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ABSTRACT

The proposed method is an extension of an existing Kalman
Filter (KF) ensemble method. While the original method has
shown great promise in the earlier PHM 2008 Data Chal-
lenge, the main limitation of the KF ensemble is that it is
only applicable to linear models. In prognostics, degrada-
tion of mechanical systems is typically non-linear in nature,
therefore limiting the applications of KF ensemble in this
area. To circumvent this problem, this paper propose to ap-
proximate non-linear functions with piecewise linear func-
tions. When estimating the RUL, the Switching Kalman Fil-
ter (SKF) is able to choose the most probable degradation
mode and thus make better predictions. The implementation
of the proposed SKF ensemble method is illustrated by imple-
menting on NASA’s C-MAPSS Dataset as well as the PHM
2008 Data Challenge Dataset. The results show the effective-
ness of the SKF in detecting the switching point between var-
ious degradation modes as well as the improved accuracy of
the SKF ensemble method compared to other available meth-
ods in literature.

1. INTRODUCTION

In the recent years, Condition Based Maintenance (CBM)
has been garnering more attention as it allows industries to
better plan logistics as well as save cost by replacing parts
only when needed. Prognostics being one of the key en-
ablers of CBM has therefore also gained more interest in both
academia and industry. The key notion of prognostics, albeit
not the only one, is to determine the time remaining before a
likely failure. This value is commonly termed as the Remain-
ing Useful Life (RUL) of the system.

Pin Lim et al. This is an open-access article distributed under the terms of
the Creative Commons Attribution 3.0 United States License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

In this paper, a novel prediction algorithm is presented which
is applicable to non linear degradation models. The algo-
rithm assumes that degradation model can be described by
a number of piece-wise linear functions. With each of these
linear functions describing a linear model, the most suitable
model to describe the degradation at any point in time is cho-
sen based on the Switching Kalman Filter (SKF) algorithm.
The remainder of this paper is structured as follows, Section 2
first introduces the datasets used to evaluate the effectiveness
of the algorithm. Section 3 follows by presenting a simple
single neural network approach to evaluate the difficulty of
the problem. Finally in Section 4 the SKF ensemble approach
is presented and evaluated.

2. DATASET

In this paper a total of two datasets were used. The datasets
used are namely the PHM 2008 Data Challenge Dataset as
well as the NASA C-MAPSS Dataset (Saxena & Goebel, 2008),
the C-MAPSS dataset is further divided into 4 sub-datasets
as shown in Table 1. Both datasets contain simulated data
produced using a model based simulation program (named
Commercial Modular Aero-Propulsion System Simulation,
C-MAPSS) developed by NASA (Saxena, Goebel, Simon, &
Eklund, 2008).

Table 1. Dataset details (Simulated from C-MAPSS)

C-MAPSS PHM
Dataset FD001 FD002 FD003 FD004 2008
Train
Trajectories

100 260 100 248 218

Test
Trajectories

100 259 100 248 218

Conditions 1 6 1 6 6
Fault
Modes

1 1 2 2 2

1
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The data is arranged in an n-by-26 matrix where n corre-
sponds to the number of data points in each dataset. Each row
is a snapshot of data taken during a single operational cycle
and each column represents a different variable. Included in
the data are three operational settings that have a substantial
effect on engine performance.

Each trajectory within the train and test trajectories is as-
sumed to the be life-cycle of an engine. While each engine
is simulated with different initial conditions, these conditions
are considered to be of normal conditions (no faults). For
each engine trajectory within the training sets, the last data
entry corresponds to the moment the engine is declared un-
healthy. On the other hand the test sets terminate at some
time prior to failure and the aim is to predict the number of
Remaining Useful Life (RUL) of each engine of the test set.

For each of the C-MAPSS dataset the actual RUL value of
the test trajectories were made available to the public while
the actual RUL of the test dataset of PHM 2008 is not avail-
able. However, users can submit their results to the NASA
website to obtain a score limited to one submission per day.
Due to this constrain, most of the analysis done in this pa-
per will be based on the NASA C-MAPSS dataset instead of
the PHM 2008 dataset. The PHM 2008 dataset would instead
be used for comparison against other algorithms proposed in
literature.

2.1. Evaluation Metrics

2.1.1. Scoring Function

The scoring function used in this paper is identical to that
used in PHM 2008 Data Challenge. This scoring function is
illustrated in Eq. (1), where s is the computed score, N is the
number of engines, and d = R̄UL-RUL (Estimated RUL- True
RUL).

s =

N∑

i=1

si, si =

{
e−

di
13 − 1 for di < 0

e
di
10 − 1 for di ≥ 0

(1)

The characteristic of this scoring function is that it favours
early predictions more than late predictions. This is in line
with the risk adverse attitude in aerospace industries. How-
ever there are several drawbacks with this function. The most
significant drawback being a single outlier would dominate
the overall score, thus masking the true accuracy of the algo-
rithm. Another drawback is the lack of consideration of the
prognostic horizon of the algorithm. The prognostic horizon
assess the time before failure which the algorithm is able to
accurately estimate the RUL value within a certain confidence
level. Finally this scoring function favours algorithms which
artificially lowers the score by underestimating the RUL. De-
spite all these shortcomings, this scoring function is still used
in this paper in order to provide a level comparison with other

methods in literature.

2.1.2. RMSE

In addition to the scoring function, the Root Mean Square
Error (RMSE) of the estimated RULs is also used as a per-
formance measure. RMSE is chosen as it gives equal weight
to both early and late predictions. Using RMSE in conjunc-
tion with the scoring function would prevent the user from
favouring an algorithm which artificially lowers the score by
underestimating but resulting in higher RMSE. Furthermore,
various literature working on this dataset uses RMSE to eval-
uate their algorithms, inclusion of RMSE would therefore al-
low the author to compare results with those available in lit-
erature.

RMSE =

√√√√ 1

N

N∑

i=1

d2i (2)

A comparative plot between the two evaluation metrics is
shown in Figure 1. It can be observed that at lower absolute
error values the scoring function results in lower values than
the RMSE. The relative characteristics of the two evaluation
metrics will be useful during the discussion of results in the
latter part of this paper.

Figure 1. Comparison of evaluation metric values for differ-
ent error values

2.2. Data Preparation

2.2.1. Operating Conditions

Several literature (Wang et al., 2008; Peel, 2008; Heimes,
2008), have shown that by plotting the operational setting
values, the data points are clustered into six different dis-
tinct clusters. This observation is only applicable for datasets
with different operational conditions, data points from FD001
and FD003 are all clustered at a single point instead. These
clusters are assumed to correspond to the six different oper-

2
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Figure 2. Sensor values (a) before and (b) after normalization

ational conditions. It is therefore possible include the opera-
tional condition history as a feature. This is done by adding
6 columns of data representing the number of cycles spent in
their respective operational condition since the beginning of
the series (Peel, 2008).

2.2.2. Data Normalization

Due to the 6 operating conditions, each of these operating
conditions results in disparate sensor values as shown in Fig-
ure 2. Therefore prior to any testing and training, it is imper-
ative to normalize the data points to be within the range of
[-1,1] using Eq. (3). As normalization was carried out within
the range of values for each sensor and each operating con-
dition, this will ensure equal contribution from all features
across all operating conditions (Peel, 2008). Alternatively, it
is also possible to incorporate operating condition informa-
tion within the data to take into consideration various operat-
ing conditions

Norm(x(c,f)) = 2
(x− x(c,f)min )

x
(c,f)
max − x(c,f)min

− 1,∀c, f (3)

where c represents the operating conditions and f represents
each of the original 21 sensors.

3. SINGLE NEURAL NETWORK APPROACH

3.1. Method Description

The aim of this section is two-fold. Firstly as a prior to exper-
imenting with other methods, the complexity of the problem
was tested using a single Multi-Layer Perceptron (MLP) Net-
work to achieve a baseline performance. This baseline per-
formance then used for comparing the accuracy of the pro-
posed method. Secondly, the method is used to evaluate the
performance of the two different RUL functions presented in
section 3.2 below.

3.2. Arbitrary RUL Function

In its crudest form prognostic algorithms are similar to re-
gression problems. However, unlike typical regression prob-
lems, an inherent challenge for data driven prognostic prob-
lems is determining the desired output values for each input

data point. This is because in real world applications, it is
impossible to accurately determine the health of the system
at each time step without an accurate physics based model. A
sensible solution would be to simply assign the desired output
as the actual time left before functional failure (Peel, 2008;
Baraldi, Mangili, & Zio, 2012). This approach however in-
advertently implies that the health of the system degrades lin-
early with usage (Figure 3a).

An alternative approach is to derive the desired output val-
ues based on a suitable degradation model. For this data-set
(Heimes, 2008) has proposed a piece-wise linear degradation
model which limits the maximum value of the RUL function
(Figure 3b). The maximum value was chosen based on the
observations of the data and its numerical value is different
for each data-set. For the sake of simplicity, the former will be
addressed as ’linear function’ while the latter will be known
as the ’kink function’ in the remainder of the paper.

Figure 3. Comparison of degradation models. a) Linear
Degradation model, b) Piece-wise Linear Degradation Model

Each of these approaches has their own advantages. The lat-
ter case is more likely to prevent the neural network from
overestimating the RUL, it is also a more logical model as the
degradation of the system typically only starts after a certain
degree of usage. On the other hand, the former case follows
the definition of RUL in the strictest sense which defined as
the time to failure. Therefore the plot of time left of a system
against the time passed naturally results in a the linear func-
tion as shown in Figure 3a. However it should be noted that
in cases where knowledge of a suitable degradation model is
unavailable, the linear model is the most natural choice to use.

3.3. Results

For each sub-dataset within the C-MAPSS dataset, two MLPs
were individually trained using the linear and kink RUL func-
tions as desired outputs. The MLPs were then tested using the
corresponding test sub-datasets and evaluated using Eq. (1)
and Eq. (2). Due to the inherent noise in the data, in order
to capture the variance of each MLP, the whole training and
testing process was repeated for a total of 10 trials. The re-
sults from these trials are expressed in the form of box plots
shown in Figure 4 & 5.

3
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Figure 4. Scores of MLP trained with linear and kink RUL
functions.

Figure 4 shows that using the linear RUL function resulted
in comparatively much higher variance in scores. However
considering the RMSE plots (Figure 5) the variance of RMSE
values within each dataset is relatively similar. Therefore the
higher variance in scores is due to the nature of the scoring
function. The exponential term in the scoring function could
cause large deviations in the score due to a single inaccurate
estimation. The variance of the RMSE values for both MLPs
could be attributed to the inability of the single MLP to handle
noisy input data.

Figure 5. RMSE of MLP trained with different RUL func-
tions.

More importantly, all datasets show significant improvements
in both RMSE and scores when the kink RUL function is
used. The lower RMSE values obtained by using the kink
RUL function (Figure 5) is evidence that their respective lower
scores in Figure 4 is due to more accurate predictions instead
of inducing underestimation of RUL. These results agree with
Heimes (2008) that the kink RUL function is a much more
suitable degradation model for these datasets.

4. SWITCHING KALMAN FILTER (SKF) ENSEMBLE

4.1. Method Description

In order to improve the prognostic accuracy of a single MLP
implemented in section 3.3, ensemble methods are explored
to develop a more accurate and robust prognostic method. En-
semble methods are generally used to combine multiple weak
classifiers into a single strong classifier. It has been found that
ensembles would have higher accuracy and generalizability if
each ensemble members are accurate and make errors on dif-
ferent parts of the input space (Maclin & Opitz, 2011). There
are generally two main steps in creating an ensemble: The
first step is to create individual ensemble members, and the
second step to combine the output of the ensemble members.

In order for the ensemble to generate better results, the gen-
eralization of the ensemble must be improved. This can be
obtained by having diversity in the ensemble members. The
most commonly used method to create ensemble members
include input data sampling techniques such as Bagging and
Boosting (Zhou, 2012; Re & Valentini, 2011). In this paper,
networks with different network topology are used to create
ensemble members as this method has less variables to tune
as compared to boosting and bagging.

Combination of output from ensemble members is usually
taken as a weighted mean or median of the ensemble member
outputs (Zhou, 2012). The weights are usually determined
based on the training error of each ensemble member (Krogh
& Vedelsby, 1995). Peel (2008) proposed an alternative com-
bination method which uses a Kalman filter to combine the
output of several neural networks. This method has shown
great promise by wining the IEEE Gold for PHM 2008 Data
Challenge. In his work, both the training function for the
neural networks and the model used in the Kalman filter as-
sumes a linear degradation function thus limiting its applica-
tion to linear cases. This section extends this method by using
a Switching Kalman Filter (SKF) for piecewise linear appli-
cations. Thus allowing implementation of a similar ensemble
for other degradation patterns.

4.2. Ensemble Members

In this paper MLPs with different number of hidden neu-
rons are used as ensemble members. The number of hidden
neurons were randomly picked from a uniform distribution
of integers between 5 to 25 inclusive. The maximum num-
ber of hidden neurons was limited to prevent over fitting on
the training set, thus ensuring generalization on unseen data
points. A total of 4 ensemble members were generated per
ensemble.

4.3. Aggregation based on Kalman Filter (KF)

KFs and its variants have been widely used for machine learn-
ing applications. These applications range from simple state

4
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prediction (Borguet & Léonard, 2009) to training of neural
network weights using the Extended Kalman Filter (EKF)
(Singhal & Wu, 1989; Puskorius & Feldkamp, 1991). In this
paper, the traditional KF and its variant the SKF will be used.

4.3.1. Kalman Filter

The more commonly used application of the KF is as a for-
ward pass state estimator. The filter predicts the hidden states
for the next time step given the history of estimated states and
observing noisy outputs. The predicted states are considered
optimal as the filter aims to minimize the uncertainties in the
estimate (AL-Mathami, Everson, & Fieldsend, 2012). Prior
to using the KF, the system must be modeled as a linear sys-
tem as shown

xt = Axt−1 + wt
zt = Hxt + vt

(4)

where xt is the state vector at time t, A is the transition ma-
trix, zt represents the output observations, H is the observa-
tion matrix, wt and vt are the process noise and observation
noise respectively. Based on the model a recursive process is
then carried out whereby the prediction step is carried out by

x̂t = Ax̄t−1
P̂t = AP̄t−1AT +Q

(5)

where Pt is the state covariance matrix and Q is the process
error covariance matrix. The KF then updates the estimate
based on the new observations. The updating step is then
carried out by the following equations

Kt = P̂tH
T [HP̂tH

T +R]−1

x̄t = x̂t +Kt[zt −Hx̂t]
P̄t = [I −KtH]P̂t

(6)

where R is the observation error covariance matrix and Kt is
the Kalman gain at time t. For illustrative purposes, the state
xt is chosen as

xt =

[
RULt

∆RULt

]
,∆RULt = RULt −RULt−1 (7)

It is therefore straight forward to express the kink RUL func-
tion as a piecewise linear function with their respective linear
KF model expressed as

Ac =

[
1 0
0 1

]
Al =

[
1 1
0 1

]
(8)

where Ac is the model for the initial constant RUL phase and

Al is the model for the linear degradation phase, assuming a
gradient of −1 for the linear degradation phase. In addition,
the outputs from individual neural networks are taken to be
the observations, therefore the observation vector zt and H
are set as

zt =




ˆRUL1

...
ˆRULn


 , H =




1 0
... ...
1 0


 (9)

where ˆRULn is the output of the nth neural network in the
ensemble. Further details of modeling the ensemble outputs
is covered in Peel (2008) and Baraldi et al. (2012).

4.3.2. Kalman Smoother

In contrast to the KF, which estimates the optimal state given
observations up to time t, the Kalman smoother aims to esti-
mate the optimal state at time t given the observations from 1
to T , where T represents the total length of data observations
(AL-Mathami et al., 2012). The Kalman smoother is an anal-
ogous backwards recursive process which estimates the states
from the end of the observation data. Therefore combining
both forward and backward pass gives the optimal estimated
state given the whole observation data.

At the last time step the variables x̃ and P̃ are initialized as

x̃T = x̄T
P̃T = P̄T

(10)

where x̃ is the smoothed state and P̃ is the smoothed covari-
ance. The smoothed states can then be calculated based on the
following recursive equations where t decreases from T − 1
to 1 (AL-Mathami et al., 2012).

Jt = (P̄tA
>)P̂−1t+1

x̃t = x̄t + (Jt(x̃
>
t+1 −Ax̃>t ))>

P̃t = P̄t + Jt(P̃t+1 − P̂t+1)J>t

(11)

4.4. Switching Kalman Filter (SKF)

Eq. (8) in the earlier section has shown that the Kink degrada-
tion function can be modeled using two linear systems. The
outputs of the ensemble members would therefore need to be
combined using the suitable KF model. This problem is fur-
ther compounded by the fact that the switching point between
the two models differ for every engine. Thus making it diffi-
cult to pre-define a rule to switch between the two models. To
circumvent this problem a SKF (Murphy, 1998; AL-Mathami
et al., 2012) is implemented to autonomously determine the
switching point.

In this application, SKF predicts the most probable hidden
discrete model given the observations and the models. The

5
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Figure 6. Directed graphical probabilistic model of SKF

graphical probabilistic model of the SKF for aggregating en-
semble methods is shown in Figure 6. Based on the figure,
the SKF determines the sequence of models which would
most likely result in the series of observations. Similar to the
KF, the SKF computes the posterior probability of the model
given the observations in two passes. The forward pass calcu-
lates P (St = j|xt, x1:t−1) while the backwards pass calcu-
lates P (St = j|xt:T ). An illustrative example of the forward
pass calculation is shown below

For each t, j:

P (St = j|xt, x1:t−1) =
P (xt|St=j,x1:t−1)P (St=j|x1:t−1)

P (xt|x1:t−1)

= 1
c
Lt(j)ΣiZ(i, j)P (St−1 = i|x1:t−1)

(12)

where

c = P (xt|x1:t−1) = ΣjLt(j)ΣiZ(i, j)P (St−1 = i|x1:t−1)
Lt = P (xt|St = j, x1:t−1) ∼ N(xt, Ajxt−1, Qj)
Z(i, j) = P (St = j|St = i, x1:t−1)

(13)

It should be noted thatZ(i, j) is a predefined transition matrix
which contains the probability of transition from one model
to another. Thus, based on this calculated probability, the
most probable model can be chosen. The backwards pass can
be calculated in a similar manner and therefore will not be
repeated here. For more details on the SKF, readers can refer
to Murphy (1998) and AL-Mathami et al. (2012)

In this implementation, the output of the trained ensemble
members are taken to be the observations and switching mod-
els corresponds to the two KF models expressed in Eq. (8).
The most probable sequence of models is first determined by
the SKF, the corresponding KF models can then be applied
to aggregate the outputs of individual ensemble members to
obtain the estimated RUL value. Figure 7 shows an example
of the SKF algorithm estimating the degradation of an engine
from the training set. It can be observed that the predicted
switching point between the two models by the SKF corre-

Figure 7. Example of SKF Ensemble output on a training
engine

sponds well with the predefined kink location in the RUL
function. It should also be noted that the initial conditions
of the Kalman filter is re-initialized for each engine.

4.5. Results

In this section the performance of the SKF ensemble is illus-
trated and compared with the original KF ensemble method.
The KF ensemble was recreated to the best of knowledge
based on the details given in Peel (2008). Furthermore, re-
sults obtained from Section 3.3 are also included for com-
parison purposes to highlight the effectiveness of ensemble
methods. Similar to previous sections, all the experiments
were repeated for a total of 10 trials, the results obtained from
these trials are then expressed in the form of a boxplot.

4.5.1. C-MAPSS Dataset

Figure 8 illustrates the scores of all methods described in
this paper for all four sub-datasets within C-MAPSS. It is
observed that both linear MLP or KF ensemble displayed
high mean and large variance of scores. In addition all four
methods achieved RMSE values of the same order (Figure 9).
Based on these observations, coupled with the characteristics
of each evaluation metric (Figure 1), it can be implied that
the high scores are caused by certain outliers in predicting
the RUL. This phenomenon could probably be attributed to
the use of the linear RUL function which might lead to over-
estimating of the RUL, thus resulting in significantly higher
scores.

In addition, the high scores exhibited by the Linear MLP and
KF ensemble resulted in a badly scaled boxplot making it dif-
ficult to illustrate and compare the relative performance of the
remaining algorithms. Therefore more in depth comparison
of the four methods will focus mainly on the RMSE values
instead (Figure 9).

6
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Based on Figure 9, it can also be deduced that the SKF en-
semble outperforms that KF ensemble significantly. The SKF
ensemble achieved much lower RMSE values which is most
likely attributed to the use of the kink RUL function to model
the degradation of the system. These results reaffirm the hy-
pothesis arrived in Section 3.3 that the kink RUL function is
a much more accurate model for this dataset.

Figure 8. Scores of various algorithms for all C-MAPSS
Datasets.

Figure 9. RMSE of various algorithms for all C-MAPSS
Datasets.

As expected, both KF and SKF ensemble methods resulted
in significantly lower RMSE variance compared to their re-
spective linear and kink MLPs. This can be attributed to the
ability of ensembles to aggregate the outputs of individual
ensemble members thus resulting in a lower variance. In ad-
dition, the use of KF helps to filter out noise from the output
of the ensemble (Figure 7) thus resulting in increased robust-
ness against inherent noise in the data. The same observa-
tions can be seen in Figure 10 which shows in greater detail
the comparison box plot between the SKF ensemble and the
single MLP trained with a kink training function. In addition
to obtaining lower variance in RMSE values, the SKF ensem-

ble also exhibited lower mean RMSE values. Thus showing
that the SKF ensemble outperforms the original MLP in both
accuracy and variance in predictions.

Figure 10. RMSE of MLP with Kink training function and
SKF for all C-MAPSS Datasets.

Comparing the scores between the Kink MLP and the SKF
ensemble (Figure 11) for all datasets showed that both meth-
ods achieved scores within the similar range. However the
SKF slightly out performs the Kink MLP by exhibiting less
variance in scores throughout the 10 trials. This phenomenon
can be similarly be attributed the ability of ensemble to be
more robust to noise as mentioned in the earlier paragraph.

Figure 11. Scores of MLP with Kink training function and
SKF for all C-MAPSS Datasets.

4.5.2. PHM 2008 Dataset

In this section, the algorithms were tested on the test dataset
for PHM 2008. The estimated RULs of 218 engines within
the dataset were then uploaded to the NASA Data Repository
website and a single score was then returned by the website.
The results were also compared with available literature that
provided suitable scores for comparison.

Based on the results it can be seen that the SKF ensemble
produces significantly lower scores and outperforms the other

7
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Table 2. Scores for various algorithms on PHM 2008 test
dataset

Methods Scores
Single MLP (Linear) 118338
Single MLP (Kink) 6103.46
KF Ensemble 5590.03
SKF Ensemble 2922.33
Gibbs Filtering (Le Son, Fouladirad, & Barros, 2012) 4170

methods. However as mentioned in Section 2, submission of
estimated RULs are limited to once a day. Thus the scores
shown in Table 3 are from a single submission. Therefore
these scores are also subject to variance as seen in earlier sec-
tions.

5. CONCLUSION

In this paper we have demonstrated the effectiveness of a
SKF ensemble for systems with non-linear degradation pat-
terns. In addition, the performance of the SKF ensmeble
on NASA’s C-MAPSS dataset has shown improvement over
other methods in literature. Implementation on these simu-
lated datasets simply serve as a proof-of-concept for the pro-
posed method at this stage. This method has also wide ap-
plications to other prognostic situations where the system in-
volved has more than one degradation mode. An example
would be where the degradation pattern of the system changes
due to external factors such as operating conditions or over-
haul maintenance. In view of the range of possible appli-
cations, the authors have plans to implement the proposed
method on a real-world dataset and validate its effectiveness.
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Borguet, S., & Léonard, O. (2009). Coupling principal com-
ponent analysis and kalman filtering algorithms for on-

line aircraft engine diagnostics. Control Engineering
Practice, 17(4), 494–502.

Heimes, F. (2008). Recurrent neural networks for remaining
useful life estimation. In Prognostics and health man-
agement, 2008. phm 2008. international conference on
(pp. 1–6).

Krogh, A., & Vedelsby, J. (1995). Neural network ensem-
bles, cross validation, and active learning. Advances in
neural information processing systems, 231–238.

Le Son, K., Fouladirad, M., & Barros, A. (2012). Re-
maining useful life estimation on the non-homogenous
gamma with noise deterioration based on gibbs filter-
ing: A case study. In Prognostics and health manage-
ment (phm), 2012 ieee conference on (pp. 1–6).

Maclin, R., & Opitz, D. (2011). Popular ensemble methods:
An empirical study. arXiv preprint arXiv:1106.0257.

Murphy, K. P. (1998). Switching kalman filters (Tech. Rep.).
Citeseer.

Peel, L. (2008). Data driven prognostics using a kalman
filter ensemble of neural network models. In Prognos-
tics and health management, 2008. phm 2008. interna-
tional conference on (pp. 1–6).

Puskorius, G. V., & Feldkamp, L. A. (1991). Decoupled
extended kalman filter training of feedforward layered
networks. In Neural networks, 1991., ijcnn-91-seattle
international joint conference on (Vol. 1, pp. 771–
777).

Re, M., & Valentini, G. (2011). Ensemble methods: a review.
Saxena, A., & Goebel, K. (2008). Phm08 challenge

data set, nasa ames prognostics data repos-
itory. Moffett Field, CA. Retrieved from
[http://ti.arc.nasa.gov/project
/prognostic-data-repository]

Saxena, A., Goebel, K., Simon, D., & Eklund, N. (2008).
Damage propagation modeling for aircraft engine run-
to-failure simulation. In Prognostics and health man-
agement, 2008. phm 2008. international conference on
(pp. 1–9).

Singhal, S., & Wu, L. (1989). Training feed-forward net-
works with the extended kalman algorithm. In Acous-
tics, speech, and signal processing, 1989. icassp-89.,
1989 international conference on (pp. 1187–1190).

Wang, T., Yu, J., Siegel, D., & Lee, J. (2008). A similarity-
based prognostics approach for remaining useful life
estimation of engineered systems. In Prognostics and
health management, 2008. phm 2008. international
conference on (pp. 1–6).

Zhou, Z.-H. (2012). Ensemble methods: foundations and
algorithms. CRC Press.

8

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

9



A Thermodynamic Entropy Based Approach for Prognosis and 

Health Management  

Anahita Imanian
1
, Mohammad Modarres

2
  

1,2
University of Maryland, Department of Mechanical Engineering, Center for Risk and Reliability, College Park, Maryland, 

20742, USA 

aimanian@umd.edu 

modarres@umd.edu 

 
ABSTRACT 

Data-driven stochastic and probabilistic methods that 

underlie reliability prediction and structural integrity 

assessment remain unchanged for decades. This paper 

provides a method to explain the Prognostics and Health 

Management (PHM) in terms of fundamental concepts of 

science within the irreversible thermodynamic framework. 

The common definition of damage, which is widely used to 

measure the reduction of reliability over time, is based on 

observable markers of damage at different geometric scales. 

Observable markers are typically based on evidences of any 

change in the physical or spatial properties or the materials, 

and exclude unobservable and highly localized damages. 

Thermodynamically, all forms of damage share a common 

characteristic: “energy dissipation”. Energy dissipation is a 

fundamental measure of irreversibility that within the 

context of non-equilibrium thermodynamics is quantified by 

“entropy generation”. The definition of damage in the 

context of thermodynamics allows for incorporation of all 

underlying dissipative processes including unobservable 

markers of damage. Using a theorem relating entropy 

generation to energy dissipation associated with damage 

producing failure mechanisms, this paper presents an 

approach that formally describes and measures the resulting 

damage.  

Having developed the approach to derive the damage over 

time, one could assess the health of structures and 

components subject to known degradation processes. This 

paper presents a prognostic approach on the basis of 

thermodynamically derived cumulative damage, whereby 

the thermodynamic entropy, as a broad measure of damage, 

is assessed.  

 

1. INTRODUCTION 

The definition of damage due to the physical mechanisms 

varies at different geometric and scales. For example, the 

definition of fatigue damage can vary from nano-scale 

through the macro-scale. At the atomic level the grain 

boundary is a likely location where atoms are more loosely 

packed. At the micro-scale damage is the accumulation of 

micro-stresses in the neighborhood of cracks. At the meso-

scale level, damage might be defined as growth and 

coalescence of micro-cracks to meso-cracks. However, 

measuring damage is subject to the physically measurable 

variables (i.e., observable marker) when dealing with 

specific failure mechanisms. For example, in the fatigue 

mechanism material density, change of hardness, module of 

elasticity, accumulated number of cycles-to-failure, and 

crack length may be used as “observable markers” that 

measure the damage. Therefore, defining a consistent and 

broad definition of damage is necessary and plausible. To 

reach this goal, we elaborate on the concept of material 

damage within the thermodynamic framework. 

Thermodynamically, all forms of damage share a common 

characteristic, which is the dissipation of energy. In 

thermodynamics, dissipation of energy is the basic measure 

of irreversibility, which is the main feature of the 

degradation processes in materials (Tang & Basaran, 2003). 

Chemical reactions, release of heat, diffusion of materials, 

plastic deformation, and other means of energy production 

involve dissipative processes. In turn, dissipation of energy 

can be quantified by the entropy generation within the 

context of irreversible thermodynamics. Therefore, 

dissipation (or equivalently entropy generation) can be 

considered as a substitute for characterization of damage. 

We consider this characterization of damage highly general, 

consistent and scalable. 

The common practice in damage analysis and prediction of 

structural life and integrity is based on the traditional 

generic handbook-based reliability prediction methods, data 

driven prognostics approaches and Physics-of-Failure (PoF) 
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methods. The traditional generic handbook-based reliability 

prediction methods such as those advocated in MIL-HDBK-

217F (U. S. Department of Defence, 1965), Telcordia SR-

332 (Telcordia Technologies, 2001), and FIDES (FIDES 

Guidance Issue, 2004) rely on the analysis of field data 

(with incoherent operating and environmental conditions), 

with the assumption that the failure rates are constant. 

Numerous studies have shown that these methods cause 

misleading and inaccurate results and can lead to poor 

design and incorrect reliability prediction and operating 

decisions (IEEE Standard 1413, 1998; IEEE Standard 

1413.1, 2002). The PoF models (Manson, 1996; Norris & 

Landzberg, 1969; Bayerer, Hermann, T. Licht, Lutz, & 

Feller, 2008; Shi & Mahadevan, 2001; Harlow & Wei, 

1998) are more rigorous in terms of employing the specific 

knowledge of products, such as failure mechanism, material 

properties, loading profile and geometry. However, such 

empirical methods are limited to simple failure mechanisms 

and are hard to model when multiple competing and 

common cause failure mechanisms are involved. Finally, the 

data driven methods such as neural networks (Byington, 

Watson, & Edwards, 2004), decision tree classifiers 

(Schwabacher & Goebel, 2007) and Bayesian techniques 

(Bhangu, Bentley, Stone, & Bingham, 2005) do not capture 

the difference between failure modes and mechanisms, 

although they can obtain the complex relationship and 

degradation trend in the data without the need for the 

particular product characteristics such as degradation 

mechanism or material properties. Moreover, these methods 

require rich historical knowledge of materials and structural 

degradation behavior that may not always be available.  

In this paper, we introduce an entropy-based prognostic 

approach to predict the Remaining Useful Life (RUL) of 

components and structures. This approach is based on the 

second law of thermodynamics and defines entropy as a 

more consistent measure of damage. As compared to other 

existing PoF or fusion prognostics methods (Held, Jacob, 

Nicoletti, Scacco, & Poech, 1999; Ciappa, 2002; Cheng & 

Pecht, 2009), this approach captures the effect of multiple 

failure mechanisms
1
, more effectively. Moreover, the results 

of entropy approach are favorably used in fracture 

mechanics, fatigue damage analysis (Bryant, Khonsari, & 

Ling, 2008; Tang & Basaran, 2003) and tribological 

processes such as friction and wear (Amiri & Khonsari, 

2010; Nosonovsky & Bhushan, 2009). Furthermore, it is a 

powerful technique to study the synergistic effects arising 

                                                           
1
 Particularly, in contrast with the empirically-based PoF 

approach which considers only the most predominant failure 

mechanisms, the definition of damage in the context of the 

entropic approach allows for the incorporation of all 

underlying dissipative processes. For example, in the case of 

corrosion-fatigue, both stress and electrochemical affinity of 

the oxidation-reduction electrode reaction (Me⇔Me
z+

+ze) 

of a metal are considered. 

from interaction of multiple processes (Amiri & Khonsari, 

2010). 

The remainder of this paper is organized as follows. Section 

2 describes our construction of the entropy model. Section 3 

describes an entropic based framework for prognosis. 

Section 4 provides a case study which explores the 

application of the proposed prognostics framework, and 

section 5 offers concluding remarks. 

2. TOTAL ENTROPY PRODUCED IN A SYSTEM 

Consistent with the second law of thermodynamics, entropy 

does not obey a conservation law. Therefore, it is essential 

to relate the entropy not only to the entropy crossing the 

boundary between the system and its surroundings, but also 

to the entropy produced by the processes taking place inside 

the system. Processes occurring inside the system may be 

reversible or irreversible. Reversible processes inside a 

system may lead to the transfer of the entropy from one part 

of the system to other parts of the interior, but do not 

generate entropy. Irreversible processes inside a system, 

however, result in generation of the entropy, and hence in 

computing the entropy they must be taken into account. 

Using the second law of thermodynamic, it is possible to 

express the variation of total entropy flow per unit volume, 

    in the form of 

              (1)  

where,   is defined for a domain   by means of specific 

entropy,    per unit mass as   ∫     
 

, and the super 

scribes   and   represent the reversible and irreversible part 

of the entropy, respectively. The term      is the entropy 

supplied to the system by its surroundings through transfer 

of mass and heat (e.g., in an open system where wear and 

corrosion mechanisms occur). The rate of exchanged 

entropy is obtained as 

 
   

  
  ∫        

 

 (2)  

where,    is a vector of the total entropy flow per unit area,  

crossing the boundary between the system and its 

surroundings, and    is a normal vector. Similarly,     is 

the entropy produced inside of the system, which can be 

obtained from Eq. 3  

 
   

  
 ∫    

 

 (3)  

where,   is the entropy generation per unit volume per unit 

time. The second law of thermodynamics states that     

must be zero for reversible transformations and positive 

(     ) for irreversible transformations of the system.  

The balance equation for entropy shown in Eq. 4 can be 

derived using the conservation of energy and balance 

equation for the mass. 

 
  

  
       (4)  
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This gives us an explicit expression for total entropy in 

terms of reversible and irreversible processes as (De Groot 

& Mazor, 1962; Kondepudi & Prigogine, 1998)  

  

  
    (

   ∑           
 
   

 
) 

 
 

  
          

   ( 
  

 
)  

 

 
    ̇

 
 

 
    

       
 

 
    

           

(5)  

where, T is the temperature,    the chemical potential,     

the heat flux,    the diffusion flow,    any fluxes resulting 

from external fields (magnetic and electrical) such as 

electrical current,    the chemical reaction rate,   the stress 

tensor,   ̇ the plastic strain rate tensor,         
       the 

chemical affinity or chemical reaction potential difference, 

  the potential of the external field such as electrical 

potential difference, and    the coupling constant. External 

forces may be resulted from different factors including 

electrical field, magnetic field, gravity field, etc., where the 

corresponding fluxes are electrical current, magnetic current 

and velocity. For example, in the case of an electric field, 

      is the electric potential,       
     , the 

current density and       , where   is the Faraday 

constant and    is the number of ions. Each term in Eq. 5 is 

derived from the various mechanisms involved, which 

define the macroscopic state of the complete system.  

By comparing Eq. 5 with Eq. 4 we can make the 

identifications as 

    
   ∑           

 
   

 
 (6)  
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(7)  

where, Eq. 6 shows the entropy flux resulted from heat and 

material exchange. Eq. 7 represents the total energy 

dissipation terms from the system that from left to the right 

include heat conduction energy, diffusion energy, 

mechanical energy, chemical energy, and external force 

energy. Eq. 7 is fundamental to non-equilibrium 

thermodynamics, and represents the entropy generation   as 

the bilinear form of forces and fluxes as 

 σ =         (  )   (i, j=1,…, n) (8)  

It is through this form that the contribution from the 

applicable thermodynamic forces and fluxes are expressed. 

When multiple failure mechanisms are involved in a 

degradation process such as corrosion fatigue, summing the 

contributions of the mechanical and electrochemical 

processes, one can write the total entropy generation for 

combined effect of plastic deformation and anodic and 

catholic dissolution as: 

        ̇   ̃      (9)  

where  ̃ is the electrochemical potential losses (over-

potential) (Imanian & Modarres, 2014). Additionally, using 

forces and fluxes enables one to take into account complex 

loading scenarios and operating conditions in computing 

entropy produced in degradation processes. 

3. RUL PREDICTION USING ENTROPY AS AN INDEX OF 

DAMAGE 

It was stated earlier that damage caused through a 

degradation process could be viewed as the consequence of 

dissipation of energies that can be measured and expressed 

by entropy such that: 

Damage   Entropy 

In the earlier discussion in this paper it was shown (Eq. 5) 

that one could express the total entropy per unit time per 

unit volume for individual dissipation processes resulting 

from the corresponding failure mechanisms.  Therefore, the 

evolution trend of the damage,  , is obtained from 

     ∫                  
 

 

 (10)  

where,     is the monotonically increasing cumulative 

damage starting at time t from a theoretically zero value or 

practically some initial damage value. In this study, the 

evaluation of damage is performed relative to the initial 

damage value. The initial damage can be calculated using 

the correlation between the rate of damage and damage at 

different stage of degradation (Liakat & Khonsari, 2014).  

When   reaches a predefined (often subjective) level of 

endurance, it may be assumed that beyond that point the 

component or structure will fail. It is worth to note that 

failure in this context is the point when an item becomes 

effectively nonfunctional (but possibly still operational) – 

i.e., failure happens when the item is no longer meeting its 

functionality requirements (e.g., acceptable performance 

level or endurance limit such as a given level of 

thermodynamic efficiency). The rate of entropy or damage 

can vary according to the type of degradation. However, 

damage in the system mounts up over time. For example, in 

the case of fatigue crack closure, while the crack as an 

observable marker of damage disappears, causing damage 

rate decrease, the damage accumulation keeps rising as 

unobservable markers of damage such as loading 

asymmetry, hardening properties, residual stresses and 

loading ratio increase (Romaniv, Nikiforchin, & Andrusiv, 

1983). 

 

Material, environmental, operational and other types of 

variability in degradation forces impose uncertainties on the 
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cumulative damage,  . Existence of any uncertainties about 

the parameters and independent variables in this 

thermodynamic-based damage model leads to a time-to-

failure distribution. Imanian et al. showed how such a 

distribution and corresponding reliability function can be 

derived from the thermodynamic laws rather than estimated 

from the observed time to failure histories (Imanian & 

Modarres, 2014). 

Currently, most of the health management of components 

and structures is based on reliability analysis and 

maintenance scheduling. However, in many cases this is 

neither sufficient nor efficient because each of these 

components can undergo different life cycles and hence 

different aging. Therefore, if maintenance or replacement is 

done solely based on reliability analysis, in most 

circumstances the components will either be abandoned 

before they have reached their end of life, or worse, they 

will fail before their scheduled replacement. 

Prognostics and health management modeling approaches 

are used to reduce the costs of the physics based 

propagation damage. The techniques included in the PHM 

provide warnings before failures happen; they also optimize 

the maintenance schedule, reduce life cycle cost of 

inspection, and improve qualification tests assisted in design 

and manufacturing. Prognostics and health management 

modeling methods are implemented through three stages of 

diagnostics, prognostics, and health management. 

Diagnostics techniques identify the operational states of a 

working component or a structure. These techniques use 

statistics features such as mean, standard deviation, 

Mahalanobis distance and Euclidean distance of a 

component’s degradation operating data (e.g. temperature, 

current, voltage, acoustic signals) to find out if the 

component is in a healthy condition or not regarding the 

feature’s level degradation (Schwabacher & Goebel, 2007; 

Bock, Brotherton, Grabill, Gass, & Keller, 2006; Fraser, 

Hengartner, Vixie, & Wohlberg, 2003). 

Prognostics methods provide information about the 

performance and RUL of components by modeling 

degradation propagation. These methods rely on the 

condition of the data which can roughly be divided into data 

driven based models and PoF based models. PoF based 

prognostics methods employ knowledge of products life 

cycle loading profile, failure mechanisms, geometry, and 

material properties. However, using PoF models is 

challenging because these methods are based on the 

interactions among multiple failure mechanisms which are 

not easy to analyze. Data driven based models are able to 

obtain the complex relationship and degradation trend in the 

data without the need for the particular product 

characteristics such as degradation mechanism or material 

properties (Amin, Byington, & Watson, 2005; Byington, 

Watson, & Edwards, 2004; Roemer, Ge, Liberson, Tandon, 

& Kim, 2005; Goebel, Saha, & Saxena, 2008). However, 

they cannot capture the difference between failure modes 

and mechanisms. 

Since entropy function includes all of the failure 

mechanisms’ dissipative energies when multiple competing 

and common cause failure mechanisms are involved, using 

it as a damage parameter for diagnosis and prognostics is 

more favorable in comparison with the PoF models and data 

driven models which merely rely on the most predominant 

failure mechanisms and the statistical analysis, respectively.  

What follows presents an entropy based prognostics method 

for RUL prediction. The proposed prognostics framework is 

depicted in Figure 1. 

 

Figure 1. RUL prediction by entropy based prognostic 

method. 

 

According to this framework the entropic base prognostics 

method can be implemented in four steps. First, the 

dissipative processes and associated data in the critical 

components under aging are determined. The identification 

of these processes and relevant parameters can be aided by 

failure modes, mechanisms, and effects analysis (FMMEA) 

which identifies the potential failure mechanisms for 

products, under certain environmental and operating 

conditions. The entropy as a parameter of damage which 

includes all the interactive failure mechanisms is quantified 

then. 

The second step is to extract the features of the monitored 

entropy data and compare them with the healthy baseline 

data features to detect anomalies. The traditional diagnostic 

approaches are mainly designed for stationary and known 

operating conditions. The problem of a fault diagnosis under 

fluctuating load and operating conditions has been 

successfully addressed by methods such as order tracking 

method (Stander & Heyns, 2005), instantaneous power 

spectrum statistical analysis (Bartelmus & Zimroz, 2009), 

and diagnosis algorithms such as clustering algorithms 

(Schwabacher & Goebel, 2007; Vapnik, 1995; He & Wang, 

2007).  

Because entropy as a parameter of degradation includes all 

observable damage markers (cracks, wear debris and pit 
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densities) and unobservable damages such as subsurface 

dislocations, slip and micro-cavities, definition of a single 

failure threshold might not be possible due to long stretch of 

damage measurement from nano-scale to macroscopic scale. 

In this case, the cumulative damage and alternatively 

entropy endurance level can be estimated through the 

measurement of certain observable damage markers. The 

correlation between the observable damage markers and 

entropy, justified by several studies (Naderi, Amiri, & 

Khonsari, 2010; Bryant, Khonsari, & Ling, 2008), enables 

the definition of failure threshold on the basis of observable 

markers.  In the other word, the damages grow, coalesce and 

eventually the weakest link among all coalesces damages 

manifests itself as an observable damage which causes 

failure.  

Additionally, records of the entropy data from historical 

data can be used to obtain the entropy to failure values. 

Entropy, as a thermodynamic state function is independent 

of the path to failure (loading values, frequency and 

geometry) and provides an overall constant failure criterion 

(Kondepudi & Prigogine, 1998; Bryant, Khonsari, & Ling, 

2008).  

The third step is to use an appropriate prognostics approach 

using entropy as an index of damage. Some of the 

conventional methods used for prognostics are artificial 

neural network (Byington, Watson, & Edwards, 2004; 

Amin, Byington, & Watson, 2005), fuzzy logic (Amiri & 

Khonsari, 2010), wavelet theory (Roemer, Ge, Liberson, 

Tandon, & Kim, 2005), support vector machine (Vapnik, 

1995), relevance vector machine (Tipping, 2000), Bayesian 

methods (like Kalman filter and Particle filter 

(Arulampalam, Maskell, Gordon, & Clapp, 2002)), time 

series analysis (Kumar & Pecht, 2007) and PoF based 

prognostics models. The application of these methods 

depends to the complexity of accumulated entropy signal 

from two extremes of periodic and purely random signal.  

The fourth and final step is RUL prediction. Remaining 

useful life is defined as the time when the entropy meets the 

failure criteria. There are different techniques for RUL 

estimation using data driven methods. For example one 

approach uses a pattern matching technique on data to 

estimate the RUL. Another strategy estimates the RUL 

indirectly by estimating damage trend, performing an 

appropriate extrapolation to the damage trend, and the 

calculation of RUL from the intersection of the extrapolated 

damage and the failure criteria (Schwabacher & Goebel, 

2007). In comparison with the end of life prediction from 

entropy trend, the conventional RUL prediction methods are 

based on a damage mechanism with different failure 

mechanisms. These various failure mechanisms with 

different failure criteria and parameters’ trends have various 

RULs which needs them to be prioritized accordingly 

(Cheng & Pecht, 2009).   

Generally speaking, using entropy as a damage parameter 

has various advantages. The entropy based prognostics 

method is capable of shortening the prognostics procedure 

by isolating the damage parameter to entropy which 

includes multiple degradation mechanisms. It offers a 

science based foundation for prognostic methods which 

could combine with the conventional data driven 

techniques, as compared to the methods suggested by 

previous studies such as fusion prognostic approach 

suggested by Cheng et al (Cheng & Pecht, 2009). 

Furthermore, it uses a constant failure threshold and 

suggests a straightforward process to predict RUL (Amiri & 

Khonsari, 2010). 

4. CASE STUDY 

The entropy based prognostics approach was employed to 

obtain the remaining useful life of the AL7075-T651 

coupons subjected to fatigue loading, using an MTS servo-

hydraulic uni-axial load frame, from Ontiveros et al. 

experimental results (Ontiveros, 2013). Geometries of the 

coupons used are shown in Figure 2. All tests were 

performed at peak stress of 248 MPa with load ratio of 0.1 

and frequency of 2Hz. Since the focus of Ontiveros et al. 

study was crack initiation, so most of experiments were 

stopped when, a crack was detected at the notch by visual 

inspection. 

 

Figure 2. Al7075-651 edge notch specimen. 

 

The formulation for entropy generation using Eq. 7 can be 

derived as 

   
    ̇

 
 

 

 
  ̇  

 

  
       (11)  

where,   is the elastic energy release rate and  ̇ is the 

damage rate variable.  

In Eq. 11, the first two terms can be captured directly from 

the hysteresis loop as depicted in Figure 3. In Figure 3, the 

largest area represents the energy dissipated due to plastic 

deformation.  The remaining portion represents the energy 

dissipation as a result of elastic damage which can be 

observed as degradation of the Young’s modulus (Lemaitre 

& Chaboche, 1990). 
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Figure 3. Hysteresis Energy (Reproduced from (Ontiveros, 

2013)). 

 

Results of Ontiveros et al. analysis showed that when 

compared to the plastic and elastic energy dissipations the 

fraction of the entropy generation due to heat conduction is 

considered to be negligible. Therefore, the third term does 

not take into account in the entropy calculation. 

The prognostic framework implemented in this study 

involves the measurement of parameters included in the Eq. 

11 and using the entropy as a parameter to be monitored. 

Specific Mahalanobis Distance (MD) is used as a diagnostic 

threshold which triggers the prediction. Once an anomaly is 

detected, the Particle Filter (PF) procedure is initiated for 

time to failure prognostic. The failure threshold in this 

approach is the mean of the failure threshold of the 3 

samples considered as training samples. 

4.1. Anomaly Detection 

To obtain the anomaly threshold for every entropy data 

point, the MD values are calculated based on the distance 

between healthy and anomalous data. Then, the calculated 

MD values are transformed into a normal distribution using 

the Box-Cox transformation method (Box & Cox, 1964). 

After that, a detection threshold is quantified upon the mean 

and standard deviation of the transformed healthy MD data. 

The calculations are repeated for every test data, and 

anomaly is marked for every test point which goes beyond 

the detection threshold.  

To implement the MD, entropy data are divided into two 

categories: (i) healthy data and (ii) test data. The 

observations between 4000 and 5500 cycles were classified 

as healthy data and the whole set of observations was 

considered as test data. The number of observations 

recorded for entropy parameter is denoted by  , where 

              is the values of entropy at cycle    Each 

individual observation of entropy data vector was 

normalized using the mean,    
̅̅ ̅̅ , and standard deviation,   , 

from the healthy entropy data using Eq. 12. 

    
     

̅̅ ̅̅̅

   

 (12)  

The MD values were computed by using Eq. 13.  

       
       (13)  

Where   is the correlation matrix which can be obtained by  

   
 

   
∑     

 

 

   

 (14)  

Since the healthy MD values were found to not follow a 

normal distribution, the Box-Cox power transformation was 

employed to convert the healthy MD values into a normal 

distribution. This transformation allows for the use of 

statistical mean to determine the healthy or unhealthy 

conditions of the data. The Box-Cox transformation is 

defined by Eq. 15, where       is the transformed vector, 

   is the original vector, and   the transformation 

parameter. 

       
     

 
                  

                        

(15)  

The mean and standard deviation of the transformed healthy 

values were used to define the threshold for anomaly 

detection as    
̅̅ ̅̅̅     . When a transformed test       

values (based on the Box-Cox transformation using 

parameter   learned from the healthy data) crosses this 

threshold, an anomaly was considered to have occurred. 

 

4.2. Particle Filter Prediction 

By choosing the entropy data as a feature of damage, 

Bayesian method can be used to update the parameters of 

the model and the age predictions. Bayesian approaches 

provide a general rigorous method for dynamic state 

estimation problems. The idea is to build a Probability 

Density Function (PDF) of the system states based on all 

available information. Particle Filter (PF) is a method for 

implementing a recursive Bayesian filter using Monte Carlo 

simulations. Particle Filter (PF) approximates the model 

parameters’ PDF by a set of particles sampled from the 

distribution and a set of associated weights denoting 

probability masses (Arulampalam, Maskell, Gordon, & 

Clapp, 2002). 

In particle filter method, the particles are generated and 

recursively updated by process model shown in Eq. 16, a 

measurement model depicted in Eq. 17 and an a priori 

estimate of the state PDF.  

  ⃗ 
    ( ⃗   

      ) (16)  

 

  ⃗      ⃗      (17)  

where,    and    are the system and measurement noises, 

respectively. Defining the model parameter vector at cycle   

as  ⃑  [            ] and damage level measurements as  

 ⃗  [             ], the particle filter is implemented by 

initiating the state of the system by a set of particles  ⃗ 
 , 

where           .  
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If  (  
   ⃗ 

 )} denotes a random measure that characterizes 

the posterior PDF,              (where {    
            , 

is a set of support points with associated weights {  
     

      }, normalized such that ∑   
   

  
   ) the posterior 

density at cycle   can be approximated as 

    ⃗     ⃗         
    

    ⃗     ⃗   
   (18)  

where,  ⃗    and  ⃗    are the set of all states and 

measurements up to cycle  . Sampling importance 

resampling is a commonly used algorithm to attribute 

importance weight,   
 , to each particle,  , 

   
  

 ( ⃗   | ⃗ 
 ) ( ⃗ 

 )

 ( ⃗ 
 | ⃗   )

 (19)  

The posterior PDF is then calculated by 

 

   
      

 
 ( ⃗ | ⃗ 

 ) ( ⃗ 
 | ⃗   

 )

 ( ⃗ 
 | ⃗ 

   ⃗   )
 (20)  

where the importance distribution  ( ⃗ 
 | ⃗ 

   ⃗⃗   ) is 

approximated by  ( ⃗ 
 | ⃗   

 ) (Arulampalam, Maskell, 

Gordon, & Clapp, 2002). 

4.3. Remaining Useful Life Prediction 

To tie in the aforementioned technique, namely PF 

approach, with the entropic based prognosis, the system 

model can be represented by a regression model, based on 

accumulated entropy values,   , from experimental data 

analysis 

        
     

 (21)  

which delivers a good fit for the entropy increment of Al 

specimens subjected to fatigue mechanism. Here,   is the 

cycle number, and    and    are the model parameters 

subjected to a Gaussian error as  

 

   
      

    
     

where:      
   (       

)  

 

   
      

    
      

where:     
           

  

(22)  

Given a series of measured entropy values,   , subjected to a 

Gaussian noise,          with zero mean and standard 

deviation      as 

 
  

     
     

    

where:            
(23)  

the PF technique enables the estimation of the model 

parameters (   and   ) where in the updating process,    

samples are used to approximate the posterior PDF. Each 

sample denotes a candidate for the model parameter vector 

 ⃗ 
      

    
 ,           , so the prediction of    

would have    possible trajectories with the corresponding 

importance weight   
 . The  th

 steps ahead prediction of 

each trajectory at cycle   is calculated by 

      
     

          
  (24)  

The estimated PDF of the entropy prediction can be 

obtained by 

 
               ∑   

         
  
   

    
         

(25)  

Since the failure threshold is defined as the mean of entropy 

to failure of training entropy data taken from 3 samples,    , 

the remaining useful life probability estimation,   
 , of the 

 th
 trajectory at cycle   can be obtained by solving the 

following equation 

        
      

       
  (26)  

The PDF of the RULs at cycle   can be approximated by  

             ∑   
        

   
      (27)  

4.4. Prognostics Results 

Using the MD approach, anomalies were identified when 

the transformed MD threshold of the test entropy data 

crosses the anomaly detection threshold. Once the anomaly 

was detected, the PF algorithm was initiated to predict RUL. 

The system model used for particle filter prediction follows 

Eq. 23. The initial values of the model parameters were 

obtained from the least square regression for each specimen, 

using the healthy interval of the data.  Figure 4 shows 

prediction results for specimen number 6. The yellow zone 

shows the shape of RUL probability density function 

estimation after anomaly criteria detected. 

 

 

Figure 4. Predicted failure distribution at the time of 

anomaly detection for specimen number 6. 

 

The same procedure applied to the 6 remaining specimens. 

The values for the mean of the predicted RULs and actual 

RULs are shown in Table 1. The error between mean of 

estimated RULs and actual RULs falls in the reasonable 

range of 4% to 18%. 
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Table 1. Comparisons of the actual and estimated RULs 

Sample no. RULactual(Cyc) Mean(RULestimated(Cyc)) Error 

1 2829 2635.5 7% 

2 3827 3563 7% 

3 11165 10696.5 4% 

4 1987 1621 18% 

5 1018 835.5 17% 

6 4792 4596 4% 

7 3604 3444 4% 

 

5. CONCLUSION 

This paper presents an effort to use a thermodynamic 

framework, using entropy generation as a measure of 

damage, to assess RUL of a component or structure. It 

introduces a unified measure of damage in terms of energy 

dissipations for multiple irreversible processes with 

reference to physically measurable quantities. As compared 

to other existing PoF, data driven, or fusion prognostics 

methods, entropic-damage models capture the effect of 

multiple competing and common-cause failure mechanisms. 

The RUL predicted by this method includes the effect of all 

failure mechanisms and unlike conventional RUL prediction 

methods, where various RULs correspond to different 

failure mechanisms, it provides a unified RUL. 

This paper also demonstrates a case study for 

implementation of an entropy-based prognostics method.  

Particle filter is applied to update the states of the model, 

reduce uncertainties and predict the RUL probability 

distribution function. The proposed method provides 

satisfactory RUL predictions. 

While the entropy method proves to be theoretically more 

relevant for reliability analysis, its advantages remain to be 

explored practically. One practice in this regard is the 

authors’ current project on introducing the entropy growth 

rate as a degradation parameter to the corrosion-fatigue 

mechanisms in materials.  
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ABSTRACT 

Prognosis of rotating machinery is of vital importance to 
ensure ever increasing demands of availability, reduced 
maintenance expenditure and increased useful life are met. 
However, the prognosis of bearings typically employs 
techniques in the frequency or time-frequency domain due 
to the high frequency nature of the data involved (typically 
>20 KHz). This data quickly becomes unmanageable in 
practice and often has inferior prognostic horizons in 
comparison to those techniques which are based upon low 
frequency data analysis. 

This paper presents a novel methodology based upon the 
computation of the deviation from the empirically derived 
cumulative density function (CDF) of bearing data. For this 
purpose, the non-parametric, two sample, uni-variate 
Kolmogorov-Smirnov test is employed for the analysis. In 
particular, this paper focuses on mitigating the requirement 
of a-priori knowledge for bearing prognosis. 

Initially, assumptions regarding the underlying structure of 
high frequency bearing data are explored on publically 
available data, and found to deviate from what would be 
expected. 

Exploiting this, we use the non-parametric two-sample uni-
variate Kolmogorov-Smirnov test to define normal 
operational behaviour, whilst mitigating the requirement for 
a-priori knowledge. This reduces the computational 
complexity of the system whilst having the prospect to 
reduce the inherent noise within the high frequency bearing 
signal. 

Strong trends of degradation which can be used to derive 
prognostic maintenance conditions are observed, with sound 
statistical analysis performed. In particular, statistically 
significant degradation is found to occur 75 hours before 

failure occurred (representing identification at 54.2% of 
bearing life). Both the Kolmogorov-Smirnov   statistic and 
 -value are employed as health metrics to which 
degradation can be inferred from. A series of 4 experiments 
is presented, showing the versatility of the described 
technique and cases where the technique cannot be 
employed. 

The technique is validated on a failed bearing and then 
verified on an independent, healthy bearing, and is shown to 
correctly identify the bearing of question in each case, 
enabling the prioritisation of maintenance actions which can 
be used to assist in reducing overall maintenance 
expenditure. 

1. INTRODUCTION 

With the continually reducing cost of data storage and 
acquisition, prognosis of critical assets is cheaper than ever. 
However, the effective exploitation of all this data is not 
trivial. With more data comes more noise, more conflicting 
signals, the need for new analytical techniques and the 
ability to process this data in real time. 

As an example, storing data sampled at 20 KHz (20,480 
samples per second) requires 13.5GB of data per day, 
equating to almost 2 billion data points. This makes the 
identification of degradation within the data difficult, both 
in automated analysis and also for human operators who can 
be overloaded by the quantity of data. 

Although large quantities of data are collected for analysis, 
only a subset of this data refers to degraded or failed 
conditions; in some instances, even for common fault 
modes, less than 0.1% of the collected data can be used in 
analysis (Verma & Kusiak, 2011). As such, the use of 
cutting edge data-mining techniques for these issues is 
limited. However, this can be exploited through the use of 
statistical techniques to exploit the known normal behaviour 
of the data which has been collected. 

Data has been identified as a key enabler of next generation 
maintenance methodologies - such as E-Maintenance 
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(Levrat et al., 2008) - due to the benefit of 5 key points 
(Hameed et al., 2009): 

1. The ability to avoid premature breakdowns 

2. Reducing the cost of maintenance 

3. Enabling remote diagnosis 

4. Increasing production through effective 
maintenance scheduling 

5. Design refinement due to better quality analysis 

In this work, a robust uni-variate model for the effective 
diagnosis and prognosis of bearings is presented. Publically 
available data collected by the IMS centre and made 
available by NASA (Lee et al., 2007) is employed to derive 
a sound statistical time based feature which can be used to 
determine asset condition. By exploiting normal operational 
behaviour characterised by the distribution of high 
frequency data, deviation from expected behaviour can be 
identified by empirical analysis of the cumulative density 
function (CDF) of the data. For this purpose, the non-
parametric uni-variate Kolmogorov-Smirnov test is used to 
quantify the deviation from the known behaviour state to the 
degraded state, whilst quantifying statistically the likelihood 
of degradation being present. 

This overcomes the current limitations of statistical pattern 
recognition techniques employed in prognostics and health 
management by empirically defining the CDF and 
measuring deviations from this. This allows for non-
normally distributed data to be effectively analysed without 
the necessity to ―pre-whiten‖ data or use one-way statistical 
transforms on the data. 

The paper is organised as follows. Section 1 has introduced 
the motivation for this research, with Section 2 discussing 
the related literature. The dataset employed is described in 
Section 3. Following this, the analytical model is presented 
in Section 4, with experimental design in Section 5. Results 
are presented in Section 6 with discussions and conclusions 
following in Section 7and 8 respectively. 

2. RELATED WORK 

As previously stated, data-mining techniques are often 
ineffective in practice due to the large bias in favour of the 
majority class – typically normal operational behaviour – 
which reduces the incentive for machine learning algorithms 
to truly encapsulate failure behaviour. This occurs as in a 
dataset with 0.1% failure data, the system can achieve a 
classification accuracy of 99.9% by merely returning the 
default case (Godwin & Matthews, 2014). 

Many algorithms have been proposed to remove the 
inherent bias in unbalanced datasets (such as in the realm of 
prognosis). These fall into two main categories, namely 
under-sampling and over-sampling. Under-sampling 
removes data from the majority class to remove the bias, 

whereas over-sampling adds data to the minority class. As 
such, these techniques will often either reduce the 
information content in the data, or create synthetic data 
which needs to be validated and verified. For a full review 
of data balancing techniques, please refer to Baydar et al., 
2001. 

It should be noted that these techniques often require 
labelled data (Baydar et at., 2001). In practice, this is often 
not available (as failures are yet to occur), or it is too costly 
to manually label high frequency data. As such, analysis of 
high frequency data should be performed by statistical 
techniques which can exploit the high frequency nature of 
the data to increase the statistical power of the results. 

High frequency data is often employed for bearing 
prognosis due to the ability to extract time, time-frequency 
and frequency domain features. This enables the use of 
many different techniques to assist in the diagnostic and 
prognostic process. 

Amongst the most commonly used techniques for bearing 
diagnosis and prognosis is that of the fast Fourier transform 
(FFT) (Rai & Mohanty, 2007). This is a frequency domain 
signal that can be used to detect degradation and identify 
failure modes. Work done by (Zappalà et al., 2013) uses 
sideband analysis of key harmonic frequencies in order to 
monitor the degradation of components over time. As 
sideband analysis utilises specific harmonic frequencies, the 
relationship between the harmonic and the immediate 
sideband frequencies can be analysed as degradation occurs. 
As such, the technique can be applied where traditional 
frequency domain techniques are not as powerful (such as in 
non-stationary signal analysis), for instance, in wind turbine 
gearbox analysis (Zappalà et al., 2012). 

Various other techniques for frequency domain analysis 
have been explored for rotating machinery such as 
gearboxes and bearings. Typically, these involve the use of 
the power spectrum (Ho & Randall, 2000) or Cepstrum 
analysis (van der Merwe & Hoffman, 2002). 

The most commonly utilised domain for frequency analysis 
is that of the time-frequency domain. Within this, the use of 
the wavelet transform (Raffiee et al., 2010) is prevalent. 
Due to the ability to combine frequency domain information 
in conjunction with time domain data (Raffiee et al., 2010), 
many strong prognostic signatures can be identified in these 
techniques. 

The wavelet transform is employed due to its ability to 
remove noise from the data. As various wavelet functions 
exist (known as mother wavelets), different signatures and 
artefacts from high frequency data can be discovered and 
used for diagnostic and prognostic analysis (Lin & Zuo 
(2003), Peng & Chu (2004), Jardine et al., 2006). 

Recently, the use of time synchronous averaging (TSA) has 
become more prevalent in the literature for prognosis of 
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high frequency data such as bearings and gearboxes 
(Bechhoefer et al., 2013). This technique is a hybrid time-
frequency technique which employs a tachometer in order to 
deduce the current orientation of the rotating component. 
This enables further information to be gathered in the 
prognostic process, such as the identification of specific 
bearing roller elements which have degraded or if a specific 
gear tooth has degradation. Derivations of TSA exist which 
do not require a tachometer (Bechhoefer et al., 2009); 
however, these often simply estimate the tachometer signal. 
For a review of TSA techniques as applied to health 
assessment, please refer to the extensive review undertaken 
by (Bechhoefer et al., 2009). 

Within the time-domain, often statistical features are 
extracted from the signal. Commonly in the literature, 
skewness and kurtosis are employed for diagnosis and 
prognosis (Heng & Nor, 1998 and Tandon, 1994). Skewness 
is the third standardised moment and represents the 
asymmetry of an underlying distribution, whereas Kurtosis 
is the fourth standardised moment and represents the 
peaked-ness of the underlying distribution. 

In practice, due to the high frequency of the data, it is often 
assumed that the data is normally distributed due to the 
central limit theorem. As the behaviour of the normal 
distribution is well understood, we can exploit a-priori 
knowledge for prognosis. Typically, for a healthy bearing or 
gear, little to no skewness will exist in the data, and the 
peaked-ness of the data will typically be 3. However, these 
features are not reliable for a variety of reasons. When used 
in uni-variate models, it is possible for the underlying 
distribution of the data to change due to factors such as 
degradation, without effecting the skewness and kurtosis of 
the distribution. As such, the use of these features without 
additional context (additional features, a-priori knowledge 
or otherwise) should be avoided. 

It should also be noted that typically accelerometer data is 
employed for analysis in all three commonly used domains. 
However, the use of acoustic emission (AE) sensor data is 
becoming more widespread due to potentially increased 
sensitivity (Bechhoefer et al., 2009) in a variety of methods. 

Other time domain features can be used for diagnosis and 
prognosis. Amongst the most reliable time domain feature is 
that of oil analysis through the use of oil debris monitoring 
systems (Feng et al., 2012). These systems are able to 
monitor the particulate level in parts per million (PPM) in 
the oil of an asset in order to infer information regarding 
degradation or potential future failure modes (Feng et al., 
2012). These systems are used extensively within the wind 
industry for monitoring of the gearbox, which is of critical 
importance (Stephens, 1974). However, these sensors are 
currently prohibitively expensive for practical use in non-
mission-critical scenarios. 

As the use of skewness and kurtosis requires making 
assumptions regarding the underlying distribution of the 
data, and may not accurately reflect the true change in 
condition, new techniques are needed. A robust uni-variate 
nonparametric approach to mitigate these issues can be 
derived by employing empirical statistical techniques. To 
demonstrate this, publically available data is employed. 

3. DATASET DESCRIPTION 

For the following series of experiments, publically available 
data was employed for transparency. The data was collected 
by the centre for intelligent maintenance systems (IMS), 
with the support of the Rexnord Corporation, and made 
available by NASA (Lee et al., 2007). 

Four bearings (force lubricated) were installed onto a shaft 
which was kept at a constant 2000 RPM by an AC motor. A 
6000 lbs radial load was applied via a spring mechanism to 
the shaft. Rexnord ZA-2115 double row bearings were used, 
with data collection performed by a National Instruments 
DAQ 6062E. The accelerometers used in the experiment 
were PCB 353B33 High Sensitivity Quartz ICP 
accelerometers. Data was sampled at 20 KHz, equating to 
20,480 samples per second. Data was sampled every 10 
minutes until oil debris monitoring equipment reached a 
particulate count which indicated bearing failure. At this 
point the data collection was deemed complete, and the 
bearings were removed for inspection. All bearings 
exceeded their design life expectation. Vibration data 
pertaining to acceleration was collected during rotational 
operation, and is measured in G. 

4. MODEL DEVELOPMENT 

Due to the cases which exist when employing skewness or 
kurtosis in time series analysis for prognosis, new 
prognostic features must be developed. In order to ensure 
that new features do not suffer from the same pitfalls of 
skewness and kurtosis, 3 factors must be taken into 
consideration. 

Firstly, the technique should be nonparametric. As such, 
little to no assumptions regarding the underlying data is 
required. This would enable the technique to work as 
effectively on normally distributed data as data which is not 
ordinarily normally distributed, as is often the case in 
practice for prognostic applications. Secondly, the technique 
should be robust to noise. Noise is inherent in all real-world 
signals, and as such, techniques should be robust to this. By 
identifying data which may potentially be anomalous, this 
can be disregarded or exploited for further prognosis. 

Finally, the technique should accurately respond to changes 
in the condition of the asset. Skewness and kurtosis have the 
potential to remain constant whilst degradation occurs. 
Whilst this may seem trivial, cases such as this should 
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always be checked to ensure that degradation is always 
observed. 

As such, in this work, we propose the use of the two-sample 
Kolmogorov-Smirnov test (Stephens, 1974) for the 
diagnosis and prognosis of bearing condition. This is a non-
parametric uni-variate technique which can be employed to 
compare a sample with a given distribution to quantify and 
signify significant deviations. 

The two-sample test statistic quantifies the distance between 
two cumulative density functions (empirically derived or 
otherwise). This enables the test statistic to be used as a 
prognostic health index by fixing one sample to a known 
state of normal operation behaviour. Thus, it is expected that 
should degradation occur the distribution of the underlying 
data will change accordingly. Differing levels of statistical 
significance can be employed to identify inspection, 
maintenance and replacement thresholds, with a prognostic 
time series derived by plotting the changes of the statistic 
over time. 

The Kolmogorov-Smirnov test can be defined as follows 
(Stephens, 1974): 

               ( )       ( )    (1) 

Where      refers to the supremum of set  , and      and 
      refer to the empirical distribution function, defined as: 

 ( )   
 

 
∑      

 
       (2) 

Where I refers to the indicator function, defined as: 

      {
         
           

    (3) 

As such, the test statistic D (as in Eq. 1) represents the 
maximum difference between the empirically defined 
distribution    and   . 

Thus, for a given behaviour, it is possible to accurately 
measure the deviation from this behaviour and determine its 
statistical significance. This enables the creation of a health 
metric as described in the following Section. 

5. EXPERIMENTAL SETUP 

In order to determine deviations from a known state, a-priori 
knowledge of the know state must be utilised within the 
model. Previous work which utilises the Kolmogorov-
Smirnov test pre-whitens the data (Cong et al, 2011). Pre-
whitening of the data ensures that the data is effectively 
white noise mixed with the transient signal of the bearing. 
As such, it is possible to employ a one sample Kolmogorov-
Smirnov test for the purposes of bearing degradation 
assessment by sampling against a Gaussian distribution. 

Whilst this removes the need for a-priori knowledge as the 
effective sample from which degradation is measured, it 
also infers assumptions regarding the underlying data. 

For instance, with regards to the NASA bearing dataset, 
normality testing was performed via the highly sensitive 
Anderson-Darling test (Anderson & Darling, 1954). This is 
a one sample non-parametric test with higher power than the 
Kolmogorov-Smirnov test, and is computed by: 

        
 

 
∑ [    ][  ( ( ))     (   (     )]

 
     (4) 

Where  ( )   ([    ̅)]  ) where   refers to the CDF of 
the normal distribution, and  ̅   refer to the mean and 
standard deviation of the data (respectively). 

Within the 2nd set of NASA bearing data, 4 bearings across 
984 files were assessed for normality.  Of the 3936 
normality assessments, 16 samples (     ) of the bearing 
data were normally distributed (     ). As such, given 
the large sample size (20,480) of each sample, we can infer 
that the underlying structure of the data is not normal. This 
is expected; however, as previous work pre-whitens the 
data, it may be the case that pre-whitening of the data 
synthetically manipulates the data to ensure normality. 
Whilst this is effective, it is also computationally intensive, 
and has the ability to swamp or mask the true bearing signal 
(Bendre, 1989)  and increase noise within the signal. 

By replacing the normal distribution reference sample with 
a known behaviour, we remove the computational intensity, 
reduce the number of assumptions regarding the underlying 
data and also reduce the noise within the signal. 

In order to explore the use of the Kolmogorov-Smirnov test 
for the diagnosis and prognosis of bearing faults, three 
experiments were performed, with an additional experiment 
utilising the one sample Anderson-Darling test for 
comparison. 

In the first experiment, the Anderson-Darling test is used to 
quantify the deviation of the data from the normal 
distribution. This experiment explores the relationship 
between the normal distribution and the degradation of the 
bearing. It is expected that as the bearing degrades, the 
deviation will increase, and can be used to quantify the 
current level of degradation on the bearing. The second 
experiment employs the Kolmogorov-Smirnov test without 
the use of a-priori knowledge. In this case, each data sample 
is tested against the previous sample to quantify the 
degradation which has occurred in the previous 10 minutes. 
Significant degradation of the bearing which occurs between 
samples are expected to be revealed by this test. The third 
experiment employs a-priori knowledge to fix a sample 
point from normal behaviour within a bearing, from which 
all samples are then measured against. Although this 
requires the use of a-priori knowledge (in the form of 
normal operational behaviour), the authors believe this trade 
off is practical due to normal operational behaviour relating 
to the majority class. In order to validate the approach, in 
this experiment, data from a single bearing is employed (2nd 
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test, bearing 1). As this bearing is known to fail, this 
experiment is intended to prove the Kolmogorov-Smirnov 
test as a viable time domain feature for diagnosis and 
prognosis. In the final experiment, data from a healthy 
bearing is employed as the sample for the Kolmogorov-
Smirnov test. This mitigates the practical issues which occur 
in the third experiment (namely, use of data sampled from a 
bearing which failed which may not be available in practice) 
to increase the viability of the approach. As many bearings 
are subjected to identical conditions (for instance, in a 
production facility or wind turbine), by utilising known 
normal behaviour of a single bearing, the approach can 
systematically be applied to all of the assets in the facility 
individually. 

6. RESULTS 

In the first experiment, the Anderson-Darling test is 
employed as a non-parametric one sample statistical test to 
measure deviation from the normal distribution. As 
degradation is expected to cause deviations from this 
distribution in mean value, standard deviation, skewness, 
and kurtosis, this test should perform well. However, as can 
be seen in Figure 1, this is not the case. 

Figure 1 (a) presents a healthy bearing and a failed bearing 
over time (Bearings 1 & 2 from the 2nd set of test data (Lee 
et al., 2007)) as measured by the p-value of the Anderson-
Darling test statistic. Although the healthy bearing line 
remains stable, the test only identifies a single peak on the 
failed bearing. Although this is over 46 hours before failure, 
no progressive trend is observed. As degradation is often an 
exponential phenomenon, the log plot of Figure 1 (a) is 
taken and presented in Figure 1(b). This is the natural 
transformation of exponential data. Although degradation 
phenomena is observed much earlier due to this 
transformation (at over 67 hours before failure), there are 
many inconsistencies with the trend; for instance, 
degradation seems to decrease and increase over many 
cycles. Although this does provide insight into the 
underlying characteristics of the bearing, it violates the 
prognostic principles metrics must adhere to set out in 
section 4. The second experiment employs the two-sample 
non-parametric uni-variate Kolmogorov-Smirnov test to 
quantify degradation based upon the empirical CDF of the 
data. Each data sample is compared to the previous 
collected data sample to determine significance which may 
imply degradation has occurred. 

Figure 2 presents the Kolmogorov-Smirnov D statistic for 
both the same healthy and failed bearing as in the previous 
experiment. As can be seen in Figure 2(a), both time series 
appear to be highly correlated. A Pearson product-moment 
correlation coefficient was computed to assess the 
relationship between the healthy bearing, and the failed 
bearing, and were found to be highly correlated (     ). It 
is interesting to note that the peak which has been 

highlighted in Figure 2(a) is identified in both bearings, and 
may be due to external factors which occurred during the 
data collection process. Figure 2(b) presents the log-
transform of Figure 2(a). Again, it is difficult to separate the 
healthy bearing from the failed bearing as no obvious 
signatures are apparent. Figure 2(c) shows the  -value of the 
Kolmogorov-Smirnov test for each bearing. It can be seen 
that this is limited in its use for diagnosis and prognosis, due 
to many false positives in early life and many false 
negatives when degradation has occurred. The third 
experiment exploits these results by fixing the sample to a 
constant behaviour, from which deviations are then 
computed. Although this requires a-priori knowledge, this 
can be taken from OEM documentation. As in this case, it is 
essential that the fixed points contain no degraded 
behaviour, the point from which the sample is fixed directly 
correlates to the quality of the metric which is derived. As 
such, we exploit historical data in conjunction with OEM 
documentation and traditional reliability analysis to 
determine normal behaviour. As each bearing has a design 
life of 1 million revolutions and the experimental setup ran 
the bearings at 2000 RPM, we can easily determine from the 
time elapsed, a percentage of expected useful life. Due to 
the existence of infant mortality due to manufacturing 
defects as commonly presented by the so-called ―bathtub 
curve‖ (Leemis , 1995) we can then define a point or a set of 
points which are likely to correspond to normal operational 
behaviour. For simplicity, data taken from 10-15% of asset 
life was utilised in this experiment. The first 10% of asset 
life is not taken into consideration due to the possibility of 
manufacturing defects or potential infant mortality. 

Figure 3 shows the same healthy bearing and same failed 
bearing when a fixed sample is chosen for the two-sample 
Kolmogorov-Smirnov test. In practice, we would not 
retrospectively analyse the first 15% of bearing life, 
however, for completeness, this has been left in Figure 3. As 
can be seen in Figure 3(a), for the failed bearing, a strong 
prognostic signature is detected when employing the   
statistic from the Kolmogorov-Smirnov test. Exponential 
degradation is present, and can be identified as early as 75 
hours prior to failure. Initially, a linear trend is found to 
occur, this is followed by healing phenomena, which 
afterwards reverts to exponential degradation. Figure 3(b) 
depicts the logarithmic transform of same experiment, with 
the artefacts mentioned above highlighted. It should be 
noted that the same artefacts as in experiment two are 
observed at the beginning of the time series, which is of 
interest. The healthy bearing is found to be consistently 
healthier than the failed bearing, which is promising. 
Similarly, the  -value remains stable during operation, with 
exponential degradation occurring at the end of life. This 
shows the potential of the Kolmogorov-Smirnov test as a 
prognostic index for bearing health assessment. 

The   statistic is employed due to its many features which 
are complementary for reliability engineering analysis, and  
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Figure 1. Anderson-Darling test for degradation, showing (a - top) raw values, and (b - below) the logarithmic transform. 

 
Figure 2. Two sample, transition based, Kolmogorov-Smirrnov showing (a - top) raw D-statistic, (b - centre) the logarithmic 

transform and (c - below) the associated significance (p-value).

prognostics in general. For instance, the   statistic is 
bounded between 0 (no difference in the distributions) and 1 
(maximum difference in the distributions). As such, it is 
expected to increases as degradation occurs (as in Figure 3). 
This bounding also provides a simple means to estimate the 
percentage of useful life used. 

Figure 3(b) shows the log-transform of Figure (A). This 
then presents the degradation which occurs as a linear 
phenomenon. This then enables further statistical analysis, 
such as regression analysis to perform remaining useful life 
(RUL) estimation for some given condition ( -value). In 
addition to the  -value being employed, the  -value of the 
test allows a natural extension of this analysis. If we are to 
check significant deviations (     ), the first consistent 
(repeated 3 times or more) significance is found 73 hours 
prior to failure, and remains significant until failure (on the 
failed bearing). For the healthy bearing, consistent 
significant deviations are found 17 hours prior to the end of 
the test, which may refer to the initial stages of degradation 
on the bearing. As such, the use of various  -values can be 
seen as an effective means for identifying inspection of 
maintenance activities for decision making within 
enterprise. 

In the final experiment, the fixed sample in the 
Kolmogorov-Smirnov test was derived as in the previous 
experiment, however, from an independent bearing which 
did not fail (Bearing 3, test 2 (Lee et al., 2007)). This 
experiment explores the versatility and generalisability of 
the technique. If the bearings are subjected to similar 
conditions, then normal behaviour of each bearing should be 
similar. As such, regardless of the bearing used to fix the 
first sample, the deviation from this should correlate highly 
to the results achieved in experiment 3. Figure 4 shows the 
healthy bearing and failed bearing when the fixed sample 
used for the analysis is from an independent bearing. As 
expected, this is similar to the results achieved in 
experiment 3. A Pearson product-moment correlation 
coefficient was computed to assess the relationship between 
the  -statistic of the failed bearing taken from experiment 3, 
and the  -value taken from the failed bearing in experiment 
4. These were found to be highly correlated (      ) . 
Similarly, a further Pearson product-moment correlation 
coefficient was computed to assess the same relationship for 
the healthy bearing. This was again found to be highly 
correlated  (     ) . This shows the effectiveness of the 
technique when applied to new bearings which are expected 
to operate in similar 
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Figure 3. Two-sample, fixed Kolmogorov-Smirnov test, showing (a - top) raw D-statistic and (b - below) the log transform. 

 
Figure 4. Independent verification of experiment 3 (Figure 3(a)) showing raw D-value.

conditions to those which the fixed sample was derived 
from. 

With regards to the significance of the  -values derived 
from the final experiment in relation to the prognostic 
horizon, the sensitivity of the technique hinders the benefit 
gained. As in this case, a 6000 lbs radial load was applied to 
the shaft, this affects each bearing in a different way. As 
such, the underlying distributions are inherently different, 
and thus differ significantly. This then makes each 
observation appear to be significantly different. However, it 
is still possible to use the degree of significance as a means 
for prognosis, as the  -value continues to decrease in 
proportion to the degradation apparent in the bearing. 

7. DISCUSSION 

In the first experiment, the Anderson-Darling test was used 
as a one-sample test in order to mitigate the necessity of a-
priori knowledge. However, in this case, the data is not 
normally distributed and as such, this technique is not 
effective. In other systems where high frequency data is 
normally distributed, this may be more sensitive than the 
Kolmogorov-Smirnov test, and as such, should be used 
initially. 

The Anderson-Darling test is used in the initial analysis 
over the Shapiro-Wilk test due to the high frequency nature 
of the data involved. The Shapiro-Wilk test is highly 
sensitive for large sample sizes, and as such, rejects the null 
hypothesis often. 

As both the Anderson-Darling and Shapiro-Wilk tests are 
one-sample, they cannot be utilised to empirically derive the 
CDF of the underlying data, and as such, if the data is not 
normally distributed, cannot be used to identify deviations 
specifically from the distribution of the data in question. 

It is interesting to note that the artefacts at the start of the 
time series which can be observed in figures 2 through 4 do 
not occur in figure 1. This is likely due to the insensitivity 
of this test due to the underlying distribution of the data.  
The cause of these artefacts is currently unknown; as similar 
artefacts are observed throughout both bearings it has been 
inferred that this is due to the experimental setup and 
external factors associated with this. The artefacts in figures 
2 through 4 for the healthy bearing at approximately time 
step 700 are unexplained. This could potentially be due to 
the development of degradation on the failed bearing (from 
time step 550 as per figure 3) causing particulates in the oil 

Degradation 
Healing 
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which were transferred to this bearing and ultimately 
resulted in degradation on the healthy bearing. 

The reduction in D-value observed in figure 4 should also 
be noted. This is an artefact caused by employing a different 
bearing (with slightly different manufacturer tolerances and 
defects) in a different bearing position in the experimental 
setup as a reference. This was undertaken as a proof of 
concept and I practice, as each bearing will behave in a 
unique way, historical data pertaining to the bearing in 
question should be employed. 

With regards to fixing the data representing normal 
behaviour for the two-sample Kolmogorov-Smirnov test, it 
is essential that no degradation is incorporated into this 
sample. This is difficult to determine a-priori. 

One solution to this would be to use robust outlier analytical 
techniques to derive a sound subset across the full life of 
one bearing. As the operational behaviour of the bearing 
would dictate degradation to be outlying, this would 
effectively be removed. 

In practice, the use accelerometer data is not ideal for robust 
analysis due to the limited sensitivity of the data collection 
equipment. If robust techniques such as Median Absolute 
Deviation (MAD) are used to remove outliers, significant 
parts of the distribution tails are removed. This limits the 
effectiveness of the two-sample Kolmogorov-Smirnov test 
due to the resultant effect on the empirical CDF, which 
inherently increases the noise within the derived prognostic. 
The authors recommend not using robust outlier removal in 
conjunction with accelerometer data, as by their definition, 
outliers are inherently beneficial for prognosis. 

In the case where acoustic emissions (AE) sensors are 
employed, due to increased sensitivity, the use of robust 
outlier techniques can potentially be employed effectively. 

8. CONCLUSION 

This paper has shown the viability of the use the two-sample 
uni-variate Kolmogorov-Smirnov test as a means to derive 
low-frequency time-domain prognostic signatures from high 
frequency data. The versatility of the technique is explored 
with publically available data (Lee et al., 2007). 

Strong prognostic signatures are found for both bearings on 
which analysis was performed as early as 54.2% of the 
bearings life (for the failed bearing), and 89.6% of bearing 
life (for a bearing which ultimately did not fail). 

By empirically deriving the CDF function of the data, 
external conditions are inherently considered and taken into 
account by the prognostic system. Although this requires a-
priori knowledge (historical high frequency data), should 
this not be available, the empirical function could be 
approximated by establishing the underlying distribution 
and using the exact CDF of the chosen distribution. 

Although the technique is versatile, it cannot be applied to 
non-stationary techniques; the transient nature of the signal 
would almost certainly ensure that statistically significant 
deviations from the pre-defined normal behaviour are 
consistently observed whilst no degradation is present: this 
would violate the prognostic principles laid out previously. 
For the purposes of this work stationary is defined as a lack 
of temporal dependency of the marginal distribution (i.e., 
the distribution of the bearing values does not change with 
time). 

Future work will look to extend this analysis to non-
stationary signals for wind turbine gearbox analysis by 
normalising for loading transitions. The signal can be 
broken into a series of stationary signals with transient 
periods which can be identified by correlating the data with 
the onboard SCADA system. 
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ABSTRACT 

A statistical method based on symbolic analysis is 

presented for health management of Synthetic Aperture 

Radar systems.  The approach, based on symbolic theory, 

develops statistical models of the underlying system 

dynamics using an underlying Markov assumption and 

tracks the change in model over time to determine system 

health.  The methodology was designed for minimal impact 

to legacy systems and required minimal computational 

effort in order to operate at radar data rates.  The approach 

was applied to radar phase history data corrupted with 

simulated degradation.  Two degradation mechanisms 

were studied: interference and array degradation.  In 

addition, the results of combined degradation were also 

studied in this work.   

 INTRODUCTION 

Health management of systems can result in the reduction 

of necessary man-hours and costs associated with 

maintenance of equipment.  In addition, a health 

management routine can be used to determine the 

remaining useful life of a system and to determine when to 

schedule upcoming repairs.  Data driven methods utilize 

data captured in real-time from the system in order to 

determine the current state of health of the system.  Data 

driven methods form underlying models of the system 

using this captured time series data.  These underlying 

models developed through operation of the system can then 

be used to quantify remaining health. 

The method was originally applied to monitoring the health 

of a dc-dc forward converter in order to predict the 

remaining useful life of the converter (Bower, Mayer, & 

Reichard, 2011)(Bower, Mayer, Reichard, 2008).  The 

Markov assumption is implied for the system under 

investigation from which statistical models are developed 

and tracked through time.  Increasing degradation results 

in perturbing the operational characteristics of the system 

which can result in a shift in the Markov process (Papoulis 

& Pillai, 2002).  This shift can be quantifiable and with 

proper training, predictable in the future for prognostic 

purposes. 

In this work, a symbolic approach was adopted for health 

monitoring of imaging radar payloads on Unmanned Aerial 

Vehicles (UAVs).  These radar platforms are complex 

systems difficult to model classically which makes the 

proposed data based approach ideal for health monitoring.  

The primary objective of this research was to determine the 

feasibility of applying such a method to the high data rates 

seen in an imaging radar platform which is a product of the 

pulse repetition rate of the radar at the desired sample rate 

and bandwidth of the return echoes.  In addition, the 

approach cannot interfere with the operation of the 

platform or radar system.  The methodology was tested 

with radar phase history data and two common issues with 

imaging radars, interference and array degradation were 

investigated.  The results are also expected to lead to an 

ability to discriminate between the two degradation 

mechanisms to assist in optimizing the operation of the 

radar payload.  This paper begins with a discussion on the 

Symbolic Analysis approach specifically applied to the 

imaging radar payload and all details of the approach are 

discussed.  In Section III, a brief review of Synthetic 

Aperture Radar and radar platforms is completed.  Section 

IV reviews the results obtained from the simulations and 

feasibility testing of the approach and the paper concludes 

with future work in Section V. 

 SYMBOLIC ANALYSIS 

Symbolic Analysis is a statistical pattern recognition tool 

based upon symbolic theory.  Most work in the symbolic 

realm deals with the development of optimal models to 

determine the trajectory of modeled system states (Daw, 

Finney & Tracy, 2003).  These methods are used to model 

complex and chaotic systems.  The resultant optimal 

model, known as the ε machine, has a variable dimensional 

structure whose dimensions were constantly adjusted 

depending on the data collected over time.  This variation 

in dimensionality made it difficult to determine deviations 
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between models developed through system usage.  In order 

to make meaningful comparisons between models, a 

machine was developed with a-priori fixed dimensional 

structure (Ray, 2004).  This fixed dimensional machine 

allows for meaningful comparisons between statistical 

models defined at different temporal points in the system’s 

life at the cost of optimality.  Using the SA approach, it is 

possible to generate a measure that quantifies the amount 

of degradation within a recorded observable.  The process 

of SA is shown in the block diagram of Figure 1.  The basic 

methodology requires four steps which will be detailed in 

the next sections. 

 

 
Figure 1. Symbolic analysis of time series data block 

diagram. 

 Data Capture 

Although the process of data capture might seem 

straightforward, the process requires some careful 

consideration.  First, the type of data and where it is 

captured must be known.  This entails the study of the 

underlying system in order to determine the common 

failure points of the system.  Once these failure points are 

known, the rate and length of the data to be recorded must 

be determined. 

Symbolic analysis requires two assumptions.  First, it was 

assumed that the degradation within the system 

monotonically increases.  This means that the system does 

not undergo ‘self-healing’ or is repaired during the 

monitoring process.  Limiting self-healing is important for 

the implementation of remaining health estimation.  

Secondly, it was assumed that the degradation mechanisms 

act slower than the system dynamics.  This assumptions 

states that when the system is observed and the time series 

data collected, that the degradation in the system during 

this period was assumed to be constant.  In this manner, a 

model of the system was developed based on the constant 

state of degradation.   

For the application to radar platforms, specifically SAR 

systems, the data implemented in the algorithm was the fast 

time scale which was developed from an individual pulse 

(phase history data).  The slow time scale was defined to 

be the pulse rate or repetition rate of the platform.   

 Symbolization 

The next step involves transforming the time series data 

into the symbolic domain.  This step can be thought of as a 

general re-quantization of the original data resulting in a 

coarser distribution.  Symbolization requires the 

determination of the number of partitions to be used as well 

as the type of partitioning.  The two most common types of 

partitioning include uniform partitioning (UP) and 

maximum entropy (ME) partitioning.  The choice in the 

number of partitions will depend on the time series data 

being analyzed as well as the type of degradation and 

features to be analyzed. 

The partitioning was kept invariant over the entire 

monitoring period such that the statistical models 

developed later in the system life can be directly compared 

to the baseline.  The baseline model was defined on the 

healthy state of the system. 

 Uniform Partitioning 

Uniform partitioning divides the range of the time series 

data into equal sized regions where the total number of 

determined partitions are defined as the set P.  Given the 

range of the time series data as U, the partition sizes are 

defined as 𝑈
𝑃⁄  and the boundaries developed from the 

range U.  Each partition region Pi was mutually exclusive 

and exhaustive over the range of the data. The probabilities 

of the partition occurrence in the uniform case are not 

necessarily equal; however, the partitioning structure was 

equal.   

To construct UP, the maximum and minimum of the time 

series data were evaluated and the resultant range was 

divided equally into P regions.  These regions are assigned 

a unique symbol to complete the partition description.  An 

example of UP on a sinusoidal waveform is shown in 

Figure 2. 
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Figure 2. Example of uniform partitioning of a sinusoid. 

 ME Partitioning 

The maximum entropy (ME) partitioning scheme was 

defined by the principle of entropy in determining the 

partition structures.  Recall entropy as shown in Eq. 1. 

 𝐻(𝑋) = − ∑ 𝑝(𝑥𝑖) log2 𝑝(𝑥𝑖)

𝑛

𝑖=1

 (1) 

The entropy can be maximized by setting 𝑝(𝑥𝑖) =

𝑝(𝑥𝑗), ∀𝑖, 𝑗.  The logarithm to base 2 was used so that the 

unit of entropy is in bits.  In the time series data, 

accomplishing maximization of entropy in the baseline 

case was necessary to make sure all partitions (or symbols) 

have equal probability of occurrence.  The partition 

structure resulting from ME does not necessitate equal 

partitions as in the uniform case but does guarantee equal 

prior probabilities for the partitions in the baseline case.  A 

feature of the ME partitioning scheme is that the partitions 

boundaries are closer in regions of the data where there are 

a dense number of data points.  In regions where there are 

fewer date points, fewer partitions are generated in these 

areas.  An example of ME partitioning on a sinusoidal 

signal is shown in Figure 3.  For the ME case, the resultant 

probability of the symbols was equal compared to uniform 

partitioning whereas the partition regions are equal in size 

with unequal symbol probabilities. 

Once the partitions are defined each partition was labeled 

with a symbol from the alphabet S.  Given a time series X 

of length M, if 𝑥𝑖 ∈ 𝑃𝑖 , 0 ≤ 𝑖 ≤ 𝑀, then assign 𝑠𝑖 →
𝑥𝑖 , ∀𝑖;  𝑠𝑖 ∈ 𝑆.  By implementing the partition structure and 

assigning a unique symbol to each time series date point, 

the end result was called the symbol stream.  This is the re-

quantized time series data that is now transformed into the 

symbolic domain. 

 
Figure 3. Example of ME partitioning of a sinusoid. 

 Statistical Model Development 

Once the partitions have been developed and symbols 

assigned to each partition, the next step is to construct the 

statistical model based on the resultant symbol stream.  

This step consists of another parameter for the SA 

methodology, the depth parameter D.  The depth parameter 

controls the definition of model states.  States in the model 

are formed from D-length subsets of symbols.  Therefore, 

the total number of states in the algorithm given the number 

of partitions P and the depth D is shown in Eq. (2). 

 𝑁𝑠 = 𝑃𝐷 (2) 

As an example, assume a ternary partition scheme is 

implemented that results in three symbols; labeling them -

1, 0, and 1.  The methodology’s resultant statistical states 

depend on the number of symbols in the algorithm as well 

as the chosen depth.  The parameter depth adjusts the 

memory of the resultant symbolic model, that is, the 

parameter controls the groupings of symbols into states.  

For instance, if D was unity, the resultant states are 0, 1, 

and -1.  If D was two, the resultant states would be 00, 01, 

10, 11, 0-1, (-1)0, (-1)(-1), 1(-1), and (-1)1 according to (2).  

Shown in Figure 4 is an example of the method continuing 

the above example with the three partition symbolic system 

with D being equal to two applied to a recorded sine wave 

of arbitrary amplitude.  The number of resultant states is 

equal to three.  The example sine wave in the figure is 

divided into zero (0), one (1) or minus one (-1) by a set 

threshold (partition boundary).  The resultant square wave 

like symbol waveform developed by the processor or field 

programmable gate array (FPGA) is shown in the figure.  

The FGPA then counts the state occurrences which can 

then be converted into probabilities to generate what is 

known as the State Probability Vector (SPV). 

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

31



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014 
 

4 

 

 
Figure 4. Example symbolization using three symbols 

with d=2 resulting in nine possible states. 

 

With the symbol sequence 𝑠𝑖 completed, the next step is to 

form states out of the symbols or groups of symbols.  The 

probabilities of the state occurrences can be calculated and 

tracked across each data capture.  These probabilities are 

arranged in a 𝑁𝑠𝑥1 vector, where 𝑁𝑠 represents the total 

number of states in the algorithm given by Eq. (2), which 

is the SPV.  In the case where depth of the algorithm is 

equal to unity, as it is with most cases, the total number of 

states is equal to the number of symbols used.  Choosing D 

equal to unity results in the smallest possible model for a 

given number of symbols thereby reducing computational 

complexity of the approach. 

In addition to tracking the probability of the model states, 

the transition probabilities can also be calculated.  The 

transition matrix captures the dynamics of the symbolic 

model and it is possible to calculate the SPV given the state 

transition matrix as shown in Eq. (3). 

 𝑣𝑖Π = 𝜆𝑖𝑣𝑖 (3) 

In Eq. (3), Π is the state transition matrix, λi is the ith 

eigenvalue equal to unity, and vi is the left eigenvector of 

Π associated with the unity eigenvalue.  Using the 

examples in Figure 2 and Figure 3, the state transition 

matrices are shown in Table 1. 

Table 1.  Example state transition matrices for uniform 

and ME partitioning. 

 

Uniform Partitioning – Π Matrix 

0.99847 0.00153 0.00000 

0.00278 0.99445 0.00278 

0.00000 0.00153 0.99847 

ME Partitioning – Π Matrix 

0.99820 0.00180 0.00000 

0.00180 0.99640 0.00180 

0.00000 0.00180 0.99820 

 

Both of the matrices show little change between either 

types of partitioning.  The results display strong diagonal 

terms as would be expected with symbolic analysis and 

with sinusoidal data.   From the natural progression of the 

sinusoidal data, it is evident that there would be no 

instantaneous transitions between the minimum and 

maximum values resulting in the two zero transitional 

probabilities.  The SPVs for each type of partitioning is 

shown in Table 2. 

 

Table 2.  Example SPV for Uniform and ME Partitioning. 

 

Uniform Partitioning 

0.392 

0.216 

0.392 

ME Partitioning 

0.333 

0.333 

0.333 

The difference between uniform and ME initial SPVs can 

be observed in the above table.  As was mentioned earlier, 

uniform partitioning results in equal partition sizes but not 

equal state probabilities.  The opposite is true with ME 

partitioning with the resultant state probabilities equal but 

the partition sizes are not. 

Once the probabilities or counts as shown in Table 2 are 

known, a distance type metric can be applied to the baseline 

case and future cases to develop an anomaly based on the 

current system operation.  More deviation from this 

baseline will translate into a measureable anomaly at the 

algorithm’s output. 

 Anomaly Generation 

Anomalies inherent to degradation in the system can be 

generated from the use of the SPV between the data 

captures.  The metric quantifies the deviation between the 
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known baseline, commonly known as the healthy state of 

the system, and a future system state.  A measure 

commonly used to quantify an anomaly between captures 

is based on the Manhattan distance given in Eq. (4). 

 A = ‖𝑧𝑛𝑜𝑚𝑖𝑛𝑎𝑙 − 𝑧𝑗‖
1

 (4) 

In Eq. (4), 𝑧𝑛𝑜𝑚𝑖𝑛𝑎𝑙  is the nominal (baseline) SPV and 𝑧𝑗 is 

the SPV at iteration j.  From this measure, it is possible to 

quantify anomalies present in the system and how they 

evolve over time and usage.  For the state transition matrix 

anomaly measure, the Frobenious norm of the difference 

between two state transition matrices can be used.  From 

this evolution of the anomaly, it is then possible to define 

a threshold of failure for the system.  The threshold can 

then be implemented in a predictor to estimate remaining 

useful life of the system.   

The anomaly can be used as a diagnostic measure to 

determine the amount of degradation the system has 

incurred over its lifetime or to be used as a prognostic 

measure.  If training data exists for the system, the anomaly 

measure can then be used in a prognostic application to 

predict the remaining useful life of the system. 

 SYNTHETIC APERTURE RADAR 

The focus of the effort was in applying the Symbolic 

Analysis health management approach to SAR platforms.  

These platforms are imaging based radars that operate in 

frequency ranges up to the 10s of GHz.  While the 

methodology is applicable to many systems aboard 

remotely piloted aircraft, the SAR platform was targeted 

for this research because of its importance to missions as 

well as the high cost of maintenance and repairs.  A health 

methodology such as the one based on SA can reduce these 

costs dramatically.   

The imaging radar works by mathematically assuming that 

a series of radar pulses and returns were generated and 

measured by a single large radar antenna (synthetic 

aperture) (Richards, Scheer, & Holm, 2010).  In order to 

operate, the platform must be travel some finite distance 

during the pulse intervals. 

The radar class investigated was the Active Electronically 

Scanned Array (AESA) radar (Melvin & Scheer, 2013).  

The radar itself is made up of hundreds of smaller 

transmit/receive (T/R) modules.  Each one of these 

modules contains the necessary electronics for transmitting 

and receiving radar pulses.  The T/R modules also contain 

the phase control block which in combination with all the 

other modules allows the array to electronically scan. 

An example block diagram of a T/R module is shown in 

Figure 5.  The T/R Module contains dual channels for both 

receiving reflections as well as for transmitting.  Common 

to the two paths is the phase shifter for each individual 

element to steer the beam.  The attenuator is used to add an 

amplitude taper to the overall array to improve the transmit 

characteristics.  Two switches are used to select transmit 

and receive channels as necessary.  The transmit path 

consists of the driver and power amp to gain the signal to 

the antenna element. The power is sent to the antenna 

through SW2 which is typically a circulator.  Switching the 

channel to receive, the first element is the Low Noise 

Amplifier (LNA) with a pre-amplifier filter.  The diode on 

the input is used to protect the LNA and for impedance 

matching. 

 
Figure 5. Example block diagram of a T/R module for an 

AESA radar element. 

  

A general imaging SAR diagram is shown in Figure 6.  The 

cross-range resolution of SAR imagery is dependent on the 

number of pulses sent out by the platform used in the image 

formation.  The cross-range of a SAR image is the direction 

in line with the flight path of the radar system.  The range 

direction is that which is perpendicular to the flight path.  

To increase range resolution, a wide bandwidth pulse is 

needed which would in turn require a short pulse emitted 

from the radar system as this short pulse would have wide 

bandwidth.  However, to get enough signal power out such 

that echoes are detectable, a large instantaneous power is 

required which is currently unattainable with current solid-

state transmitters.  Instead, a frequency chirp is used so that 

lower instantaneous power can be used.  In order to further 

improve the range resolution of the chirp, the resultant 

frequency chirp is pulse compressed. 

 
Figure 6. SAR radar imaging concept diagram. 
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Two types of degradation to radar images were simulated 

for the analysis.  These events were jamming, classified as 

an external degradation event, and array degradation which 

is an internal degradation event. Both were simulated for 

the symbolic analysis routine.  The results of these 

simulations were then used as input for the SA algorithm.  

The degradation simulations were developed to model 

electronic counter measures as well as deterioration effects.   

The data readily available from AFRL’s Sensor Data 

Management System (SDMS) was in the form of phase 

history.  The phase history data is complex with both I and 

Q, containing both magnitude and phase of the echoes 

received at the radar.  The phase history is calculated from 

the raw echo samples by using known platform related 

constants (flight path, etc.) and scaling (range scaling).  

The result is a phase history data matrix containing all NP 

pulses sent from the transmitter with NS samples per pulse.  

The symbolic algorithm operates on each column of the 

phase history matrix resulting in NP iterations of the 

algorithm.  The algorithm parameters must be chosen 

appropriately considering the number of samples available 

for processing and for probability convergence. 

The phase history data implemented in this work was from 

the 2D/3D Imaging Gotcha Data Challenge (‘Gotcha’ 

dataset).  This data contains phase history over 360° of 

azimuth of an urban environment consisting of numerous 

vehicles, roads, and other targets.  Each degree of azimuth 

incorporates approximately 117 pulses with 424 frequency 

samples per pulse.  The data was collected in the X-band 

(7 – 11 GHz) with a 640 MHz bandwidth.  The data 

contains H/H, H/V, V/H, and V/V (transmit/receive) 

polarizations where H is horizontal and V is vertical.  The 

different polarizations enable additional details about 

targets to be extracted from the reflected signals.  An 

example from the Gotcha dataset is shown in Figure 7.  The 

image was formed from 5° of azimuth resulting in a cross-

range resolution of 0.19 m and a range resolution of .24m.  

The scene size is approximately 102 m by 108 m. 

 
Figure 7. Example Gotcha SAR image. 

 

The image of the parking lot located in the scene is shown 

in Figure 8 with the ground truth for the image in Figure 7 

is shown in Figure 9.  Figure 8 shows a view of the parking 

lot contained within the Gotcha scenes while Figure 9 

shows the ground truth for the entire scene.  The image in 

Figure 7 used the back projection algorithm for image 

generation (Gorham, & Moore, 2010).  Additional 

photographs for the environment and targets can be found 

with the Gotcha Data Set (GOTCHA, 2011). 

 

 
Figure 8. Parking lot image for Gotcha radar data. 

 

 
Figure 9. Gotcha ground truth. 

 

 RESULTS 

In the Phase I work, the algorithm was simulated in a 

MATLAB environment investigating the SA response to 

both jamming and array degradation mechanisms.  This 

section describes the approaches used to simulate the two 

degradation mechanisms as well as the results from the 

algorithm.  The objective of each simulation was to 

determine the output of the SA algorithm to the 

degradation mechanisms presented in the data.  In this 

manner, the output of the SA algorithm could also be used 

to intelligently classify the type of degradation (or mixture 

thereof) present within the system.   

 Jamming Degradation 

The first type of degradation simulated was for radar 

jamming attacks.  Jamming attacks are electronic 

countermeasures deployed to confuse or disrupt the normal 

operation of radar systems.  There are two main types of 

jamming, one is related to denial of operation and the other 

is false target injection.   
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False target jamming uses an intelligent transceiver in 

which the source radar is monitored, manipulated, and re-

transmitted.  The re-transmitted signals can be used to 

obscure the location of ground-based objects or introduce 

false targets in the radar system.  This type of attack falls 

under what is known as Digital Radio Frequency Memory 

(DRFM) (Kwak, 2009)(Mehalic, & Sayson, 1992)(Berger, 

2001).  This type of attack learns the behavior of the source 

radar and transmits a manipulated signal back to the 

receiver.  The other type of attack implementing DRFM is 

the denial of operation.  A ground based or other receiver 

learns the transmitted characteristics of the source radar 

and transmits noise at those frequencies.  The transmitted 

noise then significantly reduces the ability to resolve 

objects in the image produced through SAR mapping.   

Mathematically, Gaussian noise is given in Eq. (5) shown 

below. 

 
𝑁(𝜇, 𝜎) =

1

√2𝜋𝜎22 𝑒
−

(𝑥−𝜇)2

2𝜎2  (5) 

In order to simulate a jamming attack and inject the 

additive Gaussian noise into the system, the parameters μ 

and σ2 (mean and variance) must be known.  These 

parameters are estimated from the radar data and 

considered as the healthy non-degraded parameters.  With 

the parameters defined, the noise is added into the system 

as shown in Eq. (6). 

𝑃𝐻𝑐𝑜𝑟𝑟𝑢𝑝𝑡𝑒𝑑 = 𝑃𝐻𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 + 𝑁(𝛼𝜇0, 𝛼𝜎0)

+ 𝑗𝑁(𝛼𝜇0, 𝛼𝜎0) 
(6) 

In (6), PH is the Phase History, α is a scalar, and 𝑁(𝜇, 𝜎) is 

the additive Gaussian noise.  Note that in Eq. (6), the noise 

is added to both the real and imaginary components of the 

PH.  Each additive noise component is independent of each 

other.  The scalar, α, is defined in Eq. (7). 

 
𝛼 = 10

𝑃(𝑑𝐵)
20  (7) 

The parameter controls the strength of the jamming attack 

such that if P(dB) = 0, the Signal-to-Noise Ratio (SNR) of 

the resultant system would be 0 dB.  The resultant power 

of the jamming noise would equal to that of the returned 

echoes.   

The jamming corruption was then implemented on the 

Gotcha data set.  In this case, 𝑃(𝑑𝐵) was chosen to be 0 

dB.  The estimated noise parameters are shown in Table 3. 

 

Table 3:  Estimated Noise Parameters from Gotcha Radar 

Data 

 

Estimated Noise Parameters from Radar Data 

 Real Imaginary 

Mean, μ 2.450e-7 8.373e-8 

Variance, σv
2 6.461e-4 6.461e-4 

 

This results in the scalar, α, having the value of unity.  The 

resulting image is shown in Figure 10. 

 
Figure 10. Jamming corruption:  Gotcha SAR image. 

 

Compare the results of Figure 10 to those in Figure 7 which 

contain the original image.  As anticipated, the jamming 

significantly reduces the ability to resolve objects in the 

image.  The stronger reflections in the scene due to metallic 

objects can still be seen due to the starburst effect; 

however, the details of the road and parking lot are 

significantly reduced.   

The PH data with the included jamming noise was then 

implemented in the SA algorithm.  The parameters used in 

the analysis are shown in Table 4. 

 

Table 4:  SDAAD Parameters for ME and Uniform 

Partitioning – Jamming 

 

Parameters Number of 

Partitions 

Depth Resultant 

Number of 

States 

Uniform 

Partitioning 

6 1 6 

Maximum 

Entropy 

6 1 6 

 

For all of the following results, the SA routine was 

implemented on the magnitude of the PH data.  The 

magnitude was chosen as it would represent any change 

between both the real part and the imaginary component of 

the PH.  Other features that could be used are the individual 

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

35



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014 
 

8 

 

real or imaginary components or the angle between the real 

and imaginary components. 

 Jamming – Uniform Partitioning 

The first set of results was developed with uniform 

partitioning.  The resultant anomaly for the uniform 

partitioning jamming attack is shown in Figure 11.  Recall 

that the signal to noise ratio (SNR) of this system was 

simulated to be 0dB in order to simulate a significant 

strength jamming attack to the radar platform. 

 
Figure 11. Jamming corruption:  anomaly results – 

uniform partitioning. 

 

In the figure, the jamming attack is clearly seen in the last 

117 pulses of the image.  In addition, the effects of 

jamming on these pulses, which represent about 20% of the 

total image, were shown in Figure 10.  If the entire group 

of return pulses had been jammed, the image would have 

been totally corrupted but in order to demonstrate the 

change from a jammed pulse to a non-jammed pulse only 

the last 117 return pulses were jammed.  The resulting 

anomaly has a magnitude of about 0.85.  A threshold could 

be implemented around an anomaly magnitude of 0.8 to 

detect this type of degradation. 

 Jamming – ME Partitioning 

The resultant anomaly magnitude formed from the state 

probabilities using the anomaly measure is shown in Figure 

12. 

Comparing these results to those obtained from the uniform 

partitioning, they are both similar in that both partitioning 

methods detect the added jamming noise at the instance it 

was injected.  The resultant magnitude of the anomalies is 

also comparable at about 0.85.  A notable difference is in 

the anomaly measure before the jamming.  As can be 

observed in the ME partitioning, the anomaly is slightly 

larger.   

 
Figure 12. Jamming corruption: anomaly results – ME 

partitioning. 

 

Recall that ME partitioning results in partition structures 

that finely divide dense regions of data and coarsely divide 

sparse regions.  This also results in equal initial partition 

probabilities and hence symbol probabilities that evolve 

with degradation.  Due to this distribution, any small 

deviation, either from degradation or environment, can be 

detected by this partitioning methodology.  Figure 12 

shows a slightly larger anomaly magnitude which is a 

result of slight differences in data between pulses.  This 

slight increase may be problematic when the approach is 

applied to a data from a fielded system.  Because of this, 

uniform partitioning may be the most appropriate partition 

approach for future work.  

 Array Degradation 

Array degradation was the next type of degeneration that 

was simulated.  This type of degradation represents internal 

platform degradation and was also implemented using the 

SAR Gotcha dataset.  From the T/R module (Figure 5), 

there are two paths within each array module.  The weakest 

link in each module is the power amplifier used as the final 

stage to drive the antenna.  It was assumed in this analysis 

the amplifier fails such that the module can no longer 

transmit.  Since the receive path is still intact, it is assumed 

that the module can receive echoes. 

If the amplifier fails and the receive path is still active the 

overall transmit power decreases but the receive gain 

remained the same.  It is known that the output power of an 

array degrades according to Eq. (8) (Rutledge, Cheng, 

York & Weikle, 1999). 

 𝑑𝐵𝐿𝑂𝑆𝑆 = 20𝑙𝑜𝑔10(1 − 𝛽) (8) 

The total transmit power loss can then be related to the 

percentage of failed elements β.  The received power 

derived from the radar range equation is given in Eq. (9) 

(Richards et al, 2010). 
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𝑃𝑟 =

𝑃𝑡𝐺𝑡𝐺𝑟𝜆2𝜀

4𝜋3𝑅4
 (9) 

In (9), Pt is the power transmitted, Gt is the gain of the 

transmit antenna, Gr is the gain of receive antenna, λ is the 

carrier wavelength, ε is related to the target’s radar cross 

section (RCS), and R is the range to the target.  In normal 

radar operation, the same antenna receives and transmits 

resulting in the same gain.  However, the loss in transmit 

power can be modeled by applying a scalar directly to Gt 

which then directly results in a decrease in the received 

power since it is assumed that the receiver gain remains 

constant due to the fact that all elements can functionally 

receive echoes.   

The transmit gain during the degradation simulation is 

shown in Figure 13.  As was done with the jamming 

simulation, the array degradation was applied to 117 

individual pulses on a single degree of azimuth.  In this 

manner, each pulse was scaled by the values of the linear 

relationship shown in Figure 13.   

 
Figure 13. Array degradation simulation: Transmit gain 

plot, Gt for use in Eq. (9). 

 

The scaling in the figure results in an applied -3 dB transmit 

loss to the antenna.  This level was chosen as it is 

considered the failure point for a transmitting antenna.  A 

3dB loss translates to approximately 29% of the element 

modules failing in the array.  An image formed from a 

simulated degraded array is shown in Figure 14. 

 
Figure 14. Array degradation: Gotcha SAR image. 

  
The image degradation is minimal compared to the original 

non-degraded image shown in Figure 7.  The image details 

of the parking lot can still be seen in the degraded image 

including the roadways and parked vehicles.  For the SA 

analysis, the parameters implemented are shown in Table 

5.  The parameters implemented were the same as was 

implemented in the jamming simulation.   

 

Table 5:  SDAAD Parameters for ME and Uniform 

Partitioning – Array Degradation 

 

Parameters Number of 

Partitions 

Depth Resultant 

Number of 

States 

Uniform 

Partitioning 

6 1 6 

Maximum 

Entropy 

6 1 6 

 

 Array Degradation – Uniform Partitioning 

The resultant anomaly formed from the deviation of these 

states from the baseline is shown in Figure 15.  The figure 

shows the increasing anomaly that follows the degradation 

profile simulated.  Note that the return pulse numbers in 

Figure 13 coincide with the algorithm output return pulse 

numbers in Figure 15. 
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Figure 15. Array degradation:  anomaly results– uniform 

partitioning. 

 

For this simulation, the degradation profile was simulated 

on the second to last azimuth angle again applied to 117 

pulses.  The last azimuth angle was maintained at the -3dB 

degradation level.  The increase in anomaly is observable 

and when the degradation is constant, the resultant 

anomaly is constant as well.  The result also demonstrates 

the possibility of implementing a remaining useful life 

predictor on this type of degradation.  This would assume 

that the array would degrade slowly over its useful life 

before needing to be pulled from the platform for repair.  

Through these simulations, the anomaly magnitude from a 

jamming event resulted in a larger anomaly magnitude 

which was due to the simulation.  For example, weaker 

jamming attempts or more array degradation could result 

in comparable anomaly magnitudes.  In future work these 

situations will be resolved by the classifier stage.  In 

addition, the past history of the algorithm output can be 

used to discriminate between wear-out phenomenon in the 

array and deliberate platform jamming. 

 Array Degradation – ME Partitioning 

The resultant anomaly formed from the same simulation 

using ME partitioning is shown in Figure 16. 

As was done with the simulation under uniform 

partitioning, the degradation was applied to the second 

from the last azimuth degree so that the final degree could 

be held at the -3dB array degradation level.  The resultant 

anomaly plot was similar to that obtained with uniform 

partitioning and the resultant magnitudes are also 

comparable.  In this case, the -3dB anomaly magnitude is 

only slightly larger due to the larger nominal anomaly from 

pulses 1 through 400 (~0.15 for ME to ~0.10 for Uniform).   

 
Figure 16. Array degradation:  anomaly results – ME 

partitioning. 

 

This result was also observed with the jamming results of 

the previous section.  The difference is slight and the 

resultant responses from the partitioning methods remain 

similar.  Since the results are similar, the application of this 

approach to SAR platforms would dictate that either 

partitioning method could be implemented.  Obtaining 

more data from fielded system may give more insight into 

which approach would be more applicable for degradation 

monitoring.  From this initial research, although the results 

are positive in general, a determination of which 

partitioning methodology is superior to the other cannot be 

stated.  

 COMBINED DEGRADATION 

Separate degradation mechanisms such as those above can 

be easily identified when they occur by themselves.  More 

interesting is the case when multiple degradation 

mechanisms occur simultaneously.  For this reason, the two 

degradation mechanisms above were simulated 

simultaneously with the effects superimposed in the data.  

For instance, the array was first degraded by applying the 

degradation to the second from the last azimuth angle of 

data and holding the last angle of data at -3dB degradation.  

At this point, a jamming attack was simulated on top of the 

array degradation. 

In this case, the parameters for the test were, six partitions, 

depth of unity, and the partitioning method was uniform.  

In this case, uniform was arbitrarily chosen since each 

approach yielded similar results in the previous analysis.  

The resultant SAR image formed from the combined 

degradation is shown in Figure 17.  As with previous 

simulations, the jamming power was again set to 0dB. 
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Figure 17. Combined degradation: Gotcha SAR. 

 

In the image, the degradation is observable with the 

jamming being the strongest source of degradation.  

Compare this image to that obtained from jamming only, 

Figure 10.  The two images look similar with Figure 17 

showing slightly more image degradation.  The resultant 

anomaly from this combined effect is shown in Figure 18. 

 
Figure 18. Combined degradation:  anomaly results– 

uniform partitioning. 

 

The results in Figure 18 show a distinct combination of the 

two degradation effects.  In pulses 400 through 480, the 

array degradation is clearly seen.  In pulses 480 through 

580, the combined effects of jamming and array 

degradation are seen although the strength of the jamming 

attack overcomes that of array degradation and manifests 

itself as a discontinuity in the anomaly magnitude.  The 

discontinuity that arises from jamming attacks could be 

implemented in the degradation classifier and assist in 

determining whether degradation is internal or external. 

 CONCLUSION AND FUTURE WORK 

The method of Symbolic Analysis was demonstrated using 

simulated degradation in SAR phase history data.  Under a 

MATLAB environment, both jamming and array 

degradation were simulated and the results observed.  The 

simulations analyzed the results from both uniform and 

maximum entropy partitioning methods under the same 

number of partitions and algorithm depth.  The data used 

was phase history data that was corrupted with degradation 

representing jamming and array failure events.  Once 

corrupted, the magnitude of this data was used as the input 

into the SA algorithm.  The results show similarities 

between the two with ME being slightly more sensitive to 

the data as compared to uniform.  In addition, the results 

were simulated with combined degradation mechanisms.  

In these cases, it was shown that it is possible to perform 

classification on the resultant algorithm output such that 

degradation can be identified.  From these initial results, it 

seems to be the case that uniform partitioning would be 

preferable to ME to reduce the probability of false 

positives. 

QorTek has been awarded a Phase II research program to 

expand the methodology and apply to both healthy and 

degraded field data from imaging radars.  The new research 

project will investigate the results of the Phase I to validate 

the simulations as well as to expand the number of 

degradation mechanisms to model.  Another objective of 

this research is to expand on the degradation classification 

as well as investigate the application of prognostics to the 

approach.  QorTek plans to also use this research to 

definitively determine if there is a superior partitioning 

methodology between the two presented in the initial work.  

In addition, the Phase I work only investigated using the 

magnitude and not the angle of the complex data.  The 

Phase II work will investigate using additional features and 

using the partitioning approach to generate a one-

dimensional symbolic data set.  It is anticipated that the 

algorithm will be implemented and a prototype flight-

tested on a SAR radar payload.   

The output of the SA can be utilized in a prognostic 

application.  The output of the algorithm would provide a 

measurement of degradation which would act as an input 

for a Kalman-type predictor.  As was observed, the output 

of the algorithm is related to the amount of degradation 

sustained by the radar.  Since the exact evolution of the 

radar faults are not exactly known, a generic model must 

be implemented for the Kalman filter.  A kinematic-motion 

model could be applied for the Kalman model.   Future 

work will also address the determination of how much 

degradation can be sustained by the payload until it is 

deemed ‘failed.’  This work is anticipated to be carried out 

in the Phase II program. 
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NOMENCLATURE 

A = anomaly 

α = noise scaling constant 

β = percentage of failed array 

D = symbolic depth 

H(·) = entropy 

M = time series data length 

Ns = number of states 

p(·) = probability 

Pi = ith partition 

si = ith symbol 

U = time series data amplitude range 

X = time series data 

z = state probability vector 

𝑣𝑖 = ith eigenvector 

𝜆𝑖 = ith eigenvalue 

Π = state transition matrix 
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ABSTRACT

Nowadays, determining faults (or critical situations) in non-
stationary environment is a challenging task in complex sys-
tems such as Nuclear center, or multi-collaboration such as
crisis management. A discrete event system or a fuzzy dis-
crete event system approach with a fuzzy role-base may re-
solve the ambiguity in a fault diagnosis problem especially
in the case of multiple faults (or multiple critical situations).
The main advantage of fuzzy finite state automaton is that
their fuzziness allows them to handle imprecise and uncertain
data, which is inherent to real-world phenomena, in the form
of fuzzy states and transitions. Thus, most of approaches pro-
posed for fault diagnosis of discrete event systems requirea
complete and accurate model of the system to be diagnosed.
However, in non-stationary environment it is hard or impos-
sible to obtain the complete model of the system. The focus
of this work is to propose an evolving fuzzy discrete event
system whose an activate degree is associated to each active
state and to develop a fuzzy learning diagnosis for incomplete
model. Our approach use the fuzzy set of output events of the
model as input events of the diagnoser and the output of a
fuzzy system should be defuzzified in an appropriate way to
be usable by the environment.

1. INTRODUCTION

A great number of systems or situations can be naturally viewed
as discrete event systems. A discrete event system is a dy-
namic system whose the behavior is governed by occurrence
of physical events that cause abrupt changes in the state of the
system (Liu & Qiu, 2009a; Cassandras & Lafortune, 1999;
Moamar & Billaudel, 2012; Traore, Moamar, & Billaudel,

Moussa Traoré et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United StatesLicense, which
permits unrestricted use, distribution, and reproductionin any medium, pro-
vided the original author and source are credited.

2013). Discrete event system theory, particularly on mod-
eling and diagnosis, has been successful employed in many
areas such as concurrent monitoring and control of complex
system (Cao & Ying, 2005). Usually, a discrete event system
is modeled by Automaton (Dzelme-Berzina, 2009; Mukher-
jee & Ray, 2014) or Petri Net (Patela & Joshi, 2013). Au-
tomaton (or more precisely a finite state automaton) are the
prime example of general computational systems over dis-
crete spaces and have a long history both in theory and ap-
plication (Thomas, 1990; Moghari, Zahedi, & Ameri, 2011).
A finite state automaton is an appropriate tool for modeling
systems and applications which can be realized as finite set of
states and transition between them depending on some input
strings (Doostfatemeh & Kremer, 2004). And, the behavior of
discrete event system modeled by an automaton is described
by the language generated by the automaton.

Discrete event systems are divided into two categories: crisp
discrete event system and fuzzy discrete event system. A
crisp discrete event system is usually described by a deter-
ministic automaton (Luo, Li, Sun, & Liu, 2012) and fuzzy
state is the extension of crisp discrete event system by propos-
ing fuzzy state and every state transition is associated with a
possibility degree, called in the following membership value.
Thus, the membership value can be defined as the possibility
of the transition from current (active) state to next state.The
main advantage of fuzzy finite state automaton is that their
fuzziness allows them to handle imprecise and uncertain data,
which is inherent to real-world phenomena, in the form of
fuzzy states and transitions. In literature, many application of
fuzzy discrete event system had been proposed (Gerasimos,
2009; Luo et al., 2012; Sardouk, Mansouri, Merghem-Boulahia,
& Gaiti, 2013). Thus, one of the interesting characteristics of
fuzzy automaton is the possibility of several transitions from
different current fuzzy states lead to the same next fuzzy state
simultaneously, and also the possibility of several transitions

1
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from one current fuzzy state lead to the different next fuzzy
states simultaneously and consequently several output label
can be activated at the same time (Doostfatemeh & Kremer,
2005). For this reason, fuzzy discrete event is very adaptedto
resolve the ambiguity in a fault diagnosis problem especially
in the case of multiple faults. In this paper, these output events
constituted of a fuzzy set are applied as input event for our
diagnoser. Most of applications, the output should be crisp.
Therefore, the output of a fuzzy system should be defuzzified
in an appropriate way to be usable by the environment. Thus,
the outputs are assumed to be observable.

The diagnosis of discrete event systems is a research area
that has received a lot of attention in the last years and has
been motivated by the practical need of ensuring the correct
and safe functioning of large complex systems (Cabasino &
Alessandro Giua, 2010) or complex situation (like crisis sit-
uation) (Traore et al., 2013). Hence, the use of finite state
automaton in fault diagnosis tasks has gained particular atten-
tion in the case of discrete event dynamic systems (Gerasimos,
2009). Although, most of approaches proposed in literature
for fault diagnosis of discrete event systems require a com-
plete and accurate model of the system to be diagnosed. How-
ever, the discrete event model may have arisen from abstrac-
tion and simplification of a continuous time system or through
model building from input-output data. As such, it may not
capture the dynamic behavior of the system completely. There-
fore, in this paper, we attempt to develop a diagnosis ap-
proach based on fuzzy automaton for incomplete model in
non-stationary environment. For most of real-world applica-
tions operate in non-stationary environment.

The diagnosis approach proposed in our paper is different
from the approach proposed in (Kwong & Yonge-Mallo, 2011).
In our paper, the diagnoser is a finite-state Automaton which
takes fuzzy output sequence of the system as its input. Here,
the learning diagnoser is constructed off-line and the diagno-
sis is performed on-line using input and output data gener-
ated by system’s model. The on-line diagnosis system allows
to build an evolving fuzzy finite state system by updating the
set of states and/or the set of input symbols. The new states
and/or transitions detected by the diagnoser is validated by an
expert of the system or situation.

The potential application of learning diagnosis based on fuzzy
finite state automaton is in solving the ambiguity in a fault di-
agnosis problem especially in the case of multiple faults.

This paper is organize as follows. In section 2 , we present
the required background of crisp discrete event system. We
describe the general definition for fuzzy discrete event system
in section 3 . The standard diagnoser is presented in section
4. The algorithm of the learning diagnosis based on evolving
fuzzy finite state automaton is proposed in section 5. Learn-
ing diagnoser application to crisis management is presented
in section 6.

2. CRISP DISCRETE EVENT SYSTEM

A crisp discrete event system is usually described by a deter-
ministic automatonG = {X,Σ,ϕ ,Y,x0,F}, where

• X is the set of states

X = {x0,x1, · · · ,xn−1,xn},
• Σ is set of input symbols,

Σ = {a0,a1, · · · ,am−1,am},
• ϕ : X×Σ→ X is the transition function,

• Y is the set non-empty finite set of output,

Y = {y0,y1, · · · ,yl−1,yl},
• x0 ∈ X is the start state and

• F ⊆X is the (possibly empty) set of accepting or terminal
states,

The event setΣ includes the set of failure events (or critical
events)Σ f (Kwong & Yonge-Mallo, 2011). In addition to
the normal situation (mode)N, there arep critical situation
(or failure mode)F1, · · · ,Fp that describe the evolution of the
condition’s system. We denote the condition set of the situa-
tion by
λ =

{
N,F1, · · · ,Fp

}
, in this case, the state set partitioned into

X = XN∪XF1∪·· ·∪XFp.

In (Traore et al., 2013), we proposed the extension of the tran-
sition functionϕ represented as:ϕ : X×Σ→ X×Y.
Let ϕ1 andϕ2 be the two projection ofϕ such asϕ1 gives the
state reached from a statexi ∈ X and a given inputak ∈ Σ and
ϕ2 defines the output sequence from statexi and inputak. The
expression ofϕ1 andϕ2 are given by

ϕ1(xi ,ak) =
{

x j | ∃ y j such that(x j ,y j) ∈ ϕ(xi ,ak)
}

,

ϕ2(xi ,ak) =
{

y j | ∃ x j such that(x j ,y j) ∈ ϕ(xi ,ak)
}

,

wherexi , x j ∈ X andak ∈ Σ andy j ∈ Y. The new definition
of ϕ is:

ϕ(xi ,ak) = (ϕ1(xi ,ak),ϕ2(xi ,ak)).

These two projection may be extended to take input sequence,
for example:x j ∈ ϕ1 (xi ,σi ∈ Σ∗) and/or output sequence for
example:σy∈ϕ2(xi ,σi ∈Σ∗), whereσi = a1a2 · · ·al andσy =
y0y1 · · ·yn. Σ∗ is a set of all strings formed by events inΣ,
exampleak ∈ Σ, then,a1a2 · · ·ak ∈ Σ∗.

The behavior ofG is described by the language generated by
G denoted asL (G) or simply byL (Liu & Qiu, 2009b).

3. FUZZY DISCRETE EVENT SYSTEM

Fuzzy discrete event systems as a generalization of (crisp)
discrete event systems have been introduced in order that it
is possible to effectively represent uncertainty, imprecision,
and vagueness arising from the dynamic of systems. A fuzzy
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discrete event system has been modelled by a fuzzy automa-
ton; its behavior is described in terms of the fuzzy language
generated by the automaton (Cao & Ying, 2006).

A Fuzzy Finite Automaton (FFA) is a 6-tuple

G̃ = {X,Σ,δ ,Y, x̃0,F} .

i The fuzzy subsetδ : X× Σ×X → [0 1] is a function,
called the fuzzy transition function. A transition from
statexi (current state) tox j (next state) uponak with the
weightωi j is denoted as:δ (xi ,ak,x j) = ωi j ,

ii x̃0 ∈ X is the set of initial states.

One of the interesting characteristics ofFFA is the possi-
bility of several transitions from different current (or active)
states lead to the same next state simultaneously (seeFigure
1.(a)). Thus, the possibility of several transitions from one
current states lead to the different next states simultaneously
as shown in Figure 1.(b), and consequently several output la-
bel can be activated at the same time (Doostfatemeh & Kre-
mer, 2005). It is possible to have more than one start state
with FFA.

x1

x8

x13

x3

x5
x14

x7

x10

µ t1 (x1) = 0.01

µ t1 (x8) = 0.5

µ t1 (x13) = 0.02

µ t2(x3) = [0.2 0.4 0.05]

µ t3 (x5) = 0.4 µ t4(x14) = 0.6

µ t4 (x7) = 0.25

µ t4(x10) = 0.5

1/0.2

1/0.05

1/0.3

0/0.8

0/0.1

0/0.6

(a) (b)

event

weight

Figure 1. A example ofFFA.

when an inputak occurs at timet, all active state at this time,
are those states to which there is at least one transition on the
input eventak. Then, the fuzzy set of all active state at time
t is called active state set at timet. A active state set denoted
Xact is consisted of state and theirmv′s. The definition ofXact
is given by:

Xact(t) =
{(

x j ,µ t(x j )
)
|∃(xi ∈ Xpred(x j),ak ∈ Σ)∧x j ∈ Xsucc(xi ,ak)

}
,

Xpred(x j ) = Xpred(x j , t) and,

Xpred(x j , t) =
{

xi | ∃ a′k s.t x j ∈ ϕ1(xi ,a
′
k) ∧ x j ∈ Xact(t)

}
,

Xsucc(xi ,ak) =
{

x j | x j ∈ ϕ1(xi ,ak)
}

,

δ (xi ,ak,x j ) = ωi j ,

For example in Figure 1.(a)
ϕ1(x1,1) = ϕ1(x8,1) = ϕ1(x13,1) = x3.

wherexi is the state at timet−1, µ t(x j) is the membership of
statex j at timet, Xpred(x j , t) is all predecessors set of active
statex j andXsucc(x j ,ak) is all successors set of the statex j on
input symbolak. The successorXsucc(x j ,ak) is the set of allx j

which will be reached via transition functionδ (x j ,ak). In the

following, all successors set ofx j is denoted byXsucc(x j ,
all→

), when the next state depend to the occurrence of different
events.

We use the same notation for the active state, when the upon
entrance is a stringΓ. The active state set of the stringΓ is
given by:

Xact(Γ) = Xact(t0 + |Γ|),
where|Γ| represent the length ofΓ.

Definition 1 A fuzzy set∆X defined on a set X (discrete or
continuous), is a function mapping each element of X to a
unique element of the interval[0 1], ∆X : X→ [0 1]. The mem-
bership value (mv) of the state xi ∈ X at time t is denoted as
µ t(xi).

For example in Figure 1.(a), at time timet1, the active state is
Xact(t1)= {x1, x8, x13} andXsucc(x1,1)= {x3}, Xsucc(x8,1)=
{x3} andXsucc(x13,1) = {x3}, and at time timet2, the active
state isXact(t2) = {x3} andXpred(x3, t2) = {x1, x8, x13}, that
mean the statex3 is forced to take several differentmvat this
time. Hence,x3 is a state with multi-membership, that we
will call in the following multi-membership state.

In Figure 1.(b), eachmvµ t+1(x j) of the statex j at timet +1
is computed by using the functionΨ1, named augmentation
transition function. The functionΨ1 should satisfy the two
following axioms.

1. 0≤Ψ1 (µ t(xi),δ (xi ,ak,x j))≤ 1,

2. Ψ1(0,0) = 0 andΨ1(1,1) = 1.

To computeµ t+1(x j), the functionΨ1 use two parameters:
µ t(xi) at timet and the weightωi j of the transition.

same example ofΨ1 are:

• Arithmetic Mean

−µ t+1(x j) = Ψ1
(
µ t(xi),δ (xi ,ak,x j)

)
,

= Mean(µ t(xi),ωi j ),

=
µ t(xi)+ ωi j

2
,

• Geometric Mean

−µ t+1(x j) = Ψ1
(
µ t(xi),δ (xi ,ak,x j)

)
,

= GMean(µ t(xi),ωi j ),

=
√

µ t(xi)×ωi j ,

whereµ t(xi) is themvof the corresponding predecessor ofx j

andδ (xi ,ak,x j) = ωi j .

Themvof each active state is used as the level of activation of
each active state and the active state can be multi-membership
state. However, in this paper, we need a single value for each
active state. For this reason, the functionΨ2 is introduced

3
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to compute the singlemvcorresponding to the state that was
forced to take severalmv by these predecessors. The single
membeship valueµ t+1(x j) of each multi-membership state
given by:

−µ t+1(x j) =
m

Ψ2
i=1

[Ψ1(µ t(xi),ωi j )],

wherem is the number of simultaneous transitions from states
xi to statex j prior to timet +1.

The functionΨ2 should satisfy the minimum requirements
following axioms:

1. 0≤
m

Ψ2
i=1

[Ψ1(µ t(xi),ωi j )]≤ 1,

2. Ψ(φ) = 0,

3.
m

Ψ2
i=1

[Ψ1(µ t(xi),ωi j )] = ν, if ∀(Ψ1(µ t(xi),ωi j ) = ν),

same example ofΨ2 are:

• Maximum multi-membership resolution

− µ t+1(x j) = Max
i=1 to m

[
Ψ1(µ t(xi),ωi j )

]
,

• Arithmetic mean multi-membership resolution

− µ t+1(x j) =

[
m

∑
i=1

Ψ1(µ t(xi),ωi j )

]

m
,

4. CASE STUDY

Consider theFFA in Figure 4 with several transition overlaps
and several output labels. It is specified as:

G̃ = (X,Σ,δ ,Y, x̃0,F),

The dashed line in Figure 4, between states 12 and 13 repre-
sents a failure event or critical event. The occurrence of event
′′ f ′′ bring the system in failure (or critical) mode correspond-
ing to statex13.

For instance, during the crisis management, the procedures
designed by one or more organizations for the crisis situations
can be applied, or partially applied or no applicable (no suit-
able) for the current situation. This latter case can be modeled
by the statex13 in Figure 4 and for the reconfiguration, the
model of crisis must be evolving and accepting missing in-
formation, whose the advantage to develop an evolving fuzzy
finite state automaton for crisis management.

In this example

X = {x0,x1, · · · ,x13} , the set of states,

Σ = {a,b,c,d,e} , set of input symbols,

Y = {θ ,α,β ,γ,µ ,ρ ,κ ,ξ ,η} , set of output,

x̃0 =
{

x0,µ t0(x0)
}

, fuzzy subset initial state,

∆X = {0.04,0.09,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1},

λ (xi) =

{
F1, if i=13 ,

N, otherwise

we suppose,µ t0(x0) = 1 at the beginning and̃x0 = {(x0,1)}
and all the othermvare computed by using the functionΨ2

and/orΨ1.

Assuming that̃G starts operating at timet0 and the next three
input are”a, e, d” respectively (one at a time), active states
and theirmv′sat each time step are as follows.

x0/θ

x1/α

x2/β

x3/γ

x4/µ

x5/ρ

x6/µ

x7/µ

x8/κ

x9/µ

x10/ξ

x11/η

x13/ξ

x12/η

a/0.1

b/0.7

a/0.5

a/0.09

c/0.06

c/0.1

e/0.3

e/0.5

a/0.02

d/0.6

c/0.8

d/0.2

e/0.7

e/0.4

d/0.04

g/0.8

b/0.2
a/0.2

e/0.9

f/0.4

b/0.3

b/0.3

µ t0(x0) = 1

Figure 2. Fuzzy discrete event system model.

• at time t0
Xact(t0) = {(x0,µ t0(x0)} with µ t0(x0) = 1,





Xsucc(x0,ak) =

{
{x1,x2} if ak = a,

{x3} if ak = c,

Xsucc(x0,
all→) = {x1,x2,x3} .

Xsucc(x j ,
all→) is the set of all (possible) successors of state

x j ,

• at time t1, input is ”a”
Xact(t1) = {(x1,µ t1(x1)),(x2,µ t1(x2))} ,

and

Xpred(x1, t1) =
Xpred(x2, t1) =

}
{x0}

4

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

44



ANNUAL CONFERENCE OF THEPROGNOSTICS ANDHEALTH MANAGEMENT SOCIETY 2014

and|Xpred(x1, t1)| is the number of predecessors of state
x1, and

|Xpred(x1, t1)|= |Xpred(x2, t1)|= 1,

and when
|Xpred(x j , t)| ≤ 1,

the statex j have a singlemvandΨ1 is used to compute
µ t(x j) for the statex j , othewise the functionΨ2 is used.

Themvof x1 andx2 is computed by:
µ t1(x1) = Ψ1(µ t0(x0),δ (x0,a,x1) = Ψ1(1,0.1),
µ t1(x2) = Ψ1(µ t0(x0),δ (x0,a,x2) = Ψ1(1,0.5),

and

Xsucc(x1,
all→) = {x4,x5,x6,x7} ,

Xsucc(x2,
all→) = {x6,x7,x8} ,

• at time t2, input is ”e”
Xact(t2) = {(x4,µ t2(x4)),(x7,µ t2(x7)),(x8,µ t2(x8))} ,

and

µ t2(x4) = Ψ1(µ t1(x1),δ (x1,e,x4),
µ t2(x7) = Ψ1(µ t1(x1),δ (x1,e,x7),
µ t2(x8) = Ψ1(µ t1(x2),δ (x2,e,x8),

and

Xsucc(x4,a) = Xsucc(x7,d) = Xsucc(x8,d) = {x10} ,
and

Xpred(x4, t2) = Xpred(x7, t2) = {x1} ,
Xpred(x8, t2) = {x2} ,
|Xpred(x4, t2)|= |Xpred(x7, t2)|= 1 and
|Xpred(x8, t2)|= 1,

• at time t3, input is ”d”
Xact(t3) = {x10,µ t3(x10)} ,

and

Xpred(x10, t3) = {x4,x7,x8} , & |Xpred(x10, t3)| ≥ 1,
hence, the statex10 is forced to take several differentmv,
thenΨ2 is used to computeµ t3(x10).





µ1(t3) = Ψ1(µ t2(x4),δ (x4,d,x10)),

µ2(t3) = Ψ1(µ t2(x7),δ (x7,d,x10)),

µ3(t3) = Ψ1(µ t2(x8),δ (x8,d,x10)),

µ t3(x10) = Ψ2 [µ1(t3),µ2(t3),µ3(t3)] ,

to computeµ t3(x10), we can use Maximum multi-membership
resolution given by relation (3) or Arithmetic mean multi-
membership resolution defined by relation (3).

The fuzzy set of all active output,i.e., output labels together
with theirmv′s, at timet denoted asYact(t), is called the active
output set at timet, given by:

Yact(t) =
{
(yl ,τt (yl )

}
and Yact(Γ) = Yact(t0 + |Γ|),

whereτt (yl ) is the grade membership of the outputyl at time
t. In this paper,yl can be a state with multi-membership. For
example,

• at timet1

Yact(t1) =
{
(α,τt1(α)),(β ,τt1(β ))

}
,

=
{
(α,µ t1(x1)),(β ,µ t1(x2))

}
,

• at time t2, the active statex4 andx7 generate the same
output labelµ , i.e., see Figure 4

Yact(t2) =
{
(µ ,τt2(µ),(κ ,τt2(κ))

}
,

=
{
(µ , [µ t2(x4) µ t2(x7)]),(κ ,µ t2(x8))

}
,

most of applications, the output should be crisp. Therefore,
the output of a fuzzy system should be defuzzified in an ap-
propriate way to be usable by the environment and the outputs
are assumed to be observable.

A diagnoser must be able to detect and isolates faults and
failures (Sampath, Sengupta, Lafortune, Sinnamohideen, &
Teneketzis, 1995). In this paper, the diagnoserDG̃ is a finite-
state Automaton which takes the fuzzy output sequence of
the system,i.e., {(y1,τt1(y1), · · · ,(yk,τtk(yk))} as its input,
and based on this sequence calculates a setzk ∈ 2X−{ /0} to
which xi ∈ X must belong a time that pair(yk,τtk(yk)) was
generated. The diagnoserDG̃ is given by:

DG̃ = (Z,Y,ζ ,λ ,z0,Ω),

with

• Z is the set of standard diagnoser state,

• Y is the set of standard diagnoser input,
we recall, Y is the output of model̃G,

• λ is the set of standard dianoser output,

• ζ : Z×Y×→ Z×λ is the standard diagnoser state tran-
sition function,

• z0 is the start state set of the standard diagnoser,

• Ω ∈ Z is the (non-empty) set of terminal states

Let ζ1 andζ2 be the two projections ofζ of DG̃, with ζ1 and
ζ2 are given by





ζ1(zk,yk+1) = {zk+1 | ∃ λi ∧ (zk+1,λi) ∈ ζ (zk,yk+1)} ,
ζ2(zk,yk+1) = {λi | ∃ zk+1∧ (zk+1,λi) ∈ ζ (zk,yk+1)} ,
ζ (zk,yk+1) = (ζ1(zk,yk+1),ζ2(zk,yk+1)).

with λi = λ (zk+1) andzk ⊆ Z is the state estimate ofDG̃ at
timek.

The diagnoser state transition is given by

5
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(zk+1,λ (zk+1)) = ζ (zk,yk+1),

λ (zk+1) = ζ2(zk,yk+1),

zk+1 = ζ1(zk,yk+1),

= Xsucc(zk,
all→)∩ζ1(zk,yk+1),

Figure 5 shows the standard diagnoser for the discrete event
system model of Figure 4, withz0 = {x0}. Each state of the
diagnoserDG̃, shown as a rounded box in Figure 5, is a set of
states of the system. An output symbol and a failure condi-
tion are associated with each diagnoser state. For instance, to
see the importance of having a complete model for the diag-
noser, we suppose at timek the output sequence′′θαµξ η ′′ is
observed, then the state estimate isz10 = {x11,x12} and sys-
tems condition fromz0 is λ (z10) = N. The successors of state
estimatez10 is: Zsucc(z10) = z11 = {x13} or Zsucc(z10) = z0 =
{x0}. If the next output symbolyk+1 is anything other thanξ
or θ , we get

Zsucc(z10) = Xsucc(z1,
all→)∩ζ1(z1,yk+1) = /0,

that means the observation generated afteryk is inconsistent
with the model dynamic and the diagnoser cannot proceed.
When the output sequence is inconsistent with the model of
the system, then we have to revise the model ofG̃ by adding
new state(s) and/or new transition(s) respectively inX andΣ,
that we believe are missing in the nominal model. This sit-
uation may be interpreted as a normal or abnormal situation,
because we add new states and/or transitions. Detecting and
adding new states and/or transitions inX and/or inΣ of G̃
is called learning diagnoser. A algorithm of a learning diag-
noser is presented in the next section.

5. A ALGORITHM OF A LEARNING DIAGNOSER

A learning diagnoser is a standard diagnosis that tolerant of
missing information,i.e., transitions and states, about the sys-
tem to be diagnosed. The learning diagnoser must be able to
learn the true model of the system̃G, when missing informa-
tion about the system are presented.

Let anewbe a new event detected and not found inΣ of system
G̃, then the new set of input events ofG̃ is given by

Σnew= Σ∪{anew} .

A transitionxd
anew−→ xa is ordered pair of state denoting a tran-

sition from the statexd to the statexa. Let ϕ ′ be the extend
function transition ofϕ of the system̃G such that

ϕnew(xd,ai) =





xa if ai = anew &





Σ← anew,

and

X← xa if xa /∈ X,

ϕ1(xd,ai) otherwise,

Dk
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x0
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α/τ t(z1)
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β/τ t (z2)

x2

λ(z2)

γ/τ t(z3)
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ξ/τ t (z11)

x13
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Figure 3. Diagnoser of fuzzy discrete event system model
shown in Figure 4,λ (zi)i=0 to 10 = N andλ (z11) = F1.

Let be a dynamic model̃G′ of G̃ defines as

G̃′ = extend(G̃,X′,Π) = (X∪X′,Σ∪Π,Y,ϕnew, x̃0).

And G̃′ is called the extension of̃G by X′ andΠ, with X′ is
the set containing all new states andΠ is the set containing all
new transitions founded. The set transitionΠ is empty, if the
modelG of the system is consistent with the output sequence.

The algorithm presented in Algorithm 1 is the algorithm for
the learning diagnoser and evolving fuzzy state automaton.

6. APPLICATION EXAMPLE

Nowadays, the crisis management is an important challenge
for medical service and research, to develop new technical of
decision support system to guide the decision makers. The
crisis management is a special type of collaboration, there-
fore several aspects must be considered. The more important
aspect in a crisis management is the coordination (and com-
munication) between different actors and groups involved in
the crisis management. Hence, the capacity to take fast and
efficient decisions is a very important challenge for a better
exit of crisis. Because the context and characteristics of crisis
such as extent of actors and roles, the management becomes
more difficult in order to take decisions, but also to exchange
information or to coordinate different groups involved. The
difficult to take a decision can be also due to random factors,
such as stress, emotional impact, road conditions, weather
conditions, etc. During the crisis management, it is hard to
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initialization;
while input is ak and active state time t−1 is xi do

read symbol ak;
x j = ϕ1(xi ,ak);
y j = yk+1 = ϕ2(xi ,ak);
Xsucc(xi ,ak) = {∀ xs∈ X | xs∈ ϕ1(xi ,ak)} ;
if xi is the start state and time is t0 then

Xpred(x j , t) = /0;
else

Xpred(x j , t) =
{
∀ xi ∈ X | x j ∈ ϕ1(xi ,ak)

}
;

end
if (Xsucc(xi ,ak)∩ζ1(zk,yk+1) 6= /0) then

if (|Xpred(x j , t)|= /0) then
Xact = x̃0;
Xsucc(x0,ak) =

{
∀ xs∈ X | xs∈ ϕ1(x j ,ak)

}
;

else if(|Xpred(x j , t)|= 1) then
single mv of all active states;
µ t(x) of each state x∈ Xact is computed by;
µ t(x j) = Ψ1(µ t(x j),δ (xi ,ak,x j)) ;
Xact =

{
(x j ,µ t(x j)

}
;

Xsucc(x j ,ak) =
{
∀ xs∈ X | xs∈ ϕ1(x j ,ak)

}
;

else
active state have been forced to take different
several mv;
m= |Xpred(x j , t)| ;
for i = 1 to mdo

µi = Ψ1(µ t−1(xi),δ (xi ,ak,x j));
end
µ t(x j) = Max(µ1,µ2, · · · ,µm−1,µm);
Xact =

{
(x j ,µ t(x j)

}
;

Xsucc(x j ,ak) =
{
∀ xs∈ X | xs∈ ϕ1(x j ,ak)

}
;

end
Diagnoser method;
go toDk;

else
go to inconsistency;
detection of new transition and/or state;
Xsucc(xi ,ak)∩ζ1(zk,yk+1) = /0;
we suppose for all new transition;
δ (xi ,ak,x j ) = 0;
if (x j ∈ X&ak ∈ Σ) then

new transition between xi(past state) to xj
(active state);

else ifx j ∈ X & ak /∈ Σ then
updateΣ;
Σ← ak ;

else
update X andΣ;
X← x j ;
Σ← ak ;

end
end

end
Algorithm 1: Evolving fuzzy finite state automaton

say exactly an actor’s stress has changed from low to high.
For this reason, it is important to integrate these factors in the
model of crisis management for decision-making. TheFFA
presented above is used to takes into account the stress of the
actors involved in the crisis management.

6.1. Our FFA model of crisis management

In this paper, we propose a model (no generic model) applied
on the teamSAMU1 from Hospital of Troyes in France, dur-
ing TEAN2 exercise.

The team ofSAMU is composed of the following actors:

• Rear Base3 (RB): Operations Coordination,

• Communication Center (CC): collecting information and
sharing withRB,

• First Team: first intervention, sending the first evaluation
(result) about the crisis to theCC,

• Advanced Medical Post (AMP): Intervention and evacu-
ation of victims, sending the complete evaluation to the
CC.

TheFSAof theTEANexercise is shown in Figure 4.

x0/y0

x1/y1 x2/y2

x3/y3

x4/y4

x5/y4

x6/y6

x7/y7

a/0.01

c/0.2

c/0.1

b/0.3

h/0.8

d/0.6 b/0.6

d/0.35 b/0.4

e/0.7

g/0

anew

f/1

Figure 4. A example of modelisation of a scenario of crisis
with finite state automaton and the weight corresponds to the
stress of actors involved.

The discrete event model showed in Figure 4 forTEANex-
ercise, allows one hand to monitor the communication and
coordination between various groups involved in crisis man-
agement, and also to supervise some specific behaviors that
are critical situations. Thus the factor’s stress of the actors
involved is estimated for decision-making.

Consider theFFA in Figure 4 with several transition overlaps
and several output labels. It is specified as:

G̃n = (X,Σ,δ ,Y, x̃0,F),

1SAMU is Service Emergency Medical Assistance.
2TEAN is the name of the exercise.
3Other word, Rear Base is decision makers
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The dashed line in Figure 4, between states 6 and 7 represents
a critical event. The occurrence of event′′ f ′′ bring the system
in or critical mode corresponding to statex7 andωi, j is the
stress of actors involved in crisis management.

In this example

X = {x0,x1, · · · ,x7} , is the set of states, which occur with different,

membership degree (µ t(x0), · · · ,µ t(x7)).

Σ = {a,b,c,d,e, f ,g,h} , set of input symbols,

Y = {y1,y2,y3,y4,y6,y7} , set of output events,

x̃0 =
{
(x0,µ t0(x0) = 0)

}
, starting state,

λ (xi) =

{
F1(abnormal mode), if i=7 ,

N(normal mode), otherwise.

Table 1. List and definition of the states.

States Definition
x0 No crisis
x1 Onset Crisis
x2 Information received at the communication center (CC)
x3 Information arrived at the police center
x4 Information received at the Emergency department
x5 Information arrived at the Advanced Medical Post (AMP)
x6 Information received at the accident area
x7 The model is unpredictable for this crisis situation

Table 2. List and definition of outputs.

Output labels Definition
y0 No coming call
y1 Accident is happen
y2 Information arrived to CC
y3 Information arrived to police office
y4 Preparation of the Intervention Team
y5 Preparation of the AMP
y6 New Actors arrived in the accident area
y7 uncontrolled situations (conditions)

Table 3. List and definition of the transitions (events).

events Definition
a A call from (or about) a accident
b Sending Team to the accident site
c Sending information to CC and police office
d Sending information to Emergency
e Sending the first evaluation to CC
h Sending final evaluation to CC
f End of crisis management without success
g End of crisis management with success

In this example, we suppose at the beginningµ t0(x0) = 0 (i.e,
stress level is very low) and all the othermvare computed by
using approaches presented in section 3.

Assuming that̃Gn starts operating at timet0 and the next three

input are ”a” respectively (one at a time), active states and
theirmv′sat each time step are as follows.

• at time t0
Xact(t0) = {(x0,µ t0(x0)}

{
Xsucc(x0,a) = x1,

Xsucc(x0,
all→) = {x1} .

Xsucc(x j ,
all→) is the set of all successors of statex j ,

• at time t1, input is ”a”
Xact(t1) = {(x1,µ t1(x1))} ,
Yact(t1) = {(y1,τt1(z1))}, andτt1(z1) = τt1(x1) = µ t1(x1)
at time t1 the weight corresponding to the stress of the
people involved isω0,1 = 0.01 and this weight is esti-
mated by the expert of the crisis management.
Xpred(x1, t1) = x0, and|Xpred(x1, t1)| is the number of pre-
decessors of active statex1. |Xpred(x j , t)| = 1, then, the
active statex1 is not forced to take multi-membership.
Xsucc(x1,c) = {x2,x3} ,

6.2. Diagnoser model ofTEANexercise

The standard diagnoser for the fuzzy discrete event system of
crisis management model illustrated in Figure 4 is shown in
Figure 5, withz0 = {x0}. Each state of the diagnoserDG̃n

,
shown as a rounded box in Figure 5, is a set of states of
the system. An output symbol corresponding to the oper-
ating condition of the system is associated with each diag-
noser state. For example, to see the importance of having
a complete model for the diagnoser, we suppose at timet1
the output sequence′′y0y′′1 (seeFigure 4) is observed, then
the state estimate isz1 = {x1} and the operating condition
from z0 is λ (z1) = N. The successors of state estimatez1 is:
Zsucc(z1) = {z2,z3}= {x2,x3}. If the next output symbolyt+1

is y0, we get

Zsucc(z1) = Xsucc(z1,
all→)∩ζ1(z1,yt+1) = /0,

that means the observation generated aftery1 is inconsistent
with the model dynamic and the diagnoser cannot proceed.
When the output sequence is inconsistent with the system’s
model, then we have to revise the model ofG̃n by adding in
this application a new transition (anew) from the statex1 to the
statex0(s) (see Figure 4). This situation may be interpreted
as a normal or abnormal situation. Detecting and adding new
states and/or transitions inX and/or inΣ of G̃ is called learn-
ing diagnoser.

7. CONCLUSION

In this paper, we have dealt with the failure diagnosis of fuzzy
finite state automaton for systems operating in non-stationary
environment. We have presented in our paper, the definition
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Dk

yk/τ t
zk

zk

λ(zk)

y0/τ t
z0

New transition (anew)

x0

N

y1/τ t
z1

x1

N

y3/τ t
z3

x3

N

y2/τ t
z2

x2

N

y4/τ t
z4

x4

N

y4/τ t
z5

x5

N

y6/τ t
z6

x6

N

y7/τ t
z7

x7

F1

Figure 5. Diagnoser of fuzzy discrete event system model
shown in Figure 4.

of a crisp discrete event system and fuzzy discrete event sys-
tem. The main advantage of fuzzy finite state automaton, to
handle imprecise and uncertain data is presented. We have
formalized the construction of the learning diagnoser based
on evolving fuzzy finite state automaton that are used to per-
form fuzzy diagnosis. In particular, we have propose a al-
gorithm for learning diagnoser based on evolving fuzzy fi-
nite state automaton that allows to add new transitions and
states. The newly proposed diagnoser approach allows us to
deal with the problem of failure diagnosis for fuzzy discrete
event system, which many better deal with the problem of
fuzziness, impreciseness and uncertainness in the failuredi-
agnosis.

The potential application of learning diagnosis based on fuzzy
finite state automaton is in solving the ambiguity in a fault di-
agnosis problem especially in the case of multiple faults.

Future work will focus on the proposal of fuzzy states of crisis
management by using fuzzy finite automaton that takes into
account of a random vector as such the stress, weather con-
dition and emotional impact of the actors involved in crisis
management.
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ABSTRACT

This paper presents an approach of model-based diagnosis
for the health monitoring of hybrid systems. These systems
have both continuous and discrete dynamics. Modified Parti-
cle Petri Nets, initially defined in the context of hybrid sys-
tems mission monitoring, are extended to estimate the health
state of hybrid systems. This formalism takes into account
both uncertainties about the system knowledge and about di-
agnosis results. The generation of a diagnoser is proposed to
track online the system health state under uncertainties by us-
ing particle filter. To include more complex characteristics of
the system, as its degradations for prognosis purpose, an en-
riched formalism called Hybrid Particle Petri Nets is defined.

1. INTRODUCTION

Systems have become so complex that it is often impossi-
ble for humans to capture and explain their behaviors as a
whole, especially when they are exposed to failures. It is
therefore necessary to develop tools that can support oper-
ator tasks but that also reduce the global costs due to un-
availability and repair actions. An efficient diagnosis tech-
nique has to be adopted to detect and isolate faults leading
to failures. Diagnosis uses a behavioral model of the system
and online observations to determine the behavioral state of
the system. Uncertainties in diagnosis can be taken into ac-
count by giving as much information as possible about the
ambiguous state likelihood. On the other side, systems are
continuously degrading depending on operational conditions.
Knowing available information on the system, it is possible to
establish physical degradation laws or time-dependent fault

Quentin Gaudel et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

probability distributions based on the feedback. It is then in-
teresting to take into account this temporal and/or stochastic
information about the system degradation. Health monitoring
consists in evaluating the current health state of the system
through a diagnosis and a degradation law value. The health
state is represented by a degradation measure for the system
in a specific behavioral state (Vinson, Ribot, Prado, & Com-
bacau, 2013). Its estimation is the first step to perform later
prognosis and to compute the remaining useful life (RUL) of
the system. A formal generic modeling framework for health
monitoring of complex heterogeneous systems has been pre-
sented in (Ribot, Pencolé, & Combacau, 2013) and encapsu-
lates knowledge about the system behavior and degradation
used by diagnosis and prognosis. Uncertainties in the model
and diagnosis results are taken into account by estimating in-
terval ranks for parameters. Another common framework for
diagnosis and prognosis has been proposed in (Roychoudhury
& Daigle, 2011). This article presents a state model that spec-
ifies the nominal behavior of the system and fault progression
over time. However, it only represents systems with a contin-
uous dynamics without discrete or hybrid aspect.

Recent industrial systems exhibit an increasing complexity
of dynamics that are both continuous and discrete. It has be-
come difficult to ignore the fact that most systems are hy-
brid (Henzinger, 1996). In previous works (Chanthery &
Ribot, 2013), we extended the diagnosis approach proposed
in (Bayoudh, Travé-Massuyes, & Olive, 2008) in order to in-
tegrate diagnosis and prognosis for hybrid systems. The ap-
proach uses hybrid automata and stochastic models for the
system degradation. The main drawback of this approach is
that the discrete event system oriented diagnosis framework
explodes in number of states and it does not seem the best
suited for the incorporation of the highly probabilistic prog-
nosis task. To have a more compact representation and to
capture all uncertainties related to the system, to the observa-
tions and to the diagnosis results, we propose to consider the
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formalism of Modified Particle Petri Nets (MPPN) defined
in (Zouaghi, Alexopoulos, Wagner, & Badreddin, 2011a).
Moreover this representation is intuitive and facilitates the
modeling task. MPPN are an extension of Particle Petri nets
(Lesire & Tessier, 2005) that combines a discrete event model
(Petri net) and a continuous model (differential equations).
The main advantage of MPPN is that uncertainties and hy-
brid dynamics are taken into account. Particle filter is used to
integrate probabilities in the continuous state estimation pro-
cess. MPPN have been used for supervision and planning, but
never for health monitoring, diagnosis and/or prognosis.

MPPN representation is useful in capturing all uncertainties
about the state knowledge and about the observations. As
wide as can be the range of feature representations provided
by MPPN, we did not succeed in modelling a characteristic
that depends on a discrete state and a continuous state of the
system. That is why we propose to define what we call Hy-
brid Particle Petri Nets (HPPN) in order to model both behav-
ior and degradation of hybrid systems in the context of health
monitoring. The HPPN formalism enriches MPPN to model
available knowledge about hybrid characteristics of the sys-
tem. The paper is organized as follows. Section 2 recalls the
MPPN framework and presents how it can be used for behav-
ioral health monitoring. In Section 3 a hybrid diagnosis tech-
nique is proposed based on the generation of a behavioral di-
agnoser using the MPPN formalism. The MPPN enrichment
is defined in Section 4 as Hybrid Particle Petri Nets to take
the system degradation into account by interacting with the
hybrid behavioral model. Some conclusions and future work
are discussed in the final section.

2. MODIFIED PARTICLE PETRI NETS FOR MONITOR-
ING

In this section, the Modified Particle Petri Nets (MPPN) for-
malism is described according to the work of (Zouaghi et al.,
2011a). First the model structure and its online process are
detailed and then a way to use it to represent system health
model is presented.

2.1. Definition

Modified Particle Petri Nets are defined as a tuple < P, T,
Pre, Post,X,C, γ,Ω,M0 > where:
• P is the set of places, partitioned into numerical places

PN and symbolic places PS .
• T is the set of transitions (numerical TN , symbolic TS

and mixed TM ).
• Pre and Post are the incidence matrices of the net, of

dimension |P | × |T |.
• X ⊂ <n is the state space of the numerical state vector.
• C is the set of dynamics equations of the system associ-

ated with numerical places, representing continuous state
evolution.

• γ(pS) is the application that associates tokens with each
symbolic places pS ∈ PS .

• Ω is the set of conditions associated with the transitions
(numerical ΩN and symbolic ΩS).

• M0 is the initial marking of the net.

MPPN can model system behaviors. A basic example of a
system behavior modeled with MPPN is illustrated in Fig-
ure 1.

pS1 = OK

pS2 = KO

pN3 = ON

pN4 = OFF

ΩS(tS1 ) =
occ(f)

ΩS(tS2 ) =
occ(f)

ΩS(tS3 ) =
occ(stop)

ΩS(tS4 ) =
occ(start)

π1

π2

π3

Figure 1. Example of MPPN.

There are four places in this MPPN: P = {pS1 , pS2 , pN3 , pN4 }.
Two symbolic places pS1 and pS2 represent the two discrete
modes of the system, respectively when the system is work-
ing well (OK) and when the system has failed (KO). Two
numerical places pN3 and pN4 represent the two continuous be-
haviors of the system, respectively when it is turned on (ON )
and when it is turned off (OFF ). There are four symbolic
transitions is this MPPN: T = {tS1 , tS2 , tS3 , tS4 }. They repre-
sent occurences of discrete events. tS1 and tS2 represent the
occurence of a fault event f respectively when the system is
turned on and turned off and let the system go from the OK
mode to the KO mode. tS3 represents the occurence of a mis-
sion event stop that turns off the system when it is turned on
and is in OK mode. Finally, tS4 represents the occurence of a
mission event start that turns on the system when it is turned
off and is in OK mode.

A numerical place pN ∈ PN is associated with a set of dy-
namics equations representing the continuous behavior of the
system. Numerical places thus model continuous dynamics
of the system. Numerical places are marked by a set of parti-
cles πik = [xik,w

i
k] with i ∈ {1, ..., |MN

k |} where MN
k is the

set of all the particles in the net at time k. Particles are de-
fined by their corresponding numerical state vector xik ∈ X

2
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and their weight wik ∈ [0, 1] at time k. The set of particles
represents an uncertain distribution over the value of the nu-
merical state vector.

Symbolic places model the behavioral modes of the system.
A symbolic place pS ∈ PS is marked by configurations δjk
with j ∈ {1, ..., |MS

k |} where MS
k is the set of configurations

in the net at time k. The set of configurations represents all
the possible current modes of the system.

The marking of the net is composed of tokens, that can be
numerical tokens (particles) or symbolic tokens (configura-
tions). The marking Mk of the MPPN at time k consists of
both kinds of tokens:

Mk = {MS
k ,M

N
k } (1)

For example, in Figure 1, the numerical place pN3 is marked
by the set of particles {π1, π2} and the symbolic place pS1
is marked by a configuration. The marking of the illustrated
MPPN is then Mk = {[0, 1]′, [{π1, π2}, {π3}]′}.
A transition models a change in the continuous dynamic and/or
a change of the system mode. A symbolic transition is condi-
tioned by an observable discrete event. A numerical transition
is conditioned by a set of constraints on continuous observ-
able variables. Finally, a mixed transition is conditioned by
an observable discrete event and a set of constraints on con-
tinuous observable variables.

2.2. Firing Rules

This section recalls the basic ideas of MPPN firing rules.
More formal details about the firing rules of the different
transitions can be found in (Gaudel, Chanthery, Ribot, & Le
Corronc, 2014). A numerical transition tNj ∈ TN is associ-
ated with conditions ΩN (tNj ), where ΩN (tNj )(π) = 1 if the
particle satisfies the conditions. For example, if π = [x,w]
follows the constraint equation c and b is a trigger value, a nu-
merical condition can be defined as ΩN (tNj )(π) = (c(x) > b).
ΩS(tSj ) = occ(e) represents the conditions assigned to a sym-
bolic transition tSj ∈ TS . occ(e) is a boolean indicator of the
occurrence of the discrete event e : occ(e) = 1 if e has oc-
curred. Then, a configuration δ satisfies the condition ΩS(tSj )

when ΩS(tSj )(δ) = 1, ie. when the event e has occurred.

The numerical firing uses the concept of classical firing with
the particles satisfying the numerical condition and the con-
cept of pseudo-firing (ie. duplication) for the configurations.
The duplication of configurations represents uncertainty about
the occurrence of an unobservable discrete event. An exam-
ple of a numerical firing from marking at time k to marking
at time k+ 1 is illustrated in Figure 2(a). In this example, tN1
only has a numerical condition because it is a numerical tran-
sition. Particle π3 satisfies the numerical condition ΩN (tN1 )
and thus is moved through the transition tN1 to pN4 . The con-
figuration in place pS1 is duplicated in pS2 .
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pS5

pS6

pS9

pS10
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pS2

pS5

pS6

pS9
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pN3

pN4

pN7

pN8

pN11

pN12

pN3

pN4

pN7
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ΩN (tN1 ) ΩS(tS2 ) ΩS(tM3 ) ΩN (tM3 )
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π7

π8
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k

k + 1

(a) (b) (c)

Figure 2. Illustration of firing rules of numerical (a), sym-
bolic (b) and hybrid (c) transitions.

The symbolic firing uses the concept of pseudo-firing for par-
ticles and configurations. The pseudo-firing of all the tokens
models uncertainty about the occurence and the non occur-
rence of an observable discrete event. Figure 2(b) illustrates
an example of a symbolic firing. The symbolic transition tS2
only has a symbolic condition. No token satisfies the condi-
tion ΩS(tS2 ), however all tokens are duplicated.

Mixed transitions are introduced in (Zouaghi et al., 2011a)
to model the interaction between discrete events and system
continuous dynamics. In the referred article, they were called
”hybrid transitions”. A mixed transition merges a symbolic
transition with a numerical transition to correlate discrete ob-
servations with continuous observations. The firing of the
symbolic transition only depends on a discrete event, but the
simultaneous firing of the numerical transition models the de-
pendency of the mixed transition on the symbolic part be-
cause discrete events are part of the process behavior. A
mixed transition tMj ∈ TM is then associated with both nu-
merical conditions ΩN (tMj ) and symbolic conditions ΩS(tMj ).

The mixed firing uses the concept of classical firing with the
particles satisfying the numerical condition and the concept
of pseudo-firing with the configurations satisfying the sym-
bolic condition. The pseudo-firing of configurations models
uncertainty about the occurrence of an observable discrete
event which is supported by a change of continuous dynam-
ics. An example of a mixed firing is illustrated in Figure 2(c).
tM3 is a mixed transition therefore it has a symbolic condi-
tion and a numerical condition. The configuration in place
pS9 is duplicated because it satisfies the symbolic condition
ΩS(tM3 ). Regarding the numerical part, particles π8 and π9

satisfy ΩN (tM3 ) and so they are moved through tM3 . Fur-
thermore, π7 stays in place pN11 because it does not satisfy
ΩN (tM3 ).

Heterogeneous systems are defined as systems that have a dis-
crete, continuous or both discrete and continuous dynamics.

3
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MPPN can easily model heterogeneous systems by using only
the symbolic or numerical subpart of the model or both in the
case of hybrid systems.

2.3. State Estimation

The problem of hybrid state estimation in MPPN has been
introduced in (Zouaghi et al., 2011a) and consists of a predic-
tion step and a correction step, illustrated in Figure 3.

For the sake of clarity in this paper we assume that a hybrid
state is represented by a couple (pSi , p

N
j ) of a symbolic place

and a numerical place. The initial marking of the MPPN is
M0 = {MS

0 ,M
N
0 } and the estimated marking at time k is

M̂k = {M̂S
k , M̂

N
k } where M̂k = M̂k|k. The observations

start at time k = 1, O1 = (OS1 , O
N
1 ) where OS and ON

respectively represent the observations corresponding to the
symbolic part and the numerical part.

(1) The prediction is based on the evolution of the MPPN
marking and on the estimation of the particle values. It
aims at determining all possible next states of the system
M̂k+1|k = {M̂S

k+1|k, M̂
N
k+1|k}. A noise is added during

the particle values update to take into account uncertainty
about the dynamics equations and thus about the contin-
uous system model.

(2) The correction is based on the update of the prediction
according to new observations on the system.
(a) A numerical correction, based on particle filter al-

gorithms, produces a probability distribution PrDN
of the particles M̂N

k+1|k+1 over the value of the nu-
merical state vector. At this step, particle weights
are updated using a probability distribution func-
tion depending on a random noise that models un-
certainty about continuous observations ONk+1.

(b) A symbolic correction then computes a probabil-
ity distribution PrDS over the symbolic states of the
system, depending on discrete observations OSk+1

and on PrDN making the process hybrid.

Finally, in order to update the complete predicted marking
M̂k+1|k, a decision making method is required. The result of
the whole state estimation process is the estimated marking at
time k + 1, M̂k+1|k+1 = {M̂S

k+1|k+1, M̂
N
k+1|k+1}.

Modified Particle Petri Nets have been originally designed
to monitor hybrid system mission in (Zouaghi, Alexopoulos,
Wagner, & Badreddin, 2011b). The main advantage provided
by MPPN is the way they manage uncertainties. In this arti-
cle, we will focus on a way to use them in a context of health
monitoring.

2.4. Application to Health Monitoring

The main objective of the system health monitoring is to de-
termine the health state of the system at any time (Chanthery
& Ribot, 2013). Diagnosis is used to identify the probable

MS
0 MN

0

Prediction

Correction

M̂S
k M̂N

k

Prediction

Correction

M̂S
k+1 M̂N

k+1

State

State

(pS , pN )

(pS , pN )

(OS
1 , O

N
1 )

Observations

(OS
k+1, O

N
k+1)

Observations

Figure 3. Hybrid sate estimation process of MPPN.

causes of the failures by reasoning on system observation.
Thus diagnosis reasoning consists in detecting and isolating
faults that may cause a system failure. Results of the diagno-
sis function lead to the current health state of the system. To
perform model-based health monitoring of a hybrid system, it
is necessary to represent both behavioral model and degrada-
tion model of the system. We are interesting in representing
changes in system dynamics when one or several anticipated
faults happen. Thinking that way, we define a health mode by
a discrete health state coupled to a continuous behavior. Then
health state estimation partially relies on common techniques
for continuous variable estimation. As long as the system
does not encounter any fault, it is in a nominal mode. We as-
sume that tracked faults are permanent. This means that once
a fault happens, the system moves from a nominal mode to a
degraded mode or faulty mode. Without repair, system evo-
lution is unidirectional and ends with a failure mode whereas
the system is not operational anymore. This evolution is il-
lustrated in Figure 4.

Figure 4. Unidirectional system evolution without mainte-
nance or repair action.

Regarding the degradation model, we consider that faults in
the system age depending on a stress level that is relative not
to a behavior but to a health mode.

4
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With the definition of the MPPN abstraction provided in pre-
vious sections, it is possible to model hybrid system behavior.
Indeed, MPPN numerical places can be used to represent sys-
tem dynamics, and symbolic places can be used to represent
the different discrete health states of the system. Systems dy-
namics are then represented by differential equations. Thus,
a hybrid state (pSi , p

N
j ) will represent a health mode of the

system. We designate by Q = {qm} the set of health modes
of our system:

qm = (pSi , p
N
j ) ∈ Q if ∃tl ∈ T, (pSi , pNj ) ∈ (Post(tl))

2

(2)
where Post(tl) is the set of output places of tl.

Using places that way, it becomes possible to use the sym-
bolic conditions to model the occurrence of observable dis-
crete events belonging to Σo and unobservable discrete events
belonging to Σuo (faults, mission events, interaction with the
environment, etc ...). Σ = Σo ∪ Σuo is defined as the set of
discrete events of the system.

An example of a system behavioral model is described in Fig-
ure 5. In this example, the system has three different dy-
namics represented by pN5 , pN6 , pN7 and four different health
states pS1 , pS2 , pS3 and pS4 . By using Equation 2, five health
modes are distinguishable. Health modes q1 = (pS1 , p

N
5 ) and

q2 = (pS1 , p
N
6 ) are two nominal modes changing from the one

to the other when condition ΩS(tS1 ) = occ(e1) or condition
ΩS(tS2 ) = occ(e2) is satisfied. These conditions represent re-
spectively the occurrence of observable events e1 ∈ Σo and
e2 ∈ Σo supporting a change of behavior between pN5 and
pN6 . Health modes q3 = (pS2 , p

N
6 ) and q4 = (pS3 , p

N
6 ) are two

degraded modes reachable from health mode q1 by satisfy-
ing the conditions ΩS(tS3 ) = occ(f1) and ΩS(tS4 ) = occ(f2)
respectively. These two conditions represent respectively the
occurrence of two unobservable fault events f1 ∈ Σuo and
f2 ∈ Σuo. Finally, q5 = (pS4 , p

N
7 ) is a failure mode in which

both f1 and f2 occurred and is reachable from the two de-
graded modes. Therefore ΩN (tS5 ) = occ(f1) is associated
to the occurrence of f1 and ΩS(tS6 ) = occ(f2) is associated
with the occurrence of f2.

While the design of the degradation model and its interac-
tion with the behavioral model will be presented in Section 4,
Section 3 will present a methodology to build a state tracker
object called a diagnoser from the behavioral system model.

3. BEHAVIORAL DIAGNOSIS

In health monitoring, diagnosis is used to track system cur-
rent health state. To do so, a common way is to generate
a diagnoser of the system from the system model (Sampath,
Sengupta, Lafortune, Sinnamohideen, & Teneketzis, 1995).
The diagnoser is basically a monitor that is able to process
any possible observable event on the system. It consists in
recording these observations and providing the set of possi-

pS1

pS2

pS3

pS4

pN5

pN6

pN7

ΩS(tS1 )

ΩS(tS2 )

ΩS(tS3 )

ΩS(tS5 )

ΩS(tS4 )

ΩS(tS6 )

Figure 5. Example of system behavioral model using MPPN.

ble faults whose occurrence is consistent with these observa-
tions.
Concerning hybrid systems, one approach is to build a hy-
brid diagnoser (Bayoudh et al., 2008) from a hybrid automa-
ton describing the system. The major idea is to abstract the
continuous part of the system to only work with a discrete
view of the system. This abstraction is done by using con-
sistency tests, that take the form of a set of analytical redun-
dancy relations (ARR). The diagnoser method is then directly
applied on the resulting discrete event system. In previous
works (Chanthery & Ribot, 2013), we extended this approach
in order to integrate diagnosis and prognosis for hybrid sys-
tems. The main drawback of this approach is that the DES
oriented diagnosis framework seems not the best suited for
the incorporation of the highly probabilistic prognosis task.
With the MPPN representation, we succeed in capturing all
the uncertainties about the state knowledge, but also about
the observations. Consequently, we have to develop a new
diagnoser build from an MPPN. Moreover, the classical di-
agnoser is a finite state machine. If this theoretical object
is very interesting for studying properties on system, like di-
agnosability or controllability, it is absolutely not suited for
embedded systems, because the number of states of the diag-
noser explodes for large models. Consequently, we choose to
build a diagnoser based on a MPPN model for the following
reasons:

• there is no lack of information during the diagnoser gen-
eration,

• MPPN model captures all the uncertainties,

• this representation is more compact than hybrid automa-

5
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ton description, so the problem of embeddability of the
diagnoser is reduced.

The diagnoser takes as input the MPPN specifying the behav-
ior of the system and the set of online observations on the
system. The output of the diagnoser is an estimation of the
health state of the system. Next sections describe how to gen-
erate a diagnoser from an MPPN specifying the behavior of a
system, then define what is finally called a diagnosis and how
this object may be used for health monitoring.

3.1. Diagnoser Generation Based on MPPN

The goal of this section is to generate a MPPN that is able to
monitor the system current health state thanks to the obser-
vations. Let suppose that the MPPN specifying the behavior
of the system is a tuple < P, T, Pre, Post,X, F, γ,Ω,M0 >
as defined in Section 2.1. The set of places of the diagnoser
remains the same as the one of the system. Concerning the
transitions, there are two aspects to take into account.

First, it is necessary to follow the continuous behavior of the
system with information issued from the observed variables
of the system. A set of analytical redundancy relations (ARR)
can be generated from the set of differential equations C of
the system model. In the linear case, ARRs can be com-
puted by using the parity space approach (Staroswiecki &
Comtet-Varga, 2001). The parity space approach has been ex-
tended to multi-mode systems in (Cocquempot, El Mezyani,
& Staroswiecki, 2004). In our case, a relation ARRi is as-
sociated to each numerical place pNi . A numerical condition
ΩN (tl) associated with a transition tl linking two numeri-
cal places pNi and pNj carries ARRij satisfaction test, with
(i, j) ∈ {1, ..., |PN |}2 and l ∈ {1, ..., |T |}. This means that
ΩN (tl)(π) is satisfied when ARRij is satisfied for π. ARRs
are satisfied if the observations satisfy the model constraints.
Since ARRs are constraints that only contain observable vari-
ables, they can be evaluated online with the incoming obser-
vations given by the sensors. It is thus possible to check the
consistency of the observed system behavior with the pre-
dicted one.

Secondly, because the diagnoser only captures the observ-
able behavior of the system, a condition representing the oc-
curence of an unobservable discrete event would never be sat-
isfied. Consequently, all the symbolic conditions representing
the occurences of unobservable events are removed from Ω
without loss of information. Concerning the observable dis-
crete part of the system, occurrences of observable discrete
events will be used as symbolic condition triggers.

Once the system behavioral model is defined and all numer-
ical conditions are computed from the ARRs generation, the
corresponding diagnoser can be generated with the following
steps:

Step 1: Add corresponding numerical conditions ΩN (tSj )

to every symbolic transition tSj ∈ TS , with j ∈ {1, ..., |T |}.
As a result, the symbolic transition tSj will be upgraded into
a mixed transition tMj ∈ TM .

Step 2: Remove, from any mixed transition tMj ∈ TM ,
symbolic conditions ΩS(tMj ) covering the occurrence of an
unobservable event, because these conditions would never
be satisfied. Consequently, the mixed transition tMj is trans-
formed in a numerical transitions tNj ∈ TN .

Ambiguity: Hybrid system diagnosis consists in determin-
ing the health state of the system wherein observations are
consistent. Diagnosis challenge is the ability to diagnose an-
ticipated but unobservable faults in the system. In this con-
text, modeling unobservable events can lead to ambiguity in
the diagnoser. Indeed, the occurrence of several faults that
can not be distinguishable with the observations of the sys-
tems will lead to ambiguous health states for the diagnoser.
Therefore, a third step is needed during the diagnoser gener-
ation to track ambiguity. To do so, it is necessary to define a
merger property to merge two numerical transitions. Two nu-
merical transitions are mergeable if they are conditioned by
the same dynamics change and if they share the same sym-
bolic places in their sets of inputs places. In a more formal
way, let Pre(tj) be the set of input places of a transition
tj ∈ T :

Pre(tj) = {pi|Pre(i, j) 6= 0, i ∈ {1, ..., |P |}} (3)

As well, Post(tj) is the set of its output places:

Post(tj) = {pi|Post(i, j) 6= 0, i ∈ {1, ..., |P |}} (4)

Definition 1 Two numerical transitions (tNi , t
N
j ) ∈ (TN )2,

with (i, j) ∈ {1, ..., |TN |}2 and i 6= j are mergeable if :

(Pre(tNi ) = Pre(tNj )) ∧ (Post(tNi )∩PN∩Post(tNj ) 6= ∅)
(5)

Note that condition (5) implies that the two transitions share
the same numerical condition: ΩN (tNi ) = ΩN (tNj ).

Step 3: Merge all mergeable transitions while there is at
least two mergeable transitions using the following merging
definition:

Definition 2 The merging of two mergeable numerical tran-
sitions (tNi , t

N
j ) ∈ (TN )2, with (i, j) ∈ {1, ..., |TN |}2 and

i 6= j is defined by two steps as follows:

6
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(1) Creation of a new transition tNij characterized by:




Pre(tNij ) = Pre(tNi )
Post(tNij ) = Post(tNi ) ∪ Post(tNj )
ΩN (tNij ) = ΩN (tNi )

(6)

(2) Introduction of tNij and deletion of tNi and tNj in T :

T = (T\{tNi , tNj }) ∪ {tNij} (7)

The resulting diagnoser of the model in Figure 5, after com-
puting the third steps above, is presented in Figure 6.

pS1

pS2

pS3

pS4

pN5

pN6

pN7

ΩS(tM1 ) ΩN (tM1 )

ΩS(tM2 ) ΩN (tM2 )

ΩN (tN3 )

ΩN (tN5 ) ΩN (tN6 )

Figure 6. Example of diagnoser of system using MPPN.

In Figure 6, performing Step 1 has generated numerical con-
dition ΩN to every transition. Indeed, all transitions where
supported by a change of dynamics that can be observed with
the generation of the ARR. After this step on this example, all
transitions are upgraded into mixed transitions. As there were
unobservable events, symbolic conditions associated with the
occurrence of f1 and f2 have been removed from the diag-
noser model during Step 2, transforming t3, t4, t5 and t6 into
numerical transitions. Finally, because transitions t3 and t4
were generating a change of dynamics from pN1 to pN2 , they
were mergeable and thus have been merged into one single
numerical transition tN3 .

3.2. Behavioral Diagnosis Results

The behavioral diagnosis is defined at each clock tick as the
state of the diagnoser. By using the MPPN, the diagnosis
∆k at time k is the distribution of health mode believes that
depends on particle values and weights and is deduced from

the marking of the diagnoser at time k :

∆k = M̂k = {M̂S
k , M̂

N
k } (8)

The marking M̂k indicates the belief on the fault occurrences.
It gives the same information than a classical diagnoser mode
in terms of faults occurrences, with the same ambiguity. The
difference is that in a classical diagnoser, every possible di-
agnosis has the same belief degree. With MPPN-based di-
agnoser, the ambiguity is valued by the knowledge about the
weights of each particle of the marking.

Consequently, using the diagnosis results for health manage-
ment becomes easier. Indeed, in the case of classical diag-
noser, it is very difficult to ”choose” a belief state for the sys-
tem in case of decision making. It is then very important to
obtain the less ambiguous diagnosis as possible. In the case
of MPPN-based diagnoser, each possible state of the system
is valued, so it is easy to evaluate the more probable state at
each clock tick.

4. DEGRADATION DIAGNOSIS

The previous part describes a way to use MPPN to monitor
health state of the system based on its behavioral model. It is
often interesting to take into account another level of repre-
sentation to illustrate a different level of dynamics, or a more
aggregate view of the system. For instance, in the frame-
work of health monitoring, it is worth to look at the system at
another level to take into account the degradation dynamics.
Getting some information about the degradation of the system
is a huge advantage for elaborating a more precise diagnosis
and to perform prognosis.

Next sections describes what we call Hybrid Particle Petri
Nets (HPPN). HPPN give a theoretical framework to repre-
sent MPPN at a higher level called the hybrid level. The pur-
pose of this hybrid level is to represent some hybrid states
characteristics, and not only continuous behavior or discrete
state. A set of dynamics equations is used to follow hybrid
information we are focused on. To point out this new hybrid
level, we assume that places, transitions, conditions and to-
kens used in Section 2 and Section 3 are part of the behavioral
level. Because of the new hybrid level, the enriched formal-
ism is called Hybrid Particle Petri nets. The set of dynamics
equations we focus on with the hybrid level represent com-
ponent degradation laws, that depend on the health modes of
the system. The update of the degradation value at each clock
tick defines a degradation diagnosis function. The applica-
tion of HPPN for health monitoring is then illustrated on an
example.

4.1. Hybrid Level

A Hybrid Particle Petri Net is described as an enriched MPPN
< P, T, Pre, Post,X,C,H,F , γ,Ω,M0 > where:

7
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• P is the set of places, partitioned into numerical places
PN , symbolic places PS and hybrid places PH .

• T is the set of transitions (numerical TN , symbolic TS ,
mixed TM and hybrid TH ).

• H ⊂ <n is the state space of the hybrid state vector.
• F is the set of dynamics equations of the system associ-

ated with hybrid places, representing hybrid state evolu-
tion.

• Ω is the set of conditions associated with the transitions
(numerical ΩN and symbolic ΩS and hybrid ΩH ).

Hybrid places are used to compose the hybrid level and rep-
resent possible hybrid states of system. In HPPN, a hybrid
state is a couple (pSi , p

N
j ). For the sake of clarity in the paper,

we will use pHl = (pSi , p
N
j ) to indicate that hybrid place pHl

represents the hybrid state (pSi , p
N
j ). Because hybrid states

are combinations of symbolic places and numerical places,
the set of hybrid states for a given behavioral model is always
finite. However, only couples that are part of the set of output
places of the same transition are considered as hybrid states.
Formally:

pHl = (pSi , p
N
j ) ∈ PH if ∃tm ∈ T, (pSi , pNj ) ∈ (Post(tm))2

(9)
Hybrid states that do not satisfy Condition 9 are considered
as intermediate states. This means there is no information in
the model about these hybrid states.

A hybrid place is marked by hybrid tokens hik = [sik, η
i
k]

with i ∈ {1, ..., |MH
k |} where MH

k is the set of all the hybrid
tokens in the net at time k. A hybrid token is defined by a
couple sik = (δjk, π

l
k) of tokens running in the behavioral level

and its corresponding hybrid state vector ηik ∈ H . The whole
marking at time k of the HPPN is Mk = {MS

k ,M
N
k ,M

H
k }.

Now that hybrid tokens have been described, we are going to
detail their creation and deletion rules.

Creation: Because of their dependencies on configurations
and particles, new hybrid tokens are created at the same time
of creation of a configuration or a particle. If a hybrid token
hi depends on a particle πl that is duplicated during the par-
ticle filter step in a new particle π′l, then hi is also duplicated
in h′i but h′i depends on the new particles π′l.

Deletion: A hybrid token hi depending on a configuration
δj and a particle πl is deleted when δj or πl is deleted during
the online process of the behavioral level.

Considering the two rules above, the hybrid level online pro-
cess totally depends on the behavioral level online progress.
However, the two processes are simultaneous.

Any hybrid place is linked with all other hybrid places through
a hybrid transition tHj ∈ TH .

∀pi ∈ P , Mk(pi) is the set of tokens in pi at time k and
mk(pi) = |Mk(pi)| is the number of tokens in pi at time k.

Definition 3 A hybrid transition tHj ∈ TH is fire-enabled
at time k if:

∃pHi ∈ Pre(tHj ), mk(pHi ) ≥ Pre(i, j) (10)

A hybrid place is associated with a set of dynamics equa-
tions representing a hybrid state characteristic. The idea is
to let evolve a hybrid token hi = [si, ηi] in the hybrid level
in accordance to the symbolic and numerical places in which
are evolving its associated configuration δjk and its associated
particle πlk, with si = (δj , πl).

To formally define the firing of hybrid transitions, we need to
define the following notations. P (δj) = pSj and P (πl) = pNl
denote the projections of δj and πl on the set of places P .
Then, P (si) = (pSj , p

N
l ) denote the hybrid place of a couple

si = (δj , πl).

Every hybrid transition carries a hybrid condition ΩH(tHj )

which is satisfied if ΩH(tHj )(hi) = 1. Hybrid tokens hi are
moved to another hybrid place p′H if P (si) = p′H . Formally:

∀hi = [si, ηi], ΩH(tHj )(hi) =

{
1 if P (si) = p′H

0 otherwise
(11)

SHk (pH) is the set of hybrid tokens in pH satisfying the con-
dition ΩH(tHj ) at time k:

Equation 11 implies that every transition tHj has only one hy-
brid output place p′H and sees all the other hybrid places pH

as input places. More formally:

Definition 4 The firing of a fire-enabled hybrid transition
tHj ∈ TH at time k is defined by:

{
MH
k+1(pH) = MH

k (pH)\SHk (pH)

MH
k+1(p′H) = MH

k (p′H) ∪ SHk (pH)
(12)

An example of hybrid transition firing in a hybrid level is
shown in Figure 7. In the example, there are two hybrid
places pH1 = (pS1 , p

N
1 ) and pH2 = (pS2 , p

N
2 ). At time k, the

two hybrid tokens h1k = [s1k, η
1
k] and h2k = [s2k, η

2
k] are fol-

lowing the characteristic of the hybrid state represented by
pH1 , so hybrid transitions tH1 and tH2 are fire-enabled. P (s1k)
is (pS1 , p

N
1 ) but P (s2k) is (pS2 , p

N
2 ) so ΩH(tH2 )(h2) is satisfied

and h2 is moved through tH2 . Thus, h2 is in the hybrid place
pH2 at time k + 1 and follows the characteristic of the hybrid
state (pS2 , p

N
2 ).

This enrichment evolves all the possible hybrid states of the
system alongside according to their corresponding laws. In-
deed, because tokens in the behavioral level are changing of
places during the prediction step (see Section 2.3 (1)), hybrid

8
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pH1

pH2

ΩH(tH1 )

ΩH(tH2 )

k

k + 1

pH1

pH2

ΩH(tH1 )

ΩH(tH2 )

h1
h2

h1

h2

Figure 7. Illustration of firing rules of hybrid fire-enabled
transitions.

tokens are simultaneous changing of places and their values
are updated as follows:

∀hik+1|k ∈ M̂H
k+1|k(pHj ), ηik+1 = F jk+1(ηik) (13)

where F jk ∈ F is the set of dynamics equations associated
with the hybrid place pHj . Because ηik+1 depends on ηik, the
continuity of the value ηi can be ensured. Figure 8 illustrates
the evolution of the value η2 of hybrid token h2 of Figure 7.
It shows that η2k+1 is computed with the dynamics equation
F 2
k+1. F 2

k+1 is associated with pH2 and depends on η2k the
value of η2 at time k. This dependency ensures the continuity
between F 1

k and F 2
k+1 at time k + 1.

Figure 8. Illustration of the continuities of hybrid token val-
ues.

If F is not empty, the values ηik can be taken into account
in the decision making process at time k that determine the
marking at time k + 1 of the behavioral level.

If the set of hybrid characteristicsF is empty, the hybrid level
directly monitors the hybrid state of the system over a dis-
tribution of hybrid tokens considering the particles weights.
Moreover, considering a HPPN A, if F = ∅ hybrid tokens
has no value (ηi = 0) so they can be considered as config-

urations in another HPPN B. As well, if F 6= ∅, values ηi

of hybrid tokens evolve depending on the hybrid places and
thus they can be considered as particle for HPPN B. By this
way, hybrid tokens can go through a particle filter, making the
hybrid level values having an effect on the configurations and
particles of the behavioral level of HPPN A. Following this
reasoning, we understand that the HPPN formalism is recur-
sive. MPPN/HPPN can model hybrid systems, so by using
only numerical places, numerical transitions and particles, its
is possible to monitor continuous systems. As well, by us-
ing only symbolic places, symbolic transitions and configu-
rations, it is possible to monitor discrete systems. This means
that the HPPN formalism is also generic and can model differ-
ent kind of systems such as heterogeneous systems. Finally,
because HPPN is recursive, generic and can model discrete,
continuous and hybrid systems, HPPN can be considered as a
holistic method.

4.2. HPPN for Health Monitoring

This section introduces a way to represent uncertainty about
degradation for each health mode of the system using proba-
bility measures.

The system description is enriched with a set of degrada-
tion laws modeling the degradation depending on hybrid state
stress levels. The set of degradation laws is supposed to be
accurately known. F = {F qm , qm ∈ Q} is the set of degra-
dation laws associated with health modes of the system. F qm
is a vector of degradation laws for each anticipated fault in
the health mode qm = (pSi , p

N
j ). For example, in a system

where nf faults are considered:

F qm(t) =




fqm1 (t)
fqm2 (t)

...
fqmnf

(t)


 (14)

where fqmj represents the probability distribution of the fault
fj at any time in the health mode qm.

In the context of health monitoring, we need the formalism
of the hybrid level to include health mode degradation laws
in our model. We propose to consider health modes as hybrid
states of an HPPN. Thus health modes are represented by hy-
brid places (see Section 2.4) and the set of degradation laws
will be the set of dynamics equations associated with hybrid
places.

Figure 9(b) represents the degradation laws model of the ex-
ample of Figure 5. This system has five health modes (see
Section 2.4), thus the corresponding hybrid level has five hy-
brid places pH8 = (pS1 , p

N
5 ), pH9 = (pS1 , p

N
6 ), pH10 = (pS2 , p

N
6 ),

pH11 = (pS3 , p
N
6 ) and pH12 = (pS4 , p

N
7 ). Therefore five hybrid

transitions tH7 , tH8 , tH9 , tH10 and tH11 deliver accesses to the five

9
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Hybrid level
pH8 = (pS1 , p

N
5 )

pH9 = (pS1 , p
N
6 )

pH10= (pS2 , p
N
6 )

pH11= (pS3 , p
N
6 )

pH12= (pS4 , p
N
7 )

ΩH(tH7 )

ΩH(tH8 )

ΩH(tH9 )

ΩH(tH10)

ΩH(tH11)

h1h2

h3

Behavioral level

pS1

pS2

pS3

pS4

pN5

pN6

pN7

ΩS(tM1 ) ΩN (tM1 )

ΩS(tM2 ) ΩN (tM2 )

ΩN (tN3 )

ΩN (tN5 ) ΩN (tN6 )

π1π2
π3

(a) (b)

Figure 9. Example of diagnoser of system using HPPN.

hybrid places when associated hybrid conditions are satisfied
(Equation 11). All the transitions are not represented in the
figure because of the complexity of the representation.

4.2.1. Diagnoser Generation Based on HPPN

The diagnoser generation step does not change the degrada-
tion model during its computation. The degradation model is
added to the behavioral diagnoser (Section 3.1) as a hybrid
level. The result of the whole generation step is a HPPN-
based diagnoser that monitors both the behavior and the degra-
dation of the system.

Figure 9 shows the complete diagnoser of the system exam-
ple presented in this paper. It illustrates the interactions be-
tween the behavioral level (a) and the hybrid level (b) of the
diagnoser. Two configurations and three particles are run-
ning in the behavioral level. One configuration is in the sym-
bolic places pS1 and the other one in the symbolic place pS2 .
All three particles π1, π2 and π3 are in numerical place pN6 .
Therefore, three hybrid tokens are running in the hybrid level.
h1 and h2 are in the hybrid place pH9 because they are linked
to configuration in pS1 and respectively π1 and π2. However,
h3 is in the hybrid place pH10 because it is linked to the con-
figuration in pS2 and π3.

4.2.2. Diagnosis Results

Using HPPN-based diagnoser, the diagnosis ∆k of the system
at time k is the complete marking of the diagnoser, indicating

the distribution of health mode believes depending on particle
values and weights and hybrid token values:

∆k = M̂k = {M̂S
k , M̂

N
k , M̂

H
k } (15)

The marking {M̂S
k , M̂

N
k } represents the belief on the health

modes through a probabilty distribution. The marking M̂H
k

represents a degradation distribution over the health modes.
Because each hybrid token depends on a particle and a con-
figuration, its degradation value is linked with the belief of
its health mode. Consequently, the belief and the degrada-
tion value can be correlated in case of decision making in the
context of health management.

5. CONCLUSION AND FUTURE WORK

This paper formally introduces the HPPN approach to model
the monitoring of hybrid systems. The MPPN method is
enriched to consider another level to represent a hybrid dy-
namics. The method takes into account uncertainty about
the knowledge of the system and uncertainty during the on-
line process, such as continuous and discrete observations.
The article then proposes to use HPPN to build a diagnosis
methodology in a health monitoring context. HPPN can be
used to model a diagnoser to monitor both discrete and con-
tinuous behaviors of the system, but also to consider the sys-
tem degradation depending on the hybrid state of the system.
The methodology is illustrated with an academic example.
The building of such a diagnoser is a first step to perform

10

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

60



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

prognosis and health management of hybrid systems under
uncertainty. Moreover, diagnosis results can be used as prob-
ability distributions for decision making.

In future works, we will implement this work and test it on
an embedded system. The prognosis methodology will be
formally described considering the InterDP framework intro-
duced in (Chanthery & Ribot, 2013) that interleaves diagnosis
and prognosis methods to let results be more accurate.
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ABSTRACT 

Due to its criticality in aircraft carrier steam catapult 
operations, the performance of the Launch Valve is 
monitored using timer components to determine the elapsed 
time for the valve to achieve a set opening distance. 
Significant degradation in performance can lead to loss in 
end speed of the catapult and result in loss of aircraft / lives. 
This paper presents a method of using existing timing data 
for anomaly detection and predicting when maintenance is 
required (MIR) for a Launch Valve. Features such as mean 
and standard deviation of timing values are extracted from 
clock time data to detect anomalies. Neyman-Pearson 
Criterion and Sequential Probability Ratio Testing are used 
to formulate a decision on the degraded state. Once an 
anomaly is detected, an observation window of the previous  
N filtered samples are used in a risk sensitive particle filter 
framework. The resulting distribution is used in the 
prediction of shots until MIR. Performance degradation is 
extracted from training data and modeled as a third order 
polynomial. The algorithm was tested on two test sets and 
validated by Subject Matter Experts (SMEs) supplying the 
data. An Alpha-Lambda performance metric shows the time 
predictions until MIR fall inside an acceptable performance 
cone of 20% error. 

