  

4. CONCLUSION 

On-line monitoring for redundant instrument channels is 

applied to the CNS of a research reactor for hydrogen trip 

parameters, and it shows the contribution of this result to 

adjust the maintenance schedule more efficiently. The 

aforementioned vibration monitoring system is used for a 

kind of prognostics suitable to a research reactor, and 

prominent prognostics models suitable to the research reactor 

were proposed to exploit this application, and consideration 

of the uncertainty was shortly addressed. Thanks to the high 

performance of new prognostics methodology, the 

application of the on-line monitoring and prognostics to the 

research reactor seems to be very bright in the near future. 
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ABSTRACT 

The heavy truck industry is a highly competitive business 

field; traditionally maintenance plans for heavy trucks are 

static and not subject to change. The advent of affordable 

telematics solutions has created a new venue for services 

that use information from the truck in operation. Such 

services could for example aim at improving the 

maintenance offer by taking into account information of 

how a truck has been utilized to dynamically adjust 

maintenance to align with the truck’s actual need. These 

types of services for maintenance are often referred to as 

condition based maintenance (CBM) and more recently 

Integrated Vehicle Health Management (IVHM). 

 
In this paper we explain how we at Scania developed an 

expert system for adapting the maintenance intervals 

dependent on operational data from trucks. The expert 

system is aimed at handling components which 

maintenance experts have knowledge about but do not find 

it worth the effort to create a correct physical wear-model 

for. 

 
We developed a systematic way for maintenance experts to 

express how operational data should influence the 

maintenance intervals. The rules in the expert system 

therefore are limited in what they can express, and as 

such our presented system differs from other expert 

systems in general.  

 

In a comparison between our expert system and another 

general expert system framework, the expert system we 

constructed outperforms the general expert framework 

using our limited type of rules. 

1. INTRODUCTION 

Expert systems have been around for a long time (Durking, 

1990; Russel & Norvig, 2010). They have been successfully 

used in a variety of applications ranging from diagnosing 

medical problems (Buchanan & Shortliffe, 1984) to 

facilitate space exploration (Marsh, 1988). Today the term 

expert system is not used to any large extent, especially not 

in industry, now days they are often referred to as rule 

engines. In this paper we will use the term expert system 

and not rule engine. 

 

Scania Commercial Vehicles (Scania) is a manufacturer of 

heavy trucks, coaches and engines for industrial and 

marine usage. We at Scania have investigated how an 

expert system could be used for improving the maintenance 

of our products. The aim is to achieve perfect alignment 

with the maintenance program of a Scania product with the 

actual maintenance needs of the product. Using on-board 

sensors from our vehicles we collect data of how the   

vehicle is utilized. This operational data together with  

expert  knowledge, captured in a type of expert system, is 

used to adapt the maintenance program to match each 

vehicle individual maintenance needs. 

 

This paper is focused on describing the design 

considerations developing such adaptive system. We also 

relate our system to other general expert systems. The rest 

of the paper is organized as follows: In the next section we 

will look at rules and expert systems in greater detail. Then 

the current solution of vehicle maintenance at Scania is 

presented after that we present our proposed solution, its 

implementation and the findings from comparing it with a 

general expert system. The last section is dedicated to 

discussion and conclusions and finally we give pointers to 

future work.     

2. EXPERT SYSTEMS AND RULES 

An expert system has two major settings of operation, one 

when the knowledge base is updated and one when using 

the knowledge base.  

 

In the former case an expert’s knowledge of a domain is 

captured and inserted through the user interface. The 

information is then stored in the knowledge base in a 
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suitable format for the inference mechanism. In the latter 

case a user (or computer) post a question using the user 

interface and the inference mechanism infer an answer 

which is presented for the user. 

Expert systems are beneficial when developing advanced 

software systems because they fulfill the need of separating 

out the expert knowledge from the source code. This 

separation is typically beneficial for easy maintenance of the 

knowledge base over time. Re-use of proven inference 

mechanisms is also facilitated using this approach as the 

inference mechanism can be an external software module.    

2.1. Rules 

Rules come in different flavors, but there are two dominant 

types, production rules and logic programming rules. As 

noted in the paper by Kowalski and Sadri (Kowalski & 

Sadri, 2009), these two types of rules have traits which 

overlap but also have differences between them. In this 

paper we will make a simple distinction between them and 

use the term production rules for rules which use a forward-

chaining inference mechanism and logic programming rules 

as rules which use a backward-chaining inference 

mechanism. For a clarifying paper about these inference 

mechanisms, see (Shapiro, 1987). 

 

Basically the main difference between the two inference 

mechanisms is how search is conducted. In a search 

problem setting we have a certain goal and a current state, 

i.e. where we are now. If we choose to search from the 

current state until we find the goal, we are doing forward-

chaining inference. If we start from the goal and search 

(backward) until we find a path to the current state, we are 

doing backward-chaining inference.  

 

In a rule based system this type of search are conducted in a 

knowledge base together with a question or new fact. The 

type of inference mechanism is closely related to what type 

of reasoning we are interested in. For example are we 

interested in answer(s) to a certain question or do we want 

to see the implications of new facts that we just observed? 

 

Typical heuristics for choosing one inference mechanism is 

to consider what event that trigger the problem solving. If 

the trigger is a new fact then the exploration of 

consequences given the new fact is naturally handled by 

forward-chaining mechanism. If on the other hand the 

trigger is a query to which an answer is required they are 

naturally handled by backward-chaining.  

 

Other general rules for guidelines for choosing inference 

mechanism are to investigate the branching of the search 

space, i.e. depending upon the knowledge base. If the 

average state in the search space has more successors than 

predecessors backwards-chaining is desirable. If the average 

state has fewer successors than predecessor it is desirable to 

use forward-chaining. These two inference mechanisms can 

also be mixed. 

 

3. HEAVY TRUCK MAINTENANCE – CURRENT SITUATION 

AT SCANIA 

Today the maintenance plan for Scania vehicles is set when 

the vehicle is sold. This is typically done by sales 

personnel together with the buyer by selecting one of a 

set of predefined maintenance plans that best matches the 

vehicle specifications and the buyers intended usage. 

 

The predefined maintenance plans are developed and 

maintained by skilled personnel having knowledge about 

both the products and customer's usage. Vehicle usage is 

divided into six typical applications types. For each 

application type and vehicle specification, a cyclic 

maintenance plan is given as the number of kilometers 

between maintenance occasions with fixed maintenance 

protocols. 

 
Maintenance is always done in a cycle of S-M-S-L 

occasions, where S = Small, M = Medium, and L = Large 

are different maintenance modules for maintaining 

different sets of components. 

 
There   are   a   number   of   problems   with   the   way 

maintenance plans are created today: 

 
1. Much responsibility is put on the sales personnel to 

know the product as well as the customer's usage of 

the product. 

2. Once created the plans are seldom updated even if 

the application of the vehicle changes. Thus, it is 

possible that the maintenance a vehicle receives does 

not correspond to its needs. 

3. Although the fixed S, M, and L modules make it 

convenient to plan, they contain maintenance points 

that do not need to be grouped together with the 

effect that some components are maintained more 

than necessary. 

4. The current maintenance plans are coarse in the sense 

that the precision in the type of application must be 

fitted into one of the six types of application. Therefore 

the experts dictating when maintenance ought to be 

done, use a safety margins given the uncertainty of 

the actual usage of a particular vehicle. This has two 

consequences, one is that plans are not individualized 

to the degree that they could be and the second 

consequence is that components are maintained more 

than necessary. 
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4. PROPOSED SOLUTION’S SCOPE, AIMS AND MOTIVATION 

Many problems with the current situation can be improved 

with a system for Integrated Vehicle Health Monitoring 

(IVHM), see (Ian K. Jennions et al., 2011; Dunsdon & 

Harrington, 2008). Using modern IT technologies 

communication between Scania trucks and our system is 

feasible. This includes acquiring operational data from a 

specific trucks while in operation, this data can then be used 

to calculate the maintenance need of a vehicle.  

This computation of the maintenance need can be done in a 

verity of ways with different complexities. Ranging from 

computer models that capture the maintenance point 

physical characteristics to simple preset deadlines, 

dependent on some operational data, which dictate when 

maintenance should be done.  

The aim of our expert system was to capture the knowledge 

of our maintenance experts in a systematic and user friendly 

manner. The system was design so that the maintenance 

experts should be able to edit “rules” them self and also able 

to verify them.  

 

The intension of the system was that it should be used when 

experts “know” how operational factors, measured via 

operational data, affect the maintenance need of a 

component, but we are not interested in creating a complex 

and fully verified maintenance model for the component. 

The reasons of why we want to use the expert system and 

don’t want to create a “full” model can be motivated by the 

fact that the cost of creating such a model is regarded as to 

high compared to its benefits.  

 

As a truck from Scania consist of around 80 to 160 unique 

maintenance points related to different components. 

Currently we have created four “full” maintenance models 

for components with vital importance and this figure will 

probably rise in the future. But for maintenance points that 

will not have “full” models an expert system seems like a 

logical way to address the need for individualized 

maintenance from a technical and business oriented view.             

4.1. Expert system design 

To create our expert system we firstly removed the 

maintenance points from their S, M and L modules and let 

the maintenance experts themselves define new 

maintenance points. Thus improving the precision as 

maintenance point no longer needs to be lumped together.  

 

When experts express rules regarding maintenance points 

they need to convey information about “which specification 

is the maintenance point valid for?” and “when is the 

maintenance point valid?” The first question is specified by 

part-numbers used by Scania when assembling a truck.  The 

second question is specified by intervals utilize three basic 

types of information; mileage, operational hours and static 

time.  

 

Mileage is self-explanatory, operational hours is defined as 

time when the engine is running and static time denotes 

calendar time. For example can an interval be defined by 

opHours_cond(0,+inf), which denotes that a rule is valid 

for a whole vehicles lifetime, as it is valid from 0 operating 

hours to infinity (inf) operating hours. Mileage is measured 

in km, operational time in hours and static time in days. 

 

This interval validity condition was requested by the 

maintenance experts as they wanted to be able to express 

different rules for different ages of a component, i.e. check a 

chassis for cracks do not to happen frequently when a truck 

is new but when it’s old it needs to be done more often. This 

type of rule also put a demands on the system to keep track 

of events which causes reset of the three type of conditions, 

for example even how unlikely it may be, if we replaced  the 

chassis on a truck.  

4.1.1. Operational data 

Before we look in to how the experts can use operational 

data to influence the maintenance point we have to look at 

the characteristics of operational data at Scania trucks.  

 

Operational data is captured in episodes, i.e. from time t0 to 

time t1. These episodes can be of varying length, trucks with 

wireless telemetric can export episodes at a preset 

periodicity, while trucks not having wireless telemetric 

might have episodes that are equal to their operational time 

between workshop visits.  

 

Three different data formats exist for operational data, 

scalar, vector and matrix format. Measurement for average 

fuel consumption is a scalar value, i.e. 

fuel_consumption(53) = 53 liter / 100 km, which is 

calculated for an episode. Vectors can for example be the 

altitude(VeryLow, Low, Medium, High, VeryHigh), 

VeryLow = less than 110m, Low = 110m to 990m, Medium 

= 990m to 1950m, High = 1950m to 3000m, VeryHigh = 

3000m or more over sea level.  

 

The value for operational data variables are aggregated in 

bins and reflect the amount of time the truck is used under 

conditions for a particular bin. The same is true for matrix 

bins, but each bin has two conditions to adhere to. For 

example we could have a matrix measuring load in tons on 

the y-axis and speed of the truck on the x-axis.  

4.1.2. Expressing how operational data influence 

maintenance 

Using the three types of operational data collected from 

Scania products maintenance experts can via rules express 
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boundaries for deadlines and how operational data should 

influence maintenance deadlines. 

 

Rules have boundaries to make the maintenance point rules 

well defined, each rule has a minimum, maximum and a 

base value for at least one of three basic types and all three 

basic types can have these values. These values define the 

deadline span of the maintenance point and its central value, 

i.e. the base value. The application of the rule can never 

result in a lower value than the minimum value defined or 

higher than the maximum value defined.   

 

For example can we use the basic type km and define the 

minimum value = 50 000 km, base value = 100 000 km and 

maximum value = 150 000 km.  

 

Using numbers in range [-9, 9], the users can express how 

one instance of operational data influence the basic types for 

a specific rule. For example if we have the expression 

altitude(4, 2, 1, -3, -8) with the base values as defined 

above and an operational data episode from a truck with the 

following values altitude(0.1, 0.3, 0.6, 0, 0), where the 

aggregated values are normalized. This outcome for a rule is 

calculated in two steps, first the impact score in this case  4 

* 0.1 + 2 * 0.3 + 1 * 0.6 + -3 * 0 + -8 * 0 = 1.6 then the we 

apply the impact score onto the basic types, in this case as 

the value is positive 150000 – 100000 / 9 = 5556, 5556 *1.6 

+ 100000 = 108889. Hence in this case the system would 

output 108889 km as deadline for this particular 

maintenance point.  

 

More generally the impact is calculated as follows: 

 

 
∑ ∑              
          
             

           
 (1) 

 

Where the op_factors is the operational data influence 

specified by the maintenance expert, ranging from -9 to 9. 

The value can be set when answering the question “how 

much impact should we assign to observing this operational 

data in the relation to the base value and in what 

direction?” 

 

Calculating the basic type outcome given impact: 

 

       {
   

            

 
             

          
            

 
      

 (2) 

 

The maintenance expert is free to set the basic types base 

value anywhere between the minimum value and the 

maximum value. If it is set in the middle of these two values 

the “steps” will be equally long on each side of the base 

value, i.e. an impact value of 2 and -2 will amount in the 

same increase respectively decrease in the basic type. 

Setting the base value allows the expert to change how the 

impact will affect the outcome.  

 

When the impact is zero the outcome is the base value and 

when it is 9 the outcome is the maximum value and -9 

correspond to the minimum value. When experts define 

rules and use vector and matrix data which are distributions, 

it is unlikely that the impact will come close the endpoints 

of (+/-) 9.  

 

However scalars do not have any predefined bins and it is 

up to the experts to create the bins and set the influence 

value of (-/+) 9 for each bin. For example 

fuel_consumprion(from, to, influence_value), where from 

and to define the lower resp. higher bound for the bin. The 

scalars behave differently from vectors and matrix 

distributions in that one bin will get a 1 and the rest of the 

bins zero. Hence the influence value should be set with 

caution for scalars. 

 

In conclusion a maintenance expert defines the following 

values for a rule: ValidSpecification, 

BasicRuleIntervalCondition, Min, Base, Max, 

ExpertMaintInfluenceList. 

5. IMPLEMENTATION 

We implemented the system in SICStus Prolog, see (Mats 

Carlsson et al., 2013). One of the motivations of choosing 

this language is that Prolog uses a backwards chaining proof 

(resolution) to prove questions posted to it together with 

goals and facts in its knowledge base (or program). This fits 

fine with our intention of creating a system that answers the 

maintenance needs given a trucks operational data and 

specification. 

 

Using this programming language you get a complete and 

sound and tested theorem-prover “for free”, which made it 

an ideal language for our purposes. Other expert system 

frameworks could have been chosen, which we will 

elaborate further upon at the end of the paper, but the 

primary reason is our limited and restrictive “rules”, that did 

not need any fancier expert framework.  

 

To ensure better modularity we used the Rule Interchange 

Format (RIF) (W3C, 2013) standard proposed by W3C. The 

standard is supported by a number of expert systems, for 

example IBM Websphere and ILOG JRules, OntoBroker, 

Oracle Business Rules (OBR) etc. To ensure backwards 

compatibility and development of new knowledgebase 

releases, we utilized Prologs blackboard functionality, using 

version and status as keys to a certain blackboard. Version 

is just a version number and status can be one of 
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development, testing and released. Essentially a blackboard 

is a memory area where we post one knowledge base.  