1. INTRODUCTION 

Steam catapults are among the oldest and most 
maintenance-intensive systems in the Navy. The steam 
catapult is a system that launches aircraft from an aircraft 
carrier by releasing built up steam pressure behind a shuttle 

 

Figure 1: View of Launch Valve in closed and open 
positions 

 that pulls the aircraft along the deck. This critical system is 
largely unchanged from the 1940’s – steel, steam and 
hydraulics that will be with us for the next 40 years.  Yet 
catapults need to perform flawlessly and maintain a system 
reliability of 99.9999 or the result is loss of aircraft and 
lives.  (Reliability of 99.9 = 140 lost aircraft per year; 99.99 
= 14 lost aircraft per year)  The Fleet ensures these systems 
are reliable, but at a very high cost in terms of spares, 
overhauls and manpower. A reduction in costs could be 
achieved through prognostic and health management (PHM) 
methods. The ability to predict impending failures or needed 
maintenance of these systems in real time, could reduce 
total ownership costs by decreasing maintenance, inventory, 
and down time.    

The Low Loss Launch Valve (LLLV), hereby known as the 
Launch Valve, is a hydraulically controlled valve and 
provides a means for controlling the steam pressure in the 
catapult power cylinders for launching aircraft (shown in 
Figure 1). In order to launch the full range of fleet aircraft, 
the energy of each launch must be tailored for the specific 
aircraft type and weight, as well as the current wind over 
deck (WOD) conditions. This is accomplished by adjusting 

Glenn Shevach et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License,
which permits unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are credited. NAVAIR
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the opening rate of the Launch Valve to introduce the proper 
amount of steam. Because of its high reliability requirement, 
the Launch Valve is designed to have one of the highest 
operational availabilities compared to all other components 
within the catapult sub-system. Degradation not being 
identified quickly can result in additional degradation which 
could cause a significant loss in end speed and an urgent 
halt to operations until the degradation was corrected. 
Insufficient catapult end speed can result in loss of aircraft / 
lives. 

The fleet checks the Launch Valve performance during 
launching operations with pre-op Blow-Through-No-Loads 
(BTNL) (no aircraft connected to the catapult shuttle). 
These times are manually read by an operator, transcribed in 
a paper log, and typed into electronic spreadsheets hours 
later. The process is prone to inscription errors. A detailed 
analysis of Launch Valve performance is manually reviewed 
upon submission at the conclusion of each month. Subject 
Matter Experts (SMEs) review clock times to sift out 
inscription errors and advise for further maintenance 
actions. This time consuming process relies heavily on the 
historical knowledge and judgment to decide when a 
Launch Valve is starting to show signs of degradation. The 
delay in detailed analysis leaves the potential for 
degradation to go unnoticed and uncorrected. Continuous 
real time monitoring of the Launch Valve performance 
could detect trends in degradation before they reach a 
critical point. 

This paper presents efforts towards the ultimate goal of 
giving the fleet real time prognostics and health monitoring 
of the Launch Valve performance during aircraft operations. 
The algorithm utilizes available Launch Valve clock timing 
data to detect anomalies and predict when maintenance is 
required (MIR). Probabilistic techniques are used to detect, 
with minimum false alarms, the degradation in performance 
of a Launch Valve and prognostic techniques are used to 
predict when the degradation will cross a “maintenance 
needed” threshold. A unique quality to this data is that it is 
comprised of manually entered time. An operator reads the 
output of the timers and manually inputs it into a 
spreadsheet. The algorithm presented takes in timing data 
over a series of Launch Valve openings that are susceptible 
to user inscription error.   

The paper is structured as follows: Section 2 discusses 
related works on prognostics and health monitoring of 
valves. Section 3 provides background information of 
Launch Valve operation. Section 4 provides the theoretical 
background for feature extraction, anomaly detection, 
degradation modeling, and forecasting techniques. Section 5 
presents results and discussion using  

 

Figure 2: Flow chart for Launch Valve Prognostics 

real world Launch Valve timing data and Section 6 
concludes the paper with a summary of the findings and 
future work. 

2. RELATED WORKS 

Two notable works are related to this paper’s efforts. Gomes 
et. al. developed a health monitoring system for a pneumatic 
valve using a Probability Integral Transform based 
technique (Gomes 2010) and Daigle et. al. developed a 
model-based prognostics approach for pneumatic valves 
(Daigle 2011). While the Launch Valve in this work is 
hydraulically controlled, the methods used for pneumatic 
valve PHM are quite relevant. Diagle et. al. used a 
Probability Integral Transform to calculate an index of 
dissimilarity between pressure distributions of monitored 
and baseline (healthy) valve performance. They were able to 
use this index of dissimilarity feature to detect increasing 
degradation and failure of a valve. There was no prediction 
to failure presented. Timing data of the valve was not 
utilized. Daigle et. al. constructed a detailed physics-based 
model of a pneumatic valve that includes models of 
different damage mechanisms. They use time for the valve 
to open and close to perform the prognostics. In their work, 
they focused on the prediction portion of the work and 
started predictions at pre-defined known points in the 
historical data where degradation was observed.  

3. LAUNCH VALVE OPERATION 

The Launch Valve has two (2) clock switches, Clock No.1 
and No.2 that are used to measure the time it takes the valve 
to open 23% and 60% of full open respectively. The 
beginning portion of launch valve stroke is very dynamic 
which leads to too much clock time variation in Clock No. 1 
to be used as a performance indicator. Clock No. 2 provides 
less variation in clock times since it measures later in the 
valve stroke and is therefore used as a performance 
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indicator. Currently, the Launch Valve performance is 
monitored by the fleet using Launch Valve Clock No. 2 
times from the two daily pre-operational Blow Through No 
Load (BTNL) launches. The times are compared to limits 
established in the applicable Maintenance Requirement 
Card. The fleet conducts both a shot by shot (real time) and 
long term trend evaluation of the BTNL clock times. 
NAVAIR Lakehurst also conducts a more detailed analysis 
of the Launch Valve performance using data (BTNL and 
aircraft) via the Automated Shot and Recovery Log (ASRL) 
provided by the fleet.  

Degradation in performance of the Launch Valve can be 
assessed through analysis of this timing data. Performance 
degradation of the Launch Valve can be caused by increased 
friction due to loss of lubrication, other internal components 
providing high friction loads, or parameters outside the 
normal operating range. Slower clock times are 
representative of a valve experiencing high internal friction. 
Faster clock times are representative of a valve leakage in 
hydraulic fluid downstream. Other factors unrelated to 
performance are misalignment of the valve and body seat 
due to surface wear and degraded gasket condition. It can be 
difficult and costly to install sensors to monitor conditions 
such as lubrication, wear, gasket condition, etc. This is 
especially true in these cases where the Launch Valve 
already exists in a catapult system and cannot be modified. 
Therefore, a health management solution must be 
implemented using limited data and feature sets.  

4. APPROACH 

Figure 2 shows a flow chart for the process that the 
proposed prognostics algorithm follows.  

4.1. Data Preparation 

In its current state, the Launch Valve timing data requires 
some pre-processing by SMEs prior to being fed into the 
prognostics algorithm. Future work will look to automate 
the pre-scrubbing process. Raw Clock 2 data contains 
timing of all launches and blow through no loads. Launches 
with a low capacity selector valve (CSV) setting have to be 
identified and removed from the data because CSVs below a 
specific value do not tend to achieve the Clock 2 switch 
prior to the “launch complete” signal closing the Launch 
Valve. This results in inaccurate timing. After this scrub, 
clock times are compared to existing Clock 2 vs CSV curve 
baseline (4th order poly fit line) to determine "variation". A 
4th order polynomial was found to provide the best fit of the 
clock times for the range of CSV settings from aircraft 
operations based on historical data. The next step is the 
manual review of the data to identify if any shifts in the data 
occurred signifying a potential shift in the baseline is 
necessary. Over the life of the catapult the limit switches 
timing the opening of the Launch Valve will be replaced 
several times which can cause a shift in the data. If a shift 

 

Figure 3: Good performance data of opening times of a 
Launch Valve Over a One Year Period. 

 

 

Figure 4: Top) Healthy Data (blue solid) vs. Degraded Data 
(red dashed), Bottom) Gaussian distributions of good 
performance data (blue solid) and degraded performance 
high / low. Degraded High means longer clock times than 
normal, Degraded Low means shorter clock times than 
normal. 

 did occur, a new baseline is identified based on identified 
“good” data. After the baseline is identified, outliers 
(assumed to be related to inscription errors) are removed 
based on a +/- 8% variation threshold from the baseline. 
This helps to eliminate a good portion of transcription errors 
but not all. 
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The data used in this study was broken into training sets of 
known Launch Valve performance data and two test sets of 
unknown performance data (known by SME supplying the 
data). Specifically, the training sets contained 27,622 
sequential shots of healthy performance data and 11,882 
sequential shots that contained degraded performance within 
the data set. Test Set 1 contained 19,355 sequential shots 
and Test Set 2 contained 10,648 sequential shots.   

4.2. Feature Extraction 

The prognostics algorithm presented in this work, starts 
with the assumption that the following data has been  

received: shot number, Clock 2 times, and base line times 
for all catapult shots. The extraction of these times was 
described in the previous section. To account for any shift in 
the Clock 2 timing of the valve, the clock times (݁݉݅ݐ௦), 
are normalized using the baseline time (݁݉݅ݐ௫), resulting 
in ࢉ		ࢇ࢚ࢇࡰ as illustrated in Eq. (1). 

 
ࢇ࢚ࢇࡰ		ࢉ ൌ

௦݁݉݅ݐ െ ௫݁݉݅ݐ
௫݁݉݅ݐ

 (1)  

The algorithm tracks all aircraft shots. Both BTNLs and 
aircraft shots are used to track performance. Figure 3 shows 
an example set of Clock 2 data of a healthy Launch Valve 
over a one year period. 

The distribution of the Clock 2 data, ܥ , over ܰ  launch 
cycles,	ேሺܥሻ, data tends to fit a Gaussian distribution of the 
following form: 

ሻܥேሺ →
ଵ

ఙ√ଶேగ
݁ି

ሺషಿഋሻమ

మಿమ           (2) 

which is the formula for a Gaussian distribution with mean 
 .ଶߪܰ and variance ߤܰ

Based on consultations with SMEs, it was determined that 
degraded operation resulted in a shift of the mean and a 
change in the standard deviation of the clock times. There 
are two different degraded modes. Data that has an 
increasing mean (slower clock times, Degraded High) can 
be representative of a valve experiencing high internal 
friction; while data that has a decreasing mean (faster clock 
times, Degraded Low) can be representative of a valve 
leakage in hydraulic fluid downstream. An example of this 
is demonstrated in Figure 4 where the blue data (solid line) 
represents a healthy Launch Valve and the red data 
(dots/dashes) represents a valve operating in a degraded 
condition (low – dashed line, high – dotted line). These 
distribution functions were extracted by analyzing the 
training set of known healthy, degraded low, and degraded 
high valve performance data. The mean and standard 
deviation are used as features to detect anomalies in the 
clock data. 

 

 

 

Figure 5: PDFs of performance data. Top) Test data is still 
in the good performance range. Bottom) Test data has 
shifted into the degraded high range.   

4.3. Anomaly Detection 

This work implements a data driven approach for detection 
of degradation in Launch Valve performance. The problem 
simplifies to an anomaly detection problem, i.e. detecting 
when the incoming signal (features) are diverging from a 
historically estimated healthy state. Parameters for the 
healthy state are extracted from a known healthy training set 
of data and used in the comparison against incoming data. A 
hypothesis test is conducted using the Neyman-Pearson 
Criterion (Lehmann 1986). Neyman-Pearson is a 
probabilistic method used to classify data points in a null or 
alternative hypothesis by calculating a likelihood ratio and 
comparing it to a threshold. 

In the case of the Launch Valve, the two different degraded 
modes lead to two alternative hypotheses, Degraded High or 
Degraded Low. Table 1 shows the designation of these 
states. 
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Table 1: Neyman-Pearson Hypotheses 
 ܪ Null Hypothesis that the Launch Valve is healthy 

ଵಹܪ  
Hypothesis that the Launch Valve is degraded indicated 
by slower clock times 

ଵಽೢܪ  Hypothesis that the Launch Valve is degraded indicated 
by faster clock times 

 

Figure 5 Top provides a visual representation of the various 
performance distributions. The black probability distribution 
functions (PDFs) represent degraded low and high data, the 
blue PDF is an undamaged set of data, and the red PDF is an 
example set of test data. The increased standard deviation in 
the test data may be due to intermittent inconsistencies in 
lubrication during operation. The Neyman-Pearson Criterion 
calculates the likelihood ratio, ܮሺ࢞ሻ (shown in Eq. 3), which 
is the ratio of the probability of a data set belonging to the 
alternative hypothesis versus the null hypothesis. The 
probability of accepting ܪଵಹ  increases when the test 

dataset starts to shift, as seen in Figure 5 Bottom. 

NOTE: For future reference, any degraded state will be 
represented by ܪଵ  unless a low/high degraded state is 
specifically stated. 

Two false alarm rates, Type I Error and Type II Error, must 
be specified to correctly classify an anomaly. Table 2 below 
shows the designations of both of these errors. 

Table 2: False Alarm Rate Designation 
 

ிܲ 
Probability of Type I Error (False Positive: 
Conclude damage is present falsely) 

ிܲ  
Probability of Type II Error (False Negative: 
Conclude damage is not present falsely) 

 

The probability of a Type I Error was set to 0.01 yielding a 
probability of detection of 99%. The likelihood ratio is then 
calculated to help classify when the measured data set x 
signifies degraded operation. If this ratio is greater than one, 
there is a higher probability of accepting the alternative 
hypothesis.  

 
ሻ࢞ሺܮ ൌ

ଵሻܪ|࢞ሺ
ሻܪ|࢞ሺ

 (3)  

To better utilize the measurement distribution, a window 
(size W=100 launch cycles) of timing data ࢞ is used in the 
likelihood ratio as follows: 

 
ሻ࢞ሺܮ ൌ

∏ ଵሻܪ|ݔሺ
ௐ
ୀଵ

∏ ሻௐܪ|ݔሺ
ୀଵ

 (4)  

The next phase of anomaly detection implements a 
Sequential Probability Ratio Test (SPRT). The SPRT 
evaluates deviations of the actual signal from the expected 
signal (healthy data) based on distributions instead of a 
single threshold value to determine if data belongs to a 

degraded state. SPRT uses the log of the likelihood, L(x),  in 
a sequential analysis. (Wald, 1947). The cumulative log-
likelihood is calculated, as seen in Eq. (5), and compared 
against lower and upper thresholds ܽ and ܾ to determine the 
next course of action (Table 3). As a new sample becomes 
available, the observation window shifts, calculating a new 
likelihood ratio and SPRT value.  
 
 ܴܵܲ ܶ ൌ ܴܵܲ ܶିଵ  log	൫ܮሺ࢞ሻ൯ (5)  

 
 

Table 3: SPRT Comparison Statements 
ܽ ൏ ܴܵܲ ܶ ൏ ܾ Continue monitoring 
ܴܵܲ ܶ  ܾ Accept ܪଵ 
ܴܵܲ ܶ  ܽ Accept ܪ 

 

With a set probability of 1% for a Type I Error and a set 
probability of 5% for a Type II Error, thresholds ܽ and ܾ are 
calculated using Eq. (6) and Eq. (7) respectively. 

 
ܽ ൌ ln ቆ

ிܲ

1 െ ிܲ
ቇ ൌ െ2.99 (6)  

 
ܾ ൌ ln ቆ

1 െ ிܲ

ிܲ
ቇ ൌ 4.55 (7)  

H1 is accepted when the SPRT calculation exceeds the ܾ 
threshold. This concludes there is enough data to support the 
decision to determine an anomaly has been detected. The 
SPRT is then reset if the value has declined consecutively 
for 20 iterations. If ܪ  is accepted, the cumulative log-
likelihood (ܴܵܲ ܶሻ	is reset to zero to restore sensitivity to 
small changes in degradation. A similar approach to 
anomaly detection was implemented by Cheng et. al. for 
monitoring environmental and operational stress profiles of 
robotic vehicles (Cheng, 2008). 

4.4. Degradation Model 

A third order polynomial was chosen as a data-driven 
damage progression model based on a best fit of multiple 
degradation sections from the training sets. SMEs also 
helped to define the ranges for initial parameter distributions 
for the model parameters based on their experiences with 
historical performance degradation trends. The performance 
degradation model follows Eq. (8) where ࢇ ࢈ , , and ࢉ  are 
model coefficients, ࢀ is the translation parameter allowing 
the model to adapt to shifting states of degradation, ࢟ is the 
degraded state prediction of the next shot, ݅ is the sample 
index (with index 1 being the detected start of degradation), 
and ݀ݐ is the cycle increment which was set to 1 (each shot 
increments by 1). 
 
࢟ ൌ ሺ݅ࢇ  ݐ݀  ሻଷࢀ  ሺ݅࢈  ݐ݀  ሻଶࢀ  ሺ݅ࢉ  ݐ݀  ሻ (8)ࢀ
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Parameters ࢉ ,࢈ ,ࢇ, and ࢀ are initialized after an anomaly is 
detected and are updated via the particle filter (described in 
the next section) for as long as the data classifies the Launch 
Valve operation as degraded.  

The effect of loading conditions (varying aircraft weights) 
on the degradation of the launch valve performance is 
negligible. The CSV controls the launch valve rate of 
opening regardless of what aircraft is on the catapult. In 
other words, regardless of the aircraft type, if a value of 
CSV 200 is used to launch a F/A-18 or an EA-6B aircraft 
(two different weight aircraft), the launch valve clock time 
should be the same. 

4.5. Prediction 

Once an anomaly is detected, a particle filtering (PF) based 
prognostic algorithm takes over. PF prognostic algorithms 
have become a common method in the state of the art 
prognostics. A PF is used to provide estimations of 
distributions of model parameters using a window of 
observations. This is accomplished using Bayesian 
inference, based on Bayes’ Theorem as seen in Eq. (9), 
where દ  is a vector of unknown parameters (a,b,c,T),  
 is the vector of ࢠ ,ሺદሻis the prior PDF of these parameters
observed data (clock 2 time), ሺદ|ࢠሻ is the posterior PDF of 
દ  conditional on ࢠ	 and ܮሺࢠ|દሻ  is the likelihood of the 
observed data given the parameters (An, 2012). 

ሻࢠ|ሺદ  ∝   ሺદሻ (9)દሻ|ࢠሺܮ

The particle filter utilizes a sequential method of passing 
prior estimations into the current step to produce the 
estimations for the next step. In particular, this work 
implements a simplified version of the Risk-Sensitive  

Particle Filter (RSPF) presented by Orchard et. al. (Orchard, 
2010). The RSPF maintains a subset of particles in the high-
risk, low-likelihood realm to maintain coverage in these 
areas when incoming data causes convergence of particles 
to a single particle or narrow distribution. In this work, 
twenty percent of the particles are allocated to maintain 
distribution within the risk sensitive areas. 

Input into the PF is timing data that has been filtered with 
two passes of an exponential moving average filter (EMAF) 
as shown in Eq. (10). Development with training data 
supported using parameters ߙ ൌ 0.003 on the first pass and 
0.03 on the second pass. The EMAF is an infinite impulse 
response discrete filter that provides low latency. 

ܨܣܯܧ  ൌ ߙ ݂  ሺ1 െ   ିଵ (10)ܨܣܯܧሻߙ

The degradation model parameters are estimated using a 10 
sample window of EMAF data. Using a sample from the 
EMAF data, a likelihood calculation is performed and 1000 
particle weights are updated. Each particle represents a 
particular parameter configuration with a particle weight  

 

Figure 6: Performance degradation plots. Two examples 
showed (darker dots, lighter dots). Third order model fit to 
data. 20% Bounds on c parameter shown by black lines. 

 

 

 

Figure 7: Top) Test set 1. The algorithm classified this test 
set as containing all healthy data, Bottom) Test set 2. The 
algorithm classified this test set as containing degraded 
performance data. 

based on its likelihood. These weights are then used in the 
likelihood calculation for the next measurement sample of 
the current EMAF window. Parameters are updated for each 
sample of the window and the resulting particle weights are 
used in a third order model to generate each particle 
prediction.  

Once predictions have exceeded the failure threshold 
(defined by the SME), each particle contributes to the time 
until MIR PDF. When a new measurement data point is 
acquired, the EMAF output is updated and the particle filter 
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window is shifted. The shifted window is then passed 
through the process to update the parameter weights and 
provide a prognosis, utilizing a portion of the weights from 
the previous measurement. The prognosis process repeats, 
resulting in updated MIR predictions as the degradation 
progresses. 

5. RESULTS 

The algorithm was tested against two sets of data, shown in 
Figure 7, of unknown classification to the program (but 
known by the SME who supplied the test sets). For each 
classification test, the algorithm was fed the test data cycle 
by cycle, as if it was being deployed in real time. Once the 
observation window is filled, each data point was classified 
as belonging to a degraded state or a healthy state. Overall 
the test sets were classified as “healthy” if they had no 
anomaly detections and “degraded” if anomalies were 
detected. The algorithm classified Test Set 1 as containing 
only healthy data and Test Set 2 as containing degraded 
performance data. The SME validated that this was the 
correct classification for the data that he supplied. 
Furthermore, for Test Set 2, the algorithm identified 
locations in time for which degraded performance was 
identified (shown in Figure 8). 

At the start of identified degradation (rising edge on plot in 
Figure 8), the prediction algorithm took over and predicted 
out when the performance data would cross a pre-defined 
“maintenance needed” threshold. An example is shown in 
Figure 9 where an anomaly was detected around cycle shot 
4290 and predictions were made for the remaining cycles 
until maintenance would be required. The figure shows an 
example of predictions to MIR at about 50% remaining time 
until MIR.    

To assess the quality of the prediction for Test Set 2 (shown 
in Figure 9), the Alpha-Lambda performance metric is used 
(Saxena 2009). The Alpha-Lambda performance metric is 
an off-line metric that determines whether the prediction 
falls within the specified levels of a performance measure at 
particular times. The time instances are specified as a 
percentage of total remaining life (cycles until MIR in this 
case) from the point the first prediction is made. Accuracy, 
defined as the prediction accuracy of cycles until MIR, is set 
to be alpha*100% of the actual cycles until MIR. In this 
case, an alpha of 0.2 was used. Results from Test Set 2 
consistently showed the prediction of remaining cycles until 
MIR fell within the 20% accuracy (alpha = 0.2) with 
approximately 70% (lambda = 0.7) of the remaining cycles 
until MIR remaining. This can be seen in Figure 10. Early 
predictions in the normalized prognostic window tend to 
fluctuate outside the Alpha-Lambda cone due to wide 
spread in the distribution of particles used in the particle 
filter. As more degraded data is acquired, the particle 
distribution tightens as the particle filter begins to converge 
on a particular degradation model.  

 

Figure 8: Test set 2 with algorithm identified locations with 
degraded performance in both low (green) and high (blue) 
levels. “Low” means timing is shorter than normal, “High” 
means timing is longer than normal. 

 

 

Figure 9: Particle Filter Estimation of degradation and MIR 
PDFs. 

 

Figure 10: Alpha-Lambda Performance with 20% error 
bound. Prediction until MIR showing Median, 5%, and 95% 
confidence levels (Cl). 
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6. CONCLUSIONS AND FUTURE WORK 

For the Low Loss Launch Valve, the method of extracting 
and using features from timing data such, as mean and 
standard deviation, to detect anomalies using Neyman-
Pearson Theorem and SPRT has been shown in the previous 
section to produce promising results. The prediction of the 
remaining time until MIR with a risk sensitive particle filter 
using a third order model has also been shown to produce 
results within an acceptable accuracy window. This is a step 
towards allowing the Launch Valve performance analysis to 
be handled automatically in real-time onboard ship and 
provide timely status information to the fleet. 

The next step toward achieving an automated PHM solution 
for the Low Loss Launch Valve is to automate the process 
of pre-scrubbing the data which is currently handled by the 
SME. The automated pre-scrub would need to receive raw 

clock timer information (CSV setting and Clock 2 time), 
screen out low CSV launches not useable for review, and 
properly identify baseline shifts without input from users. 
The algorithm needs to handle varying levels of noise / error 
in the data, much due to transcription errors. It is possible 
that future upgrades to the launch system could incorporate 
added sensors and electronic logging to automatically record 
the timing data, thereby eliminating transcription error 
issues.  

Acquiring more test data sets would further verify / validate 
the PHM methodology presented in this work. With more 
data, it is possible that supervised learning algorithms such 
as neural networks could be used to improve upon 
classification methods and anomaly detection. Future work 
will also include methods of identifying healthy data in real-
time data sets (deployed system) and use that to set anomaly 
detection and prognostics parameters. This would reduce 
reliance on fleet historical data and would tailor PHM 
methods to each specific Launch Valve system through its 
life span.  
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ABSTRACT 

Within the field of power generation, aging assets and a 

desire for improved maintenance decision-making tools 

have led to growing interest in asset prognostics. Valve 

failures can account for 7% or more of mechanical failures, 

and since a conventional power station will contain many 

hundreds of valves, this represents a significant asset base. 

This paper presents a prognostic approach for estimating the 

remaining useful life (RUL) of valves experiencing 

degradation, utilizing a similarity-based method. Case study 

data is generated through simulation of valves within a 

400MW Combined Cycle Gas Turbine power station. High 

fidelity industrial simulators are often produced for operator 

training, to allow personnel to experience fault procedures 

and take corrective action in a safe, simulation environment, 

without endangering staff or equipment. This work 

repurposes such a high fidelity simulator to generate the 

type of condition monitoring data which would be produced 

in the presence of a fault. A first principles model of valve 

degradation was used to generate multiple run-to-failure 

events, at different degradation rates. The associated 

parameter data was collected to generate a library of failure 

cases. This set of cases was partitioned into training and test 

sets for prognostic modeling and the similarity based 

prognostic technique applied to calculate RUL. Results are 

presented of the technique’s accuracy, and conclusions are 

drawn about the applicability of the technique to this 

domain. 

1. INTRODUCTION 

Within electrical power utilities there is an increasing 

demand for condition monitoring methods capable of 

reliably predicting the RUL of assets (Sheppard & Kaufman 

2009). This requirement is driven by the need to improve 

maintenance costs and scheduling, as well as safety 

considerations (Chen, Yang & Zheng 2012). The field of 

prognostics has made great advances in areas with high 

requirements on safety and dependability, such as aerospace 

and the nuclear industry. However within the power 

generation field, prognostic applications have not been 

implemented to the same degree. This is mainly due to the 

challenges of gathering sufficient data to enable robust 

testing and validation, as such systems are rarely allowed to 

run to failure (Heng, Tan, Mathew, Montgomery, Banjevic, 

& Jardine, 2009).  

Within power generation, implementation of prognostic 

methods would enable operators to reduce maintenance and 

unplanned downtime by utilizing predictive maintenance 

policies in place of a time based maintenance approach 

(Vachtsevanos, Lewis, Roemer, Hess & Wu, 2006) (Sun, 

Zeng, Kang & Pecht 2012). However, there is a high cost 

associated with creating physical test systems from which to 

gather run-to-failure data. Additionally, gathering, 

understanding, and transforming data provided by on-site 

industrial facilities into a comprehensive and reliable model 

is a costly and difficult undertaking (Wenbin & Carr 2010), 

with operators often reluctant to provide commercially 

sensitive data. 

 

One way to overcome this lack of failure data is to utilize 

simulation of assets to generate the data required. Following 
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this route, this paper proposes the simulation of degradation 

of valves within a power plant environment to create a 

similarity-based prognostic model. Within a plant 

environment, valves have been highlighted as a common 

source of faults, accounting for at least 7% of mechanical 

failures (Radu, Mladin & Prisecaru, 2013) (Latcovich, 

Åstrom, Frankhuizen, Fukushima, Hamberg & Keller, 

2005), and with many hundreds of valves present in a 

typical generation plant (Westinghouse Nuclear, 2013), 

valves are a critical asset which could benefit from a 

prognostic system. 

Within power generation, simulators have been widely 

deployed, particularly within the nuclear sector, for training 

purposes focused on improving operational safety (Harrison, 

2013). Such simulators are used primarily for training and 

are certified as high fidelity tools and thereby the model and 

sensor data are within industrially accepted tolerances of 

actual plant values. Utilizing such high fidelity simulators 

negates the need for the creation of physical test beds, as 

well as providing an industrial acceptance and robustness to 

the simulated data generated (McGhee, Catterson, McArthur 

and Harrison, 2013). 

The similarity-based prognostic method used here is based 

on an approach by Wang, Yu Siegel and Lee (2008).  This 

similarity method has particular application benefits to the 

simulation approach proposed here.  With simulation, the 

large number of run-to-failure cases needed for a similarity 

based approach can be generated easily. The use of 

simulation can also satisfy the requirements stated by Wang 

et al. (2008) for a successful implementation:    

1)  Multiple recordings of run-to-failure data are available, 

2) The data recorded ends when the point of failure is 

reached, and 

3)  The data covers a representative set of components.  

2. METHODOLOGY 

This section discusses the creation of the valve failure 

model and the prognostic RUL model. A diagram of the 

process is shown in Figure 1. 

2.1. Valve model simulation 

The valve model was created from first principles, 

simulating fluid flow within a cylindrical pipe:   

 

(1) 

 

 (2) 

Where P1, V1 and A1 correspond to the pressure, fluid flow 

and area of the pipe entering the valve, P2, V2 and A2 

correspond to the pressure, fluid flow and area of the pipe at 

the point of degradation and   describes the density of the 

fluid. Parameter values for the model are taken from an 

industrial Combined Cycle Gas Turbine (CCGT) plant 

simulator. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The degradation is represented by a decreasing area A2 

where the initial area of the pipe A1 is constricted over time. 

This is represented by a degradation coefficient, δ, which is 

a numerical constant between 0 and 0.0001, drawn from a 

standard uniform distribution, describing the rate of 

decrease in the flow area.  

 

 (3) 

 

This degradation can represent debris build up along the 

area of flow, or “sticky valve failure” where the valve no 

longer fully closes or opens. A single run-to-failure event 

from initial healthy operating conditions to end of life can 

be seen in Figure 2, and a batch of 50 run-to-failure events 

can be seen in Figure 3. For this study, the end of life is 

considered to be P2 = 0, i.e. completely blocked flow. 

However, in a power station deployment, maintenance 

intervention would be triggered significantly before this 

threshold is reached. 

This modeling approach corresponds to the way components 

and faults are modeled in the industrial plant simulator used 

in the research. The plant simulator uses first principles 

equations based on pressure, fluid flow and flow area to 

model pipes and valves.  

The modeling choices also need to be made with respect to 

the sensors and data readily available to station operators. 

Theoretically, measurement points could be placed at any 

point in the plant model, and the parameter value recorded 

Valve Degradation Data Generated 

Rearrange Generated Data by Health Index 

Evaluate RUL 

Distance Evaluation – Compare Test Data 

With Training Data 

Use Fitting function on Rearranged Data 

Figure 1. Procedure of RUL estimation 
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as if from instrumentation. However, for the prognostic 

model to translate directly from the plant simulator to the 

real plant environment, any measurements utilized by the 

prognostic model must be realistic points for 

instrumentation to be located. Therefore, only those 

parameters which would normally be recorded around a 

valve are considered.  

 

Figure 2. A single run-to-failure event 

 

Figure 3. 50 run-to-failure events 

 

For this study, the training data comprised 50 sets of time 

stamped pressure values, corresponding to P2 in Eq. (1), 

from an initial value equal to P1 down to 0. The simulated 

frequency of data capture is set at once per hour. For this 

case, the parameters taken from the CCGT were an initial 

pressure P1=18 Pa, area A1=10 cm
2
 and flow V1=185kg/s. 

To represent measurement noise, each data point had a noise 

term added, drawn from a Gaussian distribution with mean 

0 and standard deviation 0.0005.  

2.2. Prognostic model 

The procedure for creating the similarity-based prognostic 

model is split into three steps (Wang et al., 2008). The first 

two, described in sections 2.2.1 and 2.2.2, are data 

preparation steps applied to both training and test data. The 

third step compares the test data set against the training data. 

Of 55 run-to-failure events simulated, 50 were used as 

training data, with five for testing. 

2.2.1. Arrangement by health index 

The initial stage is to rearrange the data to create a Health 

Index (HI). The HI is used to describe the condition of the 

asset. Near the start of life the asset is assumed to be in a 

healthy condition and assigned the value 1, whilst the 

unhealthy or near end-of-life condition is assigned the value 

0. This HI is then applied to every data run and the data 

rearranged according to the asset’s time-to-failure (Figure 

4). As shown in Figure 4, the start of life (healthy) and end 

of life (unhealthy) values correspond to P=18 and P=0 

respectively. 

 

Figure 4. Training set comprising 50 run-to-failure events 

rearranged according to HI 

Polynomial fitting 

Having rearranged the data according to the HI, each run-to-

failure event is then fitted using a polynomial function 

which best describes the event progress. In the specific case 

of this valve degradation example, the fault progression 

looks to approximate a linear fit. However, in other cases 

the best fit may be a higher order polynomial or other 

function. In this case the polynomial fit is:  
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where a and b are the model parameters. This polynomial 

curve is fitted to the HI for every run-to-failure event with 

the least squares fitting approach. 

2.2.2. Distance Evaluation 

To determine the RUL of the test runs, a sample of data 

from near the start of each test is selected. In the examples 

below, time steps 50–100 are chosen to represent the current 

and recent historic condition of the valve. This data is then 

compared against every 50 time step segment of each 

training data polynomial fit until the closest match to the 

test is found. The distance evaluation is determined by: 

 

 (5) 

 

where   is the distance of the test data from the training data 

sample, y is the position of the test data (time step number), 

   is the polynomial curve fitted to the ith training data 

sample, r is the length of the test data  ,   is the number of 

time steps   is shifted from 0 and σ is the RMS error from 

the polynomial fit. 

Once the distance between the test run and all windows of 

all training runs is established, the estimated RUL is chosen 

by selecting the training run sample with the smallest 

distance   (i.e. the most similar run-to-failure event). The 

RUL from that point of the training run is the estimated 

RUL for the test run. 

3. EXPERIMENTAL RESULTS 

The five test runs are summarized in Table 1 and shown in 

Figures 5 – 9. As can be seen, the true RUL of each test run 

compares well with the predicted RUL value.  

Table 1. Summary of Test run results with associated 

Estimated RUL and True RUL 

 

Test Run Est RUL True RUL 

1 230 239 

2 898 889 

3 631 624 

4 673 638 

5 1204 1195 

 

 

 

Figure 5. Test run 1: Estimated RUL = 230, True RUL = 

239 

 

Figure 6. Test run 2: Estimated RUL = 898, True RUL = 

889 

 
Figure 7. Test run 3: Estimated RUL = 631, True RUL = 

624 
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Figure 8. Test run 4: Estimated RUL = 673, True RUL = 

638 

 
 

Figure 9. Test run 5: Estimated RUL = 1204, True RUL = 

1195 

 

These results are considered accurate enough for the 

application domain, being within 10 hours of the actual 

RUL in most cases, and 35 hours in the worst case. While 

this technique estimates the time to complete failure (zero 

flow), in a power station maintenance would be triggered by 

a reduction in flow, significantly before failure. The 

estimation of RUL gives an indicative window of time in 

which maintenance could or should be performed, thus 

providing support to maintenance planning. Future work 

will consider how far in advance of estimated failure a 

maintenance trigger should be set, bearing in mind 

uncertainties in the RUL prediction. 

The high accuracy of the case study RUL predictions is due 

to the range of failures included in the training data set, 

which is due in turn to the use of simulation. With the high 

fidelity plant simulator, plant conditions can be varied and 

reset for multiple fault runs, generating as many failure 

examples as desired.  

There is potential for this similarity based prognostic 

method to be improved further, with a larger training data 

set containing a greater breadth of degradation and failure 

cases. Future work will consider how large the training set 

needs to be, and how to integrate actual valve failure data as 

it becomes available. 

However, as more training data is added, RUL selection 

becomes more complex. Future extensions of this technique 

may need to consider implementing different methods of 

distance evaluation, to retain prediction accuracy. Also, as 

this method relies on training using run-to-failure data, it is 

limited to accurate prediction of previously seen fault types.  

4. CONCLUSIONS 

The similarity-based prognostic approach described in this 

paper provided accurate results when estimating RUL of 

valves within a power station. This research utilizes a high 

fidelity CCGT plant simulator to allow the creation of a 

large suite of failure cases, simulating a relatively low risk 

but high consequence failure mode for which there is 

limited in-service data. This paper demonstrates a method of 

first principles modeling of failure, in order to generate the 

data required for data-driven prognostic modeling. This is 

shown to accurately predict the remaining life of five test 

cases. 

Having tested the method there are a number of possible 

routes now available for further research using this 

approach: testing the approach with real plant data, applying 

the prognostic method to different types of faults, and 

comparing this technique to other prognostic techniques for 

similar applications. 
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ABSTRACT

Pneumatic-actuated valves play an important role in many ap-
plications. When valves are critical to the successful opera-
tion of the system, prognostics of these valves becomes ex-
tremely important and valuable. In order to facilitate the val-
idation of prognostics algorithms for pneumatic valves, we
have constructed a pneumatic valve testbed for use with a
cryogenic propellant loading system. The testbed enables the
injection of faults with a controllable fault progression pro-
file. Specifically, we can introduce controllable pneumatic
gas leaks, the most common faults associated with pneumatic
valves. We focus on a valve that moves discretely between
open and closed position, and is controlled through a solenoid
valve. In this paper, we apply a model-based prognostics ap-
proach for pneumatic valves on the testbed. We demonstrate
the approach using real experimental data obtained from the
testbed.

1. INTRODUCTION

Pneumatic-actuated valves play a critical role in many sys-
tems. For example, they are used to control the flow of pro-
pellant in cryogenic propellant loading systems, and failures
can have an adverse impact on system safety and launch avail-
ability (Daigle & Goebel, 2011a). This motivates the need
for valve health monitoring and prognosis. To facilitate the
maturation of prognostics technology, testbeds can be con-
structed that allow for fault injection with controllable fault
progression profiles, which have been developed for electrical
power systems (Poll, Patterson-Hine, Camisa, Garcia, et al.,
2007; Poll, Patterson-Hine, Camisa, Nishikawa, et al., 2007),
electromechanical actuators (Balaban et al., 2010), and mo-

Chetan S. Kulkarni et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

bile robots (Tang, Hettler, Zhang, & DeCastro, 2011; Bala-
ban et al., 2013). For the purpose of maturing and validat-
ing valve prognostics approaches, we have developed a pneu-
matic valve testbed (Kulkarni, Daigle, & Goebel, 2013).

Whereas earlier work on valve prognosis used algorithms
centered on particle filters (Daigle & Goebel, 2011a, 2011b,
2010), in this paper we use a new model-based method based
on the measurement of valve open and close times, recently
developed in (Daigle, Kulkarni, & Gorospe, 2014). In real
valve operations, typically only valve position is measured,
from which the only meaningful information for prognostics
are the valve open and close times. The new approach is
therefore much simpler and requires significantly less com-
putation to isolate and identify faults, and predict end of life
(EOL) and remaining useful life (RUL). The approach still
follows the general estimation-prediction framework devel-
oped in the literature for model-based prognostics (Orchard
& Vachtsevanos, 2009; Daigle & Goebel, 2013). In (Daigle
et al., 2014), the approach was demonstrated in simulation;
in this paper, we apply the approach using real data from the
pneumatic valve testbed.

The structure of the paper is as follows. Section 2 discusses
the overall setup of the valve prognostics testbed. Section 3
presents the valve model. Section 4 provides the valve prog-
nosis framework, and Section 5 presents prognosis results us-
ing testbed data. Section 6 concludes the paper.

2. VALVE TESTBED

The valve prognostics testbed, shown in Fig. 1, has been
developed to demonstrate valve prognosis in the context of
cryogenic refueling operations (Kulkarni et al., 2013). The
dashed lines denote the electrical signals, including the data
acquisition I/O signals, power lines, etc. The solid lines de-
note the pneumatic pressure lines connecting the supply and

1
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Figure 1. Prognostics demonstration testbed schematic.
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Figure 2. Discrete-controlled valve.

the valves. Power is provided by both a typical power supply
and a battery backup supply, and includes a fail-safe mode to
isolate the valve prognostics testbed from the field cryogenic
loading system interface.

The testbed includes a discrete-controlled valve (DV), illus-
trated in Fig. 2, which is a normally-open valve with a linear
cylinder actuator. The valve is closed by filling the cham-
ber above the piston with gas up to the supply pressure, and
opened by evacuating the chamber to atmosphere, with the
spring returning the valve to its default position.

A three-way two-position solenoid valve (SV), illustrated in
Fig. 3, is used for controlling the operation of the DV valve.
The cylinder port connects to the valve, the normally closed
(NC) port connects to the supply pressure, and normally open
(NO) port is left unconnected, allowing venting to atmo-
sphere. When the solenoid is energized, the path from the

Figure 3. Three-way two-position solenoid valve.

NC port to cylinder port is open, allowing gas to pass from
the supply to the valve, thus actuating the valve. When deen-
ergized, the supply pressure is closed off and the path from
the cylinder port to the NO port is opened, thus venting the
actuation pressure in the DV valve, allowing the valve to open
due to the return spring. The solenoid is powered by 24 V DC
either through the power supply or the batteries.

The data from the different sensors is collected using an 8-
slot NI cDAQ-9188 Gigabit Ethernet chassis as the data ac-
quisition (DAQ) system that is designed for remote or dis-
tributed sensor measurements. For the testbed, control and
data acquisition must be done remotely to meet safety re-
quirements. A single NI CompactDAQ chassis can measure
up to 256 channels of sensor signals, analog I/O (AIO), digital

2
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I/O (DIO), and counter/timers with an Ethernet interface back
to a host machine. All the operations for the cDAQ-9188 are
controlled through an interface designed in LabVIEW. Ad-
ditional details of the testbed and data aquisition system are
described in (Kulkarni et al., 2013).

In this work, we focus on faults affecting the DV. Pneumatic
valves can suffer from leaks, an increase in friction due to
wear, and spring degradation (Daigle & Goebel, 2011a). Be-
cause friction and spring faults cannot be injected or their
rate of progression controlled, we are limited only to leak
faults, however, leaks are the most common faults found in
pneumatic valves. In the configuration shown in Fig. 1, two
different leak faults may be considered: (i) a leak to atmo-
sphere, and (ii) a leak from the supply. In the former, this
can manifest as a leak across the NO seat of the solenoid
valve, or a leak in the pressure line going to the pneumatic
valve. In the latter case, the fault can manifest as a leak across
the NC seat of the solenoid valve. To emulate these faults,
we installed two remotely-operated proportional valves, as
shown in Fig. 1. One valve leaks to atmosphere (henceforth
called the vent valve), while the other is installed on a bypass
line around the solenoid valve (henceforth called the bypass
valve).

The position of the vent and bypass valves can be controlled
through a current signal, continuous between 0 and 100%
open. In this way, we can control the fault progression
(growth of leak size) according to various progression pro-
files.

Fig. 4 illustrates a leak to atmosphere using the vent valve
(V1). The leak through V1 emulates a leak at the cylinder port
or across the NO seat. Similarly, Fig. 5 illustrates a leak from
the supply using the bypass valve (V2). The leak through V2
emulates a leak across the NC seat. The effect of these faults
on valve behavior is described in Section 3.

3. VALVE MODELING

In the following section, we present the model using
continuous-time. For implementation purposes, we convert
to a discrete-time version using a sample time of 1× 10−3 s.
This model was originally presented in (Daigle et al., 2014),
and we summarize it here for completeness.

We develop a physics model of the valve based on mass and
energy balances. The system state includes the position of
the valve, x(t), the velocity of the valve, v(t), the mass of the
gas in the volume above the piston, and the mass of the gas in
the pipe connecting the solenoid valve to the pneumatic valve
port:

x(t) =
[
x(t) v(t) mt(t) mp(t)

]T
. (1)

The position is defined as x = 0 when the valve is fully

y

DV

Supply pressure

To Atm

Leak at Supply 

Input port

Pneumatic gas leak 

at valve port

Leak across Normally 

Open (NO) seat

Solenoid Valve

V1
V2

Figure 4. Solenoid valve leak fault injection when energized
on DV valve.

y

Supply pressure

Leak across NC seat

To Atm

V1 V2

Solenoid Valve

DV

Figure 5. Solenoid valve leak fault injection when de-
energized on DV valve.

closed, and x = Ls when fully open, where Ls is the stroke
length of the valve.

The derivatives of the states are described by

ẋ(t) =
[
v(t) a(t) ft(t) fp(t)

]T
, (2)

where a(t) is the valve acceleration, ft(t) is the mass flow

3
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going into the pneumatic port from the pipe, and fp(t) is the
total mass flow into the pipe.

The single input is considered to be

u(t) =
[
ut(t)

]
, (3)

where ut(t) is input pressure to the pneumatic port, which
alternates between the supply pressure and atmospheric pres-
sure depending on the commanded valve position.

The acceleration is defined by the combined mass of the
piston and plug, m, and the sum of forces acting on the
valve, which includes the force from the pneumatic gas,
Fp = (pt(t) − patm)Ap, where pt(t) is the gas pressures
on the top of the piston, and Ap is the surface area of the pis-
ton; the weight of the moving parts of the valve, Fw = −mg,
where g is the acceleration due to gravity; the spring force,
Fs = k(x(t) + xo), where k is the spring constant and xo
is the amount of spring compression when the valve is open;
friction, Ff = −rv(t), where r is the coefficient of kinetic
friction, and the contact forces Fc(t) at the boundaries of the
valve motion,

Fc(t) =





kc(−x), if x < 0,

0, if 0 ≤ x ≤ Ls,
−kc(x− Ls), if x > Ls,

(4)

where kc is the (large) spring constant associated with the
flexible seals. Overall, the acceleration term is defined by

a(t) =
1

m
(Fs − Fp − Ff − Fw + Fc). (5)

The pressure pt(t) and the pipe pressure, pp(t), are calculated
as:

pt(t) =
mt(t)RgT

Vt0 +Ap(Ls − x(t))
pp(t) =

mp(t)RgT

Vp
(6)

where we assume an isothermal process in which the (ideal)
gas temperature is constant at T , Rg is the gas constant for
the pneumatic gas, Vt0 is the minimum gas volume for the
gas chamber above the piston, and Vp is the pipe volume.

The gas flows are given by:

fp,in(t) = fg(ut(t), pp(t)) (7)
fp,leak(t) = fg(pp(t), pleak) (8)
fp,t(t) = fg(pp(t), pt(t)) (9)
fp(t) = fp,in(t)− fp,t(t)− fp,leak(t) (10)
ft(t) = fp,t(t) (11)

where fp,in is the flow into the pipe from the supply or at-
mosphere, fp,leak is a leak term with pleak being the pres-
sure outside the leak, fp,t is the flow from the pipe to the
chamber above the piston, and fg defines gas flow through

an orifice for choked and non-choked flow conditions (Perry
& Green, 2007). Non-choked flow for p1 ≥ p2 is given by
fg,nc(p1, p2) =

CsAsp1

√√√√ γ

ZRgT

(
2

γ − 1

)((
p2
p1

) 2
γ

−
(
p2
p1

) γ+1
γ

)
,

(12)

where γ is the ratio of specific heats, Z is the gas compress-
ibility factor, Cs is the flow coefficient, and As is the orifice
area. Choked flow for p1 ≥ p2 is given by

fg,c(p1, p2) = CsAsp1

√√√√ γ

ZRgT

(
2

γ + 1

) γ+1
γ−1

. (13)

Choked flow occurs when the upstream to downstream pres-
sure ratio exceeds

(
γ+1
2

)γ/(γ−1)
. The overall gas flow equa-

tion is then given by

fg(p1, p2) =





fg,nc(p1, p2) if p1 ≥ p2
and p1

p2
<
(
γ+1
2

) γ
(γ−1) ,

fg,c(p1, p2) if p1 ≥ p2
and p1

p2
≥
(
γ+1
2

) γ
(γ−1) ,

−fg,nc(p2, p1) if p2 > p1

and p2
p1
<
(
γ+1
2

) γ
(γ−1) ,

−fg,c(p2, p1) if p2 > p1

and p2
p1
≥
(
γ+1
2

) γ
(γ−1) ,

.

(14)

The only available measurement is the valve position, so we
have

y(t) =
[
x(t)

]
. (15)

Fig. 6 shows an example nominal valve cycle. The valve
starts in its default open state. The valve is commanded to
close at 0 s. Supply pressure (75 psig) is delivered to the
pipe and to the valve, causing the piston to lower, closing the
valve just after 1 s. At 4 s, the valve is commanded to open,
and the pipe is opened to atmosphere. The pipe pressure and
valve pressure drop, and once the pressure drops low enough,
the spring overcomes the pressure force and the piston moves
updwards. The valve completes opening just after 6 s. The
valve parameters were identified from known valve specifica-
tions, and unknown parameters estimated to match the nomi-
nal opening and closing times, which for the actual valve, are
both around 3.5 s.

As discussed in Section 2, we consider two different leak
faults, one in which there is a leak from the supply pressure
input to the valve (pleak is the supply pressure), emulated us-
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Figure 6. Nominal valve operation.

ing the bypass valve, and one in which there is a leak out to
atmosphere (pleak is atmospheric pressure), emulated using
the vent valve. In the former case, the valve will close more
slowly and open faster, and in the latter, the valve will open
more slowly and close faster. With a large enough leak, the
valve may fail to open or close completely. Fig. 7 shows the
changes in valve timing with the leak from the supply, and
Fig. 8 shows the changes in valve timing with the leak to at-
mosphere. Here, we consider a damage progression model
where the leak hole area increases linearly with time.

In the testbed, we cannot control the leak area, but only the
leak valve position, which varies nonlinearly with the ef-
fective leak area. So, unlike in (Daigle et al., 2014), we
must also consider this relationship, so that we can map from
open/close times to leak size to leak valve position, for which
we assume a particular damage progression profile. The rela-
tionship between the leak valve position and its effective area
is a function of the valve flow coefficient, which is nonlinear.
In this case, we assume that the effective area is equal to the
product of the square of the position (A2

leak) and a conversion
coefficient.
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Figure 7. Valve timing with leak from supply, with linearly
increasing leak area.
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Figure 8. Valve timing with leak to atmosphere, with linearly
increasing leak area.

kA2
leak = Cleak (16)

We define valve end of life (EOL) through open/close time
limits of the valves, as in real valve operations (Daigle &
Goebel, 2011a). The valve in the testbed is required to open
within 7 s and close within 6 s.

4. VALVE PROGNOSIS

We describe in this section the prognosis framework de-
veloped for the valve, following the general estimation-
prediction framework of model-based prognostics (Luo, Pat-
tipati, Qiao, & Chigusa, 2008; Orchard & Vachtsevanos,
2009; Daigle & Goebel, 2013). However, since we use only
valve timing values for prognosis, we use a simpler estima-
tion approach (Daigle et al., 2014), similar to that developed
in (Teubert & Daigle, 2013), as opposed to more complex and
computationally intensive filtering approaches used in previ-
ous works. We first formulate the prognostics problem, fol-
lowed by a description of the estimation approach and a de-
scription of the prediction approach.
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4.1. Problem Formulation

We assume the system model may be generally defined as

x(k + 1) = f(k,x(k),θ(k),u(k),v(k)), (17)
y(k) = h(k,x(k),θ(k),u(k),n(k)), (18)

where k is the discrete time variable, x(k) ∈ Rnx is the
state vector, θ(k) ∈ Rnθ is the unknown parameter vector,
u(k) ∈ Rnu is the input vector, v(k) ∈ Rnv is the process
noise vector, f is the state equation, y(k) ∈ Rny is the output
vector, n(k) ∈ Rnn is the measurement noise vector, and h
is the output equation.1

In prognostics, we are interested in predicting the occurrence
of some event E that is defined with respect to the states,
parameters, and inputs of the system. We define the event
as the earliest instant that some event threshold TE : Rnx ×
Rnθ × Rnu → B, where B , {0, 1} changes from the value
0 to 1 (Daigle & Sankararaman, 2013). That is, the time of
the event kE at some time of prediction kP is defined as

kE(kP ) ,
inf{k ∈ N : k ≥ kP ∧ TE(x(k),θ(k),u(k)) = 1}. (19)

The time remaining until that event, ∆kE , is defined as

∆kE(kP ) , kE(kP )− kP . (20)

In the context of systems health management, TE is defined
via a set of performance constraints that define what the ac-
ceptable states of the system are, based on x(k), θ(k), and
u(k) (Daigle & Goebel, 2013). In this context, kE represents
end of life (EOL), and ∆kE represents remaining useful life
(RUL). For valves, timing requirements are provided that de-
fine the maximum allowable time a valve may take to open or
close, and these define TEOL (Daigle & Goebel, 2011a).

The prognostics problem is to compute estimates of EOL
and/or RUL. To do this, we first perform an estimation step
that computes estimates of x(k) and θ(k), followed by a pre-
diction step that computes EOL/RUL using these values as
initial states. For the case of the valve, the future inputs are
known, i.e., the valve is simply cycled open and closed, so
there is no uncertainty with respect to future inputs.

4.2. Estimation

Since only valve position is measured, only valve timing val-
ues are useful for prognostics. We can obtain this information
from the continuous position measurement data by extracting
and computing the difference in time between when the valve
is commanded to move, and when it reaches its final position.
Using the model, we can map this time to the fault size that
corresponds to it. In order to obtain this result quickly, we

1Bold typeface denotes vectors, and na denotes the length of a vector a.

compute a lookup table that maps leak size to corresponding
open and close times, by simulating the model given different
leak sizes in the expected ranges. A similar approach is used
for current-pressure transducers in (Teubert & Daigle, 2013).

We are interested in mapping this leak size back to the posi-
tion of the leak valve, which we assume is increasing linearly.
For this, we simply take the square root (Eq. 16). Since this
transformed value is progressing linearly, we will essentially
be estimating the gain term k, lumped with the slope of the
leak valve position. So, given the estimated values of damage
progression, we can perform a regression to find the line that
fits this data, using the last N cycles.

For the leak to atmosphere, only closing times can be used
(Daigle et al., 2014). This is because, in the presence of this
leak, the valve may not get up to the full supply pressure when
the valve closes in time for the next cycle, so since the inter-
nal valve actuator pressure is not measured, we do not have a
correct initial condition for the simulation with which to esti-
mate the leak parameter value for the following opening time.
For the supply leak, we have analogous situation and can use
only opening times for leak parameter estimation.

4.3. Prediction

Given the current estimated leak parameter value, and the re-
gression parameters, we can compute the value of the leak pa-
rameter at any future time, defining the damage progression
equation. Using the lookup table, we can map the maximum
valve open/close times to maximum leak parameter values for
the two leak faults, and this defines the EOL thresholds in the
leak parameter space. Using the relationship between leak
size and leak valve position, we can then obtain correspond-
ing maximum values, and then solve for the time at which
that threshold is crossed, given the fitted line, and thus obtain
EOL.

Prediction is not performed until a fault is detected. To detect
faults, we use a threshold on the opening times and closing
times. If the mean valve opening or closing time, averaged
over the last 3 cycles, is over the threshold, then a fault is
detected. The regression is performed only over the data ob-
tained since fault detection, so that nominal valve behavior
is not used to estimate the fault progression parameters. The
use of a filter on the data for fault detection introduces a slight
lag, however in practice fault progression is very slow so this
lag is negligible relative to the true EOL. In general, more ro-
bust fault detection strategies may also be used, but for our
purposes a simple threshold works well.

We can isolate which fault is present by inspecting open/close
timing trends (see Fig. 8 and Fig. 7). Since the two faults
produce different qualitative changes on the valve timing, the
observed trends tell us which fault is actually present.
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Figure 9. Valve open times with a atmoshpere leak.

5. RESULTS

We present here experimental results using the valve prog-
nostics testbed. In each experiment, the valve is cycled open
and closed repeatedly, every 10 s, until the end of life condi-
tion is reached. The valve under consideration is considered
to be failed when it opens in 7 s or greater, or closes in 6 s
or greater. Fault detection thresholds of 4 s and 3.6 s are
used for the open and close times, respectively. The fault is
injected by linearly increasing the open percentage of the de-
sired leak valve in increments of 1%. We first present results
for the leak to atmosphere fault, followed by results for the
leak from supply fault.

5.1. Leak to Atmosphere

As described in Section 2, the leak to atmosphere fault is in-
jected by controlling the position of the leak valve V1. This
emulates a leak across the NO seat of the solenoid valve, or
a leak on the gas line going to the pneumatic valve. As de-
scribed in Section 3, this fault causes a decrease in opening
times and an increase in closing times. Fig. 9 shows the open
times of the valve during the fault progression, and Fig. 10
shows the close times. It is difficult to determine a trend in
the open times, and they do not cross the detection thresh-
old. The close times are very noisy, and do cross the closing
time threshold at the 48th cycle. Based on the open and close
times, the fault must be a leak to atmosphere, in agreement
with the model.

The estimated leak parameter values, based on the close times
of the DV, are shown in Fig. 11. In order to estimate the fault
progression parameters, the last 50 values are used. Since
the close times are quite noisy, a larger window is needed
for this purpose. The RUL predictions are given in Fig. 12,
where α = 0.3 represents a desired accuracy constraint, and
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Figure 10. Valve close times with a atmoshpere leak.
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Figure 11. Estimated leak parameter values based on valve
closing times for the atmospheric leak

RUL∗ denotes the true RUL. The predictions converge rela-
tively quickly after the fault is detected. The algorithm pre-
dicts RUL of the DV valve within the α-cone, until cycle 100.
After that point, the close times have more spread, as can be
seen from Fig. 10. Due to this, the algorithm overestimates
the RUL values towards the end of the experiment.

5.2. Leak from Supply

As described in Section 2, the leak from supply fault is in-
jected by controlling the position of the leak valve V2. This
emulates a leak across the NC seat of the solenoid valve. As
described in Section 3, this fault causes an increase in open-
ing times and a slight decrease in closing times. Fig. 13 shows
the open times of the valve during the fault progression, and
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Figure 12. Predicted RUL values for the atmospheric leak.
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Figure 13. Valve open times with a leak from supply.

Fig. 14 shows the close times. The observed trends are in
agreement with the model. A fault is detected at the 43rd
cycle based on the opening times.

Fig. 15 shows the estimated leak parameters, and Fig. 16
shows the RUL predictions. After detecting the fault the pre-
dictions converge relatively quickly. Since the opening times
are less noisy, only the past 15 cycles are used to determine
the fault progression parameters, and this improves conver-
gence. After entering the α-cone, the predictions for remain
until EOL.

For further validation, we present a second experiment for a
leak from the supply. The experiment is performed exactly
the same, however, performance variations exist from one ex-
periment to the next, and we must ensure that our approach is
robust to those variations. The open and close times for this
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Figure 14. Valve close times with a leak from supply.
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Figure 15. Estimated leak parameter values based on valve
opening times for the leak from supply.

experiment are similar to the previous experiment, with some
variations. In this case, the fault is detected later at around the
47th cycle in the opening times. The RUL predictions for this
experiment are shown in Fig. 17. Although the valve timing
is slightly different, the RUL predictions are just as accurate,
and, in fact, a little more so in this case.

6. CONCLUSIONS

In this paper, we described a testbed for injecting faults in
pneumatic valves. We developed a model of the valve includ-
ing leak faults, and presented a valve prognosis framework
that operates with limited measurements, using only valve
timing information for prognosis. We demonstrated the prog-
nosis framework with experimental data from the testbed for
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Figure 16. Predicted RUL values for the leak from supply.
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Figure 17. Predicted RUL values for the leak from supply
(Exp. 2).

both types of leak faults, thus providing some validation of
the approach.

Future work will involve validating the prognosis framework
with additional experimental data from the testbed and ap-
plying the framework to faults occuring in continuously con-
trolled valves.
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ABSTRACT 

Remaining useful life (RUL) prediction is one of key 

technologies to realize prognostics and health management 

that is being widely applied in many industrial systems to 

ensure high system availability over their life cycles. The 

present work proposes a data-driven method of RUL 

prediction based on multiple health state assessment for 

rolling element bearings. Instead of finding a unique RUL 

prediction model, the life cycle of bearings is clustered into 

three health states: the normal state, the degradation state, 

and the failure state. A local RUL prediction model is 

separately built in each health state. Support vector machine 

is the technology to implement both health state assessment 

(classification) and RUL prediction modeling (regression). 

Experimental results on two accelerated life tests of rolling 

element bearings demonstrate the effectiveness of the 

proposed method. 

1. INTRODUCTION 

Bearings are the most common components in rotatory 

machines, and their failures are the most common failure 

cases in machinery. With increasing requirement of 

reliability, maintainability, testability, supportability and 

safety, extensive principles and models on the topic of 

bearing failure physics, diagnosis and prognostics have been 

reported in literature every year; however, most prognostic 

models do not have accuracy long-term prediction for the 

purpose of industrial applications, and thus prognostics 

techniques for remaining useful life (RUL) prediction are 

still quite challenging in both academia and industries (Kim 

et al. 2012, Siegel et al. 2011, Sun et al. 2011, Wang 2012).  

Ideally, RUL prediction can be viewed as a regression 

problem where a connection model between the sensitive 

features and the corresponding RUL is built over the 

complete life time. However, the methods using a unique 

regression model may be hard to represent the entire history 

and easily over fit the inconsistent patterns in some features 

(Wang 2012), because the trend of vibration based features 

is not necessarily monotonic with respect to degradation of 

bearings. In recent years, there is a trend that RUL 

prediction is suggested to be achieved individually on 

different health states (Kim et al. 2012). It implies the 

difference of intrinsic characteristics within different health 

states. Wang (Wang 2012) proposed two RUL prediction 

strategies to address the scenarios when the bearing faults 

have and have not been detected. Sutrisno et al (Sutrisno et 

al. 2012) realized degradation state recognition of bearings 

and estimated RUL based on making comparisons on 

durations of degradation states between the training and test 

bearings. Medjaher et al (Medjaher et al. 2012) proposed a 

data-driven method using mixture of Gaussian hidden 

Markova model (represented by dynamic Bayesian 

networks) to represent health states of bearings. Zhu et al 

(Zhu et al. 2013) proposed a performance degradation 

assessment method based on rough support vector data 

description. Siegel et al (Siegel et al. 2011) proposed a 

general methodology of how to perform rolling element 

bearing prognostics and presented the results using a robust 

regression curve fitting approach.  

In the present work, we propose a RUL prediction method 

based on multiple health state assessment. Instead of 

looking for an overall regression model, we divide the entire 

bearing life into several health states where a local 

regression model can be trained separately. With the history 

life data from training bearings, we extract the characteristic 

features and knowledge about labels of health state, and 

then a classification model is built for health state 

assessment. We adopt SVM as the technique to implement 

Zhiliang Liu et al. This is an open-access article distributed under the 

terms of the Creative Commons Attribution 3.0 United States License, 

which permits unrestricted use, distribution, and reproduction in any 

medium, provided the original author and source are credited. 
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both health state assessment (classification) and local RUL 

prediction (regression), as SVM has been proved to be a 

suitable tool for both classification and regression problems. 

2. PROPOSED METHOD 

The proposed method includes two phases: training phase 

and testing phase. See Figure 1. The training phase 

generates a health state assessment model and local RUL 

prediction models corresponding to each health state. The 

testing phase uses the generated models from the training 

phase to estimate RUL when a new online sample is 

available. 

Health

State Assessment

Classification 

Model 

Training 

Phase
RUL Prediction

Regression Model

Feature

Calculation

Vibration 

Signals

Testing 

Phase
RUL

Figure 1. Flow chart of the proposed method 

2.1 Health State Assessment 

Health state assessment divides the whole life circle of 

bearings into several degradation states where RUL 

prediction model can be trained separately. In other words, 

the health state of a time point is recognized at first, and 

then the method adaptively selects the corresponding model 

to predict its RUL. The way of using health state assessment 

is the key idea of the proposed method, as we believe that 

RUL prediction models are not necessary the same in 

different health states. Instead of making great efforts to 

find a uniquely complex model for the whole life time, the 

piecewise approach based on health state assessment may be 

more practical.  

In this section, we propose a hybrid approach that uses both 

unsupervised and supervised learning technologies to build 

a model for health state assessment. As no knowledge about 

health states is available at the very beginning of the data-

driven method, we need to find a rough degradation states to 

supervise an accurate health state assessment. The idea is 

illustrated in Figure 2. We first use the unsupervised 

learning to extract knowledge about health state labels of all 

the time points. With the provided label knowledge, the 

supervised learning is employed to build a robust model of 

health state recognition. 

SVM-Based 

Health State 

Assessment
Fuzzy c-means

Feature Selection

Parameter Selection

Label

PCA

Supervised Learning Unsupervised Learning

 
Figure 2. Hybrid approach for health state assessment 

 

From the viewpoint of health state assessment, the run-to-

failure data have their own intrinsic characteristics in 

different states. Therefore, we can use a clustering method 

to roughly group the run-to-failure data into L clusters, 

where L is the predefined number of health states and needs 

to be specified by users. Fuzzy c-means (Bezdek 1981), a 

classical method of clustering, is the suggested method of 

unsupervised learning in the proposed method. 

Prior to fuzzy c-means, an unsupervised dimension 

reduction method is used to extract n' features from the 

original n features. In this method, principal component 

analysis (Shlens 2010), a well-known unsupervised 

technology of dimension reduction, is suggested to remove 

noisy features and reduce feature dimension while 

maintaining most of the variability from the original 

features (98 percentage of variability is used in this paper). 

By using the unsupervised learning, we can divide the 

bearing life into L health states by (L−1) obtained thresholds, 

i.e. t1, t2, …, tL−1, as shown in Figure 3. 
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Figure 3. The proposed RUL prediction process 

 

The proposed unsupervised approach can fuse many 

degradation features, and thus it usually provides a better 

performance than the approaches based on a single feature. 

In this paper, we specify the number of clusters to be three. 

The three health states, including normal state, degradation 

state, and failure state, are used to describe the bearing life 

duration. According to the time thresholds from 

unsupervised learning, we label the samples as one to 

represent the normal state if ti < t1, two to represent the 

degradation state if t1 ≤ ti ≤ t2, and three to represent the 

failure state if ti > t2. 

Then, the health state assessment becomes a supervised 

classification problem. In this paper, we use SVM as the 

classifier to build the model of health state assessment. 

Feature selection that aims to select an optimal set of 

features for SVM input can be implemented immediately 

after time record labeling. Parameter selection is also 

necessary to select the optimal parameters of SVM. Finally, 

the decision function of health state assessment is shown as 

follows: 

 
1 1

1
( , ) ( , )

p p

i i i i i i i i

i i

STA sign y y y
p

   


 

 
         

 
 x x x x , (1) 

    (2) 
where sign( ) is the sign function that extracts the positive or 

negative sign of a real number; κ is the kernel function; y is 

the label; α is the Lagrange multiplier; p is the number of 

support vectors. If L ≥ 3, the health state assessment is a 

multiple class classification problem; therefore, the so-
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called “one-against-all” approach (Vapnik 1995) is applied 

to the binary SVM in Eq. (1). 

2.2 RUL Prediction 

Based on the results from health state assessment, we train 

individual RUL prediction models on the degradation state 

and the failure state except the normal state. That is, we do 

not build the RUL prediction model for the normal state, as 

the normal state is quite diverse due to the different working 

condition. The RUL prediction is triggered only if the 

rolling bearings leave the normal state. By using the 

historical run-to-failure data, we can build RUL prediction 

models for the degradation state and the failure state. The 

technology to implement RUL prediction modeling is 

support vector machine that has also been used in (Sutrisno 

et al. 2012). Therefore, the RUL prediction value is 

computed as follows: 

 
1 1

1
( ) ( , ) ( ) ( , )

p p

i i i i i i i i

i i

RUL y
p

      


 

 

        x x x x , (2) 

where α and α* is the Lagrange multiplier, ε is the margin of 

tolerance. 

3. APPLICATIONS AND DISCUSSIONS 

The proposed method is hereafter applied to experimental 

data that were collected from accelerated life tests (ALTs) 

of rolling element bearings. Those data have been used in 

the IEEE 2012 prognostic and health management (PHM) 

data challenge competition (Nectoux et al. 2012). The goal 

of the competition was to provide the best estimated RUL of 

rolling element bearings. One more thing to do before the 

following procedures is to clarify the failure criterion as it 

has great influence on the detailed modeling (Wang 2012). 

In the challenge, a bearing failure is deemed have happened 

if the amplitude of the vertical vibration signal exceeds a 

threshold of 20g (Nectoux et al. 2012). 

Feature calculation is the following process after the signal 

preprocessing. As the failure criterion is vibration amplitude 

oriented, we define two related features that may reflect the 

degradation trend of rolling element bearings. The first one 

is the maximum absolute amplitude among the two 

vibration sensors. Taking the history vibration data into 

account, we define the second feature (called vibration-to-

history index) as follows: 
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where fi calculates the maximum absolute amplitude among 

the two sensors (the first defined feature); VHi is the value 

of the vibration-to-history index on the ith time record. 

Table 1 summarizes another 33 features adopted in this 

paper. Together with the specific two features, a total of 68 

(33×2+2) feature values are extracted from the two vibration 

accelerometers. We then take the natural logarithm on all 

the 68 features to obtain possible linear trends, and another 

68 new features are generated. Therefore, the total number 

of features used for the following process is 136. All the 

features are numbered from 1 to 136 sequentially. The first 

66 features follow the same sequence in Table 1. The former 

half is from the horizontal accelerometer, and the latter half 

is from the vertical accelerometer. The 67th and 68th 

features are the two defined features, respectively. The last 

68 features are organized the same as the first 68 features. 

The feature preprocessing including smoothing and 

normalization is conducted to continue process all the 

features. We use 11 as the fixed subset size in smoothing. 

Up to now, the features are ready for the use of both health 

state assessment and RUL prediction. 

Table 1. Feature summary 

 
Domain 

(#) 
Feature 

Time-

domain 

(23) 

• Fourteen conventional statistical features (Liu 

et al. 2013): maximum absolute value, average 

absolute value, peak to peak, root mean square 

(RMS), standard deviation, Skewness, kurtosis, 

variance, shape factor, crest factor, clearance 

factor, impulse factor, energy operator, and 

time series entropy; 

• Nine empirical mode decomposition (EMD) 

features (Dong 2012): RMS of the nine IMFs 

from EMD. 

Frequency-

domain 

(10) 

• Six conventional statistical features (Liu et al. 

2013): mean frequency, frequency center, rms 

frequency, standard deviation frequency, FFT 

entropy, and Hilbert entropy; 

• Four fault characterized frequency (Randall 

& Antoni 2011): ball pass frequency (outer 

race), ball pass frequency (inner race), 

fundamental train frequency (cage speed), and 

ball spin frequency. 

 

In this application, the number of states is set to three. This 

choice is motivated by the fact that the degradation of the 

bearings can be represented by three health states: the 

normal state, the degradation state, and the failure state. 

With the extracted label knowledge, health state assessment 

turns to be a supervised classification problem, which is 

solved by support vector machine. It is worth pointing out 

that the unsupervised learning is for only the training phase, 

while the supervised learning is for both the training phase 

and the test phase. By the suggested feature selection 

algorithm (Liu et al. 2013), 11 features (i.e. the 71th, 79th, 

44th, 69th, 73th, 11th, 72th, 112th, 91th, 24th, and 76th 

features) are selected for the SVM based health state 

assessment; 14 features (i.e. the 76th, 79th, 72th, 11th, 70th, 

24th, 73th, 92th, 71th, 44th, 82th, 69th, 112th, and 86th 

features) are selected for the RUL prediction of the 

degradation state; and 4 features (i.e. the 126th, 90th, 58th, 

and 74th features) are selected for the RUL prediction 
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modeling of the failure state. In addition, parameters of 

SVM are all optimized by an analytical method (Liu et al. 

2014) and grid search. We use two historical data, i.e. the 

bearing1_1 and the bearing1_2, to train the proposed 

method. This follows the same training and testing ways 

described in the IEEE 2012 PHM data challenge 

competition. In the next, we take the bearing1_3 as an 

example to introduce the rest process of the proposed 

method. Figure 4 shows the results of health state 

assessment for the bearing1_3. From Figure 4, the SVM 

based method of health state assessment performs well 

except the regions where a health state nearly changes. This 

phenomenon is caused by the randomness of the model in 

the transition regions between two health states. Farther 

away from the transition regions, the randomness becomes 

much less effective, and the model of health state 

assessment can work in a stable way.  

Figure 5 shows the RUL prediction results by applying the 

proposed method to the dataset of the bearing1_3. In our 

strategy, no RUL prediction is made when the health state is 

estimated as the normal state. This explains that no values in 

a range from 0 second to about 11350 seconds are plotted in 

Figure 5. From Figure 5, RUL prediction in the range from 

11350 seconds to 17320 seconds is not very match to the 

true RUL values. This could be possible, as the learning set 

was quite small while the life duration of all bearings was 

very wide (from 1 to 7 hours). Performing good estimates 

was thereby difficult and challenging. The efficacy of data-

driven methods is highly dependent on the quantity and 

quality of system operational data (Kim et al. 2012). A 

significant amount of past knowledge of the assessed 

bearing is required because the corresponding failure modes 

must be known in advance and well-described in order to 

assess the current health state. However, there is only two 

bearing datasets for training in the challenge. Performance 

of the proposed method could be improved if more bearing 

training datasets are included. 

In the next, we compare the proposed method with one 

reported methods following the same way defined in the 

challenge. No matter which technologies embraced in a 

method, the final objective to accurately predict RUL is the 

same pursue of all the methods. The challenge provides 

three measures to evaluate RUL prediction results from all 

the RUL prediction methods. Tables 2 summarize all the 

results of the two methods for RUL prediction. From the 

table, we can see that the proposed method performs better 

than Wang et al (Wang 2012) for the bearing1_3 while 

performs comparable for the bearing1_4. 

Table 2. RUL prediction results 
 

ID 
Current 

Life (s) 

True RUL 

(s) 

Wang 

(Wang 

2012) 

The 

Proposed 

Method 

Bearing1_3 18010 5730 490 5842 

Bearing1_4 11380 339 10 1109 

 
Figure 4. Health state assessment for the bearing1_3 

 

 

Figure 5. RUL prediction for the bearing1_3 

 

4. CONCLUSIONS 

In RUL prediction of bearings, the methods using a unique 

regression model may be hard to represent the entire history 

and easily over fit the inconsistent patterns in some features. 

Therefore, instead of looking for an overall regression 

model, this paper proposes a RUL prediction method based 

on multiple health state assessment. It basically includes 

four process steps: raw data collection, feature calculation, 

health state assessment, and RUL prediction modeling. With 

the help of health state assessment, the proposed method 

divides the entire bearing life into L health states where a 

local regression model can be built individually. As no 

knowledge about health states is available at the very 

beginning of the proposed data-driven method, we propose a 
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hybrid approach consisting of both unsupervised learning 

and supervised learning to estimate the health state of a 

bearing. The unsupervised learning with PCA and fuzzy c-

means is used to automatically extract knowledge about 

health state labels of all the time points in the training phase. 

With the provided label knowledge, the supervised learning 

is employed to build a health state assessment model. SVM 

is the technology to implement both the supervised learning 

of health state assessment and RUL prediction modeling. 

Experimental results show the effectiveness of the proposed 

method. 
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ABSTRACT

Problems with starter batteries in heavy-duty trucks can cause
costly unplanned stops along the road. Frequent battery chang-
es can increase availability but is expensive and sometimes
not necessary since battery degradation is highly dependent
on the particular vehicle usage and ambient conditions. The
main contribution of this work is a case-study where prognos-
tic information on remaining useful life of lead-acid batteries
in individual Scania heavy-duty trucks is computed. A data-
driven approach using random survival forests is proposed
where the prognostic algorithm has access to fleet manage-
ment data including 291 variables from 33603 vehicles from
5 different European markets. The data is a mix of numeri-
cal values such as temperatures and pressures, together with
histograms and categorical data such as battery mount point.
Implementation aspects are discussed such as how to include
histogram data and how to reduce the computational com-
plexity by reducing the number of variables. Finally, battery
lifetime predictions are computed and evaluated on recorded
data from Scania’s fleet-management system.

1. INTRODUCTION

To efficiently transport goods by heavy-duty trucks it is im-
portant that vehicles have a high degree of availability and
in particular avoid becoming standing by the road unable to
continue the transport mission. An unplanned stop by the road
does not only cost due to the delay in delivery, but can also
lead to damaged cargo.

One cause of unplanned stops is a failure in the electrical
power system, and in particular the lead-acid starter battery.
The main purpose of the battery is to power the starter motor
to get the diesel engine running, but it is also used to, for
example, power auxiliary units such as heating and kitchen

Erik Frisk et al. This is an open-access article distributed under the terms of
the Creative Commons Attribution 3.0 United States License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

equipment. High availability can be achieved by changing
batteries frequently but such an approach is expensive both
due to frequent visits to a workshop and also due to the cost
of the batteries. In addition, as will be shown, battery degrada-
tion is highly dependent on the particular usage and ambient
conditions.

The main contribution of this work is a case-study, with
methodological development and analysis results, based on
fleet-management data from heavy-duty truck manufacturer
Scania. A non-parametric and data-driven prognostics ap-
proach is used to compute, on an individual vehicle basis,
prognostic information on remaining useful life of the lead-
acid batteries in the vehicle. This information is then used
to make dynamic and vehicle individual maintenance plans.
The proposed approach mainly uses existing techniques but
also some methodological development is done, in particu-
lar for handling histogram information and data reduction.
The approach can be classified as a reliability function based
prognostic approach (Linxia & Köttig, 2014).

The outline of the paper is as follows. First, Sections 2 and 3
introduces the case study and illustrates the characteristics of
the studied problem and what problems that need to be solved
to obtain a feasible solution. Section 4 then discusses the
key step in the approach, how to estimate battery degradation
properties based on fleet management data. One characteristic
of the dataset is that it contains histogram variables and how
they are introduced in the approach is discussed in Section 5.
The fleet management dataset is large and Section 6 discusses
how to extract the most important parts of the data to be used
with the approach discussed in Section 4. Finally, Section 7
discusses how the proposed approach can be used in a prognos-
tics and condition based maintenance setting and then some
conclusions in Section 8.

2. PROBLEM BACKGROUND

There exist a number of approaches in the literature to do
prognostics. One common approach is to look for trends in

1
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Figure 1. Normalized histogram of time stamp for vehicles
with and without battery problems.

measured or estimated component health status indicators.
Then, extrapolating computed health status indicators give
indications on the amount of useful life left in the compo-
nent. Such an approach requires reliable degradation models
or measurements closely related to battery health, neither of
which are available in this work. An alternative to a physics
based approach where the battery health is estimated directly
is to rely on recorded data from a large number of vehicles.
This paper explores a data-driven approach where the prognos-
tic algorithm has access to fleet management data and some
characteristics of the data are

• 33603 vehicles logged from 5 different markets.
• 291 variables are logged for each vehicle.
• No time series, only aggregated data like traveled distance,

year of delivery, histogram of ambient temperatures.
• Heterogeneous data; mix of numerical values such as

temperatures and pressures with categorical data such as
battery mount point or wheel configuration.

• Dataset includes histogram variables.
• Significant missing data rate (≈ 15%).
• Each vehicle with a replaced battery has logged time of

failure.
• There are many vehicles where battery failure has not

occurred before the time of observation, i.e., data are
right censored.

Figure 1 shows normalized relative frequency of logged time in
the dataset. The red bars show the time of failure for vehicles
with battery problems and the blue bars show time of logged
data for vehicles with no battery problem. The histogram for
vehicles with no battery problems thus reflect the last time
data was logged from the vehicle which approximately is the
age of the vehicle. Time is originally in days but has been
scaled to time units to avoid revealing sensitive information.
A first observation is that some batteries fail much earlier than
others and that there clearly is potential in vehicle individual
maintenance plans.

Let T be the random variable of failure time. Then the relia-
bility function, sometimes referred to as the survival function,
is the probability that T ≥ t, i.e.,

R(t) = P (T ≥ t) (1)
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Figure 2. Reliability function estimate for the full dataset.

which is a fundamental object in the prognostics analysis. See
Section 7 for further discussion on this. Estimating the relia-
bility function from the data is basic survival data analysis and
a non-parametric maximum-likelihood approach is used (Cox
& Oakes, 1984). The reliability function estimate, based on
the full dataset, is shown in Figure 2. This estimate would be
most useful if it were true that the battery degradation is equal
in all vehicles, no matter the vehicle configuration or usage.
To investigate how much battery degradation characteristics
change with vehicle configuration and usage, Figures 3 and 4
compare reliability function estimates for different subsets of
vehicles. In Figures 3(a) and (b), different battery sizes and
battery mounting positions are compared respectively. The
reliability function estimate for battery size 140 Ah is based on
very few vehicles, which is the reason for the jagged estimate.
It is clear that battery size does not change the estimates sig-
nificantly while battery mount position seems to have bigger
impact. The battery size and battery position are both vehicle
configuration parameters, naturally also usage parameters can
have significant influence on battery degradation. Figure 4
shows reliability function estimates for vehicles with different
amount of time with low battery voltage during cold ambient
temperatures. Here it is clear that battery degradation sig-
nificantly correlates with low temperatures and low voltages.
The conclusion so far is then that truck battery degradation is
dependent on vehicle usage and configuration. For each vehi-
cle, 291 variables are recorded and it is not immediately clear
which variables that are most important to describe different
types of battery degradation profiles.

3. PROBLEM FORMULATION

The problem studied in this paper is to compute a probabilistic
measure of the remaining useful life of a particular vehicle
with a well functioning battery at a specified time t = t0. As
before, let T be the time of failure for the battery in a specific
vehicle and let V denote usage and configuration data for the
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Figure 3. Reliability function estimation for different battery sizes (a) and different mounting positions (b).
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Figure 4. Reliability function estimate for vehicles with dif-
ferent amount of time with low battery voltage during cold
ambient temperatures.

vehicle. The objective is to estimate the function

B(t; t0,V) = P (T ≥ t+ t0|T ≥ t0,V), t ≥ 0 (2)

which describes, for a specific vehicle V , the probability that
the battery will at least t time units after t0. This function is
closely related to the reliability function R(t). Let RV(t) be
the reliability function for a specific vehicle V , then

B(t; t0,V) = P (T ≥ t+ t0|T ≥ t0,V) =

=
P (T ≥ t+ t0|V)

P (T ≥ t0|V)
=
RV(t+ t0)

RV(t0)

(3)

The basic problem is then to, given the usage data for a vehicle
V , estimate RV(t) and then compute B(t; t0,V) according to
(3). A key problem is that out of the 291 variables, it is not
clear which ones that best capture different battery degradation
characteristics. The main objectives of the paper are then to,
in a case study with heavy-duty truck data,

Fleet	  data	  
33603	  vehicles	  
291	  variables	  

Fleet	  data	  
33603	  vehicles	  
1031	  variables	  

Fleet	  data	  
33603	  vehicles	  
30	  variables	  

Random	  Survival	  	  
Forest	  Model	  

Histogram	  variables	   Data	  reduc?on	   Build	  model	  

V

RV(t)
B(t; t0,V)

Figure 5. A flowchart describing the proposed approach.

• Determine, using machine-learning techniques, which of
the 291 logged variables that are most useful for clustering
vehicles with respect to battery lifetime prediction. Also
analyze how to properly handle histogram variables.

• Estimate the reliability function RV(t) for a specific vehi-
cle V .

• Estimate battery lifetime predictions as in (2) and evaluate
on recorded data from Scania’s fleet-management system.

The approach proposed for this problem is outlined in the
flowchart in Figure 5. The flowchart illustrates how the orig-
inal dataset first is extended with information about the his-
togram, which is described in Section 5. This leads to a
significant growth in data size, which for complexity reasons
results in a need to reduce the data before building models.
The data reduction, here meaning selection of the 30 most
important variables, is described in Section 6. Then, a ran-
dom survival forest model is built as described in Section 4.
With this model, a vehicle V and its associated 30 variables
can be fed into the random survival forest model to compute
prognostic information, which is illustrated in Section 7.

4. RELIABILITY FUNCTION ESTIMATION

Estimation of the reliability function (1) for a specific vehi-
cle, based on a set of variables, is one of the main objective
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of this work since then the function B(t; t0,V) can be com-
puted according to (3). As noted in Section 2, if it were a
good assumption that battery degradation in all vehicles were
independent on vehicle configuration, usage, and ambient con-
ditions, a direct estimation of the reliability function using
the very basic survival analysis techniques in (Cox & Oakes,
1984) would be appropriate. However this independence as-
sumption is not realistic since it was shown how the failure
rate of the battery varies significantly dependent on vehicle
usage, configuration, and ambient conditions.

Thus, the 291 variables that are stored for each vehicle and
describe vehicle configuration and usage need to be taken into
account. One possibility is to use a parameterized approach
where the failure rate of the batteries

h(t;V) = P (T = t|T ≥ t,V)

is written as a function of the variables V . One common choice
then is the proportional hazards model with log-linear hazards
(Cox & Oakes, 1984) for which there exists well-established
theory and tools. This approach is not used here, mainly
because of the high rate of missing data which can not be
handled directly, but also to avoid the proportional hazards
assumption.

Instead, the basic idea of the approach used here can loosely
be stated as utilizing a classifier to cluster vehicles with sim-
ilar battery degradation properties. Then a non-parametric
estimate for the reliability function RV(t) is computed for a
specific vehicle V using only the vehicles in the corresponding
vehicle cluster.

A candidate tool that fits this situation well is Random Sur-
vival Forests (Ishwaran, Kogalur, Blackstone, & Lauer, 2008;
Ishwaran & Kogalur, 2010). Random survival forest is a sur-
vival analysis extension of Random Forests (Breiman, 2001)
which is a tree-based classifier (Breiman, Friedman, Stone, &
Olshen, 1984) extended with bootstrap aggregation (Breiman,
1996) techniques. The key motives for using random survival
forests in this work is that

• it handles heterogeneous data; both discrete and continu-
ous valued variables

• it handles missing data
• it is non-parametric, i.e., does not rely on a specific hazard

function parameterization like proportional hazards

There are 291 variables stored for each vehicle and the data
includes 17 histograms. As will be described in Section 5,
additional variables are derived to take these histogram vari-
ables into account. This results in a total of 1031 variables for
each vehicle. To keep computational complexity down when
building the random survival forest, Section 6 describes how
to select the 30 most important variables. For this section it
is not important exactly which variables that are used, it is
enough to state that 30 variables were selected and used in the
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Figure 6. Error rate for the forest when node size is changed.

classifier.

The experiments is conducted in R (R Core Team, 2014) using
the package Random Forests for Survival, Regression and
Classification (Ishwaran & Kogalur, 2013). There are 4 main
parameters to be chosen in the software package

• number of trees to grow in the forest
• minimum size of terminal nodes
• number of random split variables
• number of random split values

Selection of these parameters is important for the result, and
therefore there will be a short discussion on the choices made
in this study. The remainder of this section requires knowledge
of random survival forests, and for in-depth description of each
parameter the reader is referred to (Ishwaran et al., 2008) and
(Ishwaran & Kogalur, 2013).

The error rate measures how well the forest ranks two random
individuals in terms of survival, and 0 is perfect and 0.5 is no
better than guessing. The error rate can be interpreted as the
probability of correctly ranking the survival of a batteries of
two random vehicles. Formally, the error rate is 1− C where
C is Harrell’s concordance index (Harrell, Califf, Pryor, Lee,
& Rosati, 1982). Figure 6 plots the error rate as a function
of node-size and number of trees. From this plot it is clear
that, based on the error rate, there is no reason to grow more
than about 200-300 trees in the forest and that the error rate is
fairly insensitive to the selection of node size. The variance
of the reliability function estimate dependends on the number
of datapoints, i.e., too small terminal node sizes would give
unreliable results. Based on Figure 6, the minimum terminal
node size is chosen to 200.

The number of random variables to evaluate in each node of
the tree classifier should not be too low, since then there is a
lower probability of actually finding the best variable. Also, to
get diversity among the trees in the grown forest, the number
of variables should not be too high. As mentioned above and
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Figure 7. Error rate as a function of number of trees in the
forest for three different number of random split variables to
try in each node.

discussed further in Section 6, 30 variables are used in the
analysis and Figure 7 shows the error rate for three different
number of random variables explored in each tree node. Based
on Figure 7, the number of random split variables to try in
each node is selected to 10. The final parameter is the number
of split values to try for each variable in each node. Due to the
heterogeneous nature of the data, the package is configured
for an exhaustive search for the best split value.

With the parameter values chosen, training the random sur-
vival forest with 200 trees, based on 30 variables for 33603
vehicles, takes about 15 minutes on the computer used for the
experiments. The computer used has 128 GB of RAM and 2
Intel Xeon Processor X5675 (12M Cache, 3.06 GHz) resulting
in 12 cores and 24 logical processors. In the experiment, 20
of the 24 logical processors were allocated in the tree com-
putation. Note that training the forest is a one-time task, at
least until more data becomes available, and predicting the
reliability for a given vehicle is immediate.

5. HISTOGRAM VARIABLES

There are histograms in the available vehicle usage data and an
example can be seen in Figure 10(a), which shows the fraction
of time with a certain battery voltage. The frequencies of the
observations in the intervals, the bin-values, are stored in the
vehicle data. Thus, each bin-value is a variable that can be
used for reliability function estimation.

By considering bin-values as independent variables, it is not
taken into account that the bin-values represent frequencies of
observations in intervals with known boundaries and that a his-
togram is an approximated probability distribution of a single
variable. The mean and variance of a histogram are examples
of properties that considers the underlying histogram variable
and also take interval boundaries into account. Thus, could
provide additional information for the reliability function esti-
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Figure 8. Histogram for a variable x.

mation. To investigate properties of a histogram, a number of
additional quantities, i.e., new variables, are derived for each
histogram.

Consider a histogram with n bins. Let pi and xi be the number
of observations in and the center value of bin i ∈ {1, 2, . . . , n}.
The histograms are normalized such that the sum of bin values
is one, i.e.,

∑n
i=1 pi = 1.

The variables considered for such a histogram are the bin
values pi for i ∈ {1, 2, . . . , n}, the cumulative sum ci =∑i

k=1 pk for i ∈ {1, 2, . . . , n}, the mean value of the his-
togram variable defined as µ =

∑n
i=1 pixi and the variance

σ2 =

n∑

i=1

pi(xi − µ)2

Furthermore the 10th, 50th (median) and 90th percentiles are
computed from the cumulative distribution function based on
a uniform distribution in each bin. Figure 8 illustrates the
meaning of these values.

It is also natural that the tails, i.e., extreme cases of the dis-
tributions are of special importance. For example, a large
number of starts with low battery voltage and almost none
with high battery voltage could indicate battery problems. The
following two variables have been included in the analysis to
study the importance of the tails of the distribution.

Let the bin values of the mean histogram over all vehicles be
denoted by p̄i for i ∈ {1, 2, . . . , n}. The number of bins that
is considered as the left tail of the histogram n− is computed
from the mean histogram as n− = maxn

∑n
i=1 p̄i < 0.05.

The number of bins considered as the right tail n+ is computed
analogously. Now, the tail variables considered for a histogram
variable of a vehicle are computed as

Ptail =

n−∑

i=1

pi +

n∑

i=n−n++1

pi

and

Mtail =

n−∑

i=1

pi −
n∑

i=n−n++1

pi
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6. VARIABLE IMPORTANCE

The dataset originally contains 291 variables where each bin
in the histograms is counted as one variable. With the addi-
tion of the derived histogram variables described in Section 5
we obtain 1031 variables. To run the random survival forest
algorithm considering the 291 variables takes 5 hours on the
same machine that was described in Section 4. With 1031
variables, the computations did not finish in a reasonable time.
To investigate parameter tuning of the forest, the algorithm has
to be run with a number of different parameter settings. Then,
also the run time with 291 variables is too long. To reduce
computational complexity, the tree algorithms were run with
30 variables and this section describes how these variables
have been selected.

To obtain accurate reliability functions it is important to use
variables that are good at predicting battery failures. The pre-
dictive power of a variable will be called variable importance
and this number can then be used to select the most important
variables.

6.1. Method

Two different methods for computing variable importance have
been investigated. The first method is based on the receiver
operating characteristics curve, ROC-curve, and considers one
variable at a time and the second is a multivariate analysis
based on the error rate described in Section 4 computed by the
random survival forest package.

Single variable analysis

The single variable analysis is based on the ROC-curve that
shows the performance of a binary classifier. To introduce the
ROC-curve, consider a hypothesis test concerning the battery
of a vehicle with hypotheses

H0 : no battery problem
H1 : battery problem

For a variable x consider the test with threshold J and rejection
region Φ(J) = {x|x > J} such that

x /∈ Φ(J) : accept H0

x ∈ Φ(J) : reject H0

(4)

Two important properties of the test is the probability of detec-
tion, i.e.

P (D) = P (reject H0|H1 is valid)

that ideally should be 1 and the probability of false alarm

P (FA) = P (reject H0|H0 is valid)

which ideally is 0. Both the detection and false alarm proba-
bility is dependent on the threshold J and the ROC-curve is
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Figure 9. Example of an ROC-curve.

a plot of probability of detection P (D) as a function of false
alarm probability P (FA). The curve is obtained by varying
the threshold J .

An example of an ROC-curve is shown in Figure 9. Figure 9(a)
shows the observations of a hypothetical variable used for
classifying battery problems. The red circles are observations
for vehicles without battery problems and the blue crosses
observations from vehicles with battery problems. The value
from vehicles with battery problems tends to be bigger than the
values for vehicles without battery problem thus the variable
could be used to separate those cases. The three different plots
shows with a dashed vertical line different thresholds J and
the true positive rates (TPR), i.e., the probability of detection,
and the false positive rates (FPR), i.e., the probability of false
alarm is shown.

The ROC-curve is shown in Figure 9(b) and is obtained by
estimating the probabilities P (D) and P (FA) for thresholds
J of different values. The numbers 1-3 refers to the 3 different
thresholds shown in Figure 9(a). Consider for example the
threshold in the second plot of Figure 9(a). Since 4 out of
the 5 cases with battery problems are above this threshold the
detection probability is estimation is P (D) = 0.8 and since 1
out of 5 cases without battery problems is above the threshold
P (FA) = 0.2. This point is marked with a 2 in Figure 9(b).
Variable importance for a variable x is then computed as the
area under the ROC-curve (AUC) as

AUC(x) =

∫ 1

0

ROC(x) dx

For the example the AUC is 0.96.

The AUC is between 0 and 1. A value below 0.5 indicates that
the observations from vehicles with battery problems are in
general smaller than the observations of vehicles with fault
free battery. In this situation a battery fault should be detected
if the variable is below the threshold instead, i.e., to change
the rejection region in equation (4) to Φ(J) = {x|x < J}
and the AUC becomes 1 subtracted with the unmodified AUC.
Hence all variables will get an AUC between 0.5 and 1 where
a bigger value indicates a more important variable.
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Multivariate analysis

Variable importance can also be computed using the error
rate described in Section 4 as suggested in (Ishwaran et al.,
2008, 2007). Variable importance for a specific variable x
is evaluated by subtracting the error rate using all variables
from the error rate obtained without using x. The error rate
without x is evaluated on the original trees grown with x and
whenever a split for variable x is encountered a daughter node
is randomly assigned.

Advantages with this way of computing variable importance
compared to the AUC-method is that the error rate is more
closely related to our primary goal, i.e., to estimate the reliabil-
ity function accurately and that the correlation of variables is
considered. A disadvantage is the computational complexity
of growing the trees needed to evaluate the error rates.

6.2. Case study results

As said in the beginning of Section 6 the 30 most important
of the total 1031 variables was selected as a trade-off between
computational complexity and prediction performance. Since
variable importance based on error rate requires the compu-
tation of a forest, the simpler AUC score has been used for
the selection. The selection has been done in two steps. In the
first step, the two most important variables of each histogram
have been selected considering a variable correlation condi-
tion described later. In the second step, the 30 most important
variables are selected among all non-histogram variables and
the variables selected in first step. Since variable importance
based on error rate is more closely related to reliability func-
tion prediction a comparison of the AUC-based ranking and
error rate ranking is given in the end for of this section for the
30 selected variables.

Analysis of histogram variables

For each histogram stored in the dataset the variables described
in Section 5 have been computed and the importance of them
ranked according to the AUC.

Figure 10 shows an example of the mean histogram represent-
ing the relative time spent with a certain battery voltage when
the battery temperature has been in the range of 10 to 25◦C. To
see how battery health effects the battery voltage the vehicles
has been divided into 3 groups: vehicles with battery failure
T ≤ t0, vehicles with battery failure T > t0, and vehicles
without any observed battery failure. Within the last set of
vehicles also those with a long censoring time T > 2 t0 is
shown separately. Figure 10(b) shows the relative deviation
from the mean histogram under the fault free case. It can be
seen that battery voltage is low more often for vehicles with
battery failures.

Figure 11 shows variable importance based on AUC-score.
The variables are introduced in Section 5 where pct stands
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(a) Battery voltage histogram.
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Figure 10. Histogram for variable BattVoltTempI3, i.e., battery
voltage when the battery temperature is in the range of 10 to
25◦C.

0.5 0.55 0.6 0.65 0.7 0.75

p2

c2

p1

c1
var

mean
c3

Ptail
p4

Mtail
pct50
pct10
pct90

p3

p5

c4

c5

p6

c6
Other predictors
Best predictors

Figure 11. Importance of variables defined by the histogram
for BattVoltTempI3 shown in Figure 10.

for percentile and Mtail and Ptail for minus and plus tail re-
spectively. The most important variable of the histogram is
p2 which corresponds to the relative time with battery voltage
between 26 and 27V. It can be seen that p2 seems reasonable
by looking at Figure 10(b) where the vehicle with failed bat-
teries have a higher value than for the vehicles with non-failed
batteries.

The next most important variable is c2, i.e., the sum of the
first two bins. Obviously c2 is rather correlated with p2 and
to avoid the inclusion of highly correlated variables the most
important variable is selected and the most important variable
with a correlation with the most important variable less than
0.4. In this case, the mean value of the histogram will be the
second selected variable.

For this histogram the original variable, p2 was most important
but the next histogram is an example where some of the derived
variables are most important. Figure 12 shows a histogram for
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(a) Histogram of speed in km/h when
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Figure 12. Histogram for variable BrakeStartSpeed, i.e., initial
vehicle speed when beginning to brake.
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Figure 13. Importance of variables defined by the histogram
for BrakeStartSpeed shown in Figure 12.

vehicle initial speed when beginning to brake. Figure 12(a)
shows the histogram and Figure 12(b) the relative deviation
from the mean histogram including only the vehicles without
battery problems. Figure 13 shows variable importance for
the variables related to the histogram in Figure 12. The most
important variables here are the derived variables Mtail and
pct90 and it can be seen in Figure 12 that vehicles with battery
failures are more often beginning to brake at higher speeds.

As a summary of the histogram analysis, a number of variables
has been derived for each histogram and two of the most
important variables has been selected for each histogram when
considering variable correlation. In the following analyses,
only the two selected variables for each histogram will be
considered together with all non-histogram variables.

Analysis of all variables

The remaining set of variables includes the selected histogram
variables and the non-histogram variables and contains 117

variables. The 30 most important variables of these 117 vari-
ables are selected by using the AUC-based score and the top
18 are shown in Figure 14(a). The variables are categorized
as bin variables pi, non-histogram variables, or derived his-
togram variables. Among the selected 30 variables there are
5 non-histogram variables, 12 bin variables, and 13 derived
histogram variables. Hence, some of the derived variables
for the histograms are important. The individual variables
with most predictive power are the total distance driven, time
of delivery, and the number of days in use. The two most
important bin variables are BattVoltTempI2_p2 which corre-
sponds to low battery voltage at relatively low temperatures
-5 to 10◦C and BattVolt_p2 which corresponds to low battery
voltage in general. The most important derived histogram
variable concerns low (< 20%) and high (> 80%) state of
charge when estimated after 8-24h without battery load. The
variable importance based on error rate has also been com-
puted of the top 30 variables in Figure 14(a) and the result is
shown in Figure 14(b) where the top 18 variables are shown.
Both rankings are quite similar. For example among the top
10 most important variables in each ranking 9 are the same.
Thus even if the simpler AUC-based score has been used for
variable selection the similarities with the more advance error
rate based score is promising.

7. PROGNOSTICS AND CONDITION BASED MAINTENANCE

The main objective so far has been to compute the battery
lifetime prediction function B(t; t0,V) through estimation of
the reliability function RV(t) as described in Section 4 and
then use (3).

With the reliability function and the battery lifetime prediction
function, there are several ways to pass information to a condi-
tion based maintenance planner. One simple and direct way is
to schedule the time for next maintenance Tmaint no later than
a time where the probability of a non-functioning battery is
less than a certain threshold value. Formally,

Tmaint ≤ arg min
t

(B(t; t0,V) < J) (5)

where J is some predefined threshold. Another possibility is to
compute the expected remaining useful life of the battery for a
specified vehicle. Let f(t) be the battery lifetime distribution.
By definition it holds that f(t) = − d

dtR(t) and then by partial
integration

E(T ) =

∫ ∞

0

tf(t) dt = −
∫ ∞

0

t
d

dt
R(t) dt =

∫ ∞

0

R(t) dt

This expression then gives that the expected remaining useful
life of a battery in a vehicle V , given that life up to t = t0 is
observed, is given by

E(RUL(t0,V)) =
1

RV(t0)

∫ ∞

t0

RV(t) dt− t0
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Figure 14. Individual predictive power for the most influential variables based on the area under the ROC-curve and ranking
based on variable importance in the random survival forest.
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Figure 15. Function B(t; t0,V) for three different vehicles
with t0 = 3.32, 5.14, and 7.31 time units respectively.

Although the expectation of remaining useful life is attractive,
it involves integrating the estimated reliability function to
infinity. Unfortunately, the estimated reliability functions has
a high degree of uncertainty for large values of t. This is due
to that there are very few recorded data points for large t and
therefore this approach is not pursued further here. Instead,
the battery lifetime prediction function is used as in (5).

Figure 15 shows the estimated B(t; t0,V) function for three
different vehicles selected from the set of all logged vehicles.
For example, the figure shows how the probability of battery
failure is increasing with increasing number of days in use.
With a threshold of J = 0.9, the corresponding maintenance
time Tmaint should be no later than 2.29, 1.59, and 0.44 time
units respectively. It is clear from Figure 15 that the expected
battery lifetime prediction varies significantly for different

vehicles. But that is to be expected since the three vehicles
has been in operation significantly different amount of time.

In Figure 15 there are no confidence intervals or standard-error
estimates. This is unfortunate since it is then difficult to assess
how reliable the estimate of the reliability function is. To our
knowledge, there is no standard way of estimating standard
errors for bagged learners and random forests. Estimating
confidence intervals for random survival forests is an active
research area and one possible approach is described in (Wager,
Hastie, & Efron, 2014).

To further investigate the impact on battery degradation from
different usage profiles, ambient conditions, and vehicle con-
figurations, Figure 16 shows the estimated battery lifetime
prediction function for 20 vehicles with almost the same time
in operation, about t0 = 5 time units. Here it is clear that,
even with similar time in operation the expected lifetime of
the battery varies significantly. For example, comparing the
vehicle with the worst predicted outcome with the vehicle with
the best predicted outcome, the former vehicle has about 3%
longer time in operation, which can not alone explain the big
difference in predicted battery degradation. However, looking
at the time with low battery voltages and low ambient tem-
peratures, exactly as was done in Figure 4, it shows that the
vehicle with worse battery lifetime prediction has spent signif-
icantly more time in that operating point. This also suggests
that the dataset predicts that it is not sufficient to consider
calendar time and mileage to get efficient vehicle individual
maintenance plans.

9
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Figure 16. Battery lifetime prediction function B(t; t0,V) for
20 vehicles with t0 ≈ 5 time units.

8. CONCLUSIONS

High degree of availability and reliability is important in many
businesses and in particular heavy-duty trucks and the lead-
acid battery is one important component to maintain. The
battery is a difficult component to predict since degradation
heavily relies on usage profile, vehicle configuration, and
ambient conditions.

The main contribution is a case-study utilizing a data-driven
approach to compute probabilistic reliability properties for a
battery in a specific vehicle thus making condition-based main-
tenance feasible. The case-study is based on vehicle data from
33603 vehicles. A second contribution is the exploration of
Random Survival Forests (RSF) for battery prognostics, and it
is shown why RSF is a suitable tool in this application. A third
main contribution is the study of which variables in the vehicle
data that are important to characterize battery degradation. In
particular a procedure is proposed how to include histogram
data in the analysis.

The approach is evaluated using fleet-management data from
truck manufacturer Scania and it is successfully shown how
probabilistic reliability information can be estimated for the
battery in individual trucks.
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ABSTRACT 

The spline section of helicopter gearbox structure is 
susceptible to fatigue crack, and non-redundant 
characteristic leads to the need for early flaw detection 
strategies. Acoustic Emission (AE) method relies on 
propagating elastic waves due to release of energy from 
active flaws. The initiation of damage is identified using the 
features of AE waveforms such as energy, amplitude and 
frequency centroid. The characteristics of the AE features 
are influenced by sensor type, sensor location and gearbox 
operational conditions. In this study, the AE data was 
collected from a helicopter gearbox with a notched spline 
section and realistic operational conditions using two 
different AE sensors located at two different positions. The 
data collection was conducted over one year under various 
operational conditions. The AE features were extracted from 
long duration waveforms (100 milliseconds) at every pre-
defined time step (every 5 seconds). The frequency domain 
features of frequency centroid and energy distribution in 
various frequency bands were compared with gearbox 
operational conditions such as torque, lift, gyroscopic 
moment, and temperature.  The influences of sensor 
location, sensor type and operational conditions on the AE 
features are presented in order to decouple their influences 
from the AE features due to damage. The comparison 
between the predicted crack growth time using the AE data 
and the observed crack initiation shows that the AE method 
using frequency domain features of streamed waveforms has 
great potential to identify the crack initiation when the 

sensor type and location are preserved. 

1. INTRODUCTION 

The gearbox components of the helicopters, especially the 
spline section, are prone to develop cracks and spalling due 
to excessive loads, insufficient lubricants, manufacturing 
defects, installation problems or material fatigue. It is 
important to design splines to prevent the onset of cracks, 
but inspection precautions such as early crack detection can 
prevent unexpected failures.  

The common method to monitor flaws in splines is by visual 
inspection. Debris monitoring in an oil-wetted environment 
has had some success. Research indicates acoustic emission 
(e.g., Eftekharnejad and Mba 2011, Eftekharnejad et al. 
2012, Li et al. 2012) and vibration signals (e.g., Yesilyurt et 
al. 2003) have better potential to detect spline damage if 
routine, automated inspections are performed. Acoustic 
emission inspections could relieve maintainers from the 
scrutinizing and subjective safety inspection requirements. 
Acoustic emission is based on propagating elastic waves 
released by active flaws. The sensors are typically mounted 
on the gearbox housing; therefore, propagating elastic 
waves pass through complex geometries, and interfaces of 
gearbox before reaching to the sensors. The method relies 
on searching for the presence of emissions due to damage as 
compared to operational noise emissions of gearbox, which 
are typically dominated by low frequency signals. The 
common sources that generate AE in gearbox include plastic 
deformation, microfracture, wear, bubbles, friction and 
impact (Li et al. 2012). For the vibration method, the 
progression of damage is extracted from time and frequency 
domain features of low frequency vibration data recorded by 
low frequency accelerometers in order to assess the changes 
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terms of the Creative Commons Attribution 3.0 United States License, 
which permits unrestricted use, distribution, and reproduction in any 
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in vibrational properties as related to the damage (Li et al. 
2002, Samuel and Pines 2005). The data processing can be 
enhanced further with multivariate pattern recognition 
methods (Wang 2008) and analytical understanding of 
gearmesh stiffness change with the tooth crack (Chaari et al. 
2009, Chen and Shao 2011). Debris monitoring does not 
require any electronics, and is simple to interpret. The 
method has excellent sensitivity to wear-related failure, and 
in-line oil monitoring can detect spalling (Dempsey 2003); 
however, oil monitoring is insufficient to non-benign cracks 
as no debris is produced.   

In order to increase the reliability of the measurement, two 
or more methods can be combined for redundant 
measurements. For instance Ozevin et al. (2006) 
implemented the combined acoustic emission/vibration 
sensors in the same package for concurrent data collection 
from gearbox components. In this study, waveforms are 
streamed at every selected time step instead of conventional 
threshold based approach with the idea of embedded high 
frequency crack emission into low frequency gearbox 
operational noise.  Loutas et al. (2011) combined three 
methods as vibration, acoustic emission and oil-debris 
monitoring for rotating machinery. The authors applied 
principal component analysis (PCA) to reduce the number 
of parameters extracted from three methods, and concluded 
that the AE method is not sensitive to gear wear while the 
method detects the tooth crack earlier than the vibration 
method. Typical parameters extracted from the waveforms 
of AE and vibration are root mean square value, frequency 
domain characteristics, energy, spectral kurtosis, peak-to-
peak vibration level, and ratio of the amplitude of the 
second tooth-meshing frequency. There are also advanced 
signal processing approaches such as wavelet 
decomposition of time domain data instead of traditional 
time domain features (e.g., Gu et al. 2011). However, the 
wavelet decomposition requires significant memory and 
slows the pattern recognition calculation if real time 
approach is implemented. Li and He (2012) developed 
empirical mode decomposition to the acoustic emission data 
for quantifying damage in gearbox. In majority of the 
studies in literature, the relations between damage and 
parameters are built based on the experimental data.  

In this study, a comprehensive experimental design was 
conducted on an actual size gearbox and operational 
conditions. The AE data together with parametrics related to 
the operational conditions of the gearbox (e.g. temperature, 
forward load) were recorded over 130 hours. The two goals 
of this study are to (1) understand the influences of sensor 
type/location and gearbox operational conditions to the AE 
characteristics, (2) understand the relationships between the 
small and large crack sizes to the AE characteristics in 
comparison with the other measurements. It is important to 
determine and isolate the factors (e.g. gearbox temperature) 
influencing the AE features in order to develop the patterns 
in the AE data representing the crack growth only. The 

ultimate goal is to develop a repeatable real time pattern 
recognition approach to understand the condition of the 
gearbox spline component without recording waveforms but 
extracting and recording features from waveforms using 
field programmable gate array (FPGA).  

2. EXPERIMENTAL DESIGN 

In this section, the description of gearbox system and 
monitoring methodology are presented. 

2.1. Description of Gearbox System 

To replicate the failure progression with requisite complex 
loading and determine the required inspection intervals, 
NAVAIR-4.4.2 built the dedicated experimental test stand 
shown in Figure 1. Funding allowed three crack propagation 
tests to be performed to confirm that the test procedures 
produced representative fatigue surface topography. The 
three tests also provided a measure of statistical variability. 
In this paper, one test result was presented. The results 
obtained in this test were observed in other tests as well.  
 

 
Figure 1. The experimental test stand. 

 
The 2.5hr block cycle in the controlled environment 
simulated 2.5 flight hours (i.e., an average mission). The 
bench test included standard sensors for determining crack 
growth rates, finite element (FE) model calibrations, and 
development of a sensor system with algorithms for field 
inspections. These sensors were both internal and external to 
the gearbox. The sensors included strain and crack gauges, 
proximity probes, thermocouples, accelerometers, load 
sensors, and novel sensors such as energy harvesting, 
acoustic emission and guided wave sensors, thermal camera 
readings and pressure film for bolt preload. In addition, 
physical replicas of the spline surface tracked crack length 
and growth as the test progressed. 

The bench test required machining a notch at the common 
field failure location in a spline to produce a stress riser. The 
current UT procedure for the spline easily detects this notch, 
which was made by electric discharge machining (EDM). 
Loading the test specimens independently on a 4-point 
bending test rig initiated a small subsurface crack from the 
notch feature before gearbox assembly. The full-scale test 
applied a flight-representative, multilevel block cycle with 
torque, thrust, and bending loads to the gearbox. The hub 
moment is the primary driver of the long crack growth rates, 
and it creates a one-per revolution cyclic stress like a 
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misaligned shaft. Because the hub moment can occur at any 
orientation, testing applied alternating force directions to 
evaluate the best and worst case sensor placements. These 
loads represented nonaccelerated, average mission loading. 

2.2. Acoustic Emission Sensors and Monitoring 
Methodology 

The AE system consists of PCI-2 data acquisition system, 
and two different sensor types including WD and micro-30 
sensors. Both data acquisition system and sensors are 
manufactured by Mistras Group Inc. WD sensor has 
wideband response spanning 100 kHz to 1 MHz; micro 30 
sensor has the bandwidth of 150 kH – 400 kHz. The AE 
sensors are coupled using vacuum grease and their locations 
are secured with aluminum brackets. Two sensors of each 
type are placed at different locations on the gearbox to 
understand the influence of sensor position relative to the 
radial load vectors on the bearings. Figure 2 shows the 
locations of the sensors around the periphery of the gearbox 
housing. 

 
Figure 2. The sensor locations on the gearbox. 

 
There are two approaches to collect the AE data: threshold-
based and time-based, Figure 3. The threshold-based 
approach requires a pre-defined threshold level that the AE 
system acquires data when the signal level is above the pre-
defined threshold. If threshold level is high, the sensitivity 
to detect micro-crack is reduced. If threshold level is low, 
the system may be overloaded by the data flow. The 
threshold-based approach has limitations for highly noisy 
applications where separating extraneous noise due to the 
operation of the system from relevant emissions generated 
by crack growth is a challenge. Time-based approach is 
independent from threshold. AE waveforms and features are 
recorded at every selected time interval.  In this study, long 
duration (100 ms) waveforms are collected at every 5 
seconds. The crack growth is a stochastic process. It is 
predicted that the crack emission will sum up with the 

operational noise and manifest itself in frequency domain 
features.  
 

 
Figure 3. The comparison of threshold-based and time-

based approaches. 
 
The time-based waveform approach requires non-classical 
approach for damage detection. For example, cumulative hit 
or energy is not useful as each hit is recorded based on the 
pre-defined time interval. As the amplitude and other time 
domain features are influenced from operational noise, it is 
also difficult to extract the damage information using time 
domain features. In this study, patterns of frequency domain 
features are investigated in order to identify the variations in 
trends as indications of damage. The fundamental frequency 
domain features are frequency centroid and partial powers, 
Figure 4. The frequency centroid informs about the 
frequency content of a given waveform whether dominated 
by low frequencies or high frequencies. The partial powers 
are calculated by dividing the frequency spectrum into 
segments, and the area under each segment normalized to 
the total area represents partial powers.  Frequency domain 
features allow monitoring the frequency contents of AE 
waveforms without recording them in real time, which 
requires extensive usage of memory, and is not feasible for 
real time pattern recognition approach. 

 
Figure 4. An example of frequency spectrum with frequency 

domain features. 
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3. ACOUSTIC EMISSION RESULTS 

The acoustic emission data are first analyzed using 
individual waveforms, and time and frequency domain 
features are extracted from the waveforms in order to obtain 
the feature patterns throughout testing. The total duration of 
the analyzed data is about 130 hours of gearbox operation.  
The extracted features are compared with the gearbox 
operational parameters including temperature and hub 
moment.  

3.1. Waveform Analysis 

Figure 5 compares the frequency spectra of four sensors 
detected at different times of testing. The spectral energy of 
WD sensors is spread in the range of 20 kHz-500 kHz while 
the spectral energy of micro 30 sensor is dominated by 
frequencies lower than 400 kHz. As the sensors are resonant 
type sensors, their transfer function significantly modifies 
the output signal. Additionally, for the identical sensor 
types, there are slight differences in frequency spectra 
because of the influence of the sensor location. Therefore, 
the pattern recognition results presented in this study are 
limited by particular sensor type and location on the 
gearbox. This is the major limitation of selecting resonant 
type sensors in the experimental program.  

A slight shift of the frequency spectrum to higher 
frequencies is observed for channels 1 and 3 when the test is 
progressed (crack was expected to grow by then). Those 
channels are placed next to each other. There is no 
significant change observed for channel 2. The mid-
frequencies for channels 3 and 4 have the reduced energy 
for the day 21. The review of individual waveform requires 
significant amount of computational time. In next section, 
features are extracted from frequency domain features to 
understand the history of features in comparison with the 
gearbox operational conditions. 

 
Figure 5. Frequency spectra of four sensors recorded at 

three different days of testing. 

3.2. Feature Analysis 

The AE amplitude histories of four sensors are shown in 
Figure 6. Throughout the monitoring period of over 120 
hours, there is no significant chance in amplitudes observed. 
This shows that the AE amplitude is not a relevant feature to 
monitor the small crack growth. As discussed earlier, the 
AE amplitudes are controlled by operational conditions, 
which cause high amplitude acoustic noise. The amplitudes 
of micro30 sensors are about 20 dB higher than the 
amplitudes of WD sensors. This is because of higher 
sensitivity of micro30 sensor as compared to WD sensor.  

 
Figure 6. Amplitude histories of AE sensors over 130 hours 

testing. 
 
The frequency spectrum is divided into three segments in 
order to find the energy distribution of each segment. The 
frequency ranges are 100-200 kHz (partial power 1), 200-
300 kHz (partial power 2), and 300-400 kHz (partial power 
3). It is predicted that the increase in partial power 3 with 
time (i.e., the frequency spectrum shifts towards to higher 
frequencies) may relate to active crack growth. This is based 
on the hypothesis that the crack emission has higher 
frequencies than acoustic noise due to operational 
conditions.  

 
Figure 7. Frequency centroid histories of AE sensors over 

130 hours testing. 

0 500 1000
0

0.2

0.4

0.6

0.8

Frequency(kHz)

Am
pl

itu
de

Channel 1 - WD

 

 
day1
day9
day22

0 500 1000
0

0.5

1

Frequency(kHz)

Am
pl

itu
de

Channel 2 - WD

 

 
day1
day9
day22

0 500 1000
0

0.1

0.2

0.3

0.4

Frequency(kHz)

Am
pl

itu
de

Channel 3 - micro 30

 

 
day1
day9
day22

0 500 1000
0

0.1

0.2

0.3

0.4

Frequency(kHz)

Am
pl

itu
de

Channel 4 - micro 30

 

 
day1
day9
day22

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

105



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014 

5 

The frequency centroid and partial power 3 histories of four 
sensors are shown in Figure 7 and Figure 8, respectively. 
The range of the frequency centroid values is controlled by 
the sensor type. For instance, the mean frequency centroid 
of WD sensors is about 380 kHz while it is near 180-190 
kHz for micro30 sensors. The variations within the data set 
depend on the sensor position. While channels 3 and 4 are 
the same sensor type, there is no change in the features of 
channel 4 throughout testing. The WD sensors do not show 
any consistent variations as well. The interfaces and 
materials in the path of propagating elastic waves from the 
source to the sensor location influence the final surface 
motion that the sensor converts into electrical signal.  
 

 
Figure 8. Partial power 3 histories of AE sensors 

 
The comparison of different sensor types and positions 
indicates that the AE features depend on the selected sensor 
type and position relative the crack initiation.  

 
Figure 9. Frequency centroid history of channel 3 

(micro30). 
 
Figure 9 shows the frequency centroid history of channel 3. 
The AE data collection was continuous about 8 hours of 

each day. When the data was plotted, it is considered as 
continuous. The frequency centroid values were consistent 
until the 38th hour of testing.  After this point of testing, it is 
observed that the frequency centroid is gradually increased 
after the initiation of each test. Based on the hypothesis of 
high frequency emissions due to active flaws, the 38th hour 
of testing may be considered as the initiation of active flaw 
or severe fretting damage on gearbox parts other than the 
splines. The predicted time of crack growth is in good 
agreement with the crack growth observed in the replica 
where crack size was measured at intermitted test intervals. 
It is important to note that the AE data at the beginning and 
end of each testing were not used in the analyses, as there 
were significant variations in the acoustic noise due to the 
gearbox operation. 

3.3. Principal Component Analysis 

The AE waveforms can be represented by various time 
dependent and frequency dependent features. Pattern 
recognition methods utilize the AE features as the 
descriptors of the multivariate analysis through mixing time 
domain and frequency domain features in order to 
differentiate source mechanisms. The pattern recognition 
methodology includes unsupervised and supervised modes. 
The unsupervised mode is applicable if there is no prior 
knowledge about classes (Anastassopoulos, and Philippidis 
1994). The challenge of the unsupervised pattern 
recognition method is to define the physical meaning of 
each class that the method finds. In this study, five features, 
including absolute energy, frequency centroid, partial power 
1 to 3 are selected, and principal component analysis is 
applied in order to perform multivariate analysis. Figure 10 
shows the first to the fourth PCA histories of the channel 3 
data. The third PCA has similar indication as the frequency 
centroid, while the fourth PCA has no sensitivity to the 
active flaw. Understanding the physical meaning of PCI 
components is an ongoing research problem.  

 
Figure 10. PCA values of channel 3 data using five features. 
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4. THE COMPARISON OF AE WITH GEARBOX OPERATIONAL 
VARIABLES 

In addition to the AE data, several parameters related to the 
gearbox operation are collected simultaneously. Figure 11 
and Figure 12 compare the frequency centroid history of 
channel 3 with the FWD load (one of the two moment 
drivers) and the temperature for the test period of 27 hours 
to 83 hours. The direction of the FWD and AFT loads were 
varied for each test to alternate the radial load vectors on the 
bearings. The restart points of two tests are highlighted in 
the figures. At the beginning of 27th hour of testing, the 
frequency centroid did not change with the load. A slight 
increase in the frequency centroid with the load direction is 
observed at the initiation of testing. However, the variation 
within the test data is consistent. The test initiation point can 
be selected as the reference point, or normalized data can be 
utilized for pattern recognition methods.  

 
Figure 11. The comparison of AE data with gearbox 

temperature. 
 
The gearbox temperature also does not influence the 
acoustic frequency. As shown in Figure 12, there is a slight 
increase in temperature at the initial part of the plot; 
however, the frequency centroid values stayed constant.  
 

 
Figure 12. The comparison of AE data with gearbox FWD 

load. 
 
If operational conditions influenced the AE features, the 
changes in the AE features due to crack and operational 
conditions should have been decoupled. This is very 
important to develop universal pattern recognition approach. 
Otherwise, operational variables such as temperature, 
forward load etc should be parts of variables influencing the 
patterns in the AE data. 

5. DISCUSSION 

The AE data recorded over 130 hours of gearbox operation 
show that time domain feature of amplitude does not change 
throughout testing when time-based data acquisition 

approach is implemented. Frequency domain features show 
variations in time while they are not influenced by the 
operational conditions of the gearbox. The estimated crack 
initiation time agrees well with the replica result where 
crack size was measured at different intervals of testing.  
The interfaces and materials in the path of propagating 
elastic waves from the source to the sensor location 
influence the final surface motion that the sensor converts 
into electrical signal. Therefore, pattern recognition method 
should be developed for specific sensor and position. If the 
geometry and materials of gearbox are modified, the AE 
features are influenced, and pattern representing crack 
growth becomes different.  

6. CONCLUSION 

In this study, the AE data was recorded during the initial 
crack growth from the notched spline, and recorded high 
frequency data in 5-second intervals for the entire 130 hours 
of gearbox testing. Four AE sensors (two different types) 
were mounted on the gearbox housing at different positions 
in order to understand the influences of sensor type/location 
and gearbox operational conditions to the AE 
characteristics. It is observed that the AE features extracted 
from the AE signals are influenced by the sensor type and 
location. As the pattern recognition methods rely on the AE 
features as the descriptors, they should be developed for a 
specific sensor type and position. The primary features 
sensitive to potential flaws are identified as the frequency 
domain features including frequency centroid and partial 
powers. The AE features are compared with the gearbox 
operational variables including FWD load and temperature. 
It is concluded that the operational variables have no 
significant influence on the frequency contents of the AE 
signals.  
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ABSTRACT 

This article’s model based diagnostics system has four 
modules. Diagnosis and fault location forms physics models 
of the machine, measures states off the real in-service 
machine, generates simulated machine states and simulated 
sensor outputs for the machine model with loads same as the 
real machine, and compares simulated sensor outputs to real 
sensor outputs. The parameter tuning module adjusts (tunes) 
the parameters of the model until the simulated sensor 
outputs closely mimic real sensor outputs. Tuning transfers 
information on the system’s health from the sensor data to 
the model’s parameters. Parameters changed from nominal 
values locate faults and bad parts. For the health assessment 
module to assess machine health, we view a machine as a 
“machine channel” that organizes power and information 
flow through the machine. Machines focus power via an 
organization inherent in its components and design. Broken 
or degraded components disrupt this organization and the 
power and information flows. Shannon’s information theory 
for communications channels can then be applied as a health 
metric to this “machine channel”. Ageing of components 
degrades machine functional health. To prognose future 
health, differential equations that model ageing of the 
machine’s components are formulated and solved. These 
equations predict component degradation, and update values 
of parameters in the model associated with component 
ageing. With these future parameter values, simulations of 
the machine operation model can then predict “future” 
machine behavior, and system health. This article 
demonstrates these methods on motors and a pump. 

1. INTRODUCTION 

A diagnostic system should detect, isolate, and identify the 
type and nature of a fault; determine the severity of the fault 
on system performance and the urgency of corrective action; 
analyze accommodation of the fault; and finally, forecast 
future behavior of the system, given the presence and future 
state of the fault. This article overviews a model based 
diagnostics and prognostics system, shown schematically in 
Fig. 1. The system integrates several modules developed at 
University of Texas at Austin into an overall diagnostics

system.  The modules described in the next section were all 
developed from fundamentals of physics and information 
theory. 
 
Model-based diagnostics constructs models of machines to 
interpret sensor signals in terms of faults and locate and 
track faults in machines. Figure 1 depicts the system 
consisting of real machine; inputs to the machine; a physics 
based model of the machine with many physical states and 
parameters; outputs from the machine measured by sensors, 
and corresponding outputs simulated by the model; a 
module that tunes or adjusts the numerical values of the 

 
 
Figure 1. A schematic of the model based diagnostic 
system, consisting of four modules: diagnosis and fault 
location, consisting of real machine, inputs, sensor 
outputs, and physics model of machine; parameter 
tuning module to extract health condition from 
measurements; health assessment module to assess 
machine functional capability; and prognosis module to 
forecast future machine condition. 
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model’s parameters to make the model’s simulated outputs 
mimic the real machine’s measured outputs; a health 
assessment module to evaluate the system’s health or ability 
to do a job using the measured signals; and a prognosis 
module which forecasts the changed values of parameters of 
an aged machine, via a thermodynamics based method of 
modeling effects of degradation. With these future “aged” 
parameters, the model can simulate future machine behavior 
to predict the future health condition of the machine.  In the 
following sections, the components and operation of each 
module will be described in detail.  
 
Since these modules are all based on fundamentals of 
physics and information theory, the reliability of this overall 
diagnostics system is extremely high.  

2. MODEL BASED DIAGNOSTIC SYSTEM 

Each module of Fig. 1 will be introduced and described. 

2.1. Diagnostics and Fault Location Module (DFLM) 

In Fig. 1, the Diagnostics & fault location module consists 
of a sensory system to observe the real machine and faults, 
and a detailed physics based model of the machine system 
to interpret the sensor signals. The model simulates the 
behavior of both machine and sensor system.   

2.1.1. Sensor System and Observability 

For any diagnostics system to work properly, the sensors 
must collect sufficient, correct and appropriate information 
from the system. The sensor system must be observable to 
the faults.  

Model based diagnostics do not require exotic sensors. 
Simple and common sensors found on industry machines 
can usually ensure diagnosability. Although models 
interpret the sensor signals, these signals must contain 
sufficient information to enable a correct diagnosis. For 
motors, typically measured are voltages, currents, run-outs, 
speed, vibration and temperature by sensors such as 
potential/current transformer, hall-effect sensor, capacitive 
probe, encoder, accelerometer, and thermocouple. Key to 
selecting the right combination of sensors with enough 
information to detect a fault is fault observability, which in 
this context measures how well parameters can be inferred 
from information contained in error signals of model 
outputs and measurements (Analytic Sciences Corporation, 
1974).  

A dynamic system model is required to assess observability 
of a sensor system to any state or signal in a machine, such 
as a fault-induced signal. Nakhaeinejad & Bryant (2011) 
assessed observability to faults for an AC motor. 
Alternatively, sensitivity of sensor signals to changes in a 
fault can be studied, as Bryant, Nakhaeinejad & Choi (2011) 
did for the motor pump system presented in this article. 

2.1.2. System Model 

The model interprets the complex sensor signals. The model 
consists of differential equations that govern the physics of 
the machine. The model based diagnostic system of this 
article employs extremely detailed physics based models 
with direct physical correspondence between elements in the 
model and components and faults in the real machine. All 
relevant physics and effects are embedded in the model. 
Although this imbues the model with many degrees of 
freedom, many states, a high dynamic order, very many 
system parameters, and extreme nonlinearities, this 
complexity is required in the model to interpret the equally 
complex sensor data, which contains multiple competing 
signals from the many components and physical effects in a 
real machine. For example, in a motor, the bearing vibration 
signals measured by accelerometers are contaminated with 
vibrations from the motor’s rotor reacting to harmonics of 
the magnetic field. These vibrations have harmonic 
components similar to the bearing, which confounds signal 
based bearing diagnostics. 
 
During a simulation of the machine model, the model is 
given the same inputs as the real machine, see Fig. 1. 
Simulations attempt to emulate the real machine’s dynamic 
states, up to and including the sensor measurements. Note 
the model contains a model of the sensor behavior. Signals 
measured off the real machine by sensors are then compared 
to corresponding signals derived from simulations of the 
model. For simulations to emulate real machine behavior, 
i.e., for the model’s outputs to match the real machine’s 
outputs, the model’s parameters are tuned––adjusted until 
simulated outputs overlay measured outputs. This is the 
function of the parameter tuning module. 

2.2. Parameter Tuning Module (PTM) 

The parameter-tuning module accepts sensor signals from 
the real machine, and commands a simulation of the model. 
Initially, the model’s parameter values are those of a healthy 
machine1. The simulation, given the same inputs as the real 
machine, computes system states up to and including the 
(simulated) sensor measurements. The parameter-tuning 
module subtracts the simulated sensor outputs from the 
corresponding measured sensor outputs, Fig. 1, and 
constructs an error function as the sum of the differences 
squared. Minimization of this error function drives an 
iterative process that corrects those parameters of the model 
associated with the known faults that compromise operation. 
Industry usually knows where and how faults occur in their 
machines, unknown is when the fault will occur. Parameter 
tuning performs simulations with updated parameters until 
the error function is within an acceptable tolerance. To 

                                                             
1 These healthy machine parameters can be estimated via a combination of 
the machine’s design specs and/or tuning of parameters using a baseline 
signal that exemplifies health. 
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reduce computational load, only tuned are those parameters 
associated with the machine’s faults and ageing, which 
cause the measured signals to change. 

If the model’s parameters have a direct physical 
correspondence to components and faults in the real 
machine, tuning of parameters until simulations emulate real 
machine behavior extracts and puts the health condition 
information from the sensor signals into the parameter 
values of the model. Since the model’s parameters have a 
direct physical correspondence to components and faults in 
the real machine, the tuned parameter values locate the fault 
and inform on its severity, via how much the parameter(s) 
have changed from nominal healthy values. If the model is 
physics based, the updated parameter values are easily 
interpreted in terms of physical effects of faults. This 
removes the pattern classification and training problem 
usually associated with heuristic and signal based diagnostic 
systems.  

The parameter tuning module is challenged by the quality of 
the sensor data, which is compromised by noise and 
inadequate observability. Measurements inherently include 
sensor and physical process noise, and observability of a 
measurement can vary markedly if the system is nonlinear. 
To address these challenges, we tried online tuning with 
Kalman and Extended Kalman filters, and offline tuning 
with an algorithm that minimizes global errors A Kalman 
filter augments a physics model with a statistical model of 
the noise, for more accurate estimates of states (Haykin, 
2001). Kalman filters first predict future states, and then 
correct these states recursively, using the error between 
simulation and measurement, and a Kalman gain, which 
arises from the analytical solution to the error minimization 
problem. For nonlinear systems, the extended Kalman filter 
includes the parameters to be tuned as extra components in 
the state vector. This usually results in a more nonlinear 
system, because the governing differential equations––the 
system differential equations augmented with equations that 
describe parameter degradation––usually involve products 
of parameters and states. 

The Kalman filters operating with the detailed physics 
models  described earlier operated satisfactorily in the 
presence of noise, but often failed due to observability 
issues associated with the nonlinear nature of the models. 
Sensors observability of faults can reduce and even vanish 
due to the nonlinearities of machine models (Nakhaeinejad 
& Bryant, 2011). A Kalman filter sequentially processes a 
signal point by point and must “latch on” to the signal. 
When extreme nonlinearities reduced sensor observability, 
the Kalman filter would detach from the signal, and become 
unstable. An offline tuning method was must less affected 
by this waning observability issue. 

The offline tuning method (Rengarajan, 2010) constructs a 
multi-dimensional parameter space, with each parameter to 

be tuned assigned a coordinate axis. Thus N parameters 
require an N dimensional space, and tuning the set of 
parameters is tantamount to searching for the correct point 
in the space. The search is limited to those regions of the 
space where parameter values are physically possible or 
reasonable. First, a deterministic sampler scans the entire 
admissible region, without bias to any particular sub-region, 
using a grid. At each sampling point, error residuals 
between measured sensor signals and model simulated 
sensor signals are calculated to identify five regions where 
residuals are smallest. Then a “Non-Dominating Sorting 
Genetic Algorithm” is run in small regions about the five 
zones to pinpoint the global minimum. This algorithm 
involves randomness, to maximize the likelihood of 
attaining a global minimum in case the deterministic 
sampler gets stuck in local minima. The resulting global 
minimum values are ranked, and the top candidate is used as 
the system parameter values. Tuning is iterative and ends 
once error tolerances are met. 

The offline tuner was tested on a DC motor where the 
created rotor bar resistance faults were known (Rengarajan, 
2010). Tuned parameters included rotor inertia, motor 
constant, rotor bar resistance, and damping coefficient. 
Motor speed was varied by suitably adjusting the input 
voltage. The tuning algorithm estimated the rotor bar 
resistance values using motor speed measurements to within 
a few percent. 

2.3. Health Assessment Module (HAM) 

The health assessment module determines the functional 
health capability of the machine, based on the channel 
capacity C from Shannon’s information theory. Shannon’s 
C is the maximum amount of information xo in bits per 
second that can be transmitted through a channel 
contaminated with noise, but yet received without error. 
Shannon’s theory, which specifies signal to noise power 
ratios Y/N and channel bandwidth ω, has underpinned all 
communication systems design since 1948. Obey Shannon’s 
theorems and a system works, otherwise not.  

The Shannon & Weaver (1948) channel capacity for a time 
continuous channel with white Gaussian noise in Fig. 2 is 

 

Figure 2.  Shannon & Weaver (1948) 
communications channel. 
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of signal y(t) = x(t) + n(t), and power of noise n(t), 
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T
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In Fig. 2, the received signal y(t) is the transmitted signal 
x(t) corrupted with noise n(t) from the channel. Here  
bandwidth ω (Hz) of the channel is usually determined via 
Nyquist’s rules.  
 
A machine will be viewed as a “machine communications 
channel” with input signals transmitted over a “machine 
channel” and received as the machine’s output signals. Here 
faults create and add “fault noise” to output signals. To 
apply Shannon’s fundamental theorems to assess machine 
health, noise will be defined as  
 
 ni(t) = y(t) – yi(t),     (3)  
 
the difference between output y(t) of the degraded machine, 
and a baseline signal yi(t) that exemplifies health, as 
discussed in Costuros & Bryant (2014). The noise signal of 
Eq. (3), a residual between degraded y(t) and baseline yi(t), 
contains the “fault noise” signals generated by faults, and 
random sensor and system noise present in both y(t) and 
yi(t). Of course, to use Eq. (3) in an industry setting, signals 
y(t) and yi(t) must first be correlated in time to have the 
same starting point and be synchronized. 
 
Applying Eqs. (2) to baseline signal yi(t) and noise ni(t) of 
Eq. (3) produces a channel capacity for the baseline signal 
 

R =ω i log2
Yi
Ni

!
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#

$

%
&
.
   (4)  

 
Here bandwidth ωi of baseline signal yi(t) is usually equal to 
ω. Equation (4) will be used in place of Shannon’s rate of 
information in Shannon’s test channel health, wherein if  
 
   R ≤ C,    (5) 
 
the system will satisfactorily perform its function, otherwise 
not. Costuros (2013) showed that unless the power of sensor 
and system noise overwhelms (> 20%) the fault noise, the 
test of Eqs. (1)–(5) will work in an industry setting.  
 
Costuros & Bryant (2014) demonstrated the efficacy of 
channel capacity as a health metric via tests on ageing 
industry robots, which will be reviewed here. The channel 
capacity technique was tested on eight DC motors in four 
industry robots, each initially in good operating condition. 
An identical sequence of voltage steps (transmitted channel 
inputs) were repetitively applied to all motors, and torque 
signals y(t) (received channel outputs) were then collected 
from all motors. Motors ran continuously from 12/9/09 to 
2/5/10.  Motor output torques were measured on 12/9, 
12/18, 1/15, 1/21 and 2/5. The 12/9 measurements were 
designated as baseline signals yi(t) exemplary of good 
health, to which all subsequent measurements y(t) on the 
same motor were compared. Before any calculations, a 
signal y(t) was first correlated to its yi(t) to synchronize 
signal alignments in time.  Figure 3a shows robot 1 motor 
torque y(t) on 1/15 (blue curve), and its baseline yi(t) (black 
curve).  Fault noise in Fig. 3b obtained via Eq. (3) distills 
the fault induced signal from y(t). Power spectra of signal 
y(t) and noise ni(t) computed via Eq. (3) are in Fig. 3c.  
Channel capacity C was estimated via Eq. (1) and tabulated 
in Table 1. 
 

For measurements after 12/18, fractional changes in channel 
capacity %C =1 - C/C12/18  relative to values for 12/18 
measurements were tabulated in Table 1 for all motors.  
Inspection of the upper rows reveals a trend of diminishing 
channel capacity over time.  For example, for motor B of 
robot 2, C diminishes from 2,326 to 1,340 from 12/18/09 to 

Table 1: Channel capacity for motors of robots vs. time. 

 

 
Figure 3. Motor torque response from robot 1 on 1/15/10. 
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2/5/10.  In subsequent rows, the percent change of channel 
capacity from 12/18 to 1/21 is displayed, along with a 
composite of human produced evaluations of motion 
performance by a team of industry engineers and 
technicians.  The human evaluations rank-ordered the 
motors and identified the best and worst performing motors.  
In general, the channel capacity estimates agreed well with 
human (team) assessments.  Motor ‘A’ in robot 1, deemed 
BEST by the team, had the smallest channel capacity 
reductions. Motor ‘B’ in robot 2, rated WORST by the 
team, consistently showed the largest reduction of channel 
capacity and was prematurely removed from service due to 
development of a grinding noise.  In general, the drop in the 
channel capacity values correlated very well with the human 
perceived amount of motor degradation. An overall decline 
in channel capacity indicates degradation. This application 
suggests that the channel capacity metric can quantify 
system degradation in industry settings. The channel 
capacity decreases in Table 1 are not strictly monotonic. 
Fluctuations in the C values in Table 1 for most motors at 
the beginning of tests are consistent with a break-in process, 
wherein performance does vary. For these motors, the 
majority of faults occurred on the motor bearings due to 
lubrication breakdown. 

2.4. Prognosis Module (PM) 

The prognosis module, schematically shown at the top of 
Fig. 1, forecasts future values of the model’s parameters via 
differential equations that govern the ageing and 
degradation of the system’s components. These equations 
and the ageing phenomena typically have time constants 
much larger than the characteristic times of the machine in 
operation. To make the Prognosis module compatible with 
the other diagnostic modules, the component degradation 
equations are posed in terms of those system parameters Pk 
that change due to component degradation. This degradation 
or ageing worsens the faults. Equations that govern 
degradation (Bryant, 2014) can be formulated via the 
Degradation Entropy Generation theorem (Bryant, Khonsari 
& Ling, 2008), which equates the rate of change of a 
variable w that measures the degradation (i.e., 
monotonically increases or decreases as the fault becomes 
more severe) to a linear combination of the irreversible 
entropies Si’ generated by the n dissipative processes 
underlying the degradation, i.e., 

dw
dt

= Bi
dS 'i
dti=1

n

∑ .   (6a) 

Equation (6a) is founded on the laws of thermodynamics. 
Although the Bi constants are usually unknown, the 
irreversible entropies Si’ on the right side of Eq. (6a) can be 
formulated in terms of the power dissipated by components, 
divided by a temperature associated with the degradation, 
using knowledge of the mechanics of dissipation losses and 
the ageing and degradation mechanisms. If degradation 

changes parameter Pk then Pk = Pk(w), and via the chain rule 
dPk/dt =  dPk/dw (dw/dt). Substitution of Eq. (6a) gives 

 dPk
dt

= Bi
dPk
dw

!

"
#

$

%
&
dS 'i
dti=1

n

∑ = Bi
* dS 'i
dti=1

n

∑   (6b) 

where dPk/dw was grouped with the constants Bi to form 
new constants Bi*. Values for these constants can be 
obtained via the tuning module, since a history of values for 
parameters Pk will be available from past tunings of the 
operational model to sensor data. 
 
Over the course of multiple tunings, a record of the 
parameter’s values Pk versus time can be constructed, as in 
the graph seen in the Prognosis section of Fig. 1. Future 
values of parameters Pk, associated with faults could be 
forecast by fitting a curve through the record of Pk data 
points, and extrapolating that curve into the future, as in 
point “X”. A more accurate forecast uses Eqs. (6b) and 
tunes the unknown constants Bi* with the record of Pk 
versus time. Then using the most recent value of Pk as an 
initial condition, the Pk can be forecast much further into the 
future. With future values for the parameters Pk, the 
machine model shown in Fig. 1, given the machine’s inputs, 
can now simulate the future degraded machine behavior and 
its output signals y(t). With these future output signals y(t) 
inserted into Eq. (3), the health assessment module can 
assess future machine performance.  

2.5. Diagnostic System Operation 

The diagnostic system operates as follows. Abbreviations 
are defined in the headings of section 2.  

1) DFLM simulates the model of Fig. 1 with inputs 
same as the service loads on the real machine, and 
outputs including the sensor states.  

2) DFLM compares simulated “sensor” signals to the 
real sensor measured signals. 

3) PTM adjusts (tunes) the model’s parameters, until 
simulated sensor readings overlay real sensor 
readings. Accuracy is a few percent. The tuned model 
now emulates machine behavior, and distilled into 
the tuned parameter values is the machine’s health 
condition. 

4) PTM detects and locates faults by tracking changes in 
the numerical values of the tuned parameters. Larger 
changes implies a more severe fault(s). 

5) HAM compares the machine’s signals y(t) to a 
baseline signal yi(t) that exemplifies machine health, 
and assesses machine condition by calculating the 
machine channel capacity C, and the percent change 
from baseline channel capacity.  

6) PM with the history of the model’s parameters from 
past tunings, solves the differential equations 
governing parameter change, and predicts future 
parameter values.  
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7)  DFLM simulates the model of the “future” machine 
with inputs same as past service loads on the real 
machine, and outputs “simulated sensor” states to 
predict future machine operation. 

8)  HAM compares the “future” machine signals y(t) to 
the baseline signal yi(t), and calculates the channel 
capacity of the future machine to assess future 
machine condition.  

3. MOTOR PUMP APPLICATION  

The techniques discussed in section 2 will be demonstrated 
on a centrifugal pump driven by an induction motor, Fig. 4. 
Faults introduced include extra resistance in the motor’s 
stator circuit and blockage in the pipe following the pump. 

 

3.1. Motor Pump Model 

Within the DFLM module in Fig. 1, in the block labeled 
“model” is a bond graph model of the dynamics of a squirrel 
cage induction motor driving a centrifugal pump. From the 
bond graph, differential equations governing motor-pump 
operation  were extracted and presented in Bryant & Choi 
(2012). The model has parameters with nominal values 
listed in Table 2. 

In Fig. 4, a 3-phase, 2 hp, 3600 rpm squirrel cage induction 
motor (1) drives a centrifugal pump (2) (19 m max. head). 
Measured are 3 phases of input voltage (10), 3 phases of 
currents (11) via Hall effect sensors, motor rotational speed 
(3), flow rate at the outlet pipe (6), and pressures at inlet (5) 
and outlet (4) of the pump via pressure transducers.  

For the stator circuit fault, Fig. 5 shows the change of 
measured 3 phase currents (a, b, c), from healthy to 
degraded. The (b) and (c) subfigures in Fig. 5 connected 2.5 
Ω and 4.5 Ω  in series to the a phase stator coil. As the 
resistance fault increases, the time to steady state increases, 
and magnitudes of ia reduce. Higher resistance 

1. Induction motor
2. Centrifugal pump
3. Encoder
4. Pressure transducer
5. Pressure transducer
6. Flowsensor
7. Discharge valve
8. Suction valve
9. Tank (250 gallon water)

10. Voltage dividers
11. Hall effect current sensors
12. F-V converter
13. F-V converter
14. 3-phase input voltages
15. Data acquisition board
16. Inlet pipe (Length: 3m, Dia.: 2")
17. Outlet pipe (Length: 5m, Dia.: 1.5")

13

10 12

11

9

14

15

16

7

4

5

2

3

1

8

17

6

 
 

Figure 4. Motor-pump system test setup. 
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Figure 5. Currents in (a) healthy motor, and with extra 
resistance (b) 2.5 Ω and (c) 4.5 Ω  in phase a of stator. 

Table 2 Parameters of  motor-pump, with nominal 
(healthy system) values. 

1.0281

Healthy
value

366.7
0.8663
0.1033
0.1377
0.1162
0.0034

3.6e11
7.0e9
1.6e15
2.3e11
1.0e10

Rs

Parameters

Rsm
Rr1,...,Rr34

Ls
Lr
Lm
Rbr

Rimp
Rvolute
Rleak
Rout
Rin

Stator coil resistances (Ω)

Description

Stator magnetic losses (1/Ω)
Rotor bar resistance (Ω)
Stator inductances (H)
Rotor inductances (H)
Mutual inductances (H)
Mechanical friction (N-s/m)

Loss in impeller (kg/m7)
Loss in volute (kg/m7)
Leakage loss (kg/m7)
Loss in outlet pipe (kg/m7)
Loss in inlet pipe (kg/m7)

1.1e-5Rdisk Mechanical friction (N-s/m)

0.003802
8.6e7
2.5e6
111
1

0.025
0.05

0.01
15
30

J
Iimp
Iout
ns
nr
ri1
ri2

Bi2
β1
β2

Moment of inertia (N-m2)
Liquid inertia in impeller (kg/m5)
Liquid inertia in outlet pipe (kg/m5)
Number stator coil turns
Number rotor coil turns
Impeller inner radius (m)
Impeller outer radius (m)

Axial width at impeller outlet  (m)
Blade angle at impeller inlet (°)
Blade angle at impeller outlet (°)

0.01Bi1 Axial width at impeller inlet (m)
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simultaneously affected measured current, rotational 
velocity, and pressure, Figs. 6 and 7.  
 
Table 3 assesses sensitivity of measured states to changes in 
selected parameters, as substitute for an observability 
assessment of the sensor system. After each parameter in 
table 2 was individually perturbed 1% of nominal value, a 
simulation was performed to observe changes in system 
response. The number of ‘+’ symbols in any row in table 3 
indicates the influence of each parameter’s change. 
Measured currents, rotational velocities, and pressures are 
sensitive to changes in stator coil resistances (Rsa, Rsb, Rsc) 
or motor inductances (Ls, Lr, Lm), even though the origin of 
the fault is the stator resistance Rsa. First, the motor-pump 
model was tuned by adjusting stator coil resistances only, 
and tuned a second time by adjusting motor inductances 
only. The error function for tuning was the sum of the 
square of differences between measured and simulated 

rotational velocity. Currents and pressures were not 
considered in the error function. Simulations of healthy 
(Table 2) and degraded machines (Table 4 presented in Figs. 
6, 7, and 8) nearly overlay experiments. Although Figures 7 
and 8 tuned parameters so that rotational velocity 
simulations overlaid measurements, as a by-product, current 
and pressure simulations also overlaid their respective 
measurements. 
 

Simulations with parameters tuned by stator coil resistances 
and by motor inductances gave similar rotational velocities 
(Fig. 6) and pressures (Fig. 7). However, the magnified 
details shown in the bubbles in Fig. 6 of rotational velocities 
at steady state suggests that simulations from tuning by 
stator coil resistances more closely fits measurements, than 
tuning by motor inductances, for the resistance fault. Since 
the induction motor model represents a symmetrical electric 
machine, each of Rsa, Rsb, and Rsc with the tuned values can 
in turn produce the rotational velocities in Fig. 6. The 
magnitude of currents ia in Fig. 5 reduce most as the value 
of connected resistor Rsa increases. Other currents (ib and ic 
in Fig. 5) change only little.  Thus Rsa has to be the largest 
among the tuned resistances. Fig. 8 compares simulated to 
measured current ia (Fig. 5), after assigning the largest value 

Table 3 Sensitivity of system states to 1% change in 
parameters. 
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Table 4 Parameter tuning data. 

Subscripts a, b, c, α , and β denote magnetic axes. 

1.0281
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value

0.1033

0.1377

0.1162

2.5 (Ω) 4.5 (Ω)
Rsa (Ω)

Parameters

Rsb (Ω)
Rsc (Ω)
Lsα (H)
Lsβ (H)
Lrα (H)
Lrβ (H)
Lmα (H)
Lmβ (H)

Connected resistor

Tuning by
resistances

Tuning by
inductances

2.0525
1.0959
0.5296
0.1037

5.0668
1.3719

0.1031
0.1382
0.1379
0.1152

1.3931
0.1041
0.1037
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0.11480.1154
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Figure 6 Measured (dotted lines) and tuned (solid lines) 
rotational velocity by stator coil resistances (upper) and 

by motor inductances (bottom). 
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of tuned stator coil resistance to Rsa. 

 
Fluid loss, Rout in the centrifugal pump model models pipe 
line losses such as friction loss, expansion loss, contraction 
loss, valve loss, etc. The butterfly valve (7) of Fig. 4 in the 
middle of the outlet pipe was closed in 10° increments to 
mimic increasing resistance. The valve can be adjusted from 
fully open 0° to fully closed 90°. Closing the valve from 0° 
to 40° had little effect on measured currents and rotational 
velocity, but pressure signals increased significantly. From 
Table 3, Rout was selected as the parameter for tuning, since 
it increases outlet pressure significantly, with little effect on 
currents and rotational velocity. Rimp was deselected, since 
increasing Rimp decreases outlet pressure. Figure 9 shows the 
measured pressure as valve angle changed from 0° to 40°, 
and the simulated pressure obtained by adjusting Rout from 

2.3x1011, to 2.4 x10111, 2.7 x1011, 3.1 x1011, and 3.3 x1011 
(kg/m7). Changing Rout had negligible effect on current and 
rotational velocity, as implied by Table 3. 
 
The channel capacity C for measured outputs of stator phase 
current ia and motor speed ω were calculated via Eq. (1) and 
presented versus resistance in stator phase a in Fig. 10. 
Values were normalized by maximum values, so the largest 
C value is one. As the fault worsens and system 
performance degrades as shown in Figs. 5 and 6, the 
channel capacity monotonically diminishes, similar to that 
of Table 1. 

4. CONCLUSION 

A model-based diagnostic system was presented, with 
application to a motor-pump. Physics models of high detail 
and fidelity permitted simulations to match experiments 
with marginal error. Parameter tuning selected values of 
parameters such that simulations overlaid measurements. 
Contained in the tuned values of parameters is the machine 
health condition. The channel capacity health metric 
assessed fault severity. For signals over channels through a 
machine that possess observability of the fault(s) in 
question, this article shows that models and parameter 
tuning can locate and isolate faults. For signals observable 
to a given fault, channel capacity monotonically diminished 
with severity of the fault. 
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ABSTRACT 

Planetary gearboxes a re widely used in the dri vetrain of 
helicopters and wind turbines.  A ny planetary gearbox 
failure could lead to breakdown of the whole drivetrain and 
major loss of helicopters and wind turbines. Therefore, 
planetary gearbox fault diagnosis is an important topic in 
prognostics and health management (PHM). Planetary 
gearbox fault diagnosis has been done mostly through 
vibration analysis over the past years.  Vibration signals 
theoretically have t he amplitude modulation effect caused 
by time variant vibration transfer paths due to the rotation of 
planet carrier and s un gear, and therefore their s pectral 
structure is com plex.  It is difficult to diagnose planetary 
gearbox faults via vibration analysis.  Strain sensor signals 
on the other hand have less amplitude modulation effect.  
Thus, it is potentially easy an d effective to diagnose 
planetary gearbox faults via stain sensor signal analysis.  In 
this paper, a research investigation on pl anetary gearbox 
fault diagnosis via strain sensor signal analysis is reported. 
The investigation involves using time synchronous average 
technique to process  signals acquired from a si ngle 
piezoelectric strain sensor mounted on the housing of a 
planetary gearbox a nd extracting condition indicators for 
fault diagnosis. The reported investigation includes analysis 
results on a set of seeded fault tests perfo rmed on a 
planetary gearbox test rig in a laboratory. The results have 
showed a sati sfactory planetary gearbox fault diagnostic 
performance using strain sensor signal analysis. 

1. INTRODUCTION 

Gearboxes are widely used in almost every powertrain of 
rotating systems such as automobile, helicopter, wind 
turbine, and etc. Acc ording to Link et al. (2011), 
approximately 59% of the failure modes in wind turbines 
involved gear failures. Astridge et al. (1989) indicated that 
19.1% of all the helicopter transmission failures came from 
the gear failure. Gearbox failures are normally accompanied 
by unexpected increment in operation cost and catastrophic 
disaster followed by loss of life. Especially, the planeta ry 
gearbox (PGB) is one of the most critical com ponents in 
generating uplift force in a helicopter transmission system 
and converting wind power to electrical power in a wind 
turbine drive train system. However, the fault detection of 
planetary gearbox is very complicate since the c omplex 
nature of dynamic rolling structure of p lanetary gearbox 
does not allow for direct attachment of sensors within the 
rotating elements. A large portion of planetary gearbox 
diagnostic system has been devoted to vibration analysis 
using accelerometers. A vibration analysis technique namely 
“vibration separation” was introduced by McFadden & 
Howard (1990), Howard (1990), and McFadden (1991). 
Vibration separation enables to decompose a raw v ibration 
signal into multiple PGB c omponent (e.g. sun, planet, or 
ring) oriented vibration signals by taking windowed 
vibration signals only when the vibration sensor, ring gear, 
planet gear, and sun gear are aligned inline. The windowed 
vibration signals are recombined specifically for the targeted 
gear component by utilizing the geometric properties of 
corresponding PGB. Subsequent studies by McFadden 
(1994), Samuel et al. (2004), and Lewicki et al. (2011) 
validated this research with slightly modified versions of the 

Jae Yoon et al. This is an open-access article distributed under the terms
of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited. 
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technique. However, the fundamental idea of vibration 
separation remains unchanged. Wu et al. (2004) have shown 
the detectability of planet carrier crack in a planetary 
gearbox. In their study, raw vibration data and time 
synchronous average (TSA) data were transferred to 
frequency domain and wavelet domain to obtain 
differentiable features. In a paper by Patrick et al. (2007), a 
vibration data based framework for on-board fault diagnosis 
and failure prognosis of helicopter transmission component 
was presented. In their study, TSA pre-processed vibration 
data and particle filter b ased diagnostic and prognostic 
models were presented. Yu et al. (2010) compared a raw 
vibration signal and TSA signal with a wavelet transformed 
vibration signal to obtain desirable fault feature. Bartelmus 
& Zimroz (2009) showed that the spectral characteristics of 
vibration signal obtained from planetary gear help not only 
fault detection but also g ear fault location. Feng & Zuo 
(2012) derived mathematical models of faulty planetary gear 
for detecting and locating fault by considering characteristic 
frequency of am plitude modulation (AM) and frequency 
modulation (FM) effects.  

In a recent paper, Feng & Zuo (2013) pointed out that 
vibration signals theoretically have the amplitude 
modulation effect caused by time variant vibration transfer 
paths due to the unique dynamic structure of rotating planet 
gears.  Therefore, it is difficult to diagnose PGB faults via 
vibration analysis.  One attractive solution to this problem is 
to use alternative sensor signals that have less sensitivity to 
AM effect for PGB fault diagnosis and prognosis.  Feng & 
Zuo (2013) have shown the effectiveness of t orsional 
vibration analysis for PGB fault diagnosis using a torq ue 
sensor. The frequency characteristics of torsional vibration 
were shown to be solely sensitive to the AM and FM effects 
caused by gear faults under constant torque on input and 
output shafts.  Kiddy et al. (2011) used fiber optic strain 
signals for PGB fault diagnosis and showed a close 
relationship between strain measurement and torque 
changes. Even though promising, the research reported in 
the literature on using less AM effect sen sitive signals for 
PGB fault diagnosis has certain limitations.  The torque 
sensors used by Feng and Zu o (2013) are more expensive 
than vibration and str ain sensors and require special 
installation.  The fiber optic strain sen sor array used by 
Kiddy et al. (2011) had to be embedded in the PGB in order 
to be effective.  The strain signals of fiber optic strain sensor 
can only be sampled at a maximum sampling rate up to 1 
kHz, which limits i ts coverage on shaft speed above 2060 
rpm.  Also in Kiddy et al. (2011), the strain signals were 
analyzed the same way as vibration signals. Fiber optic 
sensor signals were analyzed using vibration separation 
technique after low frequency components were filtered out.  
No effective signal analysis techniques have been developed 
for strain signals. Piezoelectric (PE) strain sensor is 
desirable in having an improved strain resolution and 
applicability of higher sampling rate in comparison with the 

conventional strain gauge sensors (Banaszak 2001) or the 
fiber optic strain sensors (Jiang et al. 2014). 

To overcome the above mentioned challenges in developing 
effective PGB fau lt diagnosis capability, a research 
investigation on planetary gearbox fault diagnosis via strain 
sensor signal analysis has been conducted and is reported in 
this paper.  The PE st rain sensors based planetary gearbox 
fault diagnosis method can be considered as a n attractive 
alternative to traditional vibration analysis based approaches. 
A key characteristic of PE materials is the utilization of the 
direct piezoelectric effect t o sense structural deform ation 
and the converse piezoelectric effect to ac tuate structures. 
Compared to the conventional strain gauge sensors and 
accelerometers, the PE strain sensors have certain 
advantages that could be summarized as follows: (1) ability 
to measure the first derivative of physical deformation with 
less sensitive AM and FM effect , (2) high linearity and 
sensitivity from their superior noise immunity as compared 
to differentiated sensing performance of conventional strain 
sensors (Lee & O’Sullivan, 1991, Banaszak 2001), (3) high 
frequency range ( Jiang et al. 2014), (4) space-efficiency 
without a structural change on the measuring target (Kon et 
al. 2007), and (5) negligible high temperature effect on the 
measurement output (Sirohi & C hopra, 2000, Jiang et al. 
2014). The aforementioned benefits allow for PE strain 
sensors to potentially have great er sensing resolution and 
accuracy. 

The remainder of the paper is organized as follows. Section 
2 gives a detailed explanation of the proposed methodology. 
In Section 3, th e details of th e seeded fault tests on a 
laboratory planetary gearbox test rig and the experimental 
setup used to validate the pr oposed methodology are 
provided. Section 4 p resents the planetary gearbox fault 
diagnosis results from the seeded fault tests. Finally, Section 
5 concludes the paper. 

2. METHODOLOGY 

An overview of the proposed methodology is provided in 
Figure 1. First, the PE strain sensor signals and tachometer 
signals are digitized simultaneously. Then, a band pass filter 
is applied so that the band passed signals could contain the 
information related to th e planetary gearbox conditions. 
Using the tachometer signals, the TSA signals can be 
obtained along with residual signal and energy operator 
(EO). Residual signal is the TSA signal with shaft and mesh 
frequencies being removed and EO is a type of residual of 
the autocorrelation function (Teager, 1992).  

In a related research on rotating machinery diagnostics, it 
has been shown that a deliberately chosen band pass filter 
improves diagnostic performance by removing shaft 
imbalance (Shiroishi et al., 1997).  Thus, a band pass filter 
with low frequency bandwidth (i.e., low pass filter) was 
applied to get the information associated with the gearbox 
condition while high frequency noises could be removed.  
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The major components of the methodology are explained in 
the following two sections. Section 2.1 provides a brief 
review of TSA and the computation of condition indicators 
(CIs) used for planetary gearbox fault diagnosis is explained 
in Section 2.2.  

 

 
 

Figure 1. Overview of the methodology. 

2.1. Time Synchronous Average 

TSA is one of the most widely utilized signal processing 
techniques to extract  a periodic waveform from noisy 
signals of rotating machines. The underlying idea of TSA is 
to obtain a periodically repeated waveform of interest over 
N number of revolutions. Theoretically, when a rotating 
machine is running at a constant speed, the periodic 
waveform is in tensified while any noises are suppressed 
with a noise reduction rate of	 ଵ

√ே
. 

Consider a si gnal ݔሺݐሻ composed of a periodic signal ݕሺݐሻ 
with known period ோܶ and additive noise	݁ሺݐሻ: 

ሻݐሺݔ  ൌ ሻݐሺݕ  ݁ሺݐሻ (1)

Assuming the total number of ܰ observed periods, the TSA 
of ݔሺݐሻ can be expressed as: 

 ܽሺݐሻ ൌ
1
ܰ
 ݐሺݔ െ ݎ ோܶሻ

ேିଵ

ୀ

 (2)

As ܰ → ∞, the TSA signal ܽሺݐሻ approaches to ݕሺݐሻ. More 
details about TSA c ould be f ound in (Braun, 1975; 
McFadden, 1987; Bechhoefer and Kingsley, 2009). 

Basically, TSA chops up the raw sensor signal into multiple 
single revolution signals. Then, each revolution signals are 
resampled (via stretching or shrinking) so as to have same 
sample points in on e revolution. Then, the final periodic 
signal is obtained by averaging the resampled signals. After 
TSA is co mputed, any kind of fau lt detection condition 
indicators can be evaluated.  T wo major types of TSA 
techniques have been reported in the literature: TSA with 

tachometer as a reference signal and tachometer-less TSA. 
Since comparing those two techniques is beyond the scope 
of this paper, only the TSA with tachometer will be 
addressed herein. Even though successful TSA applications 
to many types of signals such as vibration and acoustic 
emission (AE) signals have been reported in the literature 
(Mcfadden, 1987; Bonnardot et al., 2005; and Qu et al., 
2014), application of TSA to PE strain signal processing for 
planetary gear fault diagnosis has not yet been reported.  

2.2. CIs for Planetary Gearbox Fault Diagnosis 

Table 1 provides the definitions of the CIs investigated for 
PGB fault diagnosis.  The CIs can be d efined into five 
general types: root mean square (RMS), peak to peak (P2P), 
skewness (SK), kurtosis (KT), and c rest factor (CF).  Each 
type of CI can be computed using different input signals.  In 
addition to TSA signals, other types of input signals can be 
generated: residual, narrow band (NB), AM, and FM.  
Residual is a TSA signal with the primary meshing and 
shaft components removed. The e nergy operator (EO) 
introduced by Teager (1992) is defined as the residual of the 
autocorrelation function as following: 

ாை,ݔ  ൌ ݔ
ଶ െ ିଵݔ ⋅  ,ାଵݔ

(for ݅ ൌ 2, 3, … , ܰ െ 1) 
(3)

where ݔாை, is the ith element of EO data; ݔ is the ith element 
of the input data ூேݔ	 . NB signals could be obt ained by 
applying a narrow band pass filter on th e TSA data. The 
width of the narrow band can be selected based on the gear 
fault frequency.  In this paper, three narrow bands are 
selected based on sun gear fault frequency, planet gear fault 
frequency, and ring gear fault fre quency, respectively.  
Finally, AM and FM signals are ob tained by amplitude 
modulation and phase modulation of the narrow band 
filtered data. 

3. EXPERIMENTAL SETUP 

This section covers the experimental setup used to validate 
the PE st rain sensor based planetary gearbox fa ult 
diagnostic technique. Figure 2 di splays the planetary 
gearbox test ri g used to co llect the PE strain  sensor data 
under different gear health and operating conditions. 

3.1. The Planetary Gearbox Test Rig 

The planetary gearbox test rig composes four main parts: (1) 
the data acquisition (DAQ) system, (2) the driving motor, (3) 
the gearbox, (4) the load generator. The DAQ system  
includes a National Instruments’ DAQ board with a 
maximum analog input sampling rate of 1.25 MHz, a PE 
strain sensor, and a si gnal conditioner from PCB 
Piezotronics. The dri ving motor is a 3-phase 10HP 
induction motor with a motor controller.  A Hal l effect 
sensor was used as the tachometer paired with a toothed 
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Table 1. The definitions of the CIs. 
Input Signal ሺݔூேሻ 

TSA Residual EO NB AM FM 

CI 

      Description 
 
 
Equation 

Time 
synchronous 

averaged 
signal 
ሺ்ݔௌሻ 

TSA signal 
with the 
primary 

meshing and 
shaft 

components 
removed 
ሺݔோ௦ሻ 

Energy 
operator: a 

residual of the 
autocorrelation 

function 
ሺݔாைሻ 

Narrow 
band pass 

filtered 
ሺݔேሻ 

Amplitude 
modulation 

of NB 
filtered 
signal 

ሺܯܣሺݔேሻሻ

Frequency 
modulation 

of NB 
filtered 
signal 

ሺܯܨሺݔேሻሻ

Root 
mean 
square 
(RMS) 

ூேሻݔሺܵܯܴ ൌ ඩ
1
ܰ
ݔ

ଶ

ே

ୀଵ

 .ூேሻ: measures the magnitude of a discretized signalݔሺܵܯܴ 

Peak to 
peak 
(P2P) 

ܲ2ܲሺݔூேሻ

ൌ
ሺmax
ଵஸஸே

ሺݔሻ െ min
ଵஸஸே

ሺݔሻሻ

2
 

ܲ2ܲሺݔூேሻ: measures the maximum difference within the data range. 

Skewness 
(SK) 

ூேሻݔሺܭܵ

ൌ

1
ܰ∑ ሺݔ െ ሻேݔ̅

ୀଵ
ଷ

ቈට
1
ܰ∑ ሺݔ െ ሻேݔ̅

ୀଵ
ଶ

ଷ 

 ூேሻ: measures the asymmetry of the data about its mean value. A negative SKݔሺܭܵ
value and positive SK value imply the data has a longer or fatter left tail and the data 

has a longer or fatter right tail, respectively. 

Kurtosis 
(KT) 

ூேሻݔሺܶܭ

ൌ
ܰ∑ ሺݔ െ ሻேݔ̅

ୀଵ
ସ

ൣ∑ ሺݔ െ ሻேݔ̅
ୀଵ

ଶ
൧
ଶ 

.ூேሻ: measures the peakedness, smoothness, and the heaviness of tail in a data setݔሺܶܭ

Crest 
factor 
(CF) 

ூேሻݔሺܨܥ ൌ
ܲ2ܲሺݔூேሻ
ூேሻݔሺܵܯܴ

 
 ூேሻ to describe howݔሺܵܯܴ ூேሻ andݔூேሻ: measures the ratio between ܲ2ܲሺݔሺܨܥ

extreme the peaks are in a waveform. 

Note: ݔ is ith element of the input data	ݔூே; ܰ is the length of the input data	ݔூே; max	ሺ⋅ሻ returns the maximal element of input data	ݔூே; 
min	ሺ⋅ሻ returns the min imal element of input data	ݔூே; ̅ݔ is a mean value of the input data	ݔூே defined as ∑ ݔ

ே
ୀଵ /ܰ; NB, AM, and FM  

refers to a narrow band, amplitude modulation, and frequency modulation, respectively. 
 

 
Figure 2.  The planetary gearbox test rig for wind turbine 

simulator. 

 

wheel mounted on the motor shaft. The output shaft of the 
gearbox is connected to a generator and a grid tie to serve as 
a load generator. The structure of the PGB test rig is similar 
to those used in a wind turbine. In th is study, a 
commercially available single stage planetary gearbox with 
a 5:1 speed reduction ratio was used. In Figure 3, a notional 
sketch of the planetary gearbox structure is p rovided. 
Amongst the three different planetary gearbox types, a 
specific planetary gearbox with standstill ring gear was used 
in this paper. For this type PGB, the number of teeth is 
linear to the radius of each gears pitch circle. This indicates 
that the gear ratio is also related to the angular velocity (߱ሻ 
of the gears. The gear ratio can be defined as:  

 
ܴ ൌ

߱ଵ

߱

ൌ 1 
ଷݖ
ଵݖ

 (4)
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where ߱୧ is the angular velocity of the ݅୲୦ gear component; 
 ୧ is the number of teeth on the ݅୲୦ gear component; the gearݖ
component index subscripts 1, 2, 3, and A correspond to sun 
gear, planet gear, ring gear, and arm  (i.e. planet ca rrier), 
respectively. The pla net carrier rotation s peed (i.e. output 
shaft speed) in frequency could be obtained as: 

 ݂ ൌ
ଵ݂

ܴ
 (5)

where ݂  is the rotation speed in frequency at th e ݅୲୦  gear 
component. Also, a meshing characteristic frequency of 
planetary gearbox can be obtained as: 

 ଵ݂ଶ ൌ ଶ݂ଷ ൌ
ଵ݂ݖଵݖଷ

ሺݖଵ  ଷሻݖ
ൌ ଵ݂ ⋅ ଷݖ

ܴ
 (6)

where ݂ is the relative rotation speed in frequency between 
the ݅୲୦ and ݆୲୦ gear component. 

 
Figure 3. Notional sketch of the planet gearbox structure. 

 

The most common three failure modes of a planetary 
gearbox are: sun gear fault, planet gear fault, and ring gear 
fault. Their corresponding fault frequencies are represented 
as follows: 

 ݂,ଵ ൌ ݏ ⋅ ሺ ଵ݂ െ ݂ሻ ൌ
ଵ݂ݖଷݏ

ሺݖଵ  ଷሻݖ
 (7)

 ݂,ଶ ൌ 2ሺ ଶ݂  ݂ሻ ൌ
4݊ଵݖଵݖଷ
ሺݖଷ

ଶ െ ଵݖ
ଶሻ

 (8)

 ݂,ଷ ൌ ݏ ⋅ ݂ ൌ
ଵ݂ݖଵݏ

ሺݖଵ  ଷሻݖ
 (9)

where ݂,  represents the fault frequency at the ݅୲୦  gear 
component; ݏ represents the number of planet gears in the 
gearbox. For more details, see (Bartelmus and Zimroz, 
2011). Tables 2 and 3 present the structural information and 
characteristic frequencies of th e planetary gearbox used in 
this study. 

Table 2. The parameters of the planetary gearbox 

Parameter

Number 
of teeth 
on sun 

gear (ݖଵ)

Number 
of teeth 

on planet 
gear (ݖଶ) 

Number 
of teeth 
on ring 

gear (ݖଷ)

Number 
of planet 

gears 
 (ݏ)

Value 27 41 108 3 

 

Table 3. Characteristic frequencies of the planetary gearbox 
at varied input shaft speed. 

Input 
shaft 
speed 
( ଵ݂) 

Output 
shaft 
speed 
( ݂) 

Meshing 
frequency 

( ଵ݂ଶ ൌ
ଶ݂ଷ) 

Sun gear 
fault 

frequency 
( ݂,ଵ) 

Planet 
gear fault 
frequency 

( ݂,ଶ) 

Ring gear 
fault 

frequency 
( ݂,ଷ) 

10 2 216 24 10.67 6 

20 4 432 48 21.33 12 

30 6 648 72 32 18 

40 8 864 96 42.67 24 

50 10 1080 120 53.33 30 

* All the values are in unit of Hz.

3.2. Seed Gear Faults 

Three types of planetary gea rbox faults were created: s un 
gear tooth fault, planet gear tooth fault, and ring gear tooth 
fault.  Each type of the gear fault was created by artificially 
damaging a tooth on a sun gear, planetary gear, and rig gear, 
respectively (see Figure 4). 

During the s eeded fault tests, PE strain signals were 
collected with a sampling rate of 100 kHz.  The tachometer 
signals were simultaneously recorded along with the PE 
strain signals to get revolution stamps. Both the healthy 
gearbox and the gearboxes with seeded faults were tested at 
5 different input shaft speeds: 10 Hz, 20 Hz, 30 Hz, 40 Hz, 
and 50 Hz. At  each speed, five samples were collected. In 
addition to th e shaft speed variation, varying loading 
conditions were applied at the ou tput shaft of the gearbox: 
0%, 25%, 50%, and 75% of the maximum torque of the 
planetary gearbox. At each loading condition, 25 samples 
(five samples per s haft speed for 5 speeds) were taken. In 
addition, the PE strain s ensors were mounted at the sa me 
location of the gearbox for each data collection. 
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Figure 4. Seeded faults: (a) sun gear fault, (b) planet gear 

fault, (c) ring gear fault. 

4. RESULTS 

The validation results for the seeded fault tests conducted on 
the planetary gearbox test rig are provided in this section. 
Figure 5 shows a sample of the PE strain sensor signal and 
tachometer signal at 10Hz shaft speed for a duration of 0.3 
seconds. Since the toothe d wheel ass ociated with t he 
tachometer in the test rig ha s eight teeth, each input s haft 
revolution results in 8 zero crossings. 

Before the TSA was computed, a b and pass filter w ith a 
bandwidth of 1 Hz to 18 kHz was applied to the signals.  

 
Figure 5. Sample of the healthy PE strain sensor signal and 

tachometer signal at 10Hz shaft speed. 
 

Samples of the TSA signals  of t he PE st rain sensor are 
provided in Figures 6 through 8. Fi gure 6 sho ws the TSA 
samples of the healthy gearbox with 50% loading at 

different shaft speeds. Figure 7 shows T SA samples with a 
shaft speed of 30Hz at different loading conditions. In 
Figure 8, TSA samples for different gearbox health 
conditions with shaft speed fixed at 30 Hz and loading at 50% 
are provided. 

 
Figure 6.  Samples of PE strain sensor signals of the healthy 
gearbox at different shaft speeds: (a) 10 Hz, (b) 20 Hz, (c) 

30 Hz, (d) 40 Hz, (e) 50 Hz. 
 

Once the TSA signals were obtained, then all of t he CIs 
described in Section 2.4 were computed. Among the 
computed CIs, four of them were found effective: TSA 
RMS, TSA P2P, residual RMS, and residual P2P.  

Figure 9 shows the TSA RMS pl ots for different gearbox 
health conditions at different shaft speeds and loading 
conditions. As one can see from Figure 9, by using TSA 
RMS alone, the three gear faults can be clearly separated.  
As the l oading increases, the separation of the gear faults 
gets better.  Also , by using TSA RMS al one, all th e three 
gear faults can be clearly separated from the healthy 
condition.  The detectability of the gear faults gets better as 
the loading increases.  For all the 4 gearbox conditions, 
noted from Figure 9, th e TSA RMS remains relatively 
stationary within the same loading condition regardless the 
change of the shaft speed.  This shows that the PGB gear 
fault diagnostic capability of the TSA RMS is h eavily 
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affected by the torque level of the gearbox.  The vertical bar 
for each data poi nt shown in Figure 9 represents a 95% 
confidence interval of the estimated TSA RMS m ean. In 
order to ch eck the statistical significance of the gear fault 
separation using TSA RMS, analysis of variance (ANOVA) 
test was conducted using the TSA RMS data. In this test, it 
was assumed that the sha ft speed has no effect on TSA 
RMS within a loading condition.  

 
Figure 7.  Samples of the PE strain sensor signals at 

different loading conditions: (a) 0%, (b) 25%, (c) 50%, (d) 
75%. 

 

 
Figure 8.  Samples of the PE strain sensor signals of 

different gearbox conditions: (a) healthy gearbox, (b) sun 
gear fault, (c) planet gear fault, (d) ring gear fault. 

 

 
Figure 9. TSA RMS plots . 

 

The following hypotheses were e stablished based on 
aforementioned assumptions: 

H: ଵߤ ൌ ଶߤ ൌ ଷߤ ൌ  ସߤ

Hଵ: at least	one	ߤ ് 		ߤ
ሺfor ݅, ݆ ൌ 1,2,3, and	4; 	݅ ് ݆ሻ 

(10)

where ߤ is mean TSA RMS of the ݅୲୦ gear health condition 
at a fix ed loading condition, i = 1, 2, 3, and 4 rep resents 
healthy gearbox, sun gear fault, planet gear fault, and ring 
gear fault, respectively. Table 4 shows the summ ary of 
ANOVA results with a 99% confidence level. 

From Table 4, P-values for all loading conditions are 0.000. 
With a 99% confidence level, the null hypotheses should be 
rejected (α ൌ 0.01  0ሻ. Therefore, it is safe to  say that the 
separation of all the gear faults tested using TSA RMS is 
statistically significant at all loading conditions. 

Table 4. Summary of ANOVA results for TSA RMS. 
 
Loading Source DF SS MS F P 

0% 

Factor 3 0.0334141 0.0111380 1605.12 0.000

Error 96 0.0006662 0.0000069   

Total 99 0.0340802    

25% 

Factor 3 0.1481272 0.0493757 8261.04 0.000

Error 96 0.0005738 0.0000060   

Total 99 0.1487010    

50% 

Factor 3 0.4641124 0.1547041 10614.42 0.000

Error 96 0.0013992 0.0000146   

Total 99 0.4655116    

75% 

Factor 3 0.845794 0.281931 781.55 0.000

Error 96 0.034630 0.000361   

Total 99 0.880424    
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The results for other three CIs: TSA P2P, residual RMS, and 
residual P2P are presented in the same way as TSA RMS in 
the following.  The resulting plots of the CIs are provided in 
Figures 10 to 12 and the ANOVA results in Tables 5 to 7, 
respectively.  

Similar results like TSA RMS can be observed for other two 
CIs: TSA P2P and residual RMS.  However, the diagnostic 
performance of these two CIs at 0% loading condition is not 
as good as TSA RMS. A clear diagnosis of the gear faults 
can be observed at 25%, 50%, and 75% loading conditions. 
When the loading level reaches 25% or above, TSA P2P and 
residual RMS can be ranked like TSA RMS as the following 
order: ring gear fault -> planet gear fault -> sun gear fault -> 
healthy gear. For residual P2P, a clear diagnosis of the gear 
faults can be observed only when the loading level reaches 
to 50% or above.  

 

 
 

Figure 10. TSA P2P plots. 
 

Table 5. Summary of ANOVA results for TSA P2P. 
 
Loading Source DF SS MS F P 

0% 

Factor 3 0.1199638 0.0399879 611.06 0.000

Error 96 0.0062822 0.0000654   

Total 99 0.1262461    

25% 

Factor 3 0.775791 0.258597 1065.47 0.000

Error 96 0.023300 0.000243   

Total 99 0.799091    

50% 

Factor 3 1.615071 0.538357 2682.91 0.000

Error 96 0.019264 0.000201   

Total 99 1.634335    

75% 

Factor 3 3.25105 1.08368 787.88 0.000

Error 96 0.13204 0.00138   

Total 99 3.38309    

 

 

 
Figure 11. Residual RMS plots. 

 
Table 6. Summary of ANOVA results for residual RMS. 

Loading Source DF SS MS F P 

0% 

Factor 3 0.0001227 0.0000409 147.50 0.000

Error 96 0.0000266 0.0000003   

Total 99 0.0001493    

25% 

Factor 3 0.0006061 0.0002020 56.46 0.000

Error 96 0.0003436 0.0000036   

Total 99 0.0009497    

50% 

Factor 3 0.0025676 0.0008559 219.08 0.000

Error 96 0.0003750 0.0000039   

Total 99 0.0029427    

75% 

Factor 3 0.0038871 0.0012957 233.04 0.000

Error 96 0.0005337 0.0000056   

Total 99 0.0044208    

 

 
Figure 12. Residual P2P plots. 
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Table 7. Summary of ANOVA results for residual P2P. 
 
Loading Source DF SS MS F P 

0% 
Factor 3 0.0019954 0.0006651 76.63 0.000
Error 96 0.0008333 0.0000087   
Total 99 0.0028287    

25% 
Factor 3 0.0087545 0.0029182 79.85 0.000
Error 96 0.0035084 0.0000365   
Total 99 0.0122630    

50% 
Factor 3 0.0323371 0.0107790 193.51 0.000
Error 96 0.0053475 0.0000557   
Total 99 0.0376846    

75% 
Factor 3 0.0557005 0.0185668 239.39 0.000
Error 96 0.0074456 0.0000776   
Total 99 0.0631462    

 

Note that in Tables 5 to 7, ev en under the low lo ading 
conditions, the null hypothesis in (1 0) is rejected.  This is 
because all the faulty CIs are significantly different from the 
healthy CIs even though the difference among the faulty CIs 
is not statistically significant.  

5. CONCLUSIONS 

In this paper, a new piezoelectric strain sensor based 
planetary gearbox fault diagnostic methodology was 
presented. The presented method was accomplished through 
a combination of band pass filtering, time syn chronous 
average, and condition indicators to extract diagnostic 
features for planetary gear box diagnosis. First, the PE strain 
sensor signal is band pass filtered so as to retai n the 
information related to the gear conditions. Then, TSA signal 
is computed to obtain the periodically repeated wa veform 
while white noise is suppressed.  The presented method was 
validated using data collected from seeded fault tests 
conducted on a planetary gearbox test rig in a lab oratory.  
The validation results have shown that, by utilizing the TSA 
based PE stra in sensor signal processing approach, fully 
separable diagnostic CIs towards all planetary gearbox fault 
types were ca ptured regardless of shaft speed and output 
shaft loading condition.  Th e current planetary gearbox 
diagnostic methods mainly rely on vibration signal analysis.  
They provide limited fault diagnosis for planetary gearboxes.  
The PE strain sensor based diagnostic technique presented 
provides an attractive alternative to the current vibration 
analysis based approach. 
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ABSTRACT

For electric vehicles, technology for monitoring, diagnosis,
and prognosis of the electrical power system (EPS) becomes
essential for safe and efficient operation. To this end, we de-
velop a general system-level integrated diagnosis and prog-
nosis framework, which detects, isolates, and identifies EPS
faults, and predicts when the EPS will fail to deliver sufficient
power. The approach takes advantage of recent work in struc-
tural model decomposition in order to distribute the global di-
agnosis and prognosis problems into local subproblems that
can be solved in parallel, thus enabling implementation on
distributed computational platforms. The framework is ap-
plied to the EPS of a planetary rover testbed, and is demon-
strated using data from field experiments.

1. INTRODUCTION

For electric vehicles, technology for monitoring, diagnosis,
and prognosis of the electrical power system (EPS) is critical.
In order to ensure safety, algorithms are needed that are able
to predict the end-of-discharge (EOD) of the batteries pow-
ering the vehicle. The EOD time depends both on the cur-
rent state of the batteries, including state-of-charge (SOC),
and the future power requirements of the batteries. The fu-
ture power requirements for the batteries depend both on the
power required for future vehicle maneuvers and on any fault
present in the system, which may cause increases in power
demands. Therefore, both diagnosis (determining the current
system state and faults) and prognosis (predicting the EOD of
the system) are required.

Matthew Daigle et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

A large body of research exists for both model-based diagno-
sis (Gertler, 1998; Blanke et al., 2006) and prognosis meth-
ods (Luo et al., 2008; Saha & Goebel, 2009; Orchard &
Vachtsevanos, 2009), however, most of the approaches in the
literature focus in either solely the diagnosis or the progno-
sis task. A few works have proposed the integration of both
tasks within a common framework (Patrick et al., 2007; Or-
chard & Vachtsevanos, 2009; Roychoudhury & Daigle, 2011;
Zabi et al., 2013), however, unlike our approach, these ap-
proaches perform the diagnosis and prognosis tasks in a cen-
tralized way, thus suffering from scalability issues due to the
large number of states and parameters in real-world systems.
Moreover, most solutions do not approach the system-level
problem. To the best of our knowledge, there is no approach
in the literature which combines, in a distributed fashion, the
system-level diagnosis and prognosis tasks.

In previous work, we have developed an integrated model-
based diagnosis and prognosis framework (Roychoudhury
& Daigle, 2011). The main contribution of this work was
a unified modeling framework. In an extension of this
work, we used structural model decomposition to develop
a distributed integrated diagnosis and prognosis framework
(Bregon, Daigle, & Roychoudhury, 2012), based on other
work in distributed diagnosis (Bregon et al., 2014) and dis-
tributed prognosis (Daigle, Bregon, & Roychoudhury, 2012,
2014). Through structural model decomposition, a global
model is transformed into a set of local submodels. For
model-based diagnosis and prognosis, this results in the
global diagnosis and prognosis problems being transformed
into local diagnosis and prognosis subproblems. These sub-
problems can be solved independently by assigning them to
different processing units, thus enabling a scalable and com-
putationally efficient distributed diagnosis and prognosis so-
lution.
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In this paper, we apply these frameworks and ideas to the
EPS of a planetary rover testbed at NASA Ames Research
Center (Balaban et al., 2013). The applied architecture con-
stitutes a new framework for integrated system-level diag-
nosis and prognosis. For the rover, we are interested in a
system-level prediction, that is, when the EPS can no longer
supply sufficient power to the loads. The rover is powered
by several batteries, and this condition is a function of the
state of all the batteries. Hence, component-level prognos-
tics algorithms cannot be used, and a system-level progno-
sis framework is required (Daigle, Bregon, & Roychoudhury,
2012). We utilize recent work in structural model decom-
position (Roychoudhury, Daigle, Bregon, & Pulido, 2013) to
achieve a distributed implementation of the framework. We
demonstrate the complete approach using real experimental
data from the rover operating in the field.

The paper is organized as follows. Section 2 formulates the
system-level diagnosis and prognostics problems. Section 3
describes the background on structural model decomposition,
distributed diagnosis, and distributed diagnosis. Section 4
presents the rover EPS case study. Sections 5 and 6 present
the system-level diagnosis and prognostics solutions, respec-
tively, for the rover EPS. Section 7 presents the results for
different scenarios. Finally, Section 8 concludes the paper.

2. PROBLEM FORMULATION

In this section, we formulate the integrated system-level diag-
nosis and prognosis problem. Ultimately, the goal is to pre-
dict when some event occurs in the system, such as the rover
running out of power. In order to make such a prediction,
we need to know the state of the system, including any faults
that are present, therefore, diagnosis is needed in order to per-
form prognosis. We first formulate the system-level diagnosis
problem, followed by the system-level prognosis problem.

2.1. System-Level Diagnosis

The problem of system-level diagnosis consists of three parts:
(i) detecting whether a fault is present, (ii) isolating the cor-
rect fault, and (iii) identifying the faulty system state. In each
of these parts, different models may be used. We assume that
a model M can be succinctly represented in the following
general formulation:

x(k + 1) = f(k,x(k),θ(k),u(k),v(k)), (1)
y(k) = h(k,x(k),θ(k),u(k),n(k)), (2)

where k is the discrete time variable, x(k) ∈ Rnx is the
state vector, θ(k) ∈ Rnθ is the unknown parameter vector,
u(k) ∈ Rnu is the input vector, v(k) ∈ Rnv is the process
noise vector, f is the state equation, y(k) ∈ Rny is the output
vector, n(k) ∈ Rnn is the measurement noise vector, and h is

the output equation.1 We will describe in Section 3 an equiv-
alent structural representation of a modelM that will be used
for structural model decomposition.

In the model-based paradigm, we assume that in the nomi-
nal (fault-free) case, the system behaves according to some
model Mn, and, given the inputs u(k), produces measured
outputs y(k). The problem of fault detection is to determine
when model-predicted (nominal) outputs ŷn(k) are different
from the measured outputs y(k) in a statistically significant
manner. The difference y(k) − ŷn(k) is called a residual; a
(statistically significant) nonzero residual indicates a fault.

Faults are generally represented as changes in the model (i.e.,
in parameter values and/or model structure). So, in general,
each fault f ∈ F , where F is the complete set of potential
faults, is represented as a new model,Mf . Given that a fault
is present, the problem of fault isolation is to determine which
modelMf now represents the system. The problem of fault
identification is to determine the fault parameter estimate for
the isolated fault, p(θf (k)|y(k0 :k)), where y(k0 :k) denotes
all measurements observed from the initial time k0 to the cur-
rent time k.

2.2. System-Level Prognosis

Rather than being focused on individual components, system-
level prognostics is focused on the system as a whole, and
on predictions for the system. As such, it is a more general
formulation of the prognostics problem. System-level prog-
nostics was previously defined in (Daigle, Bregon, & Roy-
choudhury, 2012). Here, we generalize the problem formu-
lation based on (Daigle & Kulkarni, 2014) and explicitly in-
tegrate it with the diagnosis problem. Specifically, predic-
tions must be made for a given fault hypothesis, which con-
sists of a fault modelMf and joint state-parameter estimate
p(xf (k),θf (k)|y(k0 :k)). Fault identification computes an
estimate of θf (k), and the initial step of prognostics is to
compute the full joint-state parameter estimate for the new
faulty model.

System-level prognostics is concerned with predicting the oc-
currence of some system-level event E that is defined with
respect to the states, parameters, and inputs of the system.
We define the event as the earliest instant that some event
threshold function TEf : Rnxf × Rnθf × Rnu → B, where
B , {0, 1} changes from the value 0 to 1. That is, the time of
the event kEf at some time of prediction kP given some fault
f is defined as

kEf (kP ) ,
inf{k ∈ N : k ≥ kP ∧ TEf (xf (k),θf (k),u(k)) = 1}. (3)

1Bold typeface denotes vectors, and na denotes the length of a vector a.
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The time remaining until that event, ∆kEf , is defined as

∆kEf (kP ) , kEf (kP )− kP . (4)

The prognostics problem is inherently uncertain, due
to the random nature of the system evolution (repre-
sented with v(k)), and unknown future inputs (u(k) for
k > kP ). Therefore, kEf and ∆kEf are random vari-
ables, and we must compute the probability distribution
p(kEf (kP )|y(k0:kP )) (Daigle, Saxena, & Goebel, 2012;
Sankararaman, Daigle, Saxena, & Goebel, 2013; Sankarara-
man, Daigle, & Goebel, 2014).

3. BACKGROUND

For a large system, both the diagnosis and prognosis problems
are correspondingly large. A centralized approach does not
scale well, can be computationally expensive, and prone to
single points of failure. Therefore, we propose to decompose
the global diagnosis and prognosis problems into indepen-
dent local subproblems. In this work, we build on the ideas
from structural model decomposition (Blanke et al., 2006;
Pulido & Alonso-González, 2004) to compute local indepen-
dent subproblems, which may be solved in parallel, thus pro-
viding scalability and efficiency.

We adopt here the structural model decomposition framework
described in (Roychoudhury et al., 2013). This approach al-
lows us to make guarantees of the minimality of the derived
submodels and allows to generate different submodels for
each one of the diagnosis and prognosis tasks. In the fol-
lowing, we review the main details and refer the reader to
(Roychoudhury et al., 2013) for additional explanation. We
define a model as follows:
Definition 1 (Model). A modelM∗ is a tupleM∗ = (V,C),
where V is a set of variables, and C is a set of constraints
among variables in V . V consists of five disjoint sets, namely,
the set of state variables, X; the set of parameters, Θ; the set
of inputs, U ; the set of outputs, Y ; and the set of auxiliary
variables, A. Each constraint c = (εc, Vc), such that c ∈ C,
consists of an equation εc involving variables Vc ⊆ V .

Input variables, U , are known, and the set of output variables,
Y , correspond to the (measured) sensor signals. Parame-
ters, Θ, include explicit model parameters that are used in the
model constraints. Auxiliary variables,A, are additional vari-
ables that are algebraically related to the state and parameter
variables, and are used to reduce the structural complexity of
the equations.

The notion of a causal assignment is used to specify the
computational causality for a constraint c, by defining which
v ∈ Vc is the dependent variable in equation εc.
Definition 2 (Causal Assignment). A causal assignment α
to a constraint c = (εc, Vc) is a tuple α = (c, voutc ), where
voutc ∈ Vc is assigned as the dependent variable in εc.

We write a causal assignment of a constraint using its equa-
tion in a causal form, with := to explicitly denote the causal
(i.e., computational) direction.
Definition 3 (Valid Causal Assignments). We say that a set
of causal assignments A, for a modelM∗ is valid if

• For all v ∈ U ∪ Θ, A does not contain any α such that
α = (c, v).

• For all v ∈ Y , A does not contain any α = (c, voutc )
where v ∈ Vc − {voutc }.

• For all v ∈ V −U−Θ,A contains exactly one α = (c, v).

The definition of valid causal assignments states that (i) input
or parameter variables cannot be the dependent variables in
the causal assignment, (ii) a measured variable cannot be used
as an independent variable in any constraint, and (iii) every
variable, which is not input or parameter, is computed by only
one (causal) constraint.

Based on this, a causal model is a model extended with a valid
set of causal assignments.
Definition 4 (Causal Model). Given a modelM∗ = (V,C),
a causal model forM∗ is a tupleM = (V,C,A), where A
is a set of valid causal assignments.

3.1. Structural Model Decomposition

To decompose a model into submodels, we need to break in-
ternal variable dependencies. We do this by selecting certain
variables as local inputs. Given the set of potential local in-
puts (in general, selected from V ), and the set of variables to
be computed by the submodel (selected from V − U − Θ),
we create from a causal model M a causal submodel Mi,
in which a subset of the variables in V are computed using
a subset of the constraints in C. In this way, each submodel
computes independently from all other submodels. A causal
submodel can be defined as follows.
Definition 5 (Causal Submodel). A causal submodelMi of
a causal modelM = (V,C,A) is a tupleMi = (Vi, Ci,Ai),
where Vi ⊆ V , Ci ⊆ C, and Ai ∩ A 6= ∅.

When using measurements (from Y ) as local inputs, the
causality of these constraints must be reversed, and so, in gen-
eral, Ai is not a subset of A.

The procedure for generating a submodel from a causal
model is given as Algorithm 1 (GenerateSubmodel)
in (Roychoudhury et al., 2013). Given a causal model
M, a set of variables that are considered as local in-
puts, U∗, and a set of variables to be computed, V ∗, the
GenerateSubmodel algorithm derives a causal submodel
Mi that computes V ∗ using U∗. The algorithm works by
starting at the variables in V ∗, and propagating backwards
through the causal dependencies. Propagation along a depen-
dency chain stops once a variable in U∗ is reached, or once
a constraint is reached in which the causality can be reversed
so that a variable in U∗ can become a local input. We refer
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Figure 1. System-level diagnosis architecture.

the reader to (Roychoudhury et al., 2013) for the algorithm
and additional details.

3.1.1. Structural Model Decomposition for System-Level
Diagnosis

In this work, we use model decomposition to simplify the
fault detection and fault identification problems (Bregon,
Biswas, & Pulido, 2012; Bregon, Daigle, & Roychoudhury,
2012). For fault detection, we compute a set of residuals
based on the sensors, and so derive a set of minimal local
submodels to compute the nominal values of these sensors,
i.e., one submodel for each y ∈ Y . In the submodel comput-
ing the output y, we use the other sensors Y − {y} as local
inputs, thus allowing decomposition. So, given the nominal
model Mn, for each output y ∈ Y , we create a submodel
with V ∗ = {y} and U∗ = {U ∪ (Y − {y})}.
Fault identification requires estimating a set of parameters
associated with faults. Here, we also add Y as local in-
puts. Given a fault model Mf , we create a submodel with
V ∗ = θf , where θf denotes the set of fault parameters, and
U∗ = U ∪ Y .

3.1.2. Structural Model Decomposition for System-Level
Prognosis

Prediction requires determining kEf for a given fault hy-
pothesis f , which is computed based on TEf , which, in
turn, is a function of the system states, parameters, and in-
puts. Often, the system-level, global threshold TEf can be
expressed as the logical or of other local thresholds, i.e.,
TEf = TE1

f
∨ TE2

f
∨ . . . ∨ TEnf for n conditions. With each

local threshold TEif we can associate a local event Eif and
compute times kEif , such that kEf can now also be defined as
min(kE1

f
, kE2

f
, . . . , kEnf ). This leads to a natural decomposi-

tion where each kEif is computed independently, and allows

us to decompose the prediction problem. So, to create the pre-
diction submodels, we use the GenerateSubmodel algo-
rithm in (Roychoudhury et al., 2013) withU∗ set to {UP } and
V ∗ set to {kEif } for each local threshold TEif , where UP ⊆ V
is the set of variables that can be predicted a priori.

The decomposition that can be achieved depends also on the
selectedUP . If no variables exist that can be predicted a priori
outside of U , then the GenerateSubmodel algorithm may
not result in any decomposition and it will suffice to simply
use the global model.

The initial state needed for prediction can be generated from
a set of local estimators. The global prediction model is de-
composed into local state estimators for the needed states, in
the same way as in estimation for diagnosis.

3.2. Integrated System-level Diagnosis and Prognostics
Architecture

Figs. 1 and 2 illustrate the architecture for our system-level
diagnosis and prognosis frameworks, respectively. Regard-
ing system-level diagnosis (Fig. 1), at each discrete time
step, k, the system takes as input u(k) and produces out-
puts y(k). These are split into local inputs ui(k) and local
outputs yi(k) for each one of the m system-level fault detec-
tion submodels, Mi

n. Within each submodel Mi
n, nominal

tracking is performed, computing estimates of nominal states,
x̂in(k), parameters, θ̂

i

n(k), and the measurements, ŷin(k).
The fault isolator performs detection first by comparing the
estimated measurement values against the observed values, to
determine statistically significant deviations for the residual,
ri(k) = yi(k) − ŷi(k). Deviations in the residuals are then
transformed to qualitative symbols used by the centralized
fault isolation block to generate a set of isolated fault can-
didates, F(k). For each one of the isolated fault candidates,
fi(k), local models for fault identification,Mθfi

, are used to
compute local parameter estimates p(θfi(k)|y(k0:k)). These
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Figure 3. Detail of the system-level prognosis architecture.

local parameter estimates are then used as input to system-
level prognosis (Fig. 2).