 

We created a webb-based GUI using AJAX technology for 

creating and simulating rules. The GUI also check rule 

validity, i.e. that the base value is higher than the minimum 

value and lower than the maximum value.  

 

The expert system is a separate module and runs on a server 

exposing its services through the PrologBeans interface. Our 

solution make is possible to keep track of different user 

sessions and service many requests simultaneously. We 

have aimed for the modules to be self-contained with a clear 

interface. The expert system has two main services, 

loadRules and useRules. Loading a rule set check that it is 

syntactical correct, while semantics are pushed to the GUI, 

i.e. checks that intervals are defined correct etc. We also 

facilitate expert’s creation of new rule sets and updates to 

existing rule sets by addRule and removeRule.   

6. COMPARISON WITH OTHER SYSTEMS 

The initial motivation for using a programming language as 

Prolog for implementing the expert system was to have the 

freedom to change the system depending on the need from 

the users and to explore different solutions to the problem.  

 

There are a number of different expert systems available, 

both commercial and open-source. There does not exist, to 

the author’s knowledge at least, a multitude of systematical 

comparisons of expert systems. But one comparison of rule 

engines has been done in the field of Semantic Web which 

recommended for the interested reader (Senlin Liang, et al., 

2009).   

 

One of the more successful open-source tools is Drools (Red 

Hat, 2013).  Drools is part of the JBoss platform. It is an 

open-source software that aims at being “…a unified and 

integrated platform for Rules, Workflow and Event 

Processing”. To investigating how our expert system 

performance is comparable to other established general 

expert systems, we choose Drools to compare with. The 

reason was mainly its availability as it is open source 

software and partly because it is well established.  

 

The experimental setup was as follows:  

We implemented the same type of reasoning in Drools as 

we do in our system. Then we created knowledge base’s 

consisted of a base set of 1000 rules, each of these rules 

hade truck specification conditions (TSC) not matching an 

intended query. Into this knowledge base we injected rules 

at random that had TSC that matched the intended query. 

The TSC consisted of: ValidSpecification and 

BasicRuleIntervalCondition as mentioned before. Two 

ValidSpecification conditions were used for all rules. The 

number of the injected rules, where 60, 80 and 100. This 

procedure was repeated 10 times, so in total 30 rule bases 

was created, each with an random injection of rules, and 

equally many queries was made. For each query the CPU 

time was measured and the amount of memory used.   

In Table 1 the amount of time (in milliseconds) for each 

system to answer a query is shown. The number of matches 

at each query is 60, 80 and 100 respectively. The minimum, 

average and maximum time is shown for the 10 queries. 

 

Table 1. The minimum, average and Maximum CPU time 

in milliseconds used to answer the 10 queries with 60, 80 

and 100 matches. 

 

  
60 

 
80 

 
100 

MI AV MA MI AV MA MI AV MA 
Drools 172 179 204 188 206 298 204 229 313 
Prolog 109 129 187 109 125 156 109 139 187 

 
The memory consumption is always the same when using 

Prolog, probably because its allocated memory in chunks 

and the different sizes of rule set does not render in need of 

more memory allocation. Drools on the other hand allocate 

different memory sizes on each run. See Table 2 for an 

overview, using the same structure as in Table 1 but 

measuring the memory needs in megabytes. 

 

Table 2. The minimum, average and maximum memory 

used in megabytes used to answer the 10 queries with 60, 

80 and 100 matches. 

 

  
60 

 
80 

 
100 

MI AV MA MI AV MA MI AV MA 
Drools 120 197 247 53 203 253 136 205 267 
Prolog 3,9 3,9 3,9 3,9 3,9 3,9 3,9 3,9 3,9 

 

One possible reason for the big memory needs for Drools 

compared with Prolog is that the rules cannot be written as 

compact as in Prolog. In Prolog a rule is one line, in Drools 

the same rule is written in around 40 lines. This extra size of 

the rule set is possibly an explanation of the extra time 

needed by Drools to answer the queries. 

 

From the experiment it evident that our system outperforms 

Drools, both when it comes to response times and memory 

consumption. 

7. CONCLUSION 

We have presented a systematic way of capturing expert’s 

knowledge in the field of heavy truck maintenance. The 

suggested way of making use of expert knowledge through 

an expert system is motivated for the bulk of components 
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that we want to maintain, but do not want to create an 

advanced model for.  

 

To achieve adaptive maintenance for vehicle’s components 

we think our solution has a given place when considering a 

balance of cost and speed of creating rules in our system 

compared to more advanced models. Thus we believe this 

approach will be a starting point for adaptive maintenance 

for a majority of components.     

 

 The implementation we made also showed that our solution 

outperforms a leading off the shelf product. This is 

encouraging results and suggests that we are on the right 

track when developing our system.  

 

What we need to investigate further is how verification of 

the rule base can be improved, i.e. checking the rule set for 

soundness and completeness. Completeness is probably 

easy to check, if each vehicle get a maintenance plan from 

the rule set, for each of its components that should be 

maintained, the rule set is complete. Soundness is a bit 

harder as it involves some measurement of quality. In this 

case we are considering automatic detection of outliers, to 

point users towards potential errors in the rule set.   

 
Somewhat related to automatic verification of the rule set is 

the use of Machine Learning (ML) (Mitchell, 1997) 

techniques for learning rules and supporting the users 

creating rules. In such a setting components (maintenance 

points) could be coupled with operational data and 

presented for the maintenance experts, their task would then 

be to label each components maintenance point with the 

three basic types of intervals.  

 

After sufficiently many components have been given 

intervals we could then use ML to generalize from the 

examples to generate new rules for the rule set. This rule set 

could be expressed in the same format we described earlier, 

making the rule set a white box from a maintenance expert’s 

perspective.    
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ABSTRACT 

This work investigates the field of Integrated Vehicle Health 

Management (IVHM) and more specifically on the 

components which are producing or consuming electricity. 

Firstly, diagnostic and prognostic characteristics are 

defined. This allows later, from the mapped characteristics, 

to sort the most relevant methods for critical components. 

The mapping leads finally to define some scientific issues to 

be solved in order to improve the diagnostic and prognostic 

of such components. 

1. INTRODUCTION 

IVHM is defined by (Jennions, 2011) as “The unified 

capability of a system of systems to assess current or future 

state of member system health and integrate that picture of 

system health within a framework of available resources and 

operational demand”. One of the purposes of the IVHM is to 

improve the availability of the vehicle to be able to achieve 

its mission (Benedettini et al., 2009). It offers online on 

board processes for components, and integrated processes 

with tactical and strategic level decision making to get on a 

dynamic decision of the maintenance based on an 

assessment of “real” hardware health. In that way, IVHM 

can provide the critical components, sub-system or system 

different diagnostic or prognostic processes, alone or 

combined (Balaban et al., 2010). This proactive 

consideration is the cornerstone of the Prognostics and 

Health Management (PHM) philosophy defined (Uckun et 

al., 2008) as “PHM connects failure mechanisms to system 

life-cycle management”. To implement this proactive 

vision, it is necessary to investigate the methods of 

diagnostics and prognostics suitable to the field of 

Integrated Vehicle Health Management (IVHM) and more 

specifically to critical components which are those 

producing or consuming electricity (Wilkinson et al., 

2004).This state of the art of diagnostic and prognostic 

methods addresses this problem.. According to this context, 

firstly, the paper defines diagnostic and prognostic 

processes individually but also coupled to establish a 

mapping of their characteristics. After the identification of 

these different characteristics, it focuses on their 

applications on critical components corresponding to those 

producing or consuming electrical energy. This allows from 

the general mapping, to sort the most relevant methods for 

these critical components. The mapping leads finally to 

define some scientific issues to be solved in order to 

improve the diagnostic and prognostic of such components. 

2. GLOBAL DIAGNOSTIC AND PROGNOSTIC DEFINITIONS 

2.1. Diagnostic 

The diagnostic process is generally defined as the actions 

for the detection, localization, and identification of the cause 

of failure/breakdown (EN 13306, 2001). (Isermann, 1984) 

also takes into account the estimation of failure/ breakdown 

following its identification, to allow the reuse of this 

estimation in a process of reconfiguration of the system 

(Zhang & Jiang, 2008). 

The diagnostic process has two main characteristics: type of 

methods and steps of the process. The first characteristic is 

the type of methods. (Venkat & Raghunathan, 2003) 

classify fault diagnosis methods into three classes: 

 Quantitative model-based methods 

 Qualitative model-based methods 

 Process history based methods 

Another characteristic is the steps of diagnostic process. A 

decomposition of the process can be found  in the ISO 

13374-1 (ISO, 2003): 

 Data Acquisition 

 Data Manipulation 

 State Detection 

Guillaume Bastard et al. This is an open-access article distributed under 

the terms of the Creative Commons Attribution 3.0 United States 

License, which permits unrestricted use, distribution, and reproduction 

in any medium, provided the original author and source are credited. 
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 Health Assessment 

In summary the diagnostic process can be defined as the 

actions for the detection, localization, identification and 

estimation of the cause of failure/breakdown, characterized 

by three specific methods and four steps.  

2.2. Prognostic 

During the last decade, many definitions and methods were 

proposed in the field of prognostic. (Lebold & Thurston, 

2001) define prognostic as “the ability to perform a reliable 

and sufficiently accurate prediction of the remaining useful 

life of equipment in service. The primary function of 

prognostic is to project the current health state of equipment 

into the future taking into account estimates of future usage 

profiles”. (Byington et al., 2002) defines prognostic as “the 

ability to predict the future condition of a machine based on 

the current diagnostic state of the machinery and its 

available operating and failure history data.” 

The prognostic process has two main characteristics: type of 

methods and steps of the process. The first characteristic is 

the type of methods. Generally, prognostics have been 

classified into three types of methods (Byington et al., 2002) 

(Jardine et al., 2006) : 

 Based on experience / statistic 

 Data driven / based on artificial intelligence 

 Model based 

Another characteristic of prognostic is the steps of 

prognostic process. (Voisin et al., 2010) have proposed 

generic prognostic steps: 

 To Initialize State and Performances 

 To Project 

 To Compute RUL (Remaining Useful Life)  

In summary  the prognostic process can be define as the 

ability to perform a reliable and sufficiently accurate 

prediction of the future condition of a system based on his 

current level of degradation (calculated or from a diagnostic 

process), projected into the future, characterized by three 

specific methods and three steps. 

2.3. Diagnostic and Prognostic Combination 

Diagnostic and Prognostic can be combined in several ways, 

by coupling methods or by coupling steps at the same 

hierarchical level of the system, or between two different 

levels. Further details will be provided later in the document 

for the combinations highlighted for critical components. 

3. METHODS OF DIAGNOSTIC AND PROGNOSTIC IN CASE OF 

ELECTRICAL ENERGY MANAGEMENT SYSTEMS 

To map the previously defined characteristics, the 

components are separated into several classes, in relation to 

their functions in an electrical energy management 

distributed architecture (NATO, 2004) (producer, consumer, 

adapter, energy storage) and their technological 

heterogeneity (electronic, electromechanical, optronic). 

Each component will be mapped to the characteristic 

“method” (previously defined) applicable for the diagnostic 

and prognostic processes. Only methods that can provide 

fault estimation for the diagnostic process will be 

mentioned, all other methods can be connected to the survey 

of (Venkat & Raghunathan, 2003) and provides no added 

value. 

3.1. Energy Producers Components : Rotary Machinery 

Systems 

For diagnostic, quantitative model-based methods are 

available based primarily on Motor Current Signature 

Analysis (MCSA) (Haus et al., 2013), on Current Spectrum 

Analysis (Didier et al., 2007) or on the current amplitude 

demodulation (Amirat et al., 2010). 

For prognostic, (Lee et al., 2014) data driven and model 

based methods has been applied on rotary machinery 

systems and he introduces several challenges and scientific 

issues relatives to this component. 

3.2. Energy Adapter Components 

For prognostic, (Goodman et al., 2007) defines a method 

based on the data of the current transformer, his reliability, 

and monitoring of various energy conversion parameters for 

power supply. (Impact Technologies, 2011) develops 

empirical methods based on the physics of components 

linking the transistor temperature to the Pulse-Width 

Modulation (PWM) duty cycle, which can be classified into 

degradation model based prognostic. Also (Balaban et al., 

2010)  introduces a model based on the physics of transistor, 

and data obtained from accelerated degradation. 

3.3. Energy Storage Components 

For diagnostic, a quantitative model based on multi-scale 

Extended Kalman Filter (EKF) (Hu et al, 2011) could be 

employed. 

For prognostic, data driven methods can be used (Nuhic et 

al., 2013), or methods based on artificial intelligence using 

learning algorithms (Chen, 2011). (Pecht, 2011) proposes a 

physical model based method for Li-Ion batteries. 

3.4. Energy Consumer Components : Electronic 

Controller - Avionic 

For diagnostic, (Vichare, 2006) defines several quantitative 

model based methods for extracting the conditions of use of 

components from external monitoring (external sensors) or 

directly from the signals generated by the component. 

For prognostic, The most widely used methods in the field 

of electronics are physics-of-failure (PoF) model based 

methods that use parameters on the conditions of uses, 

system life cycle, to identify potential failure and estimate 
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the Remaining Useful Life (RUL). These methods are being 

developed on various components, from electronic 

controllers, to semiconductor microprocessors, via digital 

electronic components. For example (Impact Technologies, 

2011) defines methods applicable to components using 

Global Positioning System (GPS) or Radio Frequency (RF). 

(Scanff et al., 2007) presents the results of methods on 

online replaceable avionic systems, comparing the use of 

prognosis for maintenance, through experience based 

methods (used independently of the component), with 

system life consumption methods (model based). 

For combination, (Pecht & Jaai, 2010) defines in his 

roadmap applied on the development of electronics PHM 

methods, the possibility of developing hybrid methods 

(fusion prognostic approach) coupling the benefits of data 

based methods with model based methods.  

3.5. Energy Consumer Components : Electromechanics 

– Optronics 

For diagnostic, quantitative model-based methods of 

condition monitoring can be applied to the mechanical part 

(Hameed et al., 2009). 

For prognostic (Impact Technologies, 2011) has developed 

a suite of model based methods for EMA Flight Control 

Actuators components. (Baysse et al., 2013) also provides 

model based methods for estimation of the state of an 

optronic system associated with a decision criterion to allow 

an adaptation of maintenance policies from the observed 

state of the system (settling time of the cooling machine). 

In summary, for diagnostic, a number of quantitative model-

based methods for fault estimation can be used. Only energy 

adapter components and electronic controller or avionic 

have a lack of fault estimation methods due to their physical 

reality, faults are generally abrupt in electronic components. 

For prognostic, in most referenced work, methods 

incorporate few data for the step “To Project”: only the 

current level of degradation is used and the system is 

covered by a single usage scenario for the projection. For 

combination few methods are available and the uncertainty 

is not quantified facing the use of hybrid methods. For all of 

these cases, component level methods are available, but they 

are not reused in an energy management system vision. 

4. NEW CHALLENGE 

The mapping leads finally to define some scientific issues to 

be solved in order to improve the diagnostic and prognostic 

of such components for implementing the proactive vision 

of IVHM: 

 For diagnostic, combining diagnostics and prognostics 

to integrate the two sub-processes together could allow 

the use of fault estimation of diagnostic in prognostic 

process by merging “Health Assessment” step in 

diagnostic with “To Initialize State and Performances” 

step in prognostic. 