The system-level prognosis block of the architecture is
divided into two phases: system-level estimation and
system-level prediction. Parameter estimates from the lo-
cal fault identification blocks, together with the inputs
and outputs of the system, are used as input for the local
estimation blocks, Mfi est., to compute state-parameter
estimates p(xfi(k),θfi(k)|y(k0:k)). Finally, the local
state-parameter estimates are used as input to the system-
level prediction blocks, Mfi pred., to compute predictions,
p(kEfi(kP )|y(k0:kP )), at given prediction time kP . Predic-
tions for each fault hypothesis are combined into the global
prediction p(kE(kP )|y(k0:kP )).

Fig. 3 shows the detail of the system-level estimation and
prediction blocks for fault f1, namely Mf1 est. and Mf1

pred. The system-level estimation task is decomposed us-
ing local estimation submodels, M1e

f1
to Mke

f1
. As shown

in the figure, subsets of the the local parameter estimates
p(θf1(k)|y(k0:k)), the system inputs, u(k), and the system

outputs, y(k), are used as input for each one of the local state-
parameter estimation submodels (this, of course, is similar to
the estimation problem using the nominal model in the diag-
nosis part). The output of all the local submodels is then com-
bined to compute the local state-parameter estimate for fault
f1, p(xf1(k),θf1(k)|y(k0:k)). The system-level prediction
problem is also decomposed using local prediction submod-
els. The state estimate for the fault is split into local estimates
for the prediction submodels, which then each compute a lo-
cal kiEf1 value; these are then merged into the system-level
prediction kEf1 for the fault.

4. ROVER EPS MODELING

We are interested in integrated diagnosis and prognosis of the
EPS of the rover. Thus, our system under consideration con-
sists of the batteries, the battery current sensor, and the volt-
age sensors. The rover motors, which produce the electrical
loads experienced by the EPS, are considered outside of our
system under consideration, and so the loads the motors de-
mand are viewed as inputs to the EPS.
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Figure 4. Rover EPS schematic.

The circuit schematic for the rover EPS is shown as Fig. 4.
There are 24 lithium-ion cells in total, with two parallel
branches of 12 cells in series. In parallel is a parasitic load,
modeled as a resistance, Rp, that may appear as a fault. The
battery current, iB , is split into the current going to the load,
iL, and the current going to the parasitic load (if present), ip.
The total voltage provided by the EPS to the load is denoted
as VB . The cell model computes the voltage as a function of
time given the current drawn from the cell, and is described
in detail in (Daigle & Kulkarni, 2013). For completeness, the
model is summarized in the appendix, and we refer the reader
to (Daigle & Kulkarni, 2013) for additional explanation.

We assume that all cells start fully charged, so the voltage
over each parallel branch is the same, and the current is split
evenly (iB/2). As the cells discharge, the total voltages must
stay balanced, since the two sets of cells are in parallel, and
therefore the current into each branch remains iB/2.

The causal graph corresponding to the EPS model is shown in
Fig. 5. The boxes in the figure indicate the battery cell mod-
els (for brevity, the internal variables are not shown). Also
indicated are the sensor models. A measured value y∗ (the
∗ superscript indicates the measured value of a physical vari-
able y) is equal to the physical variable y plus a bias, indicated
with the b superscript. The biases, when present, produce a
constant offset to the true value. Here, it also makes clear that
we use the measured value of the load current, i∗L, as an input
to the system, which we assume is faultless.

The causal graph also indicates the computation of the time
kE (in the following, and in the figures, we drop the f sub-
script, as these submodels are not specific to a given fault).
For the rover, E corresponds to any of the batteries reaching
end-of-discharge (EOD), which is what must be predicted.
EOD is defined by a voltage threshold VEOD, where TE is
defined by V1 < VEOD or V2 < VEOD, . . ., V24 < VEOD.
When any cell voltage is less than VEOD, EOD is reached
for that battery and TE evaluates to 1. The rover cannot be
used beyond that point, as it will damage any batteries whose
voltage is below the cutoff voltage.

iL iB V1

V2

V24

:

...

...

...
iL
  *

V1
*

V2
*

V24
*

iB
  *

iB
    b

V24
b

V2
b

V1
b

Rp ip VB

kE

Figure 5. Causal graph for rover EPS model.
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V1
b
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Figure 6. Causal graph for global nominal model.

5. ROVER EPS DIAGNOSIS

As described in Section 2, for diagnosis, models are used
for the three phases of the diagnosis process: (i) fault detec-
tion, consisting of state estimation and residual generation,
(ii) fault isolation, and (iii) fault identification. We describe
the models used for each in the following subsections.

5.1. Fault Detection

Recall that in order to detect faults, we produce residuals, for
which we need to compute model-predicted values of the out-
puts. We denote a residual using ry∗ , where y∗ is the variable
name for the sensor output. The causal graph for the global
model for residual generation is shown as Fig. 6. It is gener-
ated by calling GenerateSubmodel with U∗ = {i∗L}, and
V ∗ = {V ∗1 , V ∗2 , . . . , V ∗24, i∗B}. For residual generation, only
the nominal model is needed, because the aim is only to de-
tect when the nominal model is no longer valid, due to the ap-
pearance of a fault. In Fig. 6, the nominal parts of the model
are colored black, and the fault-related parts in red. Since the
faults are free from the nominal version of the model, only the
black portion is needed for residual generation. We retain the
red parts in the figures to indicate that the measured values
will be causally effected by the faults.

As described in Section 3, we can decompose the residual
generation problem, by creating local models for each sen-
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Figure 7. Causal graph for local i∗B residual generator.
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Figure 8. Causal graph for local V ∗i residual generator.

sor to compute predicted values. The causal graph for the
local model for i∗B is shown in Fig. 7, and is generated
by calling GenerateSubmodel on the global model with
U∗ = {i∗L, V ∗1 , V ∗2 , . . . , V ∗24} and V ∗ = {i∗B}. The predicted
value of i∗B , in the nominal case, is simply equal to the mea-
sured load current, i∗L. For each residual generator that has
states we use the unscented Kalman filter (UKF) for estima-
tion (Julier & Uhlmann, 2004).

The causal graph for the local model for V ∗i (i ∈
[1, 24]) is shown in Fig. 8, and is generated by call-
ing GenerateSubmodel on the global model with
U∗ = {i∗L, i∗B , V ∗1 , V ∗2 , . . . , V ∗24} − {V ∗i } and V ∗ = {V ∗i }.
The voltage for each cell is computed independently, using
i∗B as an input (this is divided by 2 to be used as input to the
cell model).

5.2. Fault Isolation

Fault isolation is performed by analysis of the residual sig-
nals. Due to the decomposition used in the residual genera-
tion step, each fault manifests in only a subset of the complete
residual set. As is clear in Fig. 7, ri∗B will deviate (in a statis-
tically significant way from zero) due only to theRp fault and
the ibB fault. As is clear in Fig. 8, rV ∗

i
will deviate due to V bi

and ibB . Note that the relation i∗B = iB+ibB holds, so when i∗B
is used as a local input, the causal relation is modified so that
iB becomes the dependent variable, and the causal constraint
is iB := i∗B − ibB . That is, the true value of iB is equal to the
measured value minus the bias. For residual generation, the
bias is not included, so by using the measured value, i∗B as
a local input, when a bias is present the wrong (i.e., biased)

current will be fed to the cell model and used to compute V ∗i ,
thus causing a deviation in the corresponding residual.

The effects of the faults on the residuals are shown in Table 1.
Faults are indicated both by the model parameter and the di-
rection of its change, e.g., R−p denotes a decrease in the para-
sitic resistance.2 Fault effects on residuals are represented as
qualitative fault signatures (Mosterman & Biswas, 1999) and
relative residual orderings (Daigle, Koutsoukos, & Biswas,
2007). Fault signatures express the qualitative change in a
signal as the result of a fault. In general, they can be used
to represent changes in magnitude, slope, and higher-order
derivatives of a signal, but here, we represent changes in mag-
nitude only, as this is sufficient to obtain unique diagnoses.
For example, the parasitic load fault causes an increase in
ri∗B . An ordering between a residual r1 and r2 for fault f ,
denoted as r1 ≺f r2, indicates that the fault will cause an
observable deviation in r1 before r2. For example, a bias in
the V ∗1 sensor will produce a deviation in rV ∗

1
before every

other residual (since the fault affets no other residuals). Both
signatures and orderings can be derived from the model auto-
matically (Daigle, 2008).

Both signatures and orderings are reasoned over in an event-
based framework to perform fault isolation (Daigle, Kout-
soukos, & Biswas, 2009). When a residual deviation is first
detected, the fault isolation algorithm checks for the faults
that could have produced that deviation. As more residuals
deviate, the algorithm checks for consistency with the current
sequence of deviations, retaining only faults that can produce
the observed sequence according to the predicted signatures
and orderings. In addition, we can also eliminate candidates
as inconsistent when no deviation is observed in a residual
by using timeouts (this is equivalent to “observing” a 0 sig-
nature) (Daigle, Roychoudhury, & Bregon, 2013). For each
residual we set a time limit under which we expect a resid-
ual deviation to occur after a fault. If we detect a fault and
that residual has not deviated by that time, we observe a 0
signature and reason with that information. Including this in-
formation, we can distinguish qualitatively between all faults,
and therefore obtain unique diagnoses based on the qualita-
tive signatures and orderings alone.3

5.3. Fault Identification

The fault identification submodels are generated from the
global model shown in Fig. 5, with the faulty parts included.
In the call to GenerateSubmodel, U∗ is set to the set of
measured variables, and V ∗ is set to the fault parameter that
is to be estimated.
2In the nominal model, when the parasitic load is absent, this is equivalent to
an infinite resistance in parallel. Thus, the appearance of the parasitic load
is denoted as a decrease in the parasitic resistance.

3Without using the 0 signatures for isolation, if a a voltage sensor bias oc-
curred, we would have to wait infinitely long to ensure there were no further
deviations and rule out ibB as a possibility.
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Table 1. Fault Signatures and Residual Orderings

Fault rV ∗
1

rV ∗
2

. . . rV ∗
24

ri∗
B

Residual Orderings
R−

p 0 0 . . . 0 + ri∗
B
≺ rV ∗

1
, ri∗

B
≺ rV ∗

2
, . . ., ri∗

B
≺ rV ∗

24

V b+
1 + 0 . . . 0 0 rV ∗

1
≺ rV ∗

2
, . . ., rV ∗

1
≺ rV ∗

24
, rV ∗

1
≺ ri∗

B

V b−
1 - 0 . . . 0 0 rV ∗

1
≺ rV ∗

2
, . . ., rV ∗

1
≺ rV ∗

24
, rV ∗

1
≺ ri∗

B

V b+
2 0 + . . . 0 0 rV ∗

2
≺ rV ∗

1
, . . ., rV ∗

2
≺ rV ∗

24
, rV ∗

2
≺ ri∗

B

V b−
2 0 - . . . 0 0 rV ∗

2
≺ rV ∗

1
, . . ., rV ∗

2
≺ rV ∗

24
, rV ∗

2
≺ ri∗

B

. . . . . . . . . . . . . . . . . . . . .
V b+
24 0 0 . . . + 0 rV ∗

24
≺ rV ∗

1
, . . ., rV ∗

24
≺ rV ∗

2
, rV ∗

24
≺ ri∗

B

V b+
24 0 0 . . . - 0 rV ∗

24
≺ rV ∗

1
, . . ., rV ∗

24
≺ rV ∗

2
, rV ∗

24
≺ ri∗

B

ib+B + + . . . + + ∅
ib−B - - . . . - - ∅
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Figure 9. Causal graph for local Rp estimation.
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Figure 10. Causal graph for local V bi estimation.

For the parasitic load fault, the causal graph for the local esti-
mation model is shown in Fig. 9. The parasitic resistance Rp
is computed using iP and VB , where ip is computed based
on the difference between the measured load and battery cur-
rents, and VB is computed based on the measured voltages.

The causal graph for the local model for the voltage sensor
bias estimation is shown in Fig. 10. The voltage bias is com-
puted based on the measured voltage and the model-predicted
voltage, computed using the measured battery current.

The causal graph for the local model for the current sensor
bias estimation is shown in Fig. 11. ibB is computed as the
difference between the measured battery and load currents.

6. ROVER EPS PROGNOSIS

As described in Section 2, prognosis requires a prediction
model, an initial state estimate, and future trajectories of the
inputs, UkP and the process noise, VkP . The prediction
model must be able to compute the event threshold TE , given
the local inputs for prediction.

iL iB

iL
  * iB

  *

iB
    b

Figure 11. Causal graph for local ibB estimation.

PL

kEiL iB V1

V2

V24

:

...

...

...

Rp ip VB

Figure 12. Causal graph for system-level prediction.

The causal graph for the global model for prediction is shown
in Fig. 12. We need only to compute TE , so none of the sensor
outputs are included. Note also that for prediction, we use as
an input the load power, PL, instead of the load current. This
is because it is much easier in practice to predict load power
a priori. With a given speed command to the rover motors,
power is constant, but current will increase as the battery cells
discharge and VB decreases.

It is important also to note that the prediction problem cannot
be decomposed in general. Given iB , we can compute each
Vi independently, and evaluate Vi < VEOD. Since E occurs
when any one of the cells drops below the cutoff voltage, we
can compute EOD for each cell and take the minimum to de-
termine when E will occur (since E occurs when the first
cell reaches EOD). However, iB depends on iP and iL, both
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PB kEiB Vi... i

Figure 13. Causal graph for local prediction for cell i.

of which depend on VB . There are no local inputs to break
this dependency.

If we make a simplifying assumption, however, we can de-
compose the prediction problem and thus achieve the benefits
of a distributed implementation. The causal graph for this
case is shown in Fig. 13. In this case, we use as a local in-
put the cell power PB , where PB = PL/24, thus allowing
local EOD thresholds, TEi , and, hence, local events Ei, to
be computed independently. This assumption is only valid if
the cells are all approximately equal in voltage, otherwise the
assumption of PB = PL/24 will be violated. Further, this is
not valid when Rp is present, as in that case PB is a function
of both PL and ip.

In general, the state estimates required for the prediction
models must be produced by new estimators derived us-
ing structural model decomposition, for the global predic-
tion model. For some faults, however, the needed estimates
may be available from the residual generators, if those resid-
ual generators were not affected by the fault. In this case,
new estimators do not need to be derived. For the parasitic
load fault, the residual generator for each V ∗i has the state
estimates for the battery cells, and the fault identifier has the
value of Rp. We can then reconstruct a global state estimate
for use in prediction. For a voltage sensor fault, a new lo-
cal estimator (same as that used for residual generation, see
Fig. 8) is needed to reestimate the states for the corresponding
battery cell model. From the time of fault detection onwards,
the corrected value of the sensor, computed by removing the
estimated bias, is used to reestimate the states. For the cur-
rent sensor fault, the case is more complex, because a faulty
sensor reading was used in all of the local voltage estimators.
Therefore, new local estimators are needed for all cells, in
which the bias-corrected value must be fed as an input from
the time of fault detection onward, once the fault bias has
been identified.

In this work, we assume that process noise is negligible com-
pared to the future input uncertainty, so represent the uncer-
tainty only in the future input trajectories UkP (i.e, the tra-
jectory of PL). We use the surrogate variable method to rep-
resent the future input trajectories (Daigle & Sankararaman,
2013). In this method, we represent UkP through a set of
surrogate variables, such that UkP can be constructed in a
deterministic way given values of the surrogate variables. In
this way, we can represent the probability distributions of the
surrogate variables to indirectly represent the probability dis-
tribution of the input trajectories. For the rover, we consider

an equivalent constant-loading distribution for the future in-
puts. That is, we assume that the future load power, PL, will
be constant with the value drawn from some distribution. In
the case of the rover, the operator really only needs to know
EOD predictions for best-, average-, and worst-case usage
scenarios (Daigle & Kulkarni, 2014). For the state estimate,
we use as samples the sigma points provided by the UKF.
Each sample is simulated forward three times, once for each
use case. From this we obtain best-, average-, and worst-case
EOD predictions, each with some small variance (due to the
state estimate variance).

It is important to note that since Rp is included in the predic-
tion model, the prediction input does not change in the nom-
inal and faulty cases. If, however, Rp was considered part
of the load, i.e., part of PL, then PL prediction would have
to change in the faulty case and would be complicated, since
the additional power required by Rp is actually a function of
battery voltage (as shown in Fig. 12). This is an advantage of
viewing the prediction problem in a system-level perspective
(the EPS perspective), rather than a component-level perspec-
tive (the battery cell perspective).

7. RESULTS

In this section, we demonstrate the integrated system-level
diagnosis and prognosis framework on the rover case study,
using real experimental field data. The task of the rover is
to travel to different waypoints to complete some science ob-
jective. We must predict how long the rover will be able to
execute its mission before having to return to the start point.
Faults must be diagnosed so that the mission can be replanned
if the rover is unable to meet all of its objectives due to the
fault, and does not become stranded before returning to the
start point.

We consider first a nominal scenario, in which the rover has
enough energy to visit all waypoints and return successfully
to the start point. Fig. 14 shows the measured and estimated
values of V ∗1 (results are similar for the remaining voltage
sensors). With VEOD = 2.5 V, EOD is clearly not reached.
Fig. 15 shows tracking of the battery current sensor. Although
the measured value is very noisy, the residual remains within
the nominal range, and no fault is detected in any of the resid-
uals. Fig. 16 shows the system-level EOD predictions for
the rover. Each prediction consists of three points, for best-
, average-, and worst-case future loading. Here, even in the
worst-case scenario the predictions indicate that the rover will
be able to complete the mission.

We next consider a parasitic load fault of 20 Ω, appearing as
an additional load on the batteries, draining additional current
and causing the batteries to discharge more quickly. The fault
occurs at 780 s, and is detected at 801 s on the battery cur-
rent residual, as shown in Fig. 17. Given the increase in the
battery current, the parasitic load fault and a positive bias in
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Figure 14. Estimation of V ∗1 .
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Figure 15. Estimation of i∗B .
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Figure 16. Predictions of ∆kE for worst-, average-, and best-
case future usage scenarios.

the battery current sensor are the only possible faults (see Ta-
ble 1). At 922 s, two minutes after fault detection, we observe
a 0 symbol on all the voltage sensor residuals, since they have
not yet deviated. Given these observations, the only consis-
tent candidate is the parasitic load fault. The estimated par-
asitic resistance over time is shown in Fig. 18. The estimate
converges to the true value in less than 50 s, and stays very
close to the true value. As described in Section 6, the predic-
tion problem in this case cannot be decomposed, because the
parasitic current depends on the battery voltages, so the local
input for prediction is the total motor power. The system-
level predictions are shown in Fig. 19. Before the fault is
diagnosed, the predictions indicate that the rover will be able
to complete its mission. After the fault is diagnosed, the pre-
dictions reflect the fact that more power is being demanded
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Figure 17. Estimation of i∗B for a parasitic load.
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Figure 18. Estimation of Rp for a parasitic load.
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Figure 19. Predictions of ∆kE for worst-, average-, and best-
case future usage scenarios with a parasitic load fault.

from the batteries, and EOD will be reached much sooner,
requiring the mission to be shortened.

We next consider a battery voltage sensor fault, manifesting
as a constant offset (bias) of 0.2 V on the voltage sensor for
battery 1. The fault is injected at 600 s and detected at 634 s
in the residual for the faulty sensor, as shown in Fig. 20. It
is immediately diagnosed, as no other fault can produce a de-
viation first in the voltage sensor, according to the residual
orderings. In order to recover from this fault, the estimator
for the voltage is reset back to the estimated time of the fault,
and is updated up to the current time using the unbiased sig-
nal, computed as the measured signal value minus the esti-
mated bias. From the current time on, the present value of the
estimated bias is used to correct the measured value sent to
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Figure 20. Estimation of V ∗1 for the voltage sensor bias fault.
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Figure 21. Estimation of i∗B with a battery current sensor
fault.

the estimator. Because this fault does not actually have any
effect on the energy required by the rover, the predictions are
the same as in the nominal condition.

Finally, we consider an offset fault in the battery current sen-
sor. The fault is injected at 300 s, and is detected at 344 s.
Detection time is slow due to the high amount of noise in the
sensor. The tracking of the sensor is shown in Fig. 21, where
the bias is clear visually (c.f. Fig. 15). The initial diagno-
sis is either the parasitic load fault, which can also cause an
increase in the current, and a current sensor fault. Because a
faulty current sensor value is being used as a local input to the
voltage estimators, these residuals deviate as well. Tracking
for V ∗1 is shown in Fig. 22. Because a larger current is used,
the estimated voltage drains faster than actual, and a deviation
is detected at 415 s, thus isolating the current sensor fault as
the true fault. Since the state estimates for the batteries will
be corrupted, this will propagate to the predictions, giving in-
correct results. So, to recover from the fault, once the fault
is identified, the battery estimators are reset to the time of
fault detection, and the corrected measurement value, based
on the estimated bias is fed up to the current time and in the
future. There is no physical effect on the energy consump-
tion of the rover due to the fault, and therefore the predictions
match those in the nominal case.

8. CONCLUSIONS

In this paper, we developed and implemented an approach for
integrated system-level diagnosis and prognosis of the elec-
trical power system of a planetary rover testbed. The algo-
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Figure 22. Estimation of V ∗1 with a battery current sensor
fault.

rithms monitor the behavior of the EPS and generate symbols
for fault isolation in a distributed fashion. Fault isolation is
performed, and for each fault hypothesis, system-level prog-
nosis is performed, starting with distributed estimation of the
state and fault parameters, and followed by distributed pre-
diction. The distributed nature of the architecture is based
upon the use of local submodels that enable the decompo-
sition of global diagnosis and prognosis problems into local
subproblems, applying ideas established in previous works.
The approach was demonstrated using field data from the
rover, showing successful detection, isolation, identification,
and prediction for a set of realistic faults.

Future work will extend the application of the framework to
the entire rover system, not just the EPS, which will enable
the diagnosis of faults in the rover motors, and incorporation
of that information into system-level predictions. We will
also apply the approach to other systems, and make further
theoretical extensions of the work, e.g., by including multiple
faults, and hybrid systems.
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APPENDIX: BATTERY CELL MODELING

The battery cell model computes the voltage as a function of
time given the current drawn from the cell, and is described
in detail in (Daigle & Kulkarni, 2013). We summarize the
model here and refer the reader to (Daigle & Kulkarni, 2013)
for additional explanation.

The voltage terms of the battery are expressed as functions
of the amount of charge in the electrodes (the states of the
model). Each electrode, positive (subscript p) and negative
(subscript n), is split into two volumes, a surface layer (sub-
script s) and a bulk layer (subscript b). The differential equa-
tions for the battery describe how charge moves through these
volumes. The charge (q) variables are described using

q̇s,p = iapp + q̇bs,p (5)
q̇b,p = −q̇bs,p + iapp − iapp (6)
q̇b,n = −q̇bs,n + iapp − iapp (7)
q̇s,n = −iapp + q̇bs,n, (8)

where iapp is the applied electric current The term q̇bs,i de-
scribes diffusion from the bulk to surface layer for electrode
i:

q̇bs,i =
1

D
(cb,i − cs,i), (9)

whereD is the diffusion constant. The c terms are lithium ion
concentrations:

cb,i =
qb,i
vb,i

(10)

cs,i =
qs,i
vs,i

, (11)

where, for CV v in electrode i, cv,i is the concentration and
vv,i is the volume. We define vi = vb,i + vs,i. Note now that
the following relations hold:

qp = qs,p + qb,p (12)
qn = qs,n + qb,n (13)

qmax = qs,p + qb,p + qs,n + qb,n. (14)

We can also express mole fractions (x) based on the q vari-
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Figure 23. Battery voltages.

ables:

xi =
qi
qmax , (15)

xs,i =
qs,i
qmax
s,i

, (16)

xb,i =
qb,i
qmax
b,i

, (17)

where qmax = qp + qn refers to the total amount of available
Li ions. It follows that xp+xn = 1. For lithium ion batteries,
when fully charged, xp = 0.4 and xn = 0.6. When fully dis-
charged, xp = 1 and xn = 0 (Karthikeyan, Sikha, & White,
2008).

The different potentials are summarized in Fig. 23 (adapted
from (Rahn & Wang, 2013)). The overall battery voltage
V (t) is the difference between the potential at the positive
current collector, φs(0, t), and the negative current collector,
φs(L, t), minus resistance losses at the current collectors (not
shown in the diagram). At the positive current collector is the
equilibrium potential VU,p. This voltage is then reduced by
Vs,p, due to the solid-phase ohmic resistance, and Vη,p, the
surface overpotential. The electrolyte ohmic resistance then
causes another drop Ve. At the negative electrode, there is a
drop Vη,n due to the surface overpotential, and a drop Vs,n
due to the solid-phase resistance. The voltage drops again
due to the equilibrium potential at the negative current col-
lector VU,n. These voltages are described by the following
set of equations (see (Daigle & Kulkarni, 2013) for details):

VU,i = U0 +
RT

nF
ln

(
1− xs,i
xs,i

)
+ VINT,i, (18)

VINT,i =
1

nF

(
Ni∑

k=0

Ai,k

(
(2xi − 1)k+1 − 2xik(1− xi)

(2xi − 1)1−k

))
,

(19)

Vo = iappRo, (20)

Vη,i =
RT

Fα
arcsinh

(
Ji

2Ji0

)
, (21)

Ji =
i

Si
, (22)

Ji0 = ki(1− xs,i)α(xs,i)
1−α, (23)

V = VU,p − VU,n − V ′o − V ′η,p − V ′η,n, (24)

V̇ ′o = (Vo − V ′o)/τo (25)

V̇ ′η,p = (Vη,p − V ′η,p)/τη,p (26)

V̇ ′η,n = (Vη,n − V ′η,n)/τη,n. (27)

Here, U0 is a reference potential, R is the universal gas con-
stant, T is the electrode temperature (in K), n is the number
of electrons transferred in the reaction (n = 1 for Li-ion),
F is Faraday’s constant, Ji is the current density, and Ji0
is the exchange current density, ki is a lumped parameter of
several constants including a rate coefficient, electrolyte con-
centration, and maximum ion concentration. VINT,i is the ac-
tivity correction term (0 in the ideal condition). We use the
Redlich-Kister expansion with Np = 12 and Nn = 0 (see
(Daigle & Kulkarni, 2013)). The τ parameters are empirical
time constants (used since the voltages do not change instan-
taneously).

The model contains as states x, qs,p, qb,p, qb,n, qs,n, V ′o , V ′η,p,
and V ′η,n. The single model output is V .

The state of charge (SOC) of a battery is defined to be 1 when
the battery is fully charged and 0 when the battery is fully dis-
charged by convention. In this model, it is analogous to the
mole fraction xn, but scaled from 0 to 1. We distinguish here
between nominal SOC and apparent SOC (Daigle & Kulka-
rni, 2013). Nominal SOC is computed based on the combi-
nation of the bulk and surface layer CVs in the negative elec-
trode, whereas apparent SOC is be computed based only on
the surface layer. When a battery reaches the voltage cutoff,
apparent SOC is 0, and nominal SOC is greater than 0 (how
much greater depends on the difference between the diffusion
rate and the current drawn). Once the concentration gradient
settles out, the surface layer will be partially replenished and
apparent SOC will rise while nominal SOC remains the same.
Nominal (n) and apparent (a) SOC are defined using

SOCn =
qn

0.6qmax (28)

SOCa =
qs,n

0.6qmaxs,n
, (29)

where qmaxs,n = qmax vs,n
vn

.4

4Note that SOC of 1 corresponds to the point where qn = 0.6qmaxs,n , since
the mole fraction at the positive electrode cannot go below 0.4, as described
earlier.
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ABSTRACT

Prognostics-enabled Decision Making (PDM) is an emerg-
ing research area that aims to integrate prognostic health in-
formation and knowledge about the future operating condi-
tions into the process of selecting subsequent actions for the
system. Previous work developing and testing PDM algo-
rithms has been done in simulation; this paper describes the
effort leading to a successful demonstration of PDM algo-
rithms on a hardware mobile robot platform. The hardware
platform, based on the K11 planetary rover prototype, was
modified to allow injection of selected fault modes related to
the rover’s electrical power subsystem. The PDM algorithms
were adapted to the hardware platform, including develop-
ment of a software module framework, a new route planner,
and modifications to increase the algorithms’ robustness to
sensor noise and system timing issues. A set of test scenar-
ios was chosen to demonstrate the algorithms’ capabilities.
The modifications to run with a hardware platform, the test
scenarios, and the test results are described in detail. The re-
sults show a successful use of PDM algorithms on a hardware
test platform to optimize mission planning in the presence of
electrical system faults.

1. INTRODUCTION

The research fields of system health, diagnostics, and prog-
nostics have become mature to the point where the tech-
niques have begun to be incorporated in new designs of
aerospace vehicles (Reveley, Kurtoglu, Leone, Briggs, &
Withrow, 2010). This has led to the newer research area

Adam Sweet et al. This is an open-access article distributed under the terms
of the Creative Commons Attribution 3.0 United States License, which per-
mits unrestricted use, distribution, and reproduction in any medium, provided
the original author and source are credited.

called Prognostics-enabled Decision Making (PDM), which
is devoted to the ability to incorporate system health informa-
tion in making decisions in the planning and control of the
system. A vehicle capable of making decisions, or assisting
a human operator to make decisions, based on system health
information could potentially accomplish more mission ob-
jectives, or operate with improved safety margins, than those
that do not incorporate those considerations.

A useful way to drive maturation of algorithms in diagnostics
and prognostics has been to develop test platforms where the
algorithms may be evaluated. NASA Ames Research Center
has developed several such test platforms, first in the elec-
trical power system domain (Poll et al., 2007) and in the
electromechanical actuator domain (Smith et al., 2009; Bal-
aban et al., 2010). Each test platform has provided a means
for controlled injection of faults to test the capabilities of the
diagnostic and prognostic algorithms and has driven their de-
velopment to be robust to real-world issues such as data la-
tency and sensor noise. However, each test platform was de-
signed primarily with the diagnostic and prognostic problems
in mind. This led to the development of another test platform
- the mobile robot test platform for testing and maturation of
PDM algorithms.

Work began on a mobile robot test platform (Balaban et al.,
2011, 2013) to provide a means for maturing PDM algorithms
and verifying their predictions in a real-world environment.
As described in previous publications, the mobile robot test
platform is expected to support the following high-level tasks:
(i) development of system-level and component-level PDM
algorithms; (ii) development of realistic fault injection and
accelerated aging techniques for algorithm testing; (iii) mat-
uration and standardization of interfaces between reasoning
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algorithms; (iv) performance comparison of PDM algorithms
from different sources; and (v) generation of publicly avail-
able datasets for enabling further PDM research. (Balaban et
al., 2013) described the intended use of the test platform and
the series of test scenarios which had been accomplished in
simulation. This paper describes the adaptation of the algo-
rithms to the hardware test platform, and the scenarios and
results from using it to test PDM algorithms in the field.

The paper is organized as follows. Section 2 describes the
platform modifications to support the new experiments. Sec-
tion 3 presents the modifications to the PDM algorithms. Sec-
tion 4 presents the experimental scenarios and results. Sec-
tion 5 concludes the paper.

2. PLATFORM MODIFICATIONS

The ability to emulate realistic adverse events in the test plat-
form is of key importance for the maturation process of PDM
algorithms. In this context, an adverse event is regarded as
an unexpected off-nominal physical change in the system un-
der consideration. Such an event is to be properly observed
by the health monitoring technology and properly mitigated
or managed by the decisions and actions of the PDM system.
Another important capability for a test platform is to provide
a standard mechanism for its software modules to communi-
cate with each other and with the PDM system. The adverse
events emulated on the test platform and the software module
framework are described in the sections below.

2.1. Hardware fault injection

The hardware faults currently implemented in the test plat-
form are related to its electrical power system. As described
in previous publications (Balaban et al., 2011, 2013), the
rover vehicle under consideration is based on an electric
power train in which the wheels are powered by electric mo-
tors and the power is stored in batteries. A variety of power
conversion and mechanical faults in the electrical power train
result in an increased power consumption in the form of
higher levels of current demanded from the batteries. This
ends up draining the batteries faster, thus potentially consider-
ably reducing the duration of the rover mission. An example
of an electrical power train fault that relates to increased en-
ergy consumption can be identified within the electrical mo-
tor controllers. A motor controller contains power switching
elements like power transistors. The parasitic resistance of
such devices and the lost of power dissipation capability due
to degradation in performance during the device’s lifetime,
resulting in increased power consumption.

Because a variety of faults result in increased power con-
sumption, the battery current drain circuit (parasitic load) was
selected to implement on the robotic test platform. Other rea-
sons for choosing that way of injecting hardware faults are
that the circuit emulating the fault(s) has the ability to drain a
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47⌦
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Relay 2

Relay 3

Motor
Controller

Motor
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Figure 1. Battery current drain circuit schematic

variable amount of current and also that it is controlled pro-
grammatically. Figure 1 presents the battery current leakage
circuit. It consists of three banks of resistors in parallel that
can be engaged programmatically by closing the correspond-
ing relay. The third bank in the diagram is a rheostat that
is also controlled programmatically and ranges from 0 Ω to
10 Ω.

2.2. Sensor fault injection

Sensor fault injection is another method of introducing faults
in the mobile robot platform. The prognostics and decision
making components of the PDM system depend on accurate
knowledge of the platform’s state, in order to make accurate
predictions and correct decisions based on those predictions.
If a sensor is faulty and results in an incorrect estimate of the
system’s state, it could lead to either suboptimal decisions
or, in the aviation domain, the potential loss of the mobile
robot platform. Therefore, injecting sensor faults on the mo-
bile robot platform is a useful way to test the PDM system’s
robustness and ability to ensure correct decisions are being
made even in the presence of these types of faults.

Common types of sensor faults were described in (Balaban,
Saxena, Bansal, Goebel, & Curran, 2009; Poll et al., 2011),
and, in the course of this work, three types of sensor faults
were implemented: stuck, offset, and drift. When a sensor is
stuck, its value is set to a specified value and is unchanging
thereafter. When a sensor has an offset fault, its value differs
from the correct value by some specified constant amount.
Finally, when a sensor has a drift fault, its value diverges
slowly from the correct value over time. Examples of these
are shown graphically in Figure 2.
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2.3. Software module framework

The hardware test platform requires software to operate. The
software consists of three major subcomponents: (i) the rover
control and data acquisition module; (ii) the reasoning algo-
rithms, (iii) and the communication infrastructure. The rover
control and data acquisition software is implemented in Lab-
VIEW (LabVIEW version 12.0.0.4029, 2012) and is respon-
sible for interacting with the rover hardware. Control of the
rover is performed by specifying wheel speeds for each indi-
vidual rover wheel through the wheel motor controller hard-
ware. Data acquisition is performed by multiple devices, and
the LabVIEW control software is responsible for gathering
the data from all the devices and making it available as a sin-
gle sensor array. This data is sent to the PDM system.

The communication infrastructure is responsible for facilitat-
ing information sharing between the rover control software
and the reasoning algorithms, as well as among the various
reasoning algorithm modules. This is accomplished through a
publish/subscribe architecture, which is implemented through
the Internet Communication Engine, ICE (Henning, 2004).
Standardized interface definition files are used to describe
messages exchanged among the software and hardware mod-
ules. The message types include command inputs, sensor
data, vehicle state information, fault diagnosis candidates,
as well as unordered and ordered waypoint lists. A central
server coordinates message exchanges among any number of
devices on the same network. In order to be integrated into
the architecture, a new reasoning module needs to only imple-
ment a minimal interface to register with the ICE server and
to publish and/or subscribe to the appropriate messages. For
example, a diagnostic module would subscribe to the rover
commands and sensor data and, in turn, publish diagnostic
messages. Thus the architecture allows for easy accommoda-
tion of modules implemented in different programming lan-
guages and running on dissimilar platforms.

3. ALGORITHM MODIFICATIONS

Modifications were also made to several PDM system algo-
rithms; namely the state of charge estimator, the electrical
power system (EPS) diagnoser, the route planner, and the de-
cision maker. The changes made to each are described below.

3.1. State-of-Charge Estimator

The battery state-of-charge (SOC) estimator employs a
model-based approach. Whereas in (Balaban et al., 2013)
an electric circuit equivalent model of the battery cell was
used, in this work the underlying model employed is an
electrochemistry model of the lithium-ion cell presented in
(Daigle & Kulkarni, 2013). The model has higher accuracy,
yet is based only on ordinary differential equations, and, like
the equivalent circuit model, can be simulated very quickly,
suitable for real-time operations. As in (Balaban et al.,
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2013), the unscented Kalman filter (UKF) is used for state
estimation (Julier & Uhlmann, 2004). The UKF estimates
internal model states, from which SOC and the cell voltage
are computed.

A distributed estimation approach (Daigle, Bregon, & Roy-
choudhury, 2014) can be used for the cells, where the local
input to each cell’s estimator is the measured battery current,
iB , divided by 2. Since the battery voltages on each paral-
lel branch remain approximately balanced, the current going
into the two branches is split evenly.

3.2. EPS Diagnoser

The diagnoser has three main diagnostic purposes, namely
fault detection, isolation, and identification. Fault detection
involves determining if a fault has occurred and is usually
determined by taking the difference between the actual ob-
served sensor readings and the model-predicted nominal be-
havior of these sensor readings, then determining if this dif-
ference is statistically significant. In order to compute the
model-predicted signals, we adopt the structural model de-
composition approach from (Roychoudhury, Daigle, Bregon,
& Pulido, 2013) to decompose the global model of the EPS
into smaller, local submodels, thus decomposing the model-
based estimation problem. This is achieved by using mea-
sured sensor values as local inputs to the submodels. This,
in fact, is what is done for the SOC estimators, formally jus-
tified by this decomposition approach. Thus, we obtain 25
local estimators, one for each cell voltage (using the SOC es-
timators), and one for the battery current (in which measured
load current is used as an input, and we assume in the nomi-
nal case that the battery current is equal to the load current).
The difference between a measured sensor value and the esti-
mated value is termed the residual. A statistically significant
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deviation of a residual from zero indicates a fault. The em-
ployed fault detection method, based on a Z-test, is detailed
in (Daigle et al., 2010) and is the same as used in (Balaban et
al., 2013).

Once a fault is detected, a qualitative event-based diagnosis
(QED) approach (Daigle, Roychoudhury, & Bregon, 2013)
is invoked for fault isolation. For each available residual, a
symbol generation routine is invoked that transforms a quan-
titative residual into qualitative symbols {0,+,−} indicating
whether or not the observed sensor reading is at, above, or
below the estimated nominal value, respectively. Fault isola-
tion is performed by comparing these observed symbols with
the model-predicted symbols (Mosterman & Biswas, 1999;
Daigle, Koutsoukos, & Biswas, 2009). Fault candidates that
are inconsistent with the observed sequence of residual de-
viations are dropped. The fault candidate set is continually
pruned as more residual deviations are observed until, ide-
ally, the true single fault is the only fault candidate remain-
ing1. Since the residuals are computed using local submodels,
most faults affect only a few residuals (e.g., the parasitic load
causes a deviation only in the battery current residual). This
is in contrast to the global estimation approach in (Balaban
et al., 2013) in which faults affect many residuals. Using
the distributed estimation approach improves diagnosability
(Daigle, Bregon, Biswas, Koutsoukos, & Pulido, 2012).

Once the true fault is isolated, a local model for estimating
the fault parameters is used. The state estimate is augmented
with the fault estimate for use in the prediction and decision-
making steps. In the case of sensor faults, the faulty sensor
value may have been used as a local input to an estimator,
thus corrupting the resulting estimates. Therefore, once the
sensor fault is identified, the estimators that used that (faulty)
sensor value as an input must be reset to the time of fault
occurrence and run again up to the current time using the cor-
rected sensor value, so that a correct state estimate (to be used
for prediction) can be obtained.

3.3. Route Planner

The route planner is a new component responsible for deter-
mining the route that the test vehicle takes. It operates on
a set of waypoints, which represent points of scientific in-
terest. Each waypoint consists of a location, specified with
latitude, longitude, and altitude, and a reward, which is an in-
teger representing the scientific importance of that waypoint.
In the case of an aerial vehicle or a high-level simulation, di-
rect paths between waypoints can often be assumed. This is
not generally the case for a ground vehicle, where terrain fea-
tures and obstacles need to be taken into account when plan-
ning vehicle movement. The available waypoints are defined
in advance and are located at the street intersections in the
experiment’s geographical area, as shown in Figure 3a. Not

1This work is restricted to single faults only.

all of the defined waypoints were used as primary waypoints
in the experiments described later; the choice of waypoints is
described in Section 4. The waypoints which were used are
shown as green in Figure 3a and the unused waypoints are
shown in black. The waypoints are identified with numbers,
shown in the figure just after the letter ’W’ (for ”waypoint”).
In Figure 3a, the reward value of each waypoint is shown
in parentheses after the waypoint number. Given the set of
waypoints, the route planner calculates routes for all possible
pairs of waypoints going in either direction. A route between
any two waypoints is approximated as a set of linear segments
between secondary waypoints. This set is translated into
a list of tuples {heading, distance, elevation change}, with
each tuple providing instructions on getting from one sec-
ondary waypoint to the next.

The route planner uses the Google Maps API (JavaScript
Google Maps Application Programming Interface, version
3.0, 2014) to calculate the routes. The route planner then
considers all pairs of waypoints (in both directions). For each
pair of primary waypoints, the Google Maps API is used to
identify the secondary waypoints between the primary way-
points. The API provides latitude, longitude, and altitude for
the secondary waypoints as a sequence of steps to get from
the source waypoint to the destination waypoint. The planner
then steps through the secondary waypoints in order and uses
the API to determine the heading between the last waypoint
and current waypoint. It also calculates the altitude change
based on the already retrieved altitudes for the waypoints.
The result is a three-dimensional array where the first and
second dimension indicate pairs of primary waypoints. The
third dimension is used to list routes to secondary waypoints
in order, resulting in the aforementioned list of tuples.

3.4. Decision Maker

The decision-making algorithm used in this work, shown
in Algorithm 1, is similar to the one presented in (Balaban
& Alonso, 2013). It is based on a particle-filtering pattern
(Gordon, Salmond, & Smith, 1993) and is summarized be-
low.

Algorithm 1 uses a set of k particles, where each particle pi
is initialized with the starting waypoint wp1 and assigned a
uniform weight of wi = 1/k. The starting waypoint is the
waypoint where the vehicle is located at the point of execut-
ing the algorithm (not necessarily the original starting point
of the route). For simplicity of explanation, the algorithm
presented here operates over one-way paths, where the start-
ing waypoint is not always the same as the ending waypoint.
In the actual implementation, a choice between one-way and
round-trip routes is implemented via a straightforward exten-
sion.

During each of the iterations of the algorithm (and for each
particle), the path associated with a particle is sampled ran-
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Algorithm 1 PF

1: inputs: {wpi}Ni=1,K
2: outputs: p∗
3: p1, . . . , pK ← {wp1}
4: w1, . . . , wK ← 1/k
5: for d← 1, D do
6: for k ← 1,K do
7: τ ← permute({wpi}Ni=1 − pk)
8: l← −1
9: repeat

10: l← l + 1
11: ptest = {pk, {wp1, . . . , wpl}}
12: {b,R, Ch} ← simulate(ptest)
13: wk ← {ΘR,Θh} · {R,−Ch}T
14: until F(b) = true
15: if l ≥ 1 then
16: pk ← {pk, {wp1}τ}
17: end if
18: end for
19: j ← arg max

j
wj

20: p∗ ← pj
21: {w1, ..., wK} ← {w1, ..., wK}/

∑K
i=1 wi

22: {p1, ..., pK} ← resample({p1, ..., pK}, {w1, ..., wK})
23: end for

domly out of the set of unvisited waypoints up to the max-
imum length of N . Each sample is tested in the simulator
and the particle weight updated proportionally to the objec-
tive function value (which incorporates path costs in addition
to rewards). Unless system failure is believed to be likely for
even the shortest path extensions, the particle path is extended
by one waypoint (the first one in the randomized remaining
waypoints set τ ).

The number of algorithm iterations, D, is equal to N for the
deterministic simulator mode and can be set to D > N oth-
erwise, to help prevent potentially promising particles from
being ruled out too early. The highest weight particle is iden-
tified and stored after each iteration, to enable interruptibil-
ity. Particle weights are then normalized and the particles are
resampled. The overall computational complexity of the al-
gorithm is O(N2).

The objective function used to guide search of the solution
space is the following:

J = {ΘR,Θh} · {R,−Ch}T , (1)

whereR is the expected cumulative reward along a route, Ch
is the correspondent expected health cost, ΘR and Θh are the
weights for rewards and health costs, respectively. The sim-
ulator used with the PF algorithm utilizes a simplified power
consumption model of the rover. A candidate route is divided
into linear and turning segments and the resulting list of seg-
ments is processed sequentially. For the straight route seg-

Table 1. DM model parameters used in the experiments

Parameter Value Units
m 150.0 kg

v 0.4 m/s

ω 0.07 rad/s

µ 0.06

it 5.0 A

ηe 0.8

ments, the following relationship was used to estimate the
current drawn from the batteries:

il =
mgv

ηeE
(sinα+ µcosα), (2)

where il is the linear segment current, ηe is the electrical
transmission efficiency coefficient, E is the bus voltage, m
is the mass of the rover, g is the acceleration of gravity, v is
the magnitude of the linear velocity, α is the incline angle,
and µ is the coefficient of surface friction. For this set of ex-
periments linear velocity was kept constant. For the turning
segments, a constant rate of turn ω was assumed, associated
with a constant current draw it. When evaluating a candidate
route, a discrete time simulation is performed (with the time
step dt normally set to 1s), taking into account the nonlinear
relationship between current draw at a particular instance in
time and the corresponding drop in battery cell voltage (and
in the SOC of the battery cells).

The battery model used in the simulator is described in
(Daigle, Saxena, & Goebel, 2012). The parameters used with
the model remained the same as in the aforementioned paper.
This equivalent circuit model was integrated and tested with
the decision maker prior to the newer electrochemistry model
(Daigle & Kulkarni, 2013) becoming available and will be
updated to the latter in the near future. The rest of the model
parameters used in the experiments are the following are de-
scribed in Table 1.

A set of K = 50 particles was used by PF algorithm. The
values of objective function weights used were ΘR = 0.9
and Θh = 0.1.

4. EXPERIMENTS AND RESULTS

The PDM system described above was demonstrated in the
field though a set of scenario-based experiments. The de-
tails of the scenarios, including the number of waypoints, the
overall distance, the distances between waypoints, the fault
injection location and fault magnitude were chosen to clearly
show the capabilities of the PDM algorithms. The overall dis-
tance of the nominal trajectory would have to be such that the
vehicle would be capable of completing it fully without sys-
tem faults. That full nominal scenario trajectory was divided
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and arranged into waypoints, chosen to ensure the potential
for the system to replan its trajectory before a potential sys-
tem fault would cause the vehicle to reach the end of useful
life. Several fault scenarios were chosen as well, where the
PDM system was expected to optimize the trajectory while
ensuring the safe return of the vehicle. The location at which
the fault is injected and its magnitude were chosen to allow
the cumulative effects of the fault to cause the end of the sys-
tem’s remaining useful life before it reached the final way-
point. These experimental scenarios and the results of each
are described below.

4.1. Nominal

The nominal scenario consists of 5 waypoints, and no fault
was injected during this scenario. The vehicle began at way-
point 9 and traveled to waypoints 2, 5, 7, and back to 9. These
waypoints are shown in Figure 3b; the unused waypoints are
not shown for clarity. The reward value used for waypoint
9 is 70, and for waypoints 2, 5, and 7 are 30, 90, and 20,
respectively. The route planner inserted secondary waypoints
as required to navigate this route, where secondary waypoints
have no reward.

In this scenario, the vehicle successfully followed the nom-
inal route, covering a distance of approximately 970 m, and
gained the reward for all of the waypoints, for a total reward
of 280. The nominal route is shown as the blue line in Fig-
ure 3b, generated from the vehicle’s global positioning sys-
tem (GPS) sensor values recorded during the scenario. At the
end of the nominal scenario the batteries had an estimated
SOC of 57.6%. Note that even in the nominal case, the PDM
system ran and determined that it was feasible to achieve all
of the given waypoints.

4.2. Battery Parasitic Load Fault without PDM

As a second scenario, a battery parasitic load fault (as de-
scribed in Section 2.1) was injected during the route traver-
sal, with PDM system was not running. This scenario also
began and ended at waypoint 9 and consisted of the same
waypoints as for the nominal scenario, with the same reward
values. However, shortly before reaching waypoint 2, a bat-
tery parasitic load fault was injected into the electrical system
of the vehicle. This is shown in Figure 3c. The first two relays
were activated, resulting in an equivalent parasitic resistance
of 21.6 Ω (see circuit diagram in Figure 1) and an increased
current draw from the batteries.

In this scenario, with the battery parasitic load active and fol-
lowing the nominal route, the vehicle ran out of power be-
fore returning to the starting waypoint. The route is shown in
red in Figure 3c, and the location where the vehicle ran out
of power is marked. This scenario showed that the nominal
route is, in fact, infeasible under the battery drain fault.

4.3. Battery Parasitic Load Fault with PDM

As a third scenario, a battery parasitic load fault was again
injected (resulting in the same parasitic resistance of 21.6 Ω)
shortly before reaching waypoint 2, while following the same
waypoints as the nominal scenario. However, in this case the
PDM system was enabled.

In this scenario, the EPS diagnoser detected that the battery
parasitic load has been injected and estimated the equivalent
resistance value. It reported its estimate of the equivalent re-
sistance value 14 s after the fault was injected. The estimated
resistance was 19.5 Ω, which is an error of only 9.7% from
the actual parasitic resistance of 21.6 Ω. The EPS diagnoser
then sent that estimated parasitic resistance value to the deci-
sion maker along with the battery SOC estimate. When the
vehicle arrived at waypoint 2, the decision maker used the in-
formation from the EPS diagnoser and determined that the ve-
hicle’s original route is no longer feasible. It then performed
an optimization to determine a new route which maximized
the overall reward for the scenario, while ensuring that the ve-
hicle can return safely to the starting point. As can be seen in
Figure 3d, the PDM system eliminated waypoint 5 (shown in
red), but kept waypoint 7. The alternative route taken, shown
on the figure in green, covered a distance of approximately
713 m. The vehicle successfully navigated the new route and
returned to the starting waypoint 9, for a total reward of 190.
At the end of the scenario the estimated SOC of the batteries
was 14.5%.

Note that a conservative option existed: to return to the start-
ing waypoint as soon as possible after the fault was detected.
However, that route would only have gained a total reward
of 170. It would not have made optimal use of the vehicle’s
remaining useful life and, therefore, was not chosen by the
PDM system.

4.4. Bus Current Sensor Fault with PDM

As a fourth scenario, a bus current sensor fault was injected
(also just before reaching waypoint 2) while following the
same waypoints as the nominal scenario. The bus current
sensor value was overridden to always report a value of 0.0 A.

In this scenario, the EPS diagnoser detected that the current
sensor is faulty and reported that to the decision maker. The
decision maker performed an optimization with this vehicle
state and the given waypoints and determined that the vehicle
is able to complete the original route given the fault. There-
fore, it did not modify the vehicle route. Since the mission
was unmodified, the vehicle traversed the same route as in
the nominal scenario shown in Figure 3b, for the same total
reward of 280. At the end of the scenario the estimated SOC
of the batteries was 70.8%.
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(a) All waypoints (b) Nominal scenario

(c) Battery parasitic load fault scenario without PDM (d) Battery parasitic load fault scenario with PDM

Figure 3. Vehicle route taken in nominal and battery parasitic load scenarios with and without PDM

5. CONCLUSIONS

This paper described a successful demonstration of PDM al-
gorithms running onboard a hardware mobile robot test plat-
form. The demonstration required modifications to both the
platform and the algorithms. The demonstrations took the
form of a set of challenge scenarios. The data files from these
scenarios will be made available for download, to allow test-
ing of other prognostic and PDM algorithms.

Planned future work involves deployment of PDM algorithms
on an unmanned aerial vehicle, incorporation of uncertainty
estimates in the reported health parameters, and implementa-
tion of additional faults in the hardware test platform. Pos-

sible future work also includes modifications to support dif-
ferent types of decision-making, such as adapting parameters
and constraint relaxation in the PDM optimization. As the
PDM algorithms are further developed, this robotic test plat-
form will be modified to continue to evaluate them in a real-
world setting.

ACKNOWLEDGMENTS

The authors would like to gratefully acknowledge the contri-
butions of researchers and student interns at NASA Ames Re-
search Center: Kai Goebel, Brian Bole, Shankar Sankarara-
man, and Sebastian Hening. The funding for this research is

7

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

148



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

provided by NASA ARMD System-wide Safety & Assurance
Technology (SSAT) project.

REFERENCES

Balaban, E., & Alonso, J. J. (2013). A Modeling Framework
for Prognostic Decision Making and its Application to
UAV Mission Planning. In Annual conference of the
prognostics and health management society (pp. 1–12).
New Orleans, LA.

Balaban, E., Narasimhan, S., Daigle, M., Celaya, J., Roy-
choudhury, I., Saha, B., . . . Goebel, K. (2011, Septem-
ber). A mobile robot testbed for prognostics-enabled
autonomous decision making. In Annual conference of
the prognostics and health management society 2011.
Montreal, Canada.

Balaban, E., Narasimhan, S., Daigle, M., Roychoudhury, I.,
Sweet, A., Bond, C., & Gorospe, G. (2013). Devel-
opment of a mobile robot test platform and methods
for validation of prognostics-enabled decision making
algorithms. International Journal of Prognostics and
Health Management, 4(1).

Balaban, E., Saxena, A., Bansal, P., Goebel, K. F., & Curran,
S. (2009). Modeling, detection, and disambiguation of
sensor faults for aerospace applications. Sensors Jour-
nal, IEEE, 9(12), 1907–1917.

Balaban, E., Saxena, A., Narasimhan, S., Roychoudhury, I.,
Goebel, K., & Koopmans, M. (2010, September). Air-
borne electro-mechanical actuator test stand for devel-
opment of prognostic health management systems. In
Annual conference of the prognostics and health man-
agement society 2010. Portland, OR.

Daigle, M., Bregon, A., Biswas, G., Koutsoukos, X., &
Pulido, B. (2012, August). Improving multiple fault
diagnosability using possible conflicts. In Proceedings
of the 8th ifac symposium on fault detection, supervi-
sion and safety of technical processes (p. 144-149).

Daigle, M., Bregon, A., & Roychoudhury, I. (2014). Dis-
tributed prognostics based on structural model decom-
position. IEEE Transactions on Reliability.

Daigle, M., Koutsoukos, X., & Biswas, G. (2009, July).
A qualitative event-based approach to continuous sys-
tems diagnosis. IEEE Transactions on Control Systems
Technology, 17(4), 780–793.

Daigle, M., & Kulkarni, C. (2013, October).
Electrochemistry-based battery modeling for prog-
nostics. In Annual conference of the prognostics and
health management society 2013 (p. 249-261).

Daigle, M., Roychoudhury, I., Biswas, G., Koutsoukos, X.,
Patterson-Hine, A., & Poll, S. (2010, September).
A comprehensive diagnosis methodology for complex
hybrid systems: A case study on spacecraft power dis-
tribution systems. IEEE Transactions of Systems, Man,
and Cybernetics, Part A, 4(5), 917–931.

Daigle, M., Roychoudhury, I., & Bregon, A. (2013, Octo-
ber). Qualitative event-based diagnosis with possible
conflicts: Case study on the fourth international diag-
nostic competition. In Proceeedings of the 24th inter-
national workshop on principles of diagnosis (p. 230-
235).

Daigle, M., Saxena, A., & Goebel, K. (2012). An Effi-
cient Deterministic Approach to Model-based Predic-
tion Uncertainty Estimation. In Annual conference of
the prognostics and health management society.

Gordon, N. J., Salmond, D. J., & Smith, A. F. (1993). Novel
Approach to Nonlinear/non-Gaussian Bayesian State
Estimation. IEE Proceedings F (Radar and Signal Pro-
cessing), 140(2), 107–113.

Henning, M. (2004). A new approach to object-oriented mid-
dleware. IEEE Internet Computing, 8(1), 66–75.

JavaScript Google Maps Application Programming Inter-
face, version 3.0. (2014). Mountain View, California:
Google Corporation.

Julier, S. J., & Uhlmann, J. K. (2004, March). Unscented
filtering and nonlinear estimation. Proceedings of the
IEEE, 92(3), 401–422.

LabVIEW version 12.0.0.4029. (2012). Austin, Texas: Na-
tional Instruments Corporation.

Mosterman, P. J., & Biswas, G. (1999). Diagnosis of con-
tinuous valued systems in transient operating regions.
IEEE Transactions on Systems, Man, and Cybernetics,
Part A: Systems and Humans, 29(6), 554-565.

Poll, S., de Kleer, J., Abreau, R., Daigle, M., Feldman, A.,
Garcia, D., . . . Sweet, A. (2011, October). Third inter-
national diagnostics competition – DXC’11. In Proc.
of the 22nd international workshop on principles of di-
agnosis (pp. 267–278).

Poll, S., Patterson-Hine, A., Camisa, J., Nishikawa, D.,
Spirkovska, L., Garcia, D., . . . others (2007,
May). Evaluation, selection, and application of model-
based diagnosis tools and approaches. In Aiaa in-
fotech@aerospace 2007 conference and exhibit.

Reveley, M. S., Kurtoglu, T., Leone, K. M., Briggs, J. L., &
Withrow, C. A. (2010, December). Assessment of the
state of the art of integrated vehicle health management
technologies as applicable to damage conditions (TM
No. 2010-216911). Cleveland, OH: NASA.

Roychoudhury, I., Daigle, M., Bregon, A., & Pulido, B.
(2013, March). A structural model decomposition
framework for systems health management. In Pro-
ceedings of the 2013 ieee aerospace conference.

Smith, M., Byington, C., Watson, M., Bharadwaj, S., Swer-
don, G., Goebel, K., & Balaban, E. (2009). Experimen-
tal and analytical development of health management
for electro-mechanical actuators. In Ieee aerospace
conference (pp. 1–14).

8

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

149



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

BIOGRAPHIES

Adam Sweet is a research engineer in the Diagnostics and
Prognostics group at NASA Ames Research Center. He
graduated with an MS in Mechanical Engineering from UC
Berkeley in 1999, and has worked at Ames ever since. His
project experience encompasses robotics, hybrid system sim-
ulation, model-based diagnosis, and flight software develop-
ment for nanosatellites.

George Gorospe rreceived the B.E. degree in Mechani-
cal Engineering from the University of New Mexico, Albu-
querque, New Mexico, USA, in 2012. Since October 2012, he
has been a research engineer at NASA Ames Research Cen-
ter. In May 2013 he joined Stinger Ghaffarian Technologies
and the Prognostic Center of Excellence at NASA Ames Re-
search Center. His current research interests include space
mission design, systems engineering, and autonomous mo-
bile robot control and control systems design.

Matthew J. Daigle received the B.S. degree in Computer Sci-
ence and Computer and Systems Engineering from Rensse-
laer Polytechnic Institute, Troy, NY, in 2004, and the M.S.
and Ph.D. degrees in Computer Science from Vanderbilt Uni-
versity, Nashville, TN, in 2006 and 2008, respectively. From
September 2004 to May 2008, he was a Graduate Research
Assistant with the Institute for Software Integrated Systems
and Department of Electrical Engineering and Computer Sci-
ence, Vanderbilt University, Nashville, TN. From June 2008
to December 2011, he was an Associate Scientist with the
University of California, Santa Cruz, at NASA Ames Re-
search Center. Since January 2012, he has been with NASA
Ames Research Center as a Research Computer Scientist.
His current research interests include physics-based model-
ing, model-based diagnosis and prognosis, simulation, and
hybrid systems.
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ABSTRACT 

To date, the majority of existing Condition Indicators for 

gears are based on various statistical moments of a recorded 

time history. A supplementary analysis proposed in this 

study, shall suggest an approach that may, in the future, 

enable the identification of faulty gearwheel and possibly 

fault type in the system. In this work, a combined analytical 

and empiric approach is applied. This approach is based on 

the assumption that reliable dynamic models can be utilized 

to predict the effects of faults on vibrational patterns. 

Dynamic model generated signatures are used to verify 

experimental findings. Moreover, discrepancies between 

simulated and actual results, combined with understanding 

of the assumptions and omissions of the model, are helpful 

in understanding and explaining the experimental results. 

A spur gear transmission setup was used for experiments, 

along with an electric AC motor and a friction belt loading 

device. The experimental runs were conducted at varying 

speed settings. Two types of faults, a tooth face fault and a 

tooth root fault, were seeded in the experimental 

transmission and into the model. The effect on extracted 

signal features is examined.  

The purpose of this study is to evaluate fault detection 

capabilities of proposed diagnostic tools at the presence of 

two seeded faults of varying severity, verified by a dynamic 

model. Observed differences between examined fault types 

and their manifestation will be discussed. A basis for future 

work on prognostics capabilities is laid by a varying degree 

of tooth root fault. 

1. INTRODUCTION 

Most existing Condition Indicators (CI) for gears are 

defined by a statistical analysis of various signals in time or 

cycle domains (Dempsey, Lewicky and Le, 2007; Lewicky, 

Dempsey and Heath, 2010). Most of these CI are various 

modifications of statistical moments (RMS, Kurtosis etc.). 

When applied to a gear pair time or cycle history, statistical 

CI differentiate between signals originating in undamaged 

and damaged gear pairs, but a difficulty in distinguishing 

between types of faults and fault location exists. In this 

work, an analysis of side bands of gear meshing frequencies 

is suggested as a tool for evaluation of gear health. Side 

bands analysis was proposed in other works as a tool for 

fault identification, and classification of side band groups 

was defined by Klein (2012). 

This work aims to show that a more detailed analysis of 

faults in gears can be harvested in the order domain. In this 

work a concept of a division of a fault effect into two 

aspects, ‘dynamic’ and ‘structural’, is introduced as a 

possible explanation of several observed differences 

between faults. 

Simulated vibration signals from a dynamic model, 

developed in the BGU HUMS lab, are compared with 

experimental results to help further understand the latter. 

Currently, the model is qualitative and purely dynamic, 

which means it does not account for the transmission path of 

the signal from its origin to the sensor. 

2. EXPERIMENTAL SETUP 

2.1. Setup 

A simple one stage spur gear system was used in this 

research (figure 1). The main advantage of such a setup over 

a real life complex transmission lies in easier interpretation 

of results, for better understanding of the basic physics of 

this problem. 

Standard (evolvent) profile spur gear pair, of module 2.5 

[mm] was used, 17T driving gear (pinion) and 49T driven 

gear. The pinion is seated on the “In” shaft. The 

transmission reduces the speed of the “Out” shaft containing 

the driven gear and the loading device. Both shafts are 

supported by two ball bearings each. 
Alexander Bliznyuk et al. This is an open-access article distributed 
under the terms of the Creative Commons Attribution 3.0 United States 

License, which permits unrestricted use, distribution, and reproduction 

in any medium, provided the original author and source are credited. 
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The experimental setup is driven by a 3 phase asynchronous 

AC induction motor. An open loop controller is used to set 

the frequency input of the motor. An optical encoder (24 

band/revolution) is used to record “In” shaft RPS during the 

run. 

The setup is torque-loaded via a friction belt-wheel pair. 

The belt is tensioned by a selectable amount of weights. The 

resulting side effect of bending of the shorter “Out” shaft 

due to radial stress is negligible. 

 

Figure 1. Experimental setup (schematic). 

A Dytran tri-axial accelerometer was used to measure the 

vibration in the proximity of the gear mesh point. The 

accelerometer was fixed below the pinion, with the X axis 

aligned as the tangent direction at the gear mesh point, Y as 

the radial direction and Z as the axial direction (see figure 

2). 

 

Figure 2. Accelerometer location and orientation. 

2.2. Experiment Conduct 

Experiments were conducted for each of six configurations: 

undamaged transmission (“Healthy”), a gear carrying a 

tooth face fault (“spall”), cracked pinion (“PI”), and three 

degrees of cracked gear (“GI”, “GII”, “GIII”). For each 

configuration, 20 experimental runs were performed, at four 

varying loadings of the friction belt and at five AC motor 

input frequency settings.  

2.3. Seeded Faults and Seeding Methods 

Two faults were selected for seeding in the study. The faults 

selected simulate common and essentially different real life 

faults, relatively simple to simulate both in the experimental 

and model environments. A tooth face defect was seeded in 

the gear, simulating a fault of the spall/pitting type. The 

single tooth defect (figure 3) was seeded by a removal of 

material from the tooth face at a portion of the tooth’s 

width. In similarity to the effect of a common spallation (or 

pitting) on tooth meshing, the presence of the fault reduces 

the contact stiffness of the tooth, but does not yet alter the 

general evolvent profile of the tooth.  

A crack was seeded in the root of a single tooth, simulating 

a fatigue crack. The fault was seeded by EDM (Electrode 

Discharge Machining) at three fault severity degrees (crack 

depth of 1.4, 2.1 and 3.5 mm of total tooth width of 4.8 mm) 

in the gear (figure 4) and at the first degree only in the 

pinion.  

 

Figure 3. Seeded spalling defect (a) encircled; (b) view of 

the damaged tooth. 

In this work, a tooth flaw is considered to have a dual effect 

on vibration signature. The “dynamic” component of the 

flaw affects the gear meshing at the point of defect, altering 

the dynamics behind the generated acceleration signal. The 

“structural” flaw alters the transmission path from the 

acceleration origin (gear mesh point) to the sensor.  

 

Figure 4. Seeded tooth root crack (a) healthy; (b) 1.4 mm; 

(c) 2.1 mm; (d) 3.5 mm. 

X 

Y Z 
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3. DATA ANALYSIS 

Experimentally obtained signals were analyzed in the 

workflow depicted in figure 5. The raw signal was 

resampled into the cycle domain, and then synchronously 

averaged. The resulting signal was then mapped into the 

order domain, and features were extracted from the PSD 

(Power Spectrum Density).  

3.1. Angular Resampling 

As for all realistic revolving machinery, speed (RPS) was 

only approximately constant during the experimental runs, 

with relatively slight deviations from a mean value. The 

resulting signal is classified as non-stationary, and has 

“smeared” spectral contents due to the non-constant 

frequency of the signal periodic components. To allow for 

an accurate representation in the order domain, angular 

resampling was applied to the signal’s time history.  

During angular resampling, the signal is resampled by 

constant rotation angle (cycle) increments rather than 

constant time increments as recorded originally. Signals that 

undergo angular resamping are said to be transferred from 

the ‘time’ domain to the ‘cycle’ domain. Simulated 

signatures (results of the dynamic model) are by definition 

of absolutely constant input RPS (classified as deterministic 

periodic signal), and therefore do not undergo this part of 

the processing. 

Experimental

RPS optical encoder 

recording

Raw Time History - 

Experimental

Order tracking 

(Resampling)

“In” shaft sync. 

averaging

“Out” shaft sync. 

averaging

“In” shaft PSD “Out” shaft PSD

GM,FM,AM extraction

 

Figure 5. Experimental data analysis workflow. 

3.2. Time Synchronous Averaging (TSA) 

The recorded data contains a substantial amount of data 

unrelated to the process of gear meshing. The purpose of 

synchronous averaging is the removal of all signal 

components asynchronous with the phenomena examined, 

such as bearing tones, noise etc. Two TSA were calculated 

for each signal, by the “In” and by the “Out” shaft speeds.  

3.3. Calculation Error 

RPS (Revolution per Second) measurement and decoding 

accuracy is a major error factor of calculated synchronous 

average and consequent PSD features. Inaccurate RPS 

causes smearing of PSD peaks due to averaging out of 

synchronous data, through inaccurate angular resampling. 

Although helpful with removal of noise and asynchronous 

components, a large amount of averaged cycles increases 

this error. To minimize differences between signatures, the 

length of measured data was set to be a constant amount of 

machine cycles (200) rather than a constant time interval. 

3.4. Order Feature Extraction 

The synchronously averaged signals were mapped from the 

cycle domain to the order domain by a windowed Welch’s 

periodogram. From the PSD (Power Spectral Density), three 

features were calculated. 

The gear mesh order is the z
th

 shaft harmonic (where z is 

number of teeth on shaft’s gearwheel). The sum of the first 

five harmonics of gear mesh amplitude in the PSD was 

defined as the GM feature. The GM is assumed to carry the 

energy resulting from the meshing of all (defective and 

healthy) teeth. The GM is identical whether it is calculated 

from the “In” or the “Out” shaft synchronous average. 

  



5

1

ˆ
h

s dffzhxGM  (1) 

As described in other publications (Klein, 2012), sidebands 

(SB) in the order domain on both sides of the main gear 

mesh frequency are caused by the amplitude and frequency 

modulations of the shaft speeds. These take the form of 

accompanying pairs of peaks, at constant spaces (equal to 

the modulating wave frequency), as can be seen in the 

example in figure 6. Two types of sidebands were observed 

in all signatures – those associated with the “In” shaft and 

those associated with the “Out” shaft.  

Sidebands groups that were considered in this study as 

features are: 

 AM (Amplitude Modulation) – the sum of amplitudes 

of the first two (as defined by Klein in 2012) pairs (n=1 

to 2) of SB around a GM harmonic: 

   
 


5

1

2

1

ˆ
h n

s dffnzhxAM  (2) 

 FM (Frequency Modulation) – sum of all the other 

available SB amplitudes that can be associated with the 

GM harmonic. The association limit in the order 

domain was set to be mid-way between adjacent GM 

harmonics (n=3 to z/2): 
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5

1

2/

3

ˆ
h

z

n

s dffnzhxFM  (3) 

Each feature (FM, AM) was calculated by the summation of 

all related peak amplitudes for the first five harmonics 

(denoted h) of GM. 

Individual peaks in the spectrum are associated with 

dynamic effects that originate from the machine rotation. 

Therefore they occur at discrete frequencies, which are 

multiplications of the machine rotation speed. Transmission 

path is composed of structural effects that are not dependent 

on rotation. Transmission attenuates or amplifies the 

dynamic peaks and all other frequencies, and is continuous. 

The curve in the spectrum (Klein, 2013) which represents 

the transmission path is illustrated in figure 7. 

 

Figure 6. Example of GM, FM, and AM manifestation in 

PSD of a pair of simulated runs (with\without flaw). In 

example shown, seeded fault can be observed in “Out” shaft 

FM sideband increase. 

 

 
Figure 7. Example of the manifestation of dynamic 

reciprocating effects as peaks (grey) over a general 

transmission path spectral curve (blue) 

3.5. Cycle Domain Analysis 

RMS and kurtosis were calculated for both synchronously 

averaged cycle domain (resampled) signals (by In and Out 

shafts). These were calculated both for the complete signal 

and for the residual (as defined by Dempsey et al, 2007). 

These moments are currently the basis for most common 

Condition Indicators for gears. 

3.6. Spherical Coordinates 

It is assumed that the transmission function alters both the 

magnitude and direction of the generated vibration. A 

spherical coordinates approach is proposed in this study 

(equation 4). Among the advantages of this approach is the 

measurement of fault effect on vibration magnitude, rather 

than one dimensional vibration changes which are an 

incomplete representation of the fault manifestation.  

Spherical magnitudes were calculated from the tri-axial 

signal (equation 4).  

 
3222 , Raaaaa zyx   (4) 

The same data analysis that was performed for the recorded 

separate axis was repeated for the vector magnitude of the 

spherical coordinates.  

Spherical magnitudes analysis allows the consideration of 

vibration magnitude only, detached from vibration direction.  

4. DYNAMIC MODEL 

Following the procedure described in our previous article 

(Dadon et al 2014), a qualitative dynamic model of a spur 

gear transmission is developed in order to describe the 

dynamic vibration response of the experimental gearbox 

system. The following description of the model is concise, 

since the modeling is not the primary subject of this article.  

The experiment system (figure 1) was idealized and all of its 

components were incorporated in the dynamic model, as 

shown in the scheme in figure 8. A constant input velocity 

and external applied load are the boundary conditions, 

which are chosen to simulate the experimental settings.  

The interaction of a gear pair is modelled by linear springs 

with a varying mesh stiffness, which is dependent on the 

angular position of the gears. The stiffness of a spur gear 

tooth is determined by considering the strain energy, 

Hertzian contact and gear body-induced tooth deflection due 

to contact of teeth (Chaari, Baccar, Abbes and Haddar, 

2008; Chen & Shao, 2011). Two directions of transverse 

displacements are examined, radial and tangential. 
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Figure 8. Spur gear system model 

The coupled differential equations of the non-linear multi 

degree of freedom (MDF) system, describing the motion of 

the specified system, are derived from the Euler-Lagrange 

equations. The general form of the equations is therefore 

            tFufuCuM exS    (5) 

Where u  is the vector of generalized coordinates, given by 

  T
bmpgyxyxu  ,,,,,,, 2211  (6) 

 M  is a diagonal mass matrix,   tFex
 is the external 

excitation force vector and   ufS
 is a non-linear relative 

displacement function. The non-linearity is a result of the 

structural stiffness matrix, particularly the variable gear 

mesh stiffness. The coupled differential equations are solved 

using Newmark's numerical method (Chopra, 2001).  

The effect of described seeded tooth faults on the dynamic 

response is expressed by alteration of the gear mesh 

stiffness. The geometric form (type, location and size) of a 

fault defines the gear mesh stiffness alterations as function 

of mesh angle. In this manner only the dynamic effects of a 

fault are considered. Since the transmission path effects 

between the signal origin and the sensor are not modelled, 

structural effects of a fault are not accounted for. 

Results obtained via the dynamic model are titled in this 

paper ‘simulated results’. 

5. RESULTS 

Both experimental and simulated (model) results are 

described in this chapter. Typical results are displayed in the 

following figures. It was found that available loading 

capability in current experimental setup is negligible when 

compared with the effects of varying rotation speed, 

therefore all charts are displayed as a function of varying 

RPS. 

5.1. Statistical Moments (Cycle Domain Analysis) 

Spall fault was manifested in RMS increase in both residual 

and ordinary TSA signals of the In shaft. The spall fault was 

not manifested in kurtosis. 

First degree of gear crack was not detected by cycle domain 

analysis (RMS and kurtosis). The pinion crack was detected 

primarily by an increase in RMS of the Out shaft, more 

pronounced in the residual signal. 

Second and third degree gear cracks were very similarly 

detected by an increase in RMS of both shaft. 

To conclude, except gear crack I, all faults were detected by 

RMS. Kurtosis remained unchanged by all types of seeded 

faults. 

5.2. Order Features 

The GM feature was not found to be a good fault indicator, 

but was the prime reactant to load changes, in good 

accordance with the simulated results. The AM feature was 

anticipated by the simulated results to be a secondary fault 

indicator, but in experiments was overwhelmingly affected 

by shaft imbalance and gear eccentricity. This was also 

verified by simulated runs with increased imbalance. FM 

seems to be the primary feature for consideration. 

5.3. Fault Detection 

Two types of seeded faults were studied, as described in 

chapter 2. The spall fault was seeded in the gear. A tooth 

root crack was seeded in both the gear and the pinion 

(separate experiments). It was observed that all faults were 

detected primarily in the FM feature.  

As can be observed in figure 9, all seeded faults (gear spall, 

gear crack, pinion crack) cause a significant change in FM 

(In, Out or both). The most noticeable fault proved to be a 

pinion tooth root crack, with a significant increase of FM 

Out (Tangential).  

Spall fault caused an increase of In shaft FM. A minor 

increase of FM Out was observed. 

Generally, all fault manifestation increased with growing 

RPS. The dominant axis for fault manifestation was the 

tangential, thus chosen for display in all figures. 

In simulated results, similar curves of FM increase vs. RPS 

were calculated.  Simulated FM of shaft not carrying the 

faulty gearwheel (e.g., Out for PI) exhibited the same 

behavior but at substantially lower amplitudes (thus 

indiscernible in figure 10). 

5.4. Fault Type Diagnosis 

As can also be seen in figure 9, a variety in FM response to 

seeded flaw exists. For example, substantial increase in FM 
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Out is associated with crack (pinion or gear) and not with 

spall. 

A more significant difference between crack and spall faults 

is in the overall spectrum curve, representing the structure 

effects. The spall fault has a minor structural manifestation, 

and is mostly a dynamic fault, whereas cracks have a 

significant structural effect on the vibration signal travelling 

from the origin to the sensor. Therefore crack faults alter the 

transmission path more than spall faults. This alteration of 

the transmission path (and as a result, the overall spectrum 

curve) may offer a tool to differentiate between the two fault 

types. 

 

Figure 9. Increase or decrease of Experimental FM 

Tangential (In & Out) as a result of, (a) gear crack, (b) 

pinion crack, (c) gear spall 

 

Figure 10. Increase of Simulated FM (In & Out) as a result 

of Spall, gear crack and pinion crack.  

 

In figure 11(a), a damaged (spall) and healthy frequency 

domain PSD of similar RPS and load conditions are shown 

(tangential axis). The underlying transmission function 

curves of the healthy and damaged signatures are similar, 

and the main differences are in the side bands amplitudes of 

the 1
st
, 2

nd
 and 3

rd
 harmonics of the gearmesh frequencies. In 

comparison, in figure 11(b) four runs (healthy, GI , GII, 

GIII) are shown. In this case, the transmission functions 

vary significantly, with major differences arising above 850 

Hz. Since the only difference between the runs is the 

severity of the crack, the fault effect on transmission 

function (expressed by overall spectrum curvature) is hereby 

shown. 

5.5. Identification of Faulty Machine Gear Wheel 

In this work, identification of faulty machine gear wheel is 

not achieved. Nevertheless, a suggestion arises as to a 

possible research direction for identification of fault 

location. 

Crack location (gear/pinion) may be deduced from the 

effects of the structural aspect of the fault. As already 

discussed, FM related to shaft carrying the faulty wheel is 

attenuated in comparison with FM of shaft not carrying the 

faulty wheel. As can also be seen in figure 9, for higher RPS 

(22,26) FM related to faulty shaft is expressed in downward 

sloping (concave) curve, while the healthy shaft’s FM has 

an upward sloping (convex) curve response. While the latter 

fits curvature predicted by simulations for all faults at all 

locations, the former does not. 

FM feature is extracted at specific (constant) locations in the 

order domain, while the system transmission function is 

constant in the frequency domain. Changing RPS causes a 

shift of the order domain in relation to the frequency 

domain. Ergo, curves of FM as function of RPS depend on 

transmission function. A change in these curves due to 
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introduction of a fault suggests an alteration of transmission 

function by the seeded (structural) fault. 

Signals that travel from the mesh point (vibration origin) 

through the healthy gearwheel are unaffected by the crack, 

while signals travelling through the cracked gearwheel 

experience a modified transmission path due to the crack. 

This suggests that FM In is not affected by the structural 

element of the crack, while FM Out is. 

The nature of FM curve as a function of RPS is a property 

of initial (healthy) transmission and machine in question, 

and is therefore a case specific phenomenon. It may be 

possible to differ between gear and pinion cracks in this 

manner in the future, but further study and modeling of the 

transmission function is required to generalize and verify 

this special case observation.  

5.6. Fault Severity 

The fault is seeded in the gear, seated on the Out shaft. As 

can be seen in figure 12(a), a gradual increase in FM In side 

bands is obvious as tooth root crack propagates, making it 

possible to assess fault severity levels. All curves exhibit 

similar RPS dependency of a rising slope (concave). FM In 

dependence on RPS fits simulated results for FM Out 

(figures 12, 13). 

 FM Out response to fault severity is a notable 

increase from healthy to GI, an additional increase 

to GII, and an unexpected drop in values for the 

maximal severity GIII. 

 FM Out (RPS) curves are of a different (convex) 

nature, especially for GIII.  

Both these properties of the FM Out were not anticipated by 

the simulated results and are not observed in FM In. As 

explained in chapter 5.5, this may be reasoned by the 

structural effect of the fault on the transmission function.  

In cycle domain analysis, residual signals are dominated 

entirely by the FM feature (with GM and AM removed). As 

to be expected, very similar figures regarding crack severity 

were achieved by a calculation of the RMS of the residual of 

synchronously averaged signals (by In and Out shafts). 

Simulated FM In response to crack on the Out shaft gear 

was very similar to simulated FM Out (shown in figure 13), 

at lower amplitudes. 

6. DISCUSSION 

6.1. Order Domain Analysis Capabilities 

In all acquired results, the FM feature was the most reliable 

indicator of the presence of a seeded fault. All faults were 

readily discernible in a change of FM. Varying load had a 

less significant effect on FM increase, perhaps due to 

limited loading capability of available apparatus. It was 

shown that higher RPS produces significantly better fault 

expression in FM, in accordance with simulated results. 

Distinguishing between different faults and fault location 

may be accomplished in the future by observations in the 

order domain as depicted in chapter 5. This requires further 

study of the transmission function alteration by the seeded 

fault (‘structural’ aspect of the fault), and additional study 

cases before any definitive conclusions can be made. 

 

(a) 

(b) 

Figure 11. PSD (tangent.) of frequency domain, (a) spall vs. healthy, (b) various degrees of cracked gear 
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Figure 12. Increase of FM Tangential (a) In (b) Out at three 

levels of crack (gear). 

 

Figure 13. Increase of FM Out at three levels of crack – 

Simulated results.  

A growing severity of a gear tooth root crack was 

manifested in FM In (not fault carrying shaft), with values 

of side band increasing in an obvious correlation to crack 

size. The fault carrier shaft (Out) showed an unexpected 

drop of FM for crack III (figure 12(b)). 

6.2. Simulated results comparison 

Two discrepancies are observed in the simulated versus 

experimental results. 

FM of shaft not carrying the fault is almost idle in the 

simulated results. In the actual measurements FM of both 

shafts was affected by the fault. Crack deepening causes a 

similar response in FM Out (figure 13) as observed in the 

other shaft in experimental results (figure 12(a)). A coupled 

response of both shafts to all faults is observed in 

experiments. This coupling is much weaker in the dynamic 

model equations.  

Current version of the dynamic model does not account for 

the effects of transmission function on the dynamic response 

of gear meshing. Furthermore, the alteration of transmission 

function caused by faults is not included in the model. In 

regards to the distinction between dynamic and structural 

faults, the model currently deals with the ‘dynamic’ 

component only. It is likely that most of the discrepancies 

between simulated and actual results are explained by this 

deficiency. 

6.3. Spherical vs. Cartesian Coordinates 

Most of the extracted features and trends discussed were 

visible in the Cartesian (tangent, radial, axial) separate axis 

analysis, but crack fault manifestation was not consistent: 

some experimental runs showed an increase in tangential, or 

radial axis, with no obvious pattern as to which axis 

responds to the fault and under which conditions. In several 

runs, only one or two out of the three axis responded to the 

fault.   

Representation in spherical coordinates (vibration vector 

magnitude analysis) enhanced the results and improved 

consistency and similarity between runs, with overall 

magnitude FM behaving in a consistent manner over 

varying RPS (examples in figures 14, 15). 

 
Figure 14. Spherical and Cartesian coordinates FM Out. 

Showed are FM Out sums related to #1 harmonic only. 
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Figure 15. Spherical and Cartesian coordinates FM Out. 

Showed are FM Out sums related to #1 harmonic only. 

In the scope of this work, only magnitudes were considered 

and analyzed. Some information is lost in the transition 

from Cartesian coordinates, specifically the effect of fault 

on vibration vector orientation.  

A possible solution to the specified problem, and a subject 

of further research may be the same spectral analysis 

applied to an angular property of the acceleration vector. 

In figure 16 the same information as in figure 11 is shown 

for the spherical magnitudes. It can be seen that 

transmission function of the magnitudes is less affected by 

the introduction of gear crack than the transmission function 

in the tangential direction only. This suggests that the 

alteration to the transmission function in shown bandwidth 

is mainly in changing the direction of the vibrating signal 

and not by introduction of natural frequencies (local 

amplifications of vibration). Attenuation of tangential signal 

for a certain frequency, for example low amplitudes for 

healthy tangential signature around 950 Hz, is compensated 

by high radial and/or axial amplitudes around 950 Hz, and 

thus spherical magnitude is unaffected. This hints to the 

possible importance of the analysis of acceleration (unit) 

vector direction oscillation. 

7. CONCLUSION 

Order domain features, and specifically FM, may be utilized 

as a supplementary or even a leading fault indicator. Crack 

size seems to be directly correlated with FM side bands 

energy.  

The separation of fault effect on vibrations to ‘structural’ 

and ‘dynamic’ components was defined. The same approach 

may be utilized in the analysis of the signal. An extraction 

of the transmission path curve from the PSD may allow for 

a separate analysis of fault effect on transmission 

(‘structural’) and on features extracted from a PSD without 

a transmission function (‘dynamic’). The features calculated 

in this work were not separated in this manner, and the 

effects of one and the other intertwined.  

A deeper understanding and analysis of the ‘structural’ 

effects of a flaw may lead to better discrimination between 

types of faults and identification of faulty gear wheel. 

Current simulated results are purely ‘dynamic’, as explained 

in chapter 6. A Finite Discrete Element scheme or another 

numeric supplementary tool can be used to simulate the 

‘structural’ aspect, to achieve a more complete simulated 

picture. 

A continuous dialogue between an analytic model approach 

and actual experiments analysis is crucial when attempting 

to understand the physical nature of the problem at hand. 

Discrepancies between the simulated and experimental 

results tend to originate from assumptions made in the 

design of the model. This idea facilitates the identification 

of the origins of these features. 

The advantages of proposed spherical coordinates 

(magnitude and direction) were exhibited. The spherical 

coordinates enhance results which are random in direction 

but consistent in overall vector magnitude. Faults that 

primarily alter the direction of a vibration may require the 

more traditional Cartesian approach, or an analysis of the 

directional component of the spherical coordinates. 
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NOMENCLATURE 

GM energy summation of the gear mesh feature 

h harmonic index 

   Fourier transform of x 

z number of teeth on gearwheel 

fs shaft frequency 

df frequency\order resolution 

AM energy summation of the amp. modulation feature 

n sideband index 

FM energy summation of the freq. modulation feature 

   acceleration vector in the time domain 

ax Tangential component of the acceleration vector 

ay Radial component of the acceleration vector 

az Axial component of the acceleration vector 

REFERENCES 

Dempsey, P. et al., (2007). Investigation of Current 

Methods to Identify Helicopter Gear Health. NASA, 

Glenn Research Center, Cleveland, Ohio, USA. 

Lewicky, D. et al., (2010). Gear Fault Detection 

Effectiveness as Applied to Tooth Surface Pitting 

Fatigue Damage, Gear Technology Nov./Dec. 2010 

pp.48-59, Randall Publications LLC 

Klein, R.,(2012). Condition Indicators for Gears. R.K. 

Diagnostics, Annual Conference of Prognostics and 

Health Management Society 2012, Gilon, Israel. 
Klein, R.(2013).  Comparison of Methods for Separating 

Excitation Sources in Rotating Machinery. R.K. 

Diagnostics, Gilon, Israel. 

Dadon, I., Bliznyuk, A., Klein, R., & Bortman, J. (2014). 

Towards a reliable non-linear dynamic model of 

damaged gear transmission. The Eleventh International 

Conference on Condition Monitoring and Machinery 

Failure Prevention Technologies, June 10-12, 2014 

Manchester, UK.  

Chaari, F., Baccar, W., Abbes, M. S., & Haddar, M. (2008). 

Effect of spalling or tooth breakage on gearmesh 

stiffness and dynamic response of a one-stage spur gear 

transmission. European Journal of Mechanics-A/Solids, 

Vol 27, pp 691-705.  

Chen, Z., & Shao, Y. (2011). Dynamic simulation of spur 

gear with tooth root crack propagating along tooth 

width and crack depth. Engineering Failure Analysis, 

Vol 18, pp 2149-2164. 

Chopra, A. K. (2001). Dynamics of Structures. USA: 

Prentice Hall. 

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

160



Characterization of Fault Size in Bearings 

Matan Mendelovich 1, Yitschak Sanders 1, Gideon Kogan 1, Mor Battat 1, Dr. Renata Klein 2, and Prof. Jacob Bortman 1 

1 Laboratory for Health, Department of Mechanical Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer 

Sheva 84105, Israel 

matan.mendelovich@gmail.com 

jitschaks@gmail.com 

ggkogan@gmail.com 

morbat@post.bgu.ac.il 

jacbort@gmail.com 

2R.K. Diagnostics, Gilon, P.O.B. 101, D.N. Misgav 20103, Israel 

Renata.Klein@RKDiagnostics.co.il 

 
ABSTRACT 

Bearings are important components in rotating machines. An 

initial small damage in the bearing may cause a fast 

degradation, which may lead to the machine breakdown. The 

health condition of bearings can be monitored using proven 

vibro-acoustic methods effective for detecting bearing faults. 

However, the existing bearing health indicators do not 

provide a reliable estimation of the fault characteristics, such 

as fault size and fault location. As a result, the ability to assess 

the severity of the bearing damage and to make maintenance 

decisions is limited. 

The presented study is a part of an ongoing research on 

bearing prognostics, aimed to improve the understanding of 

the effects of fault size on the bearing dynamics. The research 

methodology combines dynamic modeling of the faulty 

bearing with experimental validation and confirmation of 

model simulations. 

In the presented study, small faults (starting from 0.3 mm), 

simulating incipient damage are generated at increasing sizes 

by an electrical discharge machine. The recorded vibration 

data is then analyzed and compared to the vibration 

signatures predicted by the model. The experimental and the 

simulation results add new insights on the manifestation of 

the size of the fault and possible indicators of the damage 

severity. 

1. INTRODUCTION 

The ability to assess the bearing condition and to estimate its 

remaining useful life (RUL) is a key factor for machinery 

prognostics.  

Our study is focused on estimating the position and size of 

the fault, based on the vibration analysis of the bearing. This 

study continues a former research that was conducted in BGU 

PHM lab aimed to find indications in the vibration signature 

of the size of the fault (Kogan, Shaharabany, Itzhak, Bortman 

& Klein, 2013). In the current study, we seeded groove 

shaped faults, of width between 0.3 and 1.2 mm into the 

outer-race of the bearing, which simulates realistic faults that 

often can be found in damaged bearings. 

A 3D dynamic model (Kogan, Bortman, Kushnirsky, & 

Klein, 2012) was used to simulate faults and to study the 

effects of fault size and location on the vibration signatures. 

The analysis of the simulations results supported the 

interpretation of the experimental results. 

This research was done in continuation to previous studies in 

order to improve the fault size estimation (Elforjani & Mba, 

(2010) and Sawalhi & Randall, (2011)). 

2. EXPERIMENT DESCRIPTION 

The experimental system includes two subsystems: a generic 

test rig (as shown in Fig.1) and a measurement unit. The 

generic test rig includes an AC motor, one shaft with two 

flywheels on it, mounted on two bearings.  

The measurement unit includes a data acquisition system that 

is connected to an optic sensor and an accelerometer, the 

optic sensor measures the rotating speed of the shaft, and the 

accelerometer measures the vibration signals in three 

directions and is placed on the tested bearing housing (the 

right bearing in Fig 1).  

Each test run was started with shaft alignment. The shaft 

speed was measured using Keyence optic sensor and 

vibrations were measured using a Dytran 3263A2 tri-axial 
Matan Mendelovich et al. This is an open-access article distributed under 
the terms of the Creative Commons Attribution 3.0 United States License, 

which permits unrestricted use, distribution, and reproduction in any 

medium, provided the original author and source are credited. 
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accelerometer. The data was acquired during 60 seconds with 

a sample rate of 25000 [
𝑠𝑎𝑚𝑝𝑙𝑒

𝑠𝑒𝑐
]. 

 

Figure 1. The test rig. 

Six different bearings were monitored, a healthy bearing and 

five others with different fault sizes. Each bearing has been 

monitored in two fault locations, inside and outside the 

loading zone. The different fault locations were monitored in 

order to learn about the influence of the load applied on the 

fault. 

2.1. Test configuration notation 

The code of test runs includes 2 variables - the bearing 

number (noting the fault size) and the location of the fault. 

For example – "4B" is a bearing with a 0.61[mm] fault size, 

located 90° to the center of its loading zone. Table 2 

summarizes the bearing parameters. 

Table 1. Test configuration notation 

Bearing 

number 

Fault size 

[mm] 

Location A 

loading 

zone 

Location B 

𝟗𝟎𝟎 to the 

center of  the 

loading zone 
1 0 1A - 

2 0.31 2A 2B 

3 0.39 3A 3B 

4 0.61 4A 4B 

5 0.78 5A 5B 

6 1.12 6A 6B 

 

Table 2. Bearing properties 

Inner diameter 40[mm] 

Outer diameter 80[mm] 

Width 18[mm] 

No. of balls 9 

FTF 0.4X 

BSF 2.4X 

BPFO 3.6X 

BPFI 5.4X 

3. FAULT GENERATION PROCESS 

In order to analyze the vibration signature of faulty bearings, 

we decided to use bearings that can be disassembled and 

reassembled without damaging any of the bearing parts 

during the process. 

SKF ETN9 bearings having a "snap" type cage (see Figure 2) 

that can be removed from the bearing without damage.  

 

 

Figure 2: SKF ETN9 "snap" type cage 

After the bearing disassembly a fault was introduced in the 

outer ring using an EDM machine with customized copper 

electrodes (see Figure 3). The faults are thin groove shaped 

in various widths (see table 1). 

 

 

Figure 3: Bearing’s outer race in the EDM process 

 

 

Figure 4: Outer race with a groove shaped fault 
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4. MODEL DESCRIPTION 

A 3D dynamic ball bearing model was developed to study the 

effect of faults on the bearing dynamic behavior. The aim of 

the model is to calculate the dynamic response of a bearing 

with a wide spectrum of faults. The algorithm was 

implemented numerically in MATLAB. 

The dynamics, for each bearings component, are based on the 

classical dynamic equations 

Σ𝐹𝑓
⃗⃗  ⃗ + Σ𝐹𝑛

⃗⃗  ⃗ = 𝑚𝑎 , Σ(�⃗� × 𝐹𝑓
⃗⃗  ⃗) = 𝑰�⃗⃗� ̇𝑥𝑦𝑧 + Ω⃗⃗ × (𝑰ω⃗⃗ )     (1) 

where 𝐹𝑓 , 𝐹𝑛  are respectively the friction and the normal 

forces that act on a body, with mass 𝑚 and acceleration 𝑎 ; 

and Σ(�⃗� × 𝐹𝑓
⃗⃗  ⃗) is the total moment of force acting on a body 

with a moment of inertia tensor  𝑰, angular velocity ω⃗⃗ ; body 

system 𝑥𝑦𝑧,  with angular velocity Ω⃗⃗ ; and rotational 

acceleration, within the body system, �⃗⃗� ̇𝑥𝑦𝑧. 

 
Figure 5. Simplified model algorithm 

 

The relative velocity equation 

𝑣𝑏⃗⃗⃗⃗ = 𝑣𝑎⃗⃗⃗⃗ + ω⃗⃗ × 𝑎𝑏⃗⃗⃗⃗    (2) 

Where 𝑣𝑥⃗⃗⃗⃗  is the velocity of the body at 𝑥  and ω⃗⃗  is the angular 

velocity of 𝑎𝑏⃗⃗⃗⃗ . 

The presented equations describe the motion of all the 

modeled bodies and are solved using time steps (see Fig. 5). 

In each time step, the solution of the equations is based on the 

previous time step solution, assuming a constant acceleration.  

The dynamic model was validated by comparison to 

analytical solutions and known bearing response to local 

defects (Kogan, Bortman, Kushnirsky & Klein, 2012). 

5. DATA ANALYSIS 

The analysis process is similar for both the data acquired 

from the experiments and from the model, and it is described 

in figure 6. The resampled data rate is 2048 samples/cycle. 

The envelope of the acceleration data is calculated without 

filtering and the order domain of the envelope is achieved by 

calculating the ‘Power Spectral Density’ of the data, using 32 

frames, which gives a resolution of 0.0156 order. 

Figure 6: Data analysis process for the experiments and for 

the model data. 

 

Since the model is simulating the acceleration on the bearings 

outer race without considering the transmission function to 

the sensor, we compared the order representation of the 

simulated data envelope and the order representation of the 

experimental data envelope. The order of the envelope 

reflects mainly the effects of the bearing filtering out most of 

the irrelevant data such as the transmission function and the 

effects of other rotating components.  

Due to the simplicity of the test rig the bearings are the source 

for the vast majority of the peaks expected in the order of the 

envelope .Therefor, RMS of the order representation of the 

envelope is expected to provide a reliable indicator for the 

fault size. The RMS was calculated up to the 25th order and 

includes the first six BPFO harmonics and their sidebands. 

The RMS level of the envelope of each of the runs was 

calculated. Then mean RMS value of each test configuration 

was calculated, average of three runs in similar conditions. 

Consequently, each configuration of the system (in each 

direction) is represented in the relevant graphs by a single 

mean value RMS. 

6. RESULTS 

6.1. Envelope spectrum 

The fault pattern in the envelope spectrum is expected to 

contain peaks at the ball pass frequency over the outer race 

(BPFO) as well as lower sidebands caused by modulation of 

the shaft speed (McFadden & Smith, (1984)). Sidebands are 

expected due to imperfections of the test system such as 

unbalance and misalignment. Therefore, unbalance and 

normal radial clearance where simulated in the model. 

The pattern was confirmed in the envelope order spectra of 

the test runs with faulty bearings and in the order spectra of 

the model. An example of an order spectrum of the envelope 

of bearing 1A (fault size 0.31 mm in the loading zone) is 

shown in Figures 7. Figure 8 contains the envelope order 

spectrum for the same fault size and location, as analyzed 

from the vibration signature of the experiment. In both 

Acceleration Resampling Envelope Spectrum
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figures the BPFO, at order 3.6, and its harmonics are 

dominant, and numerous sidebands corresponding to the 

shaft speed can also be observed. It should be noted that the 

sidebands are lower by 2 degrees of order compared to the 

BPFO harmonics. 

 
Figure 7. Model based results: order representation of the 

envelope of bearing with a 0.31mm fault located at the 

center of the loading zone. The triangles mark the BPFO 

harmonics and the related sidebands. 

 

 

Figure 8. Experimental results: order representation of the 

envelope of bearing with a 0.31mm fault located at the 

center of the loading zone. The triangles mark the BPFO 

harmonics and the related sidebands. 

 

It is notable that both the data from the experiments and from 

the model have the same general pattern.  

6.2. Fault size and location – model 

The model results, RMS levels of the envelope up to the 25th 

order as a function of fault size, are displayed in Figures 9 

and 10. As can be seen in Figure 9, the RMS level of the 

envelope increases with the fault size. The RMS levels in the 

vertical direction of a fault located in the loading zone is 

significantly higher compared to the horizontal acceleration 

because the impulse generated by a ball passing the faulty 

surface is in the vertical direction. When the fault is located 

at 90𝑜 to the center of the loading zone small forces (Sawalhi 

& Randall, (2008)) are applied in the vertical direction and 

the RMS levels remain constant. 

 

 
Figure 9. Model based results: RMS levels of envelope 

acceleration as a function of the fault size. 

 

 
Figure 10. Model based results: RMS levels of envelope 

acceleration magnified to emphasize the prediction of a fault 

located at 90°. 

 

It can also be observed that when the fault is located at 90𝑜 , 

the RMS levels for faults above 2mm, in the horizontal 

direction are higher than the RMS levels in the vertical 

direction.  The same conclusion was found in a former 

research (Kogan, Shaharabany, Itzhak, Bortman & Klein, 

2013). The behavior of RMS levels for faults located at 90°, 

as predicted by the model, can be better observed in Figure 

10, magnified in the appropriate range. For small size faults, 

up to 0.78mm the RMS levels are in the same range, whereas 

for bearings with larger faults, the RMS levels in the 
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horizontal direction are indeed getting higher compared to the 

RMS levels in the vertical direction (see Figure 10).  

According to the results, it seems that the method proposed 

in Kogan, et al, 2013, which suggests to use the ratio between 

the horizontal and the vertical RMS as an indicator of the 

fault location is not applicable for small faults.  

Since the model calculates the accelerations at the location of 

the fault in the outer race, the RMS levels differ for bearings 

without faults. In general, the levels of the vibrations at the 

different locations are not comparable.  

6.3. Fault size and location – experimental results 

The experimental results, RMS levels of the envelope up to 

the 25th order as a function of fault size, are displayed in 

Figures 11 and 12. In general, the trend of RMS level of the 

envelope corresponds to the defect size both in the horizontal 

and vertical directions. In addition, as seen in Figure 11, when 

the fault is located at the center of the loading zone, the 

envelope RMS levels in the vertical direction are higher than 

the RMS levels in the horizontal direction, as predicted by the 

model.  

When the fault is located outside the loading zone at 90𝑜, the 

RMS levels in the horizontal direction are in the same range 

as in the vertical direction (see Figure 12). It can also be noted 

that the RMS levels in the horizontal direction are slightly 

lower than the RMS levels in the vertical direction, except for 

the bearing with fault size 1.12mm, as predicted by the 

model.  

 

 
Figure 11.  Experimental based results: RMS levels of 

envelope acceleration as a function of the fault size when 

fault located at the center of the loading zone (location “A”). 

 

When the fault is at the center of the loading zone, the runs 

with fault size 0.78mm seems to be out of the general trend. 

It was found that the background level of the relevant tests 

was extremely low compared to the other tests (up to three 

decades lower). The reason for this might be the initial 

alignment of the test kit, since shaft modulation is a result of 

unbalance and misalignment. Another explanation for the 

difference in the background level might be a slightly 

different structure of this particular bearing compared to the 

other defected bearings. 

 

 
Figure 12. Experimental results of acceleration RMS vs 

fault size when fault located 90𝑜  to the loading zone 

(location “B”). 

6.4. Experiments and model results comparison 

The general pattern of the RMS levels as a function of fault 

size and location is similar in the model and the experiments. 

Generally, the RMS levels increase as the fault size increases, 

and the relations between the horizontal and the vertical RMS 

levels are similar.  

RMS levels of the experimental results for a fault in and out 

of the loading zone were in the same range. However, the 

model shows a big difference in the RMS levels between the 

two locations. The reason for the difference is the transfer 

function from the fault to the sensor, which is not taken into 

consideration in the model simulations. Moreover, in the 

model the RMS levels represent the acceleration at two 

different locations on the outer race. In the experiments, both 

fault locations are measured at the same location on the 

bearing housing. The transmission paths from the two 

locations on the outer race to the sensor differ in the ranges 

of vibration levels. 

7. CONCLUSIONS 

A 3D ball bearing dynamical model was compared to test rig 

experiments in several fault sizes and locations. It was found 

that the behavior of the acceleration RMS levels as a function 

of the fault size are similar in the experimental and the model 

results. In both cases, the general RMS level increases. In 

addition, a new insight was found about the relation between 
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the vertical and the horizontal vibration levels as function of 

fault size and fault location. 

It was found that the model provides a good prediction about 

trends and pattern of localized faults. This fact allows us 

continue the study of the effects of fault size and location 

using the model. 

NOMENCLATURE 

𝐹 Force 

𝐼 Moment of inertia 

𝑅 Location vector 

𝑎 Acceleration 

𝑚 Mass 

v Velocity 

Ω Body system angular velocity 

ω Angular velocity 

REFERENCES 

Sawalhi, N., & Randall, R. B. (2008). Semi-automated 

bearing diagnostics – three case studies. School of 

Mechanical and Manufacturing Engineering. The 

University of New South Wales, Sydney, Australia. 

McFadden, P. D., & Smith, J. D. (1984). Vibration 

Monitoring of rolling element bearing by the high-

frequency resonance technique - a review, Tribology 

international, Vol. 17, pp 3-10. 

M. Elforjani, D. Mba. (2010). Accelerated natural fault 

diagnosis in slow speed bearings with Acoustic 

Emission. Engineering Fracture Mechanics 77 (2010) 

112–127. 

N. Sawalhi, R.B. Randall. (2011). Vibration response of 

spalled rolling element bearings: Observations, 

simulations and signal processing techniques to track 

the spall size. Mechanical Systems and Signal 

Processing 25 (2011) 846–870 

Kogan, G., Bortman, J., Kushnirsky, A., & Klein, R. (2012). 

Ball bearing modeling for faults simulation, Ninth 

International Conference on Condition Monitoring and 

Machinery Failure Prevention Technologies, no. 1, pp. 

1–8. 

Kogan G., Shaharabany S., Itzhak I., Bortman J. & Klein R., 

(2013). Towards Model Based Prognostics - 

Characterization of Fault Size in Bearings, Annual 

Conference of the PHM Society 2013. 

 

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

166



 A Vibration-Based Approach for Stator Winding Fault Diagnosis of 

Induction Motors: Application of Envelope Analysis 

Chao Jin
1
, Agusmian P. Ompusunggu

2
, Zongchang Liu

1
, Hossein D. Ardakani

1
, Fredrik Petré

2
, and Jay Lee

1
 

1
NSF I/UCRC Center for Intelligent Maintenance Systems (IMS), Cincinnati, OH, 45221,USA 

jinco@mail.uc.edu 

liuzc@mail.uc.edu 

davarihn@mail.uc.edu 

jay.lee@uc.edu 

2
Flanders’ Mechatronics Technology Centre (FMTC), Heverlee, 3001, Belgium 

agusmian.ompusunggu@fmtc.be 

frederik.petre@fmtc.be 

 
ABSTRACT 

Induction motors are usually considered as one of the key 

components in various applications. To maintain the 

availability of induction motors, it calls for a reliable 

condition monitoring and prognostics strategy. Among the 

common induction motor faults, stator winding faults are 

usually diagnosed with current and voltage signals. 

However, if the same performance can be achieved, the use 

of vibration signal is favorable because the winding fault 

diagnostic method can be integrated with bearing fault 

diagnostic method which has been successfully proven with 

vibration signal. Existing work concerning vibration for 

winding faults often takes it either as auxiliary to magnetic 

flux, or is not able to detect the winding faults unless 

severity is already quite significant. This paper proposes a 

winding fault diagnostic method based on vibration signals 

measured on the mechanical structure of an induction motor. 

In order to identify the signature of faults, time synchronous 

averaging was firstly applied on the raw vibration signals to 

remove discrete frequency components originating from the 

dynamics of the shaft and/or gears, and the spectral kurtosis 

filtering was subsequently applied on the residual signal to 

emphasize the impulsiveness. For the purpose of enhancing 

the residual signal in practice, a demodulation technique 

was implemented with the help of kurtogram. A series of 

experiments have been conducted on a three-phase 

induction motor test bed, where stator inter-turn faults can 

be easily simulated at different loads, speeds and severity 

levels. The experimental results show that the proposed 

method was able to detect inter-turn faults in the induction 

motor, even when the fault is incipient. 

1. INTRODUCTION 

Three-phase induction motors play a vital role in many 

engineering areas such as high-speed trains, electric 

vehicles, industrial robots, and machine tools, etc. 

Unexpected failures of induction motors occurring in these 

machines can thus lead to excessive downtime and large 

losses in terms of maintenance cost and lost revenue. 

Condition-based maintenance (CBM) and predictive 

maintenance (PdM) have been proven to be a maintenance 

strategy that can reduce unscheduled downtime and 

maintenance cost. In CBM, one does not schedule 

maintenance activities for machines merely according to 

history of maintenance records and fixed maintenance rules, 

but also based on the prediction of machine health 

conditions from sensor data, so that the waste owing to 

redundant maintenance and failures will be avoided. Such 

maintenance strategy requires the technologies of: (a) on-

line condition monitoring, (b) fault detection and diagnosis, 

and (c) prognostics.  

 

Figure 1. Statistics of failure modes in induction motors 

Chao Jin et al. This is an open-access article distributed under the terms 

of the Creative Commons Attribution 3.0 United States License, which 
permits unrestricted use, distribution, and reproduction in any medium, 

provided the original author and source are credited. 
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Figure 1 shows the statistical distribution of common failure 

modes typically occurring in induction motors. Rolling-

element bearing and stator winding failures due to insulation 

degradation contributes to 80% of the causes for unexpected 

breakdown in induction motors (Jover Rodríguez & Arkkio, 

2008). Condition monitoring, diagnosis, and prognostics for 

rolling-element bearings have been well studied during the 

past four decades due to its wide applications in almost all 

the rotary machinery. Vibration-based and motor current 

signature analysis (MCSA) based monitoring methods for 

roller-element bearings in induction motors have been 

widely published in literature. However, the condition 

monitoring for winding insulation faults, especially 

vibration-based diagnosis and prognosis methods remain 

limited.  

Winding faults due to insulation degradation can be 

classified into four types (Ukil, Chen and Andenna, 2011), 

namely (a) inter-turn short of the same phase, (b) short 

between coils of same phase, (c) short between two phases, 

and (d) short between phase to earth. Among them, inter-

turn fault is considered to be the most challenging winding 

fault to be detected in induction motors. The online 

condition monitoring methods for motor winding faults are 

summarized in Figure 2. Most of the online monitoring 

methods are based on current and voltage signals, among 

which the symmetric component current balance monitoring 

(Furfari & Brittain, 2002; Eftekhari, Moallem, Sadri and 

Hsieh, 2013), negative sequence impedance detector 

(Kliman, Premerlani, Koegl and Hoeweler, 1996), voltage 

mismatch (Sottile, Trutt and Kohler, 2000; Trutt, Sottile and 

Kohler, 2002), and Parks vector (Cardoso, 1997) are the 

most widely referred methods. Nevertheless, these methods 

require measuring 3-phase high voltage signal from 

induction motors, which requires expensive sensors and 

DAQ hardware. Moreover, direct measurements of 3-phase 

voltages from motor windings are not feasible for online 

application, and the voltage measurements from the 

frequency-inverter drive are usually pulse-width modulation 

(PWM) signals that need additional signal processing 

process.  

 

Figure 2. Online condition monitoring methods for motor 

winding fault (Sin, Soong and Ertugrul, 2003) 

Compared with the current and voltage-based winding fault 

monitoring, vibration-based methods have the advantages of 

(a) requiring less expensive sensors, (b) requiring less 

channels for the DAQ system, and (c) monitoring 

mechanical failures at the same time. Yet vibration analysis 

for motor winding fault detection has received modest 

attention due to claimed lower sensitivity.  To remedy this 

gap, this paper proposes a combination of different signal 

processing techniques to mine and amplify the motor 

winding fault related features. Time synchronous averaging, 

spectral kurtosis filtering, and envelope analysis are 

implemented in the signal processing process. As will be 

discussed in the results section, the first order of envelope 

spectrum showed monotonically increasing trend as the 

level of winding insulation degradation increase.  

The remaining part of the paper will be organized as 

follows: Section 2 discusses the methodology development 

and theoretical background of the signal processing 

techniques applied to the motor vibration signals; Section 3 

briefly discusses the experimental setup and the test 

procedure for data generation; Section 4 demonstrates the 

effectiveness of the proposed vibration signal processing 

methods and the selected features through the experimental 

data analysis; and Section 5 summarizes the important 

findings obtained in this study.  

2. METHODOLOGY DEVELOPMENT 

2.1. Overall Method  

Vibration signal has long been adopted for the diagnosis of 

mechanical wear in rotary machinery, such as bearings and 

gearboxes (Randall & Antoni, 2011). One of the elementary 

assumptions of vibration analysis for rotary machinery 

mechanical faults is that the concerned fault leads to 

impulses in vibration signals, which do not occur in the 

healthy state. Detection of the impulses hidden in the 

smearing and noise requires advanced signal processing 

techniques to emphasize the impulsiveness, especially when 

the fault is incipient. Similar to mechanical faults, induction 

motor winding faults will generate additional 

magnetomotive force that is usually reflected in the 

vibration signal at harmonics of slot frequency and supply 

frequency (Lamim Filho, Pederiva and Brito, 2014). 

However, these characteristics are only significant when the 

faulty turns are around 5% of total windings (Lamim, Brito, 

Silva and Pederiva, 2013), making it difficult to detect 

winding faults at an early stage. 

Inspired by bearing fault diagnosis, this paper addresses the 

issue when the inter-turn faults are still preliminary by 

adopting advanced signal processing tools. As shown in 

Figure 3, the first step of signal processing was to check the 

vibration data quality (Jabłoński, Barszcz and Bielecka, 

2011; Jablonski & Barszcz, 2013) to guarantee raw data 

integrity and justify the correctness in the following  
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Figure 3. Flowchart of inter-turn fault detection for three-

phase induction motors using vibration signal. 

 

analysis. Then, the “corrected” vibration signal and the 

tachometer signal passed through a low-pass filter to 

exclude the high frequency noise. The cut-off frequency was 

set to be one fourth of sampling frequency (in this case 

12800 Hz) for the vibration signal, and 10 Hz for the 

tachometer signal, since the ratio of tachometer is 1/4. After 

the aforementioned pre-processing steps, time synchronous 

averaging (TSA) was performed to eliminate discrete 

frequency component noise (Randall & Antoni, 2011). Then 

the resonance frequency section of the obtained residual 

signal estimate with TSA that contained faulty 

characteristics was enhanced by envelope analysis, whose 

bandwidth was selected using kurtogram.  

The following sub-sections focus on introducing the 

theoretical background of the tools utilized and explaining 

why they are effective in detecting inter-turn faults in 

induction motors. 

2.2. Theoretical Background 

Instead of going through the calculation of magnetic forces, 

the induction motor winding fault detection strategy is 

formulated from the perspective of vibration signal 

processing. To state mathematically, the problem is to detect 

the inter-turn faulty signal x(t) buried in the noise η(t). And 

the actual raw signal s(t) we get is the combination of the 

two, which is (Antoni & Randall, 2006) 

 ( )( ) ( )s t x t t    (1) 

Under this problem statement, the following assumptions 

for this research are proposed: 

1. The inter-turn faulty signal x(t) has transients and 

contains impulses which do not occur or follow a 

different pattern in the healthy conditions; 

2. The noise η(t) refers to not only the stationary 

measurement noise, but also the discrete frequency 

component, namely the vibration influence of the 

mechanical parts. 

2.2.1. Time synchronous averaging (TSA) 

Time synchronous averaging (TSA) is an essential tool for 

rotating machines that extracts periodic waveforms from 

noisy data. TSA is performed with respect to a certain shaft 

according to the tachometer signal as angular position 

reference. Vibration signals that went through TSA process 

will have an integer number of orders of the fundamental 

harmonic (shaft frequency) retained, and other vibration 

components weakened. If the synchronous-averaged signal 

is subtracted from the original signal, the residual signal that 

have the harmonics of the shaft frequency removed will be 

obtained. Both the synchronous-averaged signal and 

residual signal contain diagnostic information of different 

failure mode (Al-Atat, Siegel and Lee, 2011). While there 

are many different techniques for TSA, zero crossing-based 

technique is the most widely used.  

Zero crossing-based TSA resamples the vibration signal to 

angular domain where the samples recorded in one shaft 

rotation are interpolated into a fixed number of data points 

for each revolution. The number of points per revolution N 

is derived from Eq. (2): 

 2(log m )ax( )
2

ceiling n
N    (2) 

where n is the number of points between two subsequent 

zero crossing indices of the tachometer signal (Bechhoefer 

& Kingsley, 2009).  

However, resampling from time domain to angular domain 

will cause problems for the following signal processing 

steps since the kernel functions of kurtogram, filtering, and 

envelope analysis have a constant frequency (Δt) instead of 

constant angle (Δθ). Hence the synchronous-averaged signal 

should be interpolated back to its original time-based 

sampling mechanism before calculating the residual signal.  

The process of obtaining residual signal from TSA is 

summarized as follows: 

(1) Find zero-crossing indices in the tachometer signal 

and calculate the zero crossing time (ZCT) with 

interpolation.  

(2) For each ZCT, calculate the time between ZTCk 

and ZCTk+1, namely, dZCTk, where k is the 

crossing point index. 
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(3) Calculate the resampled time interval: dZCT/N, 

where N is given by Eq. (2). Interpolate the signal 

to the newly resampled time and accumulate the 

resampled data.   

(4) Save the original time stamps for each revolution. 

(5) Repeat step (2) through (4) for all the revolutions, 

and then divide the accumulated N point vector by 

number of revolutions.  

(6) Interpolate the N point vector (TSA signal) back to 

the original time stamps for each revolution, and 

combine the interpolated TSA signal to get the 

same length of vector as the original data. 

(7) Subtract the combined vector from the original data 

to get the residual signal.  

2.2.2. Spectral kurtosis and kurtogram 

Kurtosis as a statistical feature is widely used as a global 

value to detect the peakiness in a signal. It is defined as 

 

  

  

4

2
2

( ) ( )

( ) ( )

E x t E x t
k

E x t E x t

 
 
 
 

  (3) 

where E[●] indicates the averaging calculation. Spectral 

kurtosis is an extension of kurtosis to a function of 

frequency, and is known for identifying the impulsiveness 

in the signal spectrum for rotary machinery fault diagnosis. 

It is calculated based on the short-time-Fourier-transform 

(STFT) X(t,f) of the original signal. As mentioned by 

Randall et al in (Randall & Antoni, 2011), spectral kurtosis 

is defined as 
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  (4) 

The benefit of spectral kurtosis analysis is that it is able to 

find the frequency band that contains fault characteristics 

without requiring a large amount of history data. However, 

it is then of vital importance that an appropriate window 

length to be chosen for the STFT. In order to find the 

optimal window length, or equivalently bandwidth, fast 

kurtogram was adopted to plot spectral kurtosis against level 

and frequency. Another task for kurtogram is to find the 

center frequency with the highest spectral kurtosis value, 

which is related to the resonance frequency of the motor 

itself. The incipient vibration winding fault causes will be 

amplified at this resonance frequency. Reader should be 

able to observe in Figure 4 that the color in the fast 

kurtogram indicates the value of kurtosis, and in this 

particular example the highest kurtosis exists at Level 5.5  
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Figure 4. Kutogram of inter-turn fault residual signal at 

2000 rpm. The highest kurtosis is 0.4 at Level 5.5 with a 

center frequency of 12000 Hz. 

with a center frequency of 12000 Hz. Even though the fast 

kurtogram gives the center frequency and the bandwidth, the 

original power spectrum density still needs to be taken into 

consideration to finalize the spectrum section that needs to 

be demodulated later. This part will be shown with 

graphical explanation in the following sub-section. 

2.2.3. Envelope Analysis 

Often, the spectrum of raw vibration signal for rotary 

machinery gives little insight on faulty characteristics due to 

noise. As mentioned in previous sections, winding faults at 

early stage induce mechanical impacts that are amplified at 

the high frequency range of the induction motor system. 

With kurtogram locating this high frequency range, 

envelope analysis will further improve the signal to noise 

ratio and enhance the transients so that the fault can be more 

easily detected.  

The procedure for envelope analysis in this research is 

described in Figure 5, where the residual signal estimation 

with TSA is the input and the envelope spectrum is the 

output. First, a Butter band-pass filter was designed based 

on the center frequency and bandwidth determined from fast 

kurtogram. Then the resulting signal was demodulated by 

following Eq. (5).  

( ) ( ) exp( 2 )cy t r t j tf      (5) 

where r(t) is the residual signal estimation with TSA, 

  √  , fc is the center frequency, and y(t) is the 

demodulated signal. Afterwards, the demodulated signal 

went through a low-pass filter with half of the bandwidth as 

the cutoff frequency. Then the squared envelope signal was 

calculated by following Eq. (6): 

 
*( ) ( ) ( )e t y t y t    (6) 
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where e(t) represents the squared envelope signal and y*(t) 

represents the complex conjugate of y(t). 

Residual Signal Estimation 

with TSA

Resonance Frequency

Bandwidth

Band-pass Filtering

Low-pass Filtering

Enhanced Signal

Squared Envelope Signal 

Estimation

Demodulated Signal

Multiplication

Demodulation

Complex Conjugate

Fast Fourier Transfrom

Envelope Spectrum

Figure 5. Flowchart of envelope analysis. The resonance 

frequency (center frequency) and bandwidth are determined 

with the help of kurtogram. 
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Figure 6. Comparison of time domain and frequency 

domain signal before and after demodulation: (a) time 

domain TSA residual signal estimate with kurtosis 3.0459, 

(b) Welch estimate power spectrum of TSA residual with 

high-frequency band highlighted in dark red, (c) time 

domain demodulated TSA residual signal with kurtosis 

4.5025, (d) Welch estimate power spectrum density of the 

demodulated TSA residual. The signal comes from the 

condition of inter-turn fault. Note that the scales of plots are 

different. 

The result of band-pass filtering and demodulation can be 

found in Figure 6. In time domain, the emphasis of 

impulsiveness in the faulty signal is recognized even 

graphically. Quantitatively, the kurtosis of the signal has 

increased from 3.1053 to 4.1744. In frequency domain, one 

can clearly see in Figure 6 (b) that the peaky section 

centered at approx. 12000 Hz with a bandwidth of 800 Hz is 

highlighted. This is where the high frequency band that 

contains the faulty information locates. It was picked up by 

kurtogram and moved to lower frequency band after 

demodulation. Discussion on the result of envelope signal 

and envelope spectrum will be found in Section 4. 

3. EXPERIMENTAL SETUP 

For conducting this research, a dedicated induction motor 

test-bed was designed and developed. The test-bed is 

designed such that one is able to simulate the winding faults 

with different levels of severity and collect vibration, 

current, voltage and torque signals from the motor. The 

winding faults that could be induced in the system include 

(i) inter-turn and (ii) turn-to-earth faults. The test-bed was 

also designed to run at different speed regimes and load 

conditions for multi-regime data collection and analysis. 

The following sections will briefly describe the test-bed 

design, the procedure for inducing winding faults and the 

experiments with different fault conditions. 

 

Figure 7. Photograph of the induction motor test bed. 

 

Figure 8. Schematic view of the motor test bed. 
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3.1.  Test Setup 

The test-bed consisted of an 11KW, 19.7A, 400V 3-phase 

induction motor driven by a variable frequency drive 

(VFD). The rotational speed of the motor could be varied 

from 0 to 3000 RPM with both stationary and transient 

modes available. A magnetic brake was connected to the 

output shaft of the motor through a timing-belt and pulley 

mechanism. The mechanism allowed the brake shaft to 

rotate at half of the speed of the motor shaft. By controlling 

the input current of the brake, an external load varying from 

0 to 50 Nm could be applied to the motor. A PC with 

LabVIEW programs was used to send the control signals to 

the VFD and magnetic brake controller. A variable resistor 

with the range of 0-580 Ω was used to simulate different 

levels of severities in the shorted turns in inter-turn faults.  

A tri-axial accelerometer was mounted on the top of the 

housing of the motor to collect the vibration of the motor. A 

tachometer based on a proximity probe was used to measure 

the rotational speed of the motor. The head of the 

tachometer was put towards a 4-tooth flywheel connected to 

the motor shaft generating 4 pulses per revolution.  The 

experimental setup and the schematic view of the test-bed 

are shown in Figure 7 and Figure 8. 

3.2.  Fault Simulation 

The winding of the motor used in the test-bed is random-

wound (Figure 9). The winding was modified by connecting 

three shielded wires to the coil of phase w at three locations 

and the other ends of the wires were brought outside as 

schematically shown in Figure 10. The inter-turn faults were 

simulated by connecting the other ends of the wires to a 

variable resistor. For healthy state simulation, the ends of 

the three wires were left unconnected. The inter-turn faults 

were simulated under two different scenarios referred to as 

inter-turn I and II. In inter-turn I, wires 1 (in orange) and 2 

(in green) were connected through a variable resistor. 

Similarly for inter-turn II, wire 1 was shorted to wire 3 

(black) through a variable resistor. By adjusting the 

resistance to 580 and 300 Ω, two levels of severity for both 

inter-turn I and II were simulated, as summarized in Table 

1.   

 

Table 1. Different fault levels for induction motor 

State Resistance [Ω] Comment 

F1 580 Lowest level 

F2 300 Moderate level 

 

Figure 9. Disassembled motor exposing random would 

stator winding. 

 

Figure 10. Schematic winding diagram with three taps on 

the phase w winding for different inter-turn fault scenarios. 

3.3.  Test Procedure 

The test was performed at the constant speed of 2000 RPM 

and constant brake torque of 12 Nm for all the winding 

conditions. At each level of winding faults, the current il 

flowing through the variable resistor was measured and the 

corresponding dissipated power Pd was calculated as 

summarized in Table 2.  

Prior to digitizing the signals, each measured signal was 

passed through a low-pass and an anti-aliasing filter 

embedded in each channel of the NI data acquisition system. 

Doing the tests in this way ensures that the potential aliasing 

problems caused by high frequency noise can be avoided. 

Depending on the sampling frequency, the cut-off frequency 

of the anti-aliasing filter was automatically adjusted. The 

vibration signals were sampled at the rate of 51.2 KHz with 

the duration of four seconds. The digitized data was stored 

in the PC and analyzed off-line in MATLAB software. 
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Table 2. Current and dissipated power through the variable 

resistor at different states 

State Inter-turn I Inter-turn II 

il [mA] Pd [W] il [mA] Pd [W] 

F1 265 40.7 86 4.3 

F2 297 26.5 155 7.2 

4. RESULTS AND DISCUSSION 

Under varying fault severity levels, squared envelope signal 

estimation was calculated by following the procedure 

introduced in Section 2.2.3. The result for healthy state, 

Inter-turn I and Inter-turn II is presented in Figure 11. 

Compared with the healthy state, it is obvious that the 

pattern of vibration of the induction motor has changed in 

time domain for inter-turn fault. The period of one cycle of 

vibration for the healthy case is approximately 0.0456 s, and 

the period for both of the inter-turn cases is approximately 

0.0300 s, namely 33.3 Hz which is about the same with the 

rotational speed (2000 RPM/60 s= 33.3 Hz). This is because 

inter-turn fault has changed the magnetic flux distribution of 

the induction motor and the faulty characteristic is related to 

rotating speed. It is also noticeable that the amplitude of the 

faulty characteristic increases as the fault becomes more 

severe. 

After obtaining the envelope signal, Fourier transform was 

applied. For the purpose of comparing between different 

scenarios, amplitudes of the spectrum were normalized 

according to DC amplitude, which should be the highest; 

and the frequency domain was also transferred to order 

domain to help the readers to recognize quickly the feature 

at the rotational speed. In Figure 12, it is evident that at the 

first order, inter-turn fault case has a component. And by 

comparing (3) with (2) in Figure 12, the severity of the fault 

is also revealed.  

Furthermore, a bar plot was generated for all the conditions 

at different severity levels, which is shown in Figure 13. As 

one can observe, there is a clear difference between healthy 

state and inter-turn faults in terms of bar height. In terms of 

severity, for Inter-turn I and Inter-turn II respectively, 

amplitudes at F2 in (b) is bigger than those in (a) of Figure 

13. Besides, Inter-turn II has a larger value than Inter-turn I, 

which once again reveals the severity of fault successfully. 

Since the values of the order domain amplitudes were 

normalized between 0 and 1, it can be considered as a 

metric called hazard value (HV) to quantify inter-turn fault 

in induction motors. The result is shown in Table 3. 
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Figure 11. Time domain envelope signals for F1: (1) time 

domain envelope signal for healthy state with period of 

approx. 0.0456 s, (2) time domain envelope signal for Inter-

Turn I with period of approx. 0.0300 s, (3) time domain 

envelope signal for Inter-Turn II with period of approx. 

0.0304 s. Note that the scales of the three sub-plots are 

different. 

 
Figure 12. Envelope spectra in order domain for F1: (1) 

envelope spectrum for healthy state with no harmonic at the 

first order, (2) envelope spectrum for Inter-turn I with a 

peak valued at 0.09403 at the first order, (3) envelope 

spectrum for Inter-turn II with a peak valued at 0.14737 at 

the first order. 

 

Table 3. Hazard value (HV) of different conditions and 

severities 

Metric Healthy Inter-turn I Inter-turn II 

F1 F2 F1 F2 

HV 0.0359 0.0940 0.2385 0.1474 0.2574 
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Figure 13. Amplitudes of first order component in envelope 

spectrum for different conditions and severity levels: (a) 

amplitudes for all three conditions at severity level F1, (b) 

amplitudes for all three conditions at severity level F2. The 

three colors represent healthy state, Inter-turn I, and Inter-

turn II, respectively, and they are consistent with previous 

figures. 

5. CONCLUSION 

This paper proposes a vibration-based method to detect 

inter-turn winding fault, which is known to be the hardest to 

detect even with current and voltage signal. The method was 

divided into two stages, namely signal pre-processing stage 

and signal enhancement stage. In the pre-processing stage, 

data quality check and a low-pass filter were applied on 

both vibration signal and tachometer signal. In the signal 

enhancement stage, several techniques were adopted. Time 

synchronous averaging was used to remove the discrete 

frequency component noise, and then the residual signal was 

demodulated at the center frequency and bandwidth selected 

with the help of kurtogram. The resulting normalized 

envelope spectrum was converted into order domain, and 

the component at the first order was able to detect inter-turn 

fault from the healthy state, and reflect the severity. Note 

that this method is applied at a constant speed, and time 

synchronous averaging technique is in fact quite 

computationally costly. Other techniques to remove the 

discrete frequency components like cepstrum analysis are to 

be explored for future work. 
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ABSTRACT

As modern systems continue to increase in size and complex-
ity, they pose increasingly significant safety and risk manage-
ment challenges. A model-based safety approach is an effi-
cient way of coping with the increasing system complexity.
It helps better manage the complexity by utilizing reasoning
tools that require abstract models to detect failures as early
as possible during the design process. This paper develops a
methodology for the verification of safety requirements for
design of complex engineered systems. The proposed ap-
proach combines a SysML modeling approach to document
and structure safety requirements, and an assume-guarantee
technique for the formal verification purpose. The assume-
guarantee approach, which is based on a compositional and
hierarchical reasoning combined with a learning algorithm,
is able to simplify complex design verification problems. The
objective of the proposed methodology is to integrate safety
into early design stages and help the system designers to con-
sider safety implications during conceptual design synthesis,
reducing design iterations and cost. The proposed approach
is validated on the quad-redundant Electro-Mechanical Actu-
ator (EMA) of a Flight Control Surface (FCS) of an aircraft.

1. INTRODUCTION

In recent years, technological advancements and a growing
demand for highly reliable complex engineered systems, e.g.,
space systems, aircrafts, and nuclear power plants have made
the safety assessment of these systems even more important.
Moreover, the growing complexity of such systems has made
it more challenging to achieve design solutions that satisfy

Hoda Mehrpouyan et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

safety and reliability requirements (Wiese & John, 2003; Zio,
2009; N. Leveson, 2011). Hollnagel et al. (Hollnagel, Woods,
& Leveson, 2007) recognize the fact that safety violation in
complex systems is not necessarily a consequence of com-
ponents’ malfunction or a faulty design. Rather it could be
a result of a network of ongoing interactions between all the
components and subsystems that introduce undesired behav-
ior. For this reason, Baroth et al. (Baroth et al., 2001) recom-
mends the Prognostic and Health Management System (PHMS)
as a new technology to replaces the traditional build-in test
(BIT) with intelligent prognostics tools to predict the occur-
rence of unexpected faults. However, given the local safety
properties of each component, it is not a trivial matter to infer
the safety and reliability of the whole system (N. G. Leve-
son, 2009). Well-specified verification formalism and rea-
soning tools are needed to study the emerging behavior and
to perform exhaustive verification of safety properties. A se-
ries of safety standards emerged in recent years that recognize
this issue and strongly recommended the use of formal veri-
fication methods to control the complexity of safety-critical
systems, i.e., the international standard on safety related sys-
tems (IEC, 1998) and the SAE & EUROCAE standards in the
avionic industry (ARP4761, 1996; ARP4754, 1996). How-
ever, these standards do not specify how to implement formal
approaches throughout the design process.

Strategies for engineered system design emerge from a pro-
cess of requirement decomposition and transforming require-
ment models into the conceptual models (Blanchard, 2012;
Buede, 2011). Requirement models, noted R, capture the de-
sign problem being solved and conceptual models, noted S,
represent the specific solution for the design problem. There-
fore, the first step in specifying and formulating a complex
system is to capture its requirements R and decompose it into
the requirements of its sub-systems and components, noted
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R = {R1, R2, ..., Rn}. The second step is to create a re-
lationship between design requirements and the system that
consists of heterogenous sub-systems, i.e., electrical, mechan-
ical, and software ..., noted S = {S1, S2, ..., Sm}. However,
this relationship between the set of design requirements and
the set of sub-systems and components is a non bijective re-
lationship. A commonly used formalism to address this prob-
lem is to focus on discrete event system dynamics. This for-
mulation is extended (Hirtz, Stone, McAdams, Szykman, &
Wood, 2002; Nagel, Stone, Hutcheson, McAdams, & Don-
ndelinger, 2008; Kurtoglu & Campbell, 2009) by considering
other system features such as structures and functions, so that
the predicate (S1 ∧ S2 ∧ ... ∧ Sm ⇒ Design’s Objective) is
preserved and satisfied throughout the design process. So the
formulation can be summarized as below:





Si ⇒ {Rk}k∈[1..n] Si satisfies a sub-set of
requirements.

{Sk}k∈[1..m] ⇒ Ri Ri satisfied by sub-set of
sub-systems or components.

The process of identifying and proving the correctness of these
relationships with regards to design safety requirements is
the objective of this paper. The remainder of this paper is
structured as follows: section 2 discusses the system oriented
approaches and their ability in modeling multi-domain com-
plex engineered system and being exploitable for safety anal-
ysis. Furthermore, formal verification methods and the def-
inition of compositional reasoning and its commonly used
terminologies and operators are introduced as a complemen-
tary technique to design requirement analysis. In section 3
an overview of the step-by-step implementation of the com-
positional reasoning algorithm on the components of the de-
sign architectures is explained. Further, section 3 outlines
the application of the proposed methodology in the analysis
and verification of the safety properties of the quad-redundant
Electro Mechanical Actuator (EMA) system design. The pa-
per ends with conclusion.

2. RELATED WORK

Different standards, e.g., (IEEE1220, 2005; ISO-IEC15288,
2002) have defined system design as a multidisciplinary col-
laborative process that defines, develops, and verifies a sys-
tem solution which satisfies different stakeholders’ expecta-
tions and meets public safety and acceptability. Therefore,
identification and analysis of the system requirements and
designing a system according to the identified requirements
are the two inter-correlated and complementary processes of
system design. While these standards precisely specify the
processes involved in the design of a safety critical systems,
Lundteigen et al. (Lundteigen, Rausand, & Utne, 2009) agree
that they do not provide methods and tools for efficient design

of complex engineered systems. This highlights the need for
appropriate methods and tools to support the integration of
safety into the design solution.

2.1. SysML for Complex Engineered Systems

Traditional methods and tools used by system engineering
are mostly based on a formalism that capture a variety of
system features, i.e., requirements engineering, behavioral,
functional, and structural modeling, etc. Those with particu-
lar focus on requirements engineering are the Unified Model-
ing Language (UML) (OMG, 2007) to support various aspect
of system modeling, Rational Doors (IBM, 2010) to express
the requirements, and Reqtify (GeenSys, 2008) to trace the
requirements through design and implementation. UML is
developed by the Object Management Group (OMG) in co-
operation with the International Council of Systems Engi-
neering (INCOSE). UML is an Object-oriented modeling lan-
guage that allows hierarchical organization of system compo-
nent models, which in turn results in easier reuse and main-
tenance of the system model. However, UML was originally
developed for software engineers and its primary application
is software-oriented; therefore it does not meet all the system
engineer’s expectations. For example, UML does not provide
a notion to represent continuous flows exchanged within the
system, i.e., Energy, Material, and Signal (EMS). The analy-
sis of EMS flows are crucial in system design safety verifica-
tion for identifying the failure propagation path and identify-
ing the common failure modes. For this reason, the SysML
profile was developed borrowing a subset of the UML lan-
guage to meet the requirements of a general purposed lan-
guage for system engineering.

SysML is an efficient modeling language for constructing mod-
els of complex, multidisciplinary, and large-scale systems.
SysML enables the designers of a complex system to model
the system requirements, structures, behaviors, and paramet-
ric values for a more rigorous description of a system under
consideration. SysML focuses on the global features of ar-
chitectural views, whereas other modeling languages such as
he Architecture Analysis and Design language (AADL) ad-
dresses the more detailed platform-oriented and physical as-
pects of such systems. Nevertheless, the wide variety of no-
tations provided by SysML lacks formal and detailed seman-
tics required for requirements verification. The goal of this
paper is to bridge the gap between semi-formal approaches,
e.g., SysML and formal verification methods, e.g., model-
checkers to provide the system designers an integrated method
to manage and verify the safety properties of complex engi-
neered systems.

2.2. Model Checking and Formal Verification

Model checking is one of the approaches to formal verifica-
tion of finite state hardware and software systems (Henzinger,
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Figure 1. Quad-Redundant EMA Scheme.

Ho, & Wong-Toi, 1997; Henzinger, Nicollin, Sifakis, & Yovine,
1994). In this approach, a design will be modeled as a state
transition system with a finite number of states and a set of
transitions. The design model is in essence a finite-state ma-
chine, and the fact that it is finite makes it possible to ex-
ecute an exhaustive state-space exploration to prove that the
design satisfies its requirements. Since there is an exponential
relationship between the number of states in the model and
number of components that make up the system, the compo-
sitional reasoning approach is used to handle the large state-
space problem. The compositional reasoning technique de-
composes the safety properties of the system into local prop-
erties of its components. These local properties are subse-
quently verified for each component. However, Barragan et
al. (Barragan, Roth, Faure, et al., 2006) emphasizes the dif-
ficulty of transforming the global system requirements into
multi-level sub-system and component’s local safety proper-
ties that need to be verified by a model checker for the design
of large scale complex engineered systems. More specifi-
cally, the decomposition of complex engineered systems into
multi-domain sub-systems involving electrical, mechanical,
and software components makes the refinement and traceabil-
ity of the global safety properties very difficult. Therefore, a
systematic approach is required to acquire abstract require-
ments along with safety properties, and map them to sys-
tem components (Evrot, Petin, & Mery, 2006). Following
the work of many researchers, it is concluded that the early
stages of system design are the most critical in ensuring that
the designed system satisfies its safety requirements (Tumer,
Stone, & Bell, 2003; Stone, Tumer, & Stock, 2005; Kurtoglu
& Tumer, 2008; Tumer & Smidts, 2011), this paper aims at
addressing this challenge using the system-oriented SysML-
based modeling approach combined with formal verification

technique.

2.3. Case Study

As depicted in Fig. 1, a quad-redundant Electro-Mechanical
Actuator (EMA) (Balaban et al., 2009) for the Flight Con-
trol Surfaces (FCS) of an aircraft, developed in a program
sponsored by NASA, is used to illustrate and validate the pro-
posed approach. The positions of the surfaces, A, C, and D,
in Fig. 2, are usually controlled using a quad-redundant actu-
ation system. The FCS actuation system responds to position
commands sent from the flight crew, B in Fig. 2, to move the
aircraft FCS to the command positions.

Figure 2. Basic Aircraft Control Surfaces.

The EMAs are arranged in a parallel fashion; therefore, each
actuator is required to tolerate a fraction of the overall load.
To meet safety requirements, each actuator is required to take
on the full expected load from the FCS in the extreme case
where all three of the four actuators become non-operational.
In addition, the design should also consider other issues such
as the possibility of the actuators becoming jammed. If one
actuator becomes jammed in this parallel arrangement, it will
prevent the other ones from moving. Therefore, a mechanism

3
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Figure 3. Requirements Decomposition.

Figure 4. Requirements Mapping.

to disengage faulty actuators from the rest of the system is
required to avoid the faulty actuators from becoming dead-
weights. Once an EMA is disengaged from the system it can-
not be re-engaged automatically. It is envisioned that this will
happen on the ground, once the aircraft has landed.

In order for the design to be reliable, additional redundancies
in other components of the system, such as load and position
sensors are required. Thus, a fully quad-redundant scheme is
envisioned, as depicted in Fig. 1. As illustrated, the design
features redundancy in the EMAs and the sensor feedback
signals. The position command is fed to the control loop,
while the load from the FCS is shared by the EMAs. The
individual load, current, and position response signals from
each EMA are used to perform separate diagnostics on each
EMA. Therefore, faults are isolated to the individual actua-
tors, which facilitates adaptive on-the-fly decisions on discon-
necting degraded EMAs from the load. A dedicated diagnos-
tics block performs actuator health assessments, and makes
decisions on whether or not to disengage any faulty actuators
from the flight control surface. The disengagement is made
possible by mechanical linkages, which can be disconnected
from the output shaft coupling.

3. METHODOLOGY

Design requirements are the specification of safety constraints
initially defined in the design. Requirements are modeled at
different levels of abstractions. For example, a higher level of
abstraction is used when expressing the global system prop-
erties and a low level of abstraction is used when expressing
the required features for each system component, i.e. the bar-
riers and materials to be used. Managing this set of specifica-
tions is based on iterative decomposition and substitution of
the abstract requirements by the requirements that are more
concrete.

3.1. Safety Requirements Modeling Using SysML

A SysML requirement diagram enables the transformation of
text-based requirements into the graphical modeling of the re-
quirements which can be related to other modeling elements.
Fig. 3 depicts the decomposition of a single abstract require-
ment into several more explicit ones. A study by Blaise et
al. (Blaise, Lhoste, & Ciccotelli, 2003) confirms the effective-
ness of such diagrams to facilitate the structuring and man-
agement of requirements that are traditionally expressed in
natural languages.

The next step in the requirement analysis phase consists of
mapping the requirements to the corresponding system com-
ponents or functions. System components are modeled as

4
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part of the structural design of a system. The structural de-
sign model corresponds to the system hierarchy in terms of
systems and subsystems, which are modeled using the Block
Definition diagram (BDD). SysML blocks are the best mod-
eling elements to model multi-disciplinary systems and are
especially effective during system specification and design.
They are effective because blocks are not only able to model
logical or physical decomposition of a system, they also en-
able designers to define specification of software, hardware,
or human elements.

Fig. 4 illustrates how a single requirement can be satisfied
by a set of sub-systems and components. The requirement
diagram is connected to the structure diagram by a cross con-
necting element known as satisfy. A requirement can be sat-
isfied by a component or subsystem. Furthermore, the de-
tailed modeling of sub-systems and components are possible
through the use of Internal Block Diagram (IBD). In addi-
tion, blocks are a reusable form of description that can be ap-
plied throughout the construction of system modeling if nec-
essary. Another advantage of using blocks during the design
process is their ability to include both structural and behav-
ioral features, such as properties and operations that represent
the state of the system and behavior that the system may dis-
play.

Including properties as part of the requirement modeling is
specifically important when verifying safety requirements. As
Madni. (Madni, 2007) demonstrated, safety is a changing char-
acteristic of complex systems that, once integrated into the
design, is not preserved unless enforced throughout system
operation. Hollnagel et al. (Hollnagel et al., 2007) also con-
firms that safety is a feature that results from what a system
does, rather than a characteristic that the system has. There-
fore, the proof of safety is provided by the absence of fail-
ures and accidents. For this reason, ”safety-proofing” a sys-
tem design is never absolute or complete. Consequently, the
proposed approach does not guarantee safe system operation,
instead provides formal proof that certain very specific be-
havioral parameters will be achieved. It is for this reason that
in this paper safety is viewed as a system property.

A complete proof of safety is possible through a formal def-
inition of different properties that are linked to each high-
level abstract and low-level detailed requirements. Fig. 5 rep-
resents how a requirement, property, block, and behavioral
model are connected to one another. For example, allocate
as a cross connecting principle in SysML is used to connect a
behavior to a component in a structure diagram.

In the proposed approach, individual components’ behavior
in the system are modeled as Labeled Transition Systems
(LTSs), LTSs basically represent a finite state system. The
properties of the LTSs make it ideal for expressing the be-
havioral model of system components. The LTS model is ex-
pressed graphically, or by its alphabet, transition relation, and

Figure 5. Requirements Traceability.

states including single initial state. The LTS of the system is
constructed from the LTS of its subsystems, and is verified
against safety properties of the design requirements (Fig. 5).

3.2. Safety Requirements Verification

A model-based verification approach is proposed based on the
behavioral models of design components, where behavioral
specifications are associated with each component. These
specifications are then used to analyze the overall design ar-
chitecture. In this approach, a design will be modeled as a
state transition system with a finite number of states and a
set of transitions. The design model is in essence a finite-
state machine, and the fact that it is finite makes it possible
to execute an exhaustive state-space exploration to prove that
the design satisfies its requirements. Since there is an ex-
ponential relationship between the number of states in the
model and number of components that make up the system,
the compositional reasoning approach is used to handle the
large state-space problem. The compositional reasoning tech-
nique decomposes the safety properties of the system into lo-
cal properties of its components. These local properties are
subsequently verified for each component. The combination
of these simpler and more specific verifications guarantees
the satisfaction of the global safety of the overall system ar-
chitecture design. It is important to note that, the safety re-
quirements of the components are satisfied only when explicit
assumptions are made on their environment. Therefore an
assume-guarantee (Cobleigh, Giannakopoulou, & Păsăreanu,
2003; Giannakopoulou, Păsăreanu, & Barringer, 2005; Nam
& Alur, 2006; Chaki, Clarke, Sinha, & Thati, 2005) approach
is utilized to model each component with regards to its in-
teraction with its environment, i.e, the rest of the system and
outside world.

Since, the LTSs are based on graphical modeling, they can
easily become unmanageable for large complex systems. There-
fore, an algebraic notation known as Finite State Process (FSP)
(Rodrigues, 2000) is used to define the behavior of processes
in a design. FSP is a specification language as opposed to a
modeling language, with semantics defined in terms of LTSs.
Every FSP model has a corresponding LTS description and
vice versa. An example FSP and LTS model of the Elec-
tro Mechanical Actuator (EMA) unit of the quad-redundant
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EMA of Fig. 1 is provided in Table 1 and Fig. 6 respectively.

Table 1. FSP Description of EMA

1 : EMA = (recLoad→ ApplyLoad→ (allLoadsCompleted→ EMA
2 : | jam→ block→ Jammed)),
3 : Jammed = (recLoad→ Jammed
4 : | disengage→ unblock→ Disengaged),
5 : Disengaged = (recLoad, allLoadsCompleted, timeout → Disen-
gaged).

Figure 6. LTS Model of the EMA Subsystem.

In the defined model, a EMA receives the load command
from the controller and carries out the operation. The Elec-
tro Mechanical Actuator is modeled in Table 6 with Jammed
and Disengaged as part of its definition. If during the time
of maintaining the specified torque or load the EMA func-
tions according to specification, the signal ”all loads are com-
pleted” is sent to the controller. Otherwise, the EMA is con-
sidered non-operational or jammed. In the jammmed mode,
the EMA is incapable of maintaining the required load and
prevents the rest of the EMAs from moving. Therefore, it
needs to be disengaged from the system.

After system modeling, the actual analysis of the models is
carried out utilizing the Assume Guarantee Reasoning (AGR)
verification technique. In the assume-guarantee methodol-
ogy, a formula contains a triple 〈A〉M 〈P 〉, where M is de-
fined as a component, P is a safety property, and A is an
assumption or constraint on M ’s environment. The formula
is proven correct if whenever M is a component within a sys-
tem satisfying A, then the system also guarantees P .

The simplest assume guarantee rule for checking a safety
property P on a system with two components M1 and M2

can be defined as following (Henzinger, Qadeer, & Rajamani,
1998; Chaki et al., 2005):
Rule ASYM

1 : 〈A〉M1 〈P 〉
2 : 〈true〉M2 〈A〉

〈true〉M1 ‖M2 〈P 〉

The first rule is checked to ensure that the generated assump-
tion restricts the environment of component M1 to satisfy
P . For example, the assumption A is that there is no Elec-
tromagnetic Interference (EMI) or Radio Frequency Interfer-
ence (RFI) in the environment where component M1 oper-
ates; hence, P is satisfied. The second rule ensures that com-
ponent M2 respects the generated assumption. For example,

M2 will not generate any EMI and RFI while operating. If
both rules hold then it is concluded that the composition of
both components also satisfies property P (〈true〉M1 ‖M2 〈P 〉).

Model Checking

Learning 
Algorithm 1. AiM1 P

2. trueM2 Ai

Ai

True

False

Failure Propagation Path – Strengthen the Assumption

P is satisfied in  ||

Failure?

False

True

P is violated in  ||
YesNo

Failure Propagation 
Path – Weaken the 
Assumption

Figure 7. An Overview of the Algorithm that Generates As-
sumptions.

In this research, the algorithm in (Giannakopoulou, Pasare-
anu, & Cobleigh, 2004) is used to automatically generate
assume-guarantee reasoning at the component, subsystem, and
system level. The objective is to automatically generate as-
sumptions for components and their compositions, so that the
assume-guarantee rule is derived in an incremental manner.
The framework of Figure 7 depicts the steps involved in per-
forming automated assume-guarantee reasoning while gener-
ating the assumptions. If rule (1) is violated, it means that the
assumption is too weak, so it does not preventM1 from reach-
ing its failure state. Based on the generated failure propaga-
tion path, the algorithm learns a new assumption with more
restriction on the environment which makes the assumption
stronger than the previous one. The iteration continues until
the first rule of 〈A〉M1 〈P 〉 is addressed. The next step is to
check the second rule 〈true〉M2 〈A〉. If the rule still holds,
then it is concluded that 〈true〉M1 ‖M2 〈P 〉. If the check
fails, the algorithm performs analysis on the returned failure
propagate path to determine the reason for the failure. If the
analysis reveals that A is not the weakest assumption, i.e.,
elimination of both EMI and RFI is not necessary and only
the elimination of EMI suffices to satisfy P, then the learning
algorithm will generate a new assumption. If the rules are not
satisfied with the generated assumptions, it is concluded that
〈true〉M1 ‖M2 〈P 〉 violates the property P.

4. APPLICATION ON THE CASE STUDY

In the case study of Fig. 2, the Flight Control Surface (FCS)
must meet rigorous safety and availability requirements be-

6
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Table 2. Requirement Mapping.

Requirement Component(s)
Safety Requirement 1 quad-redundant EMAs
Safety Requirement 1.2 quad-redundant EMAs
Safety Requirement 1.2.1 Diagnostics
Safety Requirement 1.2.2 EMAs
Safety Requirement 1.2.3 Controller, Position Sensor, and Shaft

fore it can be certified. The FCS has two types of dependabil-
ity requirements:

• Integrity: the FCSs must address safety issues such as
loss-of control resulting from aircraft system failures, or
environment disturbances.

• Availability: the system must have a high level of avail-
ability.

Therefore, it is critical for the FCS to continue operation with-
out degradation following a single failure, and to fail safe
or fail operative in the event of a related subsequent failure.
The movement of the FCS is controlled by a quad-redundant
EMAs. A block diagram of the quad-redundant EMAs is de-
picted in Fig. 8. As seen from the figure, the model consists
of an EMA block which is an hierarchical representation of
four independent EMAs. Each EMA is modeled via the In-
ternal Block Definition diagram (IBD). The individual EMA
legs receive the common position command, but act indepen-
dently of each other and share the flight control surface load
among themselves.

Fig. 9 depicts a set of high-level requirements. To facilitate
the verification process, each level of requirements are asso-
ciated with a formal FSP using property stereotype in SysML.
Therefore, satisfying a property P1 is the same as satisfying
properties P1.1, P1.2, and P1.3.

The next phase consists of identifying the design architecture
(Fig. 8), including sub-systems and components to map each
requirement to a traceable source. As depicted in Fig. 4, re-
quirements mapping are made possible by using the satisfy
relationship to link a single or set of blocks to one or more
requirements. The requirements mapping of quad-redundant
EMAs is presented in Table. 2.
In order to transform the requirements and the design archi-
tecture presented in Fig. 8 into a finite model, we use FSP. As
an example, consider the following FSP model of a controller
subsystem of the quad-redundant EMAs: The controller gets
the load command from the command unit and actively reg-
ulates the current to each EMA at every time step. The dif-
ference between the external load and the total actuator load
response is used to accelerate or decelerate the output shaft. If
the controller perceives that the output shaft position response
is falling behind the commanded position, it will increase the
current flow to the EMAs. As depicted in Table 3, in the FSP

description of the controller, a repetitive behavior is defined
using a recursion. In this context, recursion is recognized as a
behavior of a process that is defined in terms of itself, in order
to express repetition.

Table 3. FSP Description of Controller

1 : Controller = (getLoad[l:L]→ Controller[l]),
2 : Controller[t:L] = (timeout→ Controller
3 : | sendLoad→allLoadsCompleted→getShaftPosition[x:Positions]
4 : →if (x ≥ t) then (missionComplete→Controller)
5 : else Controller[t]).

The partial LTS model of the controller is depicted in Fig. 10.
The controller performs action <getLoad[l..4]>, and then
behaves as described by <Controller[l]>. Controller[l] is
a process whose behavior offers a choice, expressed by the
choice operator ”|”. Controller[l] initially engages in either
<timeout> or <SendLoad>. The action <timeout> is
performed when all actuators fail, otherwise <SendLoad>
is utilized. Subsequently, after sending the required load to
each EMA, feedback signals are sent to inform the controller
of completion of tasks by labeling the action with <all Loads
Completed>. This results in the controller to perform the ac-
tion <get Shaft Position>. At this stage, the controller com-
pares the new position with the required shaft position, if the
shaft has reached the required position then the <mission is
completed>. Otherwise, the behavior is repeated until the
shaft reaches the required position.

getLoad[4] sendLoad

timeout

allLoadsCompleted getShaftPosition[4]

missionCompleted

getShaftPosition[0..3]

Figure 10. LTS Model of the Controller Subsystem.

After modeling the behavior of each component and sub-system,
the design is described by a composition expression. In the
context of system design engineering, the term composition
is similar to the coupled model. The coupled model defines
how to couple several component models together to form a
new model, similarly, composition groups together individual
state machines. Such an expression is called a parallel com-
position, denoted by ”‖”. The ”‖” is a binary operator that
accepts two LTSs as an input argument. In the joint behavior
of the two LTSs, the transition can be performed by any of
the LTS if the action that labels the transition is not shared
with the other LTS. Shared actions have to be performed con-
currently. Table 4 depicts the FSP of the joint behavior of
EMA and controller. The composed LTS model of the two
subsystems consists of 161 states and 62 transitions. The
shared action between the two models is the <sendLoad>
action from the controller and the <recLoad> action from
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Figure 8. Structural Model of the Quad-redundant EMAs.

Figure 9. Quad-redundant EMAs High-Level Requirements.

the EMA, therefore, these two are required to be performed
synchronously. In order to change action labels of an LTS, the
relabeling operator ”/” is used, e.g., { recLoad / sendLoad }.

Table 5 presents some of the state transitions (or sequence
of actions) produced by the composed model. Two possible
executions under the EMA’s nominal and faulty conditions
are considered. In nominal mode, the EMA receives a re-
quest from a controller to provide two unit loads. At each

8
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Table 4. Parallel Composition of EMA (Table 1) and Con-
troller (Table 3)

1 : ‖ Leg = ( EMA ‖ Controller ) / { recLoad / sendLoad }.

time step, EMA performs one unit load and repeats until the
output shaft reaches the required position that is when the
<missionComplete> actions is performed. In the failed
mode, initial actions are the same as in nominal mode until an
EMA jams. The jammed EMA blocks the rest of the system
from moving until it is disengaged. The process is followed
by the <Unblock> action which unblocks the shaft allowing
the rest of the system to be freed. By this time, the EMA has
provided one unit load before being disconnected from the
rest of the system. Since, the <ShaftPositionIS> shows
the current position of the shaft being one instead of two, the
EMA is required to perform one more unit of load. However,
the disengaged EMA is incapable of doing so resulting in a
<timeout>. The<timeout> occurs only when there are no
EMAs to perform the required load.

Table 5. Leg Subsystem: Two Possible Transitions

EMA: Nominal Mode EMA: Failure Mode
1 : ctrl getLoad.2 1 : ctrl getLoad.2
2 : EMA recLoad 2 : EMA recLoad
3 : EMA performLoad 3 : EMA performLoad
4 : LoadsCompleted 3 : EMA jam
5 : ShaftPositionIs.1 4 : Shaft block
6 : EMA recLoad 5 : EMA Disengage
7 : EMA performLoad 6 : Shaft Unblock
8 : LoadsCompleted 7 : LoadsCompleted
9 : getShaftPosition.2 8 : ShaftPositionIs.1
10 : EMA performLoad 9 : timeout
11 : missionComplete –

So far, we provided the basis for decomposing and modeling
the system based on the modular description of the design
components and subsystems. In the next phase, the process
of expressing the desired safety properties in terms of a state
machine or LTS is described. The advantage is that both the
design and its requirements are modeled in a syntactically
uniform fashion. Therefore, the design can be compared to
the requirements to determine whether its behavior conforms
to that of the specifications. In the context of this work, the
properties of a system are modeled as safety a FPS. A safety
FPS contains no failure states. In modeling and reasoning
about complex systems, it is more efficient to define safety
properties by directly declaring the desired behavior of a sys-
tem instead of stating the characteristics of a faulty behavior.
In a FSP, the definition of properties is distinguished from
those of subsystem and component behaviors with the key-
word property.

Based on the requirement decomposition model of Fig. 9, the
composition model of the properties P1.1, P1.2, and P1.3 is
presented by the following generic (or parameterized) safety
property with the following constants and a range definitions
is used:

• const N =4 \\ number of faulty EMAs 1

• const M =4 \\ number of EMAs

• range EMAs = 1..M \\ EMA identities

In order to prevent the system from reaching the catastrophic
event of <timeout>, it is essential to complete the mission
and provide the required loads based on the command signal.
The property of Table 6, maintains a count of faulty EMAs
with the variable f . To model the fact that every command
signal must be followed by a<missioncomplete>, property
P1, the processes in lines 3 and 8 are required to constrain
the number of faulty EMAs (f ) to a number defined by the
parameter of the property (e.g. N=4).

Table 6. FSP Model of Safety Property

1 : property
2 : Fault Tolerance(N=4) = Jammed[0],
3 : Jammed[f : 0..M] =(when(f≤N)commandLoad[L]→CompleteMission[f]
4 : |when (f>N) commandLoad[L]→ Jammed[f]
5 : |d[EMAs].jam→ Jammed[f+1]
6 : |missionComplete→ Jammed[f]),
7 : CompleteMission[f:0..M] = (missionComplete→ Jammed[f]
8 : |when (f<N ) d[EMAs].jam→ CompleteMission[f+1]
9 : |when (f==N) d[EMAs].jam→ Jammed[f+1]).

If the above property is predefined with N = 2, permitting
only two out of four EMAs to fail during the system opera-
tion, the verification algorithm of Fig. 7 verifies that the safety
property is satisfied.

However, when the property is instantiated allowing four EMAs
to fail, the safety analysis verifies that the property is violated
and a failure propagation path is produced. Therefore, the
generic safety property modeled in Table 6 verifies that the
system never reaches the failure condition of total loss if and
only if N ≤ M-1 where N is the number of faulty EMAs and
M is the total number of EMAs.

From the result of case study: the characterization of the sys-
tem architecture by its subsystems and components improves
requirements specification, tracking, and modeling. In addi-
tion, the FSP annotation of the failure behavior of each of
component, and the system level safety analysis based on
components’ interaction lead to achieving a manageable veri-
fication procedure. As the compositional reasoning approach
significantly reduces the number states to be explored, ex-
haustive checking of the entire state space is made feasible
without the need for a exhaustive search. This is especially
important where the exhaustive simulation is too expensive
and non-exhaustive simulation can miss the critical safety vi-
olation.

5. CONCLUSION

There is a growing demand for formal methods and tools that
facilitate the specification and verification of complex engi-

1by default is set to 4 but it can be redefined during the instantiation process.
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neered systems design. Also, safety standards for the de-
sign of safety-critical systems strongly recommend the use of
formal verification approach as part of the certification pro-
cess. However, these standards do not specify how formal
approaches can be implemented. Alternatively, system engi-
neering semi-formal techniques for elicitation and structuring
the requirements of complex engineered systems are essential
part of the design for electing the conceptual design that sat-
isfies the identified requirements.

In this paper, we have proposed a system modeling and verifi-
cation approach that combines these apparently contradictory
views. The semi-formal SysML techniques based on require-
ment and block diagrams combined with formal verification
methods based on the assume-guarantee reasoning are used
to prove that the behavior of sub-systems and components
satisfies the design requirements. The proposed approach is
based on the mapping between the hierarchical decomposi-
tion model of the requirements and properties to be satisfied,
functions and behaviors to be realized, and sub-systems and
components to be implemented.

The future work will continue in verifying more sophisti-
cated system, while taking into consideration safety proper-
ties that are formulated using the temporal operators, i.e., un-
til, before, or after. More complex temporal properties will
be tested. In the case of temporal properties, satisfying the
system property is not always equivalent to satisfying a local
composition of sub-properties. The modified verification al-
gorithm will use linear temporal logic (LTL) as a specification
formalism.
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ABSTRACT

Complex machinery like spacecraft, aircraft, or chemical
plants are equipped with fault detection and diagnosis sys-
tems. Due to their safety-critical nature, such diagnosis sys-
tems have to undergo rigorous Verification and Validation
(V&V). In this paper, we present a tool suite to facilitate V&V
of the deployed diagnostic system. The V&V relies on the
paradigms of cross validation (to compare the diagnosis re-
sults of the deployed reasoner against those of other, more
advanced reasoners), automatic fault scenario generation (to
support extensive testing and coverage analysis), and para-
metric model analysis (to enrich test sets and for robustness
and sensitivity analysis). We present the application of this
tool architecture towards the V&V of the diagnosis system
based on the TEAMS tool suite towards a subsystem in the
NASA cryogenic fuel loading facility.

1. INTRODUCTION

Modern complex systems, like the NASA loading facility for
cryogenic rocket fuel, are equipped with extensive fault de-
tection and diagnosis systems to quickly detect off-nominal
conditions and to diagnose faulty components. For the NASA
Kennedy Cryo facility, the commercial TEAMS tool suite
(http://www.teamqsi.com) is being used for model-
ing and diagnosis. Obviously, such a plant is highly safety-

Johann Schumann et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

critical. Thus, fault detection and diagnosis must undergo
rigorous V&V in order to ensure that the diagnostic system
properly models the physical plant and any associated detec-
tors, so as to minimize the number of false and missing alarms
during operation.

In this paper, we present a tool architecture that has been de-
signed to support V&V of TEAMS diagnostic models. Our
modular set of tools allows the user to carry out a multitude
of V&V use cases and is based upon three basic paradigms:
cross-validation, automatic fault scenario generation, and pa-
rametric analysis. Our tools are augmented with report gen-
erators and a number of advanced statistical analysis and vi-
sualization capabilities.

Any diagnostic model is ultimately based on a simplified and
abstracted model of the underlying physical plant. TEAMS/RT
(Real Time) models are based upon multi-signal diagnosabil-
ity analysis. Here, the outcome of individual tests (“pass”,
“fail”, or “unknown”) results in sets of components (or failure
modes) known to be “good”, “bad”, “suspect”, or “unknown”,
based upon an efficient algorithm using the model’s diagnos-
ability matrix (D-matrix). Because of its time-boundedness
and efficiency, this kind of discrete diagnosis algorithm has
become popular in the aerospace domain, although aspects
of timing, fault propagation, fault probabilities, or physical
model dynamics cannot be expressed. For real-time applica-
tions, the TEAMS/RT diagnosis engine is typically wrapped
by custom code for data acquisition, discretization, and filters
for noise and transient reduction. The V&V of this wrap-
per code is as critical as the V&V of the D-matrix. Timing
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and fault propagation information, as well as data on compo-
nent reliability is available in an extended TEAMS Designer
model, which is used in an off-line mode for designing instru-
mentation. This additional information can also be obtained
through information provided by subject-matter experts.

Our cross-validation tools use such additional information to
facilitate deep model analysis. The provided TEAMS mod-
els are translated into a different, more expressive modeling
paradigm (in our case Timed Failure Propagation Graphs and
Bayesian networks) and are enriched with additional infor-
mation. Then, failure scenarios are executed using reasoners
for these paradigms, and results are compared and analyzed.

One of our reasoners is a Timed Failure Propagation Graph
(TFPG) reasoner, which uses models that have been generat-
ed from the TEAMS models. These TFPG models capture the
faults (failure modes), and their propagation effects to trigger
one or more anomalies (tests). Additionally, the TFPG mod-
els can account for cascading effects of the failures, mode
and timing constraints in the failure propagation, and addi-
tional information such as failure rate expressed in terms of
Mean Time to Failure (MTTF). We also translate the TEAMS
model’s D-matrix into a Bayesian network (BN), which al-
lows probabilistic diagnostic reasoning and the incorporation
of priors on component reliability and failure likelihood.

Proper V&V requires the analysis of the health model to a
certain degree of coverage and not just on a few selected
and hand-crafted failure scenarios. While our tool set al-
lows for manual specification of fault scenarios, it uses ad-
vanced algorithms to automatically generate single and multi-
fault scenarios across the entire model or for a selected subset
of faults. These scenarios are applied in the context of the
mode-sequence commands prescribed in the operational test
scripts for the plant. Our tool set uses the mode-enriched fault
scenarios to generate the test/mode events from two inde-
pendent streams—the discrete TFPG model (generated from
TEAMS models) as well as a gold standard obtained from
a Simulink plant simulation or from Cryo lab experimental
data. Comparison of the data generated from the two inde-
pendent streams allows for cross-validation of the discrete
TFPG (TEAMS) model and the high-fidelity physics based
Simulink model.

The V&V process is made more rigorous by perturbing a
number of independent parameters including time of fault in-
jection, fault magnitude, discretization, and thresholding pa-
rameters, among others. Parametric Model Analysis (PMA)
provides a rich data set for a detailed analysis of the fault-
effect coverage on the tests associated with the fault including
analysis of the wrapper code.

This paper demonstrates the tool and its capability on a case
study of a NASA cryogenic fuel loading facility.

This paper is structured as follows: after discussing related

work, we will present our tool architecture (Section 3). In
Section 4, will give a brief overview of the NASA cryogenic
fuel loading facility and present a selected subsystem as our
example. We then demonstrate sensitivity/robustness analy-
sis, test/model coverage, and the analysis of cross-validation
results. Section 5 concludes and discusses future work.

2. RELATED WORK

It is obvious that a fault detection and diagnosis system is
a highly safety-critical piece of software. Thus, it needs to
undergo rigorous V&V and certification. For example, DO-
178C, Sec 2.4.3 (RTCA, 2011) requires that a monitoring
device has to undergo V&V to the same level as the sys-
tem it monitors. Due to its specific structure and the use
of non-standard reasoning algorithms, however, traditional
V&V techniques are not directly applicable, and only a few
approaches toward V&V of fault detection and diagnosis sys-
tems have been reported. For example, Lindsey and Pecheur
(2004) describe a model-checking approach for Livingston
health models that can fully exercise the state space. Schwa-
bacher, Feather, and Markosian (2008) discuss various ap-
proaches for the V&V of an advanced FDDR system for a
NASA space system; Reed, Schumann, and Mengshoel (2011)
describe an approach on systematic analysis (parametric anal-
ysis) of a Bayesian FDDR model for ADAPT.

As pointed out in (Schumann, Srivastava, & Mengshoel, 2010;
Srivastava & Schumann, 2013), any diagnosis system must
be analyzed and validated on both the model level and the
implementation level. Most approaches in the literature aim
at model validation; actual testing of the system implemen-
tation for code coverage (e.g., MC/DC (RTCA, 2011)) has
not been reported yet and is difficult due to the usually table-
driven algorithms in this domain. The approach described in
this paper addresses both model-level and the implementation
level validation—especially for key parameters of the wrap-
per code and the reasoner engine through cross-comparison
with other reasoners.

3. TOOL ARCHITECTURE

Validation of the Systems Health Management (SHM) in safe-
ty critical systems through rigorous testing of the deployed di-
agnosis engines (reasoners) is extremely important for safety
and mission success. This process should help to understand
the quality and limitations of the current SHM setup and pro-
vide relevant guidance to further fine-tune and improve the
performance of the health management system.

With this in mind, we have designed our tool suite (Figure
1) that uses the concepts of cross-validation to compare the
results of the deployed baseline reasoner against other can-
didate reasoners that can employ richer models over a mul-
titude of auto-generated test-cases (automatic fault scenario
generation), taking into account the realistic variation of key
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Figure 1. Tool architecture

parameters (parametric model analysis) related to the sys-
tem (plant, signal preprocessing and discretization). Figure 1
captures the processes and flows across our V&V tool suite.
The tool suite uses multiple model-based reasoners such as
TEAMS/RT, TFPG, and Bayesian networks.

3.1. Overview

In an initial step (A), the given model, here developed with
TEAMS Designer, is translated and prepared for each speci-
fic reasoner. While some of these models are basic, others are
much richer and can take into account additional details and
knowledge available on fault-propagation such as sequenc-
ing, timing and mode constraints, or probabilistic informa-
tion. These models are generated through an automatic trans-
lation and annotation process.

The next step (B) is to design the experiment wherein our tool
set allows the engineer to specify the required coverage of the
test-cases in terms of the complete model or a subset of faults,
including single and/or multi-fault combinations. Further-
more, the designer can specify plant operational sequences
(commanded mode changes) in which these fault-scenarios
need to be tested. Based on the experimental design, the
fault-scenarios (C) and their associated ideal test-data (D) are
auto-generated using the discretized fault-model.

Alternately, a high-fidelity simulator (F) with fault-injection
capabilities is used to generate analog sensor values for each
fault-scenario (generated in C). The analog data is then dis-
cretized to generate test-data. This process is further enriched
by using PMA techniques to generates rich, yet small set of
test-cases by perturbing fault magnitude and timing parame-
ters (E), as well as monitoring and discretization parameters

(G).

The auto-generated test-cases are then fed to each of the rea-
soners (H). Their outputs form the basis for the cross valida-
tion analysis (I) to get a handle on the diagnosis quality and
fault-coverage taking into account the results of the sensor
sensitivity analysis and test data coverage analysis. The tool
suite is augmented with report generators and a number of
advanced statistical analysis and visualization capabilities.

3.2. Reasoning Engines

3.2.1. TEAMS Emulator

Diagnostic reasoning with the given TEAMS model is per-
formed using an implementation of the D-matrix diagnosis
algorithm. Given a vector of discrete test results (pass, fail,
unknown) and the D-matrix, four sets of failure modes are
calculated, those, which are “good”, “bad”, “suspect”, or “un-
known”. Failure modes in the suspect list are those, for which
some tests have failed, but there has been not enough infor-
mation for disambiguation.

3.2.2. TFPG

A TFPG model is a labeled directed graph where the nodes
represent either failure modes, which are fault causes, or dis-
crepancies, which are off-nominal conditions that are the ef-
fects of failure modes. Edges between nodes in the graph cap-
ture propagation of failure effects over time in the dynamic
system. The model is used for fault diagnostics by collecting
observations about anomalies and discrepancies (i.e., tests) in
the system, and then using efficient graph search algorithms
to generate fault source candidates, i.e., failure modes of com-
ponents.

3

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

190



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

Figure 2. Example TFPG model

Figure 2 shows, as an example, a generic TFPG model. Here,
rectangles represent the failure modes (FM1, FM2, . . . ) while
circles represent OR discrepancies and squares AND discrep-
ancies. Edges between nodes capture failure propagation in
the system. The edge labels of the form: [min,max]mode
capture the failure propagation constraints in terms of timing
interval (minimal and maximal expected times) and opera-
tional mode(s).

The TFPG modeling approach lends itself to creating system-
level, hierarchical fault-propagation models of complex (phys-
ical) systems, where component failure modes are anticipat-
ed, their failure effects (discrepancies) are observable, a clear
cause-effect relationship exists between failure modes and
discrepancies, and the failure effects cascade across compo-
nents (via material, energy, and information flows).

The TFPG reasoner (Abdelwahed, Karsai, & Biswas, 2005;
Abdelwahed, Karsai, Mahadevan, & Ofsthun, 2009) employs
a robust consistency based diagnosis algorithm that can ac-
count for multiple simultaneous faults while taking into ac-
count failure propagation constraints based on timing, op-
erational mode(s), and test/effect cascading sequences. The
reasoning algorithm is robust to realistic monitoring prob-
lems associated with the Tests/Alarms - false-positives, false-
negatives and intermittence. The TFPG approach has been
applied to and evaluated for various aerospace and industri-
al systems (Mahadevan & Karsai, 2000–2014; Abdelwahed
et al., 2009; Hayden et al., 2006) and recently applied in the
context of component-based software system (Abdelwahed,
Dubey, Karsai, & Mahadevan, 2011).

3.2.3. Bayesian Networks for HM

Bayesian networks (BN) can be used for diagnosis and deci-
sion making. Domain knowledge and probabilistic informa-
tion about sensor and component reliability, like MTTF, as
well as failure likelihood can be easily expressed as priors.
We developed a transformation of the given TEAMS model

(i.e., the D-matrix) into a Bayesian network, which is inspired
by (Pearl, 1988; Luo, Tu, Pattipati, Qiao, & Chigusa, 2005).
Optimizations like divorcing and a subsequent translation in-
to arithmetic circuits result in an efficient statistical reasoning
engine for large models.

3.2.4. Other Reasoners

Our tool architecture allows us to incorporate additional rea-
soners, like, for example, HyDE (Narasimhan & Brownston,
2007), which uses simulation over simplified physical mod-
els to support diagnostic reasoning. Similarly, systems, like
KATE (Goodrich, Narasimhan, Daigle, Hatfield, & Johnson,
2007), which is a generic shell for model-based simulation,
monitoring and reasoning, could be added to the set of rea-
soners for cross validation. In these cases, however, the given
TEAMS model cannot be directly translated into a model for
those reasoners, as the semantic difference is too large.

3.3. Automated Scenario Generation

The Diagnostic Verification (DVER) tool for the automated
scenario generation allows the user to specify the experiment
design parameters relative to the appropriate discrete TFPG
fault model. The user can specify the set of faults that need
to be covered as part of the experiment. The coverage could
include the entire model or a specific set of faults in the mod-
el. Additional parameters that can be input include: number
of faults to be generated per fault scenario (e.g., single-fault,
two-fault, etc.), mode change sequence to be applied, timing
consideration for the fault propagation interval (e.g., minimal,
random, or maximal delay), and number of missing (false-
negatives), inconsistent (false-positives) or intermittent tests.
Figure 3(left/center) shows a screen-shot of the DVER inter-
face to configure the experiment.

Brute force fault scenario generation involves generating all
combinations of faults from the selected list to produce single-
and/or multi-fault scenarios. The n-factor algorithm used in
Parametric Model Analysis (see Section 3.5) could be used
to generate the minimal combinations of fault-scenarios to
get the desired fault-coverage. Each generated fault-scenario
includes the list of faults and their respective fault-injection
times. Test-vector generation for each fault-scenario involves
using the TFPG model to simulate the graph traversal starting
from the fault-nodes listed in the scenario. The traversal takes
into consideration any timing/mode constraint imposed by the
TFPG along the fault-propagation sequence. Depending on
the user selected option, it chooses the minimal/maximal or
a random intermediate time (between minimal and maximal
delay) for each propagation link. As the graph is traversed,
the triggering time for each node is recorded. The simula-
tor advances the clock to the next time-stamp. The nodes
that are marked to be triggered at the time-stamp are then
marked visited, and the traversal proceeds to mark the trig-
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gering time for its child nodes. When the node corresponding
to an observable discrepancy is visited, the triggering time for
the test/monitor is recorded. A test once triggered is consid-
ered to be latched in that state. Any updates to the graph are
applied based on the mode-changes at the specified time. The
simulation/traversal process is completed when all possible
discrepancy nodes are reached subject to the fault triggering
time, propagation time, the mode-change sequence. The test-
scenario captures the triggering time for the visited/triggered
tests as well as any mode-changes. Missing tests are gener-
ated by randomly removing one or more triggered tests from
the test-scenario. Inconsistent tests are generated from the set
of tests that are not visited during the traversal. Intermittent
tests are generated by repeatedly toggling the test-status at
random times (within a specified interval).

EXPT. DESIGNMODEL REASONER CONFIG

Figure 3. DVER experiment configuration

3.4. Cross Validation

Cross validation of the deployed baseline reasoner results with
the results of other candidate reasoning engines facilitates
analysis of the correctness, reliability, and limitations of the
deployed SHM model and process. As any diagnostic model
represents a simplified and abstracted model of the underly-
ing physical plant, we leverage off an abstraction hierarchy,
which simplifies the plant model towards different domains.
In the current instantiation of the tool suite, the reasoners
considered include TEAMS/RT (baseline deployed reasoner),
TFPG, and a BN diagnoser. While the TEAMS/RT engine us-
es a simple dependency matrix between fault and tests in each
operating mode, the TFPG and BN reasoners can take into
account additional details pertaining to timing, fault propaga-
tion (sequence), and probabilistic information, respectively.
In the abstraction hierarchy this would mean a step towards
the time domain, and the probabilistic domain. The use of
HyDE (Narasimhan & Brownston, 2007), which uses simpli-
fied physical models to support diagnostic reasoning, would
correspond to yet another step in the abstraction hierarchy.

The cross-validation process starts with Scenario Validation
- validating reasoner results against the ground truth fault-
scenario to group the listed faults per hypothesis as well as
across all hypotheses to identify the fault sets Match (true-po-
sitives – match with fault scenario) and Extra (false-positives
– do not match with fault scenario). These are used to com-

pute metrics that reflect the diagnosis quality in terms of De-
gree of Match (ratio of number of matched faults to total num-
ber of scenario-faults) and Accuracy. In cross validation, the
Match and Extra sets (computed during scenario validation)
of the baseline reasoner is compared against those of a can-
didate reasoner to compute coverage/confidence metrics that
indicate the relative closeness of the correctness (match with
ground truth) and accuracy (match in terms of ambiguous or
erroneous results) of the two reasoners. The cross validation
process is repeated against multiple reasoners to get a bet-
ter assessment of the relative quality of the baseline reasoner.
These results from scenario and cross validation are averaged
over the desired/expected scenarios (fault subset, single/multi
fault, varying fault magnitude, varying test thresholds) to get
an overall assessment of the baseline diagnosis quality. Fig-
ure 3(right) shows the screen-shot of the interface for config-
uring reasoners.

3.5. Parametric Model Analysis

Results of system runs with parametric variations are impor-
tant, among others, for robustness and sensitivity analysis.
Traditionally, methods of single-parameter variation or sta-
tistical Monte Carlo techniques are used. These methods,
however, fail to work on multi-failure analysis or require a
large number of test cases without providing any guarantee
for coverage of the parameter space. Our GUI-based PMA
tool (Reed et al., 2011; Schumann, Bajwa, Berg, & Thiru-
malainambi, 2010; Schumann, Gundy-Burlet, Pasareanu, Men-
zies, & Barrett, 2009) uses an n-factor algorithm for gener-
ating perturbed fault scenarios and to modify discretization
and timing parameters. For the generation of test vectors, the

Table 1. N-factor performance for different number of vari-
ables. Number of test cases and generation time (in parenthe-
ses) shown for calculations under 10 minutes.

variables n=2 n=3 n=4 n=5
5 35(1s) 180(1s) 775(1s) 3125(1s)

10 45(1s) 309(1s) 1878(9s) 10364(480s)
15 53(1s) 390(1s) 2546(100s)
20 58(1s) 446(1s) 3046(537s)
50 74(1s) 629(49s)

100 85(1s) 784(724s)

given perturbation range for each variable is discretized into a
(small) number of bins, in our case 5, which could correspond
to “almost nominal”, “lower”, “higher”, “much lower”, and
“much higher”. Then the n-factor generation picks individual
bins for each variable in such a way that (a) each bin of each
variable is present at least once, (b) for all pairs of variables,
all combinations of their pairs of bins are present. If n = 3,
condition (b) must hold for all triples. This means that for a
given n all m-ary combinations for m ≤ n must be present
in the test set, but not necessary combinations for larger m.
An n-factor algorithm makes the assumption that failures in a
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system are only caused by m ≤ n triggers, and higher-order
combinations of n + 1 or greater factors are not necessary.
Experience indicates that 2 or 3 factors are usually sufficient
for most applications with a substantially reduced number of
test cases. Table 1 shows number of generated vectors and
the generation times on a Macbook Pro.

Similar effects can be observed when using n-factor for code
coverage testing. Giannakopoulou et al. (2011) report that a
3-factor set reduced the size of the test set by more than 3 or-
ders of magnitude compared to the combinatorial exploration.
Yet, only about 2% of code coverage was lost. Random test
sets of the same size led to a substantially reduced coverage.

3.6. Analysis and Report Generation

Our tool suite can perform a number of analyses regarding
sensor and discretization sensitivity and robustness, test data
coverage, and cross validation. Since regular health models
contain a large number of signals, tests, and failure modes, vi-
sualization of results is a challenge. The tool’s visualization
and analysis capabilities focus on three main areas: sensor
sensitivity, test data coverage, and cross-validation. For our
tool, we provide several levels of detail, ranging from naviga-
ble HTML documents showing the individual time series data
for each sensor in a very detailed way to ROC (Receiver Op-
eration Characteristic) curves, which summarize the overall
system performance over multiple scenarios in a single plot.
The user can interpret the results with a visual interface and
assess the quality of the health model to the desired level of
detail. We will present results of some of these analyses in
the next section.

4. APPLICATION

4.1. NASA Cryo Fuel Loading

Most liquid fuel rockets use cryogenic liquid oxygen LO2 as
oxidizer, which provides high thrust per volume but is diffi-
cult to handle. Depending on the size of the rocket, extremely
large large amounts of LO2 must be pumped from a storage
tank into the tank of the rocket. The different modes of op-
eration include chill-down phases, filling (slow and fast), as
well as draining the pipes, or pumping the LO2 back into the
storage tank in case the launch has been scrubbed.

Figure 4 shows a schematic overview of such a plant; the
storage tank on the left-hand side contains the oxygen, from
where it is pumped—using several pumps—into the rocket
tank. Electrically and pneumatically operated valves control
the flow through the various pipes. An operator console is
used to control the loading operations and to display results
of the health management system. Numerous pressure sen-
sors, temperature sensors, and flow sensors provide real-time
information about the plant status.

Figure 4. Generic Cryo Fuel loading plant (schematic)

4.2. Health Management and TEAMS Modeling

For this plant, a health management and diagnosis system
(Goodrich et al., 2007) is being developed, using the commer-
cial QSI TEAMS modeler and TEAMS/RT diagnosis engine.
The plant is instrumented with multiple sensors for pressure,
temperature, and flow. These sensor readings are captured at
fixed time intervals and preprocessed in the TEAMS wrap-
per (Figure 5), where the signals are discretized to form test
results, which are in turn used by the diagnostic engine. A
single sensor can produce several test results, e.g., for a pres-
sure sensor p, there are tests: p-nominal-in-range, p-too-high,
p-too-low, etc. The outcome of each test can be “pass”, “fail”,
or “unknown”. The TEAMS model, which is based on a hier-
archical multi-signal diagnosability analysis consists of sev-
eral hundred tests and almost 2,000 failure modes, produced
diagnosis results as sets of components (or failure modes)
known to be “good”, “bad”, “suspect”, or “unknown”.
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Figure 5. Cryo loading plant with TEAMS/RT wrapper

4.3. Example

For our case study, we consider a small part of a generic cryo-
genic fuel loading plant (Figure 6). Liquid oxygen is fed from
the storage tank (left side, not shown) through the pump. The
flow of LO2 is reduced after the pump by valve V0. Then a
longer pipe transports the LO2 to the other parts of the plant
(right side of the figure). The individual pipes can be drained
by means of opening V1, V2, or V3. If V4 is open, the pipes’
LO2 contents flow into a dump tank, where the liquid oxygen
evaporates. This part of the plant is equipped with various
pressure sensors p1, p2 (red) and a flow sensor f1 (green/red).

In our operational scenario, LO2 is pumped and V0 is partial-
ly open to let through the fuel. A constant pressure and flow
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can be measured by all sensors. At a certain time tf , we in-
ject a failure into the system: one of the valves V1, V2, or V3
gets stuck partially open. This fault obviously causes a loss of
pressure, because now a majority of the LO2 is flowing into
the dump tank.

V4

pump

V1 V2 V3

V0
p1 p2f1

to dump tank

Figure 6. Schematics of small portion of the loading plant
with one pump, valves V1, V2, V3, V4, pressure sensors p1, p2
(red), and flow sensor f1 (green/red)

Figure 7A shows the sensor signals for the two pressure sen-
sors p1 (left) and p2 (right), and the flow sensor f1 (mid-
dle). The curves were obtained by running a physics-level
Simulink simulator (see Figure 1(F)). Shown are 5 paramet-
ric variations of the failure magnitude: the valve gets stuck
at 80% ± 20%. The purple lines are contrasted with a green
dashed line showing the nominal (no-fault) condition. The
rows of Figure 7A show the scenario, where, V1, V2, and V3
fails, respectively. Graphs of the pressure and flow are shown
over time. If V1 fails, the pressure at p1 drops almost immedi-
ately. The observed pressure drop measured at p2 is much less
and slower, because of the long pipe and the pressure reduc-
tion by V0. The measured flow becomes considerably smaller,
because LO2 back-flows toward V1. In contrast, when V2 or
V3 fails, the flow actually increases, because additional LO2

flows from the pump through the bad valves.

The comparative timing of the signals in these failure sce-
narios are shown in Figure 7B. The top row shows pressure
development over time at location p1, the bottom row at loca-
tion p2, respectively. The settling time (t95%) of the curves,
belonging to each scenario can be clearly distinguished. This
temporal behavior is caused by physical effects only. For a re-
alistic plant with actual sensors, additional delay times, e.g.,
caused by W-LAN signal transmission, must be considered.

Our case study will focus on the analysis of these scenarios
and the diagnosability of each of the failures. Specific small
TEAMS models are used to discuss the tool capabilities.

4.4. Scenario Robustness and Sensitivity Analysis

Parametric Model Analysis on scenarios, shown in Figure 1(E)
produces rich data sets that can be used to analyze robustness
and sensitivity of the physical plant with respect to the sen-
sors. Only if the value of a sensor changes over time in a
characteristic manner when a failure occurs, its output can be
potentially used for fault detection.

A B

Figure 7. A: pressures and flow over time for scenario V1
(top), V2, and V3 (bottom). Left panels show pressure at p1,
middle panels flow at f1, and pressure at p2 (right). B: delay
times t95% (blue) for pressures at p1 (top) and p2 (bottom).
Fault injection at tf shown in red. All results obtained with
the Simulink plant simulator.

For a high level of detail, our tool generates navigable HTML
reports, which show tables of all parametric variations of the
injected faults and the time-series of all sensor outputs, con-
trasted to a nominal run, similar to the plots shown in Fig-
ure 7. For larger systems with many sensors a more compact
representation of sensitivity results is needed. For each sen-
sor, we therefore calculate four metrics. S1: relative maximal
deviation of the signal with respect to nominal, S2: sensi-
tivity of the sensor signal with respect to failure magnitude
(∂S/∂F ), S3: typical shape of the curve (increase/decrease to
final value, transient curve, or unspecified), and S4: settling
time t95%. Figure 8A shows the sensitivity for the more than
200 plant sensors for failure scenario V1. For each sensor, its
metrics are shown as star-plots. The length of each side corre-
sponds to the normalized metrics S1 (red), S2 (blue), S3 (ma-
genta), and S4 (cyan) — see Figure 8(center). Sensors that
are not sensitive are shown as light-blue dots. Figure 8(right)
displays the differences in sensitivity with respect to scenar-
ios V1 and V2. Here, the number of sensitive sensors is much
smaller. Sensors, which exhibit a large deviation could be
used to disambiguate the failure modes relevant to these sce-
narios and thus could help to improve the health model.

Figure 8. Sensor sensitivity for V1 fault scenario (left). En-
larged view for 2 sensors (middle). Right panel shows the
difference in sensitivity between scenario V1 and V2.
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4.5. Threshold Robustness and sensitivity analysis

Obviously, discretization thresholds play an important role
for the overall performance of the diagnosis system. There-
fore, an important task is to analyze if the discretization thresh-
olds that are provided by the domain experts are set appropri-
ately and do not influence the diagnosis result in the presence
of noise or variations in the fault magnitudes.

Figure 9 shows plots of two sensor readings S1, S2 over time
for different failure magnitudes, as obtained from the Simulink
simulator via PMA with nominal behavior (dashed green)
and sensor values in different hues of blue according to the
fault magnitudes. Two failures have been injected at differ-
ent times t1, t2 (vertical purple lines). Sensor S1 (top panel)
is not very sensitive to the failure injected at t1, but highly
sensitive to failure at t2. It is clearly visible that S1 is sensi-
tive with respect to the failure magnitude; different PMA runs
produce different time series.

Figure 9. PMA analysis of two sensor signals S1 (top) and S2
(bottom)

A threshold, set to the value shown as a red dot-dashed line
would result in a situation, where, depending on the actual
fault magnitude (which might be subject to noise or other
variations), a reliable detection might fail. On the other hand,
if the threshold is set to the blue line, the off-nominal situa-
tion caused by the failure at t2 is detected reliable regardless
of the fault magnitude.

The bottom panel of Figure 9 shows the output of sensor S2.
Although it is sensitive to failure at t1, where the nominal
and off-nominal traces deviate considerably, no threshold can
be found to help to detect this fault. A typical threshold (red
line) would flag the fault t1, but would also trigger during
nominal operations (left part of the bottom panel). Note, that
this failure causes a transient-style trace, where the value of
the sensor goes back to the nominal value after some time de-
spite the fact that this fault has been occurring. The analysis
of the proper interaction between sensor signals, discretiza-
tion, and reasoning results can be performed by the methods

described below.

4.6. Test/Model coverage analysis

The test coverage analysis deals with understanding the qual-
ity of coverage for each test. This is done by comparing the
expected test status against the realistic test status for every
fault scenario. The expected test status is based on the failure-
effect propagation (reachability) with the discrete fault mod-
el that is used by our reasoners (here TEAMS and TFPG).
The realistic test status is obtained by thresholding the analog
sensor values (from experiment or high-fidelity simulator) for
the concerned fault scenarios (possibly across an interesting
spectrum of fault magnitude values). The real test status gen-
erated for different thresholding criteria is compared against
the expected test status to measure the test coverage quality
in terms of sensitivity (true positive rate) and specificity (1-
false positive rate). A higher test-coverage quality is reflected
in terms of high true-positive rate and low false positive rate.
The coverage quality for each thresholding criteria may be
plotted and compared in an ROC (Receiver Operations Char-
acteristics) curve. Figure 10 below shows the ROC curve ob-
tained by changing the cut-off threshold for the test associated
with pressure p1. ROC curves are typically used to visualize
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Figure 10. Coverage quality in terms of ROCs. Data points
are fitted to y = 1− 1/((1 + (x/C)B)E .

the behavior of a clustering or diagnosis algorithm. Results
of experiments are shown as points of the true positive rate
over the false positive rate. An ideal diagnosis system would
be depicted by the green dashed line: a full true positive rate
(100%) can be already reached with 0% false negatives. On
the other hand, a purely random diagnosis shows up as the
diagonal red line.

It is worth mentioning that the above analysis can also help
capture any differences in fault-propagation (and thereby trig-
gering of tests) between the discrete fault model (used by the
reasoners) and the plant or the high-fidelity simulator. This
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is especially true with tests that are never triggered in the
realistic scenario but are expected by the fault-model (false
negatives), as well as tests that are always triggered but not
expected by the fault model (false positives). This shows up
in the ROC curve as a shift in the curve along true positive
rate axis and/or the false positive rate axis.

4.7. Analysis of Cross-Validation results

Analysis of the scenario validation and cross validation met-
rics over the specified fault scenarios helps to get a handle
on the quality of diagnosis. The scenario validation process
compares the faults listed in the scenario (“ground truth”)
against the faults reported by the diagnoser. The compari-
son helps identify the true positives (faults that match in the
scenario and diagnosis), true negatives (scenario-faults that
are not reported by the diagnoser), and false positives (faults
listed by the diagnoser that are not part of the scenario). The
quality of the results is expressed in terms of Match (percent-
age of true positives among the faults listed in scenario) and
Accuracy (percentage of true positives among all faults listed
by the reasoner). While Match is a measure of the ability of
the reasoner to identify the real fault sources, Accuracy is a
measure of the ambiguities listed by the reasoner.

Table 2 captures the results of scenario validation for our case
study. It shows Match and Accuracy of three reasoners—
TEAMS emulator, TFPG using the same fault-propagation
model as TEAMS, and TFPG∗, a TFPG reasoner using an
updated fault-propagation model, which includes fault prop-
agation times and fault propagation sequences based on the
results of failure analysis shown in Figure 7. Specifically, the
TFPG∗ model has been updated with (a) fault propagation
time and (b) a propagation link between p2 and p1 for fault
from V3. Table 2 shows the results for ideal test vectors the
TEAMS and TFPG model exhibit similar performance, but
the TFPG with the updated model has a far greater accuracy
(fewer ambiguities). In case of the realistic test vectors that
include missing alarms, false alarms, and intermittents, the
TFPG reasoner has a slightly higher accuracy probably relat-
ed to the way intermittents are handled. The TFPG reasoner
identifies intermittence and waits for the tests to stabilize be-
fore updating results. The TEAMS emulator, on the other
hand, starts afresh with every time-stamp. This could also
explain the slight decrease in Match (compared to ideal) for
the TEAMS emulator, as it does not report any faults when
all alarms disappear while exhibiting intermittence.

In computing the cross validation metrics, the candidate rea-
soner results for ground truth and the baseline reasoner re-
sults are compared to identity, for each result, the true positive
(faults listed by both reasoners), true negative (faults listed by
candidate and not by baseline), and false positive (faults list-
ed by baseline and not by candidate). These help analyze the
degree of Match between the reasoners in identifying faults

(Match Scenario) and in eliminating ambiguities (Match Ex-
tra). These metrics help establish the accuracy of the baseline
deployed reasoner relative to the candidate reasoners.

Table 3 captures these metrics for the baseline TEAMS emu-
lator relative to the two candidate TFPG reasoners. The high
numbers for the Match Scenario reflect the closeness between
the baseline and candidate reasoner in identifying the source
of the fault. A lower Match Extra in case of TFPG with the
update model reveals that the candidate reasoner has a tighter
ambiguity set than the baseline reasoner.

Table 2. Scenario Validation

Reasoner Ideal Test-Vectors Realistic Test-Vector
Match Accuracy Match Accuracy

TEAMS
Emulator 1 0.66 0.9 0.47

TFPG 1 0.66 1 0.59
TFPG∗ 1 1 1 0.83

Table 3. Cross Validation (baseline - TEAMS Emulator)

Reasoner Ideal Test-Vectors Realistic Test-Vector
Match Match Match Match

Scenario Extra Scenario Extra
TFPG 1 1 0.93 0.79
TFPG∗ 1 0.33 0.93 0.45

Analysis with the scenario validation metric is important to
understand the relative performance of different reasoners. A
consistently poor scenario validation metric across all reason-
ers could indicate a problem with the fault model (inability
to isolate a fault), sensor placement, or tolerance boundaries
on test coverage. Alternatively, the metric could indicate the
effectiveness of one reasoner in certain cases (fault scenar-
ios/modes/robustness to test coverage changes). On the other
hand, cross validation helps benchmark the performance of
the baseline relative to each candidate reasoner. This would
be useful when the real source of the fault is not known and
the candidate reasoners have to be used to predict the per-
formance of the baseline reasoner. Since each candidate rea-
soner might have their own limitations, it is better to cross-
validate against a bank of candidate reasoners. Furthermore,
analysis over different subsets of faults helps identify where
the baseline reasoner might be lacking when compared to the
candidate reasoner. This analysis makes it possible to im-
prove the performance of the baseline by adding suitable tests
or pseudo-tests.

5. CONCLUSIONS AND FUTURE WORK

For V&V it is essential to ensure robustness and reliability
of a health management systems, even more if it is to be
deployed in a safety and mission critical environment. In
this paper, we have presented a tool set to support V&V of
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TEAMS health management systems by employing the pa-
radigms of cross validation, where diagnosis results of the
TEAMS model are compared with results of other, more ad-
vanced reasoners, automatic fault scenario generation to sup-
port extensive testing and coverage analysis, and parametric
model analysis to enrich test sets for robustness and sensitiv-
ity analysis. We used, as an example, a subsystem of a large
NASA cryogenic fuel loading system to demonstrate tool ca-
pabilities and to present initial results. A number of specific
coverage metrics have been introduced for assessing model
quality and model coverage during pre-deployment V&V.

In this paper we have described scaling properties of core
algorithms of our integrated V&V tools. For example, n-
factor combinatorial test generation scales well with increas-
ing dimension. To provide users with succinct yet meaningful
metrics to assess validation, we provide a summary analy-
sis in terms of scenario validation (match, accuracy), cross-
validation (match scenario, match extra), and ROC curves.
We expect to present our results of using this tool suite on
a large system with a rich set of failure effect propagation.
In future work we will extend our V&V tool suite to include
advanced machine learning algorithms and further statistical
analysis in order to provide deeper analysis and to improve
quality and robustness of scenario generation and parameter
perturbation.
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ABSTRACT 

The research community mainly concentrates on developing 
new and updated diagnostic algorithms to achieve high 
diagnostic performance which is necessary but not sufficient 
for the diagnostic models that are embedded in software. 
The focus of this paper is to understand the requirements for 
accrediting diagnostic system models to meet high 
performance and safety criticality in case of both models 
and embedded system (model + software). For embedded 
systems, models need to be accredited first to allow a more 
accurate distinction of whether the model or the code within 
which the model is embedded is the cause of degraded 
performance. This is because, neither standards for models 
and simulations (NASA-STD-7009) nor software 
engineering requirements (NPR 7150.2A) are sufficient to 
accredit the models in embedded systems. NASA-STD-
7009 assesses the correctness of the physics in models and 
simulations and NPR 7150.2A lists software engineering 
requirements for NASA systems. Thus, it is important to 
understand the accreditation standards in terms of 
performance requirements of models in embedded systems 
that can smoothly transit from NASA-STD-7009 to NPR 
7150.2A. We will discuss interactive diagnostic modeling 
evaluator (i-DME) as an accreditation tool that provides the 
performance requirements or limitations imposed while 
accrediting embedded systems. This process is done 
automatically, making accreditation feasible for larger 
diagnostic systems. 