 For prognostic, there is a need of contextualization of 

prognostics based on the operating environment of the 

vehicle: The methods need to be parameterized in 

accordance with the contextualization (e.g. mission, 

conditions, and environment) of the component.  

 For combination hybrid approach to diagnostic and/or 

prognostic need to be explored for coupling the type of 

methods or step of the process. Uncertainties of these 

hybrid methods need to be quantified. 

 For all of these cases, investigations need to be done to 

build an energy management system from all of the 

component methods. This need must necessarily lead us 

to investigate system level issues. More investigation 

need to be done for combining diagnostic and 

prognostic of component-level and provide a system 

approach focusing more particularly to service oriented 

vision that need to be rendered to the users by the 

system functions (to travel, to be protected etc.), as well 

as his associated targets (environmental impact, travel 

time etc.). 
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ABSTRACT 

After the stepwise implementation of health management 
systems in form of diagnostic on-board maintenance sys-
tems in the latest generation of aircraft (e.g. AiRTHM (Air-
bus Real-Time Health Monitoring) – Airbus, AIMS (Air-
plane Information Management System) – Boeing, AHEAD 
(Aircraft Health Analysis and Diagnosis) – Embraer) and 
other technical equipment such as jet engines (Engine Con-
dition Monitoring – MTU, Performance Based Logistics – 
GE) or trains (Remote Condition Monitoring – Future Rail-
way), the pressure is high for an evolution of this technolo-
gy.  Integrated Vehicle Health Management (IVHM) repre-
sents a set of capabilities that enable sustainable and safe 
operation of components and subsystems within aerospace 
platforms. [Rajamani, 2013]. The next step in IVHM is the 
ability to give prognoses on the Remaining Useful Life 
(RUL) of a system or component and the structure of the 
aircraft. This approach is covered in the term “Prognostics 
and Health Management” (PHM). PHM in this context 
consists of Integrated Systems Health Management (ISHM) 
and Structural Health Monitoring (SHM). To put that step 
into practice in an industrial environment, it is inevitable to 
weigh up costs vs. benefits in a Cost-Benefit Analysis 
(CBA). This trade-off is subject of the following investiga-
tion. A methodology is presented with which it is possible 
to evaluate PHM on aircraft level and examples are given to 
show its applicability. The study shows that, under the as-
sumptions made, a PHM system can benefit the design and 
operation of future civil aircraft. The dimensioning of struc-
tures can be modified, maintenance processes adjusted, 
system reliability, aircraft availability and safety increased. 
With the help of the results presented herein and further in-
depth studies of the aircraft structures/systems of interest, a 
sufficiently well-founded evaluation of the possible costs 
and benefits of the implementation of this advanced ap-
proach on the PHM technology can be performed. 

1. INTRODUCTION 

Integrated Vehicle Health Management is a highly promis-

ing game changer for the design and operation of civil air-

craft. Over the last 50 years, this technology has gone 

through major development steps. An overview of the evo-

lution of IVHM in commercial aviation is given by [Hölzel, 

2013]: 

 
Figure 1: Evolution of HM/IVHM in Commercial Avia-

tion [Hölzel, 2013] 

Prognostics as the next level of IVHM integration is defined 

by [Goebel, 2010] as a prediction of “damage progression 

of a fault based on current and future operational and envi-

ronmental conditions to estimate the time at which a com-

ponent no longer fulfils its intended function within the 

desired bounds”. Prognostics can be based on the results of 

accurate diagnostic systems and data-driven and/or physics-

based models. Depending on the level of integration, differ-

ent implementation approaches for PHM systems are distin-

guished by [Hölzel, 2013] in Figure  2. This paper deals 

with the 3
rd

 level, the integration in the conceptual design 

phase: 
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The main requirements for a complex system such as a civil 

airplane have to be decided on before the actual develop-

ment starts in order to control the committed costs. In later 

development stages, the implementation of new technolo-

gies leads to higher investments. In an early design phase, 

major changes to the architecture of a plane are still possible 

and the greatest benefit is expected. With this approach, the 

amount of unscheduled maintenance and the number of No-

Fault-Found (NFF) events can be reduced, while the com-

ponents’ use is safer and based on their actual condition. 

With the help of PHM, the overall platform safety and oper-

ational availability can be increased, whereas system redun-

dancies and structural safety factors can be reduced. As a 

consequence, a decrease in the weight of the airplane is 

achieved. This allows for further savings by snowball ef-

fects such as the decrease of required thrust level or wing 

area due to lower weight and generates revenues in form of 

additional passenger or freight capacity and lower fuel con-

sumption.  

Benefits of PHM as found in various literature (e.g. 

[Wheeler, 2010] or [Banks, 2005]) include: 

 Reduction of maintenance and operational costs, espe-

cially through reduction of unscheduled events and at-

tributed costs for delays, cancellations and material 

(Condition-Based Maintenance) 

 Faster and more accurate troubleshooting during 

maintenance events 

 Ability to trend and predict the Remaining Useful Life 

(RUL) of a component prior to failure and resulting op-

timized component use 

 Increase in operational/dispatch reliability and air-

craft/fleet availability 

 Inventory management optimization (spare parts) and 

intelligent aircraft route allocation (maintenance centers) 

Examples of PHM systems for the analysis can consist of a 

PZT
1
 sensor network connected with fiber optic cables gen-

erating & capturing guided Lamb waves, acousto ultrasonic 

patches, Eddy Current, thermography etc. with the respec-

tive data processing e.g. in the ACMS (Aircraft Condition 

                                                           
1 Lead zirconium titanate 

Monitoring System). A variety of sensors specialized on 

certain functionalities for Systems Health Management, 

such as sensors for current, vibration, flow, pressure are 

used for the evaluation. Especially on systems level, a lot of 

data can be retrieved from already installed Built-In Test 

Equipment (BITE) as shown e.g. by Taleris’ “Intelligent 

Operations”, a service by GE and Accenture focused on 

improving efficiency by leveraging aircraft performance 

data, prognostics and recovery [http://www.taleris.com/].  

Most of the current literature is focusing on the technical 

feasibility of PHM solutions on component level or Systems 

Engineering approaches for requirements and implementa-

tion but only few authors show its quantitative benefit. To 

fill this gap, the following thread is chosen for this project: 

[Speckmann, 2008] states: 

“Due to current maturity level of the SHM technologies, the 

economic benefits are not yet available for customer and 

cannot be realistically reached before 2008.” Six years 

later, the PHM technologies are more mature and the 

awareness for this technological evolution in aircraft design 

and operation is growing. Now is the time to make the 

stakeholders aware of its economic benefits and potential 

gains in order to foster innovation. 

2. APPROACH 

The methodology implemented in this project makes it pos-

sible to evaluate the effects of PHM on different levels. The 

aircraft systems as well as the structure are examined sepa-

rately according to ATA-chapters. In order to achieve repre-

sentative results, the qualitative influences of PHM are 

translated into a “Transfer Function” to show the economic 

benefit by means of Cost-Benefit Analysis (CBA). This 

analysis can be used as an argument for the quantitative 

evaluation of the implementation of the new PHM technol-

ogy. The improvements of a PHM system for aircraft struc-

ture, systems, maintenance and availability are estimated 

with the help of the DLR-internal CBA-tool, the “Multi-

Technology Aircraft Demonstrator” (MTAD) (Figure 4): 

• A/C systems + structures 
• Evaluation parameters 
• Selection of relevant 

systems 

Qualitative 

influence 

• Quantification of influence 
• Possible realization of 

prognostic systems 
• Effects on A/C design 

Transfer 

function • Evaluation of PHM 
influences 

• Effect on A/C performance 
• Economic impacts on 

operation 

Quantitative 

results 

Figure 2: Implementation approach based on the level of 

integration [Hölzel, 2013] 

Figure 3: Project thread 
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With this tool, it is possible to evaluate new technologies in 

terms of costs, emissions and socio/eco efficiency. The new 

technology in form of innovative materials, systems or 

structural layout is translated into a Transfer Function to 

compare its effect on aerodynamic, weight and propulsion 

efficiency with a reference aircraft. With the integrated life-

cycle calculation, it is possible to compute economic values 

such as the Net Present Value (NPV) or Internal Rates of 

Return (IRR) for the aircraft operator and ecological emis-

sions in form of CO and NOx. The base of comparison for 

the studies is a single aisle short-range aircraft such as the 

A320. The scenario is the application of PHM on future 

aircraft, e.g. an A320 successor.  

3. RESULTS 

After a thorough literature research on the mentioned topics 

and performance of respective CBA calculations, results of 

the project include: 

 Qualitative evaluation of Prognostics and Health Man-

agement on structural and system level  Benefits in 

terms of weight savings, Operational Interruption (OI) 

reduction – availability increase, maintenance task esca-

lation, effective use of RUL, Direct Maintenance Cost 

(DMC) savings, Non-Recurring Costs (NRC) & Recur-

ring Costs (RC) 

 Long-term benefit: Reduction of redundancies on system 

level and changed structural design principles (damage 

tolerance, allowables, safety factors) based on better 

knowledge of structural state and prognostic capability; 

verification and specification of 10 % acquisition cost 

reduction potential ([MacConnell, 2007]) 

 Quantification of benefits concerning aircraft design and 

operation on ATA-level based on Transfer Function and 

advanced CBA; verification and comparison with 30 % 

life-cycle cost reduction potential ([MacConnell, 2007]) 

3.1. Structural Health Management 

The possibility of Structural Health Monitoring on aircraft-

level is evaluated parametrically from an operational (sen-

sors, cables, power and data transmission) and economic 

point of view (added mass, higher fuel consumption vs. 

reduced structural reserves, higher availability, reliability) 

and response surfaces are created. 

One example for the alternative structural design with PHM 

is the dimensioning of stringers in the fuselage. According 

to current design principles, stringers have to be assumed 

broken if the skin is torn. With a PHM system, e.g. in form 

of a network of PZT sensors and Lamb waves, the stringer 

can be monitored intact above a skin crack and therefore 

this design constraint is no longer valid. According to 

[Assler, 2004], the allowable stress level can be increased 

by 15 % which leads to 15 % weight savings (assumed 

linear correlation between weight and stress level [Speck-

mann, 2006]). The saving sums up to around 190 kg. The 

weight of sensors and cables for this SHM is approximated 

to be 15 kg which reduces the savings to 0.04 % of the air-

craft Operating Empty Weight (OEW). Through snowball 

effects, the wing weight can be reduced by 0.01 % and the 

fuel consumption drops accordingly. A trade-off study 

shows that this corresponds to a delta of app. 1.5 $/kg OEW. 

This reduction of 1.5 $/kg for an OEW of 41,680 kg results 

in 62,520 $ per aircraft. Multiplying this by the number of 

expected sales gives an idea about the margin for NRC and 

RC for the implementation of the PHM system. Assuming a 

market of 1,000 aircraft results in a budget of 62,520 k$, or 

43,764 k$ with a profit margin of 30 % for the OEM (Origi-

nal Equipment Manufacturer). An approximation of NRC & 

RC via percentage values from [Curran, 2004] and [Lam-

mering, 2012] shows that a completely new design of the 

stringers can be possible with this saving but a partial re-

design due to changed constraints is more cost-effective. 

False alarm events have to be taken into consideration, re-

ducing the overall benefit. On the other side, an increase of 

the flight safety is a clear benefit which cannot be expressed 

in monetary value.  

Another benefit of PHM is the escalation of maintenance 

intervals. The inspection interval (II) is derived from “lives” 

ni (number of flights) and a ‘life factor’ jL as explained in 

[Teske/Schmidt, 1999]:     
     

  
 

As an example, the life factor for bearings in service doors 

can be reduced from three to one due to the new SHM in-

spection method that guarantees continuous monitoring, e.g. 

in form of oil debris and vibration analysis (see [Goebel, 

2005]). Thereby, the check interval can be increased from 

13,500 to 40,500 FH which leads to the escalation or even 

deletion of the maintenance task.  

Assuming similar factors for other inspections, the escala-

tion of the entire structural inspection check from e.g. 12 to 

13 years leads to an NPV increase of about 4 % within 16 

Figure 4: Multi Technology Aircraft Demonstrator 

[Weiss, 2007] 
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years. This however requires a thorough assessment of all 

carried out tasks. The ultimate goal regarding scheduled 

maintenance is a complete performance monitoring with a 

warning from the PHM system when the performance drops 

below a certain threshold (see Figure 5): 

 

Figure 5: Escalation of scheduled maintenance tasks 

This way, scheduled checks can be reduced to a minimum 

and unscheduled events become predictable. 

3.2. Systems Health Management 

On ATA-level, systems that are particularly suited for PHM 

and have a great effect on reliability/availability, installa-

tion, maintenance effort, operational costs (e.g. avionics, 

hydraulics, air conditioning) are analyzed parametrically. In 

this “top-down” approach, parameters such as the weight, 

functionality and numbers of parts of a system are used to 

generate a function for the necessary sensors and the possi-

ble impact on NRC, RC and weight on the cost-side op-

posed to benefits such as reduced maintenance effort and 

Operational Interruptions. This parameterized approach will 

have to be validated and improved by a detailed analysis of 

the respective aircraft systems.  

A paradigm shift in system redundancy can be triggered by 

PHM systems. If failures of systems can be predicted with a 

sufficiently high reliability (depending on the Failure Effect 

Category), redundancies can be reduced in order to save 

weight, complexity and potential failure causes. Examples 

are air conditioning packs (~82 kg), one of the three hydrau-

lic systems (~290 kg each) or parts of the oxygen systems. 

An explicit consideration of the respective failure categories 

per component/function is hereby inevitable. For the sys-

tems, a major benefit of a PHM system is expected through 

a reduction of OI rates. These interruptions lead to delays 

and cancellations which can be reduced with the help of 

PHM. Another benefit is the DMC reduction through less 

scheduled & unscheduled maintenance tasks, troubleshoot-

ing times and spare part logistics. 

The possible benefits of PHM for ATA21 – Air Condition-

ing are discussed in the following example: With an as-

sumed amount of parts with different part numbers of 67, 

seven basic functionalities (compression, distribution, pres-

surization control, heating, cooling, temperature control, 

moisturize/air contamination control) that need to be cov-

ered. Temperature, flow, pressure and hygrometer sensors 

are necessary to guarantee the functionality and the amount 

of sensors adds up to 13 (without already installed BITE) 

(no. of parts * 0.2; Pareto approach: 80 % of failures caused 

by 20 % of components/functions) with a corresponding 

weight of 0.938 kg. As most of the systems are already 

supplied with power and data transfer, no additional effort 

will be assumed. A typical OI-rate (per 100 revenue flights) 

for ATA21 as mentioned by [Feng, 2013] is around 0.044. 

On the basis of the Pareto distribution (80 % of failures 

covered by 20 % prognostic capability), a new OI rate of 

0.044 * 0.2 = 0.0088 is approximated. The corresponding 

mean saving per 100 flights (mean delay of 63 min with 

costs of 8,000 $/hour) is estimated to be around 296 $. Con-

sidering flights over 16 years with 4.5 flights/day, app. 

296 $/100 * 26280 = 77,789 $, which corresponds to an 

NPV of 38,037 $ after 16 years with a constant discount rate 

of 0.1, are expected. Multiplying this with the number of 

expected sales of 1,000 aircraft results in a budget of 

38,037 k$, around 26,625,900 $ with a profit margin of 

30 % for the OEM. This expected gain justifies the costs for 

development and RC for the PHM system.  Approximated 

via the weight and number of parts of the system, NRC 

(development & installation) are estimated in relation to the 

approximate costs of 1 B$ for a new aircraft development 

and account to app. 10 M$ for ATA21. The remaining delta 

can be used for the inevitable recurring maintenance costs 

which are approximated via percentage values taken from 

[Lammering, 2012]. Reduction of redundant features such 

as the second air conditioning pack allows for further weight 

savings of 82 kg with respective snowball effects, around 

one extra passenger. The corresponding reliability for the 

functionality of the pack has to be guaranteed by the system. 