1. INTRODUCTION 

The research community over prior years has concentrated 
on developing new and updated diagnostic algorithms to 
avoid diagnostics with ineffective reasoning. But, most of 

the times, the real root cause of this ineffectiveness is 
attributed to incomplete or inaccurate diagnostic models 
(Simpson, & Sheppard, 1991). The models are incomplete 
due to the constraints arising from cost (e.g. test design) and 
system complexity issues. Importantly, with increasing 
complexity, detailing and bookkeeping of the system 
becomes very difficult leading to missed information in 
diagnostic models (Sheppard, & Simpson, 1993). Secondly, 
the models can be inaccurate because of the following 
reasons: 1. lack of technical expertise, 2. misunderstanding 
the existing expertise (documents), and 3. human errors. 
While human errors are unpredictable; the others can be 
resolved by precise planning and better documentation at 
every step of model development. Especially, the first two 
reasons are categorized as novice and intermediary levels of 
human knowledge, respectively; but even experts can make 
errors. 

Traditionally, diagnostic modeling is independent of design 
and manufacturing (Simpson, & Sheppard, 1991). 
Diagnostic modelers build their models by studying design 
documents and technical manuals. Here, the physics model 
is fixed while building diagnostic models and optimizing it 
for maximum performance. Hence, in early 1980s, there was 
a strong drive to include diagnostics as an engineering task 
during system development. For this purpose, testability 
analysis is strategized to include adding/modifying tests, 
repacking components to decrease ambiguity, decreasing 
false-alarms, and improving the observability of certain 
faults (Simpson, & Sheppard, 1992). Testability analysis, 
while included in system development, decreases 
maintenance cost and time, and also improves efficiency of 
diagnostic models without disturbing system's operational 
performance by supporting sensor selection and placement.  

But, the testability methodology ignores three salient 
features. Firstly, determining fault modeling (at what level), 
and the causal relationship between faults and tests are not 
included for testability analysis. Secondly, while performing 
testability, the diagnostic algorithm is not included to assess 
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the diagnostic performance; thus there is no remedy for 
misdiagnosis that is incurred later. Thirdly, no cost-effective 
repair procedure for the system/diagnostic model is 
provided. Thus, the best strategy here is to verify and 
validate the diagnostic model by analyzing all its 
characteristics (faults, tests, etc.) and inserting the faults via 
simulation to assess the diagnosis (Sheppard, & Simpson, 
1998). Considering these factors, Interactive Diagnostic 
Modeling Evaluator (i-DME) (Kodali, Robinson, & 
Patterson-Hine, 2013) is developed as an automatic 
computer-user interactive tool that proposes cost-effective 
repair strategies related to fault modeling, test design, and 
their relationship. This is performed on the D-matrix (Luo, 
Tu, Pattipati, Qiao, & Chigusa, 2006), an abstract 
representation of the diagnostic model with causal fault-test 
relationship in terms of 0's and 1's. Matrix entry 1 represents 
that the test detects the corresponding fault, otherwise vice-
versa. Note that adding/removing tests needs changes in 
both system and diagnostic models. For the other repairs 
pertained only to diagnostic models, they can be performed 
even after system development. But, this is not advisable 
because the diagnostic models will be implemented in 
software before the end of system development and it is not 
easy modifying the software always. Note that software is 
required to implement the diagnostic models and it is 
important to certify both the model and software for the 
same required output. 

Columbia Accident Investigation Board (CAIB, 2003) 
stresses the accreditation (certification) of embedded 
systems (model + its implementation software, for e.g. 
TEAMS Designer, TEAMS-RDS (Qualtech Systems Inc.)) 
to "develop, validate, and maintain physics-based computer 
models (models in embedded systems)". This process is 
different from accrediting the models alone. These models 
are pre-accredited before certifying the embedded system. 
Such a distinction is important to find out if the model or the 
code is the cause for degraded performance. For this 
purpose, we are working to achieve the NASA accreditation 
standards for models and simulations (NASA-STD-7009), 
and software engineering requirements (NPR 7150.2A) to 
make them suitable for embedded systems. But, 
unfortunately, neither of these standards independently, or 
combined can provide the necessary standards for all the 
model-based embedded systems. Clearly, the requirements 
from models that should be satisfied by the embedded 
system, the inputs to the accreditation requirements of the 
software code which implements the model, and the 
relationship of the model and the code accreditation results 
needs strict scrutiny and is the focus of this paper. This 
process is also helpful to not expect from the code 
performance beyond the limitations of its embedded model. 
This process becomes tedious with large-scale diagnostics 
models. Thus, it is important to automatically generate the 
accreditation requirements to the embedded system via 
interactive diagnostic modeling evaluator (i-DME). This 

tool repairs the diagnostic models for better diagnostic 
performance and then certifies them. As a result the 
necessary requirements are derived for the diagnostic 
model's implementation in embedded systems. 

Thus, this paper details the general performance guidelines 
for diagnostic models and the corresponding accreditation 
process when implemented in software. In Section 2, we 
will address the building of diagnostic models and best 
modeling practices. We will also explain i-DME 
architecture's potential as a model accreditation tool. This 
tool automatically provides necessary standards information 
to accredit models implemented in embedded system, thus 
makes it easier to accredit larger diagnostic models. The 
NASA standard for models and simulations, and software 
engineering requirements and their interconnection are 
studied in order to perform accreditation for embedded 
systems in Section 3. We will summarize the findings in 
Section 4. 

2. MODELING OF SYSTEM AND DIAGNOSTIC MODELS 

In a natural sequence of development, diagnostic modeling 
follows the system development in parallel. Later, the 
diagnostic model is implemented in software (embedded 
systems). It is important to have best practices at every 
phase of development for the required performance. In this 
section, we focus on system and diagnostic model 
development and the corresponding tool (i-DME) to enable 
best accreditation practices for better diagnostic 
performance. 

2.1. System Modeling 

System modeling is an important engineering task which 
requires adequate planning and skillful implementation. 
Here, modeling includes developing a combination of 
conceptual, mathematical, logical and/or computational 
models. Firstly, the personnel in charge of modeling starts 
with the specifications required to satisfy the objectives and 
the mission. Then, the conceptual designs are translated into 
detailed developmental plans for the molding of hardware. 
At this stage, the personnel in charge can change the 
requirements set before to suit practical compulsions. This 
may lead to changing the basic principles and to refine the 
existing methods continuously. After this, there will be 
extensive testing, both manually and through test 
development, to shift the development into qualification – 
once simulated and real time series data is available. There 
will be two types of tests: development tests to verify the 
components to consistently and reliably perform; 
quantification tests to determine if the vehicle is suitable to 
perform its specified mission. The system is intensively 
verified and validated by detecting design deficiencies and 
early development failures arising from the unanticipated 
communication among components. This process includes 
verifying for authenticity of operating conditions, e.g. 
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pressure and temperature and efficiency of each 
component/subsystem performance. The validation testing 
strategy focusses to build a system that is effective and 
economically viable. This means the model can be built in a 
timely fashion within the budget structure that accomplishes 
the mission objectives (Swenson, & Grimwood, 1989). 

2.2. Diagnostic Modeling 

While system development ensures design for performance; 
it is important to design it for field operations via an 
optimized diagnostic model (Simpson, & Sheppard, 1993). 
The diagnostic information is extracted from system models 
via technical manuals and design documents. This 
knowledge is then used to specify a simplified form of the 
diagnostic model; this is used for testability analysis and 
diagnosis later. Even though the system development phase 
is well documented; building diagnostic models as a 
separate task is troublesome. By doing this routine as part of 
system development; time, cost, and efficiency of diagnosis 
can be improved simultaneously without hindering the 
system's operational mechanism. For e.g. designing tests 
early to decrease ambiguity at individual, sub-system, and 
system levels reduces maintenance cost (Simpson, & 
Sheppard, 1992) (Sheppard, & Simpson, 1992). Also, via 
this process, the personnel are forced to not only think about 
performance, but also focus to recover it from a failure 
condition. This paper once again advocates practicing 
diagnostic modeling within system development; thus 
analyzing the system for diagnosability and testability from 
its early stages of development. 

2.2.1. Fault Modeling and Test Design 

The first important task in fault modeling is to determine the 
level at which the diagnosis is performed (Simpson, & 
Sheppard, 1992). It can be done at component, or sub-
system, or system level. In general the level to which 
diagnostics should be performed is the level to which repair 
actions can be taken (e.g. LRU – line replaceable unit, 
ORU- orbital replacement unit). The symptoms associated 
with each fault mode are analyzed during FMECA analysis 
(Sheppard, & Simpson, 1992). The corresponding impact, in 
terms of criticality of the fault mode on mission success, 
safety, system performance, maintainability, and 
maintenance requirements is also analyzed. 
Correspondingly, tests are designed to detect these faults. 
High detection and design costs are always considered 
during test design. Also, with the fault dictionary (D-
matrix); the set of dependencies between the tests and the 
fault modes are determined via simulations, dataflow 
analysis, logic flow analysis, and traditional, manual circuit 
analysis (Sheppard, & Simpson, 1992) (Luo, Tu, Pattipati, 
Qiao, & Chigusa, 2006). 

When diagnostic models are optimized for better 
performance from early stages of system development; 

analysis for fault mode definitions and optimized test 
designing is performed. This includes analyzing the model 
for ambiguity in fault modes and designing tests to reduce 
it. Similarly, analysis for excess (excess test provides the 
same information as a combination of other tests (Simpson, 
& Sheppard, 1992)) and redundant tests is performed by 
incorporating only essential tests that are required for 
diagnostics. Instead of restricting the tests to check for 
proper system functioning; they are also required to isolate 
faults in the model. Models are made up of nodes and arcs, 
and the propagation paths for fault models are complicated 
for a complex system. So, it is always important to carefully 
generate the fault-test relationship in D-matrix. With 
addition of new components during system development, 
this relationship is bound to change and should be updated 
accordingly. 

2.2.2. Accreditation of Diagnostic Models: i-DME 

Diagnostic modeling has matured from a simple data and 
file sharing to computerized automatic designer tools (e.g. 
TEAMS (Qualtech Systems Inc.)). This necessitates 
accreditation of diagnostic models and their real-time 
software implementation. The aim is to reduce mean time to 
isolate faults and recover systems with highest efficiency 
(Simpson, & Sheppard, 1991). But, this may not always be 
the case because of improper understanding of testability 
information. Certain measures (e.g. ambiguity, operational 
fault isolation etc.) are extracted from the model to check 
for testability and accordingly, the systems are redesigned 
(at initial stages) or repackaged (Sheppard, & Simpson, 
1992). Similarly, we have focused on building new tests for 
improved performance of the diagnostic model in isolating 
faults. But, adding tests is not always the sufficient solution 
because it may cause other issues with the system operation 
and cost effectiveness. This debugging and remedial process 
is always tedious and is impossible for human efforts. Thus, 
in the realm of system engineering, i-DME tool is developed 
to debug diagnostic models at every step of system 
development and operation. This tool, with the aid of 
supervised data (data is labeled with corresponding nominal 
or faulty state), debugs diagnostic models and proposes 
repair strategies to D-matrix (abstract representation of 
diagnostic model) by coordinating with the decision maker 
(user) (Kodali, Robinson, & Patterson-Hine, 2013). 

i-DME is defined as a combined process of computer and 
user decisive mechanisms where computer provides 
platform of the diagnostic analysis of the system model with 
the aid of supervised data and the decision maker performs 
the role of accepting/declining repair strategies based on the 
analysis of performance metrics and technical expertise (see 
Figure 1). Five D-matrix repair strategies are identified 
arranged in ascending order of cost effectiveness. These 
strategies range from addressing duplicity in faults and tests, 
repairing the fault universe to accommodate lower/higher 
level fault modeling (re-define the level of fault modeling 
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Figure 1. i-DME architecture 

by adding or removing rows), repairing/changing the 
wrapper/test logic, repairing 0’s and 1’s in the D-matrix 
entries, and adding/removing tests. They are included in an 
iterative loop to experiment for better performance along 
with the decision maker. The performance criteria are based 
on fault detection and isolation metrics derived from the 
mission objectives by the user. Then, the decision maker 
accepts/declines the repair strategies based on before and 
after performance. More details of this framework can be 
found in (Kodali, Robinson, & Patterson-Hine, 2013). 

In this process, the user not only plays a key role to 
accept/decline the repair on the diagnostic model, but also 
prepares the supervised data. The data collected via 
simulations, maintenance, or operations should be labelled 
with either nominal or the faulty condition. The credibility 
of the data depends on skill level of the user. The data can 
be used to validate the diagnostic model in i-DME process1. 
The system realities which cannot be formalized are also 
included as user's technical knowledge. Similarly, any 
diagnostic algorithm which will be employed for diagnosis 
during operations is implemented in this process for 
assessing the performance by calculating the corresponding 
metrics. Importantly, the diagnostic algorithm implemented 
here for diagnosis is also employed in the software 
implementation of the system during operations2. 

                                                           
1 i-DME efficiency is directly related to the authenticity of the 
supervised data used for accreditation. 
2 Presently, i-DME is explained for D-matrix; but the framework 
will be well extended to other modeling paradigms (e.g. fault 
signature matrix generated using temporal causal graphs (Daigle, 
Roychoudhury, Biswas, & Koutsoukos, 2010)). 

i-DME as an accreditation tool 
i-DME not only debugs diagnostic models, but can also 
double as an accreditation tool for diagnosis and proposes 
repair strategies to suit the performance. The salient features 
of this model accreditation tool are listed here: 

1. The tool tracks the repairs and diagnostic 
performance of the diagnostic model throughout 
the system development and operations, and thus 
provides important inputs of the performance 
trends with each repair for higher diagnosability to 
the modelers (verification and validation).  

2. The tool in addition to pointing out the errors or 
incompleteness in the model provides the strategies 
about what to do in order to improve the 
performance.  

3. The requirements for system's accreditation are 
always specified in terms of operation and safety. 
But, in addition, this tool introduces and derives 
system requirements in terms of diagnostic 
performance, viz. detection and isolation metrics 
when analyzing diagnostic models by including 
diagnostic reasoning algorithm. It is especially 
useful to understand the limitations of cost of 
diagnostic modeling vs performance. 

4. The tool adds value by utilizing the advantages of 
both computer and the decision maker, propose 
cost-effective repairs that not only include 
adding/modifying tests, but also corrects the level 
of fault modeling and causal fault-test relationship; 
thus investigating all the possible causes of 
erroneous models.  
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3. NASA STANDARDS: BRIDGING GAP BETWEEN MODEL 
AND SOFTWARE ACCREDITATION 

In the prior discussion, accreditation process is performed 
on the models alone by proposing repairs for better 
diagnostic performance. But, it is also important to certify 
the embedded systems they are implemented in. This is 
because, in such a case, it is hard to distinguish if the 
performance degradation is due to error or incompleteness 
of the model or software in which it is embedded. For this 
purpose, test evaluation and execution are evaluated 
automatically in contrast to the regular practice by hand for 
software testing (Vaandrager, 2006). The response for each 
test case is noted when analyzing model against which the 
embedded system can be tested (Sabetzadeh, Nejati, Briand, 
& Mills, 2011).  

In NASA's context, it is natural to think that the integration 
of NASA-STD-7009 for models and NPR 7150.2A for 
software engineering would provide the guidance that is 
required to accredit embedded diagnostic models. But, to 
date there is much ambiguity in guidance to accredit 
embedded model-based systems. In this paper, we focus on 
accrediting a subset of those systems, viz. diagnostic 
models. 

NASA-STD-7009 provides methods to accredit models, but 
explicitly states that it does not apply to models and 
simulations that are embedded in control software, 
emulation software, and stimulation environments. It also 
points to NPR 7150.2A, NASA software engineering 
requirements to apply for such embedded models and 
simulations. But, in NPR 7150.2A, numerical accuracy, 
uncertainty analysis, sensitivity analysis, verification and 
validation for software implementation of models and 
simulations are stated to be addressed by the center 
processes and explains that the specific verification and 
validation information is available in NASA-STD-7009. 
This is in fact very confusing because NASA-STD-7009 
doesn't apply to models and simulations implemented in 
certain embedded systems. Even for others, as specified in 
requirements mapping matrix of NPR 7150.2A, models are 
accredited as per this standard only when they support 
qualification of flight operations or equipment and ignores 
for e.g. ground operations/equipment for medium-critical 
systems (requirement SWE-070 in NPR 7150.2A). 

The NASA Software Engineering Handbook (Section 7.15) 
(NASA software engineering handbook, 2013) recognizes 
this lack of specific direction and provides additional 
guidance which states that the analysis of models not 
covered by NASA-STD-7009 should report requirements 
4.2.6, 4.4.1-4.4.9 found in NASA-STD-7009 while 
implementing NPR 7150.2A. It goes on to state that it is 
sufficient to merely report on any and all activities 
performed even reporting that no activities were performed.  

For other models, it is important to ensure that the 
requirements of both the standards (NASA-STD-7009 and 
NPR 7150.2A) are satisfied. The requirements of NPR 
7150.2A are either supplemental, or not related, or subset to 
the requirements in NASA-STD-7009. In either case, it is 
important to identify and derive the requirements from the 
diagnostic models that can be imposed on its embedded 
implementation. Hence, the process of accrediting 
embedded diagnostic systems includes 2 tasks: 1) identify 
the requirements for the accreditation of embedded systems, 
2) implement an automated process (i-DME) to derive the 
requirements (in terms of performance requirements and 
reports) from the diagnostic model analysis. 

3.1. Task 1: Identify the Accreditation Requirements 

It is important to identify the input requirements from the 
model accreditation (NASA-STD-7009) that should be 
satisfied by the embedded system. This includes 
documenting the limitations of the model, conceptual details 
and rationale of the model and test cases, error and warning 
reports, and credibility scale for the eight assessment 
factors. The requirement extracted from these documents set 
the additional new performance requirements for the 
embedded system. Then, the relationship between the model 
and the code accreditation results should be scrutinized. 
This comparison for a similar set of test cases will check if 
the model is correctly implemented in the software or not. 
To this effect, we will explain the necessary information 
derived from model accreditation to the embedded system.  

The verification and validation requirements of models as 
stated in NASA-STD-7009 required for embedded systems 
are listed as below:  

1. Req. 4.4.1 – Shall document any verification 
techniques used and any domain of verification 
(e.g., the conditions under which verification was 
conducted).  

2. Req. 4.4.2 – Shall document any numerical error 
estimates (e.g., numerical approximations, 
insufficient discretization, insufficient iterative 
convergence, finite-precision arithmetic) for the 
results of the computational model.  

3. Req. 4.4.3 – Shall document the verification status 
of (conceptual, mathematical, and computational) 
models.  

4. Req. 4.4.4 – Shall document any techniques used to 
validate the M&S for its intended use, including 
the experimental design and analysis, and the 
domain of validation.  

5. Req. 4.4.5 – Shall document any validation 
metrics, referents, and data sets used for model 
validation.  

6. Req. 4.4.6 – Shall document any studies conducted 
and results of model validation. 
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Figure 2. Relationship of i-DME to support 7009/7150.2A integration for embedded diagnostic models 

The verification and validation information derived based 
on these requirements guides the accreditation process of 
embedded system of how to use and verify the model. Test 
cases that can be used for accreditation of both model and 
embedded system are defined and documented (see Figure 
2). Similarly, verification and validation techniques (in this 
case, diagnostic algorithm) need to be the same for both 
accreditations and should be documented. Using this 
standard, the diagnostic model is independently accredited 
and the results are properly documented. In fact, every detail 
is documented as it is necessary to document everything that 
is performed or even document that nothing is done. 

Analyzing the credibility of the model accreditation process 
is important to accredit embedded systems. To monitor this, 
NASA-STD-7009 has a credibility assessment score which 
is the weighted addition of eight factors, viz. verification, 
and validation (development), input pedigree, results 
uncertainty, and results robustness (operations), use history, 
management, and people qualifications (supporting 
evidence). These factors scored between 0 and 4 with 4 
being the highest score. For e.g. input pedigree gets the 
highest score when the supervised data mimics the real-
world operational data and captures all the necessary 
problems of interest. Similarly, the decision maker with 
extensive experience in the use of the diagnostic model 
corresponds to highest score for people. It is technically 
feasible, but with difficulty to achieve highest rating and is 
limited only when the system is in operation, while lower 
levels can be achieved during early phases of development. 
The credibility assessment score is documented and reported 
to the decision maker so that he understands the reliability 
of the model accreditation results.  

Reporting errors and warnings is also a necessary 
requirement to translate the information from model to 
embedded system accreditation. During accreditation of 
diagnostic models; if it is identified that certain repairs to 
the model cannot be performed due to cost or complexity 
constraints, then, we document it as a constraint on the 
performance requirements of the embedded system. 
Otherwise this deficiency can be attributed to the code while 
it is being accredited. For e.g. information about 
components that are not diagnosable with the present model 
should be documented so that when it is not diagnosed with 
the working software; wrong manifestation to software can 
be avoided.  

3.2. Task 2: i-DME to Generate Accreditation 
Requirements 

For models of large-scale complex systems, the reporting of 
the requirements is a huge burden. In addition no specific 
model assurance activity processes are defined which makes 
it impossible with laborious manual labor to document the 
verification and validation requirements. This gap is filled in 
by the proposed method, i-DME that automatically 
generates reports for verification and validation 
requirements in NASA-STD-7009 as stated above. In 
addition, most importantly, i-DME defines the performance 
requirements that need to be and can be satisfied by the 
embedded system derived from the diagnostic model 
analysis.  

The reports for these requirements will be accomplished by 
running i-DME system on a set of test cases which cover  
the potential failure sources in the system. For this purpose, 
as shown in Figure 2, the inputs for model verification and 
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validation are supervised test cases and user-set 
performance requirements. Using these, i-DME verifies and 
validates the diagnostic model by proposing repairs to add 
new failure modes/tests, or repair the test logic, or repairs 
the relationship between failure modes and tests in terms of 
0's and 1's. After finishing the repair procedure, i-DME 
assesses the performance and changes the user-set 
performance criteria to a more realistic assessment. This 
acts as performance requirement to embedded systems. 
Similarly, i-DME in coordination with the user develops 
new test cases or makes corrections to the existing ones 
when the corresponding labels of nominal or off-nominal 
conditions are mistaken. All these requirements, test cases, 
and performance, are in line with those in NASA-STD-7009 
and are documented in a user-friendly manner by the i-
DME. The details about the diagnostic algorithm used for 
performance assessment will also be provided because it is 
mandatory to use the same technique while accrediting the 
model and the embedded system.  
The capabilities of i-DME in the context of NASA-STD-
7009 and NPR 7150.2A for the accreditation of models are 
listed below:  

1. i-DME is an automated performance reporting tool. 
Thus, it becomes easier to accredit even very large 
scale diagnostic systems. 

2. i-DME provides a framework to benchmark the 
diagnostic models against supervised data ("test 
cases"). These same test cases will also run against 
the code.  

3. For verification and validation, the diagnostic 
algorithm calculates the performance in terms of 
detection and isolation metrics. This is also used to 
assess the credibility of the models for 
accreditation.  

4. The system's faulty behavior as assessed by the 
diagnostic model is reported to the decision maker 
on a regular basis. 

5. The limitations of the diagnostic model, for e.g. 
cannot achieve 100% isolation with insufficient 
tests, are obtained via i-DME process through the 
reporting to the decision maker. This avoids 
imposing incorrect performance requirements 
while accrediting embedded systems. 

Conclusively, the diagnostic models and simulations are 
pre-accredited based on NASA-STD-7009 and then accredit 
the embedded system based on NPR 7150.2A by 
automatically deriving necessary requirements via i-DME. 
This enables clear distinction of the reason for performance 
degradation even in large-scale embedded systems. Also, by 
doing this, we understand what not to expect from the 
embedded system beyond the capabilities of the 
implemented model. This is because these limitations can be 
manifested as erroneous implementation in the code. Note 
that, diagnosing for errors in software code is not the focus 
of this paper. 

3.3. Accreditation Requirements for ADAPT System 

We demonstrate i-DME framework as an accreditation tool 
on ADAPT system (Poll, Patterson-Hine, Camisa, Garcia, 
Hall, Lee, Mengshoel, Neukom, Nishikawa, Ossenfort, 
Sweet, Yentus, Roychoudhury, Daigle, Biswas & 
Koutsoukos, 2007). During accreditation of D-matrix using 
i-DME framework, repairs are proposed to the D-matrix 
entries corresponding to voltage and current sensors of 
component FAN (underspeed and overspeed failure modes) 
to avoid misdiagnosis. This process is already published in 
(Kodali, Robinson, & Patterson-Hine, 2013) and is not 
presented here. 

The information derived from ADAPT model accreditation 
needs to be reported for embedded system accreditation. 
The user sets correct isolation rate as the performance 
requirement on the model. Correct isolation rate is the 
percentage number of events that are correctly diagnosed 
(both nominal and faulty cases) over time. This metric is 
reported for each failure mode and nominal case whenever 
supervised data is available (see Figure 3). Note that, the 
performance requirement is based on user's decision and i-
DME analyzes the model based on that metric. The 
diagnostic algorithm used during model accreditation, 
DMFD algorithm (Singh et al., 2009) is also reported. i-
DME reports the performance requirements for embedded 
system accreditation as shown in Figure 3. The performance 
details (correct isolation rate) for each failure mode and 
nominal conditions against the given test cases along with 
the repair conditions proposed to achieve the corresponding 
performance are reported. These metrics are used to set 
requirements for comparison check for the available test 
cases when the software implementation of ADAPT 
diagnostic model is accredited. 

4. CONCLUSIONS 

In this paper, the accreditation process for diagnostic models 
and the corresponding embedded systems is discussed. It is 
important to include building of diagnostic models during 
system development so that any changes to the system 
model for better diagnosability can be proposed early. In 
this perspective, to debug diagnostic models at every step of 
development and operations, i-DME tool can be employed. 
As an accreditation tool, i-DME also proposes repairs on the 
diagnostic/system model that achieve better performance. 
Importantly, i-DME also pre-accredits the diagnostic model 
embedded in software systems and derives the 
corresponding necessary accreditation requirements for the 
embedded system. This facilitates isolating the root cause if 
the model or the code within which the model is embedded 
is the cause of degraded performance in the case of 
embedded systems. This is necessary as NASA standards, 
viz. NASA-STD-7009 and NPR 7150.2A, have restrictions 
to accredit all the embedded systems. For this purpose, 
process to translate knowledge from model accreditation to 
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Figure 3. Reporting of accreditation requirements for embedded ADAPT system 

embedded system accreditation as requirements is defined. 
i-DME automatically generates for verification and 
validation requirements, thus making it possible to accredit 
even very large-scale embedded diagnostic systems. In the 
future, we will explore for uncertainty requirements 
(requirements 4.4.7 – 4.4.9 in NASA-STD-7009) and 
credibility assessment score that are necessary for 
accrediting embedded systems and implement them in i-
DME. 
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ABSTRACT 

This paper describes a formal framework for reliability 

assessment of component-based systems with respect to 

specific missions. A mission comprises of different timed 

mission stages, with each stage requiring a number of high-

level functions. The work presented here describes a 

modeling language to capture the functional decomposition 

and missions of a system. The components and their 

alternatives are mapped to basic functions which are used to 

implement the system-level functions. Our contribution is the 

extraction of mission-specific reliability block diagram from 

these high-level models of component assemblies. This is 

then used to compute the mission reliability using reliability 

information of components. This framework can be used for 

real-time monitoring of system performance where reliability 

of the mission is computed over time as the mission is in 

progress. Other quantities of interest such as mission 

feasibility, function availability can also be computed using 

this framework. Mission feasibility answers the question 

whether the mission can be accomplished given the current 

state of components in the system and function availability 

provides information if the function is available in the future 

given the current state of the system. The software used in 

this framework includes Generic Modeling Environment 

(GME) and Python. GME is used for modeling the system 

and Python for reliability computations. The proposed 

methodology is demonstrated using a radio-controlled (RC) 

car in carrying out a simple surveillance mission. 

1. INTRODUCTION 

In recent years, model-based design (Schattkowsky & Muller 

2004; Mosterman, 2007), which is a simulation-based 

approach, has become a powerful framework for the design 

of complex systems using component behavior models. It is 

also used to analyze and manage the complexities and failures 

due to component-to-component interactions during the 

design phase of the system. Several design alternatives are 

possible for the same system and a single design is to be 

chosen based on several factors such as cost, performance, 

reliability. Each design choice is associated with a different 

cost, performance, reliability. The selection of a particular 

design is made through a tradeoff between the cost, 

performance and safety of the system. (eg., In an inertial 

measurement unit (IMU) (Dubey, Mahadevan & Karsai 

2012) used in Boeing aircraft, 6 accelerometers are provided 

even though only 4 are necessary to improve the reliability 

under additional costs). For commercial airplanes where 

people are involved, safety takes preference over 

performance and cost. For unmanned vehicles where people 

are not involved, performance might take preference over 

safety. Each design alternative is tested under several 

scenarios before the final design alternative is selected. A 

scenario is termed as mission in this paper. A mission can be 

understood as a collection of activities or functions to be 

performed. A more formal definition of a mission is provided 

in Section 4.  

Usually, mission requirements are independent of the 

systems used to undertake the mission. The components used 

to accomplish the mission functions are indigenous to the 

system that is carrying the mission. As an example, a simple 
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mission description can be to move from point A to point B. 

There can be many choices to move from A to B such as using 

a gas-powered car or an electric car. The components used in 

the gas-powered car (fuel-tank, engine) are completely 

different from the components used in the electric car 

(batteries) to carry out the same function. In general, not all 

the components in the system are used to carry out the 

mission. A system may provide many more functions that are 

not necessary for the mission. In such cases, all the 

components corresponding to those functions will be unused 

and do not appear in the reliability assessment. Assume that 

B can be reached from A without taking any diversion. In 

such a case, the steering wheel component will be unused and 

does not appear in reliability assessment. 

Reliability assessment in component-based systems provides 

a mechanism to predict the failure probabilities for the overall 

system from the failure probabilities of individual 

components (Kececioglu, 1972; Krishnamurthy & Mathur, 

1997). It is used to evaluate design feasibilities, compare 

design alternatives, identify potential failure areas in design, 

trade-off between design factors, provide an insight on the 

need for redundant systems, and replace existing systems 

with better reliable systems (Elsayed, 2012). There are two 

types of mechanical components – repairable and irreparable 

components. Repairable components are the components that 

if failed can be brought to working condition. Similarly, 

irreparable components cannot be brought back to the 

working state when failed. In the case of repairable 

components, Mean time between failures (MTBF) is a 

measure of reliability whereas Mean time to failure (MTTF) 

is a measure of reliability for irreparable components (Wood, 

2001). In this paper, all the components are assumed to be 

irreparable.  Reliability assessment is essential before the 

beginning of mission and also during the mission. Reliability 

assessment during the mission is necessary to calculate the 

reliability of the mission in real-time during the mission in 

the presence of failure of any of the components. This 

provides an idea on the redundancy available in the system 

and assists in real-time decision making process. 

Some of the traditional techniques used for system reliability 

assessment include Failure Modes, Effects and Criticality 

Analysis (FMECA; Bauti & Kadi, 1994; Teng & Ho, 1996), 

Fault Tree Analysis (FTA; Lee, Grosh, Tillman & Lie, 1985), 

Event Tree Analysis (ETA; Ericson, 2005), Reliability Block 

Diagrams (RBD; Elsayed, 2012), Probabilistic Risk 

Assessment (PRA; Modarres, 2008; Greenfield; 2001). 

FMECA is an extension to Failure Modes and Effects 

Analysis (FMEA) developed by NASA to improve the 

reliability of space hardware program. In this method, all the 

potential failures in the design are identified and their severity 

on the system output is included. In FTA, the system is 

represented in a hierarchical form using Boolean logic such 

that the system output occurs at the top. For each system 

failure, the causes are inferred using a top-down approach. 

Event trees are used to follow a sequence of events from an 

initiating event of a component until the end state of the 

system. The probability of the outcome of end state is 

determined from the probabilities of individual events. In the 

RBD approach, the system is represented using a network 

diagram of blocks representing components connected in 

series and/or in parallel. The PRA approach uses fault tree 

and event tree diagrams in a probabilistic framework to 

compute the probability of a failure outcome. In this paper, 

reliability assessment is performed using reliability block 

diagrams because they can be constructed easily using the 

Boolean expressions employed in the  proposed 

methodology. A detailed introduction to reliability block 

diagrams is provided in Section 2.  

The main contribution of this paper is the extraction of the 

components involved in carrying out the mission and then 

constructing the mission-specific reliability block diagram to 

compute the reliability of the mission using the reliability 

information of the components in the system. Also, a 

procedure to extend the proposed methodology to real-time 

reliability assessment is provided. 

The paper is organized as follows. Section 2 discusses the 

reliability modeling of mechanical components and the 

procedure for construction of the reliability block diagram. 

Section 3 provides the details of systems for which the 

proposed methodology can be applied. In Section 4, the 

proposed methodology for reliability assessment in 

component-based systems is presented. In Section 5, the 

proposed methodology is demonstrated using an example in 

which a radio-controlled (RC) car is used to carry out a 

simple surveillance mission. Concluding remarks are 

provided in Section 6.  A list of necessary definitions are 

provided in the appendix. 

2. BACKGROUND 

2.1 Reliability Modeling of a Component 

A typical component is subjected to three kinds of failures 

during its service life – (1) early life failures, (2) random 

failures, and (3) wearout failures. The failure rate 

corresponding to the early-life failures decreases as a 

function of service time of component. Random failures are 

characterized by constant failure rates because failures can 

occur at any time during the service time of the component. 

Wearout failures are characterized by an increasing failure 

rate, where the failure rate of a component increases with the 

service time of the component. The total failure rate at any 

time instant is equal to the sum of all the three failure rates. 

The total failure rate can be modeled using a bathtub curve. 
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Figure 1 shows a typical failure rate curve for a typical 

component (Filliben, 2002). The bathtub curve consists of 

three phases. In the first phase, the early-life failures are 

 

Figure 1. Bathtub curve showing failure rate of a component 

predominant; this is known as infant mortality period.  In the 

second phase, random failures are predominant and this phase 

is known as stable failure period or intrinsic failure period. In 

the third phase, wearout failures are predominant and this 

phase is known as wearout failure period. The failure 

probability during the third phase is generally modeled using 

a Weibull distribution (Eq. 1) and that during the second 

phase is modeled using an exponential distribution (Eq. 2). 

The first phase does not have a failure probability evaluation 

but early failures are used for design and development. 

 
𝑃𝑓(𝑡) = 1 − 𝑒

(−
𝑡
𝜂

)
𝛽

 (1) 

 𝑃𝑓(𝑡) = 1 − 𝑒−𝜆𝑡 (2) 

In Eq. (1), 𝜂 represents the scale parameter (time at which the 

failure rate is 0.632) and 𝛽 represents the shape parameter. 

The shape parameter describes how the failure rate varies 

with time. In Eq. (2), 𝜆 represents the mean time between 

failures (MTTF). The values of these parameters can be 

obtained from the manufacturer, historical data or can be 

estimated through simulations. In this paper, all the 

components are assumed to be in the second phase of random 

failures. 

2.2 Reliability Block Diagrams 

A reliability block diagram is a graphical representation 

showing the logical connections between the components in 

the system. These diagrams are used to compute the overall 

reliability of the system/functions using the reliability 

information of individual components and Boolean rules of 

combinations (Bennetts, 1982). When two components are 

connected in series, then the function requires both the 

components and if the components are connected in parallel, 

either of the components is sufficient to carry out the 

function. The terms series and parallel carry the same 

meaning as in the electrical circuits. Figures 2(a) and 2(b) 

shows series and parallel connections for two components 

𝐶1and 𝐶2. When components are connected in series, the 

overall reliability is the product of individual reliabilities of 

components assuming independence between components 

(Eq. 3). When components are connected in parallel, the 

overall reliability is obtained using the union rules from set 

theory. Also assuming independence between components 

the expression for overall reliability is obtained using Eq. (4). 

 

 

 

(a) Series     (b) Parallel (c) 𝑟 from 𝑛 

   Figure 2. Series and Parallel connections of components 

 

 𝑅(𝑆) = 𝑅(𝐶1) × 𝑅(𝐶2) (3) 

 𝑅(𝑆) = 𝑅(𝐶1) + 𝑅(𝐶2) − 𝑅(𝐶1)𝑅(𝐶2) (4) 

In Eq. (3) and Eq. (4), 𝑅(𝑆), 𝑅(𝐶1), 𝑅(𝐶2) refer to the 

reliabilities of the overall system, components 𝐶1 and 𝐶2 

respectively. When the component requirement for a function 

is specified using “𝑟 from 𝑛” operator, then all possible 

combinations are obtained and connected in parallel. The 

reliability of this component-system is calculated using series 

and parallel connection rules as stated above. The number of 

combinations is equal to 𝐶𝑟
𝑛 , which is equal to 

𝑛!

(𝑛−𝑟)!𝑟!
 

.Consider an example where a function 𝐹 requires two out of 

available three components. Let the three components 

be 𝐶1, 𝐶2, 𝐶3. In this case,  𝐹 can be carried out using 𝐶1, 𝐶2 or 

𝐶2, 𝐶3 or 𝐶1, 𝐶3. The combinatory can be represented in the 

reliability block diagram as shown in Figure 2(c). 

3. SYSTEM MODEL 

The systems under consideration are mechanical systems or 

cyber-physical systems (CPS). Though, CPS have both 

mechanical and software components, we currently consider 

the reliability and failure possibility of mechanical systems 

only. Software components are assumed to be functional. 

Consideration of software component reliability metrics 

require additional future work as these components do not 

typically age as mechanical components and do not follow 

the typical bathtub curve. All the mechanical components are 

assumed to be in the second phase of the bathtub curves, 

where the failures are random ie the failure rates are constant 

and the failure probabilities are modeled using exponential 

distributions. Also, it is assumed that the failures in the 

components are independent, thus the failure of one 

component does not influence the functioning of other 

components in the system. Once a component fails in the 

system, it remains in the failed state till the end of mission. 
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Also, it is assumed that the Mean Time to Failure (MTTF) 

information is available for all the components in the system. 

4. PROPOSED METHODOLOGY 

In this section, a step-by-step procedure is developed 

demonstrating the proposed methodology for reliability 

assessment. 

Step 1. System Modeling: The system undergoing the 

mission is modeled using a domain-specific modeling 

language (DSML). The procedure for modeling is not 

discussed and out of the scope of this paper. The proposed 

methodology is independent of the language used for 

modeling. During modeling, each component in the model is 

associated to the list of functions that require this component. 

Each component is associated with a corresponding MTTF 

(mean time to failure) value. The MTTF values for all the 

components are assumed to be available for analysis.  

Step 2. Functional Decomposition: From the mission 

description, the function-time diagram can be obtained which 

provides information about the list of high-level functions 

required and the time when they are required during the 

mission. (Consider Figure 4. Assume a hypothetical mission 

description that requires the car to move from A to D. To 

accomplish the mission, the car which initially is along the 

line AB should take a left at A, move forward from A to C, 

take a right turn at C, move forward from C to D. Let the car 

takes ‘tleft’ min to turn and ‘tAC’ min to move from A to C. 

Therefore, from time t = 0 to t = tleft, the high-level function 

required is to turn left. From t = tleft to t = tleft + tAC, the high-

level function of moving forward is required. Thus, function-

time information can be obtained from mission description. 

This information when represented by a diagram as shown in 

Figure 6 becomes a function-time diagram). For each of the 

high-level functions, functional decomposition is carried out 

to obtain the leaf-level functions. The high-level function can 

be hierarchically represented in terms of lower level 

functions and leaf functions using a tree-structure, as shown 

in Figure 7. From the tree-structure, a Boolean expression for 

the high-level function can be obtained in terms of the leaf-

level functions. This Boolean expression can be converted to 

a reliability block diagram. The symbol ∧ represents series 

connection (i.e., both components are needed) and ∨ 

represents parallel connection (i.e., one of the components is 

needed). For example, consider a high-level function 𝐹 which 

is expressed in terms of leaf-level functions as 𝐹1 ∧ (𝐹2 ∨

𝐹3) ∧ 𝐹4. This Boolean expression when expressed as a 

reliability block diagram becomes 

 

Step 3. Function-Component association:  Each of the leaf-

level functions is associated with a component or a 

component assembly in the system that is undertaking the 

mission. The components associated with each function 

depend on the system that is undertaking the mission. The 

components providing the same function may be different in 

different systems. (Eg., the power generation function can be 

accomplished through a battery or an internal combustion 

engine). A component may be associated with more than one 

leaf-level function. For each leaf-level function, the 

corresponding set of components can be derived from GME 

because in the modeling stage, the association of each 

component to the list of functions has been made. Again the 

function-component associations can be expressed using 

Boolean expressions, which can be extended to obtain the 

corresponding reliability block diagrams as stated in Step 2.  

Step 4. Reliability Assessment: Each leaf-level function has 

a set of components associated with it and a reliability block 

diagram can be obtained from the connections of the 

associated components. Apart from the function-component 

associations, there are additional constraints called 

implication constraints (Mahadevan, Dubey, 

Balasubramanian & Karsai, 2013) that arise from the system 

model. For example, consider a simple function of power 

generation in an automobile, which requires an internal 

combustion engine. When the function-component 

association is made, the power generation will be associated 

with the internal combustion engine. But for the working of 

internal combustion engine, additional components like 

chassis are required to hold the combustion engine for it to be 

working. If the chassis breaks down, even though the engine 

is in working state, the function becomes unavailable. This is 

an additional implication constraint coming from the system 

model. Therefore, these implications should also be included 

in constructing the reliability block diagram. The reliability 

block diagrams of all the leaf-level functions are used to 

obtain a reliability block diagram of the high-level function. 

Similarly, reliability block diagrams can be obtained for all 

the high-level functions. The reliability block diagrams of all 

the high-level functions can be combined to obtain the 

reliability block diagram of the entire mission. Sometimes a 

component may be required for several function in the 

mission, therefore the component appears several times in the 

Boolean expression. The PyEDA package available in 

Python environment is used here to simplify the Boolean 

expression and from the simplified Boolean expression, a 
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simplified reliability block diagram can be obtained. From 

the mission description, we can obtain the required functions 

and also the time each function is required for. Using this 

function-time information, we can calculate the time each of 

the components is required for. Using the time information, 

MTTF values and the reliability block diagram, the reliability 

of the mission can be calculated using series and parallel 

connection rules given in Eqs. (3) and (4). 

Step 5. Real-Time monitoring for decision making: 
During the course of the mission, the health of all the 

components can be monitored (failed, or working). If a 

component is in failed state, all the functions that the 

component is associated with will not be available. From the 

health of the components, availability or unavailability of the 

functions can be inferred. Mission feasibility, as defined in 

the previous section, can also be analyzed using the health of 

the components. At any time instant, real-time reliability 

assessment of the system can be carried out using Step 4. 

Using the results of real-time reliability assessment, decisions 

on continuing the mission, aborting the mission or carrying 

out a simpler mission (a mission with lower outcomes than 

originally intended) can be made. Also, decisions in choosing 

alternate paths to maximize the reliability of the mission can 

be made. When a component becomes unavailable, it can be 

specified in PyEDA, and it produces a resultant Boolean 

expression by removing the unavailable component(s). The 

resultant Boolean expression can be used for reliability 

assessment of the mission. Figure 3 shows the proposed 

methodology for reliability assessment.  

In Figure 3, the mission is described using high level 

functions 𝐹1, 𝐹2, 𝐹3, 𝐹4. Then, using functional 

decomposition, the high level functions are decomposed to 

leaf-level functions. Then each of the leaf-level functions 𝐹𝑘 

(k = 5 to 14) is associated to its component assembly. The 

function-component association also represents the reliability 

block diagram of the leaf-level function. The reliability block 

diagrams of the leaf-level functions are combined to obtain 

the reliability block diagram of the high-level functions. The 

reliability block diagrams of all the high-level functions are 

combined to obtain the reliability block diagram of the 

mission. 

 

 

Figure 3. Methodology for Reliability Assessment
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5. EXAMPLE: Radio-Controlled Car 

Mission Description - The RC Car, which initially is at point 

A has to move to point B and perform surveillance at point B 

using a camera mounted on it. The car is amphibious and can 

move from A to B either on land or in water as shown in 

Figure 4. Along with the land powertrain, a propeller system 

is also built-in to the RC Car to move in water. The width of 

the water body is assumed to be 1.5 mile. The total distance 

to be covered when moving on land from A to B is 2.5 mile. 

The speeds when moving on land and in water are assumed 

to be 7.5 mph and 3 mph respectively.  The RC Car as 

modeled in GME (Ledeczi, Maroti, Bakay, Karsai, Garrett, 

Thomason & Volgyesi, 2001) is shown in Figure 5. A simple 

model of the RC Car is used for illustration and therefore has 

limited capabilities in terms of   functions that can be carried 

out. The RC Car can move forward, backward, turn left and 

turn right. To stop the car, thrust is to be exerted in the 

opposite direction of motion i.e., if the car is moving forward 

then thrust is to be exerted in the reverse direction to stop the 

car. This forms the primary braking system and along with 

this, a secondary emergency braking system is also assumed 

to be available. From the mission description, the function-

time plot can be constructed as shown in Figure 6. The 

mission can be divided into two high-level functions – 1) A 

function 𝐹𝐴𝐵 that represents the movement of the RC Car 

from A to B and 2) a function 𝐹𝑆 that represents the 

surveillance activity at point B.  To complete function  𝐹𝐴𝐵 , 

the RC Car can choose between two alternate paths – to move 

on land, represented by 𝐹𝐴𝐵𝐿
 or in water, represented 

by 𝐹𝐴𝐵𝑊
.  The function 𝐹𝐴𝐵𝐿

 is decomposed into three sub-

functions - 1) Moving from A to C, represented by 𝐹𝐴𝐵𝐿
. 𝐹𝐴𝐶  

2) Moving from C to D, represented by 𝐹𝐴𝐵𝐿
. 𝐹𝐶𝐷 3) Moving 

from D to B, represented by 𝐹𝐴𝐵𝐿
. 𝐹𝐷𝐵. The locations of 

points C, D are shown in Figure 4. The successful completion 

of all these three sub-functions results in the successful 

completion of function 𝐹𝐴𝐵𝐿
. Each of the sub-functions is 

further decomposed into a number of smaller leaf-level 

functions and successful completion of all the leaf-level 

function results in the completion of a sub-function. Table 1 

shows the sub-functions of 𝐹𝐴𝐵𝐿
and their associated leaf-

level functions. In the case of function 𝐹𝐴𝐵𝑊
, the function 

itself is a leaf-level function and therefore cannot be 

decomposed further. Figure 7 provides the decomposition of 

the high- level function in moving from A to B (𝐹𝐴𝐵) along 

with duration of each of the leaf-level functions required. 

 

Figure 4. Mission Description 

Table 1.Sub-functions of 𝑭𝑨𝑩𝑳
 and their leaf-level functions 

  

Using the hierarchical decomposition, the function 𝐹𝐴𝐵 can 

be expressed in terms of the leaf-level functions as  

𝐹𝐴𝐵 = ((𝐹1 ∧ 𝐹2 ∧ 𝐹3 ∧ 𝐹4 ∧ 𝐹5 ∧ 𝐹6 ∧ 𝐹7 ∧ 𝐹8)

∨ (𝐹9 ∧ 𝐹8)) 
(5) 

The next step after obtaining the hierarchical decomposition 

is to associate component assemblies to carry out each of the 

atomic-level functions.  Table 2 shows the list of component 

assemblies available in the RC Car system along with their 

MTTF values and Table 3 shows the association between 

atomic-level functions and component assemblies. To 

demonstrate the methodology, MTTF values for the 

components are assumed. After obtaining the functional 

decomposition (hierarchical decomposition) and associations 

between functions and components, the reliability of the 

overall mission is computed from reliability information of 

component assemblies through a reliability block diagram. 

The construction of a reliability block diagram can be carried 

out in two steps – (1) the atomic functions in Equation 1 are 

substituted with their associated component assemblies from 

Table 3, (2) all the components connected with ′ ∧ ′ are 

written in series, whereas components connected with ′ ∨ ′ 
are written in parallel. The reliability block diagram for the 

mission is assembled using the PyEDA package in python. 

Sub-Function Leaf-Level Function Notation 

𝐹𝐴𝐵𝐿
. 𝐹𝐴𝐶  

Turn Left at A 𝐹1 
Move Forward from A to C 𝐹2 

Turn right at C 𝐹3 

𝐹𝐴𝐵𝐿
. 𝐹𝐶𝐷 

Move forward from C to D 𝐹4 
Turn right at D 𝐹5 

𝐹𝐴𝐵𝐿
. 𝐹𝐷𝐵 

Move forward from D to B 𝐹6 
Turn left at B 𝐹7 

Brake and stop at B 𝐹8 
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All the components are assumed to be in the second phase of 

the bathtub curve where the failure rates are constant and 

failure probability is modeled using exponential distribution 

as stated in Section 3.

 

  

 

Figure 6. Function-Time Diagram for the mission

The reliability block is constructed using the functional 

decomposition and function-component association. Using 

the available MTTF values, the reliability of the mission can 

be computed as 0.909. 

Case 1: Real-time reliability assessment 

Assume that the mission was being undertaken by moving in 

water to reach from A to B.  Let T denote the time into the 

mission, therefore T=0 and T=36 refer to the start and the end 

of the mission (Figure 6). Tables 4 show the functions 

required to complete the mission at time T=0 and time T=20. 

The third column in Table 4 can be interpreted as follows - 

At T=20, for successful completion of the mission, 𝐹𝐴𝐵𝑊
 is 

required for 10 more minutes (T=20 to T=30), Braking is 

required for 1 minute and surveillance for 5 minutes. And all 

Figure 5. Modeling of the RC Car 

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

213



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014 
 

these three functions are required in succession, as shown in 

the function-time diagram (Figure 6). The reliability block 

diagram for the mission at time T=20, is assembled using the 

PyEDA package. Using the reliability block diagram and the 

MTTF values of the components, the reliability (probability 

of success) of the remaining portion of mission can be 

computed.  

Case 2: Component unavailability 

Assume that at time T = 20, the secondary brake fails and 

becomes unavailable (due to some unknown reason). Since 

the braking function has redundancy (primary and 

secondary), the reliability of the braking function decreases. 

The reliability of the remaining mission, given that there is 

no failure up to T = 20, decreases from 0.963 to 0.959. 

Case 3: Mission Feasibility 

Assume that the camera fails during the travel from A to B in 

water. Since camera component becomes unavailable, the 

surveillance cannot be carried out at point B because there is 

no redundancy available for the surveillance function. 

Therefore, the mission cannot be carried out successfully. A 

real-time decision can be made to abort the mission and bring 

back the RC Car to point A. 

 

  

Figure 7. Hierarchical decomposition of the function of moving from A to B (𝑭𝑨𝑩)

Table 2. Components in the RC Car and their MTTF values 

Component Assembly Notation MTTF 

Front Wheel System WF 5000 

Front Hub System HF 3000 

Front Axle System AF 4000 

Front Differential DF 3000 

Transmission T 2000 

DC Motor DCM 2000 

Battery B 5000 

Receiver R 5000 

Servo S 2000 

Steering St 2000 

Servo for Camera SC 2000 

Camera C 3000 

Rear Differential DR 3000 

Rear Axle System AR 4000 

Rear Hub System HR 3000 

Rear Wheel System WR 5000 

Propeller P 700 

Chassis Ch 5000 

Secondary Brake  System EB 1000 

Table 3.Leaf-level functions and their components 

Function Component Assembly 

F1, F3, F5, F7 R ∧ B ∧ S ∧ St ∧ HF ∧ WF ∧ 𝐶ℎ 

F2, F4, F6 R ∧ B ∧ DCM ∧ T ∧ DF ∧ DR ∧ AF

∧  AR  ∧ HF ∧ HR  
∧ WF ∧ WR ∧ 𝐶ℎ 

F8 (R ∧ B ∧ DCM ∧ T ∧ DF ∧ DR ∧ AF

∧  AR  ∧ HF ∧ HR  
∧ WF ∧ WR ∧ 𝐶ℎ)
∨ (EB ∧ 𝐶ℎ) 

𝐹9 R ∧ B ∧ DCM ∧ T ∧ P ∧ 𝐶ℎ 

FS R ∧ B ∧ SC ∧ C ∧ 𝐶ℎ 

Table 4. Functions required at T=0 and T=20 

Function Duration required 

 T=0 T=20 

Moving in water (𝐹9)  30 10 

Brake at point B (𝐹8) 1 1 

Surveillance (𝐹𝑆) 5 5 
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6. CONCLUSION 

In this paper, a formal framework has been proposed for 

reliability assessment of component-based systems, in 

carrying out specific missions. The key concepts are (1) 

Functional decomposition, (2) Function-Component 

association, and (3) Extraction of mission-level reliability 

diagram. The system undergoing the mission is modeled in 

Generic Modeling Environment (GME) and each component 

is associated to the list of functions that it is required for. 

Functional decomposition is performed for each of the high-

level functions in the mission and represented using a 

hierarchical tree-structure. For each of the leaf-level function, 

the corresponding components are extracted from the GME 

and exported to the PyEDA package in Python, where a 

reliability block diagram is obtained using Boolean 

expressions. Using the reliability information of the 

components, the reliability assessment of the mission can be 

carried out. This procedure can be used for real-time 

reliability assessment and monitoring of the mission. Using 

the reliability estimates of the mission as a function of time, 

real time decisions can be taken such as to continue the 

mission, abort the mission, perform a simpler mission, or 

choose a particular path that maximizes the reliability of the 

mission when there is redundancy available in carrying out 

functions in a mission. The proposed methodology is 

demonstrated using a radio-controlled car in carrying out a 

simple surveillance mission. Future work should address 

reliability assessment in the presence of dependencies 

between failures in the components, operational 

dependencies, and mission dependencies. Also, failure rates 

that depend on the degradation of the components will need 

to be considered.  
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APPENDIX 

Definitions 

Mission:  A mission can be regarded as a time-interval 

sequence of high-level functions. A mission provides 

information of all the high-level functions to be carried out at 

each instant of time. At each time instant, one or more high-

level functions can be carried out. The mission is usually 

represented using a function-time plot. 

Functional Decomposition: Functional decomposition is the 

process of decomposing a high-level function into a set of 

leaf-level functions (Kurtoglu & Tumer, 2008). A leaf-level 

function is a function that cannot be decomposed any further. 

All the leaf-level functions are required for the successful 

completion of the high-level function. Functional 

decomposition of a high-level function can be represented 

using a hierarchical tree-structure. The dependency 

relationships can be written using the following Boolean 

relationships – and, or, r-out-of-n. The number of branches in 

the tree depends on the fidelity of the analysis required. At 

any instant of time, one or more high-level functions can be 

happening; therefore one or more dependency trees are 

active. A leaf-level function might be required for several 

high-level functions and therefore appears in several trees 

Function-Component association: The next step after 

functional decomposition is association of each leaf-level 

function to corresponding component or component 

assemblies (Kurtoglu, Tumer & Jensen, 2010). Again, 

Boolean relationships are used to represent the association of 

components to its functions. The Boolean relationships – and, 

or, r-out-of-n, are used to associate each leaf-level function 

to its component assembly. A component can provide more 

than one leaf-level functions but a leaf-level function cannot 

be associated with more than one component unless the 

components are the same.   

Component availability: Component availability refers to 

the availability of a component for usage at any time instant 

during the mission.  

Function availability: Function availability refers to the 

availability of a function for operation. For a function to be 

available, all the components required for the implementation 

of this function should be available. 

Mission Feasibility: Mission Feasibility refers to the 

possibility of completion of the mission given the current 

state of the components. At any instant of time, if all the 

components are available to carry out all the functions 

required at later times in the mission, then it can be concluded 

that the mission is feasible given the current state of the 

components. If any of the components becomes unavailable 

and the component is required at a later time, then the 

corresponding function cannot be carried out. If there are no 

alternate possibilities available to carry out this function, then 

this results in the mission being infeasible. 

Redundancy: If a function can be carried out even when a 

component becomes unavailable, then it can be concluded 

that there is redundancy in the function with respect to that 

component. 
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ABSTRACT

Unmanned Aerial Vehicles (UAVs) have attracted significant
attentions in recent years due to their potentials in various
military and civilian applications. Small UAVs are often e-
quipped with low-cost and lightweight micro-electro-mechan-
ical systems (MEMS) inertial measurement units including
3-axis gyro, accelerometer and magnetometer. The measure-
ments provided by gyros and accelerometers often suffer from
bias and excessive noise as a result of temperature variations,
vibration, etc. This paper presents a sensor fault diagnostic
method for quadrotor UAVs. Specifically, we consider the
faults in the gyro and accelerometer. A model-based sensor
fault detection and isolation (FDI) estimation method is pre-
sented. The proposed FDI method adopts the idea that ac-
celerometer and gyroscopic measurements coincide with the
translational and rotational forces represented in the UAV dy-
namics. Thus, the faults in accelerometer and gyroscope can
be represented as virtual actuator faults in the quadrotor state
equations. Two diagnostic estimators are designed to provide
structured FDI residuals allowing simultaneous detection and
isolation of gyroscope and accelerometer sensor bias. In ad-
dition, nonlinear adaptive estimators are designed to provide
an estimate of the unknown sensor bias. The parameter con-
vergence property of the adaptive estimation scheme is an-
alyzed. Simulation studies utilizing a nonlinear quadrotor
UAV model are used to illustrate the effectiveness of the pro-
posed method.

1. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) have attracted significant
attentions in recent years due to their potentials in various
military and civilian applications, including security patrol,

Remus Avram et al. This is an open-access article distributed under the terms
of the Creative Commons Attribution 3.0 United States License, which per-
mits unrestricted use, distribution, and reproduction in any medium, provided
the original author and source are credited.

search and rescue in hazardous environment, surveillance and
classification, attack and rendezvous (Shima & Rasmussen,
2008). In addition, compared with manned systems, the re-
ductions in operations and support costs for unmanned vehi-
cles offer the advantage for life cycle cost savings (US Dept.
of Defense, 2012). The potential capabilities offered by un-
manned vehicles have been well recognized and continue to
expand. In manned systems, the human operator functions
as the central integrator of the onboard systems to achieve
their operational capabilities. Due to the requirement of au-
tonomous operations without a human operator, autonomous
control of UAVs is much more challenging. For instance,
UAVs currently suffer mishaps at 10 to 100 times the rate
incurred by their manned counterparts (US Dept. of Defense,
2012, 2000). In order to enhance the reliability, survivabil-
ity and autonomy of UAVs, advanced intelligent control and
health management technologies are required, which will en-
able UAVs to have the capabilities of state awareness and self-
adaptation (Sharifi, Mirzaei, Gordon, & Zhang, 2010; Vacht-
sevanos, Tang, Drozeski, & Gutierrez, 2005).
Most quadrotors used in research, are often equipped with
low-cost and lightweight micro-electro-mechanical systems
(MEMS) inertial measurement units (IMU) including 3-axis
gyro, accelerometer and magnetometer. These sensors serve
an essential role in most quadrotor control schemes. How-
ever, due to their intrinsic components and fabrication pro-
cess, IMUs are vulnerable to exogenous signals and prone to
faults. Specifically, accelerometer and gyroscope measure-
ments are susceptible to bias and excessive noise as a result
of temperature variation, vibration, etc. The detection and
estimation of accelerometer and gyroscope faults plays a cru-
cial role in the safe operations of quadrotors.
Several researchers have investigated the problem of quadro-
tor IMU sensor fault diagnosis based on linearized quadrotor
dynamic model (Sharifi et al., 2010; Freddi, Longhi, & Mon-
teriú, 2009; Dydek, Annaswamy, & Lavretsky, 2013; Here-
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Figure 1. Quadrotor Model in ”+” configuration.

dia, Ollero, Mahtani, & Bejar, 2005). A few papers have con-
sidered the Luenberger or Kalman filter based observers in
order to generate residuals for fault diagnosis purposes (see,
for example (Freddi et al., 2009; Heredia et al., 2005; Lan-
tos & Marton, 2011)). These methods rely on linearization
of the system around a set of equilibrium points. However,
the dynamics of the quadrotor are highly nonlinear and the
states can be strongly coupled. In recent years, considerable
research effort has been devoted to fault diagnosis of non-
linear systems under various kinds of assumptions and fault
scenarios (Blanke, Kinnaert, Lunze, & Staroswiecki, 2005).
In this paper we present a nonlinear method for detecting,
isolating and estimating sensor bias faults in accelerometer
and gyroscope measurements of quadrotor UAVs. Based on
the fact that the accelerometer and the gyroscope measure
forces/torque acting directly on the UAV body, the quadro-
tor dynamics are expressed in terms of the IMU sensor mea-
surements. Two diagnostic estimators are designed to pro-
vide structured fault detection and isolation (FDI) residuals
allowing simultaneous detection and isolation of gyroscope
and accelerometer sensor bias. In addition, by utilizing non-
linear adaptive estimation techniques (Zhang, Polycarpou, &
Parsini, 2001), adaptive estimators are employed to provide
an estimate of the unknown sensor bias. The parameter con-
vergence property of the adaptive estimation scheme is ana-
lyzed.
The remainder of the paper is organized as follows. Sec-
tion II formulates the problem of sensor FDI for quadrotor
UAVs. The proposed fault detection and isolation method is
presented in Section III. Section IV describes the adaptive es-
timator algorithms for estimation of sensor bias magnitude
and provides conditions for parameter convergence. Section
V and VI present simulation results and direction of future
research, respectively.

2. PROBLEM FORMULATION

Several works focus on quadrotor modeling see for example
(Bramwell, Done, & Balmford, 2001) and (Castillo, Lozano,
& Dzul, 2005). More recently, (Pounds, Mahony, & Gre-

sham, 2004; Bangura & Mahony, 2012) have aimed for higher
modeling accuracy by including drag force, Coriolis effects,
blade flapping effects etc. Accurate modeling plays an impor-
tant role in quadrotor control, especially in the case of aggres-
sive maneuvers, tight group formations, etc. However, when
the quadrotor is in a non-aggressive maneuver state, these ef-
fects become very small in comparison to gravitational pull
and thrust generated by the rotors. As in (Leishman, Jr.,
Beard, & McLain, 2014) and (Martin & Salaün, 2010), the
dynamic model used in this paper considers the gravity, thrust
generated by the rotors and drag forces acting on the quadro-
tor body. Figure 1 shows a simplifed model of the quadro-
tor along with the assumed body frame orientation and Euler
angles convention using the right-hand rule. The quadrotor
nominal system dynamics are derived from the Newton-Euler
equations of motion and are given by:

ṗE = vE (1)

v̇E =
1

m
REB(η)






0
0
−T


− cdvB


+




0
0
g


 (2)

η̇ =




1 sinφ tan θ cosφ tan θ
0 cosφ − sinφ
0 sinφ sec θ cosφ sec θ


ω (3)



ṗ
q̇
ṙ


 =




Jy−Jz
Jx

qr
Jz−Jx
Jy

pr
Jx−Jy
Jz

pq


+




1
Jx
τφ

1
Jy
τθ

1
Jz
τψ


 (4)

where pE ∈ R3 is the inertial position, vE ∈ R3 is the ve-
locity expressed in the Earth frame, η = [φ, θ, ψ]T ∈ R3

are the roll, pitch and yaw Euler angles, respectively, and
ω = [p q r]T represents the angular rates, m is the mass of
the quadrotor, and g is the gravitational acceleration. The
terms Jx, Jy and Jz represent the quadrotor inertias about the
body x-, y- and z-axis, respectively. Note that the quadrotor
is assumed to be symmetric about the xz and yz planes (i.e.
the product of inertias is zero). T represents the total thrust
generated by the rotors, τφ, τθ, τψ are the torques acting on
the quadrotor around the body x-, y- and z-axis, respectively.
The term cdvB represents the drag force acting on the vehi-
cle frame, with cd being drag force coefficient and vB is the
velocity of the UAV relative to the body frame.
The system model described by Eq (1) - (4) is expressed with
the velocity relative to the inertial frame. The inertial coor-
dinate system is assumed to have the positive x-axis pointing
North, the positive y-axis pointing East and positive z-axis
pointing down towards the Earth’s center. The transforma-
tion from the body frame to inertial frame is given by the
rotation matrix REB and is defined based on a 3-2-1 rotation
sequence as follows:
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REB(η) =



cθcψ sφsθcψ − cφsψ cφsθcψ + sφsψ
cθsψ sφsθsψ + cφcψ cφsθsψ − sφcψ
−sθ sφcθ cφcθ




where s· and c· are short hand notations for the sin(·) and
cos(·) functions, respectively.
MEMS sensors, such as accelerometers and gyroscopes, mea-
sure forces and moments acting in the body frame. The quan-
tity expressed inside the parenthesis in the inertial velocity
Eq. (2), represents all the forces acting on the body. There-
fore, the velocity dynamic equation can be adjusted to reflect
accelerometer measurements. Similarly, the evolution of Eu-
ler angles can be rewritten in terms of gyroscope measure-
ments (Leishman et al., 2014; Ireland & Anderson, 2012).
By considering IMU measurement susceptibility to a constant
bias drift, the accelerometer and gyroscope sensor measure-
ments are given by:

ya = a+ ba =
1

m






0
0
−T


− cdvB


+ ba (5)

yω = ω + bω =



p
q
r


+ bω (6)

where ya ∈ R3 and yω ∈ R3 are the measured accelerome-
ter and gyro quantities, respectively, ba ∈ R3 and bω ∈ R3

are the possible constant bias in accelerometer and gyroscope
measurements, respectively, and a represents the nominal ac-
celeration measurement without bias, that is:

a =
1

m






0
0
−T


− cdvB


 (7)

In addition, as in (Ireland & Anderson, 2012) and (Lantos &
Marton, 2011), it is assumed that the position measurements
in the Earth frame and Euler angles measurements are avail-
able. For instance, these measurements can be generated by
a camera-based motion capture system, a technology com-
monly employed for in-door UAV flight (Guenard, Hamel, &
Mahony, 2008). Hence, the system model can be augmented
by the following output equations:

yp = pE (8)
yη = η (9)

The objective of this research focuses on the detection, isola-
tion and estimation of sensor bias in accelerometer and gyro-
scope measurements.

3. FAULT DETECTION AND ISOLATION

This section presents the proposed method for detecting and
isolating sensor faults in accelerometer and gyroscope mea-

surements. Substituting the sensor model from Eq (5)-(6) into
the systems dynamics Eq (1)-(4), we obtain:

ṗE = vE (10)

v̇E = REB(η)ya +




0
0
g


−REB(η)ba (11)

η̇ = T (η)yω − T (η)bω (12)


ṗ
q̇
ṙ


 =




Jy−Jz
Jx

qr
Jz−Jx
Jy

pr
Jx−Jy
Jz

pq


+




1
Jx
τφ

1
Jy
τθ

1
Jz
τψ


 (13)

where T (η) is the rotation matrix relating angular rates to
Euler angle rates and is given by:

T (η) =




1 sinφ tan θ cosφ tan θ
0 cosφ − sinφ
0 sinφ sec θ cosφ sec θ


 .

In order to eliminate the coupling between translational ve-
locity and angular rates when the quadrotor dynamics are rep-
resented with velocity relative to the body frame, the quadro-
tor dynamics are expressed with velocity relative to the earth
frame. As can be seen from Eq (10)-(13), a bias in accelerom-
eter measurements affects only the position and velocity states.
Conversely, gyroscope measurements affect only Euler an-
gles and angular rates states. Based on this observation, it
follows naturally to also divide the fault diagnosis of these
two sensor faults. The proposed fault detection, isolation and
estimation architecture is shown in Figure 2. As can be seen,
two FDI estimators monitor the system for fault occurrences
in accelerometer and gyroscope measurements. Once a fault
is detected and isolated, the corresponding nonlinear adaptive
estimator is activated for sensor bias estimation purposes.

3.1. Gyroscope Bias Diagnostic Estimator

As can be seen from the dynamics of the quadrotor, given by
equations (10)-(13), the bias in the gyroscope measurements
only affects the attitude and rotation dynamics given by Eq
(12)-(13). Since the attitude angles given by the state vector
η are assumed to be measurable (see Section 2), based on Eq
(12)-(13) and adaptive estimation schemes, such as the series-
parallel model (Ioannou & Sun, 1996), the fault diagnostic
estimator for the gyroscope bias can be designed as follows:

˙̂η = −Λ(η̂ − η) + T (η)yω (14)

where η̂ ∈ R3 are the Euler angle estimates, Λ ∈ R3×3 and
Γ ∈ R3×3 are positive-definite, diagonal design matrices. Let
the Euler angle estimation error be defined as:

η̃ , η − η̂ (15)
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Figure 2. Fault Detection, Isolation and Estimation Architec-
ture.

Then, based on Eq (12) and Eq (14), we have:

˙̃η = η̇ − ˙̂η = −Λη̃ − T (η)bω (16)

Equation (16) guarantees that the Euler angles estimation er-
ror converges asymptotically to zero in the absence of gyro-
scope sensor bias. In addition, in the presence of a non-zero
bias bω , based on Eq (16) it can be seen that the residual η̃
will deviate from zero. Therefore, if any component of the
state estimation error η̃ is significantly different from zero,
we can conclude that a fault in the gyroscope measurements
has occurred.

3.2. Accelerometer Bias Diagnostic Estimator

The dynamics of UAV position and velocity relative to the
inertial frame given by Eq (10) and Eq (11) can be put in the
following state space model:

ẋ = Ax+ f(η, ya) +Ga(η)ba

y = Cx
(17)

where x = [pTE vTE ]T , y = pE , and

A =

[
03×3 I3
03×3 03×3

]
,

Ga(η) =

[
03×3

−REB

]
,

f(η, ya) =




03×1

REBya +




0
0
g







and C = [I3, 03×3], where I3 is a 3× 3 identity matrix, 03×3

is a 3 × 3 matrix with all entries zero and 03×1 is a 3 × 1
zero vector. Based on this configuration, the following fault

diagnostic observer is chosen :

˙̂x = Ax̂+ f(η, ya) + L(y − ŷ)

ŷ = Cx̂
(18)

where x̂ ∈ R6 represents the inertial position and velocity
estimation, ŷ ∈ R3 are the predicted position outputs, and
L is a design matrix chosen such that the matrix Ā , (A −
LC) is stable. From the definition of matrices A and C given
by Eq (17) it is straightforward to show that the system is
observable. Therfore, the matrix L can be easily designed.
Defining the state estimation error as: x̃ , x − x̂ and the
quadrotor position estimation error as ỹ , y − ŷ, it follows
that:

˙̃x = Āx̃+Ga(η)ba

ỹ = Cx̃ .
(19)

Clearly, the output estimation error ỹ reaches zero asymptoti-
cally in the absence of the accelerometer bias ba. Furthermore
it can be seen from Eq (19) the residual ỹ is only sensitive to
the bias ba. Therefore, if any component of the position esti-
mation error ỹ deviates significantly from zero, we can con-
clude that a fault in the accelerometer sensor measurement
has occurred.

3.3. Fault Detection and Isolation Decision Scheme

As described in section 3.1 and 3.2, the two fault diagnostic
estimators are designed such that each of them is only sensi-
tive to one type of sensor faults. Based on this observation,
the residuals η̃ and ỹ generated by Eq (16) and Eq (19) can
also be used as structured residuals for fault isolation. More
specifically, we have the following fault detection and isola-
tion decision scheme:

• In the absence of any faults, all components of the resid-
uals η̃ and ỹ should be close to zero.

• If all components of the residual η̃ remain around zero,
and at least one component of the residual ỹ is signifi-
cantly different from zero, then we conclude that an ac-
celerometer fault has occurred.

• If all components of the residual ỹ remain around zero,
and at least one component of the residual η̃ is signifi-
cantly different from zero, then we conclude that a gyro-
scope fault has occurred.

• If at least one component of the residual η̃ is significantly
different from zero, and at least one component of the
residuals ỹ is significantly different from zero, then we
conclude that both a gyroscope and accelerometer sensor
measurement fault has occurred.

The above FDI decision scheme is summarized in Table 1,
where “0” represents nearly zero residuals, and “1” represents
significantly large residuals.
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Table 1. Fault Isolation Decision Truth Table.

No Fault Gyro Bias Accel Bias Accel & Gyro
Bias

η̃ 0 0 1 1
ỹ 0 1 0 1

4. FAULT ESTIMATION

After a sensor fault is detected and isolated, it is also cru-
cial to provide an estimation of the sensor bias to improve
the performance of the closed loop control system. As shown
in Figure 2, once a fault has been detected and isolated, the
corresponding nonlinear adaptive bias estimator is activated
with the purpose of estimating the fault magnitude in the ac-
celerometer and/or gyroscope measurements. In this section,
we describe the design of nonlinear adaptive estimators for
sensor bias estimation.

4.1. Accelerometer Fault Estimation

Based on Eq (17), the adaptive observer for estimating the
accelerometer bias magnitude is chosen as:

˙̂x = Ax̂+ f(η, ya) + L(y − ŷ) +Ga(η)b̂a + Ω
˙̂
ba (20)

Ω̇ = (A− LC)Ω +Ga(η) (21)
ŷ = Cx̂ (22)

where x̂ is the estimated position and velocity vector, ŷ is the
estimated position output, b̂a is the estimated sensor bias, and
L is the observer gain matrix. The adaptation in the above
adaptive estimator arises due to the unknown bias ba. The
adaptive law for updating b̂a is derived using Lyapunov syn-
thesis approach (Ioannou & Sun, 1996; Zhang, 2011). Specif-
ically, the adaptive algorithm is given by:

˙̂
ba = ΓΩTCT ỹa (23)

where Γ > 0 is a symmetric and positive-definite learning
rate matrix, and ỹa , ya − ŷa is the output estimation error.
Let us also define the state estimation error x̃ , x− x̂. Then,
based on Eq (17) and Eq (20), the dynamics governing the
state estimation error are given by:

˙̃x = Āx̃−Ga(φ, θ, ψ)b̃a − Ω
˙̂
ba (24)

where Ā , A − LC and b̃a , b̂a − ba is the parameter
estimation error. By substituting Ga(η) = Ω̇ − (A − LC)Ω
(see Eq (21)) into Eq (24), we have

˙̃x = Āx̃− (Ω̇− ĀΩ)b̃a − Ω
˙̂
ba

= Ā(x̃+ Ωb̃a)− Ω̇b̃a − Ω
˙̃
ba .

(25)

By defining x̄ , x̃+Ωb̃a, the above equation can be rewritten
as

˙̄x = Āx̄ . (26)

In addition, the adaptive parameter estimation algorithm (see
Eq (23)) can be rewritten as:

˙̂
ba = ΓΩTCT ỹa

= ΓΩTCTCx̃

= ΓΩTCTC(x̄− Ωb̃a). (27)

Because the bias ba is constant, we have ˙̃
ba =

˙̂
ba. Thus, Eq

(27) can be rewritten as:

˙̃
ba = ΓΩTCTCx̄− ΓΩTCTCΩb̃a. (28)

Based on Eq (26), we know x̄ converges asymptotically to
zero, since Ā is stable by design. In addition, if there exists
constants α0 > 0, T0 > 0 and α1 such that the following
condition is satisfied:

α1I ≥
1

T0

∫ t+T0

t

ΩTCTCΩdτ ≥ α0I (29)

then we can conclude that the b̃a will converge to zero, that
is b̂a converges to the actual value ba. It is worth noting
that the condition given by Eq (29) provides the required per-
sistence of excitation for parameter convergence (Ioannou &
Sun, 1996). The nature of UAV flight provides vibrations in
practical applications, which may lead to adequate levels of
excitation. In addition, this condition can be satisfied by com-
manding the UAV to perform certain maneuvers.

4.2. Gyroscope Fault Estimation

Based on Eq (12), after the presence of a gyroscope bias fault
is detected, the following adaptive estimator is activated in
order to estimate the bias in the gyroscope sensor:

˙̂η = −Λ(η̂ − η) + T (η)yω − T (η)b̂ω (30)
˙̂
bω = ΓT (η)(η − η̂) (31)

where η̂ is the Euler angle estimate, b̂ω represents the estima-
tion of the sensor bias, Λ and Γ are positive definite design
matrices. The adaptive law for estimating the bias in gyro-
scope measurements in Eq (31) is derived using Lyapunov
synthesis approach (Ioannou & Sun, 1996). The adaptive
scheme in Eq. (30) ensures that the attitude angle estimation
error η̃ , η− η̂ converges asymptotically to zero. In addition,
in order to ensure parameter convergence, T (η) will also have
to satisfy the persistence of excitation condition (Ioannou &
Sun, 1996), that is:

α1I ≥
1

T0

∫ t+T0

t

T (η)TT (η)dτ ≥ α0I (32)
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for some constants α1 ≥ α0 > 0 and T0 > 0 and for all
t ≥ 0. Again, we note that vibration present in UAV flight
may offer adequate excitation. Additionally, the UAV can be
commanded to perform certain maneuvers in order to reach
the required levels of persistence of excitation.

5. SIMULATION RESULTS

In this section, we present some simulation results in order
to illustrate the effectiveness of the proposed sensor bias di-
agnosis method. Specifically, two cases are studied while the
quadrotor is commanded to move along a circular trajectory
with a radius of 4 meters for a period of 20 seconds. We con-
trol the position and yaw rate of the quadrotor by means of
state feedback using a linear quadratic regulator. As previ-
ously shown, the fault diagnosis technique employed in this
approach is independent of the structure of the controller.
Therefore, for brevity, the discussion on the control design
is purposely omitted.
The first case studied corresponds to a bias drift in accelerom-
eter measurements. Specifically, at time t = 10s we in-
jected a constant bias of ba = [0.2, 0.1, 0.5]Tm/s2 in the
accelerometer measurements. Figure 3 shows the FDI resid-
uals generated by the two diagnostic estimators described by
Eq (14) and Eq (18), respectively. As can be seen, the compo-
nents of the residual generated by the estimator correspond-
ing to the accelerometer bias fault become nonzero shortly
after fault occurrence, while all residual components gener-
ated by the gyroscope fault diagnostic estimator remain zero.
Based on the detection and isolation logic given in Table 1,
we can conclude that a fault has occurred in the accelerome-
ter measurement. In addition, Figure 4 shows the estimation
of the bias in the accelerometer for each axis, respectively,
provided by the adaptive estimator (see Eq (23)). As can be
seen, the bias estimate correctly reaches the actual bias values
in the accelerometer measurements.
The second case corresponds to a bias in the gyroscope mea-
surements injected at time t = 10s. The bias magnitude con-
sidered is given by bω = [10◦, 5◦, 1◦]T . Figure 5 shows
the time behaviors of the residuals generated by the two di-
agnositc estimators. As can be seen, the FDI residuals gen-
erated by the diagnostic estimator corresponding to the gy-
roscope fault become nonzero shortly after fault occurrence,
and the residuals generated by the estimate corresponding to
accelerometer fault always remain zero. Therefore, based on
the detection and isolation decision logic given in Table 1, we
can conclude that a fault has occurred in gyroscope measure-
ments. Figure 6 shows the estimate of the bias in gyroscope
roll, pitch and yaw measurements. As it can be seen, the bias
estimate reaches the actual values of the bias in the sensor.

(a) Residuals generated by the diagnostic estimator corresponding
to accelerometer bias

(b) Residuals generated by the diagnostic estimator corresponding
to gyroscope bias

Figure 3. Fault detection and isolation of accelerometer bias.

Figure 4. Estimation of accelerometer bias
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(a) Residuals generated by the diagnostic estimator corresponding
to accelerometer bias

(b) Residuals generated by the diagnostic estimator corresponding
to accelerometer bias

Figure 5. Fault detection and isolation of gyroscope bias.

Figure 6. Estimation of gyroscope bias

6. CONCLUSION AND FUTURE WORK

In this paper, we present the design of a nonlinear fault di-
agnostic method for sensor bias faults in accelerometer and
gyroscope measurements of quadrotor UAVs. Based on the
idea that accelerometer and gyroscope measurements coin-
cide with translational and rotational forces acting on the body,
respectively, two FDI estimators are designed to generate struc-
tured residuals for fault detection and isolation. In addition,
nonlinear adaptive estimation estimation schemes are presented
to provide an estimate of the sensor bias. The effectiveness of
the proposed method is illustrated through simulation exam-
ples.
In this paper we assumed that Euler angles are available di-
rectly for FDI design (for instance, from a motion capture
camera system). In some real-world applications, this as-
sumption may not be satisfied. Therefore, the consideration
of attitude angle estimation as well as investigation of actua-
tor faults is a direction for future research. In addition, further
evaluation of the sensor bias fault diagnostic method through
experimental studies with noisy measurements will be con-
ducted.
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ABSTRACT

Setting optimal alarm thresholds in vibration based condition
monitoring system is inherently difficult. There are no es-
tablished thresholds for many vibration based measurements.
Most of the time, the thresholds are set based on statistics
of the collected data available. Often times the underlying
probability distribution that describes the data is not known.
Choosing an incorrect distribution to describe the data and
then setting up thresholds based on the chosen distribution
could result in sub-optimal thresholds. Moreover, in wind
turbine applications the collected data available may not rep-
resent the whole operating conditions of a turbine, which re-
sults in uncertainty in the parameters of the fitted probabil-
ity distribution and the thresholds calculated. In this study
Johnson distribution is used to identify shape, location, and
scale parameters of distribution that can best fit vibration data.
This study shows that using Johnson distribution can elim-
inate testing or fitting various distributions to the data, and
have more direct approach to obtain optimal thresholds. To
quantify uncertainty in the thresholds due to limited data, im-
plementations with bootstrap method and Bayesian inference
are investigated.

1. INTRODUCTION

Wind turbines are generally subject to aleatory uncertainty
due to stochastic nature of the weather and the wind itself.
In addition to the stochastic nature that a turbine may expe-
rience under normal condition (not experiencing any faults),
the varying loads that a wind turbine experience makes mon-
itoring its condition inherently challenging. However, hav-
ing a condition monitoring system (CMS) dedicated to wind
turbines is vital for an effective maintenance program. Such
program can help ensure maximum uptime of the machine
by minimizing downtime. An example of such system has
been demonstrated by (Andersson, Gutt, & Hastings, 2007).

Kun Marhadi et al. This is an open-access article distributed under the terms
of the Creative Commons Attribution 3.0 United States License, which per-
mits unrestricted use, distribution, and reproduction in any medium, provided
the original author and source are credited.

Most CMS for wind turbine applications are based on vibra-
tion as described by (Tavner, 2012) and (Crabtree, 2011). A
case study of using vibration monitoring to detect and diag-
nose a fault in the generator bearing of a wind turbine in a real
industrial application has also been presented by(Marhadi &
Hilmisson, 2013).

As explained by (Marhadi & Hilmisson, 2013), primary com-
ponents monitored in wind turbines (for vibration based CMS)
are the generator, gearbox, main bearings, and tower. Usu-
ally accelerometers are installed on these components, and
there could be up to 10 accelerometers installed in a wind
turbine. The data acquisition unit in a wind turbine usually
collects vibration data continuously from each sensor. Dif-
ferent vibration measurements are considered in monitoring
different components of a wind turbine. To monitor genera-
tor bearings for example, several measurements are used in
different frequency ranges. The overall vibration RMS level,
ISO RMS [10 - 1000 Hz], high frequency band pass (HFBP
[1k - 10k Hz]), high frequency crest factor (HFCF), and sev-
eral harmonics or orders of the running speed of the generator
(e.g. 1X, 2X) are computed by the data acquisition unit con-
tinuously from each sensor. Depending on different failure
modes or types of fault, there could be more measurements
needed and computed from a sensor. To detect gear related
problems in a gearbox for example, the tooth/gear mesh fre-
quencies and sideband levels are usually computed in addi-
tion to other broad band measurements such as the ISO RMS.
The obtained scalar data are usually trended over time. When
the trend from a specific measurement (e.g. HFBP or ISO
RMS) crosses over a predefined threshold or limit, it will trig-
ger an alarm or warning. Thus it is very important to set the
thresholds correctly in order to minimize the number of false
alarms.

Given there could be up to 10 sensors installed in a turbine
and the number of measurements computed from an individ-
ual sensor could vary from 3 to more than 10, the number of
thresholds that needs to be set up is consequently large. It is
impractical to set them manually. Considering that each wind

1

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

225



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

turbine is unique like an individual, it is necessary to set the
thresholds uniquely to each turbine. It will be even very in-
efficient if there are thousands of turbines with CMS whose
thresholds need to be set manually. More importantly, setting
a threshold is often a trade off between missing real alarms
due to a fault development and having false alarms. Thus it is
important to be able to set the thresholds at the optimum lev-
els automatically with minimum number of adjustments over
time.

(Marhadi & Hilmisson, 2013) explained that some limits are
determined based on statistics. It is often based on the as-
sumption that the distribution of a vibration measurement fol-
lows the Normal (Gaussian) distribution. (Jablonski, Barszcz,
Bielecka, & Breuhaus, 2013) discussed a methodology for
automatic threshold calculation in a large monitoring system,
including a wind turbine application. (Jablonski et al., 2013)
showed that different data types or vibration measurements
could have significantly different probability distributions other
than Gaussian. They investigated several distributions and
their comparison in fitting various data types for threshold
calculation. (Bechhoefer & Bernhard, 2005) have also pre-
sented a case where Gaussian distribution is not appropriate
to describe the probability distribution of first order magni-
tude (1X) of a helicopter shaft. They further explained that
it is important that the underlying distribution of a measure-
ment is correct so that the threshold can be determined based
on low probability of false alarm.

Earlier work to determine alarm threshold has been presented
by (Cempel, 1990), where he investigated the thresholds esti-
mation based on Chebyshev’s inequality, Weibull and Pareto
distributions. The work also showed its possible applica-
tion in prognosis although it is more complicated, such as
what (Cempel, 1987) showed. Later (Bechhoefer & Bern-
hard, 2004) described a methodology to set alarm thresholds
that takes into account variance between aircraft and vari-
ous aircraft state parameters (e.g. operating conditions). The
work assumed that the underlying data for estimating thresh-
olds have approximately Normal distribution. (Bechhoefer &
Bernhard, 2005) further demonstrated that thresholds based
on Gaussian statistic could yield greater false alarms than
anticipated, and discussed using non-Gaussian distribution,
such as Rayleigh distribution for analysis of shaft compo-
nents. Using a linear transformation to whiten different vi-
bration data types or condition indicators, (Bechhoefer, He,
& Dempsey, 2011) presented a method to set a threshold of
gear health, also known as health indicator, based on proba-
bility of false alarm. The algorithm to define health indica-
tor as a function of condition indicators was developed using
three statistical models, namely order statistic, sum of con-
dition indicators, and normalized energy. The models were
developed with the assumption that the condition indicators
follow Gaussian distribution or Rayleigh distribution.

In the aforementioned work, a lot of investigations were done
to determine the most appropriate underlying distribution of
the vibration data before a threshold is set. It is often nec-
essary to fit several distributions to the data available, and to
choose the most appropriate one based on a goodness-of-fit
test, such as in (Jablonski et al., 2013). Rather than trying to
fit various distribution functions, it could be more practical to
choose a distribution function that can fit a family of distri-
butions, such as Pearson family of distributions and Johnson
family of distributions. Thus there are no needs to fit various
distribution functions or to compare different thresholds set
based on different distributions. This paper focuses on using
Johnson family distribution as a unified approach to model
a wide variety of distribution functions that describe various
vibration data in wind turbine condition monitoring applica-
tions. Thus automatic threshold setting could be performed in
a more practical manner. Although in condition monitoring
system the data available are usually sufficient for statistical
analysis, however it is not necessarily true for wind turbine
applications due to various seasons or wind conditions that
a wind turbine can experience in a year. Ideally at least a
whole year is necessary to collect data in order to reflect the
true underlying distribution. However it is clearly impractical
to collect a year data before condition monitoring system is
applied with the correct thresholds. This paper also explores
the effects of having limited data available (e.g. a few days,
a few weeks, or a few months) in thresholds setting and the
possible false alarms generated.

2. JOHNSON FAMILY DISTRIBUTION

Johnson distribution is a family function that can fit different
distribution shapes. It is not necessary to test different distri-
butions that will give the best fit to a set of sample data be-
cause Johnson family distribution has the flexibility to fit data
with a large range of different distribution shapes. A brief
description of the Johnson distribution function is provided
here.

Fitting data with Johnson distribution involves transforming a
continuous random variable x,whose distribution is unknown,
into a standard Normal (z) with mean 0 and variance 1 ac-
cording to one of the four normalizing translations proposed
by (Johnson, 1949). The general form of the translation is

z = γ + δf

(
x− ξ
λ

)
(1)

where z ∼ N(0, 1), γ and δ are shape parameters, λ is a
scale parameter , and ξ is a location parameter. The transla-
tion functions that map different distributions to the standard
Normal distribution in the Johnson distribution function are
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as follows:

f(y) =





ln(y) for lognormal family(SL),

ln
[
y +

√
y2 + 1

]
for unbounded family(SU ),

ln
[

y
1−y

]
for bounded family(SB),

y for normal family(SN ),
(2)

where y = x−ξ
λ . If equation 1 is an exact normalizing trans-

lation of x to a standard normal random variable, the cumu-
lative density function (CDF) of x is given by

F (x) = Φ(z) for all x ∈ H, (3)

where Φ(z) denotes CDF of standard Normal distribution,
and the spaceH of x is

H =





[ξ,+∞) for lognormal family(SL),

(−∞,+∞) for unbounded family(SU ),

[ξ, ξ + λ] for bounded family(SB),

(−∞,+∞) for normal family(SN ).

(4)

The probability density function (PDF) of x is then given by

p(x) =
δ

λ
√

2π
f ′(y)exp{−1

2
[γ + δf(y)]2}, (5)

where f ′(y) =
df

dy
. For more information one can refer to

(DeBrota, Dittus, Swain, Roberts, & Wilson, 1989).

There are four methods to estimate Johnson parameters (γ, δ,
ξ, λ) as described by (DeBrota et al., 1988), namely: moment
matching, percentile matching, least squares, and minimum
Lp norm estimation. The reader can refer to (DeBrota et al.,
1988) for detailed description of each method. In this work,
the moment matching method is used with implementation
based on (Hill, Hill, & Holder, 1976) due to its simplicity in
Scilab (Enterprises, 2012).

The moment matching method involves determining the fam-
ily distribution first by the location of skewness, β1 and kur-
tosis, β2 in Figure 1. This figure represents the original iden-
tification chart published by (Johnson, 1949), with positive
goes downward in the y-axis (β2). The number of parame-
ters to be estimated is then determined by solving a system
of non-linear equations between the sample moments and the
corresponding moments of the fitted distribution. A brief pro-
cedure of the method can be described as follows:

1. Calculate the moments of x : m2,m3 and m4.

2. Calculate the skewness and kurtosis of x : β1 ≡ m2
3/m

3
2

and β2 ≡ m4/m
2
2.

3. Use the chart in Figure 1 to determine the family or trans-
formation function used.

Figure 1. Johnson distribution family identification chart.

3. THRESHOLD SETTING

An alarm threshold can be set based on a predetermined prob-
ability of false alarm (pf ). This value is essentially a design
parameter that can be changed to suit the condition mon-
itoring needs. In this work, the predetermined probability
of false alarm is set at 10−4. Thus knowing the underlying
probability distribution of the data, it is the same as finding
the 99.99 percentile of the distribution or finding the inverse
CDF, see equation 6. The inverse CDF of Johnson distribu-
tion in this work is computed using Scilab CASCI library, see
(Enterprises, 2012).

threshold = F−1(1− pf). (6)

Setting an alarm threshold involves collecting vibration data
over a period of time. Depending on how the data are col-
lected, some preprocessing may be needed, such as outliers
removal. Next, a probability distribution function is fitted to
the data collected and its parameters are estimated. Based on
the estimated parameters, a threshold is set following equa-
tion 6. Figure 2 illustrates the steps to determine an alarm
threshold.

4. DATA COLLECTION FROM A WIND TURBINE

Data used in this study were taken from Generator Non Drive
End of a 3 MW turbine. For a typical generator bearing moni-
toring performed by Brüel & Kjær Vibro (B&K Vibro), there
could be up to or more than 10 different vibration data or
measurements generated from a sensor. For simplicity of this
study, only ISO RMS and High Frequency Band Pass (HFBP)
data are used for analysis. HFBP is usually used as early in-
dicator of potential bearing related problems, and ISO RMS

3
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Data collection

Fit a probability distribution func-
tion, p (estimate its parameters)

Compute threshold = F−1(1 − pf)
based on the estimated parameters

Threshold set

Figure 2. Block diagram of threshold setting.

is usually used as general indicator of faults developing into
a later stage. These two measurements or indicators can re-
flect the general conditions of generator bearings across all
turbine types. For more specific problems, such as looseness
or imbalance, other measurements or indicators are needed.

ISO RMS and HFBP are computed in the time domain (com-
puting the root mean squared of the signal) after applying the
appropriate filter settings. The sample length is set so that it
captures approximately 10 revolutions of the generator rota-
tion. The vibration is sampled at 25600 per second.

The data were collected for approximately two months while
the turbine was running during its normal operating condi-
tions and producing power at least above 100 kW. No known
mechanical faults existed during the data collection period.
The data were collected by the data acquisition unit on the
turbine and sent every 5 minutes to a remote surveillance cen-
ter. Data collection interval could actually vary in the real or
commercial condition monitoring systems. It often depends
on the choice of monitoring strategy of the machine.

As described by (Marhadi & Hilmisson, 2013), since a wind
turbine operates over a wide range of speeds and loads, it is
important to set thresholds within more or less the same op-
erating condition. Thus changes in measured vibration levels
are indeed due to developing faults, and not due to changing
operating conditions. Typical B&K Vibro monitoring strat-
egy for wind turbines is to divide the operating conditions of
a wind turbine into 5 different operating power classes (OPC)
based on the power produced by the wind turbine. For a 3
MW turbine, the power classes are as follow: 100 - 700 kW
(Class 1), 700 - 1300 kW (Class 2), 1300 - 2000 kW (Class
3), 2000 - 2700 kW (Class 4), and 2700 - 3200 kW (Class 5).
Thus each measurement is classified based on in which op-
erating condition it is taken. No data are recorded when the

turbine operates below 100 kW or above 3200 kW.

Figure 3 and 4 present the distributions of ISO RMS and
HFBP taken over a period of approximately two months in
two power classes. Through out the paper only data from the
first two power classes are presented for better clarity and or-
ganization. Johnson, Normal, and Weibull distributions are
fitted in each type of data for comparison. The figures show
that even though the data type is the same (e.g. ISO RMS),
however the distribution in different power classes can be sig-
nificantly different. In this example, the Johnson family type
that fits each data type is found to be bounded Johnson distri-
bution (SB).

Figure 3. Histogram of HFBP data with different distributions
fit in 2 power classes.

The alarm thresholds were then computed following steps de-
scribed in section 3. In this work, all data are assumed to be
valid. Thus no preprocessing (e.g. outliers removal) were
done on the collected data. For comparison, table 1 and table
2 present the thresholds of HFBP and ISO RMS calculated
based on Johnson, Normal, and Weibull distributions.

5. THRESHOLD CALCULATION BASED ON LIMITED DATA

Ideally, the vibration data collected to set alarm thresholds
should reflect all normal operating conditions (without any
mechanical faults and the turbine has gone through all possi-
ble weather and seasonal conditions) in order to set the thresh-

4
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Figure 4. Histogram of ISO RMS data with different distri-
butions fit in 2 power classes.

Table 1. HFBP thresholds at 2 OPCs (m/s2).

Underlying Distribution OPC 1 OPC 2
Johnson 12.79 20.75
Normal 8.55 13.18
Weibull 9.19 16.64

olds effectively. This data collection may take up to a year,
and it is clearly impractical. A more practical approach is to
collect a month of vibration data (or even less than a month),
and set the thresholds based on the collected data.

Realistically, the turbine may not have gone through all nor-
mal operating conditions after a month of operation. Within
almost two months of data collection with every 5 minutes
interval of data recording, the numbers of vibration data in
each OPC from the turbine used in this study are as follows:
3067 data in OPC 1, 1960 data in OPC 2, 1673 data in OPC 3,
1595 data in OPC 4, and 1719 data in OPC 5. The underlying
question is: do these numbers reflect the operating conditions
for the rest of the year? Experience has shown that thresholds
can be set based on these data, but adjustments might be nec-
essary after a couple of months. For all practical purposes the
number of adjustments needs to be minimum.

To investigate the effects of having limited data (not enough
data to capture all operating conditions of a turbine) in set-

Table 2. ISO RMS thresholds at 2 OPCs (m/s2).

Underlying Distribution OPC 1 OPC 2
Johnson 0.77 0.99
Normal 0.89 0.93
Weibull 1.11 0.97

Table 3. HFBP false alarm rates (%) at 2 OPCs when thresh-
olds are set based on the whole data.

Underlying Distribution OPC 1 OPC 2
Johnson 0.00 0.00
Normal 0.65 1.17
Weibull 0.46 0.31

ting alarm thresholds, the vibration data collected from each
OPC are re-sampled uniformly with the following numbers of
samples: 720, 360, 180, and 90. It is assumed that the vibra-
tion data collected represent the overall operating conditions
of the turbine. Another assumption is made that in a worst
case scenario, vibration data from a turbine are collected and
sent every hour (e.g. to reduce data collection). With this
assumption, the vibration data available in this study repre-
sent approximately 3 months of data. Then the numbers of
re-samples from these data represent 30 days, 15 days, 7.5
days, and 3.75 days of data. Although the numbers of sam-
ples look statistically sound, in reality, they may reflect only
short periods of the turbine operational time (order of days).

First, the false alarm rates of the whole data were computed
when the thresholds set based on the whole data were used.
The results are presented in tables 3 and 4. Thresholds based
on Johnson and Weibull distributions generally result in the
lowest false alarm rates. However, there are some thresholds
that result in false alarm rates that are not within the specified
probability of false alarm. Thresholds set based on Normal
distribution are more likely to have higher false alarm rate.
This shows the difficulty in fitting the most appropriate dis-
tribution to the data. For example, the type of Johnson family
fitted to the data is bounded (SB) in all power classes for both
HFBP and ISO RMS since the data determine this family to
be the most suitable. Having Johnson (SB) distribution can
result in lower thresholds. One can choose to strictly fit John-
son unbounded distribution (SU ) regardless what the data in-
dicate the most appropriate family is, such as in the work done
by (Marhadi, Venkataraman, & Pai, 2012). However, having
the data determine the most appropriate family and possibly
having Johnson SB distribution as the most appropriate one
can prevent the threshold set too high. Thus having a more
conservative estimate of the threshold.

Tables 5 and 6 present the false alarm rates when the thresh-
olds set based on limited data are used or checked against the
whole data available. As the number of data used to compute
thresholds decreases, the false alarm rates can either increase

5
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Table 4. ISO RMS false alarm rates (%) at 2 OPCs when
thresholds are set based on the whole data.

Underlying Distribution OPC 1 OPC 2
Johnson 0.29 0.00
Normal 0.00 0.10
Weibull 0.00 0.00

or decrease. This indicates that the data available are cru-
cial for thresholds setting. Smaller false alarm rates can be
achieved if the sampled data are more representative of the
actual distribution. Figures 5 and 6 give visual representa-
tions of how the distributions of sampled data could actually
be different from the whole population.

Figure 5. Emperical CDF of HFBP from various sampled
data in 2 power classes.

To give some visual representations of the data and how false
alarms could occur, figures 7 and 8 show the vibration data
over a time period and the thresholds set based on Johnson
distribution with different number of data. The figures also
show exponential averages of the collected data over time (see
Eq. (7)), which can be done to reduce fluctuation in the data
and to provide smoother trending. In this study, α = 0.01 and
x̄1 = x1.

x̄t = αxt + (1− α)xt−1 (7)

Alarming can be done on the averaged data over time. As
stated earlier, the averaged data are smoother and provide a
clearer picture when a mechanical fault develops, e.g. by
increasing vibration level over time. The false alarm rates
are zero in all cases (e.g. different number of samples to set
thresholds) when the averaged data are checked against the

Figure 6. Emperical CDF of ISO RMS from various sampled
data in 2 power classes.

Table 5. HFBP false alarm rates (%) at 2 OPCs when thresh-
olds are set based on different number of data.

Number of data Underlying Distribution OPC 1 OPC 2

720
Johnson 0.00 0.00
Normal 0.65 0.97
Weibull 0.36 0.00

360
Johnson 0.00 0.00
Normal 0.59 0.61
Weibull 0.13 0.00

180
Johnson 0.00 0.00
Normal 0.46 0.31
Weibull 0.20 0.00

90
Johnson 0.00 5.41
Normal 0.65 3.60
Weibull 0.13 1.53

computed thresholds. Trending the averaged data also en-
sures that the machine condition is indeed entering an abnor-
mal condition when the trend crosses a threshold.

Using the averaged data to set thresholds can be done, and
will result in thresholds closer to the trend data, which pro-
vides quicker response to a change of mechanical condition.
However, false alarm rate could be potentially higher, espe-
cially when only limited amount of data are available to set
the thresholds as illustrated in figures 9 and 10. In these
examples, only 720 data are available to set the thresholds,
which represent 30 days data collection with every one hour
data being sampled, and they are averaged. The false alarm
rate in these examples can be as high as 59%. This situation
can occur if during the first 30 days of data collection, the
frequency of collecting data is not enough to capture many

6
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Table 6. ISO RMS false alarm rates (%) at 2 OPCs when
thresholds are set based on different number of data.

Number of data Underlying Distribution OPC 1 OPC 2

720
Johnson 0.00 0.10
Normal 0.00 0.10
Weibull 0.00 0.00

360
Johnson 0.95 0.00
Normal 0.00 0.20
Weibull 0.00 0.00

180
Johnson 0.15 0.00
Normal 0.00 0.10
Weibull 0.00 0.00

90
Johnson 0.72 1.28
Normal 0.00 0.10
Weibull 0.00 0.00

Figure 7. HFBP data over time with thresholds based on fit-
ting Johnson distribution at different number of data in power
class 2.

high vibration occurrences. Since the data are averaged, the
trend becomes sensitive to high values that are not previously
recorded. Thus it is generally more appropriate to use the raw
data (without averaging) to set thresholds.

6. QUANTIFYING UNCERTAINTY IN LIMITED DATA

The previous sections have shown that in wind turbine appli-
cations, the number of available data can be statistically large,
but not necessarily represent the actual distribution of the
data or all operating conditions of a turbine. Having limited
amount of data generally leads into uncertainty in choosing
the appropriate probability distribution to fit the data. More-
over, even if the correct probability distribution is known,
having limited amount of data that do not represent the actual
population can results in wrong estimates of the distribution
parameters. Thus the thresholds set based on these data could
be either too low or too high (not optimum).

Figure 8. ISO RMS data over time with thresholds based
on fitting Johnson distribution at different number of data in
power class 2.

It is beneficial to quantify the uncertainty of thresholds (the
confidence bounds) set based on limited data. This can be
done by first quantifying the uncertainty of the statistical dis-
tribution parameters. Different methods are available, both
analytically (e.g. maximum likelihood estimate) or based on
re-sampling techniques (e.g. bootstrap) and Bayesian esti-
mate. (Marhadi et al., 2012) have described that there have
been no analytical methods to estimate uncertainties (confi-
dence bounds) of Johnson distribution fitted to some data.
To estimate the uncertainties of the thresholds set based on
Johnson distribution (and other distributions in this work), a
re-sampling technique (bootstrap) is used. Bootstrap method
has relatively simple implementation in comparison to other
methods, e.g. Bayesian inference. Although the implementa-
tion is simple, bootstrap method is known to have some lim-
itations as described by (Chernick, 1999), such as problems
with estimating extreme values and variance of a distribution
that has a very large/infinite variance. For comparison and
to overcome some of the limitations of bootstrap method, a
Bayesian inference procedure is used to estimate the distribu-
tion of Johnson function parameters and the resulting bounds
of the thresholds.

6.1. Bootstrap Method

Bootstrap technique re-samples the sampled data of 720, 360,
180, and 90 with replacements, and obtains new sets of 720,
360, 180, and 90 data. After each sampling, the distribution
parameters are estimated using the selected samples, and the
thresholds are calculated based on the estimated parameters
of the distributions. Due to sampling with replacement, some
samples are repeated in the new selected set. Bootstrap sam-
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Figure 9. Averaged HFBP data over time with threshold
based on fitting Johnson distribution with 720 averaged data
in power class 2.

pling is applied 1000 times, and the statistical parameters es-
timated are computed for each sample set in 1000 bootstrap
repetition.

For estimating Johnson distribution parameters, in each se-
lection set the appropriate Johnson family distribution (SL,
SB , SU , or SN ) is determined using moment values of the
data in the selection set. The results of the bootstrap tech-
niques are the 2.5 and 97.5 percentiles of the thresholds set
based on each distribution studied. They provide lower and
upper bounds of the thresholds with 95% confidence. This
information provides flexibility for an engineer to choose the
thresholds within the lower and upper bounds.

The false alarm rates are then computed again as the lower
and upper bound thresholds are used on the whole data avail-
able to simulate a real situation when only limited amount of
data available to set thresholds. The results are presented in
tables 7 to 10. As one may expect, the lower bound thresh-
olds result in higher false alarm rates and the upper bound
ones result in lower rates. Generally the upper thresholds set
based on both Johnson and Weibull distributions result in low
false alarm rate. The main concern is always whether the
thresholds have been set optimally by choosing the most ap-
propriate distribution describing the data. Since the underly-
ing distribution of data collected is not always known before-
hand, fitting Johnson distribution can be a general or middle
ground solution.

Figures 11 and 12 show the lower and upper bounds (2.5 and
97.5 percentiles) of the thresholds based on Johnson distri-
bution from bootstrapping the 90, 180, 360, and 720 data.
They are represented as error bars. Some thresholds deter-

Figure 10. Averaged ISO RMS data over time with threshold
based on fitting Johnson distribution with 720 averaged data
in power class 2.

Table 7. HFBP false alarm rates (%) at 2 OPCs when upper
thresholds from bootstrap are used.

Number of data Underlying Distribution OPC 1 OPC 2

720
Johnson 0.00 0.00
Normal 0.52 0.66
Weibull 0.13 0.00

360
Johnson 0.00 0.00
Normal 0.29 0.31
Weibull 0.00 0.00

180
Johnson 0.00 0.00
Normal 0.26 0.00
Weibull 0.00 0.00

90
Johnson 0.00 3.47
Normal 0.26 2.81
Weibull 0.00 0.26

mined from limited data are very closed to the thresholds de-
termined from the whole data (e.g. HFBP thresholds in OPC
2 from 180 and 360 data). Some of them are higher or even
lower than the thresholds determined from the whole data,
but the upper and lower bounds enclose the thresholds from
the whole data (e.g. ISO RMS threshold in OPC 2 from 180
data). If the upper bounds are used where they are higher
than thresholds set based on the whole data, there is again a
concern whether these thresholds are too high or not.

6.2. Bayesian Inference of Johnson Distribution

Bayesian procedure is employed to overcome some limita-
tions of the bootstrap method and to address the concern that
the upper bound thresholds from bootstrap could be too high
or not optimal. The inference of Johnson distribution parame-
ters follows the procedure outlined by (Marhadi et al., 2012).
Only Bayesian inference of Johnson distribution parameters
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Figure 11. Confidence bounds of HFBP thresholds from
bootstrapping various sampled data in 2 power classes.
Thresholds are based on Johnson distribution.

Table 8. HFBP false alarm rates (%) at 2 OPCs when lower
thresholds from bootstrap are used.

Number of data Underlying Distribution OPC 1 OPC 2

720
Johnson 0.00 0.31
Normal 0.85 1.58
Weibull 0.59 0.26

360
Johnson 0.13 0.31
Normal 0.85 1.53
Weibull 0.36 0.00

180
Johnson 0.65 0.61
Normal 0.82 0.87
Weibull 0.36 0.00

90
Johnson 1.17 9.03
Normal 1.43 5.56
Weibull 0.65 3.11

are considered because this is the focus of the paper, and un-
like the other distributions (e.g. Normal and Weibull) there
has not been many work on Bayesian inference of Johnson
distribution parameters.

Bayesian inference is a statistical method that allows using
observation data (x) to infer the unknown parameters (θ) of a
distribution that may describe the data. The unknown param-
eters are represented as PDF. Bayes theorem allows to relate
the condition probability distribution of the observed data (x)
given the distribution parameters (θ), p(x|θ) to the condition
probability of the parameter (θ) given the observation data
(x), p(θ|x) as shown in equation 8,

p(θ|x) ∝ l(θ|x)p(θ), (8)

where p(θ|x) is the posterior PDF of θ given x, l(θ|x) =

Figure 12. Confidence bounds of ISO RMS thresholds
from bootstrapping various sampled data in 2 power classes.
Thresholds are based on Johnson distribution.

Table 9. ISO RMS false alarm rates (%) at 2 OPCs when
upper thresholds from bootstrap are used.

Number of data Underlying Distribution OPC 1 OPC 2

720
Johnson 0.00 0.00
Normal 0.00 0.00
Weibull 0.00 0.00

360
Johnson 0.13 0.00
Normal 0.00 0.00
Weibull 0.00 0.00

180
Johnson 0.26 0.00
Normal 0.00 0.00
Weibull 0.00 0.00

90
Johnson 0.00 0.10
Normal 0.00 0.00
Weibull 0.00 0.00

p(x|θ) is the likelihood of data x given θ, and p(θ) is known
as the prior distributions of θ. The prior here reflects prior
knowledge of θ before any data are considered.

The likelihood is the same as the PDF chosen to fit the data.
For Johnson distribution it is equation 5. The prior is usually
subjective. The posterior distribution is then obtained by mul-
tiplying the prior and all the likelihood functions according to
the number of observed data (n) as

p(θ|x) ∝ l(θ|x1)l(θ|x2) . . . l(θ|xn)p(θ). (9)

Sampling the joint distribution function (posterior distribu-
tion) in equation 9 is often difficult and required using a Markov
Chain Monte Carlo (MCMC) method. In (Marhadi et al.,
2012), they used a Metropolis method to sample the posterior

9

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

233



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

Table 10. ISO RMS false alarm rates (%) at 2 OPCs when
lower thresholds from bootstrap are used.

Number of data Underlying Distribution OPC 1 OPC 2

720
Johnson 0.59 0.56
Normal 0.00 0.26
Weibull 0.00 0.00

360
Johnson 2.38 0.56
Normal 0.00 0.51
Weibull 0.00 0.20

180
Johnson 4.47 0.31
Normal 0.00 0.46
Weibull 0.00 0.20

90
Johnson 5.80 4.59
Normal 0.00 0.61
Weibull 0.00 0.41

distribution. They also chose to use non-informative prior or
flat prior, with an infinite interval. They reported that sam-
pling the four parameters of Johnson distribution simultane-
ously could cause the Metropolis method fail to converge. It
is more likely to achieve convergence by inferring only two
parameters, namely γ and δ assuming the estimates for lo-
cation and scale parameters (ξ and λ) are more accurate to
obtain.

Following findings in (Marhadi et al., 2012), only γ and δ are
inferred in this work. Based on the sampled data, Bayesian
inference of Johnson SB , SL, SN or SU distribution can be
performed. It is determined based on the moments of the
data using moment matching method as described in sec-
tion 2. Bayesian inference is performed with a random walk
Metropolis method with 4000 burn-in iterations period and
2000 samples from the posterior distribution. The scale pa-
rameters (variance) of the proposal distribution/density (a bi-
variate Normal distribution with zero covariance) are adjusted
so that acceptance rate between 30% to 50% can be achieved.
For more details description of the Metropolis method, one
can refer to (MacKay, 2003). It is found that even when only
γ and δ are inferred in this work, convergence of the Metropo-
lis method can be difficult to achieve when flat prior is used.
Thus Normal priors for γ and δ are investigated. Again, prior
is often subjective and could be subject to more detailed in-
vestigation in future work.

It is assumed that γ and δ are distributed according Normal
distribution. The means are assumed to be equal to the first
estimates of γ and δ of the sampled data. The variance is
difficult to estimate. However, after some trials and errors,
it is found that standard deviations of 0.5 of the means (first
estimates of γ and δ) could result in satisfactory convergence.
Figure 13 shows the output of 2000 samples for γ and δ from
the Metropolis method after 4000 burn-in iteration with 90
data from ISO-RMS at OPC 2. The running average plotted
in the figure (green line) shows convergence of the method.
The initial estimates of the parameters for these 90 data are as
follows: γ = 0.644, δ = 0.807, ξ = 0.339, λ = 0.499, and

the Johnson distribution family is SB or bounded. Samples
from the Metropolis method have means of γ = 0.624 and
δ = 0.806. In this work, all of the limited sampled data fall
into the family of SB or bounded Johnson distribution. Thus
in this work Bayesian inference is done mainly with Johnson
SB family distribution.

Figure 13. 2000 samples of γ and δ from Metropolis method
after 4000 burn-in iteration with 90 data from ISO-RMS at
OPC 2. ξ and λ are kept constant at the initial estimates.

The 2000 samples of parameters estimated from Bayesian in-
ference are then used to determine thresholds based on John-
son distribution. The 2.5 and 97.5 percentiles of the thresh-
olds are determined as in the case when bootstrap is used to
provide lower and upper bounds. Figures 14 and 15 show the
lower and upper bounds of the thresholds based on Bayesian
inference of 90, 180, 360, and 720 data. In comparison to
results from bootstrap, the bounds for HFBP are generally
larger, with the lower bounds are generally much lower, which
could result in much higher false alarm rates if they are used.
Only in OPC 1 where HFBP thresholds from 360 and 720
data have much higher upper bounds than the bounds from
bootstrap. These results could be due to the choice of prior,
which is subject to further study. On the contrary, the bounds
for ISO RMS are generally much tighter than bounds from
bootstrap. These results are encouraging to prevent setting
thresholds too high. For completeness, the false alarm rates
are computed again as the lower and upper bound thresholds
are used on the whole data available. The results are pre-
sented in tables 11 to 14.

Using Bayesian inference to quantify uncertainties in setting
alarm thresholds is actually attractive when large quantity of
historical data are available because the method facilitates
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Figure 14. Confidence bounds of HFBP thresholds from
Bayesian inference of various sampled data in 2 power
classes. Thresholds are based on Johnson distribution.

Table 11. HFBP false alarm rates (%) at 2 OPCs when up-
per thresholds from Bayesian inference are used. Underlying
distribution is Johnson.

Number of data OPC 1 OPC 2
720 0.00 0.00
360 0.00 0.00
180 0.00 0.00
90 0.00 5.41

learning. However there are still some challenges that need
to be solved before it can be used in real industrial applica-
tions, such as having a faster/efficient method to sample the
posterior distribution. In case of using an MCMC method,
there is not yet a well established method to determine how
many burn-in iterations are needed that guarantees conver-
gence. Convergence could potentially be achieved after a
long burn-in period that requires long computational time.
In regards to using Johnson distribution, proper selection of
the priors still needs further investigation so that sampling
the posterior distribution is computationally efficient, and the
whole 4 parameters could possibly be inferred.

In the actual wind turbine condition monitoring at B&K Vi-
bro, an alarm is not always generated when a measurement
crosses a threshold in any power classes. A more complex
system is implemented to prevent false alarms, see for exam-
ple the work by (Marhadi & Hilmisson, 2013). This paper
simply presents a general framework to set alarm thresholds
automatically using Johnson distribution, and how the uncer-
tainties in setting the thresholds can be quantified when only

Figure 15. Confidence bounds of ISO RMS thresholds
from Bayesian inference of various sampled data in 2 power
classes. Thresholds are based on Johnson distribution.

Table 12. HFBP false alarm rates (%) at 2 OPCs when lower
thresholds from Bayesian inference are used. Underlying dis-
tribution is Johnson.

Number of data OPC 1 OPC 2
720 99.7 97.5
360 99.7 96.0
180 99.7 93.0
90 0.13 15.4

limited data are available. The method could be useful not
only in wind turbine applications, but also in other machiner-
ies.

7. CONCLUSION

A method to set alarm thresholds automatically based on fit-
ting Johnson distribution to vibration data has been presented.
Using Johnson distribution eliminates the need to test various
distributions that could fit the collected data most appropri-
ately. Thus it can prevent choosing incorrect distribution that
may result in setting sub-optimal thresholds. Results in this
study show that low false alarm rate can be achieved by utiliz-
ing Johnson distribution. The implementation is simple and
straightforward, which should also be applicable in machiner-
ies other than wind turbines.

The problem of having limited data in wind turbines that may
not represent the whole or most operating conditions of a tur-
bine has been investigated based on bootstrap method and
Bayesian inference. Lower and upper bounds of alarm thresh-
olds are obtained using both methods, and the false alarm
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Table 13. ISO RMS false alarm rates (%) at 2 OPCs when up-
per thresholds from Bayesian inference are used. Underlying
distribution is Johnson.

Number of data OPC 1 OPC 2
720 0.00 0.00
360 0.59 0.00
180 1.50 0.00
90 0.59 1.07

Table 14. ISO RMS false alarm rates (%) at 2 OPCs when
lower thresholds from Bayesian inference are used. Underly-
ing distribution is Johnson.

Number of data OPC 1 OPC 2
720 10.2 0.10
360 10.6 0.00
180 8.80 0.00
90 1.04 1.32

rates are investigated when these thresholds are used. These
could provide information where to set the thresholds effec-
tively. Bootstrap is generally simple to implement, while
Bayesian inference has slightly more complicated implemen-
tation. However, initial results in this study suggest that Bayesian
inference could potentially prevent from setting the thresh-
olds too high once the challenges of its implementation can
be overcome.

Future work may include investigation of the effectiveness of
the method when it is actually implemented to a wide number
of turbines to catch real mechanical faults. Comparison with
other methods or the more established ones could be made in
this way, and the effectiveness of each method can be vali-
dated. Future work may also include finding the most effec-
tive method to estimate Johnson distribution parameters other
than the moment matching method used in this study.
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and Kjær Vibro in 2012 and since 2013 he is pursuing the
Industrial Ph.D. degree at the Centre of Electric Power and
Energy at DTU in cooperation with Brüel and Kjær Vibro.
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ABSTRACT

Resilient and reliable operation of cyber physical systems
of societal importance such as Smart Electric Grids is one of
the top national priorities. Due to their critical nature, these
systems are equipped with fast-acting, local protection mech-
anisms. However, commonly misguided protection actions
together with system dynamics can lead to un-intentional cas-
cading effects. This paper describes the ongoing work using
Temporal Causal Diagrams (TCD), a refinement of the Timed
Failure Propagation Graphs (TFPG), to diagnose problems
associated with the power transmission lines protected by a
combination of relays and breakers.

The TCD models represent the faults and their propagation
as TFPG, the nominal and faulty behavior of components
(including local, discrete controllers and protection devices)
as Timed Discrete Event Systems (TDES), and capture the
cumulative and cascading effects of these interactions. The
TCD diagnosis engine includes an extended TFPG-like rea-
soner which in addition to observing the alarms and mode
changes (as the TFPG), monitors the event traces (that corre-
spond to the behavioral aspects of the model) to generate hy-
potheses that consistently explain all the observations. In this
paper, we show the results of applying the TCD to a segment
of a power transmission system that is protected by distance
relays and breakers.

1. INTRODUCTION

Cyber-Physical Systems (CPS) such as the Smart Electric Grids
are going through transformational reform powered by fed-
eral funding and in line with the stated national energy secu-
rity mission goals (Garrity, 2008). These systems work in
dynamic environments resulting from varying load, changing

Nagabhushan Mahadevan et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution 3.0 United States Li-
cense, which permits unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are credited.

operational requirements and conditions, physical component
degradation, and software failures. To reach the required level
of resiliency and reliability, efficient online management of
CPS is necessary to operate safely within specified parame-
ters, even in the presence of faults (Ilic et al., 2005). One
aspect of online management is fault identification, diagnos-
tics, prognostication, and mitigation. Inability to automati-
cally and timely diagnose and pinpoint the source(s) of fail-
ures combined with the potential side-effects of automated
protection actions lead to impending fault cascades, which
can be avoided (Zhang, Ilic, & Tonguz, 2011; Tholomier,
Richards, & Apostolov, 2007). Recent blackouts and hurri-
cane Sandy in 2012 demonstrated the grid vulnerability and
reasons to look at existing defense mechanism more closely.

Fast acting localized protection mechanisms are used arrest
the propagation of failure effects. Electrical protection sys-
tems include detection devices such as fast-acting relays that
are designed to detect abnormal changes in physical proper-
ties (current, voltage, impedance) and actuation devices such
as breakers that can be triggered to open the circuit in electri-
cal networks. To observe, track, and possibly diagnose these
systems, it is important to consider the discrete and continu-
ous dynamics of the physical system, the protection systems
and their interactions both in the nominal and faulty modes of
operations. During nominal (fault-free) operation, both phys-
ical and protection systems should operate nominally to pro-
vide the desired functionality. If a fault appears in the physi-
cal system, the nominal protection system is expected to de-
tect the failure effect and isolate the faulty part of the system.
In some cases, the nominal protection system is assisted by
a set of algorithms to restore the system functionality to its
original configuration once the physical fault disappears (due
to a temporary fault or after repair).

Operators have to consider the possibilities of misoperations
of protection systems. Distance relays have been known to in-
correctly initiate tripping due to an apparent impedance that
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fall into the Zone settings of line relays caused by heavy load
and depressed voltage conditions (Pourbeik, Kundur, & Tay-
lor, 2006). In fact, an investigation by North Electric Relia-
bility Corporation (NERC) demonstrated that nearly all ma-
jor system events, excluding those caused by severe weather,
have had relay or automatic control misoperations (almost
2,000 in one year) contributing to worsening the impact of
failure propagation (North American Electric Reliability Cor-
poration, 2012). Protection malfunction and its correlation
with major blackouts require a careful rethinking of its system-
wide effects (Zhang et al., 2011; Pourbeik et al., 2006).

This paper describes Temporal Causal Diagrams (TCD), a re-
finement of the Timed Failure Propagation Graphs (TFPG)
(Abdelwahed, Karsai, Mahadevan, & Ofsthun, 2009), to di-
agnose failures of physical systems that are instrumented with
multiple local fast acting protection devices and controllers
to isolate the faults. The TCD is a discrete abstraction that
captures the causal and temporal relationships between fail-
ure modes (causes) and discrepancies (effects) in a system,
thereby modeling the failure cascades taking into account prop-
agation constraints imposed by operating modes, protection
elements, and timing delays. Faults and their propagation
are captured using TFPG models, the nominal and faulty op-
erations of the components (controllers, protection devices
etc.) are captured as Timed Discrete Event Systems (TDES).
We also present a diagnosis reasoner that extends the TFPG
diagnosis algorithm considering both the alarms and mode
changes (as reported by the physical system), as well as the
various event traces corresponding to the behavioral aspects
of the mode. The uniqueness of the approach is that it does
not involve complex real-time computations involving high-
fidelity models, but performs reasoning using efficient graph
algorithms based on the observation of various anomalies and
events in the system. When fine-grained results are needed
and computing resources and time are available, the diagnos-
tic hypotheses can be refined with the help of the physics-
based diagnostics.

The paper is organized as follows. The next section (Section
2) deals with the related research. Section 3 that describes
the temporal causal diagrams. Section 4 documents the re-
sults of applying the solution to various fault scenarios in a
power transmission system and Section 5 concludes the pa-
per with a discussion of the future work. Notations used and
an overview of Timed Failure Propagation Graphs (TFPG)
are described in appendices.

2. RELATED RESEARCH

Fault diagnostics has been recognized as a critical task in
electric grid operations (Coster, Myrzik, Kruimer, & Kling,
2011). A classic but excellent summary of power system fault
diagnostics is provided in (Sekine, Akimoto, Kunugi, Fukui,
& Fukui, 2002), including Bayesian approaches (Mengshoel

et al., 2010; Yongli, Limin, & Jinling, 2006), rule-based rea-
soning (Meléndez et al., 2004; Lee et al., 2004), expert sys-
tems (Talukdar, Cardozo, & Perry, 2007; Yang, Okamoto,
Yokoyama, & Sekine, 1992), fuzzy-logic methods (W. Chen,
Liu, & Tsai, 2000; Sun, Qin, & Song, 2004), Genetic Al-
gorithm, search based techniques (Lin, Ke, Li, Weng, & Han,
2010), artificial neural network (Guo et al., 2010; Zhou, 1993),
and Petri Nets by abstracting the power system as a discrete
event system (Sun et al., 2004) (Ren, Mi, Zhao, & Yang,
2005). Problems similar to large electric system operations
also occur in smaller systems such as Electric Ship (Bastos,
Zhang, Srivastava, & Schulz, 2007) and Spacecraft (Poll et
al., 2007; Daigle et al., 2010).

A pioneering paper (Fukui & Kawakami, 1986) reports a rule-
based or logic-based system for location of line faults based
on real time information acquired at the control center of a
power system. (Sekine et al., 2002) compiled a comprehen-
sive survey of the fault diagnostics systems developed using
various knowledge-based system techniques. Model-based
approaches based on logic behaviors of the protection devices
are identified as valuable tools for fault analysis. The on-line
alarm analyzer reported in (Miao, Sforna, & Liu, 1996) incor-
porates the cause-effect principles of protective devices into
logic-based proof-oriented algorithms for the analysis of mal-
functions. Cause-effect models are used for fault diagnostics
of substations in (W.-H. Chen, Liu, & Tsai, 2000). Upon
field-testing with real world data it was found that the proofs
are difficult when uncertainties cannot be resolved. The proof
algorithm in (Miao et al., 1996) had to be generalized in or-
der to evaluate the credibility of potentially large number of
hypotheses (W.-H. Chen et al., 2000).

The approach described in this paper differs from existing
practice where fault analysis and mitigation relies on a logic-
based approach that relies on hard thresholds and local infor-
mation assisted by manual system level analysis. The causal
model presented in this paper is based on the timed failure
propagation graph (TFPG) introduced in (Misra, 1994; Misra,
Sztipanovits, & Carnes, 1994), which is conceptually related
to the temporal causal network approach presented in (Console
& Torasso, 1991; Padalkar, Sztipanovits, Karsai, Miyasaka,
& Okuda, 1991; Karsai, Sztipanovits, Padalkar, & Biegl, 1992;
Mosterman & Biswas, 1999). The TFPG model was extended
in (Abdelwahed, Karsai, & Biswas, 2004) to include mode
dependency constraints on the propagation links, which can
then be used to handle failure scenarios in hybrid and switch-
ing systems.

We have extended this work to be able to take local mitiga-
tion in a subsystem, especially in case of malfunction of pro-
tection devices results in a larger fault cascade, leading to a
blackout into consideration. This is primarily done by consid-
ering the discrete behavior of the protection devices and using
it in the diagnosis. The problem of fault diagnosis in discrete
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event systems has been extensively studied. According to
(Sampath, Sengupta, Lafortune, Sinnamohideen, & Teneket-
zis, 1996), the fault diagnosis problem can be described in
terms of a description of a plant’s behavior in the form of
a finite automaton Any behavior of the plant can be repre-
sented as a run of this automaton, i.e. a sequence of events.
These events can be either observable or unobservable. If the
fault event is observable then the diagnosis problem is triv-
ial. However, usually one or more unobservable events corre-
spond to the occurrence of a fault that may occur in the plant
operation. The objective is to find a diagnoser that can de-
tect the occurrence of a fault event within a bounded number
of steps from the occurrence. However, we need to consider
the possibility of timed failure propagation and faults in the
controllers as well as plant.

Our approach can improve the effectiveness of isolating fail-
ures in large-scale systems such as Smart Electric Grids, by
identifying impending failure propagations and determining
the time to critical failure, which increases the system relia-
bility and reduce the losses accrued due to power failures.

3. TEMPORAL CAUSAL DIAGRAMS

A Temporal Causal Diagram is a behavior augmented tem-
poral failure propagation graph model. The TCD model of a
component can describe the fault propagation and/ or the be-
havior. The failure propagation is described in terms of Timed
Failure Propagation Graphs (TFPG)1. The component behav-
ior under nominal and faulty conditions is captured through
Timed Discrete Event Systems (TDES). A TDES is charac-
terized as follows:

• Q: The set of discrete states of the component
• F: The set of failure modes internal to the component. As

always, failures modes are not directly observable.
• D: The set of discrepancies, i.e. potentially observable

anomalies, if any, associated with the component behav-
ior. The discrepancy can be detected, or triggered by the
component, or affect the component behavior.

• Σ: The set of events that correspond to controller com-
mands, actuation, external mode commands, detection of
the physical state of component, discrepancy detection or
other internal events. The detection of a discrepancy, d,
is written as d↑, while d↓ relates to the remission of a
discrepancy.

• A mode map, M : Q→ 2M captures the effect of a state
in Q on the TFPG-mode in M . Thus, the system being
in a discrete state affects the current modes of the TFPG,
which in turn affects the propagation link.

• δ is the transition map. The transitions are written as
[Guard]Event(delay)/Actions. The Guard condition
can represent the presence of a local fault f ∈ F , written
as in(f) and absence of it, written as !in(f). Note that

1See appendix A for an overview on TFPG

Subsystem 2Subsystem 1

TFPG

TDES

Component

TFPG

TDES

Component

TFPG

TDES

Component

Figure 1. A TCD model of a system consists of interacting
subsystems containing components, where each component
consists of an interacting TFPG and TDES model.

for brevity, unless specifically required we will use the
shorthand f and !f in the guard conditions. Actions re-
sult in production of events that can be communicated to
the rest of the system, and/or change the mode of the sys-
tem. delay, if present declares that the transition will oc-
cur after the timeout. The rising edge of the event is de-
scribed by appending the uparrow ↑ to event. The falling
edge of the event is shown using the downarrow ↓.

Figure 1 provides an overview of the TCD model of a sys-
tem. The TCD model is hierarchical where a system model
is composed of subsystem models which in themselves are
composed of component models. The component model in-
cludes TFPG and/ or TDES models. The TCD model captures
the interactions between the TFPG and TDES models both
within the component, as well as across component bound-
aries. The interactions between the TFPG and TDES models
are captured implicitly through the state changes in the com-
mon modeling elements in the two models - failure modes,
discrepancies, and modes. The behavioral model can be de-
signed to consume and react to the updates of these common
elements in the form of events (appearance, disappearance,
change) and conditions (presence, absence). Likewise, the
behavioral model can be designed to update these common
elements that can be consumed by the failure propagation
model. The cascading failure propagation effects across com-
ponent boundaries is captured explicitly (as in TFPG) through
failure propagation links between the discrepancy elements in
each component. Interactions between the behavior models
are based on the event generation and consumption paradigm.
A TDES component can consume events corresponding to
commands, detection, and mode changes generated by one or
more component TDES models. It can also generate similar
events to be consumed by other component TDES models.

Example 1 An example illustrative TCD model is shown in
the Figure 2. The failure modes (F1, F2, F3) are shown as
rectangular blocks and the discrepancies (D1, D2, D3, D4,
D5, D6) as circular elements. The fault propagation across
the TFPG model is captured by the edges between the faults
and the discrepancies. The markers (M1, M2) on the edges

3
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Figure 2. Example TCD model

capture the mode in which the fault could propagate via the
edge. Edges that do not carry any mode marker are always
enabled implying the faults can propagate in any mode (M1
or M2) across these edges.

The dotted-box captures a behavioral TDES model of a pro-
tection element. It captures three operational states: S1, S2,
and S3. S1 is the initial state which maps to system mode M1.
The protection element transitions from state S1 to S2 when
it detects the presence of a discrepancy D3 and the fault F3
is not present (guard condition: !F3&D3 ↑) and issues a
command (event) C1. The state transition results in a mode
change to M2. This nominal operation of the protection ele-
ment arrests the propagation of the failure effect due to fault
F2, thereby preventing the anomalies related to discrepan-
cies D4, D5, D6 from triggering in the system. However, it
could happen that the anomaly related to discrepancy D1 is
observed in the system.

Also, the TDES model shows that when the protection ele-
ment detects the absence of the discrepancy D3 (transition:
D3 ↓)), it issues a command C2 (event) and transitions back
to the state S1 (and restores the system mode back to M1).
If the fault F2 were to reappear and trigger discrepancy D3,
the protection element would react again to arrest the fault
propagation.

Fault F3 captures an internal fault in the protection element
with regards to detecting the presence of D3. The TDES
model captures this as the protection element transitioning
into state S3. When the fault F3 disappears, the protection
element is automatically restored to the nominal state S1.
However, when in S3 the protection element cannot react to
the presence of the discrepancy D3 and hence cannot arrest
the fault propagation leading to the triggering of anomalies
related to discrepancies D4, D5, and D6.

3.1. Event Propagation Paths from the Behavioral Model

The TDES models in TCD are used to generate event prop-
agation paths. An event propagation path is generated for
each transition and state when the transition parameters (trig-
ger, guard, action) or state parameters (entry/ exit/ during ac-
tions) include event variables that belong to any of the fol-
lowing categories: failure mode, discrepancy, or observable
events: detection, command, and actuation. When these vari-
ables are present in the event and/ or guard condition, they
are treated as (causal) source nodes of the event propagation
path. When they are present in the transition actions and
state actions (entry/during), they are treated as the destina-
tion (effect) nodes. The modes appear as source (destination)
nodes, if they are mapped to the source (destination) state in
the TDES model. Additional nodes in the event propagation
path include composition nodes (AND and OR) that relate/
combine the cause(s) (source nodes) and effect(s) (destina-
tion nodes), as well as NOT nodes that are used to mark ab-
sence or disappearance of faults (i.e. failure modes). Multiple
event propagation paths can be chained together by tracing
the state-transition model in the TDES and ignoring the inter-
nal, unobservable states and events.

Example 2 Event propagation paths for the protection element
TDES model in Figure 2 are
(a) M1, !F3, D3 ↑ → C1,M2, (b) M2, D3 ↓ → C2,M1, and
(c) M1, F3→ ∅(NoObs).

3.2. Reasoning using TCD

The TCD reasoning algorithm relies on the fault propagation
model (TFPG) and the event propagation models (generated
from the TDES) to hypothesize the possible causes for the
anomalies and event traces observed in the system. The al-
gorithm tries to explain the observations in terms of a consis-
tency relationship between the states of the nodes and edges
in the fault propagation and event propagation model.

The TCD reasoning algorithm considers the physical, observed
and hypothetical states of the nodes and edges in the fault
propagation and event propagation model. A physical state
corresponds to the current state of the set (V ) of all the nodes
and edges.. At any time t, the physical state of the nodes and
edges is given by a map ASt : V → {ON, OFF} × R. An
ON state for a fault node indicates that the failure is present,
otherwise it is set to OFF. For a discrepancy node, an ON state
indicates that the failure (effect) has reached this node, oth-
erwise it is set to OFF. An ON state for a failure propagation
edge indicates that the edge can carry the failure (effect) from
the parent to the child node, otherwise it is set to OFF. For
the non-failure nodes from the event propagation models, an
ON state indicates that the associated event-variable or mode-
variable is set to the state represented by that node, otherwise
the state is OFF.

The observed state at time t is defined as a map St : V →
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Algorithm 1 TCD Reasoner Update
1: INPUTS: t, HSt−1, Ot.
2: HSt = UpdateHypo(t,HSt−1)
3: if Ot 6= ∅ then
4: HS

′
t = HSt

5: HSt = ∅
6: for all H ∈ HS

′
t do

7: if Consis(H,Ot) then
8: HSt ← HSt ∪ {H}
9: end if

10: end for
11: if HSt 6= ∅ then
12: for all H ∈ HS

′
t do

13: HSt ← HSt ∪ ExplainHypo(H,Ot)
14: end for
15: end if
16: end if
17: return HSt

{ON, OFF} × R, for all the observable nodes in the fault and
event propagation model. The aim of the TCD reasoning
process is to find a consistent and plausible explanation of
the current system physical state based on the observed state.
Such explanation is given in the form of a valid hypothetical
state. A hypothetical state is a map that defines the states of
the node (and edges) and the interval at which each node(and
edges) changes its state. Formally a hypothetical state at time
t is a map HV ′

t : V ′ → {ON, OFF, UNKNOWN} × R× R where
V ′ ⊆ V .

A reasoner hypothesis is an estimate of the current state of all
nodes in the system and the time period at which each node
changed its state. An estimate of the current state is valid only
if it is consistent with the TCD model. State consistency in
TCD model is a node-parent relationship that can be extended
pairwise to arbitrary subsets of nodes. The TCD reasoner
uses the consistency relationships defined in (Abdelwahed et
al., 2004; Abdelwahed, Karsai, & Biswas, 2005) ( between
the TFPG nodes and edges) for all the nodes and edges in the
TCD model, i.e. it extends the consistency relationship to the
non-fault nodes in the event propagation model as well. At
any time, t, during the reasoning process, the TCD reasoner
uses the Algorithm 1 to update the hypotheses based on the
current set of observations. Algorithm 1 uses extended ver-
sions of the concepts and algorithms defined in (Abdelwahed
et al., 2004, 2005) to account for event propagation and con-
sistency in event nodes. The additional procedures invoked
by the algorithm are briefly described in the appendix A.

Inputs to the TCD Diagnosis Algorithm 1 include the cur-
rent time, t , the prior hypotheses set, HSt−1, and the cur-
rent alarm and event observations, Ot. The diagnosis algo-
rithm (1) returns a set hypotheses that can consistently ex-
plain the current observed state of the TCD system. The al-
gorithm starts by updating the existing hypotheses (HSt−1)
to the current time HSt (line #2). Then, it identifies the set
of hypotheses that can consistently explain the current alarm
and event observations (lines #4-#9). In case none of the hy-

potheses are consistent with the observations, the algorithm
generates new hypotheses from each of the old hypothesis to
explain the current observations (lines #10 - #16). Across
each update, the TCD reasoner keeps a score of the number
of consistent, inconsistent, missing, and pending observations
for each hypothesis and generates metrics (described later) to
identify the best possible explanation, i.e. hypothesis.

Hypotheses Ranking

The quality of the generated hypotheses is measured based on
three independent factors: (a) Plausibility is a measure of the
degree to which a given hypothesis group explains the cur-
rent fault and event signature. (b) Robustness is a measure of
the degree to which a given hypothesis is expected to remain
constant. (c) #FM is a measure of how many failure modes
are listed by the hypothesis. The reasoner prefers parsimony
principle (minimal number of failure modes) to report results.
(d) Failure rate is a measure of how often a particular failure
mode will occur. In case of multiple failures, the failure rates
of failure modes are combined assuming independence.

3.3. Reasoner improvements

The improvements and updates in the TCD reasoning pro-
cess over the TFPG reasoner include: (a) Observation evolu-
tion, i.e. tolerating the evolution or change in the observed
state of the nodes. (b) Internal mode changes, i.e. account-
ing for mode changes that are not externally controlled but
introduced by the dynamics of the protection systems. The
mode change could be unobservable, but inferred based on
other observations. (c) Fault negation, i.e. accounting for dis-
appearance or absence of one or more faults based on certain
observations.

Handling changes in the observations

In case of the TFPG reasoner, the observed state of a discrep-
ancy node is either considered latched or intermittent (due to
the nature of the fault or problems in the sensor). However in
TCD, the dynamics of the protection system might prevent a
certain failure propagation and hence result in an apparently
consistent change to the observed state of an alarm (or dis-
crepancy). It is also possible that the both appearance and
disappearance of a fault can be accounted for when the ob-
served state of the discrepancy is allowed to change. More
importantly, since the protection systems are actively trying
to arrest the failure effect propagation and also respond to the
disappearance of faults, it is possible that the observed state of
the non-fault event nodes could be updated over time based on
the behavioral model of the protection system. If the events
are observable, then the TCD reasoner updates the hypothet-
ical states to be consistent with the update observed state of
the fault and non-fault nodes. In the TCD example shown in
Figure 2, it is possible that when the fault F2 happens, the
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Figure 3. Segment of a Power Transmission System

Bus 1 Bus 2 Bus 3
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Figure 4. Protection Zone Configuration for Distance Relay. Zone 1 is set to protect 80% of the entire length of the line, and
operates immediately (tIA) if the fault falls in the zone 1 protection region. Zone 2 is set to protect 100% of the entire line length
plus at 50% of the adjacent line, and operates with time delay, tIIA , 15-30 cycles. (0.5s). Zone 3 is set to protect 100% of the
entire line length plus at 100% of the adjacent line, and operates with time delay , tIIIA (1.5s)

anomalies D4, D5, D6 could have triggered because the sys-
tem was in mode M1. However, once the protection system
completes its operation and the mode is changed to M2, the
anomalies related to D4, D5, D6 should not be observable
or detectable (based on the model). The TCD reasoner can
account for this by changing the hypothetical states of these
nodes to UNKNOWN. Further, later on if the mode is restored
to M1 when D3 disappears (!D3)), the reasoner can account
for disappearance (or lack of observation) of D2, D4, D5 and
D6. This is done by applying the consistency relationship to
update the hypothetical state of fault F2, discrepancy D2, D4,
D5, and D6 to OFF.

Mode changes introduced by protection system

The protection and control systems are actively involved in
changing the mode of the physical system to arrest the fault
propagation. The TCD reasoning algorithm accounts for this
by allowing for a hypothetical state for each mode. The hypo-
thetical state of the mode is updated based on other observa-
tions and the consistency relationship between the hypotheti-
cal states of the mode with other TCD nodes. The reasoning

algorithm updates the expected hypothetical states of other
nodes if the hypothetical state of the mode changes. In the
TCD example shown in Figure 2, the TCD reasoner updates
the hypothetical states based on the mode changes introduced
by the protection system. In case the mode is changed to
M2 upon appearance of the fault F1, the updated hypothet-
ical state for D1 can consistently explain any observation of
anomaly related to D1. In case, the protection system fault F3
is present, then the lack of any observation (NULL) from the
protection system and observations of discrepancy D4, D5,
D6 would suggest that the system is still in mode M1 and the
protection system has failed to act because of fault, F3.

Fault negation

The TCD reasoning algorithm can generate hypotheses that
state that one or more faults are not present in the system.
This is possible if the TDES model (and hence the event prop-
agation model) includes specific conditions that state certain
events can happen only if the fault is not present. The event
propagation model accounts for the negated fault, and updates
the hypothesis appropriately if the concerned events are ob-
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Table 1. Fault Propagation: The faults in the transmission lines are categorized based on the segment where they occur along
the length(L) of the line (from left to right) - F 20:[0, 0.2L), F 50: [0.2L, 0.5L), F 80: [0.5L, 0.8L), F 100: [0.8L, 1.0L),
where L is the length of the transmission line. The row in the table should be read as described for the first row: A fault F 20 in
transmission line TL1 will lead to a zone 1 fault (d z1) in DR1, a zone 2 fault (d z2) in DR2 and a zone 3 fault (d z3) in DR3.

Source Node Destination Node Mode
(Transmission Line.

Failure Mode)
(Relay.zone)

TL1.F 20 DR1.d z1, DR2.d z2, DR4.d z3 M Close
TL1. F 50 DR1. dz1, DR2.d z1, DR4.d z3 M Close
TL1.F 80 DR1.d z1, DR2.d z1, DR4.d z2 M Close

TL1. F 100 DR1.d z2, DR2.d z1, DR4.d z2 M Close
TL2. F 20 DR1.d z2, DR3.d z1, DR4.d z2 M Close
TL2.F 50 DR1.d z2, DR3.d z1, DR4.d z1 M Close
TL2. F 80 DR1.d z3, DR3.d z1, DR4.d z1 M Close
TL2.F 100 DR1.d z3, DR3.d z2, DR4.d z1 M Close

served. In the TCD example shown in Figure 2, the trigger-
ing of command C1 by the protection system indicates among
other things the absence of fault, F3. Also, the triggering of
command C2, indicates the disappearance of D3 (!D3) and
hence the negation or disappearance of the fault F2.

4. EXAMPLE

The example system considered in this paper ( Figure 3) is a
segment of a power transmission system. Power system com-
ponents such as buses, lines, transformers, are protected by
relays and breakers. When a fault occurs, relays and breakers
are designed to isolate the fault according to a pre-determined
protection scheme. Additionally, the system includes back-
up relays to account for any problems in the primary relays
and breakers. The system in Figure 3 is part of a network
and includes three substations(SS1, SS2, and SS3) and two
transmission lines (TL1,TL2). Transmission line TL1 carries
power between buses BU1 and BU2 while transmission line
TL2 is between buses BU2 and BU3. Each transmission line
is protected with a distance relay and breaker at its two ends.

The distance relays estimate impedance using the voltage and
current measurement at the relay measurement point. The es-
timated impedance is compared with the reach point impedance.
If the estimated impedance is less than the reach point impedance,
it is assumed that a fault exists on the line between the relay
and the reach point. The fault-zone (zone1, zone2, zone3)
is determined based on the estimated impedance. Figure 4
shows the region corresponding to each protection zone rel-
ative to Relay DR1 and the relative time-scales for the relay
operation in each zone. A distance relay has to perform the
dual task of primary and back up protection depending on the
fault zone. For faults in zone1 ( 80% of the entire length of
the transmission line (L1)), it serves as the primary protec-
tion and acts fast without any intentional time delay ( (tA1

= 5 to 6 cycles). For faults in zone2 (up to 50% of the ad-
jacent line) and zone3 (up to 100% of the adjacent line), the
relay serves as a back-up and reacts with some time delay al-
lowing for the primary relay to operate. In Zone2, the time
delay (tA2)) is approximately 15-30 cycles ( 0.5 sec), while in

Zone3 it acts with a delay (tA3)) of about 1.5 sec. Addition-
ally, to account for temporary faults in the transmission lines,
the relays include a fast and delayed auto-reclosure function,
wherein they check for the fault after 2 sec (fast reclosure)
and after 2-3 minutes (delayed reclosure). In case the faults
persist, the relay disconnects the circuit permanently until it
is remotely commanded to reset.

Each substation has a remote terminal unit (RTU) as part of
the SCADA system to send the breaker status and other mea-
surements to control center’s Energy Management System
(EMS). Some of the details recorded by the Sequence Event
Recorder (SER) at each substation include: (a) Zone informa-
tion and start protection time (in case of zone 1) (b) Tripping
command sent by relay to breaker (c) Breaker status: opened
or closed (d) Phase discordance problem: when breaker tried
to open three phases but did not succeed for all three phases
(e) Reclosure command issued by the relay to reclose breaker
(f) Reclosure blocked command issued by relay to reset breaker
to open after failed reclosure.

4.1. TCD model

The TCD model of the system in Figure 3 includes a) fault
propagation model for transmission line faults, b) the breaker
behavioral model and (c) the distance relay behavioral model.
Fault Propagation Model: Table 1 captures the propagation
of the faults in the transmission lines (TL1, TL2) to the dis-
crepancies in distance relays (DR1, DR2, DR3, DR4). The
faults in the transmission lines are categorized based on the
segment where they occur along the length(L) of the line
(from left to right) - F 20:[0, 0.2L), F 50: [0.2L, 0.5L), F 80:
[0.5L, 0.8L), F 100: [0.8L, 1.0L), where L is the length of
the transmission line. Discrepancies correspond to the zone
with respect to the relay - d z1: zone1, d z2: zone2, d z3:
zone3. All failure propagations are active in mode M Close
when the circuit is closed.

Breaker Behavioral Model: The breaker behavioral model
(table 2) includes states Open, Close, and partially open. The
Open state maps to the system mode M Open, states Close
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Table 2. Transitions in a breaker’s behavior model. The model includes states Open, Close and partially open (P Open). Close
is the initial state. Rows 1-2 capture the nominal operation to close and open the breaker. Rows 3-11 deal with faulty operation
- rows 3,4:stuck close fault, rows 5-6:stuck open fault, rows 7-11: partially open fault.

# Src. Dst. Trigger Guard Action
State State

1 Open Close C Close !F st open &!F part St Close
2 Close Open C Open !F st close &!F part St Open
3 Open Close F st close none none
4 Close Close C Open F st close St Close
5 Close Open F st Open none none
6 Open Open C Close F st open St Open
7 Open P Open F part none none
8 P Open Open !F part none none
9 Close P Open C Open F part St Open

10 P Open P Open C Open F part St Open
11 P Open Close C Close none St Close

Table 3. Transition Information for Distance Relay’s behavioral model. Rows 1-7 deal with the anomaly detection in state Det
(rows 1-3: Zone1, rows 4,5: Zone2, rows 6,7: Zone3). Rows 8,9 deal with wait (until timeout) operation in Wait state based on
the wait time Tw set for different operations - fast-reclosure(TFR), delayed-reclosure (TDR), backup in zone2 (Tw2) and zone3
(Tw3). Row 10-12 deal with system mode conditions for anomaly detection (transition to state Det). Rows 13-16 handle resets.
Rows 17-21 deal with anomaly detection fault (F de).

# Src State Dst State Trigger Guard Action
1 Det Wait d z1↑ n=0 Z1, C Open, n=1, Tw=TFR
2 Det Wait d z1↑ n=1 C Open, FRBLK, n=2, Tw=TDR
3 Det BLK d z1↑ n=2 C Open, DRBLK
4 Det Wait d z2↑ n=0 n=3, Tw=Tz2
5 Det BLK d z2↑ n=3 C Open
6 Det Wait d z3↑ n=0 n=4, Tw=Tz3
7 Det BLK d z3↑ n=4 C Open
8 Wait Ch Det Timeout(Tw) n <= 2 C Close
9 Wait Ch Det Timeout(Tw) n > 2 none

10 Ch det Det none M Close& !F de none
11 Ch det No Det none M Open none
12 No Det Det none M Close none
13 No Det Reset C Reset none none
14 BLK Reset C Reset none C Close
15 Det Reset d z1↓ &d z2↓ &d z3↓ & n>0 none none
16 Reset Ch det none none n=0
17 Ch det Det Err F de none none
18 Det Err Ch Det !F de none none
19 Det Det Err F de none none

and P Open (partially open) map to the mode M Close. The
breaker receives commands from its distance relay to open
(C Open) and close (C Close). After executing the command,
it reports the physical state of the breaker as St open (for
open) and St close (close). The behavioral model includes
breaker faults related to being stuck open (F st open), stuck
close (F st close) and partially open (F part). Table 2 shows
the operation of the breaker in terms of the transitions be-
tween the states based on the events (commands) and fault
conditions. Rows 1-2 capture the nominal operation to close
and open the breaker when it receives the appropriate com-
mand. While rows 3-4 capture the breaker behavior when it
is stuck close, rows 5-6 deal with a breaker with a stuck open
fault. Rows 7-11 deal with a partially open breaker (which
leads to phase discordance problems in the system).

Event propagation paths related to the transitions listed in Ta-

ble 2 capture the pre (source) and post (destination) condi-
tions and observations to help analyze whether the breaker is
operating nominally or is faulty. The generated event propa-
gation paths are as follows:
(a) M Close, C Open, !F st close, !F part→ St Open, M Open
(b) M Open, C Close, !F st Open,!F part→ St Close, M Close
(c) M Open, C Close, F st Open→ St Open, M Open
(d) M Close, C Open, F st Close→ St Close, M Close
(e) M Close, C Open, F part→ St Open, M Close
(f) M Close, C Close, F part→ St Close, M Close

Distance Relay: The behavioral model states include: (a) Det:
state when it is actively looking for anomalies and trigger-
ing appropriate action upon detection, (b) Wait: when it is
waiting for a time-out to expire before taking the next set of
actions (c) BLK: when it is blocking and waiting for a re-
set command as it has taken the necessary action to arrest
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Table 4. Scenario 1: Distance Relays - Events and Hypotheses
Time(s) Comp Event Hypotheses
100.02 DR3 Z1, H1DR3=d z1, M:1/1

DR4 C Open H1DR4=d z1, M:1/1

DR1 Z2 H1DR1=d z2
H1sys=TL2.F 20, M:2/3
H2sys=TL2.F 50, M:3/3
H3sys=TL2.F 80, M:2/3
H4sys=TL2.F 100, M:1/3

102.04 DR3, DR4 C Close
102.07 DR3, DR4 FRBLK, C Open H2sys= TL2.F 50, M: 5/5
222.09 DR3, DR4 C Close
222.12 DR3, DR4 DRBLK, C Open H2sys= TL2.F 50, M: 7/7

Table 5. Scenario 1: Breakers - Events & Hypotheses
Time(s) Comp Event Hypotheses
100.03/ BR3, C Open, H1BR3=C Open, M Open

102.08/ 202.13 BR4 St Open H1BR4=C Open, M Open
102.05/ BR3, C Close, H2BR3=C Close, M Close
222.10 BR4 St Close H2BR4=C Close, M Close

Table 6. Event trace and Hypotheses: Scenario 2
Time (s) Comp Event Hypotheses
100.02 DR3 Z1 H1DR3=d z1, M:1/1

DR4 C Open H1DR4=d z1, M:1/1

DR1 Z2 H1DR1=d z2
H1sys=TL2.F 20, M:2/3
H2sys=TL2.F 50, M:3/3
H3sys=TL2.F 80, M:2/3
H4sys=TL2.F 100, M:1/3

102.07 DR3, NULL H1DR3=d z1, M:1/2
DR4 (No H1DR4=d z1, M:1/2

Obs) H2DR3=d z1↓,d z2↓,d z3↓,M:1/1
H2DR4=d z1↓,d z2↓,d z3↓,M:1/1

H2sys= TL2.F 50, M: 3/5
H3sys= !TL2.F 50, M: 2/2

the fault propagation, (d) Det Err: when it is unable to detect
anomalies because of internal fault (F de), (e) other miscel-
laneous states such as Ch det (where it checks if detection
is feasible), No Det (when no detection is possible), Reset
(when it is resetting).

The distance relays detects anomalies pertaining to faults in
Zone1 (d z1), Zone2 (d z2) and Zone3 (d z3) of the appropri-
ate transmission line and reports these observations through
output-events Z1 (Zone1), Z2 (Zone2) and Z3 (Zone3) re-
spectively. It issues commands to the breaker to open (C Open)
and close (C Close) and acts upon command to reset (C reset).
It reports unsuccessful fast and delayed re-closure through
the output events FRBLK and DRBLK respectively. The
faults considered as part of the distance relay include fail-
ure to detect the anomalies in transmission line impedance
(F de). While the distance relay states do not map to any
system-modes, the system-modes determine if the distance
relay is capable of detecting anomalies (mode: M Close) or
not (Mode: M Open).

Tables 3 describe the transitions for the distance relay’s be-

havioral model. The rows 1-3 deal with the nominal opera-
tion when discrepancy related to zone1 fault is detected (row
2: fast re-closure, row 3: delayed re-closure). Rows 4,5 deal
with zone2 fault and rows 6,7 with zone3 fault. The wait time
(Tw) in the Wait state are set for fast reclosure (TFR), de-
layed reclosure (TDR), backup wait time in zone2 fault (Tz2)
and zone3 fault (Tz3). These wait times (Tw) are used in the
TIMEOUT (Tw) operation in rows 8 and 9. Rows 10,11,12
specify the system modes in which the distance relay can de-
tect anomalies i.e. transition to Det state. Rows 13-16 deal
with resetting the distance relay. Rows 17-21 deal with pres-
ence or disappearance of fault (F de) related to problems in
detecting anomalies.

Event propagation paths related to the transitions listed in Ta-
ble 3 capture the pre (source) and post (destination) condi-
tions and observations to help analyze whether the distance
relay is operating nominally or is faulty. The generated event
propagation paths are as follows:
(a) M Close, d z1↑ → Z1, C Open (b) M Close, d z1↑ → FRBLK,
C Open (c) M Close, d z1↑→DRBLK, C Open (d) M Close, d z2↑
→ Z2 (e) M Close, d z2↑ → C Open (f) M Close, d z3↑ → Z3
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Table 7. Event trace and Hypotheses: Scenario 3
Time (s) Comp Events Hypotheses
100.02 DR4 Z1,C Open H1DR4=d z1, M:1/1

DR1 Z2 H1DR1=d z2
H1sys=TL2.F 50, M:2/2
H2sys=TL2.F 80, M:1/2
H3sys=TL2.F 100, M:1/2

100.07 DR1 C Open H1DR3=F de, M:1/1
H4sys= TL2.F 50, DR3.F de M: 3/3

102.07 DR4 FRBLK, C Open H4sys= TL2.F 50, DR3.F de, M: 4/4
222.12 DR4 DRBLK, C Open H4sys= TL2.F 50, DR3.F de, M: 5/5

(g) M Close, d z3↑ → C Open (h) F de→ NULL (No Obs)
(i) d z1↓ & d z2↓ d z3↓ → NULL (No Obs)

4.2. Case Study: Fault Scenarios and Diagnosis Results

This section considers a few of fault scenarios in the exam-
ple power transmission system (Figure 3). The discrete be-
havioral and fault propagation model described in the Sec-
tion 4.1 are used to simulate the system both in the nominal
and faulty modes. The simulation is performed in Acumen
(Taha et al., 2012) with a simulation time-step of 0.01 sec.
The observable event-traces are collected and analyzed based
on the algorithm 1. The reasoner uses the event propagation
paths described in in Section4.1 to reason about the events ob-
served in the breakers (BR1, BR2, BR3, BR4) and distance
relays (DR1, DR2, DR3, DR4). The fault propagation model
captured in Table1 is used to produce system-wide consistent
hypotheses that can explain the observed anomalies and event
traces.

In all the scenarios described below, the system is consid-
ered to be operating in nominal mode ( mode=M Close) un-
til time t=100sec, when transmission line, TL2 experiences a
line-to-ground-short fault, F 50.

Scenario 1: Permanent Fault In Transmission Line

In this scenario, the fault (TL2.F 50) is persistent. The sim-
ulator generated event-traces (similar to data from Sequence
Event Recorders in real system) are fed to the TCD reasoner.
Table 4, presents the events observed from the distance relays
(DR1,DR3, DR4) and the hypotheses generated by TCD rea-
soner. The initial hypotheses point towards a zone1 discrep-
ancy (d z1) in DR3, DR4 and zone2 discrepancy in (d z2)
in DR1. System level hypotheses, H2sys (fault: TL2.F 50)
has the maximum metric (3/3) with three consistent evidences
from DR1,DR3,DR4. Moving forward, the observations of
failed reclosure - fast (FRBLK) and delayed (DRBLK) - from
DR3, DR4 further support H2sys (7/7), suggesting a diagno-
sis of fault in F 50 in TL2.

The events generated from the breaker and their associated
hypotheses are presented in Table 5. The hypotheses suggest
nominal operation and capture the mode-change. The multi-
ple time values in each row of column 1 correspond to differ-

ent times when the same event (& hypotheses) are observed.

Senario 2: Temporary Fault In Transmission Line Here,
the fault (TL2.F 50) lasts for exactly 1 sec. DR3, DR4 come-
up to test the fast re-closure 2 sec after detecting a zone 1
discrepancy (d z1). HypothesesH2DR3, H2DR4 identify the
lack of any observations to be consistent with the event prop-
agation path corresponding to the disappearance of discrep-
ancies (d z1↓, d z2 ↓, d z3↓). Thereafter system hypotheses
H3sys suggests with a 100% (2/2) supporting evidences that
there is no fault in TL2 ( !TL2.F 50 )

Scenario 3: Fault In Transmission Line and Relay This
is a multi-fault scenario in which a distance relay fault, F de,
prevents DR3 from detecting discrepancies produced by trans-
mission line fault, TL2.F 50. Lack of observations consis-
tent with the predicted hypothetical state of DR3.d z1 suggest
problems with the event propagation path (M Close, d z1,
!F de) in DR3. Hypothesis H1DR3 in Table 7 explains this
observation (or lack of), with fault DR3.F de. The multi-fault
system hypothesis ( H4sys) best explains the observations.

5. DISCUSSION AND CONCLUSION

We have presented in this paper a new formalism: Tempo-
ral Causal Diagrams - with the objective of applying it to di-
agnose cyber-physical systems that include local fast-acting
protection devices. Specifically, we have demonstrated the
capability of the TCD model to capture the discrete fault prop-
agation and behavioral model of a segment of a power trans-
mission system protected by distance relays and breakers.
Further, the paper presented the potential of the TCD-based
reasoner to diagnose faults in the physical system and its pro-
tection elements.

As part of our future work, we wish to test and study the
scalability of this approach towards a larger power transmis-
sion system including a far richer set of protection elements.
Further, we wish to consider more realistic event traces from
the fault-scenarios including missing, inconsistent, and out-
of-sequence alarms and events.
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NOMENCLATURE

t arbitrary time instant
At Alarms observed at time t
Evt Events observed at time t
Ot Observations (Alarms and Events) at time t
H Hypothesis - a data structure that captures the

hypothetical states of all the nodes in the model.
HSt Hypotheses set at time t.
HS

′
t Temporary variable - hypotheses set.

↑ rising edge of an event. Also used to describe the
onset of a discrepancy.

↓ falling edge of an event. If associated with a dis-
crepancy it describes the event associated with the
remission of the discrepancy.
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Figure 5. TFPG model (t = 10, Mode=A ∀t ∈ [0, 10].

APPENDIX

A. TIMED FAILURE PROPAGATION GRAPH (TFPG)

A TFPG (Abdelwahed et al., 2004, 2005) is a labeled directed
graph. The root nodes are failure modes (fault causes). The
other nodes are discrepancies (off-nominal conditions that are
the effects of failure modes). Edges between nodes in the
graph capture the causality of failure propagation. The edge
labels capture the time-interval and operating modes when
the failure propagation edge is active. Formally, a TFPG is
represented as a tuple (F,D,E,M,ET,EM,DC), where:

• F is a nonempty set of failure nodes.

• D is a nonempty set of discrepancy nodes.

• E ⊆ V × V is a set of edges connecting the set of all
nodes V = F ∪D.

• M is a nonempty set of system modes. At each time
instance t the system can be in only one mode.

• ET : E → I is a map that associates with every edge
in E a time interval [tmin, tmax] ∈ I that represents the
minimum (tmin) and maximum (tmax) time for failure
propagation over the edge.

• EM : E → P(M) is a map that associates with every
edge in E a set of modes in M when the edge is active.
For any edge e ∈ E that is not mode-dependent (i.e.
active in all modes), EM(e) = ∅.

• DC : D → {AND,OR} is a map defining the class of
each discrepancy as either AND or an OR node. An OR
(AND) type discrepancy node will be activated when the
failure propagates to the node from any (all) of its par-
ents.

• DS : D → {A,I} is a map defining the monitoring sta-
tus of the discrepancy as either A for the case when the
discrepancy is active (monitored by an online alarm) or
I for the case when the discrepancy is inactive (not mon-
itored).

Figure 5 shows a graphical depiction of a failure propaga-
tion graph model. Rectangles in the graph model represent
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the failure modes while circles and squares represent OR and
AND type discrepancies, respectively. The edges between
the nodes represent failure propagation. Propagation edges
are parameterized with the corresponding interval, [e.tmin,
e.tmax], and the set of modes at which the edge is active.
Figure 5 also shows a sequence of active discrepancies (alarm
signals) identified by shaded discrepancies. The time at which
the alarm is observed is shown above the corresponding dis-
crepancy. Dashed lines are used to distinguish inactive prop-
agation links.

The TFPG reasoning algorithm attempts to explain the cur-
rent observations (states of monitored discrepancy nodes) by
hypothesizing the faults that could have occured in the sys-
tem. Each hypothesis assigns a hypothetical state to each
node in the graph. In case of failure modes, an ON state in-
dicates that the failure is present, otherwise the state is OFF.
The state of a discrepancy node could be set to ON or OFF
depending on whether the failure-effect has reached the node
or not. Alternately, an UNKNOWN state indicates that there is
not enough information to figure out if the failure-effect has
definitely reached the node.

The TFPG failure propagation semantics is used to identify
and update the hypothetical states of the TFPG nodes. For
an OR discrepancy v′ and an edge e = (v, v′) ∈ E, once a
failure effect reaches v at time t it will reach v′ at a time t′

where e.tmin ≤ t′ − t ≤ e.tmax. On the other hand, the
activation period of an AND discrepancy v′ is the composi-
tion of the activation periods for each link (v, v′) ∈ E. For
a failure to propagate through an edge e = (v, v′), the edge
should be active throughout the propagation, that is, from the

time the failure reaches v to the time it reaches v′. An edge e
is active if and only if the current operation mode of the sys-
tem, mc is in the set of activation modes of the edge, that is,
mc ∈ EM(e). When a failure propagates to a monitored dis-
crepancy node (or alarm) v′ (DS(v′) = A) its physical state
is considered to be ON, otherwise it is considered to be OFF.
If the link is deactivated any time during the propagation (be-
cause of mode switching), the propagation stops. Links are
assumed to be memory less with respect to failure propaga-
tion so that current failure propagation is independent of any
(incomplete) previous propagation. Also, once a failure effect
reaches a node, its state will change permanently and will not
be affected by any future failure propagation.

While a detailed description of the TFPG diagnosis algorithm
may be found in (Abdelwahed et al., 2004, 2005), in the inter-
est of self-containment a brief description of the procedures
referenced in this paper is provided below.

• Consis(H,Ot) : This procedure checks if the hypothet-
ical states of nodes as captured in the hypothesis H are
consistent with the observations O at time t.

• UpdateHypo(t,HSt−1): This procedure takes in as in-
put the current time, t, and the set of hypotheses at the
previous time-stamp, HSt−1 and outputs an updated set
of hypotheses, HSt which include any updates to the
state of the nodes based on the time elapsed.

• ExplainHypo(H,Ot): This procedure generates new
hypotheses to explain the current observations (Ot) rel-
ative to an existing hypothesis H that explains the past
observations.
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ABSTRACT

We present a case study of anomaly detection using com-
mercial vehicle data (from a single vehicle collected over a
six-month interval) and propose a failure-event analysis. Our
analysis allows performance comparison of anomaly detec-
tion models in the absence of sufficient anomalies to compute
the Receiver Operating Characteristic curve.

Several heuristically-guided data-driven models were consid-
ered to capture the relationship among three main engine sig-
nals (oil pressure, temperature, and speed). These models
include regression-based approaches and distance-based ap-
proaches; the former use the residual’s z-score as the detec-
tion metric, while the latter use a Mahalanobis distance or
similar measure as the metric. The selected regression-based
models (Boosted Regression Trees, Feed-Forward Neural Net-
works, and Gridded Regression tables) outperformed the se-
lected distance-based approaches (Gaussian Mixtures and Repli-
cator Neural Networks). Both groups of models were supe-
rior to existing Diagnostic Trouble Codes. The Gridded Re-
gression tables and Boosted Regression Trees exhibited the
best overall metric performance.

We report a surprising behavior of one of the models: locally-
optimal Gaussian Mixture Models often had zero detection
performance, with such models occurring in at least 25% of
the iterations with seven or more Gaussians in the mixture. To
overcome the problem, we propose a regularization method
that employs a heuristic filter for rejecting Gaussian Mixtures
with non-discriminative components.

Howard Bussey et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

1. INTRODUCTION AND BACKGROUND

Equipment health and condition monitoring enables mainte-
nance to minimize the effects of equipment degradation or
failure. Building on existing concepts for predictive main-
tenance, Reliability Centered Maintenance (RCM) (Nowlan
& Heap, 1978) provided a formalism for Condition-Based
Maintenance (CBM). Being based upon objective evidence
of equipment degradation or impending failure, CBM has sig-
nificant economic and safety benefits: it reduces incidence of
unscheduled failures and downtime and reduces occurrence
of unnecessary or early scheduled maintenance.

Health or condition monitoring is the process of collecting
asset data, extracts the information and provides it to CBM.
Affordable sensors, data storage, and networking enable com-
prehensive monitoring of all types of assets. In order to make
this data actionable for CBM, models are needed to identify
and characterize anomalies, and then to relate the anomalous
patterns to forward looking failure risk for decision making
purposes (prognostics). The models are typically classified as
expert-system, physics-based, data-driven, and hybrid. This
paper takes the data-driven modeling approach.

Health monitoring is generally an incremental (not all-at-once)
process, as data is typically not available to develop compre-
hensive diagnostic and prognostic algorithms from the out-
set (Sikorska, Hodkiewicz, & Ma, 2011). Most modern ve-
hicles are equipped by the original equipment manufacturer
with built-in sensors on a data bus, and diagnostic systems
that detect major drive train failures. The diagnostic cover-
age on these systems can be limited, and they typically de-
tect problems with limited warning horizon before mainte-
nance action is required. Telematics systems, such as Gen-
eral Motors OnStarTMare increasingly being used to moni-
tor private, commercial, and military vehicles. Data provided
by these systems, over a large fleet of vehicles, can be used
to develop new anomaly detection and failure prediction al-
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Figure 1. Analysis process, showing steps of building the model, detection anomalies, diagnosing faults, and predicting future
failures (prognostics).

gorithms more cost effectively than through traditional en-
gineering testing. On-board computers, coupled to the ve-
hicle data bus, can filter vehicle data and run algorithms lo-
cally, or they can relay data to a back-end system for process-
ing. These systems can also support cost effective addition
of vehicle sensors to augment existing capabilities. In addi-
tion to driver services and logistics support, these systems are
used to collect information to support product improvement,
and have growing levels of Prognostic Health Management
(PHM) capability.

Consolidation of vehicle fleet data in a data warehouse pro-
vides an opportunity to develop CBM knowledge and algo-
rithms incrementally. As failures occur within the fleet, the
vehicle and maintenance data can be correlated, analyzed,
and used to create autonomous health monitoring agents with
embedded anomaly detection, diagnostics, and prognostics.
With larger fleets, more accurate and extensive algorithm sets
can be developed. Our approach is opportunistic, based upon
the failures, and data-driven, exchanging data mining and sta-
tistical machine learning in place of in-depth expert knowl-
edge.

As shown in Figure 1, anomaly detection is the first layer of
information extraction in condition-based maintenance. The
ability to reliably detect system performance changes, in the
context of different operating and environmental conditions,
is the first step towards condition monitoring. The value of
anomaly detection is the ability to trigger useful alerts and
to pave way to more sophisticated PHM. In the context of
truck fleet operations, an anomaly warning can be provided
to maintenance or operational supervisors to prompt them to

review the condition of the truck or the behavior of the driver.

Observed anomalies and their links to the associated failure
modes (established by maintainers) form a labeled data set
suitable for supervised machine learning. Automated clas-
sification of observed anomalies enables the second level of
PHM – diagnostics. Using observations of operational fail-
ures for classification training is well suited for environments
where failures can be, or have historically been, tolerated;
this approach is cost effective and requires no additional risk.
In particular, the present case study is concerned with health
monitoring of commercial truck fleets, where failures can be
very costly, but are tolerated as a part of doing business. The
variant of this approach, in which unsupervised anomaly de-
tection identifies candidate events for human expert analysis,
may be suitable for systems such as nuclear reactors where
system failures are unacceptable. In this case, the data-driven
approach would augment the physics- or expert-knowledge-
based systems presently in use. This paper focuses on the de-
velopment of a methodology for anomaly detection in truck
engine behavior using data captured from a commercial fleet
telematics system. To achieve this capability, we use data-
driven models, each with an intrinsic metric. We will de-
scribe five such models, motivate their choices, and compare
their performance in following sections.

Once anomaly detection is in place, additional observed fail-
ures can be used to improve anomaly detection algorithms
and parameters, as well as to develop diagnostics and prog-
nostics. The development of data-driven prognostics is en-
abled (and improved) by more examples of the same failure
mode, which allow for the development of models of the pro-
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gression of failures subject to operational and environmental
context (regression, tracking). Alternatively, correctly classi-
fied anomalies with accurate physics-based (or other expert
knowledge-based) models can be considered without requir-
ing a large number of examples. Data-driven diagnostic de-
velopment is enabled by examples of a variety of distinct fail-
ure modes; from a machine learning viewpoint, diagnostics
can be perceived as a discrete classification problem. Since
the available data have only one failure, we were unable to
address the diagnostic and prognostic areas.

Building a system for anomaly detection includes the follow-
ing three steps: 1) selecting and pre-processing the relevant
signals; 2) selecting, building, and tuning a model equipped
with a metric; and 3) selecting and tuning an inference en-
gine that indicates anomalies, based upon the model metric.
While design, parameterization and parameter tuning of all
three blocks impact the performance of the system, this re-
port focuses on model selection and tuning. In all cases the
models operate on the same three signals: engine oil tem-
perature, engine oil pressure, and engine speed. Moreover,
all systems discussed in this paper employ a simple inference
engine a low-pass filter followed by a comparator. When the
filtered metric exceeds the threshold, the signals are consid-
ered anomalous.
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Figure 2. Example engine speed, oil temperature, and pres-
sure

Chandola, Banerjee, and Kumar (2009) survey anomaly de-
tection techniques, touching on methods used here. Our work
falls under their industrial damage classification, for which
they report on work using parametric and non-parametric sta-
tistical modeling, Neural Networks, spectral, and rule-based
systems. Bishop (2006) describes these machine learning

techniques in further detail, including specifics of training
and testing that are used in our work. Vachtsevanos, Lewis,
Roemer, Hess, and Wu (2006) present a somewhat different
model for data-driven anomaly detection (fault or failure de-
tection in their terminology - see their section 5.2.3). The
literature reporting anomaly detection results using standard
vehicle data over long periods is sparse. Golosinski, Hu, and
Elias (2001) report on 1.2 hours of data from a single vehicle.
Kargupta et al. (2004) report on analysis based upon a vehi-
cle simulator. McArthur, Booth, McDonald, and McFadyen
(2005) report on a processing system using data from a single
engine. Cheifetz, Same, Aknin, and de Verdalle (2011) report
on data from 22 consecutive operating cycles of a commercial
bus. Our experiments are intended to provide further empiri-
cal insight, especially with regard to longer performance pe-
riods and the specifics of model construction.

The study data include a period during which the vehicle was
driven with an active oil leak. We employed an opportunistic
data-driven methodology in our analysis. Because we have
only one labeled failure event in the data, we: (a) create sev-
eral models from the training data; (b) for each model, find
the minimum threshold that results in a zero false-alarm rate
during the normal period; (c) measure detection performance
during the low-oil period using the models and their respec-
tive detection threshold values. For this failure, we have ap-
proximately 144 hours of training data from a two-week in-
terval, failure data representing about 15 hours of operation
during approximately 19 clock hours, and the normal period
of five months (1500 hours) following repair.

2. PROBLEM AND PROCESS

Figure 2 shows a segment of the vehicle data: engine speed
and oil temperature and pressure, recorded over a two-day pe-
riod during which the vehicle was operated with an oil leak.
The data show the vehicle operating with steadily declining
oil pressure starting between 5:30 and 6:00 AM. With this
rich contextual information, one can conclude that the pres-
sure is legitimately anomalous. However, if only the pressure
information is available, the most one can say is that the pres-
sure exhibits a downward trend. For this fault, anomaly detec-
tion based upon only the oil-pressure is insufficient. The man-
ufacture recommends pressures of at least 150 kPa when the
engine is idling, and at least 300 kPa when the engine speed
is greater than 1100 RPM. If anomaly detection used only
the idle condition minimum pressure, the anomaly would be
missed in its entirety. Using the higher limit, the anomaly is
detected only in the last few minutes, and might cause false
alarms if applied when the engine is idling. Some anomaly
detection algorithms use a mode-based approach, where the
operating modes and associated signal limits are defined a pri-
ori and used to identify anomalous operations. Based on the
rules presented above, a mode-based oil pressure anomaly de-
tector would identify anomalies sometime after 9 AM on the
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Figure 3. Anomaly detection approaches in this investigation

second day of second day of operation.

Figure 3 maps the five models this study explored: three residual-
based models - Gridded Regression table (GR), Boosted Re-
gression Tree (BRT), and Feed-Forward Neural Network (FFNN)
- and two distance-based models - Gaussian Mixture (GMM)
and Replicator Neural Network (RNN). In the residual-based
systems, the models predict the pressure, based upon tem-
perature and engine speed. The metric is the absolute value
of the z-score (the standard score) of the residual, where the
residual mean and variance are determined from the model
and training data. In the distance-based systems, the metric
reflects how different all three signals are from the model.

2.1. Data Source and Preparation

As indicated in Figure 1, signal preprocessing is often neces-
sary before the data is used for building models. The prepro-
cessing here includes filtering out irrelevant data (e.g. during
idling), removal of short-duration transient data, eliminating
non-informative data (e.g., if some data is missing), and ex-
cluding data segments so short they cannot be handled in sub-
sequent processing (e.g., a 20 s drive between two 5 minute
idle periods).

We use data from a commercial truck (including both mainte-
nance data and operational data from the vehicles’ data buses)
as provided to RIT by Vnomics Corp. Examination of the
maintenance data showed that there was one oil leak event;
that single event is used as the fault event for this study. The
vehicle data were obtained from J1587 and J1939 packets
available on the J1708 and CAN buses on heavy-duty trucks.
This data did not include oil level information, even though
that signal is defined in the J1939-71 and J1587 specifica-
tions. The Vnomics’ Vehicle Health Management Software
(Vnomics, 2012) collected the asynchronous on-board sig-
nals and used lossy data compression to save space in the
database. The compression algorithm compares the current
signal value to the last stored data value and stores the cur-
rent signal value if the difference exceeds a fixed threshold.
The thresholds are provided in Table 1.

Table 1. Thresholds used in data compression algorithm.
Signal Threshold

Oil Temperature 0.2 C/K
Engine Speed 10 RPM
Oil Pressure 6.89 kPa

For this investigation, the asynchronous signal values are read
from database and time-synchronized to a 1 s periodic stream
using sample and hold interpolation. In addition to synchro-
nization, some data are removed. For instance, we remove
low-RPM (idle) data so that it isn’t over-emphasized during
training. There are two irrelevant data removal schema, as
show in Table 2. In schema 1, a wide range of physically-
feasible engine oil temperatures are accepted. In schema 2,
the temperature range is narrower to exclude data collected
while the engine is warming up.

Table 2. Data Removal Schema.
Schema Signal Minimum Maximum

(inclusive) (exclusive)
Temperature -20 120

1 RPM 1050 2500
Pressure 50 550
Temperature 90 120

2 RPM 1050 2500
Pressure 50 550

The training interval was selected after inspection of the op-
erational and maintenance to find the first period with no
maintenance events and no obvious data anomalies. For this
vehicle, that was immediately following a stuck at high oil
pressure sensor fault. The selected training period, with ap-
proximately 142 hours of operational data, is the two weeks
following replacement of the sensor. After removing irrele-
vant data, there remain 75 hours of training data. The non-
anomalous period follows the repair of the oil leak. The
anomalous period is a two-day period starting 2/2/2010.1

2.2. Metric Filtering

For all of these models, the metric is filtered with an infi-
nite impulse response low-pass filter with low passband fre-
quency of 0.0017 Hz (1/600 Hz) and reject-band frequency of
0.05 Hz. These values were chosen to provide a filter time-
constant of 5 minutes. This filter is appropriate for detecting
anomalies related to a slow oil leak.

In addition to the low-pass filtering, the metric filtering must
deal with data gaps introduced by the irrelevant data removal
step described in 2.1. In addition, short segments (e.g. 60 s)
are statistically insignificant when a fault event evolves over
a period of an hour or longer; because they cause numerical
instability, we removed them. Finally, the filter used above is
applied on the remaining segments on a segment-by-segment

1To encourage further research in this area, we have made the data available:
http://www.rit.edu/gis/research-centers/csm/EOP Case Study.php. This
has irrelevant data discarded according to schema 1.
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basis. This filter exhibits some ringing, so to prevent high
amplitude ringing, the filter is initialized with 10,000 s of in-
put points equal to the median of the first 50 samples in the
segment.

Because our goal is to study performance of several system
models, the same data preparation and detection processing
steps are used for all of the models.

2.3. General Modeling Process

For a problem of this type, the inputs consist of n observed
signals S1, S2, . . . , Sn. Data is divided into trainingDtraining,
event Devent, and normal Dnormal sets, such that the sets are
subsets of Rn:

Dtraining, Devent, Dnormal ∈ Rn (1)

and the sets are disjunct

Dtraining ∩Devent = ∅
Dtraining ∩Dnormal = ∅
Dnormal ∩Devent = ∅

(2)

The modeling is the process of identifying parameters of a
model M and detection threshold Θ, given metric m, that
maximizes discriminability between the training and event
data:

max |m(M(Dtraining),M(Devent)) > Θ| (3)

subject to zero false alarms

|m(M(Dtraining),M(Dnormal)) > Θ| = 0 (4)

Overall, our goal is to provide a long and stable detection
horizon for known faults, subject to the requirement that there
are no anomalies detected during the normal interval (false
alarms). As a final note, we prefer low-complexity models
that use zero expert system knowledge and have short training
times.

All five models, described in the next section, were able to de-
tect anomalies on the first day of the low-oil event, which took
place approximately 19 hours before the last mission during
the low oil period. Analyzing these anomalies showed tran-
sient pressure drops when the engine speed briefly increased
to a range between1500 and 2000 RPM. Figure 4a, from the
training interval, shows a small pressure variation, approxi-
mately 50 kPa, with no clear pattern of increasing or decreas-
ing. Figure 4b shows the data from one of the anomalous
intervals. Here the pressure drops approximately 100 kPa as
the engine speed increases from 1500 to 2000 RPM. In both
cases, the pressure is above 400 kPa when the engine speed
is steady around 1500 RPM.
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Figure 4. (a) Signals on the first training day (1/14/2010)
showing the normal behavior where engine speed spikes
make little change in the oil pressure. (b) Anomalous sig-
nals at 14:23 on first day of low oil event (2/2/2010), where
the pressure drops to approximately 325 kPa when the engine
speed increases sharply from 1500 RPM to 2000 RPM - once
just after 14:23, and again just before 14:25.

3. MODELS’ DESCRIPTIONS AND PERFORMANCES

This section describes the five models in turn, with the application-
specific decision processes associated with the models and
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their performance.

3.1. Model 1 – Gridded Regression

The Gridded Regression (GR) model has a look-up table used
to estimate engine oil pressure p as a function of engine speed
ω and engine oil temperature T ; and the residual mean and
variance, used to calculate the z-score metric. Here, the do-
main, the temperature-speed (ω-T ) plane, is subdivided into
rectangular subdomains, or bins, as depicted in Figure 5a.
The temperature and speed ranges are determined a priori,
based on the expected ranges of the signals; consequently,
some of the bins are empty during training. The discrete pres-
sure estimates p̂ over the domain are given by

a)

b)

Figure 5. A sketch of GR model. (a) Discretized (ω-T ) plane.
Data points within (ωi-Tj) bins are highlighted. (b) Mean
pressure of the data.

p̂ = f(ω, T ) = pij (5)

where f is the point sample of a 2-dimensional Gaussian dis-
tribution in terms of ω and T . pij is the mean pressure of the
training data corresponding to (ωi-Tj) subdomain bounded
by ωi −∆ω/2 ≤ ω < ωi + ∆ω/2 and Tj −∆T/2 ≤ T <
Tj + ∆T/2 (see Figure 5b), as in:

pij =
1

Mij

Mij∑

k=1

pijk (6)

Another way to think of this model is a piece-wise constant
(in this case two-dimensional) fit function with error bars. In
the metric evaluation operations, subtracting estimates from
the measurements yields error εp = p − p̂ = p − pij . The
residuals are considered collectively, over all bins. The metric
used for detecting anomalies is the absolute value of the z-

score of the residuals, computed as:

m = |zp| =
∣∣∣∣
εp − εp
σp

∣∣∣∣ (7)

Figure 6a shows that the Gaussian distribution fits the residual
data, εp ∼ N(0, σ2

p), reasonably well. Figure 6b quantifies
this fit further, showing that 99.8% of the residuals match the
expected range from -25 to +25.
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Figure 6. Distribution of the 75 hours of training data. (a)
Histogram with a fit. (b) Test of normal data.

3.1.1. GR: Parameters and Performance

The oil temperature and RPM ranges were divided into 10
equal intervals, resulting in a 10x10 grid. The model esti-
mate for each bin in the grid is the mean oil pressure for
the data samples in that bin. If the count of data in the bin
was too low, the model estimate for that bin was NaN (not-a-
number) a flag value causing that bin to be effectively ignored
in the rest of the experiment. The residuals were computed
over all of the training data, and the histogram of the resid-
uals in Figure 6 shows the distribution is well-modeled by a
Gaussian distribution. The variance of the residuals is com-
puted and stored with the model, to be used in subsequent
z-score calculations. For each data point in the test and non-
anomalous intervals, the GR model is used to predict the oil
pressure, based upon the RPM and oil temperature. The met-
ric is the absolute value of the z-score of the residual. The
metric is smoothed by the low-pass filter described in Section
2.2. For the non-anomalous interval, the smoothed metric
value is used to determine the detection threshold, guarantee-
ing the no false alarm criterion. That threshold is compared
with the smoothed metric for the test interval, and the results
are shown in Figure 7. The anomalies between 15:00 and
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Figure 7. Performance of GR Model. Detection horizon is
about 2.9 hours.

18:00 are correlated with vehicle oil level and pressure vehi-
cle Diagnostic Trouble Codes (DTCs) recorded at 14:15 and
15:38; however, they are not included in the detection horizon
calculation, which is based upon the period between 22:35 on
day 1 and 09:21 on day 2 of these data. This narrower time
range is used because the vehicle operators, aware of the oil
leak, added oil from time to time in this period. However,
the period from 22:35 until 09:21 the next morning, as Fig-
ure 2 shows, represents a single event when the oil pressure
dropped from normal to abnormally low.

Tuning this model requires selection of the number of bins
for temperature and engine speed. The number we used rep-
resents a compromise between too few bins, which would in-
crease the prediction error, and too many bins, which would
result in too few training points per bin. Given the bin count
selection, training is deterministic for a given training data
set.

The selection of 10 bins was based on trial and error in this
study. Optimal or near-optimal bin counts could be selected
through either exhaustive or random exploration of the bin
count space for each independent variable.

3.2. Model 2 – Gaussian Mixtures

Model 2 is an automatically trained GMM comprising a set
of multivariate normal distributions, Nk(µk, Σk), and their
weights πk where

∑
πk = 1. The distributions, Nk, are

trained to maximize the generative likelihood of all points
(Tt, ωt, pt) in the training data. The metric used in this model
is the likeliest Mahalanobis distance (Duda, Hart, & Stork,
2000), which is the Mahalanobis distance to the mean of the
Gaussian Gk that maximizes Pt = prk(Tt, ωt, pt) · πk.

Two variants of the model were considered: one (schema 1)
explored wide temperature range and the other (schema 2)
was restricted in a narrower temperature range.
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Figure 8. Performance of GMM(7)s. Each dot on the figure
represents one trained GMM(7). The models with the bet-
ter likelihood generally have better detection performance,
although the models with the best likelihood have zero de-
tection performance.

3.2.1. GMM: Parameters and Performance

The modeled employed seven fitted Gaussian distribution mix-
ture components. The number of components was determined
heuristically by searching the parameter space between one
and 15 Gaussian components in the GMM: mixtures with less
than seven components exhibited shorter detection horizon,
while mixtures with more components showed no consistent
advantage in detection horizon, and sometimes resulted in a
large proportion of models with zero detection performance.
Candidate GMMs were trained with Matlab R© using the
gmdistribution.fit() method. This uses an expec-
tation maximization algorithm to find locally optimal models
meeting hard-coded convergence criteria.

Initial experiments showed inconsistent performance with
detection horizons ranging from 0 to 2.2 hours (see Figure 8).
The cause for this is explained in section 3.2.2. The results
shown in this section use models trained with the combined
expectation maximization and rejection criterion filter. The
metric performances similar to the one in Figure 7, and are
not repeated for each of the models for brevity.

Changing the irrelevant data removal to schema 2 and re-
running the same experiment resulted in no performance im-
provement, showing that the GMM training and rejection fil-
tering process is robust in that the detection horizon is the
same for two different temperature ranges. While the hori-
zons are the same (see the GMM(7) schema 1 and schema 2
results in the figure), the schema 2 results, based upon data in
a narrower temperature range, show less variation at the onset
of detection (07:40) on the second day.

Training required repeated creation of GMMs from differ-
ent random subsets of the training data, with selection of
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Figure 9. Visualizations of a GMM. (a) with good (1.6 h) prediction horizon; (b) GMM with zero prediction. Most of the
Gaussians (except the grey one) have similar positions and sizes as the ones in (a).

the GMM with the smallest average Mahalanobis distance to
the most likely Gaussian for all the training data. The num-
ber of Gaussians in the GMM was selected by searching for
the smallest number of components where the improvement
of the average Mahalanobis distance stopped to avoid over-
fitting.

3.2.2. Gaussian Mixture Rejection Filtering

We investigated observed inconsistency in performance of
randomly-initialized GMMs in order to understand why some
resulted in zero detection performance. Figure 8 shows the re-
lationship between the model performance and the likelihood,
l, of the training data given the trained model for GMMs with
seven components each. The figure shows that several of
the learned models those with the best training performance
have zero detection. The results for the other GMMs show
a general correlation between training performance (larger
model posterior likelihood, l, or smaller − log(l)) and de-

tection performance. The GMM visualizations in Figure 9 –
one with 1.6 hour detection horizon and one with zero perfor-
mance – show the likely cause of this. (The ellipsoids repre-
sent the envelope enclosing the points within the one standard
deviation probability, that is where |z| ≤ 1.) In the GMM
with good performance, Figure 9a, the component Gaussians
are all fairly compact. The other, Figure 9c, shows that one
of the Gaussians encloses a large volume of the [Tt, ωt, pt]
space. With this model, the metric values are all less than 5.

The GMMs like the one shown in Figure 9c are non-discriminative.
The most likely Mahalanobis distances of any point in the
training, anomaly, or post repair data set, is small enough that
no anomalies are detected according to the problem statement
in section 2.3. Figures 9b and 9d show the likeliest Maha-
lanobis distance of the low-oil interval data,with respect to the
clusters of the two models shown in Figure 9a and Figure 9b,
respectively. In a more detailed examination of the results, we
found that the maximum Mahalanobis distance of any point
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in the training data to the large-ellipsoid component of Fig-
ure 9 (or any of the ones with zero detection performance)
was less than 7. Based on this, the rejection criterion used to
reject GMMs with non-discriminative Gaussian components
is for each Gaussian component in the GMM, compute the
Mahalanobis distance between that Gaussian and each point
in the training data. Reject the GMM if the maximum Maha-
lanobis distance for any component is than a threshold. For
this study, the rejection threshold value was 10. This value
must be selected, based on the performance of the trained
GMMs, by comparison of results of several GMMs with rea-
sonable detection horizons with several GMMs with zero or
near-zero detection horizons.

We applied this criterion to 20 candidate GMMs; 7 (35%)
were rejected. We selected the GMM for modeling from the
remaining GMMs by finding the GMM with the highest like-
lihood of the training data. The GMM with the longest detec-
tion horizon (see Figure 8) 2 hours did not have the highest
likelihood. That model could not be selected according to the
rules presented in the problem statement (section 2.3) because
it used data other than the model and the training data.

We tested the need for this rejection filtering by using the al-
gorithm of (Figueiredo & Jain, 2002) for training GMMs. We
found a clear threshold for the rejection criterion after train-
ing 120 different GMMs. We found that GMMs that were
rejected had zero detection performance. Although this al-
ternate means to train GMMs confirmed the need for rejec-
tion filtering, and has several advantages over the native Mat-
lab method especially finding the optimal number of com-
ponents in the GMM we did not use this algorithm for the
work reported here because the GMMs trained with this algo-
rithm did not perform as well as the ones trained by Matlab’s
gmdistribution.fit() method.

3.3. Model 3 – Feed-Forward Neural Network

Two Artificial Neural Network (ANN) models were explored.
The first one, Feed-Forward Neural Network (FFNN) can be
viewed as a neural network analogue of Gridded Regression.
An FFNN was trained to estimate the engine oil pressure,
given the oil temperature and the engine speed. A new un-
known function fNN is trained to express pressure in terms
of the other two variables and unknown parameters – weights
w

p̂ = fNN (T, ω; w) (8)

The metric used was the same as for the GR model: the abso-
lute value of the z-score of the residuals. The hidden neurons
employ sigmoid activation functions because linear activation
functions reduce the neural network to a simple linear equa-
tion

p̂ = w0 + w1T + w2ω (9)

whose performance was considerably worse than that of the
GR model.

3.3.1. FFNN: Parameters and Performance

At first, a two-layer neural network was employed for mod-
eling the functions2, with twenty neurons in the hidden layer,
given by

p̂(T, ω; w) =

σ




40∑

j=1

wkjσ (wj1T + wj2ω + wj0) + w0


 ,

(10)

where σ() is the logistic sigmoid and w are the weights. This
standard neural network topology, known as the universal
function approximator, with its expressive power, and its re-
lation to Kolmogorov theorem is discussed in (Duda et al.,
2000, Section 6.2.2). However, in our case, significantly bet-
ter performance was achieved after the two-layer topology
2-20-1, was replaced by a three-layer 2-3-3-1 topology with
the same total number of neurons, which is not surprising be-
cause deeper network have better expressive power. The final
topology was selected comparing various candidate topolo-
gies. The number of layers and neuron counts were randomly
selected within narrow ranges. A simple program trained
FFNNs with the selected topology and evaluated the event
horizon. The best model, with the longest event horizon, was
used. Figure 10 shows the topology of a six-neuron FFNN.
This simple network performed strictly as well, or better than,
FFNNs with larger numbers of neurons or additional neuron
layers. The selected topology was simplest in terms of neu-
ron counts, and is expected to have better generalization than
its more complex counterparts

Figure 10. Topology of FFNN – two hidden layers with three
neurons each.

After training on good data, the network showed a 3 hour
detection horizon with no false alarms.

3.4. Model 4 – Replicator Neural Network

The second ANN model, Replicator Neural Network (RNN),
can be considered as neural network analogue of GMM. An
RNN (Hawkins, He, Williams, & Baxter, 2002) has 3 hidden
layers, with sigmoid activation functions in the first and third
2This article employs the notation where the number of layers of a neural
network is equal to the number of adaptive weights, as in (Bishop, 2006).
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layers. The middle hidden layer has one neuron for each in-
put signal, and the activation function is a differentiable step
function that quantizes the input into one of the steps. The
output of the network is the vector [T̂t, ω̂t, p̂t].

We found that the RNN model did not train well with the
original input data; the average length of the residual vector
was dominated by prediction error of ω. This necessitated
scaling the training, anomaly event, and normal data. For the
metric, Hawkins et al. (2002) suggests using the outlier factor,
which is defined as the mean of the square of the Euclidean-
norm of each residual:

OFt =
1

3
((Tt − T̂t)2 + (ωt − ω̂t)2 + (pt − p̂t)2) (11)

We also investigated an alternative metric: the Mahalanobis
distance of the residuals from the mean of a single Gaus-
sian modeling the residuals from the training interval. The
outlier factor weights all components of the residual equally,
whereas the Mahalanobis distance metric adapts to the statis-
tics of the residual signals.

3.4.1. RNN: Parameters and Performance

An RNN was trained to replicate T, ω, and p. The signal val-
ues were pre-scaled into the range [0.1 0.9]. Mahalanobis dis-
tance metric resulted in a 1.2 hour detection horizon. Hawkins’
(Hawkins et al., 2002) outlier factor metric resulted in zero
anomaly detection.

Guided by an automated exploration of the parameter space,
we selected a RNN with 10 neurons in the first and last hidden
layers, and 3 neurons in the middle hidden layer, correspond-
ing to our three signals in this study. The activation function
of the middle hidden layer has 32 steps.

Mahalanobis distance metric resulted in a 1.2 hour detection
horizon.

3.5. Model 5 – Boosted Regression Tree

The BRT (Elith, Leathwick, & Hastie, 2008) model estimates
p̂t based upon (ωt, Tt). From the modeling perspective, it
is comparable to the GR model because both use speed and
temperature to predict the pressure, then calculate the abso-
lute value of the z-score given by Eq. (7) as the metric.

3.5.1. BRT: Parameter and Performance

A BRT, with 200 sub-trees, was trained on data with range
filtering according to schema 1. The detection horizon was
2.9 hours, as shown in Figure 11. We trained models with
10, 20, 50, 100, and 200 sub-trees, and found that the perfor-
mance for the 10 sub-tree BRT was much lower (1.2 hours),
while the BRTs we investigated with 20 – 200 sub-trees all
produced detection horizons within 0.1 hours of each other.

In another variation on this experiment, we used data using

schema 2 for the range filter (restricted oil temperature) and
found that performance improved substantially: for the 20,
50, 100 and 200 sub-tree BRTs, the detection horizon was 3.0
hours, and the detection horizon of the 10 sub-tree BRT was
only slightly less - 2.8 hours.

4. RESULTS COMPARISON

Figure 11 and Table 3 summarize the results of this investi-
gation. Figure 11 offers two comparisons based on two de-
tection horizons: one measures the time between the first ob-
served anomaly (the day before the final failure) and the fi-
nal failure, and the other measures the time between the first
detection of anomaly during the final mission and the final
failure.

The performances of the detectors according to the first, accross-
the-mission comparison are nearly indistinguishable, ranging
between 18.8 and 19 hours, which amounts to just over one
percent (1.05%).

The second, within-the-mission comparison, however, sepa-
rates the performances of different detectors. According to
this comparison, the GR and BRT methods produced the best
overall performance. The detection horizon during the last
mission, 2.9 hours, is more than twice as long as the RNN,
and nearly twice as long as the GMMs. The FFNN perfor-
mance, 2.7 hours, was nearly as good. Note that all detectors
considerably outperformed thefa existing DTCs, which ap-
peared only 0.1 hour before the failure.

Table 3 lists detection horizons within the last mission with
the times required to train the associated detectors. There is
little correlation between training time and detection perfor-
mance; the models with the best detection performance take
the longest and shortest times to train. FFNN took by far the
most time to train, but it also resulted in the most compact
model, which is has an efficient execution and is less prone to
overfitting.