3.3. Response surface 

As the examples shown here are assuming a perfect PHM 

system and no technical system can guarantee 100 % relia-

bility, a trade-off for uncertainties and failure possibilities 

has to be carried out. For this project, the approach is to 

show this interdependency by means of response surfaces 

for different degrees of reliability and coverage of the PHM 

system (see Figure 6). The run of the curve is approximated 

with a logistics function as used for many statistical prob-

lems (Figure 7). It is based on the assumption that very low 

coverage as well as low reliability lead to low savings due to 

high risk and lack of credibility. Respectively, very high 

coverage and reliability are required for according savings 

as dramatic improvement opportunities are exhausted.  
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Figure 6: Response surface for weight savings  

plotted against coverage and accuracy 

 

 

Figure 7: Logistics function for response surfaces 

Other relations, such as combinations of logarithmic, linear 

and exponential functions are possible. 

4. CONCLUSIONS 

A methodology for the assessment of costs and benefits of 
PHM systems for future civil aircraft is presented and its 
applicability is shown on the basis of case studies. Exempla-
ry business cases on structural parts such as stringers and 
systems like air conditioning prove that the potential bene-
fits in terms of weight reduction, increased availability and 
reduced maintenance efforts can outweigh additional 
weights, costs for the development and maintenance of the 
diagnostic/prognostic system. By using a parametric ap-
proach, the analysis can be further refined. The uncertainty 
of prognostics and failures of the PHM system is represent-
ed by the use of response surfaces for the potential benefit.  

5. OUTLOOK 

In order to state the costs and benefits for respective struc-
tures and systems more thoroughly, a dedicated assessment 
on component level is suggested with the FMECA process 
and decision metrics as justification method, also for future 
certification. The potentials of already installed BIT/BITE 
and the architectures for new sensors, data transfer and 
processing will have to be evaluated. A detailed economic 
assessment with different scenarios for the various sys-
tems/structures and complete analysis of task escalation/ 
deletion for respective components can take place in order 
to implement PHM for the most cost-effective systems. 
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ABSTRACT 

Aircraft maintenance is one of the most important cost items 

faced by the operators of air fleets and is a major contributor 

to the aircraft life cycle cost. An aircraft fly-by-wire flight 

control system has a total of primary flight control actuators 

ranging from 10 to 20 depending on the aircraft type, with a 

failure rate of 1/1000 flight-hours; therefore, a health 

monitoring system for primary flight control actuators, able 

to recognize an actuator degradation in its early stage could 

greatly contribute to optimize the maintenance operations, 

reduce the airplane downtime and prevent missions 

interruptions.  

This note presents the initial part of an ongoing research 

project aimed at developing a prognostic and health 

management system for fly-by-wire primary flight control 

actuators. A key feature of the project is to develop a PHM 

system for these actuators suitable for the flight control 

actuators of legacy airplanes, which are poised to operate 

for still a long time, and not only for those of new aircraft. 

The primary flight control actuators of fly-by-wire flight 

control systems of existing aircraft are electrohydraulic 

servoactuators with a typical configuration and complement 

of transducers, and there is no practical possibility of 

introducing additional sensors. For this reason, the research 

activity was directed towards the study of algorithms able to 

identify faults only by using the already available 

information of the servoactuators state variables. 

The implemented algorithms are a combination of 

mathematical and neural network based ones, and the 

identification of degradations was performed by the analysis 

of the response of the servoactuators to a sequence of 

selected stimuli provided in preflight or postflight. The 

servovalve current and the feedback position are processed 

by dedicated algorithms in order to obtain significant 

indicators of the servocatuator health condition. The values 

of the indicators obtained during the sequence of stimuli are 

analyzed in combination with those obtained in the past.  

This is performed by the neural network part of the 

algorithm which allows a reliable identification of presence 

and of type of a degradation. 

The results obtained from the initial part of the research 

activity are interesting and encouraging. Individual 

degradations of the servoactuator parameters have so far 

been addressed and the algorithms for identifying them have 

been developed. All that makes up the foundations of the 

future research activity which will be focused on analyzing 

the effects of simultaneous multiple degradations and to the 

estimation of the remaining useful life. 

1. INTRODUCTION 

The development of a PHM system suitable for flight 

control actuators of legacy airplanes presents numerous 

problems related mainly to the impossibility to increase the 

number of sensors, and consequently of information, useful 

to recognize the appearance of a degradation. Comes the 

need to best combine the information already acquired not 

only for control of the servosystems but also the normal 

control operation, as the hydraulic oil temperature. In 

addition, the inability to detect the external loads acting on 

the wing surface makes it necessary to think of prognostic 

systems capable of working when the aircraft is pre/post-

flight condition. Injection of selected stimuli during ground 

test offers the possibility to recognize all possible 

degradations of servovalve; however the detection of 

actuator degradations is not possible by the reason of 

absence of external load. (Borello, Dalla Vedova, Jacazio 

and Sorli 2009). 

The research conducted to date has focused on the analysis 

of major degradation of the servovalve: toque motor 

degradation, spool friction increase, growth of radial 

clearance between spool and sleeve, feedback spring 

degradation and progressive clogging of a nozzle. 

2. MATHEMATICAL MODEL 

Studies of the effect of different degradations on the 

behavior of the servo actuator were carried out using a high-
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fidelity mathematical model especially implemented in 

Matlab-Simulink. In the realization of the mathematical 

model all the typical nonlinearity that characterizes the 

behavior of electrohydraulic servoactuators have been taken 

into consideration.  

The servovalve torque motor model is implemented with 

equations presented by E. Urata (2007) which express the 

magnetic flux as a function of the armature position and 

dielectric constant of air-gap and also give the possibility to 

set an unequal air-gap thickness. In the dynamic equations 

of servovalve flapper and spool the influence of feedback 

spring force, coulomb and viscous friction and structural 

stiffness and damping, have been considered, furthermore 

each parameter can be modified in order to simulate a 

degradation of the components. The servovalve control 

flows resulting, for each port, from the difference of the 

contributions coming from supply and  direct to return. Each 

contribution is a function of: spool position, pressure drop, 

radial clearance and discharge coefficient; the last term, in 

turn, depends on the port opening, Reynold number and on 

the ratio between corner radius and port opening.  

The hydraulic actuator is describe by a 3-DOF model: the 

first two are the rod and the surface position, the last 

concerns the deformation of the attachment point of the 

actuator with the fixed structure. Special attention has been 

committed to modelling the actuator coulomb friction, 

which is function of dynamic condition of the rod and as 

well as of geometrical and physical data of the seal and of 

pressures in the actuator chambers.  

The model also includes the electronic part of the 

servosystem, the LVDT demodulator, the analog-to-digital 

converters, the data refresh rate and the computation time of 

the fly-control-computer are implemented. In the purpose of 

increasing the fidelity of mathematical model electrical 

noise in A/D converter and the noise that corrupts the 

servovalve current command are taking in to account. 

2.1. Environmental condition 

The dynamic response of a servoactuator is also a function 

of the external loads and environmental conditions, such 

influence, in particular severe conditions, can become 

particularly significant and to vary heavily indices of health 

considered in the PHM system.  

Being the prognostic test carried out in pre/post-fight the 

aerodynamic force is due exclusively from atmospheric 

wind, this has been modeled as the sum of three distinct 

components:  

 Velocity of atmospheric wind, obtained by a normally 

distributed random number. 

 Wind gust, whose amplitude and duration are 

determined by a random number generator. Gusts occur 

in a random pattern. 

 Turbulence, whose characteristics are calculated using 

the Dryden model. 

The airstream velocity thus obtained is used with 

atmospheric density and drag coefficient to obtain the 

aerodynamic force. 