Table 3. Performance of algorithms.
Method Details Detection Training

Horizon Time
(hours) (s)

GMM −20 < T < 120 training;
no GMM rejection filtering

0 45

RNN 10+3+10 topology, 8 steps 1.1 670
GMM −20 < T < 120 training;

GMM rejection filtering
1.6 45

GMM 90 < T < 120 training;
GMM rejection filtering

1.6 45

FFNN 3+3 topology 2.7 1780
BRT −20 < T < 120 2.9 40
GR −20 < T < 120 2.9 1

5. DISCUSSION AND CONCLUSIONS

This paper proposes an approach for incremental introduction
of PHM capabilities by development of anomaly detection,
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Figure 11. Anomaly detection performance of all models.
Each graph shows the on/off state of the anomaly detection
using a comparator on the averaged metric. In addition, the
top graph shows the diagnostic trouble codes from the vehi-
cle’s electronic control unit. For GR see section 3.1.1; for
GMM(7)-both schema-see section 3.2.1; for FFNN see sec-
tion 3.3.1; for RNN see section 3.4.1, and for BRT see section
3.5.1.

even in the presence of a single known failure. We evaluated
detectors by disallowing any false alarms during the period
of normal operation and measuring detection horizon. The
conservative requirement of zero-false-alarm tolerance aimed
to compensate for potential overfit problems due to the lack
of test and verification data. Rather than waiting to observe
a statistically significant set of failures, we propose to start
learning from the very first failure instance and carefully con-
sider newly triggered anomalies by verifying the presence of
real (incipient) failures. Any new undetected failures would
also have to be incorporated in the models. All observed fail-
ures and their modes would be documented to allow for fu-
ture classification and diagnostics, and any observed failure
progression, with known failure modes, would be used for
future prognostics development. In the context of this vision
of PHM, we described its first layer – a tentative anomaly de-
tector that consisted of a pre-filtering, data-driven model, a
filter and a threshold comparator. The most space is given to
comparison of five candidate data-driven models.

We found that residual based models (GRs, FFNNs, and BRTs)
outperformed distance based models (GMMs and RNNs) in
this application. The better performance of residual mod-
els is probably due to small engineering knowledge that was

captured in them by expressing engine oil pressure in terms
of engine speed and engine oil temperature. The distance-
based models met the nearly zero expert knowledge goal,
at least with respect to expert engineering knowledge of the
vehicle, but required skills and effort in the machine learn-
ing area to select useful models and metrics. In particular,
such knowledge and effort was necessary to identify and cor-
rect the root cause of the inconsistent GMMs’ performance.
We reported that locally-optimal GMMs often failed to detect
anomalies. To overcome the problem we proposed a heuristic
filter that rejects candidate GMMs with non-discriminative
components and controls the volume of the largest mixture
component.

The old technique of gridded residual, often neglected in fa-
vor of more recent methods, not only achieved the best detec-
tion horizon, but also trained the fastest. BRT shared the first
prize with GR with respect to detection horizon and trained
reasonably fast (still not nearly as fast as GR), but its model
complexity was much higher. FFNN, by contrast, required
by far the most amount of time for training, but achieved a
very good result with a the most compact model, which is
less likely to overfit. All models performed markedly better
than the tradition, vehicle built-in DTCs.

This study employed a very simple anomaly detector – a filter
with a threshold comparator. As more failures are observed,
more sophisticated inference engine should be considered, es-
pecially those that combine multiple learners, such as a model
ensemble, which may have a built-in bias against potentially
overfitted models.

While this work investigated models for anomaly detection,
the results suggest further work to create diagnostic and prog-
nostic algorithms based on these techniques. Implementation
of fleet-wide data collection and analysis would allow a statis-
tically significant set of known failures to be created. This in
turn would allow estimation of a Receiver Operating Charac-
teristic curve and enable known PHM engineering techniques
that are based on such curves to be applied.
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NOMENCLATURE

Symbol Definition
ω Engine speed in radian/s (1 radian/s ≈ 9.55

RPM)
ωi Sequence of engine speeds in ith speed group
∆ω Width of each speed group
T Engine oil temperature in ◦K (◦K ≈ ◦C+273)
Tj Sequence of engine oil temperatures in jth

temperature group
∆T Width of each temperature group
p Engine oil pressure in kilo-Pascals (kPa)
pij Sequence of pressures in bin of (ωi, Tj)
pkij kth value of pij
pij Mean of pressures in bin of (ωi, Tj)
p̂ Estimate of engine oil pressure
Si The ith signal
Dtraining Sequence of observed signals used for training
Devent Sequence of observed signals in known

event(s)
Dnormal Sequence of observed signals during normal

operation
M A model for a set of signals, based on data

from a training interval
m A real-number sequence resulting from evalu-

ating a model over data from a given interval
Θ Anomaly detection threshold
Mij The number of values in pij
ε Residual, or prediction error
z z-score of prediction error ε
σp standard deviation of sequence of prediction

errors
N(µ, σ2) Univariate normal (Gaussian) distribution for

mean µ and variance σ2

N(µ, Σ) Multivariate normal (Gaussian) distribution
for mean and covariance µ, Σ

πk Weight of distribution Nk in Gaussian Mix-
ture Model

P Sequence of maximum weighted probabilities
signals from Gaussian Mixture Model

prk Probability of (T, ω, p) for kth distribution in
Gaussian Mixture Model

l Posterior likelihood of signal for given model
w Weights in Neural Network
σ(x) Logistic sigmoid function of x
OFt Outlier Factor for signal at time t
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ABSTRACT 

In this paper, an approach for fault diagnosis of hybrid 

dynamic systems (HDS), in particular discretely controlled 

continuous system, is proposed. The goal is to construct a 

decentralized diagnosis structure, able to diagnose 

parametric and discrete faults. This approach considers the 

system as composed of a set of interacted hybrid 

components (HCs). Each HC is composed of a discrete 

component (Dc), e.g. on/off switches, with the continuous 

components (Ccs), e.g. capacitors, whose continuous 

dynamic behavior is influenced by the Dc discrete states. A 

local hybrid diagnosis module, called diagnoser, is 

associated to each HC in order to diagnose the faults 

occurring in this HC. In order to take into account the 

interactions between the different HCs, local diagnosis 

decisions are merged using a coordinator. The latter issues a 

final decision about the origin of the fault and identifies its 

parameters. The advantage of the proposed approach is that 

local hybrid diagnosers as well as the coordinator are built 

using local models. The proposed approach is applied to 

achieve the decentralized diagnosis of discrete and 

parametric faults of power electronic three-cell converters. 

1. INTRODUCTION 

1.1 Basic definitions and motivation  

A fault can be defined as a non-permitted deviation of at 

least one characteristic property of a system or one of its 

components from its normal or intended behavior. Fault 

diagnosis is the operation of detecting faults and 

determining possible candidates that explain their 

occurrence. Most of real systems are hybrid dynamic 

systems (HDS) (Zaytoon, 2001), (Arogeti et al., 2010) in 

which the discrete and continuous dynamics cohabit. 

Therefore, fault diagnosis of HDS must deal with the 

evolution of continuous dynamics in each discrete mode in 

order to construct a diagnosis module (called diagnoser)  

able to diagnose parametric and discrete faults. Parametric 

faults affect the system continuous dynamics and are 

characterized by abnormal changes in some system 

parameters; whereas discrete faults affect the system 

discrete dynamics and are considered either as the 

occurrence of unobservable events and/or reaching discrete 

fault modes. In both cases, they entail unpredicted, 

abnormal, change in the system configuration. Therefore 

faults may be modelled in HDS by introducing parameters 

into the system model, explicit fault events or/and fault 

modes. 

Discretely controlled continuous systems (DCCS) (Schild 

and Lunze, 2008) are a special class of HDS widely used in 

the literature. In these systems, the changes in discrete 

modes are achieved by discrete control commands, e.g. 

opening or closing a switch.  

1.2 State of the art 

Many approaches have been proposed in the literature for 

fault diagnosis of DCCS. They are generally divided into 

three main categories:  

 approaches for the diagnosis of parametric faults,  

 approaches for the diagnosis of discrete faults, 

 approaches for the diagnosis of both parametric and 

discrete faults.  

In parametric fault diagnosis approaches, (Cocquempot et 

al., 2004), (Alavi et al., 2011), (Kamel et al., 2012) relations 

over observable variables are computed in order to generate 

residuals sensitive to a certain subset of parametric faults in 

each observable discrete mode. 

The discrete fault diagnosis approaches are divided into 

three main groups. In the first group (Rahiminejad et al., 

2012), (Defoort et al., 2011), residuals sensitive to the 

continuous dynamics in each discrete mode are defined. If 

unpredicted change occurs due to the occurrence of 

unobservable discrete fault, the residuals, defined for the 
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discrete mode before the fault occurrence, will be different 

of zero in the discrete mode after the fault occurrence. This 

change of residuals values from zero indicates the 

occurrence of a discrete fault. The approaches of second 

group (Bhowal et al., 2007), (Biswas et al., 2006), describe 

in each normal or fault discrete mode, continuous dynamics 

as the rate of changes of continuous variables. These rates 

are considered to be constant. Transition guards are defined 

as linear inequalities based on continuous variables values. 

When a guard is satisfied, its corresponding mode transition 

is enabled. The occurrence of a fault is diagnosed by 

determining the discrete state reached due to specific guard 

satisfaction. In the methods of last group (Bayoudh et al., 

2006), a set of residuals is defined in each normal or fault 

discrete mode. Each residual is characterized by three 

symbols: 0, 1 or und when the residual value is, 

respectively, zero, different of zero and undefined. und 

represents the case where the associated residual is not 

defined in the new active mode. These symbols are used to 

distinguish the different normal and fault discrete modes. A 

discrete fault is isolated by determining the current discrete 

fault mode of the system.  

The third category includes few approaches for the 

diagnosis of both parametric and discrete faults. Some 

approaches of this category (Derbel et al., 2009), capture the 

continuous dynamics by integrating the occurrence time of 

events. They consider that the occurrence of discrete or 

parametric faults does not change events ordering but only 

alters their timing characteristics. Therefore, a discrete or 

parametric fault is diagnosed when predicted events occur 

too late or too early or they do not occur at all during their 

predefined time intervals. Other methods (Daigle et al., 

2010), construct temporal causal graphs (TCG) for each 

normal and fault discrete mode based on the use of a global 

hybrid bond graph. When measurement deviations, caused 

by fault occurrence, are observed through residuals, TCG 

are used to determine the effects that faults will have on the 

measurements as well as the temporal order in which they 

deviate. Then, fault signature is defined for each fault as the 

qualitative value of the magnitude and the first non-zero 

derivative change which can be observed in the residuals. In 

order to distinguish parametric from discrete faults, the 

signatures are extended by adding discrete symbols 

indicating abrupt changes from zero to non-zero or from 

non-zero to zero. In (Louajri et al., 2013), an approach 

based on a diagnoser with hybrid structure is developed. It 

consists of three parts: the discrete diagnoser, the continuous 

diagnoser and the coordinator. The discrete diagnoser is 

built using a discrete time hybrid automata representing 

global model. It exploits the information extracted from the 

system continuous dynamics to get rid of diagnosis 

ambiguity due to the system behavior abstraction. The 

continuous diagnoser generates residuals. The latter 

compare the measured and nominal values of each 

continuous variable in order to diagnose the parametric 

faults in each discrete mode. The information about the 

discrete mode is provided to the continuous diagnoser 

thanks to the information extracted from the discrete 

dynamics. Finally, the coordinator uses the decisions issued 

from the discrete and continuous diagnosers in order to 

diagnose faults requiring the interaction between both 

diagnosers.  

1.3 Our approach 

Fault diagnosis approaches of the literature do not scale to 

HDS with a large number of discrete modes because they 

achieve fault diagnosis using one centralized diagnosis 

module. The latter is built using a global model of the 

system. Two problems are arisen -) the weak robustness in 

the sense that, when the global diagnosis module fails, this 

may bring down the entire diagnosis task and -) the system 

global model can be too huge to be physically constructed. 

Therefore in this paper, the proposed approach of (Louajri et 

al., 2013) is developed to achieve the diagnosis of 

parametric and discrete faults in decentralized manner using 

several local hybrid diagnosers. The latter are constructed 

without the use of a global model of the system but only the 

local models of the system discrete components (Figure 1).  

The paper is organized as follows. In section 2, the three cell 

converter system is described and modelled. Section 3 

defines the steps of the hybrid diagnosis construction. In 

section 4, a simulation for the three-cell converter is used to 

demonstrate the efficacy of the approach. A conclusion with 

the future work ends the paper in section 5. 

 

Figure 1.  Decentralized hybrid diagnosis structure for a 

HDS composed of 3 interacted HCs. 

2. THREE CELL CONVERTER DESCRIPTION AND 

MODELING 

2.1. System description 

In order to illustrate the proposed approach, the 

decentralized fault diagnosis of three-cell converters 

Hybrid dynamic system HDS
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component HC1
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Local hybrid 
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Local hybrid 

diagnoser D2

Local hybrid 

diagnoser D3
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DD2 DD3
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(Shahbazi et al., 2013) (Trigeassou, 2011), depicted in 

Fig.2, is achieved. With the same observability used in the 

literature (Defoort et al., 2011), (Uzunova et al., 2012) for 

the three-cell converter diagnosis, the proposed approach 

has the advantage to diagnose (not only detect) discrete and 

parametric faults using a decentralized structure. 

The continuous dynamics of the system are described by 

state vector                 , where     and     

represent, respectively, the floating voltage of capacitors    

and    and   represents the current flowing from source E 

towards load (R,L) through three elementary switching 

cells             . The latter represent the system discrete 

dynamics. Each discrete switch     has two discrete states: 

    opened (  
 

    or     closed (  
 

   , where   
 
 is the 

state discrete output of    . The control of this system has 

two main tasks: -) balancing the voltages between the 

switches and -) regulating the load current to a desired 

value. To accomplish that, the controller changes the 

switches’ states from opened to closed or from closed to 

opened by applying discrete commands ‘close’ or ‘open’ to 

each discrete switch              (see Fig.2). Thus, the 

considered example is a DCCS.  

 

Figure 2.  Three-cell converter discription and 

decomposition 

2.2. System modeling and decomposition 

The real system dynamic evolution of three-cell converter is 

written as (Defoort et al., 2011) 

{
 
 

 
   ̇     

  

  
    

  

  
                                                             

  ̇     
  

  
    

  

  
                                                             

 ̇   
 

 
    

  

 
      

  

 
(            

  

 
(      

 

As shown in (1), the discrete state of   , represented by a 

real discrete output   
 , influences the dynamic evolution of 

    and  . The discrete state of   , represented by   
 , 

impacts the dynamic evolution of    ,      and  . The 

discrete state of   , represented by   
 , influences the 

dynamic evolution of     and     . Thus, the three-cell 

converter system is decomposed into three interacted     

as shown in Fig.2: 

      is composed of switch    (         (   ) and 
I  (   ).  

      is composed of switch    (    ,     (   ), 
     (   ) and I  (   ).  

     is composed of switch    (         (   ) and I  
(   ).  

In the literature (Defoort et al., 2011), (Uzunova et al., 

2012), eight faults are considered for the diagnosis of the 

three-cell converters system (Table 1).  

Table 1. Faults for the diagnosis of three-cell converters 
Fault types Fault labels Fault description 

Discrete faults 

      stuck opened 

      stuck closed 

      stuck opened 

      stuck closed 

      stuck opened 

      stuck closed 

Parametric 

faults 

   

Change in the nominal 

parameter values of    due 
to C1 ageing 

   

change in the nominal 

parameter values of     due 

to C2 ageing 

 Labels   ,    and    signify the normal operating modes 

for, respectively,    ,     and    . 

2.3. Residuals generation 

In order to show the influence of each discrete component 

on the dynamic evolution of each continuous component, 

(1) is rewritten as follows: 

 {

 ̇    ̇  
   ̇  

        

 ̇    ̇  
   ̇  

        

 ̇    ̇    ̇    ̇     ̇

 

where  ̇  
     

  

  
 ,  ̇  

    
  

  
 ,  ̇  

     
  

  
 , 

 ̇  
    

  

  
 ,   ̇   

 

 
 ,   ̇    

  

 
   ,  ̇    

  

 
(    

    ,   ̇    
  

 
(      . 

  ̇ 
  represents the real dynamic evolution of      according 

to the discrete state of    (   ). Likewise,   ̇ 
 ,   ̇ 

 ,   ̇ 
 , 

  ̇,  ̇ and   ̇ have the same definition as   ̇ 
 .   ̇ represents 

the part of dynamic evolution of   which does not depend on 

the discrete state of any switch.  

Similarly, considering that the parametric faults related to 

the load ( ,  ) are not considered, the equations system for 

the  nominal dynamic evolution of system components can 

be written as:  

E

HC3

HC2 HC1

S2S3 S1

RC2 C1

Vc2

Vc1

I

OS3,

CS3

OS2,

CS2

OS1,

CS1

L

[Vc1, Vc2, I] 
Discrete controller
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 {

 ̃̇    ̃̇  
   ̃̇  

         

 ̃̇    ̃̇  
     ̃̇  

       

 ̇̃   ̇̃   ̇̃    ̇̃    ̇̃ 

 

 ̃̇  
    ̃ 

  

 ̂ 
 ,  ̃̇  

   ̃ 
  

 ̂ 
 ,  ̃̇  

    ̃ 
  

 ̂ 
 ,  ̃̇  

   

 ̃ 
  

 ̂ 
 , ̇̃     ̇   

 

 
   ̇̃   ̃ 

  

 
   ,  ̇̃   ̃ 

  

 
(    

    ,   ̇̃   ̃ 
  

 
(       where  ̃ 

 ,  ̃ 
  and  ̃ 

  are  the 

nominal values of states   ,    and    discrete outputs while 

 ̃  and  ̃  are the nominal values of    and   . Based on (2) 

and (3), residuals   ,    and    are generated as follows:  

{
  
 

  
    (  ̃ 

  

 ̃ 
   

  

  
)   ( ̃ 

  

 ̃ 
   

  

  
)  

   (  ̃ 
  

 ̃ 
   

  

  
)   ( ̃ 

  

 ̃ 
   

  

  
)  

   ( ̃ 
    

 )
   

 
 ( ̃ 

    
 )

(        

 

 ( ̃ 
    

 )
(      

 
                     



In order to show the influence of each discrete component 

on the residuals, (4) is rewritten as follows: 

 {

     
    

                      

     
    

                       

         
    

    
 

 

where   
  (  ̃ 

  

 ̂ 
   

  

  
)   ( ̃̇  

   ̇  
 ),   

 =( ̃̇  
  

 ̇  
 ),   

 =( ̃̇  
   ̇  

 ),   
  ( ̃̇  

   ̇  
 ),   

  

( ̇̃    ̇),   
  ( ̇̃    ̇),   

  ( ̇̃    ̇) and     

( ̇̃    ̇)   .  

2.4. Hybrid automata construction 

Hybrid automata    characterizing the hybrid dynamics of 

    is defined by the tuple (see Fig.4 and Fig.4):   

   (                                (6) 

where, 

        (   opened       (   closed        (   stuck 

opened),          st c  closed  : is a finite set of discrete 

states (discrete modes) of   . The output of state   
  is 

characterized by real discrete output vector   
  

   (when    is opened   (when    is closed   and nominal 

discrete output vector 

 ̃ 
     (when    ha e to be opened ,  (when    have to be 

closed)}. At normal discrete mode (state)   ̃ 
     

  while in 

faulty mode   ̃ 
     

 ; 

     
     

   is the event set of   . It includes observable 

events corresponding to control command events   
  

    (close        (open      and unobservable events   
  

including fault events.  
    

 
           , 

              ,  
 ̃    

  denotes the set of fault events 

(discrete and parametric) that can occur in    . The set of 

fault events contains three different fault types or modes 

indicated by the fault labels:             . The set of labels 

for     is                       . 

           : is the state transition function. A 

transition   (          corresponds to a change from 

state    to state     after the occurrence of event     ; 

               is a finite set of continuous variables 

associated to   ; 

               ={ ̃̇   ̇ }: is a function 

characterizing temporal evolution  ̇  and nominal evolution 

 ̃̇  of continuous variables    in each discrete state   
 , 

where  ̃̇  [ ̃̇  
  ̃̇  

  ̇̃ ]
 
,  ̇    ̇  

   ̇  
   ̇  ; 

                (   
  : is the set of initial 

conditions. 

 
Figure 3.  Hybrid state of    for    .  

 

 
Figure 4.  Hybrid automata    for    .  

      
 ,    

 ,   
  : is a set of residuals  associated to    ; 

Since     does not belong to    , therefore,  ̃̇  
   , 
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5 

 ̇  
   . Thus   

  is equal to zero.  

Hybrid automata    and     for     and     are 

constructed by the same manner.  

2.5. Motivation to use the considered residuals 

Let us consider the occurrence of a fault of type   , e.g. 
   stuck opened. When the controller sends control 
command      (close    , S3 remains in its stuck-opened 

mode ( ̃ 
    and   

    . The occurrence of a fault of 

type    impacts at the same time    and    ( ̃ 
    and 

  
     while it does not impact    (( ̃ 

    
 ), ( ̃ 

    
 ) 

and ( ̃    ) , see (4). Therefore, there is no delay of the 

influence of the fault occurrence on the sensitive residuals, 
e.g.    and   . Moreover, there is no fault propagation from 
one residual to another one, from    or    towards   .  

3. THREE CELL CONVERTER DIAGNOSIS 

3.1. Global fault signature construction 

A qualitative signature is constructed by generating 

continuous and discrete symbols from residual values. 

Continuous symbols   (            represent the 

qualitative abstraction of residual values into 

stable/increasing/decreasing ones: 

   
 :   (   belongs to the nominal interval; 

   
 :   (   is below the nominal interval; 

   
 :   (   is above the nominal interval. 

The occurrence of a discrete fault exhibits an abrupt change 

in the continuous dynamics due to unpredicted change in 

    discrete mode. This change is characterized by the 

absence (   
 

   while   ̃ 
 

  ) or the addition  (  
 

   

while   ̃ 
 

  ) of associated term  e.g., 
 

  
. On the other 

hand, parametric faults due to the ageing effect cannot cause 

this abrupt change with a finite change in magnitude. In 

fact, they are indicated by a progressive abnormal change of 

the parameter value. In order to take into account this 

discriminative information, discrete symbols   (    are 

added for the abstraction of each residual    in order to 

distinguish between parametric and discrete faults as 

follows: 

    
 
     : denotes an abrupt positive change in 

residual     due to a discrete fault caused by    . 

     is equal to the absolute value of the term 

associated to    
 
; 

    
 
     : denotes an abrupt negative change in 

residual     due to a discrete fault caused by    ; 

    : denotes that there is no observed abrupt change 
in residual   . 

 A fault signature      at global discrete state q is the 

combination of continuous and discrete symbols of 
the different residuals as follows: 

     (  
  (    

   (    )    (  
  (    

   (    )           (7) 

3.2. Local fault signature construction 

Each discrete state   
 
 of    generates a fault signature     

 
 

as a guard over residuals    calculated in this discrete state 

as follows:  

    
 
 (  

    (  
 
 )
   (  

 
))   (  

    (  
 
  
   (  

 
 )               (8) 

Based on (5), we can write: 

    ̃̇   ̇ = ( ̃̇ 
   ̇ 

 )+...+ ( ̃̇ 
   ̇ 

 ) =   
        

  

If [( ̃̇ 
 
  ̇ 

 
)    

 
]     it means that the other parts of 

residual    are equal to zero (one fault can be occurred at the 

same time). In this case,       
 
.  Hence,    will have the 

continuous and discrete symbols of   
 
. Thus (8) is rewritten 

as follows: 

    
 
 (  

  (    
   (    )    (  

  (    
   (    )           (9)

By comparing (8) and (9), we can notice that     
 
 becomes 

equivalent to the global fault signature     . 

3.3. Local hybrid diagnoser 

The objective of local hybrid diagnoser    is to detect and 

isolate the occurrence of parametric and discrete faults 

affecting the dynamics of hybrid component    .    is built 

based on the local model,     of    . Each state of Dj, 

denoted   
 
, is of the form shown in Fig.5. 

 
Figure 5.  State of local hybrid diagnoser    of    . 

Local hybrid diagnoser     of      is depicted in Fig.6. It is 

constructed from hybrid automata A
1
 of Fig.4.  

   is constructed as follows: 

 Initial state   
 , characterized by (  

 ,  ̃̇ ,    ), is 

composed of the following    states:   
  (   initial 

state),   
  reached from   

  by the occurrence of a fault 

e ent ‘             ’  fa lt of type     and   
  reached 

from   
  d e to the occ rrence of a fa lt e ent ‘  ̃    

’ 

(fault of type    . Thus,   
  is equal to {  

 ,   
 ,   

 }.     

gathers the normal and fault labels associated to the states 

belonging to   
 . Therefore,      is equal to {  ,   ,   }. 

Model states:

j
SP

j
X
~


j

kQ

j

kz
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Finally,  ̃̇  gathers  ̃̇ 
   of all the states   

  of   
 . Since 

states   
  and   

  are reached from   
  due to the 

occurrence of unobservable event (a fault),  ̃̇ 
 ,  ̃̇ 

  and 

 ̃̇ 
  are equivalent and equal to        (see Fig.4).  

 The              reached due to the occurrence of each 

control command event observed by     are computed. 

Since    initial state is    , control command     will 

not change    state   
 . The event      transits    from 

  
  to   

 , characterized by (  
 ,  ̃̇ ,    ).   

  is equal to 

all the states reached from   
  due to the occurrence of 

   . Thus,   
   is equal to {  

 ,   
 ,   

 } (see Fig.4). 

Moreover, all the states of    reached from   
  due to the 

occurrence of unobservable event are added to   
 . 

Therefore,   
    is equal to {  

 ,   
 ,   

 ,   
 }.     is equal 

to {  ,   ,   ,   } while  ̂̇  is equal to [
  

  
 

   

 
]
 

(see 

Fig.4). 

 Fault signatures are generated for each D1 state thanks to 

the continuous dynamic evolution in each discrete state 

of   
 . In the initial    state,   

 , the continuous dynamic 

evolution in any state of   
  does not evolve. Therefore, 

their associated residuals are equal to zero leading to 

obtain the fault signature     
  (see Table 2). In   

 , the 

continuous dynamic evolution of the states belonging to 

  
  will allow to generate four fault signatures as we can 

see in Fig.6. They allow to detect and isolate discrete and 

parametric faults    and    as follows.   
  of     (reached 

due to the occurrence of fault of type   ) generates local 

fault signature      
 

 . 

     
 

  (  
   

  

  
) (  

        (  
   

   

 
) (see the values 

of local residuals in   
  of Fig.4). As explained in subsection 

3.2, local fault signature      
 

  is equal to global fault 

signature. 

     (  
  (   

   (   )   (  
  (   

   (   )  

   (  
  (   

   (   )  (  
  

  

  
) (  

       (  
  

   

 
)  

 This global signature is used as transition to isolate the 

occurrence of a fault of type   . Same reasoning can be 

applied for the other fault signatures. To overcome the noise 

problem, the values of comparison (e.g.,
 

  
) are replaced by 

the intervals corresponding to the selected confidence level. 

These intervals are calculated using Z-test in order to 

determine the thresholds of each value. 

Same reasoning can be followed for the construction of the 

other states of    .     

It is worth pointing out that 

          
 

  (  
  

  

  
) (  

       (  
  

   

 
) means that 

the three conditions have to be satisfied in order to enable 

the corresponding transition. 

 

Figure 6.  Local hybrid diagnoser    of    . 

Table II shows the local fault signatures (equivalent to the 

global fault signatures) used by    to achieve its local 

diagnosis. 

Table 2. Local fault signatures generated due to the 

occurrence of faults in    . 

   
 

Local 

signature name 
Equivalent global fault signatures 

       
  (  

  
  

  

) (  
       (  

  
   

 
) 

       
  (  

  
 

  

) (  
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) 

   
     

  (  
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  (  
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  (  

       (  
       (  

       

The other diagnosers    and    for     and     can be 

constructed similarly as for   .    is sensitive to discrete 

faults    and    and to parametric faults    and   , while    

is sensitive to discrete faults    and    and to parametric 

fault   . The occurrence of parametric fault     (respectively 

  ) is detected intrinsically by    and    (respectively    

and   ).  

3.4. Coordinator construction 

The system decomposition achieved by the proposed 

approach allows each local hybrid diagnoser to diagnose 

faults that can occur in its corresponding hybrid component. 

In order to obtain a decentralized diagnosis performance 

equivalent to a centralized diagnoser, a decision coordinator 

is defined. It generates a global diagnosis decision by 

merging local diagnosis decisions provided by local hybrid 

diagnosers. Let us denoted   ,    and    the faults that can 
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occur, respectively, in    ,     and    .              , 
                 and              ,. Global diagnosis 

decision    is computed as follows: 

     diagnoses with certainty the occurrence of a fault 
of type    through the global fault signature     . 

   cannot diagnose with certainty the occurrence of 
this fault because it does not belong to its associated 
   .    cannot diagnose with certainty the 
occurrence of this fault because it does not belong to 
its associated    . Therefore, the global diagnosis 
decision will be       . 

 Global fault signature      corresponds to a fault of 

type    or of type    (  ). Thus, global diagnoser 
   will be         . Both    and    are sensitive to 
this fault signature, therefore    declares   ; and     

declares   . In order to obtain a decentralized 
diagnosis decision equivalent to the global one, 
global diagnosis decision DD will be equal to 
(            . 

 Table 3 shows global diagnosis decision   . A local 
diagnoser declares ‘nothing’ when it cannot confirm 
the occurrence or the non-occurrence of a fault. 

Table 3. Global diagnosis decision    for Three Cell 

Converter . 

cases 
Local 

diagnoser    

Local 

diagnoser    

Local 

diagnoser    

Global 

decision 

   

1            

2       or Nothing    or Nothing    

3    or Nothing       or Nothing    

4          or Nothing   or    

5    or Nothing         or    

6    or Nothing    or Nothing       

7 Nothing Nothing Nothing Nothing 

3.5. Identification of parametric faults 

When one of parametric faults is diagnosed, its real value 

needs to be identified. As an example, for parametric fault 

of type    related to   , the real value of the latter is 

identified based on its corresponding residual as follows: 

    ( 
 

 ̃ 
 

 

  
)     

 ̃ 

 ̃     
 

    ( 
 

 ̃ 
 

 

  
)     

 ̃ 

 ̃     
 

The same reasoning is applied to identify the real value of 

capacitor    in case of fault of type    related to   . 

4. EXPERIMENTATION AND OBTAINED RESULTS  

In order to evaluate the proposed approach, simulations 

were carried out for the three-cell converter using Matlab-

Simulink
TM 

environment and Stateflow
TM

 toolbox. The 

parameters used in these simulations are: 

         ̃   ̃                        . 

In order to highlight the efficiency of the diagnoser, the 

simulations take into account the set of faults defined in 

Table 1 for the three-cell converter.  

Discrete controller commands are assured by a pulse width 

modulation (PWM) signal (Defoort et al., 2011). Fig.7 

depicts the control of three switches   ,   and   . When the 

triangular signal is below the reference signal (ref in Fig.7), 

the associated switch is controlled to be opened. When the 

triangular signal is above the reference signal, the associated 

switch is controlled to be closed. This sequence of control is 

periodic with a period of             .  

 
Figure 7.  PWM for control of  three switches   ,   and   . 

4.1. Normal conditions scenario  

Fig.8 depicts, respectively, the signals of floating voltages 

    and     and the current  . These signals correspond to 

the normal conditions. Moreover, one can see in Fig.8 that 

    (respectively    ) has a periodic signal corresponding 

to load and unload of capacitor    (respectively   ) around 

the mean value        
 

 
     (respectively       

  

 
      and that the current   remains constant in the 

region of its reference value (0.15A).  

Fig.9 shows the real and nominal dynamic evolution 

of    (   ̇ and  ̃̇   ,    (   ̇ and  ̃̇    and  (  ȧnd  ̇̃ . We 

can notice that the curves representing the real and nominal 

dynamic evolutions are superposed. Consequently, 

residuals   ,    and    are equal to zero in these conditions.  

 
Figure 8.  Real signals corresponding to    ,     and   in 

normal conditions . 
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Figure 9.  Real and nominal dynamic evolution of    ,     and   in normal conditions. 

4.2. Faulty conditions scenario 

The test scenario is generated as follows (see Fig.10). Each 

fault f, belonging to one of the fault labels of Table 1, is 

generated starting at time tsf and ending at time tef. Then, the 

system returns to normal operating conditions before 

generating a new fault for a certain time. Parametric faults 

of types    and    are simulated by changing gradualy the 

real values of   , respectively   , in positive or negative 

direction using a ramp signal.     ,     and   simulated 

signals including these faults are represented in Fig. 11.  

One can see in Fig.11 that     (respectively    ) has lost 

the periodic aspects in the case of fault and that the current   

has become nonconstant in the region of its reference value. 

  ,   ,    are represented in Fig.12 and Fig.13. As expected, 

   is sensitive to the faults of types   ,   ,   ,    and   ,   is 

sensitive to the faults of types   ,   ,   ,    and    while     

is sensitive to the faults of types   ,   ,   ,   ,    and   .  

Fig.14, Fig.15, Fig.16 and Fig.17 show, respectively, local 

decision (   ) of diagnoser   , local decision (   ) of 

diagnoser   , local decision (   ) of diagnoser    and 

global decision (  ). 

The first local diagnoser    is sensitive to faults of types   , 

   and    (diagnosis with certainty their ocurence), the 

second local diagnoser    is sensitive to faults of types   , 

  ,    and    while the third local diagnoser    is sensitive 

to faults of types   ,    and   . We can conclude that the 

global decision indicates with certainty the occurrence of 

each of the generated faults. The diagnosis delay 

corresponds to the time when the system is in a discrete 

fault is due to residues that are silent in some discrete state. 

 
Figure 10.  Time of apperance, injection, of faults during 

the simulation of three cell converter.  

 
Figure 11.  Real signals of    ,     and   in faulty and 

normal conditions. 

 

 
Figure 12.  Residuals corresponding to generated discrete 

faults of Fig.10. 

 

Figure 13.  Residuals corresponding to generated 

parametric faults of Fig.10. 
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Figure 14.  Local decision (   ) of   . 

 
Figure 15.  Local decision (   ) of   . 

 
Figure 16.  Local decisions (   ) of   . 

 

 

Figure 17.  Global diagnosis decision issued by the coordinator. 

4.3. Normal conditions with noises in parameters 

scenario 

Diagnosis algorithms should be tested and evaluated on real 

systems with practical significance. In these systems, factors 

such as noise make diagnosis challenging. Therefore, there 

is a need to evaluate the robustness of the diagnosis 

algorithms for different fault and noise magnitudes. 

Accurate simulation models of the system are required for 

this purpose. Further, it is important to execute the diagnosis 

algorithms on systems, where model uncertainty is always 

present, and complicates the diagnosis task. In order to 

examine the robustness of our approach, a parametric noise 

(see for example Fig.18), applied on parameters, is used. 

From an electrical point of view, the resistors are the most 

disturbing element in tree cell converter systems. For this 
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reason, we simulated noise on signal resistance.  

 

Figure 18.  Noise added to resistance   in the converter. 

In order to take into account the noises in  , the residuals of 

(4) is written as follows: 
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Where  ̃ is the nominal value of   without noises while    

is the real value of  . The latter corresponds to the nominal 

value of   with noises. 

  ,   ,    are represented in Fig.19. As expected,    and    

are not sensitive to this perturbation in normal conditions (  

does not influence the dynamic evolution of    and    . 

While    is impacted by this noise. It changes between 

         and       .  

 
Figure 19.  Set of residuals with noise corresponding to the 

normal conditions. 

Ideally, any non-zero residual value implies a fault, which 

should trigger the fault isolation system. Therefore, 

statistical techniques are required for reliable fault detection. 

The fault detection system is based on a Z-test that uses the 

estimated variance of the residuals and a pre-specified 

confidence level to establish the significance of observed 

nonzero residuals. To cope with noise, we compute the 

mean and the variance at different time points (Biswas et 

al., 2003). The Z-test is a statistical inference test employed 

to establish the signification of the deviation. It requires the 

mean and standard deviation of the population, and the 

mean and size of the samples. These values are estimated 

using sliding windows over the residual for a variable. A 

small sliding window of size      samples, is used to 

estimate the current mean    
(    of the residual    related to 

the variable   : 

    
(    

 

  
∑   (   

         

We suppose the mean of the population is equal to zero, 

since the residual should be zero when the system is free of 

faults. We compute the variance from data history of the 

nominal residual signal over a window    proceeding    

as an estimate of the true variance: 

    
 (    

 

  
∑   (  

    
            

    
(   

 

  
∑ (  (      

 (   )
 

    
            

The size of    must contain enough of measurements in 

order to estimate correctly the residuals’ mean and variance 

in the normal operating conditions and therefore to reduce 

the rate of false alarms. The size of    must also be selected 

as a tradeoff between the delay of fault detection and the 

rate of false alarms. The size of   , respectively   , is 

chosen experimentally to be equal to 25, respectively 5, 

measurements. 

Since the distribution of residuals mean is supposed to 

follow the normal distribution, a confidence level,    is 

defined by determining the bound [   
     

  ] within which  

   
(    is considered to correspond to normal operating 

conditions. [   
     

  ] is defined using Z-test table and the 

approximation     
 : 

    
  

   
    

√  
 

 

    
  

   
    

√  
 

For   equal to 0.95,     
  and    

  are equal to, respectively, 

      and       

The Z-test is employed in the following manner: 

   
     

    
   No fault 

Otherwise   Fault 

Fig.20 depicts mean of residuals    
 and the negative and 

positive thereshold of this residual. The mean and true 

variance of residual     and    are equal to zero. Thus its 

thershold is also equal to zero (   
,     

  and    
  

,respectively,    ,     
 and    

 are superposed).  
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Figure 20.  Set of residuals and thersholds with noise 

corresponding to the normal conditions. 

In case of fault, Table 4 is used to achieve a local diagnosis 

of    . 

Table 4. Local fault signatures generated due to the 

occurrence of faults in     in case of parametric noise. 
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The other diagnosers    and    for     and     can be 

constructed similarly as for   . 

4.4. Faulty  conditions with parameters perturbation 

In order to evaluate the proposed approach in case of noise, 

another scenario of fault is generated (see Fig.21). The 

corresponding    ,    ,     for this senario are represented in 

Fig.22. and Fig.23. In this case, noises are observed only in 

   at normal and faulty conditions (see zoom in Fig.24). As 

we said before, only    is impacted by noises since the noisy 

parameter   is included only in dynamic evolution   ̇of I (see 

(1)). To overcome this problem, a threshold is defined for 

each residual using Z-test. These thresholds are used during 

the fault detection and isolation in order to avoid the false 

alarms as well as the fault missed detection caused by 

noises.  

 

Figure 21.  Time of apperance, injection, of faults during 

the simulation of three cell converters with noise. 

 

 
Figure 22.  Residuals corresponding to generated discrete 

faults of Fig.21 in case of noise. 

 

Figure 23.  Residuals corresponding to generated 

parametric faults of Fig.21 in case of noise. 

 

Figure 24.  Zoom of  residuals signals with noise 

corresponding to normal and faulty conditions. 

Fig.24, Fig.25, Fig.26 and Fig.27 show, respectively, local 

decision (   ) of diagnoser   , local decision (   ) of 

diagnoser   , local decision (   ) of diagnoser    and 

global decision (  ). The first local diagnoser    is 

sensitive to faults of types   ,    and    (diagnosis with 

certainty their ocurence), the second local diagnoser    is 

sensitive to faults of types   ,   ,    and    while the third 

local diagnoser    is sensitive to faults of types   ,    and 

  . We can conclude that the global decision indicates with 

certainty the occurrence of each of the generated faults 

regardless of the existence of noise.   
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Figure 25.  Local decisions (   ) of    in case of noise. 

 

Figure 26.  Local decisions (   ) of    in case of noise. 

 

Figure 27.  Local decisions (     of    in case of noise. 

 

Figure 28.  Global diagnosis decision issued by the coordinator in case of noise. 

5. CONCLUSION 

In this paper, a decentralized hybrid diagnosis approach for 

discretely controlled continuous systems is proposed. The 

elaboration of this approach is motivated by the capacity of 

the hybrid models to represent intrinsically the interactions 

between the continuous and the discrete dynamics of a 

system. 

The originality of this work is the exploitation of the system 

modularity in order to reduce its complexity as well as the 

explosion in the number of its discrete states. To achieve 

that, the diagnosis task is accomplished by a set of local 

hybrid diagnosers. Each of the latter is responsible of the 

diagnosis of a specific part of the system. These local hybrid 

diagnosers are built without the use of the system global 

model but only local models. The decisions of the local 

hybrid diagnosers are merged using a coordinator in order to 

obtain a diagnosis performance equivalent to the one of a 

centralized diagnosis structure. 

In the future work, this approach will be applied to a real 
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three-cell converter. Then, it will be developed to consider 

multiple and adjacent faults in a more general class of 

hybrid dynamic systems. 

REFERENCES 

Ala i M., L o M., Wang D., and Zhang D., 2011. “Fa lt 
diagnosis for power electronic inverters: a model-based 
approach,” in IEEE International Symposi m on 
Diagnostics for Electric Machines, Power Electronics & 
Drives (SDEMPED). 

Arogeti S., Wang D., and Low C. B., 2010. “Mode 
identification of hybrid systems in the presence of fa lt,” 
Industrial Electronics, IEEE Transactions on, vol. 57, 
no. 4, pp. 1452–1467. 

Bayoudh M., Trave-Massuyés L., and Olive X.. 2006. 
Hybrid systems diagnosability by abstracting faulty 
continuous dynamics. In Proceedings of the 17th 
International Workshop on Principles of Diagnosis 
DX’06, pp. 9–15. 

Bhowal P., Sarkar D., Mukhopadhyay S., and Basu A., 
2007. “Fa lt diagnosis in discrete time hybrid systems - 
a case st dy,” Information Sciences,  ol. 177, pp. 1290–
1308. 

Biswas S., Sarkar D., Mukhopadhyay S., and Patra A., 
2006. “Diagnosability analysis of real time hybrid 
systems”, Ind strial Technology. IEEE International 
Conference on, pp. 104–109. 

Biswas G., Simon G., Mahadevan N., Narasimhan S., 
Ramirez J., and Karsai G., 2003. “A rob st method for 
hybrid diagnosis of complex systems”, In Proceedings of 
the 5th Symposium on Fault Detection, Supervision and 
Safety for Technical Processes, pp.1125-1131. 

Cocquempot V., El Mezyani T., and Staroswiecki M., 
2004.“Fa lt detection and isolation for hybrid systems 
 sing str ct red parity resid als,” in Proceedings of the 
5th IEEE/IFACASCC: Control Conference, Asian. 

Daigle M., Ko tso  os X., and Biswas G., 2010. “An e ent-
based approach to integrated parametric and discrete 
fault diagnosis in hybrid systems,” Transactions of the 
Institute of Measurement and Control, vol. 32, pp. 487–
510. 

Derbel H., Alla H., Hadj-Alouane N. and Yeddes M., 2009. 
“Online diagnosis of systems with rectang lar hybrid 
a tomata models,” in Proceedings of the 13th IFAC 
Symposium on Information Control Problems in 
Manufacturing. 

Defoort M., Djemai M., Floquet T., and Perruquetti W., 
2011. “Rob st finite time obser er design for 
m lticell lar con erters,” International Jo rnal of 
Systems Science, vol. 42, pp. 1859–1868. 

Louajri H., Sayed-Mouchaweh M., and Labarre C., 2013. 
“Diagnoser with hybrid str ct re for fa lt diagnosis of a 
class of hybrid dynamic systems,” Chemical 
Engineering Transactions, vol. 33, pp. 85–90. 

Kamel T., Diduch C., Bilestkiy Y., and Chang L., 2012. 
“Fault diagnoses for the dc filters of power electronic 
con erters,” in Energy Con ersion Congress and 
Exposition (ECCE), IEEE. 

Rahiminejad M., Diduch C., Stevenson M., and Chang L., 
2012. “Open circ it fa lt diagnosis in 3-phase 
 ncontrolled rectifiers,” in Power Electronics for 
Distributed Generation Systems (PEDG), 3rd IEEE 
International. 

Schild A. and L nze J., 2008. “Switching s rface design for 
periodically operated discretely controlled continuous 
systems,” in Hybrid Systems: Comp tation and Control. 

Shahbazi M., Jamshidpour E., Poure P., Saadate S., and 
Zolghadri M., 2013. “Open- and short-circuit switch 
fault diagnosis for nonisolated dc-dc converters using 
field programmable gate array,” Ind strial Electronics, 
IEEE Transactions on, vol. 60, no. 9, pp. 4136–4146. 

Trigeassou J.-C., 2011. “ Diagnostic des machines 
électriques ”. Lavoisier. 

Uzunova M., Ould-Bouamama B., and Djemai M., 2012. 
“Hybrid bond graph diagnostic and localisation-signal 
signature study of three-cell con erter,” in 
Mediterranean Conference on Control & Automation 
(MED), Barcelona, Spain. 

Zaytoon J., 2001. “ Systèmes dynamiq es hybrides”. 
Hermès science publications. 

BIOGRAPHIES 

Hanane Louajri received her Master degree 

in Complex Systems Engineering section 

Automatic and Embedded data Processing 

from the University of Nancy in 2011. She 

received his engineering degree in Automatic 

and Computer Engineering from the High 

Engineering School “Ecole Marocaine des Sciences de 

l’Ingénie r” in 2011. She is currently PhD student in the 

High National Engineering School of Mines “Ecole 

Nationale S périe re des Mines de Do ai” at the 

Department of Automatic Control and Computer Science. 

Her research interests are diagnosis of hybrid dynamic 

systems. 
 

Moamar Sayed-Mouchaweh received his 

Master degree from the University of 

Technology of Compiegne-France in 1999. 

Then, he received his PhD degree from the 

University of Reims-France in December 

2002.  He was nominated as Associated 

Professor in Computer Science, Control and Signal 

processing at the University of Reims-France in the 

Research center in Sciences and Technology of the 

Information and the Communication (CReSTIC). In 

December 2008, he obtained the Habilitation to Direct 

Researches (HDR) in Computer science, Control and Signal 

processing. Since September 2011, he is working as a Full 

Professor in the High National Engineering School of Mines 

“Ecole Nationale S périe re des Mines de Do ai” at the 

Department of Automatic Control and Computer Science 

(Informatique & Automatique IA). 

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

277



Improved Probabilistic Remaining Useful Life Estimation in 

Structures: Modeling Multi-site Fatigue Cracking in Oil and Gas 

Service Structures 

Abdallah Al Tamimi
1
, Mohammad Modarres

1
 

1
University of Maryland, College Park, Maryland, 20740, USA 

altamimi@umd.edu 

modarres@umd.edu 

 
ABSTRACT 

The purpose of this research is to develop a multi-site 

damage probabilistic life prediction model that could be 

used to assess the integrity of engineering structures 

susceptible to fatigue in presence of neighboring cracks. 

Both experiments and simulation were used to produce the 

data required for the model development. The experiments 

were performed to investigate the interaction of two 

adjacent semi-elliptical cracks under cyclic loading. A series 

of tests at different loads and for different crack aspect 

ratios were conducted under uniaxial constant amplitude 

fatigue loads on API-5L grade B steel samples. Crack 

growth rate of two initial semi-elliptical cracks was 

investigated both on the sample surface and in the depth 

direction. Moreover, Crack growth and interaction was 

investigated using a simulation technique that incorporates 

the stress intensity factor of a single crack with an existing 

cracks interaction correction factor models from the 

literature. Finally, a Bayesian inference modeling technique 

is adopted to estimate the life prediction model parameters, 

assess any model bias and uncertainty and validate it.  

1. INTRODUCTION  

Oil and gas transport and storage systems are a vital cog in 

the oil and gas industry. Based on the nature of their 

functions, a combination of straight pipes, pipe-bends, 

dissimilar welded joints and many other parts are attached, 

which makes the system susceptible to many different 

degradation mechanisms leading to its eventual failure. This 

kind of system usually operates under severe conditions: 

internal pressure, cyclic load, internal and external 

environments. As a result, the combination of these different 

factors can lead to a potential increase in the risk of damage 

and unexpected fracture.  

 

The continuously raising cost of service structures 

replacement, maintenance and inspection means that there 

are now aging systems whose continued operation requires 

special analysis and improved crack detection techniques. 

This demands continuous safety and performance 

improvement so that there can be increased service life of 

pipeline networks, maintenance, and cost control.  

Additionally, this necessitates early detection of a growing 

crack in structures like piping to prevent fracture, predict 

remaining useful life, schedule maintenance and reduce 

costly downtimes (Keshtgar & Modarres, 2013).  

 

      

Figure 1. Causes of failures and their relative consequences 
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 Failures  
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One of the critical failure mechanisms in engineering 

structures is fatigue. According to Bayley (1997), fatigue is 

a crack growth process that occurs under cyclic loading over 

the life of most engineering structures. This degradation 

process occurs at stresses less that the yield strength of the 

material until either the critical stress intensity factor is 

reached, leading to fracture, or until the net section yielding 

takes place. As crack initiation occurs in localized areas of 

stress concentrations, or due to environmental conditions, 

accumulations of pits or initial cracks are present in many 

structures. As these cracks interact and affect each other, the 

stress intensity factor ahead of the crack tip increases 

leading to faster crack growth rate and shorter component 

life. Bayley (1997) defined cracks coalescence, by several 

small adjacent cracks increasing in size and eventually 

growing together forming a single larger crack.  

 

Numerous researchers have studied cracks interaction and 

coalescence including: Harrington (1995), Leek and Howard 

(1994, 1996), Soboyejo and Knott (1990), Kishimoto, 

Soboyejo, Smith, and Knott (1989), Twaddle and Hancock 

(1988) and O'Donoghure, Nishioka and Atluris (1984). 

Different assessment methods of neighboring cracks 

interaction and coalescence were investigated in order to 

identify a method that is reliable, safe and reasonably 

conservative and use it in order to further understand the 

phenomenon from a reliability/integrity stand point. 

Neglecting neighboring cracks interaction effect on the SIF 

could lead to over conservative life prediction model and 

assessment of structure integrity. Leek and Howard (1994) 

compared SIF models that does not account for cracks 

interactions and assume cracks re-characterization only with 

models that does. It was found that the safety margins 

achieved by re-characterization models induce overly 

conservative results of up to 37%.   

 

Experimental work was performed in this research in order 

to investigate neighboring cracks growth rate. Different 

neighboring cracks geometries were investigated in order to 

understand the neighboring cracks dimensions effects on 

crack growth. Moreover, the experiments were performed 

under various loading conditions also in order to illuminate 

the role different operating conditions on the cracks growth 

rate. The experimental work was executed based on an 

improved existing technique discussed by Leek and Howard 

(1996) through the use of real time microscopy and digital 

image processing techniques of monitoring crack growth. 

For a more comprehensive discussion of the experimental 

work performed in this research, please refer to (Al Tamimi 

& Modarres, 2014). 

 

Moreover, simulation efforts were also performed in order 

to justify the cracks interaction and coalescence behavior 

and explain the physics of failure aspect of the problem. The 

simulation provided values of the SIF at the cracks fronts 

and showed how it changes after each increment of growth. 

The simulation performed was developed by integrating 

Newman and Raju (1979, 1981) SIF solutions for a single 

semi-elliptical crack along with a cracks interaction 

correction factors proposed by Leek and Howard (1994).  

 

The purpose of this study is to investigate the effect of 

fatigue, in presence of neighboring cracks, and integrate that 

into a more realistic life prediction model that could be used 

to predict the life of engineering structures. The need for a 

method of accounting for applicable and realistic cracks 

interaction, validated with acceptable modeling error, is the 

main objective of the study. This paper illustrates the 

modeling technique used to develop the PoF crack growth 

rate models. Yet, insights about the data gathering 

techniques and the models uncertainty quantification are 

also addressed mildly.  

2. METHODOLOGY  

The probabilistic life prediction model refers to fatigue in 

presence of neighboring cracks and will be developed by a 

procedure developed and illustrated in this paper. Two main 

steps are required to achieve the final modeling product. 

The first step is the data generation and the second step is 

the modeling development. In this work, the data was 

generated both experimentally and using simulation. Data 

treatment and analysis comes next in preparation for the 

reliability modeling. Finally, estimating the model bias and 

uncertainty, and validating the proposed models are 

considered as major steps in this model developed.   

 

                  

Figure 2. Modeling development steps 

3. DATA GENERATION  

The first step includes performing experiments in dry 

conditions in order to collect data about the material fatigue 

behavior and failure. However, the simulation focuses on 

understanding the SIF distribution around the cracks and 
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validation 

Data analysis 

 

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

279



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014 

3 

how it changes around the crack as it propagates in presence 

of neighboring cracks.  

3.1 Experimental work  

The main purpose of performing the fatigue testing was to 

study the fatigue properties of the material, further 

understand the impact of different stress levels and different 

crack aspect ratios on neighboring cracks, coalescence and 

propagation, and finally use the results for the life prediction 

model development.  

 

Specimens were manufactured from an actual pipeline that 

was previously used in the oil and gas industry. Specimens 

are dog bone shaped following the ASTM E466-07, 

Standard Practice for Conducting Force Controlled Constant 

Amplitude Axial Fatigue Tests of Metallic Materials. Two 

initial cracks of multiple aspect ratios were machined on the 

sample using the electric discharge machining technique. 

The two cracks are semi-elliptical and co-planar simulating 

corrosion pits based on findings of an earlier work done by 

Nuhi, Abu Seer, Al Tamimi and Modarres (2011). The 

notches have a thickness of 0.1 mm, to assure a co-planar 

growth of the cracks which leads to an idealized interaction 

between the two cracks.  

 

In the experimental work, the neighboring cracks were 

assumed to keep a semi-elliptical shape after each increment 

of crack growth. This assumption was made based on Nuhi 

et al. (2011) findings about the nature of corrosion pits 

shapes and geometrical development.  

  

 
 

Figure 3. An illustration of the test dog bone sample and 

some of the notches designs used in the experimental work  

 

Experiments were carried out at room temperature in air. An 

MTS fatigue-testing machine with capacity of 100 kN in 

tension and compression and frequency range up to 30 Hz 

was used. Figure 4 shows the testing setup. An optical 

microscope was also used to monitor the crack coalescence 

on the surface. The microscope is equipped with a camera to 

capture and save images of the specimen surface as the 

crack grows. Experiments are performed at constant 

amplitude, stress controlled cyclic loading.  Frequencies of 

0.2 and 2 Hz were chosen for the loading cyclic.  

 

 

 

Figure 4. Experimental setup: MTS machine layout and a 

closer illustration of the microscope positioning 
 

In order to gather the data required to build the probabilistic 

life prediction model, failed samples have to be studied and 

information has to be elicited. There are two main sources 

of information in the experimental setup used: Surface crack 

measurements at different number of cycles and the crack 

depth measurements. Linking the crack depth measurements 

with the recorded number of cycles at different surface 

crack lengths provided the scatter required for the 

probabilistic life prediction model.  

 

Figure 5 shows the surface crack length and depth for one of 

the experiments. When enough experiments are performed 

and a scatter is developed, conclusions could be drawn on 

the applied stress and aspect ratio effect on cracks 

coalescence and growth.  

 

 

Figure 5. Example of the data elicited from the experimental 

work, Stress=290 MPa, Frequency=2 Hz 

 

The experimental data scatter development is a fundamental 

step in the model development. An example of the data 

scatter developed is illustrated Figure 6 and Figure 7:  
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Figure 6. Effect of different stress levels on crack growth 

 

 
Figure 7. Effect of different loading ratios on crack growth 

 

For more information and details about the experimental 

work performed in this research, please refer to (Al Tamimi 

& Modarres, 2014). 

3.2 Simulation work  

The simulation efforts were performed in order to justify the 

cracks interaction and coalescence and explain the physics 

of failure aspect. The simulation focuses on the SIF around 

the cracks and how it changes around the crack as it 

propagates in presence of neighboring cracks.  

 

A MATLAB simulation code was developed by integrating 

Newman and Raju (1979, 1981) SIF solutions for a single 

semi-elliptical crack along with a cracks interaction 

correction factor empirical model by Leek and Howard 

(1994). The code can provide information about the SIF 

around a crack in presence of neighboring cracks.  

 

The code covers a wide range of aspect ratios (a/c) and 

separation distance ratios (s/c). It requires certain inputs in 

order to find the SIF. Initial sample or plate geometry, initial 

cracks geometry and the development of these crack 

geometries are all necessary to calculate the SIF along the 

fatigue process.  

 

The program can perform SIF calculation for two coplanar 

and identical semi-elliptical cracks geometries. However, it 

could be extended to cover more than two cracks. The SIF 

around the crack tips and front are recalculated after each 

increment of growth until the two cracks touch. When the 

cracks are predicted to touch, a single enveloping crack is 

immediately assumed with no further interaction factor 

calculations. Figure 8 illustrates both cracks front and tips.  

 

 

Figure 8. Cracks interaction illustration 

 

A sample of the SIF simulation data performed for two 

identical cracks and its development throughout the cracks 

interaction and coalescence process is illustrated in Figure 

9:  

 
Figure 9. Crack front SIF simulation data at different stress 

levels 

 

The SIF simulation data along with the experimental crack 

growth rate measurements will be used mainly to develop 

the crack growth rate models.  

4. MODELING DEVELOPMENT  

In this work, two models will be developed. Both models 

will be based on the relationship between crack growth rate 

and the SIF. However, different PoF base models will be 

used.  

The first model will be constructed based on the Walker 

crack growth equation and the second will be based on a 

modified form of the Paris law equation. The two models 

address the same problem; however, the most suitable 

model with least error and uncertainties will be chosen to 

represent the data developed in this research. A similar 

modeling development strategy was used to develop both 

models. Table 1 summarizes and compares the two models:  
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Table 1. Comparison between the two crack growth models 

developed 

 

Model 
Walker equation 

model 

Modified Paris law 

equation model 

Form 
  

  
 

    

           
 

  

  
     (

 

  
)
 

 

Variables   , LR 

Uncertain 

parameters 
C, n, λ C, n, m 

Deterministic 

parameters 
/    

Data sources 
Experimental data (da/dn values) 

Simulation data (ΔK values) 

 

The main sources of data scatter in this work are fatigue 

experiments and simulation. Producing usable results that 

can appropriately capture not only the effect of time, applied 

stress levels, but also the effect of cracks aspect ratios is one 

of the main objectives of this work. The models main 

variables are the SIF and loading ratio, however, other 

variables like the applied stress are still considered in this 

work. Although the stress term is not apparent in the PoF 

model, yet it is embedded in the SIF term. The same applies 

for other variables like the neighboring cracks dimensions. 

Experimental data has been split into two different sets:  

1. Deterministic model development data set 

2. Uncertainty quantification and model validation 

data set  

The use of each set, which are independent from each other, 

is represented in Figure 10. Each model development stage 

requires an independent data set which will minimize the 

bias in the model development.    

 

 

Figure 10. Model development stages 

4.1 Deterministic model development  

As deliberated earlier, the modeling efforts discussed 

developing two PoF crack growth models. The first 

proposed model is based on the Walker equation having the 

illustrated mathematical representation in Equation 1:   

 
  

  
       |       (1) 

On the other hand, the second PoF crack growth rate model 

is slightly different as it is based on the Paris law equation. 

However, a correction factor term was added to the equation 

to account for the effect of loading ratio on the crack growth 

rate. The mathematical form of this model is illustrated in 

Equation (2):  

 
  

  
       |          (2) 

The same deterministic model development methodology is 

followed when developing both forms of the crack growth 

rate model. However, and for illustration purposes, the 

procedure will be explained and illustrated based on the 

Walker equation PoF crack growth model.  

 

In order to shape the final form of the deterministic model, a 

proper evaluation of the model uncertain parameters is 

required. The proposed model parameters C, n and λ have 

been estimated from generic data available in literature, 

experiments and simulations developed in this research.  

 

As there are an infinite number of possible fatigue 

experiments and simulations to perform to fully understand 

the nature of interactions between neighboring cracks,  

Obtaining data for such failure mechanism has proven to be 

difficult, time consuming and very expensive. Yet, a great 

analytical tool that enables the integration of new evidence 

with the existing prior knowledge and produces an updated 

knowledge of the uncertain model parameters is Bayes’ 

theorem. As such, the Bayesian estimation method was 

applied in this research to estimate the uncertain parameters 

C, n and λ.  

 

A Bayesian inference will be used to develop the 

deterministic model as it is a powerful mathematical tool 

that could estimate/update the model parameters with 

minimum amount of data. The Bayesian inference is a 

method used to update a given state of knowledge based on 

new given evidence. A summary of this process is 

illustrated in Figure 11: 

 

  

Figure 11. Deterministic model development (Azarkhail & 

Modarres, 2012)                  

 

In the Bayesian inference, a subjective prior probability 

distribution (pdf) of each of the model uncertain parameters 

fo(C, n, λ) was defined based on a comprehensive literature 

search. For example, different researchers like Neves 

 

Deterministic Model 

Development       

 

Bias and Uncertainty 

Quantification and Model 

Validation 

Data Set 1 Data Set 

2 
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Beltrao, Castrodeza, & Bastian (2010), Shi, Chen and Zhang 

(1999), Fernandes (2002) and Hamam, Pommier and 

Bumbieler (2007) have investigated crack growth in carbon 

steel materials and provided quantifications of the Paris law 

equation coefficients. Such quantifications was be used as 

priors in the Bayesian inference performed to update the 

knowledge of the model uncertain parameters. When there 

was no prior information available in the literature about a 

certain uncertain parameter, a non-informative uniform 

distribution was assumed.  

 

Subsequently, this prior was combined with the evidence 

data in the form of a likelihood function. The likelihood 

equation of the crack growth rate was assumed to follow a 

normal distribution and is illustrated in Equation 3: 
 

 
         |      

 

 √  
 
 

  
   

 (
    

 

      
      )

    
(3) 

The result is an updated state of knowledge identified as the 

posterior distribution, f(C, n, λ   |Data). This process is 

shown mathematically in Equation (4): 
   

          |      
       |              

∫        |               

 (4) 

To accomplish this task, WinBUGS software program was 

employed to run the Bayesian analysis. In line with 

Spiegelhalter, Thomas, Best and Lunn (2003) the 

WinBUGS program is a windows-based environment for 

MCMC simulation. A wide variety of modeling applications 

could benefit from using such software. This program has 

been previously reported to be used in uncertainty 

management according to Azarhkail and Modarres (2007) as 

well as accelerated life testing data analysis and has proved 

to be a reliable tool for such calculations. In this research 

the WinBUGS platform was used for Bayesian updating and 

related numerical simulations. After running the developed 

WinBUGS code, a posterior knowledge of the uncertain 

parameters C, n and λ is obtained.  

4.2 Uncertainty quantification and model validation 

As the proposed model uncertain parameters C, n and λ 

were initially estimated using the information available in 

the literature. However, these estimations require further 

validation before it can be deployed for additional analysis. 

Hence, Bayesian approach was utilized to investigate the 

validity of this prior estimation and then was applied to the 

updating procedure.  

 

In this step, a more comprehensive model bias and 

uncertainty analysis is performed. A method developed by 

Azarkhail and Modarres (2007) and Ontiveros, Cartillier 

and Modarres (2010) and modified and used later by 

Keshtgar (2014) to quantify the model uncertainties will be 

used. However, a different set of evidence data is used for 

this purpose. The bias and uncertainty quantification is 

based on comparing the model predictions with the 

experimental results as illustrated in Figure 12:  

 

 
Figure 12. Deterministic model predictions compared to 

experimental results (Azarkhail, Ontiveros, & Modarres, 

2009) 

 

If the model predictions perfectly matched the experimental 

results, then all the points would lie exactly on the dotted 

line which is not highly probable. This is because of the 

uncertainties and possible bias in both the model predictions 

and the experimental measurements.  

 

In this research, the model prediction and experimental 

result are considered to be estimations of the crack growth 

rate (da/dN), given some error as shown in Equations 5 and 

(6): 

 
    ⁄

 

    ⁄
   

                     (5) 

 
    ⁄

 

    ⁄
   

                     (6) 

As the modeling addresses crack growth values, then the 

model outcome is always expected to be a positive value, 

for that reason, a multiplicative error model is assumed. 

Moreover, the error is assumed to be distributed log-

normally for the same reason.  

 

As the true value of the crack growth rate     ⁄
  is 

unknown, Equations 5 and 6 are combined yielding the 

following equations:  
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The likelihood used in the Bayesian inference is illustrated 

in Equation 10: 
 

 

 (          |     )

 ∏
 

√  (    )√  
    

 
 
 
[  (    )        ]

 

    
    

  

 

   

 
(10) 

Finally, the Bayesian inference is performed, where 

Equation 11 shows the relation between the posterior 

distribution of the model parameter with the likelihood 

function and the prior evidence.  
 

 

 (     |          )

 
 (          |     )          

∫( (          |     )          )
 

(11) 

The data used in this step of the analysis must be data 

independent of the data used in the model development step. 

 

Quantifying the bias and uncertainty is considered also a 

validation of the models proposed. Assuming the model-

based predicted crack growth rate is da/dnm, the true crack 

growth rate prediction can be estimated by multiplying 

da/dnm by the estimated Fm: 

 
  

      
 

  

   
    (9) 

The model prediction results will be modified using the 

resulted bias distribution which can be estimated by a 

lognormal distribution:  

 
  

      
   (  (

  

   
)        ) (10) 

5. CONCLUSION 

Many different degradation mechanisms act on engineering 

structures causing all different types of flaws and 

imperfections which eventually cause failure affecting the 

integrity of many critical systems. Given that capturing all 

degradation mechanisms would be a challenging task, this 

work focuses on fatigue as the main failure mechanism. 

Fatigue is one of the degradation failure mechanisms that 

accelerate the failure of engineering structures. However, 

other critical failure mechanisms like corrosion, stress 

corrosion cracking and creep are also of great importance 

and should not be disregarded. Moreover, factors like the 

type of material and the loading conditions plays a crucial 

role in the degradation rate of the structure. So in order to 

have a best estimate of the structure reliability, these factors 

should be taken into consideration.  

 

This paper provides a summary of the methodology used to 

develop a PoF life prediction model that addresses fatigue of 

neighboring cracks. This summary includes highlights of the 

data gathering techniques. Moreover, it discusses the 

possible forms of the life prediction model and how to 

identify its uncertain parameters using Bayesian inference.  

 

One of the main outcomes of this research is probabilistic 

life prediction models that address fatigue as a failure 

mechanism in presence of neighboring cracks. This kind of 

models could be used in assessing the integrity of certain 

engineering structure and serve as a guide for maintenance 

planning. This kind of models could be continuously 

updated along the spectrum of the structure life by adding 

more evidence gathered from monitoring its health and 

operation. 

 

Both experiments and simulation were used to produce the 

data required for the model development. The experiments 

were performed to investigate the interaction of two 

adjacent semi-elliptical cracks of variable dimensions under 

different cyclic loading conditions. This will allow the 

model to capture a wide range of applications and make it 

more realistic. A series of tests at different loads and loading 

ratios were conducted under uniaxial constant amplitude 

fatigue loads on API-5L grade B steel samples. Crack 

growth rate of two initial semi-elliptical cracks was 

investigated both on the sample surface and in the depth 

direction.    

 

Furthermore, the simulation was performed to understand 

the SIF behavior around a crack when it is surrounded by 

neighboring cracks providing a better understanding of the 

failure mechanism and justifying its behavior under 

different loading conditions. Crack growth and interaction 

was investigated using a simulation technique that 

incorporates the stress intensity factor of a single crack with 

an existing cracks interaction correction factor models from 

the literature.  

 

The Bayesian approach was used to construct the life 

prediction models using both the experimental and 

simulation data and estimate their parameters. Uncertainties 

about the structure of the model and its parameters were 

also characterized in this work.  
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NOMENCLATURE 

C Paris law empirical constant  

n Paris law empirical constant 

LR Loading ratio  

λ Empirical constant that indicates the influence of 

the loading ratio on the fatigue crack growth in 

different materials 

m Uncertain parameter in the Paris law loading ratio 

correction factor   

R0 Deterministic parameter in the Paris law loading 

ratio correction factor   

N Number of cycles  

θi Uncertain parameter 

da/dni Crack growth rate true value   

da/dne,i Crack growth rate value obtained experimentally  

da/dnm,i Crack growth rate value obtained from the model  

developed 

da/dntrue,I   Corrected crack growth rate value 

Fe The multiplicative error of the experimental crack 

growth value with respect to the true value 

Fm The multiplicative error of the model crack growth 

prediction with respect to the true value 

be The experimental mean multiplicative error 

se The Standard deviation of the experimental 

multiplicative error 

bm The model mean multiplicative error 

sm The standard deviation of the model multiplicative 

error 

Ft The multiplicative error of experiment with respect 

to model prediction 
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ABSTRACT 

It has been established that corrosion is one of the most 

important factors causing structural deterioration, loss of 

metal, and ultimately decrease of product performance and 

reliability. Corrosion monitoring, accurate detection and 

interpretation are recognized as key enabling technologies to 

reduce the impact of corrosion on the integrity of critical 

aircraft and industrial assets. Interest in corrosion 

measurement covers a broad spectrum of technical 

approaches including acoustic, electrical and chemical 

methods. Surface metrology is an alternative approach used 

to measure corrosive rate and material loss by obtaining 

surface topography measurement at micrometer levels. This 

paper reports results from an experimental investigation of 

pitting corrosion detection and interpretation on aluminum 

alloy panels using 3D surface metrology methods, image 

processing and data mining techniques. Sample panels of 

AA 7075-T6, an aluminum alloy commonly used in aircraft 

structures, were coated on one side with a corrosion-

protection coating and assembled in a lap-joint 

configuration. Then, a series of accelerated corrosion testing 

of the lap-joint panels were performed in a cyclic corrosion 

chamber running ASTM G85-A5 salt fog test. Panel surface 

characterization was evaluated with laser microscopy and 

stylus-based profilometry to obtain global and local surface 

images/characterization. Promising imaging and surface 

features were extracted and compared between the uncoated 

and coated panel sides, as well as on the uncoated sides 

under different corrosion exposure times. In the evaluation 

process, image processing, information processing and other 

data mining techniques were utilized. Information 

processing involves the steps of feature or Condition 

Indicator extraction and selection. The latter step addresses 

the problem of selecting those features that are maximally 

correlated with the actual corrosion state, for the purpose of 

corrosion detection, localization, quantification and state 

estimation. The results, verified by mass loss data, 

confirmed the contention that pits at the panel surfaces 

formed as a result of electrochemical corrosion attack, and 

showed that deteriorating pitting corrosion attack correlates 

with increasing corrosion exposure times. This study is a 

first step in the process of understanding, assessing and 

responding to the pitting corrosion and ultimately 

preventing material failure to insure aircraft structural 

integrity.  

1. INTRODUCTION 

Every year, corrosion is responsible for billions of dollars 

loss in structural deterioration, loss of metal, and ultimately 

decreased product performance and reliability. Pitting 

corrosion is one of the most prevalent forms of localized 

corrosion, a dangerous phenomenon because of its rapid 

damage growth rate, and the difficulty to detect it and 

predict its evolution. The pitting attack is highly localized 

and is usually in the form of holes that can penetrate 

inwards extremely rapidly and ultimately damage the 

structure by either perforating the material or developing 

into cracking due to stress corrosion (Rao & Rao, 2004). It 

is thus essential to insure the critical assets’ integrity and 

operational safety by condition-based monitoring, early 
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detection, interpretation and prediction of pitting attack. 

Many research efforts have been reported in the past 

addressing this critical issue (Frankel, 1998; Szklarska-

Smialowska, 1999; Huang & Frankel, 2006; Pereira, Silva, 

Acciari, Codaro & Hein, 2012). However, undeniably, well-

recognized global corrosion measurements, such as weight 

loss and wall thickness reduction, cannot offer an 

appropriate and trustworthy way to interpret the pitting 

corrosion due to its localized attack nature. To address the 

need for accurate detection, interpretation and prediction of 

pitting corrosion, this paper proposes the use of surface 

metrology methods together with image and information 

processing techniques that take advantage of accurate and 

thorough testing evidence. 

1.1. Motivation 

Detection, localization and quantification of corrosion in 

complex structures over large, partially accessible areas are 

of growing interest in the aerospace industries. Traditionally, 

conventional ultrasonics and eddy current techniques have 

been used to precisely measure the thickness reduction in 

aircraft structures. However, the scanning may become 

impossible when the area of inspection is inaccessible. Upon 

this need, there has been a number of undergoing research 

using guided wave tomography technique to screen large 

areas of complex structure for corrosion detection, 

localization (Clarke, 2009) and defect depth mapping 

(Belanger, Cawley & Simonetti,  2010). However, due to 

the nature of ultrasonic guided wave, this technique is 

vulnerable to environmental changes, especially to 

temperature variation and surface wetness occurrence (Li, 

Michaels, Lee, & Michaels, 2012), and the precision of 

corrosion defect depth reconstruction is restricted by sensor 

network layout, structure complexity, and other factors, 

which limits the scope of the field application.   

On the other hand, in the field of surface metrology, there 

are various techniques for quantitative characterization of 

surface topology, generally categorized into contact and 

non-contact measuring methods, which are promising 

techniques for corrosion, especially localized corrosion 

detection and characterization. The traditional contact 

profilometry has the merits of reliable measurement and low 

cost, and the disadvantage of low speed, and resolution and 

applicable surface limitation. On the contrary, the optical 

non-destructive metrology has the merits of high speed, 

high profiling resolution and non-destructiveness, and the 

disadvantage of high scatter noise and high cost.  

1.2. Methodology 

In this paper, we take advantage of both contact and non-

contact surface metrology techniques to obtain 2D and 3D 

images/profiles for accurate characterization of pitting 

corrosion attack in AA7075-T6 aluminum alloy panels; 

extract and select promising morphologic and texture 

features from images, as well as profile features from 

surface measurements. Note that both global and local 

metrology measurements and image/profile data analysis 

approaches are adopted here for the purpose of accurate 

detection, localization and interpretation of pitting corrosion. 

To facilitate early detection of corrosion attack, initial 

testing procedures, data acquisition and feature extraction 

focus on global approaches, i.e., the whole panel area is 

viewed as the target for data collection and analysis. After 

the corrosion detection, localized studies are adopted where 

imaging studies, for example, focus on small areas of the 

global image where corrosion initiation is suspected, 

localized, or prone to spread more rapidly than other areas. 

The highlight of this work is the utilization of 3D surface 

metrology testing tools and novel image/information 

processing methods to study the features of interest for 

corrosion analysis. 

The remainder of the paper is organized as follows. Section 

2 introduces the procedures of accelerated corrosion testing. 

Section 3 describes the facilities and procedures of 3D 

surface metrology testing for imaging/ characterization data 

acquisition. Section 4 introduces the methodologies used in 

corrosion data mining, including image pre-processing, 

feature extraction and feature selection. Section 5 presents 

the analysis results for pitting corrosion detection, 

localization and interpretation. Section 6 concludes the 

paper with a summary of future work.  

 

2. ACCELERATED CORROSION TESTING 

2.1. Testing Preparation 

New aluminum alloy AA7075-T6 and AA2024-T3 samples 

were cut to dimension of 6’×3’×1’ and uniquely marked 

with stencil stamps close to the edge of both faces of the 

sample.  A sample panel is shown in Figure 1. The samples 

were then cleaned using an alkaline cleaner, TURCO 4215 

NC-LT – 50 g/L for 35 min at 65°C. Afterwards, the 

samples were rinsed with Type IV reagent grade deionized 

water and immersed in a solution of 20% (v/v) nitric acid 

for 15 minutes.  The samples were then rinsed again in the 

deionized water and air dried.  The weights were recorded to 

the nearest fifth significant figure and the samples were 

stored in a desiccator.  After massing, the samples were 

assembled in a lap-joint configuration as shown in Figure 2, 

and coated with 2 mils of epoxy-based primer and 2 mils of 

polyurethane. 
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Figure 1. Corrosion panel sample on the uncoated side with 

6 through rivet holes, AA 7075-T6. 

 

Figure 2. AA7075-T6 and AA2024-T3 lap joint assembly. 

 

2.2. Cyclic Corrosion Testing 

Corrosion tests were performed in a cyclic corrosion 

chamber running a modified B117 salt-fog test, specifically, 

the ASTM G85-A5 test.  This test consisted of two one hour 

steps.  The first step involved exposing the samples to a salt 

fog for a period of one hour at 25ºC.  The electrolyte 

solution composing the fog was 0.05% sodium chloride and 

0.35% ammonium sulfate in deionized water.  This step was 

followed by a dry-off step, where the fog was purged from 

the chamber while the internal environment was heated to 

35ºC.  Electrical connections for the flex sensors were made 

to an AN110 positioned outside the sealed chamber by 

passing extension cables through the bulkhead in the 

chamber.  Temperature and relative humidity were acquired 

at 1-minute intervals.   

At the conclusion of this experiment, lap joints were 

removed from the environmental chamber and disassembled.  

Following disassembly, the polyurethane and epoxy 

coatings on the aluminum panels were removed by placing 

them in a solution containing methyl ethyl ketone.  After a 

30-minute immersion the panels were removed and rinsed 

with deionized water.  These panels were again alkaline 

cleaned with a 35-minute immersion into a constantly 

stirred solution of 50 g/l Turco 4215 NC-LT at 65°C.  This 

was followed by a deionized water rinse and immersion into 

a 90ºC solution of 85% phosphoric acid containing 400 g/l 

chromium trioxide for 10 minutes.  Following phosphoric 

acid treatment, the panels were rinsed with deionized water 

and placed into a 20% nitric acid solution for 5 minutes at 

25ºC.  Plates were then rinsed with deionized water, dipped 

in ethanol, and dried with a heat gun.  This cleaning process 

was repeated until mass values for the panels stabilized. 

These values were then compared with values predicted 

from the results from surface metrology image processing. 

This experiment ran over a period of 286 hours, where the 

environment inside the chamber was varied in temperature 

and humidity to promote corrosion. Panels 1-3 were 

removed 133, 209 and 286 hours from the experiment, 

respectively, preparing for the surface metrology testing. 

Detailed explanation of the accelerated corrosion testing is 

introduced in a complementary paper. 

 

3. 3D SURFACE METROLOGY FOR CORROSION 

ANALYSIS 

Surface metrology is the measurement of small-scale 

features on surfaces, which can be realized through contact 

or non-contact instruments as introduced before. Here, we 

utilize state-of-the-art laser microscopy and stylus-based 

profilometry surface measurement equipment to obtain 2D 

and 3D images and characterization data of corroded 

surfaces and extract from them relevant information that 

assists in corrosion detection and interpretation.  

In this preliminary work, for the illustration of methodology, 

our study focuses on the corrosion behavior of AA 7075-T6 

panels of 3 different corrosion exposure times. AA2024-T3 

panels from the corresponding lap joints will be examined in 

the future work. In this testing, we use a confocal laser 

microscope and a stylus-based profilometer together to 

achieve a thorough examination of the corroded panels with 

rivet holes. The Olympus LEXT OLS4000 3D Laser 

Confocal Microscope, as shown in Figure 3(a), is designed 

for nanometer level imaging, 3D surface characterization 

and roughness measurement. Magnification ranges from 

108x to 17,280x. The Bruker's Dektak 150 Stylus 

Profilometer, as shown in Figure 3(b), is a traditional 2D 

tactile profilometer. With the programmable map scan 

capability and the post-processing software, it allows for 

large area 3D topography coverage. The combination of the 

two surface metrology tools facilitates both localized and 

global characterization of a corroded panel at various 

resolution scales.  

The surface metrology testing scheme is summarized as 

below:   

1) Global characterization: 

• The laser microscope can provide large area 2D 

microscopy imaging by stitching adjacent images. 

• The stylus profilometer can provide large flat area 

(i.e., surface without rivet holes) 3D map scan imaging. 

A schematic of the area the profilometer covers in a 3D 

map scan for a typical panel is shown in Figure 4.  
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(a)                                                            (b) 

Figure 3. Surface metrology measuring tools: (a) Olympus 

LEXT OLS4000 3D Laser Confocal Microscope, (b) Bruker 

Dektak 150 Stylus Profilometer. 

 
Figure 4. The area (in red) the profilometer covers in a 3D 

map scan. 

2) Local characterization: 

• After the corrosion detection and localization, the 

laser microscope can provide a close look at the 3D 

topography of the analyzed surface areas.  

First, for corrosion detection and quantification, global 

characterization was performed through both the 

microscope and the profilometer for each panel 

corresponding to a specific corrosion exposure time: while 

the microscope provided whole-panel 2D imaging, the 

stylus profilometer provided contact 3D map scan of the 

general central region without rivet holes. Next, local 3D 

characterization of areas of interest was conducted through 

the microscope. The further surface analysis was performed 

based on the local 3D characterization and a list of surface 

parameters was calculated for further processing.  

4. CORROSION DATA MINING 

An important and essential component of the corrosion 

detection and interpretation architecture involves 

image/characterization data pre-processing and data mining 

aimed to extract and select useful and relevant information 

from raw data. In the proposed architecture, the most 

important components supporting the implementation of the 

framework are feature extraction and selection. Features are 

the foundation for the fault/corrosion detection and 

interpretation scheme. Feature extraction and selection 

processes are optimized to extract only the information that 

is maximally correlated with the actual corrosion state. 

Appropriate performance metrics, such as correlation 

coefficients, Fisher’s Discriminant Ratio (FDR), et al. can 

be utilized to assist in the selection and validation processes. 

Figure 5 shows the overall data mining scheme. Image pre-

processing, feature extraction and selection are highlighted 

leading to their utility in pitting corrosion detection, 

localization, interpretation, and eventually prediction of 

corrosion states. 

 
Figure 5. Corrosion data mining scheme. 

4.1. Image Pre-processing 

Image/data pre-processing involves filtering and preparing 

the data for further processing. Figure 6 shows a typical 

sequence of pre-processing steps of corrosion images from 

surface metrology testing. In the first step, de-noising, 

discrete stationary wavelet transform (SWT) is applied, and 

then histogram equalization is performed for contrast 

enhancement followed by applying a threshold to identify 

the regions of interest in the image. In this framework, 

image processing techniques are utilized to pre-process the 

global panel images as well as the local pitting area images, 

in preparation for the feature extraction step introduced in 

Section 4.2. First, globally, for each panel, successive 2D 

microscopic images were taken and stitched together to 

obtain the entire panel image. In the whole panel image pre-

processing, the rivet-hole areas and artifacts (e.g., stencil-

stamp marked numbers) were manually whitened so they 

would not be confused with corroded regions. Then, in order 

to identify the pitting corrosion attacked areas, a 2D median 

filter was applied followed by thresholding (with a threshold 

of 0.2) to obtain at a binary image. Second, locally, each 

suspected pitting area was identified from the whole panel 

image, and a closer microscopy examination was conducted. 

An example of a local pit identification process is as shown 

in Figure 7. To identify the pit(s) from the background, the 

area of each object (i.e., a black region representing a 

corroded region) in the binary image was calculated. The 

sum of objects with the area larger than 50 pixels was 

defined as the total area of the pitting corroded regions. 

Note that the identification threshold of 50 pixels was set to 

avoid mistaking dark regions caused by the grain boundaries 

as pits.  

Pre- processing 

Feature Extraction 

 Feature Selection 

Detection, Interpretation 
and Prediction 
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Figure 6. Corrosion image pre-processing. 

 

Figure 7. Local pit identification via image processing. Left: 

Original localized pit image; Right: Pit identified from the 

background with the pit edge (in blue) identified by image 

processing algorithm. 

4.2. Feature Extraction  

There are several characterization features to quantify the 

pitting corrosion attack, e.g. corroded area percentage, 

average pit depth measurement, maximum pit depth 

measurement, pitting density (pits/mm
2
), and remaining 

wall thickness due to pitting. In addition, image processing 

techniques can be used to extract morphological and texture 

features to facilitate pitting corrosion interpretation. The 

following outlines the features extracted from 2D corrosion 

images and 3D characterization data, which may facilitate 

the corrosion detection and interpretation: 

1) Corroded Area Percentage 

The pitting corroded area percentage is calculated as  

                  (
  

     
)                       (1) 

where    is the area of the corroded region,     is the area 

of the image and    is the area of the rivets.  

2) Imaging Texture Features using Gray Level Co-

occurrence Matrix  

2D imaging texture features such as contrast, correlation, 

energy and homogeneity, as expressed in Eqs. (2-5), are 

calculated using the normalized gray level co-occurrence 

matrix (GLCM) denoted as p(i, j). The (i, j) value of the 

GLCM of an image I has the value of how often a pixel with 

value i occurs horizontally adjacent to a pixel with value j in 

image I. The contrast as in Eq. (2) returns a measure of the 

intensity contrast between a pixel and its neighbor over the 

whole image.  For a constant image, the contrast is 0. The 

correlation as in Eq. (3) returns a measure ranging between -

1 and 1 represents how correlated a pixel is to its neighbor 

over the whole image. The energy as in Eq. (4) is calculated 

as the sum of the squared elements in the GLCM. For a 

constant image, the energy is 1. The homogeneity as in Eq. 

(5) is a measure of the closeness of the distribution of 

elements in the GLCM to the GLCM diagonal.  

 

         ∑ |   |                                  (2) 

             ∑
      (    )      

    
                       (3) 

       ∑        
                                  (4) 

            ∑
      

  |   |                                (5) 

3) Morphological Features  

Morphological features can be extracted from 2D pitting 

images to characterize the shape of the pitting attacked 

surface area. Features such as roundness, solidity, 

eccentricity, major axis length and minor axis length are 

calculated as expressed in Eqs. (6-10): 

           
   

                                 (6) 

where A is the area of the region and p is the perimeter of 

the region. 

          
    

          
                           (7) 

where ConvexArea is the area of the convex hull of the 

region.  

For an ellipse defined by  
  

   
  

    , the eccentricity, 

major axis length and minor axis length are calculated as 

              √  
  

                           (8) 

                                           (9) 

                 ).                      (10) 

4) Surface Roughness 

Surface roughness is a measure of the texture of a surface. It 

is quantified by the vertical deviations Z(x,y) of a real 

surface from its ideal form. If these deviations are large, the 

surface is rough; if they are small the surface is smooth. 

Roughness is typically considered to be the high frequency, 

short wavelength component of a measured surface. The 3D 

surface roughness features are listed in Table 1.  

 

 

Thresholding Contrast 

enhancement 

Imaging de-noising 

using Discrete SWT 

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

291



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014 

6 

Table 1. Surface roughness parameters and their expressions. 

 

Name Symbol Equation 

Maximum 

Height 
            

Maximum 

Peak 

Height 

                   

Maximum 

Valley 

Depth 

                   

Arithmetic 

Mean 

Height 

   
   

 

 
∬ |      |     

Root Mean 

Squared 

Height 

   

   √
 

 
∬|      |      

Skewness     
    

 

  
 

 

 
∬            

Kurtosis     
    

 

  
 

 

 
∬ |      |      

 

5) Other Characterization Features 

Other pit characterization features include the corroded area 

geometric features (e.g., surface area, circumference), 2D 

pit profile (line) features (e.g., pit width, pit depth, pit 

profile cross-sectional area), 3D pit profile features (e.g., pit 

volume), et al. 

4.3. Feature Selection via Performance Metrics 

After a sufficient number of image/characterization features 

are extracted, feature selection can be conducted to 

determine the smallest subset of features that satisfies given 

performance criteria. Performance metrics such as 

correlation coefficient and Fisher discriminant ratio (FDR) 

can be applied to assess the feature quality. Optimization 

and Principle Component Analysis (PCA) tools can be used 

for this purpose. Then a list of “best” features can be 

selected based on the feature performance. Here we use 

correlation coefficient and FDR to gauge the image features: 

1) Correlation Coefficient 

The correlation coefficient is defined as 

     
               

    
                               (11) 

where, X and Y are two random variables with expected 

values    and    and standard deviations    and   . The 

estimate of the correlation coefficient can be expressed as  

     
∑     ̅      ̅ 

∑     ̅  ∑     ̅  
                              (12) 

where  ̅ and  ̅ are the sample means of X and Y.  

2) Fisher Discriminant Ratio (FDR) 

Fisher's linear discriminant is a classification method that 

projects high-dimensional data onto a line and performs 

classification in this one-dimensional space. The projection 

maximizes the distance between the means of the two 

classes while minimizing the variance within each class. 

This defines the Fisher criterion, or FDR, which is 

maximized over all linear projections. The FDR of two 

classes is given as 

     
        

  
    

                                (13) 

where   represents a mean,   represents a variance, and the 

subscripts denote the two classes.  

5. RESULTS AND DISCUSSION 

In this paper, we assume that in the accelerated corrosion 

testing, the corrosion protection coating prevents the 

corrosion attack up to the maximum hours of corrosion 

exposure (i.e., 286 hours), and thus we use the measurement 

from panel coated sides as “baselines”, and compare to the 

one from the panel uncoated sides.  

5.1 Corrosion Characterization Features 

Preliminary global inspection through the profilometer 3D 

map scan indicated that the corroded panels were pretty flat 

without noticeable low-frequency surface irregularities, and 

thus the surface features can be mostly captured by 

roughness. Therefore, we can omit waviness for this 

application.  Thus, smoothness and spike removal filters 

were generally applied at the raw profile measurement from 

the profilometer and the microscope. Figure 8 (a) and (b) 

provide the 2D microscopic images of the local pitted panel 

areas of the same size and magnification in Panel 1 and 2, 

and Figure 8 (c) and (d) illustrate typical pit cross-sectional 

profiles from Panel 1 and 2 respectively, with (d) 

corresponding to the colored line marked in (b). Figure 9 

shows a 3D topology image of an area of connected pitting 

in Panel 2. Table 2 lists the 2D pit profile measurement of 

the colored lines in Figure 8 (b) and Figure 9, of which the 

pit height represents the maximum pit depth.  

   
                      

(a)                                            (b) 
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(c) 

 

 
(d) 

Figure 8. 2D characterization of pitted panel areas (642 × 

644 µm
2
) on the uncoated side of (a) Panel 1, and (b) Panel 

2; pit cross-sectional profile measurement (in µm) of (c) a 

general pit in Panel 1 (with the highlighted cross-sectional 

area of 240.43µm
2
), and (d) the colored line in (b), Panel 2. 

 
Figure 9. 3D characterization of a pitted panel area (2561 × 

1278 µm
2
) on the uncoated side of Panel 2, with the 

corresponding cross-sectional profile measurement as listed 

in Table 2. 

 

Table 2. Corresponding 2D pit profile measurement (in µm) 

of the colored lines in Figure 8(b) and Figure 9, Panel 2. 

 

Measurement Figure 8 (b)  Figure 9 

Width (µm) 369.432 848.483 

Height(µm) 3.164 19.895 

Length(µm) 369.445 848.717 

 

Except for the 2D pit profile features such as pit width and 

pit depth, geometric features such as pitting surface area and 

circumference (as shown in Figure 11 and Table 4) and pit 

volume (as shown in Figure 10 and Table 3) can also 

provide solid measures for local pitting severity, of which 

pit volume is of importance, due to the irregular growth 

pattern of pitting corrosion. In Figure 10 and Figure 11, a 

surface height threshold was manually chosen respectively, 

in order to calculate the corroded surface area and the 

underneath pitting volume. In Figure 11, as calculated from 

Table 4, the pitting affected surface area was in total of 

258,380.787 µm², or 3.94% of the entire examined surface 

area. 

Detailed analysis of the above pitting characterization 

results revealed some interesting findings. First, 

morphological analysis of the pits in Panel 1 and Panel 2 

indicated that, the nucleated pits, as those general non-

visible ones in Panel 1, usually took regular morphological 

forms, such as hemi-spherical, near-hemispherical and near-

conical shapes as indicated in Figure 8 (a) and (c). As the 

corrosion exposure time increased, a few nucleated pits 

evolved into irregular shapes with the pit dimension 

increased, as indicated in Figure 8 (b) and (d). From a side-

by-side comparison in Figure 8 (a) and (b), it is noted that, 

in Panel 2, even though some nucleated pits evolved into 

bigger and irregular pits, the majority of the pit population 

were still in a regular shape with similar dimensions as the 

nucleated pits in Panel 1. Second, as noted from Table 2, a 

prevalent phenomenon among the big visible pits in Panel 2 

and 3 was that, a pit’s width was usually significantly larger 

than its depth, which suggests that the metal dissolution rate 

was higher at the pit wall than at the pit bottom. In summary, 

from localized pitting characterization analysis of all three 

panels, it is concluded that on Panel 1, a number of 

nucleated pits formed, but generally few big visible pits 

existed; from Panel 1 to 2, as the corrosion exposure time 

increased from 133 hours to 209 hours, there emerged a few 

visible pits assuming irregular shapes, very likely with a 

much bigger width than depth; from Panel 2 to 3, as 

exposure time further increased to 286 hours, more and 

more large visible pits formed, located most likely close to 

panel edges, rivet hole edges and surface irregularies. Note 

that, due to the nature of the accelerated corrosion testing, 

three panels, instead of one, were exposed to three different 

corrosion emersion times respectively. Thus, an individual 

pit characterization growth cannot be observed in this study. 

Instead, 3D microscopic characterization studies of a 

number of random pits were conducted in each panel. It is 

indicated from the results of the three panels that, even 

though there was a big scatter of the characterization data of 

the visible pits on Panel 2 and 3, the number of big visible 

pits and the connected pitting areas increased with exposure 

time. 

     
Figure 10. Surface height thresholding procedure to obtain 

the 3D pitting characterization as shown in Table 3 for a 
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pitted panel area (1278 × 1281 µm
2
) on the uncoated side of 

Panel 2. 

 

Table 3. Corresponding 3D pitting characterization 

measurement of the area in Figure 10. 

 

Cross-sectional Area(µm
2
) 

(of the red line in Figure 10)  

103,366.090 

Surface Area (µm
2
) 192,043.495 

Volume (µm
3
) 1,101,417.185 

 

 

 
 

Figure 11. Pitted panel area (2553 × 2568 µm
2
) on the 

uncoated side of Panel 2, with the corresponding 6-pit 

geometric measurement as listed in Table 4. 

 

 

Table 4. Corresponding 3D pitting characterization 

measurement of the area in Figure 11. 

 

No. 

Surface 

Area(µm²) 

Circumference 

(µm) 

1 20,081.765 679.027 

2 79,576.806 1,333.879 

3 28,428.326 770.822 

4 43,645.952 1,216.175 

5 39,969.714 1,053.796 

6 46,678.224 1,110.563 

5.2 Corrosion Image Features 

5.2.1 Image Pre-processing 

In addition to local pitting characterization analysis, 2D 

panel images were acquired successively and pre-processed 

in preparation for corrosion image feature extraction.  For 

each panel, 2D microscopic images of size 37 x 37 mm 

were taken using LEXT OLS4000 with a magnification 

setting of 108x, and then stitched together to obtain the 

entire panel image. Figure 12 depicts the stitched whole 

panel microscopic images of Panel 1, 2 and 3 and their 

corresponding binary images after image pre-processing.   

 
Figure 12. Whole panel image pre-processing. Left column: 

intermediary images with rivet holes and marked numbers 

whitened of (a) Panel 1 with 133-hr corrosion exposure, (c) 

Panel 2 with 209-hr corrosion exposure, (e) Panel 3 with 

286-hr corrosion exposure. Right column: binary images 

after pre-processing of (b) Panel 1, (d) Panel 2, (f) Panel 3.  

 

5.2.2 Feature Extraction, Selection and Data Mining 

Features extracted from segments of the corrosion images 

can be used to classify the state of corrosion in the 

corresponding image segment. Figure 13 shows an example 

set of corrosion images used for feature extraction. The top 

row is a set of 8 low corrosion images and the bottom row is 

a set of 8 high corrosion images. Contrast, correlation, 

energy and homogeneity features of the example corrosion 

images in Figure 13 were calculated and illustrated in Figure 

14. The corresponding feature performance was evaluated 

using FDR as listed in Table 5. Table 5 indicates that 

correlation, energy and homogeneity are good image 

features for corrosion detection and corrosion state 

classification, whereas contrast performs poorly.  

 

 
Figure 13. Example corrosion images. Top row: low 

corrosion. Bottom row: high corrosion. 
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Figure 14. Contrast, Correlation, Energy and Homogeneity 

features of low and high corrosion images from Figure 13 

(image number ascends correspond to the sequence from 

left to right in each row of Figure 13). 

 

Table 5. FDR values of image features. 

 

Features Contrast Correlation Energy Homogeneity 

FDR 0.9604 2.2084 95.1962 27.3738 

 

Figure 15 shows the corroded area percentage of the panels 

that had corrosion exposure times of 133, 209 and 286 hours. 

The resulting corroded area percentage feature was highly 

correlated with the measured panel mass loss as shown in 

Figure 15. The correlation coefficient     of the corroded 

area percentage and the corresponding measured panel mass 

loss is 0.9727.  

 

Figure 15. Top: Corroded area percentage over time. 

Bottom: Measured mass loss (mg) over time.  

6. CONCLUSIONS 

This paper reports results from an experimental 

investigation of pitting corrosion detection and 

interpretation on aluminum alloy panels using surface 

metrology methods, image processing and information 

processing techniques. Accelerated corrosion testing of the 

lap-joint panels was performed in a cyclic corrosion 

chamber running ASTM G85-A5 salt fog test. Then the 

global and local corrosion behaviors were imaged and 

characterized via microscopy and profilometry examination. 

Data mining techniques are utilized, including image pre-

processing, image and characterization feature extraction 

and selection, to facilitate the study of corrosion 

morphological behavior and its progression as a function of 

corrosion exposure time. The morphological study showed 

that facing electrochemical corrosion attack, pits initiated 

and predominantly assumed in regular shapes, but 

underwent irregular thus progressive geometric transitions 

associated with increased corrosion exposure time. This 

study also examined a list of promising characterization and 

image features and conducted the performance evaluation of 

some representative features for corrosion interpretation. 

This study is a first step in the process of understanding, 

assessing and responding to the pitting corrosion and 

ultimately preventing material failure to insure aircraft 

structural integrity. Future work may include more rigorous 

testing and analysis methods, e.g., to study an individual pit 

evolution over time, and the evolution from pitting to 

cracking under stress corrosion condition; and further in the 

direction of aircraft structure health management, to 

accurately model the corrosion progression, assess the 

corrosion states, and predict the corrosion-induced structure 

failure. 
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ABSTRACT

A direct method of measuring corrosion on a structure us-
ing a micro-linear polarization resistance (µLPR) sensor is
presented. The new three-electrode µLPR sensor design pre-
sented in this paper improves on existing LPR sensor tech-
nology by using the structure as part of the sensor system,
allowing the sensor electrodes to be made from a corro-
sion resistant or inert metal. This is in contrast to a two-
electrode µLPR sensor where the electrodes are made from
the same material as the structure. A controlled experiment,
conducted using an ASTM B117 salt fog, demonstrated the
three-electrode µLPR sensors have a longer lifetime and bet-
ter performance when compared to the two-electrode µLPR
sensors. Following this evaluation, a controlled experiment
using the ASTM G85 Annex 5 standard was performed to
evaluate the accuracy and precision of the three-electrode
µLPR sensor when placed between lap joint specimens made
from AA7075-T6. The corrosion computed from the µLPR
sensors agreed with the coupon mass loss to within a 95%
confidence interval. Following the experiment, the surface
morphology of each lap joint was determined using laser mi-
croscopy and stylus-based profilometry to obtain local and
global surface images of the test panels. Image processing,
feature extraction, and selection tools were then employed to
identify the corrosion mechanism (e.g. pitting, intergranular).

Douglas Brown et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

1. INTRODUCTION

Recent studies have exposed the generally poor state of our
nation’s critical infrastructure that has resulted from wear
and tear under excessive operational loads and environmen-
tal conditions. The British Standards Institution’s Publicly
Available Specification for the optimized management of
physical assets defines asset management as the “systematic
and coordinated activities and practices through which an or-
ganization optimally and sustainably manages its assets and
asset systems, their associated performance, risks and expen-
ditures over their life cycles for the purpose of achieving
its organizational strategic plan.” The motivation for effec-
tive asset management is driven by owners’ desire for higher
value assets at less overall costs, thus extracting the maximum
value from their assets (Herder & Wijnia, 2011). Condition-
based maintenance aims to maximize asset value by extend-
ing the useful life of assets through mitigation of unnecessary
maintenance actions performed during schedule-based main-
tenance strategies (Huston, 2010). By providing maintenance
engineers with information regarding the health of the struc-
ture, maintenance can be performed on a basis of necessity
unique to each asset, as opposed to schedule-based predic-
tions formed on statistical trends of operational reliability.
These systems must be low-cost and simple to install with
a user interface designed to be easy to operate.

To reduce the cost and complexity of such a system for mon-
itoring corrosion in an avionics environment, a generic inter-
face node using low-powered wireless communications has

1
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Figure 1. AN110 installed on a C-130H

been developed. This node can communicate with a myriad
of common sensors used in SHM. In this manner a structure
such as a bridge, aircraft, or ship can be fitted with sensors
in any desired or designated location and format without the
need for communications and power lines that are inherently
expensive and complex to route. Data from these nodes is
transmitted to a central communications personal computer
for data analysis. An example of this is provided in Figure 1
showing an embedded AN110 SHM system installed on a C-
130H aircraft.

The micro-linear polarization resistance (µLPR) sensor pre-
sented in this paper improves on existing LPR technology by
using the structure as part of the sensing system. The sensor
includes three electrodes, where each electrode is fabricated
on a flexible substrate to create a circuit consisting of gold-
plated copper. The first two electrodes, or the counter and ref-
erence electrodes, are configured in an interdigitated fashion
with a separation distance of 8mil. The flex cable contains
a porous membrane between the pair of electrodes and the
structure. A third electrode, or the working electrode makes
electrical contact to the structure through a 1mil thick elec-
trically conductive transfer tape placed between the electrode
and structure. The reference and counter electrodes are elec-
trically isolated from the working electrode and physically
separated from the surface of the structure by 1mil. The flex
cable can be attached to the structure with adhesives or in the
case of placement in a butt joint or lap joint configuration, by
the mechanical forces present in the joint itself. Corrosion is
computed from known physical constants, by measuring the
polarization resistance between the electrolytic solution and
the structure. Further improvements are realized by narrow-

ing the separation distance between electrodes, which mini-
mizes the effects due to solution resistance. This enables the
µLPR to operate more effectively outside a controlled aque-
ous environment, such as an electrochemical cell, in a broad
range of applications (eg. civil engineering, aerospace, petro-
chemical).

The remainder of the paper is organized as follows. Section 2
provides background information on different corrosion sens-
ing technologies, LPR theory, and the new 3-electrode µLPR
sensor design. Section 3 describes the experimental proce-
dure used to evaluate the new sensor design through a con-
trolled ASTM G85 Annex 5 cyclic salt fog test. Section 4
presents the results of experimental testing comparing the
corrosion rate computed from µLPR sensor data with mea-
sured mass loss. Also presented are correlations between fea-
tures, exposure time, and µLPR sensor measurements. Fi-
nally, the paper is concluded in Section 5 with a summary of
the findings and future work.

2. BACKGROUND

Corrosion sensors can be distinguished by the following cat-
egories, direct or indirect and intrusive or non-intrusive. Di-
rect corrosion monitoring measures a response signal, such
as a current or potential, resulting from corrosion. Exam-
ples of common direct corrosion monitoring techniques are:
corrosion coupons, electrical resistance (ER), electrochemi-
cal impedance spectroscopy (EIS), and linear polarization re-
sistance (LPR) techniques. Whereas, indirect corrosion mon-
itoring techniques measure an outcome of the corrosion pro-
cess. Two of the most common indirect techniques are ul-
trasonic testing and radiography. An intrusive measurement
requires access to the structure. Corrosion coupons, ER, EIS,
and LPR probes are intrusive since they have to access the
structure. Non-intrusive techniques include ultrasonic testing
and radiography.

Each of these methods have advantages and disadvantages.
Corrosion coupons provide the most reliable physical evi-
dence possible. Unfortunately, coupons usually require sig-
nificant time in terms of labor and provide time averaged data
that can not be utilized for real-time or on-line corrosion mon-
itoring (Harris, Mishon, & Hebbron, 2006). ER probes pro-
vide a basic measurement of metal loss, but unlike coupons,
the value of metal loss can be measured at any time, as fre-
quently as required, while the probe is in situ and permanently
exposed to the structure. The disadvantage is ER probes re-
quire calibration with material properties of the structure to
be monitored. The advantage of the LPR technique is that
the measurement of corrosion rate is made instantaneously.
This is a more powerful tool than either coupons or ER where
the fundamental measurement is metal loss and some period
of exposure is required to determine corrosion rate. The dis-
advantage to the LPR technique is that it can only be suc-

2

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

299



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

cessfully performed in relatively clean aqueous electrolytic
environments (Introduction to Corrosion Monitoring, 2012).
EIS is a very powerful technique that can provide a corrosion
rate and classification of the corrosion mechanism. EIS mea-
sures the magnitude and phase response of an electrochemical
cell. Physical parameters, such as the polarization resistance,
solution resistance, and double-layer capacitance, can be de-
rived from these responses, which provides more information
than just LPR alone. The disadvantage with EIS is that it
uses sophisticated instrumentation that requires a controlled
setting to obtain an accurate spectrum. In fielded environ-
ments, EIS is highly susceptible to noise. Additionally, in-
terpretation of the data can be difficult (Buchheit, Hinkebein,
Maestas, & Montes, 1998). Ultrasonic testing and radiog-
raphy can be used to detect and measure (depth) corrosion
through non-destructive and non-intrusive means (Twomey,
1997). The disadvantage with the ultrasonic testing and ra-
diography equipment is the same with corrosion coupons,
both require significant time in terms of labor and can not
be utilized for real-time or on-line corrosion monitoring. As
this paper is focused on a three-electrode µLPR sensor, the
remainder of the background will focus on LPR.

2.1. LPR Theory

Corrosion occurs as a result of oxidation and reduction re-
actions occurring at the interface of a metal and an elec-
trolyte solution. This process occurs by electrochemical half-
reactions; (1) anodic (oxidation) reactions involving dissolu-
tion of metals in the electrolyte and release of electrons, and
(2) cathodic (reduction) reactions involving gain of electrons
by the electrolyte species like atmospheric oxygen, O2, H2O,
or H+ ions in an acid (Harris et al., 2006). The flow of elec-
trons from the anodic reaction sites to the cathodic reaction
sites creates a corrosion current. The electrochemically gen-
erated corrosion current can be very small (on the order of
nanoamperes) and difficult to measure directly. Application
of an external potential exponentially increases the anodic
and cathodic currents, which allows instantaneous corrosion
rates to be extracted from the polarization curve. Extrapo-
lation of these polarization curves to their linear region pro-
vides an indirect measure of the corrosion current, which is
then used to calculate the rate of corrosion (Burstein, 2005).

The electrochemical technique of LPR is used to study corro-
sion processes since the corrosion reactions are electrochem-
ical reactions occurring on the metal surface. Modern cor-
rosion studies are based on the concept of mixed potential
theory postulated by Wagner and Traud, which states that the
net corrosion reaction is the sum of independently occurring
oxidation and reduction reactions (Wagner & Traud, 1938).
For the case of metallic corrosion in presence of an aqueous
medium, the corrosion process can be written as,

M+ zH2O
f↔
b

Mz++
z
2

H2 + zOH−, (1)

where z is the number of electrons lost per atom of the metal.
This reaction is the result of an anodic (oxidation) reaction,

M
f↔
b

Mz++ ze−, (2)

and a cathodic (reduction) reaction,

zH2O+ ze−
f↔
b

z
2

H2 + zOH−. (3)

It is assumed that the anodic and cathodic reactions occur at a
number of sites on a metal surface and that these sites change
in a dynamic statistical distribution with respect to location
and time (Kossowsky, 1989). Thus, during corrosion of a
metal surface, metal ions are formed at anodic sites with the
loss of electrons and these electrons are then consumed by
water molecules to form hydrogen molecules. The interac-
tion between the anodic and cathodic sites as described on the
basis of mixed potential theory is represented by well-known
relationships using current (reaction rate) and potential (driv-
ing force). For the above pair of electrochemical reactions (2)
and (3), the relationship between the applied current Ia and
applied potential, Ea, follows the Butler-Volmer equation,

Ia = Icorr

[
e2.303(Ea−Ecorr)/βa − e−2.303(Ea−Ecorr)/βc

]
, (4)

where βa and βc are the anodic and cathodic Tafel parameters
given by the slopes of the polarization curves ∂Ea/∂ log10 Ia
in the anodic and cathodic Tafel regimes, respectively and
Ecorr is the corrosion, or open circuit potential (Bockris,
Reddy, & Gambola-Aldeco, 2000). The corrosion current,
Icorr, cannot be measured directly. However, a priori knowl-
edge of βa and βc along with a small signal analysis tech-
nique, known as polarization resistance, can be used to in-
directly compute Icorr. The polarization resistance technique,
also referred to as linear polarization, is an experimental elec-
trochemical technique that estimates the small signal changes
in Ia when Ea is perturbed by Ecorr ± 10mV (G102, 1994).
The slope of the resulting curve over this range is the polar-
ization resistance,

Rp ,
∂Ea

∂ Ia

∣∣∣∣
|Ea−Ecorr |≤10mV

. (5)

ASTM standard G59 outlines procedures for measuring po-
larization resistance. Potentiodynamic, potential step, and
current-step methods can be used to compute Rp (G59, 1994).
The potentiodynamic sweep method is the most common
method for measuring Rp. A potentiodynamic sweep is con-
ducted by applying Ea between Ecorr±10mV at a slow scan
rate, typically 0.125 mV/s. A linear fit of the resulting Ea vs.
Ia curve is used to compute Rp. Note, the applied current, Ia,
is the total applied current and is not multiplied by the elec-
trode area so Rp as defined in (5) has units of Ω. Provided that
|Ea−Ecorr|/βa � 1 and |Ea−Ecorr|/βc � 1, the first order

3
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(a) (b)

(c) (d)

Figure 2. The (a) two-electrode µLPR sensor, (b) three-electrode µLPR sensor, (c) two-electrode µLPR sensor identifying
each sensor element when mounted to a substrate, and (d) three-electrode µLPR sensor identifying each sensor element when
attached using the structure as the third electrode.

Taylor series expansion ex u 1+ x can be applied to (4) and
(5) to arrive at the Stern-Geary equation,

Icorr =
B?

Rp
, (6)

where,

B? =
βaβc

2.303(βa +βc)
. (7)

Knowledge of Rp, βa, and βc enables direct determination of
Icorr at any instant in time. The corrosion rate, Rloss, can be
found by applying Faraday’s law,

Rloss (t) =
Bloss

Rp (t)
, (8)

where,

Bloss =
B?

FAsen

(
AW

z

)
, (9)

such that F is Faraday’s constant, z is the number of electrons
lost per atom of the metal during an oxidation reaction, Asen
is the effective area of the sensor, and AW is atomic weight.
The total mass loss, Mloss, due to corrosion can be found by
integrating (8),

Mloss (t) =
ˆ t

t0
Rloss (τ)dτ. (10)

Finally, since Rp is not measured continuously (10) needs to
be discretized for the sample period Ts,

Mloss (t)
∣∣∣∣
t=NTs

= Ts

N

∑
k=1

Rloss (kTs) . (11)

2.2. Sensor Design

The two-electrode µLPR design consists of a sensor with
interdigitated electrodes photo-etched from 2mil aluminum
shim-stock material with a thickness and separation distance

of 12mil. In this configuration one of the electrode pairs acts
as the counter electrode (cathode) and the other as the work-
ing electrode (anode). The sensor is designed to corrode in
the same environment as the structure, effectively measuring
the corrosivity of the environment. An image of the two-
electrode µLPR sensor is provided in Figure 2(a). An illus-
tration showing the two-electrode µLPR sensor mounted to
the structure is shown in Figure 2(c).

Improving on the two-electrode design, the three-electrode
µLPR is fabricated on a flexible Kapton substrate where each
electrode is coated with a noble metal. The first two elec-
trodes, counter and reference electrodes, are fabricated us-
ing 0.5 oz. copper with an electroless nickel immersion gold
(ENIG) finish and an overall thickness of 1mil. The counter
and reference electrode pair is configured in a interdigitated
geometric layout with a separation distance of 9mil. The flex
cable contains an insulating porous scrim material between
the pair of electrodes and the structure. A third electrode,
made from the same ENIG finish, is placed in close proxim-
ity to the counter and reference electrodes; electrical contact
is made with the structure by placing a 1mil thick electrically
conductive transfer tape between the electrode and structure.
This allows the structure to serve as the working electrode
for the sensor measurement. The flex cable, shown in Fig-
ures 2(b) and (d), can be attached to the structure through the
use of adhesives or in the case of placement in a butt joint or
lap joint configuration, the holding force is provided by the
joint itself.

3. EXPERIMENTAL PROCEDURES

3.1. Tafel Measurements

ASTM standard G59 outlines the procedure for measuring
the Tafel slopes, βa and βc. First, Ecorr is measured from
the open circuit potential. Next, Ea is initialized to E corr-
250mV. Then, a potentiodynamic sweep is conducted by in-
creasing Ea from Ecorr−250mV to Ecorr +250mV at a slow

4
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Figure 3. AA7075-T6 lap joint assembly.

scan rate, typically 0.125 mV/s. Finally, a Tafel curve is plot-
ted for Ea vs. log10 Ia. Values for βa and βc are estimated
from the slopes of the linear extrapolated anodic and cathodic
currents.

3.2. Sample Preparation

Lap joint samples were made using two 6” by 3” panels made
from AA7075-T6 with a thickness of 1/8”. These panels were
secured together with six polycarbonate fasteners. Before as-
sembly of the lap joint each panel was cleaned with a 35 min
immersion into a constantly stirred solution of 50 g/L Turco
4215 NC-LT at 65◦C. After completing this alkaline cleaning
the panels were rinsed with deionized water and immersed
into a 70% solution of nitric acid solution for 5min at 25◦C.
The samples were then rinsed again in the deionized water
and air dried. Weights were recorded to the nearest fifth
significant figure and the samples were stored in a desicca-
tor. Once the panels were prepared and massed, two µLPR
sensors were installed between the panels. At this point the
six polycarbonate bolts were torqued down evenly to 2N ·m.
This lap joint assembly is shown in Figure 3. After assem-
bling the lap joints, the samples were evenly coated with 2
mils of epoxy-based paint and 2 mils of polyurethane on all
exposed surfaces. These coatings were allowed to fully seal
over a 24 hour period at 35◦C before testing.

3.3. Comparing Two vs. Three Electrode Design

A preliminary experiment was performed to highlight the
benefits between a two-electrode µLPR sensor made from
AA7075-T6 and a three-electrode µLPR sensor made from
nickel. This experiment was performed by placing four two-
electrode µLPR and four three electrode µLPR sensors into a
beaker filled with a B117 salt solution modified to a pH of 5.5.
A stirbar was used to constantly mix the solution. The sensors
were placed inside the beaker around a plastic cylindrical fix-
ture. The two and three-electrode µLPR sensors were evenly
spaced in an alternating arrangement. Approximately every
4 days, the coupons were removed, cleaned, massed and then

Figure 4. Panels shown in the corrosion chamber prior to the
experiment.

returned to the beaker to resume the experiment.

3.4. Accelerated Lap Joint Testing

Corrosion tests were performed in a cyclic corrosion cham-
ber running the ASTM G85 Annex 5 test. This test consisted
of two one-hour steps. The first step involved exposing the
samples to a salt fog for a period of one-hour at 25◦C. The
electrolyte solution composing the fog was 0.05% sodium
chloride and 0.35% ammonium sulfate in deionized water.
This step was followed by a dry-off step, where the fog was
purged from the chamber while the internal environment was
heated to 35◦C. Each panel was positioned at a 60° angle
with the flex tape facing downward, as not to allow a direct
pathway for condensate to travel into the lap joints. Elec-
trical connections for the µLPR sensors were made to an
AN110 positioned outside the chamber by passing extension
cables through a bulkhead. Temperature, relative humidity,
and µLPR data were acquired at 1min intervals.

3.5. Sample Cleaning

Samples were removed from the environmental chamber and
disassembled. Following disassembly, the polyurethane and
epoxy coatings on the aluminum panels were removed by
placing them in a solution of methyl ethyl ketone. After im-
mersion for 30min the panels were removed and rinsed with
deionized water. These panels were again alkaline cleaned
with a 35min immersion into a constantly stirred solution of
50 g/L Turco 4215 NC-LT at 65◦C. This was followed by a
deionized water rinse and immersion into a 90◦C solution of
4.25% phosphoric acid containing 20 g/L chromium trioxide
for 10min. Following the phosphoric acid treatment, panels
were rinsed with deionized water and placed into a 70% ni-
tric acid solution for 5min at 25◦C. Panels were then rinsed
with deionized water, dipped in ethanol, and dried with a heat
gun. This cleaning process was repeated until mass values for
the panels stabilized. These values were then compared with
mass loss values calculated from the µLPR data.
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4. RESULTS

4.1. Comparing Two vs. Three Electrode Design

The Tafel constants were acquired while the panels were
undergoing a wetting cycle. The Tafel constants were ac-
quired and plotted as applied voltage vs. the logarithm of
applied current magnitude, shown in Figure 5. From this
plot the Tafel constants were computed as, βa = 0.40 V/dec

and βc = 0.15 V/dec. The corrosion constant, Bloss, was com-
puted using (9) with the material properties for AA7075-T6
and sensor properties defined in the nomenclature. Note,
the Tafel slope is an intensive parameter and does not de-
pend on the electrode surface area. If the Tafel constants
cannot be extrapolated, is not uncommon to approximate
βa and βc ≈ 0.15 V/dec.

The total corrosion for each sensor was computed by applying
(10) to integrate the corrosion rate with respect to time. For
the first 300 hours of the experiment, both sensors produce
comparable results. However, at 300 hours the overall LPR
reading began to drop and the variance between sensor read-
ings started to increase, as shown in Figures 6(a) and (b). This
may result from a reduction in the effective surface area of the
electrodes as a result of the corrosion process. As more cor-
rosion begins to accumulate, the fingers become less and less
effective. In contrast, the 95% confidence band for the three-
electrode µLPR sensor remained relatively constant through-
out the experiment, shown in Figure 6(c) and (d).

4.2. Lap Joint Testing Results

After selecting the three electrode µLPR for further evalu-
ation, a set of four lap joints were assembled. These assem-
blies were tested over a maximum period of 286 hours, where
the environment inside the chamber was cyclically varied in
temperature and humidity according to ASTM G85 Annex 5
to promote corrosion. Panels were removed at 133, 209, 286,
and 286 hours into the experiment, respectively. Plots of the
measured temperature and humidity vs. time are provided in
Figure 8. The corrosion rate, shown in Figure 7, was com-
puted from Rp measurements using (8) along with Bloss com-
puted during the previous experiment. The total corrosion,
shown in Figure 9(a), was computed for each panel by apply-
ing (10) to integrate the corrosion rate with respect to time.
The error bars correspond to the standard deviation observed
at the time when the mass loss was computed. Finally, the
measured and computed corrosion from the µLPR measure-
ments were compared in a scatter plot, shown in Figure 9(b).
The error bars in the y-direction correspond to observation er-
ror. These results indicate the measured corrosion correlated
with the computed corrosion to within 95% confidence (two
standard deviations of the observation error).

4.3. Lap Joint Imaging Feature

Microscopic images were acquired over a field size of
37mm× 37mm at a magnification of 108x using the LEXT
OLS4000 3D Laser Measuring Microscope. Comprehensive
images of each panel was created by stitching together ad-
jacent images. The rivet holes and numbers were manually
changed to be white so they wouldn’t be confused with cor-
roded regions. To get the features a 2D median filter was
applied followed by thresholding (using a threshold of 0.2)
to get a binary image. The area for each object (each black
region is considered to be an object) in the binary image was
calculated. The sum of objects with an area larger than 50
pixels (this was to avoid counting dark regions caused by the
grain boundaries as pits) was taken to be the area of the cor-
roded region. The percent area of the corrosion was calcu-
lated as,

Parea = 100% · Acorr

Aimage−Arivets
, (12)

where Acorr is the area of the corroded region, Aimage is the
area of the image, and Arivets is the area of the rivets. Fig-
ure 11 shows the original images of each panel along with
a binary image for the specimens removed 133 hours, 209
hours and 286 hours into the experiment. Figure 10 shows
plots of (a) Parea vs. time and (b) Parea vs. computed corro-
sion.

5. CONCLUSION

A new µLPR sensor design was presented for direct corro-
sion monitoring in structural health management (SHM) ap-
plications. The new design improves on existing technolo-
gies by: (1) using the structure as part of the sensor measure-
ment; (2) improving sensor lifetime by making the electrodes
from a non-corrosive material; and (3) improving on sensor
performance by reducing the separation distance between the
working, reference, and counter electrodes. Corrosion tests
were performed in a cyclic corrosion chamber running ASTM
G85-A5 salt fog test. The results indicate the µLPR sensor
data correlated with the measured mass loss to within 95%
confidence (two standard deviations of the observation error).
This demonstrates the µLPR sensor can accurately measure
the change in the corrosion rate as a function of time for a
given electrolyte condition. Future work includes:

• Demonstrate µLPR sensor accurately measures the cor-
rosion rate as a function of solution conductivity.

• Establish the µLPR sensor can accurately measure cor-
rosion in atmospheric conditions where corrosion rates
are lower than in an “accelerated corrosion chamber”.

• Investigate the surface morphology of the coupons using
a scanning electron microscope (SEM) and correlate the
measured corrosion rate as a function of corrosion be-
havior as determined by the µLPR sensor data over time.
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Figure 5. Tafel plot of the µLPR sensors.
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Figure 6. Corrosion vs. time for (a) four two-electrode µLPR sensor made from AA7075-T6, (b) the corresponding aver-
age with a 90% confidence interval, (c) corrosion vs. time for a three-electrode µLPR sensor made from nickel and (d) the
corresponding average with a 95% confidence interval.
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Figure 8. Plots of (a) temperature and (b) relative humidity
vs. time.
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Figure 9. Plot of (a) computed corrosion vs. time and (b)
measured vs. computed corrosion.
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Figure 10. Percent area of corrosion vs. (a) time and (b)
computed corrosion.
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(a) (b)

(c) (d)

(e) (f)

Figure 11. Original panel image with rivets and numbers removed for (a) 133 hours, (b) 209 hours, and (c) 286 hours of
exposure time. Also shown is a binary image after filtering showing the percent area of corrosion for (d) 133 hours at 0.113%,
(e) 209 hours at 0.244%, and (f) 286 hours at 0.93%.
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NOMENCLATURE

βa V/dec 0.40 anodic Tafel constant
βc V/dec 0.15 cathodic Tafel constant
τ s - time variable
dτ s - time step
k - - sample index
t s - time
t0 s - initial time
z - 3 electron loss
Acorr cm2 - % area of corrosion
Aimage cm2 - % area of image
Arivets cm2 - % area of of rivets
Asen cm2 4.233×10−2 sensor area
AW g/mol 2.899×101 atomic weight
B? V/dec 4.95×10−2 constant
Bloss Ω·g/cm2/s 1.170×10−4 constant
Ea V - applied potential
Ecorr V - corrosion potential
Ia A/cm2 - applied current
Icorr A/cm2 - corrosion current
F C/mol 9.649×104 Faraday’s constant
Mloss g/cm2 - mass loss
N - - total samples
Parea - - Percent area of corrosion
Rloss g/cm2/s - corrosion rate
Rp Ω - polarization resistance
Ts s 60 sample period
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ABSTRACT

Prognostic approaches based on particle filtering employ phys-
ical models in order to estimate the remaining useful life (RUL)
of systems. To this aim a set of particles is used to first esti-
mate the degradation state of the system and then to predict
the distribution of the RUL through simulation. The computa-
tional complexity of this approach is a function of the number
of particles used in the state estimation and of the time each
particle needs to simulate the RUL. It is therefore clear that
enhancing the computational performance of this approach
requires reducing the number of particles. In this paper we
investigate the applicability and suitability of the particle flow
particle filter for particle-filtering-based prognostics. The es-
timation of the remaining driving range (RDR) of an electric
vehicle is used as the case study to illustrate the improvement
in computational performance of the proposed approach in
comparison to the standard particle filter.

1. INTRODUCTION

Model-based prognostic approaches have gained in impor-
tance during the last decade due to their versatility and ease of
implementation in practical engineering applications. From
the methodologies available in the literature, a model-based
framework using particle filters (PF) has emerged as a solid
solution for many prognostics applications. Particle-filtering
based approaches for prognostics employ physics-based mod-
els in order to estimate the remaining useful life (RUL) of
systems or components. To this aim a set of discrete weighted
samples, known as particles, is used to first estimate the degra-
dation state of the system or component and then to predict
a distribution of the RUL by propagating the set of particles
forward in time through simulation until an established fail-
ure threshold is reached. The computational complexity of
this approach is a function of the number of particles used in
the state estimation and of the time each particle needs to sim-

Javier A. Oliva et al. This is an open-access article distributed under the terms
of the Creative Commons Attribution 3.0 United States License, which per-
mits unrestricted use, distribution, and reproduction in any medium, provided
the original author and source are credited.

ulate the RUL. It is therefore clear that enhancing the com-
putational performance of this approach requires minimizing
the number of particles used without sacrificing the accuracy
of both the estimation of the degradation state and the predic-
tion of the RUL distribution. An approach that aims to solve
this issue is introduced by (Daigle & Goebel, 2010). This
approach is based on the Unscented Transform (UT) (Julier
& Uhlmann, 2004), in which the particles are chosen de-
terministically instead of using a random sampling method.
Although this method is more computationally efficient than
standard particle filters, the UT may only be applied to non-
linear systems where all sources of noise are Gaussian; other-
wise this approach should not be used. In this paper we inves-
tigate the use and the suitability of a well known variation of
the particle filter based on particle flow and optimal transport
methods. The main idea behind this approach is to reduce the
number of particles needed in the particle filter by introduc-
ing a particle flow, in which the particles are progressively
transported without needing to randomly sample from any
distribution. This allows us to optimally move the particles
to the correct locations according to the Bayes’ rule, reduc-
ing in this way the number of particles needed and thereby the
computational effort in both the estimation and the prediction
step. To the best of our knowledge the present study is the
first in applying the the particle flow particle filter in model-
based prognostics. This paper evaluates the use of the parti-
cle flow, which until now has been just investigated in filter-
ing problems of nonlinear systems (Daum & Huang, 2008),
with the aim of presenting a computationally efficient alter-
native to state of the art simulation-based approaches, namely
UKF (Daigle & Goebel, 2010) and PF (Orchard & Vachtse-
vanos, 2010) based approaches, for reducing the number of
simulations and therefore the simulation time in the predic-
tion step of model-based prognostics. We use the remaining
driving range (RDR) estimation of an electric vehicle (Oliva,
Weihrauch, & Bertram, 2013) as the case of study for illus-
trating and validating the enhancement in the computational
performance of the presented approach in comparison to the
standard particle filter.
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The remainder of this paper is organized as follows. Sec-
tion 2 formulates the RUL estimation problem in the context
of particle filters. Section 3 explains in detail the theoreti-
cal foundations of the particle flow particle filter (PFPF) and
afterwards presents the steps needed for its implementation
within the prognostics framework presented in section 2. In
section 4 the case of study used for validating the proposed
approach is described. Section 5 presents the experimental
and simulation results. Finally, section 6 concludes the find-
ings of this work and provides an outlook on our future work.

2. PARTICLE-FILTERING BASED RUL ESTIMATION

This section is concerned with formulating the RUL estima-
tion problem and briefly explains the particle-filtering-based
framework for prognostics employed in this work.

2.1. Problem Statement

Consider the following nonlinear system represented, in a
discrete-time form by

xk = f (xk−1,uk,vk,wk)
yk = h (xk,uk,nk,wk) ,

(1)

where xk is the state vector, wk is the parameter vector, vk
is the process noise vector, uk is the input vector, yk is the
output vector and nk is the measurement noise vector. The
terms f(·) and h(·) stand for the state and output function,
respectively. The system exhibits a degradation which ac-
cumulates in time until a deterministic degradation threshold
T(x) is reached, at which the system fails. The degradation
of the system is attributed to the environment and to the oper-
ation conditions. The RUL estimation problem is concerned
with first estimating the degradation state of the system and
then to predict its future operation conditions in order to de-
termine the distribution of the time at which the performance
of the system fails to fulfill its tasks, i.e. the time at which
the threshold is exceeded. Thus, T(x) = 1 if the system fails
and T(x) = 0, otherwise. The RUL is a random variable
that is influenced by many sources of uncertainty. The lack
of knowledge about the state variables, the noise presented
in the measurements or the randomness of the operation en-
vironment, are some of the factors that largely contribute to
the uncertainty of the RUL. Therefore, properly predicting
the RUL requires accounting for these sources of uncertainty.
In the context of particle filters the RUL estimation proceeds
basically in two phases, namely the state estimation (I) and
the RUL prediction (II), as shown in Fig. 1. For the sake of
clarity, Fig. 1 depicts the RUL estimation of just one particle.

In the first phase the PF recursively approximates the poste-
rior probability p(xk|Yk) of the state variables by a set ofNx
weighted particles Sk =

{
xik, w

i
k

}Nx
i=1

. Here xik is the set of
particles representing the state space, wik are the associated
importance weights and Yk = y0:k is the set of all mea-

surements done until time k. Each particle is sampled from
an a priori estimation of the state space and it is propagated
through the function f(·) in the prediction step. Then, the
value of each particle is updated from measurements through
the output function h(·) in the measurement update step. In
this step the weight of each particle is updated according to
the likelihood of a new measurement given the particle. Af-
terwards the resampling step occurs. The idea behind this
step is to duplicate those particles with large weights and to
eliminate those with small weights.

p
(

RULkp |Ykp

)RUL PDF
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Figure 1. Particle-filtering based RUL estimation approach.

In this way the so called particle degeneracy (Daum & Huang,
2011) can be overcome. Particle degeneracy, i.e the situa-
tion in which all but few particles have negligible weights
leads to a poor approximation of the state variables and, since
most weights are close to zero, valuable computational ef-
fort is wasted by updating insignificant particles. Finally, the
probability distribution of the state variables at time k is ap-
proximated by

p(xk|Yk) ≈ 1

Nx

Nx∑

i=1

wikδ
(
xk − xik

)
(2)

where δ(·) describes the Dirac delta function located at xik.
The posterior state estimate establishes the starting point for
the second phase, in which the particle filter is employed for
predicting the RUL at given time kp. To this aim the posterior
estimate p(xkp |ykp) is set as initial condition.

By assuming that the set of particles Sk accurately represents
the unknown states at the time of prediction, it is possible to
approximate the probability density function of system states
at any time kp +m in the future by means of the law of total
probabilities (Orchard & Vachtsevanos, 2010)

p̂
(
xkp+m|x̂kp:kp+m−1

)
≈

Nx∑

i=1

wikp+m−1p̂
(
x̂ikp+m|x̂ikp+m−1

)
. (3)
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To account for the fact, that during the prediction the shape
of the states probability distribution may change, due to noise
and process nonlinearities, Eq.(3) requires the set of weights
to be updated at each iteration. However, during the predic-
tion step no new measurements, which could serve for updat-
ing the weights, can be acquired. This implies that an update
procedure for the particle weights, as it would happen in a
typical filtering problem, cannot be carried out. This issue is
addressed by assuming the weights as invariant from the time
kp to kp +m. This assumption is justified by considering the
uncertainty added by model inaccuracies or by the ignorance
about future operation conditions to be large in comparison to
the uncertainty which comes from considering constant par-
ticle weights. In this way, the set of weighted particles Skp
is simply propagated forward into the future by simulating
the behavior of the system as reaction to a future operation
condition, until the determined failure condition is reached.

Once all particles have reached this point, i.e. Tikp = 1, the
RULikp of each particle is determined and combined with its
weight wikp to approximate p

(
RULkp |Ykp

)
as follows

p
(
RULkp |Ykp

)
≈

Nx∑

i=1

wikpRULikp . (4)

The RUL prediction, as formulated in Eq.(4), requires propa-
gating the set of particles through a single hypothesized pre-
dicted profile of the future operation conditions of the system.
However, such a propagation accounts just for the uncertainty
introduced in the state estimation step but it does not consider
the uncertainty related to the predicted operation profile. Tak-
ing this uncertainty into account would require propagating
the set of particles through multiple predicted profiles, and
not through a single one. Thus, the computational complexity
of such a prediction becomes a function of Nx×Nu (Daigle,
Saxena, & Goebel, 2012), where Nu is the number of pre-
dicted operation profiles. The set of weighted particles is
then propagated through multiple profiles until all particles
along all predicted profiles, have reached the threshold, i.e.
Tijkp = 1. Here j represents each predicted operation profile.
Accordingly, the probability distribution p

(
RULkp |Ykp

)
is

approximated by

p
(
RULkp |Ykp

)
≈ 1

Nu

Nu∑

j=1

Nx∑

i=1

wikpRULijkp . (5)

It must be noted that all predicted profiles are equally weighted
by means of 1

Nu
.

3. PARTICLE FLOW PARTICLE FILTER

From the previous section it can be inferred that the com-
putational performance of the particle-filter-based RUL esti-
mation approach can be enhanced through the reduction of

the particles employed during the estimation step and there-
fore during the prediction step. However, this cannot be done
straightforward specially in those systems where the dimen-
sionality of the state space is high. This problem becomes
more significant in a joint state/parameter estimation since
the dimensionality of the state space can increase consider-
ably. In this paper we aim to investigate the suitability of an
approach for reducing the number of particles needed in the
estimation of the state space without sacrificing the accuracy
of the state estimation.

Standard particle filters might reduce the computational per-
formance of the prognostics algorithm during the estimation
step by wasting computational resources during the propaga-
tion of those particles with negligible weights. Furthermore,
since either particles with very low weight or duplicated parti-
cles have to be propagated forward in time until they reach the
predefined threshold, additional resources might be wasted
during the prediction step of the prognostics framework.

The approach presented in this paper aims to overcome the
aforementioned issues by implementing an update schema,
which progressively transforms the prior p (xk|Yk−1) into
the posterior state estimate p (xk|Yk) by smoothly moving
the particles in an optimal manner as new measurements be-
come available without needing to employ any resampling al-
gorithm. This is achieved by solving a differential equation to
determine the flow of particles in the state space as they mi-
grate from the prior to the posterior distribution. In a generic
Bayesian framework, the posterior p (xk|Yk) is obtained in
the prediction step by a single computation of the Bayes’ rule
given by

posterior︷ ︸︸ ︷
p (xk|Yk) =

prior︷ ︸︸ ︷
p (xk|Yk−1)

likelihood︷ ︸︸ ︷
p (yk|xk)∫

R
p (xk|Yk−1) p (yk|xk) dxk

︸ ︷︷ ︸
normalization factor

. (6)

By denoting a new set of density functions given by

ψ (xk,λ|Yk) = p (xk|Yk)
g (xk,λ|Yk−1) = p (xk|Yk−1)

(7)

it is possible to compute ψ (xk,λ|Yk) in a B-fold recursive
manner by progressively introducing the likelihood density,
here denoted as l (yk|xk), such that the prior g (xk,λ|Yk−1)
gradually deforms into g (xk,λ|Yk−1) l (yk|xk). This can be
achieved by using a homotopy of the form

posterior︷ ︸︸ ︷
ψ (xk,λ|Yk) =

prior︷ ︸︸ ︷
g (xk,λ|Yk−1)

likelihood︷ ︸︸ ︷
l (yk|xk,λ)

λ

Kk,λ︸︷︷︸
normalization factor

, (8)
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where λ ∈ [0, 1] is the progression parameter and the term
l (yk|xk,λ)

λ is understood as an incremental likelihood. Thus,
Eq. (8) represents the prior when λ = 0 and the posterior
when λ = 1. The number of iterations in the recursion,
namely B, depends on the step size ∆λ, which determines
the rate at which λ0→1. The way l (yk|xk,λ)

λ is incremen-
tally incorporated into the Bayes’ update step can be seen in
the Algorithm 1. For the sake of clarity, from now on we ex-
press the states variables as xλ instead as xk,λ. This is due
to the fact that the evolution of the probability distribution as
λ0→1 always occurs at the discrete time step k. In order to
avoid numerical issues the log-density of Eq. (8) is applied
yielding to

Ψ (xλ) = G (xλ) + λL (xλ)− logKλ, (9)

where the posterior is given by Ψ (xλ) = logψ (xλ|Yk), the
prior is represented by G (xλ) = log g (xλ|Yk−1) and the
likelihood is L (xλ) = log l (yk|xλ). The evolution of the
probability distribution given by Eq. (9) in the pseudo-time is
known as log-homotopy (Daum & Huang, 2008). As it can
be seen in Fig. 2, the task of this homotopy is to move the
particles through a sequence of densities from the prior to the
posterior as λ continuously increases from zero to one.

0.8 1 1.2 1.4 0.95 0.71 0.48 0.24

State x→ ← Pseudo-time λ

PD
F
→

(λ = 1)
posterior

prior
(λ = 0)

Figure 2. Evolution of the probability distribution from the
prior at λ = 0 to the posterior at λ = 1.

As it can be observed in Fig. 3, it becomes necessary to find
a flow dx

dλ that dictates the motion of particles as they move
following the log-homotopy given by Eq. (9).

To this aim we differentiate Eq. (9) with respect to λ

∂Ψ (xλ)

∂λ
= L (xλ)− d

dλ
logKλ. (10)

Replacing the left hand side of Eq. (10) by the logarithm iden-
tity

∂Ψ (xλ)

∂λ
=

1

ψ (xλ)

∂ψ (xλ)

∂λ
(11)

and multiplying both sides by ψ (xλ) yields to

∂ψ (xλ)

∂λ
= ψ (xλ)

[
L (xλ)− d logKλ

dλ

]
. (12)

A way to find the desired flow dx
dλ is by considering that the

particles move, as λ0→1, obeying the following stochastic dif-
ferential equation (SDE)

dxλ = ζ (xλ) dλ+ η (xλ) dξλ, (13)

where xλ is the particle position at given time k and pseudo-
time λ, ζ (xλ) can be understood as a vector field that induces
the motion of particles from the prior to the posterior distri-
bution, η (·) is a multiplicative noise matrix and ξλ is a noise
resulting from the randomness of process.

By considering dx
dλ to be given by ζ (xλ), the desired particle

flow can be obtained by using the conditional probability den-
sity ψ (xλ) together with the forward Kolmogorov equation,
also known as the Fokker-Planck-Kolmogorov (FPK) equa-
tion. In this context the FPK equation is employed to relate
the flow dx

dλ of a particle with the evolution of ψ (xλ) as λ0→1

under the influence of drift and diffusion processes.

The FPK equation can be written as

∂ψ (xλ)

∂λ
=

drift︷ ︸︸ ︷
−tr

[
∂

∂xλ
(ζ (xλ)ψ (xλ))

]
+

+

diffusion︷ ︸︸ ︷
1

2
tr

[
∂

∂xλ

(
Q (xλ)

∂ψ (xλ)

∂xλ

)]
,

(14)

where Q (xλ) = η (xλ)ηT (xλ) is the process covariance
matrix and tr (·) states for the trace of (·).

Reformulating Eq. (14) in a more proper way yields

∂ψ (xλ)

∂λ
= −tr

[
ψ (xλ)

∂ζ (xλ)

∂xλ
+ ζ (xλ)

T ∂ψ (xλ)

∂xλ

]
+

+
1

2
div

(
Q (xλ)

∂ψ (xλ)

∂xλ

)

= −ζ (xλ)
T ∂ψ (xλ)

∂xλ
− ψ (xλ) tr

(
∂ζ (xλ)

∂xλ

)
+

+
1

2
div

(
Q (xλ)

∂ψ (xλ)

∂xλ

)
,

(15)

where div (·) states for the divergence of (·). As it can be
seen, Eq. (12) and Eq. (15) are equivalent. Thus, equating
them and by dividing both sides by ψ (xλ) we can write

4

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

312



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

(λ1)

...
...
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Figure 3. Particle flow at different values of λ.

L (xλ)− d logKλ

dλ
= −ζ (xλ)

T 1

ψ (xλ)

∂ψ (xλ)

∂xλ
+

−tr

(
∂ζ (xλ)

∂xλ

)
+

+
1

2ψ (xλ)
div

(
Q (xλ)

∂ψ (xλ)

∂xλ

)
,

(16)

under the assumption that ψ (xλ) is nowhere vanishing. The
desired particle flow is found by solving Eq. (16) wrt. ζ (xλ).

To this aim we first compute the gradient wrt. xλ. This yields
to a system of partially differential equations (PDEs) with the
same number of unknowns and equations given by

∂L (xλ)

∂xλ
= −ζT (xλ)

∂2Ψ (xλ)

∂x2
λ

− ∂Ψ (xλ)

∂xλ

∂ζ (xλ)

∂xλ
+

− ∂

∂xλ

[
tr

(
∂ζ (xλ)

∂xλ

)]
+

+
∂

∂xλ

[
1

2ψ (xλ)
div

(
Q (xλ)

∂ψ (xλ)

∂xλ

)]
.

(17)

There are many methods to solve the system of PDE’s given
by Eq. (17) (Daum & Huang, 2010). In this work we employ
the approach presented by (Daum & Huang, 2013) in which it
is assumed that both the process noise matrix Q (xλ) and the
vector field given by ζ (xλ) are chosen such that sum of the

last three terms of Eq. (17) is zero. In this manner the system
of PDE’s is drastically simplified yielding to the following
equation

∂L (xλ)

∂x
= −ζT (xλ)

∂2Ψ (xλ)

∂x2
λ

(18)

As stated by (Daum & Huang, 2013), if it is assumed that
∂2Ψ(xλ)
∂x2

λ
is non-singular, the solution of Eq. (18) for ζ (xλ)

can be computed as

ζ (xλ) = −
[
∂2Ψ (xλ)

∂x2
λ

]−1 [
∂L (xλ)

∂xλ

]T

. (19)

The task now is to compute the terms of the right hand side of
Eq. (19). First, the Hessian ∂2Ψ(xλ)

∂x2
λ

can be obtained in closed
form by differentiating twice Eq. (9) wrt. xλ

∂2Ψ (xλ)

∂x2
λ

=
∂2G (xλ)

∂x2
λ

+ λ
∂2L (xλ)

∂x2
λ

. (20)

In this work we use a hybrid approach for computing Eq. (20)
in which the Hessian ∂2G(xλ)

∂x2
λ

is approximated by

∂2G (xλ)

∂x2
λ

≈ −Ŝ−1
Nx
, (21)

where ŜNx is the sample covariance matrix (SCM) of the
prior distribution computed from the set of Nx particles. The
SCM offers an unbiased estimate of the true covariance ma-
trix. However, it has to be noted that if the number of particles
employed is smaller than the number of states to be estimated
the SCM may suffer from high variance. To overcome this is-
sue the Kronecker product expansion can be used to estimate
the covariance matrix in high dimensional spaces (Tsiligkaridis
& Hero, 2013).

If it is assumed that the prior g (·) is represented by a Gaus-
sian distribution, then the approximation given by Eq. (21) is
exact. For practical purposes the likelihood function l (·) can
be assumed to follow an univariate or a multivariate Gaussian
distribution depending on the dimension of the output vector.
Accordingly, L (xλ) is expressed as

L (xλ) = −N
2

log (2π)− 1

2
log |R|− 1

2
zT
k,λ

R−1zk,λ, (22)

where zk,λ = (yk − h (xλ)) and R is the covariance ma-
trix of the measurement noise. Computing the gradient of
Eq. (22) wrt. xλ gives

∂L (xλ)

∂xλ
=

[
∂h (xλ)

∂xλ

]T

R−1zk,λ

= Ĥ (xλ)
T
R−1 (yk − h (xλ)) ,

(23)

where Ĥ (xλ) is the linearized output matrix around xλ. Com-
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puting the Hessian ∂2L(xλ)
∂x2

λ
might be computationally expen-

sive. We instead approximate it by computing the expected
Hessian by means of the Monte Carlo approximation method
as follows

∂2L (xλ)

∂x2
λ

≈ E

[
∂2L (xλ)

∂x2
λ

]

≈ − 1

Nx

Nx∑

i=1

[
∂zk,λ (xλ)

∂xi
λ

]T

R−1 ∂zk,λ (xλ)

∂xi
λ

,

(24)

whereE [·] is the expected value with respect to the likelihood
function. After having computed ∂L(xλ)

∂xλ
and ∂2L(xλ)

∂x2
λ

both
Eq. (19) and Eq. (20) can be evaluated in order to obtain the
particle flow. As it can be seen, evaluating Eq. (20) requires
computing the inverse of ŜNx , which can lead to numerical
problems if ŜNx is close to be singular. To overcome this
issue we apply the matrix inversion lemma known as Wood-
bury’s formula in order to invert Eq. (20) as follows

[
∂2Ψ (xλ)

∂x2
λ

]−1

= −ŜNx+

− ŜNxλ
∂2L (xλ)

∂x2
λ

(
I − ŜNxλ

∂2L (xλ)

∂x2
λ

)−1

ŜNx . (25)

Algorithm 1 summarizes the steps needed for implementing
the presented particle flow particle filter for state estimation.
It is worth noting that the rate at which λ0→1 is determined by
the step size ∆λ. Numerical experiments presented by (Daum
& Huang, 2013) have shown that employing a fixed step size,
such as in the case of the Euler method, works properly just
if the number of particles is high. Therefore, to reduce the
number of particles employed a variable ∆λ has to be used.
A proper strategy is to use a very small value of ∆λ at the be-
ginning and to gradually increase it as λ → 1, which makes
sense, since the uncertainty a the beginning of the measure-
ment update step is higher. We therefore use an exponentially
increasing step size (George & Powell, 2006) given by

∆λ = 1− 1

nb
, (26)

where n is the number of iteration and b ∈
(

1
2 , 1
]
. In the case

of initial transient conditions the a small value of b can lead to
a slower learning rate of the step size. The value of b should
be chosen according to the desired rate of convergence of the
step size.

4. CASE STUDY

For validating the applicability of the particle flow particle
filter for prognostics we chose the remaining driving range

(RDR) estimation of an electric vehicle (Oliva et al., 2013).
In this context, the RDR estimation is concerned with predict-
ing the power demand of the electric vehicle and identifying
the distance that it can drive with the energy stored in its bat-
tery before recharging is required. To this aim we consider
the battery state of charge (SOC) to be the indicator that de-
termines the threshold condition.

Algorithm 1 Particle flow particle filter for state estimation

Initialization
Draw a set of particles

{
xi0
}Nx
i=1

from the prior p (x0)
for k = 1 to∞ do

State prediction
Propagate the particles through the system equation:
xik|k−1 = f

(
xik−1,uk,vkn;wk

)

Initialize the pseudo-time λ = 0

Set
{
xik,λ

}Nx
i=1

=
{
xik|k−1

}Nx
i=1

Measurement update:
Propagate the particles through the output equation:
yik|k = h

(
xik,uk,nk,wk

)

while λ ≤ 1 do
Compute ŜNx from

{
xik,λ

}Nx
i=1

Calculate the state estimation from
{
xik,λ

}Nx
i=1

x̂k,λ = 1
Nx

∑Nx
i=1 x

i
k,λ

Linearize h (·) around x̂k,λ to compute Ĥ
for i = 1 to Nx do

Compute the flow ζ
(
xik,λ

)
for each particle

Set
dxik,λ

dλ = ζ
(
xik,λ

)

Move the particles according their respective flow:

xik,λ = xik,λ + ∆λ
dxik,λ

dλ
end for
Increment the pseudo-time λ← λ+ ∆λ

end while
Update the state estimation:
x̂k = 1

Nx

∑Nx
i=1 x

i
k,λ

end for

Accordingly, the threshold is expressed as T(SOC). Thus,
T(SOC) = 1 if SOCmin (the minimum allowable state of
charge) is reached and T(SOC) = 0, otherwise. The SOCmin

is usually dictated by the battery management system (BMS)
of the electric vehicle in order to protect the battery cells from
a possible total charge depletion.

4.1. Battery Model

We employ the model of a Li-ion cell shown in Fig. 4. The
model combines the Kinetic Battery Model (Manwell & Mc-
Gowan, 1994) for capturing the nonlinear effects in the bat-
tery capacity, such as the recovery and the rate capacity effect,
with a second order equivalent circuit based model which

6

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

314



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

captures the dynamic response of the Li-ion cell. Further-
more, the combined model demands low computational ef-
fort, which makes it suitable for real-time applications. Even
though the KiBaM was initially developed for lead acid bat-
teries, it has been shown to be suitable for modeling the ca-
pacity behavior of Li-ion cells (Jongerden & Haverkort, 2009).

ik

Ro(·)

Rs(·) Rl(·)

Cs(·) Cl(·)

VOC(SOC)

Kinetic Battery Model Circuit-based Battery Model

ik SOC
−
+

Vbatt

1− c c

w2 w1d
h1h2

ik

Figure 4. Combined battery model.

The Kinetic Battery Model abstracts the chemical processes
of the battery discharge to its kinetic properties. The model
assumes that the total charge of the battery is distributed with
a capacity ratio 0 < c < 1 between two charge wells. The
first well contains the available charge and delivers it directly
to the load. The second well supplies charge only to the first
well by means of the parameter d. The rate of charge that
flows from the second to the first well depends on both d and
on the height difference between the wells (h2 − h1). If the
first well is empty, then the battery is considered to be fully
discharged. By applying load to the battery, the charge in the
first well is reduced, which leads to an increment in the height
difference between both wells. After removing the load, cer-
tain amount of charge flows from the second well to the first
well until the height of both wells is the same. In this way the
recovery effect is taken into account by the model. The rate
capacity effect is also considered in this model. For high dis-
charge currents, the charge in the first well is delivered faster
to the load in comparison to the charge that flows from the
second well. In this scenario there is an amount of charge that
remains unused. The consideration of this effect is especially
important for applications in electric vehicles, since the un-
used charge might eventually increase the driving range. The
KiBaM yields two difference equations which describe the
change of capacity in both wells in dependence of the load
ik, the conductance d and the capacity ratio c:

w1,k+1 = a1w1,k + a2w2,k + b1ik, (27)

w2,k+1 = a3w1,k + a4w2,k + b2ik, (28)

where

(
a1 a2

a3 a4

)
= e


 −

d
c

d
1−c

d
c − d

1−c


∆t

(
b1
b2

)
=

∆t∫
0

e


 −

d
c

d
1−c

d
c − d

1−c


ϑ

dϑ

(
1
0

)
.

The term ∆t is the sampling time used in the discretization of
the model. The battery SOC is given by

SOCk =
w1,k

cCn3600
, (29)

where Cn is the nominal capacity of the battery. The right-
hand-side equivalent circuit of Fig. 4 is compounded of three
parts, namely, the open circuit voltage VOC, a resistance Ro
and two RC networks.

The voltage VOC changes at different SOC levels, as depicted
in Fig. 5. The ohmic resistance Ro captures the I-R drop,
i.e., the instantaneous voltage drop due to a step load cur-
rent event. The RsCs and RlCl networks capture the volt-
age drops due to the electrochemical and the concentration
polarization, respectively. In Fig. 4 the dependency of these
parameters on the temperature and on the SOC is represented
by the term (·).

0 0.2 0.4 0.6 0.8 1

3

3.5

4

SOC [ ] →

V
O

C
[V

]
→

Figure 5. VOC − SOC relationship.

This part of the model yields two difference equations which
describe the transient response of the battery:

vs,k+1 = e−
∆t

RsCs vs,k +
(
−Rse−

∆t
RsCs +Rs

)
ik, (30)

vl,k+1 = e
− ∆t
RlCl vl,k +

(
−Rle−

∆t
RlCl +Rl

)
ik. (31)

Accordingly, the state vector of the battery model is given by

xk =
[
w1,k w2,k vs,k vl,k

]T
. (32)

The output yk of the system, represented by the terminal volt-
age Vbatt,k, is then computed as follows

yk = Vbatt,k(SOC) = VOC(SOC)+Roik+vl,k+vs,k. (33)

5. RESULTS AND DISCUSSIONS

This section evaluates the particle flow particle filter in both
accuracy and computational performance in the estimation of
the RDR of an electric vehicle. To measure the accuracy of
the RDR estimation we employ the relative accuracy (RA)
and the alpha-lambda (α − λ) metric (Saxena, Celaya, Saha,
Saha, & Goebel, 2009). In the context of the RDR estimation
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the RA is given by

RAkp = 100


1−

∣∣∣RDR∗kp − RDRkp

∣∣∣
RDR∗kp


 , (34)

where RDR∗kp is the ground truth RDR at time kp and RDRkp

is the estimated RDR at that time. The α − λ metric serves
to evaluate whether the estimated RDR lies withing specified
bounds.

5.1. Experimental results

The first set of experiments aims to test the suitability of the
PFPF in prognostics on the one hand, and to compare its per-
formance in contrast to the PF, on the other hand. To this aim
the load profile shown in the top part of Fig.6 is applied to a
Li-ion cell until the pre established SOCmin is reached. For
this experiment a cell with a nominal capacityCn = 2.15 Ah,
a nominal voltage Vnom = 4.2 V and a SOCmin = 0.15 is
used. The load profile is computed by scaling down the theo-
retical load of an electric vehicle driving the standard UDDS
(Urban Dynamometer Driving Schedule) drive cycle. In this
way it is possible to directly relate the load with the speed of
the vehicle and therefore to compute the RDR.

First, the accuracy of the SOC estimation is investigated. To
this aim both filters run in parallel and recursively estimate
the SOC. The bottom part of Fig.6 depicts the results of the
state estimation. As it can be seen, both filters are very ac-
curate while estimating the SOC. The main difference lies on
the number of particles used. For the estimation shown just
10 particles are employed by the PFPF, whereas the PF needs
100 in order to estimate the SOC with the same accuracy as
the PFPF. This is by no means a claim of improvement of
the particle filter for state estimation, but a suggestion that
the PFPF successfully manage to estimate states in nonlinear
systems with many less particles.

After having proved the applicability of the PFPF for esti-
mating the SOC, the second step is to validate the accuracy
and the computational performance of the RDR estimation.
To this aim a series of predictions are carried out at different
stages of the discharge process every 500 s. Since for this
experiment the future load profile of the battery is assumed
to be known, the error presented in the RDR estimation is at-
tributed to the model inaccuracy and to the SOC estimation
error. A RDR prediction proceeds by simulating the evolu-
tion of the battery SOC, from a given time kp, as a response
to the predicted load and by determining the point in the fu-
ture, at which the SOCmin is reached. The initial state val-
ues at the time of prediction are dictated by the value of the
particles obtained from the state estimation step. This pro-
cedure is repeated for all particles. The RDR distribution is
then computed by means of Eq.(4). As it can be appreciated
in Fig.7, the RDR prediction shows a high RA, with the ex-
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Figure 6. a) Load profile derived from the UDDS drive cycle.
b) SOC estimation with the PFPF and the PF.
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ception of the first prediction and the predictions carried out
near the end of discharge of the battery. This first deviation
is due to the fact that the state estimation in both cases is ini-
tialized by uniformly spreading the particles among the entire
state space, which causes the estimation to deviate from the
real value. Once the filters converge to the real SOC, the RA
increases remarkably. As it can be seen, the RA decreases
towards the end of discharge at kp = 45 and kp = 50. This
phenomenon is attributed to the abrupt voltage drop that the
battery exhibits at around SOC = 5%, as it is shown in Fig. 5.
The battery model doesn’t accurately capture the behavior of
the terminal voltage in this region, which causes the filter al-
gorithm to slightly diverge from the real SOC. Since the un-
certainty presented in the filtering step is the only uncertainty
considered in this case study, a reduction in the accuracy of
the state estimation directly causes a reduction in the RA.

Table 1 presents the RA and the time needed to complete
a prediction, here referred as tcpu, for different prediction
times. As it can be noted, in average the tcpu of those pre-
dictions done with the PFPF are three times faster than those
carried out with the PF.

Table 1. RDR prediction performance.

Urban
RA [%] tcpu [s]

kp PFPF PF PFPF PF
1 72.83 87.05 3.16 3.91
5 100.0 100.0 0.327 1.078
10 99.48 99.48 0.305 0.927
15 98.72 99.44 0.287 0.808
20 97.82 99.33 0.273 0.730
25 96.06 97.22 0.253 0.671
30 95.25 95.67 0.235 0.568
35 95.88 95.98 0.222 0.479
40 94.33 94.53 0.206 0.407
45 88.26 91.41 0.109 0.324
50 76.75 77.80 0.176 0.241

5.2. Simulation results

A series of simulations is carried out in order to incorporate
the uncertainty introduced by the randomness of the driv-
ing environment into the RDR estimation. To this aim the
methodology previously presented in together with the model
of an electric vehicle is used to compute power demand as re-
sponse to a predicted driving profile, i.e., speed, acceleration
and slope profile. The approach for predicting the driving
profiles is however out of the scope of this work. The reader
is referred to (Oliva et al., 2013) for a detailed explanation
about the methodology employed for estimating the RDR.

The RDR prediction proceeds similarly as in the previous
section with the difference that in this case each particle is
simulated through 50 different predicted driving profiles, i.e,
Nu = 50. In this case 10 particles are employed by the PFPF
and 50 by the PF in order to obtain similar accuracy in the
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Figure 8. PFPF based RDR estimation in different driving
scenarios a) city b) rural areas c) highway.

state estimation. As it is shown in Fig.8, the RDR prediction
is carried out under three different driving scenarios, namely
in the city and rural areas and on the highway.

The simulation results show that the PFPF is also suitable for
estimating the RDR even in situations where the future driv-
ing load is unknown and that it reduces the computational
complexity of the entire prognostics process. In table 2 both
the RA and the tcpu for all scenarios is presented. As it can be
observed, even though the PF employ more particles than the
PFPF, the accuracy in the RDR prediction is in general not
better. Furthermore, a noticeable improvement in the compu-
tational performance is appreciated in respect to the experi-
mental results. Although, the PF uses just half of the parti-
cles as before, the tcpu is now 4 to 5 times larger than the tcpu
required by the PFPF in all scenarios.

9

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

317



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

Table 2. RDR prediction performance under different driving scenarios.

Driving scenario
Urban Rural Highway

RA [%] tcpu [s] RA [%] tcpu [s] RA [%] tcpu [s]

kp PFPF PF PFPF PF PFPF PF PFPF PF PFPF PF PFPF PF
1 74.78 88.48 18.21 88.19 76.91 89.00 6.83 23.06 71.56 89.82 3.19 20.50
3 94.19 79.07 16.46 79.83 92.52 87.32 4.06 19.12 97.39 88.00 3.28 17.04
5 93.42 90.54 15.41 72.53 93.42 89.44 3.68 17.03 96.30 87.75 3.10 14.91
7 91.97 90.19 14.64 68.39 93.37 87.13 3.22 15.51 96.91 91.76 2.83 13.79
9 91.80 89.93 13.38 63.40 93.29 88.44 2.88 13.50 98.93 86.91 2.79 13.63

11 89.96 90.37 12.52 57.09 88.52 88.27 2.50 11.46 99.64 94.96 2.64 12.68
13 88.87 91.22 11.37 50.06 89.85 92.74 2.09 9.70 98.73 91.97 2.53 12.18
15 88.60 90.46 10.27 44.70 87.76 77.08 1.81 7.54 98.90 81.45 2.26 11.85
17 88.56 90.59 9.00 38.98 63.20 81.49 1.33 5.39 97.27 74.13 2.11 10.82
21 89.40 89.43 6.65 28.37 – – – – 93.16 81.11 1.88 8.16
25 95.75 89.43 3.88 16.27 – – – – – – – –

6. CONCLUSIONS AND FUTURE WORK

In this work a methodology for enhancing the computational
performance of a particle-filtering-based prognostics approach
is presented. The reduction in computational complexity is
achieved by reducing the number of particles needed in the
state estimation and thereby reducing the number of simula-
tions needed to determine the RUL of the system. The re-
duction of particles is carried out by applying a deterministic
flow, which migrates the particles through the state space in
an optimal manner from the prior to the posterior state esti-
mate. The advantage of such a migration allows us to employ
less particles in contrast to the standard particle filter, since
the particles are moved to the correct location obeying to the
Bayes’s rule. Such a particle reduction is highlighted during
the prediction step, due to less simulations are needed for de-
termining the distribution of the RUL.

The proposed methodology is afterwards illustrated and val-
idated by means of the RDR estimation problem, in which
is desired to determine the distance that can be driven by an
electric vehicle with the energy stored in the battery pack at
given points in time. Both experimental and simulation re-
sults show that the particle flow particle filter successfully
reduces the computational burden associated with the estima-
tion of the RUL in nonlinear systems.

Even though the presented approach exhibits both good com-
putational performance and estimation accuracy, it is worth
mentioning that the experiments carried out are based just on
state estimation. That is, no joint or dual state/parameter es-
timation is done. This is justified by the assumption that the
parameters of the battery model degrade very slow within the
time span of a trip. However, a more proper implementation
of the RDR estimation problem requires estimating the pa-
rameters together with the states in order to account for the
aging effect of the battery. We therefore aim to investigate
in the future the applicability and performance of the particle
flow particle filter for a joint state/parameter estimation.
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ABSTRACT 

This paper presents a new dependency computational 
algorithm for reliability inference with dynamic hybrid 
Bayesian network. It features a component-based algorithm 
and structure to represent complex engineering systems 
characterized by discrete functional states (including 
degraded states), and models of underlying physics of 
failure, with continuous variables. The methodology is 
designed to be flexible and intuitive, and scalable from 
small localized functionality to large complex dynamic 
systems. Markov Chain Monte Carlo (MCMC) inference is 
optimized using pre-computation and dynamic 
programming for real-time monitoring of system health. The 
scope of this research includes new modeling approach, 
computation algorithm, and an example application for on-
line System Health Management. 

1. INTRODUCTION 

With increasing complexity of today’s engineering systems 
that contain various component dependencies and 
degradation behaviors, there has been increasing interest in 
real-time System Health Management (SHM) capability to 
continuously monitor sensors, software, and hardware 
components for detection and diagnostic of safety-critical 
systems. The modeling framework should be flexible to 
accommodate the complexity of component dependencies 
and failure behaviors, such as sequence-dependent failures, 
functional dependencies, etc.  

Bayesian Network (BN) (Pearl, 1986) (Jensen, 2001) and 
their extension for time-series modeling known as Dynamic 
Bayesian Network (DBN) (Friedman, 1998) (Murphy, 
2002) have been shown by recent studies to be capable of 
providing a unified framework for system health diagnosis 
and prognosis (Ferreiro, Arnaiz, Sierra, & Irigoien, 2011) 

(Tobon-Mejia, Medjaher, Zerhouni, & Tripot, 2012)  
(Schumann, Rozier, Reinbacher, Mengshoel, Mbaya, & 
Ippolito, 2013). Bayesian Network has many modeling 
features, such as multi-state variables, noisy gates, 
dependent failures, and general posterior analysis (Wilson & 
Huzurbazar, 2007) (Langseth & Portinale, 2007) (Doguc & 
Ramirez-Marquez, 2009). It also allows a compact 
representation of the temporal and functional dependencies 
among system components (Boudali & Dugan, 2006) 
(Weber & Jouffe, 2006).  

The main advantage of using BN in system reliability is its 
simplicity to represent systems and the efficiency for 
obtaining component associations. Another important 
benefit of BNs is that they enable us to integrate information 
from different sources, including experimental data, 
historical data, and prior expert opinion. This feature is 
particularly useful for the reliability assessment of fault 
tolerant systems, where failure data from tests and field 
operations are sparse and obtained from diverse source of 
information. Bayesian networks are particularly well suited 
to modeling systems that we need to monitor, diagnose, and 
make predictions about, all under the presence of 
uncertainty. 

However, one of the barriers to applying BN to real-world 
problems is to be able to adequately handle the “hybrid 
models”, which contain both discrete and continuous 
variables with general static and time-dependent failure 
distributions. Despite the advances in BN researches, the 
previous applications of BNs as mainstream technology for 
SHM problems remain modest. To date, the BN framework 
has only partially addressed these limitations (Lauritzen & 
Jensen, 2001) (Moral, Rumi, & Salmeron, 2001) (Lerner, 
2002) (Shenoy, 2006). The vast majority of BNs used in real 
world applications are either purely discrete or purely 
continuous. 

For hybrid BNs containing mixtures of discrete and 
continuous nodes with non-Gaussian distributions, exact 
inference becomes computationally intractable (Boyen & 
Koller, 1998). The common approach to handling (non-
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Gaussian) continuous nodes is to discretize them using some 
pre-defined range and intervals (Neil, Tailor, Marquez, 
Fenton, & Hear, 2007). This is cumbersome, error prone and 
usually inaccurate. 

Even though a universal framework for hybrid BN is 
currently impracticable, a special case algorithm can be 
effective in SHM where a relatively small subset of possible 
values covers a large proportion of all possible values 
typically encountered. This paper presents a hybrid BN-
based methodology for component degradation model and 
efficient algorithms to apply them in online health 
monitoring of complex systems. 

The focus of this research is to enable probabilistic 
diagnosis and prognosis of system in real-time by 
optimizing Markov Chain Monte Carlo inference with pre-
computation and dynamic programming to reduce the 
computation time and number of inferences required. 
Efficient computation allows on-line system monitoring and 
provides on-demand system health inquiry for operators to 
make maintenance decision and to prioritize which part of 
the system to investigate to avoid an accident. 

2. PROPOSED METHODOLOGY 

2.1. Hybrid Bayesian Network 

For SHM modeling, it is advantageous and intuitive to 
consider a hybrid system, typically with the continuous 
variables being modeled as continuous and the system’s 
functionality probability being discrete. 

 
Figure 1: Overview of different levels in SHM Bayesian 

Network 

The proposed complex system hybrid BN can be separated 
into 5 levels as shown in Figure 1, according to the typical 
characteristics of the nodes. The BN combines high-level 
functionality nodes with low-level physical of failure nodes. 
Here are the descriptions of each level:  

1. System node: this is the highest level of nodes with no 
children. It represents the state of the whole system 
and usually indicates whether or not the system is 
working as intended. 

2. Functionality probability nodes: these nodes are 
designed to be abstract discrete nodes that represent 
various functionalities, which are required for the 
system to operate. 

3. Component status nodes: these are continuous nodes 
representing states of physical components susceptible 
to specific failure mechanisms in the system. These 
values should be measurable directly or indirectly. 

4. Factor nodes: these nodes contribute to the degradation 
of the components. They can be component internal 
factors related to material properties or physical 
characters, or they can be external factors such as 
environmental stress or temperature.  

5. Parameter nodes: these nodes are hyper-parameters 
that describe probability distributions of the factors. 

It is to be noted that each level does not have to be only one 
layer as shown in Figure 1, it can be a combination of 
different layers of nodes that have the same type. 

Reliability concerns arise when some critically important 
materials or devices degrade with time. Let C represent a 
critically important material/device parameter. This 
parameter degrades over the life of the component. The 
value itself can either increase (threshold voltage of a 
semiconductor device, increase in leakage of a capacitor, 
increase in resistance of a conductor) or decrease (decrease 
of pressure in a vessel, decrease of spacing between 
mechanical components, decrease in lubricating properties 
of a fluid). Figure 2 presents the SHM BN at a specific time, 
𝑡. The shaded areas show continuous nodes that are related 
to each component. 

 
Figure 2: SHM Bayesian network at specific time t. 

A Taylor expansion about t=0 produces the Maclaurin 
Series, assuming that C changes monotonically and 
relatively slowly over the lifetime of the material/device: 

 𝐶 𝑡 = 𝐶!!! +
𝜕𝐶
𝜕𝑡 !!!

𝑡 +
1
2
𝜕!𝐶
𝜕𝑡!

!!!
𝑡! +⋯ (1) 
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By assuming that the higher order terms in the expansion 
can be approximated by simply modeling degradation of 
component/device parameter C with a power-law equation: 

 𝐶 = 𝐶! 1 ± 𝐴!𝑡!  (2) 

Where 𝐶! is the value of 𝐶 at 𝑡 = 0, 𝐴! is material/device-
dependent coefficient, and 𝑚 is the power-law exponent. 
Both 𝐴!  and 𝑚  are parameters that can be learned from 
component/device degradation data. Summation (+) is used 
when the parameter 𝐶 increases with time, while subtraction 
(-) is used when the parameter 𝐶 decreases with time. 

𝐴! is generally material/microstructure dependent. It is not 
only a function of material variations, but also a function of 
other factors, such electrical, thermal, mechanical and 
chemical environments to which the device is exposed. 

 𝐴! = 𝐴! 𝐹!,… ,𝐹!  (3) 

Therefore, we have: 

 𝐶 = 𝐶! 1 ± 𝐴! 𝐹!,… ,𝐹! 𝑡!  (4) 

𝑚 and other parameters are considered to be constant for the 
component/device. Considering a Bayesian network at a 
time slice of a given system, 𝑡 is then constant and indicates 
the current life of the component/device.  

For a component/device to fail, the amount of degradation 
must reach a critical value, 𝐶!"#$ . Therefore, the time to 
failure, 𝑇!"#$%&', is then: 

 𝑇!"#$%&' =
1

±𝐴! 𝐹!,… ,𝐹!
𝐶!"#$ − 𝐶!

𝐶!

!/!
 (5) 

Since the component parameter and their parents are 
continuous nodes, and the functionality probability nodes 
are discrete, the interface between these different types of 
nodes becomes critical. In general hybrid BNs, when 
continuous nodes have discrete parents, there are simple 
conditional inference techniques such as in conditional 
linear Gaussian (CLG) model. Difficulty arises when 
discrete nodes have continuous parents, which is the case 
for our SHM network. However in this case, even though 
discrete functionality probability nodes have continuous 
component status nodes, they are related by degradation 
thresholds. 

Discrete functionality nodes can contain more than 2 states 
with thresholds between the transitions of one state to the 
other. Let the threshold value between functionality state 𝑖 
and 𝑗 be 𝐶!!,!/!. The most common case would be state 𝑖 
denotes the component function, and state j denotes the 
component does not function. Let 𝑃! be the probability of 
functionality being in state 𝑖. The probability 𝑃! is then the 
probability that the component status 𝐶 is lower than the 
threshold value 𝐶!!,!/!. Figure 3 shows a typical component 

exponential degradation function and the overlap of 
probability distributions of 𝐶 and 𝐶!!,!/!. 

 
Figure 3: Overlap of probability distribution of component 

status and its threshold. 

Let a functionality node has 𝑛 states, the probabilities of 
being in the states are 𝑃!,… ,𝑃!. Assume the state of the 
functionality node changes monotonically according to the 
component degradation status: 

 𝐶!!,!!!/! < 𝐶!!,!/!!!  for 𝑖 = 2,… , 𝑛 − 1 (6) 

Therefore, 

 𝑃! = 𝑝𝑟𝑜𝑏 𝐶!!,!!!/! < 𝐶 < 𝐶!!,!/!!!  (7) 

Analytically, 𝑃!  can be calculated from the following 
convolution equation: 

 

𝑃!

= 𝑝 𝐶!!,!!!/! ∙ 𝑝 𝐶

!!!,!/!!!

!!!,!!!/!

!

!!!,!!!/!

!!!,!/!!!

!!

∙ 𝑝 𝐶!!,!/!!! 𝑑𝐶𝑑𝐶!!,!/!!!𝑑𝐶!!,!!!/! 

(8) 

If there are many component critical parameters contribute 
to this functionality then the state of the functionality node 
conditionally depends on comparison between the status of 
each component and its threshold values. 

2.2. Dynamic Bayesian Network 

Dynamic Bayesian Network (DBN) is a Bayesian network 
that includes a temporal dimension. This new dimension is 
managed by time-indexed random value 𝑡 to indicate time 
stage of the nodes. A set of nodes at certain stage contains 
random variables relative to time slice 𝑡. An arc that links 
two variables belonging to different time slices represents a 
temporal probabilistic dependence between these variables. 
Variables can be modeled to have impact on the future 
distribution of the other variables. These impacts are defined 
as transition probabilities between the stats of variables at 
time step 𝑡 and 𝑡 + ∆𝑡. 
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A DBN describes the joint distribution of a set of variables 
θ. This is a complex distribution, but may be simplified by 
using the Markov assumption. The Markov assumption 
requires only the present state of the variables θt to estimate 
θt+1, i.e. p(θt+1|θ0,...,θt) = p(θt+1|θt) where p indicates a 
probability density function and bold letters indicate a 
vector quantity. Additionally, the process is assumed to be 
stationary, meaning that p(θt+1|θt) is independent of t. 

For SHM Bayesian network, the main variables that change 
between time slices are component parameters. Components 
degrades over time, therefore, the status of components at a 
certain time slice depend on their status at the previous time 
slice and the factors affecting the degradation processes 
during that transition. 

 𝑝 𝐶! = 𝑝 𝐶|𝐶!!∆! , 𝐹!!,… ,𝐹!!  (9) 

Given that 𝐹!! is the average value of factor 𝑖 between time 
slice 𝑡 − ∆𝑡 and 𝑡.  

Figure 4 shows a two-time-slice representation of a dynamic 
SHM Bayesian network. ∆𝑡 should be set according to the 
system under interest and how often the parameters can be 
observed, such as frequency of sensor signals. 

 
Figure 4: Two-time-slice representation of a dynamic SHM 

Bayesian network 

At any point in time during system operation, any value of 
variables in the system can be derived by probabilistic 
inference to compare with its expected value to see if the 
probability is still in the acceptable range and the system as 
a whole is working as intended. With continuous 
monitoring, the trajectory of the degradation processes can 
be estimated form our knowledge of the health of the 
system. We can then use this information to estimate 
remaining useful life (RUL) of components and plan 
maintenance accordingly.  

2.3. Inference 

Bayesian network is a complete model for the variables and 
their relationships. Therefore, it can be used to answer 

probabilistic queries about them. The main application is to 
use BN to realize updated knowledge of the states of a 
subset of variables, when the other variables (the evidence 
variables) are observed.  

Bayes’ rule with continuous variables: 

 𝑝 𝜃|𝐷 =
𝑝 𝐷 𝜃 𝑝 𝜃
𝑑𝜃  𝑝(𝐷|𝜃)𝑝 𝜃

 (10) 

Let 𝜃  be a parameter value and 𝐷  is data value of the 
evidence, 𝑝 𝜃|𝐷  is then the posterior probability of getting 
parameter value 𝜃 when data value 𝐷 is presented. 

In real world SHM applications, there are various types of 
parameter distributions, which make it difficult to calculate 
full marginal distributions analytically. Therefore, sampling 
techniques can be used to approximate the distributions 
instead. Expected values of a distribution can be estimated 
as follow: 

 𝐸 𝑝 𝜃|𝐷 ≈
1
𝑁

𝑝 𝜃(!)|𝐷
!

!!!

 (11) 

Where 𝜃(!),… , 𝜃(!) are the sample values of parameter 𝜃. 

There are many ways to sample these values, the key idea is 
to let 𝜃 values be points in state space and find a way to 
walk around so that the likelihood of visiting any point 𝜃 is 
proportional to 𝑝 𝜃 . Therefore, the sampler will spend 
more time sampling from the distribution where the 
probability is high, and spending less time sampling from 
where the probability is low. This can be achieved by using 
Markov chain Monte Carlo (MCMC) algorithm (Cousins, 
Chena, & Frisse, 1993) (Dagum & Horvitz, 1993).  

MCMC algorithms produce random walks over a 
probability distribution. By taking a sufficient number of 
steps in this random walk, the MCMC simulation algorithm 
visits various regions of the parameter space in proportion to 
their posterior probabilities. We can, for inferential 
purposes, summarize the iterates obtained in these random 
walks much as we would summarize an independent sample 
from the posterior distribution.  

The procedure for updating the belief about the system state 
as new information becomes available is called Bayesian 
recursive filtering. 

 𝑝 𝜃!|𝐷!:! =
𝑝 𝐷! 𝜃! 𝑝 𝜃!|𝐷!:!!!
𝑑𝜃  𝑝 𝐷! 𝜃! 𝑝 𝜃!|𝐷!:!!!

 (12) 

Under certain assumptions, such as when the system is 
linear Gaussian, the belief state will be of a known 
parametric form and computationally efficient solutions to 
the filtering problem (e.g. Kalman filter, extended Kalman 
filter, unscented Kalman filter) are available. Outside such 
assumptions, a computationally feasible method for 
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inference in the DBN is particle filtering, a form of 
sequential Monte Carlo based on Bayesian recursive 
filtering. Common particle filtering methods are based on 
sequential importance sampling (SIS) (Chen, 2003). 

3. COMPUTATIONAL ALGORITHM 

In highly complex systems, MCMC algorithm requires large 
amount of computational time for inference in hybrid DBN. 
The computation time grows exponentially with each 
additional layer of network and becomes infeasible with 
large number nodes. The computation time makes it 
impossible for on-line health monitoring of complex 
systems. To solve this problem, special case algorithm for 
SHM is introduced to reduce the number of computations 
and the amount of time required for each computation. 

One of the main characteristics of SHM in contrast of other 
applications is that during a normal operation, the 
environmental factors that affect component degradation 
process are expected to be roughly the same and predictable. 
Therefore, instead of performing Bayesian updating at a 
specific time interval, it only needs to be done when a factor 
value changes outside of expected range. 

 𝑓! − 𝑓!!! > 𝜖! (13) 

Where 𝜖! depends on the sensitivity of component status 
due to the change in value of that factor. Please note that 
this is possible because component status is a function of 
time. Therefore, the degradation of a component between 
time period ti to tj where the change in factor value is less 
than 𝜖!  will take a normal distribution 𝒩 𝜇! ,𝜎!  for 
Δ𝑡 = 𝑡! − 𝑡!. 

3.1. Pre-computation 

Since the values are predicted to be in certain ranges, it is 
possible to perform pre-computation for all combinations of 
possible values in the ranges before the system is in 
operation. The results are then stored in a database, such 
that they can be pulled quickly to approximate the 
inferences in real-time. More computation should be 
conducted and more results should be added to the database 
as the health of the system is being monitored such that the 
database will cover all the possible computations that may 
be needed in the future. 

With continuous range of parameter values, it is impossible 
to pre-compute every possible outcome. The goal of pre-
computation is to cover enough values of observable 
parameters, so that the values of unobservable parameters 
can be accurately interpolated from the results. 

There are two factors in considering the selection of 
possible values. 

First is the range of observable parameters after a time 
period ∆𝑡. The selections should cover full range of possible 

values. There should be at least one selected value at lower 
bound and one selected value at upper bound. The common 
range is from 5th percentile to 95th percentile, or more 
accurately 0.5th percentile to 99.5th percentile. 

Second is the number of selections within the bound: the 
higher the number of selections, the more accurate results 
from interpolation will be. The density of selections should 
be proportional to the probabilistic density of the observable 
parameters. For example, if there is N number of selections 
per variable, the selections are: 

 𝐶! = 𝐶!!"#!! ,𝐶!!"#!!"! ,𝐶!!"#!!!"! ,… 𝐶!!!"!!!  (14) 

 𝛿 =   
𝑝!!"! − 𝑝!"#
𝑁!"#"$%&'(! − 1

 (15) 

Therefore, for a given measurement interval ∆𝑡, we can 
estimate the set of possible values and use those values to 
pre-computed possible outcomes. 

There are two different types of observable parameters. The 
first one is the parameters that change over time. This is 
usually the case for component status parameters. For pre-
computation to be feasible, the changes must be predictable. 
For a component status parameter, the change in value can 
be computed from its degradation equation for a given ∆𝑡. 
Figure 5 shows example expected value, 5th percentile, and 
95th percentile values. 

 
Figure 5: Example component status degradation with 5th 

percentile, and 95th percentile values. 

For this case, the range of possible values grows over time. 
Therefore, the number of selections should increase 
proportionally with the range to keep the interval between 
selected values the same, thus, keep the accuracy of 
interpolation constant. 

The other type of observable parameters is constant 
parameters. These parameters are usually Gaussian 
distributed. For this case, the range always stay constant, 
therefore, the selections remain the same throughout the life 
of the component. 

One advantage of the isolation among component sub-tree is 
that time intervals do not have to be uniform for all 
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components. Measurement/inspection intervals can be based 
on the rate of component degradation and possible change to 
component parameters. They can also be dynamically 
changed during the life a component depending on its status.  

For example there can be less frequency of measurements 
during the early life of a component due to less probability 
of failure. Then increase the frequency when the component 
approaches the end of life. 

 ∆𝑡 ∝
1
∆𝐶

 (16) 

The time interval between measurements, ∆𝑡, should then be 
inverse proportional to the amount of change of the 
parameter 𝐶. Therefore, the sampling rate around a certain 
evidence value will be proportional to the probability that 
the evidence value could happen and how much different in 
values to the possible values around it at certain period of 
time.  

If the observed values are always in the predicted range, the 
accuracy of the results depends upon the number of 
selections for pre-computation. The number of selections is 
the number of selections at each time-slice multiplies be the 
number of measurement intervals. The number of pre-
computations is then the number selections for each 
observable times the number of observables parameters.  

 𝑁!"#!!"#$%&'&(") = 𝑁!"#!"#$%&',!,!!(!∆!)

!

!!!

!!/∆!

!!!

 (17) 

Where 𝑁!"#"$%&'(!,!,!  is the number of selections of 
observable parameter 𝑖  at time 𝑡 . 𝑛  is the number of 
observable parameters. 𝑇! is the component life. 

The total computation time then can be estimated. 

 𝑇!"#!!"#$ = 𝑁!"#!!"#$ ∙ 𝑇!"#$!%#!!"#!!"#$ (18) 

For MCMC computation, the average computation time is 
proportional to the number iterations. The higher the 
number of iterations, the higher accuracy of the result will 
be. Therefore, there is a tradeoff between computation time 
and accuracy. For pre-computation, the decision between 
higher number of value selections or higher number of 
iteration per computation must be made. 

3.2. Dynamic Programming 

Dynamic programming is a method for solving complex 
problems by breaking them down into simpler subproblems. 
It is applicable to problems exhibiting the properties of 
overlapping subproblems and optimal substructure. When 
applicable, the method takes far less time than naive 
methods that don't take advantage of the subproblem 
overlap. 

In general, to solve a given problem, we need to solve 
different parts of the problem (subproblems), then combine 
the solutions of the subproblems to reach an overall 
solution. Often when using a more naive method, many of 
the subproblems are generated and solved many times. The 
dynamic programming approach seeks to solve each 
subproblem only once, thus reducing the number of 
computations: once the solution to a given subproblem has 
been computed, it is stored the next time the same solution 
is needed, it is simply looked up. This approach is especially 
useful when the number of repeating subproblems grows 
exponentially as a function of the size of the input. 

Using dynamic programming can reduce the pre-
computation time for Bayesian Network inference 
drastically. Instead of computing full inferences for each set 
of evidence values, dynamic programming algorithm retain 
marginal results that can be reused with similar set of 
evidence values.  

There are three steps for the algorithm. First, use logic-
sampling algorithm and degradation model to generate all 
possible evidence values according to its probability of 
occurring. Not all evidence nodes have to be instantiated for 
each case, only the evidence nodes that are required for 
observing nodes are instantiated. 

Second, check and construct a cache by comparing each 
generated case to those already in the cache. If the case is 
found to be new, this algorithm determines, the joint 
probability of the case’s evidence using the algorithm in the 
third step. 

Third, the marginal posterior-probability distributions over 
the diagnosis nods are determined, then the values of the 
evidence nodes, the joint probability of the evidence set, and 
the marginal posterior-probability distributions for the 
diagnosis node are stored in the cache. 

Figure 6 shows two example cases where dynamic 
programming can reduce the number of computation. The 
first case is when nodes have the same set of parent nodes, 
thus the same sets of possible marginal probability 
distributions for discrete nodes. The second case is when 
continuous parameters have several trajectories that can 
reach the same values after some period of time. 

	  
Figure 6: Example cases where dynamic programming 

reduces number of computations 
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In addition, if more computations are needed during an 
operation in the event where evidence values reaches the 
bound of expected values, dynamic programming provide a 
set of marginal results that can be used for possible faster 
inference of values outside the pre-computed cache. 

Since both deterministic and approximate inference were 
found to be NP-hard (Cooper, 1990) (Dagum & Luby, 
1993), the computation complexity for both discrete 
functionality and continuous component degradation model 
are exponential in the network’s treewidth. Figure 7 shows a 
plot presenting differences between pre-computation time 
with and without dynamic programming. Without storing 
marginal probability distribution results for further 
computations, all approximate inference computations are 
required for pre-computation, thus increases computation 
time exponentially with network’s treewidth. 

 
Figure 7: Inference pre-computation time with and without 

dynamic programming. 

3.3. Efficient Dependency Algorithm 

In the case that components in the system are dependent to 
each other because there have common factors, an efficient 
algorithm is required to maintain the proposed modular 
component model. 

 
Figure 8: BN of components with common factor 

Figure 8 shows an example of 2 components system where 
both component shares the same factor (Ft

1,n and Ft
2,1). The 

common approach is to combine the nodes, however, this 
method is not ideal due to the following reasons: 

First, even though the components share the same factor, 
there is very likely a spatial different between the two 
components. By combining the nodes, the possibility of 
decoupling them is eliminated from future analysis. For 
example, two components are directly in contact of each 
other and they are assumed to always have the same 
temperature. There is a chance that in some scenarios, the 
two components are separated due to an external event or 
unexpected degradation, the model should be flexible 
enough to handle this situation. 

Second, combining the nodes makes the model no longer 
modular. Continuous variables inference cannot be done 
within the component sub-system. This leads to huge 
increase in complexity and computation time. 

 
Figure 9: Proposed BN with observable common factor 

Let Dt be a node representing the value observed from a 
detector/sensor used to measure a common factor. If the 
common factor is observable, factor Ft

1,n and Ft
2,1 can be 

directly derived from the measurement value of Dt. 
Therefore, inference calculations for each component stay 
modular. Figure 9 shows the proposed BN when the 
common factor is observable. 

 𝑝 𝐶! = 𝑝 𝐶|𝐶!!∆! , 𝐹!!,… ,𝐹!!  (19) 

 𝑝 𝐹!
!,! = 𝑝 𝐹!

!,!|𝐷!  (20) 

If the common factor is unobservable, the inference 
calculation can be done by placing a hidden node Dt as an 
imaginary measurement node between Ft

1,n and Ft
2,1, shown 

in Figure 10.  

 
Figure 10: Proposed BN with unobservable common factor  
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Since we know that Ft
1,n and Ft

2,1 are more likely to have the 
same value, p(Ft

1,n,Ft
2,1)  is expected to have a distribution 

similar to Figure 11. 

 
Figure 11: Probability distribution of the common factor. 

One method to reduce computation complexity and keep the 
inference calculation modular is to incorporate pre-
computation approximation. Pre-computation generates 
possible subsets of values of variables according to their 
probability distribution. For this case: 

 𝑓𝑜𝑟  𝑝 𝑃!!|𝐶!!,𝐶!! ~∀𝑖, 𝑗  𝑝 𝑃!!| 𝐶!! ! , 𝐶!! !  (21) 

Therefore, the combination of 𝐶!! ! , 𝐶!! !  that have 
higher probability are the ones that the values of Ft

1,n and 
Ft

2,1 are similar.  

 𝑝 𝐶!! ! , 𝐶!! !   |𝐹!
!,! ≈ 𝐹!

!,! > 𝑝 𝐶!! ! , 𝐶!! !   |𝐹!
!,! ≉ 𝐹!

!,!  (22) 

Using this method, the most probable explanation (MPE) 
can be derived in real-time from the pre-computation cache. 

In summary, this section presented new comprehensive 
computational algorithms that support the proposed SHM 
model with dependency between components. The 
combination of pre-computation and dynamic programming 
techniques is shown to be a feasible method for real-time 
system-wide inferences in complex hybrid BN. 

4. EXAMPLE APPLICATION 

Consider integrated circuits (ICs) with both electromigration 
(EM) and stress migration (SM) degradations. Let C(1) and 
C(2) be component status degrading under EM and SM 
respectively.  

 𝐶!" = 𝐶!!" 1 − 𝐴!!"   𝐽(!) − 𝐽!"#$
(!)   

!!"
exp

−𝑄!"

𝐾!𝑇
𝑡!!"  (23) 

 𝐶!" = 𝐶!!" 1 − 𝐴!!" 𝐿 !!" exp
−𝑄!"

𝐾!𝑇
𝑡!!"  (24) 

𝐽(!)  is the electron current density. 𝐽!"#$
(!)  is a critical 

(threshold) current density which must be exceeded before 

significant EM is expected. 𝐿 is the tensile stress in the 
metal for a constant strain. 

The BN model of a component affected by EM and SM is 
shown in Figure 12. 

 
Figure 12: BN of a component with EM and SM 

degradations 

Assume 𝐽(!) , L, and 𝑇  are expected to be normally 
distributed between time t-1 to t,  

 𝐽(!) = 𝒩 𝜇!,𝜎! , 𝐿 = 𝜇! ,𝜎! ,𝑇 = 𝒩 𝜇! ,𝜎!  (25) 

In the context of simple health monitoring in this example, 
𝐴!,  𝑄, 𝑟, and 𝑚 are considered to be constant parameters 
representing material/device internal factors. These 
parameters can also be modeled with probabilistic 
distributions. 

Consider an Al-alloy under high temperature operation, with 
current density J = 2×106 A/cm2 and at a metal temperature 
T = 200 °C. Assume an activation energy of Q = 0.8 eV for 
electromigration and 0.6eV for grain boundary diffusion.  

 

 
Figure 13: Current density and temperature data set 
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The current density exponent of n = 2 and stress migration 
exponent of n=2. Using conservative design approach, 
assume Jcrit = 0. 

The data of current density and temperature, show in Figure 
13, is retrieved once per hour during 60 hours of operation. 
Figure 14 shows an example plot of component degradation 
under electromigration vs. time at different current density 
and temperature, including from the data set. Approximate 
inference of component parameter is available almost 
instantly with pre-computation of Ct at t = 1,…,60, with the 
range of J between 1.8×106 A/cm2 to 2.2×106 A/cm2, and T 
between 90°C to 120°C. 

 
Figure 14: Plot of component parameter CEM vs. time at 

different J and T, including from the data set 

With traditional BN modeling, both failure modes have 
temperature as a common factor. Therefore, the component 
parameters, CEM and CSM, have the same parent node, T. 
In this case, any approximate inference will require full 
marginal distribution of both failure mode variables. The 
amount of time for sampling and computation increases 
exponentially with the number of variables in the inference 
calculation. With the proposed technique, the failure modes 
stay modular and approximate inferences can be achieved at 
much lower cost because of lower number of variables in 
the calculation. For this example, approximate inference 
calculation will only involve parameters of failure mode EM 
and failure mode SM, but not both of them combined. 

This also allows real-time inquiry of the states of 
degradations of all components in the system without 
computing full inference of all nodes every time there is 
new information. In real applications, a sensor on tensile 
stress may collect data every second, while another sensor 
on current density collect data every a tenth of a second. 
The health information of the system can be updated every 
tenth of a second, without having to performing 
approximate inference for EM failure mode as often. 

Consider a more complex example where the system 
consists of 50 electrical components that have 2 failure 
modes. Figure 15 shows a plot of amount of time required 
as a function of number of failure modes that have the same 
dependent factor. Assume it takes 1 second to calculate 
1,000 iteration of an average marginal distribution 
computation and an approximate inference requires 10,000 
iterations to reach reasonably accurate result. Using the 
proposed technique, the computation stays roughly the 
same, while traditional computation time increases 
exponentially with the number of dependent failure modes. 

 
Figure 15: Plot of computation time vs. number of failure 

modes with the same dependent factor 

As mentioned in the previous section, with pre-computation 
method, the accuracy of inference computation depends 
mainly on the number of selections of possible values of the 
variables. Using EM failure mode in the earlier example, 
Figure 16 shows the average percentage of accuracy against 
the number of selections of J and T values. 

 
Figure 16: Plot of percentage of accuracy vs. number of 

selections of J and T values 

The optimal number of selections depends on the accuracy 
required by the particular application and how much pre-
computation time is available. In more complex system, the 
number of selections should also be varied depending on the 
sensitivity of each variable.  
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5. CONCLUSION 

This research presents new modeling approach, 
computational algorithms, and an example application for 
efficient dependency calculation in on-line System Health 
Management. Hybrid dynamic Bayesian network modeling 
were introduced with component-based structure and 
algorithm to represent complex engineering systems in a 
way that it allows accurate representation of underlying 
physics of failure by using empirical degradation model 
with continuous variables. With dynamic hybrid Bayesian 
Network model requiring Markov Chain Monte Carlo for 
probabilistic inference, this paper develops computational 
algorithms that enables monitoring and diagnosing complex 
systems in real-time. The algorithms use the characteristics 
of System Health Management applications to allow 
reduction of number of inference required and reduce the 
calculation time by the means of pre-computation and 
dynamic programming. 
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ABSTRACT 

Phased array antennas are widely used in many applications 
and consist of many antennas coupled together to enable 
digital beam-forming. As transmit/receive elements begin to 
degrade and eventually fail the antenna’s beam will distort 
from the desired pattern.  We propose a novel optimization 
algorithm which takes into account not only the current 
state-of-health of the system, but potential future states-of-
health from prognostic observations.  The approach can be 
run entirely off-line (before the start of a mission), so 
requires no additional computational resources or sensors be 
added to the system and does not require the system to be 
able to detect the degradation/failures during a mission.  Our 
main objective is to trade some current optimization 
flexibility for improved system robustness under future 
failures. 

1. INTRODUCTION 

Phased array antennas (Hansen, 2009) are used in many 
domains such as radars, communications, satellites, and 
weather research and many deployed systems exist across 
airborne, ground, maritime and space domains.  They are 
composed of many individual elements and the radiation 
pattern depends on each element’s location, excitation 
magnitude and phase.  As elements degrade and eventually 
fail this affects the ability of the array antenna to produce 
the desired radiation pattern. 

Typically the location of the elements is fixed, however by 
adjusting the excitation magnitude and phase through digital 
beam-forming the radiation pattern (known as the beam) can 
be steered, made broader or narrower, regions of enhanced 
or nulled coverage can be created etc. without any 
mechanical rotation of the antenna.  Array optimization or 
reconfiguration is the process of generating the parameters 
for the excitation magnitude and phase of each element to 
adapt the overall beam to the desired pattern.  Most existing 
approaches are designed for offline use prior to start of a 

mission or task.  They analyze the current state-of-health of 
the system, such as which elements are fully functional and 
which are failed, and then performs the optimization.  In 
instances where failures can be detected during the mission 
these techniques can be rerun to compensate for failures. 

The approach presented here assumes that we do not have a 
way of reliably detecting degradation or failures while in 
operation, however we may have the ability to detect which 
elements are at risk of failing in the near future (e.g. maybe 
they have already begun to degrade or are being heavily 
stressed by current usage).  Additionally some new array 
materials such as GaN may provide prognostic observables 
prior to failures.  We go beyond current techniques by not 
only optimizing over the current state-of-health, but also 
performing a preemptive optimization over potential future 
states-of-health.   

This preemptive optimization is much more robust because 
it allows us to maintain mission specifications of our system 
even in the presence of undetected future failures which 
might occur during the mission.  Overall this will help 
improve the system’s affordability and survivability as 
repairs can be delayed or shifted to more convenient times, 
such as delaying them till access to external test/repair 
equipment is available.  This graceful degradation or self-
healing can lead to important performance improvements. 

2. ARRAY OPTIMIZATION 

An array’s radiation pattern is a function of each element’s 
location, excitation magnitude, and phase.  An example 
beam pattern from a 32 element linear array is depicted in 
Figure 1.  Many techniques exist for determining the 
excitation magnitude and phase parameters for each element 
to control the beam. 

Some beam control may involve steering the beam or trying 
to optimize a cost criteria such as maximum side-lobe level 
(SLL), average SLL, or cumulative difference.  Many 
techniques have been developed over the years to optimize 
the desired beam pattern.  Some of the most common 
include genetic algorithms (Yeo & Lu, 1999), stochastic 
optimization (such as Particle Swarm Optimization - PSO) 

David Allen. This is an open-access article distributed under the terms of 
the Creative Commons Attribution 3.0 United States License, which 
permits unrestricted use, distribution, and reproduction in any medium, 
provided the original author and source are credited. 
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(Yeo & Lu, 2009)(Boeringer & Werner, 2004)(Khodier & 
Al-Aqeel, 2009), and hybrid approaches (Yeo & Lu, 2005). 

Some approaches have also been developed to handle re-
optimization after element failures (Joler, 2012)(Keizer, 
2007).  These are mostly performed off-line prior to a 
mission.  There have been some attempts at detecting 
failures while the array is in use and doing very efficient 
heuristic compensation (Levitas et al., 1999). 

The radiation pattern can be generated from the array factor 
(AF) given by (Boeringer & Werner, 2004): 

  



N

n

dnj

neAAF
1

)sin()/(2 
  (1) 

where N is the number of radiating elements, An are the 
complex element weights for excitation magnitude and 
phase, and d/λ = ½ is the spacing between elements 
normalized by the wavelength. 

Particle Swarm Optimization 

Particle swarm optimization (PSO) is a generic optimization 
approach to iteratively improve the current best solution 
with regard to a given metric and has been used extensively 
for optimizing phased array antennas.  The basic concept is 
that there is a swarm of particles where each is a possible 
solution (i.e. a setting of all elements’ excitation magnitude 
and phase parameters).  These particles move through the 
solution space based on their own local observations and 

also the best known position of the swarm in the overall 
search-space.  This allows it to be guided to regions of 
known good quality while still allowing particles to explore 
unknown regions in search of better solutions.  In practice, 
as the algorithm progresses the particles will move toward 
near-optimal solutions. 

Algorithm 1 presents the pseudo code for PSO.  After 
initialization it iteratively updates each particle’s velocity 
and position; then it computes a cost function to determine 
if the position is better than previously observed positions.  
PSO is therefore general enough that it can optimize over 
various different cost functions.     

The results of PSO are not guaranteed to be optimal, 
however in practice the optimization converges to near 
optimal results fairly quickly and in many instances have 
been shown to outperform other approaches such as genetic 
algorithms (Yeo & Lu, 2009)(Boeringer & Werner, 2004). 

Some typical cost functions used for phased array 
optimization include: 

Maximum side-lobe level (or Peak side-lobe level): the 
largest side peak of the beam pattern relative to the main 
beam 

Average side-lobe level: the average of the side-lobe peaks 
relative to the main beam 

 
Figure 1. Radiation pattern generated from a 32 element linear array. 
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Cumulative Difference: the area under the beam pattern 
but above a specified threshold (ignoring the main beam) 
(see portion shaded yellow in Figure 1). 

 
 

3. PREEMPTIVE OPTIMIZATION ALGORITHM 

As elements of the phased array antenna fail the radiation 
pattern will get distorted.  For example the main beam may 
broaden out or the side-lobes may increase above the 
desired threshold.  If you can detect the failure while the 
array is in the field then you can re-optimize the pattern to 
compensate for the distortion or degradation (Keizer, 2007).  
In many systems the engineering cost to add additional 
sensors to reliably detect the failures is prohibitive and 
therefore failures cannot be detected while system is in use 
and external test equipment unavailable.  However in some 
instances we may be able to detect potential future failures, 
such as elements that have not completely failed but have 
partially degraded, or elements which have been heavily 
stressed in the past, or those where we have prognostic 
observations predicting failure onset.   

In this work we propose a new optimization approach which 
not only leverages the system’s current state-of-health, but 
its potential future states.  Current algorithms monitor the 
current state-of-health and assume it is fixed, however in the 
real-world those elements will begin to degrade and 
eventually fail.  If left uncorrected, these can significantly 
affect the performance of the array.  Our novel optimization 

approach works by adapting the cost function used by the 
PSO algorithm. 

For simplicity we will assume either an element is failed or 
not (the algorithm can be extended to handle the case of 
degradation).   

Let F be a list of currently failed elements,  
(e.g.            ). 

Let P be a list of potential future failures,  
(e.g.            ).  

The standard approach to optimization would compute 
PSO(F).  It takes the current state-of-health as input and a 
previously defined cost metric.  The optimization generates 
a set of element parameters optimizing the beam with 
respect to the cost metric.  Failures of elements in F can be 
modeled by setting the excitation magnitude of those 
elements to 0. 

Our approach, PSO_Robust(F, P), takes as input both the 
current state-of-health and a list of potential future element 
failures.  In Algorithm 1, on line (2.a.iii) a cost function f(xi) 
is computed.  The input to this function is a current 
instantiation of all the elements’ parameters (hence with it 
you can compute the radiation pattern such as in Figure 1 
and compute the cost functions previously described).   

We will replace the cost function f(xi) with the following: 

   1 0,*)(,_ 



  P

Pp

piii xxfxfPxrobustf  (2) 

where |P| is the cardinality of P. 

What the above cost function does is compute the cost under 
the current-state-of-health, f(xi), and under each potential 
future state f(xi, xp=0) under the assumption of single future 
failure.  This function then combines these results using the 
geometric mean.  Other approaches could be used to 
combine the results (e.g. arithmetic mean [average] of the 
costs, weighted combination of current and average of 
potential states, etc.).  We chose to use geometric mean 
because it more heavily weights bad instances than the 
others.  For example under the above scenario where our 
potential future failures are 5, 20, and 30, if all degrade 
evenly it would not matter which cost function we chose, 
but let us assume a failure at 20 or a failure at 30 would 
degrade performance by a small amount but a failure at 5 
would severely impact performance since we already have 
3,4,6&7 failed and losing 5 creates a large clustered failure 
(i.e. no radiation from five consecutive array elements).  If 
xn handles the future case of a failure at 5 better than xm then 
we would like the cost function to measure that, and in 
general we are more worried about worst case single failures 
(as they may potentially happen) more than average case 
results.  This ensures that if that failure happens we will 
maintain our mission specifications under that specific 
condition rather than the average of all future states.   

Algorithm 1. Particle Swarm Optimization (PSO)  
Pseudocode 
1. Initialization  

a. For all particles 
i. Set position uniformly distributed xi = U(blow, 

bup);  
where b defines the search space and low is the 
lower bound and up is the upper bound 

ii. Set velocity vi=U(-|bup-blow|, |bup-blow|) 
iii. Initialize the particle’s best known position (pi) 

b. Initialize swarm’s best known position (g) 
2. Repeat until termination criteria met 

a. For each particle i 
i. Update the velocity (vi,d) for each dimension d 

based on PSO update function 
ii. Update the position xi = xi+vi 

iii. Compute cost function: f(xi) 
iv. If( f(xi) better than f(pi)) 

1. pi = xi; Update the particle’s best known 
position 

v. If( f(xi) better than f(g)) 
1. g = xi; Update the swarm’s best known 

position 
3. Return g, the best solution found 
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This approach does incur a penalty for this improved 
robustness.  The generated radiation pattern under the 
current state-of-health will not be quite as good with respect 
to the cost metric, however if any of the potential failures 
occurs it will maintain a more desirable beam pattern.  
Additionally the metrics can be analyzed a priori to 
determine if failures would result in performance below 
mission specifications.  This improved robustness, at the 
expense of a reduced performance, can be very desirable in 
many application domains such as where online detection of 
failures is infeasible either technically or due to cost of 
additional sensors. 

4. EXPERIMENTAL RESULTS 

We have implemented the above algorithm and performed 
experiments on a linear array, however the approach is 
completely general and could be used for other array 
configurations such as two dimensional arrays.  The results 
we present are using the cumulative difference cost 
function, but we have experimented with other various cost 
functions with similar results. 

Table 1 shows results where the current health of the system 
is fully functional and the only potential future failure is 
element 5.  Running PSO results in a beam pattern where 
the cumulative difference is 49.63, whereas the robust 
version’s difference is 59.92 (lower is better).  These 
correspond with the Max Peak SLL shown on the left, 

where the difference is only .01 dB (-16.46 vs. -16.47).  
However if element 5 does fail the cost metric for the PSO 
optimized beam shoots up to 69.53 compared with only 
40.86 for the robust version.  Similarly this results in a peak 
side-lobe level which is 2.5 dB better. 

Figure 2 depicts the beam patterns of both the standard PSO 
and our robust extension under the case of a fully health 
array and Figure 3 depicts them in the case of an undetected 
or uncompensated failure at element 5.  As can be seen in 
Figure 2 both algorithms have relatively similar main beams 
and peak side-lobe levels, however under future failure of 
element 5 (Figure 3) the side-lobe closest to the main lobe 
jumps dramatically under standard PSO, while the robust 
PSO can still maintain similar performance. 

For a slightly more complex case, we look at Table 2, where 
the current state-of-health has elements 3, 4, 6, & 7 all failed 
and 5, 20, & 30 are potential future failures.  In this case our 
initial penalty for incorporating robustness is only 5.39 
(34.57 vs. 29.19), but under any failure the benefit is fairly 
substantial (119.72, 118.11, and 63.19).  Figures 4-7 show 
the patterns for the current state-of-health of the array as 
well as for each of the 3 potential states of the array.  
Similar to the previous example under the different future 
failures the robust algorithm does in face maintain not only 
a better cumulative cost function (which is what it optimized 
over) but the peak side-lobes also are maintained.  If we 
directly optimize peak SLL we might see even further 
improvements, however our goal was to maintain the entire 
pattern, hence the choice of the cumulative difference 
metric. 

 
 
 

Table 1. Results showing the max peak SLL and 
cumulative difference cost function for standard PSO 
(top) and our robust extension (bottom) under the two 

cases of no failures and element 5 failing. 
 

PSO Max Peak  

SLL 

Cumulative  

Difference  

No Failures -16.47 49.63 
Failures: #5 -14.16 69.53 

 
Robust {5} Max Peak  

SLL 

Cumulative  

Difference  

No Failures -16.46 59.92 
Failures: #5 -16.95 40.86 

(SLL threshold = -20dB, swarm=3000, epochs=100) 

Table 2. Results showing the cumulative cost function from the array pattern computed under the 
failed elements 3, 4, 6, & 7.  The first row shows the penalty paid by incorporating the robustness, 

but in the instances when either 5, 20, or 30 failed there is a substantial benefit. 
 

Failures PSO Robust[3,4,6,7]+{5,20,30} Difference 

3, 4, 6, 7 29.19 34.57 5.39 
3, 4, 6, 7, 5  262.04 142.32 -119.72 
3, 4, 6, 7, 20 352.31 234.20 -118.11 
3, 4, 6, 7, 30 165.95 102.76 -63.19 
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Figure 2. Beam pattern for standard PSO (red) and robust PSO (black-dashed), where there were originally no failed elements 

and the only potential failure used by the robust version was element 5. 
 

 
Figure 3. Beam pattern for standard PSO (red) and robust PSO (black-dashed), where they were optimized with no failed 
elements, but then element 5 did fail.  Our robust extension to PSO was able to maintain lower peak side-lobe levels than 

standard PSO. 
 

 
Figure 4. Beam pattern for standard PSO (red) and robust PSO (black-dashed) where elements 3, 4, 6, and 7 were originally 

failed and elements 5, 20, and 30 were potential future failures. 
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Figure 5. Beam pattern for standard PSO (red) and robust PSO (black-dashed) where elements 3, 4, 6, and 7 were originally 

failed prior to the optimization and element 5 later failed. 
 

 
Figure 6. Beam pattern for standard PSO (red) and robust PSO (black-dashed) where elements 3, 4, 6, and 7 were originally 

failed prior to the optimization and element 20 later failed. 
 

 
Figure 7. Beam pattern for standard PSO (red) and robust PSO (black-dashed) where elements 3, 4, 6, and 7 were originally 

failed prior to the optimization and element 30 later failed. 
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5. CONCLUSIONS 

In this work we propose a novel prognostic approach to do 
preemptive optimization of phased array antennas. When 
determining element parameters for excitation magnitude 
and phase during digital beam-forming we not only 
optimize over the current state-of-health but consider 
potential future states-of-health.  This allows the algorithm 
to trade some current optimization flexibility for improved 
system robustness under future failures which might occur 
during a mission.  This improves the overall system’s 
affordability and survivability as it is more robust to failures 
and repairs can be performed at more optimal times.  This 
technique does assume that potential future failures can be 
determined, however there is evidence that in many systems 
this is true.  Additionally this approach does not require 
additional sensors or engineering to reliably detect failures 
during a mission and does not require systems resources 
while online, as it is performed prior to the start of a mission 
but then has the most effect when failures do occur.  It also 
allows a user to determine whether the system will be able 
to maintain minimum mission specifications even under 
potential failures a priori, allowing them to make a decision 
whether to go ahead with the mission. 
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ABSTRACT

The design of particle-filtering-based algorithms for estima-
tion often has to deal with the problem of missing obser-
vations. This requires the implementation of an appropri-
ate methodology for real-time uncertainty characterization,
within the estimation process, incorporating knowledge from
other available sources of information. This article presents
preliminary results of a multiple imputation strategy used to
improve the performance of a particle-filtering-based state-
of-charge (SOC) estimator for lithium-ion (Li-Ion) battery
cells. The proposed uncertainty characterization scheme is
tested and validated in a case study where the state-space
model requires both voltage and discharge current measure-
ments to estimate the SOC. A sudden disconnection of the
battery’s voltage sensor is assumed to cause significant loss
of data. The results show that the multiple-imputation parti-
cle filter enables reasonable uncertainty characterization for
the state estimate as long as the voltage sensor disconnection
continues. Furthermore, when the voltage measurements are
once more available, the level of uncertainty adjusts to levels
that are comparable to the case where data was not lost.

1. INTRODUCTION

During the last century there has been an increase in produc-
tion and development of electronics that has changed the way
of living. Due to the increasing scarcity of oil, an immi-
nent migration to alternative kinds of energy becomes rele-
vant. The automotive industry has been putting research ef-
forts into the development of energy storage devices (ESDs)
for the production of hybrid electric vehicles (HEV) or fully
electric vehicles (EV). As a result, ESDs have been play-

David E. Acuña et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

ing a crucial role regarding autonomy of systems. This last
fact has impulsed research on Li-Ion battery cells due to ad-
vantages over other types of ESDs, being its larger charge
density by unit of mass or volume one of the most important
features. From the automotive industry, the concept of “Bat-
tery Management Systems” (BMS) (Pattipati, Sankavaram, &
Pattipati, 2011) rises naturally looking for systems capable
of providing protection and optimal operating conditions for
batteries while accounting for life predictions through mon-
itoring acquired data and interfacing external modules. Re-
garding this, the “State-of-Charge” (SOC) (Pattipati et al.,
2011) -quantifing the remaining available energy stored-, the
“State-of-Health” (SOH) (Pattipati et al., 2011) -describing
the degree of degradation-, and the “Remaining Useful Life”
(RUL) (Orchard & Vachtsevanos, 2009) generate important
information about the actual battery cells for optimal man-
agement. Unfortunately, due to incapability to measure them
directly in an online framework, BMS systems must incorpo-
rate real-time estimation and prediction routines to carry out
their objectives.

These routines heavily depend on real-time measurements for
their implementation, and when measuring data from any de-
vice it is possible to miss information due to, for example,
transmission problems within sensor networks. Completing
the acquired data set is not just as simple as filling in the
missing information with averaged values. In this regard,
many strategies may be adopted to solve the problem of se-
quential state estimation with incomplete data sets. Among
them, single imputation methods fail due to the lack of un-
certainty characterization. In (Rubin, 1987) the idea of mul-
tiple imputations was proposed. This method considers dif-
ferent values for each missing datum and combines their in-
duced probability distributions into a single solution for pa-
rameter estimation. This led to the multiple imputation par-
ticle filter (Housfater, Zhang, & Zhou, 2006), where particle-
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filtering methods (Andrieu, Doucet, & Punskaya, 2001) were
used, taking into account uncertainty of missing data through
a multiple imputation strategy.

This work presents an improvement of the particle-filtering-
based Bayesian approach adopted by (Orchard, Cerda, Oli-
vares, & Silva, 2012) for real-time uncertainty characteri-
zation in SOC estimation for Li-Ion batteries, based on a
multiple-imputation strategy. The validation case for this pro-
posed Multiple Imputation Particle Filter algorithm considers
a situation where 1000 sequential voltage measurements are
assumed to be lost, emulating the disconnection of the associ-
ated sensor during the execution of a specific discharge cycle.
Obtained results show that the uncertainty associated to the
state estimate due to lost data is bounded. Furthermore, those
uncertainty bounds are smaller than those obtained when sim-
ply discarding incomplete measurements and applying n-step
prediction to generate the prior state density function.

The article is structured as follows. In Section 2, a theoretical
background is presented reviewing the underlying concepts
of particle filters and the multiple imputation strategy. In Sec-
tion 3, a new multiple-imputation-based particle filter is ap-
plied in Li-Ion battery cells for SOC estimation when voltage
and discharge current are measured. Sudden disconnections
of the battery’s voltage sensor are simulated and uncertainty
characterization is analyzed. Finally, conclusions and future
work are presented in Section 4.

2. THEORETICAL BACKGROUND

Real world systems are commonly dynamic, nonlinear, and
may involve a high dimensionality relationship between vari-
ables. In this regard, state-space models offer a good treat-
ment for these systems; for example, when monitoring criti-
cal system components which physical phenomenology may
be modeled directly under the state-space form. Moreover,
uncertainty due to noisy measurements associated with sen-
sors constrains or other sources of disturbances such as the
lack of knowledge about the actual system dynamics, can be
incorporated into the state-space form with ease. This allows
to adopt a Bayesian approach, where the main objective is
to estimate the underlying probability distribution in order to
perform statistical inferences. Since the analytical solutions
may be founded under certain conditions, the real problem
to be addressed is that of evaluating complex integrals where
numerical methods tend to breakdown, even more when high
dimensional systems are involved. An alternative to address
this problem is the use of particle filters, which is presented in
the following section. Later, an introduction to multiple im-
putation for dealing with missing data and the way multiple
imputation particle filter is presented.

2.1. Particle Filters

Due to the employment of digital computers for signal pro-
cessing, it is of interest to develop a Bayesian processor where
measurements arrive sequentially in time. The recursive esti-
mation of the evolving posterior distribution is the so called
optimal filtering problem. A mathematical framework is pro-
vided below for solving this problem using particle filters.

Let X = {Xt, t ∈ N} be a first order Markov process denot-
ing a nx-dimensional system state vector with initial distri-
bution p(x0) and transition probability p(xt|xt−1). Also, let
Y = {Yt, t ∈ N \ {0}} denote ny-dimensional conditionally
independent noisy observations. The whole system is repre-
sented in state-space form as

xt = f(xt−1, wt−1) (1)
yt = g(xt, vt) (2)

where wt and vt denote independent random variables whose
distributions are not necessarily Gaussian. Since it is difficult
to compute the filtering posterior distribution p(xt|y1:t) di-
rectly, Bayesian estimators are constructed from Bayes’ rule.

Under Markovian assumptions, the filtering posterior distri-
bution can be decomposed into

p(xt|y1:t) =
p(yt|xt) · p(xt|y1:t−1)

p(yt|y1:t−1)
(3)

In this context, sequential Monte Carlo methods (SMC) of-
fer an alternative to numerical integration techniques that fail
due to high computation. SMC methods, also called parti-
cle filters, are stochastic computational techniques designed
for simulating highly complex systems in an efficient way.
In Bayesian estimation, these techniques simulate probability
distributions by using a collection of N weighted samples or
particles, {x(i)t ,W(i)

t }Ni=1, that yields to discrete mass proba-
bility distributions, as shown in Eq (4).

p̂(xt|y1:t) ≈
N∑

i=1

W(i)
t δ(xt − x(i)t ) (4)

The weighting process is made by applying the sequential
importance resampling (SIR) algorithm, which is explained
in the following subsections.

2.1.1. Sequential Importance Sampling

The concept of importance sampling is used to simulate sam-
ples from a proposed distribution in order to estimate a pos-
terior distribution. The key point for a successful sampling
is to choose appropriately the importance distribution. Sam-
pling from posterior distributions is a common task in order to
get Monte Carlo (MC) estimates. However, it is not feasible
most of the time since it becomes computationally intensive.
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For example, Eq (5) shows the calculation of expectations.

f̂(xt) = EX|Y {f(xt)} =

∫

X

f(xt)p(xt|y1:t)dxt (5)

Drawing N independent identical distributed random sam-
ples from p(xt|y1:t), the integral may be approximated by a
sum of delta-Dirac functions.

f̂(xt) ≈ 1

N

N∑

i=1

f(xt)δ(xt − x(i)t ) (6)

=
1

N

N∑

i=1

f(x
(i)
t ) (7)

These approximations may not hold when it is not possible
to sample directly from p(xt|y1:t), thus the sequetial impor-
tance sampling (SIS) algorithm avoids these difficulties by
drawing samples from an importance distribution approxi-
mating the targeted posterior distribution by appropriate weight-
ing. The weights are recursively defined as

w
(i)
t = w

(i)
t−1 ·

p(yt|x̃(i)t ) · p(x̃(i)t |x(i)t−1)

π(x̃
(i)
t |x̃(i)0:t−1, y1:t)

(8)

where {x̃(i)t }Ni=1 is a set ofN random samples drawn from the
importance distribution π(x̃

(i)
t |x̃(i)0:t−1, y1:t). Also, defining

normalized weights

W(i)
t =

w
(i)
t∑N

i=1 w
(i)
t

(9)

then the posterior distribution can be approximated by the ex-
pression described in Eq (4).

2.1.2. Resampling

When the updating process begins, a tendency to increase
the variance of particles is seen, setting negligible weights to
some of them. These particles become useless as they track
low probability paths of the state vector. In order to solve
this problem, a resampling step is incorporated, which leads
to the SIR algorithm.

An analytical expression for measuring how degenerated are
the particles is given by the effective particle sample size
showed in Eq (10).

Neff (t) =
N

1 + V arp(·|y1:t)(w(xt))
(10)

As it is not possible to calculateNeff , an estimate is given by

N̂eff (t) =
1

∑N
i=1(W(i)

t )2
(11)

In other words, the resampling step consist of removing small

weighted particles while retaining and replicating those of
large weights. Thus, whenever N̂eff ≤ Nthres, with Nthres
a fixed threshold, the depletion of the particles is imminent
and resampling must be applied.

Algorithm 1 SIR Particle Filter
1. Importance Sampling

for i = 1, . . . , N do
• Sample x̃(i)t ∼ π(xt|x(i)0:t−1, y1:t) and
set x̃(i)0:t , (x

(i)
0:t, x̃

(i)
t )

• Compute the importance weights

w
(i)
t = w

(i)
t−1 ·

p(yt|x̃(i)
t )·p(x̃(i)

t |x
(i)
t−1)

π(x̃
(i)
t |x̃

(i)
0:t−1,y1:t)

• Normalize
W(i)
t =

w
(i)
t∑N

i=1 w
(i)
t

end for

2. Resampling
if N̂eff ≥ Nthres then

for i = 1, . . . , N do
• x(i)0:t = x̃

(i)
0:t

end for
else

for i = 1, . . . , N do
• Sample an index j(i) distributed according to the
discrete distribution satisfying P (j(i) = l) = W(i)

t
for l = 1, . . . , N

• x(i)0:t = x̃
j(i)
0:t and w(i)

t = 1
N

end for
end if

In general, the SIR particle filter is divided into two steps.
Firstly, a prediction is done using the state transition model
to generate the prior distribution p(xk|xk−1). Then an update
step is done to modify the particle weights through the like-
lihood p(yk|xk). If the resulting particles are degenerated, a
resampling step is added, as it was shown previously.

2.2. Multiple imputations

Missing data is a problem that may be treated mainly from
two perspectives. On the one hand, single imputation tech-
niques fill the incomplete data set imputing single values at
each missing datum. The advantage of this perspective is that
it allows standard complete data methods to be used. How-
ever, these techniques fail due to the lack of uncertainty char-
acterization of both, the sampling variability and the uncer-
tainty associated with the imputation model. On the other
hand, the idea of multiple imputations retains the advantages
of single imputation techniques and also accounts for the un-
certainty of the missing mechanism. Multiple imputations
(Rubin, 1987) consist of creating multiple complete data sets
imputing m values for each missing datum so that sampling
variability around the actual values is incorporated for per-
forming valid inferences. Nevertheless, multiple imputations
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has disadvantages like the need of drawing more imputations
and larger memory space for storing and processing multiple-
imputed data sets.

An important issue is the task of choosing the right number
of imputations (Graham, Olchowski, & Gilreath, 2007). Ob-
viously, the computational cost is higher as the number of
imputations increases. In this regard, (Rubin, 1987, p. 114)
shows that an approximation of efficiency for an estimate is
given by

(1 +
γ

m
)−1/2 (12)

in units of standard errors, where m is the number of im-
putations and γ is the fraction of missing information in the
estimation. Consequently, excellent results may be obtained
using only few imputations (m = 3, 4, 5).

2.3. Multiple Imputation Particle Filter

Originally introduced by (Housfater et al., 2006), the Mul-
tiple Imputation Particle Filter extends the PF algorithm by
incorporating a multiple imputation (MI) procedure for cases
where measurement data is not available, so that the algo-
rithm can include the corresponding uncertainty into the es-
timation process. The main statistical assumption in this ap-
proach is that the missing mechanism is Missing at Random
(MAR), thus, it does not depend on the missing measures
given the observed ones.

For readability, a change in notation is necessary. As it was
stated in (Housfater et al., 2006), lets denote now the mea-
surements as a partitioned vector Ut = (Zt, Yt), where Zt
corresponds to the missing part and Yt is from now on the
observed part. Then, the MI PF algorithm performs the same
as the SIR PF except that there are missing measures. In this
case, a MI strategy is adopted.

An imputation model expressed as a probability distribution
φ is required for drawing m samples -imputations-, that is

zjt ∼ φ(zt|y1:t) (13)

where j = {1, . . . ,m} denotes the imputation index. Sim-
ilarly to importance sampling, each imputation is associated
with a weight pjt holding the condition

∑m
j=1 p

j
t = 1. Acord-

ing to (Liu, Kong, & Wong, 1994), the filtering posterior dis-
tribution may be expressed as

p(xt|y1:t) =

∫
p(xt|u1:t−1, yt)p(zt|y1:t)dzt. (14)

By performing a Monte Carlo approximation yields

p(xt|y1:t) '
m∑

j=1

pjtp(xt|u1:t−1, ujt ), (15)

where ujt = (zjt , yt) are complete data sets formed from im-

puted values. Additionally, by particle filtering each of these
data sets yields

p(xt|u1:t−1, ujt ) ≈
N∑

i=1

w
(i,j)
t δ(xt − x(i,j)t ), (16)

where the indexes i and j indicate the particle and the im-
putation, respectively. Thus, an approximation of the desired
posterior distribution is

p(xt|y1:t) ≈
m∑

j=1

N∑

i=1

pjtw
(i,j)
t δ(xt − x(i,j)t ). (17)

3. MULTIPLE-IMPUTATION-BASED UNCERTAINTY
CHARACTERIZATION FOR SOC ESTIMATION

The SOC is conceived as a quantification of the available en-
ergy stored regarding the actual rated capacity, but as a per-
centage. It conforms an important feature to address for sys-
tems’ autonomy when they are energized by ESDs, either as
main sources or as a backup. As it is not possible to directly
measure the SOC, estimation and prognosis algorithms must
be addressed for getting valid predictions from usually noisy
measurements like current, voltage and temperature, while
carrying out a proper management of the system. Actually,
knowledge about it is essential for control of autonomous
systems where the End-of-Discharge (EoD) time plays a key
role.

According to (Orchard et al., 2012), a wide variety of meth-
ods have been proposed in the literature for modeling bat-
teries in offline applications; e.g., electrochemical models.
Other methods, more suitable for online implementations, are
based on open-circuit voltage (OCV) representations. These
methods relate directly the SOC and measured voltage but re-
quires large resting periods for batteries, being inefficient for
online estimation. The “Electrochemical Impedance Spec-
troscopy” (EIS) method requires costly equipment, being in-
feasible for practical applications. In this regard, research ef-
forts have focused on developing estimation and prognosis al-
gorithms based on phenomenological relations through fuzzy
logic, neural networks and Bayesian frameworks (Orchard
et al., 2012), among others. The main problem in all these
cases is that these approaches assume complete data sets for
state/parameter estimation purposes.

3.1. State-Space Model for Lithium-Ion Batteries

One of the main advantages of adopting a particle-filtering
approach for estimation under noisy measurement data is that
prior knowledge about the systems dynamics can be directly
incorporated into the model as well as its associated uncer-
tainties. Also, it is possible to capture critical physical phe-
nomenology directly into the state-space form, relating it to
an observation model which enables the convergence to the
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true estimates through the likelihood of sequential measure-
ment data.

Proposed by (Pola, 2014), the state-space model for lithium-
ion battery cells used is the following.

State transition model

x1(t+ 1) = x1(t) + w1(t) (18)

x2(t+ 1) = x2(t)− v(t) · i(t) ·∆t
Ecrit

+ w2(t) (19)

Measurement equation

v(t) = vL + (v0 − vL) · eγ·(x2(t)−1) + α · vL · . . .
. . . (x2(t)− 1) + (1− α) · vL · (e−β − . . .
. . . e−β·

√
x2(t))− i(t) · x1(t) + η(t)

(20)

where w1(t) ∼ N (0, σ1) and w2(t) ∼ N (0, σ2) correspond
to additive white Gaussian noise and η(t) ∼ N (0, σobs) is
also a normal distributed random variable accounting for mea-
surement uncertainties. The sample time ∆t[sec] and the cur-
rent i(t)[A] are considered input variables whereas the battery
voltage v(t)[V ] is considered the system’s output. The state
variables x1(t) and x2(t) are chosen strategically under phys-
ical meaning as the internal resistance and the SOC, respec-
tively. Finally, as the SOC is expressed as a percentage of
energy, Ecrit represents a normalizing constant whose units
are [V A sec]. All other model parameters are assumed to be
known constants within each battery discharge cycle. Their
values are obtained by following the procedure described in
(Pola, 2014), and applying it to data that should be obtained
from a complete discharge cycle at constant (nominal) dis-
charge current.

3.2. Implementation of a Multiple Imputation Strategy

(Orchard et al., 2012) proposed a detailed procedure for es-
timation and prognosis for the SOC. However, what happens
when sudden disconnections (or data losses) affect sensors’
performance? Perhaps, SOC estimates may be eventually bi-
ased, affecting deeply the whole estimation stage and provid-
ing invalid information, and the system’s autonomy would no
longer be guaranteed. In this regard, a new approach from the
Multiple Imputation Theory is proposed for uncertainty char-
acterization in particle-filtering-based SOC estimators where
voltage measurements are missing during extended periods of
time (while discharge current measurements are always avail-
able). Future work will focus on the case when battery dis-
charge current measurements are lost instead.

The Multiple Imputation Particle Filter uses voltage imputa-
tions in a different manner, depending on which stage of the
filtering procedure is currently being applied. During the pre-
diction stage, and if past voltage measurements are missing,

the multiple-imputation algorithm suggests to draw voltage
values from a proposal distribution φ. Each one of these im-
putations will define a different prior distribution for the next
time instant, since x2(t+1) depends on v(t) in Eq (19). How-
ever, as the transition equations place particles in different
positions of the state-space, Rubin’s rule of multiple imputa-
tion theory suggests that all those prior transition distributions
should be combined into a single distribution by appropriate
weighting (Rubin, 1987), yielding an increase in particle pop-
ulation.

Assuming that the prior distribution is known and the actual
voltage value is unknown, then voltage imputations may also
be considered for the update stage of the particle-filtering
algorithm. Furthermore, in that case the resulting particles
(which represent the posterior distribution) will keep the same
location within the state-space. Thus, the number of particles
is not increased since Rubin’s rule (Rubin, 1987) is applied.

As multiple-imputed data generate an increase of the number
of particles during the prediction stage, a reduction stage has
to be incorporated into the algorithm to keep a fixed number
of particles throughout time; avoiding a progressive increase
of the particle population. This way, the SIR PF will work
as it was originally designed, specially after voltage measure-
ments are once more available.

The proposed MI PF implementation treats the problem of
missing voltage observations, whereas the discharge current
is assumed as an input variable known at each time instant.
The imputation model adopted is defined as the probability
distribution induced by Eq (20), providing prior knowledge
about the voltage variability.

Denoting the multiple-imputed measurement data set as ỹj1:t =

{ỹ1:t−1, yjt } where ỹ1:t = {ỹ1:t−1, y1t , . . . , ymt }, with j ∈
{1, . . . ,m}, the MI PF implementation is summarized in Al-
gorithm 2.

4. EXPERIMENTAL RESULTS

In this article, the proposed multiple-imputation algorithm is
applied to the case of SOC estimation in Li-Ion battery cells.
Particularly, this method is intended to improve the way SOC
is monitored on a BMS. A complete discharge cycle, con-
taining a total of 2920 samples that were obtained from an
experimental setup located at the Advanced Control Systems
Laboratory, University of Chile, is analyzed for purposes of
algorithm test and validation. To test the algorithm, a loss of
1000 sequential voltage measurements is considered. The es-
timation results are obtained with the use of 60 particles and
10 imputations. The performance is analyzed considering the
average of 30 realizations for three different cases: i) SIR PF
with a complete data set, ii) 1000-step prediction procedure
along the missing measurements, and iii) MI PF with an in-
complete data set.
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Algorithm 2 Multiple Imputation Particle Filter
1. MI Importance Sampling

if yt is available then
• SIR PF

else
for j′ = 1, . . . ,m do

for i = 1, . . . , N do
• Sample x̃(i,j

′)
t ∼ π(xt|x(i)0:t−1, ỹ

j′

t−1) and

set x̃(i,j
′)

0:t , (x
(i)
0:t, x̃

(i,j′)
t )

end for
end for
• Compute m imputations yjt ∼ φ({x̃(i,j

′)
t , w

(i,j′)
t }, ηt)

and its associated weights pjt .• Reduce the particle population from N ·m to N .
x̃
(i,j)
t → x̃

(i)
t

for j = 1, . . . ,m do
for i = 1, . . . , N do
• Compute the importance weights

w
(i,j)
t = w

(i)
t−1 ·

p(yjt |x̃
(i)
t )·p(x̃(i)

t |x
(i)
t−1)

π(x̃
(i)
t |x̃

(i)
0:t−1,ỹ

j
1:t)

• Apply Rubin’s rule
w

(i)
t =

∑m
j=1 w

(i,j)
t

• Normalize
W(i)
t =

w
(i)
t∑N

i=1 w
(i)
t

end for
end for

end if

The probability density that was used in this case to draw volt-
age imputations corresponds to the distribution induced by Eq
(20), where particles are obtained from the prior transition
PDF shown in Eq. (18)-(19). The imputations are randomly
drawn from the aforementioned distribution, and hence their
weights are assumed to be equal.

In particular, the problem of reducing the number of particles
from N · m to N -where N is the size of the original par-
ticle population and m is the number of imputations- could
be achieved by resampling. However, this kind of technique
fails because of the tendency to retain high probability par-
ticles only, discarding the uncertainty characterization pro-
vided by the MI strategy. Therefore, a suboptimal solution is
proposed. The main focus consists on preserving the proba-
bility distribution described by N ·m particles using only N
of them. Thus, as an attempt to solve this problem, the parti-
cles are arranged as a function of the SOC ({x(l)k ,W

(l)
k }N ·ml=1 )

and clustered into groups of m particles, noting that the SOC
corresponds to a state and its dynamic is described in Eq (19).
One particle is obtained from each group by a weighted sum
and its probability is assumed to be the sum of probabilities
of each particle in the group. Therefore, the N new particles
are generated as

W̄(i)
k =

m·i∑

l=m·(i−1)+1

W(l)
k (21)

x̄
(i)
k =

1

W̄(i)
k

·
m·i∑

l=m·(i−1)+1

W(l)
k x

(l)
k (22)

∀ i ∈ {1, . . . , N}. The biggest assumption adopted for the
reduction stage was that the internal impedance remains con-
stant at least when the battery’s SOC is over 20%, which in
practice makes it almost independent of the SOC. Of course,
other factors also affect the value of the internal impedance,
for example the battery temperature. In fact, that is the main
reason why this parameter has to be estimated from voltage
and discharge current measurements. The impact of these fac-
tors will not be considered in this particular version of the al-
gorithm, but they will be included as part of future research
work.

For this case study, the conventional SIR PF is applied in all
the cases as long as there are no missing measurements. The
focus lays on comparing the MI strategy to a simple n-step
ahead prediction algorithm (Orchard et al., 2012) that could
be applied when voltage measurements are lost. Also, the
MI strategy will be compared to the PF-based estimates that
are obtained with no missing data. Both comparisons yield
results for internal impedance, SOC and voltage which are
exposed in Figures 1, 2 and 3, respectively. For a better anal-
ysis, the same conditions are adopted for all the cases up to
the time where data starts being lost.

As it is shown in Figure 1a, the assumption of a constant value
for the internal impedance becomes invalid along the missing
voltage window as the MI PF estimates differ significantly
from a complete data estimation, out bounding the confidence
intervals depicted by the MI PF estimation. In contrast, Fig-
ure 1b shows that the MI PF estimates are very similar to
that of the 1000-step prediction but the uncertainties in this
case differ among themselves mainly due to the hypothesis in
the reduction stage of the MI PF, that leads to a uncertainty
dimishment.

Regardless of what it has been mentioned before, the main
feature of the proposed MI PF is ensuring a robust and bounded
uncertainty characterization for the SOC, which is visualized
in Figure 2. Figure 2a shows how the MI PF uncertainty
overlaps that of the SIR PF whereas in Figure 2b this last
is slightly overlapped by the uncertainty of the 1000-step pre-
diction. It is interesting to note the MI strategy avoids the use
of a resampling stage, yielding similar results as a long term
prediction. Nevertheless, when voltage measurements are not
lost anymore, a bias is added in both cases (MI PF and 1000-
step prediction). This problem is generated by the approxi-
mately constant estimation for the internal impedance, which
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Figure 1. Internal impedance estimation as a function of the
SOC[%] for a disconnection of 1000 sequential voltage mea-
surements denoted in the area between the dashed vertical
lines. a) Comparison between the MI PF (red line) and the
SIR PF (green line) with 95% confidence intervals. b) Com-
parison between the MI PF (red line) and the 1000-step pre-
diction algorithm (green line) with 95% confidence intervals.

introduces a bias affecting the SOC estimation as an attempt
to correct the first. Notwithstanding, the uncertainty about the
actual value of the internal impedance for the 1000-step pre-
diction affects more intensively its performance when voltage
is measured again than that of the MI PF. Consequently, the
MI PF approach is the one who experiences better perfor-
mance.

The underlying importance of holding a bounded uncertainty
characterization on an estimation stage is that of providing
appropiate conditions for a prognosis stage. Simultaneously,
this converges into an improved performance of prognostic
results due to a bounded uncertainty along the prediction hori-
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Figure 2. SOC estimation as a function of time[s] for a dis-
connection of 1000 sequential voltage measurements denoted
in the area between the dashed vertical lines. a) Compar-
ison between the MI PF (red line) and the SIR PF (brown
line) with 95% confidence intervals. b) Comparison between
the MI PF (red line) and the 1000-step prediction algorithm
(brown line) with 95% confidence intervals.

zon, hence predictions are obtained with a higher degree of
certainty.

In the case of voltage estimation, the results are shown in
Figure 3. Figure 3a shows that a bias is added to the volt-
age distribution corresponding to the MI PF. Note that it is
obtained from using an imputation model based on the mea-
surement model. The use of a few imputations (10 in this
case study) provides a reasonable characterization of the out-
put variability by generating a robust approximation to the
true statistics even when data is partially lost. The bias re-
mains negligible considering that the total amount of lost data
reaches 1000. However, Figure 3b shows that the 1000-step
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prediction shares its behavior, by describing nearly identical
curves.
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Figure 3. Voltage estimation as a function of the SOC[%]
for a disconnection of 1000 sequential voltage measurements
denoted in the area between the dashed vertical lines. a) Com-
parison between the MI PF (red line) to the SIR PF (blue line)
with 95% confidence intervals. b) Comparison between the
MI PF (red line) and the 1000-step prediction algorithm (blue
line) with 95% confidence intervals.

5. CONCLUSION

A new multiple-imputation particle-filtering based scheme for
estimation when lost measurements are present is proposed
where the Multiple Imputation Theory is the main core for
uncertainty characterization. A particular implementation for
SOC estimation is presented when voltage measures are se-
quentially lost along a period of time. Preliminary results
show the success of the methodology by incorporating un-
certainty by increasing the original number of particles, but

then adding a reduction stage. However, a bias is added to
the estimation process.

The case study for testing the algorithm includes a missing
data window when the SOC is over a 20% of the battery’s
capacity. This allows the adoption of a simplified way for re-
ducing particles in the algorithm based on the hypothesis that
the value of the internal impedance remains constant. The
MI strategy is compared to the case without missing data and
also to a particle-filtering-based prognosis algorithm for per-
forming a 1000-step prediction. The results show that the un-
certainty characterization associated to the estimation stage
-once the capacity to acquire data is no longer lost- is more
appropiate if the MI PF is used than if the 1000-step predic-
tion is used.

As the MI has been developed for offline applications, there
are several aspects to consider for online applications. Some
of them include improvements on the imputation model, adap-
tive estimation for an optimal number of particles and amount
of imputations, alternative reduction methods of particle pop-
ulation, better ways for characterizing the internal impedance
evolution in time, risk assessment, among others. Further-
more, the development of an optimal particle reduction may
enable the connection of asynchronous networks, treatment
for missing measurements, and prognosis, to give some ex-
amples.
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ABSTRACT

For many systems, automatic fault diagnosis is critical to en-
suring safe and efficient operation. Fault isolation is per-
formed by analyzing measured signals from the system, and
reasoning over the system behavior to determine which faults
have occurred, based on models of predicted faulty behav-
ior. For dynamic systems, reasoning may be performed using
qualitative analysis of the differences between measured sig-
nals and their predicted values, in which observations take
the form of qualitative symbols. Such an approach is quick
to isolate faults, but depends critically on correct generation
of the qualitative symbols from the signals. In this paper, we
develop an approach to qualitative event-based fault isolation
for dynamic systems that is robust to incorrect qualitative ob-
servations. Observations are treated as uncertain, where mul-
tiple interpretations of an observation, each with its own prob-
ability, are considered. By interpreting observed symbols in a
probabilistic manner, the approach degrades gracefully as the
number of incorrectly-generated symbols increases. The ap-
proach is demonstrated on an electrical power system testbed,
and experiments using real data obtained from the hardware
demonstrate the improved fault isolation performance in the
presence of incorrect symbol generation.

1. INTRODUCTION

For many systems, automatic fault diagnosis is critical to
ensuring safe and efficient operation. Within fault diagno-
sis, the task of fault isolation is concerned with an analy-
sis of observed behavior in order to determine which fault
has occurred. In many approaches, observations are trans-

Matthew Daigle et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

formed into a discrete symbolic (e.g., qualitative) form over
which reasoning can be performed (Puig, Quevedo, Escobet,
& Pulido, 2005; Koscielny & Zakroczymski, 2000). For dy-
namic systems, these discrete observations take the form of
events (Daigle, Koutsoukos, & Biswas, 2009).

In qualitative fault isolation, residual signals are computed
as the differences of observed behavior and predicted nomi-
nal behavior (Mosterman & Biswas, 1999). Deviations of the
residual signals are then abstracted into symbolic, qualitative
representations, called fault signatures, to facilitate diagnos-
tic reasoning (specifically, +, -, and 0 symbols, represent-
ing increase, decrease, and no change from nominal, respec-
tively). Fault models describe the potential sequences of fault
signatures produced by faults, forming a qualitative event-
based fault isolation approach (Daigle et al., 2009). Such
an approach is quick to isolate faults, but depends critically
on correct generation of these qualitative fault signatures.
When the transformation from observed quantitative signals
into observed qualitative fault signatures does not produce the
correct result, the wrong information will be used to isolate
faults, and this incorrect signature generation will, therefore,
lead to incorrect diagnoses.

In this paper, we develop an observation-robust approach to
qualitative event-based fault isolation for dynamic systems as
an extension and generalization of the approach in (Daigle
et al., 2009). Here, observation-robust means that the ap-
proach is still successful, to some degree, when encounter-
ing incorrect observations (henceforth, by observation we
mean the version of the quantitative signal transformed into
a qualitative symbol). By considering the qualitative obser-
vations as uncertain, and interpreting them in a probabilis-
tic manner, the approach degrades gracefully as the number
of incorrectly-generated symbols increases. The approach is
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demonstrated on the Advanced Diagnostics and Prognostics
Testbed (ADAPT) (Poll et al., 2007) an electrical power sys-
tem testbed that has served as a benchmark diagnostic system
in the diagnostics community (Poll et al., 2011; Sweet, Feld-
man, Narasimhan, Daigle, & Poll, 2013). Using real experi-
mental data obtained from the ADAPT hardware, we demon-
strate the improved fault isolation performance in the pres-
ence of incorrect symbol generation.

Several previous works have used probabilistic solutions for
different tasks of the fault diagnosis problem. In (Ricks &
Mengshoel, 2009) the authors use Bayesian Networks (BNs)
to represent probabilistic multi-variate models, which are ap-
plied to the ADAPT hardware, as we do in this paper. Other
works have also applied BNs or Dynamic BNs (DBNs) for
fault diagnosis, e.g., in (Pernestål, 2009) the author uses
DBNs to improve the diagnosis of automotive vehicles, and
in (Alonso-Gonzalez, Moya, & Biswas, 2011; Roychoud-
hury, 2009; Roychoudhury, Biswas, & Koutsoukos, 2010)
DBNs are used for fault diagnosis. In all these cases, the
probabilistic solutions are used to model the systems un-
der conditions of uncertainty and then to perform diagnosis.
However, more sources of uncertainty appear in the fault di-
agnosis process due to, for example, improper threshold se-
lections or incorrect symbol generation. Our approach in this
paper uses a model based on physical equations of the system,
and performs fault diagnosis using this model. The proba-
bilistic methods are then used to reduce the uncertainty in
fault isolation due to incorrectly-generated symbols. An ap-
proach similar to our work is presented in (Ying, Kirubarajan,
Pattipati, & Patterson-Hine, 2000), in the sense that a proba-
bilistic solution is used to perform fault diagnosis in systems
with imperfect diagnosis tests. However, the diagnosis ap-
proach and the probabilistic solution are different than those
used in this paper.

The remainder of the paper is organized as follows. Sec-
tion 2 formulates the problem for event-based fault isolation.
Section 3 reviews the standard event-based fault isolation ap-
proach, and Section 4 extends the approach to be observation-
robust. Section 5 describes implementations of the standard
and robust frameworks based on qualitative fault isolation,
and presents the case study and results. Section 6 concludes
the paper and discusses future work.

2. PROBLEM FORMULATION

In this section, we define the fault isolation problem that we
aim to solve. We assume an event-based fault isolation frame-
work, where faults are isolated based on the analysis of a
sequence of observable events produced as a result of the
fault occurrence (where, in the nominal case, no such events
are produced). The approach is related to discrete-event di-
agnosis (Sampath, Sengupta, Lafortune, Sinnamohideen, &
Teneketzis, 1996) and, more closely, the concept of chroni-

cles (Cordier & Dousson, 2000). For the purposes of defining
the problem and describing the fault isolation approach, we
present a generalized theoretical framework for event-based
fault isolation. In Section 5, we will describe a specific im-
plementation of this framework for dynamic systems (Daigle
et al., 2009).

First, we have the set of faults, F , that may occur in the sys-
tem. Faults produce observable events, called fault signa-
tures.
Definition 1 (Fault Signature). A fault signature for a fault f
denoted by σf , is an event that is observed as a consequence
of the occurrence of f . The set of fault signatures for f is
denoted as Σf . The set of fault signatures over a set of faults
F is denoted as ΣF , i.e., ΣF =

⋃

f∈F
Σf .

These events are produced in some temporal order. A fault
trace is a one particular fault signature sequence that may be
observed.
Definition 2 (Fault Trace). A fault trace for a fault f denoted
by λf , is a sequence of fault signatures from Σf resulting
from the occurrence of f .
Definition 3 (Maximal Fault Trace). A fault trace λf for a
fault f is maximal if there is no extension λfσf that is also a
fault trace for f .

The set of all possible maximal fault traces for a fault is called
its fault language.
Definition 4 (Fault Language). The fault language of a fault
f ∈ F denoted by Lf , is the set of all maximal fault traces
for f . The union of fault languages for a set of faults F is
denoted as LF , i.e., LF =

⋃

f∈F
Lf .

We assume that we have considered all possible faults in F ,
and that the fault languages are complete.
Assumption 1 (Completeness of F ). We assume that F is
complete, i.e., there is no other fault f /∈ F that can occur.
Assumption 2 (Completeness of Lf ). We assume that for
every fault f ∈ F , Lf is complete, i.e., there is no other
maximal fault trace λf /∈ Lf that may occur as a result of f .

By Assumptions 1 and 2, whenever some fault trace λ oc-
curs, it must have been produced by some fault f ∈ F , and
it must belong to Lf for at least one f ∈ F . These assump-
tions are quite standard in model-based diagnosis. In some
approaches, e.g., (Hofbaur & Williams, 2002; Narasimhan
& Brownston, 2007), an unknown fault is considered, which
is consistent with everything. In our approach, such a fault
could be included by adding a new f where Lf contains all
possible traces.

So, associated with each fault is a set of fault traces, where
the maximal fault traces are collected into a fault language.
When a fault occurs, a specific event sequence will be ob-
served that belongs to the fault language. In this framework,
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Algorithm 1 F ∗ ← FaultIsolation(F )

1: F ∗ ← F
2: λ← ∅
3: while σi observed do
4: λ← λσi
5: F ∗ ← FindConsistentFaults(F ∗, λ)
6: end while

fault isolation reduces to matching observed fault traces to
predicted fault traces, to determine which fault has occurred.
So, the fault isolation problem is defined as follows.
Problem. Given an observed fault trace, λ, find the most
likely single fault f that produced λ.

Here, we aim to find the most likely fault, because the ob-
served fault trace may not always be generated correctly, due
to various reasons, such as improperly tuned quantitative sig-
nal thresholds. If this is the case, we must find the most
likely fault that explains the (incorrectly) observed trace, be-
cause the observed trace may not be found in any Lf . The
standard fault isolation approach (Section 3) assumes the ob-
served trace is always correct, whereas the new robust ap-
proach (Section 4) does not make that assumption, in order to
handle incorrectly observed fault traces in a robust fashion.

3. EVENT-BASED FAULT ISOLATION

In the standard fault isolation approach, we assume that fault
traces are correctly observed.
Assumption 3. All observed fault signatures are correct, i.e.,
if fault signature σ occurs, it is observed as σ.

Therefore, given Assumptions 1–3, when a fault occurs and
we observe a fault trace, this trace must belong to the fault
language of at least one fault. The function of the fault iso-
lation algorithm is simply to find which faults are consistent
with the observed fault trace.

The fault isolation algorithm is presented as Algorithm 1. Ini-
tially, the set of isolated faults, F ∗, is set to the complete set
of faults, F . The initial observed fault trace λ is the empty
event sequence. While new fault signatures are observed, we
update the observed fault trace, and reduce F ∗ to the set of
faults consistent with the new trace.

The FindConsistentFaults algorithm, presented as
Algorithm 2, eliminates fromF ∗ faults that are no longer con-
sistent with the trace extended with σi. A fault f is consistent
with an observed trace λ if there is a fault trace λf in its fault
language where λ is a prefix (v), i.e., the fault can generate
the observed sequence of events so far. If the fault is indeed
consistent, it is retained, otherwise, it is removed from F ∗.

Basically, we continue to observe new symbols, and F ∗ re-
duces. If the system is diagnosable, i.e., all faults are distin-
guishable from each other (via their fault languages), then F ∗

will reduce to a single fault. A fault fi is distinguishable from

Algorithm 2 F ∗ ← FindConsistentFaults(F ∗, λ)

1: for all f ∈ F ∗ do
2: if ¬ exist λf ∈ Lf such that λ v λf then
3: F ∗ ← F ∗ − {f}
4: end if
5: end for

fj in this framework if there is no trace in Lfi that is a prefix
of a trace in Lfj .
Example 1. Consider a set of three faults, F = {f1, f2, f3},
where Lf1 = {cab, acb}, Lf2 = {abc, bac}, and Lf3 =
{cb, ca, ab}. Say that we observe first the fault signature a.
Each of the faults may produce a as the first fault signature,
so F ∗ = {f1, f2, f3}. Say we next observe b. Now, f1 can-
not produce a trace starting with ab, so it is eliminated, and
F ∗ = {f2, f3}. Say we next observe c. Now, f3 cannot pro-
duce a trace beginning with abc, and so f2 is isolated as the
fault.

Let us say we observe a trace that does not belong to any
fault language. There are three explanations for this: (i) an
unknown fault has occurred (violation of Assumption 1), (ii)
a valid trace is missing from a fault language (violation of
Assumption 2), or (iii) the trace was observed incorrectly (vi-
olation of Assumption 3). For (i) and (ii), there is nothing that
can be done, so we limit ourselves only to situation (iii). So,
what happens when the trace is observed incorrectly?
Example 2. Consider again the fault set from the previous
example. Say we observe c, then we have F ∗ = {f1, f3}.
Say we then observe b, then we have F ∗ = {f3}. Say we
then observe a, then we have F ∗ = ∅, i.e, all faults were
eliminated. One explanation is that the a fault signature was
falsely observed (i.e., a false alarm), in which case the true
fault is f3.

The result of an incorrectly observed trace is an incorrect fault
isolation result. Either all candidates will be eliminated, as in
the example above, or the wrong fault will be isolated (if the
observed trace belongs to a fault language of a fault that did
not occur). In practice, it is not unlikely that a trace may be
incorrectly observed, e.g., from noisy sensor signals, overly
sensitive fault detection thresholds, etc. Clearly, Algorithm 1
is not robust in this case. A more robust approach is necessary
to handle a violation of Assumption 3.

4. ROBUST EVENT-BASED FAULT ISOLATION

As described in Section 3, Algorithm 1 makes Assumption 3,
i.e., there is only one interpretation of an observed trace,
which is what was observed. In practice, however, traces may
be incorrectly observed, and so we must drop Assumption 3
in order to be robust to this situation, i.e., to make the ap-
proach observation-robust. In more detail, by observation-
robust, we mean that the approach performs optimally when
all observations are correct, and its performance degrades
gracefully as the number of incorrect observations increases.
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In practical terms, this means that the true fault is diagnosed
to have the highest probability of being the one that occurred,
when all observations are correct. Further, its assigned proba-
bility decreases when incorrect observations are encountered,
where, up to a certain point, it remains the most probable fault
given the observations.

In order to still perform in the face of incorrect observations,
we must differentiate between an observed trace and an in-
terpreted trace. For a given observed trace, there are several
potential interpreted traces. An observed trace may or may
not belong to any Lf . Any valid interpretation of it, however,
must be a prefix of some trace in LF . That is, given an ob-
served trace, we must generate all correct ways to interpret it,
given the set of considered faults. Each interpreted trace will
have its own probability and its own diagnosis. Given the set
of interpreted traces, their probabilities, and their diagnoses,
we can extract a combined diagnosis that provides, for every
fault resulting from an interpreted trace, a probability of its
occurrence.

Say that so far we have an interpreted trace of λ, and a new
symbol σi is observed. How do we extend λ given σi? We
assume there is a known set of signatures, Σσi

, that can be
observed as σi. At a minimum, this set contains σi itself. So,
when σi is observed, it could have been any signature in Σσi

that actually occurred. However, only a subset of these can
extend λ and be consistent with a given set of faults. To be
consistent, they have to be a prefix of some trace found in LF
(since an interpreted trace must belong to LF ).
Example 3. Consider again the set of three faults, F =
{f1, f2, f3}, where Lf1 = {cab, acb}, Lf2 = {abc, bac},
and Lf3 = {cb, ca, ab}. Say that Σa = {a, b}, Σb = {b, a},
and Σc = {c}. Say that the trace bca is observed, what are
the possible interpreted traces? First b is observed and that
can be interpreted as either a or b; so far the interpreted traces
are a and b. Next c is observed, which can be interpreted
only as c; so the interpreted traces are ac and bc. Then a is
observed, which can be interpreted as either a or b, so the po-
tential interpreted traces are aca, acb, bca, bcb, however, only
acb belongs to a fault language and is valid.

Σσi
may also contain special signatures that represent false

alarms, which we denote using ε with a subscript denoting
the event associated with the false alarm (e.g., εa for a false
alarm of event a). For example, we could observe some sig-
nature σ, but it may be possible that no signature occurred and
σ is to be interpreted as a false alarm. In this case, we require
a special false alarm signature. The fault languages must in-
clude traces that contain false alarm signatures in order for
them to be interpreted from an observed trace. Note that such
signatures are not required for the standard approach due to
Assumption 3. We require also a false alarm “fault” to be
included in F , for which its traces contain only false alarm
signatures. It is not actually a fault but used to represent the

situation where so far, only false alarm signatures have been
interpreted from the observed signatures.
Example 4. Consider the same situation as in the previous
example, except with false alarm signatures εa, εb, and εc.
The fault languages are extended by traces where a, b, and
c can be replaced with these signatures, respectively, e.g.,
Lf1 , in addition to cab, has εcab, cεab, and caεb, as well
as εacb, εbca, εaεbc, etc. Here, we have Σa = {a, b, εa},
Σb = {b, a, εb}, and Σc = {c, εc}. We require then also the
false alarm fault E, which has all traces of the three signa-
tures εa, εb, and εc. Say again that the trace bca is observed,
what are the possible interpreted traces? First b is observed
and that can be interpreted as either a, b, or a false alarm in
b, εb. Then c is observed which is really either c or εc, so
the potential interpreted traces are ac, aεc, bεc, εbc, εbεc (bc is
not included since it does not belong to any fault language).
Next a is observed which is either a, b, or εa. The interpreted
traces are then acb, aεcb, bεca, bεcεa, εbca, εbcεa, εbεca, and
εbεcεa.

The algorithm for robust fault isolation is given as Algo-
rithm 3. We keep a set of tuples, L, containing an interpreted
trace λ, its probability p, and its diagnosis F ∗. Initially, the
set contains only one tuple, which is the empty trace ε, with a
probability of 1 and the complete fault set F as its diagnosis.
When a new signature σi is observed (ln. 2), we go through
each interpreted trace λ. First, we find all new signatures that
would (i) belong to Σσi , and (ii) can extend λ to produce a
valid fault trace (ln. 5). For each of these possible next signa-
tures, we extend the trace with it (ln. 7), assign the new trace’s
probability (lns. 8–15), and obtain its diagnosis (ln. 16). We
then add the new tuple (λ′, p′, F ∗) to the set of new tuples L′
(ln. 17), which replaces L (ln. 20). Finally, we construct the
merged diagnosis F∗, which is a set of tuples of a fault and
its probability.

To compute the probability of a trace, we assume that there is
a probability of observing the correct signature, pc. We can
compute the probability of the interpreted signature, pσ , as pc
if it matches the observed signature σi. If it does not match,
we assume that all other signatures are equally probable, so it
is assigned as (1− pc)/(|Σ| − 1) if σi is possible to observe,
and 1/|Σ| if not. The probability of the trace extended by σ is
then the probability of the original trace times the probability
of σ.

The diagnosis that is merged over all traces is computed as
described in Algorithm 4. Each fault is assigned initially a
probability of 0. Then, for each interpreted trace, the proba-
bility of the fault given that trace, p(f |λ), is computed as the a
priori probability of the fault divided by the sum of the proba-
bilities of that fault diagnosed for that trace. This probability
is then added to the probability of the fault, p(f). After going
through all traces, each fault is assigned its total probability.
The set F∗ is created by adding tuples for all faults and their
probabilities.

4
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Algorithm 3 F∗ ← RobustFaultIsolation(F )

1: L ← {(ε, 1, F )}
2: while σi observed do
3: L′ ← ∅
4: for all (λ, p, F ∗) ∈ L do
5: Σ← {σ : σ ∈ Σσi and exists λ ∈ LF∗ such that λσ v

λ}
6: for all σ ∈ Σ do
7: λ′ ← λσ
8: if σ = σi then
9: pσ ← pc

10: else if σi ∈ Σ then
11: pσ ← (1− pc)/(|Σ| − 1)
12: else
13: pσ ← 1/|Σ|
14: end if
15: p′ ← p · pσ
16: F ∗ ← FindConsistentFaults(F ∗, λ′)
17: L′ ← L′ ∪ {(λ′, p′F ∗)}
18: end for
19: end for
20: L ← L′
21: L ← Prune(L)
22: F∗ ← ConstructF(F,L)
23: end while

Algorithm 4 F∗ ← ConstructF(F,L)

1: F∗ ← ∅
2: for all f ∈ F do
3: p(f)← 0
4: end for
5: for all (λ, p, F ∗) ∈ L do
6: for all f ∈ F ∗ do
7: p(f |λ)← pf∑

f ′∈F∗
pf ′

8: p(f)← p(f) + p · p(f |λ)
9: end for

10: end for
11: for all f ∈ F do
12: F∗ ← F∗ ∪ {(f, p(f))}
13: end for

Clearly, the number of interpreted traces, in the worst case,
grows exponentially with each new observed symbol. Each
new symbol can be interpreted in a number of ways and all
current interpreted traces need to be extended with all pos-
sible interpretations. In order to control the computational
complexity of the algorithm, a pruning step is added (ln. 21).
Interpreted traces may be removed from L by, for example,
keeping only the N most probable traces, or keeping only
traces above a probability threshold po. After removing traces
from L, the trace probabilities must be normalized.
Example 5. Consider again the scenario in the previous ex-
ample. The diagnostic tree is shown in Fig. 1. Initially, any
of the faults are possible, including the false alarm fault E.
The branches in the tree represent the possible interpreted
traces from the observed trace bca. The standard approach
would have only one branch. We assume that pc = 0.9,
and the arrows are labeled with the interpreted symbol and
its probability, leading to the new diagnosis and its proba-
bility. Since bca does not belong to any fault language, the

standard approach would fail, whereas in this approach, we
have many potential diagnoses that are ranked probabilisti-
cally, depending on the probabilities assigned to the inter-
preted symbols. For example, take the leftmost branch, where
b is correctly observed. This happens with 90% probabil-
ity, and immediately leads to {f2} as the diagnosis, since
no other fault can produce a b as the first signature. Then
c is observed. Since there is no fault that can produce bc,
the only valid interpretation, given that b was correctly ob-
served, is that c was incorrectly observed and the interpreted
signature is εc, i.e., a false alarm of symbol c. Then a is ob-
served, which can be interpreted only as a or εa, but not as
b since no fault produces two b signatures in any trace. In
either case, the diagnosis remains f2. The rightmost branch,
on the other hand, represents the case where all observations
were false alarms, and thus the diagnosis is E. For a given
fault, its total probability over all interpreted traces can be
computed. If we assume that all faults are equally likely, then
p(f2|bca) = 0.81 + 0.09 + 0.005/3 + 0.0045/3 = 0.9032.

Clearly, the selection of values for pc and po will determine
the final computed probabilities of candidates for a given ob-
served trace. A higher value of pc will assign a higher prob-
ability to the most consistent candidates and a lower value
to the remaining candidates, i.e., the candidate probability
distribution will have a smaller variance. Similarly, a lower
value of pc will cause the candidate probability distribution
to have a larger variance. If po is too high, and a trace is
incorrectly observed, then it is possible that the correct can-
didate can be eliminated. Therefore, both pc and po have to
be selected to best represent the confidence in the symbol ob-
servation process.

5. CASE STUDY

In this section, we describe the application of the new robust
event-based fault isolation framework to ADAPT. We use the
qualitative event-based fault isolation (QFI) framework de-
veloped in (Daigle et al., 2009) and apply the robust method-
ology to it. We first describe the QFI framework and how it
maps into the general event-based framework described ear-
lier, then describe the ADAPT system. Finally, we describe
experimental results using data from ADAPT.

5.1. Qualitative Event-Based Fault Isolation

In the QFI framework in (Mosterman & Biswas, 1999; Daigle
et al., 2009), signatures capture qualitative deviations in mag-
nitude and slope of residual signals, where a residual is com-
puted as the difference between a measured value of a sen-
sor and its expected (model-predicted) value. So, for a given
residual r, we can have six different signatures: (i) an increase
in magnitude, (ii) a decrease in magnitude, (iii) an increase in
slope, (iv) a decrease in slope, (v) a false alarm in the mag-
nitude, and (vi) a false alarm in the slope. For each poten-
tial fault, we can use a dynamic system model to determine

5
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{f1, f2, f3, E}: 1.00

b:

c:

a:

a, 0.05b, 0.90 εb, 0.05

εc, 1.00

b,1.00

{f2}: 0.90 {f1, f2, f3}: 0.05

c, 0.90 εc, 0.10 c, 0.90 εc, 0.10

{f2}: 0.90 {f1}: 0.045 {f1, f2, f3}: 0.005

a, 0.90 εa, 0.10

{f2}: 0.81 {f2}: 0.09 {f1}: 0.045

b,1.00

{f1, f2, f3}: 0.005

a, 0.90 εa, 0.05

{f1, f2, f3, E}: 0.05

{f1, f3}: 0.045 {f1, f2, f3, E}: 0.005

a, 0.90 εa, 0.10

{f1, f3}: 0.0405 {f1, f3}: 0.0045 {E}: 0.00025{f1, f2, f3}: 0.0045

Figure 1. Example diagnostic tree.

which signatures are possible, as described in (Mosterman &
Biswas, 1999).

Fault traces in this framework obey a certain set of con-
straints. First, for a given residual r, the magnitude sym-
bol must always be observed before the slope symbol, and
magnitude and slope symbols can be observed only once per
residual (including false alarm signatures). Second, the order
of signatures between residuals must respect relative resid-
ual orderings (Daigle, Koutsoukos, & Biswas, 2007), which
express the intuition that faults manifest in some residuals
before others. Like signatures, these can be derived from a
dynamic system model (Daigle, 2008). Third, once a false
alarm signature occurs for the magnitude, we cannot observe
any more signatures for that residual. Aside from these re-
strictions, false alarms can occur at any time. In this frame-
work, fault traces do not need to be precomputed but can be
computed online (Daigle et al., 2009).

More information on this framework and its implementation
may be found in (Daigle, Roychoudhury, & Bregon, 2013;
Daigle, Bregon, & Roychoudhury, 2011). For the purposes of
this paper, it suffices to say that we build a dynamic model in
order to compute residuals, and these are analyzed in a statis-
tical manner to generate observed signatures. This involves
the use of thresholds on the residuals. The major practical
problem here is tuning of the thresholds, which can be time-
consuming in order to achieve the desired false alarm/missed
detection trade-off. If these are not perfectly tuned, signatures
can be incorrectly generated. In practice, this is quite difficult,
so, using an approach that is robust to incorrect signatures is
much desired. We compare two different diagnosers, (i) the
QED algorithm, which implements the FaultIsolation
algorithm; and (ii) probabilistic QED (pQED), which imple-
ments the RobustFaultIsolation algorithm. Except

for the fault isolation algorithm, the two diagnosers are the
same.

5.2. ADAPT

In this paper, we apply our new methodology to the Advanced
Diagnostics and Prognostics Testbed (ADAPT), an electrical
power distribution system that is representative of those on
spacecrafts. ADAPT serves as a testbed through which faults
can be injected to evaluate diagnostic algorithms (Poll et al.,
2007). ADAPT has been established as a diagnostic bench-
mark system through the industrial track of the International
Diagnostic Competition (DXC) (Kurtoglu et al., 2009; Poll
et al., 2011; Sweet et al., 2013). In particular, this paper is
focused on diagnosing faults on a subset of ADAPT, called
ADAPT-Lite.

A system schematic for ADAPT-Lite is given in Fig. 2. A
battery (BAT2) supplies electrical power to several loads,
transmitted through several circuit breakers (CB236, CB262,
CB266, and CB280) and relays (EY244, EY260, EY281,
EY272, and EY275), and an inverter (INV2) that converts dc
to ac power. ADAPT-Lite has one dc load (DC485) and two
ac loads (AC483 and FAN416). There are sensors throughout
the system to report electrical voltage (names beginning with
“E”), electrical current (“IT”), and the positions of relays and
circuit breakers (“ESH”, “ISH”). Finally there is one sensor
to report the operating state of a load (fan speed, “ST”) and
another to report the battery temperature (“TE”). Models and
additional details for ADAPT-Lite can be found in (Daigle et
al., 2011, 2013).

Our list of potential faults includes failures in the relays, cir-
cuit breakers, fan, DC load, and AC load. We consider also
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Figure 2. ADAPT-Lite schematic.

under- and over-speed faults of the fan, and offset, drift, and
intermittent offset faults in the DC and AC loads.

5.3. Experiments

Using scenarios available from the DXC, we ran QED and
pQED on a set of 30 nominal scenarios and 71 fault scenar-
ios. The same fault detectors were used for both algorithms,
so that we can show that, when incorrect signatures are gen-
erated, pQED performs better than QED, with the same in-
formation. The settings are nonoptimal in order to better
highlight the differences in the approaches when multiple in-
correct observations are encountered; improving the settings
would of course improve the performance of both algorithms,
but make it harder to compare the performance in nonoptimal
conditions.

We first consider an example scenario, to illustrate the dif-
ferent diagnosis approaches. We then summarize the perfor-
mance of the approaches over all scenarios.

As an example, consider a resistance drift fault in AC483.
The fault is injected at 60 s and detected at 63 s with a de-
crease in IT240. QED reduces the candidate list to a failure
in AC483, a positive resistance offset in AC483, a positive re-
sistance drift in AC483, a failure in CB236, CB262, CB266,
EY244, and DC485, a resistance increase in DC485, a resis-
tance drift in DC485, a failure in EY244, EY260, EY272,
EY275, EY284, FAN416, an under-speed fault in FAN416,
and a failure in INV2. A - signature for the slope of the IT240
residual is then computed, for which only the drift faults are
consistent. An increase in E242 is detected at 120 s, followed
by the generation of a + signature for its slope. QED elim-
inates all faults, because it expects IT267 to deviate before
E242. On the other hand, pQED retains the drift faults as can-
didates, but lowers their probabilities. Before the E242 devia-
tion, the two drift faults had a probability of 38.77% each. Af-
ter, the probability reduces to 3.92%, and they are still at the
top of the candidate list. With the subsequent signatures for
E242, probability decreases, as this is more evidence of other
potential faults, but they remain the most probable. However,

then E240 deviates, again before IT267 as expected, and this
reduces their probability further, and they drop to the eighth
and ninth most probable (at this point it is more likely that
the detection of a negative slope (rather than no change in
slope) was incorrect, and so failures in the circuit breakers
and relays become more likely). In this case, no deviation
was detected in IT267. With a more sensitive threshold, a de-
viation in IT267 could have been detected first, and the drift
faults would have remained the most probable. Although this
is not the most optimal result, at least the true fault was con-
tained in the final diagnosis, albeit not at the highest level of
probability.

5.3.1. Summary of Results

Over the nominal scenarios, both algorithms (since they use
the same fault detectors) correctly detected a fault (true pos-
itives) 69 of 71 times, with 2 missed detections (false nega-
tives). There were no false alarms detected.

For the fault scenarios, QED ends with a list of candidates that
are consistent with the observed symbols. Ideally, this list is
a singleton, containing the true fault. If, given the available
diagnostic information, this is not possible, then we desire
that it has the true fault in its final candidate list. In fact,
QED never obtains the true fault as the single candidate, as
diagnosability is not high enough to achieve that condition.

QED has the correct fault in its candidate list in 24 of 69
scenarios. This means that there are incorrect signatures gen-
erated in at least 45 scenarios. This can be improved with
better fault detector tuning, however we keep these settings
in order to demonstrate the improvement pQED provides. In
32 of these 45 scenarios, QED actually eliminates all faults,
as no faults were consistent with the (incorrect) observations.

For pQED, we used pc = 90%, and pruned candidates with
probability less than 0.1%. If pQED does not prune, then
it will always have the correct candidate in its candidate list
(but perhaps with a low probability assignment). With the
pruning threshold used, pQED has the correct candidate in
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its final list 63 of 69 times, which is a significant improve-
ment over QED. For the 6 times in which it did not have the
true fault, there were too many incorrect observations, bring-
ing down the probability of the true fault low enough that all
traces containing the fault were pruned.

Of course, it is not enough the pQED has the correct fault
in its list, as this depends solely on the pruning threshold.
We are interested in the probability assignment of the true
fault within the final candidate list. pQED diagnoses the true
fault as the fault with highest probability 38 of 69 times. This
is better than the 24 of 69 times for QED. Since QED does
not rank its final candidates, pQED’s result is actually signif-
icantly better and more useful. For the times when the true
fault is not ranked the highest, it is at least contained in the
final candidate list for most of the time.

6. CONCLUSIONS

In this paper, we presented a robust approach to event-based
fault isolation that drops the observation correctness assump-
tion in order to improve robustness of fault isolation when
events are incorrectly observed. We applied this framework
to a qualitative event-based fault isolation framework. Exper-
iments using real data from an electrical power system testbed
demonstrated the approach and its improved robustness.

Future work will focus on extending the approach to multiple
fault isolation, and extending the probability framework to
account for conditional probabilities.
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ABSTRACT

Current-Pressure (I/P) transducers are effective pressure reg-
ulators that can vary the output pressure depending on the
supplied electrical current signal, and are commonly used in
pneumatic actuators and valves. Faults in current-pressure
transducers have a significant impact on the regulation mech-
anism, and therefore, it is important to perform diagnosis to
identify such faults. However, there are different sources of
uncertainty that significantly affect the diagnostics procedure,
and therefore, it may not be possible to perform fault di-
agnosis and prognosis accurately, with complete confidence.
These sources of uncertainty include natural variability, sen-
sor errors (gain, bias, noise), model uncertainty, etc. This
paper presents a computational methodology to quantify the
uncertainty and thereby estimate the confidence in the fault
diagnosis of a current-pressure transducer. First, experiments
are conducted to study the nominal and off-nominal behav-
ior of the I/P transducer; however, sensor measurements are
not fast enough to capture brief transient states that are in-
dicative of wear, and hence, steady-state measurements are
directly used for fault diagnosis. Second, the results of these
experiments are used to train a Gaussian process model us-
ing machine learning principles. Finally, a Bayesian infer-
ence methodology is developed to quantify the uncertainty
and assess the confidence in fault diagnosis by systematically
accounting for the aforementioned sources of uncertainty.

1. INTRODUCTION

Current-Pressure transducers (I/P transducer or IPT) are ef-
fective pressure regulators that vary the output pressure de-
pending on the supplied electrical current signal. They oper-
ate by throttling a nozzle to create a pressure difference across

Shankar Sankararaman et al. This is an open-access article distributed un-
der the terms of the Creative Commons Attribution 3.0 United States Li-
cense, which permits unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are credited.

a diaphragm, which, in turn, controls the throttling of a valve.
These are often used for supplying precise pressures to con-
trol pneumatic actuators and valves. When such transducers
are subjected to wear, it may not be possible to efficiently reg-
ulate currents so that desired output pressures may be gener-
ated. Therefore, it is necessary to constantly monitor the per-
formance of the transducer using efficient health management
techniques and continuously perform diagnosis and progno-
sis, i.e., detect, isolate, and estimate faults and quantify the
remaining useful life of the transducer. Wear detection, esti-
mation, and prediction play a critical role in preventing fail-
ure, scheduling maintenance, and improving system utility.

An important challenge in health management is the pres-
ence of several sources of uncertainty that affect both diag-
nosis and prognosis. These sources of uncertainty are present
in measurement sensors, system models, and the system in-
puts. Due to these sources of uncertainty, it becomes neces-
sary to quantify the confidence in the results of diagnosis and
prognosis. This can be addressed by estimating the uncer-
tainty in the results of diagnosis (Sankararaman & Mahade-
van, 2011, 2013) by rigorously accounting for these sources
of uncertainty during health monitoring. While these prelimi-
nary methods for uncertainty quantification in diagnosis have
been developed from a statistical point of view, it is still nec-
essary to explore the applicability of these methods to differ-
ent types of practical applications where the impact of un-
certainty is extremely significant. While the above statisti-
cal methods can efficiently diagnose abrupt faults, wear in
practical applications is usually continuous and hence, more
challenging from the point of diagnosis and uncertainty quan-
tification.

This paper focuses on applying uncertainty quantification
methods to continuous wear estimation in the aforemen-
tioned current-pressure transducer. Previous studies at NASA
Ames Research Center (Teubert & Daigle, 2013) have ob-
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served that there is a significant amount of uncertainty during
the health monitoring of the aforementioned current-pressure
transducer; however, the effects of uncertainty on the IPT
steady-state diagnosis and prognosis were not studied be-
cause simplistic look-up tables had been used for fault esti-
mation. In order to apply rigorous uncertainty quantification
methods, it is first necessary to identify and address certain
application-specific challenges. In the case of the current-
pressure transducer, the challenge lies in obtaining useful in-
formation from the sensors used in the health monitoring sys-
tem. To begin with, there is a significant amount of noise
and uncertainty in the sensor measurements. More impor-
tantly, the sensors are not fast enough to capture brief tran-
sient states; this can either be a result of sensor technological
limits, or budgetary constraints on sensor selection (as sen-
sors with higher resolution and higher sampling frequencies
are generally more expensive). Many modern wear estima-
tion diagnostic techniques rely on the measurement of the
system’s transient states (Daigle & Goebel, 2013; Orchard
& Vachtsevanos, 2009; Saha & Goebel, 2009; Luo, Patti-
pati, Qiao, & Chigusa, 2008), and therefore, these techniques
cannot be used for diagnosis of the current-pressure trans-
ducer. In order to overcome this challenge, researchers at
NASA Ames Research Center (Teubert & Daigle, 2013) are
pursuing a diagnostic methodology that relies only on steady-
state measurements without using any transient information.
Therefore, it is necessary to rely on such steady-steady mea-
surements while quantifying the uncertainty in diagnosis.

The primary goal of this paper is to develop a computational
methodology to assess the impact of the different sources of
uncertainty on wear estimation in the current-pressure trans-
ducer, and in turn, quantify the uncertainty in diagnostics.
First, experimental data are collected to study the relation-
ship between the input currents, fault magnitudes, and the
output pressures, and the resulting data are used to develop
a Gaussian process model that can predict the output pres-
sures as a function of input currents and fault magnitude.
This model is built offline using principles of machine learn-
ing, and then used for diagnosis during online health monitor-
ing. A Bayesian inference-based methodology is developed
to quantify the extent of wear, and the associated uncertainty.
This analysis is continuously performed in order to continu-
ously estimate the wear and thereby, the fault magnitude can
be quantified as a function of time. The Bayesian inference-
based methodology provides a systematic framework for in-
cluding different sources of uncertainty and quantifying the
combined effect of the different sources of uncertainty on
fault estimation uncertainty, thus providing an estimate in the
confidence in diagnosis.

The paper is organized as follows. Section 2 describes the
current-pressure transducer in detail, and explains the various
modeling and experimental aspects of the transducer. Sec-
tion 3 describes the Gaussian process modeling methodology

Figure 1. Current/pressure transducer schematic.

Figure 2. Current/pressure transducer.

that is used as a machine learning tool to model the nomi-
nal and off-nominal behavior of the current-pressure trans-
ducer, and in turn used for diagnosis. Section 4 describes the
Bayesian inference-based methodology for quantifying the
uncertainty in diagnosis, using the aforementioned Gaussian
process model. A simplistic metric for confidence assessment
in diagnostics is also presented. Finally, the numerical results
are described in Section 5, and conclusions are presented in
Section 6.

2. DESCRIPTION OF THE TRANSDUCER

This section describes the behavior of the current-pressure
transducer in detail, by exploring both nominal and off-
nomoinal (faulty) conditions. Consider a Marsh Bellofram
Type 1000 IPT, as shown in Figures 1 and 2. Some specifica-
tions for this IPT are included in Table 1 (Marsh Bellofram,
n.d.). This particular transducer was chosen because of its
use for cryogenic propellant loading applications, and, specif-
ically in the Prognostics Demonstration Testbed at NASA
Ames Research Center (Kulkarni, Daigle, & Goebel, 2013).

The IPT is divided into three distinct control volumes (CVs):
Control Volume 1 (CV1) at the inlet, Control Volume 2 (CV2)
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Table 1. IPT specifications

Name Type 1000 IPT
Manufacturer Marsh Bellofram
Supply Pressure Range 18-100 psig
Input Signal Range 4-20 mA
Output Pressure Range 3-15 psig

Figure 3. IPT testing configuration

at the outlet, and the Pilot Control Volume (CVP) at the noz-
zle. Each control volume is marked in a different color and
pattern in Figure 1. The IPT output pressure varies with the
current supplied to the magnet assembly. When the current is
high, the magnet assembly throttles the flow out of the pilot
nozzle, allowing less air to escape through the nozzle. With a
low input current, more gas escapes from the nozzle thereby
lowering the pilot pressure. The pressure difference across
the diaphragm moves the valve, which adjusts the gas flow
between CV1 and CV2. Adjusting this flow changes the pres-
sure in CV2, and thus provides a direct mechanism to regulate
the outlet pressure. In past research efforts, the behavior of
this transducer has been modeled using a physics-based ap-
proach (Teubert & Daigle, 2013, 2014); however, this model
is not used in this paper. Instead, a completely data-driven
approach is used for both performance prediction and health
monitoring. The experimental set-up for generating data is
described in the next subsection.

2.1. Experimental setup

In order to study the nominal and faulty performance of the
transducer, a series of experiments were conducted using the
Prognostics Demonstration Testbed at NASA Ames Research
Center. The Prognostics Demonstration Testbed (Kulkarni et
al., 2013) was developed to demonstrate cryogenic refueling
valve prognosis. This testbed included an I/P Transducer that
was used to operate a large valve. The section of the testbed
including the I/P Transducer is illustrated in Figure 3.
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Figure 4. IPT outlet pressure with time

As seen in the figure, two bleed valves were installed on the
IPT line: one upstream, and one downstream. These valves
were used to simulate inlet and outlet leaks, respectively. A
pressure of 75 psig is supplied using a pump. Data were col-
lected from pressure sensors located before the inlet bleed
valve and after the outlet bleed valve at a frequency of 16.8
Hz using an 8-slot NI cDAQ-9188 Gigabit Ethernet chassis
data acquisition (DAQ) system (Kulkarni et al., 2013). A con-
trol input is supplied to the IPT. A separate control input is
supplied to the bleed valves to create a leak.

2.2. Nominal IPT Behavior

The IPT documentation indicated the IPT should produce an
outlet pressure of 3 and 20 psig when supplied a signal current
of 4 and 20 mA, respectively (Marsh Bellofram, n.d.). In this
range, the pressure changes linearly with input current.

In practice, IPT behavior is much more difficult to under-
stand. Noise as much as 10% was observed in measurements
of outlet pressure, as seen in the experimental data included
in Figure 4. This figure shows the measured outlet pressure
with time. This noise complicates the process of measuring
the steady-state pressure, and thereby complicates the diag-
nosis procedure. Hence, a rigorous diagnosis methodology
should be able to separate the effect of the noise; in fact, this
is a prominent feature of the diagnosis method proposed in
this paper (in Section 4).

Additionally, it was observed that the pressure at a given in-
put current would vary from day to day but was generally
constant over the course of one experiment. We will hence-
forth refer to this phenomena as “wandering set-point”. A
histogram showing the spread of steady state pressure mea-
surements over 676 cycles with an input current of 4mA is
included in Figure 5. In this figure, the input current predicted
by the model and documentation is indicated by a dashed red
line.
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Figure 5. Histogram of IPT steady-state outlet pressure for an
input current of 4 mA

An experiment was conducted to determine if wandering set-
point is observable over the course of one experiment. These
experiments found that after 200 minutes of consistent opera-
tion there was no observable wandering set-point. From this it
was concluded that this phenomena will not occur during the
course of a single experiment. In this paper, the wandering
set-points are directly included into the data-driven modeling
framework, and accounted for during diagnosis, as explained
in Sections 4 and 5.

2.3. IPT Wear

Through discussions with the manufacturers and with users
of I/P transducers and similar components four possible wear
modes were indicated. These wear modes are described be-
low:

1. Leaks A leak could occur at the inlet (inlet leak), at the
outlet (outlet leak), at the valve (valve seat leak), or at the
nozzle (pilot leak).

2. Spring Weakening A weakening of the valve spring, the
diaphragm, or the flexure. This will decrease the spring
coefficient of the effected system.

3. Valve Impediment A impediment or ”clog” at the valve
opening between CV 1 and CV 2. This can be caused by
foreign object contamination.

4. Magnet Assembly Weakening A weakening of the
magnet assembly with use.

Though all these faults are possible, this paper focuses only
on outlet leak faults. Outlet leaks were chosen because they
are well understood and can be directly simulated while per-
forming experiments. Only this fault and inlet leaks can
be simulated in the laboratory with our current experimen-
tal setup. Studies show that introducing an inlet leak has very
little effect on IPT performance (Teubert & Daigle, 2013).
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Figure 6. Outlet leak

Other faults will be considered in future work.

A bleed valve to the atmosphere was introduced into the ex-
perimental setup after the IPT to simulate outlet leaks. Each
bleed valve simulates a leak up to 3/64” in diameter. IPT Per-
formance with various levels of outlet leaks can be seen in
Figure 6.

As mentioned in the previous subsection on nominal be-
havior, between experiments the IPT behavior will change
slightly in the “wandering set-point” phenomenon. This phe-
nomenon also affects IPT wear behavior, and will be ac-
counted for during modeling in Section 3, and during diag-
nosis in Section 4.

3. GAUSSIAN PROCESS MODELING

The experimental data used to study the performance of the
current-pressure transducer is then used to train a Gaussian
process data-driven model. This model predicts the outlet
pressure as a function of input current, fault magnitude (out-
let leak fault), and the wandering set-points. The gaussian
process model is a powerful multi-dimensional interpolation
technique based on spatial statistics. It is increasingly being
used to build surrogates to replace expensive computer simu-
lations in order to facilitate efficient optimization and uncer-
tainty quantification (Rasmussen, 2004; Santner, Williams, &
Notz, 2003). The GP model is preferred in this research for
the following reasons: (1) it is not constrained by functional
forms; (2) it is capable of representing highly nonlinear re-
lationships in multiple dimensions; and (3) can estimate the
prediction uncertainty which depends on the number and lo-
cation of training data points.

The basic idea of the GP model is that the response values
Y evaluated at different values of the input variables X , are
modeled as a Gaussian random field, with a mean and co-
variance function. Suppose that there are m training points,
x1, x2, x3 ... xm of a d-dimensional input variable vector

4
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(d = 4 in this paper), yielding the output values Y (x1),
Y (x2), Y (x3) ... Y (xm). The training points can be com-
pactly written as xT vs. yT where the former is a m × d ma-
trix and the latter is a m × 1 vector. Suppose that it is desired
to predict the response (output values yP ) corresponding to
the input xP , where xP is n × d matrix; in other words, it is
desired to predict the output at n input combinations simulta-
neously. Then, the joint density of the output values yP can
be calculated as:

p(yP |xP , xT , yT ; Θ) ∼ N(m, S) (1)

where Θ refers to the hyperparameters of the Gaussian pro-
cess, which needs to be estimated based on the training data.
The prediction mean and covariance matrix (m and S respec-
tively) can be calculated as:

m = KPT (KTT + σ2
nI)−1yT

S = KPP − KPT (KTT + σ2
nI)−1KTP

(2)

In Eq. 2, KTT is the covariance function matrix (size m×m)
amongst the input training points (xT ), and KPT is the co-
variance function matrix (size p × m) between the input pre-
diction point (xP ) and the input training points (xT ). These
covariance matrices are composed of squared exponential
terms, where each element of the matrix is computed as:

Kij = K(xi, xj ; Θ) = −θ

2
[

d∑

q=1

(xi,q − xj,q)
2

lq
] (3)

Note that the above computations require the estimate of the
multiplicative term (θ), the length scale in all dimensions (lq,
q = 1 to d), and the noise standard deviation (σn). These
constitute these hyperparameters (Θ = {θ, l1, l2 ... ld, σn}).
These hyperparameters are estimated based on the training
data by maximizing the following log-likelihood function:

log p(yT |xT ; Θ) = − yT
T

2
(KTT + σ2

nI)−1yT

− 1

2
log|(KTT + σ2

nI)| +
d

2
log(2π)

(4)

Once the hyperparameters are estimated, the Gaussian pro-
cess model can be used for predictions using Eq. 2. Note
that the “hyperparameters” of the Gaussian process are differ-
ent from the “parameters” of a generic parametric model (for
e.g. linear regression model). This is because, in a generic
parametric model, it is possible to make predictions using
only the parameters. For the Gaussian process model, all the
training points and the hyperparameters are both necessary
to make predictions, even though the hyperparameters may
have estimated previously. For details of this method, refer
to (Rasmussen, 2004; Chiles & Delfiner, 1999).

Once the training points are selected and the Gaussian pro-

cess model is constructed, it can be used for diagnosis and
quantifying the uncertainty in diagnosis, as explained in Sec-
tion 4.

4. WEAR ESTIMATION AND UNCERTAINTY QUANTIFI-
CATION

Wear estimation is the process of estimating the current extent
of wear (i.e., quantifying the fault magnitude) on a system.
This is important for prognostics (predicting failure and re-
maining useful life), scheduling maintenance, and triggering
automated mitigation actions. This is often done using meth-
ods such as a Kalman Filter or Particle Filter (Arulampalam,
Maskell, Gordon, & Clapp, 2002; Daigle, Saha, & Goebel,
2013). In this paper, recall that only steady-state measure-
ments have been used and the transients are completely ig-
nored. For this reason, tracking is not applicable and fil-
tering approaches will not be suitable for wear estimation.
Therefore, it is necessary to develop an algorithm that can
estimate the extent of wear. Previously (Teubert & Daigle,
2013), a lookup table method was used for fault estimation.
This method was chosen because of its fast, efficient nature
and its ability to be applied to both linear and non-linear sys-
tems. However, this method can neither systematically ac-
count for the different sources of uncertainty nor quantifying
the uncertainty in fault estimation. Hence, this paper uses the
previously described Gaussian process model and Bayesian
inference to quantify uncertainty in fault estimation.

As mentioned previously, this paper focuses on the outlet
leak. This fault has a definite and measurable effect on the
outlet pressure and can be simulated in the lab. As the leak
grows in size, more gas escapes through the outlet. For a leak
of 5 mm2, the outlet pressure decreases by 2.101 psig for a
high signal current and by 0.207 psig for a low signal current.

This paper focuses on quantifying the amount of wear by ap-
proaching fault estimation as a parameter estimation problem.
In this technique, input-output measurements (obtained from
the health monitoring sensors) are directly used to estimate
the magnitude of fault; the input corresponds to the signal
current (denoted by I) to the IPT, the output corresponds to
the outlet pressure (denoted by P ), and the magnitude of fault
(wear) is denoted by θ. Further, the outlet pressure also de-
pends on the two set-points (denoted by α1 and α2) that are
measured during the course of health monitoring. The en-
tire procedure for fault estimation and uncertainty quantifica-
tion is described through the stepwise procedure, as shown in
flowchart in Fig. 7. Each of these steps are explained in detail
below.

4.1. Offline: Gaussian Process Model Development

Any parameter estimation technique relies on the existence
of a forward model that can compute the quantity being mea-
sured as a function of the fault magnitude. This forward
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Offline Analysis

1. Generate Experimental Data (P corresponding to I , θ, α1 and α2)

2. Use Data to Train GP Model: P = G(I, θ, α1, α2)

Online Monitoring

1. Measure wandering set-points α1 and α2

2. Collect Current vs. Pressure Data: Ij vs P j (j = 1 to n) over a small period of time

3. Separate noise in P j by computing f(µP j , σP j ) using Eq. 6 – 8

4. Use fµ
P j (µP j ) to compute L(θ) using Eq. 10 and 11

5. Use L(θ) in Eq, 9 to estimate fault through the PDF f ′′
Θ(θ)

6. Repeat steps 2-4 to estimate θ continuously as a function of time

Figure 7. Stepwise Diagnosis Procedure

model is represented as:

P = G(I, θ, α1, α2) (5)

The forward model can either be physics-based or data-
driven. In this paper, a fully data-driven approach is pur-
sued. Experimental data are used to train the Gaussian pro-
cess model as described in Section 3. While a rigorous de-
sign of experiments is not performed (due to the challenges
involved in the experimental set up and data collection), six
different runs are used to generate the training data. Each
experimental run corresponds to a single pair of set-points.
Within each experimental run, the fault magnitude increases
gradually (as shown in Fig 15); for each value of fault magni-
tude, two values of I and the corresponding values of P are
measured. All this data are used to train the Gaussian pro-
cess model offline. After training, the model can be used for
online diagnosis.

4.2. Online: Measurements and Set-Points

For performing diagnosis, the first step is to measure to set-
points (α1 and α2); As mentioned in Section 2 IPT be-
havior can change over time (the ”Wandering Setpoint Phe-
nomenon”). The set-points are the outlet pressure of the un-
damaged system given a control input of 4 and 20 mA (the
operational extremes). These values are used to quantize the
wandering setpoint magnitude. Wear behavior is then depen-
dent on the values of these set points.

Then, a small time period within which the fault magnitude
is likely to be constant is considered; the current values and
corresponding outlet pressure values are measured during this
time period. Let Ij and P j (j = 1 to n) denote the measured
input-output data. The goal is to use these measurements to
estimate the magnitude of fault accounting for the noise in
the measurement data and other sources of uncertainty. This
is accomplished through the use of the above constructed sur-
rogate model and Bayesian inference (Sankararaman & Ma-
hadevan, 2013). The first step is to explicitly quantify the
amount of noise in the data, so that the actual steady state
value may be calculated.

4.3. Separating Noise from Steady State Pressure

Consider the input-output data, described in terms of Ij ver-
sus P j (j = 1 to n). In the experimental setup, the input
current is treated as the independent quantity and can be con-
trolled fully, i.e., it is assumed that there is no uncertainty
regarding the current values. However, the P j corresponds
to the steady state pressure that is measured. Typically, this
steady state pressure is contaminated with noise. It is impor-
tant to separate out the effect of such noise. A typical steady
state pressure consisting of 252 measurements is shown in
Fig. 8.

One way to quantify the actual steady state value is to sim-
ply compute the average of all the measurements; however,
this is not an effective treatment of uncertainty. Therefore,
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Figure 8. Steady state outlet pressure values

this paper develops a new method to individually quantify the
constant value and the noise magnitude. To this end, consider
the separation of the steady state value into the constant term
and noise as:

P j = µP j + ǫP j (6)

where µP j is the actual constant steady-state value and ǫP j

is the measurement error. Further, it is assumed that the mea-
surement error ǫP j follows a Gaussian distribution with zero
mean and standard deviation equal to σP j . Then, based on
all the measurements in Fig. 8, Bayes theorem can be used to
estimate the probability distributions of both µP j and σP j . If
the Nj (equal to 252 in Fig. 8) measurements are denoted as
P j

k (k = 1 to 252), then, the likelihood function L(µP j , σP j )
is constructed as:

L(µP j , σP j ) ∝
k=Nj∏

k=1

1√
(2π)σ

exp

(
−
[ (µP j − P j

k )2

σ2
P j

])

(7)
Then, this likelihood function is used to estimate the joint
PDF of µP j and σP j using Bayes theorem, as:

f(µP j , σP j ) =
L(µP j , σP j )∫

L(µP j , σP j )dµP j dσP j

. (8)

Note that the above equation is simply a variation of Bayes’
theorem; the prior distribution has been canceled in both the
numerator and the denominator (inherently assuming that a
constant prior has been used). It is not necessary to evaluate
the above integral explicitly; instead, slice sampling (Neal,
2003) is used to directly estimate samples of µP j and σP j

from the posterior distribution on the right hand side of the
above equation. For the steady state in Fig. 8, the PDFs of
µP j and σP j are shown in Fig. 9 and Fig. 10.

4.4. Fault Estimation through Bayesian Inference

Having the steady state, this information along with the GP
model can be used to quantify the fault magnitude and the as-
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Figure 9. PDF of steady-state value (µP j )

0.22 0.24 0.26 0.28 0.3 0.32 0.34
0

5

10

15

20

25

30

35

σP j

PD
F

Figure 10. PDF of the standard deviation of measurement
error (σP j )

sociated uncertainty. In order to achieve this goal, let f ′
Θ(θ)

denote the prior probability distribution of the fault magni-
tude before collecting measurements; a uniform probability
distribution over the entire range of possible fault magnitudes
is assumed in this paper. Then, using the available input-
output data, the posterior distribution of the fault magnitude
(denoted by f ′′

Θ(θ)) is computed as:

f ′′
Θ(θ) =

f ′
Θ(θ)L(θ)∫

f ′′
Θ(θ)L(θ)dθ

(9)

where L(θ) is the likelihood function of θ, defined as being
proportional to the probability of observing the given input-
output data conditioned on the value of the fault magnitude
θ. The likelihood function, i.e., L(θ) is constructed using the
estimated steady state pressure value. Recall that µP j de-
notes the constant steady state pressure value and fµ

P j (µP j )
denotes the corresponding PDF.

Then, the likelihood function for the ith input-output data-
point is expressed as:

L(θi) ∝ fµ
Pj (µP j = G(Ij , θ, α1, α2)) (10)
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Since the n measurements are independent of one another, the
combined likelihood can be calculated as:

L(θ) =

i=n∏

i=1

L(θi) (11)

Then, this likelihood function is substituted into Eq. 9, and the
posterior PDF of the fault magnitude θ is computed. While
direct integration (Sankararaman, Ling, & Mahadevan, 2010)
is used in this paper, advanced MCMC sampling methods
such as slice sampling (Neal, 2003) can also be used. This
procedure is repeated continuously to estimate the PDF of
the fault magnitude as a function of time.

4.5. Metric for Assessing Confidence in Diagnostics

A common practice in health management is to not use the en-
tire PDF information and simply use some central tendency
of the above calculated PDF (say, mean, median, or mode) as
the final diagnostic estimate. However, this procedure loses
information regarding uncertainty and can lead to erroneous
results. That is why it is important to quantify the confidence
is diagnostic assessments. This paper discusses a simple con-
fidence metric to address this issue.

For example, consider the mode of the PDF f ′′
Θ(θ). By def-

inition, the mode of a probability distribution has the high-
est likelihood of occurrence and hence is the most likely
value. Therefore, the mode of the PDF f ′′

Θ(θ) would be the
most likely fault magnitude value. However, this implies that
the true fault value may have a smaller likelihood of occur-
rence. Therefore, a simple way to compute a confidence met-
ric would be to assess how far the mode (denoted by θC ) is
probabilistically away from the true estimate (denoted by θT ).
This can be computed mathematically using the likelihood ra-
tio:

M =
f ′′
Θ(θT )

f ′′
Θ(θC)

(12)

This ratio will be equal to one when the estimated mode value
coincides with the true value, and in all other cases, the met-
ric will be less than equal to one. The metric provides a
probabilistic measure of confidence in the estimated fault by
comparing its likelihood against the true fault magnitude. For
practical purposes, the above metric can also be expressed in
terms of percentage, as illustrated later in this paper.

5. NUMERICAL RESULTS

This section presents the numerical results of diagnosis un-
certainty quantification on a current-pressure transducer.

5.1. Training the Gaussian Process Model

The first step is to use the experimental data to train the Gaus-
sian process model. This model has four input quantities:

1. Fault magnitude
2. Current magnitude
3. Set-point I
4. Set-point II

For every combination of the above four quantities, the out-
let steady state pressure needs to computed by the gaussian
process model (P = G(I, θ, α1, α2)). Hence, experimental
data that depicts the variation of output pressure with respect
to the four input quantities are collected and used to train the
GP model. There are seven sets of data, and each set cor-
responds to one value of set-point I and set-point II. These
experimental are shown in Figures 11—14
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Figure 11. Fault magnitude vs. output pressure
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Figure 12. Current magnitude vs. output pressure
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Figure 13. Set-Point I vs. output pressure
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Figure 14. Set-Point II vs. output pressure

All of the above information is used to train the Gaussian pro-
cess model using the procedure in Section 3. This model is
used for diagnosis and quantifying the uncertainty in diagno-
sis.

5.2. Diagnosis: Numerical Illustration

Consider a set of current versus (steady state) outlet pressure
measurements that are available through health monitoring,
as shown in Fig. 15. Note that the Gaussian process model is
useful for forward evaluation, i.e., to compute the outlet pres-
sure as a function of fault magnitude and input current, and
this model needs to be evaluated for multiple values of fault
magnitude in order to estimate the correct fault magnitude.
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Figure 15. Input vs. output monitoring data

Two values of current are applied in an alternating manner:
First, a current of 0.004 amps, and then a current of 0.02
amps. The fault magnitude is assumed to be constant over
this time window. This procedure is repeated as the fault
magnitude increases over time. The set-points for the above
monitoring data are found to be equal to 4.65 and 15.58 milli-
amps. Using the Gaussian process model, and the Bayesian
inference methodology explained earlier in Section 4, the
fault magnitude is estimated continuously as a function of
time. To estimate the fault magnitude, one low value of cur-
rent and one high value of current, and the corresponding out-
let pressures are considered. Since 198 sets of measurement

are available and every two correspond to a single value of
fault magnitude, Bayesian inference is applied 98 times to
quantify the fault magnitude.

An arbitrary set of current-pressure values is chosen for the
purpose of illustration; the outlet pressure values given signal
currents of 0.004 amps and 0.02 amps are equal to 2.68 Pa and
15.56 Pa respectively. For these set of values, the fault mag-
nitude is estimated using Bayesian inference; the estimated
PDF and the true value are indicated in Fig. 16. Note that the
mode does not correspond to the true fault magnitude.
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Figure 16. PDF of fault magnitude

Such computation is continuously performed with time, and
the mode of the distribution is plotted against the true fault
magnitude value, as shown in Fig. 17. While absolute time
is not meaningful, Fig. 17 shows the number of the instance
(1 through 99) in which diagnosis is performed. It can be
seen that the mode approximately matches well the true fault
magnitude (since the fault magnitude varies over a range, it
is not possible to see succinct differences between the mode
and true fault magnitudes). The methodology consistently es-
timates the fault magnitude and the true fault magnitude is
contained within reasonable bounds of the predicted uncer-
tainty.
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Figure 17. Fault magnitude: estimated (mode) vs. true

In addition to the mode of the fault estimate, the standard
deviation is also plotted in Fig. 18, similar to Fig. 17. Note
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that the standard deviation is small, as seen from Fig. 16 and
Fig. 18.
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Figure 18. Uncertainty in diagnosis

However, using the proposed statistical methods, it is possi-
ble to quantify the extent of agreement between the estimated
fault and true magnitude, thereby quantifying the amount of
confidence in diagnosis. The metric proposed earlier in Sec-
tion 4.5 (ratio of PDFs measured at the mode and the true
value) is quantified and plotted (as percentage) in Fig. 19.
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Figure 19. Confidence in diagnosis

As seen from Fig. 19, it is seen that the confidence metric is
always less than 100%, suggesting that it is practically im-
possible to precisely estimate the true fault magnitude. A
rigorous treatment of uncertainty addresses this issue by esti-
mating the entire PDF of the fault magnitude instead of using
any central tendency such as the mean, median, mode, etc.

6. CONCLUSION

This paper proposed a data-driven methodology for fault esti-
mation and uncertainty quantification in the steady-state diag-
nosis of a current-pressure transducer (IPT). Such transduc-
ers are efficient electromechanical devices that can be used to
control the output pressure depending on the signal current.
When faults are present in these transducers, the desired pres-
sure output may not be obtained. Therefore, it is necessary to
monitor to performance of these transducers, detect the pres-

ence of faults and estimate the fault magnitude.

This is a significant challenge in diagnosis due to several
sources of uncertainties associated with monitoring the heath
of the transducer. To begin with, the sensors used to monitor
the performance may be affected by sensor noise. Further,
it may not be precisely possible to predict the performance
of the transducer and this may add further uncertainty; there-
fore it becomes necessary to quantify the confidence in fault
diagnosis.

A Bayesian inference-based methodology was used for un-
certainty quantification in diagnostics, and the amount of
wear (fault) was quantified as a function of time. This ap-
proach can not only systematically account for the various
sources of uncertainty in the health monitoring but also quan-
tify the uncertainty in the fault estimate, resulting in a mea-
sure of confidence in diagnosis. Experimental data were col-
lected offline and used to develop a Gaussian process model
that can predict the outlet pressure as a function of fault mag-
nitude and input current. This Gaussian process model was
then used in online diagnosis; the probability distribution of
the fault magnitude and the confidence in diagnostics was es-
timated.

Numerical results show considerable promise of the proposed
methodology. Future work may include considering multiple,
simultaneous fault modes where it is necessary to quantify the
uncertainty in both fault isolation and fault estimation. It is
also necessary to study the effect of diagnostic uncertainty
on prognosis, by quantifying the uncertainty in the remaining
useful life of the transducer.
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ABSTRACT

This paper develops a health monitoring scheme to detect
and trend degradation in dynamic systems that are charac-
terised by multiple parameter time-series data. The presented
scheme provides early detection of degradation and ability to
score its significance in order to inform maintenance planning
and consequently reduce disruption. Non-parametric statis-
tics are proposed to provide this early detection and scoring.
The non-parametric statistics approximate the data distribu-
tion for a sliding time window, with the change in distribution
is indicated using the two-sample Kolmogorov-Smirnov test.
Trending the changes to the signal distribution is shown to
provide diagnostic capabilities, with deviations indicating the
precursors to failure. The paper applies the equipment health
monitoring scheme to address the growing concerns for future
gas turbine fuel metering valve availability. The fuel meter-
ing unit within a gas turbine is a complex electro-mechanical
system, failures of which can be a major source of airline dis-
ruption. The application is performed on data acquired from a
series of industrial tests performed on large civil aero-engine
fuel metering units subjected to varying levels of contami-
nant. The data exhibits characteristics of degradation, which
are identified and trended by the equipment health monitoring
scheme presented in this paper.

1. INTRODUCTION

The assessment and trending of novelty within the measured
parameters of a dynamic system may be used to diagnose and
predict the performance and health of a system, and thus in-
form activities to reduce the impact of decreasing functional
performance. The use of novelty as a measure of health has
advantages in that the exact nature of fault characteristics are
not required in advance, only a measure of departure from

Maizura Mokhtar et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

nominal conditions. To generate actionable information, sig-
nals are typically processed from raw measurements into a
reduced dimension novelty summary value that may be more
easily transferred to where it can be trended and interpreted
by an asset manager. In line with the aspirations of the nov-
elty detection and trending paradigm to determine any depar-
ture from nominal conditions, the novelty assessment scheme
should be sensitive to all changes in the underlying system,
not only deviations in particular characteristics of signals. A
multi-variate equipment health monitoring (EHM) scheme is
developed to address these novelty trending objectives.

Early warning of degradation is provided by a novelty scor-
ing metric, which aims to detect the changes in the system
dynamic response as the results of the degradation and to
trend the degradation significance and severity. The changes
in the dynamic response are visible when analysing the mea-
sured data distributions. For the work presented in this pa-
per, novelty is defined as the change in the measured signal
distribution when compared to a reference distribution, gen-
erated from a previous known condition or from its earlier
behaviour. The principle of our novelty detection scheme is
supported by Andrade et al. (2001) which states: “data de-
rived from measurements taken from an undamaged system
will have a distribution with an associated mean and vari-
ance; if the system is damaged, then, there may be a change to
its mean, variance, or both”. Online indication and trending
of the distribution change, with any order of statistical mo-
ments (Scheffer & Heyns, 2001), (Salgado & Alonso, 2006),
enable the indication of the system health condition.

Because of this, the proposed EHM scheme does not require
an explicit model of normality to be constructed as part of
the design and development process. This is in contrast to
the work published in (Sohn et al., 2001) and other similar
works, (Andrade et al., 2001) (Hall & Mba, 2004), (Kar &
Mohanty, 2006), (Subramaniam et al., 2006) and (Zhan &
Mechefske, 2007). These papers compare the measured dy-
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namic response against the model of normal(s) and/or fault
conditions - therefore, causing a disadvantage because of the
requirement for prior knowledge. Our work also enables the
early detections of the onset of change in dynamic response,
which is also indicative of the degradation.

The novelty scoring is achieved using online non-parametric
statistics that approximates the data distribution for the time
window consisting of the N number of samples at current
time t and compare to the previous N number of samples
separated by an interval of S samples. A non-parametric sta-
tistical approach is proposed so that this scheme will not be
reliant on the prior training of normal and faults conditions.
This is a major criteria for the development of the online and
unsupervised EHM scheme, because, as indicated in (Mod-
enesi & Braga, 2009), novelty detection is concerned with
the identification of unexpected events or regime changes to
the system that is not well understood - “The vagueness of
the description is inherent to the novelty detection problem,
in fact, it is the very centre of the problem: how to detect
data whose only particular characteristic is that it has not
appeared before?”. Furthermore, when variations occur, the
variations may cause the need to redesign and reconstruct any
system models developed; the development process itself is
time consuming, and may not reflect all normal or fault con-
ditions (Zhan & Mechefske, 2007).

By using an online non-parametric statistics (Subramaniam et
al., 2006), the approximation of the data distribution adapts
over time. The characteristics of the distribution will dif-
fer when the conditions of the system have changed, thus
changes that are resultant of degradations are identified. Nov-
elty, defined by this work, is the identification of the changes
to the distribution, which signifies when a change in the sys-
tem’s conditions have occurred, i.e. the measured dynamic
response that is the outcome of degradations. Authors of
(Marsland, 2003) and (Modenesi & Braga, 2009) also indi-
cated that novel data or outliers have a large effect on the
analysis of the system, which can result in the change to the
measured data distribution.

One mechanism to monitor the distribution change is by trend-
ing the change in the distributions mean, standard deviation
and other statistical moments (e.g. skewness or kurtosis).
These summary statistics are not guaranteed to unambigu-
ously measure all the different changes that may occur in the
data. In addition, as the number of variables in the analyses
increases, the co-relations between parameters should also be
calculated, and thus the number of calculations increases non-
linearly (O(n2)). Modern complex systems have a combina-
tion of multiple sensed parameters that all may contribute to
the efficacy of monitoring (Subramaniam et al., 2006). There-
fore, an alternative generic measure of distribution change is
advantageous and is proposed in this paper.

We apply this scheme to a component previously identified

as a source of high disruption and service cost to aero-engine
manufacturers (Eleffendi et al., 2012). The fuel metering unit
(FMU) within a gas turbine is a complex electro-mechanical
system. Failures to the FMU can be a major source of air-
line disruption. The system operates in a harsh environment
where high temperatures and fuel impurities can lead to sys-
tem degradation and functional failure. Fuel impurities, often
categorised as contaminants, are one of the culprits that cause
system degradation. Contaminants accumulate in fuel sys-
tem filters, nozzles, the walls of control valves and other slid-
ing components. These accumulations resulted in increased
friction, which can, in addition to other failure mechanisms,
result in valve seizure and in-flight shutdown. Early detec-
tion of this degradation can inform maintenance planning and
avoid in-service events, which helps minimise disruptions.

The paper presents the multivariate EHM scheme that per-
forms early diagnosis and trending of the FMU degradation
as a result of friction increase. The EHM scheme uses non-
parametric statistics. The non-parametric status is discussed
in Section 2. Section 3 describes the FMU used to test and
analyse the capabilities of the EHM scheme and Section 4
discusses the results produced. Section 5 concludes the pa-
per.

2. NON-PARAMETRIC STATISTICS FOR NOVELTY DE-
TECTION AND SCORING

The novelty detection scheme proposed is performed by com-
paring the differences between the two distributions: the cur-
rent distribution and the previous distribution measured. If
the system is in nominal conditions and at non-transient op-
erations, the change should be minimal. If the system per-
formance degrades, a change in the distribution between cur-
rent and previous is indicated. Changes in the distribution
are indicated using a multivariate two-sample Kolmogorov-
Smirnov test. The Kolmogorov-Smirnov test signifies the
probability whether the two underlying probability distribu-
tions differs. The test compares two empirical cumulative
distribution functions (ECDFs) and for the work presented
in this paper, the two ECDFs are the current and previous dis-
tributions. This enables trending of any system change.

2.1. Multivariate Two-sample Kolmogorov-Smirnov Test

Since different data sets, or different distribution functions,
have differing cumulative density functions, one can estab-
lish the likelihood that two sets of data are originating from
the same distribution function by measuring the differences
between their ECDFs. The ECDF for the N samples of vari-
able v is defined by Eq. (1), and provides a measure of the
relative number of samples for v, v = {u1, u2, ...., uN}, less
than or equal to x. 1{ui ≤ x} is the indicator of such an
event.
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ECDFv(x) =
1

N

N∑

i=1

1{ui ≤ x} (1)

The two-sample Kolmogorov-Smirnov test compares the two
ECDFs by calculating the statistical distance D between the
two distributions. The statistical distanceD is given by Eq. (2),
where F (x) and R(x) are the samples from the ECDFs of
F (x1) and R(x2) respectively (Andrade et al., 2001).

D = max
−∞<x<∞

|F (x)−R(x)| (2)

The statistical distance D is converted into a similarity prob-
ability using the Kolmogorov-Smirnov p value, defined by
Eqs. (3)–(4) (Greenwell & Finch, 2004) (Kar & Mohanty,
2006). The p value provides the metric for novelty scoring.

p = QKS(z) = 2

∞∑

j=1

(−1)j−1exp(−2j2z2) (3)

z = D

√
N1N2

N1 +N2
(4)

N1 is the number of points in F (x1) and N2 is the number of
points in R(x2). Equation (3) is for when N1 and N2 tends
to infinity (Kar & Mohanty, 2006).

p-value is a monotonic function with limiting values of:

p = QKS(z) =

{
1 if z → 0

0 if z →∞ (5)

If the two distributions are statistically similar (similar ECDFs),
QKS tends towards 1. If the distributions are different, i.e.
varied, QKS will go towards 0. A variation between the two
distributions indicates that a novelty has occurred.

In the work presented in this paper, the F (x1) and R(x2) are
the product of the single variate ECDFv in the multivariate
data, calculated using Eq. (6).

F (x) =

V∏

v=1

ECDF
v
(x) (6)

where V is the number of variables considered.

Novelty is indicated when p < 0.90. p < 0.90 is chosen
because, based on the critical value approximation which in-
dicates:

H =

{
0 if D < Dcritical

1 if otherwise
(7)

H = 0 when the two distributions are the same and H = 1 if
otherwise, Dcritical is equated using Eq. (8) (Kar & Mohanty,
2006).

Dcritical = α

√
N1 +N2

N1N2
(8)

Assuming that the distribution of the D-values produced is
normal and the sizes of F (x1) and R(x2) are N1 and N2 re-
spectively, novelty is indicated when D (Eq. (2)) is above the
2.698σ or the upper quartile of the D distribution. α = 0.57
produces the Dcritical value, for which any values of D be-
yond or equal to Dcritical will produce p < 0.9.

2.2. Offline and Online Novelty Trending

In order to trend degradation, the capability provided by the
previous section must be augmented with the ability to look
at parameter distribution change over time. The distributions
under comparison should therefore be sampled as two win-
dows of data separated by an appropriate time interval. Two
modes of operation are outlined in this paper to provide this
measure of change as a function of time:

1. Offline: This strategy compares the distributions from
the first flight to all other complete flights. In effect, the
first flight is used to build a model of normal, and the of-
fline test observes the divergence of the system over its
lifetime as an analogue to deterioration. Therefore, the
analysis performed compares how the subsequent cycles
differ from the first cycle: N1 = number of samples in
the x-th cycle and N2 = number of samples in the 1-st
cycle. This methodology will only detect deterioration at
a period of complete flights.

2. Online: A sliding window approach is employed to en-
able un-delayed detection and scoring of novelties, there-
fore allowing indication of novelty occurring during a
flight. The sliding window approach is further discussed
in the next section.

2.3. Online Trending the Changes to the Distributions:
The Sliding Window Approach

The online strategy addresses the trending of novelty by accu-
mulating parameter distribution changes occurring in a time
period much less than the typical prognostic horizon of the
system degradation. It has been observed that the frequency
of distribution changes is indicative of the deterioration for
the failure modes explored in this paper. Measures of this
trend are termed ‘health metrics’ and are calculated in two
ways: as an average probability of change and as a count of
changes per cycle.

The construction of the health metrics involves first applying
the multivariate Kolmogorov-Smirnov test to two consecu-

3

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

369



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

N no. of samples 

a-1 
time 

S newest 
samples 

S oldest 
samples 

a-2 a 

Figure 1. Sliding window. The p values are calculated at a by
comparing the distributions of N samples at a − 1 and at a
when the oldest S samples values are replaced with S newest
values.

tive sliding windows of data containing N number of sam-
ples. The two sliding windows, separated by S number of
samples, are used to construct individual multivariate ECDFs
(Eq. (6)). The change in distribution is then constructed. The
first p probability is calculated when the first and second dis-
tributions are obtained, with N + S number of samples, and
are subsequently calculated at every interval a when S new
samples are obtained. This is as illustrated in Fig. 1.

Figure 2 illustrates the concept on synthetic data. The four
distributions in the figure are each generated from a win-
dow of N = 1000 samples selected at different times from
Gaussian distributed data with time-increasing mean offset,
(Fig. 2a). Formation of an ECDF from the data and calcu-
lating the maximum distance D (Eq. (2)) allows changes in
distributions to be indicated by the p probability calculated
using Eq. (3). A comparison between Set 0 and 1, shows a
high similarity (p = 0.98), becoming progressively lower as
the distance between distributions increases. The lowest p
value (approximately 0) occurs when a significant change in
the distribution is indicated between Set 2 and 3. Indicating
and trending the changes in distribution are useful to identify
the deteriorating conditions of the system.

Equations (3)–(4) show the relationship between the D value
and its associated p probability of distribution change. The
p value decreases exponentially with the increase in the D-
value, therefore only when a significant change in the distri-
bution is detected will there be a decrease in the probability of
similar distributions. The confidence of novelty is the compli-
ment of the probability given by the p value (i.e. 1−p). When
the system is at nominal conditions and at non-transient oper-
ations, the change in distribution should be minimal, with the
probability of change given by Eq. (3), p ≥ 0.90.

The p value, therefore, can be used to visualise the measure
of health for the system at any given time. The trend in p
may be observed by calculating the running average of the p
values at every a during the period of interest (for example a
flight), Eq. (9).
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(a) The Gaussian PDF of the generated data.
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(b) The respective ECDFs and the associated p values when a set
is compared against another set.

Figure 2. Kolmogorov-Smirnov p values (Eq. (3)) indicating
the change in the distributions.

prAve(a) =

a∑
i=1

p(i)

a
(9)

When no novelty is occurring in the system, prAve ≈ 1. The
value of prAve decreases with the increase in the rate of nov-
elty detection. Trending the change to the prAve value shows
the severity of the system degradation.

2.4. Nominal and Non-Transient Operations

The nominal and non-transient phase of operations are only
investigated at presence. This is to enable the proof of con-
cept of the novelty scoring ability for the proposed method.
Furthermore, current aircrafts use an Aircraft Condition Mon-
itoring System (ACMS) to acquire the data for the EHM, and
the acquisition of the data is perform at the three defined

4

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

370



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

0 0.5 1 1.5 2 2.5 3
x 10

4

−50

0

50

T
M

 C
ur

re
nt

 (
m

A
)

Test 1

0 0.5 1 1.5 2 2.5 3
x 10

4

0

0.2

0.4

0.6

F
M

V
 P

os
iti

on
 (

in
ch

es
)

Time (s)

Figure 3. Test 1 (Baseline): Minimal contaminant detected.
Small changes in the mean of the TMC are indicated for this
test. The mean is indicated by the grey line. The FMV posi-
tion is averaged at 0.3 inches
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Figure 4. Test 2: Contaminant causing stiction. There are
changes to the TMC mean and the FMV positions as the result
of the degradation.

phases: take-off, cruise and landing. The EHM then sum-
maries the health of the engine at these phases separately (Wa-
ters, 2009). Therefore, we envisage the novelty scoring to be
calculated separately at each of these phases. Future work
will include understanding the data distribution trends when
operating at the transient phase, and to derive the novelty
scoring metrics for the nominal and transient operations.

3. EXPERIMENT: NOVELTY DETECTION OF FUEL ME-
TERING UNIT

The presented equipment health monitoring scheme is used to
detect and trend the degradation of a gas turbine fuel metering
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Figure 5. Test 3: Contaminant resulted in stiction. Changes
to the TMC mean and FMV positions are shown with the in-
crease in the contaminant level.
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Figure 6. Test 4: Contaminant causing stiction.

unit (FMU). The primary function of a FMU is to regulate
fuel flow in response to the Electronic Engine Control (EEC)
demand required to deliver commanded engine thrust. This
is achieved through position control of two-stage servo fuel
metering valve (FMV), which alters the pressure drop across
the valve and flow rate through it.

The functional failures associated with the FMU are the loss
of FMV bandwidth with poor demand tracking, leading to the
inability to control valve position and fuel flow. These, as in-
dicated in Section 1, may be due to debris ingestion resulting
in valve friction/stiction or filter clogging.

Data has been collected from fuel system rig tests, which
were subject to the introduction of fuel contaminant, and run
over up to 8 cycles of cruise, idle and take-off phases. These
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Table 1. Mass (as percentage of maximum test amount) of
contaminant introduced per test cycle.

Cycle # Test 1: Test 2 Test 3 Test 4Baseline
1 13.29 2.85 12.03 0.00
2 18.99 0.95 4.43 4.11
3 22.15 5.06 3.80 2.85
4 20.25 8.54 7.59 7.59
5 24.05 9.49 11.71 4.75
6 36.39 37.34 23.10 19.30
7 35.44 43.04 28.80 34.18
8 69.62 100.00 31.96 98.73

tests exhibited functional failures from loss of metering valve
control at high contaminant levels and serve as a basis for
evaluating the outlined novelty trending schemes.

The EHM scheme presented is used to indicate how the sys-
tem degrades as the result of the contaminant introduction. At
present, the analysis of the scheme is to indicate the degrada-
tion only when the engine is supposedly at the cruise phase.
This is shown in Figs. 3–6 when the FMV position is aver-
aged at 0.3 inches. In all three tests, the mean at cruise of
the TMC reduces as the control system compensates for the
effects of the increase in the contaminant level.

The mass of contaminant introduced in each cycle is listed in
Table 1. It should be noted this is not a measure of degrada-
tion, and only indicates the mass of particles introduced to the
system at each cycle presented as a percentage of maximum
cycle dosage over all tests.

Two signals are initially chosen for use to monitor the degra-
dation level in response to the introduction of the contami-
nant. They are:

1. The torque motor current (TMC), and
2. The fuel metering valve (FMV) position.

The TMC values and the FMV position values are sampled at
40Hz, and are normalised (Eq. (10)) so that their values are
between -1 to +1 prior to the analysis.

xn = (b− a)× xo − xmin
xmax − xmin

+ a (10)

xn is the normalized value and xo is the value to be normal-
ized. a and b are the minimum and maximum value of the
range to be normalized to, which in this case is a = −1 and
b = +1. xmax and xmin are the maximum and minimum
values of the range of xo.

Figure 3 indicates the values of these variables when the ma-
jority of the contaminants introduced are captured by the low
pressure (LP) filter. The LP filter traps the contaminant up-
stream of the metering valve, therefore preventing stiction
and degradation. Physical analysis of this test also indicates
that only a small amount of contaminant is detected in the

FMU as the results of the filtering, too small to cause degra-
dation. Because of this, minimal changes in the system dy-
namic response are shown, despite the contaminant introduc-
tion. This test acts as the baseline test (Test 1: Baseline) to
evaluate the capabilities of the presented EHM scheme.

In tests 2–4 (Fig. 4–6), the system degrades over time and
with the increase in the contaminant level introduced per flight
cycle.

For the sliding window approach, three different window sizes
are considered: 60 seconds of data, N = 2400 number of
samples; 120 seconds of data, N = 4800 samples; and 300
seconds with N = 12000 samples. The distribution of the
sensors values are updated and compared when the oldest S
sample values were replaced with the newest S values, at ev-
ery a. Six different sets of N and S are analysed:

1. For 60 and 120 seconds of data (N = 2400 and N =
4800 samples): S = 40 samples (1 second of data).

2. For 60 and 120 seconds of data (N = 2400 and N =
4800 samples): S = 80 samples (2 seconds of data).

3. For 300 seconds of data (N = 12000 samples): S =
200 samples and S = 400 samples (5 seconds and 10
seconds, respectively).

4. RESULTS

4.1. Offline novelty trending

Figure 7 represents theD values produced by the analysis us-
ing the offline strategy comparing each subsequent cycle to
the first cycle. The figure shows, for all tests other than the
baseline (i.e. not Test 1), a large change to the cycles’ dis-
tributions are shown when they are compared to their initial
cycle. The significance in change is indicated by the large
increase in the D value for each cycle, caused by the change
to the FMU system dynamics. The D-values remain approx-
imately the same for Test 1: Baseline.

TheD values are directly used in the offline analysis. The sig-
nificant changes between each cycle result in large D values
being produced by the comparative analysis, these all result
in the the probability of no change tending to a very small
value (p→ 0). Therefore, for the offline cycle-to-cycle mode
of comparison, the novelty detection is made based on the D
values instead of its p−values.

4.2. Online novelty trending

This section evaluates the performance of the two on-line
trending approaches as described in Section 2.3. Tables 2–
4 show the number of changes to the distributions cycle (i.e.
the count of evaluations when p < 0.90). Low detection rates
are shown for Test 1: Baseline, as most of the contaminants
are filtered prior to the metering valve. Frequent changes in
distribution is shown by higher count values when the con-
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Figure 8. The EHM health metric provided by the prAve(a) values with N = 2400 samples (60 seconds of data) and S = 40
samples (1 second of data).

Table 2. Number of occurrences when p < 0.90, when N = 2400 number of samples (60 seconds of data).

Cycle #
N = 2400 samples, S = 40 samples N = 2400 samples, S = 80 samples

Test 1: Test 2 Test 3 Test 4 Test 1: Test 2 Test 3 Test 4Baseline Baseline
1 0 0 0 0 144 168 110 294
2 0 0 0 0 100 177 117 332
3 0 0 0 1 59 190 148 356
4 0 0 0 2 100 216 110 352
5 0 17 59 1 57 223 354 379
6 0 53 70 81 79 314 384 395
7 0 72 68 128 79 352 454 452
8 0 84 N/A 114 81 290 N/A 376

taminants were not filtered from the unit (Tests 2–4).

The two tables show that the optimal N :S ratio for the EHM
scheme is 60:1 (indicated in bold). Any increase to the ratio
will result in a higher number of false detection, i.e. higher

number of false detection for the baseline test (Test 1) when
alternative ratios are used. Results also show that the window
with 60 seconds of samples (N = 2400 samples) and 1 sec-
ond interval (S = 40 samples) is sufficient for detection of

7
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Table 3. Number of occurrences when p < 0.90, when N = 4800 samples (120 seconds of data).

Cycle #
N = 4800 samples, S = 40 samples N = 4800 samples, S = 80 samples

Test 1: Test 2 Test 3 Test 4 Test 1: Test 2 Test 3 Test 4Baseline Baseline
1 0 0 0 0 20 20 13 57
2 0 0 0 0 19 24 15 73
3 0 0 1 0 8 30 19 72
4 0 0 1 0 9 34 15 87
5 0 0 35 1 3 50 120 84
6 0 0 40 51 10 87 122 128
7 0 2 38 58 8 95 180 122
8 0 6 N/A 55 10 94 N/A 116

Table 4. Number of occurrences when p < 0.90, when N = 12000 samples (300 seconds of data).

Cycle #
N = 12000 samples, S = 200 samples N = 12000 samples, S = 400 samples

Test 1:
Baseline Test 2 Test 3 Test 4 Test 1:

Baseline Test 2 Test 3 Test 4

1 25 48 36 82 61 76 58 106
2 15 46 15 92 37 75 39 105
3 15 48 32 89 37 73 60 99
4 11 46 12 81 37 77 33 89
5 11 43 114 99 33 64 128 114
6 16 62 105 92 32 86 124 107
7 7 78 160 123 28 92 155 116
8 10 74 N/A 107 35 98 N/A 111

Figure 7. The D values when comparing a cycle to its first
cycle.

the degradation. This because of the no (zero count) detec-
tions for Test 1: Baseline, as well as the ability to detect the
changes to the TMC and FMV positions for Test 2–4.

The alternative health metric, prAve(a), for each test forN =
2400 samples and S = 40 samples is shown in Fig. 8. For
all non-baseline test (Test 2–4), the values of the prAve(a),
which is an indicative of the health of the system, reduces
overtime. This shows that the health of the system has de-
graded with time with the increase in contaminant per flight
cycle. prAve(a) are constant and are ≈ 1 for Test 1: Base-

line, indicating no system degradation because the LP filter
has trapped the contaminant upstream of the metering valve,
therefore preventing degradation. The decrease in health also
indicates the increase in the novelty detection rate.

4.3. Univariate vs Multivariate

As indicated in Section 1, a gas turbine is complex electro-
mechanical system. Determining the most effective parame-
ter for analysis is not always apparent. If one is to perform
univariate analysis, the incorrect selection of sensing param-
eter will lead to a different outcome. For example, if one
chooses the FMV position to indicate novelty for N = 2400
samples (60 seconds worth of data) and S = 40 samples (1
second worth of data), as shown in Table 5, no trending of
degradation is achievable. Similar observation is shown when
the analysis is performed using the TMC’s distributions for
N = 2400 and S = 40. The short time interval between time
windows is not sufficient to identify the changes in these co-
related variables when they are treated in isolation.

The analysis presented earlier in this paper is for bivariate
analysis (V = 2 in Eq. (6)). Figure 9 and Table 6 show the
results when increasing the number of variables, V , analysed
from the measured rig test data, at the optimal N :S ratio of
60:1 (N = 2400 samples of data and S = 40 samples). The last
recorded prAve values for V = {3, 4, 5}, i.e. the cycle aver-
age p value, decrease with the increase in the level of contam-
inants for all non-baseline tests (Fig. 9). The detection event
count also increases with the increase in contaminants (Ta-
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Table 5. Number of occurrences when p < 0.90, when N = 2400 samples and S = 40 samples.

Cycle #
Variable # 1 TMC Variable # 2 FMV position

Test 1:
Baseline Test 2 Test 3 Test 4 Test 1:

Baseline Test 2 Test 3 Test 4

1 0 0 0 0 33 11 15 8
2 0 0 0 0 23 11 41 7
3 0 0 0 0 18 5 33 15
4 0 0 0 0 23 19 28 26
5 0 0 4 0 14 88 49 21
6 0 0 4 4 22 97 14 153
7 0 2 0 4 7 52 39 14
8 0 0 N/A 4 22 7 N/A 12

Table 6. Number of occurrences when p < 0.90 for the univariate test with N = 2400 samples and S = 40 samples.

Cycle V = 3 (+ MV Downstream Pressure) V = 4 (+ LP Pump Outlet) V = 5 (+ SPR Pressure)
# Test Test Test Test Test Test Test Test Test Test Test Test

1 2 3 4 1 2 3 4 1 2 3 4
1 3 0 0 0 8 3 0 0 6 2 0 0
2 1 1 0 1 0 1 0 0 0 1 0 0
3 0 2 0 0 0 0 0 1 0 0 0 1
4 0 5 0 3 0 4 2 2 0 4 1 1
5 0 73 72 2 1 17 16 0 2 75 25 0
6 0 159 107 118 0 48 19 27 0 119 32 59
7 1 307 99 163 0 120 18 57 1 290 39 118
8 3 366 N/A 158 1 226 N/A 56 2 396 N/A 118
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Figure 9. The last prAve(a) calculated at the end of each cycle
for the multivariate analysis related to Table 6.

ble 6). Additional variables included are, for V = 3, the
normalised metering valve (MV) downstream pressure sensor
values, and, for V = 4, the fourth variable is the normalised
low pressure (LP) supply pressure data. The third analysis is
performed with V = 5, which adds the servo-pressure.

An analysis of the sensitivity to degradation from these re-
sults can be made with respect to the physical interpretation
of Figure 9. The average p value for tests where V = 3 or
V = 5 are consistently lower (a change, thus degradation,

more likely) than for the test with 4 variables. From this,
we conclude that adding the LP supply pressure parameter
(in V = 4) makes the change to multi-variate distributions
less significant, not adding to the ability to determine degra-
dation. The LP pump, thought to be robust to containment
itself, is upstream from the valves which are impacted by the
containment and therefore is not affected by system degrada-
tion. On the other-hand, servo-pressure is controlled by an
additional valve to the FMV and therefore introduces sensi-
tivity to another element of the system. The downstream flow
pressure (added in V = 5) is dependent on the supply pres-
sure (affected by a spill valve) and the valve position, again
this valve introduces another candidate source of degradation
from the spill valve. It is plausible that these observations
could be used to aid fault isolation in future work.

These results corroborate the hypothesis that a combination
of multiple sensing parameters is powerful for novelty detec-
tion analysis and health scoring of a system, as more dynam-
ics are captured as part of the analysis. The non-parametric
two-sample Komolgorov-Smirnoff test provides the mecha-
nism to perform multivariate analysis with minimal pre- or
post-processing of the provided data (aside from the normal-
isation of the data so that their values are between -1 to 1).

5. CONCLUSION

This paper presents the results of a multivariate equipment
health monitoring (EHM) scheme that utilises non-parametric
statistics. The scheme was developed to provide early detec-
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tion of the gas turbine fuel metering valve faults, and to en-
able the scoring of the significance of the degradation. Degra-
dation assessment can inform maintenance planning and con-
sequently reduce disruption.

The scoring is achieved using non-parametric statistics that
approximates the data distribution for the time window con-
sisting of the current and the previous samples. The data dis-
tribution estimate adapts over time, and a generic measure of
difference, a multivariate two-sample Kolmogorov-Smirnov
test, is shown to provide diagnosis capabilities. The equip-
ment health monitoring scheme is able to trend the degrada-
tion of the fuel metering valves, degradation resulted from
the varying levels of contaminant introduced to the engine.
Results indicate that the level and rate of detection increases
with the increase in the contaminant level, which resulted in
the degradations.

As indicated in Section 2.4, the analysis is restricted to cruise
phase or at the non-transient phase of flight operations. This
is to enable us to present the proof-of-concept capabilities of
the novelty scoring metric using the non-parametric multi-
variate two-sample Komolgorov-Smirnoff test. Future work
will include, but not limited to, the analysis of the capabilities
of the algorithm to cope with transient phases. We envisioned
that a different scoring metric is required to indicate for nov-
elty when the system is in the transient phase of operations.

Two methods for novelty trending are presented in this pa-
per: online sliding window approach and the offline cycle-
by-cycle approach (Section 2.2). Schemes to fuse the outputs
of these approaches together, along with schemes to trend the
outputs over time, may provide advantages in detecting dif-
ferent failure modes and will be investigated.

As presented, the use of multivariate two-sample Kolmogorov-
Smirnov test for the EHM scheme simplifies and enhances
novelty detection, eliminating the need to choose variables or
summary statistics for health analysis prior to system deploy-
ment.
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ABSTRACT 

Many different techniques have been developed for 
detecting faults in rotating machinery. This is because 
different fault types typically require different techniques 
for the effective detection of the fault. However, for many 
new or unknown fault types, we have found that the existing 
detection techniques are either incapable or ineffective, and 
that we therefore need to come up with brand new methods 
after the fault event. This can significantly constrain the 
usefulness and effectiveness of Prognostic Health 
Management (PHM) systems. In this paper we attempt to 
look at detecting global changes in the synchronously 
averaged signals as the machine’s health status progresses 
from healthy to faulty, and to define one unified signal 
processing technique and its associated condition indicators 
for the detection of changes caused by various types of 
faults in rotating machinery. The proposed method is 
conceptually very simple, and its effectiveness is 
demonstrated using vibration data from machines with 
several different types of faults. The results have shown that 
this single unified change detection approach can be very 
effective in detecting and trending changes caused by many 
different types of machine faults.  

1. INTRODUCTION 

Since the advent of some benchmark technologies, namely 
the envelope technique for bearing diagnosis in early 1970's 
by Burchill et al (1973) and the time synchronous averaging 
technique for gear diagnosis in mid to late 1970's by Braun 
(1975) and Stewart (1977), the field of machine diagnostics 
has had enormous advancement. Over the last four decades, 
many techniques have been developed for detecting various 

types of faults in rotating machinery (e.g. Forrester 1996, 
McFadden 2000, Wang 2001 and techniques discussed in 
the review papers by Randall 2011 and Lei 2013, etc.). 
However, it is typically found that different techniques are 
required for the effective detection of new types of fault. 
This need to specifically develop new methods whenever a 
new type of fault arises can significantly constrain the 
usefulness and effectiveness of PHM systems, especially for 
new platforms such as the JSF where the PHM capability is 
designed in during the early stages of development. 

In general, for gear tooth related local faults we tend to 
employ the residual signal after removing the gear mesh 
harmonics in the spectrum of synchronous signal averages 
(Stewart 1977, Forrester 1996, Wang 2001). For a localized 
bearing fault we will most likely look at the resonance 
demodulation technique (Burchill 1973, Wang and Harrap 
1996). For other common faults like rotor unbalance and 
shaft misalignment we may try to find changes in the low 
shaft orders such as the first three orders (Forrester 1996, 
Larder 1999, Vecer et al 2005). In cases of spline or pump 
faults, we will probably focus on the changes at the 
relatively higher shaft orders or the pump characteristic 
frequency and its harmonics (Galati 2007, Becker 2007, 
Hancock 2006). For turbine engine disk cracks, the state-of-
the-art technology is to use tip timing data analysis to detect 
this type of fault (Wang and Muschlitz 2010). There are 
many other fault types that involve specific detection 
techniques. 

These techniques are widely employed in health and usage 
monitoring systems (HUMS) for helicopters. Unfortunately, 
when new or unknown types of faults occur these methods 
are often either incapable or ineffective to detect the faults. 
In 2002, planet carrier plate cracking was a new type of 
fault found in the main rotor transmission of the Blackhawk 
and Seahawk fleets around the world. Several techniques 
including those by Blunt and Keller (2006) and by Wang 
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and Keller (2007) were specifically developed for the fault 
type after the fault events. Note that this carrier plate has 
been re-designed by the manufacturer and the plates with 
the new design are being retrofitted into the fleet. A more 
recent example is the crash of a Super Puma utility 
helicopter in the North Sea in 2009 caused by a gear/bearing 
fault that was not detected by the onboard HUMS (Jarvis 
and Sleight 2011). The investigation indicated that the most 
likely root cause was a spall-induced fatigue crack in the 2nd 
stage planet gear/bearing in the main transmission gearbox 
of the helicopter, which propagated though the gear/bearing 
body and led to the disintegration of the gear/bearing, 
causing the catastrophic failure of the gearbox. The fatal 
accident led to the loss of sixteen lives. 

There have been previous attempts to develop more 
versatile methods for detecting various types of faults. 
These include the parametric model-based approach by 
Wang and Wong (2000) and Wang (2008) in building a 
linear prediction model for the healthy-state signal and then 
using this model as an inverse filter to process the future-
state signals. The method was proven effective in many 
cases, especially in the case of multiple gears on the same 
shaft, but a consistency problem with the selection of model 
orders can show up when peculiar perturbations exist in the 
signal. This is probably due to the nature of parametric 
modeling and lack of constraints in the optimization 
process. In other words the method lacks robustness. Other 
studies were carried out by Man et al (2012) to use a 
versatile sinusoidal model for fault diagnosis in a more 
robust manner, and by Galati et al (2008) to use a 
generalized likelihood ratio algorithm for detecting bearing 
faults in helicopter transmissions. The work carried out by 
Lee (2010) was an attempt of detecting a general class of 
faults using correlation algorithms in a low cost HUMS. 

In this paper we attempt to look at detecting global changes 
in the vibration signals as a machine’s health status 
progresses from healthy to faulty for various different types 
of faults, and to find one unified signal processing technique 
and its associated condition indicators for the detection of 
these changes. The detection of changes due to machine 
faults often involves comparison of signals from the 
healthy-state to the faulty-state of the machine. However, a 
direct comparison in the time domain is often prohibited 
simply because these signals are in most cases not phase-
aligned. Our unified approach deals with the synchronously 
averaged or re-sampled vibration signals from a rotating 
component in the machine as it progresses from a healthy 
state to a faulty state. The healthy-state signal x is employed 
as a reference, and it is phase shifted by the phase difference 
from the future-state (healthy- or faulty-state) signals y. The 
shifted healthy-state signal xs is then subtracted from future-
state signals y to form the change signals. We expect that 
fault-induced changes will be captured by the change signal. 
Statistical measures can then be derived from the change 

signal as condition indicators, and trended over time for 
fault detection purposes. 

The technique is conceptually very simple, and its 
effectiveness is demonstrated in the paper. Vibration data 
from machines with several different types of faults are used 
for the demonstration. The fault types include gear tooth 
cracks in simple gearboxes; non-uniform gear tooth wear 
and vane pump failure in turbo-machinery; and nut 
looseness and planet carrier plate cracking in helicopter 
transmission systems. The results show that this single 
unified change detection approach can be very effective in 
detecting changes caused by many different types of 
machine faults. We anticipate that further adaptation and 
validation of this approach may lead us towards a universal 
method for fault detection in rotating machinery, including 
faults in gears, bearings, rotors and pumps. 

The main driver of developing such a unified approach is to 
equip existing and future HUMS and PHM systems with the 
capability of detecting new and unknown types of faults. 
The implementation of the proposed technique into an 
existing health monitoring system should be straight-
forward. 

2. BACKGROUND OF SIGNAL ALIGNMENT 

In gear fault diagnosis, we may tend to assume that the 
synchronously averaged signals are phase aligned if a 
tachometer signal is employed as a phase reference signal 
for the rotating components in the gearbox. However, in 
many cases, the use of a pulsed phase reference signal 
means that the zero crossing point (phase alignment point) 
can only be determined to within one sample point, i.e. the 
rising edge of the pulse occurs somewhere between two 
sample points. This means the signal averages are only 
aligned to within one sample point at the original sampling 
frequency. Note that if the speed reference were a sinusoidal 
waveform, the zero crossing point can be determined to 
greater accuracy by the use of interpolation. Additionally, 
there may be other error sources in the phase reference 
signal, such as the speed-dependent pulse amplitude, which 
may cause the misalignment of averaged signals by more 
than one sample point.  

Taking gear tooth cracking as an example fault type, we will 
start with two actual signals acquired in a gear tooth crack 
propagation test conducted at the Defence Science and 
Technology Organisation (DSTO), Australia (Forrester 
1996, Vavlitis 1998). This test series will be described in 
more detail in Section 5.1. Then we will look at some 
simulated gear mesh signals to see the necessity for accurate 
signal alignment and some of the problems that can occur 
when conducting this alignment. 
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2.1. Example of Gear Mesh Signal Alignment by Direct 
Signal Shifting 

Figure 1 shows two signals of gear mesh vibration, which 
came from a spur gear at two stages of tooth cracking. The 
first one is labeled G6b.071 (signal x) where the crack was 
probably just initiated from the stress-riser notch, i.e. there 
was no visual indication of crack but the post-test 
fractography analysis showed an equivalent through-crack 
length of about 0.7mm. The other signal is G6b.110 (signal 
y) where the tooth crack length was around 50 percent of the 
tooth width (2.75mm by visual inspection from side, about 
3.15mm by fractography analysis). Note that the total length 
of the projected crack path was 5.82mm for this gear. These 
two signals have very similar amplitude and their phases are 
not perfectly aligned. We estimated the phase difference by 
using maximum cross correlation coefficient to the accuracy 
of one sampling period, and found that the phase difference 
corresponds to about 3 sample points. This near-integer-
sample phase shift is likely to be due to the on-line angular 
data acquisition of the G6 test data triggered by the TTL 
pulses (0-5 volts square pulse, 1024 pulses/rev) of an optical 
shaft encoder, where each averaged signal might have 
started from a slightly different TTL pulse. However, this 
phase shift (i.e. the number of samples) may be different 
from signal to signal. 
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Figure 1. Comparison of synchronous signal averages 

of gear mesh vibration 

The signal x is then shifted by 3 samples and the shifted 
version is denoted by xs. As we can see in Figure 2, xs is 
well aligned with signal y. A straight subtraction of xs from 
y then produces the so-called change signal δ, as shown in 
Figure 3. Obviously, the change signal has picked up the 
changes caused by the tooth cracking. It has a kurtosis, as 
defined in Eq. (12) of this paper, value of 9.3 where a 
kurtosis value of 3.5 would typically be regarded as an 
indication of an early localized fault. This is comparable to 
some of the benchmark indicators, such as a kurtosis of 5.2 
for the residual signal, derived by removing the gear mesh 
harmonics in the spectrum of the Synchronous Signal 
Average (SSA), or a kurtosis of 11.4 by further removing 

the 1st and 2nd sidebands of the harmonics. The residual 
signal kurtosis is one of most commonly used Condition 
Indicators (CIs) in gear fault diagnosis. 
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Figure 2. Zoomed version of Fig. 1 
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Figure 3. The change signal (full bandwidth): δ = y 

− xs, with a kurtosis of 9.3. 

Normally, a localized fault tends to cause more changes in 
relatively high frequency range whereas a distributed fault is 
more likely to produce changes in low frequency. Therefore, 
if we view the change signal in two frequency bands, i.e. a 
low-order band and a high-order band, where the cross-over 
occurs at 85 shaft orders (which is just above the 3rd gear 
mesh harmonic at 3×27 = 81 orders and is below a structural 
resonance), as shown in Figure 4, we can see that the crack-
induced change in the high-order band is far more 
pronounced than that in the low-order band. The kurtosis 
values for these two bands are 16.5 and 3.8 respectively.  

Intuitively, we can say that the key step here is to align 
signals acquired in a healthy-state (or reference signal) and a 
faulty-state (or monitored signal). We can also use the 
instantaneous phase cross correlation to obtain sharper 
maxima so that the signal shift amount may be defined more 
clearly. However, to achieve signal alignment with an 
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accuracy better than one sample period, we will need to 
interpolate the cross correlation function.  
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Figure 4. The change signal divided into high- and 

low-order bands, with the kurtosis values of 16.5 and 
3.8 respectively. 

2.2. Understanding Signal Alignment using Simulated 
Signals  

We can see, from the above example, that phase alignment 
of the two signals is essential. Even in cases where signal 
averaging has been performed using a phase reference 
signal from the shaft of interest, small variations in signal 
alignment from one run to the next may occur. This can be 
caused by a change in the shaft reference probe (e.g. dirt, 
physical movement of the sensor, etc.), and, more likely, the 
inherent errors in the tachometer signal processing (e.g. 
errors from interpolating the position of the zero-crossing 
between sample points). Also, in cases where the phase 
reference signal sensor is not physically attached to the shaft 
of interest, or where the synchronous averaging is carried 
out using a phase reference directly derived from the 
vibration signal (Bonnardot et al 2005), it is not feasible to 
phase-align the averaged signals during the synchronous 
averaging process. 

For the remaining part of the paper, we denote a uniform 
phase shift by ∆θ and a uniform time delay by ∆t as shown 
in the following expression. The word ‘uniform’ applies to 
multi-frequency signatures, where the phase shift and time 
delay are the same for all the frequency components. 

[ ]∑ ∆++∆−⋅=
k

kkk ttfAty )()(2sin)( θθπ  

2.2.1. Uniform phase shift  

First of all, when talking about phase alignment we may 
tend to think of aligning the initial phase of the signal. If we 
have a test signal of  

        x(t) = sin(2π•27•t+0.987)  

with a sampling rate of 1024 samples/second, i.e. 
t = (0:1023)/1024, and an arbitrary initial phase of θ = 0.987 
radians, and we then define a phase-shifted version of this 
signal, y(t), where the initial phase of this frequency 
component is changed by Δθ = −0.4975 radians from x(t), 
then this phase shift will correspond to almost exactly 3 
sample points, i.e. 1024×0.4975/(2π×27)=3.003. Therefore, 
to align x(t) and y(t) we could simply shift signal x(t) by 3 
sample points, e.g. using the Matlab function ‘circshift’: 
xs = circshift(x,3). However, if the phase shift does not 
correspond to a near-integer sample point, then this 
alignment process will not work. Figure 5 shows the signal 
y(t) with a phase shift of −0.57 radians (or 3.4406 samples) 
and the signal x(t) shifted by 3 sample points. As can be 
seen, rounding to the nearest sample point does not produce 
a good result, and a finer (fractional-point) shift resolution is 
required.  

Now let us employ a two-component sinusoid like  

        x(t) = sin(2π•27•t+0.987) + sin(2π•2•27•t+1.053)  

where the 2nd component is a harmonic of the 1st one. Signal 
y(t) is then defined as signal x(t) shifted by −0.4975 radians 
at both frequency components (i.e. uniform phase shift).  If 
we now shift x(t) by 3 sample points using ‘circshift’ we 
cannot get a good alignment as shown in Figure 6. This is 
because the phase shift of −0.4975 radians for the higher 
frequency component corresponds to almost 1.5 sample 
points instead of 3 for the lower frequency component, i.e. 
1024×0.4975/(2π×2×27) = 1.5015.  
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Figure 5. Simulated signal xs & y showing that direct 
signal shifting would not work with a phase shift of 

non-integer sample. 

There are two important observations from this section: (1) 
direct signal shifting by integer sample points would not be 
a good approach if the phase difference does not give a time 
delay corresponding to integer number of data samples; (2) 
direct signal shifting is also no good for multiple 
components signals where the phase shift is the same across 
all the frequency components.  
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Figure 6. Simulated signal xs & y showing that direct 
signal shifting would not work with uniform phase 

shift in multi-component sinusoid signal 

2.2.2. Uniform time delay  

For the process of synchronous signal averaging, any errors 
and/or differences in the phase reference signal and zero-
crossing point will consequently produce a uniform time 
delay across all frequency components in the averaged 
signal. This is the underlying cause of phase misalignment 
between SSAs. 

For the above example with 

       x(t) = sin(2π•27•t+0.987) + sin(2π•2•27•t+1.053)   

and  

       y(t) = x(t−0.0205),  

the time delay of 0.0205 seconds corresponds to almost 21 
samples (i.e. 0.0205×1024 = 20.992), so direct signal 
shifting should work fine. However, direct signal shifting 
will not work when the uniform time delay is 0.02 seconds, 
as this corresponds to 20.48 samples. It would not be hard to 
imagine what difference this nearly half-a-sample shifting 
error is going to make in the change signal. This is a very 
likely scenario with synchronous signal averages because 
any differences between the phase reference signals from 
one signal average to the next are almost certainly going to 
occur in non-integer samples – although some can be really 
close to integers, such as the gear signals shown in section 
2.1 where an optical shaft encoder was used.  

An alternative approach to direct signal shifting in the time 
domain is to carry out the shift in the frequency domain. 
Figure 7 shows an example of aligning two signals 
involving a uniform time delay of 0.02 second (or 20.48 
samples) by shifting the phase spectrum of x and then 
transforming back to the time domain. The theory behind 
this example will be given in the next section. We can see in 
Figure 7 that the shifted x (xs) is perfectly aligned with 

signal y. In fact, this approach applies to both cases of 
uniform phase shift and uniform time delay. 
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Figure 7. Alignment of signals with a 0.02 second time 

delay (at 1024 sampling rate) via shifting the phase 
spectrum of x by the difference between phase spectra 

of x and y 

3. THEORETICAL DEVELOPMENT OF UNIFIED CHANGE 
DETECTION APPROACH 

From the last section, we have shown that the future-state 
signal y(t) can be aligned with the healthy-state signal x(t) 
by introducing a time shift. In other words, alignment of the 
signals means a simple time shift by –∆t which is the lag 
that gives the maximum value of the cross-correlation 
function. It can be carried out in the frequency domain.  
Mathematically, if we assume that signal y(t) is a time 
shifted version of signal x(t), and ignore the amplitude 
difference, we have 

 )()( ttxty ∆−=  (1) 

Taking the Fourier transform on both sides of Eq. (1) and 
making use of the translation property of Fourier transform, 
we get 
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where the amplitude and phase spectra are given by 
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By ignoring the amplitude difference, or making 
)()( fAfA xY = , we have 
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From Eqs. (2) and (4), we can see that time-shifting x(t) by 
∆t , i.e. x(t−∆t) is equivalent to shifting the phase spectrum 
of x(t) by the difference of phase spectra of x(t) and y(t). The 
time-shifted x(t) will be aligned with y(t). Hence we don’t 
really need to know the lag ∆t via cross-correlation and 
interpolation. 

Now, we put the amplitude difference back, the Fourier 
transforms of signal x(t) and y(t) are respectively given by  
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The difference of phase spectra is 

 )()()( fff YXXY Φ−Φ=∆Φ  (6) 

Shifting the phase spectrum X(f) by the difference given in 
Eq. (6), which is equivalent to time-shifting x(t) by ∆t , i.e. 
x(t−∆t), we have the Fourier transform of the shifted signal  
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We can derive the shifted version of signal x(t) by an 
inverse Fourier transform 

 ∫
∞

∞−

⋅= fefXtx tfj d)(ˆ)(ˆ 2π  (8) 

which is a real-valued signal as x(t) and y(t) are both real-
valued so that AX(f) is even and ΦY(f) is odd. 

Having had x(t) and y(t) aligned, we can now define the 
change signal as 

 )(ˆ)()( txtytxy −=δ  (9) 

On the other hand, we will see that the Fourier transform of 
the change signal is 
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Therefore, we can also define the change in the spectral 
domain. Notice that the amplitude in Eq. (10), [AY(f)–AX(f)], 

may be negative at some frequencies, which means a phase 
shift of π to those frequency components. The change signal 
in the time domain is then obtained by an inverse Fourier 
transform 

 ∫
∞

∞−

⋅∆= feft tfj
XYxy d)()( 2πδ  (11) 

For reasons mentioned in the first example in Section 2.1, it 
is often necessary to select a cross-over frequency in shaft 
orders to divide the change signal into high & low bands 
when changes are not obvious in the full-band. Therefore, 
for fault detection and trending purposes the change signal 
can be viewed from three perspectives, i.e. in low-band, 
high-band and full-band.  

4. DERIVATION OF CONDITION INDICATORS  

Three condition indicators (CIs) are defined in this section. 
These CIs can be used as measures of the machine health 
state; they can be trended over time for fault detection 
purposes. In Section 5, the unified change detection 
technique with these CIs is applied to the detection of 
several different types of faults.  

4.1. Kurtosis of the change signal 

Kurtosis is the 4th order statistical moment normalized by 
the standard deviation to the 4th power; it is often used as the 
CI for localized gear and bearing faults, such as gear tooth 
cracking and bearing element spalling. These local faults 
cause spikiness in fault signatures and kurtosis is an 
effective indicator for spikiness in the signal. For a discrete 
change signal δ(n), n = 1, 2, … N, with a mean value of δ , 
the kurtosis is defined as 
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If the change signal is Gaussian noise, the above kurtosis 
will be around 3. In gear fault diagnosis, many healthy-state 
residual signals (after removing gear mesh harmonics and 
their sidebands) are sub-Gaussian with kurtosis values 
slightly less than 3. Kurtosis values of 3.5 and 4.5 are 
generally regarded as the alert and alarming levels 
respectively. Usually, the high-band kurtosis is more 
sensitive to sharp spikes induced by localized faults. 
However, kurtosis may not necessarily be good when it is 
used as a trending parameter because spikiness can be 
reduced in the change signal as localized fault develops into 
distributed fault, especially in cases of bearing faults. 
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4.2. Energy ratio of the change signal 

The standard deviation or root mean square (RMS) value of 
the change signal can also be employed as a trending 
parameter to continuously monitor the condition changes in 
rotating machinery. We define energy ratio as the ratio 
between the RMS of the change signal and the RMS of the 
healthy-state or reference signal, i.e. 
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The energy ratio is used to normalize the energy in the 
change signal against the constant energy in the reference 
signal. Ideally, we can expect the energy ratio to increase as 
the fault progresses from early to late stages provided that 
the fault-induced changes are well reflected in the change 
signal. However, the randomness in the CI may not make 
the increasing trend strictly monotonic. 

4.3. Scaled Kurtosis of the change signal 

We define the scaled kurtosis as the product of the kurtosis 
of the change signal and the energy ratio given by Eqs. (12) 
& (13). Mathematically, the expression for scaled kurtosis is 
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  (14) 

It combines the change signal with the reference signal, so 
that the condition is always compared to a common 
reference. As we can see in the following applications, this 
CI can give a more consistent trending of fault conditions 
than the kurtosis itself. A reasonable explanation for the 
results would be that, in the early stages of fault 
development (when the fault is localized), the kurtosis 
performs more effectively than the energy ratio. However, 
in late stages of fault development (when the fault may be 
more distributed), the spikiness in the change signal drops 
but the energy level in the change signal increases rapidly, 
which will lead to an overall increase in the scaled kurtosis 
(the product). 

5. APPLICATIONS OF THE UNIFIED CHANGE DETECTION 
APPROACH  

We have defined the approach to deriving the change 
signals from the healthy-state signal to the future-state 
signals. With the change signals, we have proposed three 
condition indicators in three frequency bands. This will 
produce nine CIs for each future-state signal. Trending these 

CIs over time will allow changes in the condition of the 
monitored component of the machine to be detected. In this 
section, we will demonstrate the effectiveness and 
robustness of the proposed method in a number of different 
fault cases involving different fault types. 

Vibration data from machines with several types of faults 
are used for the demonstration. The fault types include gear 
tooth cracks in a simple gearbox; non-uniform gear tooth 
wear and vane pump failure in turbo-machinery; and nut 
looseness and planet carrier plate cracking in helicopter 
transmission systems. Using the same unified approach, we 
have produced various trending curves for each of these 
fault types. The results have shown that this single unified 
change detection approach can be very powerful in 
detecting changes caused by many different types of 
machine faults. In practice all nine CIs should be trended 
during machine operations. As there is not enough space in 
this paper to show results for all nine CIs, we will show 
results for some selected CIs in the following examples. 

5.1. Application to Detecting Gear Tooth Crack Growth  

The study of tooth crack development and propagation in 
the pinion spur gear of a test gearbox were performed by 
Swinburne University of Technology and DSTO (Forrester 
1996, Vavlitis 1998). The test gearbox was a simple single-
stage reduction gearbox with 27 teeth on the driving pinion 
and 49 teeth on the driven gear (i.e. the gear ratio was r = 
27/49). The gearbox was driven by an electric motor 
through a belt drive. The load to the test gear was provided 
by a dynamometer with a full loading capacity of 45kW at 
40Hz input shaft speed. The test gears, labeled G6, A1, A2, 
A3 and A5 etc, were the input pinion (with a rated load of 
27.5kW) with a semi-circular spark-eroded notch 
(2mm×0.1mm×1mm) at the root fillet in the middle of the 
tooth width. The notch was designed as a stress riser for 
crack initiation during the test. The gear was made of 
EN36A case hardening low alloy steel with teeth precision-
ground under AGMA Class 13 standard. The input speed of 
the gearbox was set to a nominal value of 2400rpm (40Hz), 
which was varied during the test in a range of 38.6 to 
39.3Hz. Results with selected CIs for G6, A3 & A5 are 
shown here. 

Figure 8 shows the trending curve for G6 scaled kurtosis in 
the high band (cross-over at 85th shaft order) from files 
G6b.071 to G6b.110, the dataset used here is the same as 
that used in Section 2.1. We can see that the scaled kurtosis 
CI generally trends upwards with the increasing crack size. 
However, the general trend was disrupted at file #97. This 
was caused by the inspection after file #96, where the faulty 
gear was dismantled from the test rig and the tooth crack 
was forced to open with a static overload for magnetic 
rubber inspection of crack size. It is believed that the 
inspection process interrupted the crack progression, i.e. the 
static overload caused crack retardation or arrest. Figure 9 
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shows the trending curves of energy ratio CIs in full, high 
and low order bands. Obviously, the high band (blue line) is 
most sensitive to the changes caused the increasing crack 
size. 
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Figure 8. Trending of G6 scaled kurtosis in high-band 
from G6b.071 to G6b.110 (the value at G6b.110 was 

0.66 – outside the displayed range). 
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Figure 9. Trending of G6 energy ratio in all three 
bands for (G6b.071~110) under 45kW load, crack 

growth disrupted by an inspection. 

While the results shown in Figure 8 and Figure 9 are 
possibly affected by interrupted tooth crack growth, Figure 
10 shows the trending curve of high band kurtosis for an 
uninterrupted growth from G6b.149 to G6b.155. The 
reference signal was G6b.148 where the tooth crack size 
was estimated to be 3.63mm by post-test fractography 
analysis. By G6b.155 (the last data file for the G6 test), the 
tooth crack grew to an advanced stage where the cracked 
tooth was just about to fall off, and the crack length was 
measured at 4.67mm by fractography analysis (80 percent 
tooth body cracked, as compared to the crack path length of 
5.82mm). Note that the kurtosis values in this plot do not 
represent the change between the faulty-state and healthy-
state, rather the change was from a ‘less faulty’ to ‘more 
faulty’ state (i.e. the normal alert and alarm levels of 3.5 and 

4.5 do not apply here). Figure 11 shows the change signals 
from G6b.148 to G6b.155 in the high and low bands. 
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Figure 10. Trending of G6 kurtosis in high-band for 
G6b.148~155, a further uninterrupted crack growth 

under constant load (24.5kW) after G6b.110.  
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Figure 11. Change signal from G6b.148 to G6b.155. 

More results are given in Figure 12 and Figure 13 for the 
DSTO gear tooth crack propagation test series using the 
identical type of test gears. Figure 12 shows the A3 gear test 
trending curve of scaled kurtosis from A3B2.501 to 
A3B2.549 over some 27.5 minutes of testing (about 66000 
fatigue cycles to the cracked tooth with constant load of 
30kW at 40Hz shaft speed). In this test period, the crack had 
uninterrupted continuous growth from 4.89mm to 5.84mm 
along a curved crack path (Vavlitis 1998, where A3 was 
labelled as A2-3). With file A3B2.549, the kurtosis of the 
change signal in high order band is 9.49, as compared to the 
conventional residual kurtosis of 5.09. 

Similarly, Figure 13 shows the A5 gear test trending curve 
of scaled kurtosis from A5B0.598 to A5B0.763 over some 
84 minutes of testing (about 201600 fatigue cycles to the 
cracked tooth with 40Hz shaft speed) where the crack had 
uninterrupted continuous growth from 1.46mm to 2.27mm 
along a curved crack path (Vavlitis 1998, where A5 was 
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labelled as A2-5). With file A5B0.763, the kurtosis of the 
change signal in the high order band is 9.0, as compared to 
the conventional residual kurtosis of 4.3. If we pay close 
attention to the values on the vertical coordinate (scaled-
kurtosis) in Figure 12 and Figure 13, we could find that 
these values might be a reflection of the crack sizes, e.g. the 
scaled kurtosis value of 0.44 for A3B2.549 with a crack 
length of 5.84mm versus the scaled kurtosis value of 0.174 
for A5B0.763 with a crack length of 2.27mm. However, this 
could also be affected by the load. 
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Figure 12. CI trending of A3B2.501~549 data – final 
crack size 5.84mm with uninterrupted crack growth 

under 30kW load. 
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Figure 13. CI trending of A5B0.598~763 data – final 

crack size 2.27mm with continuous progression 
without interruption under constant load of 45kW. 

We have also conducted a more detailed comparison study 
between the unified change detection approach and other 
commonly used gear fault detection techniques. Figure 14 
shows the results of comparing the unified approach with 
two other methods based on the autoregressive (AR) model 
residual and the conventional residual signals using the A3 
gear test data. We find that the changes picked up by the 
unified approach increase more rapidly than the other two 
methods, and the AR model result is very much dependent 

on the selection of model order, and whether the AR model 
is built on a reference signal or the monitored signal itself. 
The unified approach has shown more fluctuation in the 
result, which could be smoothed out by using the scaled 
kurtosis as shown in Figure 12.  
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Figure 14. Comparative study between unified change 
detection approach and other methods based on self-

AR(32) residual and conventional residual signals 
using the DSTO A3 gear tooth cracking data 

We can draw some conclusions based on the results of the 
comparison study using the DSTO gear rig data. The unified 
approach: (1) requires less prior knowledge, it only needs to 
choose the high & low band cross-over frequency (e.g. at 
the lower bound of a resonance or the upper bound of the 
significant gear mesh harmonics); (2) is much more 
versatile than conventional residual signal method in which 
we must know which orders to be removed; (3) is capable of 
dealing with cases of multiple gears on the same shaft and is 
more robust than the AR residual method where a consistent 
model order selection is lacking; and (4) gives better and 
more robust trending capability by using a scaled kurtosis 
CI than a conventional kurtosis CI. 

5.2. Application to Detecting Faults in Turbomachinery 

We have found in the last section that the unified change 
detection approach is effective in detecting localized 
changes induced by gear tooth cracking, especially by using 
a high band CI. In this section, we will find if this approach 
can be employed for the detection of distributed faults such 
as uneven wear on many teeth of a gear, and damage to all 
the vanes of a vane pump. The results show that low-band 
and full-band CIs are very sensitive to the changes caused 
by these distributed faults. 

5.2.1. Non-uniform Gear Tooth Wear  

In gear design, it is normal practice to select the number of 
teeth for a gear pair such that there is no common factor 
between them. This allows each tooth of one gear to mesh 
with every tooth of the other gear, and therefore promotes 
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even wear of the teeth. This system is usually referred to as 
the hunting tooth system. In the gearbox of a developmental 
turbofan, there was a non-hunting tooth system with a 
common factor of 3 between the tooth counts, which 
resulted in damage (non localized uneven wear) to every 3rd 
tooth on the pinion. Now, we employ the unified change 
detection approach to monitor the changes induced by this 
specific wear pattern over time. 
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Figure 15. Turbo-fan gear CI (energy ratio) trending 
with Channel 3 data and cross-over frequency of 5 

shaft orders. 

The reference signal x was acquired at about 19 hours of 
testing, and 12 monitoring signals (y) were acquired after 
signal x. Figure 15 shows the trending curve of the energy 
ratio CI in full, low and high order bands versus the 
accelerated test time over a period of more than 2 hours. 
The increasing trend of the full (red line) and low (green) 
band CIs clearly shows the progression of the uneven wear 
to every 3rd tooth on the pinion gear. The high (blue) band 
CI has a less obvious trend. These results were obtained 
with a cross-over frequency of 5 shaft orders; so it means 
that most of the energy in the change signal is in the low 
band below the 5th shaft order. In fact, the high band CI is of 
little importance in this case as the distributed fault would 
not necessarily bring any high frequency resonance features. 

5.2.2. Vane Pump Failure   

This fault type is about the severe damage to all the vanes in 
a vane pump attached to the accessory gearbox of an aircraft 
engine. The vibration data were recorded at three stages of 
an accelerated test when the engine was running on full 
power. They were from a) early stage – within the first 10 
percent of the testing time; b) late stage – between 80 ~ 90 
percent of the testing time and c) last stage – within the last 
2 percent of the testing time of the accelerated test. 
Altogether, there were 36 tri-axial vibration data files used 
for producing the results shown in this paper, where the first 
one in the early stage was used as the reference. 

Figure 16 shows the trending curves of scaled kurtosis CI in 
three bands using the horizontal axial (the most sensitive 
direction) vibration data. Along the abscissa coordinate of 
the plot there are 35 columns of CI points; the first 11 files 
were from the early stage of testing, the following 18 files 
were from the late stage and the last 6 files from the last 
stage of testing. The cross-over frequency for the low and 
high bands was selected at just above the 6th harmonic of the 
vane pass frequency. We can see in Figure 16 that the full 
band (red) and low band (green) CIs show prominent step 
changes across the three stages of testing. The high band 
(blue) CIs show some indication of change but this is not as 
prominent as the other two bands. This is because the signal 
changes caused by the vane damage are mostly likely 
located at the vane pass frequency and its lower harmonics. 
Obviously, the changes detected by the unified approach can 
give sufficient lead time to the failure of the vane pump. 
The pump actually failed on the very next run after the last 
data file was recorded. 
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Figure 16. Aero-engine vane pump CI (scaled-

kurtosis) trending with Channel 3 data and cross-over 
frequency of 65 shaft orders. 

5.3. Applications to Detecting Faults in Helicopter 
Transmission Systems 

Health and Usage Monitoring Systems (HUMS) have been 
used in helicopter transmission gearboxes for many years. In 
general, existing HUMS can detect faults of common types 
such as gear and bearing faults without great difficulty. 
However, less common or unknown types of faults are 
difficult to detect. In this section, we will present two cases 
of less common fault types and employ the proposed unified 
approach to trend the progression of these faults. 

5.3.1. Input Shaft End Nut Looseness  

The first of these less common fault types is the end nut 
looseness at the bevel input pinion extension shaft in a 
helicopter Main Rotor Gearbox (MRG). This is a fault type 
which is believed to be the most likely cause of the rupture 
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of the extension shaft. It can be induced by a lack of 
tightening torque of the end-nut and consequently causes a 
load redistribution in the MRG assembly. A study was 
conducted at DSTO into this fault type using a light utility 
helicopter MRG in DSTO’s Helicopter Transmission Test 
Facility (HTTF). The objective of the study was to provide 
HUMS systems with the capability to detect the loss of 
tightening torque of the end-nut and to prevent the rupture 
of the input pinion extension shaft. 
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Figure 17. Trending of scaled kurtosis CI from pinion 

SSA (at Ring-Front sensor & cruise power) change 
signal with cross-over at 75th shaft order 

Ten end-nut tightening torques were used in the test, i.e., 
100 percent, 91%, 78%, 67%, 56%, 44%, 33%, 22%, 11% 
and 7% of the nominal tightening torque. The data recorded 
at 100% tightening torque were used as the reference, and 
the tightening torque is assumed to become less and less 
over time. The 7 percent torque (a very loose condition) was 
found to be the thread breaking torque at which we could 
just start to turn the end-nut. Throughout the test, the input 
shaft speed was kept at the nominal level (about 100Hz) and 
there was no mast load applied to the MRG. The data used 
in this paper were acquired under the forward flight 
condition at 75 percent maximum power.  

Using the synchronous signal averages (SSA) with respect 
to the input pinion shaft and the planet carrier shaft, we 
produced the scaled-kurtosis CIs at each level of the 
tightening torque and plotted them in Figure 17 and Figure 
18. The abscissa coordinates in the plots can be considered a 
time progression index where each point corresponds to the 
next looser level of the tightening torque, i.e. time index 1 
corresponds to the 91%, index 2 is 78% … and index 9 is 
7% tightening torque.  

From Figure 17 which is based on the input pinion SSA 
change signals, we can see that the end-nut loosening 
condition can be detected by the full (red) and low band 
(green) CIs from time index #5 (i.e. 44% tightening torque), 
and becomes very obvious at index #8 (or 11% tightening 
torque). On the other hand, Figure 18 shows the CI trending 

based on the planet carrier SSA change signals. Here, it 
could be argued that the end-nut loosening condition is 
detectable by the full (red) and high band (blue) CIs from 
time index #3 (i.e. 67% tightening torque) forward, which is 
apparently better than the result in Figure 17. This result 
may be because the effect of load redistribution caused by 
the loosening end-nut on the input shaft was magnified at 
the carrier shaft by the reduced speed and increased torque. 
The results have shown that the unified approach can be 
effective in detecting faults of this particular type. 
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Figure 18. Trending of scaled kurtosis CI from carrier 

SSA (at Ring-Front sensor & cruise power) change 
signal with cross-over at 750th shaft order 

5.3.2. Planet Carrier Plate Cracking 

The helicopter main gearbox planet carrier plate cracking 
was not a widely known fault type until 2002 when it 
occurred in the UH-60A Blackhawks of US Army. Since 
2004, it has also occurred in the SH-60B Seahawks of US 
Navy. The test data used for this paper were acquired at US 
Navy’s HTTF in Patuxent River, Maryland.  
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Figure 19. Trending of scaled kurtosis CI of 40% 

torque and STBDRING sensor at cross-over of 1700 
shaft order. 
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Using the unified approach, we produced CIs for all the 
sensor data. Some results with selected HUMS sensors at 40 
percent torque for the main rotor are shown in Figure 19 to 
Figure 21. With a cross-over frequency of 1700 orders of 
the carrier shaft, and vibration data from the sensor on the 
starboard side of the ring gear (STBDRING), the scaled 
kurtosis CIs versus ground-air-ground (GAG) cycle number 
(equivalent to a time index) are shown in Figure 19.  We can 
see that the full (red) and low (green) band CIs track well 
with the changes caused by the crack propagation in which 
the crack lengths were known to have grown from 90mm 
(3.54”) at GAG #410 to 172mm (6.78”) at GAG #763. 
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Figure 20. Trending of scaled kurtosis CI of 40% 

torque and VMEP1 sensor at cross-over of 500 shaft 
order. 
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Figure 21. Trending of scaled kurtosis CI of 40% 

torque and VMEP1 sensor at cross-over of 1700 shaft 
order. 

Figure 20 and Figure 21 show the results for another sensor 
(VMEP1, which was very close to the STBDRING sensor) 
at 40% main rotor torque with two different cross-over 
orders, i.e. 500 and 1700 orders, respectively, to show the 
effect of cross-over frequency on the fault detectability of 
the unified approach. Note that the ring gear has 228 teeth 
so 500 shaft orders is above the 2nd gear meshing harmonic, 

and there were no significant meshing harmonics beyond 
1700 shaft orders. Obviously, the full band (red) CIs are 
identical in the two plots, which track well with the crack 
growth. In particular, the CI had a sudden jump at GAG 
#755 where the crack propagated through the outer edge of 
the carrier plate, which was not evident in Figure 19. 
Interestingly, the high band CI (blue) in Figure 20 and the 
low band CI (green) in Figure 21 are almost identical to the 
full band CIs. This means that the energy in the change 
signals is concentrated between 500 and 1700 orders of the 
carrier shaft.  

Based on the results in Figure 20 and Figure 21, we can say 
that the selection of cross-over frequency (or order) doesn’t 
affect fault detectability of the unified approach as a whole; 
it can however provide further diagnostic information on 
where the energy in the change signal is located in the 
frequency domain. The energy bandwidth in the change 
signals may well be utilized to distinguish the localized 
faults (with high bandwidth features) from the distributed 
faults (with low bandwidth features). We need to notice that, 
in this example, the cross-over orders of 500 and 1700 
correspond to the frequencies of 2150Hz and 7310Hz, i.e. 
the order times the main rotor speed of 4.3Hz. 

6. DISCUSSION AND CONCLUSIONS 

In this paper we have presented a unified change detection 
approach to generalized health monitoring for rotating 
machinery. The approach is based on aligning the signals 
through shifting the phase spectrum of the healthy-state or 
reference signal by the difference in phase spectra from the 
future-state signal (or the signal under monitoring). The 
change signals are obtained from direct subtraction of the 
aligned signals. Condition indicators extracted from the 
change signals are used to detect changes caused by 
machine faults. Results have shown that the proposed 
unified approach is very effective and robust in detecting 
changes caused by various types of mechanical faults. 

In practice, failure modes sometimes occur which were not 
anticipated in the development of a machine condition 
monitoring system, and these can often remain undetected, 
with potentially catastrophic consequences. It is unfortunate 
that we are unable to detect such faults as they happen and 
must come up with new techniques to detect them when 
they occur again. It has been our intention to develop a 
powerful unified fault detection method to deal with new or 
unexpected failure modes (or types of faults) in rotating 
machines. The proposed method has provided some hope in 
achieving that goal. 

Threshold setting for the CIs is a very important aspect in 
HUMS and PHM systems. The kurtosis can have a 
threshold of 3.5 for reasons mentioned in Sections 2.1 and 
4.1. The energy ratio should certainly have a threshold 
below 1 based on its definition in Eq. (13); hence a 
reasonable one would be 0.5 – meaning that the energy in 
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the change signal has reached 50 percent of that in the 
reference signal. However, there is no common threshold of 
scaled kurtosis for different fault types as observed in the 
results of this paper. From the definition of the scaled 
kurtosis in Eq. (14), we may look at setting the threshold 
upper bound to around 1, e.g. an energy ratio of 0.33 and a 
kurtosis of 3 (0.33×3≈1). Another way of thresholding the 
scaled kurtosis may be to put a limit on its rate of change (or 
differential). This will be an area for further study. 

The other area worth further investigation is the systematic 
approach to selecting the reference signal. Is it always 
sufficient to just use the data at the beginning of the 
machine operation, or is it better to choose the data at the 
start of each run or use a moving reference signal? These are 
questions to be answered after further testing and validating 
of the proposed unified approach against a wide range of 
fault types. 

In conclusion, we have shown that the proposed unified 
change detection approach is effective and robust in 
detecting changes caused many types of mechanical faults. 
It has the potential to cope with a much wider range of 
failure modes in rotating machinery than the existing 
methods. The new method is also simple in concept and fast 
in calculation (it only needs the FFT), and would be 
straightforward to implement in existing PHM systems. We 
anticipate that the method could be widely tested and 
matured in the near future. 
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ABSTRACT

Nowadays, in several areas, efficient fault diagnosis methods
for complex machinery and equipments are required. Sev-
eral fault diagnosis methods based on different theories and
approaches have been proposed in the literature. In general,
these methods use mathematical/statistical models, accumu-
lated experience, or even process historical data to perform
fault diagnosis. Although methods based on models or expe-
rience have shown to be effective, they have the disadvantage
of requiring previous knowledge of the dynamic system in
question. On the contrary, methods based on process histor-
ical data do not require a prior knowledge, they are based
solely on data obtained directly from the dynamic system.
The application of so-called “Evolving Intelligent Systems”
to accomplish fault diagnosis from process data have been
shown a promising approach. This paper proposes an evolv-
ing fuzzy classifier based on a new approach that combines
a recursive clustering algorithm and a drift detection method
and its application on dynamic systems fault diagnosis. The
novel approach provides greater robustness to outliers and
noise present in data from process sensors. The classifier is
evaluated in fault diagnosis of an interacting tank system and
the results are promising.

1. INTRODUCTION

Nowadays, the advance of technology has resulted in the emer-
gence of machinery and complex equipments, which impose
great challenges for its management and maintenance. In
many industries, for instance, fault diagnosis in major pro-
cesses is vitally important to assure normal operation of a

Maurilio Inacio et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

plant and avoid economic losses, security reductions and en-
vironmental damages. This context led to the emergence of
new concepts on management and maintenance of machin-
ery and equipments, such as Condition-Based Maintenance
(CBM). In CBM, machine or equipment data obtained in real
time are used to infer its working condition (or faulty condi-
tion), allowing maintenance scheduling and preventing equip-
ment crashes. Another concept has emerged based on CBM,
the concept of intelligent maintenance (Vachtsevanos, Lewis,
Roeme, Hess, & Wu, 2006).

In past decades several fault diagnosis methods based on dif-
ferent approaches have been proposed in the literature. These
methods use mathematical models, statistical models, accu-
mulated experience, or process historical data to perform fault
diagnosis (Venkatasubramanian, 2005). Fault diagnosis meth-
ods based on process historical data have received great em-
phasis recently (Abellan-Nebot & Subirón, 2010) and several
works have already proposed data based diagnostics methods
employing intelligent systems, mainly artificial neural net-
works and fuzzy systems (Jardine, Lin, & Banjevic, 2006).
Nevertheless, despite the good performance achieved by in-
telligent systems in fault diagnosis, they tend to face difficul-
ties when the problem involves complex non-stationary dy-
namic systems. In this systems, physical parameters, operat-
ing characteristics and fault behaviours change over time, re-
quiring an adaptive fault diagnosis system, able to self-adapt
to cope with changes in the monitored system. In order to
address fault diagnosis in this cases, some works propose the
use of so-called “Evolving Intelligent Systems” (Lughofer &
Guardiola, 2008; Filev, Chinnam, Tseng, & Baruah, 2010;
Lemos, Caminhas, & Gomide, 2013).

Based on artificial neural networks, fuzzy inference systems
or a combination of both, the neurofuzzy networks, the evolv-
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ing intelligent systems are systems whose main characteristic
is the ability to gradually determine both its structure and pa-
rameters from input data acquired in online mode and often in
real time. Evolving intelligent systems applications has been
growing in recent years. Many authors have obtained suc-
cessful applications in real world complex problems involv-
ing modeling, control, classification or prediction (Angelov,
Filev, & Kasabov, 2010). Evolving clustering algorithm is the
most widely used approach to define the structure of an evolv-
ing intelligent system (Kasabov & Song, 2002; Angelov &
Filev, 2003; Leng, McGinnity, & Prasad, 2005; Rong, Sun-
dararajan, Huang, & Saratchandran, 2006; Lughofer, 2008;
Soleimani-B., Lucas, & Araabi, 2010; Lima, Hell, Gomide,
& Ballini, 2010; Lemos, Caminhas, & Gomide, 2011). This
algorithms generally adopt a mechanism to update the struc-
ture (creation/modification/removal of clusters) and parame-
ters of the system using some measure of similarity between
input data samples and existing clusters. This mechanism
may lead to an erroneous definition of the structure, since
outliers or noisy samples (as usually are the data acquired by
sensors in industrial environments) which exceeds the mea-
sure of similarity can generate clusters that do not effectively
represent the data spacial structure (Lemos et al., 2011).

In fault diagnosis problems, the use of evolving intelligent
systems based on recursive clustering algorithms robust to
outliers and data noise is mandatory. In this case, each new
cluster created is usually associated with a new faulty condi-
tion. Thus, if the clustering procedure is not robust, the fault
diagnosis model tends to have a high false alarm rate, i.e.,
new faulty conditions are erroneously detected. Considering
this context, this paper proposes a fault diagnosis approach
based on an evolving fuzzy classifier which uses a new ro-
bust unsupervised recursive clustering algorithm. The unsu-
pervised recursive clustering algorithm classifier consists of a
modified version of the Gustafson-Kessel (GK) clustering al-
gorithm (Gustafson & Kessel, 1979) with the incorporation of
the Drift Detection Method (DDM) (Gama, Medas, Castillo,
& Rodrigues, 2004).

Considered a powerful clustering algorithm, GK clustering
algorithm unlike many others allows the identification of clus-
ters with different shapes and orientations in space. The al-
gorithm employs a technique to adapt the distance metric to
the shape of each cluster using a estimation of the cluster co-
variance matrix. Furthermore, the algorithm has also the ad-
vantage of being relatively insensitive to data scale and ini-
tialization of the partition matrix (Filev & Georgieva, 2010).
Drift detection, according to the literature, is a method to de-
tect gradual changes in the context of input data. By context,
it is understood as a set of generated data when the process
is stationary. Drift detection methods are suitable for appli-
cations involving machine learning, where algorithms are ap-
plied to real world problems, in complex, non-stationary and
dynamic environments (Sebastião & Gama, 2009). Among

several methods proposed for drift detection, the DDM algo-
rithm employs simple and computationally efficient method
to detect moments when changes occur and it can be embed-
ded into any learning algorithm, increasing its efficiency in
problems involving non-stationary dynamic models.

In this paper, a new unsupervised recursive clustering algo-
rithm is proposed, where any clustering update depends not
only on the similarity measure, but also on the monitoring
changes in the input data flow, which gives the algorithm a
greater robustness to the presence of outliers and noise. A
merging cluster mechanism was also incorporated into the
algorithm to enable the removal of redundant clusters. The
fuzzy rule base of the proposed classifier is updated when-
ever the cluster structure is modified. The clusters centers and
covariance matrices are used as parameters of fuzzy rules.
Multivariate Gaussian membership functions are employed
in the rules to avoid information loss when there is interac-
tion between input variables. Regarding the characteristics of
the proposed recursive clustering algorithm, the main bene-
fits achieved by the classifier used in this work are: 1) the
ability to learn the dynamic system model in online mode
and, if necessary, in real time; 2) the ability to adapt when-
ever changes are detected in the monitored system, allowing
the application to real problems; 3) low false alarm rate and
high fault isolation rate due to the robustness to outliers and
noise, increasing the reliability of diagnosis. To evaluate the
performance of the proposed approach in fault diagnosis, an
interacting tank system simulator was used to simulate nor-
mal and several faulty conditions. Outliers and noise were
added to the simulated data to evaluate the robustness of the
proposed algorithms.

After this introduction, the rest of the paper proceeds as fol-
lows. Section 2 presents the theoretical concepts regarding re-
cursive clustering algorithm, drift detection method and pre-
sents the proposed recursive clustering algorithm. Next, Sec-
tion 3 presents the proposed classifier and its application in
fault diagnosis. Section 4 presents the simulations and results.
Finally, Section 5 presents the conclusion and suggestions for
future works.

2. THEORETICAL CONCEPTS: RECURSIVE CLUSTER-
ING ALGORITHM AND DRIFT DETECTION

2.1. Recursive Gustaffson-Kessel Algorithm

Clustering algorithms are among the most useful tools to solve
pattern recognition problems, where involves analysis of non-
labeled data, or unsupervised learning (Duda, Hart, & Stork,
2001). Over the past decades, thousands of clustering al-
gorithms have been proposed (Jain, 2010). GK algorithm,
unlike many clustering algorithms that employ Euclidian dis-
tance as measure of similarity, employs Mahalanobis-like dis-
tance, which allows the identification of clusters with ellip-
soidal shapes. In this algorithm the distance is defined as fol-
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lows:
d2
ik = (xk − vi)Ai(xk − vi)T (1)

where d2
ik represents the distance between an input data sam-

ple xk = [xk1, ..., xkn], k = 1, ..., N , and the cluster center
vi, i = 1, ..., c, where N is the number of data samples, n is
the number of data dimensions, and c is the number of clus-
ters. The norm-inducing matrix Ai, i = 1, ..., c, defines the
shape and orientation of each cluster in space. An iterative
process is used in the GK algorithm to estimate the param-
eters of the clusters (the cluster center and fuzzy covariance
matrix). This process is finished when a certain convergence
criterion is reached. An extended version of the GK algo-
rithm named evolving GK-like algorithm (eGKL) is proposed
in Filev and Georgieva (2010). This approach estimates the
number of clusters and performs the adaptation of its param-
eters recursively, maintaining the advantages of the GK algo-
rithm. To evaluate the similarity between a new sample data
and one of the existing clusters, the eGKL algorithm employs
the Mahalanobis distance, defined as follows:

D2
ik = (xk − vi)F−1

i (xk − vi)T (2)

where Fi, i = 1, ..., c is a covariance matrix. Thus, the cur-
rent data sample belongs to an existing cluster if the distance
to the cluster center is smaller than the cluster radius. The
eGKL algorithm uses an approach inspired in concepts of sta-
tistical process control to estimate the radius of each cluster.
In this approach, it is assumed that a sample belongs to a clus-
ter if the following relationship holds:

D2
ik < χ2

n,β (3)

where χ2
n,β is the value of a Chi-squared distribution, n is

the degrees of freedom and β is the confidence interval. The
degrees of freedom n correspond to the input space dimen-
sion and confidence interval β is a parameter of the algo-
rithm. This approach has the advantage of avoiding the prob-
lem called “curse of dimensionality” (Hastie, Tibshirani, &
Friedman, n.d.), i.e., the problem of increasing the distance
between two adjacent points with the increase in the input
space dimensionality, since χ2

n,β is proportional to the dimen-
sion of the input data. If the condition given by Eq. (3) is
satisfied, it means that the current data sample belongs to a
cluster, so the cluster parameters are updated. Otherwise, it is
assumed that the current data sample does not belong to any
one of the existing clusters, and a new cluster is created. The
complete procedures of the eGLK algorithm can be seen in
Filev and Georgieva (2010).

2.2. Drift Detection Method

In the literature, several drift detection methods have been
proposed. In general, they can be classified into two cat-
egories: methods that perform adaptive learning at regular
intervals regardless of the occurrence of changes, and meth-

ods that detect changes first and subsequently adapt the learn-
ing to these changes (Sebastião & Gama, 2009). Belonging
to the second category, the DDM algorithm employs a sim-
ple method with direct application. This method is based
on monitoring the number of errors produced by a learning
model during prediction. The method uses the Binomial dis-
tribution to determine the general form of the probability for
the random variable that represents the number of prediction
errors into a sequence of n input data samples. In DDM al-
gorithm, for each k data sample sequences, the error rate is
the probability of the prediction error pk with standard devia-
tion sk =

√
pk(1− pk)/k. According to the Probability Ap-

proximately Correct (PAC) learning model (Mitchell, 1997),
the error rate of the learning algorithm decreases with the in-
crease of input data samples, and if the distribution is station-
ary, a significant increase in the error rate suggests context
changes. In this case, it is assumed that the current model
is inappropriate and should be updated. In DDM algorithm,
while monitoring the error, it defines a warning and a drift
level. When pk + sk exceeds the warning level, the data sam-
ples are stored in memory. However, if pk + sk exceeds the
drift level, it is considered that there is a context change. In
this situation, the model induced by the learning algorithm
should be updated with the data samples stored since the time
that the warning level has been reached. It is possible that the
error increases and, after reaching the warning level, it de-
creases to lower levels. This situation corresponds to a false
alarm, where there is no change of context and, therefore, no
action is required and the data samples stored in the memory
are no longer needed. More details about the DDM method
can be found in Gama et al. (2004).

2.3. Proposed Recursive Clustering Algorithm

The algorithm proposed in this work consists of an unsuper-
vised recursive clustering algorithm with a new mechanism of
clustering update. The algorithm is a recursive version of the
GK algorithm, inspired by the eGKL algorithm, and incorpo-
rating the DDM algorithm. Thus, clustering is performed in
online mode and, if necessary, in real time.

Considering that there is no a priori information about the
clustering structure neither a initial set of input data samples,
the proposed algorithm starts by associating the center of the
first cluster c1 to the first input data sample x1. The cor-
responding covariance matrix F1, the learning rate α1 and
the number of samples associated with the first cluster M1

are defined as follows: c1 = x1; F1 = Finit; α1 =
αinit; M1 = 1, where Finit = γI; I is an identity ma-
trix of n size; γ is a small positive number (default value:
γ = 10−2) and αinit ∈ [0, 1] is the initial learning rate (de-
fault value: αinit = 0.5). If all data samples are processed,
the algorithm stops, otherwise, a new input data sample xk
is obtained and the distance between the data sample and the
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centers of the existing clusters is computed as:

D2
ik = (xk − vi)F−1

i (xk − vi)T (4)

The similarity between the current data sample and the exist-
ing clusters is verified by the similarity condition:

D2
ik < χ2

n,β (5)

where χ2
n,β is the value of a Chi-squared distribution, n is the

degrees of freedom and β is the confidence interval. The de-
grees of freedom n correspond to the input space dimension
and confidence interval β is a parameter of the algorithm. If
similarity condition given by Eq. (5) is met for a cluster, it is
assumed that the current sample belongs to this cluster. The
cluster parameters (center, covariance matrix, learning rate
and number of samples in the cluster) are then updated as fol-
lows:

vq = vq + αq(xk − vq) (6)

Fq = Fq + αq((xk − vq)T (xk − vq)− Fq) (7)

αq =
αinit
Mq

(8)

Mq = Mq + 1 (9)

where q = arg min
i=1,...,c

(D2
ik). If the similarity condition given by

Eq. (5) is not met, it is assumed that the current sample does
not belong to any existing cluster. Then, the algorithm incre-
ments a variable that represents the number of dissimilarities,
Mdis = Mdis + 1, then the error probability and standard
deviation are computed as follows:

p =
Mdis

k
(10)

s =
√
p(1− p)/k (11)

In this algorithm, the p and s values are stored whenever p+s
reach the lowest value during the process, obtaining pmin and
smin. If the following condition is met:

p+ s < pmin + smin (12)

then pmin = p and smin = s. Note that, when algorithm
starts, the p and s values must be initialized as a positive
number, it is suggested set as one for each value. To decide
whether the current data sample xk represents a new cluster
or it is just an outlier, warning and drift conditions are evalu-
ated. The warning condition is verified as:

p+ s > pmin + z1 · smin (13)

where z1 is the warning level (default value: z1 = 2). If
the warning level is reached, then the current data sample
is stored in a window of samples W (data)j , j = 1, ...,m
(where m is the current size of the window) and then, the
drift condition is evaluated. Otherwise, the algorithm pro-
cesses the next input data sample. Drift condition is verified

as:
p+ s > pmin + z2 · smin (14)

where z2 is the drift level (default value: z2 = 3). If the
drift level is reached, a new cluster is created, c = c + 1,
and the center and the covariance matrix of the new cluster
are determined by the samples stored in the data window as
follows:

vc =
1

m

m∑

j=1

W (data)j (15)

Fc = cov (W (data)j) (16)

The remaining parameters of the new cluster (learning rate
and number of samples in the cluster) are initialized as: αc =
αinit; Mc = 1.

In order to avoid redundant cluster formation, during the up-
date, the similarity between clusters is checked. To that end,
distances between the centers of the clusters are computed as
follows:

D2
ij = (vi − vj)F−1

i (vi − vj)T (17)

D2
ji = (vj − vi)F−1

j (vj − vi)T (18)

If one of the following similarity conditions is met for two
existing clusters i and j,

D2
ij < χ2

n,β (19)

D2
ji < χ2

n,β (20)

the clusters are merged. These clusters have a hyper ellip-
soidal shape, defined by a mean vector, a covariance matrix,
and a number of samples associated with each one. The com-
bination of these two clusters produce a new one with param-
eters computed as follows (Kelly, 1994):

Mi = Mi +Mj (21)

vi =
Mi

Mi +Mj
vi +

Mj

Mi +Mj
vj (22)

Fi =
Mi − 1

Mi +Mj + 1
Fi +

Mj − 1

Mi +Mj + 1
Fj+

MiMj

Mi +Mj(Mi +Mj − 1)
(vi − vj)T (vi − vj) (23)

Algorithm 1 summarizes the proposed recursive clustering al-
gorithm.

3. PROPOSED EVOLVING FUZZY CLASSIFIER FOR FAULT
DIAGNOSIS

In many current applications, the use of algorithms for pattern
classification is present, such as fingerprint recognition for se-
curity systems, handwriting recognition on touch screen com-
puters, DNA sequences identification in medical diagnostic
softwares and fault diagnosis in industrial equipments. In this
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Algorithm 1: Recursive Clustering Algorithm with Drift De-
tection
Input: xk, χ2

n,β , Finit, αinit, z1, z2;
Output: vi, Fi;
Read the first data sample x1;
Initialize the first cluster;
for k = 2, 3, ... do

Read xk;
Compute D2

ik for all clusters;
Identify the closest cluster;
if D2

qk < χ2
n,β then

Update the closest cluster;
else

Update the dissimilarity number Mdis;
Compute p and s;
if p+ s < pmin + smin then

Update pmin and smin;
end if
if p+ s > pmin + z1 · smin then

Store xk in the data window W (data)j ;
end if
if p+ s > pmin + z2 · smin then

Create new cluster;
end if

end if
Compute D2

ij and D2
ji for all clusters;

if D2
ij < χ2

n,β or D2
ji < χ2

n,β then
Merge redundant clusters;

end if
end for

context, the problem of pattern classification consists in as-
signing a class or a category for each data sample from a set
of “raw” data (Duda et al., 2001). Pattern classification algo-
rithms based on fuzzy rules have been used in many applica-
tions due to their advantages in relation to classic algorithms
for pattern classification, especially by the good prediction
performance in real problems and good transparency in lin-
guistic rules (Jang, Sun, & Mizutani, 1997), which allows
an easy comprehension of the dependence between pattern
characteristics. The typical architecture of a fuzzy classifier
consists of a set of IF ... THEN fuzzy rules, defined as:

RULEi : IF x1 ISµi1 AND ...AND xn ISµin THEN yi = Li
(24)

where [xk1, ..., xkn] are the input variables or patterns of n
dimensionality; [µi1, ..., µin] are antecedent fuzzy sets of the
ith fuzzy rule; yi is the output; Li is the crisp output corre-
sponding to the class label from the set [1, ...,K], where K
is the number of classes. For each new input data sample xk,
the classification is obtained by assigning to it the label of the
class associated with the rule having the highest activation
degree. The class is determined as follows:

yi = Li∗ (25)

where i∗ = arg max
1<i<R

(τi); R is the number of fuzzy rules and

τi is the activation degree of the ith fuzzy rule, defined by a
t-norm, usually expressed as a product operator:

τi =
n

T
j=1

µij(xj) (26)

where µij are the membership functions of fuzzy sets defined
by Gaussians:

µij = e
− 1

2

(
(xj−vij)2

σ2
ij

)

(27)

where vij and σ2
ij represent respectively the membership func-

tions center and variance. Usually, to implement this fuzzy
classifier architecture, clustering is performed in the input
and/or output space. Then, rules are created using one-dimen-
sional (or univariate) fuzzy sets, generated from the projec-
tion of the clusters in the axis of each variable. According
to Lemos et al. (2011), this approach can lead to information
loss if there is interaction between variables, and to avoid this,
the authors propose the use of multivariate Gaussian member-
ship functions to represent antecedent fuzzy sets of each rule.
These membership functions are described as:

H(x) = e−
1
2 ((x−v)Σ−1(x−v)T ) (28)

where v is a 1 × n central vector and Σ is a n × n symmet-
ric positive definite matrix. The central vector is defined as
the modal value and represents H(x) typical value and the Σ
matrix denotes the dispersion and representsH(x) spreading.
Thus, each cluster found by the clustering algorithm is asso-
ciated with a fuzzy rule and the multivariate Gaussian mem-
bership function parameters are defined as the parameters of
the corresponding cluster. If multivariate Gaussian member-
ship functions are used, the fuzzy classifier will have a rule
set defined as:

RULEi : IF xk ISAi THEN yi = Li (29)

whereAi is the fuzzy set with multivariate Gaussian member-
ship function of the ith fuzzy rule, with parameters extracted
from the corresponding cluster. In general, more than one
rule can be used to describe a class, e.g, the class can be mul-
timodal. In this case, only one rule cannot be sufficient to
describe all possible variations of the same class. Thus, the
fuzzy classifier aggregates rules outputs associated with the
same class using a s-norm. The result of the aggregation can
be interpreted like rules as follows:

(IFxk ISAi)OR(IFxk ISAj)OR...(IFxk ISAk)THENyi = Li
(30)

This aggregation results in the degree of relevance of each
known class. The classification of each new sample xk is
defined by the class with the highest relevance degree.

Data samples classes are not known a priori in some pattern
classification applications. In these situations it is required
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the use of an unsupervised learning process for classifier im-
plementation. Moreover, in applications where the pattern
classification should be performed in real time, the learning
should be performed using incremental algorithms, process-
ing each data sample once as a data stream. To solve these
problems, the solution is to use a recursive clustering algo-
rithm. We propose in this paper an evolving fuzzy classifier
based on recursive clustering algorithm with drift detection
presented in Section 2.3, which allows the creation of a fuzzy
rule base in online mode and, if necessary, in real time from
input data samples. This approach is different from the ones
employed in traditional fuzzy classifiers, which require some
training (usually supervised) conducted in off-line mode. For
rule base update, the proposed evolving fuzzy classifier uses
the output of the recursive clustering algorithm described in
the previous section. For each new input data sample, if a new
cluster is created, a new fuzzy rule given by Eq. (29) is added
to the rule base, where the cluster parameters are used as pa-
rameters of the multivariable Gaussian membership function
of the antecedents. The rule consequent (the crisp output cor-
responding to the class label) must be defined by experts or
system operators, since in unsupervised learning processes
incoming online samples usually are not pre-labelled. If a
cluster is updated, the corresponding class label is determined
as the consequent of the fuzzy rule with the highest activation
degree, and the user intervention is not necessary. If two clus-
ters are merged by the recursive clustering algorithm, the cor-
responding fuzzy rules are also merged to represent an unique
class. It should be noted that, both the number of rules and
the number of classes are determined during the evolving pro-
cess, and it is not necessary to set these parameters a priori.
Algorithm 2 summarizes the procedures of the classifier.

Algorithm 2: Evolving Fuzzy Classifier
Input: xk;
Output: yk;
Initialize the classifier;
for k = 1, 2, ... do

Read xk;
Execute the recursive clustering algorithm with drift
detection;
if new cluster is created then

Create new fuzzy rule;
Define the new class elicited by expert / system
operator;
yk = label of the new class;

end if
if cluster is updated then

Update the corresponding fuzzy rule;
Find the most active rule;
yk = label of the most active rule;

end if
if clusters are merged then

Merge the corresponding fuzzy rules;
end if

end for

Dynamic 

System 

Evolving 

Fuzzy 

Classifier 

Recursive 

Clustering 

Algorithm 

Operator 
Database 

Output 

Figure 1. Fault diagnosis with the evolving fuzzy classifier.