The environmental conditions, in particular the temperature, 

influence also the oil properties, hence the mathematical 

model includes a set of equations that updates the values of 

density, viscosity and bulk modulus. 

2.2. Mathematical model validation 

The mathematical model has been validating using a set of 

experimental data consisting of frequency responses for 

different command amplitude and step response. As shown 

in Figure 1 the behavior of the model and the experimental 

data are particularly close. 

Figure 1: Step response model validation 

The absence of experimental data concerning degrade 

servosystems did not allow to validate the mathematical 

model in fail to failure condition, however the physical-

based nature of the model affords to hypothesize a good 

fidelity of the model even in case of those parameters that 

allow to introduce degradations.  

3. INDICATORS OF HEALTH CONDITION 

The PHM system developed is based on the observation, 

both punctual and the trend, of significant indicators of the 

servocatuator health condition. The indices are obtained by 

the processing of servovalve current and feedback position 

get as response of servoactuators to a sequence of selected 

stimuli provided in preflight or postflight.  

The command set is designed to maximize the number of 

health index obtainable, it is 1.8 s long and it is the 

combination of four different input kinds (Figure 2): 

 Sinusoidal command: amplitude equal to 5% of half 

stroke at 5 Hz frequency. 

 Step command: amplitude equal to 10% of half stroke. 
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 Constant command: amplitude equal to 10% of half 

stroke. 

 Ramp command: ratio equal to 22 mm/s. 

 
Figure 2: PHM command 

The analysis of the servosystem response, both in terms of 

feedback position and servovalve current, to the different 

stimuli allows to obtain eleven different indices, five from 

the position and six from the current. The indexes are 

presented in Table 1 divided by type of command. 

Table 1: Indicators of health condition 

Command Position Index Current index 

Sinusoidal 

Gain Min current 

Phase 
Max current 

Mean current 

Step Rise time Decries time 

Constant Limit cycle Limit cycle 

Ramp command Rate error Rate current 

The tests were carried out to identify the influence of each 

degradation on the health index had put in evidence that is 

possible correlate univocally the trends of the indices to 

deterioration, since any deterioration involves a unique set 

of variation of the indices. In addition, tests have revealed a 

greater sensitivity of the indices of the current with the 

degradations, but at the same time also a greater sensitivity 

to noise and environmental conditions. Therefore it was 

decided to combine the two types of indices: those of the 

current for an early identification of the degradation and the 

position indices to have a reliable estimate of the condition 

of the servosystem. 

3.1. Nominal variation range 

The indicators of health condition, exactly as the response 

of the servo system in its entirety, are strongly influenced by 

environmental conditions, by the aerodynamic loads and 

noise. The value of the index is also dependent on the 

geometric tolerances provided for in the design phase, thus 

making impossible to define a nominal values of the index 

valid for a family of servoactuators. Several tests carried out 

in order to define a range of variation of the indexes in the 

absence of degradation. The simulations have been conduct 

combining different environmental conditions and changing 

flow and pressure gain of the servovalve, in accordance with 

technical specification. The limits so defined have been 

multiplied by a safety factor in order to avoid false alarms. 

This procedure has allowed to identify a range, function of 

the oil temperature, in which the variation of the health 

index taken into consideration does not involve the presence 

of a degradation. 

4. PHM ALGORITHM 

The developed PHM algorithm is composed of three 

different subroutines, which work jointly to detect and 

identify degradations. The first subroutine is dedicated to 

the processing of the current and position recorded during 

the pre/post-flight test and it is also designated to detecting 

the appearance of the degradations. The algorithm, after 

obtaining the value of the health indices, compares these 

with the range of nominal variation relative to the oil 

temperature. If an index comes out from these limits for 

three consecutive times, the algorithm indicates the presence 

of a degradation and activate the second subroutine that 

identifies the type of degradation. In case the first 

degradation has already been identified, the first subroutine 

will begin to analyze the historical trend of indices in order 

to identify the occurrence of further failure. The appearance 

of a new degradation induces a variation of the rate of the 

trend indices, which entails a peak in the second derivative 

curves of all of the indexes in the same instant. Due to of the 

derivatives performed, and the identification of the 

necessary filtering of the indices takes place with about 

twenty acquisitions delay. The detection of a second failure 

involves the start of the third subroutine. 

The second subroutine includes in its interior a double layer 

neural network, which receives in input the values of the 

eleven indices normalized and limit between -1 and 1; 1 

corresponds to the upper limit of nominal band exceeded by 

the index, -1 the lower limit exceeded. The output of the 

neural network is the indication of the type of degradation. 

The neural network has been subjected to a learning process 

in order to optimize its operation, the training function 

adopted working in according with Levenberg-Marquardt 

optimization (Levenberg 1944 and Marquardt 1963). During 

the process of learning 1366 set of indices taken at random 

from the simulation results has been provided to the neural 

network. 

The third subroutine is composed of a double layer neural 

network with eighteen inputs and seven outputs. The first 

seven inputs are the indication of the previous degradation, 

1 indicates that the degradation was detected previously 

otherwise the corresponding value is zero; the other eleven 

inputs correspond to the signs of the peaks  of  second 

derivative of the indexes trend detected from the first 

subroutine. Using the supplied input the neural network 

provides to classify the new degradation. The neural 

network has been trained using the same learning function 
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used for the second subroutine; in this case ten different 

multiple degradations were provided in input. 

5. RESULTS 

The algorithms have been tested using data generated by a 

large number of simulations, in which the environmental 

and operative conditions were changed in order to test all 

the possible operative scenarios.  

In the following sections the results of validation algorithms 

tests are present divided in single degradation and multiple 

degradations case. In both cases the algorithms were proved 

robust and the nominal variation ranges were reveled very 

useful for the purpose of avoid false alarms due to 

fluctuations of the indices caused by changes of 

environmental conditions.  

5.1. Single degradation detection 

The classification of a single degradation carried out by the 

second subroutine provides very interesting results. The 

neural network has been verified with a large numbers of set 

indices, 13631, the classification was successful except that 

in 42 cases, corresponding to an error less than 0.31%.  The 

classification errors appear mainly in the presence of high 

degradations level, where all the degradations affect in a 

similar way all the indices. The test results are shown in the 

Figure 3. In Table 2 are shows the average values for each 

failure in which occurs the recognition and classification. 

Figure 3: Single degradation classification 

Table 2: Value of recognition 

Degradation Value 

FMM degradation 6.2 % 

Feedback spring yield 10.3 % 

Feedback spring backlash 13.4 μm 

Clogging nozzle 2.5 % 

Spool radial gap 8.8 μm 

Spool friction 5.0 N 

5.2. Multiple degradation detection 

The recognition of multiple degradations present greater 

difficulties than in the single case, since the recognition of 

the peaks of the second derivative is particularly complex 

because of the fluctuations in the indices due to disturbances 

and noise. 

The verification of the algorithms has been made by 

providing twenty different combinations of degradations as 

input to the neural network. In seventeen cases the 

classification of the second degradation was successful, in 

two cases there were errors of classification, while in one 

case the second degradation was not recognized. 

Failure to recognize the degradation has occurred in the case 

of a reduction of the magnetic force and friction, the main 

cause of the error is the small amplitude of the peeks as a 

consequence of the low influence of friction on the health 

indices. 

6. CONCLUSION 

The research carried out has proved particularly interesting 

and can provide an excellent starting point for a prognostic 

algorithm able to estimate the RUL. The algorithms 

developed are particularly robust and do not require a priori 

knowledge of the fail to failure mechanisms, since all 

strategies identified to recognize and classify the 

degradations are based on the analysis of certain data 

acquired during normal operation of the actuator. 

An improvement in the quality of research will be to 

validate the algorithms by using experimental data, in 

addition the reliability of algorithms could increase 

exploiting the data from an entire fleet of aircraft, thus 

optimizing both the neural networks and nominal range of 

indices variation. 
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