Figure 1 illustrates the application of the proposed classifier
for fault diagnosis. Data samples are obtained from a dy-
namic system in a continuous stream, usually provided by
sensors that monitor the process. These data might require the
use of pre-processing techniques for feature extraction. The
rule set of the classifier starts empty at the beginning. Rules
are created as the recursive clustering algorithm creates clus-
ters to represent the data stream. Each rule will be related to
a class, and each class will be related to a dynamic system
condition, representing a normal operation or a fault. When
a new rule is created, the system operator is notified and in-
forms the label of the new class that defines it as a normal
operation condition or as a specific fault. All of the necessary
diagnostic information, the fuzzy rules and classes label, are
stored in a unified database and updated while the system is
used. The classifier database will contain a set of fuzzy rules
and classes labels defined after an initial period of operation.
When a new data sample is associated with an existing clus-
ter, the classifier updates the corresponding fuzzy rule and
classifies the dynamic system condition as the label present
in the consequent of the fuzzy rule with the highest activation
degree. It should be noted that, in this situation, user inter-
vention is not required, and the classification of the dynamic
system condition is performed automatically. The main fea-
ture of the classifier proposed in this work is ability to diag-
nose faults in a complex non-stationary dynamic system in
online mode and, if necessary, in real time. The classifier
does not require any a priori information about the dynamic
model neither process historical data. This allows the classi-
fier to construct a rule base in an evolving way and, with the
aid of the operator, to learn to diagnose faults as they occur.
Thus, the proposed classifier is able to adapt to the dynamic
system, making it possible to diagnose faults not previously
known.

4. SIMULATIONS AND RESULTS

The proposed classifier was evaluated for fault diagnosis in an
interacting tank system. The interacting tank system model
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employed in this work was based in the system proposed by
Braga, Jota, Polito, and Pena (1995) and allows to simulate
faults that resembles the faults of real industrial plants. As
illustrated in Fig. 2, the system comprises of a reservoir (TQ-
1) and two passively interconnected tanks (TQ-2 and TQ-3).
Using the interacting tank system model is possible to per-
form fault simulation on the actuators (pneumatic valves and
pumps), at the system components (connection pipes between
tanks) and on the sensors, with different sets of parameters.
The types of faults are detailed in Table 1. In the fault sim-
ulation, the system starts at normal operation, and a fault is
set at half of the simulation interval. Figure 3 shows as an
example the curves of the TQ-2 level, TQ-3 level, TQ-2 input
flow rate and TQ-3 output flow rate in fault simulation (FCV-
1 valve tightness). At the beginning of each simulation, the
system is working under normal operation, and the fault starts
at the half of the period.

Figure 2. Representation of the interacting tank system.

Table 1. Types of faults on interacting tank system.

Index Description
0 Normal operation
1 FCV-1 valve tightness
2 FCV-2 valve tightness
3 BA-1 pump shutdown
4 BA-2 pump shutdown
5 pipe clogging between TQ-1 and TQ-2
6 pipe clogging between TQ-1 and TQ-3
7 pipe clogging between TQ-2 and TQ-3
8 pipe leakage between TQ-2 and TQ-3
9 TQ-3 level sensor fault
10 TQ-3 output flow rate sensor fault
11 TQ-2 input flow rate sensor fault

Different scenarios were used in the fault diagnosis experi-
ments. Each scenario consists in the simulation of sequences
from 3 to 11 randomly selected fault types within a set of
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Figure 3. Fault Simulation: FCV-1 valve tightness.

faults with periods of normal operation between faults. In or-
der to assess the robustness of the proposed classifier to the
presence of noise in the data, for each monitored variable ran-
dom Gaussian noise was added with a zero mean and standard
deviation equal to 1% of the variable nominal value, consid-
ering normal operation of the system. As inputs of the clas-
sifier were provided in an online mode data samples related
to monitored variables of the interacting tank system: TQ-2
level, TQ-3 level, TQ-2 input flow rate and TQ-3 output flow
rate. For each fault sequence, the output classifier was com-
pared to the sequence provided. Whereas the classifier starts
with no fuzzy rule set, the first samples of data should match
the normal operation of the system, i.e., the first rule created
to describe the normal operation. For the experiments, the
parameters of the recursive clustering algorithm were defined
as: χ2

n,β = 9.4877; Finit = 10−2I; αinit = 0.5; z1 =
2; z2 = 3.

Figure 4 show as an example the results of fault diagnosis
in 5 faults scenario simulated scenario, where we can com-
pare the estimated output (classified faults sequence) of the
proposed classifier with the desired output (selected faults se-
quence) from input data samples. Results show that the clas-
sifier was able to correctly diagnose all the interacting tank
system faults. Whereas the presence of noise in the data sam-
ples, the occurrence of false alarms or misclassification (rep-
resented by isolated points on the graph) is low, even in the
scenario with the highest number of possible faults.

The classifier performance evaluation in this work was held in
terms of faults detection and fault classification, as suggested
in Vachtsevanos et al. (2006). Three metrics were calculated
in fault detection evaluation: Probability of Detection (POD),
Probability of False Alarm (POFA) and Accuracy (ACC). Re-
garding fault classification evaluation, the metric Fault Isola-
tion Rate (FIR) was used. Other metrics that were used to as-
sess the performance of the proposed classifier are: Detection
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Figure 4. Desired output and estimated output by proposed
classifier in 5 faults scenario.

Delay Time (DDT), Isolation Delay Time (IDT) and Opera-
tor Intervention Rate (OIR). All results of fault diagnosis ex-
periments with interacting tank system obtained by classifier
proposed in this work were compared to the results obtained
using the evolving fuzzy classifier proposed by Lemos et al.
(2013). For the experiments, the parameters of this alterna-
tive classifier were set to: w = 100, λ = 0.001, α = 0.01,
Tµy = 0.01. According to authors, this combination has been
found experimentally to provide a good balance between the
false alarm rate and the sensibility of the fault detection and
diagnostic approach.

Table 2 summarizes the results for both classifiers using the
fault detection metrics described. The results show that the
classifier proposed in this work has higher levels of fault de-
tection rates and accuracy in all scenarios, and no occurrence
of false alarm. These results prove the efficiency of the al-
gorithm in detecting simulated faults in the interacting tank
system. Despite its lower fault detection rates and lower ac-
curacy, the classifier proposed by Lemos et al. (2013) also not
showed any false alarms.

Table 3 summarizes the results for both classifiers using the
faults classification metrics described. The results show that
the classifier proposed in this work presented higher fault iso-
lation rate in all scenarios. In all scenarios the operator inter-
vention on faults classification was very low. These results
shows the ability of the classifier to automatically diagnose
almost all faults after the first occurrence, and it also reveals
their ability to learn. Note that, in general, the classifier pro-
posed by (Lemos et al., 2013) had a lower performance in

faults classification than the proposed classifier and it needed
more operator interventions.

Table 4 summarizes the results for both classifiers using the
time metrics in fault detection and classification. A compar-
ison between the average values for fault detection time and
fault isolation time demonstrates that faults classification is
faster after the first occurrence of each type of fault, since
the classifier database already has the fuzzy rules and labels
for all types of detected faults, not requiring an operator in-
tervention. The results of the experiments with the classi-
fier proposed by Lemos et al. (2013) demonstrated a faster
response than the classifier proposed in this work, which is
related to different update mechanisms in the clustering algo-
rithms used in each one of the classifiers.

Table 2. Faults detection performance.

Scenario Proposed
POD (%) POFA (%) ACC (%)

3 faults 99.38 0.00 99.67
5 faults 99.25 0.00 99.63
7 faults 99.53 0.00 99.67
9 faults 99.12 0.00 99.56

11 faults 99.20 0.00 99.60
Scenario Lemos et al. (2013)

POD (%) POFA (%) ACC (%)
3 faults 89.35 0.00 94.67
5 faults 83.04 0.00 91.75
7 faults 82.27 0.00 91.10
9 faults 79.78 0.00 89.89

11 faults 76.02 0.00 88.01

Table 3. Faults classification performance.

Scenario Proposed Lemos et al. (2013)
FIR (%) OIR (%) FIR (%) OIR (%)

3 faults 99.55 0.05 94.67 0.28
5 faults 96.76 0.04 91.88 0.29
7 faults 94.24 0.03 90.30 0.30
9 faults 92.69 0.03 89.86 0.31

11 faults 91.43 0.03 88.01 0.31

Table 4. Fault detection and classification time.

Scenario Proposed Lemos et al. (2013)
DDT (s) IDT (s) DDT (s) IDT (s)

3 faults 0.065 0.003 0.015 0.003
5 faults 0.753 0.680 0.017 0.003
7 faults 1.482 1.321 0.021 0.004
9 faults 1.936 1.826 0.018 0.004
11 faults 2.327 2.204 0.018 0.004

To evaluate the robustness of the proposed classifier in the
presence of outliers in the data, another experiment was con-
ducted. In this experiment, a 5 faults scenario was simulated.
Outliers were inserted in the data samples, i.e., some sam-
ples were corrupted with high variance noise. Even in the
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presence of outliers, the fault diagnosis results for this ex-
periment shows that the proposed classifier was able to cor-
rectly detect and diagnose all faults considered. This result
shows that the classifier was able to correctly distinguish be-
tween outliers and valid data samples. The results of this ex-
periment are presented in Table 5 and Table 6. Analysing
these tables, one can note that the proposed classifier has vir-
tually the same performance in fault diagnosis with absence
or presence of outliers, and also not showed occurrence of
false alarm. This experiment showed the greater robustness
of the classifier proposed in this work when compared with
the classifier proposed by Lemos et al. (2013), since the latter
showed major differences in fault detection and fault classifi-
cation rates in scenarios with and without outliers.

Table 5. Faults detection performance with outliers.

Scenario Proposed
POD (%) POFA (%) ACC (%)

without outliers 99.25 0.00 99.63
with outliers 99.26 0.00 99.63

Scenario Lemos et al. (2013)
POD (%) POFA (%) ACC (%)

without outliers 83.78 0.00 91.75
with outliers 79.00 0.00 89.51

Table 6. Fault classification performance with outliers.

Scenario Proposed Lemos et al. (2013)
FIR (%) OIR (%) FIR (%) OIR (%)

without outliers 96.73 0.04 91.88 0.30
with outliers 96.34 0.04 89.00 0.32

5. CONCLUSION

An evolving fuzzy classifier for fault diagnosis of dynamic
systems was presented in this work. The proposed classi-
fier is composed by a set of fuzzy rules created and updated
based on recursive clustering algorithm. A new mechanism
for cluster updating based on a drift detection method is em-
ployed, where the update of the cluster depends not only of
the similarity measure, but also on the data context monitor-
ing. As suggested by the simulation results, this feature gives
the proposed classifier robustness to outliers and noise. An
interacting tank system model was used for evaluation of the
classifier proposed in this work. The classifier was able to
detect and classify all faults with a high performance, even
in the presence of outliers and noise. The high fault isola-
tion rate and low false alarm rate obtained in all simulated
scenarios showed that the recursive clustering algorithm with
drift detection method was able to efficiently distinguish data
samples representing clusters of invalid data. Moreover, the
proposed classifier was able to automatically diagnose almost
all faults, requiring operator intervention on a small percent-

age of cases. This demonstrates the advantage of the con-
tinuous and incremental learning of the classifier over other
classifiers that require retraining whenever an unknown type
of fault is found. The classifier proposed in this work has as
advantages: the ability to learn from faults in online mode and
in real time; the ability to adapt to cope with changes in the
dynamic system; and robustness to the presence of outliers
and noise in the input data. Summarizing, the proposed clas-
sifier has showed to be a promising alternative for application
in fault diagnosis where other methods prove to be inefficient
or less advantageous, because of the characteristics of such
systems. In a future work, we will investigate the application
of the proposed algorithm in the real time fault diagnosis and
prognosis of industrial machines and equipments.
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ABSTRACT 

An innovative prognostics and chemical health management 

(CHM) technique was developed, for quantifying and 

characterizing health status of a CL-01 composite solid 

rocket propellant of tactical rocket motors. The technique is 

a cutting-edge real-time nondestructive technology approach 

which utilizes Near Infrared (NIR) spectra (M. Blanco, and 

I. Villarroya, 2002) emitted by microPHAZIR
TM

 NIR 

miniature handheld platform, developed by Thermo Fisher 

Scientific. Benchtop high-performance liquid 

chromatography (HPLC) and ion chromatography (IC) were 

utilized as baseline reference techniques for correlation to 

microPHAZIR
TM

 NIR measurements. 

To build a quantitative calibration model, near infrared 

spectra were acquired for twenty freshly manufactured 

mixes of CL-01 propellant formulae, which were iterated 

using a D-Optimal full-factorial design of experiment 

(DOE). Four-hundred eighty measurements were recorded 

and analyzed using Partial Least Squares (PLS) regression 

analysis for model building and method development 

(Schreyer, 2012). NIR results were correlated to spectra, 

which were produced using HPLC and IC reference 

techniques and were determined to be in precise agreement. 

All recorded measurements that were performed using 

microPHAZIR
TM

 handheld platform were successfully 

validated with HPLC and IC measurements. An algorithm 

was developed for microPHAZIR
TM

 NIR thus qualifying the 

platform as a real-time nondestructive test (NDT)/ 

nondestructive evaluation (NDE) tool for quantification of 

primary chemical constituents of CL-01 composite solid 

rocket propellant. Primary chemical constituents of CL-01 

comprise a binder, oxidizer, plasticiser, and 

antioxidant/stabilizer.  

Data sets for Shore-A hardness of each of the twenty DOE 

mixes were collected and used to calculate elastic modulus, 

tensile strength and percent strain. Calculated results 

conformed to specification requirements for CL-01 solid 

rocket propellant, henceforth confirming use of Shore A 

hardness as a real-time nondestructive test technique for 

validation of structural health of a solid rocket propellant.  

This teaming effort between Raytheon Missile Systems 

(RMS), United Kingdom Ministry of Defence (UK MoD), 

Alliant Techsystems Launch systems (ATK LS), and 

Thermo Fisher Scientific demonstrated outstanding ability 

to utilize miniature cutting-edge technology to perform real-

time NDT of CL-01 composite solid rocket propellant 

without generating chemical waste and residue and to 

ameliorate RMS technology base to capture incipient 

failures before the fact. The new technique will further be 

adapted for use to measure primary chemical constituents of 

other solid rocket propellants, liquid propellants, and 

composite explosives. The new technique will significantly 

reduce costs associated with surveillance and service life 

extension programs (SLEPs), which are often destructive 

and requires use of lengthy and expensive test techniques 

described in North Atlantic Treaty Organization (NATO) 

Standardization Agreement (STANAG)-4170 and Allied 

Ordnance Publication (AOP)-7 manuals. 

1. INTRODUCTION 

Tactical missiles are often exposed to severe thermal and 

dynamic stressors, often associated with long-term exposure 

to harsh environments, during transportation handling, 

transportation vibration, ejection and launch shock, diurnal 

cycling, storage, or when fielded. These stressors may act 

Sami Daoud et al. This is an open-access article distributed under the 

terms of the Creative Commons Attribution 3.0 United States License, 

which permits unrestricted use, distribution, and reproduction in any 

medium, provided the original author and source are credited. 
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individually or synergistically to factor into the aging, 

deterioration, and eventual decommissioning of critical 

warfighting assets. As a result, adverse impact and 

henceforth degradation reliability and/or safety of the assets 

may occur and will affect the total life cycle cost of fielding 

these weapon systems in a high state of readiness. 

Reliability analyses of legacy data indicated failure 

occurrences in missile structures, energetic and electronic 

components, all often associated with long-term exposure to 

static (heat, humidity, salt, etc.), and dynamic 

(transportation shocks, vibration, etc.) stressors. 

Today’s most common methods of NDT for evaluating the 

health of energetic systems are radiographic (X-ray 

imaging, X-ray computed tomography (CT), etc.), electrical 

(Eddy-current and electro-magnetic methods), dye 

penetrant, acoustic and ultrasonic, or a combination thereof. 

These methods are used by manufacturers during production 

processes, and mostly for quality control. Moreover, for 

fielded tactical missile systems, these methods are 

impractical for use. For health monitoring in the field, 

deployable portable platforms such as microPHAZIR
TM

 

NIR handheld platform become valuable as NDT/NDE 

tools. 

A joint teaming effort was carried out between the UK 

Ministry of Defence (MoD), Raytheon Missile Systems, 

ATK Launch Systems, and Thermo Fisher Scientific to 

qualify microPHAZIR
TM

 NIR platform as a miniature 

portable real-time NDE tool. The effort was successfully 

executed and would enable RMS, other defense contractors, 

US DoD and UK MoD to quantify primary chemical 

constituents of CL-01 solid rocket propellant 

nondestructively and on real-time basis. CL-01 is a 

composite high volumetric ballistic potential solid rocket 

propellant used in the propulsion subsystem of tactical 

missiles. Successful qualification of microPHAZIR
TM

 NIR 

platform to quantify primary chemical constituents of CL-01 

will enable defense contractors, DoD and MoD personnel to 

adapt this technology to quantify chemical constituents of 

all composite solid rocket propellants, liquid propellants, 

and warhead explosives, henceforth institute a cutting-edge 

technology of chemical health management (CHM).   

Concurrently, RMS under the direction of UK MoD has 

successfully validated a new technique for determining 

structural health of CL-01 solid rocket propellant, also 

nondestructively and on real-time basis, henceforth 

integrating structural health management (SHM) with 

chemical health management (CHM). The combined 

techniques introduce a novel approach to prognostics and 

health management (PHM) of composite solid rocket 

propellants and warhead explosives.  

The proposed technology is a proactive real-time NDE/NDT 

technique which replaces the old destructive test 

methodologies, described in NATO STANAG-4170 and 

AOP-7 manuals, imposed by Surveillance and Life 

Extension Programs (SLEPs) of past and present day 

techniques. The proposed technology is a novel cutting-edge 

achievement as a NDT tool, in that it will define new means 

for quantifying chemical constituents of multi-component 

solid rocket propellant formulae while at the same time 

shedding light on propellants structural health, and will 

enable the manufacturer to define the anticipated residual 

useful life (RUL) of solid rocket propellants from a 

chemical as well as structural perspective. This achievement 

will shed valuable information about the anticipated 

mechanical and structural behavior of the solid rocket 

propellant matrix, in what is often referred to as “the 

chemical-mechanical link”. The combination of chemical 

and mechanical (structural) health of the solid rocket 

propellant is the definition of prognostics and health 

management (PHM) and is the basic principle which will 

define whether a rocket motor (propulsion subsystem) 

would be warranted as “safe and suitable for service (S3)”. 

Today RMS and the UK MoD surveillance strategies seek 

to extend time between periodic surveillances, henceforth 

reducing tasks associated with subsystem breakdown, test 

and criticality analysis (BTCA) by as much as 50% or more. 

On average, a surveillance program is often recommended 

once every 3 to 4 years on a sample population which 

represents the fielded and/or stored weapons inventory. 

With the introduction of microPHAZIR
TM

 NIR real-time 

technology and associated structural health management, it 

will be feasible to extend the time between surveillance 

programs activities and/or reduce the number of assets that 

have to undergo surveillance. When a SLEP plan is 

established for solid rocket motor (propulsion subsystem) 

subsystem, complex steps must be executed and comprise 

disassembly, dissection and extraction of propellant 

samples, followed by extensive testing (physical, chemical, 

hazards, and mechanical tests) of the rocket motor solid 

rocket propellant matrix, often referred to as “breakdown, 

test and criticality analysis (BTCA)”. BTCA coupled with 

arena testing (static fire) of the solid rocket motor as well as 

other subsystems are challenging tasks, from manpower, 

cost and schedule perspectives, and therefore the need to 

exercise cost controls while at the same time maintain 

absolute confidence in assets health demand that novel 

technology approaches such as those associated with 

microPHAZIR
TM

 NIR platform and more advanced 

(exploratory) technologies become integral part of SLEP. 

The ultimate goal is to be able to (i) predict subsystems, and 

henceforth system anomalies proactively and sufficiently in 

advance to institute corrective actions and/or preventive 

measures; (ii) ensure that the subsystem is reliable from a 

performance as well as safety perspective to fulfill 

warfighters requirements; and (iii) reduce generated 

chemical waste, logistics footprint, logistics response time, 

and life-cycle costs, which will ultimately increase systems 

availability, and enhance customer-supplier business 

relationship.  
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The ultimate goal of the proposed technology will be that of 

enabling RMS and the customer (UK MoD) to realize early 

warnings of unsafe conditions using real-time data, 

collected via microPHAZIR
TM

 NIR miniature handheld 

platform and other advanced technologies of Thermo Fisher 

Scientific. Gaining real-time knowledge about the current 

health of a propellant or explosive matrix will offer effective 

insight to predicting residual useful life (RUL) of the system 

and its corresponding inventory. 

Successful application of microPHAZIR
TM

 NIR handheld 

platform as a NDE/NDT tool is the cornerstone and the 

spring board for future development of PHM of energetic 

subsystems: Cartridge Actuated Devices (CADs), 

Propellant-Actuated Devices (PADs), and electro-explosive 

devices (EEDs) of tactical and strategic missiles. 

MicroPHAZIR
TM

 NIR handheld platform offers enormous 

potential for applications requiring real-time monitoring of 

the health status of warheads and solid rocket motors which 

have been exposed to fatigue resulting in chemical and 

mechanical (structural) degradation.  

2. EXPERIMENTAL 

A D-Optimal Design of Experiment (DOE) was initiated 

using Minitab 16, with the goal of manufacturing twenty 

laboratory scale mix iterations of CL-01 (L. Biegert, and B. 

Cragun, 2013) solid rocket propellant. The twenty mix 

iterations are listed in Table 1.  

 

For each mix, constituents were varied above and below 

specification limits (+1, -1), to capture acceptable high and 

low limits of each constituent within the formulation.  

All CL-01 propellant raw materials were procured from 

ATK Allegany Ballistics Laboratory (ATK ABL) and were 

certified to material specifications. Raw materials which 

were utilized in the manufacture of the twenty DOE mixes 

are listed in Table 2. No hazards tests were required since 

all manufactured formulations were within the history of 

material sets prepared at ATK Launch Systems. 

 

Each of the twenty mix iterations amounted to 600 grams 

(1-pint each). Each of the twenty CL-01 propellant mixes 

was prepared using a 1-pint Baker Perkins mixer. At the 

conclusion of the mix cycle, each of the twenty 1-pint mixes 

was vacuum-cast into a Teflon-tape -lined carton. The 

Teflon tape facilitated carton removal and simulated a 

production-tooling surface. Each of the twenty mixes was 

cast to produce a rectangular- shaped block of 2.5-cm in 

width, 10-cm in length, and 12.5-cm in height, as depicted 

in Figure 1.  

The front face (A) was arbitrarily identified as the surface 

that matched the label of the carton.  The B surface is the 

top surface, the side from which the carton was cast. 

 

Upon vacuum-casting and cure of each of the twenty mixes, 

but prior to using microPHAZIR
TM

 NIR platform for testing 

of mix constituency, Shore A hardness measurements were 

recorded instantaneously, at 10-second, and 15-second 

residence time. Table 3 summarizes shore A hardness 

measurements. Shore A hardness testing was performed on 

side B of all cast cartons. All propellant mixes experienced 

cure cycles of 145°F ± 5°F for 192 hours ± 24 hours.  A mix 

would be removed from the cure oven if and only if shore A 

hardness conformed to minimum required specification. 

 

Table 1: DOE Design Series for Primary Constituents 

 
 

Table 2: CL-01 Propellant Raw Material Specifications 

 
 

 
Figure 1: Sample Geometry and Sampling Locations 
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2.1. Instrumentation 

2.1.1. The microPHAZIR
TM

 (NIR) Platform 

Near Infra-Red (NIR) spectroscopy (H.W. Siesler, Y. Ozaki, 

S. Kawata, and M. Heise (Eds), 2002) is a well-established 

technique, which has been widely used since the mid- 

1970s. Only recently has new technology permitted NIR 

systems to be miniaturized into truly handheld system. One 

of the most important products is the microPHAZIR
TM

 NIR 

handheld platform. MicroPHAZIR
TM

 NIR handheld 

platform is based on near-infrared spectroscopy ((H.W. 

Siesler). The near-infrared region, depicted in Figure 2 is 

located between the infrared and visible region with 

wavelengths that range from 800-900 nanometers to 2500 

nanometers. 

MicroPHAZIR
TM

 NIR handheld platform was developed by 

Thermo Scientific and is based on vibrational spectroscopy 

(microPhazir
TM

 User Manual). All molecules perpetually 

rotate, move, and contort in a complex manner at 

temperatures above absolute zero. Vibrational spectroscopy 

probes these contortions (or vibrations) of a sample to 

determine the chemical functional groups present. A 

common type of vibrational spectroscopy is infrared (IR) 

absorption/reflectance. It relies on illumination of the 

sample with optical radiation to probe the molecular 

vibrations. 

 

 

In NIR spectroscopy, the sample is illuminated with a broad 

spectrum of light in the near-infrared region and the 

transmission or reflection is recorded as a function of the 

frequency of the incident light. When the frequency of 

incident light equals the frequency of a specific molecular 

vibration, the sample tends to absorb some of the light. A 

material “fingerprint” results from recording the amount of 

light absorbed as a function of the wavelength (or 

frequency). The instrument is depicted in Figure 3. 

MicroPHAZIR
TM

 NIR is a rugged handheld chemical 

identification unit designed for point-of-use applications, 

either in contact or analysis can be conducted through 

transparent bags and vials. This product allows the 

identification of chemicals and white powders using the 

principles of NIR spectroscopy. It is enclosed in a 

lightweight, rugged, resistant package. The 

microPHAZIR
TM

 handheld contains a broadband NIR 

source, a Hadamard interferometer to separate the different 

wavelengths of light interacting with the sample, and a 

detector to collect the resulting energy. 

 

Table 3: Shore A Hardness of the Twenty DOE 

Vacuum-Cast Mixes 

 

 

 
Figure 2: Near Infrared Region of the Light Spectrum 

 

 
Figure 3: MicroPHAZIR

TM 
NIR and Principle of 

Operation 
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2.1.2. Agilent 1100 HPLC Platform 

Agilent 1100 Series system with different configurations 

comprises a vacuum degasser, isocratic pump, high-pressure 

binary pump, low-pressure quaternary pump, autosampler, 

thermostatted column compartment, variable wavelength 

detector and diode array detector. Key measurements are 

necessary to evaluate the performance of HPLC systems. 

Some characteristics are influenced by only one part of the 

system. For example, linearity, spectral resolution and 

detection limits are influenced mainly by the detector, delay 

volume and composition accuracy by the pump and 

carryover by the autosampler. In contrast, other 

characteristics such as baseline noise and precision of 

retention times and peak areas are influenced by the 

complete system. This note describes the following 

measurements: 

I. Detector — baseline noise, drift, wander, linearity, 

spectral resolution, sensitivity. 

II. Pump — composition accuracy, precision, ripple, 

precision of retention times, delay volume.  

III. Column compartment — temperature stability.  

IV. Autosampler — precision of peak areas, linearity, 

carry-over.  

2.2. Chemical Health Management (CHM) 

2.2.1. NIR Measurements/Data Collection 

The primary measured constituents of CL-01 solid rocket 

propellant are listed herein: 

I. Agerite White anti-oxidant/stabilizer. 

II. Ammonium perchlorate (AP) Oxidizer. 

III. Dioctyl Sebecate (DOS) plasticizer. 

IV. Hydroxyl-terminated polybutadiene (HTPB) 

binder, and is determined by difference between 

the sum of the primary constituents in (I), (II), and 

(III) and 100%. 

Measurements were performed on two platforms: 

microPHAZIR
TM

 NIR handheld platform and Agilent 1100 

High-Performance Liquid Chromatograph (HPLC) platform. 

In the case of microPHAZIR
TM

 NIR handheld platform, 

measurements were performed and recorded on each of the 

six faces of each of the twenty rectangular blocks, as 

depicted in Figure 4. 

Upon manufacture and vacuum casting of each propellant 

mix and prior to performing measurements, 3-mm of the 

binder-rich surface of each cast block is peeled-off and 

removed from the surface, exposing the homogeneous 

material.   

 

All 20 sample blocks were measured at ATK Launch 

Systems on June 26, 2013. The instrument used was 

microPHAZIR-GP Probe (part number 800-00259-01) with 

microPHAZIR Fiber Optic Probe Accessory (part number 

810-01351-01). The instrument serial number was 2575 

shown in Figure 3. The optical fiber probe attachment is 

depicted in Figure 5. The overall platform assembly is 

depicted in Figure 6 and Figure 7. Prior to taking 

measurements, microPHAZIR
TM

 NIR platform was turned 

on and allowed to warm up for five minutes. A self-test pass 

was verified to ensure the unit was working properly. 

 

Samples were measured in sample number order starting 

with sample 1 (ATK mix number RBC1691-99-38) and 

ending with sample 20 (ATK mix number RBC1691-99-

57).  Each sample was measured in quadruplet and 

consecutively on each of its six faces/sides.  The four 

measurements per face/side were collected at different 

positions.  For each measurement, the tip of the optical fiber 

probe was placed in contact with the sample and 

perpendicular to the sample face so that the probe tip was 

flat against the sample surface.  The instrument trigger was 

then activated to initiate an approximately three-second 

scan.  Prior to collecting the four measurements per face, a 

 
Figure 4: Vacuum-Cast Propellant Blocks, Depicting six 

Measured Surfaces 

 
Figure 5: Optical Fiber Probe 
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background measurement was taken of the built-in 

reflectance standard.  The measurement technique is shown 

in Figure 6 and Figure 7. 

Sample-averaging was performed in MATLAB.  All other 

analyses were performed in Thermo Method Generator 

(TMG), version 4.0.1.0 (microPhazir
TM

 User Manual).   

 

 

2.2.2. Model Building (Schreyer, 2012) 

2.2.2.1 Data Collection 

CL-01 Spectral data using microPHAZIR
TM 

NIR handheld 

platform followed best practices outlined by the platform 

manufacturer, as follows: 

I. Obtain representative samples for the library. 

A. Obtain realistic sample mixes that will form the 

library. These sample mixes should be representative of the 

CL-01 material that will be identified. No selectivity is 

implied for materials until the library is built and validated. 

B. Measure samples, as illustrated in Figures 6 and 7. 

Perform measurements in triplicate. 

C. Label all materials with name (Group ID or 

Method/Sample), and if appropriate reference value for PLS 

quantitative analysis. 

D. Transfer all names into a “.csv” file, and then use 

this to populate “GroupID.csv” on the microPHAZIR
TM

 

“Config” directory. 

II. Obtain reference values. 

A. For quantitative analysis, the full range of 

measurement shall be included in the library. Models only 

are considered robust over the data range actually 

referenced. 

B. Obtain replicate samples for at least 3 points over 

the measurement range.  

C. For realistic model building (Schreyer, 2012), at 

least 10 reference values over the measurement range shall 

be obtained. As the size of the range increases, so should the 

reference values collected. Since samples may change over 

time, it is appropriate to collect the spectra from the same 

sample as the reference values are obtained from. 

2.2.2.2 Spectral Generation 

I. Pre-spectral collection 

A. Prior to collecting spectra ensure that self-test 

performance qualification (PQ) has been performed. 

B. Ensure that group identifications (group ids) are 

transferred into GroupID.csv.  

C. Also ensure that the Group ID name is the correct 

name for the material and is present on the Collect screen on 

the microPHAZIR
TM

.  

II. Spectral collection 

A. The minimum number of spectra collected for any 

library building is triplicate scans in 3 positions. Position the 

nose of microPHAZIR
TM

 firmly against the material to be 

measured, as depicted in Figure 6 and Figure 7 (left), and 

take triplicate scans of the material without moving the 

sample. This will give information about instrument 

variability. Repeat twice. 

B. Repeat measurements for each side of the block.  

C. Repeat steps (A) and (B) for each mix. 

2.2.2.3 Spectral Evaluation 

I. Initial spectral evaluation. 

A. Load the collected data into Method Generator  

B. Ensure that there are no data which show 

absorbance (y-axis) past 3.  

 

 
Figure 6: Sample Side Measurement Technique 

 

 

 
Figure 7: Sample Top Measurement Technique 
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C. Observe if there are any noisy spectra, especially at 

high absorbance. If so, delete them. These usually arise if 

the trigger was pressed either without a sample in front or if 

sample is inadequate.  

D. Highlight each group to make sure that all spectra 

look similar in the same group. Any obvious single outliers 

may be deleted. The best scenario is when the triplicate 

scans are right on top of each other, and there is little 

difference between positional scans. However, as long as 

the positional replicates appear similar and are close 

together, this is adequate. If one position is obviously off 

from the others, keep it, but watch to see if it affects the 

final results. 

E. Delete any spectra where there was awareness of 

probable mistake in measurement. Do not delete scans just 

to make everything pretty. Deviations from the norm could 

be due to actual inherent sample differences and will need to 

become part of the model. 

F. Reference values must be inputted at this time, 

using the Edit Y-value option. 

G. Save the final edited data. 

II. Method generation  

A. Progress through the standard preprocessing 

options, and then evaluate the model using Spectral Match.  

B. Adequate separation should be observed between 

samples. There should be a gap between the colors 

associated with one group and the next closest color of the 

nearest group.  

C. Save the model if the model is acceptable.  

D. Load the data files onto the microPHAZIR
TM

 to 

test the model. 

III. Method validation  

A. Load a set of spectra into method generator (MG). 

For true method validation these should be unique spectra, 

not used in library building.  

B. Select Model |Model validation. Browse to locate 

the application. Press OK  

C. A panel will open with the validation results. It will 

be sorted by sample groups. Therefore it is very important 

that the GroupID of new spectra be identical to the GroupID 

of the library spectra. Otherwise a No ID label will be 

inserted.  

D. The results show number of mismatches, false 

positives/false negatives, and then the full results of the 

model validation for each material. It will list the top 3 

matches returned and their associated correlation 

coefficients. 

E. The results can be saved as a “.csv” file by 

selecting File | Save all 

2.3. Benchtop HPLC/IC Measurements/Data Collection 

Prior to conducting measurements, approximately 3-mm of 

the surface of each of the 20 cast samples was removed.  

This process is often performed on freshly manufactured 

mixes because the first 3-mm of a cast composite propellant 

is often binder-rich. To maintain consistency in 

measurements, the binder- rich region was removed with a 

special cutting tool. 

Following microPHAZIR™ platform measurements, 0.5- to 

1-gram weight samples were removed from the measured 

regions and analyzed using HPLC and IC to determine the 

following (Mattos et al., 2004): 

a. AP oxidizer content. 

b. Agerite White stabilizer/antioxidant content. 

c. DOS plasticizer content. 

d. HTPB binder content (by difference). 

HPLC and IC analyses of samples removed from the six 

surfaces of each of the twenty mixes are summarized in the 

results in section 3. For HPLC, samples were extracted 

overnight at a level of 50 mg/mL in stabilized 

tetrahydrofuran. Samples were prepared in triplicate.  

Sample extracts were analyzed using an HP1090 HPLC 

equipped with a C8 column and a diode-array detector.  

Approximately 200 milligrams were used for each sample 

preparation.  A sample portion was cut with a razor blade 

into several pieces to facilitate extraction. 

The antioxidant was identified by HPLC analysis (Urbanski 

et al, 1977) using a standard for identification. The 

antioxidant is often associated with the pre-polymer/binder 

matrix. The plasticizer was also measured using HPLC 

analysis (Urbanski et al, 1977). 

IC samples were prepared by extracting 100 mg of 

propellant in 200 mg of deionized water.  To facilitate the 

complete extraction of the AP from the propellant matrix, 

the propellant was leached for at least seven days in the 

water under ambient conditions. This may be a conservative 

amount of leach time, but evaluation after a 48-hour leach 

was shown to be inadequate.  Exact weights of both the 

propellant sample and deionized water were recorded to at 

least four significant figures and used in the calculation.  

The chromatographic conditions of the analysis were 

performed as follows: 

� Instrument:  Dionex 500 IC System 4 with anion  

suppressed/conductivity detector 

� Column:  IonPac® AG4 guard column (4X50 mm) 

� Eluent:  40 mM NaOH 

� Flow rate:  1.2 ml/min 

� Run time:  1.0 minute 

� Elution time:  0.6 minutes 

� Injection volume.:  10µLSRS Setting:  100 mA 
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� Calibration:  bracketed 

� Standards:  400.0, 430.0 and 460.0 ppm AP 

2.4. Structural Health Management/Data Collection 

Shore A hardness testing was performed on side B of all 

cast blocks, as depicted in Figure 1.  Shore A hardness 

measurements were recorded at three residence times: 

instantaneous, 10-second, and 15-second residence times.   

Measured values for shore A hardness were used to 

calculate elastic modulus, tensile strength, and percent strain 

for each propellant mix. Values were correlated to the 

specifications for CL-01. The primary goal of this technique 

is to validate mechanical integrity of the propellant real-time 

and nondestructively using shore A hardness measurement 

techniques. The approach would be utilized in conjunction 

with microPHAZIR
TM

 handheld platform to determine 

structural as well as chemical health of CL-01 propellant 

and other composite propellants and explosives. 

The following semi empirical formulae were used.in 

calculating tensile stress, elastic modulus, and percent 

strain, respectively. 

For Tensile Stress (TS), using 15-second Shore A hardness 

measurements, stress was calculated in equation 1 (Shore 

(Durometer) Hardness) as follows: 

TS = 0.0423 (SA)
1.2799

    (1) 

Where TS is tensile stress, in MPa, and SA is Shore A 

hardness. 

For Elastic Modulus E, using 15-second Shore A hardness 

measurements, E was calculated in equation 2 (A.N. Gent, 

1958) as follows: 

E = 0.0981 (56 + 7.66S)/0.137505 (254 – 2.54 SA) (2) 

Where E is elastic modulus in MPa.  

Percent strain was calculated, in accordance with Hook’s 

law, as the ratio of stress, in equation (1) to elastic modulus, 

in equation (2). 

3. RESULTS 

3.1. NIR Spectra 

Figure 8 depicts unprocessed (unfiltered) spectra for each of 

the twenty CL-01 propellant samples. Data sets were 

collected using microPHAZIR
TM

 NIR handheld platform.  

Almost all spectra were visually the same; with very few 

outliers, which is a normal trend.  For example, the spectra 

in light blue have obvious spectral artifact at the high end at 

the wavelength end.   

 

These gross outlier spectra were removed (filtered) from the 

data sets (depicted in Figure 9).  A total of 8 out of 480 (1.7 

percent) spectra were removed as outliers leaving 472 

spectra for use in the calibration and algorithm development 

models. 

 

For comparison, CL-01 propellant spectra and PBX(AF)-

108 (S. Daoud, M. J. Villeburn, K. D. Bailey, G. Kinloch, L. 

Biegert, and C. Gardner, 2013) NIR spectra were plotted in 

Figure 10.  It is observed that on average CL-01 spectra 

have approximately an absorbance near 1 and PBX have an 

absorbance near 0.4 (C. Gardner, and S. Schreyer 2013).  

This absorbance difference of 0.6 is translated to a 10
-0.6

, a 

factor of 0.25 of less light returned from CL-01 samples.  

This factor of four of less light is due to the gray color of 

CL-01 sample due to the presence of the opacifier in the 

formula.  In general, the less light returned to the detector 

(due to higher light absorbance by the sample), the noisier 

the spectra. 

 
Figure 8: Unfiltered NIR Spectra (Absorbance vs. 

Wavelength) 

 
Figure 9: Filtered NIR Spectra (Absorbance vs. 

Wavelength) 
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3.2. Spectral Preprocessing 

To remove nuisance/noise variations from the NIR spectra 

before generating the calibrations models for algorithm 

development, the sample-averaged spectra were first filtered 

using Savitsky-Golay 9-point, 2
nd

-order, 2
nd

-derivative 

filtering technique. They were then range normalized so that 

each spectrum has zero mean and unity standard deviation. 

Analysis was performed over the spectral range 1595–2250 

nm, and this is the spectral range used for calibrations.  

Plots of the preprocessed spectra for each primary 

constituent are depicted in Figure 11. 

 

3.3. Design Points vs. microPHAZIR 
TM 

NIR Readings 

Test sets collected with microPHAZIR
TM

 NIR handheld 

platform for all twenty samples were analyzed using 

Thermo Method Generator (TMG) partial least square (PLS) 

analysis software and are listed in Table 4. Upon reduction 

and analysis of the data, findings indicated near identical 

readings between those measured using microPHAZIR
TM

 

NIR and those measured using benchtop HPLC/IC 

instruments.  

 

 

The plotted spectra of Figure 12 through Figure 15 for the 

oxidizer, plasticizer, stabilizer, and binder respectively are 

the sample-averaged results of the measured readings using 

microPHAZIR™ NIR (plotted on the Y-axis) versus design 

values, plotted on the X-axis, which were those of the 

individual DOE design sets listed.in Table 1.  

 

 

 

 

 
Figure 10: Comparison of Spectral Readings of CL-01 

Propellant vs. PBX(AF)-108 Explosive 

 

 
Figure 11: Sample Averaged, Pre-processed Spectra for 

the Four Primary Constituents of CL-01 Propellant 

 

Table 4: microPHAZIR
TM

 NIR Measurements of 

Primary Constituents 

 

 
Figure 12: NIR Readings vs. DOE Design Points for 

the Oxidiser 

 
Figure 13: NIR Readings vs. DOE Design Points for 

the Plasticiser 
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3.4. DOE Benchtop Analyses 

Table 5 summarizes compositional results for each of the 

primary constituents in each of the 20 DOE sample mixes.  

As illustrated in Figures 12 through 15 and Table 6, NIR 

values compare precisely well and within the allowable 

margin of error, to those measured using benchtop HPLC/IC 

and to DOE design sets of Table 1. 

 

 

Plots of primary constituents of CL-01 which were 

measured using microPHAZIR™ NIR, and HPLC/IC are 

depicted in Figures 16 through 19 and are correlated to 

actual DOE design sets. In the figures, only the stabilizer 

shows noticeable deviation from the design sets, primarily 

because the sum of Agerite white oxidation products and 

AO2246 antioxidant, often associated with Agerite white, 

were both excluded from PLS analysis. Those two 

components have no effect on stability of the propellant and 

are quantitatively negligible (amounting to approximately 

5%) in comparison to the total plasticizer content.  

As a result, this effort confirmed the ability to use the 

microPHAZIR
TM

 NIR miniature handheld platform as a 

non-destructive means for determining primary chemical 

constituents of solid rocket propellants, and was validated 

via benchtop measurements of HPLC and IC 

instrumentation. 

 
Figure 14: NIR Readings vs. DOE Design Points for 

the Stabiliser 

 
Figure 15: NIR Readings vs. DOE Design Points for 

the Binder 

Table 5: HPLC Measurements of Primary Constituents 

 

Table 6: Comparison of Benchtop vs. Handheld 

Measurements of Primary Constituents 
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3.5. Structural Health Management 

Three critical elements define prognostics and health 

management as a real-time nondestructive test technique. 

The first element is electrical health management (EHM), 

and primarily comprises built-in test (BIT). This field is 

mature and has been used for over five decades. The second 

element is chemical health management (CHM), as a real-

time nondestructive test technique. This field has been under 

development for the past decade and is only gaining grounds 

with the recent work of RMS. This work is described in this 

white paper and in an earlier white paper published at the 

International Journal of Prognostics and Health 

Management, in October of 2013. The third element is 

structural health management (SHM). Structural health 

management is a real-time nondestructive test technique 

comprising two sub-elements. The first is real-time 

nondestructive radiographic x-ray technique, which sheds 

light on incipient structural failures associated with cracks 

and crack propagation or delaminations at the propellant-

liner-interface (PLI). This element is also mature and has 

existed for many decades, henceforth is not a topic of 

discussion in this white paper. However it is an integral sub-

element of RMS structural health management. The second 

and most important sub-element of structural health 

management is the collection of shore A hardness data 

followed by manipulation of the data to yield results on 

propellant elastic modulus (E), tensile stress, and strain. 

This technique is nondestructive and is an integral sub-

element of structural health management, which is an 

integral element of PHM. Upon collection of shore-A 

hardness data, elastic modulus is   derived using equation 

(2), defined as Gent semi empirical formula. Shore-A 

hardness results are also used, as described in equation (1) 

to calculate tensile stress (TS). Strain is then calculated 

using the general equation described below: 

Modulus (E) = Stress/Strain   (3) 

 
Figure 16: Comparison of NIR VS. HPLC Measurements 

to Actual Design Sets for Oxidiser Content 

 

 
Figure 17: Comparison of NIR VS. HPLC Measurements 

to Actual Design Sets for Plasticiser Content 

 
Figure 18: Comparison of NIR VS. HPLC Measurements 

to Actual Design Sets for Stabiliser Content 

 

 
Figure 19: Comparison of NIR VS. HPLC Measurements 

to Actual Design Sets for Binder Content 
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Table 7 lists instantaneous, 10-second and 15-second shore-

hardness for each of the twenty cast sample mixes of the 

DOE design sets. The table also lists the calculated moduli 

for each mix and compares them to maximum and minimum 

specification. It is important to keep in mind that elastic 

modulus is calculated from the 15-second shore-A hardness 

data. Fifteen-second shore-A hardness data are most reliable 

because the Durometer indenter is allowed sufficient time to 

penetrate the polymer-based composite material and 

henceforth provides more accurate and realistic values about 

the physical nature of the material elasticity.   

In Table 7, only sample mix 4 had a modulus value that 

exceeded maximum specification of 750 psi.  This is an 

expected result considering that mix 4 comprised the highest 

amount of oxidizer and lowest amount of plasticizer.   

 

Validation of this structural test technique is ongoing, and 

recent results collected from actual baseline (time t = 0) 

solid rocket propellant, as well as the same propellant under 

accelerated-aged conditions (time t = 1, 3, and 6 month) 

have indicated excellent correlation between specifications 

for modulus, stress, and strain and data which were 

calculated from measured shore-A hardness. The technique 

of using Shore A and Shore D hardness will be adopted as 

an integral means of real-time nondestructive test technique 

in combination with x-ray radiography, for structural health 

management (SHM). This technique in combination with 

microPHAZIR
TM 

NIR will be an integral part of prognostics 

and health management (PHM), as a real-time NDT/NDE 

test technique to future surveillance of solid rocket 

propellants and warhead explosives. 

4. CONCLUSION 

Datasets from both microPHAZIR
TM

 NIR handheld 

platform and Agilent 1100 (Performance Characteristics) 

high-performance liquid chromatography (HPLC)/ion 

chromatography (IC) platforms were precisely similar and 

representative of the constituents of CL-01 solid rocket 

propellant. In the case of microPHAZIR
TM

 NIR handheld 

platform, dataset indicated excellent consistency and 

stability across the full datasets while at the same time 

closely representative of the results collected using Agilent 

1100 high-performance liquid chromatography (HPLC)/ion 

chromatography (IC) platform.  

The D-optimal full-factorial design of experiment (DOE) 

was successful in generating an algorithm for use in 

microPHAZIR
TM

 NIR handheld platform for use in real-

time quantitative determination of primary chemical 

constituents of CL-01 solid rocket propellant. Therefore, use 

of microPHAZIR
TM

 NIR handheld platform for real-time 

non-destructive chemical quantification solid rocket 

propellants is a valid chemical health management (CHM) 

test technique, which alleviates the drawbacks of chemical 

waste and solid residue generation.  

Of notable importance in this work is the concurrent success 

of using Shore-A hardness as a real-time nondestructive test 

technique for determining mechanical properties of the 

propellant, henceforth structurally monitors health of the 

propellant matrix (SHM).   

Therefore, the combination of chemical and structural health 

management of the solid rocket propellant was successfully 

demonstrated in this work as a primary means of real-time 

prognostics and health management (PHM) technique for 

energetic and inert composite polymer based materials. 

NOMENCLATURE 

AF Air Force  

AOP Allied Ordnance Publication  

AP Ammonium Perchlorate 

ATK Alliant Techsystems  

BTCA Breakdown, Test and Criticality Analysis  

CAD Cartridge-Actuated Device  

CHM Chemical Health Management 

CT Computed Tomography  

DOS Dioctyl Sebecate 

DoD Department of Defence  

DSTO Defence Science and Technology Organization 

EED Electro-Explosive Device   

HPLC High-Performance Liquid Chromatography 

IC Ion Chromatography 

LS Launch Systems  

MoD Ministry of Defence  

Table 7: Calculated Mechanical Data for CL-01 

Propellant Using Shore Hardness Measurements  
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NATO North Atlantic Treaty Organization  

NDE Non-Destructive Evaluation  

NDT Non-Destructive Testing  

NIR Near-Infrared  

PAD Propellant-Actuated Device  

PBX Plastic-Bonded Explosive  

PHM Prognostics and Health Management  

PLS Partial Least Square 

SHM Structural Health Management 

REFERENCES 

S. Daoud, M. J. Villeburn, K. D. Bailey, G. Kinloch, L. 

Biegert, and C. Gardner, 2013. “Determination of 

Primary Chemical Constituents of PBX(AF)-108 

Warhead Explosive using microPHAZIR
TM 

Near 

Infrared (NIR) Handheld Platform”, Annual Conference 

of the Prognostics and Health Management Society, 

2013. 

C. Gardner, and S. Schreyer 2013. “microPhazir
TM

 CL-01 

Solid Rocket Propellant Quantitative Results”. Thermo 

Fisher Scientific, Tewksbury, MA 01887, USA. 

C. Gardener, and M. Hargreaves, 2012. “Near Infrared Data 

Report for PBX(AF)-108 Warhead Explosive”. Thermo 

Fisher Scientific, Tewksbury, MA 01887, USA. 

S. Schreyer, 2012, Thermo Scientific Training Course 

Tutorial Series: “Building Quantitative (PLS-1) 

Models”. Thermo Scientific, Tewksbury, MA 01887, 

USA.    

S. Schreyer, 2012, “Thermo Scientific Best Practices for 

Collecting and Evaluating Spectra from microPhazir
TM

 

NIR handheld platform”. Thermo Scientific, 

Tewksbury, MA 01887, USA.    

L. Biegert, and B. Cragun, 2013, “D-Optimal Design of 

Experiment for Qualification of microPhazir
TM

 

Handheld NOR Platform on Experimental Rocket 

Motor Propellant”, Final Report No. TR-034059. ATK 

Launch Systems, Aerospace Systems, Brigham City, 

UT 84302, USA. 

G. Bocksteiner, and D.J. Whelan, November 1995, DSTO-

TR-0228: “The Effect of Ageing on PBXW-115(Aust.) 

PBXN-103 and PBXN-105”. Department of Defence, 

Defence Science and Technology Organization 

(DSTO). 

Mattos et al., 2004, “Determination of the HMX and RDX 

Content in Synthesized Energetic Material by HPLC, 

FT-MIR, and FT-NIR Spectroscopies”, Química Nova, 

Vol. 27, No. 4, pp. 540-544.     

Urbanski et al, 1977, “Handbook of Analysis of measures of 

Synthetic Polymers and Plastics”, John Wiley & Sons, 

New York, 494 p. 

M. Blanco, and I. Villarroya (2002) NIR spectroscopy: “A 

rapid-response analytical tool”. Trends in analytical 

chemistry 21:240-250. 

H.W. Siesler, Y. Ozaki, S. Kawata, and M. Heise (Eds) 

(2002). Near Infrared Spectroscopy Principles, 

Instruments, Wiley-VCH.   

microPhazir
TM

 User Manual, Thermo Scientific Handheld 

Near-Infrared Analyzer. Thermo Fisher Scientific, 

Tewksbury, MA 01887, USA. 

Performance Characteristics of the Agilent 1100 Series 

Modules and Systems for HPLC. Agilent Technologies, 

Publication Number 5965-1352E. 

A.N. Gent (1958), On the relation between indentation 

hardness and Young's modulus, Institution of Rubber 

Industry – Transactions, 34, pp. 46–57. 

"Shore (Durometer) Hardness Testing of Plastics". 

Retrieved 2006-07-22. 

 

 

  

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

414



Online Normalization Algorithm for Engine Turbofan Monitoring 

Jérôme Lacaille
1
, Anastasios Bellas

2
 

1
Snecma, 77550 Moissy-Cramayel, France 

jerome.lacaille@snecma.fr 

2
SAMM, Université Panthéon-Sorbonne,  75013 Paris, France 

anastasios.bellas@malix.univ-paris1.fr 

 

 
ABSTRACT 

To understand the behavior of a turbofan engine, one first 

needs to deal with the variety of data acquisition contexts. 

Each time a set of measurements is acquired, and such set 

may account for tens of parameters, the aircraft evolves in a 

specific flight mode. A diagnostic of the engine behavior 

models the observations and tests if anything appears as 

expected. A model of the engine measurement vector may 

be very complex to produce and even more to deploy on 

board. The idea is to solve the problem locally on recurrent 

phases on which each single problem may be easier to 

answer. Civil flight missions are straightforward to 

decompose as they are very recurrent. It is more difficult 

with military missions and bench tests. Once a set of phases 

is defined, local regression models may be built. To solve 

nonlinearities a selection of computed variables is a good 

approach but such algorithm needs the definition of a stable 

set of recurrent phases and a very complex learning 

procedure that uses a huge amount of memory to deal with 

the high dimensionality of the problem. Such algorithm is 

very powerful but is not adapted for an online use. Our new 

solution does not require the a priori knowledge of recurrent 

phases; it learns recurrent contexts on the fly and adapts a 

small local regression model on a selected optimal subspace. 

The application of this algorithm seems to be efficient on 

long term flight trend monitoring and on real time test bench 

measurements. It solves the memory problem for calibration 

by an iterative autoadaptive procedure and suppress the 

need of preliminary computations of specific parameter as it 

auto-adapts itself with piecewise linear models.  

1. INTRODUCTION 

Turbofan engine abnormality diagnosis uses three steps: 

reduction of dependencies from the flight context (1), 

representation of the measurement in an adequate metric 

space suitable for classification and statistic testing (2) and 

finally identification of abnormal behavior (3) as 

represented on Figure 1 (next page). This work essentially 

deals with the first normalization step. 

The current text focus on identification of flight phases to 

extract subsamples of temporal observations where the 

turbofan gross behavior may be explained by simple 

(eventually linear) models. This example is easy to 

visualize, but we also use the same algorithm on different 

applications. At component level we monitor the start 

system (Flandrois, Lacaille, Massé, & Ausloos, 2009; 

Lacaille, 2009), the fuel system and other turbofan 

components. Even to monitor bench test cells we look at 

vibration monitoring according to load parameters and lots 

of different other configurations (Lacaille & Gerez, 2011, 

2012). 

The first step of the algorithm is to get rid of acquisition 

context. This is mandatory because we need to compare 

similar events, observations corresponding to one unique 

and standard context. For this purpose we use a 

normalization algorithm (Figure 1, step 1). The classical 

method is to use a model of the engine observation 

measurements named endogenous parameters according to 

the flight context also referred as exogenous parameters (see 

Table 1 for a list of parameter examples). The residual 

between real endogenous parameters and the model results 

is then used as inputs to a scoring algorithm (Figure 1, step 

2) which is essentially a statistical test that measures the 

likelihood of the current observation. The main problem is 

the construction of such residual. As the engine behavior is 

definitely nonlinear according to the flight measurements a 

suggestion is to cut the flight in recurrent phases: taxi, 

takeoff, climb, cruise, descent, etc. and models the behavior 

locally on those phases. However as such decomposition 

seems easy to build on civil mission it is a real challenge on 

_____________________ 
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military missions which all are different as well as for 

helicopter missions, business jets and event test bench tests. 

Table 1 – Example of context information and endogenous 

measurements. Context parameters are mainly commands 

that describe the current engine use but also aircraft attitude. 

Endogenous measurements represent the observation we are 

really interested in to describe the engine behavior if the 

context was always the same during acquisition 

  Name Description 

Index information 

  AC_ID Aircraft ID 

  ESN Engine Serial Number 

  FL_DATE Flight Date 

Context information 

  TAT External temperature 

  ALT Altitude 

  AIE Anti Ice Engine 

  AIW Anti Ice Wings 

  BLD Bleed valve position 

  ISOV ECS Isolation Valve Position 

  VBV Variable Bleed Valve Position 

  VSV Variable Stator Vane Position 

  HPTACC High Pressure Turbine Active Clearance Control 

  LPTACC Low Pressure Turbine Active Clearance Control 

  RACC Rotor Active Clearance Control 

  ECS Environmental Control System 

  TLA Thrust Lever Angle 

  N1 Fan Speed 

  XM Mach Number 

Endogenous measurements 

  N2 Core Speed 

  FF Fuel Flow 

  PS3 Static pressure after compression 

  T3 Temperature after compression 

  EGT Exhaust Gas Temperature 

 

Our first approaches uses manual extraction of flight phases 

for civil engines and a LASSO algorithm for the selection of 

pertinent analytical combinations of parameters to build the 

regression model and then a autoadaptive clustering method 

that uses a self-organizing map (SOM) to identify the 

different faults or behavior differences (Figure 1, step three  

“identification”). This work was presented in previous work 

(Côme, Cottrell, Verleysen, & Lacaille, 2010, 2011; Cottrell 

et al., 2009; Lacaille & Côme, 2011). 

Even when flight mode identification of recurrent phases is 

clear, the normalization model that currently uses a LASSO 

regression algorithm needs a very huge amount of memory. 

The LASSO algorithm needs a matrix of the parameter 

measurements in memory: as an example the data for one 

engine from a set of 500 medium range flights with 100 

parameters weight around 1.5 Gb when acquired at 1 Hz. 

Even this volume of data is not easily manageable with 

classical tools and standard algebraic operations such as 

singular values decomposition (SVD) which is the base tool 

in linear compression. Hence it is only possible to calibrate 

this model on ground on a subsample of data we may 

download from a small subset of aircrafts which owners (the 

airlines or military) let us have access to their digital flight 

data recorders (DFDR, the black boxes). The resulting 

model transferred on each engine is finally a general 

approximation. It misses the specificity of each engine or 

event the particular way each company and pilot operates its 

aircrafts. 

2. STATISTIC MIXTURE MODEL 

To solve our normalization problem iteratively with not too 

much memory resources involved we used a mixture of 

probabilistic principal component analysis (MPPCA) model. 

Such model is an extension of the classical PCA which goal 

is to extract a reduced number of dimensions on which the 

data may be explained. The reduction of dimension enables 

the computation of meaningful distances
1
 and allows the 

                                                           
1 Distances are needed to compute a score based on the likelihood of the 
difference between observation and model estimation. In high dimension, 

Figure 1 – The mains steps of any diagnostic application for aircraft engine monitoring. 
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computation of scores. However if the general behavior of 

observations is not linear a classical PCA algorithm will 

fail. A nice solution is to make the hypothesis that in each 

flight mode, the local behavior of the engine may have a 

linear representation. The MPPCA algorithm will use EM 

(expectation/maximization) optimization scheme to identify 

the clusters and to build the local projections. 

We consider that we dispose of a datastream   
          

 , where the x are independent realizations of 

a random vector       . In addition,             are 

assumed to be independent realizations of an unobserved 

(latent) random variable Z with values in           (there 

exists K different modes.) The MPPCA model assumes that 

the observed random vector        is, conditionally to Z, 

linked to a d-dimensional latent random vector        

through a linear transformation of the form: 

                (1) 

where    is the p × d orthogonal transformation matrix, 

      
  is the mean vector of the k-th factor analyzer and 

      is a noise term. The dimension d of the latent vector 

is such that     and assumed to be known (Figure 2 

below shows an illustration of K=2 d=2D subspaces in a 

p=3D domain). 

 

Figure 2 – Illustration of two Gaussian d=2 subspaces in a 

main p=3 dimension space. 

Moreover,   is assumed to be, conditionally to Z, a centered 

Gaussian noise term with a diagonal covariance matrix     : 

                . (2) 

Besides, the unobserved latent factor      is assumed to 

be, conditionally to Z, distributed according to a Gaussian 

density function such as: 

                                                                                                  
distances lose their signification which is also known as the curse of high 

dimensions. We try to limit ourselves to a selected dimension smaller than 
5. 

              . (3) 

This implies that the conditional distribution of X is also 

Gaussian: 

                        (4) 

and its marginal distribution is therefore a mixture of 

Gaussians: 

                   

 

   

 (5) 

where    is the mixture proportion for the k-th component, 

  is the multivariate Gaussian density function 

 

           
 

    
 
        

 
 

  

      
 

 
      

   
          

(6) 

and      
        . 

In order to facilitate the description of our online inference 

procedure, let us slightly re-parameterize the above model. 

Let us first introduce the orthonormal transformation matrix 

   which is such that its j-th column               

where     is the corresponding column of   . If the 

transformation matrix    is orthonormal, it is then 

necessary to report the variance of the latent factor within 

the distribution of the latent factor.  

We therefore now assume that               where 

                  . The marginal distribution of X is 

then still a mixture of Gaussians but with covariance 

matrices       
          . By denoting by    

        the p × p matrix made of    and an orthonormal 

complementary   , the projected covariance matrix       
  

has the following form: 

 

 
 
 
 
     
   
     

  

  
    
   
    

 
 

 
 
 

   

       

 

where            and       , for         and 

        . With these notations, the mixture of PCA model 

is fully parameterized by the set of parameters  

          with each                            . 

It can be shown (Bouveyron, Girard, & Schmid, 2007) that 

the MPPCA model is identifiable and its inference can be 

done using a simple EM algorithm. In particular, the update 
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formula in the M step for the orientation matrices    and 

the variance parameters     and    are as follows: 

 the d columns of    are estimated by the 

eigenvectors associated with the d largest 

eigenvalues of the empirical covariance matrix    

of the k-th group, 

 the empirical covariance matrix of the k-th group is 

   
 

 
                         where at 

each current step                . 

     is estimated by the j-th largest eigenvalues of 

  , 

    is estimated by the residual variance    
 

   
            

 
    . 

In addition, these update formulas illustrate the strong link 

between MPPCA and the principal component analysis 

(PCA) method, since they both consider eigenvectors 

corresponding to the largest eigenvalues of the covariance 

matrix eigen decomposition. 

3. ONLINE INFERENCE OF PARAMETERS 

A standard way to estimate model parameters in parametric 

mixture models is to maximize the (observed) log-

likelihood of the data. 

                       

 

   

 

   

 (7) 

Note that we prefer the log-likelihood over the likelihood, as 

it is much more convenient to work with the former from a 

mathematical point of view. The maximum likelihood 

method then proposes to estimate the parameters of the 

model θ by                  . 

As we saw earlier, complete data                    
           are composed of pairs of data x and class 

information z. The complete log-likelihood            is the 

log-likelihood calculated from the complete data: 

               
                   

 

   

 

   

  (8) 

Here, we have defined t as the indicator variable of the 

classes, so that if      for a data sample i, then   
      

and   
   
       . 

In order to extend MPPCA to the online setting, we develop 

hereafter an online EM-based algorithm which incorporates 

a probabilistic version of the incremental PCA (Hall, 

Marshall, & Martin, 1998). We consider here a setting 

where data samples are arriving in an online manner and 

each data sample is being discarded after being processed 

(Bellas, Bouveyron, Cottrell, & Lacaille, 2013). 

Let us assume that we initially have observed a dataset of    

data samples           
  and that we have obtained an 

initial estimate        of these data. In practice, we obtain an 

initial estimation of the model parameters with a standard 

MPPCA iterative EM algorithm on this initial dataset. Let 

us set      and consider the arrival of a new data sample 

      
 . 

The objective is therefore to update the estimate of θ from 

the sole knowledge of       and     . This is a two-step 

procedure which involves an expectation step (E-step) and a 

maximization step (M-step). 

3.1. The E-step 

Before updating the estimate of θ, it is necessary to compute 

the expectation of the complete log-likelihood  

             
    conditionally to the current estimate 

     . 

This quantity will be maximized in the second step to obtain 

the new estimate         of θ. As with all mixture models, 

the computation of the conditional expectation of the 

complete log-likelihood reduces, in the context of the 

MPPCA model, to the computation of the probabilities 

  
                      that the new data sample 

belongs to the k-th mixture component (Figure 3). These 

probabilities can be computed as follows: 

 

  
     

 
             

   
 

              
   
  

   

 

  

      
 
   

            
           

 
   

  

(9) 

where the classification function    has the following form: 

 

                  

  
 

  
         

  

                                

 

   

 
(10) 

with   

     
        

       
- 
  
 

          
   -       
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Figure 3 – Geometric interpretation of the probability that a 

sample belongs to a given class. 

3.2. The M-step 

Once the posterior probabilities   
     

 have been computed, 

we update the model parameters so that they maximize 

             
    . In order to derive an online inference 

strategy which does not keep all past data samples, it is 

necessary to make use of the following approximation: 

 

             
                  

        

   
                     

     

 

   

 
(11) 

Then, it is straightforward to show that the update formulas 

for the mixture proportions    and the component means 

  , for every component      , are: 

 

  
        

    
 

   
   
        

    , 

  
      

 

  
        

     
      

          , 
(12) 

where   
     

   
   
   

     
 and      

   
     . 

We then want to estimate the parameters   ,     and   , for 

      and      . We have already seen that the 

maximization of              
     with respect to these 

parameters is equivalent to the eigen decomposition of the 

empirical covariance matrix    for each component 

     . The problem that we seek to solve can be 

therefore stated as follows: having already calculated 

eigenvectors   
    and eigenvalues   

   
 from the n first data 

samples, we want to update those parameters on the arrival 

of a (n+1)-th data sample. In particular, on the arrival of the 

new data sample xn+1, the new eigenproblem that we need to 

solve is: 

   
       

         
       

     
 (13) 

where   
                     and this for       . 

To begin with, let us define: 

 
  
         

        
            

    

  
         

            
       

     
     

 (14) 

where   
     

 is the projection of the data sample on the 

subspace defined by the eigenvectors and   
     

 is the 

residue of the retro-projection on the original space. With 

these notations, the new eigenvectors   
     

 correspond to a 

rotation of the old ones plus the unit residue vector     
     

: 

    
       

  
     

   
      

 

         
      

 
  

             

  (15) 

and thus the new eigenvectors may be written: 

   
         

       
        

     
 (16) 

where   
     

 is a rotation matrix of size (d+1)×(d+1). Note 

that   
   

 is a p × d matrix, since we have discarded the p−d 

less significant eigenvalues. The new covariance matrix 

  
     

 for the class k is given by: 

   
      

  
   

  
     

  
    

  
   

   
      

       (17) 

where we have set      
     

         
     

 . Then, by 

substituting equations (16) and (17) into equation (13) we 

get
2
: 

 
   

          
  
   

  
     

  
    

  
   

   
     

 
          

          
     

 

   
       

     
 

(18) 

The above problem can be written as: 

 
 
  
   

  
     

   
   

 

  
  

  
   

   
      

  
 
 
 
 
  

 
 
 

 
 
 
 
  

 

     
     

 

   
       

     
 

(19) 

where we have set   
         

     
   . The solution to this 

new eigenproblem yields the rotation matrix   
     

 and the 

new eigenvalues   
     

 directly. Then, the new 

eigenvectors can be obtained using equation (16). Note that 

                                                           
2 For simplicity we omit temporal subscript       for vectors    and     
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both   
     

 and   
     

 are square matrices of dimension 

d+1, that is, we only need to solve an eigenproblem of 

dimension d+1 and not p. The update formulas for the 

variance parameters     and    are then: 

 
   
         

       

  
      

 

   
      

           
      

    . 
(20) 

4. COMPARISONS WITH ONLINE EM AND CEM 

We compare online MPPCA with two other online 

algorithms, online EM (Titterington, 1984) and online CEM 

(Samé, Ambroise, & Govaert, 2007). Note that these latter 

have not been designed to handle high-dimensional data. 

This benchmark was done on simulated data because we 

could control the real problem dimension which is not the 

case with real observations. An application on turbofan 

engine measurements is given in the next section. 

For this experiment, we have generated a dataset of n = 

12000 data samples in    based on the assumption that data 

live in low-dimensional subspaces, with p = 30 and K = 3. 

Hereafter, we refer to this dataset as    . The mixture 

proportions are π1 = 0.4 and π2 = π3 = 0.3. For simplicity, we 

have considered that for each class, the variance is common 

across all dimensions, that is       , for       and 

     . We have set a1 = 150, a2 = 75, a3 = 50, b1 = b2 = 

b3 = 5 and µ1 = 0, µ2 = {0…5…0} and µ3 = {0…−5…0}, 

with             
 . We have set the intrinsic dimension 

(dimension of the subspaces) at d = 2. 

We also simulate a second dataset of lower dimension (p = 

10) , generated with the same parameters as the former. We 

will refer to this new dataset as    .  

Our goal was to study the behavior of the three algorithms 

in low dimension and then illustrate the capability of online 

MPPCA to cluster efficiently even in high dimension. 

We have evaluated the three algorithms on the quality of 

their estimation of the class means and on the accuracy of 

the clustering produced. The quality of the estimation of the 

means was taken to be the square of the distance of the 

estimated means to the true ones, averaged over all K = 3 

classes, a measure known as the Mean Square Error (MSE) 

in statistics 

      
 

 
  

 

 
           

 

 

   

 

 

   

 (21) 

Online MPPCA, online EM and online CEM were 

initialized 30 times by a standard MPPCA, an EM and a 

CEM, respectively, of which the initialization giving the 

highest BIC value was kept. 

Figure 4 and Figure 5 show the comparative performance of 

online MPPCA (black), online EM (red) and online CEM 

(blue) for the datasets     and    , respectively. 

For the dataset     it is clear, both from the clustering 

accuracy and the MSE that online MPPCA converges faster 

than the other two algorithms. 

 

Figure 4 – Evolution of MSE for the dataset     versus the 

number of data samples for online MPPCA (black solid), 

online EM (red dashed) and online CEM (blue dotted). 

 

Figure 5 – Evolution of MSE for the dataset     versus the 

number of data samples for online MPPCA (black solid), 

online EM (red dashed) and online CEM (blue dotted). 

5. APPLICATION TO ENGINE HEALTH MONITORING 

We test the proposed method to real data issued from the 

aircraft engine Health Monitoring domain. The data were 

obtained by Snecma. 

Typically, there exists different phases during a flight, called 

flight modes: taking-off, cruising, landing etc. Each test is 

actually a sequence of alternating stationary and non-

stationary phases at different levels. The stationary phases 

correspond in general to such flight modes, while the non-

stationary ones reflect the transition between two such 

phases. Nevertheless, a flight mode can include multiple 

stationary phases, that is, a stationary control on the data is 

not enough to detect the flight modes. 

Aircraft engineers can identify these modes by looking at 

the data but this can be extremely time-consuming. 

Moreover, due to the high dimensionality of data, there can 

be relations that humans cannot perceive. Note that by 
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knowing, at any given time, in which flight mode the engine 

currently is, tasks like anomaly detection can be performed 

much more reliably, since the ’local’ context of the data is 

also taken into account. 

The experiment below (Figure 6) involves a MPPCA stage 

used to build a residual vector that is finally classified with a 

self organizing map (SOM). The score represents the 

distance to the corresponding class center, and the fault 

identification is obtained as the map cell number. 

The data simulates real engine normal degradation (usual 

wear) to be detected by trend monitoring tools. The result 

appears to be pertinent for operational analysis as the MRO 

operator usually waits for confirmation before any customer 

notification.  

Figure 6 – Scoring and identification of trend faults using a self organizing map after MPPCA normalization. 

Green dots are the true detections and red ones the false alarms. POD stands for probability of detection and is 

given as a point to point count, as well as the PFA which is the probability of false alarm. 
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6. CONCLUSION 

We have proposed an online inference algorithm for the 

MPPCA model which relies on an EM-based procedure and 

a probabilistic and incremental version of PCA. The 

proposed strategy allows to incrementally update the 

estimates of the MPPCA parameters at the arrival of a new 

data sample. It allows also providing low-dimensional 

visualizations of the data based on sufficient information. 

Model selection is also considered in the online setting 

through parallel computing. Numerical experiments on 

simulated and real data have shown that the online MPPCA 

algorithm performs better in high-dimensional spaces 

compared to existing online EM-based algorithms. 

NOMENCLATURE 

ACARS Aircraft Communications Addressing and 

Reporting System 

AIC Akaike Information Criterion 

BIC Bayesian Information Criterion 

DFDR Digital Flight Data Recorder 

EM Expectation Maximization 

LASSO Least Absolute Shrinkage and Selection 

Operator 

MPPCA Mixture of Probabilistic PCA 

MRO Maintenance Repair Overhaul 

MSE Mean Square Error 

PCA Principal Component Analysis 

SOM Self Organizing Map 
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ABSTRACT

The implementation into service of accelerometric health mon-
itoring systems of mechanical power drives on helicopters has
shown that the generation of false failure alarms is a critical
issue. The paper presents a combined application of several
multivariate statistical techniques and shows how a monitor-
ing method which integrates these tools can be successfully
exploited in order to improve the reliability of the diagnos-
tic systems. The first phase of the research activity was ad-
dressed to exploring the potential advantages of using multi-
variate classification/discrimination/anomaly detection meth-
ods on real world accelerometric condition monitoring data.
The second phase consisted of an implementation into actual
service of an innovative integrated multivariate health moni-
toring system.

1. INTRODUCTION

Failure diagnostics via condition monitoring on mechanical
systems and components is a broad and relevant topic. Dif-
ferent approaches based on the development of specific sen-
sors and data-driven methods have been applied in various
contexts. For example in (K. Liu, 2013) is described the con-
struction of a composite health index through the fusion of
multiple sensor data. In many cases the calibration of reli-
able data-driven models is obstructed by the lack of data re-
garding the failure modes of the mechanical system. In such
circumstances sophisticated anomaly detection and decision
mechanisms might be required (see for example (Ramasso &

Alberto Bellazzi et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

Gouriveau, 2010)).

This project has been developed under research contract gran-
ted by AgustaWestland. It was focused on monitoring the
health conditions of mechanical power drives of helicopters.
Accelerometric monitoring systems have been previously in-
stalled on helicopters produced by AgustaWestland. The adop-
ted vibration monitoring methods are based on analyzing ana-
log signals provided by a set of accelerometers (we refer the
reader to (Randall, 2011) and especially (CAA-PARER-2011,
2012)). A set of accelerometers is arranged in appropriate lo-
cations on the power drive. To each component of the power
drive is associated an accelerometric analog signal. The ac-
celerometric outputs undergo Fourier spectral decomposition
and the description of the local (not global) properties of the
energy distribution through the spectrum of vibrational modes
leads to a set of scalar health indicators, which are supposed
to detect specific damages. For example, actually physical in-
dicators represent the energy of the spectral components cor-
responding to the main rotational frequency and its multiples,
the energy contained in a localised energy bands etc. Other
indicators, obtained from the second-level signal analysis in
both time and frequency domain are related to local varia-
tions, correlations between specific spectral channels, local
shape factors, signal standard deviations and signal quality.

The description of the state of each mechanical component is
done by a specific set of health indicators, selected by Agusta-
Westland as appropriate for this scope. The health state mon-
itoring method of each component is based on fixed critical
thresholds for the values of each condition indicator. Dam-
age alerts are generated when any of the indicators exceeds
the threshold for certain number of measures. More in detail
“yellow alert” is generated if the value of the indicator ex-
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ceeds certain threshold and a “red alert” is generated when the
value exceeds a higher threshold. In other words the adopted
monitoring method concerns a univariate (independent) in-
terpretation of the health indicators.

The implementation of this health monitoring system on pow-
er drives in actual service has shown that a relatively high
number of false alarms is generated, thereby requiring addi-
tional troubleshooting workload.

The purpose of this research was to develop an innovative
health monitoring method based on the same acceleromet-
ric features, which is able to reduce to the very minimum the
false positives. It is important to underline the fact that our
proposal does not require installation of additional sensors in
order to obtain further physical information.

The empirical observation during the employment of this moni-
toring/diagnostic system over a long period of time, high-
lighted the fact that in certain failure circumstances, groups
of health indicators react simultaneously to some anomalies.
For this reason, even though (by construction) the condition
parameters are processed as univariate indicators, multivari-
ate statistical techniques should be taken into account.

The efficiency of the existing diagnostic system has been im-
proved via third-level multivariate processing of the con-
dition indicators. A monitoring method which combines
several multivariate statistical techniques has been developed
and implemented in an efficient integrated tool. The method
is able to distinguish with very high level of statistical confi-
dence true failure situations and false anomaly alerts if these
have been previously observed and diagnosed on any other
aircraft of the same type.

This article provides a more detailed presentation, with addi-
tion of some later results, of the research which was prelimi-
narly introduced in (A.Bellazzi et al., 2014).

2. IN-SERVICE DATA

The research was focused on mechanical power drives of heli-
copters which consist of an assembly of several gears rotating
on shafts supported by ball and roller bearings.

AgustaWestland provided a very large amount of real data
collected on 115 aircrafts of the same type flying in different
conditions. The full available experimental data set consists
of huge quantity of measurements of the condition indicators
of several mechanical components and was collected over a
period of four years and thousands of flight hours. The inves-
tigation mainly concerned the following set of power drive
components in which true (confirmed by inspection of the
power drive) and false alerts were detected:

- TTO Pinion, characterised by twelve relevant condition in-
dicators. A representative calibration data set of 6291 mea-
surements has been extracted. During the monitored period

one true failure (confirmed by inspection) was observed and
three false alerts were reported by the monitoring system on
different helicopters.

- IGB Pin, characterised by twelve relevant condition indica-
tors. The calibration data set is composed by 5496 measure-
ments. Five false alerts of three different types were reported
by the monitoring system.

- TGB Gear, characterised by twelve condition indicators.
The data set contains 6291 measurements. During the mon-
itored period one confirmed true failure was observed and
three false alerts were reported on different aircrafts.

- TRDS, characterised by two health indicators. The calibra-
tion data set contains 3925 measurements. One confirmed
damage and three false alerts has been generated.

- 2nd Stage Pin RH Brgs, characterised by six relevant con-
dition indicators. The data set contains 6514 measurements.
One true failure and two false alerts were generated.

-Oil cooler BRG, characterised by six relevant condition in-
dicators. The calibration set is composed by 3954 measure-
ments. The standard (univariate) control system did not report
any anomalous behaviour as none of the alert thresholds has
been exceeded.

- Hangar Ball Brg. characterised by nine condition indica-
tors. The calibration set contains 4390 measurements. Dur-
ing the monitored period one true failure was observed and
three false alerts were reported by the system.

The TRDS and the Hangar Ball Brg are monitored by the
same accelerometer. The other mechanical components are
monitored by different single accelerometers.

In some cases (TRDS and the Hangar Ball Brg) the individual
thresholds of several health indicators were strongly exceeded
(largely over the “red threshold”) in a false alert situation.
Unexpectedly a true damage provoked more moderate reac-
tion of the monitoring system (values of the health indicators
just above the “yellow” threshold). These cases were consid-
ered as particularly critical as the mono-variate evaluation
of the damage appears to be misleading.

In the rest of the article the set of N health indicators of a
mechanical component of a power drive will be interpreted as
an element in a real N -dimensional vector space and called
the vector state of the component.

In order to save space, the results will be illustrated by refer-
ring to some relevant examples obtained from the above com-
ponents. The computations have been done by using R sta-
tistical software (for more information see (B. Everitt, 2011)
and (Everitt, 2005)).

2
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Figure 1. PCA scores of healthy operational states of TRDS
component of six helicopters of the same type. Vector states
measured on individual helicopters are labelled by different
numbers.

3. MULTILINEAR RE-CALIBRATION AND ANOMALY DE-
TECTION

The very first relevant problem we came across in this re-
search program was the fact that values of the standard health
indicators, which characterise the healthy operational regime
of a mechanical component vary quite consistently between
individual aircrafts of the same type. Typically, if compared
to each-other, the vector states of the same component in
healthy regime on different helicopters form neatly visible
clusters inside the vector space of indicators (a striking illus-
tration is given on Fig. 1). Observe that, in this specific case,
the individual helicopter clusters spread along the direction
determined by the first principal component. This means that
by far the most consistent portion of the variance in the data
set of healthy operational states can be attributed to differ-
ences between individual aircrafts.

The fact that healthy operational states of a power drive in-
stalled on different aircrafts cannot be compared, makes im-
possible the calibration of any sort of statistical model,
based on historical collection of vector states measured on
a fleet of helicopters. Moreover the mechanical components
selected for the investigation are typically subject to a very
low number of failures. A calibration and a validation of a
reliable multivariate model on each single aircraft appears
therefore as extremely unrealistic.

A solution to these problems is described herein.

Besides the set of component vectors, a historical collection
of simultaneous measurements of the following parameters of
the operational condition of each aircraft was available:

Engine 1 Torque, Engine 2 Torque, Rotor Speed, Roll Angle,
Pitch Angle, True Airspeed, Radio Altitude, Vertical Speed,
Normal Acceleration, Density Altitude, Tail Rotor Torque,
Main Rotor Torque, Roll Rate, Pitch Rate, Yaw Rate, Longi-
tudinal Acceleration.

It has been hypothesised that the accelerometric measure-
ments are in some extent influenced by the environmental
state of the aircraft. In order to test that hypothesis, canon-
ical correlation analysis has been applied on the available
data set.

The canonical correlation method describes the interconnec-
tion between two random vector variables by means of a dou-
ble set of latent variables (directions in the corresponding
state vector spaces). Those latent variables reproduce the
structure of the correlations between the “physical” observed
variables of different groups, minimising in the meanwhile
the impact of the correlations between variables in the same
group. These latent variables are called canonical compo-
nents and are ordered according to the magnitude of the com-
mon eigenvalues of certain matrices, which has been defined
by Hotelling in (Hotelling, 1936). The observable parametri-
sation of the physical vector states of the variables in the
groups can be replaced by a more synthetic one, which is
obtained in terms of projections in the directions determined
by the canonical components. The linear correlations estab-
lished between the latent variables, constructed in such a way,
are called canonical correlations of the model. As an exam-
ple, the list the canonical correlations obtained by analysing
the interconnections between the environmental state vectors
and the vector states a TGB gear is displayed below (values
of the canonical correlation coefficients close to 0 indicate
low correlation, values close to 1 indicate high correlation
between canonical variables):

ρ(a1b1) = 0, 99999838 ρ(a2b2) = 0, 74719544
ρ(a3b3) = 0, 60608554 ρ(a4b4) = 0, 47571818
ρ(a5b5) = 0, 39483775 ρ(a6b6) = 0, 37293685
ρ(a7b7) = 0, 26062950 ρ(a8b8) = 0, 15779505
ρ(a9b9) = 0, 13292464 ρ(a10b10) = 0, 10704979
ρ(a11b11) = 0, 06135586 ρ(a12b12) = 0, 02884099

In each of the analysed cases the first canonical correlation
is extremely high. This fact, considered the high number of
dimensions, can be considered as accidental. More relevantly
it has been observed that many components are characterised
by three or four canonical correlations with considerably high
values (over 0,5). This fact is much more meaningful with re-
spect to the interrelations between the environmental vector
state and the component vector state. Unlikely, in some cases
(Hangar Ball Brg) the canonical correlation profile is charac-
terised by very low second canonical correlation.

The existence of relevant multi-correlation between the air-
craft states and component states led us to the construction
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Figure 2. PCA scores of healthy operational states of TRDS
of the same six helicopters after linear re-calibration. Again
vector states measured on individual helicopters are labelled
by different numbers.

of what has been called a multilinear filter. A liner map
f : R17 −→ RN (where N is the dimension of the compo-
nent vector) which provides a “predicted” component vector
state in correspondence to each environmental state has been
calibrated. The k-th row of the matrix associated to this linear
map (with respect to the canonical basis of physical variables
of the state vector space) represents the coefficients of a mul-
tiple liner regression of the k-th component of a state vector
over the set of environmental parameters. The calibration is
done in healthy conditions and the analysis is then performed
in terms of residuals with respect to the predicted value.

If the reader compares Fig. 1 to Fig. 2, will observe that as
a consequence of re-calibration, scores of healthy operational
states measured on different helicopters slightly concentrate
(compare the scales of the diagrams) and mix together quite
uniformly. Similar effects are observed for all the mechanical
components, for which the canonical correlation analysis re-
veals considerable level of linear correlation. Linear re-calib-
ration makes vector states measured on individual helicopters
of the same type comparable. A specific situation on an air-
craft can be compared to analogous situation on another air-
craft.

One of the standard anomaly detection tools in multivari-
ate statistics, based on the statistically relevant Mahalanobis
distance, is the so called multidimensional Shewhart control
chart (we refer the reader to (Shewhart, 1931) and (Shewhart,
1986)). Control charts are based on an evaluation of the like-
lihood on a single event in the context of a random process.
Consider a vector space endowed with a probability distribu-

tion f and a sample (a process) of random vectors (X)i ∈ V .
As long as the sample vectors belong to regions where the
probability density is judged sufficiently high, the process is
considered under control, or out of control otherwise. Un-
der certain symmetry assumptions on the probability distribu-
tion density f , control charts can be implemented as distance
based statistical methods. A state X is considered out of con-
trol if it is “far enough” from the expectation value of the
distribution of the ordinary regime of the process.

In a population characterised by a multidimensional Gauss
distribution, the Mahalanobis distances from the mean value
follow the T 2

k (n) distribution. Moreover there is an exact cor-
respondence between the T 2

k (n) distribution and the Snedekor-
Fisher variable F :

n− k + 1

nk
T 2
k (n) ∼= Fk,n−k+1,

which is exploited for inference purposes. This means that
plausibility of a state is compared to a statistical significance
level imposed on the values of the Fk,n−k+1 distribution.
Distances which exceed the one corresponding to the signifi-
cance level indicate a phenomenon which is very improbable
under the hypothesis of being a manifestation of the ordinary
regime of the process. For this reason such a state is judged
as a modification of the process due to not accidental causes.

The normality of the distribution of the healthy states of the
mechanical component is a necessary condition for the appli-
cation of a Shewhart control chart. On Fig. 3 are displayed
the scores of the unfiltered healthy operational states of a
TGB gear of one helicopter with respect to the first two prin-
cipal components. The reader can observe that the cluster of
PCA scores is characterised by an asymmetric “tail” in the di-
rection determined by the second principal component. The
PCA scores of the healthy states of the same component after
linear re-calibration procedure are displayed on Fig. 4. The
first obvious consequence of linear filtering is that the shape
of the cluster of PCA score components becomes more ellip-
soidal (recall that level sets of the Gaussian distribution are
ellipsoids).

The extent to which the filtered healthy operational states of
each component of the power drive fit with a multidimen-
sional Gauss distribution has been tested. This fact was veri-
fied by various multivariate normality tests like Kolmogorov-
Smirnoff, Jarque-Bera etc. (see (Kolmogorov, 1936; A. Jus-
tel, 1997; C. M. Jarque, 1987)). It has been observed that the
distribution of filtered healthy operational states of a com-
ponent of a single helicopter can be considered as Normal
with very high level of statistical confidence (p-value around
2 × 10−15). Analogous behaviour was observed in all the
analysed mechanical components.

The above results can be interpreted by saying that the lin-
ear re-calibration procedure filters the deterministic impact
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Figure 3. PCA scores of healthy operational states of the TGB
gear of a single helicopter before linear re-calibration.

of the general state of the aircraft onto the accelerometric
measurements. Once filtered the influence of the specific ex-
ploiting regime of the aircraft, the intrinsic variability of the
healthy operational states of each mechanical component can
be modelled over a random (white) noise process.

Fig. 2 illustrates the fact that analogous remark regards the set
of filtered healthy operational states of the same component
installed on different helicopters of the same type. They are
normally distributed with roughly the same statistical confi-
dence but with slightly higher variability.

Shewhart control charts have been calibrated on the set of
healthy operational states of each mechanical component on
a single helicopter. A small portion (less than 2%) of healthy
vector states exceed the control limit. The same control chart
was applied to healthy operational states of the same power
drive, installed on other “twin” helicopters and bigger portion
of states was judged out of control (15% for the Hangar Ball
Brg). This means that even though linearly filtered data are
used, there are still residual differences between the healthy
regimes of components of different aircrafts. The same con-
trol chart has been also validated in the context of anomalous
situations occurred on the same helicopter with very good re-
sults. In the case of Hangar Ball Brg roughly 73% of the
anomalous states were judged out of control.

In conclusion, anomaly detection method based on a She-
whart control chart must be calibrated on each single he-
licopter. A software tool implementing a multivariate self-
learning Shewhart control chart, which calibrates itself auto-
matically on the healthy regime of a single mechanical com-
ponent and highlights anomalous states, has been produced.

Figure 4. PCA scores of healthy operational states of the TGB
gear of a single helicopter after linear re-calibration.

The program computes automatically the upper control limit
by means of a Gaussian approximation of the Fisher-Snedecor
distribution.

In many cases (especially TRDS and Hangar Ball Brg) the
Mahalanobis distance between states corresponding to false
alerts and the mean value of the healthy regime exceeds the
distance of the true damage states. For this reason the mul-
tivariate self-learning Shewhart control chart is an excellent
tool for the detection of anomalous situations, but it is not suf-
ficient for the discrimination of true failure states and anomaly
alerts which do not correspond to a failure. Thus, additional
discrimination statistical tools have been applied, as described
later on. In the following sections of this article statistical
models are calibrated and validated on filtered data.

The re-calibration filter can be made even more powerful by
applying higher order regression of the health indicators over
the set of environmental parameters of the aircraft. As an ex-
ample, the reader can compare the previous canonical corre-
lations of the linear filter of the TGB gear with the following
canonical correlations of a quadratic multiple regression on
the same component:

ρ(a1b1) = 0, 9999989 ρ(a2b2) = 0, 8211778
ρ(a3b3) = 0, 7046168 ρ(a4b4) = 0, 6313677
ρ(a5b5) = 0, 5325972 ρ(a6b6) = 0, 4903959
ρ(a7b7) = 0, 4192670 ρ(a8b8) = 0, 4000518
ρ(a9b9) = 0, 3749749 ρ(a10b10) = 0, 3463869
ρ(a11b11) = 0, 2774180 ρ(a12b12) = 0, 2452053

In conclusion the quite encouraging results obtained by linear
re-calibration procedure can be even further improved.
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4. MULTIVARIATE DISCRIMINATION METHODS

The linear re-calibration strongly reduces the differences be-
tween the healthy operational regime of power drives installed
on aircrafts of the same type. This fact enables us to apply a
set of standard multivariate statistical methods on a historical
database of a fleet of helicopters. For a detailed description
of those techniques the reader can refer to the following texts
(Ferrell, 1979; Rencher, 2002; Timm, 2002; W. K. Härdle,
2012; Izenman, 2008).

In this study a particular geometric viewpoint on multivariate
statistics has been adopted, as long as an Euclidean approach
(or a more general metric geometry) provides some very use-
ful intuitions on multivariate methods (see (Wickens, 1995)
and (Epps, 1993)). We also refer the reader to (Tyurin, 2009),
where a more intrinsic (coordinate free) geometric prospec-
tive on multivariate statistics is presented. In this context
the analysis has been developed in terms of directions (ran-
dom variables) and projections (magnitudes) onto relevant
subspaces of the space of state vectors. Analogously but in-
dependently on the work exposed in (Gniazdowski, 2013) our
approach interprets correlations as angles, but further radi-
calises this viewpoint by identifying statistical variables (both
observable and latent-ones) in terms of real projective classes
in a space of random vectors.

4.1. Structure of variance

The complete set of available states (healthy, true failures,
false alerts) of each mechanical component was processed by
Principal Component Analysis (PCA). This method is a di-
rect implication of the Spectral Theorem in linear algebra.
Principal components are the directions in the vector space of
random variables, which maximise the variability of the data
set. This technique highlights existing spontaneous cluster-
ings in the variance structure of the data set. On Fig. 5 is
displayed an example of scores of complete data sets on the
subspace generated by the first three principal components.

A remarkable fact is that, after filtering, healthy operational
states measured of many helicopters of the same type form a
well-defined (green) cluster (see Fig. 5). Furthermore, there
is an evident spontaneous clustering of the healthy and the
anomalous true/false anomalous states. PCA leads to a con-
sistent dimensional reduction in the space of states. Equations
of linear and quadratic separation surfaces between the pro-
jections of the group clusters have been easily worked out and
simple control methods have been based on the spontaneous
clustering for each of the analysed mechanical components.

In the “critical case” of Hangar Ball Brg the projections on
the subspace generated by the first and the second principal
component do not reveal a significant clustering of the vector
states. Nevertheless there is a relevant spontaneous clustering
of the scores with respect to the second and the third principal

Figure 5. PCA scores of the states of a TGB Gear. Green
dots represent scores of healthy operational states measured
on 18 helicopters, red dots - true failure states measured on
one of those helicopters, yellow dots - false alert on one of
those helicopters.

components which was exploited in order to define discrimi-
nation conditions (see Fig. 6).

On Fig. 7 are displayed PCA scores of a 2nd Stage Pin RH
Brgs measured on a number of twin helicopters. The ordinary
healthy operational states arrange in a very compact cluster.
The set of blue dots represents a false alert occurred on one
helicopter of the fleet. The yellow and the red dots represent
anomalous states of the component measured on another he-
licopter of the fleet. In this case the chronological analysis
of the data set led us to the following interpretation. An early
fault (cluster of yellow dots) evolves towards a failure (cluster
of red dots). The distinction between false and true anoma-
lies is extremely sharp in this case and the direction in which
the projections of true anomalous states spread in the space
generated by the first three principal components is indica-
tive regarding the type of failure even before the definitive
failure occurs.

The structure of variance in the data sets has been further ex-
plored by applying multivariate discrimination methods like
Liner Discriminant Analysis (LDA) and Quadratic Discrimi-
nant Analysis (QDA) (see (W. K. Härdle, 2012)). The stan-
dard Fisher’s linear discriminant model is based on a linear
transformation of the vector space, which maximises the dif-
ferences between the transformed sample mean values of the
distinguished groups. In other words LDA defines a new basis
(a set of latent variables) such that the impact of the between
component of the covariance matrix gets maximised at the
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Figure 6. PCA scores of the states of a Hangar Ball Brg.
Green dots are scores of healthy operational states from 18
helicopters, red dots - true failure states of one of those heli-
copters, yellow and blue dots are different false alerts on two
helicopters.

Figure 7. A 2nd Stage Pin RH Brgs fault and failure detection
by means of PCA. Green dots represent healthy states mea-
sured on a fleet of helicopters, red dots - true failure occurred
on one of those helicopters, yellow dots - fault states, blue
dots - false alert occurred on one helicopter of the fleet.

Figure 8. LDA scores of TGB Gear. Green dots are scores
of healthy operational states measured on 18 helicopters, red
dots - true failure states measured on one of those helicopters,
blue dots - false alert on one of those helicopters.

Table 1. Leave-one-out LDA re-classification of 2nd Stage
Pin RH Brg vector states

real \ classified as false alert healthy true failure
false alert 74 0 0
healthy 1 1869 0
true failure 8 67 495

expense of the within component. The decision boundaries
of LDA are linear affine subvarieties of the space of states.

The set of component state vectors has been divided into three
groups, healthy operational states, false alerts and true fail-
ures. On Fig. 8 are displayed projections of TGB Gear states
onto the subspace generated by the first three linear discrimi-
nant functions.

The calibrated linear discriminant models were validated by
standard leave-one-out procedure using the complete data set
of the fleet. On Table 1, and Table 2 are displayed some ex-
amples of LDA re-classification results.

There is a well-known quadratic classifier which exploits the
minimisation of the Mahalanobis distance (with some cor-
rections) from the mean vectors of the pre-assigned groups
(see (Rencher, 2002)). In general QDA is a more flexible
and precise method than LDA. Its decision boundaries are de-
termined by the equality condition (equal probability) of the
quadratic discriminant functions and are therefore (portions
of) quadric hyper-surfaces in the space of states, typically el-
lipsoids or paraboloids. On Table 3 and Table 5 ere displayed
some examples leave-one-out quadratic discriminant valida-
tion results.
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Table 2. Leave-one-out LDA re-classification of Hangar Ball
Brg vector states

real \ classified as false alert healthy true failure
false alert 54 6 4
healthy operat. 29 1513 20
true damage 5 49 117

Table 3. Leave-one-out QDA re-classification of 2nd Stage
Pin RH Brg vector states

real \ classified as false alert healthy true failure
false alert 74 0 0
healthy 0 1860 10
true failure 0 0 570

The results obtained by both LDA and QDA leave-one-out
cross validation are quite encouraging, especially because of
the small portion of miss-classified true failure states. In the
“critical” case of the Hangar Ball Brg both methods provide
statistically significative number of correctly classified true
failure states. This means that true failure can be unam-
biguously detected.

Several validation procedures based on splitting of the huge
initial data set into calibration and validation data subsets
have been applied in order to compare different helicopters
of the same type. The results provided by the alternative val-
idation methods are basically analogous to the leave-one-out
and are therefore quite satisfying.

Both discrimination methods provide excellent results in the
case of the fault and failure detection of the 2nd Stage Pin RH
Brgs. The component states were divided into four groups
(healthy/false alert/true fault/true failure) and the results of a
QDA re-classification is displayed on Table 5.

4.2. Failure detection via canonical correlation

Canonical correlation analysis can be employed for detecting
anomalies. Suppose that the healthy operative regime of a
process is characterised by a strong correlation between vec-
tor variables X and Y . In such case one estimates the values
of Y starting from known values of X by a suitable linear
model. If Y assumes “unexpected” values i.e. its behaviour
contrasts with the established correlation, this fact can be con-
sidered as a manifestation of some anomaly.

The reader can notice the analogy with the so called consis-
tency based anomaly detection methods in which the de-
viations or inconsistences with a fixed functional model are
considered as anomalies. In this study a multilinear model,
which returns a state of a mechanical component as a func-
tion of the environmental parameters of the helicopter has
been calibrated. The hypothesis that anomalous behaviour
of a mechanical component is uncorrelated with the environ-
mental data, i.e. is a manifestation of an inconsistency with

Table 4. Leave-one-out QDA re-classification of Hangar Ball
Brg vector states

real \ classified as false alert healthy true failure
false alert 60 2 2
healthy operat. 63 1430 69
true damage 2 33 136

Table 5. Leave-one-out QDA re-classification, fault and fail-
ure detection of a 2nd Stage Pin RH Brgs

real \ classified as normal false alert fault true failure
normal 1860 0 10 0

false alert 0 74 0 0
fault 0 0 75 0

true failure 0 0 0 495

the linear model was then tested. One would expect that the
linear correlations between the environmental parameters and
the components health indicators should decrease in presence
of anomalous behaviour of the component. Therefore the
data sets of healthy states and data sets containing anoma-
lous states have been compared in order to establish whether
the relevant (high) linear correlation coefficients decrease.

The situation which emerges from this procedure appears a
bit chaotic. For the TRDS the linear correlation is very strong
and the values of the coefficients drastically drop in mixed
regime which contains true failure states. For the IGB pin the
linear correlation is strong, the correlations in mixed regime
get certainly worse, but monitoring of that component did
not give evidence for real failures, so the measured anoma-
lies correspond to false alerts. The TGB gear is characterised
by relatively high values of the significant correlation coef-
ficients and its mixed regime contains a true failure, but it
seems that the second canonical correlation slightly improves
in mixed regime.

In conclusion, for components for which the linear correlation
with the environmental states is particularly high, the theoret-
ical hypothesis is confirmed. This means that for those com-
ponents the canonical correlation method can be considered
as a supplementary anomaly detection resource. We expect
that higher order filtering models as the one previously men-
tioned, will provide more unambiguous results.

4.3. Structure of covariance

In this study, a particular modification of the covariance ma-
trix of the vector states of some mechanical components in
case of anomalous measurements has been observed. The
states of true damage are often characterised by increased cor-
relation of certain vector components. The behaviour of the
correlation matrix appeared slightly different in the case of
false anomaly reports.

A possible explanation of this phenomenon could be given
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Figure 9. Bartlett factor scores of the 2nd Stage Pin RH Brgs.
Green circles represent scores of healthy operational states
measured on several helicopters, red triangles - true failure
states measured on one of those helicopters, blue dots - false
alert on one of those helicopters.

if, in the case of true failure, different health indicators re-
act simultaneously in a consistent and correlated way (fail-
ure states provoke an enhancement of certain elements of the
correlation matrix). On the contrary false alerts can be inter-
preted as anomalous measurements not necessarily induced
by a consistent reaction of the monitoring system.

The main purpose of the so called factor analysis consists
of describing the structure of the correlations of a set of ran-
dom variables by means of a small number of underlying un-
correlated latent variables called factors. In such sense it is
analogous to the methods of principal component analysis, in
which the structure of the variance in the sample is described
by dimensional reduction. In this case the aim is obtaining
a significant description of the structure of the covariance in
the multivariate statistical sample in suitable subspace.

A compact multidimensional version of the defining equation
of a factor model is:

X = µ+ ΛF + U,

where X denotes a k-dimensional vector random variable, Λ
is a k ×m matrix and U is the vector of specific factors. The
matrix Λ is called the loadings matrix of the model.

The columns of Λ have an immediate geometric interpreta-
tion, they represent vectors which detect the directions of the
latent factor multivariate variables. The vector variable F is
nothing else but the k-uple of the projections (components)
of the physical vector state X along those directions. In other

Figure 10. Bartlett factor scores of TGB Gear. Green circles
represent scores of healthy operational states measured on 18
helicopters, red triangles - true failure states measured on one
of those helicopters, blue dots - false alert on one of those
helicopters.

words X is decomposed in certain relevant directions and its
projections represent magnitudes of new variables. The vec-
tor F can be itself considered as a random m-dimensional
vector variable.

The above expression only apparently resembles a multivari-
ate linear model, in fact care must be taken as the whole ex-
pression in the second term of this equation is based on latent
i.e. unobservable variables.

In this case standard recursive methods for the calibration of
factor models have been applied and canonical factor models
have been defined on the set of state vectors. Typically the
calibration of factor model based on two factors was possible
(the calibration procedure converges), but in some cases as
the one of the Hangar Ball Brg, the iterative procedure does
not converge with two but with three factors.

In terms of projections onto the space generated by the princi-
pal factors, the theoretical hypothesis translates in the follow-
ing way. One could expect that the projections of the healthy
operational cluster (near by the origin) and true failure clus-
ter (away from the origin) onto the subspace generated by the
principal factors show different characteristic profiles. The
direction in which failure states projections spread away from
the origin is indicative regarding the correlation modifications
introduced by the simultaneous reaction to a damage. The
shape of the cluster of healthy operational states characterises
the intrinsic covariance structure of the component. In this
context we expect that anomalous or false alerts should re-
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veal some sort of irregular behaviour.

On Fig. 9 and Fig. 10 are shown the projections of the states
of the 2nd Stage Pin RH Brgs and the TGB gear. Relevant
clustering is rather visible in both cases. Projections (factor
scores) of true failure states spread away from the origin in a
direction, which is characteristic for the modified covariance
structure. The investigation based on in-service data substan-
tially confirmed the theoretical hypothesis. It is easy to work
out linear or quadratic decision boundaries on factor scores
as those displayed on Fig. 10.

In the case of Hangar Ball Brg the factor scores of the healthy
operational states concentrate again near by the origin and
the anomalous states spread far from it. Nevertheless these
projections do not reveal a striking separation between true
and false alert states.

In conclusion, for some mechanical components the covari-
ance structure of the vector data set provides further useful
resources for defining discriminant procedures.

5. PROJECTIVE STRUCTURE OF DATA SETS

Random variables has been interpreted as real projective clas-
ses in a vector space. From this viewpoint it is natural to hy-
pothesise that the correlation structure of the data set can be
better understood in terms of directions of the state vectors.
In this context the module of a vector state plays a minor role
and a direction in a vector space can be identified by a unit
vector. In order to test this hypothesis, an original ”experi-
ment” has been performed. Normalised state vectors has been
considered, the set of N -dimensional vector states arranges
over an (N−1)-dimensional sphere and factor models on the
set of unit vector states have been calibrated.

An obvious effect of the spherical re-definition is a sort of
compactification of the operational state clusters (Fig. 11).
The hypothesis on the characteristic variations of the covari-
ance structure appears rather plausible. In fact points repre-
senting healthy operational states and true damage situations
form well-defined compact clusters.

Remarkably, as a consequence of this original procedure, the
discrimination between true and false alerts becomes much
more striking (compare Fig. 11 to Fig. 9). In this new situ-
ation the definition of the linear discriminant conditions ap-
pears even easier and more precise with respect to the previ-
ous factor models.

The typical behaviour of the unit states of a power drive com-
ponent is that true damage states condense in a compact re-
gion inside the scatter-plot cluster of states. It is often easy
to work-out a discriminant condition based on the affinity to
that specific compact region. On Fig. 12 is shown the case of
a TGB Gear.

Another considerable advantage of the normalisation of the

Figure 11. Bartlett type scores of unit states of a 2nd Stage
Pin RH Brgs. Green circles are scores of healthy operational
states measured on several helicopters, red triangles - true
failure states measured on one of those helicopters and blue
dots - false alert on one of those helicopters.

Table 6. Leave-one-out QDA re-classification of Hangar Ball
Brg unit vector states

real \ classified as false alert healthy true failure
false alert 60 2 2
healthy operat. 63 1432 67
true damage 2 33 136

vector states is the elimination of the large spreading of false
anomalous alerts far from the mean value of the healthy op-
erational regime. In this context LDA leads to precisely the
same classification results, but remarkably QDA of the unit
vector states of the “critical case” Hangar Ball Brg produces
a slight improvement (compare Table 6 to Table 5).

In conclusion, this peculiar mathematical experiment led to
interesting and in some cases unexpected, potentially useful
results. The principal factor analysis on unit states gives fur-
ther, often relevant, information on the anomalous behaviour
of some mechanical components, and can be therefore inte-
grated in a control procedure.

6. IMPLEMENTATION

The statistical techniques tested over the available vector data
set are based on different mathematical constructions. They
provide different and therefore not overabundant results. For
this reason the above techniques have been combined in a
software implementation of an integrated control process in
the following way:
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Figure 12. Bartlett type scores of unit states of a TGB Gear.
Green dots represent scores of healthy operational states mea-
sured on 18 helicopters, red dots - true failure states measured
on one of those helicopters, blue dots - false alert on one of
those helicopters.

1. Anomaly detection by means of a self-learning Shewhart
control chart. A problem highlighted by the experts of Agusta-
Westland consists of the fact that the healthy operational regi-
me of some power drives on certain helicopters is charac-
terised by very high values of the health indicators. Such val-
ues would be considered as anomalous if compared to other
helicopters or to some a priori fixed threshold values. This
ambiguity is completely removed by the self learning individ-
ual calibration of the control chart. Any vector state judged in
control contributes to the real time re-calibration of the con-
trol chart i.e. the control chart keeps learning.

2. Anomaly classification based on discriminant methods
calibrated and validated over the entire fleet. A vector state
judged as anomalous undergoes evaluation based on a set of
different discriminant techniques which can regard both the
variance and the covariance structure of the calibration data
sets (PCA, LDA, QDA, factor scores). A state classified as
false alert does not generate an alert.

3. Evaluation. For different power drives, different discrimi-
nant methods appear as more efficient. An integrated parallel
application of all the calibrated discriminant method is more
powerful discrimination tool than the individual application
of any single technique. A pre-alert status is produced by a
suitable combination of discriminant outputs. Such a com-
bination is chosen in order to maximise the efficiency of the

integrated control system.

The integrated control process was tested on a series of real
cases contained in the historical database of AgustaWestland.
In the cases of the TGB gear and 2nd Stage Pin RH Brgs the
integrated discriminant method judges a state as true failure
i.e. generates a pre-alert if each discriminant method clas-
sifies it as a true failure. With this requirement only 3% of
the measured states were miss-classified. In the most difficult
case of Hangar Ball Brg a pre-alert is produced in 13% of the
healthy states, in 28% of the previous false alerts and in 65%
of the true failure states. The current univariate version of the
control system generates an alert if the values of the health
indicators exceed the alarm thresholds in a fixed proportion
(usually 2/3) in a number of consecutive measurements. In
the integrated method the density of true failure outputs re-
quired for a failure alarm can be rigorously deduced directly
from these last overall validation results. For example, in the
case of Hangar Ball Brg 1/2 appears as a suitable proportion.

An engineering software tool, which implements both the
control process and the calibration of the parameters of the
control routine for each component of the monitored power
drives, has been produced.

7. CONCLUSIONS AND FUTURE DEVELOPMENT

The study has highlighted the advantages of this third-level
multivariate approach. An efficient control process is based
on an integration of several classification techniques. Even in
those cases in which true failures and false alerts show mis-
leading univariate profiles, multivariate techniques are able
to distinguish them with very high level of statistical confi-
dence.

In view of the results obtained by this research, an integrated
multivariate health monitoring system is currently in phase
of implementation into actual service on two models of he-
licopters produced by AgustaWestland.

The elimination of the deterministic influence of the envi-
ronmental states of the helicopter determines two huge ad-
vantages:

1. After filtering the individual behaviour of each power drive
can be very faithfully modelled over a random noise pro-
cess. The a priori threshold-based anomaly detection was
therefore completely replaced by self-learning Shewhart
control charts which operate individually on each mechan-
ical component on each aircraft.

2. Filtering gives the possibility to compare rigorously vector
states measured on individual helicopters in different flight
conditions. Once guaranteed the homogeneity of the mea-
sured data, powerful classification and discriminant mod-
els can be calibrated on historical data obtained from many
helicopters. These models are applied in the context of a
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control and diagnostics process over the entire fleet of heli-
copters. When relevant new data are collected, the statistical
models should be updated and improved by re-calibration on
a larger and more detailed data set. Once a precise anomaly
gets observed and diagnosed on one aircraft of the fleet, it
can be diagnosed elsewhere by means of its specific multi-
variate health condition profile.

The analysis of the results of this research from the viewpoint
of the a posteriori prognostics and health monitoring vali-
dation of a diagnostic system will be a very interesting task.
This is an extremely relevant topic which concerns the eval-
uation of the efficiency of the constructed health indicators
i.e. how exhaustively they describe the state of the mechani-
cal component (an observability problem). The investigation
shows that the univariate processing of the health indicators
could provoke a loss of relevant information. The results of
this work show that besides the obvious advantages of di-
rect multivariate processing, there is an interesting possibil-
ity to define and apply multivariate health monitoring valida-
tion protocols which aim to improve the efficiency of each
individual health indicator by minimising the overall loss of
information.

Another possibility, quite worthy to be explored in future,
consists of by-passing the phase of construction of specific
condition indicators by adopting a completely multivariate
spectroscopic approach to the processing of the accelero-
metric signals. The calibration/monitoring software engineer-
ing tool which has been built in the context of this work can
be directly applied without any modification in the context of
such an alternative approach.
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ABSTRACT 

The paper will provide a lifecycle cost-benefit analysis of 
the use of Prognostics and Health Management (PHM) 
systems and a conditioned-based maintenance (CBM) 
concept in future aircraft. The proposed methodology is 
based on a discrete-event simulation for aircraft operation 
and maintenance and uses an optimization algorithm for the 
planning and scheduling of CBM tasks. In the study, a 150-
seat short-range aircraft equipped with PHM and subject to 
a CBM program will be analyzed. The PHM-aircraft will be 
compared with an Airbus A320-type of aircraft with 
maintenance expenditures equivalent to a conventional 
block check maintenance program. The analysis results will 
support the derivation of technical and economic 
requirements for prognostic systems and CBM planning 
concepts. 

1. INTRODUCTION 

Aircraft operators are under pressure to increase aircraft 
availability and operability in the future and continue to 
reduce the cost of aircraft operation. Reductions of 
maintenance downtimes and expenditures and the 
prevention of operational interruptions can help to achieve 
these objectives. 

Technical and aircraft equipment was the most occurring 
direct delay category in 2006, with 10.2 % of total delays 
(Eurocontrol, 2007). When aiming for significantly higher 
reliabilities of future aircraft, it should be considered that 
20 % to 50 % of all unscheduled removals are no-fault-
founds (NFF) (Söderholm, 2007). 

Prognostic concepts can positively influence the areas 
safety, maintainability, logistics, lifecycle costs, system 
design and analysis, and reliability of a product (Sun et al., 

2010). There is a large potential for the reduction of overall 
life cycle costs of an aircraft by implementing 
comprehensive diagnostic and prognostic concepts (Roemer 
et al., 2001; Keller and Poblete, 2011; Scanff et al., 2007). 

PHM may help to reduce operational interruptions due to 
unscheduled maintenance events, and maintenance 
downtimes due to (unnecessary) preventive maintenance. 
While significant advances in PHM systems are announced 
by industrial and academic research, several challenges have 
to be resolved for the onboard deployment of an aircraft-
wide system (Sun et al., 2010). Besides the solving of 
technical issues one important prerequisite of an 
implementation is the provision of a reliable cost-benefit 
assessment of the onboard use of PHM. Such an analysis 
must be able to capture all relevant impacts of the 
technology on aircraft operation and maintenance over the 
aircraft lifecycle. 

It has to be differentiated between general impacts, which 
can be also achieved through an installation of (retrofit) 
PHM systems in legacy aircraft, and wider impacts, which 
require extensive certification effort and/or the 
implementation of PHM during an early aircraft design 
stage. 

In general, prognostic systems provide early detection of the 
precursor (and/or incipient) fault condition of a component 
and are capable to predict its remaining useful life (RUL) 
(Engel et al., 2000). In addition, the fault isolation and 
identification capabilities of PHM contribute to a reduction 
of no-fault-founds (NFFs) and support the trouble shooting 
process (Leao et al., 2007). 

Further benefits require consideration of PHM in the 
certification phase or already in the aircraft design phase. 
Significant reductions in maintenance downtimes and costs 
can only be realized when a paradigm shift from periodic, 
preventive maintenance towards a predictive (i.e. condition-
based) maintenance strategy takes place. The major 
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expected benefits in this case are substitutions of preventive 
inspection tasks and reductions of waste of (component-) 
lives. This leads to reductions of overall maintenance cost 
and downtimes. These effects additionally influence spare 
parts pooling due to reduced spare parts demand and thereby 
allows a reduction in capital commitment (Hölzel et al., 
2012). 

Today´s maintenance programs are characterized by 
periodic, preventive and corrective tasks. While periodic 
tasks are foreseeable and easy to plan, time and effort for 
corrective work is more difficult to plan as they arise from 
the results of (preventive) inspections. With prognostics, 
many preventive inspections may become obsolete, while 
predictive tasks have to be planned and carried out with 
(potentially) short warning times. The increased planning 
complexity requires a different maintenance planning 
approach in order to achieve the aimed goals of a PHM and 
CBM implementation. Furthermore, CBM may lead to 
increasingly fluctuating demands for spare parts and new 
requirements to the maintenance supply chain. 

The benefits, which can be realized in a specific application, 
depend on the current maintenance concept and the 
criticality of the monitored item in terms of safety and 
operational reliability of the aircraft. Therefore, a detailed 
modeling and analysis of all relevant factors and economic 
conditions is required. 

2. GOAL OF STUDY 

In general terms, this paper aims to facilitate informed 
decision making through the analysis and evaluation of 
PHM systems and CBM concepts in future aircraft. More 
specifically, it is the goal of this study to propose an 
appropriate method for analyzing the economic potentials of 
a PHM implementation in future aircraft in combination 
with a CBM planning concept. The applied methodology 
should be generic and feasible to analyze existing and future 
aircraft. 

An approach is needed, that considers all phases in aircraft 
lifecycle and includes all relevant impacts of PHM systems 
and existing interdependencies with other elements of the 
air transportation system in a comprehensive way. In 
particular the selected approach has to consider the 
influence of a PHM use on aircraft operation. The use of a 
discounted cash-flow method is required to take into 
account the time value of money when assessing an aircraft 
over its entire lifecycle. 

To consider uncertainties in component failure behavior, the 
methodology used in the study should be based on 
individual component failure probability functions. 
Performance levels (i.e. false alarm rates and missed failure 
rates) of PHM systems have to be included to account for 
imperfect sensors or prognostic algorithms. Previous 
analyses have shown that the prognostics performance level 

has a significant impact on the added value of a PHM 
system (Hölzel et al., 2012). 

Furthermore, the selected approach should be able to model 
the operational and economic impacts of a CBM strategy. It 
should cover scheduled and unscheduled maintenance. 

The approach is demonstrated in a case study to show the 
potential economic benefits of a PHM/CBM concept from 
an airline perspective. 

3. METHODOLOGY 

Economic assessments of PHM applications have been 
discussed by many authors (e.g. Banks et al., 2005; Feldman 
et al., 2009; Leao et al., 2007; Sandborn & Wilkinson, 2007; 
Scanff et al., 2007). Typical measures are lifecycle costs 
(LCC) or return-on-investment (ROI) estimates of the 
implementation costs and the potentials for cost avoidance 
(e.g. Banks et al., 2005). Leao et al. (2007) developed a 
cost-benefit analysis (CBA) methodology for PHM applied 
to (legacy) commercial aircraft. The method comprises a 
comprehensive set of equations for the quantification of 
benefits and costs, which are related to a PHM 
implementation. Their approach is capable to conduct 
assessments from an aircraft manufacturer’s or operator’s 
perspective, but it requires many inputs from technical 
analyses and PHM specialists. Sandborn and Wilkinson 
(2007) have proposed a lifecycle cost approach including a 
maintenance planning model based on discrete-event 
simulation. They consider various uncertainties with regard 
to PHM systems by using probability distributions as inputs 
for the model. The model provides a detailed picture of the 
usefulness of PHM on component or sub-system level, 
while it does not cover additional impacts and interactions 
on overall system (i.e. aircraft) level.  

Both levels of analysis, component and overall system level, 
are needed, when a profound CBA of PHM with particular 
attention on the implementation of CBM should be 
provided. As outlined in section 2 the cost-benefit model 
must cover the relevant impacts of PHM on component or 
sub-system level and should consider the corresponding 
uncertainties. This component level must then be integrated 
on aircraft level, in order to simulate the effects of PHM and 
CBM in a realistic aircraft operation scenario. 

The assessment approach presented in the paper is based on 
a discrete-event simulation of aircraft operation including a 
branch-and-bound algorithm for maintenance planning 
optimization. A lifecycle cost-benefit model evaluates the 
simulation results using a discounted cash-flow method. The 
presented simulation and assessment tool is modeled in 
MATLAB©. Aircraft type and operator specific XML-files 
are used to configure and control the lifecycle analyses. 
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3.1. Aircraft Lifecycle Approach 

New technologies or concepts for the air transportation 
system need not only to lead to technological 
improvements, but also have to show economic advantages 
compared to the current system. 

Direct operating cost (DOC) is an established metric to 
perform economic valuation of existing aircraft or future 
aircraft concepts. DOC formulae use global technical, 
operational, and economic parameters to come up with an 
average DOC value on a flight-cycle or flight-hour basis. 

When assessing technologies and processes with impacts on 
the air transportation system level, all phases of the life 
cycle and interdependencies with other system elements 
have to be considered. New maintenance concepts influence 
maintenance cost and aircraft availability. To capture time 
and cost aspects, the lifecycle cost-benefit model AIRTOBS 
(Aircraft Technology and Operations Benchmark System) 
was developed. 

The model is generic in nature and is feasible for economic 
assessments of various aircraft technologies and operation 
concepts from an operator’s perspective. Apart from the 
assessment of prognostic concepts (Hölzel et al., 2012), 
studies on aircraft with natural laminar flow (Wicke et al., 
2012) or intermediate stop operation concepts (Langhans et 
al., 2010) have been conducted. 

It models all economic relevant parameters along the 
aircraft life cycle. The aircraft operational lifecycle is 

initiated by the acquisition of an aircraft and ends with the 
decommissioning. The model includes aircraft specific 
parameters (e.g. acquisition cost, fuel consumption, seating 
capacity, crew size, and aircraft specific charges), 
operational aspects (e.g. route network, maintenance 
concepts and costs, and ticket prices), as well as global 
boundary conditions (e.g. fuel price trend, annual inflation 
rate). AIRTOBS focuses on the perspective of an aircraft 
operator and includes methods to account for costs and 
revenues. 

An overview of AIRTOBS is shown in Figure 1. It consists 
of three main modules. The Flight Schedule Builder (FSB) 
generates a generic aircraft lifecycle flight schedule based 
on airline route data assuming full aircraft availability (i.e. 
no maintenance). Routes are considered based on the 
aircraft cycle time including flight time, taxi and runway 
operation times, and turnaround time. 

This provisional flight schedule serves as the fundament for 
the Maintenance Schedule Builder (MSB). The MSB 

executes a simulation run of the flight operation and 
maintenance events over the aircraft lifecycle. The MSB 
uses input data from maintenance databases for the 
modeling of scheduled and unscheduled maintenance 
events, including airframe, engine and component 
maintenance. 

To analyze an application of PHM in combination with a 
CBM planning concept, a task-oriented maintenance 
modeling is used for the corresponding maintenance 

 
Figure 1. Lifecycle cost-benefit model. 
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activities. A maintenance packaging and scheduling 
optimization (AIRMAP) module (outlined in section 3.3) 
allocates maintenance tasks to maintenance events in a way 
that minimizes overall maintenance cost while ensuring that 
all scheduled flights can be carried out. 

After the optimized maintenance schedule and the adjusted 
flight schedule are generated, the results are passed on to the 
Operator Lifecycle Cost-Benefit Model (LC2B), where 
costs and revenues are calculated. The actual time of 
occurrence of the cost and revenue elements is captured to 
account for the time value of money. All values are 
escalated over the aircraft lifecycle to account for inflation, 
before they can be summarized as net present value (NPV). 
It can be calculated as given in Eq. (1), where C0 is the 
initial investment (i.e. aircraft price) and Ci is the cash-flow 
in the i-th year. The discount rate r represents the rate of 
return that could be achieved with equivalent investment 
alternatives in the capital market (Brealey, Myers, & 
Franklin, 2006). In business practice, a company or industry 
weighted average cost of capital (WACC) is often used as 
discount rate. 

𝑁𝑃𝑉 = −𝐶0 + �
𝐶𝑖

(1 + 𝑟)𝑖
𝑖

 (1) 

The NPV is one among many other metrics that are 
calculated in AIRTOBS and can be used for the comparative 
evaluation of aircraft technologies and (operational) 
concepts. 

3.2. Modeling of Maintenance Events and PHM Impacts 

This section describes the modeling of maintenance events 
and the logic how the impacts of PHM on scheduled and 
unscheduled maintenance is implemented in the MSB 
module as depicted in Figure 1. The maintenance modeling 
is realized as discrete-event simulation based on the 
scheduled flights in aircraft lifecycle. 

3.2.1. Scheduled Maintenance 

Scheduled maintenance is considered depending on discrete, 
interval-based events. Intervals are specified by flight hours 
(FH), flight cycles (FC), and calendar time (years, months, 
days). Each event has a specific ground time, during which 
the flight schedule is adjusted while producing time discrete 
costs to the airline. To account for operating experience and 
maturity effects in maintenance, maturity curves are 
provided within the model. The maintenance schedule 
created by the MSB follows (by default) a traditional block 
check concept for line and base maintenance. 

3.2.2. Unscheduled Maintenance 

In order to model unscheduled maintenance, one must have 
knowledge of the failure behavior of the respective 
components or systems. This is achieved by using non-

parametric failure distribution functions, which have been 
calculated on the basis of historic maintenance data. 
Particularly in order to attain feasible computing times in 
the following simulation process and to guarantee an 
appropriate size of the random sample, one distribution 
function was calculated for any component within ATA 
Chapters with identical first three digits (ATA 3D Chapter, 
i.e. subsystem level) (Hölzel et al., 2012). 

Using the previously created lifetime flight schedule, 
unscheduled events are simulated based on component 
failure behavior, aircraft related mean times to repair 
(MTTR) and maintenance man-hours, e.g. downtime and 
man-hours needed for replacement of a component or LRU. 
In detail, the MSB module uses component lifetimes 
randomly drawn from previously described failure 
distribution functions. NFF events are modeled based on the 
NFF probabilities per FH that have been calculated from in-
service data. The occurrence of an NFF event leads to an 
unscheduled removal of a component. PHM false alarm 
events are modeled in the same way as NFFs (Hölzel et al., 
2012). 

Component failures produce costs for labor and material. 
Furthermore they can result in flight delays or cancellations 
depending on the minimum equipment list (MEL), the 
MTTR, and the planned aircraft turnaround time. Delays are 
modeled as a reduction in aircraft availability and a cost 
element that covers passenger compensations and 
accommodation. Unscheduled failures not meeting the 
MEL-conditions can cause a flight cancellation when the 
remaining availability is not adequate to execute all planned 
flights of the respective day. In addition, a certain delay 
time threshold can be defined, which enforces a cancellation 
when a delay exceeds the threshold. 

To consider the influences of maintenance strategies and 
component reliabilities on spare parts provisioning, related 
inventory costs are modeled. Overall LRU inventory costs 
are modeled based on estimated component quantities to 
meet a desired service level and the total carrying cost 
(capital and inventory cost). The estimated component 
quantities are calculated based on the aircraft utilization, 
quantities per aircraft, mean times between unscheduled 
removals (MTBURs), repair turnaround times and fleet size 
(Khan et al., 1999). 

3.2.3. Impacts of PHM 

An implementation of prognostics in aircraft systems can 
lead to a variety of operational and economic benefits. The 
main capability of PHM is the provision of advanced 
warnings of failures. The following benefits deriving from 
this capability are in focus of this study: 

1. Reduction of unscheduled events due to failures 
(and NFFs) of items/components. 
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2. Enabling CBM: Transition from preventive to 
condition-based maintenance measures. 

The underlying effects of PHM on aircraft maintenance are 
modeled in different ways. 

The impact of PHM on unscheduled events is modeled in 
the unscheduled maintenance module as described in section 
3.2.2. Impending failures or NFFs that are successfully 
detected by the prognostic system no longer result in 
unscheduled events. While NFF events are assumed to be 
completely avoided by PHM impending failures result in 
CBM tasks. Those CBM tasks are subject to the 
maintenance planning process described in the following 
section 3.3. Since no diagnostic or prognostic system will 
operate completely perfect, it is necessary to consider 
possible prognostic failures in the model. Two types of 
prognostic failures are taken into account: 

1. False alarm: Prognostic system detects an 
impending failure, although no failure is 
impending, or system reports impending failure 
early. 

2. Missed failure: Prognostic system does not detect 
an impending failure or detects it late. 

Each failure of an item that is initially covered by PHM can 
evolve into a missed failure with a certain probability. A 
missed failure event has the same consequences as a failure 
not covered by PHM. The probabilities of false alarm and 
missed failure events depend on the performance level of 
the PHM system and are input values of the model. 

The potential impact of PHM on preventive, scheduled 
maintenance tasks depends on its task-code. Scheduled 
maintenance tasks can be assigned to a variety of different 
task codes (Airbus, 2007) as listed in Table 1. While tasks 
with some task codes could become redundant if a PHM 
system is used, prognostics have no influence on other 
scheduled tasks listed in the scheduled maintenance 
program (MPD). 

For the sake of simplification and generalization, the task 
codes are summarized to six task code groups (TCG) within 
the model as shown in Table 2. TCG 1 to 3 reflect tasks, 
which are potentially redundant, if a PHM system covers the 
contained tasks. The model assumes that the prognostic 
system is able to automatically carry out a certain fraction of 
the check- or inspection-tasks in a continuous or non-
continuous manner. The fraction of tasks covered by a PHM 
system can be adjusted with the task redundancy parameter 
PTR. It is obvious that this parameter is depending on the 
overall PHM coverage rate, but it is not necessarily 
identical. The parameter PTR implies that it is possible to 
eliminate the corresponding scheduled maintenance task 
from the MPD under consideration of certification 
requirements. 

 

 
If a significant fraction of scheduled tasks can be eliminated 
through a PHM implementation, this reduces the total 
workload and potentially also the aircraft downtime of a 
maintenance check. Without special consideration of the 
minimum duration of certain tasks (“shortest path”), the 
influence of PHM on aircraft downtimes can be estimated as 
shown in Eq. (2). 

( )TRroutineTRDTnewDT rrPtt ⋅⋅−= 10,,  (2) 

tDT,new resulting maintenance downtime 

tDT,0 maintenance downtime without PHM impact 
  (reference case) 

PTR  task redundancy parameter 

rTR  ratio of routine tasks potentially redundant in case 
  of PHM use 

rroutine ratio of routine task man-hours to complete man-
  hours of check 

It is assumed that preventive maintenance tasks related to 
TCG 4 have to be carried out less frequently when the 
corresponding items are monitored by PHM. This means, 
the former limited service life of the item is extended 

Table 1. Maintenance task codes. 
 
Task Code Definition 
BSI Borescope inspection  
CHK Check for condition, leaks, circuit continuity, 

check fluid reserve on item, check tension 
and pointer, check fluid level, check detector, 
check charge pressure, leak check/test. 

DI Detailed inspection 
DS Discard 
FC Functional check/test 
GVI General visual inspection 
LU Lubrication 
OP Operational check/test 
RS Remove for restoration 
SDI Special detailed inspection 
SV Drain, servicing, replenishment (fluid change) 
TPS Temporary protection system 
VC Visual check 
 

Table 2. Task code groups and potential PHM impact. 
 
Task code  
Group (TCG) 

Included task 
codes 

Potential impact of 
PHM 

TCG 1 CHK, OP, FC Task elimination 
TCG 2 GVI Task elimination 
TCG 3 DI, SDI Task elimination 
TCG 4 SV, DS, RS Interval escalation 
TCG 5 Non-routine Interval escalation 
TCG 0 Non-routine / other No impact 
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through the use of PHM depending on the actual condition. 
Since no component degradation models are available for 
this study, the influence of PHM on service life is modeled 
with the interval escalation parameter PIE, which is assumed 
as input value and can be varied in a parameter variation. 

In addition to routine activities, scheduled checks also 
comprise large amounts of non-routine tasks. Detected 
findings result in non-routine activities (i.e. repairs or 
replacements of the respective items), when the degradation 
may reach a critical state prior to the next preventive 
inspection. It is assumed that a certain part of these non-
routine tasks can be conducted at a later time, the respective 
items are subject to a CBM strategy (and monitored by 
PHM). These tasks are summarized in TCG 5. The last task 
code group (TCG 0) includes non-routine (e.g. findings that 
are critical for flight safety and thus have to be repaired 
immediately) and other tasks (e.g. cabin refurbishments and 
paintings) to which a PHM system has no influence. 

3.3. Condition-based Maintenance Planning 

The planning of aircraft maintenance is the allocation of 
maintenance tasks (i.e. objects) that must be carried out on 
specific aircraft to maintenance capacities (i.e. bins). 
Combinatorial problems of this character are of higher 
complexity and are very similar to the elementary bin-
packing problem (Fukunaga et al., 2007; Bohlin, 2010). 
Since the aircraft maintenance planning, as discussed in this 
paper, considers more variables and constraints as the 
“simple” bin packing problem, it is very likely to be NP-
hard 1 . Although the problem might not be solved in 
polynomial time, solutions can efficiently be verified, e.g. 
by using a branch-and-bound algorithm (Korte et al., 2006; 
Schröder, 2011). 

In this study, each ground time of an aircraft (turnaround 
times and overnight stays) is regarded as a maintenance 
opportunity. It is the goal to minimize aircraft maintenance 
costs and to utilize existing maintenance opportunities 
efficiently while aircraft rotation planning and limited 
maintenance capacities are considered. This is achieved by 
appropriate grouping of maintenance tasks, while 
considering technical (maintenance intervals or RULs 
determined by a PHM system) and organizational 
restrictions. The process of grouping of tasks is referred to 
as maintenance task packaging in the following. The 
packaging of tasks allows an efficient use of maintenance 
opportunities but leads to waste of life when items are 
maintained earlier than required or tasks are performed 
before due date. The cost of wasted life is calculated as 
described in Eq. (3). 

                                                           
1 NP-hard describes a class of problems in computational 
complexity theory. 

𝑐𝑖𝑤 =
𝑡𝑖
𝑙𝑖𝑓𝑒 − 𝑡𝑖𝑅𝑈𝐿

𝑡𝑖
𝑙𝑖𝑓𝑒 ⋅ 𝑐𝑖𝑡𝑎𝑠𝑘  (3) 

ci
w cost for wasted life of task i 

ci
task cost for performing task i (labor, material, logistics) 

ti
life complete life or interval of task i 

ti
RUL RUL or remaining time until due date of task i at 

 time of task execution 

The maintenance planning problem can be formulated with 
the objective function and the related constraints described 
in Eqs. (4) to (16). 

min ��𝑐𝑖𝑡𝑎𝑠𝑘 + 𝑐𝑖𝑤�
𝑖∈𝐼

+ �𝑐𝑗
𝑜𝑝𝑝

𝑗∈𝐽

+ �𝑐𝑘
𝑓𝑖𝑥𝑒𝑑

𝑘∈𝐾

 (4) 

�𝑑𝑖𝑥𝑖𝑘

𝑖∈𝐼

≤ 𝑚𝑘 ∀𝑘 ∈ 𝐾 (5) 

��𝑥𝑖𝑘𝑦𝑖
𝑝

𝑝∈𝑃

≤
𝑖∈𝐼

𝑠𝑘 ∀𝑘 ∈ 𝐾 (6) 

��𝑙𝑗𝑘𝑥𝑖𝑘𝑧𝑖
𝑗

𝑗∈𝐽

=
𝑖∈𝐼

𝑙𝑘  ∀𝑘 ∈ 𝐾 (7) 

�𝑥𝑖𝑘𝑞𝑖
𝑖∈𝐼

= 𝑞𝑠,𝑘  ∀𝑘 ∈ 𝐾,∀𝑠𝑘 ∈ 𝑄𝑘  (8) 

max�𝑢 ∙ 𝑡𝑖𝑚𝑎𝑥 , 𝑡𝑖𝑙𝑎𝑠𝑡 + 𝑢 ∙ 𝑡𝑖
𝑚𝑎𝑥,𝑖𝑛𝑡�

≤ 𝑡𝑖 ≤ max�𝑡𝑖𝑚𝑎𝑥 , 𝑡𝑖𝑙𝑎𝑠𝑡 + 𝑡𝑖
𝑚𝑎𝑥,𝑖𝑛𝑡� 

∀𝑖 ∈ 𝐼 (9) 

𝑡𝑘 ≤ 𝑡𝑖 ∀𝑖 ∈ 𝐼,∀𝑘 ∈ 𝐾 (10) 

𝑡𝑗𝑚𝑖𝑛 ≤ 𝑡𝑖 ≤ 𝑡𝑗𝑚𝑎𝑥  ∀𝑖 ∈ 𝐼,∀𝑗 ∈ 𝐽 (11) 

𝑑𝑖𝑀𝑇𝑇𝑅 ≤ 𝑡𝑗𝑚𝑎𝑥 − 𝑡𝑗𝑚𝑖𝑛 ∀𝑖 ∈ 𝐼,∀𝑗 ∈ 𝐽 (12) 

𝑡𝑖𝑙𝑎𝑠𝑡 + 𝑡𝑖
𝑚𝑎𝑥,𝑖𝑛𝑡 − 𝑡𝑒𝑛𝑑

≤ 𝑡𝑡𝑟𝑎𝑛𝑓𝑒𝑟 ∧ 𝑡𝑖𝑚𝑎𝑥 − 𝑡𝑒𝑛𝑑 ≤ 𝑡𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟  ∀𝑖 ∈ 𝐼 (13) 

𝑥𝑖𝑘 ∈ {0,1} ∀𝑖 ∈ 𝐼,∀𝑘 ∈ 𝐾 (14) 

𝑦𝑖𝑃 ∈ {0,1} ∀𝑖 ∈ 𝐼,∀𝑝 ∈ 𝑃 (15) 

𝑧𝑖
𝐽 ∈ {0,1} ∀𝑖 ∈ 𝐼,∀𝑗 ∈ 𝐽 (16) 

 

Definition of symbols: 

i index for maintenance task to be performed 

I set of maintenance tasks to be performed 

j index for maintenance opportunity 

J set of maintenance opportunities 

k index for maintenance location 

K set of maintenance locations 
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p index for aircraft (tail-sign) 

P set of aircraft 

Qk set of capabilities at maintenance location k 

di man-hours required for task i 

di
MTTR mean time to repair for task i 

qi aircraft type of task i 

ti actual starting time of execution of task i 

ti
max RUL or remaining time until due date of task i 

u minimum usage factor for all ti
max (0 ≤ u ≤ 1) 

cj
opp fixed cost for usage of maintenance opportunity j 

lj place of maintenance opportunity j 

tj
min beginning of maintenance opportunity j (arrival of 

 aircraft) 

tj
max end of maintenance opportunity j (departure of 

 aircraft) 

ti
max,int maximum time between two events of task i 

ti
last date of last allocation of task i 

tend end of period 

ttransfer length of time from which a task is transferred to 
 the next planning period 

ck
fixed fixed cost for usage of maintenance location k 

lk place of maintenance location k 

mk available man-hours at maintenance location k 

qs,k capability s at maintenance location k 

sk available maintenance slots at maintenance location k 

tk earliest availability of maintenance location k 

xi
k 1, if i is performed at k; 0, otherwise 

yi
p 1, if i belongs to p; 0, otherwise 

zi
j 1, if i is performed at j; 0, otherwise 

The objective function of the maintenance planning problem 
is depicted in Eq. (4). The sum of all costs for the execution 
of maintenance tasks within the current planning period 
should be minimized. Equations (5) to (16) comprise the 
constraints, which are considered for this study. Equation 
(5) limits the total man-hours that can be allocated at a 
maintenance location. The slot restriction in Eq. (6) defines 
that the number of aircraft allocated to a maintenance 
location must not exceed its number of available 
maintenance slots. Equation (7) ensures that place of the 
maintenance opportunity lj is identical with the maintenance 
location lk. The maintenance location k has to be capable 
(i.e. has to be certified and must have the necessary 

equipment) to perform task i (Eq. (8)). Equation (9) 
describes that the time of execution ti of task i must not be 
later than ti

max and not before the minimum lifetime 
utilization uti

max. In the case of a multiple assignment of the 
same task within one period, the execution time of the task 
must refer to the respective task. The location availability 
constraint Eq. (10) describes that the time of availability tk 
of location k must not be later than the time of execution ti 
of task i. Equation (11) defines that the execution of task i 
must take place during a ground time of the aircraft. The 
ground time of the aircraft must be at least as long as the 
MTTR of the longest task to be allocated (Eq. (12)). The 
constraint Eq. (13) ensures that a task is allocated in the 
current period if its remaining time ti

max exceeds the end of 
the period by no more than the buffer time ttransfer. Equations 
(14) to (16) are binary decision variables that allocate a task 
i to a location k, an opportunity j, and an aircraft p. 

The CBM planning function used for this study is 
implemented in the AIRMAP model, which is a sub module 
of AIRTOBS (as shown in Figure 1). AIRMAP uses an 
optimization approach that can be characterized as depth-
first-search branch-and-bound algorithm. The resulting task 
packaging and maintenance scheduling process is illustrated 
in Figure 2. The figure shows due dates (marked with an 
“X”) for a number of tasks (“Task 1” to “Task n”) in two 
random periods in aircraft life. For each planning period, the 
algorithm searches for a cost-minimal maintenance plan in 
an iterative process. The resulting maintenance events are 
marked with vertical dotted lines. The distances between the 
time of an event and the due dates of the allocated tasks 
represent the waste of life (expressed in FH). Due to the 
limitation of maintenance capacities and individual costs 
and man-hours of the tasks, it can be feasible to allocate a 
task to an event other than the nearest (e.g. allocation of 
second due date of “Task 5” to “Event 2” in Figure 2). 

It is possible that the optimizer cannot allocate tasks, which 
are due shortly after the beginning of a new period because 
of a lack of maintenance opportunities. To avoid this, the 
user of the optimizer can define a buffer period that forces 
the algorithm to allocate the respective tasks in the 
preceding period (e.g. the third execution of “Task 1” is 
allocated to “Event 3” in Figure 2). 

In this study, preventive scheduled and condition-based 
maintenance activities are subject to the previously 
described maintenance planning optimization. The 
maintenance optimization is designed as a dynamic planning 
approach that responds to varying maintenance needs and 
airline operation during aircraft lifecycle. This is achieved 
by splitting the operating lifecycle into shorter planning 
periods (e.g. four weeks) that are run through sequentially. 
This approach seems to be more realistic compared to a 
single optimization covering the complete lifecycle. In 
addition, this procedure leads to a significantly reduced 
computation time due to the reduction of the optimization 
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problem. In theory, longer planning periods would lead to 
better solutions from a lifecycle perspective. 

The optimizer plans maintenance events for planning 
periods sequentially (beginning with aircraft entry into 
service). The algorithm takes into account only those tasks 
that are due in the current planning period. All other tasks 
are moved to the next planning period. 

AIRMAP submits the best plan found to the Maintenance 
Schedule Builder (as depicted in Figure 1), which then 
generates the overall lifecycle maintenance and flight 
schedule as basis for the economic assessment in the LC2B 
module. 

3.4. Assessment Approach 

In the study, a 150-seat short-range aircraft equipped with 
PHM and subject to a CBM program will be analyzed and 
compared with the baseline. The baseline is formed by an 
Airbus A320-type of aircraft and a maintenance program 
equivalent to real world maintenance efforts in terms of 
man-hours (MH) and cost. 

The economic analysis will follow the assessment approach 
as outlined in Figure 3. Required input data for the analysis 
are: 

• the PHM concept to be analyzed, with specification of 
covered subsystems or components, corresponding 
prognostic performance levels and costs, 

• a reference aircraft with its scheduled maintenance 
program, component failure behavior, DOC, etc., 

• a (lifecycle) flight schedule, 
• economic boundary conditions like fuel price, ticket 

prices, labor cost, etc. 
Based on the specified PHM system and a selected aircraft 
the component failure analysis is performed. This analysis 
results in unscheduled events and failures covered by PHM, 
which occur in the operating lifecycle. In parallel, the 

scheduled maintenance program is analyzed in terms of cost 
and man-hours efforts per task code. On this basis, a 
simplified maintenance program for the following analysis 
steps is modeled. 

 
Figure 3. Assessment approach. 

 
 

Figure 2. Maintenance scheduling and task packaging. 
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The maintenance scheduling and task packaging function 
then uses the results from both preceding steps und 
produces the optimized maintenance plan. 

After that the analysis of aircraft operation and maintenance 
as well as the economic assessment are conducted using the 
AIRTOBS model. 

Parametric studies will show the influences of prognostic 
performance levels, CBM implementation and maintenance 
planning constraints. From these studies, it is possible to 
derive essential requirements for prognostic systems and 
CBM concepts, e.g. minimum performance levels, maximal 
costs for acquisition and operation and minimum 
maintenance capacities, under given conditions. 

4. ANALYSIS 

The following analysis is intended to demonstrate that the 
proposed analysis approach is suitable to assess the overall 
benefits and costs of the use of PHM and CBM planning in 
aircraft lifecycle. While the results provide no answers 
regarding the suitability of specific PHM approaches or 
system architectures, they make it possible to derive 
technical and economic requirements for those in a 
subsequent step. 

Studies following the proposed assessment approach require 
extensive data, which is usually – at least partially – 
considered confidential by airlines and maintenance, repair 
& overhaul (MRO) companies. For this reason, the authors 
have preferably used publicly available information only or 
have derived the required data under use of assumption from 
this information. The following section describes the 
essential data and the assumptions made for this study. 

4.1. Data and Assumptions 

An aircraft similar to an Airbus A320 will be used as a 
reference in this study. This applies to the typical aircraft 
operation, the maintenance program and all recurring and 
non-recurring costs as well as expected revenues in the 
operational lifecycle of this type of aircraft. 

It is assumed that aircraft configurations used in this study 
have the same technology level as today’s A320 aircraft, but 
with PHM installed. 

The following sections describe the data and assumptions 
made for the aircraft operation, scheduled and unscheduled 
maintenance, and relevant operational boundary conditions. 

4.1.1. Aircraft Lifecycle and Operations 

An operating lifecycle of 25 years is assumed in this study. 
The aircraft is operated by a full-service network carrier on 
a short-range rotation with a daily utilization of 7.5 FH. 
Table 3 shows details of an assumed aircraft operation. 

 

4.1.2. Scheduled Maintenance 

The major part of the scheduled maintenance requirements 
for an aircraft is defined in the MPD. This manufacturer 
documentation contains maintenance tasks with 
specification of intervals and required man-hours that are to 
be carried out during service life. Maintenance cost data and 
more realistic estimates of the related man-hours are for 
example published by Aircraft Commerce (2006). These 
data describe traditional block check concepts as still 
followed by many aircraft operators today. 

The intended transition from preventive to condition-based 
tasks in this study, however, requires an equalized or task-
based approach. To enable a convincing CBA of PHM and 
CBM, it must not be mixed with a comparison between 
block check and equalized or task-based maintenance 
concepts. 

This leads to the necessity that also the reference 
maintenance program needs to follow a task-based 
approach.  

 
Following this approach, a simplified task-based 
maintenance program has been modeled, which is 
equivalent to the real A320 maintenance program in terms 
of man-hours and cost as described in Table 4. The 
maintenance events outlined in Table 4 cover routine and 
non-routine tasks as well as cabin refurbishments and 

Table 3. Aircraft operational data. 
 
Parameter Unit Value 
Operating days/week [d] 7 
Night curfew [h] 7 
Flights per day [FC] 6 
FH/FC - 1.25 
Taxi time per FC [h] 0.3 
Turn-around time [h] 0.75 
Block fuel [kg] 4,000 

 

Table 4. Scheduled maintenance program A320 
(derived from Aircraft Commerce, 2006). 

 
Check Down-

time [h] 
Interval MH [h] Material 

cost [US$] 
Transit & 
Pre-flight 0 1 FC 2.6 7 

Ramp Check 0 2 d 4 500 
Service 
Check 0 7 d 10 700 

A-Check 24 600 FH 80 5.5 k 
C-Check 138 18 mo. 2,000 38 k 
IL-Check 336 72 mo. 14,300 380 k 
D-Check 672 144 mo. 20,000 1.5 M 
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typical volume of work resulting from Airworthiness 
Directives (AD) and Service Bulletins (SB). 

The modeled reference maintenance program, referred to as 
equivalence maintenance program in the following, consists 
of two parts: 

1. Task-based concept for short and medium interval 
tasks (former Service Check, A-Check, and C-
Check), 

2. Block checks for long interval tasks (former IL- 
and D-Check). 

Transit & Pre-flight Checks can be performed at any airport 
and do not require an additional maintenance downtime. 
That is why these checks are not considered for the 
composition of an equivalence maintenance program and in 
the following maintenance planning and optimization 
process. 

Analyses of the scheduled maintenance tasks contained in 
the A320 MPD result in the shares of the different task 
codes (as previously described in Table 1) shown in Figure 
4. The derived man-hours shares have been clustered 
according to their interval lengths. For this purpose, a 
pragmatic division into short, medium and long intervals 
has been made. While the short and medium intervals 
correspond to the intervals of the former Service, A-, and C-
Checks, the long intervals comply with the IL- and D-Check 
intervals. These values form the basis for the modeled 
routine tasks of the equivalence maintenance program.  

While the MPD only consists of routine maintenance tasks, 
non-routine tasks account for a large part of overall 
maintenance expenditures. It is assumed for this study that 
there are non-routine tasks that could be performed at a later 
time, if a PHM (or structural health monitoring) system 
monitors the health state of the respective item (e.g. cracks 
in a structural component, which are not critical at the time 
of discovery). 

However, there are non-routine and other maintenance 
tasks, which are not influenced by PHM at all (e.g. repairs 
or removals of faulty items, cabin overhauls, painting, or 
tasks resulting from ADs or SBs). Since no detailed 
breakdown of non-routine workload could be determined, 
the ratio of TCG-5 to TCG-0 is assumed as 50:50 in the 
following. 

The allocation of short and medium interval man-hours to 
their respective TCGs results in the first part of the 
equivalence maintenance program shown in Table 5. 

The modeled equivalence maintenance program consists of 
12 short interval and 71 medium interval tasks, which 
represent the maintenance man-hours and task code groups 
shown in Table 5 over the lifecycle of 25 years. The short 
interval tasks are characterized by intervals between 80 and 

1000 FH. The intervals of the medium interval tasks range 
from 4,500 to 13,500 FH. 

 
Figure 4. Distribution of man-hours over task codes in 12-

year-period. 

It is assumed that the 6- and 12-year heavy maintenance 
checks (former IL-/D-check) will persist as block check 
events. As a consequence, an interval extension of one task 
of a heavy maintenance check does not lead to an interval 
escalation of the total check, unless the intervals for all tasks 
of the checks are being extended accordingly. 

 
Analysis of long interval tasks (6-/12-year check tasks and 
other tasks with intervals longer than generic C-check 
interval) show that about 89 % account for TCG 1 to 3, 

7.7% 
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20.3% 
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9.0% 
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1.9% 

1.2% 

0.2% 

14.9% 

3.7% 

22.7% 

17.4% 

16.5% 

3.3% 

7.6% 

0.4% 

6.5% 

1.5% 

5.1% 

0.4% 

53.1% 

1.0% 

6.5% 

12.1% 

4.8% 

13.2% 

4.4% 

0.1% 

1.6% 

0.9% 

1.2% 

1.1% 
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DI

SV

RS

GVI

OP

SDI

FC

VC

LU

DS

TPS

CHK

(N/D)

Short intervals

Medium intervals

Long intervals

Table 5. Equivalence maintenance program – Part 1 
(equalized check events). 

 
 TCG Short interval Medium interval 

MH Ratio MH Ratio 
Routine 1 1,902 8.4 % 3,298 11.0 % 

2 2,454 10.8 % 2,355 7.9 % 
3 1,193 5.3 % 2,453 8.2 % 
4 8,881 39.2 % 3,773 12.6 % 

Non-
routine 

5 3,588 15.9 % 8,250 27.5 % 
0 4,612 20.4 % 9,871 32.9 % 

 Sum 22,630 100 % 30,000 100 % 
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which could be subject to task elimination. Only 9 % of the 
tasks account for TCG 4, which could be subject to interval 
escalation. The following analysis considers in connection 
with the block check events only the potential PHM impact 
of task redundancy, which accounts for almost 90 % of the 
routine work. The part 2 of the modeled equivalence 
maintenance program is summarized in Table 6. 

 
The applied generic modeling approach allows the 
comparison of a current maintenance program with any 
potential or future maintenance program without having 
described all maintenance tasks precisely. Particularly in 
early design stages of new aircraft, the proposed 
methodology could be beneficial in order to estimate the 
impact of alternative maintenance concept early on. 

4.1.3. Unscheduled Maintenance 

The modeling of unscheduled maintenance events in this 
study follows the approach as described in section 3.2.2. A 
total of 25 aircraft subsystems are considered in the study. 
The failure behavior of each subsystem is described by an 
individual non-parametric failure distribution function. It is 
assumed, that 12 of the 25 subsystems are potential 
candidates for a PHM implementation with a PHM coverage 
ranging from 0 to 100 percent. This means for the following 
analysis: A theoretical PHM-coverage of 100 % corresponds 
to a detection and prediction of all impending failures of the 
12 selected subsystems. To limit the computing times, the 
PHM coverage rates for each of the 12 subsystems are 
assumed to be identical in all analyses. 

4.1.4. Operational Boundary Conditions 

In order to be able to evaluate the monetary results, a 
summary of the relevant economic data used in the analysis 
is given in Table 7. Assumed ticket prices for economy (EC) 
and business class (BC) influence airline revenues in the 
lifecycle CBA. The initial investment cost C0 is assumed as 
50 Mio. US$ (aircraft list price in 2008 less an assumed 
price discount of 35 %). This study should not provide cost 

estimates for the development and implementation of PHM 
systems. Rather, the goal is to derive maximum acceptable 
investment costs for PHM systems from the analysis results. 
Therefore, no additional fix costs for an airplane equipped 
with PHM are considered. 

The delay costs of 0.63 US$ per passenger per minute 
include costs of passenger compensation and rebooking for 
missed connections, but also considers the costs of potential 
loss of revenue due to future loss of market share as a result 
of lack of punctuality (Eurocontrol, 2007). The internal rate 
of return r, which is used for the discounted cash-flow 
calculation, is assumed at 7 %. 

 

4.2. Parameter Variation 

Since the PHM and CBM concepts to be evaluated in this 
study are not implemented in commercial aircraft yet, actual 
performance characteristics of such concepts on aircraft 
level can hardly been estimated today. In addition, as 
mentioned previously, the proposed assessment 
methodology should provide assistance in the early design 
stage of future PHM and CBM concepts. For these reasons, 
it seems to be necessary to conduct a variation of parameters 
that characterize the performance of such concepts. 

To limit the number of analyses and resulting calculation 
times in this study, three parameters are selected for the 
variation. These are “PHM coverage”, “task redundancy” 
and “interval escalation”. The parameters and their values 
are depicted in Table 8. The PHM coverage rate describes 
the portion of failures for which a specific prognostic 
system can report imminent failures, without consideration 
of false alarms and missed failures (see also section 4.1.3). 
The task redundancy rate is the percentage of preventive 
maintenance tasks that can potentially be eliminated if a 
PHM system is used to monitor the respective item (see also 
section 3.2.3). The interval escalation rate describes the 
factor by which preventive maintenance intervals may be 
extended if the corresponding item is monitored by a PHM 
system. 

Table 6. Equivalence maintenance program – Part 2 
(remaining block check events). 

 
 TCG IL-Check D-Check 

MH Ratio MH Ratio 
Routine 1 941 

89 % 
1,568 

89 % 2 1,092 1,820 
3 5,963 9,938 
4 821 9 % 1,368 9 % 
other 183 2 % 305 2 % 
Sum 9,000 100 % 15,000 100 % 

 

Non-
routine 

5 2,500 50 % 4,250 50 % 
0 2,500 50 % 4,250 50 % 
Sum 5,000 100 % 8,500 100 % 

 

Table 7. Summary of economic and operational data. 
 

Parameter Unit Fiscal  
year 

Value 

Ticket price - EC [US$] 2008 111 
Ticket price - BC [US$] 2008 334 
Aircraft price C0 
(incl. 35% discount) [Mio. US$] 2008 50 

Labor rate 
(maintenance) [US$/MH] 2009 70 

Fuel price 
(fuel price scenario) [US$/gal] 2013 2.49 

Delay cost [US$/min/pax] 2009 0.63 
Average inflation [1/year]  0.02 
Discount rate r [-]  0.07 
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The parameter space as defined in Table 8 results in 275 
separate analyses, which have been conducted. In this study, 
each analysis consists of 100 simulation runs (Monte Carlo 
simulations) to account for the probabilistic behavior of the 
unscheduled maintenance module (due to the probabilistic 
modeling of the component failure behavior and the impact 
of PHM). Although a larger number of simulations might be 
desirable, the number had to be limited here to provide 
acceptable computing times. 

4.3. Analysis Results 

The performed analysis provides technical-operational and 
economic results. All results describe values for the 
operative lifecycle on a single aircraft. Since the study 
comprises 275 separate lifecycle analyses, only a limited 
selection of results can be presented in this paper. 

Figure 5 and Figure 6 show the impacts of a variation of the 
parameters PTR and PIE on man-hours for maintenance tasks 
planned in AIRMAP. The absolute level of man-hours at 
PCov = 1 (Figure 6) is about 8,000 hours higher (over the 
lifecycle) than at PCov = 0 (Figure 5). The component 
maintenance events covered by PHM are responsible for 
this different level of man-hours. The shape of the curves is 
very similar in both cases. 

 
Figure 5. Man-hours for AIRMAP-tasks (PCov = 0). 

 
As discussed in the beginning, a central goal of a PHM and 
CBM implementation is to improve the aircraft availability 
in order to increase the utilization. Both effects, the 
reduction of unscheduled events and the elimination of 

tasks, can contribute to higher aircraft utilization. Figure 7 
shows that – even without a change in the aircraft operation 
concept – up to 420 additional flight cycles could be 
realized in aircraft lifecycle. 

 
Figure 6. Man-hours for AIRMAP-tasks (PCov = 1). 

 
Under the assumptions of this study, the avoidance of 
unscheduled events enables up to 260 additional flight 
cycles. Another 160 flights can be realized by shortening the 
maintenance downtimes for IL- and D-Checks in case of 
PTR = 1. 

 
Figure 7. Aircraft utilization. 

 
Figure 8 shows the impact of PHM coverage on the 
different categories of maintenance cost with the resulting 
changes of airline revenues and NPV. Since PTR and PIE are 
zero the figure shows the isolated benefit of the reduction of 
unscheduled events. 

Table 8. Parameter space for analysis. 
 

Parameter Values 
PCov PHM coverage 0  0.25  0.5  0.75  1 
PTR task redundancy 0  0.1  0.2  0.3 ........... 1 
PIE interval escalation 0  0.25  0.5  0.75  1 
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Figure 8. Impact of PHM on cost, revenues, and NPV  

(with PTR = 0, PIE = 0). 
 
While total maintenance cost remains almost constant, a 
transition of unscheduled maintenance to dynamically 
planned, equalized maintenance (i.e. maintenance tasks 
planned in AIRMAP) can be observed for increases of PHM 
coverage. Moreover, the delay cost (which are not included 
in total maintenance cost) decreases significantly by almost 
60 %. The reductions of unscheduled events lead to 
maximum increase of revenues of 6.3 million USD, which 
results in a higher NPV of 3.2 million USD (for PCov = 0). 

The isolated influence of a variation of PTR and PIE on total 
maintenance cost is shown in Figure 9, when PCov = 0. The 
benefit of an escalation of task intervals can account for a 
cost reduction of 1.3 million USD (PIE = 1). 

 
Figure 9. Total maintenance cost (PCov = 0). 

 
Figure 10 shows the respective effect on total maintenance 
cost, when PCov = 1. It can be seen that the curves are 
principally shifted vertically to lower maintenance cost 
compared to Figure 9. 

 
Figure 10. Total maintenance cost (PCov = 1). 

 
Figure 11 describes the highest aggregated economic results 
of the presented study. The monetary benefit of an aircraft 
operator, expressed as NPV, is shown for all variations of 
PCov, PTR, and PIE. Each of the five parts of Figure 11 shows 
the impacts of the task redundancy rate and the interval 
escalation factor on airline NPV with the respective PHM 
coverage rate. It can be seen that the maximum benefit of an 
interval escalation (i.e. the difference of NPV for PIE =0 % 
and PIE =100 % in each subfigure) accounts for around 0.5 
million USD. The maximum overall increase of NPV that 
could be realized under given assumptions is 4.75 million 
USD (as depicted in Figure 11 e). Although it is unlikely 
that a PHM-coverage of 100 % for the selected systems 
could be achieved at an acceptable price, the results show 
the range of potential benefits. The increase in NPV by a 
certain PHM/CBM configuration is at the same time the 
upper limit of the acquisition cost of such a system, which 
could be accepted. 
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The results presented in this section are on single aircraft 
level. The analysis does not consider interdependencies 
between different aircraft in a fleet. While AIRMAP is able 
to conduct the maintenance planning optimization for a fleet 
of aircraft, the other modules of AIRTOBS can only handle 
single aircraft at present. 

5. CONCLUSION AND OUTLOOK 

In this paper we have presented an integrated approach to 
model the impacts of PHM and CBM planning from an 
aircraft lifecycle perspective. The integration of the CBM 
planning approach in a lifecycle cost-benefit model allows 
the economic assessment of a PHM and CBM 
implementation in future aircraft. The application of the 
assessment approach can deliver valuable requirements for 
the future development of PHM and CBM concepts and 
demonstrate its consequences for operators and MROs. 

At present, the assessment approach is limited to a single 
aircraft analysis. An extension of AIRTOBS on a fleet-level 
basis would allow using the complete functional range of 
AIRMAP, i.e. scheduling maintenance tasks and planning 
capacities for a fleet of different aircraft types on an 
airline’s network. It is expected that an analysis on a fleet-
level will result into a lower economic benefit per aircraft. 
This is because several aircraft compete for limited 

maintenance resources, leading to less efficient solutions of 
the CBM planning process. 

In further studies we intend to analyze the effects of varying 
daily aircraft utilizations in order to investigate the 
applicability and benefits of the approach for different 
airline business models (e.g. network or low-cost carrier). 
Low-cost carriers usually have significantly higher aircraft 
utilizations and therefore shorter and less maintenance 
opportunities compared to a network carrier operating a 
similar route network. This fact may imply a higher 
sensitivity to flight schedule disturbances and consequently 
also a greater benefit from the reduction of unscheduled 
events due to the use of PHM. In contrast, decreasing 
aircraft ground times make it more difficult to solve the 
CBM planning problem and potentially reduce the 
efficiency of the maintenance plan. 

Further improvements of the optimization algorithm 
included in AIRMAP in terms of computation times would 
allow analyzing significantly larger parameter spaces and a 
higher number of Monte Carlo simulations in the future. 
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Figure 11. Impact of PHM coverage, task redundancy, and interval escalation rates on NPV. 
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NOMENCLATURE 

AD Airworthiness Directive 
AIRTOBS Aircraft Technology and Operations Benchmark 

System 
ATA Air Transport Association 
BC business class 
CBA cost-benefit analysis 
CBM condition-based maintenance 
DOC direct operating cost 
EC economy class 
FC flight cycle 
FH flight hour 
FSB Flight Schedule Builder 
LC2B Life Cycle Cost-benefit Model 
LCC life cycle cost 
LRU line replaceable unit 
MEL minimum equipment list 
MH man-hours 
MRO maintenance, repair, and overhaul 
MSB Maintenance Schedule Builder 
MTTR mean time to repair 
MTBUR mean time between unscheduled removals 
NFF no fault found 
NP non-deterministic polynomial-time 
NPV net present value 
PHM Prognostics and Health Management 
ROI return on investment 
RUL remaining useful life 
TCG task code group 
SB Service Bulletin 
XML Extensible Markup Language 
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ABSTRACT 

This paper suggests a reference model for PHM processes 

that aids the customer of PHM in developing a business case 

for adopting PHM in his or her supply chain. Various PHM 

systems have been envisioned and developed in order to 

produce a prognosis of system or component behavior by 

collecting physical data from some section of a system, 

analyzing it and reporting the results to the entity that 

benefits from it, notably the supply chain that manages the 

components and receives the resulting cost benefit from 

PHM.  All these systems have varying configurations that 

involve the collection of different types of data in different 

ways, the analysis of varying types of physical behavior and 

have different types of customers (different supply chain 

configurations).  The customer needs to include the cost and 

complexity of the PHM system in his or her business model 

but has no formal standard to determine bounds on the 

complexity of the PHM system.  Just as there are reference 

stacks for service-oriented architectures, this paper proposes 

a functional stack for PHM that can become a reference 

architecture for developing or purchasing a PHM system for 

an organization. The stack of PHM services ranges from the 

data acquisition layer through analysis functions to supply 

chain decision support services. 

1. INTRODUCTION 

There are numerous treatments of the structure of systems 

that are designed to provide prognostics and health 

maintenance (PHM) (examples of these systems is described 

in Section 2).  They all deal with sampling data at some rate 

and analyzing it for some characteristic that indicates that 

there is a pending system or component failure.  Sometimes 

the designs are focused on a particular aspect of PHM, e.g. a 

particular type of data analysis, but they all begin to take on 

similar structures.  In addition, regardless of the system, the 

common goal of the various functions in PHM is to improve 

lifecycle costs in the supply chain or alternatively, to 

provide readiness and availability of components in the 

supply chain.  In this effort, it is the business case analysis 

(BCA) that determines the effectiveness of PHM system 

functions.  The BCA provides requirements for the design 

of PHM system functions. 

A stack architecture would stratify these PHM functions 

into domains that are orthogonal in their system 

responsibilities.  That is, they involve disjoint sets of 

activities that produce data that is consumed by the function 

above it.  In this regard, the activities in each layer are 

opaque to the other layers.  This paper presents a stack of 

functions that can be used as a reference stack architecture 

for PHM.  The reference architecture is driven by the 

analysis of various existing PHM architectures and the 

extraction of a commonality from them. 

Stacks of functions or responsibilities are used in systems 

architecture to partition the subsequent design activities and 

enable reuse of functions.  They enable the development of 

clean interfaces between system functions in that a layer 

only consumes the information from adjacent layers.  The 

reference stack presented here can enhance the 

implementation of the BCA requirements because it exposes 

PHM functions in a way that makes them transparent to 

PHM system architecture development.  There is less of a 

chance that the PHM system would incur an unforeseen cost 

due to unnecessary development.  Supply chain stakeholders 

can agree on the functional structure of the system and 

understand the level of effort that is required to develop the 

system. 

Section 2 surveys a few PHM systems that have been 

described in the literature in order to extract some common 

functionality for the discussion in Section 3 that organizes 

PHM functions into the reference stack. 

Clearly there are far more systems than are discussed in 

Section 2, but the structures are similar.  The intent is to 

develop a motivation for the common stack of system 

functions in Section 3.  For detailed descriptions of these 

systems and others, the reader is referred to the references 

and literature.  A goal of this paper is to be able to employ 

its results in evaluating as well as designing PHM systems. 

 Charles Crabb. This is an open-access article distributed under the terms 
of the Creative Commons Attribution 3.0 United States License, which 

permits unrestricted use, distribution, and reproduction in any medium, 
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2. BACKGROUND 

This section reviews some previous PHM architectures in 

order to extract some commonality to support the discussion 

of the reference stack architecture that is appears in Section 

3.  There have been several approaches to developing PHM 

systems.  They all involve the collection of data (generally 

data from sensors) from a platform system that is managed, 

along with its assembled components, by the supply chain.  

The collected data is analyzed by either a data driven 

approach, which performs statistical analysis of the data or a 

model driven approach, which develops a physical model in 

order to trace the behavior of the data to specific 

components on the platform (Analysis is discussed in 

Section 3.2).  Both techniques can be employed in an 

analysis.  The results of the analysis are then transmitted to 

consumers such as the decision process in the supply chain. 

The results of analysis support maintenance and component 

management in the supply chain.   

Overall, the results of PHM produce several benefits to the 

supply chain: there is a cost and availability benefit to 

lifecycle systems management that is driven by the acquired 

capability to defer maintenance optimally and therefore 

lower maintenance costs.  In addition there are benefits that 

are orthogonal to life cycle cost such as improved 

component and system reliability and safety.  

The following sections review some of these PHM 

architectures. 

2.1. PHM Architecture Driven by a Systems Engineering 

Approach 

Begin (2012) describes a general architecture that is derived 

by applying systems engineering principles to PHM.  This 

work develops a methodology for producing a “solution-

neutral” PHM architecture.  A functional decomposition is 

given in Figure 1.  The various components that are 

associated with PHM are given but there is no connectivity 

to the supply chain decision-making services to complete 

the requirements of the supply chain for lifecycle cost 

management. 

Nevertheless, the simple functional structure in Figure 1 

forms a basis for formally defining what a PHM system is.  

Data acquisition is fundamental and provides, generally, 

time series data that the other layers consume.  Diagnostics 

obviously looks for failed or faulted components while the 

more difficult to achieve prognostics might sit on top of 

diagnostics  and use diagnostic services to produce a 

prediction of remaining useful life of a component.  Finally, 

health management provides overall condition maintenance 

data to the supply chain, which is not shown.  Testability is 

a function that can be a logical activity that is absorbed into 

each of the functions. 

 

Figure 1.  Notional PHM architecture (Begin, 2012). 

 

 

2.2. Boeing IHVM Reference Architecture 

Boeing developed a comprehensive integrated vehicle 

health management reference architecture (Keller, Wiegand, 

Swearingen, Reisig, Black, Gillis & Vandernoot, 2001) that 

is shown in Figure 2. 

 

Figure 2. The Boeing integrated vehicle health management 

architecture (Keller, et. al. (2001)). 

PHM functions are distributed from the vehicle to analysis 

activities that are off-platform and a data warehouse.  Their 

partitioning is dependent on the characteristics of the 

infrastructure such as network bandwidth.   

A reference stack of PHM functions  is given in Figure 3 

where PHM data flow from sensors at the bottom through 

signal processing of the data, monitoring of component 

condition, developing a health assessment of the platform 

and then a prognostic estimate of component lifetime which 

is a remaining useful component life.  Decision Support is 

the recipient of the analysis results that uses them for 

lifecycle management in the supply chain.  The presentation 

layer represents peer-to-peer communication with 

stakeholders in the supply chain. 

All of the PHM functions are present in the stack in Figure 3 

and the reference stack that is developed in this paper is 

similar to it and will be discussed in Section 3. 
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Figure 3. Stack of functions in the Boeing reference IHVM 

architecture (Keller, et. al., 2001). 

2.3. Distributed Prognostic System Architecture 

Expanding the diagrams in Figure 1 and Figure 2, the 

prognostic results of the PHM analysis function can be 

transmitted to the decision support function via publish and 

subscribe services.  In the architecture in Roemer, Byington,  

Kacprzynski and Vachtsevanos (2006) that is shown in 

Figure 4, data flows to logistics decision support at the top.   

Analysis algorithms are specified to be at the lower level in 

the stack that is located at the subsystem that is under 

observation.  A reasoner hierarchy isolates fault regions 

with reasoners placed at the subsystem in addition to the 

platform so the analysis function can be distributed 

vertically in the stack. 

The functions in Figure 4 begin to look layered and the 

publish-subscribe mechanism with a data pipe for big data 

defines clean interfaces that support both the sharing of data 

and the opacity of the functions that produce the data.  

Section 3 will organize these functions into a reference stack 

of PHM architectural functions. 

Figure 4. The distributed prognostic system architecture in 

Roemer, et. al. (2006). 

 

2.4. Distributed PHM Algorithms 

Saha, Shaha and Groebe (2009) give a more tightly coupled 

distributed PHM architecture.  In this architecture, shown in 

Figure 5, the analysis functions are distributed onto sensors 

with computational elements (CE).  The Central Server 

assists in analysis if there is insufficient remote 

computational capability, for example in the particle filter 

algorithm that creates the RUL probability distribution. 

 

Figure 5. A distributed PHM architecture of sensors with 

computational elements that perform analysis (Saha, Saha & 

Groebe. 2009). 

Were this architecture to be fit into a stack structure, the 

analysis function is still layered above data acquisition even 

though it is distributed.  As will be seen in Section 3 the 

stack is devoid of deployment strategy because it is a logical 

functional specification. 
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Again, absent in this architecture is the connection to the 

supply chain support services in the enterprise that is in 

Figure 4.  In developing a BCA for such an architecture, the 

supply chain connectivity needs to be considered because it 

is the recipient of the benefit.  Section 3.3 discusses the 

value of this connection in relation to the BCA.  Clearly, 

this system could be integrated into the supply chain with a 

services interface because of its computational capability.  

The connectivity at the level of the CE would be less 

complex (have a simpler data transfer) due to limitations to 

computation. 

In organizing this architecture in a functional stack, the 

communications functions to/from the CE can be specified 

as another interface to the analysis function from the data 

acquisition function.  This will be developed in Section 3. 

2.5. F/A-18 Inflight Engine Condition Monitoring 

Architecture 

Hall, Leary, Lapierre, Hess and   Bladen (2001) present a 

PHM architecture for the F/A-18, known as the Inflight 

Engine Condition Monitoring System (IECMS), shown in 

Figure 6.  The IECMS is an end-to-end system in which the 

sensor data is retrieved from components on the aircraft in 

the upper left of Figure 6 and transferred to analysis 

functions at the ground station that provide results to the 

pilot, maintainer and maintenance control on the right. 

The data collection architecture on board the aircraft is 

further specified, producing a stack of responsibilities from 

the component that is sensed to the maintenance 

stakeholders.  The functions in this design also support the  

reference architecture that is developed in Section 3. 

 

Figure 6.  The F/A-18 Aviation Maintenance Environment 

(AME) Ground Station (Hall, Leary, Lapierre, Hess, &   

Bladen, 2001). 

In Figure 6 the data store is the central part of the 

architecture.  The data types are described in the data 

transfers between the nodes, for example the fault data from 

the aircraft and the maintenance data from the data store.  

The pilot and maintainer on the right form the decision 

support services (at least part of them) in the supply chain.  

This architecture conforms to the stack in Figure 3. 

2.6. PHM Architecture for Defense 

Butcher (2000) presents an architecture that describes a 

condition-based maintenance system for the Department of 

Defense.  It functionally decomposes into many of the 

components that are in the architectures that have been 

presented so far.  Figure 7 shows the architecture diagram. 

 

Figure 7. The condition-based maintenance architecture for 

the DoD in Butcher (2000). 

 

The architecture in Figure 7 defines three domains, On 

System, At System and Off System.  The functions in the 

stack in Figure 3, Sensor and Control Data and Signal 

Processing are located on-system.  The At-System domain 

is meant to be the data collection function with the Portable 

Maintenance Aid shown in the figure.  In the operational 

environment, connectivity can be reduced, hence there is 

reliance on a physical means of data transfer off the 

platform; computing capabilities on platform can be reduced 

hence analysis functions are moved to the right.  However, 

Butcher does discuss the richer on-system computing 

environment of the Joint Strike Fighter that is diagrammed 

here in Section 2.8 and conforms to this architecture.  

Supply chain decision support services are in the Off 

System domain on the right with the data store.  This 

diagram conforms to the stack of functions in Figure 3. 

A similar architecture is developed in Section 3.3.2. 

2.7. Condition Monitoring Framework 

Another way to partition a PHM architecture is by its 

ontological elements.  There is a description and data 

hierarchy of what PHM functions do, and Emmanouilidis, 

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

454



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014 

5 

Fumagalli, Jantunen, Pistofidis, Macchi and Garetti (2010) 

develop an architecture by including the knowledge base 

involved with condition-based monitoring, notably,  

“Physical Assets, Networking, Knowledge Management, 

Computational Models and Usage of Information & 

Operational Technology”.  The result is Table 1. 

Table 1. A condition monitoring relational data table 

(Emmanouilidis, et.al., 2013). 

 

In Table 1 there is a stack of physical assets in the left 

column, but these are quite different from the PHM assets 

that were described in the architectures in the previous 

sections, notably the stack in Figure 3.   

The functions across the top of Table 1look like they could 

be organized into a stack that is similar to the one in Figure 

3, but there are knowledge areas and models.  What is useful 

in Table 1 is the compilation of the semantic terms for 

condition-based maintenance.  The Maintenance Knowledge 

column organizes the fault information, which is critical to 

condition-based maintenance.  The Computational Model 

column has analysis areas.  The networking column has the 

connectivity units.  It is as if this architecture could reside 

on top of the other architectures that are described in this 

section.  As such it is a semantic architecture that could 

reside in a communications stack. 

This paper develops a stack of PHM functions in Section 3.  

It is along the lines of the stack in Figure 3.  However, the 

knowledge base needs to be developed for web services that 

communicate the PHM analysis results throughout the 

supply chain.  Thus, building a table such as Table 1 creates 

the PHM ontology for an enterprise. In the stack that is 

introduced in Section 3, it is viewed that the organization of 

terms in Table 1 is assembled at the enterprise level where 

those terms have meaning across the entire PHM system 

area of operation. Ontologies are discussed later on in 

Section 3.3.2. 

2.8. JSF Autonomic Logistics Architecture 

The F-35 has the most recent and complete PHM system for 

a complex operating environment, having to monitor the F-

35 and its F135 engine.  The system detects faults and 

predicts component lifetimes, the results of which are 

transmitted to the maintenance activities on the ground 

where aircraft components can be managed autonomously.  

That is, some maintenance activities are replaced by the 

PHM results. 

The development of prognostic functions is ongoing, but the 

supply chain is able to respond more quickly to aircraft 

maintenance needs than was previously possible (McCollom 

& Brown, 2011).  There is a concept of operations for 

delivering analyzed data autonomously from the aircraft to 

the supply chain in order to reduce supply chain 

inefficiencies.  There is a stack of responsibilities from data 

collection at the aircraft to the decision support functions in 

the supply chain. 

The layers of the architecture are shown left to right in 

Figure 8.  Again, each of the areas of responsibility can be 

broken down into detailed stacks of functionality.  The Air 

Vehicle has analysis and fault detection functionality and a 

function that manages that data.  Fault data from the aircraft 

is then reported directly to the Decision Support 

Maintenance Planning Condition-based Maintenance node 

on the right, in the spirit of the stack in Figure 3. 

The following section suggests a structure that generalizes 

all the architectures that were discussed in this section. 

 

Figure 8. F-35 Autonomic logistics system deployment 

(McCollom & Brown, 2011). 

 

3. THE PHM REFERENCE STACK 

This section synthesizes the discussions of the architectures 

in Section 2 into a general reference stack of PHM 

functions. 
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The development of PHM architecture is based on 

requirements for integrating PHM into the supply chain.  

The requirements are generated by a business case analysis 

(BCA) that justifies the cost of developing a PHM system 

against the cost of managing the traditional supply chain for 

a particular system (Beyer, Hess & Fila, 2001, OSD(ATL), 

2010). 

From the discussion in Section 2, functional layers can be 

identified that reflect the activities in the various 

architectures that meet some need for PHM in a supply 

chain.  The stack in Figure 9 is an architectural response to 

the requirements for PHM and defines the functions that 

produce the required return-on-investment (ROI) or 

increased availability.  The BCA-generated requirements are 

the input on the left. 

 

Figure 9. Functional reference stack of PHM Services. 

Figure 9 organizes the architectural functions into function-

type areas in the columns.  In the beginning, a set of 

requirements is generated from a process that builds a 

business case analysis for the system, shown in the arrow on 

the left.  Such a process includes interaction with suppliers, 

integrators and the other stakeholders in the supply chain.  

This process is beyond the scope of this paper, but provides 

the motivation and formal requirements for developing the 

system that delivers PHM functionality. 

The central area is the Application Stack that delivers the 

system functionality.  Other stacks support the Application 

Stack: A communications structure is on the left.  The 

Specifications Stack provides technical requirements and 

standards that are levied on the system.  The Security Stack 

on the right satisfies the information assurance requirements 

of confidentiality, availability, integrity, auditing and so 

forth.   

In discussing the architecture in Figure 9, it is best to start at 

the top, because the motivation for developing a PHM 

system is to improve the cost of managing the supply chain 

that supports systems in use by an organization.  Every 

logistics organization has Enterprise Decision Support 

Services at the top layer where supply chain activities 

manage parts and services for the systems that an 

organization deploys.  The bottom layers produce the 

information that enhances supply chain activities. 

The following sections discuss the elements of the stack in 

more detail. 

3.1. Enterprise Decision Support Services 

The decision support services in the enterprises are the 

ultimate recipient of PHM data.  As mentioned above, the 

goal is to create a greater efficiency in the supply chain that 

improves its operating costs by streamlining the 

management of the systems that are under its control.  

Decision Support that consumes the products of the 

Analysis Services that are located beneath is shown at the 

top in Figure 9.   

Following the information flows from the architectures that 

were described in Section 2, Figure 10 abstracts the flow of 

the PHM analysis products to the Supply Chain Customers 

that are in the upper right who receive analysis results from 

the PHM functions that are in the bounded region.   

The Data Collection Services in Figure 9 can produce a 

large amount of data, such as time-series data, to be 

analyzed.  The analysis results are greatly distilled from the 

raw, parametric, data that is produced by the Data 

Collection Platforms that are shown on the platforms within 

the bounded region in Figure 10.  For Data Collection–

Platform 1, mid-left in Figure 10, the analysis function is 

actually on the platform and analysis results are pushed up 

into the enterprise, as in Figure 4 above.   

It is important to note that Figure 9 is a logical structure; the 

functions are logical and are deployed in the implementation 

phase, thus can be located where the system design dictates.  

For example, the architectures of Roemer, et. al. (2006) in 

Figure 4 and Saha, et. al. in Figure 5 distribute Analysis 

Services to remote elements in the design. 

 

Figure 10. Injection of PHM analysis results from two 

platforms into the supply chain. 
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The analysis results that are pushed to the supply chain, or, 

to which the enterprise subscribes in the case of a cloud-

based Services Oriented Architecture (SOA), can have some 

governed ontology that deals with components, fault modes 

and prognostics such as that described by MIMOSA (2009) 

and ISO 13374-3:2012 (2012).  Section 2.6 described a 

semantic architecture, and the use of a SOA is further 

discussed in Section 3.3.2. 

MIMOSA is a stack-oriented data architecture.  Figure 11 

shows its stack of functions, starting from a layer that deals 

with the acquisition of data, through layers that further 

refine the data.  Analysis occurs in the HA and PA layers, 

the results of which generate an advisory in the AG layer. 

 

Figure 11. OSA CBM functional blocks (ISO 13374-

3:2012). 

Figure 11 is suggestive of functions in the PHM stack that is 

shown in Figure 9, and it is used in a data architecture that 

defines the interfaces between these PHM functions.  The 

functions in in Figure 9 are system functions.  The data that 

is generated in its layers can conform to the stack that is 

shown in Figure 11 but the functional organization of a 

PHM system is not mandated to conform to the functional 

organization that is shown in Figure 11. 

An advantage of the ISO 13374 standard is that a schema 

can be built from its data stack.  This is described in Section 

3.3.1 for tagging the data and in Section 3.3.2 for 

developing an ontology for PHM web services. 

Figure 10 indicates that there might be some sort of service-

level agreement (SLA) between the supply chain decision 

support and the analysis services and governance over the 

analysis results that are created and its users if data is shared 

over a SOA.  There is a cost to providing the SOA transport. 

Design costs as well as operating expenses of the SOA need 

to be factored into the BCA.  The SLA includes 

requirements for quality of service (QOS) which involves 

the required bandwidth for data transfer.  In Figure 4 above, 

a data pipe is inserted for a higher level of performance for 

more massive data amounts such as time-series data.  

Section 3.3.1 discusses the QOS requirement for raw data 

transport. 

There is a central notion to this paper that the creation of a 

PHM system should not require the refactoring of supply 

chain functions in a dramatic way, as this would lead to 

additional cost.  Most supply chains today operate within 

some sort of enterprise resource planning framework that is 

connected via a SOA.  Thus, it is convenient to publish the 

PHM analysis results without having to retool the data 

transport mechanism.  Section 3.3.2 discusses the SOA in 

stack. 

The functions in Figure 9 and Figure 10 are to be used in the 

complete deployment of PHM technology to the platform 

and can used in a BCA to develop the cost basis for the 

PHM system (Sandborn & Wilkinson, 2007, and Kent & 

Murphy, 2000) ). 

3.2. Analysis Services 

The Analysis services process the raw, parametric, data 

received from the Data Collection layer that collects data 

from the critical components that were identified in the 

BCA and provide supply chain decision support for life 

cycle management of components.  The following two 

sections discuss these modes of analysis. 

Analysis activities can be broken out into a stack of 

functions once the target components are identified.  A good 

discussion of the analysis process is given by Roemer, et. al. 

(2006) and there are numerous approaches. 

3.2.1. Parametric Data Analysis 

The result of the analysis process in PHM is generally some 

sort of estimation of remaining useful life of the components 

from a trend in the data that indicates the future behavior of 

the component.  The well-known idea is to predict a 

remaining useful life of a component, among other analysis 

products, that is injected into Supply Chain Decision 

Support to expedite its product stockage and provisioning 

functions, as is shown in Figure 10. 

The notion really is that there is some stochastic process in 

state space which is therefore non-deterministic, but were 

the process known, would show a path to failure where the 

operation of a component passes into a region of 
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inoperability.  The time from the detection of this path,   , 
say, to the time of failure,   , is the component’s remaining 

useful life or RUL.  Figure 12 illustrates the path in state 

space of some measured parameters from a component.  

Multiple parameters are more difficult to correlate, so 

generally, papers on RUL deal with only one parameter.  

Figure 12 reminds us of the underlying physical 

complexities of the problem by plotting a multi-dimensional 

state space. 

The broadened paths indicate that the parameters are really 

described by a probability density function with some 

statistical moment, such as average, indicated by the narrow 

path curve.  Thus, the remaining useful life calculation is 

some probability distribution function.  Examples of 

stochastic treatments of RUL are in Saha, Goebel, Poll and 

Christophersen (2007), Tang, Kacprzynski, Goebel and  

Vachtsevanos (2009) and Sankararaman and Goebel (2013). 

If we knew the entire path for all time, we would see that 

somewhere along the permissible operating range the path 

bifurcates into a course that leads it to failure at some point 

in the future.  In Figure 12 that point is the red statistical 

ball, the “failure occurrence volume”, where the failure 

curve penetrates the operating volume at time   . 

 

Figure 12. Paths, operating and failure, of measured 

component parameters in phase space. 

The program in PHM is to recognize that the system is 

operating on this failure path soon enough to get the 

information back into Supply Chain Decision Support so 

that it has time to provision stockage and provide 

maintenance and part management functions before the 

actual failure, as is well known.  In Figure 12 the time    is 

the time before the failure time    that the prediction of 

failure occurs, and the knowledge of which enables the 

supply chain to act on the predicted failure cost-effectively. 

Analysis services that produce prediction of failure, or 

remaining useful life incur cost in the BCA.  There is an 

open ended-ness to the analysis process because new failure 

modes or behavior characteristics can be discovered by 

continued analysis, but this is difficult to budget in a BCA.  

The identification of specific analysis algorithms that are 

attached to specific failures enables a turn-key system.  

Such algorithms would be deployed in distributed systems 

such as that is shown in Figure 4 and Figure 10 where 

analysis is distributed to the sensor locations. It may be 

necessary to update the remote CEs in Figure 4 with new 

algorithms (updating algorithms in regards to the stack in 

Figure 9 is discussed in Section 3.6). The identified analysis 

algorithms could conform to standard measures that are 

implemented in libraries in analysis tools.  Standards are 

discussed more in Section 3.5. 

In regards to the stack in Figure 9, the interfaces to the 

Analysis layer need to be defined so that they are useful to 

the subscribers in the Enterprise Decision Support Services 

above.  Clearly, the schematic analysis result in Figure 12 is 

opaque to the enterprise that is looking for extracted 

information from it such as RUL. The RUL is to be injected 

into the level of analysis that is at the enterprise that requires 

a greatly reduced and far more descriptive set of data than is 

raw data.  Section 3.6 discusses these analysis results in 

relation to the orthogonality of the functional layers in the 

stack and the next section discusses analysis at the 

enterprise. 

Another aspect of Analysis Services is identifying an 

approach to the analysis.  As was mentioned in Section 2, 

analysis methodologies involve data-driven and/or model 

driven analysis processes (Bernstein, Hauske & Hermann, 

2014, Byington,   Roemer & Galie, 2002).  In including the 

analysis strategy in the Analysis Services in Figure 9, it 

should be understood that the analysis methodology can 

impact the supply chain  and the BCA because there can be 

added cost to developing a dynamical physical behavioral 

model for a component which is a requirement of the model 

driven approach.   

Detecting the data signature of a failure mode and 

associating it with a component is generally done with a 

model because it is difficult to run a statistically significant 

number of components to produce a failure signature for the 

data-driven approach and run the components to failure.  

Therefore, a model can simulate the data that is produced by 

deployed sensors and trace it to a fault condition.   

However, the data-driven approach can also incur inordinate 

costs if a seeded-fault approach (Hess, A. (2002)) is used to 

identify failure signatures because system run time is 

required to associate the faults with data signatures.  A 

problem with data-driven analysis is the uncertainty of 

achieving a logical connection between the analysis results 

and the physics at the data collection point.   

In reality, there is a model that is developed from behavioral 

equations that describe the physical behavior that produces 

the sensor data.  This is a complex, boundary value problem 

to develop and solve.  Therefore, a data-driven approach 

appears attractive, but the sensors were applied to the 
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critical component with some understanding of the 

underlying physical behavior of the system which causes the 

component to fault.  To resolve these issues, the discussion 

of how the analysis process of a proposed PHM system 

affects the BCA for the system needs to occur with the 

engineering community as well as supply chain managers. 

3.2.2. Supply Chain Decision Support Analysis 

In Supply Chain Decision Support Services (DSS), another 

level of analysis occurs to determine the best plan of action 

for managing a component’s total life cycle given the results 

from the PHM analysis in the previous section, as is shown 

in Figure 9.  Thus, in developing a BCA for PHM, the 

Supply Chain analysis activities need to be taken into 

account in order to estimate the impact that PHM has on 

component life cycle management in the supply chain.   

Such a supply chain analysis model is done in Feldman, 

Jazouli, and Sandborn (2009) who consider the costs of 

integrating PHM into the supply chain in their stochastic 

model for a Boeing 737 display, and Banks and Merenich 

(2007)  develop a trade-space tool that calculates the cost 

benefit analysis for a PHM system for batteries in vehicle 

power systems.   

Tsoutis (2003) simulates the effect of the autonomic 

logistics system for the F-35 that is shown in Figure 8 on 

supply chain management. He incorporates existing 

maintenance data for the F/A-18E/F F-414 engine (F-35 

maintenance data was of course not yet available).  His 

work compares a baseline of the traditional logistics system 

for the F-414 engine with a set of modified repair activities 

that are streamlined by the injection of prognostic 

information from a PHM system in the autonomously 

enabled aircraft in Figure 8.  Tsoutis was able to perform a 

sensitivity analysis of the effects of increased component 

(module) reliability and prognostic accuracy, among other 

parameters.  This type of work enhances the development of 

the BCA and produces a clearer understanding of the effect 

of introducing a new PHM system into a supply chain.  The 

cost of restructuring a supply chain must be included in the 

BCA, and simulation of supply chain activities can 

demonstrate a cost benefit of the PHM system. 

It is clear that the Analysis Services function occupies an 

important area for the BCA.  The stack in Figure 9 can be 

used to partition the types of data, components and types of 

analysis to determine how much effort is required to reach a 

result from the analysis function. 

3.3. Logistics Data Transport 

The transport mechanisms for PHM data are shown in 

Figure 9 on the left as the Communications Stack and below 

the Analysis layer as Raw Data Transport Services.  Raw 

Data Transport Services provide primitive data (“raw data” 

or parametric data), principally sensor data that can be 

voluminous due to high sampling rates, to the services that 

analyze and transform it.  Discussion of their mechanisms of 

transport is treated separately for this reason in the next 

section. 

The general Communications Services provide higher level 

communications functions such as a web services stack that 

includes semantic information and can be governed by an 

ontology.  They are discussed in Section 3.3.2. 

3.3.1. Parametric Data Transport 

A central activity in the BCA for PHM is generally based on 

identifying high cost components that are expensive to 

manage (Banks, Reichard, Hines & Brought, 2008).  Failure 

characteristics of these components are identified through a 

failure modes, effects and criticality analysis (FMECA) that 

leads to a root-cause analysis of the failure.  The process 

identifies a characteristic of the component that can be 

monitored by sensing a region on the component that 

produces data that identifies that characteristic (See also the 

discussion in Section 3.2.1).  The sensed data quantity can 

be large due to the results and recommendations of the 

FMECA and root-cause analysis.  As the stack in Figure 9 

and flow diagram in Figure 10 show, the resulting collected 

data needs to be transported to the analysis services that 

detect the failure characteristics. 

Sensors generally sit on buses such as the well-known SAE 

J1939 and MIL-STD-1553 buses.  Determination of what 

bus to use is dependent on the particular connectivity with 

the sensor.  The Data Collection Services in Figure 9 define 

the data collection protocols.  The cost for PHM systems on 

new equipment or retrofits includes the technology in this 

layer.  These standards would be included in the standards 

in the specification stack, Section 3.5 

The communications protocols for raw, parametric, data 

need to provide enough quality of service (QOS) to support 

large data streams.  The protocol for transporting the data 

might not be the internet, but some physical mechanism 

such as a local lap top computer or portable maintenance 

aid.  This configuration eliminates the bandwidth bottleneck 

but lessens real time data collection.  However, the Analysis 

Services could be deployed on the local laptop.  Thus, the 

stack in Figure 9 is useful for partitioning the functions of 

the PHM to the deployed areas in the system. Figure 13 

shows a possible deployment.  QOS in regards to data 

transport to the enterprise is discussed in Section 3.1. 

Using the Stack to Reduce Bandwidth Requirements 

Sensor data is generally a time series that is obtained at 

regular intervals at a specified sampling rate.  The physics 

of the problem determines what rate is required to discover 

the data signature that indicates pending failure, as was 

discussed in Section 3.2.1.  As such, the data can be large 

and hence require high bandwidths.  The cost of managing 

big data needs to be integrated into the BCA for the PHM 

system.  The stack in Figure 9 is helpful because it can be 
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used in conjunction with the deployment of PHM services in 

the supply chain, such as that shown in Figure 10 and those 

that were discussed in Section 2..  A tradeoff analysis of the 

location of Analysis Services can reduce the cost of 

bandwidth.  For example, Figure 5 distributes the analysis 

function to local computational elements that is a measure 

that greatly reduces the burden of having to supply a high-

bandwidth transport for sensor data. 

Describing or Tagging Sensor Data 

An ideal is to publish this raw sensor data in the context of a 

services-oriented architecture.  Sensor data can then flow up 

the left SOA stack in Figure 9.  

There are formats that tag sensor data in order to develop a 

publish/subscribe mechanism at the parametric data level.  

This adds overhead to the sensor data but for large data 

transfers the headers are relatively small.  One well known 

format is in the NASA CDF applications library (CDF 

User’s Guide, 2012).  A data tagging standard was built on 

top of that for PHM systems by the US Army known as 

Army CBM Bulk Data (ABCD) format (US Army PEWG, 

2011).  The tagging in ABCD format respects the data 

layers that are found in the MIMOSA standard (MIMOSA, 

2009) and in ISO 13374-3:2012 (2012). 

All these standardization activities need to be included in 

developing the BCA for PHM.  The advantage is that 

developed standards such as NASA CDF come with 

functional software applications programmer interfaces that 

eliminate the cost of new software development.  The 

Standards Stack in Figure 9 is useful to organize the 

standards at each level of the architecture.  Standards are 

discussed in Section 3.5. 

3.3.2. Communications Services 

Communications services transport logistics information 

throughout the supply chain.  The stack diagram in Figure 9 

and data flow diagram in Figure 10 illustrate that these are 

the communications services that inject derived analytical 

information into the supply chain.   

It is also envisioned that there is a Services Oriented 

Architecture (SOA) to provide the transport.  An enterprise 

service bus (ESB) (Chappell, 2004) that provides connectors 

and messaging services as well as other functions in the 

SOA stack enables the SOA.  

Enterprise Services Bus 

The services stack in Figure 9 is meant to be integrated into 

an existing SOA that is provided by the supply chain that 

requests PHM technology.  Adding the additional cost of 

developing a SOA to the PHM BCA would be excessively 

costly.  Furthermore, it is a distinct advantage to be able to 

publish PHM logistics data to existing supply chain services 

that already make use of enterprise services technology. 

 

Web Services (SOA) 

Web services itself provide a stack of functions (W3C, 

2004), but the configuration varies widely with providers.  

The supply chain would have a services architecture with 

governance and provisioning already determined.  Thus, the 

PHM system should be able to publish the analysis results to 

the supply chain that subscribes to it.  Again, it is meant to 

require minimal effort to connect to the supply chain.  

Section 3.1 discussed the role of a SOA in communicating 

PHM analysis results. 

Figure 13 illustrates a possible deployment of a SOA 

architecture for PHM data transport in a military 

environment.  Here, an ESB is located at each of the nodes 

in the Tactical, Operational and Enterprise areas and 

implements a SOA stack.  Data collection on the Vehicle 

Platform in the tactical environment involves both the SOA 

for analyzed data, which can be generated on-platform, and 

a fast pipe, such as that in Figure 4 for parametric data 

transport. There is data analysis on platform as in Figure 4 

and Figure 5. Raw/Parametric data is transferred to the 

operational node via a maintenance support device, such as 

a laptop or PDA over the high bandwidth link to support the 

bandwidth requirements.  Decision support services (DSS) 

exist at the Enterprise node where the analysis is the 

decision support analysis that is discussed in Section 3.2.2 

for lifecycle support.  Note that the functions in the stack in 

Figure 9 are deployed in Figure 13 and the deployment 

looks like that in Figure 10. 

The SOA makes the sharing of data seamless, but the 

diagram indicates that there has to be a common 

understanding of terminology of data types in the supply 

chain.  In this environment, the ISO 13374 tagging (See 

Section 3.3.1) is useful for sharing the raw, parametric, data.   

The ontology produces a common knowledge base 

throughout the supply chain and between enterprise 

domains; the ontology can be used to communicate 

diagnostic, health and prognostic information from one 

logistics domain to the next.  The data schema, such as 

parametric data from the Tactical node in Figure 13, is 

governed by the MIMOSA standard (MIMOSA, 2009) as 

shown in Figure 14.  The enterprise is the locus of domain 

expertise and has a domain-specific ontology that is 

developed by stakeholders. 
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Figure 13. Notional deployment of a PHM system 

incorporating a SOA with corresponding ESB. 

The organization might further develop an ontology to 

enable semantic structure to the data (W3C Semantic Web, 

2014).  An ontology is developed by Emmanouilidis, et. al., 

(2010) which was shown in Section2.6; the domain 

structure is shown in Figure 14.  It is at this point that a 

table such as Table 1 can be developed at the enterprise to 

identify the semantic elements in the PHM system that is to 

be designed. 

 

Figure 14. Diagnostic ontology of Emmanouilidis, et. al., 

(2010). 

 

Including the cost and effort of developing a PHM system 

ontology in a BCA is a complex task.  It is of course better 

to incorporate existing ontologies such as MIMOSA and the 

data stack that is described by ISO 13374.  In developing a 

domain-specific ontology, the BCA should investigate 

existing ontologies in the organization and look to expand 

them with PHM terminology. Barring that, the effort needs 

to be closely monitored and costs need to be estimated as 

early on as possible. Ontologies are best restricted to 

systems of common functionality in order to bound the 

effort. 

3.4. Security Stack 

The architectures that are discussed in Section 2 are shy of 

data security measures, in part because PHM is the central 

function of the architectures and in part, because the data is 

not mission-critical data.  For example, on an aircraft there 

is system control data, which is of course critical, while 

PHM data is produced in order to monitor the operation of 

the controlled system.  

Data streams of time-series data such as that shown by the 

data pipe in Figure 4 can be protected by link encryption 

while services that produce higher level semantically 

governed information can be protected by implementing 

standards such as WS-Security (OASIS, 2004). 

The stack on the right in Figure 9 addresses the security for 

the layers in the Applications Stack.  What would be filled 

in here for the implementation are the specified security 

standards that are going to be used to provide information 

assurance to the stack.  In developing the BCA for the 

particular PHM system that is under consideration, the cost 

of security may be relevant. 

In developing PHM for military systems (Butcher, 2000), 

there are well-defined directives and procedures that need to 

be followed, indeed, required to be followed, such as Net 

Ready Key Performance Parameter, (NR KPP)CJCSI6212, 

2012) and  Information Assurance Certification and 

Accreditation Process (DIACAP), (DoDI 8510.01, 2007).  

The implementation of DIACAP requirements requires 

additional time and obtaining a formal authorization to 

operate the system.   

Collocating PHM data services with secure areas could 

incur a cost, possibly a cross-domain solution that would 

have another form of certification (DISN, 2004).  The stack 

in Figure 9 is useful for identifying where data is produced 

in order to identify the security boundary of the originating 

systems (NIST 800-18, 2006), a primary task in information 

assurance. 

3.5. Specification Stack 

As mentioned at the end of Section 3.3.1 that discusses 

tagging sensor data by using specifications for various PHM 

functions, the stack in Figure 9 organizes standards and 

exposes them to the developer community for evaluation of 

their effectiveness.  In Figure 9, the Specification Stack is to 

be augmented with the specifications that the design 

incorporates. 

The specification stack begins at the top where decision 

support activities occur to support lifecycle systems 

management.  These standards will already be in place, as 

PHM architecture does not refactor the supply chain 

architecture; it would be difficult to justify a cost for doing 

so.  However, the JSF autonomic logistics architecture in 

Section 2.6 does affect some of the organizational structure 

of maintenance because its autonomic prognostic 

notification of faulty parts on the aircraft can remove a 

maintenance inspection step.  A discussion of a simulation 

of this effect was given in Section 3.2.2. 

The employment of standards can affect the BCA for the 

PHM system; the decomposition in Figure 9 can be factored 

according to the envisioned and simulated cost model for 
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the PHM system.  The use of standards over custom 

specifications more confidently reduces the cost of the PHM 

system.  An example is the use of standard analytical 

methods for analyzing sensor data (See Section 3.2).  While 

a lot of analysis work is specific to a particular system, the 

BCA can require that standard analysis libraries and tools be 

employed to conduct the search for failure precursors in the 

sensor data. 

3.6. Orthogonal Property of the Stack Layers 

As discussed in the Introduction, the functions in the layers 

in Figure 9 are isolated from adjacent layers.  In good 

systems architecture, each layer contracts with the services 

from the layer below it via a well-defined interface and has 

no knowledge the internal functionality of its neighbors.  

Services do not get data from the service layers above them.  

One could ask if a lower layer receives data from a higher 

layer in the case of Figure 5, where new analysis algorithms 

are distributed to the remote CEs (this update process was 

mentioned in Section 3.2.1).  However, this would be a 

transaction within the analysis layer in the stack in Figure 9 

and would not violate the read-down-only principle.  Recall, 

the stack in Figure 9 is not a deployment diagram that 

specifies where services physically reside. 

An example of functional separation between layers is the 

analysis layer: the Supply Chain Decision Support Analysis 

Services and the Parametric Data Analysis Services layers 

in Figure 9.  Supply Chain Decision Support Analysis 

Services would have no access to the raw, parametric data 

from the Parametric Data Analysis Services below it.  

Instead it subscribes to an agreed-upon analysis result, 

possibly component RUL, through a contractual interface. It 

does not have the same analysis functions or purposes of 

analysis as are in the Parametric Data Analysis Services 

layer.  In terms of a BCA, this means that there is no 

duplication of effort between the layers and there is no 

confusion of functions in the layers.  The argument is the 

same for all other layers. 

4. Conclusion 

Figure 9 presented a reference stack of functional areas that 

would comprise a reference architecture for a PHM system.  

Its development was motivated by the analysis of several 

existing PHM architectures in Section 2.  Closely attached 

to this stack is the business case analysis (BCA) that 

provides a motivation for developing a PHM architecture.  

The reference stack in Figure 9 supports the BCA by 

making the functional composition of the proposed PHM 

system transparent to the cost and availability requirements 

that are generated by the BCA. 

Included in the stack in Figure 9 are additional stacks that 

track the specifications to which the PHM system is 

designed.  They are constraints on the cost of the system.  

Choosing existing specifications of services can reduce the 

cost of the system.  On the other hand, security requirements 

can be a burden on the cost and availability of a PHM 

system.  The communications stack describes the data 

transport functions for the PHM system but is also meant to 

identify open-source transports and a SOA that can be 

integrated easily into the existing supply chain enterprise 

services structure. 

The PHM architectural reference stack is an effective way to 

communicate PHM system functions to the stakeholders in 

the supply chain who have commissioned the PHM system 

to reduce the lifecycle costs of the components that they 

manage. 
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ABSTRACT 

More than ever, asset operators and OEMs are investing in 

fleetwide monitoring systems.  With the roll out of these 

monitoring systems, huge amounts of sensory data are 

generated.  In a single Gigawatt power plant, asset 

monitoring systems sort through terabytes of sensory data 

per week.  To contend with the volume and velocity of 

sensory data, analytics and data management techniques are 

employed along the life of sensory data from digitization at 

the asset, to storage in the information technology 

infrastructure.  This paper presents techniques, both 

promising and fielded, for analytics to manage the volume, 

velocity, veracity, variety, and value of fleetwide asset 

monitoring data yielding opportunities for advanced 

visibility of actionable information.   

1. INTRODUCTION 

In industrial asset monitoring applications, scientists, 

engineers, and asset maintainers can collect vast amounts of 

data every second of every day.  Drawing accurate and 

meaningful conclusions from such a large amount of data is 

a growing problem, and the term “Big Data” describes this 

phenomenon.  Big Data brings new challenges to 

prognostics applications in the form of analysis techniques, 

search and retrieval, data integration or fusion, reporting, 

and system maintenance (Johnson & Farrell, 2011).  All 

these challenges must be met to keep pace with the 

experimental growth of asset related data.   

 

Take for example, the Large Hadron Collider at the 

European Organization for Nuclear Research (CERN), 

where for every experiment the control and monitoring 

systems can generate 40 terabytes of data (Bradicich & 

Orci, 2012), (Losito 2011). In Aerospace, for every 30 

minutes a jet engine runs, upwards of 10 terabytes of 

operational data is generated.  In a single journey across the 

Atlantic Ocean, a four-engine jumbo jet can create 640 

terabytes of data.  Multiply the single flight by 25,000 

flights per day, and we yield an enormous amount of data 

(Gantz & Reinsel, 2011).  This is “Big Data”. 

2. HISTORY OF BIG DATA 

The technology research firm International Data 

Corporation (IDC) recently performed a study on digital 

data, including measurement files (think time waveform 

recordings), video (think thermal images), music (think 

ultrasonic), work order reports, and so on.  The study 

estimates that the amount of data available is doubling every 

two years.  In 2011 alone, 1.8 zettabytes (1E21 bytes) of 

data were created (Hadhazy, 2012), Figure 1.  While, our (as 

in the PHM community) asset monitoring systems may not 

produce quite this amount of data, just consider the size of 

the data files we collect from diagnostic visits to our assets.  

Next consider the impact that low cost automatic data 

collection systems and sensors can and are having in our 

ability to continuously monitor and record data from our 

assets.  Even within PHM asset monitoring and prognostics 

functions, the trends are similar: the amount of data 

available for predictive analytics is doubling every two 

years.   

 

 
Figure 1.  Data is collected at a rate that approximately 

parallels Moore’s law. 

 

The fact that the volume of data is doubling every two years 

mimics one of the electronics’ most famous laws:  Moore’s 

law.  In 1965, Gordon Moore stated that the number of 
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transistors on an integrated circuit doubled approximately 

every two years and he expected the trend to continue “for 

at least 10 years”.  Forty-five years later, Moore’s law still 

influences many aspects of Information Technology (IT) 

and electronics.  Consider that in 1995, 20 petabytes of total 

hard drive space was manufactured.  Today, Google 

processes more than 24 petabytes of information every 

single day.  Similarly, the cost of storage space for all this 

data has decreased exponentially from $228/GB in 1998 to 

$0.06/GB in 2010.  (Unfortunately, memory sticks at our 

favorite electronics stores are still a bit more expensive).   

 

Changes, including lower cost of storage and lower cost of 

data recording devices undoubtedly, fuel the Big Data 

phenomenon and raise the question, “How do we (the PHM 

Community) extract meaning from that much information”.  

Another question might be “What is the value of Big Data”. 

One institutive value of more and more data is simply that 

statistical significance increases.  This is certainly the case 

in data-driven prognostics.  Yet, care is required.  Consider 

the gold mine metaphor, where in the mine, only 20 percent 

of the gold is visible.  The remaining 80 percent is in the dirt 

where it cannot be seen.  Mining is required to realize the 

full value of the contents of the mine.  Hence Big Data 

Analytics and data mining are required to achieve new 

insights that have never before been seen. 

To fully characterize Big Data, consider Figure 2.  The 

challenges of big data are variety, velocity, and volume.  

These three are often referred to as the three “V”’s of big 

data.  Here we consider three additional V’s, veracity, value, 

and visibility.  Volume is the amount of data as measured in 

its computer disk or computer memory size.  Velocity is the 

speed at which data is produced, and moved into the 

computing infrastructure.  Veracity is a measure of accuracy 

or reliability of the data, in other words the validity of data.  

Variety is both the data structure such as binary files and 

database tables, and the sources such as vibration, 

temperature, and maintenance records.  Value is the 

information and business guidance that can be extracted 

from the data.  Last but not least, visibility is the ability to 

access and view data and its value, regardless of the location 

of the data within the computing infrastructure.   

 
Figure 2.  Traditional 3 “V”s of big data (source: IBM) 

3. INDUSTRIAL INSTRUMENTATION, BIG DATA, 

PROGNOSTICS 

The sources of Big Data in the Industrial Asset Monitoring 

arena are many, Figure 3.  The most interesting is data 

derived, using transducers, from the physical world.  In 

other words, this is analog data captured by instruments and 

data acquisition systems from a variety of vendors, in a 

variety of formats.  Thus, the PHM community may call it 

“Big Analog Data” (BAD).  BAD is derived from time 

waveform measurements from vibration, dynamic pressure, 

thermal images, ultrasonic scans, motor current signatures, 

and even radio frequency measurements used in the 

detection of partial discharge or electrical ground faults.  

Engineers, Scientists, and our plant Maintainers publish this 

kind of data (BAD) voluminously, in a variety of forms, and 

many times at high velocities.  Along with management and 

storage of this large amount of data, are the challenges of 

validation or veracity, deriving value from the data, and 

giving visibility of data and derived value to the right people 

at the right time.   

 

 
Figure 3.  Industrial sources of analog data 

 

As scientists and engineers work to address this “BAD” 

challenge, an approach is needed that encompasses sensors 

and actuators, distributed acquisition and analysis nodes 

(DAANs), and Information Technology (IT) infrastructure 

for big data analytics, mining and storage.  Consider a three-

tier solution, Figure 4.  Here, it is possible to distribute the 

work of finding value in big analog data.  Figure 4 depicts a 

three-tier architecture with sensors (and monitored assets) 

on the left.  Measurement hardware or data acquisition 

systems are in the middle.  These devices digitize analog 

sensory data from a single monitored asset and begin 

preliminary analysis.  The right side of Figure 4 depicts the 

IT infrastructure employed to store, manage, and analyze 

sensory data from a fleet of assets.  

 

Two additional terms are introduced here to describe 

veracity and extraction of value:  “In-Motion” and “At-

Rest” analytics.  With In-Motion analytics, data is analyzed 

for value in the form of indicative information, in memory, 

and as close to the source of the data as possible.  With At-

Rest analytics, data is analyzed in its storage place often 
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incorporating similarities and differences with collaborative 

data sources.  Both the DAANs and the IT computers 

perform in-motion analytics, extracting condition indicators. 

The IT infrastructure, as it assembles sensory and other data 

from multiple sources, also performs at-rest analytics 

utilizing data-driven prognostic algorithms to identify 

patterns and fault signatures.   

 

 
Figure 4.  A three-tier solution to the “Big Analog Data” 

challenge. 

 

Let’s look closer at in-motion analytics close to the sensor.  

For example, adding a smart chip such as a Field 

Programmable Gate Array (FPGA) or a processor to an 

analog sensor allows the sensor to reduce the raw analog 

data to condition indicating features of the time waveform.  

However, it is also possible to add “smart” data recorders to 

the traditional analog sensors installed today.  Both the 

smart sensor and the smart recorder are able to implement a 

decision based data recording technique, Figure 5.  Here, 

analog sensory time waveform data is continuously 

analyzed for changes.  Only when an indication of change 

within the asset is present in the sensory data (or on a time 

basis for periodicity) is the data recorded and forwarded 

upstream in the three-tier architecture.  Further, the sensory 

data might be reduced using in-motion analytics to a set of 

condition indicators or features, leaving the raw time 

waveform stored locally or discarded.  The filtering process 

of looking for changes and reducing data to condition 

indicators plays a big role in managing volume, velocity, 

veracity, and value.   

 

 
Figure 5. Decision based data recording state diagram 

 

Whether, we have the ability to perform analysis in-motion 

at the sensor, at the DAAN or at-rest in the IT Infrastructure, 

we are fortunate to have a number of analytical tools at our 

disposal for finding value in the data.  The scientific fields 

of condition monitoring and prognostics offer a number of 

analytical tools for reducing data to condition indicators and 

for finding trends in the analytical results, Table 1, Figure 6.  

Condition indicating analytics range from vibration level 

measurements, temperature trends, to envelope spectrum for 

roller bearing degradation and so on. With condition 

indicating analytics, we can discover increased impacting in 

roller element bearings, teeth cracking in gearboxes, rotor 

bar degradation in induction motors and generators, and so 

on.  Condition indicators, coupled with trending and 

alarming, give the asset owner / operator a first alert that 

degradation is occurring within the asset.   

 

Table 1.  Condition indicating analytics 

 
 

 

 
Figure 6. Reducing sensory data to condition indicators 

 

Within the PHM community, the use of multiple condition 

indicators in concert, and an extensive history of actual 

condition indicators, data driven prognostics is made 

possible.  Prognostic analytics include clustering, statistical 

pattern recognition, logistic regression, support vector 

machine, neural networks and so on.  These are similar 

mathematics used in big data sciences, a growing profession 

and industry sector.  Together, these two classes of analytics 

(condition indicators and prognostics) provide the 

foundation for finding value in big analog data.  Long term, 

these tools are building the foundation for automating 

diagnostics, and prognostics. With the automation of 

diagnostics and prognostics, business decisions can be 
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enhanced with automatically generated advisories for 

maintenance, operations, and finance.   

 

The condition indicators themselves do not necessarily yield 

a root cause for the degradation, nor does the condition 

indicator tell us when we can expect the asset to fail to 

perform its function.  Prognostic analytics are employed to 

help deduce the why and when of asset degradation and 

failure, Figure 7.   

 

 
Figure 7. Prognostic analytics for finding patterns  

 

Prognostic algorithms allow for the combination and 

collaboration of condition indicators within an asset 

(bearing, gear, shaft, oil particle, temperature, load, speed) 

as well as across similar assets.  This combination of 

condition indicators forms a pattern of healthy asset 

operation, or a specific degradation pattern.  In practice, a 

baseline of healthy condition indicators is obtained during 

commissioning of an asset, or after repair and maintenance 

of an asset.  With an available healthy or normal operation 

pattern, analytical tools including statistical pattern 

recognition can be used to determine electrical, mechanical, 

or structural degradation levels of an asset, Figure 8.   These 

tools compare real-time sensory data in-motion to patterns 

looking for deviations or anomalies.   

 

 
Figure 8.  Asset degradation using statistical pattern analysis 

 

The normal and fault patterns are further extended, by 

further segregating these patterns into operating conditions 

when speeds, loads, and environment are included.  The 

combination of patterns at a plant or enterprise level, is 

made possible when similar assets are viewed together, 

enhancing the pattern formation.  For example, machine 

learning algorithms are able to cluster combinations of 

condition indicators from similar assets, thereby creating 

patterns of normal or fault asset behavior.  Prognostic 

algorithms then use these patterns, or fault signatures, to 

match current asset condition indicators to a specific fault 

signature (with in-motion analytics).   

 

On another note, as condition indicators are narrowed in 

number to the best indicators of specific failure modes, a 

smaller set of sensors and analytics may be used to detect 

and predict specific failure modes.   These reduced sensory 

measurements and analytics can then be performed on 

sensory data in-motion on the (embedded) DAAN, 

comparing a single vector of condition indicators to specific 

fault patterns.   

  

As the normal operational pattern “drifts” towards a specific 

fault signature pattern, the rate of “drift” combined with 

human expert knowledge to form a basis for automatic 

advisory generation and prediction of the point in time when 

the asset fails to perform its function.  This is particularly 

true at the information technology (IT) level, when future 

operating conditions are known based on planned equipment 

operations.  Knowledge of a future operating condition 

allows focus on data-driven patterns from historical and 

specific expected operating conditions.  Trends derived 

from historical specific operating conditions, improve 

confidence in the expected performance and health of 

specific equipment in planned operating conditions.  At the 

plant or even enterprise level, the fusion of operational and 

equipment data builds a foundation for and confidence in 

the data-driven predictions.   

 

To summarize, there are many physical phenomenon to 

measure within a fleet of assets.  This creates the big data 

problem of the analog kind.  By using in-motion and at-rest 

analytics, the six V’s of big analog data are addressed.  

Analytics that calculate condition indicators, derive patterns 

of condition indicators, and compare real-time condition 

indicators to normal and faulty patterns are core to 

addressing the challenge of big analog data.  This challenge 

of big analog data is deriving value and visibility while 

managing volume, velocity, veracity, and variety.   

4. INFORMATION TECHNOLOGIES 

In addition to sensory data, condition indicators, and asset 

operational patterns, we (the PHM community) often add 

other data which may be unstructured in nature.  Work order 

reports, typed textual descriptions, and diagnostic technical 
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exams add to our big analog data, extending our view of the 

health of assets.  To support big analog data storage and 

analytics as well as varied documentation, consideration and 

collaboration with our colleagues in Information 

Technology (IT) is a must.   

 

Part of our challenge with big analog data and the varied 

documentation formats, is the data does not fit easily into 

standard relational databases.  As a comparison, neither 

does the vast information available on the world-wide web.  

Out of Google’s work to “index” the web, came an 

underlying file system, Apache Hadoop, which supports 

unstructured data or data that is stored in files rather than a 

relational database, Figure 9.  These files can include binary 

and ASCII formats of condition indicators and time 

waveforms.  Our unstructured data files also include asset 

technical exam documentation. There are many common 

formats used for big analog data including UFF58, 

Comtrade, and .mat.  In the case study presented later, the 

file structure named Technical Data Management Streaming 

(TDMS) is used for storing time waveforms and condition 

indicators.  The Apache Hadoop File System (HDFS) helps 

to manage these non relational database items.  The HDFS 

is a massively scalable storage and batch data processing 

system. It provides an integrated storage and processing 

fabric that scales horizontally with commodity hardware and 

provides fault tolerance through software. Hadoop also 

includes concepts for distributing analytics to the data, to 

avoid bandwidth issues of moving the at-rest data (Bisciglia, 

2009). 

 

 
Figure 9.  High level overview of Hadoop file system within 

IT architecture (source: Cloudera) 

 

Several information technologies suppliers take the concept 

further by industrializing HDFS and improving the 

programming tools used to mine and analyze the data in a 

combination of Hadoop and relational stores.  International 

Business Machines (IBM) for example, not only hardens the 

IT infrastructure with their “PureFlex” enterprise computing 

systems, IBM also adds InfoSphere Streams for in-motion 

analytics and InfoSphere BigInsights for at-rest analytics, 

Figure 10.  These architectures and analytic tools promise 

an ability to quickly garner value of our variety, velocity 

and volume of Big Analog Data and unstructured 

documentation (Franklin, 2012).  

 

The convergence of pervasive sensory data sources, new 

information technologies, growing information stores and a 

reduction in the overall cost and time needed for analysis 

has helped big data and specifically our industrial big analog 

data cross the chasm from innovation to early adoption. Big 

data is still an early-stage technology, but expect that over 

the next 18 months it will break double digits on project 

adoption basis. (Rogers, 2011).  

 

 
Figure 10.  IBM’s platform and vision for big data (source 

IBM DeveloperWorks) 

 

So, if we can combine big analog data, in-motion and at-rest 

analytics of the condition indicating and prognostics kind, 

with expanded information technologies; perhaps it 

becomes possible to create smart monitoring and 

diagnostics, or even cloud based prognostics.  The Center 

for Intelligent Maintenance systems projects a future where 

multiple end users will submit their asset data and condition 

indicators to a cloud resource (IMS, 2012) Here, analytical 

collaboration occurs to build and leverage fault signatures, 

degradation patterns, along with prognostic analytics to 

advise us on the current and future health of our assets, 

Figure 11. 

 

 
Figure 11.  Center for Intelligent Maintenance Systems 

Cloud Prognostics Vision (source: IMS Center) 

 

Given that Moore’s law of big data is a true observation, 

then the doubling of data every two years demands that 

these information technologies will mature and become 

more pervasive.  The field of prognostics will benefit from 
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the collaboration that comes with a wide net of assets, 

sensory data, and condition indicators derived from the 

sensory data.  The combination of prognostics and data 

science technologies with information systems technologies 

is already yielding solutions for the volume, velocity, 

veracity, variety, value, and visibility of the fleetwide 

monitoring big analog data challenge.   

5. CASE STUDY 

In power generation, the above mentioned technologies are 

coming together to solve fleetwide asset monitoring data 

and information challenges.  The Electrical Power Research 

Institute (EPRI) continues to sponsor a fleet wide asset 

monitoring project within a special working group, the 

Fleetwide Monitoring Interest Group (FWMIG) 

(Hollingshaus, 2011).  This program aims to articulate a 

condition based maintenance and prognostics solution for its 

power generation members.  The applications framework 

leverages data available within power generation plants, a 

fault signature database, and traditional monitoring and 

analysis techniques for rotating machinery. 

 

Duke Energy, an EPRI member, is already deploying 

hundreds of new low cost “smart” data acquisition and 

analysis nodes (DAAN) within several power generation 

plants (Cook, 2013).  These DAANs use traditional 

piezoelectric dual mode accelerometers with temperature 

sensing elements to monitor for changes in balance of plant 

equipment that supports turbine generators, Figure 12. 

 

 
Figure 12. Duke Energy architecture for data acquisition and 

analysis nodes. 

 

In the late 1990s, Duke Energy began its fleetwide 

monitoring program using commercial handheld 

instruments for vibration, thermography, ultrasonic, motor 

current, and oil analysis.  Today, Duke Energy machinery 

health subject matter experts spend 80 percent of their time 

with these hand held instruments simply collecting sensory 

data.   

 

Beginning in 2012, Duke Energy began to automate data 

collection with flexible DAANs, thereby reducing the labor 

costs and sparse periodicity associated with manual analog 

data collections.  With the new DAANs in place, these same 

subject matter experts will be able to spend 80 percent of 

their time analyzing sensory data and planning maintenance 

actions.  While the core initial motivation and return on 

investment at Duke Energy is employee utilization, the 

opportunity for prognostics, especially data driven, is 

tremendous as vibration, temperature, and oil analysis 

analog data now stream at regular intervals into the Duke 

Energy IT infrastructure, Figure 13.   

 

 
Figure 13. Big analog data sensory data flow 

 

To accomplish the high level architectures, Duke Energy is 

working with EPRI and condition monitoring vendors to 

develop and implement a big analog data system for 

fleetwide asset monitoring that manages the six “V” 

challenges of big data.  As shown earlier in Figure 5, and in 

Figure 13, the DAAN works to address volume, velocity, 

veracity, variety, and value.  Using an event base local 

recording structure, Figure 5, sensory data is filtered to just 

data that is periodic or has a change.  This filtering helps 

address volume.  Using a store and forward communications 

scheme, data is transferred at the bandwidth allowed on the 

network.  By storing and forwarding, the velocity of data is 

controlled by network administration tools.   The DAAN 

also checks sensor value validity by using range checking 

and open/short cabling issues.  This sensor value check 

helps address veracity.  Lastly, the DAAN labels all data 

with sensory data type, measurement characteristics, and 

equipment hierarchy down to the component where the 

sensor is attached.  The labeling tasks helps address the 

variety of the various analog measurements made by the 

DAAN.   

To support the new volume, velocity, and variety of data 

coming from the newly deployed DAANs, Duke Energy has 

formed an IT task force to develop a big analog data 

strategy.  The goal of the task force is to maximize value 

and visibility in particular with respect to equipment 

maintenance, availability and reliability.  The current 

organization of data analytics orchestrated by Duke Energy 

IT, EPRI, and vendors is show in Figure 14.  Value and 

Visibility at Duke Energy are determined at the monitoring 

and diagnostics center in Charlotte, NC.  Here all condition 

indicators and operational process parameters are recorded 

in OSIsoft PI™’s historian for advanced pattern recognition 
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and anomaly detection by Instep Software’s PRiSM™ 

predictive analytics tools.   

 

 
Figure 14. Analytics flow in big analog data applications 

 

While the condition indicators are published to enterprise 

historians, the technical exam data including vibration time 

waveforms, stored in TDMS format, remains at the plant 

server level.  This allows subject matter experts to access 

and analyze the analog sensory data using common graphics 

and analysis techniques associated with the particular 

technology.  For example, vibration time waveforms are 

analyzed with frequency spectra, in the order domain, using 

harmonic, sideband cursors, and waterfall displays.  The 

vibration analytical tools also provide trends and alarms at 

the local plant level for harmonics of rotational speed or 

order analysis, as well as trending of all condition indicators 

calculated at the DAAN or the plant server computer level.   

However, time waveform data is big data, and the volume 

needs management at the plant level.  Once condition 

indicators are extracted and published to the OSIsoft PI™ 

historian, some of the time waveform data can be discarded.  

An aging strategy is implemented that removes all time 

waveform data, after five days with the exception of those 

time waveforms most close to peak power demand times of 

day, 8:00 AM, Noon, and 4:00 PM.  In addition, any time 

waveform that was recorded due to a measurement value 

alarm is preserved.  Subject matter experts can also mark 

specific data files for preservation as the need arises.   

As condition indicators are analyzed in the historian, user 

notes regarding equipment, maintenance records, best 

practices, and recommended actions are also assembled 

from various data sources and locations within the Duke 

Energy information technology infrastructure (Hesler, 

2010).  The challenge lies in assembling, storing, and 

retrieving information both from fleetwide asset monitoring 

and also operating parameters, maintenance activities, and 

equipment component health.  To address the challenge, 

Duke Energy has deployed EPRI’s PlantView® software 

platform for managing power plant assets and developing 

condition status reports on plant equipment, Figure 15.   

 
Figure 15. PlantView® health report matrix, image courtesy 

of Power Vision, Inc. 

 

The PlantView software provides applications for entering 

storing and viewing information about plant operating 

parameters, maintenance activities, and equipment health.  

The status of equipment is kept in an integrated database.  

Visibility is provided thru a series of web services 

applications allowing users to access information from user 

customizable web portals.  Duke Energy now has over 

10,000 internal users benefiting from the PlantView web 

portals.   

At Duke Energy, this is an obvious case where the 

opportunity for prognostics and IT come together to mine 

big analog data for the benefit of asset owners, asset 

operators, and the evolution of prognostics.  Beginning with 

the DAAN, condition indicators extracted from monitored 

equipment, are supplemented with additional condition 

indicators at the plant server computer. This is the same 

computer that manages the DAANs.   Subsequent to 

publishing the condition indicators to the enterprise 

historian, the advanced pattern recognition software begins 

comparison of current condition indicators to baselines for 

the specific operating condition.  A web interface is 

provided for systems users and business owners to see both 

power output from generating units, as well as any 

equipment or process problems that may need addressing.  

The web interface, PlantView, brings the value and 

visibility of operations data to those responsible for making 

business decisions.   

6. CONCLUSION 

Big data, especially of the analog kind, can and does present 

challenges.  Fortunately, information technology is evolving 

as quickly as the volume of data grows.  Both in-motion and 

at-rest analytics are working to make sense of big analog 

data.  The growing deployment of a wide range of sensors 

across a wide net of assets promises to accelerate the 

success and science of prognostic applications for 

monitoring fleets of assets.   
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ABSTRACT

Traditional fault diagnosis and prognosis (FDP) approaches
are based on periodic sampling,i.e. samples are taken and
algorithms are executed both in a periodic manner. As the
volume of sensor data and complexity of algorithms keep in-
creasing, the bottleneck of FDP is mainly the limited com-
putational resources, which is especially true for distributed
applications where FDP functions are deployed on microcon-
trollers and embedded systems with limited computation re-
sources. This paper introduces the concept of Lebesgue sam-
pling in FDP and proposes a Lebesgue sampling based fault
diagnosis and prognosis (LS-FDP) framework. In the pro-
posed LS-FDP, a novel diagnostic philosophy of “execution
only when necessary” is developed in computation cost re-
duction and uncertainty management. For prognosis, differ-
ent from traditional approaches in which the prognostic hori-
zon is on the time axis, the proposed approach defines prog-
nostic horizon on the state axis. With a reduced prognostic
horizon, the LS-FDP naturally benefits the uncertainty man-
agement. The goal is to create the fundamental knowledge for
LS-FDP solutions that are cost-efficient, capable for the de-
ployment on systems with limited computation sources, and
supportive to the trend of distributed FDP schemes in com-
plex systems. The design and implementation of LS-FDP
based on particle filtering algorithms are presented with ex-
perimental results to verify the effectiveness of the proposed
approaches.

1. INTRODUCTION

Integrated System Health Management is a critical capability
required for many safety critical systems such as unmanned
air/ground/sea vehicles, aircraft, power generation, nuclear
power plants, and various industrial systems (Tang, Zhang,
DeCastro, & Hettler, 2011; Tang, Hettler, Zhang, & DeCas-
tro, 2011; DeCastro, Tang, & Zhang, 2011; Zhang, Tang, De-
Castro, & Goebel, 2011; Balanban & Slonso, 2013). The fun-

Bin Zhang et al. This is an open-access article distributed under the terms of
the Creative Commons Attribution 3.0 United States License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

damental enabling technologies of integrated system health
management include sensing, data acquisition, fault diagno-
sis and prognosis (FDP), and decision-making, etc. Diagnosis
and prognosis, as fundamental enabling techniques, are not
new concepts (Tumer & Bajwa, 2004; Vachtsevanos, Lewis,
Roemer, Hess, & Wu, 2006; Zhang, Khawaja, Patrick, &
Vachtsevanos, 2008; Schwabacher & Goebel, 2007). Diag-
nosis aims to monitor the health state of the component or
the system such that the current health state can be obtained
in real-time. The challenge in diagnosis is to detect potential
faults as early and accurate as possible during the operation of
a monitored system. Usually a fault cannot be measured di-
rectly. In Bayes theory, the fault state can be obtained by ap-
plying Bayesian estimation with a fault diagnostic model and
a real-time measurement (Boskoski & Urevc, 2011; Zhang,
Khawaja, Patrick, & Vachtsevanos, 2010; Zhang, Sconyers, et
al., 2009; Zhang, Khawaja, et al., 2009; Li, Kurfess, & Liang,
2000; Goebel, Eklund, Hu, Avasarala, & Celaya, 2006; Goebel,
Saha, & Saxena, 2008). In the context of fault diagnosis, the
real-time measurements are often features or fault condition
indicators extracted from raw measurements, such as vibra-
tion, current, voltage.

Prognosis refers to the generation of long-term predictions
that describe the evolution of a fault and the estimation of the
remaining useful life (RUL) of a failing component or sub-
system. In reliability study, there are many diagnostic and
prognostic approaches, such as Weibull-based risk distribu-
tions (Kaminskiy, 2005), the graphical reliability degrada-
tion modeling approach (Huang & Dietrich, 2005), and the
degradation path curve approach (Lawless, 2003; Finkelstein,
2004; Yang, 2005), to name a few. For online prognosis,
filter-based approaches are more promising, such as Kalman
filter (Celaya, Saxena, & Goebel, 2012), extended Kalman fil-
ter (Saha, Goebel, Poll, & Christophersen, 2009), unscented
Kalman filter (Anger, Schrader, & Klingauf, 2012), and par-
ticle filter (Zhang et al., 2010). Compared with many suc-
cessful cases of diagnosis (Isermann, 2005; Zhong, Fang, &
Ye, 2007; Hess & Wells, 2003; Zhang et al., 2010; Zhang,
Sconyers, et al., 2009; Zhang, Khawaja, et al., 2009; Zhang
et al., 2008; Oppenheimer & Loparo, 2002; Agogino, Bonis-
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sone, Goebel, & Vachtsevanos, 2001; Jardine, Lin, & Ban-
jevic, 2006), prognosis is more challenging (Schwabacher &
Goebel, 2007; Vachtsevanos et al., 2006; Edwards, Orchard,
Tang, Goebel, & Vachtsevanos, 2010; Usynin & Hines, 2007;
Celaya et al., 2012). Major contributors to this difficulty in-
clude nonlinear nature of fault growth, absence of measure-
ment, hybrid nature of fault modes, and various uncertainties.

A comparison of several prognostic approaches can be found
in (Goebel et al., 2008). To evaluate the performance of FDP,
different performance indexes were also developed (Saxena,
Celaya, Saha, Saha, & Goebel, 2009; Orchard & Vachtse-
vanos, 2009). For diagnosis, the matrices are often relatedto
false alarm rate, probability of detection, etc. For prognosis,
most matrices are evaluated in terms of accuracy and preci-
sion of RUL estimation. These metrics are often offline eval-
uated when failure has been physically reached and is com-
pared with the RUL estimation from prognosis.

Traditional ways to design FDP algorithms adopt periodic
sampling (also called “Riemann sampling (RS)”) where sam-
ples are taken in a periodic manner and the diagnostic and
prognostic algorithms are executed at the same rate. A nice
feature of FDP with this fixed time interval sampling is the
easiness in analysis and design. However, it may be unde-
sirable in many situations, from the computation-efficiency
point of view. On the one hand, since the sampling period is
determined according to the worst-case operating scenario,
the FDP algorithm might be executed even if there is lit-
tle new information actually present in the measurements.
In other words, the algorithm may take greater utilization
than it actually needs. This will result in significant over-
provisioning of the real-time system hardware. On the other
hand, when the fault grows very fast, it is expected to assign
more resources to the FDP algorithm so that it can takes more
frequent actions to provide accurate fault information, which
obviously cannot be met by periodic sampling. For prognosis,
RS-based FDP usually has a large prediction horizon, from
the time that a fault is detected at very early stage to a future
time instant that the fault grows to the failure threshold. This
long-term prediction not only requires a lot computation re-
sources, but also causes accumulation of uncertainties. The
LS-FDP considers the prediction horizon in the fault dimen-
sion axis and described by the number fo fault states. This
provides a straightforward means to conduct prognosis that
requires little computation resources.

As the applications of FDP has increased rapidly, the heavy
demand on computational resources makes existing FDP al-
gorithms very hard to be deployed on embedded systems that
are widely used but have very limited computation capabili-
ties. This becomes the bottleneck that prevents the distribu-
tion of FDP algorithms in complex systems. To break this
bottleneck, cost-efficient FDP solutions must be developed.
With this vision, we propose the Lebesgue sampling-based

FDP (LS-FDP) method, which is a cost efficient FDP ap-
proach where computation can be executed on an “as-needed”
basis and is promising in reducing the computational cost
compared with the traditional Riemann sampling-based FDP
(RS-FDP) algorithms. In this new approach of FDP, the nov-
elty comes from the concept of “Lebesgue sampling (LS)” (or
“event-based sampling”). Contrast to conventional periodic
sampling-based approaches, the computation in LS-FDP will
be triggered only when an event takes place, and the prog-
nosis will be executed based on the LS-based model whose
states are predefined according to the quantization level. With
the feature of “execution only when necessary” in LS, the
computation efforts in LS-FDP can be significantly reduced
by eliminating unnecessary computation when fault growth is
slow.

The paper is organized as follows: Section 2 provides an
overview of the proposed LS-FDP framework. Section 3 de-
velops a particle filtering based LS-FDP approach, which is
followed by experimental results on an epicycle planetary
gear box presented in Section 4. Section 5 gives the con-
cluding remarks with some future research topics.

2. THE PROPOSED LS-FDP FRAMEWORK

This section will establish the complete LS-FDP framework
with an overview of the proposed solutions. The unique in-
novative feature of the proposed LS-FDP is that the diag-
nostic and prognostic algorithm is no longer carried out in a
fixed time interval. Instead, the diagnosis is carried out only
when new measurements justify that the fault conditions have
changes to warrant the execution. The LS-FDP framework
is illustrated in Figure 1, which integrates external inputs,
Lebesgue samples of feature and fault dimension, models for
diagnosis and prognosis, and diagnostic and prognostic algo-
rithms.

Figure 1. The implementation framework of LS-FDP

In this paper, our focus is the introduction of Lebesgue sam-
pling into diagnosis and prognosis. Therefore, we will not
discuss data collection, preprocessing, and feature extraction.
After a feature has been successfully extracted from data to
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indicate the growth of a fault, the performance and efficiency
of FDP relies greatly on the dynamic model that describes the
fault behavior, and the diagnostic and prognostic algorithms,
which will be elaborated in the following sections.

2.1. Fault Mechanism Modeling

Assume that the actual fault growth dynamics can be described
by the following continuous-time differential equation:

ȧ = F (a, u) (1)

wherea is the fault dimension,u is system input including
items (such as external environmental factors and operating
modes) that have impacts on fault growth, andF (·) is a non-
linear function that describes the fault growth under the cur-
rent fault dimension with inputu. The feature or condition
indicator, denoted byy, is extracted from raw measurements
and serves as the real-time measurement for FDP algorithm.
Note that the mapping betweeny anda can be described by a
nonlinear functiony = h(a). In most cases,a is not measur-
able andy = a is employed such that we can usey to indicate
fault a directly. To simplify the description, we takey = a in
the following discussion.

To use this model in LS-FDP, we quantify the fault measure-
ments. Lebesgue sampling basically takes samples when the
difference between the current state and the last sampled state
exceeds the pre-defined Lebesgue state length. Then the LS-
based model of the fault dynamics in discrete-time can be
described as follows:

â(tk+1) = â(tk) + ft(D, ˙̂a(tk)) (2)

whereâ(tk) is the Lebesgue state,tk is thekth sampling in-
stant,D is the Lebesgue length, andft(·) is a nonlinear func-
tion.

In traditional prognostic algorithm, there are two steps of
prognosis. The first step is the generation of a long-term pred-
ication for the fault state pdf estimation. This is obtainedby
recursive execution of the fault growth model. The second
step is the estimation of RUL, which is essentially related to
the probability of failure at future time instants. The RUL pdf
is obtained by defining a failure threshold established from
historical data or empirical knowledge and comparing this
threshold with the long-term prediction of fault state at all
the future time instants. Compared to diagnosis, prognosis
requires much more computational resources mainly because
of long-term predication, especially when the prediction hori-
zon is large, which is not a rare case in FDP applications. To
reduce computation time and resources, a new model is de-
veloped in the LS-FDP as follows:

tk+1 = tk + gt(D, ˙̂a(tk)) (3)

Note that˙̂a(tk) = f(â(tk), u(tk)) andgt(D, ˙̂a(tk)) is a non-

linear function. Rather than conducting a long-term predic-
tion on the time axis, this model calculates the RUL on each
Lebesgue state directly so that the prediction horizon is the
number of Lebesgue states on the fault dimension axis. Since
the number of Lebesgue states on the fault dimension axis is
small, the prediction horizon for LS-based prognosis is small
and will significantly reduce the computation.

2.2. The Concept of Lebesgue Sampling

The concept of Lebesgue sampling can be illustrated through
an example of a crack on a planetary gear carrier plate in
a helicopter main power transmission system (Zhang et al.,
2010). The seeded crack starts to grow from an initial value
of 1.34 inches to 7.67 inches in 1000 cycles of operation and
the ground truth crack dimension growth is shown in Figure
2. It is clear that the fault growth in the rangeR1 = [50, 650]
cycle is slower than that in the rangeR2 = [650, 750] cycle.
Using Riemann sampling-based FDP with fix time interval,
as shown in Figure 2(a), the FDP algorithms are executed at
each cycle no matter if it is necessary. Since the fix time inter-
val is selected according to the worst-case scenario to guaran-
tee tracking accuracy for fault growth in rangeR2, there are
many unnecessary calculations in rangeR1.
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Figure 2. Illustration of LS. (a) RS with fixed time interval;
(b) LS with fixed Lebesgue state length

Ideally, we expect to reduce the number of FDP execution in
the rangeR1 where the fault growth is slow so that more re-
sources can be assigned to other tasks. In the range ofR2

where the fault growth becomes fast, we increase the num-
ber of FDP execution by assigning more resources to FDP
tasks. This setting is desirable in FPGA-based embedded sys-
tems where resources are dynamically reconfigurable and are
assigned to different tasks in realtime. With this configura-
tion, a balance between computation and performance can be
achieved. This strategy however involves time-varying sam-
pling periods that is not an easy task within the Riemann sam-
pling framework. With Lebesgue sampling, the realization of
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this strategy becomes natural. By defining Lebesgue states on
the vertical axis of fault dimension (crack length in this fig-
ure), fewer transitions between states are made when the fault
growth is slow while more transitions are made when the fault
growth is fast. For the example shown in Figure 2.(b), only
5 Lebesgue states are visited during the 550 cycles inR1 and
4 states during the 100 cycles inR2, which means that the
FDP only needs to be executed 5 times duringR1 and 4 times
during R2. With this consideration, duringR1, more com-
putation resources can be assigned to other tasks while only
a little resources are needed for FDP. DuringR2, more re-
sources are assigned to FDP tasks so that the fault dimension
can be tracked accurately.

2.3. Lebesgue Sampling-Based Diagnosis

In the LS-FDP framework, the range of the statea(t) is par-
titioned into Lebesgue states{F1, F2, · · · , Ff}, with which
the diagnostic model is discretized. The diagnostic algorithm
is executed when an event happens,i.e. the statea(t) changes
from one Lebesgue state to another one (McCann & Le, 2008;
Astrom & Bernhardsson, 1999). The time instant when an
event is generated is called the “event stamp”. The sequence
of the event stamps is denoted ast1, t2, t3, · · · , which formu-
lates a time series that can be used as the input of run-time di-
agnostic algorithms such as a Kalman filter-based or particle
filter-based algorithm (Morales-Menendez, de Freitas, Mon-
terrey, Freitas, & Poole, 2002; de Freitas, 2002; Zhang et al.,
2010; Zhang, Sconyers, et al., 2009; Orchard, Hevia-Koch,
Zhang, & Tang, 2013). The output of diagnostic algorithm is
the current fault state distribution at these event stamps and
the probability of fault detection. The implementation proce-
dure of the Lebesgue sampling-based diagnosis can be illus-
trated in the flow charts shown in Figure 3.

Figure 3. Flow chart of Lebesgue sampling-based diagnosis

2.4. Lebesgue Sampling-Based Prognosis

When a fault is detected attd, a time distribution is initialized
as the initial condition for prognosis. By Riemann sampling-
based prognosis, the prediction is conducted from the current
time instanttcurrent to future time instants tilltfail when
the fault state reaches a failure thresholdFf . The prognos-
tic horizon[tcurrent, tfail] is usually large, especially at the
early stage of the fault or when the fault growth is slow. The
prediction calculates the fault state at each fixed time interval,
which is demanding on the computational resources. More-
over, prognostic uncertainty will grow rapidly with large pre-
diction horizon.

With LS, a new prognostic philosophy is proposed. Suppose
that the fault is detected at Lebesgue stateFd, then we con-
sider the discretized prognostic model with Lebesgue states
{Fd, Fd+1, · · · , Ff}. The prognostic algorithm is implemented,
together with the LS-based prognostic model, to calculate the
distributions of operation time when the fault state reaches
different Lebesgue states{Fd, Fd+1, · · · , Ff}. Meanwhile,
it will provide a RUL estimation on Lebesgue stateFf . Note
that the prognostic horizon can be controlled by adjusting
Lebesgue state length. Increasing the Lebesgue state length
will decrease the number of events, which will reduce the
required computational resources. The implementation pro-
cedure of the Lebesgue sampling-based prognosis can be il-
lustrated in the flow charts shown in Figure 4.

Figure 4. Flow chart of Lebesgue sampling-based prognosis

3. METHODOLOGY DEVELOPMENT

3.1. Particle Filter for LS-Based Diagnosis

The fault diagnosis is basically a state estimation problem,
which can be handled in a Bayesian framework. Mathemat-
ically, assume the unobserved fault processX to be a Markov
process characterized by initial distributionp(x0) and the tran-
sition probabilityp(xk|xk−1) defined byxk = fk(xk−1, ωk)
with ωk being the process noise. The subscriptk represents
the kth event stamp caused by the transition of Lebesgue
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states. The observationsY are assumed to be conditionally
independent givenX . The distribution of(Yk|Xk) is defined
by yk = hk(xk, vk) with vk being observation noise. Let
x0:k = {x0, · · · , xk} andy1:k = {y1, · · · , yk} denote the
state and the observation up to thekth event. It is of interest
to estimate theposterior distributionp(x0:k|y1:k). The task
can be achieved by two sequential steps, prediction and filter-
ing.

In most nonlinear cases, however, analytical solutions do not
exist. Alternatively, sequential Monte Carlo (SMC) methods,
such as particle filter (Zhang et al., 2010), provide approxi-
mate solution to state estimation that is used for fault diagno-
sis.

Assume that a set ofN particles(w(i)
k−1, x

(i)
0:k−1) is available

such that they can be used to approximate a desired distri-
butionπk−1(x0:k−1), where the superscripti = 1, 2, · · · , N

denotesN particles located atx(i)
0:k−1 andw

(i)
k−1 is the weight

of the ith particle at the(k − 1)th event. The objective is to

efficiently obtain a new set ofN particles(w(i)
k , x̄

(i)
0:k) that can

approximate the distributionπk(x0:k), wherex̄(i)
0:k denotes lo-

cation ofN new particles. In the context of SMC methodol-
ogy, a Monte Carlo approximation can be obtained as:

πk(x0:k) =
N∑

i=1

w
(i)
k δ

(
x0:k − x̄

(i)
0:k

)
. (4)

with
∑N

i=1 w
(i)
k = 1, whereδ denotes the Dirac-delta func-

tion. The weight can be updated in a recursive formula as:

w
(
x̄

(i)
0:k

)
= w

(i)
k−1hk

(
y1:k|x̄(i)

0:k

)
and

w
(i)
k =

w
(

x̄
(i)
0:k

)

∑
N
i=1 w

(
x̄
(i)
0:k

) .
(5)

To implement the above mentioned particle filtering based
fault diagnosis with LS, an LS-based diagnostic model is given
by:




[
xd,1(tk+1)
xd,2(tk+1)

]
= fb

([
xd,1(tk)
xd,2(tk)

]
+ n(tk)

)

â(tk+1) = â(tk) + ft

(
D, ˙̂a(tk)

)
· xd,2(tk) + ωa(tk)

y(tk) = â(tk) + v(tk)
(6)

with nonlinear mappingfb(x) is given by

fb(x) =

{
[1 0]

T
, if ‖x − [1 0]

T ‖ ≤ ‖x − [0 1]
T ‖

[0 1]
T

, otherwise.

and the initial condition is given by:
[

xd,1(0)
xd,2(0)

]
=

[
1
0

]
,

wherexd,1 andxd,2 are a collection of Boolean states that
indicatenormal and faulty conditions, respectively,̂a is the
Lebesgue state that represents the fault dimension,ωa andv
are process and observation noises, respectively,n is inde-
pendent and identically distributed uniform white noise, and
u is the external input. In this equation,tk is the event stamp
indicating that there is a state transition event. As assumed
earlier, the feature valuey(tk) indicates the fault valuêa(tk)
directly, in order to simplify the description.

During the process of LS-based diagnosis, the diagnostic al-
gorithm is executed only when the new measurementy shows
that significant information is included. For this purpose,the
range of feature (also fault in this case) is divided into a series
of Lebesgue states. If two successive measurements cause a
transition of Lebesgue state, the diagnostic algorithm will be
executed. Otherwise, it won’t be executed.

3.2. Particle Filter for LS-Based Prognosis

Prognosis estimates the RUL. In traditional RS-based progno-
sis, the prediction is carried out with fix time interval fromthe
current time instanttcurrent to the time instanttfail that fault
state reaches failure thresholdFf . The particles are estimated
at each future time instant to approximate a fault state distri-
bution at that time instant (the first prognosis level). Then,
the fault distributions at all the future time instants are com-
pared with the failure thresholdFf by applying the law of
total probability to calculate the RUL distribution (the second
prognosis level).

This RS-based prognostic approach often involves a large prog-
nostic horizon, especially at the early stage of a fault and
when the fault growth is slow. This large prognostic horizon
causes two major issues. First, it is computationally expen-
sive and not suitable for applications with limited computa-
tional resource. Second, the uncertainty in prognosis is inher-
ent and will accumulate as the prediction horizon increases.
When the uncertainty becomes too large, the estimation of
the RUL becomes unreliable that cannot be used in decision-
making.

Figure 5. Comparison of prognostic horizon

With LS, the prediction horizon reduces to the number of
Lebesgue states from the current Lebesgue stateFj to fail-
ure thresholdFf . With this idea, each run of the prognostic
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algorithm guarantees that the fault has changed and an event
has been generated. As a result, a large amount of unnec-
essary computation can be avoided, which is impossible with
RS. It will not only reduce the requirements on computational
resources, but also provide an intuitive way to manage uncer-
tainties in prognosis. The comparison of prognostic horizon
with RS and LS is illustrated in Figure 5.

In the context of LS, the prognostic model is given by:

tk+1 = tk + gt(D, ˙̂a(tk)) + ωt(tk) (7)

whereD is Lebesgue state length andωt(tk) is a model noise.

With this model, the particles are defined on the time axis
instead of the fault dimension axis in RS-based prognosis. To
initialize the prognosis, a new set ofN particles is defined as
(w

(i)
L , t

(i)
L ), in which subscriptL denotes the Lebesgue state,

w
(i)
L denotes the particle weight, andt(i)L denotes particle on

the time axis. The initial particles can be equally weighted
with w

(i)
L = 1

N , ∀i or from diagnosis.

Note that the prognosis is carried out with a model given by
equation (7). The outcome is the distributions of the operating
time for the fault state to reach each Lebesgue state. There-
fore, in this LS-based prognosis, the RUL pdf is calculated
directly at the Lebesgue stateL = Ff .

(a) RS-based prognosis

(b) LS-based prognosis

Figure 6. Comparison of RS-based prognosis and LS-based
prognosis

The difference between RS-based and LS-based prognosis is
illustrated in Figure 6. We assume that a fault is initialized
at an unknown time instantt0. The fault is detected att1 and
prognosis is activated from this time instant. For RS-based
prognosis in Figure 6(a), the prediction horizon is[t1, tf ],
wheretf is the time stamp when the prediction of all particles
pass the failure threshold. With a sampling period ofT , the
prognostic algorithm needs to recursively prediction all par-
ticles(tf − t1)/T steps and this is the most time-consuming
part of prognosis which limits many applications. In other
words, the prediction steps are[t1, · · · , tk, tk+1, tk+2, · · · ] on
the horizontal time axis. The expectations of the distribu-
tions of the operating time to reach these Lebesgue states are
[t1, · · · , t(Fk), t(Fk+1), · · · , tf ], of which the time intervals
could be uneven.

In the Lebesgue sampling-based prognosis, the prediction hori-
zon is [F1, Ff ] whereFf is the fault dimension that indi-
cates the failure of the system. With a uniform Lebesgue
length ofD, there will be(Ff −F1)/D predication steps, and
can be denoted as[F1, · · · , Fk, Fk+1, · · · , Ff ] on the verti-
cal axis. The expectations of the distributions of the oper-
ating time for the fault reaching these Lebesgue states are
[t1, · · · , t(Fk), t(Fk+1), · · · , tf ], of which the time intervals
are uneven. In summary, the fundamental difference is that
RS-based prognosis calculates fault state distribution atgiven
time instants, while LS-based prognosis calculates time dis-
tribution at predefined Lebesgue states.

4. EXPERIMENTAL RESULTS

In this section, the proposed LS-FDP scheme with a parti-
cle filtering algorithm will be verified in a case study of an
epicyclic gear system in which a crack in the planetary car-
rier plate is developed.

4.1. Planetary Gear Box

The main transmission of Blackhawk and Seahawk helicopters
employs a five-planet epicyclic gear system, which is a criti-
cal component directly related to the availability and safety of
the vehicle. The fault is a crack in the planetary carrier plate,
as shown in Figure 7.

A timely detection of crack and prediction of failure will not
only help the decision-making on mission planning and sys-
tem reconfiguration, but also improve the reliability and safety
of the vehicle. In the experiments, a fault of seeded crack
grows with the evolving operation of the gearbox. The gear-
box operates over a large number of Ground-Air-Ground(GAG)
cycles at different torque levels. An accelerometer is mounted
at a fixed position to collect vibration data as crack length
grows. In our previous research, the vibration signal pro-
cessing and feature extraction have been discussed and ap-
plied in Riemann sampling based diagnosis and prognosis
(Chen, Zhang, Vachtsevanos, & Orchard, 2011; Chen, Zhang,

6

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

478



ANNUAL CONFERENCE OF THEPROGNOSTICS ANDHEALTH MANAGEMENT SOCIETY 2014

Figure 7. Crack of planetary gear carrier plate.

& Vachtsevanos, 2012; Zhang, Khawaja, et al., 2009; Zhang,
Sconyers, et al., 2009; Zhang et al., 2008). In this section,we
will use the crack growth data for verification of LS-FDP.
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Figure 8. Feature vector for fault growth.

The feature vectors is shown in Figure 8. Since a fault is
seeded in the experiment, the data from the first 50 cycles are
used as baseline data, which has a mean value of 1.5741, and
our objective is to detect the real-time fault growth from this
baseline crack length. Note that this feature value will be used
as a direct indicator of fault dimension as fault crack length
as described in Section 2. For prognosis, the failure threshold
is set as 4. The figure shows that the feature value reaches
this threshold at around 750th cycle of operation.

4.1.1. RS-based Diagnosis and Prognosis

To implement diagnosis and prognosis, a fault growth model
needs to be developed. For Riemann sampling based diagno-
sis and prognosis, the fault growth model is given by:

â(tk+1) = â(tk) + p1 · a(tk)p2 + ω(tk) (8)

wherep1 andp2 are parameters andω is a model noise.

A particle filtering with 500 particles are implemented and the
results of fault diagnosis is shown in Figure 9. The fault is de-
tected at the 183rd cycle, at which the expected value of fault
state is 1.94 and the 95% confidence interval is[1.79, 2.08].

In this figure, the top subfigure is the feature, given by blue
curve, compared with the filtered feature, given by magenta
curve. the bottom subfigure shows the comparison of base-
line pdf (green one) compared with the real-time estimation
pdf (red bars) at the cycle when the fault is detected. In this
experimental, 5% false alarm rate is defined and the fault de-
tection threshold is given by the blue vertical line. Note that
in this RS-based diagnosis, the diagnostic algorithm needs
to execute 183 time,i.e., every time when a new feature be-
comes available.
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Figure 9. Experimental result of RS-based diagnosis.

As a fault is detected, prognostic algorithm is activated to
conduct the long-term predication and estimation of RUL.
The initial condition of prognostic algorithm is the fault state
at the cycle when the fault is detected. The result of fault
growth and RUL estimation is shown in Figure 10. To make
the figure clear, only the fault state pdf at the 183rd cycle is
plotted and the fault state pdf at other time instants are not
shown in this figure. Instead, the expected value, upper and
lower bound of 95% confidence interval of the pdf at each
time instants are shown in this figure. Note that the progno-
sis needs to predict all particles from its current value at the
cycle 183 to the failure threshold value. In this figure, the
prediction horizon is about 700 cycles. To make the real-time
implementation of prognosis possible, the number of particles
is reduced to 20.

Then, the fault state pdf at each time instant is compared with
the failure threshold to obtain the RUL pdf, as shown in the
histogram on the horizontal axis. This process uses the law
of total probabilities and can be mathematically describedas:

pfailure(t) =

N∑

i=1

Pr
(
Failure|x(i)

t > Ff

)
w

(i)
t (9)

where superscript(i) is the index of particles,pfailure(t) is

the probability of failure at timet, w
(i)
t = Pr(x = x(i)) is
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the weight of particles at timet, andxt is the predicted value
of a particle at timet.

The RUL pdf is shown as the histogram in the figure. With
this figure, the predicted expectation of the failure time isat
the 588.6 cycle and the RUL life is 405.6 cycle. The 95% con-
fidence bound of the RUL pdf is given as[443 767]. The un-
certainty caused by the long prediction horizon is very large.
In addition, from feature vector, we can see that the feature
value reaches 4 at around 750th cycle. The distance from the
predicted expected value to this ground truth value is 161.4
cycle.
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Figure 10. Experimental result of RS-based prognosis.

4.1.2. LS-based Diagnosis and Prognosis

For LS-based diagnosis, the feature value range [1.28 4.57]
is partitioned into 20 states. The diagnostic algorithm is ex-
ecuted only when the collected feature value changes from
one Lebesgue state to another,i.e. an event happens. The
diagnostic model used in LS-based is given as:

â(tk+1) = â(tk) + D · sgn( ˙̂a(tk)) + ωa(tk) (10)

wheresgn(·) is a sign function andωa is the model noise.

The diagnostic results are shown in Figure 11. In the par-
ticle filtering algorithm, 500 particles are used. The faultis
detected at the 186th cycle. In the upper subfigure of Figure
11, the blue curve is the trajectory of feature values and the
magenta curve is the filtered feature from particle filtering.
Note that the flat segments mean no event and the diagnos-
tic algorithm does not execute. The lower subfigure shows
the fault distribution at the time of detection, where the green
distribution is the baseline pdf while the magenta histogram
is the real-time fault distribution from diagnosis. The blue
vertical line is the threshold of fault detection with 5% false
alarm rate. During these 186 cycles, there are 76 events,i.e.,
the diagnostic algorithm only runs 76 times. The reduction
of computational cost is 59.7%, which is a remarkable im-
provement. At the 186th cycle when the fault is detected, the

expected value of fault state is 1.91 and the 95% confidence
interval is[1.69, 2.08].
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Figure 11. Experimental result of LS-based diagnosis.

Same as the RS-FDP, as the fault is detected, prognostic algo-
rithm becomes activated. Since the prediction horizon is on
the vertical axis, the initial condition of prognosis cannot use
the estimation result from diagnosis directly. Therefore,we
convert the fault state pdf at the time instant of fault detection
to a time distribution for fault reaching the current Lebesgue
state. This can be done by predicting those particle not yet
reach the current Lebesgue state to this state. Then equation
(9) is used to obtain the initial time distribution for prognosis.
Note that for the prognosis shown in this figure, the prediction
horizon is only 15 Lebesgue states, which is very small com-
pare to that in RS-FDP, which is about 700 cycles. Therefore,
the LS-FDP prognosis can afford the computation of 500 par-
ticles and we do not need to reduce the number of particles.

Since the prognosis is conducted on fault dimension axis, the
diagnostic model cannot be used as we described in Section
2. The prognostic model used in LS-based prognosis is given
as:

tk+1 = tk + D · exp(− ˙̂a(tk))) + ωt(tk) (11)

The prognosis results are shown in Figure 12. To make the
figure clear, only the time distribution pdf at a few selected
Lebesgue state are plotted. Note that the time distributionpdf
at the Lebesgue state defined by the failure threshold gives the
RUL estimation pdf. In this figure, the predicted failure time
is at the 689.4 cycle and the RUL life is 503.6 cycle. The 95%
confidence bound of the RUL pdf is given as[601 747.6]. The
uncertainty is much smaller than that of Riemann-sampling
based prognosis. When the predicted RUL pdf expected value
compared with the ground truth value of 750 cycle, the dif-
ference between them is 60.6 cycle.

The advantages of Lebesgue sampling in fault diagnosis and
prognosis are obvious from the comparison of above exper-
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Figure 12. Experimental result of LS-based prognosis.

imental results. For the diagnosis, the two approaches show
the comparable performance. In terms of prognosis, the LS-
FDP shows better performance in terms of accuracy and pre-
cision. First, the introduction of Lebesgue sampling in FDP
greatly reduce the computation time and the requirement of
computation resources without sacrificing the performance
of diagnosis. Since prognosis in Riemann sampling frame-
work usually have a large prediction horizon, it often needs
more computation time and resources. This in consequence
becomes a main limitation of prognosis for those applications
with fault tolerant control and reconfigurable control, where
the real-time calculation of RUL is critical. Another impor-
tant issue with large prediction horizon in Riemann sampling
is the significant accumulation of uncertainties in prognosis
and the degradation of the performance of prognosis in terms
of accuracy and precision. The introduction of Lebesgue sam-
pling in FDP provide a natural solution for real-time imple-
mentation, especially on those systems (such as embedded
systems) with limited computation capability. The prediction
horizon of LS-FDP can be very small comparing to that of
RS-FDP, this is very good in managing the uncertainties in
prognosis.

5. CONCLUSION AND FUTURE WORKS

This paper introduces a novel fault diagnosis and progno-
sis methodology that aims to: 1) introduce the concept of
Lebesgue sampling into FDP and develop a novel FDP ap-
proach with an philosophy of “execution only when neces-
sary” or an “as-needed” basis; and 2) enable the FDP on sys-
tems with limited computation capabilities, such as the em-
bedded systems, that are widely used in automobiles, dis-
tributed diagnosis and prognosis, complex systems and net-
worked systems. The methodology is composed of mathe-
matically rigourous modules including the definition of diag-
nosis and prognosis in the framework of Lebesgue sampling
with particle filtering. Other diagnostic and prognostic al-
gorithms can be applied in this framework similarly. In the

LS-FDP, diagnostic model and prognostic model need to be
developed separately because fault diagnosis is based on the
growth of fault dimension while prognosis is based on the cal-
culation of operation time to reach different Lebesgue states
defined as different fault dimensions. Experimental results
from RS-FDP and LS-FDP on a planetary gear box with a
seeded fault are presented and compared to illustrate the ad-
vantages of the proposed solution.

The use of Lebesgue sampling concept in fault diagnosis and
prognosis are new in the research community of prognostic
and health management. The paper only shows some prelim-
inary results and there are many topics worth further research
efforts. Some of the next step research include: 1) In this pa-
per, the Lebesgue states are defined with uniform Lebesgue
length. For some applications, the optimal Lebesgue length
can be nonuniform and, therefore, the interval between Lebesgue
states are not even. 2) Uncertainty management in prognosis
is very important and critical. Although LS-FDP in many
cases can reduce the prediction horizon and is naturally ad-
vantageous in uncertainty management, the theoretical and
quantitatively analysis needs to be carried out to provide guid-
ance for FDP algorithm design and implementation. There
are many uncertainty management efforts in Riemann sam-
pling based approaches and can be extended to LS-FDP ap-
proaches. 3) As we know, modeling is critical to the per-
formance of FDP. The fault growth is a continuous process.
For FDP, we discretize the model with Lebesgue sampling
and therefore, it is necessary to investigate the accuracy loss
caused by Lebesgue sampling. This result will provide a
guidance for us on how to optimally choose the Lebesgue
states and Exergue length. 4) For many applications, diag-
nosis and prognosis is not the goal but just the starting point
for fault tolerance or system reconfiguration. It is of great
interest to integrate the LS-FDP in Riemann sampling-based
and Lebesgue sampling-based system reconfigurable control
design.
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ABSTRACT

This paper presents the application of recurrence plots (RPs)
and recurrence quantification analysis (RQA) in model-based
diagnostics of nonlinear systems. A detailed nonlinear math-
ematical model of a servo electro-hydraulic system has been
used to demonstrate the procedure. Two faults have been
considered associated with the servo valve including the in-
creased friction between spool and sleeve and the degradation
of the permanent magnet of the valve armature. The faults
have been simulated in the system by the variation of the cor-
responding parameters in the model and the effect of these
faults on the RPs and RQA parameters has been investigated.
A regression-based artificial neural network has been finally
developed and trained using the RQA parameters to estimate
the original values of the faulty parameters and identify the
severity of the faults in the system.

1. INTRODUCTION

Servo valves are complex electro-hydraulic systems which
consist of very precise and sensitive components. A small
change in the dimensions, metallurgical characteristics, or
other parameters of these components can produce instabil-
ity, error or even failure in the performance of the system.
Hence, it is important to utilize effective algorithms and tech-
niques to constantly monitor the performance of such systems
and identify faults that can appear in them along with location
and severity of the faults. Due to highly nonlinear character-
istics of servo valves, it is essential to use techniques that can
perform effectively in different domains of the nonlinear re-
sponse.

In this paper, we introduce the application of recurrence plots
(RPs) and recurrence quantification analysis (RQA) in model-
based diagnostics of servo valves. The approach is general

Mohsen Samadani et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

though and can be applied to any complex nonlinear system.
Model-based fault detection approaches can be classified into
three main categories of parity relation (Chow & Willsky,
1984; Gertler, 1997; Gertler & Singer, 1990), observer/filter-
based (Frank & Ding, 1997; Patton, Frank, & Clarke, 1989)
and parameter estimation (Isermann, 1982, 1984) methods.
In parameter estimation method which is the main scope of
this research, the parameters of the defective system are es-
timated and compared with the original parameters of the
healthy system. The changes in parameter values are in many
cases directly related to the defects. Therefore, this knowl-
edge facilitates the fault diagnostics task. The parameter esti-
mation technique has been used by many researchers for the
detection of the faults in complex systems such as jet engines,
rolling element bearings, DC motors, etc. (Baskiotis, Ray-
mond, & Rault, 1979; Kappaganthu & Nataraj, 2011a; Liu,
Zhang, Liu, & Yang, 2000). More information about param-
eter estimation based fault detection can be found in (Frank,
Ding, & Koppen-Seliger, 2000; Isermann, 1997, 2005a, 2005b).

In general, nonlinear dynamic systems can exhibit diverse
phenomena including multi-periodic, quasi-periodic and chaotic
responses, as well as bifurcation and limit cycles. Many stud-
ies have reported the emergence of these complex nonlin-
ear phenomena in industrial machinery originating from de-
fects or due to their nonlinear nature (Sankaravelu, Noah,
& Burger, 1994; Mevel & Guyader, 1993; Kappaganthu &
Nataraj, 2011b). The prevailing parameter estimation meth-
ods are based on system identification techniques which are
mostly suitable for linear systems and are not effective when
the system response includes complex nonlinear phenomena.
Moreover, the available methods require a pre-specified range
for the initial guess of the parameter values which might not
always be available in practice.

This paper presents the initial investigation of a new approach
for parameter estimation-based diagnostics of nonlinear sys-
tems, based on the extracted information from the nonlin-
ear response. Our main thesis is that the nonlinear dynamic
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response of practical systems contains valuable information
about the system including knowledge that could be used to
develop an effective diagnostics framework. In an earlier
work (Samadani, Kwuimy, & Nataraj, 2014, 2013) we pre-
sented an approach to extract information and features from
the phase plane plot of the response in the periodic domain.
The present paper extends that approach to systems with even
more complex nonlinearities including quasi-periodicity us-
ing more advanced nonlinear dynamic analysis tools. The
analysis in this paper is based on the recurrence properties
of the system output in its reconstructed state space. In many
cases, the phase space has dimensions higher than three which
can only be visualized by projection into the two or three-
dimensional sub-spaces. However, recurrence plots enable us
to visualize and investigate certain aspects of the phase space
trajectory in a two dimensional representation. The method
of recurrence plots is a strong and effective tool for analy-
sis of complex systems which has already been used for fault
identification and diagnostics of nonlinear systems (Kwuimy,
Samadani, Kappaganthu, & Nataraj, 2015). However, this is
the first effort to use this method in a model-based approach
to estimate the parameters of the system for fault diagnostics.

A detailed nonlinear mathematical model has been used to
simulate the performance of the electro-hydraulic system. The
analyses have been performed on the output flow of the servo
valve. Three different electrical current signals including a
periodic, a bi-periodic and a quasi-periodic signal have been
input to the servo valve to investigate the performance of the
algorithm in various nonlinear domains. RQA parameters
have been obtained from the reconstructed phase space and
used as the response features to identify dynamical changes
in the system. Finally, an artificial neural network has been
trained for mapping of the feature space to the parameter
space.

The remaining parts of this paper are organized as follows.
In section 2, a detailed mathematical model of the electro-
hydraulic valve has been derived. In section 3, the definition
of recurrence plots and RQA parameters have been provided.
Section 4 describes the diagnostics algorithm along with the
analyses and subsequent discussions. The conclusion is made
in section 5.

2. MODELING OF THE ELECTRO-HYDRAULIC SERVO
SYSTEM

A detailed dynamical model of a two-stage servo valve with a
mechanical feedback has been used in the analyses. This sys-
tem is shown in Fig. 1. Only the final equations are presented
here. The detailed explanation of formulae can be found in
(Samadani, Behbahani, & Nataraj, 2013; Rabie, 2009; Gordić,
Babić, & Jovičić, 2004). The definition of system states and
parameters along with the nominal values of the parameters
have been presented in the nomenclature.

Neglecting the effect of the magnetic hysteresis, the net torque
on the armature is given by the following expression.

Figure 1. Functional schematic of the electro-hydraulic
servo system [18]

T = Kiie (1)

where the coefficient Ki can be calculated by:

Ki =
NλpµoAL

2x2
o

(2)

The motion of the armature and the elements attached to it is
described by the following equations:

T = J
d2θ

dt2
+ fθ

dθ

dt
+ KT θ + TL + TP + TF (3)

TP =
π

4
d2

f (P2 − P1)Lf (4)

The feedback torque depends on the displacement of the spool
and the angle of the flapper and can be given by:

TF = FSLS = KS(LSθ + x)LS (5)

The rotational displacement of the flapper is limited mechan-
ically by the jet nozzles. When the flapper reaches any of the
side jet nozzles, a counter torque TL is applied on it which
can be calculated by the following equation:

2
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TL =

{
0, |xf | < xi

Rs
dθ
dt − (|xf | − xi)KLfLf sign(xf ), |xf | > xi

(6)

The flow rates through the flapper valve restrictions are given
by the following equations:

Q1 = CDAo

√
2

ρ
(Ps − P1) = C12

√
(Ps − P1) (7)

Q2 = CDAo

√
2

ρ
(Ps − P2) = C12

√
(Ps − P2) (8)

Q3 = Cdπdf (xi + xf )
√

2
ρ (P1 − P3)

= C34(xi + xf )
√

(P1 − P3)

(9)

Q4 = Cdπdf (xi − xf )
√

2
ρ (P2 − P3)

= C34(xi − xf )
√

(P2 − P3)

(10)

xf = Lfθ (11)

Q5 = CdAs

√
2

ρ
(P3 − PT ) = C5

√
(P3 − PT ) (12)

By using the continuity equation for the chambers of the flap-
per valve, the following expressions can be deduced:

Q1 − Q3 + As
dx

dt
=

Vo − Asx

B

dP1

dt
(13)

Q2 − Q4 − As
dx

dt
=

Vo + Asx

B

dP2

dt
(14)

Q3 + Q4 − Q5 =
V3

B

dP3

dt
(15)

The motion of the spool is governed by the following equa-
tions.

As(P2 − P1) = ms
d2x

dt2
+ fs

dx

dt
+ Fj + Fs (16)

Fj =





(
ρQ2

b

CcAb
+

ρQ2
d

CcAd

)
sign(x) for x > 0

(
ρQ2

a

CcAa
+

ρQ2
c

CcAc

)
sign(x) for x < 0

(17)

Ignoring the effect of transmission lines between the valve
and the symmetrical hydraulic cylinder, the flow rates through
the valve restriction areas are given by:

Qa = CdAa(x)

√
2

ρ
(PA − PT ) (18)

Qb = CdAb(x)

√
2

ρ
(Ps − PA) (19)

Qc = CdAc(x)

√
2

ρ
(Ps − PB) (20)

Qd = CdAd(x)

√
2

ρ
(PB − PT ) (21)

The area of the valve restrictions are given by:

{ Aa = Ac = ωc
for x ≥ 0

Ab = Ad = ω
√

(x2 + c2)
(22)

{
Aa = Ac = ω

√
(x2 + c2)

for x ≤ 0
Ab = Ad = ωc

(23)

Considering the internal leakage and neglecting the external
leakage, the following equations can be obtained by applying
the continuity equation to the cylinder chambers.

Qb − Qa − AP
dy

dt
− (PA − PB)

Ri
=

(Vc + Apy)

B

dPA

dt
(24)

Qc−Qad+AP
dy

dt
− (PA − PB)

Ri
=

(Vc − Apy)

B

dPB

dt
(25)

Finally, the equation of motion for the cylinder piston is given
by:

AP (PA − PB) = mp
d2y

dt2
+ fP

dy

dt
+ Kby (26)

2.1. Servo Valve Faults

Various faults leading to parameter changes can appear in a
servo valve. Three of the common defects in servo valves are:

• Change of magneto-motive force of the permanent mag-
net λp over time, which leads to the change of Ki

• Change of spool friction coefficient fs, due to clearance
variations or contamination

3
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• Decrease in the diameter of nozzles df due to contami-
nation or residuals

Sensitivity analyses show that the change of df does not sig-
nificantly affect the dynamics of the system and hence, cannot
be captured by dynamical analysis, unless the contamination
blocks the nozzles completely. In this research, we assume
the first two faults and use the response of the system in order
to identify changes in those parameters. We suppose that one
can measure the position of cylinder and the output flow of
the valve.

3. RECURRENCE PLOTS AND RECURRENCE QUANTIFI-
CATION ANALYSIS

The recurrence plots analysis for time series is based on the
analysis of a matrix R whose elements are defined as:

Rij =

{
1, Φi ≈ Φj ,

0, Φi ̸= Φj ,
, i, j = 1...N, (27)

where Φi = (ϕ1i, ϕ2i, ..., ϕmi) is a state vector the dimension
of m, N is the length of the time series, i and j are related
respectively to the row and column of the matrix, and Φi ≈
Φj means equality up to an error ϵ.

If only a time series is available, the state vector Φ can be
reconstructed by using delay embedding theorem (Takens,
1981; Abarbanel, 1996; Fontaine, Dia, & Renner, 2011; Kwuimy,
Samadani, & Nataraj, 2014). In this paper, the state vector has
been reconstructed from the output flow of the valve. This
is done in two steps: The first step consists of estimating the
prescribed time lag T and the second step would be the evalu-
ation of the embedded dimension m. In practice, if u(i) is the
available time series, the value of T corresponds to the first
minimum of the average mutual information between the val-
ues of u(i) and u(i+T ), and the embedding dimension can be
deduced from the method of false nearness neighbor (Takens,
1981; Abarbanel, 1996; Kantz & Schreiber, 2004; Kwuimy
et al., 2014). Once the values of T and m are obtained, the
state vector Φ can be reconstructed by:

Φ = (u(i), u(i + T ), . . . , u(i + T (m − 1)) (28)

The elements of the matrix R are thus obtained by compar-
ing the state of the system at time i and j with a threshold
precision ϵ. Thus, formally, one has:

Rij = θ(ϵ − ||Φi − Φj ||), (29)

with ||.|| been the Euclidian norm (L2-norm) and θ(y) is the
heaviside function defined as:

θ(y) = 1 for y > 0 and θ(y) = 0 for y < 0

Once we have the R matrix, the RP graph is obtained by plot-
ting the Rij points in the i and j plane with different colors.
By definition, RP graphs are always symmetric (Rij = Rji)
and always have a central diagonal.

In order to go beyond the qualitative impression given by
RPs, complexity measures have been developed that quantify
the structures of RPs and are called recurrence quantification
analysis (RQA) (Zbilut, Thomasson, & Webber, 2002). In
this paper, we use the following RQA parameters to quantify
the RP of the system under various fault conditions.

• Recurrence rate (RR)

The recurrence rate is the simplest RQA parameter which
measures the density of recurrence points in a recurrence
plot.

RR =
1

N2

N∑

i,j=1

Ri,j(ϵ) (30)

• Determinism (DET )

The determinism is the percentage of recurrence points
which form diagonal lines in the recurrence plot of min-
imal length ℓmin.

DET =

∑N
ℓ=ℓmin

ℓP (ℓ)
∑N

ℓ=1 ℓP (ℓ)
(31)

where P (ℓ) is the frequency distribution of the lengths ℓ
of the diagonal lines.

• Laminarity (LAM )

In the same way, the amount of recurrence points form-
ing vertical lines can be quantified by laminarity.

LAM =

∑N
v=vmin

vP (v)
∑N

v=1 vP (v)
(32)

where P (v) is the frequency distribution of the lengths v
of the vertical lines, which have at least a length of vmin.

• Average length of the diagonal lines (L)

L is related with the predictability time of the dynami-
cal system.

L =

∑N
ℓ=ℓmin

ℓP (ℓ)
∑N

ℓ=ℓmin
P (ℓ)

(33)

• Trapping Time (TT )

The trapping time measures the average length of the ver-
tical lines.

4
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TT =

∑N
v=vmin

vP (v)
∑N

v=vmin
P (v)

(34)

• Entropy (ENTR)

The probability that a diagonal line has exactly length
ℓ can be estimated with p(ℓ) = P (ℓ)∑N

ℓ=ℓmin
P (ℓ)

. ENTR

is the Shannon entropy of this probability which reflects
the complexity of the RP in respect of the diagonal lines.

ENTR = −
N∑

ℓ=ℓmin

p(ℓ) ln p(ℓ) (35)

4. FAULT DIAGNOSTICS AND SEVERITY ANALYSIS

A standard procedure to identify faults and dynamical changes
in systems is to input a pre-specified signal to the system, ob-
tain the response and compare the signatures of the response
with the ones of the system response in healthy conditions.
Here we have input an electrical current signal to the servo
valve, and measured the output flow of the valve. The state
space of the system has then been reconstructed from the out-
put flow signal and the effect of the parameter changes on
the response has been evaluated using the defined recurrence
quantification parameters.

In order to investigate the effectiveness of the approach in var-
ious domains of the nonlinear response, three different signals
have been input to the servo valve including:

• Periodic input signal

i = 0.01 sin 50t

• Bi-periodic input signal

i = 0.01 sin 50t + 0.005 sin 75t

• Quasi-periodic input signal

i = 0.01 sin 50t + 0.005 sin 50πt

To better understand the effect of dynamical changes in re-
currence point of view, the performance of the system is first
analyzed and presented under three sample fault cases includ-
ing:

• Healthy system

• Fault 1: Ki decreased by %50

• Fault 2: fs increased by %500

Figure 2 shows the output flow of the valve versus time, cor-
responding to the three input cases, for the three sample fault
scenarios.
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Figure 2. Time response of the system for (a): periodic, (b):
bi-periodic and (c):quai-periodic inputs to the servo valve for

three fault cases

In order to obtain the recurrence matrix and plots, we need to
reconstruct the state space from the output flow time series.
As discussed earlier, the appropriate time lag for the recon-
struction of the state space corresponds to the first minimum
in the average mutual information of the signal. Using this
method, the time lag was determined to be T=50. By applica-
tion of the method of false nearest neighbors, we found that
the minimum embedding dimension for the system is d=2.

Figure 3 shows the recurrence plots of the reconstructed state
space, for the three inputs and the three sample fault scenar-
ios.

As can be seen, the plots consist of complicated patterns which
are hard to interpret. In addition, there is little difference
between them for the three fault cases, which is not easily
detectable. Hence, we need quantitative measures to extract
information from these plots.

Table 1 shows the computed RQA parameters for all nine
cases. In this table p, bp, and qp correspond to the response
of the system to the periodic, bi-periodic and quasi-periodic
input signals, respectively. As can be seen, even though the
difference of the recurrence plots for the three fault cases is
hardly detectable by eye, RQA parameters can easily distin-
guish the differences and detect the alternations in the signal.

5

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

488



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

(a)

(b)

(c)

Figure 3. From left to right: Recurrence plots for periodic, bi-periodic and quasi-periodic inputs to the valve (a): Healthy
system (b): Fault 1 (c): Fault 2

Table 1. RQA parameters for three defect cases

Defect-free Defect 1 Defect 2

RQA Parameter p bp qp p bp qp p bp qp

RR 0.0269 0.0160 0.0071 0.0269 0.0159 0.0070 0.0266 0.0160 0.0081
DET 0.9997 0.9994 0.9589 0.9997 0.9996 0.9589 0.9994 0.9996 0.9772
LAM 0.9999 0.9993 0.9548 0.9999 0.9993 0.9530 0.9997 0.9992 0.9790

L 107.1795 102.6667 5.6023 87.2343 95.2610 5.5580 103.0904 104.3878 6.7376
TT 7.4741 7.7383 4.4261 7.4741 7.7383 4.4261 7.4678 7.7575 4.9349

ENTR 3.7933 3.9199 1.9403 3.7933 3.9199 1.9403 3.8093 3.9572 2.2226
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4.1. Mapping of Features to Parameters

So far we have illustrated how the response of the system
is affected with the change of parameters and how it can be
detected by using the RQA parameters. We were able to mea-
sure and represent these influences by quantitative criteria. In
contrast to this, the diagnostics problem is the inverse prob-
lem, where we would like to predict the system parameters
given its nonlinear response. In order to do that, machine
learning techniques can be used which have been proved to
be effective for diagnostics of machinery (Kankar, Sharma,
& Harsha, 2011) and biomedical diagnostics (Jalali et al.,
2014). In this paper, an artificial neural network (ANN) has
been used. For this purpose, a two-layer feed-forward net-
work with ten sigmoid hidden neurons and linear output neu-
rons was developed. The inputs used for the training of the
neural network were vectors of RQA parameters and the out-
puts were vectors of Ki and fs. The data was obtained by
random selection of the values of Ki and fs in the intervals
[0.1,0.6] and [1,100], respectively, simulation of the system
and computation of the response features, i.e. RQA parame-
ters, each time. A total number of 100 samples was used for
training, validation and test of the network.

Figures 4, 5, and 6 show the regression plots of the network
outputs with respect to targets for training, validation and test
sets along the Regression (R) values for each case. For a per-
fect fit, the (R) value should be close to 1 and the data in the
regression plot should fall along a 45 degree line, where the
network outputs are equal to the targets. As can be seen, in
this case, all the points have fallen along the 45 degree line
and the R values are equal to 1, which are representatives of
an accurate mapping of the features space to the parameters
space.

Table 2 shows some samples of the performance of the pa-
rameter estimation systems developed with periodic, bi-periodic
and quasi-periodic inputs. K∗

i and f∗
s represent the estimated

values of Ki and fs. This table shows that the proposed
method has a very good ability to predict the original param-
eters of the system using the defined features, especially with
the periodic input signal.

Table 2. Some examples of the performance of the parameter
estimation system

Periodic Bi-periodic Quasi-periodic

Ki fs K∗
i f∗

s K∗
i f∗

s K∗
i f∗

s

0.1 5 0.098 5.879 0.096 6.087 0.123 6.088
0.3 50 0.289 50.623 0.275 51.025 0.356 51.610
0.6 100 0.591 101.511 0.592 98.410 0.633 102.214
0.2 25 0.207 24.234 0.206 25.324 0.227 26.665
0.4 2 0.390 2.012 0.384 2.622 0.383 3.001
0.5 10 0.512 9.824 0.488 9.357 0.520 9.512

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Target

O
u

tp
u

t 
~=

 1
*T

ar
g

et
 +

 0
.0

00
83

Training: R=0.99909

 

 
Data
Fit
Y = T

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Target

O
u

tp
u

t 
~=

 1
*T

ar
g

et
 +

 0
.0

06
2

Validation: R=0.9966

 

 
Data
Fit
Y = T

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Target

O
u

tp
u

t 
~=

 0
.9

8*
T

ar
g

et
 +

 0
.0

13

Test: R=0.99711

 

 
Data
Fit
Y = T

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Target

O
u

tp
u

t 
~=

 1
*T

ar
g

et
 +

 0
.0

04

All: R=0.99835

 

 
Data
Fit
Y = T

Figure 4. Outputs of the artificial neural network with
respect to target values for the periodic input signal

5. CONCLUSION

We used recurrence plots and recurrence quantification anal-
ysis for model-based fault detection and diagnostics of an
electro-hydraulic system. It was shown that the nonlinear
response of the system contains valuable information about
the system that can be used for this purpose. The analy-
ses were performed with the assumption that only the out-
put response of the system (here output flow of the valve) is
available; and the other states were reconstructed using the
method of time delays. The recurrence plots were produced
and the corresponding recurrence analyses were performed
on the reconstructed state space of the system. It was shown
that even though the recurrence plots for the system with dif-
ferent faults can be similar, the dynamical changes can be
detected by RQA parameters. An artificial neural network
was trained using the RQA parameters to estimate the faulty
parameters of the system. It was shown that RQA parame-
ters can be used as effective features for characterizing the
nonlinear response of the system even in the multi-periodic
or quasi-periodic domain with complex nonlinearities.

In this study, the proposed method was only applied to numer-
ical data obtained from the mathematical model of the sys-
tem. Although the results were promising, there is no guar-
antee that we can obtain the same prediction accuracy for real
experimental data. Hence, it is of importance to confirm the
effectiveness of the approach with experimental analysis. In
addition, only two parametric defects (defects due to change
of parameter values) were considered in this paper, whereas
in real world applications we might have multiple paramet-
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Figure 5. Outputs of the artificial neural network with
respect to target values for the bi-periodic input signal

ric defects in the system or even defects of the type that can
change the structure of the mathematical model of the sys-
tem. The present method can be extended with using more
dynamical and statistical features in order to be able to char-
acterize the system response and diagnose the faults in such
conditions, which is currently the focus of our research.
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NOMENCLATURE
a Width of spool edges m 4e-03
A Area of air gap m2

A5 Drain orifice area m2

AL
Area of the flow between spool
and sleeve edges m2

Ao Orifice area m2

Aa′ , Ab′ ,
Ac′ , and
Ad′

Spool valve restrictions areas m2

AP Piston area m2 7e-04
As Spool cross-sectional area m2

b Width of sleeve slots m 4e-03
B Bulk modulus of oil Pa 1.5e09
c Spool radial clearance m 2e-06
Cc Contraction coefficient
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Figure 6. Outputs of the artificial neural network with
respect to target values for the quasi-periodic input signal

Cd and CD Discharge coefficients 0.661
df Flapper nozzle diameter m 5e-04
d5 Diameter of return orifice m 6e-04
ds Spool diameter m 4.6e-03
fθ Armature damping coefficient Nms/rad 0.002
Fj Hydraulic momentum force N
fp Piston friction coefficient Ns/m 1000
fs Spool friction coefficient Ns/m 3.05

Fs
Force acting at the extremity of
the feedback spring N

H
Magneto-motive force per unit
length A/m

ib Feedback current A
ic Control current A
ie Torque motor input current A

J
Moment of inertia of rotating
part Nms2 5e-07

Kb Load coefficient N/m 0
KFB Feedback gain A/m 1
KLf Equivalent flapper seat stiffness N/m 1e6
Ki Current-torque gain Nm/A 0.559
Ks Stiffness of the feedback spring N/m 900
KT Stiffness of flexure tube Nm/rad 10.68

K Rotational angle-torque gain Nm/rad 9.45e-4
L Armature length m 0.029
Lf Flapper length m 0.009

Ls
Length of the feedback spring
and flapper

m 0.03
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Lsp Length of spool land m 1.5e-02
mp Piston mass kg 5
ms Spool mass kg 0.2

P1
Pressure in the left side of the
flapper valve Pa

P2
Pressure in the right side of the
flapper valve Pa

P3
Pressure in the flapper valve
return chamber Pa

PA and PB Hydraulic cylinder pressures Pa
Ps Supply pressure Pa 1.2e7
PT Return line pressure Pa 0
Q Flow rate m3/s
Q1 Flow rate in the left orifice m3/s
Q2 Flow rate in the right orifice m3/s
Q3 Left flapper nozzle flow rate m3/s
Q4 Right flapper nozzle flow rate m3/s
Q5 Flapper valve drain flow rate m3/s
Qa, Qb,
Qc, and Qd

Flow rates through the spool
valve restrictions m3/s

Ri Resistance to internal leakage Ns/m5 1e20

Rs
Flapper seat damping
coefficient Nms/rad 5000

T
Torque of electromagnetic
torque motor Nm

TF Feedback torque Nm

TL
Torque due to flapper
displacement limiter Nm

TP
Torque due to the pressure
forces Nm

V3
Volume of the flapper valve
return chamber m3 5e-06

Vc
Half of the volume of oil filling
the cylinder m3 1e-04

Vo
Initial volume of oil in the
spool side chamber m3 2e-06

x Spool displacement m

xa
Displacement of the armature
end

m

xf
Flapper displacement on the
level of the jet nozzles

m

xi Flapper displacement limit m 3e-05

xo
Length of the air gap in the
neutral position of armature

m 3e-04

λ Magneto-motive force A

λp
Magneto-motive force of the
permanent magnet A 66.75

µ Permeability Vs/Am
µo Permeability of the air Vs/Am 4e-07
µr Relative permeability
ρ Oil density kg/m3 867

ω Width of ports on the valve
sleeve

m 0.014

θ Armature rotation angle rad
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of spool position feedback servovalves. International
Journal of Fluid Power, 5(1), 37–51.

Isermann, R. (1982). Parameter adaptive control algorithms–
a tutorial. Automatica, 18(5), 513–528.

Isermann, R. (1984). Process fault detection based on mod-
eling and estimation methods–a survey. Automatica,
20(4), 387–404.

Isermann, R. (1997). Supervision, fault-detection and fault-
diagnosis methods–an introduction. Control Engineer-
ing Practice, 5(5), 639–652.

Isermann, R. (2005a). Fault-diagnosis systems: an introduc-
tion from fault detection to fault tolerance. Springer.

Isermann, R. (2005b). Model-based fault-detection and
diagnosis–status and applications. Annual Reviews in
Control, 29(1), 71–85.

Jalali, A., Buckley, E. M., Lynch, J. M., Schwab, P. J., Licht,
D. J., & Nataraj, C. (2014, Jul). Prediction of periven-
tricular leukomalacia occurrence in neonates after heart
surgery. IEEE Journal of Biomedical and Health Infor-
matics, 18(4), 1453–1460.

9

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

492



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

Kankar, P., Sharma, S. C., & Harsha, S. (2011). Fault diag-
nosis of ball bearings using machine learning methods.
Expert Systems with Applications, 38(3), 1876–1886.

Kantz, H., & Schreiber, T. (2004). Nonlinear time series
analysis. Cambridge University Press.

Kappaganthu, K., & Nataraj, C. (2011a). Mutual informa-
tion based feature selection from data driven and model
based techniques for fault detection in rolling element
bearings. In ASME 2011 International Design Engi-
neering Technical Conferences and Computers and In-
formation in Engineering Conference (pp. 941–953).

Kappaganthu, K., & Nataraj, C. (2011b). Nonlinear mod-
eling and analysis of a rolling element bearing with a
clearance. Communications in Nonlinear Science and
Numerical Simulation, 16(10), 4134–4145.

Kwuimy, C. A. K., Samadani, M., Kappaganthu, K., &
Nataraj, C. (2015). Sequential recurrence analysis of
experimental time series of a rotor response with bear-
ing outer race faults. In Vibration engineering and tech-
nology of machinery (pp. 683–696). Springer.

Kwuimy, C. A. K., Samadani, M., & Nataraj, C. (2014). Pre-
liminary diagnostics of dynamic systems from time se-
ries. In Proceedings of the ASME International Design
Engineering Technical Conference.

Liu, X.-Q., Zhang, H.-Y., Liu, J., & Yang, J. (2000). Fault
detection and diagnosis of permanent-magnet DC mo-
tor based on parameter estimation and neural network.
IEEE Transactions on Industrial Electronics, 47(5),
1021–1030.

Mevel, B., & Guyader, J. (1993). Routes to chaos in ball
bearings. Journal of Sound and Vibration, 162(3), 471–
487.

Patton, R. J., Frank, P. M., & Clarke, R. N. (1989). Fault
diagnosis in dynamic systems: theory and application.
Prentice–Hall, Inc.

Rabie, M. (2009). Fluid power engineering. McGraw Hill
Professional.

Samadani, M., Behbahani, S., & Nataraj, C. (2013).
A reliability-based manufacturing process planning
method for the components of a complex mechatronic
system. Applied Mathematical Modelling, 37(24),
9829–9845.

Samadani, M., Kwuimy, C. A. K., & Nataraj, C. (2013).
Diagnostics of a nonlinear pendulum using computa-
tional intelligence. In ASME 2013 Dynamic Systems
and Control Conference.

Samadani, M., Kwuimy, C. A. K., & Nataraj, C. (2014).
Model-based fault diagnostics of nonlinear systems us-
ing the features of the phase space response. Commu-
nications in Nonlinear Science and Numerical Simula-
tion.

Sankaravelu, A., Noah, S. T., & Burger, C. P. (1994). Bifur-
cation and chaos in ball bearings. ASME Applied Me-

chanics Division–Publications–AMD, 192, 313–313.
Takens, F. (1981). Detecting strange attractors in turbulence.

In Dynamical Systems and Turbulence (pp. 366–381).
Springer.

Zbilut, J. P., Thomasson, N., & Webber, C. L. (2002). Re-
currence quantification analysis as a tool for nonlinear
exploration of nonstationary cardiac signals. Medical
Engineering & Physics, 24(1), 53–60.

BIOGRAPHIES

Mohsen Samadani Mohsen received his B.Sc and M.Sc in Me-
chanical Engineering from Isfahan University of Technology, Isfa-
han, Iran. He is currently a Ph.D. candidate at the Department of
Mechanical Engineering at Villanova University. Mohsen has been
involved in various research topics including manufacturing tech-
nologies, control, vibrations, system dynamics, hydraulic systems
and reliability analysis. His current research interests include data
analysis, machine learning, nonlinear dynamics and vibrations with
applications to machinery diagnostics and health management. He
is a member of Sigma Xi and ASME and a recipient of Sigma Xi
best poster award and PHM doctoral consortium travel award.

Cedrick Kwuimy Prior to joining the Department of Mechanical
Engineering at Villanova University in Jan. 2011, Dr. Kwuimy
worked in South Africa as a postdoctoral research associate at the
African Institute for Mathematical Sciences (2009-2010) and as a
Research and Teaching Assistant (2007-2009) at the Faculty of Sci-
ence at the University of Yaounde, Cameroon. He has been involved
in a wide range of research topics including vibration control, non-
linear dynamics of self-sustained electromechanical devices, syn-
chronization, nonlinear analysis of butterfly valves, and chaos con-
trol and prediction in active magnetic bearings. He has over 30 peer-
reviewed papers in international journals and conference proceed-
ings and serves as a reviewer in high standard journals including
Nonlinear Dynamics, Journal of Vibration and Control and Journal
of Sound and Vibration. Dr. Kwuimy has supervised three graduate
research theses at the African Institute for Mathematical Sciences
and is the recipient of Victor Rothschild Fellowships at African In-
stitute for Mathematical Sciences and Research.

C. Nataraj Dr. C. Nataraj holds the Mr. and Mrs. Robert F. Mor-
tiz, Sr. Endowed Chair Professorship in Engineered Systems at Vil-
lanova University. He has a B.S. in Mechanical Engineering from
Indian Institute of Technology, and M.S. and Ph.D. in Engineer-
ing Science from Arizona State University. After getting his Ph.D.
in 1987, he worked for a year as a research engineer and a part-
ner with Trumpler Associates, Inc. He is currently the Chairman
of the Mechanical Engineering Department at Villanova University.
Dr. Nataraj was also the founding director of the Center for Non-
linear Dynamics and Control in the College Of Engineering. He
has worked on various research problems in nonlinear dynamic sys-
tems with applications to mobile robotics, unmanned vehicles, rotor
dynamics, vibration, control, and electromagnetic bearings. His re-
search has been funded by Office of Naval Research, National Sci-
ence Foundation, National Institute of Health and many companies.

10

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

493



Model-Based Fault Diagnosis of a Planetary Gear Using 
Transmission Error 

Jungho Park1, Jong Moon Ha2, Byeng D. Youn3, Sang Hyuck Leem4, Joo-Ho Choi5, and Nam Ho Kim6 

1, 2, 3Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul, 151-742, Republic of Korea 
hihijung@snu.ac.kr 
billlyhjm@snu.ac.kr 
bdyoun@snu.ac.kr 

4,5Department of Aerospace & Mechanical Engineering, Korea Aerospace University, Goyang, Gyeonggido, 412-791, 
Republic of Korea 

sanghuyck@naver.com 
jhchoi@kau.ac.kr 

6Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA 
nkim@ufl.edu 

 
ABSTRACT 

A Planetary gear can transmit high torque ratio stably and, 
therefore, the gear is widely used in industrial applications, 
i.e., wind turbines, automobiles, helicopters. Unexpected 
failure of the planetary gear results in substantial economic 
loss and human casualties. Extensive efforts have been made 
to develop the fault diagnostic techniques of gears; however, 
the techniques are mostly concerned about spur gears. This is 
mainly because understanding of complex dynamic 
behaviors of a planetary gear is lacking, such as multiple gear 
contacts, non-stationary axis of rotation, etc. This study thus 
proposes model-based fault diagnostics for a planetary gear 
that is based upon its dynamic analysis. Instead of vibration 
signals, this study uses transmission error (TE) signals for 
fault diagnostics of the planetary gear because TE signals (a) 
are directly related to the dynamic behaviors of gear mesh 
stiffness and (b) increase as damages on a gear mesh reduce 
the gear mesh stiffness. A lumped parameter model was used 
for modeling dynamic behaviors of the planetary gear. For 
more precise modeling, mesh phase difference–between sun, 
ring, and planet gear– and contact ratio were taken into 
account in the lumped parameter model. After acquiring 
transmission error signals from the model, order analysis and 
data processing were executed to generate health related data 
for the planetary gear. Consequently, it is concluded that the 
use of transmission error signals helps gain understanding of 

complex dynamic behaviors of the planetary gear and 
diagnose its potential faults. 

1. INTRODUCTION 

A planetary gear is a kind of gear system composed of a ring 
gear, sun gear, planet gear and carrier as shown in Figure 1. 
While the ring gear is covering the whole gearbox, multiple 
planet gears connected by a carrier are rotating around the sun 
gear. As planet gears are distributing the loads a gear system 
delivers, the planetary gear can transmit high torque ratio in 
a stable way. So it is commonly used in many huge 
engineering applications like wind turbines, automobiles, 
helicopters. As unexpected failure of the planetary gear can 
result in substantial economic loss and human casualties, 
fault diagnostics for various gear system including the 
planetary gear has been developed.  

 
Figure 1. Cross-sectional view of a planetary gear. 
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Zheng, Li, and Chen (2002) developed fault diagnostics of a 
spur gear based on continuous wavelet transform. Samanta   
(2004) presented a comparative study for the performance of 
fault diagnostics for a spur gear between artificial neural 
networks (ANNs) and support vector machines (SVMs) 
which classify the normal and fault condition.  Saravanan, 
Cholairajan, and Ramachandran (2009) used fuzzy classifier 
with vibration signal to detect the fault of a spur bevel gear 
box. Fault diagnostics for a planetary gear is relatively less 
developed (Lei, Kong, Lin, and Zuo, 2012). Barszcz and 
Randall (2009) applied spectral kurtosis technique to detect a 
tooth crack of the planetary gear. Lei et al. (2012) proposed 
two new diagnostics parameters for the planetary gear, root 
mean square of the filtered signal (FRMS) and normalized 
summation of positive amplitudes of the difference spectrum 
between the unknown signal and the healthy signal (NSDS). 
Feng and Liang (2014) exploited the adaptive optimal kernel 
(AOK) method to deal with the non-stationary signal of the 
planetary gear. Above literatures used vibration signals to 
detect the faults of the gear system. In recent years, Acoustic 
emission signals has been used to detect the faults of a gear 
due to the sensitivity to early faults than vibration signal. Qu, 
He, Yoon, Van Hecke, Bechhoefer, and Zhu (2014) 
performed comparative study between vibration signal and 
acoustic emission signal. They found that acoustic emission 
signal is more sensitive to small tooth damage in the low 
speed range. 

However, previous signals used for fault diagnostics of gears 
have defects because they didn’t utilize the physical meaning 
of gear dynamics. Gear system is a very well organized 
system, especially a planetary gear has its own peculiarity 
due to the gear dynamics arising from pitch, contact ratio, 
phase difference. Therefore, we introduced new fault 
diagnostics signal, Transmission Error (TE) in a lumped 
parameter model. TE is defined as “the angular difference 
between the position that the output shaft of a gear drive 
would have if the gearbox were perfect (without errors or 
deflections) and the actual position of the output shaft” 
according to Remond and Mahfoudh (2005). This signal is 
deeply related with gear mesh stiffness. So, it has physical 
meaning in gear dynamics and could have potentials which 
could classify the fault condition in gear system. In this paper, 
we compared the TE signal from simulation model in both 
normal and faulty planetary gear and demonstrated the 
validity of TE for fault diagnostics of a planetary gear. 

This paper is organized as follows. The development of the 
planetary gear lumped model is described in Section 2. In 
section 3, Description about how TE could have physical 
meaning and relation with fault is followed. Section 4 
presents the way we processed the signal to effectively 
observe the fault symptom and results are shown. In section 
5, health indices used for fault diagnostics of a planetary gear 
are introduced and they are calculated from TE signal for 
normal and faulty gear obtained from simulation model. 

Finally, section 6 states the conclusion and future work of this 
research. 

2. PLANETARY GEAR MODELING 

A Planetary gear used in this paper is constructed using 
DAFUL 4.2. Basic lumped parameter modeling strategies for 
planetary gears in DAFUL 4.2 are based on a thesis from Kim 
(2001). 

2.1. Basic Specification of a Planetary Gear 

Basic gear specification used in this paper is as shown in 
Table 1. These parameters are used as input parameters for 
lumped parameter model. For example, numbers of teeth for 
each gear are used for calculating the gear ratio (4.06:1), and 
pressure angle information is used for indicating the direction 
of interacting force, and so on. The system input is a low 
speed shaft connected with a carrier and the system output is 
a high speed shaft connected with a sun gear. 

 

2.2. Gear Mesh Stiffness 

Another important parameter used in DAFUL is gear mesh 
stiffness. Gear mesh stiffness is defined as the ratio between 
the input torsional load and the total angular rotation of the 
gear (Sirichai, Howard, Morgan, and The, 1997). As mesh 
stiffness is closely related to the TE, which we would use as 
a fault signal, it is carefully parameterized in DAFUL. In 
DAFUL, gear mesh stiffness can be parameterized based on 
(a) one mesh, (b) all mesh, or (c) constant value.  

2.2.1. Magnitude of Gear Mesh Stiffness 

The magnitude of gear mesh stiffness has repeating patterns 
due to the repeating contact condition (single, double contact) 
in path of contact of gear mesh. This gear mesh stiffness can 
be obtained analytically (Cornell, 1985). However, in this 
paper, it is calculated by finite element analysis code, 
ABAQUS, and the result is as Figure 2. The Figure 2 is for 
ring-planet gear mesh stiffness calculated from ABAQUS 
code. Then, this values were parameterized as two values, 

Table 1. Planetary gear specification. 
 

Gear data Sun Ring Planet 
Number of teeth 31 95 31 

Pressure angle (deg) 20 20 20 
Module (mm) 1.5 1.5 1.5 

Pitch circle diameter 
(mm) 46.5 46.5 142.5 

Dedendum circle 
diameter (mm) 43.643 146.25 43.409 

Tip diameter (mm) 50.693 139.5 50.459 
Whole depth (mm) 3.525 3.375 3.525 
Face width (mm) 16 16 16 
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448900 and 536700N/mm for simplicity. Sun-planet gear 
mesh stiffness is achieved in the similar way and they were 
also parameterized as two values, 210600 and 274000N/mm.   

Figure 2. Ring-planet gear mesh stiffness result from finite 
element analysis. 

 

We can also notice that ring-planet gear mesh stiffness is   
bigger than sun-planet gear mesh stiffness about two times. 
This is because ring-planet gear is an internal gear which 
shows high contact ratio. 

2.2.2. Phase of Gear Mesh Stiffness 

Parker and Lin (2003) calculated phase difference of gear 
mesh stiffness not only among planets with a ring gear and 

sun gear but also between ring-planet gear mesh stiffness and 
sun-planet gear mesh stiffness in a planetary gear.  

For the case of gear mesh stiffness among planets with a ring 
gear and sun gear, the phase difference can be calculated by 
the following equation when the planet rotation is counter-
clockwise. 

2 2
s n r n

sn rn
Z Zψ ψγ γ
π π

= − =  (1) 

where 𝛾𝛾𝑠𝑠𝑠𝑠 is relative phase difference between nth sun-planet 
gear mesh stiffness and the reference sun-planet gear mesh 
stiffness, 𝛾𝛾𝑟𝑟𝑠𝑠  is relative phase difference between nth ring-
planet gear mesh stiffness and the reference ring-planet gear 
mesh stiffness, 𝑍𝑍𝑟𝑟,𝑠𝑠 is ring and sun gear tooth numbers and 
𝜓𝜓𝑠𝑠 is circumferential angle measured at reference planet gear. 
In this equation reference planet gear can be selected 
arbitrarily as 1st planet gear in Figure 1. For our case, 𝑍𝑍𝑟𝑟, 𝑍𝑍𝑠𝑠  
are 95, 31 and 𝜓𝜓1,2,3  are 0, 2π /3, 4π /3 respectively. So 
𝛾𝛾𝑟𝑟1 ,𝛾𝛾𝑟𝑟2 ,𝛾𝛾𝑟𝑟3  are 0, 2/3, 1/3 and  𝛾𝛾𝑠𝑠1 ,𝛾𝛾𝑠𝑠2 ,𝛾𝛾𝑠𝑠3  are 0, -1/3, -2/3 
respectively, which means same phase difference to the same 
planet with a ring gear and sun gear as phase difference of 
2/3, 1/3 is identical to phase difference of -1/3, -2/3. 

 For the case of gear mesh stiffness between ring-planet gear 
mesh stiffness and sun-planet gear mesh stiffness in a 
planetary gear, the phase difference (= 𝛾𝛾𝑟𝑟𝑠𝑠) can be calculated 
analytically based on pitch contact point which is the 
midpoint of the lower stiffness region. It is indicated as a red 

 

 

 

 

 

 

 

(a)                                                            (b)                                                              (c) 

 

 

 

 

 

 

       (d)                                                             (e)                                                             (f) 

Figure 3. Gear mesh stiffness of (a) 1st sun-planet gear, (b) 2nd sun-planet gear, (c) 3rd sun-planet gear,  

                                                     (d) 1st ring-planet gear, (e) 2nd ring-planet gear, (f) 3rd ring-planet gear. 
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circle in Figure 3 and it is applied to in the phase of a 
planetary gear. 

It is proved that no phase difference in sun-planet gear mesh 
stiffness could make equal load distribution at planets, and 
differing phase difference could have significant effect in 
reducing vibration and noise. (Parker & Lin, 2003) In our 
case, as phase difference is equally distributed at each planet, 
we could guess our planetary gear is designed to reduce the 
noise and vibration rather than to distribute the loads the 
system carries.  

2.3. Mesh Stiffness of a Faulty Gear 

In this paper, we define gear fault as a crack in a planet gear 
tooth. Chaari and Haddar (2009) studied the relationship 
between crack size and mesh stiffness reduction. In above 
literature, gear mesh stiffness for a spur gear gets smaller and 
smaller as a crack in a gear tooth gets larger. And this 
literature showed that 1/4 of tooth thickness- cracked gear 
induces 10% mesh stiffness reduction to the one of whole 
gear mesh stiffness. In this research, therefore, as each ring-
planet gear and sun-planet gear interaction can be thought as 
a spur gear interaction, mesh stiffness reduction would 
happen to the both ring-planet and sun-planet gear mesh 
stiffness by 10% in the same way if we assume a crack in a 
gear tooth is 1/4 of tooth thickness. However, in the planetary 
gear, we should also consider the fault phase difference 
between ring-planet gear mesh stiffness reduction and sun-
planet gear mesh stiffness reduction. The planet gear makes 
one rotation around a sun gear while it is meshing with a ring 
gear and sun gear repeatedly. So for the crack in a gear tooth, 
it contact with a sun gear, ring gear, sun gear at 0, 1/2, 1 
rotation of planet gear like Figure 4. So, the mesh stiffness 
phase difference in fault condition is 1/2 rotation of a planet 
gear like Figure 5. So this stiffness values were parameterized 
for the faulty gear mesh stiffness of the planetary gear. 

 
Figure 4. A cracked planet gear rotation behavior.  

 

3. SIGNALS FOR FAULT DETECTION 

This section will discuss TE, the signal used for fault 
detection in this research. First, we explain about why TE is 
related with health condition and how TE varies when the 

fault is seeded into gear sets. And then, TE behavior of a 
planetary gear in normal condition will be discussed. 

 
Figure 5. Ring-planet and sun-planet gear mesh stiffness for 

a cracked planetary gear. 
 

3.1. Transmission Error 

TE can be simply defined as “the output gear difference 
between the expectation and reality”. TE occurs due to many 
sources like tooth profile error, tip relief error, mesh stiffness, 
etc. In our case, we only consider the effect from mesh 
stiffness. Let’s say the gear is rotating clockwise and inverse 
torque is applied to output gear counterclockwise. Then the 
gear teeth will deflect counterclockwise due to inverse torque. 
This is the reason TE happens in a gear. That is, for the single 
contact condition, gear mesh stiffness is low, and TE would 
show higher value. Then, for the double contact condition, 
gear mesh stiffness is high, and TE would show lower value. 
In this way, TE fluctuates repeatedly along the stiffness 
fluctuation. Then, what would happen if a gear tooth is 
cracked? As we discussed in section 2, crack in a gear tooth 
makes gear mesh stiffness reduction. So, TE would increase 
as the stiffness is reduced. In this way, TE signal can be a 
physically meaningful signal differently from other signals in 
relation with mesh stiffness. Also, as stiffness reduces 
gradually along the crack size propagation, TE signal can be 
a more useful signal for fault prognostics.  

3.2. Transmission Error in a Planetary Gear 

Transmission error in a planetary gear can be calculated as  

 . . . .TE h s s rotation gear ratio l s s rotation= − ×  (2) 

where h.s.s denotes high speed shaft connected with a sun 
gear and l.s.s denotes low speed shaft connected with a carrier. 
Differently from a spur gear, TE in a planetary gear shows 
complicated behavior due to the effect from multiple meshing 
condition from ring, planet, and sun gear as in Figure 1. 
Figure 6 shows a TE signal result from DAFUL when input 
velocity is 20rad/s, inverse torque is 2×106 Nmm with 
sampling frequency 1000hz. 3 peaks in one fluctuation are 

1/2 planet revolution 
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repeatedly appearing. We could guess this could happen due 
to the effect from three planets.  

 
Figure 6. Simulated transmission error signal from a   

planetary gear.  
 

4. SIGNAL PROCESSING 

To effectively observe the fault characteristics of a planetary 
gear, TE signals were processed with three steps like Figure 
7, (1) DC component subtraction, (2) Time synchronous 
averaging (TSA), (3) Order analysis. In this section, we 
discuss the principles of each procedure for signal processing 
and explain why each procedure was performed. 

4.1. DC Component Subtraction 

The first step for signal processing is to subtract DC 
component in raw TE signal. TE fluctuates while the DC 
component is shifted due to the deflection like Figure 6. To 
effectively analyze the TE in a frequency domain, mean value 
of the TE should be subtracted from original signal. 
Comparing with Figure 7 (a) and 7 (b), you can see TE value 
is shifted along y-axis.  

4.2. Time Synchronous Averaging (TSA) 

Time synchronous averaging (TSA) for gear signal analysis 
was originally proposed to suppress the noisy signal - (a) non-
synchronous coherent signal, (b) non-coherent random signal 

(Hochmann & Sadok, 2004.). However, in this research, TSA 
was adopted to effectively observe the gear mesh frequency 
of interest in TE signal. Eq. (3) is the equation used for TSA 
in this paper. 

1

1 N

k
k

x x
N =

= ∑  
 

(3) 

where �̅�𝑥 is time synchronous averaged data, N is number of 
planet rotation and 𝑥𝑥𝑘𝑘  is TE data in time domain for kth 
planet rotation.   

By calculating equation (3), we can observe the only planet-
oriented behavior of TE signal. In Figure 7 (c), there are 31 
fluctuations which contain 3 peaks in a fluctuation as in 
Figure 6. 31 is the number of a planet gear and we can observe 
how the TE is varying for the 1 rotation of a planet gear by 
performing TSA.   

4.3. Order Analysis 

Then the order analysis was performed to analyze the effect 
from the planet gear mesh frequency. This can be performed 
by transforming time-domain TE data into frequency domain 
by Fast fourier transform (FFT) code in MATLAB.  As TSA 
data were averaged with planet rotation, we can observe the 
planet gear tooth number component and its harmonic in 
order analysis result in Figure 7 (d). 

4.4. Results from Normal and Cracked Gear 

After following these procedures, simulated TE results from 
normal and cracked planetary gear were obtained like Figure 
8, 9. Figure 8 shows the TSA of TE from normal and cracked 
planetary gear. In advance, we can see the two sparks in 
Figure 8 (b). In Figure 4, we showed that a crack in a planet 
gear contacts with a ring, sun gear repeatedly while planet 
gear makes one rotation. So, this behavior makes TE in a 
planetary gear spark from normal TE. Also there is 
magnitude difference in TE sparks. As there are difference in 
stiffness between ring-planet and sun-planet gear mesh 
stiffness, TE sparks, which arose from stiffness, also has 
difference in magnitude. 
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(a)                                           (b)                                           (c)                                             (d)    

Figure 7. Procedures for TE signal processing. 
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 Figure 9 shows the order analysis results. In Figure 9 (b), we 
can observe the sub-harmonic and sideband near the main 
harmonic. 

 

 

 

 

 

 

1(a)                                         (b) 

Figure 8. TSA results of TE in a (a) normal and (b) cracked 
planetary gear. 

 

 

 

 

 

 

 

1(a)                                           (b) 

Figure 9. Order analysis results of TE in a (a) normal and 
(b) cracked planetary gear. 

 

5. HEALTH INDEX CALCULATION 

TE results from section 4.4 need to be quantified to properly 
represent health state of the system. Lebold, McClintic, 
Campbell, Byington, and Maynard (2000) organized health 
index frequently used for gearbox diagnostics. In section 5, 
we adopted two health index and compared the results from 
normal and cracked gear. 

5.1. Health Index 

In this study, we adopted root mean square (RMS) and FRMS 
to quantitatively classify a cracked gear from a normal gear.  

First, RMS can be formulated as 

2

1

1 N

k
k

RMS x
N =

= ∑  
 

(4) 

where 𝑥𝑥𝑘𝑘 is kth time data point and 𝑁𝑁 is number of total data. 
By calculating RMS, overall noise level can be easily 
detected. 

Secondly, FRMS can be formulated as 

2

1

1 ( ( ))
T

t
FRMS s t

T =

= ∑  
 

(5) 

where s(t) is the ith data of data point of the filtered signal S 
and T is the number of total data. Filtered signal is obtained 
by filtering out the shaft frequency and its five-order 
harmonics and gear mesh frequency and its three-order 
harmonics in frequency domain. Then the signal is 
transformed into time domain again. This signal is effective 
in planetary gear analysis because shaft frequency and its 
harmonics, gear mesh frequency and its harmonics mainly 
dominates the vibration signal of planetary gear (Yaguo, et 
al., 2012). 

5.2. Health Index from Various Condition 

To verify the validity of the TE as a fault diagnostics signal, 
health indices proposed from section 5.1 are calculated using 
TE in various conditions.  

First, RMS, FRMS were calculated from various input speed 
at 1~20 rad/s like Figure 10. Then, RMS, FRMS were 
calculated from various inverse torque at 1~10×105 Nmm 
magnitude like Figure 11. We can observe that at faster input 
speed and higher inverse torque magnitude we can more 
easily differentiate the cracked gear from a normal gear. 

 

 

 

 

 

 

 

Figure 10. RMS, FRMS values from a normal, cracked 
planetary gear at various input speed. 

 

 

 

 

 

 

 

Figure 11. RMS, FRMS values from a normal, cracked 
planetary gear at various inverse torque. 

 

Also, we observed the RMS and FRMS change along the 
relative stiffness like Figure 12. Relative stiffness means the 
ratio of the stiffness to the stiffness from normal planetary 
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gear. As bigger crack size indicates larger gear mesh stiffness 
reduction, we tried to estimate health index from different 
crack size from relative stiffness. From Figure 12, we can 
notice that as crack size is getting bigger, health indices 
indicates larger values. 

 

 

 

 

 

 

 

Figure 12. RMS, FRMS values from different crack size. 

6. CONCLUSION 

This paper proposed a new signal, TE for model-based fault 
diagnostics of the planetary gear. First, we developed a 
planetary gear with lumped parameter model. In this step, we 
closely studied phase difference in ring-planet gear mesh 
stiffness and sun-planet gear mesh stiffness considering pitch 
contact point. To simulate the fault condition in a gear as a 
crack in a gear tooth, we studied the relationship between 
crack size and gear mesh stiffness, which is directly related 
with TE signal. We also considered the fault phase occurring 
from planet gear rotation. Then we analyzed the TE signal in 
an organized signal processing procedures and calculated 
health indices. By calculating health indices from various 
condition, we could conclude that TE can be a good signal 
for diagnosing the fault in a planetary gear. Moreover, as TE 
is a physically meaningful   signal related with stiffness, it 
can not only differentiate fault level but also be a signal for 
fault prognosis. 

Future work will include development of lumped parameter 
model and validation using test-bed data. As we considered 
many things in modeling the planetary gear, it can be 
developed more precisely to simulate a real planetary gear. 
Then, finally, validation using a real planetary gear TE data 
should be performed. To accurately measure the TE signal, 
many methods have been developed using encoder. So, by 
obtaining and analyzing the TE data, proposed idea could be 
validated. 
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ABSTRACT

Tracking the variation in battery dynamics as a function of
health is presently attracting attention in academia and indus-
try due to the increased usage of expensive batteries in dy-
namic systems such as aircraft and electric cars. The online
adaptation of battery models to account for age-dependent
changes in dynamics is necessary to maintain accurate esti-
mates of the remaining system operations that can be sup-
ported under battery power. A novel method for the adapta-
tion of parameters in an electrochemical model of a lithium-
ion battery is presented here. An unscented Kalman filtering
algorithm is shown to enable the production of internal bat-
tery state estimates and age-dependent electrochemical model
parameter estimates using only battery current and voltage
data collected over randomized discharge profiles. The use of
only data collected over randomized discharge profiles distin-
guishes this work from other works that make use of reference
discharge cycles to judge battery health. The experimental
results presented here compare online model estimates pro-
duced by the proposed algorithm to offline model estimates
obtained by periodically taking batteries offline to run refer-
ence discharge cycles.

1. INTRODUCTION

Continued improvements in battery cost, efficiency, and
power density have resulted in their increasing use in crit-
ical applications such as aircraft and electric cars. In such
applications, it is necessary to maintain an accurate model
of battery capabilities over many years of use. With an ac-
curate model, precise predictions of end-of-discharge pre-
dictions can be made along with predictions of the remain-
ing system operational time that can be supported under bat-
tery power (Daigle & Kulkarni, 2013; Saha, Goebel, Poll, &

Brian Bole et al. This is an open-access article distributed under the terms of
the Creative Commons Attribution 3.0 United States License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

Christophersen, 2009). However, batteries age with increased
use, and in order to continue to make accurate predictions, ap-
proaches to track of age-dependent changes in battery dynam-
ics are necessary (Saha et al., 2009). While some research has
been performed to understand the dynamics of battery aging
(Ning & Popov, 2004; Ning, White, & Popov, 2006), rela-
tively little work has been performed to develop approaches
for tracking battery age online (Saha & Goebel, 2009).

Modeling methodologies used to represent battery dynamics
are generally classified as follows: (i) empirical models; (ii)
electrochemical engineering models; (iii) multi-physics mod-
els; and (iv) molecular/atomist models (Ramadesigan et al.,
2012). Empirical models are based on fitting certain functions
to past experimental data, without making use of any physic-
ochemical principles. Electrochemical, multi-physics, and
atomist models incorporate progressively more fine-grained
representations of battery physics. Because more fine-grained
models generally increase the model development cost and
the cost of computation, it is desired to select a model gran-
ularity appropriate to an application’s accuracy requirements
and available resources (Daigle et al., 2011). In this paper,
we use an electrochemistry-based lithium ion (Li-ion) battery
model developed in (Daigle & Kulkarni, 2013). The electro-
chemical modeling used is at level of abstraction high enough
that the model is still efficient while improving upon the fi-
delity of previous approaches (Saha & Goebel, 2009; Daigle
et al., 2012; Oliva et al., 2013), which used empirical and
equivalent circuit battery models.

The use of unscented Kalman filtering (UKF) (Julier &
Uhlmann, 2004) to make online corrections to battery state
estimates based on online battery voltage measurements has
been described in several recent publications (Daigle &
Kulkarni, 2014; Bole et al., 2013; Oliva et al., 2013). The
addition of a filtering routine for closed-loop state estimation
mitigates the accumulation of model error over time as is seen
in open-loop state estimation methods such as the commonly
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used method of coulomb counting (Dai et al., 2006). This
paper demonstrates the use of UKF not only to estimate the
states in an electrochemistry model that vary over a charge-
discharge cycle, but also to adapt certain parameters in the
model that are known to change as a function of battery age.

While some research has been performed to understand the
dynamics of battery aging (Ning & Popov, 2004; Ning et al.,
2006), relatively little work has been performed to develop
approaches for tracking battery age online (Saha & Goebel,
2009). Generally, a progressive reduction in charge storage
capacity and an increase in internal resistance are both know
to occur as the battery ages. These changes are typically es-
timated by compairing the voltage dynamics of healthy and
aged batteries over a reference current profile (Broussely et
al., 2005). Estimating the state of age-dependent battery pa-
rameters from the current-voltage dynamics of batteries in op-
eration is a more challenging proposition than estimating pa-
rameters using reference cycles, because individual runs are
less able to be directly compaired. This paper introduces ex-
perimental results for an algorithm that uses only randomized
discharging data to track battery states and estimate model
parameters. The experimental results presented here compare
online model estimates produced by the proposed algorithm
to offline model estimates obtained by periodically taking bat-
teries offline to run reference discharge cycles.

This paper is organized as follows. The electrochemistry-
based lithium ion battery model is summarized in Section 2.
Battery deterioration modes are discussed in Section 3. Sam-
ple results from a set of experiments that age batteries using
randomized discharge profiles are introduced in Section 4. A
UKF algorithm for online state estimation and age-dependent
parameter identification over randomized battery usage peri-
ods is described in Section 5. Results generated by applying
the UKF algorithm to randomized discharging data sets are
summarized in Section 6. Finally, concluding remarks are
given in Section 7.

2. BATTERY CHARGE AND DISCHARGE MODELING

A battery converts chemical energy into electrical energy, and
often consists of many cells. A cell consists of a positive elec-
trode and a negative electrode with electrolyte in which the
ions can migrate. For Li-ion, a common chemistry is a pos-
itive electrode consisting of lithium cobalt oxide (LixCoO2)
and negative electrode of lithiated carbon (LixC). These ac-
tive materials are bonded to metal-foil current collectors at
both ends of the cell and electrically isolated by a micro-
porous polymer separator film that is permeable to Li ions.
The electrolyte enables lithium ions (Li+) to diffuse between
the positive and negative electrodes. The lithium ions insert
or deinsert from the active material depending upon the elec-
trode and whether the active process is charging or discharg-
ing, respectively.

This section introduces a battery model derived from a simpli-
fied set of electrochemical equations governing charge flow
and voltage drops at the cathode, anode, and separator lay-
ers of a Li-ion battery. This model is described in detail in
(Daigle & Kulkarni, 2013) and summarized here.

The voltage terms of the battery are expressed as functions
of the amount of charge in the electrodes (the states of the
model). Each electrode, positive (subscript p) and negative
(subscript n), is split into two volumes, a surface layer (sub-
script s) and a bulk layer (subscript b). The differential equa-
tions for the battery describe how charge moves through these
volumes. The charge (q) variables are described using

q̇s,p = iapp + q̇bs,p (1)
q̇b,p = −q̇bs,p + iapp − iapp (2)
q̇b,n = −q̇bs,n + iapp − iapp (3)
q̇s,n = −iapp + q̇bs,n, (4)

where iapp is the applied electric current The term q̇bs,i de-
scribes diffusion from the bulk to surface layer for electrode
i, where i = n or i = p.

q̇bs,i =
1

D
(cb,i − cs,i), (5)

whereD is the diffusion constant. The c terms are lithium ion
concentrations:

cb,i =
qb,i
vb,i

(6)

cs,i =
qs,i
vs,i

, (7)

Here, cv,i is the concentration of charge in electrode i, and
vv,i is the total volume of charge storage capability. We define
vi = vb,i + vs,i. Note now that the following relations hold:

qp = qs,p + qb,p (8)
qn = qs,n + qb,n (9)

qmax = qs,p + qb,p + qs,n + qb,n. (10)

We can also express mole fractions (x) based on the q vari-
ables:

xi =
qi
qmax , (11)

xs,i =
qs,i
qmax
s,i

, (12)

xb,i =
qb,i
qmax
b,i

, (13)

where qmax = qp + qn refers to the total amount of available
Li-ions. It follows that xp + xn = 1. For Li-ion batteries,
when fully charged, xp = 0.4 and xn = 0.6. When fully dis-
charged, xp = 1 and xn = 0 (Karthikeyan, Sikha, & White,
2008).
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Figure 1. Battery voltages.

The different potentials are summarized in Fig. 1 (origi-
nally presented in (Daigle & Kulkarni, 2013) and adapted
from (Rahn & Wang, 2013)). The overall battery voltage
V (t) is the difference between the potential at the positive
current collector, φs(0, t), and the negative current collector,
φs(L, t), minus resistance losses at the current collectors (not
shown in the diagram). At the positive current collector is the
equilibrium potential VU,p. This voltage is then reduced by
Vs,p, due to the solid-phase ohmic resistance, and Vη,p, the
surface overpotential. The electrolyte ohmic resistance then
causes another drop Ve. At the negative electrode, there is a
drop Vη,n due to the surface overpotential, and a drop Vs,n
due to the solid-phase resistance. The voltage drops again
due to the equilibrium potential at the negative current col-
lector VU,n. These voltages are described by the following
set of equations:

VU,i = U0 +
RT

nF
ln

(
1− xs,i
xs,i

)
+ VINT,i, (14)

VINT,i =
1

nF

(
Ni∑

k=0

Ai,k

(
(2xi − 1)k+1 − 2xik(1− xi)

(2xi − 1)1−k

))
,

(15)

Vo = iappRo, (16)

Vη,i =
RT

Fα
arcsinh

(
Ji
2Ji0

)
, (17)

Ji =
i

Si
, (18)

Ji0 = ki(1− xs,i)α(xs,i)1−α, (19)
V = VU,p − VU,n − V ′o − V ′η,p − V ′η,n, (20)

V̇ ′o = (Vo − V ′o)/τo (21)

V̇ ′η,p = (Vη,p − V ′η,p)/τη,p (22)

V̇ ′η,n = (Vη,n − V ′η,n)/τη,n. (23)

Here, U0 is a reference potential, R is the universal gas con-
stant, T is the electrode temperature (in K), n is the number

of electrons transferred in the reaction (n = 1 for Li-ion),
F is Faraday’s constant, Ji is the current density, and Ji0
is the exchange current density, ki is a lumped parameter of
several constants including a rate coefficient, electrolyte con-
centration, and maximum ion concentration. VINT,i is the ac-
tivity correction term (0 in the ideal condition). We use the
Redlich-Kister expansion with Np = 12 and Nn = 0 (see
(Daigle & Kulkarni, 2013)). The τ parameters are empirical
time constants (used since the voltages do not change instan-
taneously).

This model contains as states qs,p, qb,p, qb,n, qs,n, V ′o , V ′η,p,
and V ′η,n. The single model output is V . Parameter values for
a typical Li-ion cell are given in (Daigle & Kulkarni, 2013).

The state of charge (SOC) of a battery is defined to be 1 when
the battery is fully charged and 0 when the battery is fully dis-
charged by convention. In this model, it is analogous to the
mole fraction xn, but scaled from 0 to 1. We distinguish here
between nominal SOC and apparent SOC (Daigle & Kulka-
rni, 2013). Nominal SOC is computed based on the combina-
tion of the bulk and surface layer control volumes in the neg-
ative electrode, whereas apparent SOC is be computed based
only on the surface layer. When a battery reaches the voltage
cutoff, apparent SOC is 0, and nominal SOC is greater than
0 (how much greater depends on the difference between the
diffusion rate and the current drawn). Once the concentration
gradient settles out, the surface layer will be partially replen-
ished and apparent SOC will rise while nominal SOC remains
the same. Nominal (SOCn) and apparent (SOCa) SOC are
defined using

SOCn =
qn

0.6qmax (24)

SOCa =
qs,n

0.6qmaxs,n
, (25)

where qmaxs,n = qmax vs,n
vn

.1

3. BATTERY DETERIORATION MODELING

The rate of deterioration of a battery depends on the chem-
istry, charge-discharge cycling, temperature, and storage con-
ditions, among other factors. Some relevant physical aging
mechanisms observed in batteries are:

1. Solid-electrolyte interface (SEI) layer growth: The neg-
ative electrode degrades with the growth of the SEI layer
leading to an increase in the impedance. The layers are
formed during cycling and storage at high temperatures
and entrains the lithium.

2. Lithium corrosion: Lithium in the active carbon material
of the negative electrode corrodes over time leading to

1Note that SOC of 1 corresponds to the point where qn = 0.6qmaxs,n , since
the mole fraction at the positive electrode cannot go below 0.4, as described
earlier.
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degradation. This causes a decrease in the capacity due
to irreversible loss of mobile lithium ions.

3. Lithium plating: At low temperatures, high charge rates
and low cell voltages form a plating layer on the negative
electrode that leads to irreversible loss of lithium.

4. Contact loss: The SEI layer disconnects from the nega-
tive electrode, which leads to contact loss and an increase
in impedance.

5. Diffusion Stress: Changes in diffusion properties may
lead to changes in the charge and discharge times, appar-
ent capacity and impedance.

The various battery aging modes manifest in two major
changes to battery electrochemical dynamics. The first is a
loss of capacity due to parasitic and side reactions that re-
sult in a loss of active (mobile) Li ions. The second is an in-
crease in internal resistance due to SEI layer growth and other
factors. Other, less significant, changes to battery electro-
chemical dynamics are not considered here because the added
computational costs are considered to outweigh the benefit to
model accuracy. (Ning et al., 2006) looked into loss of active
lithium and increase in resistance under constant loading con-
ditions. In this work we look at degradation observed under
random loading conditions.

In the battery model, the total available charge in the battery
is represented through qmax. Therefore, the loss of active ma-
terial can be represented in the model through a change in
qmax (Daigle & Kulkarni, 2013). The Ro parameter captures
a constant ohmic drop that does not vary as a function of bat-
tery charge.

Figure 2 shows plots of model fitting with a new and aged
battery after adding adjustments to the qmax and Ro terms.
The figures clearly show the need to tune these parameters
to capture the modified electrochemical dynamics of a de-
graded battery. However, it should also be noted that the fit
shown in Figure 2(d) could be improved to a lesser extent by
adapting additional terms. The authors suggest that readers
interested in adapting additional terms in the electrochemi-
cal model start by considering the diffusion rate between the
bulk layer and surface layer (D in Eq. (5)). See (Park, Zhang,
Chung, Less, & Sastry, 2010) for a discussion of age-related
changes to the diffusion rate.

4. A BATTERY AGING EXPERIMENT

This section introduces a battery aging experiment. Battery
aging is performed here by repeatedly charging battery cells
to approximately 100% SOC (≈4.2 V) and then discharging
them to 3.2 V using a randomized sequence of current loads
ranging from 0.5A to 4A. The sequence is randomized in or-
der to better represent practical battery usage. After every
fifty randomized discharging cycles, an offline characteriza-
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Figure 2. Sample model fitting results for a new battery (a),
and an aged battery (b)-(d). The loading profiles used are
shown in (e).
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Battery Cycling Procedure:
top:

pulsed load characterization:
fully charge to 4.2V
while voltage > 3.2V

rest for 20 min
load at 1A for 10 min

end while
j = 0

random walk aging:
while j < 50

fully charge to 4.2V
while voltage > 3.2V

I = rand[0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4]
load at I for 5 min

end while
j = j + 1

end while
goto: top

Figure 3. Procedure used for battery aging and periodic char-
acterization

tion of the qmax andRo model parameters is performed using
the pulsed load cycle described in the previous section.

The battery cycling procedure that is used to age individual
battery cells and periodically recharacterize health dynamics
is outlined in Fig. 3. Fig. 4 shows battery current and voltage
for pulsed load characterization cycles taken periodically over
about 6 months of continuous battery cycling. Later pulsed
load cycles are plotted with lighter line shading.

Age-dependent changes in battery dynamics are denoted with
arrows in the figure. The battery voltage is seen to reach the
3.2V cutoff earlier as the battery ages. Aged batteries are
also seen to settle to a higher resting voltage after the pulsed
profile completes. Both phenomenon can be explained by a
decreasing trend in battery capacity and an increasing trend
in internal resistance.

Battery capacity loss will result in a decrease in available Li-
ions, and therefore a faster discharge time for a given output
current, which causes a lowering of surface and bulk battery
potentials, see Eqs. (11)-(23). An increase in internal resis-
tance will cause a proportional decrease in battery voltage,
see Eq. (16). An increased voltage drop due to an increase in
battery internal resistance will also cause the battery voltage
to reach the voltage cut-off threshold at a higher SOC, result-
ing in the higher resting battery voltage measurements seen
in Fig. 4.

Fig. 5 shows estimates of qmax and Ro obtained by perform-
ing an offline least squares fit of the actual and modeled bat-

0 100 200 300 400

3.2
3.4
3.6
3.8

4
4.2

Time (min)

V
ol

ta
ge

 (
V

)

Aging	  

Aging	  

Aging	  

0 100 200 300 400

0

0.2

0.4

0.6

0.8

1

Time (min)
C

ur
re

nt
 (

A
)

Figure 4. Pulsed voltage profiles recorded periodically over 3
months of continuous battery use.

Table 1. Statistics of linear regression fit for qmax and Ro

m0 m1 σ2 R2

qmax −8.11× 10−4 2.15 9.33× 105 0.96

Ro 1.25× 10−4 1.05× 10−1 1.4× 10−3 0.94

tery voltage over periodic pulsed load characterization cycles.
The fitted parameter values are plotted against the integral of
battery discharge current, in order to observe the relationship
between battery usage and parameter change.

A first-order regression model is considered here as a rough
approximation of parameter dependence on use. Table 1
shows the slope (denotedm0), y-intercept (denotedm1), vari-
ance (denoted σ2), and coefficient of determination (denoted
R2), for the fitted qmax andRo parameters. The coefficient of
determination is a normalized measure ∈ [0, 1] that indicates
how well the regression fits the data. A coefficient of determi-
nation greater than 0.9 indicates a fairly good model fit. The
R2 values for qmax and Ro linear regressions are both seen
to exceed this benchmark.

A discussion of battery deterioration modeling and end of
useful life prediction using such a model is beyond the scope
of this paper. The reader is also cautioned that the battery de-
terioration observed here is expected to be strongly dependent
on the design of experiments.
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Figure 5. Parameter fitting results for qmax and Ro captured
periodically over three months of continuous use.

5. ONLINE STATE ESTIMATION AND PARAMETER
IDENTIFICATION

An unscented Kalman filter (UKF) (Julier & Uhlmann, 1997,
2004) is introduced here to make corrective updates to the in-
ternal state estimates in the battery model in addition to the
age-dependent qmax and Ro parameters. Among nonlinear
filters, the UKF generally has better accuracy than the ex-
tended Kalman filter, and avoids the high computational cost
of particle filters (Arulampalam, Maskell, Gordon, & Clapp,
2002). We summarize the filter basics here; more details may
be found in (Julier & Uhlmann, 1997, 2004).

The UKF assumes the general nonlinear form of the state and
output equations, but is restricted to additive Gaussian noise.
First, ns sigma points X̂ k−1|k−1 are derived from the current
mean x̂k−1|k−1 and covariance estimates Pk−1|k−1. The pre-
diction step is:

X̂ i

k|k−1 = f(X̂ i

k−1|k−1,uk−1), i = 1, . . . , ns (26)

Ŷi

k|k−1 = h(X̂ i

k|k−1), i = 1, . . . , ns (27)

x̂k|k−1 =

ns∑

i

wiX i
k|k−1 (28)

ŷk|k−1 =

ns∑

i

wiYi
k|k−1 (29)

Pk|k−1 = Q+
ns∑

i

wi(X i
k|k−1 − x̂k|k−1)(X i

k|k−1 − x̂k|k−1)
T , (30)

where Q is the process noise covariance matrix.

The update step is:

Pyy = R+

ns∑

i

wi(Yi
k|k−1 − ŷk|k−1)(Yi

k|k−1 − ŷk|k−1)
T

(31)

Pxy =

ns∑

i

wi(X i
k|k−1 − x̂k|k−1)(Yi

k|k−1 − ŷk|k−1)
T

(32)

Kk = PxyP
−1
yy (33)

x̂k|k = x̂k|k−1 +Kk(yk − ŷk|k−1) (34)

Pk|k = Pk|k−1 −KkPyyK
T
k , (35)

where R is the sensor noise covariance matrix.

The use of the UKF for closed-loop state updates of the 7
states in the battery model described in Section 2, was pre-
sented in (Daigle & Kulkarni, 2013). The UKF algorithm
presented in (Daigle & Kulkarni, 2013) was updated for use
here by considering the Ro parameter in Eq. 16 as an addi-
tional state to be updated online by the UKF.

An additional outer-loop process is then used to infer qmax

values that correspond to a given window of SOCn estimates
under known battery loading conditions. We elected to use an
outer-loop estimation process for qmax, rather than including
it in the UKF because it is straightforward to infer qmax from
SOCn estimates. This is seen by first rewriting the SOCn
definition, given in Eq. (24), in terms of a UKF-based esti-
mate of qn.

ŜOCn(t) =
q̂n(t)

0.6qmax
, (36)

where q̂n(t) represents an estimate of qn at time t, and
ŜOCn(t) represents a subsequently derived estimate of
SOCn. The difference in ŜOCn estimates of over a given
time window is then expressed as:

ŜOCn

∣∣∣
t

t0
=

q̂n|tt0
0.6qmax

. (37)

Next, consider that the true value of qn|tt0 is equal to the
amount of charge flow into or out of the battery over the given
time window.

qn|tt0 =

∫ t

t0

iapp, (38)

where iapp represents the net current into or out of the battery.
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A substitution of Eq. (38) into Eq. (37) yeilds an inferred es-
timate of qmax.

q̂max(t) =
qn|tt0

0.6 ŜOCn

∣∣∣
t

t0

, (39)

where q̂max(t) represents an estimate of the qmax model pa-
rameter at time t.

6. RESULTS

Fig. 6(a) shows an example of the online adaptation of bat-
tery state estimates and model parameters in order to match
the measured voltage response of an aged battery over a ran-
domized discharge cycle. The predicted voltage response for
a new battery, and the voltage estimation output of a UKF-
based observer initialized with the parameters of a new bat-
tery are also plotted in Fig. 6(a). Online UKF estimates of the
qmax and Ro parameters are shown in Figs. 6(b) and (c). The
randomized loading profile used in this example is shown in
Fig. 6(d).

The battery voltage output estimates from the UKF are seen
to converge to match the measured voltage estimates over the
40 minute randomized discharging cycle. The variation seen
in the qmax and Ro estimates from 0 to 40 minutes is due
primarily to the large initial disparity between the parame-
ters fitted for a new battery model and the model parameters
needed to explain the dynamics of an aged battery. Typically,
the model parameters estimated by the UKF over a previous
discharge cycle would be used to initialize the battery model
for the following discharge cycle. This would lead to a much
smaller error in the initial parameter estimates and less pa-
rameter variation would result.

Fig. 7 shows online qmax and Ro estimates produced by the
UKF observer over successive randomized discharge cycles.
The offline estimates of qmax and Ro that were originally
shown in Fig. 5 are also plotted in Fig. 7 for comparison.
The online qmax estimates are seen in Fig. 7 to track the of-
fline qmax estimates very closely. This indicates not only that
the UKF is able to track battery capacity over randomized
discharging cycles, but also that the online battery SOC esti-
mates that are used to calculate capacity (see Eqs. (36)-(39))
are also tracking the true battery SOC over randomized usage.

Online Ro estimates are seen in Fig. 7 to be noticeably lower
and more non-linear than the offline Ro estimates. Despite
this discrepancy, online Ro estimates display some similari-
ties to the offline estimates. Both sets of Ro estimates tend be
monotonically increasing with battery age, and both show a
slightly lower resistance estimate for battery B1 than for B2
and B3. The bias observed between offline and online esti-
mates can be attributed primarily to a difficulty in setting up
the process noise covariance matrix, Q, in the UKF to filter
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Figure 6. The measured voltage response of an aged battery
over a randomized discharge cycle, the predicted voltage re-
sponse for a new battery, and the voltage estimation output of
a UKF-based observer are shown in (a). Online estimates of
the qmax and Ro parameters are shown in (b) and (c). The
loading profile used is shown in (d).

out the effects of the Ro term from those of the other param-
eters in state vector. It is certain that a refinement of Q could
improve the tracking performances observed for the qmax and
Ro parameters. However, the non-optimized tracking perfor-
mance shown here is sufficient to demonstrate the feasibility
of the proposed approach for model adaptation over variable
battery usage.
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Figure 7. Online and offline estimates of qmax and Ro model
parameters.

7. CONCLUSIONS

An approach for the online tracking of age-dependent
changes in battery dynamics was presented. An
electrochemistry-based Li-ion battery model was shown
to relate known age-dependent electrochemical phenomena
to changes in battery input-output dynamics observed over
randomized battery usage. A battery aging experiment was
introduced, and an unscented Kalman filtering algorithm
was shown to track age-dependent changes in battery model
parameters over successive randomized battery discharging
profiles.

In future work the battery sate of health tracking approach
presented here may be extended to the online prediction of
remaining useful life. This would require additional modeling
of the underlying physics of battery degradation as a function
of usage. Linear regression models for battery capacity and
internal resistance change as a function of energy discharged
are analyzed here as a starting point for this future work.
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ABSTRACT

This work relates to a project focusing on energy optimiza-
tion on offshore facilities. On oil and gas platforms it is
common practice to employ gas turbines for power produc-
tion. So as to increase the system performance and reduce
emissions, a bottoming cycle unit can be designed with par-
ticular emphasis on compactness and reliability. In such con-
text, organic Rankine cycle turbogenerators are a promising
technology. The implementation of an organic Rankine cy-
cle unit is thus considered for the power system of the Drau-
gen offshore platform in the northern sea, which is the case
study for this project. Considering the plant dynamics, it is
of paramount importance to monitor the peak temperatures
within the once-through boiler serving the bottoming unit to
prevent the decomposition of the working fluid. This paper
accordingly aims at applying the unscented Kalman filter to
estimate the temperature distribution inside the primary heat
exchanger by engaging a detailed and distributed model of
the system and available measurements. Simulation results
prove the robustness of the unscented Kalman filter with re-
spect to process noise, measurement disturbances and initial
conditions.

1. INTRODUCTION

Owing to environmental concerns and with increasing incen-
tives for reducing CO2 emissions and pollutants offshore, op-
timization of energy usage on oil and gas facilities has be-
come a focus area. On offshore platforms one or more re-
dundant gas turbines supply the electric power demand. As

Leonardo Pierobon et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

an example, a standard operational strategy is to share the
load between two engines, while a third is on stand-by or on
maintenance. The two gas turbines typically run at fairly low
loads (around 50%) in order to decrease the risk of failure of
the system, which would cause a high economic loss to the
platform operator. On the other hand, this operational strat-
egy reduces significantly the system performance, which in
turns results in a large amount of waste heat contained in the
exhaust gases exiting the engines (Nguyen et al., 2013).

A viable solution to enhance the efficiency is to implement
a waste heat recovery unit at the bottom of the gas turbines.
A mature technology accomplishing this duty is the Steam
Rankine Cycle (SRC) power module. (Kloster, 1999) de-
scribed the existing SRC units in the Oseberg, Eldfisk and
Snorre B offshore installations. Air Bottoming Cycles (ABCs)
constitute a valid alternative to SRC units as they employ a
non-toxic and inflammable working fluid. Moreover, ABC
power modules do not require a condenser as they operate
as open-cycles, thus leading to high compactness and low
weight. (Bolland, Forde, & Hånde, 1996) carried out a feasi-
bility study on the implementation of ABCs offshore. Results
proved that, despite the low gain in performance, low weight
and short pay-back time can be achieved. (Pierobon, Nguyen,
Larsen, Haglind, & Elmegaard, 2013) proposed instead the
use of Organic Rankine Cycle (ORC) power modules by tai-
loring their design to the Draugen oil and gas facility. For
the same case study, (Pierobon, Haglind, Kandepu, Fermi,
& Rossetti, 2013) demonstrated that the use of ORC units
provides larger economic revenues and power system perfor-
mances compared to ABC and SRC modules.

While ORC turbogenerators work in principle similarly to
steam Rankine cycle units, the working fluid is instead an
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organic compound characterized by lower critical tempera-
tures and pressures than water, thus making these systems
suitable for low and medium temperature waste heat recov-
ery (Quoilin, Broek, Declaye, Dewallef, & Lemort, 2013).
As a drawback, organic fluids may experience chemical dete-
rioration and decomposition at high temperatures. This criti-
cality is owed to the breakage of chemical bonds between the
molecules and the formation of smaller compounds, which
can then react to create other hydrocarbons. As the system
performance strongly relates to transport and physical prop-
erties of the working fluid, those chemical phenomena can
severely reduce the net power output and the components’
lifetime. In such context, monitoring the temperature profiles
inside the heat exchangers serving the ORC unit is a pivotal
aspect to enhance plant reliability and reduce maintenance
periods.

A possible solution accomplishing these tasks is the Kalman
Filter (KF), an algorithm which employs a state space model
of the system and measurements ascertained over time, con-
taining noise and disturbances, and provides estimates of un-
known variables that are usually more accurate than those
based on a single measurement alone. As examples of ap-
plications to heat exchangers, (G. Jonsson & Palsson, 1994)
used the KF algorithm to adjust generic empirical correla-
tions commonly employed to estimate the heat transfer co-
efficients, while (Loparo, Buchner, & Vasudeva, 1991) pro-
posed a non-linear KF algorithm for leak detection in an ex-
perimental laboratory heat exchanger process. More recently,
(G. R. Jonsson, Lalot, Palsson, & Desmet, 2007) demon-
strated the use of an Extended Kalman Filter (EKF) to detect
fouling in heat exchangers.

Notwithstanding the aforementioned works, to the knowledge
of the authors the KF algorithm has not yet been applied to
ORC waste heat recovery systems. This paper accordingly
aims at demonstrating the use of the Kalman filter to estimate
the temperature distribution in the primary heat exchanger of
an ORC unit, which is used to augment the performance of
the gas turbine-based power system installed on the Draugen
oil and gas platform. It is reported that Unscented Kalman
Filter (UKF) performs better in estimating the state variables
in a non-linear system in comparison with EKF (Kandepu,
Foss, & Imsland, 2008). Accordingly in this article, the UKF
is applied to the ORC unit with focus on the primary heat ex-
changer. A state space model of the ORC system based on
first principles is developed. Disturbances are assumed for
measurements of temperature, mass flow and density utiliz-
ing in-silico simulation-based data and assuming a Gaussian
distribution. The UKF is thus applied to estimate the temper-
ature distribution inside the main heat exchanger while the
remaining variables are assumed to be measurable.

This paper is structured as follows: Section 2 introduces the
case study, and Section 3 describes the state space model of

the ORC turbogenerator. The unscented Kalman filter algo-
rithm is then outlined in Section 4, while the results are re-
ported and discussed in Section 5. Concluding remarks are
given in Section 6.

2. CASE STUDY

The case study is the power system installed on the Draugen
oil and gas offshore platform, located 150 km from Kristian-
sund, in the Norwegian Sea. The reservoir was discovered in
1984 and started operation in 1993. The platform, operated
by A/S Norske Shell, produces gas exported via Åsgard gas
pipeline to Kårstø (Norway) and oil, which is first stored in
tanks at the bottom of the sea and then exported via a shuttle
tanker (once every 1-2 weeks). The normal power demand is
around 19 MW and it can increase up to 25 MW during oil
export. To enhance the reliability and to diminish the risk of
failure of the power system, two turbines run at a time cover-
ing 50% of the load each, while the third one is kept on stand-
by, allowing for maintenance work. Despite the low perfor-
mance, this strategy ensures the necessary reserve power for
peak loads, and the safe operation of the engines.

Figure 1 shows the layout of the power system with the ad-
ditional ORC turbogenerator recovering the heat contained in
the exhaust gases produced by gas turbine A. Gas turbines B
and C are not reported. Note that the bottoming cycle units
should have the capability to harvest the waste heat alterna-
tively from the other two engines, thus ensuring high perfor-
mances when switching the gas turbines on operation. The
twin-spool engine employs two coaxial shafts coupling the
Low Pressure Compressor (LPC) with the Low Pressure Tur-
bine (LPT) and the High Pressure Compressor (HPC) with
the High Pressure Turbine (HPT). The Power Turbine (PT)
transfers mechanical power through a dedicated shaft to the
electric Generator (GEN). Natural gas is the fuel utilized in
the Combustion Chamber (CC).

The ORC unit comprehends the single-pressure non-reheat
Once-Through Boiler (OTB), the turbine, the sea-water cooled
shell-and-tube condenser and the feed-water pump. The work-
ing fluid is cyclopentane (C5H10), a compound widely adopted
for operating ORC systems in this range of temperature, see
e.g. (Del Turco et al., 2011). As the slope of the satura-
tion curve of cyclopentane is positive (dry fluid), a shell-and-
tube recuperator is added to decrease the energy contained
in the superheated vapour exiting the ORC expander. Fig-
ure 2 illustrates the T − s diagrams of the ORC power unit
considered in this study. Starting from point 3, cyclopentane
is first preheated (3 → 4), vaporized (4 → 5) and super-
heated (5 → 6) in the once-through boiler. The fluid is then
expanded in the turbine (6 → 7) , and cooled down in the
recuperator (7 → 8). In this manner the inlet temperature
in the OTB can be enhanced by recovering energy from the
superheated vapour exiting the turbine. The working fluid is
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Figure 1. Simplified layout of the power system on the Drau-
gen offshore oil and gas platform. Gas turbine B and C are
not shown. The organic Rankine cycle module recuperates
part of the thermal power released with the exhaust gases of
one engine, in the case gas turbine A.

then condensed (8 → 9 → 1) and pumped up (1 → 2) to the
highest pressure level through the cold side of the recuperator
(2 → 3), thus closing the cycle. Note that Figure 1 does not
report node 9 as the saturated vapour condition occurs inside
the condenser.
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Figure 2. Saturation curve of cyclopentane in a T−s diagram,
showing the thermodynamic cycle state points of the organic
Rankine cycle system.

3. STATE SPACE MODEL

The transient performance of ORC power systems is primar-
ily driven by the thermal inertia of the heat exchangers. Fig-
ure 3 illustrates the discretized model utilized for the once-

through boiler and the recuperator. The model features a 1D
flow model for the hot side (top) and cold side (bottom), and
the 1D thermal model for the tube walls (middle). A counter-
flow configuration and uniform pressure distribution are as-
sumed. The tube metal wall is modelled by a 1D dynamic

Tube wall

Hot fluid

Cold fluid

h1, ṁ1
ρ1, u1

hi, ṁi
ρi, ui

hN-1, ṁN-1
ρN-1, uN-1
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Tw,1 Tw,i Tw,N-1 Tw,N

Vc,1 Vc,N-1
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hN, ṁN
ρN, uN

Figure 3. Heat exchanger discretized model.

heat balance equation, which for the i-cell can be written as

Mw,icw
dT̄w,i

dt
= q̇h − q̇c , (1)

where Mw,i and cw are the mass and the heat capacity of the
metal wall, and T̄w,i is the wall temperature at the i-volume,
calculated as the arithmetic average between the temperatures
at the inner and outer node. The variable q̇h is the heat pro-
vided by the hot stream and q̇c is the heat transferred to the
cold side. The flow model for the cold side contains one-
dimensional dynamic mass and energy balance equations, which
can be expressed as

Vc,i
d(ūiρ̄c,i)

dt
= ṁihi − ṁi+1hi+1 + q̇c , (2)

Vc,i
dρ̄c,i

dt
= ṁi − ṁi+1 , (3)

where ṁi and hi represent the mass flow and the enthalpy at
the i-node. The variables ūc,i and ρ̄c,i are the internal specific
energy and the density of the volume Vc,i calculated as arith-
metic average between the values at the inner and outer node.
In light of the relatively small variations with time of the ther-
modynamic properties on the gas side, steady state mass and
energy balances are considered (see Equation 4).

q̇h = cp,hṁh(Ti+1 − Ti) . (4)

Owing to their relatively small contributions, the thermal re-
sistance in the radial direction and thermal diffusion in the
axial direction are neglected. For the once-through boiler and
the recuperator the heat transfer coefficient between the hot
and the outer pipe surface is much lower than the one be-

3

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

513



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

tween the inner pipe surface and the ORC working fluid flow.
Therefore, the overall heat transfer is essentially dependent
on the hot side only, and the working fluid temperature is al-
ways close to the inner surface temperature of the pipe.

The heat transfer coefficient at the interface between the hot
and the metal wall, in off-design conditions, is evaluated with
the relation (Incropera, DeWitt, Bergman, & Lavine, 2007)

U = Udes

(
ṁ

ṁdes

)γ
, (5)

whereU is the heat transfer coefficient and the subscript “des”
refers to the value at nominal operating conditions. The ex-
ponent γ, taken equal to 0.6, is the exponent of the Reynolds
number in the heat transfer correlation. The thermal inter-
action between the wall and the cold stream is described by
specifying a sufficiently high constant heat transfer coeffi-
cient, so that the fluid temperature is close to the wall tem-
perature, and the overall result is dominated by the hot side
heat transfer.

For the turbine the Stodola’s cone law, expressing the rela-
tion between the pressure at the inlet and the outlet of the
expander with the mass flow rate and the turbine inlet tem-
perature is applied (Stodola, 1922). To predict the turbines
off-design performance, the correlation relating the isentropic
efficiency and the non-dimensional flow coefficient proposed
by (Schobeiri, 2005) is utilized.

The isentropic efficiency of the pump in part-load is derived
using the methodology proposed by (Veres, 1994), while the
part-load characteristic of the electric generator is modelled
using the equation suggested by (Haglind & Elmegaard, 2009).

Table 1 lists the parameters employed to parametrize the state
space model of the ORC turbogenerator. The condensing
pressure of the working fluid is fixed to 1.03 bar, correspond-
ing to a temperature of 50 ◦C, so as to avoid inward air leak-
age into the condenser. The weight, volume and UA-values
of the once-through boiler and the recuperator are obtained
using an in-house simulation tool (Pierobon, Casati, Casella,
Haglind, & Colonna, 2014), which has been extensively vali-
dated with public domain data.

4. UNSCENTED KALMAN FILTER ALGORITHM

In this section we will present the algorithm for the UKF for a
general non-linear system. Let the system be represented by
the following general non-linear discrete time equations

xk = f(xk−1, vk−1, uk−1) , (6)

yk = h (xk, nk, uk) , (7)

where x ∈ Rnx is the system state, v ∈ Rnv the process
noise, n ∈ Rnn the observation noise, u the input and y the

Table 1. Design-point variables utilized to parametrize the
state space model of the organic Rankine cycle system.

Component Parameters
Gas turbine
Exhaust temperature t10 379.2 ◦C
Exhaust mass flow ṁ10 91.5 kg s−1
Once-through boiler
Volume (cold side) 4m3

Weight (metal walls) 50 ton
UA-value 400 kW K−1
Recuperator
Volume (cold side) 2m3

Weight (metal walls) 5 ton
UA-value 209.6 kW K−1
Turbine
Stodola constant 30.4 kg s−1K0.5 bar−1
Isentropic efficiency 0.80
Electric generator efficiency 0.98
Pump
Delivery pressure p2 29.8 bar
Inlet pressure p1 1.03 bar
Isentropic efficiency 0.72

noisy observation of the system.

The UKF algorithm is presented in the following (Julier &
Uhlmann, 1997), (Wan & Van Der Merwe, 2000). Let the
system be represented by (6) and (7). An augmented state at
time instant k is defined

xak ,



xk
vk
nk


 .

The augmented state dimension is,

N = nx + nv + nn. (8)

Similarly, the augmented state covariance matrix is built from
the covariance matrices of x, v and n according to

P a ,



Px 0 0
0 Pv 0
0 0 Pn


 ,

where Pv and Pn are the process and observation noise co-
variance matrices. Note that the augmented state is needed
for non-additive noise; for additive noise the original state
vector is sufficient.

Initialization at k = 0 :

x̂0 = E [x0] , Px0
= E

[
(x0 − x̂0) (x0 − x̂0)

T
]

,

x̂a0 = E [xa] = E [x̂0 0 0]
T ,

P a0 = E
[
(xa0 − x̂a0) (xa0 − x̂a0)

T
]

=



Px 0 0
0 Pv 0
0 0 Pn


 ,
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For k = 1, 2, ...∞ :

Generate Sigma-points
Calculate 2N + 1 sigma-points based on the present state co-
variance:

Xa
i,k−1





, x̂ak−1, i = 0

, x̂ak−1 + γSi, i = 1, ..., N

, x̂ak−1 − γSi, i = N + 1, ..., 2N

, (9)

where Si is the ith column of the matrix,

S =
√
P ak−1.

In (9) γ is a scaling parameter

γ =
√
N + λ, λ = α2(N + κ)−N ,

where α and κ are tuning parameters. We must choose κ ≥ 0,
to guarantee the semi-positive definiteness of the covariance
matrix, a good default choice is κ = 0. The parameter α,
0 ≤ α ≤ 1, controls the size of the sigma-point distribution
and it should ideally be a small number.

The ith sigma point (augmented) is the ith column of the
sigma point matrix,

Xa
i,k−1 =




Xx
i,k−1

Xv
i,k−1

Xn
i,k−1


 ,

where the superscripts x, v and n refer to a partition confor-
mal to the dimensions of the state, process noise and mea-
surement noise respectively.

Time-update equations
Transform the sigma points through the state-update function,

Xx
i,k/k−1 = f

(
Xx
i,k−1,X

v
i,k−1, uk−1

)
, i = 0, 1, ..., 2N .

Calculate the a priori state estimate and a priori covariance,

x̂−k =

2N∑

i=0

(
w(i)
m Xx

i,k/k−1

)
,

P−xk
=

2N∑

i=0

w(i)
c

(
Xx
i,k/k−1 − x̂−k

)(
Xx
i,k/k−1 − x̂−k

)T
.

The weights w(i)
m and w(i)

c are defined as,

w(0)
m =

λ

N + λ
, i = 0,

w(0)
c =

λ

N + λ
+ (1− α2 + β), i = 0,

w(i)
m = w(i)

c =
1

2(N + λ)
, i = 1, ..., 2N,

where β is a non-negative weighting parameter introduced to
affect the weighting of the zeroth sigma-point for the calcu-
lation of the covariance. This parameter (β) can be used to
incorporate knowledge of the higher order moments of the
distribution. For a Gaussian prior a typical choice is β = 2,
as suggested by (Wan & Van Der Merwe, 2000).

Measurement-update equations
Transform the sigma points through the measurement-update
function,

Yi,k/k−1 = h
(
Xx
i,k/k−1,X

n
k−1, uk

)
, i = 0, 1, ..., 2N ,

and the mean and covariance of the measurement vector is
calculated,

ŷ−k =

2N∑

i=0

w(i)
m Yi,k/k−1 ,

Pyk =

2N∑

i=0

w(i)
c

(
Yi,k/k−1 − ŷ−k

) (
Yi,k/k−1 − ŷ−k

)T
.

The cross covariance is calculated according to

Pxkyk =

2N∑

i=0

w(i)
c

(
Xx
i,k/k−1 − x̂−k

) (
Yi,k/k−1 − ŷ−k

)T
.

The Kalman gain is given by,

Kk = PxkykP
−1
yk
,

and the UKF estimate and its covariance are computed from
the standard Kalman update equations,

x̂k = x̂−k +Kk

(
yk − ŷ−k

)
,

Pxk
= P−xk

−KkPykK
T
k .

5. SIMULATION RESULTS

In this section we present the simulation results derived by ap-
plying the UKF (see Section 4) on the ORC model described
in Section 3 and parametrized according to Table 1. A static
model of the gas turbine is included in the form of static func-
tions to simulate the exhaust gas temperature and mass flow
of the engine, i.e. the temperature and mass flow at node 10 in
Figure 1. The static model serves as input to the ORC model
and it is specified in terms of gas turbine load set-point. The
ORC model was implemented on the form (6)–(7). The state
of the fluid at each node from 1 to 8 (see Figure 1), is charac-
terized by three state variables; mass flow xṁ, density xd and
temperature xT , thus x = [x>T x>ṁ x>d ]>. The once-through
boiler was discretized into 10 volumes with input and output
at node 3 and 6, respectively (see Figure 2). All the state vari-
ables, i.e. mass flow, density and temperature of cyclopen-
tane, are assumed to be measurable at all the nodes, i.e. 1
to 8, except 3 and 4 which are inside the device. The states
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across the heat exchanger are not measurable. By taking into
consideration the assumptions described in Sections 2 and 3,
we have in total 45 states of which 18 are assumed to be mea-
surable and 27 are not measurable and are estimated by using
the UKF. Accordingly, nx = 45, nv = 45 and nn = 18 as in
(8). Additive process and measurement noise was assumed to
be Gaussian with zero mean and covariance.

{
Pv = diag{vT I, vdI, vṁI}
Pn = diag{wT I, wdI, wṁI} ,

(10)

In Equation 10 vT = vd = 0.01, vṁ = 1×10−5,wT = wd =
wṁ = 0.1, with identity matrices of appropriate dimensions
according to the number of states and measurements. It is
thus assumed that the observation noise is considerably larger
than the process noise, and this case is considered to validate
the robustness of the UKF with respect to noise. The param-
eters for the UKF where chosen as α = 1, β = 2 and κ = 0.
The simulation was run for t ∈ [1, 400] seconds in steps of 1
second, where an abrupt change in the gas turbine load from
100% to 90% occurred at t = 50 seconds. The initial values
where selected as




xT (t0) = [323.1 324.9 377.6 392.1

406.3 420.7 435 449.6 464.5 479.3

481.1 481.1 507.4 410.9 340.9]>

xṁ(t0) = 44.4I15×1
xd(t0) = [714.9 716.5 658.9 641.2

622.7 602.5 580.5 555 523.9 481.5

211.8 111.2 71.2 2.7 2.7]>.

(11)

The simulation results for the scenario described above are
shown in Figures 4–6(b). Figure 4 illustrates the tempera-
ture measurements with noise, the real and the UKF estimated
temperatures at the inlet of the once-through boiler. Given the
magnitude of the measurement noise, it is demonstrated that
the UKF is capable of estimating the real temperature. Figure
5 shows the real and the UKF estimated temperatures in an
intermediate section (fifth cell) of the heat exchanger where
the UKF attempts to evaluate the real temperature with no
measurements available. Figures 6(a) and 6(b) show the real
and UKF estimated temperature distribution over the length
of the once-through boiler at t = 40 and t = 200 seconds. To
be noted that the temperature distribution is similar to that oc-
curring between nodes 3 and 6 in Figure 2. Consequently, we
can conclude that the UKF can reliably reconstruct the inter-
nal temperature distribution with no measurements available.
Thus it has been shown that the UKF is applicable to monitor
the condition of the heat exchanger.

To test the robustness of the UKF with respect to initial con-
ditions a new simulation was performed where the initial tem-
perature estimates were different from the actual values. The
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Figure 4. Real, estimated and measured temperature profiles
at the inlet of the once-through boiler.
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Figure 5. Real and estimated temperature profiles at an inter-
mediate section of the once-through boiler.

new simulation was carried out so that all the first tempera-
ture estimates to the UKF are 3◦C higher than the actual ini-
tial values. As the purpose of this simulation was to test the
robustness with respect to initial state estimation, no change
in the gas turbine load is applied. Otherwise the simulation
set-up is similar to the previous case. The new results are
shown in Figures 7–8. Figure 7 reports the temperature mea-
surements with noise, the real and the UKF estimated temper-
atures at the inlet of the heat exchanger. Given the magnitude
of the erroneous initial condition, it is demonstrated that the
UKF estimate of the temperature is able to converge to the
real temperature within the first time step. Figure 8 shows the
real and the estimated temperatures at an intermediate section
(fifth cell) of the once-through boiler. It can be observed that
the UKF projection converged to the real temperature despite
the lack of available measurements. Moreover, the estimate
converged to the real temperature within approximately 100
seconds which is a reasonable time frame for this type of sys-
tem.
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Figure 6. Real and estimated temperature distribution along
the cells of the once-through boiler. 6(a) at time t = 40 sec-
onds and 6(b) at time t = 200 seconds.
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Figure 7. Real, estimated and measured temperature profiles
at the inlet of the once-through boiler. The initial estimated
temperature is 3◦C higher than the real temperature.

6. CONCLUSION

This paper analysed the use of the Unscented Kalman Fil-
ter to predict the temperature profile inside a once-through
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Figure 8. Real and estimated temperature profiles at an inter-
mediate section of the once-through boiler. The initial esti-
mated temperature is 3◦C higher than the real temperature.

boiler serving an organic Rankine cycle turbogenerator. Sim-
ulation results demonstrate the stability of the UKF, even with
aggressive additive Gaussian noise profiles for process and
measurements, and for a heat exchanger discretized into a rel-
atively large number of volumes with unmeasured states. Fur-
thermore, it was observed that the estimated temperature con-
verged to the real values in a reasonable time frame when rel-
atively reasonable deviations in the initial guess for all nodes
were applied.

Future work will focus on applying the UKF to the combined
cycle unit consisting of the gas turbine and the ORC turbo-
generator. The estimation results will be embedded in the
control algorithm of the integrated system. Further work will
be directed towards the implementation of UKF with con-
straints on the state variables applied to this integrated sys-
tem.
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ABSTRACT 

The capability to predict performance and lifetime of 

drilling electronics is the key to preventing costly downhole 

tool failures and ensuring success of any drilling operation. 

Drilling electronics operate under extremely harsh 

downhole environments with temperatures beyond 150C 

and vibration levels exceeding 15g. In addition to 

temperature and vibration, there are several factors affecting 

electronic reliability that have high uncertainty and cannot 

be accurately measured. There is a growing trend in the oil 

and gas industry to drill faster and operate at higher 

temperatures and pressures, forcing tools to operate beyond 

design specifications. This has resulted in increased failure 

rate leading to higher maintenance costs and system 

downtime for drilling operators as well as service providers. 

This paper develops a methodology to estimate the life of 

drilling electronics by using operational data, drilling 

dynamics and historical maintenance information. The 

methodology combines parameter estimation techniques, 

statistical reliability analysis and Bayesian math in a 

probabilistic framework. Parameter estimation is used to 

calibrate statistical equations to field data and probabilistic 

analysis is used to obtain the likelihood of failure. In the 

paper, the model parameters are represented as random 

variables, each with a probability distribution. Drilling 

electronics under downhole conditions can have several 

failure modes and each failure mode can be caused by the 

interaction of several variables. When information on each 

failure mechanism is not readily available, the failure is 

expressed in terms of several candidate models. Bayesian 

updating is used to incorporate real time operational history 

for a specific part and select the most accurate failure model 

for that part. Tis is for the first time, a systematic approach 

is developed for predicting the life of electronics in 

downhole drilling environments using statistical modeling 

and probabilistic methods on life cycle history and 

operational data from the field. 

1. INTRODUCTION 

Drilling and evaluation operations are becoming faster, 

more accurate and safer, thanks to modern electronics that 

enable measurements, storage and transmission of 

information in real time. Transmitting information in real 

time makes it possible to evaluate properties of earth’s 

formation while drilling and enable directional drillers to 

steer wells towards target zones more efficiently. The 

reliability of electronic printed circuit board assemblies 

(PCBAs) in the bottomhole assembly (BHA) is the key to 

the success of any drilling operation. Drilling electronics 

operate in extremely harsh downhole environments with 

temperatures exceeding 150C, shock and vibration levels 

exceeding 15g. The impact of temperature, shock and 

vibration on the life of electronics is described by Barker et 

al. (1992), Duffek (2004), Garvey et al. (2009), Gingerich et 

al. (1999), Lall et al. (2005, 2007), Mirgkizoudi et al. 

(2010), Pecht et al. (1999), Vichare (2006), Vijayaragavan 

(2003), Wassell & Stroehlein (2010), White & Bernstein 

(2008). Other factors like power cycles, thermal ramp rates, 

electrical overstress, mechanical stress and manufacturing 

defects impact reliability of tools, but the factors cannot be 

accurately measured in downhole drilling environments and 

encompass high uncertainty. These factors can act alone or 

interact with each other to produce several degradation 

mechanisms that can cause failure. For example, 

Mirgkizoudi et al. (2010) demonstrated through tests that 

there is significant difference between the lives of electronic 

components subjected to thermal testing with vibration as 

compared to those with pure thermal loading. Failure of 

electronics because of fatigue, corrosion, electromigration, 

filament formation and dielectric breakdown has been 

Amit Kale et al. This is an open-access article distributed under the 
terms of the Creative Commons Attribution 3.0 United States License, 

which permits unrestricted use, distribution, and reproduction in any 

medium, provided the original author and source are credited. 

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

519



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014 

2 

established by the scientific community (e.g. Barker et al. 

1992, Duffek 2004, Gingerich et al. 1999, Lall et al. (2005, 

2007), and Pecht et al. 1999). Typical PCBAs used in the 

drilling industry are multiscale devices made from several 

components. The geometric dimensions of individual 

components may vary from nanometers to inches. This 

difference creates significant challenges in developing a 

predictive model for failure because individual components 

on a PCBA may fail by many failure modes based on the 

operating environmental conditions. Furthermore, diagnosis 

of faults and indicators of failure is difficult because 

degradation of individual components may not lead to a 

measurable loss of electrical function up until imminent 

failure. There is growing interest in the area of health 

prognostics for electronic components through the use of 

physics based models, operating data from fielded products, 

design qualification testing and in-service inspections (e.g. 

Pecht et al., 1999, Vichare 2006, and Garvey et al., 2009) 

The main drivers behind the efforts are preventing failure 

and system downtime, reducing costs of repair and 

maintenance, and supporting new product improvements. A 

discussion on state of the art techniques in prognostics and 

health management of electronics can be found in Pecht et 

al. (1999) and Vichare (2006). 

The method of measuring failure precursors as indicators of 

impending failure is based on the hypothesis that degraded 

circuit boards produce significantly different signatures 

from defect free boards. Failure precursors are measurable 

indicators that can be correlated with subsequent part 

failures. Failure indicators for electronics like shifts and 

variation in temperature, voltage, current, surface insulation 

resistance and impedance have been proposed by Born & 

Boenning (1989) and Pecht et al. (1997, 1999).  Another 

area of research in electronics prognostics and health 

management (PHM) is usage of sacrificial circuits like 

fuses, canaries, circuit breakers and self-diagnostics sensors 

for detecting if the device is operating outside of design 

limits. These devices are mounted along with the main 

electronic component but have accelerated failure rates to 

provide advance warning of failure (e.g. Mishra & Pecht 

2002, and Ridgetop Semiconductor Sentinel Silicon report 

2004).  

The physics of failure (PoF) based approach for life 

prediction uses modeling and simulation to relate the 

fundamental physical and chemical behavior of materials to 

the surrounding environment and applied loads. The PoF 

based modeling process starts by exposing the product to 

the highly accelerated life test (HALT) and highly 

accelerated stress test (HAST) to find the significant modes 

and root cause of failure. Next, the governing equations of 

the failure mechanisms are combined with the data gathered 

from acceleration tests using statistical distributions.  The 

PoF approach has been successfully applied to understand 

system performance, identify weak links and root cause of 

failure so that they can be mitigated before the product is 

launched. Chatterjee et al. (2012) gives a historical 

perspective of the evolution of the physics of failure 

approach. White & Bernstein (2008) present the state of the 

art methods for PoF modeling. Finite element analysis was 

used to model fatigue damage growth during cyclic loading 

(thermal, mechanical and combination of both) by Barker et 

al. (1992), Bailey et al. (2007), Dasgupta (1993), Duffek 

(2004), Shinohara & Yu (2010), and Vijayaragavan (2003). 

Material modeling to predict degradation of solder joints in 

the circuit board as results of thermo mechanical fatigue was 

developed by Nasser & Curtin (2006). Lall et al. (2007) 

used experimental tests in combination with finite element 

analysis to model solder joint failure from shock and 

vibration. Mirgkizoudi et al. (2010) developed a test plan to 

evaluate the reliability and service life of electronic 

components that are subject to a combination of mechanical, 

thermal, chemical or electrical inputs, and Wassell & 

Stroehlein (2010) use accelerated tests to derive 

accumulated damage models and failure thresholds as 

functions of vibration, shock levels, the number of shocks 

and the operating temperature. Young & Christou (1994) 

developed models for failure because of electromigration. 

The models obtained from accelerated tests are also widely 

used to estimate the life for fielded products by using the 

governing equation to scale accelerated test life to that under 

the actual operating environment in the field. However, such 

scaling is valid only if the following conditions are met (1) 

failure modes and mechanisms for accelerated stress levels 

are the same as those observed in the field and (2) variations 

of material properties with stress levels are incorporated in 

the governing equations. Because of these limitations, it has 

been shown for practical application that life obtained by 

scaling the highly accelerated life tests (HALT) and highly 

accelerated stress tests (HAST) is orders of magnitude 

different from those observed in actual field environments 

(e.g. Osterman 2001, Pecht (1997, 1999), and White & 

Bernstein 2008).  

Field data driven methodologies for modeling time to failure 

have gained momentum because of the availability of large 

volumes of data and limitations of physics based methods to 

simulate actual operating environment in laboratory (e.g. 

Osterman, M., 2001 and Vichare 2006). This methods use 

operating environment measured in field, repair and 

maintenance information of fielded products in conjunction 

with statistical modeling to predict the life of parts in 

operation. For example, Hu et al. (1991) presented a 

probabilistic approach for predicting thermal fatigue life of 

wire bonding in microelectronics, and Vichare et al. (2007) 

developed an algorithm to extract load parameters necessary 

for assessing damage from commonly observed failure 

mechanisms in electronics. Sutherland et al. (2003) 

developed data mining methods and statistical approaches to 

obtain accurate life distribution for power plant maintenance 

optimization.  
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There is a growing trend in the oil and gas industry to drill 

faster and operate at higher temperatures and mechanical 

loads, forcing tools to operate beyond design limits. The 

capability to predict performance and life of drilling 

electronics is critical to preventing costly downhole tool 

failures and reducing cost of maintenance. This paper 

presents a systemic approach for deriving and updating 

models for time to failure of PCBAs used in drilling and 

evaluation tools using field data. The methodology 

combines parameter estimation techniques, statistical 

reliability analysis and Bayesian math in a probabilistic 

framework. Parameter estimation technique is used to 

calibrate statistical equations to field data and probabilistic 

analysis is used to obtain the likelihood of failure. The 

model parameters are represented as random variables with 

probability distribution. Drilling electronics within 

downhole conditions can have several failure modes and 

each failure mode can be caused by the interaction of 

several variables. When information on each failure 

mechanism is not available in real time, the failure is 

expressed in terms of several candidate models. Bayesian 

updating is used to incorporate the operational load history 

for a specific part and selecting the most accurate failure 

model for the part. Results presented in the paper show that 

the life of electronic assemblies used in drilling and 

evaluations can be predicted accurately by using the 

probabilistic model and incorporating operational effects. 

Interaction between different factors causes the components 

to degrade faster than individual factors acting alone. 

2. OPTIMAL MAINTENANCE PLANNING  

The framework for lifecycle management, optimal 

operations, repair and maintenance planning of drilling 

systems requires databases to record equipment lifecycle 

history, environment and operations data, telemetry and 

communication systems, sensor and measurement systems 

and algorithms for predicting performance and consumed 

life. Developing an optimal maintenance strategy requires 

the knowledge of component life as a function of usage. 

Predicting component life accurately requires knowledge of 

engineering design, physics of component behavior under 

operating loads, data from qualification tests, operating 

mission of fielded products and indicators of degradation of 

part life from inspection and maintenance shops. The 

information can be used in physics based or statistical data 

driven models (or a combination of both) to predict part life 

and risk of failure as a function of usage. Once accurate life 

models are developed, cost factors, performance and 

reliability targets can be incorporated to optimize 

maintenance plans for minimum life cycle cost. In field 

operations, life extension can be achieved by derating the 

mission (e.g. lowering rotational speed of drill to reduce 

impact of vibration induced damage on BHA components) 

so that parts degrade slower. Cost of repair and maintenance 

can be lowered by using a risk based maintenance level. For 

example, tools with low risk of failure can be given a quick 

turnaround, medium risk entails partial disassembly and 

inspection, and high risk tools require full piece part level 

disassembly and inspection. The goal of this method is to 

enable reliability and maintenance personnel to schedule 

timely maintenance and prevent costly downhole tool 

failures. Fig. 1 shows a high level overview of data, 

methods and decision process for optimizing operations and 

maintenance plans. 

 

Figure 1. Methodology for optimal operations and life 

management of parts. 

This paper develops a framework to provide advance 

warning of impending failure so that high risk components 

can be retired. The remainder of the paper focuses on 

algorithms to estimate part life using data from field and 

maintenance shops.  Section 3 gives an overview of parts in 

the bottomhole assembly (BHA) for which reliability 

models are developed. Section 4 describes the algorithms 

used to analyze field data and develop mathematical models 

for time to failure. Section 5 describes the methodology to 

use load history from each drilling mission (also known as a 

“run”) to update model weights and predict part life. Section 

6 presents results for fielded component and Section 7 

concludes the paper with a summary and future work. 

3. DESIGN OF BOTTOM HOLE ASSEMBLY 

A typical drilling system comprises a drill bit, bottomhole 

assembly (BHA); drill pipes and rig   (Fig. 2). The drill bit 

is a rotary cutting tool that cuts through the earth’s 

formation; the drilling rig is a structure on the surface that 

houses equipment, the drill pipes provide the required 

extension to reach a target depth and the bottomhole 

assembly (BHA) is a structure that houses drill collars, 

reamers, steering system and electronic components. The 

focus of the report is predicting life of electronic 

components in BHA of the AutoTrakG3 line of product 

manufactured by Baker Hughes Incorporated. A typical 

AutoTrakG3 contains three modules, namely (1) the 
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AutoTrak steering system (ASS) that provides the necessary 

drive to steer the bit (2) OnTrak sensor assembly contains 

the electronics used for measurement while drilling (MWD) 

and logging while drilling (LWD). The OnTrak tool takes 

measurements like resistivity, gamma ray, pressure and 

vibration. (3) Bi-directional communication and power 

module (BCPM). This module sends and receives data to 

and from the surface, enabling drillers to monitor drilling 

operations in real time and make adjustments when 

necessary. The BCPM also delivers power required by the 

other modules in BHA. The three assemblies have 

components that are critical to the drilling and evaluation 

operation. Failure of the components can lead to the loss of 

functionality and cause trip for failure which can cost 

several millions of dollars. The paper focuses on developing 

predictive life models of several such components in the 

drilling system. 

 

Figure 2. Illustration of drilling system. 

4. FIELD DATA ANALYTICS 

Developing field data driven models for life of electronic 

assemblies in drilling operations is challenging for two 

reasons. First, not all of the factors impacting component 

life can be measured in real time, and second, the data that 

can be measured has errors and noise because of limitations 

of the measurement system and human factors. This paper 

presents method to calculate the reliability of components 

that have been operated at varying stress level because of 

temperature and mechanical loads such as that caused due to 

shock and vibrations. The Maintenance and Performance 

System (MaPS
TM

) is a state of the art database developed by 

Baker Hughes Incorporated to track equipment lifecycle 

data. Information related to operations, failure, repair and 

maintenance is stored for serialized parts. The downhole 

environment data like temperature, vibration, pressure and 

power cycles is also maintained in the MaPS database. The 

magnitude and cyclic variation of temperature can cause 

solder joint fatigue failure in electronic circuit components, 

chip delamination, corrosion, electro migration, diffusion 

voids and dielectric breakdown. Extreme vibrations 

influence the life of electronic components in the BHA. 

There are three principal modes of vibration: (1) axial 

vibration along the tool axis can cause damage to seal faces 

of modular connections, stabilizers and, in severe cases, can 

lead to buckling fatigue. Axial vibration is responsible for 

low rates of penetration and reduced efficiency, (2) lateral 

vibrations occur transversely to the tool axis. Historically, 

they are the most destructive type of vibrations and constant 

exposure to lateral vibrations can cause damage to tool 

electronics. Constant lateral shocks damage the tool body as 

well as greatly reduce drilling efficiency, (3) stick slip is a 

rotational phenomenon that occurs because of twisting of 

the drill string. Twisting can occur when the bit gets stuck 

downhole while the motor continues to turn the drill string. 

When the bit is free, the torsional energy stored in the drill 

string is released, causing the BHA to spin in the opposite 

direction. Stick slip can lead to material fatigue and physical 

damage to the tool and electronics. Figure 3 shows the three 

vibration modes. 

 
 

Figure 3. Vibration modes in drill string. 

4.1. Consolidating Life Cycle Data 

An important first step in developing a life model is to 

collect life cycle history for each part. Each serialized part 

undergoes one of three maintenance actions during its 

lifecycle:  (1) repairs, which involve replacing damaged 

components on a PCBA, (2) revision upgrades which may 

include repairs and/or firmware updates, (3) scrapped 

because of failure or as a preventive measure. To accurately 

capture the life cycle of a part, the accumulated temperature 

and vibration hours for each serialized part are retrieved 

from MaPS database and grouped using the steps described 

in Table 1. The purpose of the steps described in Table 1 is 

to group the data into buckets that have three common 

characteristics, namely revision id flag, repair flag, and 

revision upgrade flag. Data in each bucket encompasses the 

same value for the three flags and any two buckets have at 

least one flag different between them. For example, the 

bucket in which the three flags are [“A”, N, N] implies that 

parts in that bucket are revision “A”, they have never been 

repaired and never received a revision upgrade. Another 

bucket with flags [“A”, N, Y] implies that parts in that 

bucket have never been repaired and have been upgraded to 

revision “A” from an older revision. A bucket with flags 

[“A”, Y, Y] implies that all parts in that bucket have been 
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repaired and have been upgraded to revision “A” from an 

older revision. 

Table 1. Process to group part life cycle data for failures, 

suspensions, repairs and revision upgrades. 

 

(1) Find all the serial numbers of a given part number in 

the database 

(2) Select a serial number and look up mission profile for 

that serial number starting with installation date 

(3) Accumulate drilling hours, circulating hours and the 

operating environment variable (temperature, 

vibration, rotational speed (rpm), distance drilled) etc. 

for each run; store the accumulated data in a record 

with index i. Store the revision id flag, repair flag 

(Y/N), revision upgrade flag (Y/N), and 

failure/suspension flag (F/S) 

(4) Check if the part underwent one of the following 

actions after the run (a) failed and scrapped, (b) failed 

and repaired to put back in service (c) upgraded to 

next revision (d) repaired to put back in service (e) 

scrapped because of preventive maintenance. If any of 

the above is true, then label the i
th

 record flag 

appropriately. Create a new record i+1 and go to step 

3. If none of steps (a)–(d) happened, continue to 

accumulate the fields for the i
th

 record in step 3 

(5) Check if all the runs have been accounted for the serial 

number. If no, go to step 3; otherwise, create a new 

record for a new serial number  

It is important to make the distinction between revision 

upgrade and repair because not all revision upgrades lead to 

life extension (for example, if only firmware is changed in 

revision upgrade). Grouped data is filtered for outliers and 

weighted before building a life model using an algorithm 

described in the next section. 

4.2. Iteratively Reweighted Maximum Likelihood 

Algorithm 

The life cycle data for parts recorded in the maintenance 

database is large and complex because each part has several 

hundred serial numbers and each serial number has the 

operating history for several drilling runs. Like any other 

physical experiment, data can have errors or noise because 

of human factors and flaws in the measurement system. The 

impact of outliers on the quality of the predictive model can 

be minimized by optimally weighting the life cycle data.  

Outlier identification is done by first removing data points 

that lead to constraint violation in the estimation process. 

The likelihood equation is subjected to constraint that α0 >0 

and α1…αn ≤0 in Eq. A-1, A-5 and A-8. The inclusion of 

these constraints implies that life decreases with increase in 

stress level due to temperature and vibration. Next, 

iteratively reweighted maximum likelihood estimation 

(IRMLE) technique was developed to determine the optimal 

weight of each data point in the life cycle data. Unlike 

conventional likelihood maximization procedure where all 

points are weighted equally, the new technique iteratively 

maximizes the weighted likelihood function of life data until 

the quality of model shows no further improvement. 

Iteratively reweighted maximum likelihood estimation 

procedures assign weight that is inversely proportional to 

the log-likelihood of the data point, so that points with 

lower log-likelihood are weighted less than points with 

higher log-likelihood. Eventually, the model moves away 

from outliers. The procedure can be summarized in steps 

(1)-(4). The symbols used in these steps have the following 

description. 

T is temperature, L is lateral vibration, S is stick slip or 

rotational vibration, RPM is revolutions per minute, α0 is a 

constant term, α1…αn are coefficients on stress variables in 

the life equation (e.g. Eq. A-1, A-5 and A-8),         
  is 

the model weight, symbol £ is likelihood of i
th

 data point. 

(1) Select  ̅  {                       } for 

modeling characteristic life function described in 

Appendix A. 

(2) Maximize weighted sum of likelihood of failure and 

suspension data to estimate the mean and variance of 

parameters of the characteristic life function (e.g. Eq. 

(A-1) α0, α1…αn). The initial weight of each data point is 

unity. The maximization of likelihood equation is 

subjected to constraint that α0 >0 and α1…αn ≤0. 

(3) Compute the value of likelihood of each data point at the 

values of α’s estimated in step 2. Compute the mean 

and standard deviation of likelihood,       and       . 

The updated weight         
  of ith data point is given 

by 

        
  

                           

∑
  

      

  

      
       (1) 

 

(4) Iterate step (2) – (3) with updated model weights until 

the sum of likelihood has converged within a specified 

tolerance (10
-6

 used in this paper). 

 

In principle the IRMLE technique is similar to the 

iteratively reweighted least squares (IRLS) except that in 

IRMLE, the weighted sum of likelihood is maximized, 

whereas in IRLS the weighted sum of squares of difference 

between data and model response is minimized. The IRMLE 

algorithm is used to build transfer function for time to 

failure as a function of the operating mission for a serialized 

part. One of the challenges in using this model to accurately 

estimate remaining life is that the operating environment is 

variable throughout the life of a component. This is 

overcome by updating the remaining life estimate after each 

drilling mission (life of a part can span several drilling 

missions and each mission may have different load history 

and hours). The application of this algorithm in identifying 

outliers is presented in Fig. A1 through Fig. A6 in Appendix 

A. 
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5. RELIABILITY ANALYSIS 

Statistical models are extensively used in reliability and life 

data analysis to estimate time to failure of parts in operation. 

The models are either computational simulations or a set of 

mathematical equations that explain the general state of a 

system under the influence of load and time. Typically, a 

mathematical model is an approximation of the physical 

phenomena and rarely matches the field observations. 

However, for practical commercial application where the 

models are used in design and operation of a product, it is 

desirable to have a model that matches the field or 

experimental data closely. The process of determining the 

unknown model parameters by tuning the model to field 

data is called parameter estimation or model calibration. The 

model parameter usually represents quantities that have 

physical significance and are determined by imposing some 

constraints during the calibration process. The constraints 

require that the parameters being estimated must have 

minimum variance from using one set of data to the next 

and the estimated value is bound to the true value. A 

reliability model that best represents the life cycle of a 

component can be developed when sufficient amount of 

operation, failure, and repair and maintenance data is 

available. This section outlines the method for calibrating a 

mathematical model to field data and its subsequent 

application to predict remaining life and reliability using 

real time mission profile for a specific part. 

5.1. Generating Best Fit Model 

A typical time to failure model comprises a life distribution 

function to incorporate the statistical scatter in failure time 

and a characteristics life function (Appendix A) that 

describe a general relation between failure time and stress 

levels. In this work, the Weibull, lognormal and exponential 

distributions are used to build time to failure models. The 

life characteristic can be any life measure such as the mean, 

median or hazard rate that represents a bulk property of the 

distribution. The life characteristic is expressed as a function 

of stress (as shown in Appendix A).  The unknown 

parameter of the composite model is determined by tuning 

the model equation to field data using the Iterative 

Maximum Likelihood Estimation technique.  The method 

for deriving the model that best fits the field data is 

described in the following steps: 

(1) Retrieve life cycle data from maintenance database 

and bucketize it using the method described in Section 

4.1. 

(2) Select a revision identifier, trial function for stress ηi 

and trial function for probability distribution fj from 

Appendix A. Initialize trial functions, i=1, j=1. 

(3) Calibrate the reliability model f(t,x)ij to the bucketed 

field data using IRMLE technique. Compute standard 

deviation in parameter estimates. 

(4) Compute goodness of fit for model f(t,x)ij by 

evaluating prediction error sum of squares (PRESS
1
). 

(5) Select new probability distribution and trial function 

by updating values of i and j and repeat steps (2) – (4) 

until all trial functions are evaluated. 

(6) Generate pareto of the solution obtained from steps (1) 

– (5) with two objectives namely, goodness of fit and 

Euclidean norm
2  

on coefficient of variation of 

parameter estimates. 

 

The models generated by steps (1)-(4) yield pareto of 

competing solutions, some solutions are better in terms of 

cross validation error while others are better in terms of 

confidence in value of estimated model parameters (α’s 

described in Appendix A). The time to failure for a part in 

operation is determined using the method described in the 

next section. 

5.2. Model Selection and Updating Using Real Time 

Data 

The best fit model is representative of a nominal
3
 part. 

Drilling electronics under downhole conditions can fail 

because of several mechanisms that can be caused by the 

interaction of several variables (like temperature, vibration, 

and power cycles). The time to failure is expressed as 

weighted average of several competing models. Bayesian 

updating is used to select the most accurate failure model 

for a specific part by using the real time mission profile for 

that part. Bayesian updating provides a systematic process 

for incorporating real time operational data for model 

selection and updating. This section presents Bayesian 

formulation for updating probability of an event y based on 

recorded observations at time t (examples of observations 

include pass/fail event and mission profile parameters like 

temperature, lateral vibration, stick slip, etc.). More details 

on this formulation can be found in Zhang and Mahadevan, 

(2000). The symbol Mi is the i
th

 model, p(Mi)
4

 is the 

probability of i
th

 model and reflects the belief that the model 

is accurate for the specific part in operation,  ( |  ̅     ) is 

the probability of observing an outcome y at time t using the 

i
th

 model, the vector  ̅i is a set of parameters estimated by 

the calibration procedure. The term  ( ̅ |  )  is the joint 

probability density function of the parameters of i
th

 model. 

                                                           
1
 PRESS is adding the squared of difference between data 

and model prediction, where the model is constructed by 

excluding one data point and repeating this over all the data 

points. 
2
 Euclidean norm of an n-dimensional vector space is given 

by the geometric distance from origin to a point x. 
3
 A representative part that has a life equal to the average of 

several part produced using same manufacturing process 

and operating under same condition 
4
 Note that ∑ (  )      
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The event y is the state of the part at a time t that has one of 

the two values z = pass or fail. 

 ( )  ∑  (  ) ∫  ( |  ̅     ) ( ̅ |  )  

 
     ̅          (2) 

The prior probability p(Gi) of the parameters of i
th

 model is 

given by Eq. (3). 

 (  )   (  ) ( ̅ |  )        (3) 

 

p(Gi) is the prior probability of (Mi,  ̅i) pair. The posterior 

probability after observing an outcome for y=z is given 

using Bayes theorem in Eq. (4). 

 

 (  |   )   ((  |   )) ( ̅ |      )            
 

  
 (   |  ) (  ) ( ̅ |  )

∑  (  ) ∫  (   |  ̅     ) ( ̅ |  )  

 
     ̅ 

       ( ) 

Integrating over the probability distribution of  ̅i in Eq. (4), 

the posterior model weight of the i
th

 model after observing 

an outcome y=z is given by Eq. (5). 

 (  |   )  
 (  ) ∫  (   |  ) ( ̅ |  ) ̅ 

  ̅ 

∑  (  ) ∫  (   |  ̅̅ ̅     ) ( ̅ |  )  

 
     ̅ 

         (5) 

 

It is important to note that the time t used in Eq. (2) through 

Eq. (5) is not the failure time but it is the time at which an 

observation is made regarding the pass or fail state. The 

expected time to failure is obtained by weighted sum of time 

to failure predicted by each of the models as shown in Eq. 

(6).  

            ∑  (  |   )      
 
                 (6) 

 

Where             is the expected life of a part being 

modeled and     is the life predicted by the i
th 

model whose 

probability distribution is given in Appendix A. Equation 6 

is solved using the Monte Carlo simulation technique. For 

drilling tools, probability of failure greater than 10% is 

unacceptable. To estimates this probability accurately we 

use a sample size of 10,000
5
in Monte Carlo simulation. 

6. RESULTS 

The methodology developed in this paper is used to predict 

life of fielded electronic assemblies used in drilling and 

evaluation tools and advance warning of impending failure 

so that preventive maintenance can be scheduled. The life 

                                                           
5
 The standard deviation in probability calculated by Monte 

Carlo integration is given by √
 (   )

      
. For a target 

probability of 50% the standard deviation is 0.005. Hence 

10,000 samples are sufficient to estimate probabilities level 

of interest in this paper. 

cycle data for a typical low voltage power supply (LVPS) 

modem used in drilling operations is shown in Fig. 4 for 

parts that failed in field and Fig. 5 for suspensions (i.e. parts 

that are operating in field.). The x axis on the plots 

represents the average temperature (lateral vibration, stick 

slip and interaction effects are shown in Fig. A1-Fig. A6 in 

Appendix A). The y-axis represents drilling hours. Each 

point on the figure is a unique serial number of the part and 

undergoes different mission profile during their life. The 

data shown in Fig. 4 is derived from the failure of parts in 

operation that are root caused and Fig. 5 shows data for 

parts that are either currently being operated or those that 

are retired for precautionary measures. 

Fig. 4 and 5 show field data with scatter and noise. As such, 

errors and noise cannot be totally eliminated and are part of 

field data because of limitations of the measurement system 

and human factors. The methodology developed in the paper 

is used to reduce the scatter in the life prediction by 

incorporating the cumulative effect of temperature, vibration 

and their interaction on life consumption. The IRMLE 

algorithm described in Section 4.2 is applied to the data in 

Fig. 4 and Fig. 5 and the outliers (shown in red dots) are 

identified by the algorithm. The data in Fig. 4 and Fig. A1 

through Fig. A3 shows that temperature and vibration have 

a detrimental effect on life. 

Figure 4. Time to failure vs. temperature severity for fielded 

LVPS modem serialized parts. 

Figure 5. Suspension and operational severity for fielded 

LVPS modem serialized parts. 
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Table 2 show the parameters of the time to failure model 

built from the data in Fig. 4 and 5. The best fit model is a 

Weibull distribution with a characteristic life function 

whose parameters are α and β. The models are generated 

using the best fit procedure described in Section 5. The 

values in parenthesis are the mean and standard deviation of 

the parameter estimates. Each of the models in Table 2 is 

comparable in terms of likelihood value and confidence 

level in coefficients. Model M1 shows the interaction of 

temperature and lateral are significant factors affecting the 

life of the part; model M2 shows the temperature by itself is 

significant; and model M3 shows the temperature plus 

interaction of temperature and stick slip are significant 

factors. 

Table 2. Competing Weibull models for time to failure of 

apart as a function of operating stress. 

Parameter M1 M2 M3 

P(Mi) 0.29 0.40 0.31 

α0 (µ, σ) (7.5, 0.07) (8.0 0.1) (8.6, 0.1) 

T, α1 (µ, σ) 0 (-10.3, 0.7) (-7.9, 0.5) 

S×L, α2 (µ, σ) 0 0 (-43.8, 3.1) 

T×L,  α3 (µ, σ) (-39.3, 2.5) 0 0 

β( µ, σ) (1.6, 0.08) (1.7, 0.07) (1.8, 0.05) 

The models in Table 2 represent failure time for a nominal 

part representative of the population. To obtain an 

individual part specific prediction, the time to failure is 

expressed as a weighted sum of failure times from each of 

the models using the operational history from each run of 

that specific part and adjusting the relative contribution of 

each model using the Bayesian formulation in Section 5.2. 

An example is shown for predicting the time to failure for a 

single part in operation. Table 3 shows the load history on 

an LVPS modem operated for 1000 drilling hours at varying 

levels of temperature and vibration. The first column of 

Table 3 shows the run number which represents the mission 

between the start and stop of the drilling operation; the 

second column shows the average temperature for the run; 

the third column shows the average lateral vibration level 

for the run; and the fourth column shows the average 

torsional vibration level. The lateral and stick slip vibrations 

(reported as root mean square in units of acceleration 

because of gravity g) are measured by accelerometers 

placed in the drilling assembly. The algorithm described in 

Section 5 is applied to the operational history after each 

drilling mission (referred as a “run”). Starting with an equal 

model weight of 0.33 for the three models, the life 

prediction and model weight is updated after each run to 

obtain a more accurate estimate of remaining life after each 

run (using Eq. 3 through Eq. 6). The final value of model 

weights prior to the eighteenth run is shown in second row 

of Table 2 for each of the three candidate model. 

 

The life expectancy predicted by Eq. 6 (shown in Table 2) 

and the actual hours accumulated on the part after each 

drilling run and the operating environment is shown in Fig. 

6 and Table 3. Figure 6 shows the true remaining useful life 

(RUL) and 95 percent confidence bounds on predicted life. 

It can be seen that the true RUL is bounded between the 

predicted 95% confidence interval. This interval represents 

statistical variation in part life of the population of identical 

parts subjected to same load history. The variation is caused 

by defects in manufacturing, limitations of the measurement 

system and human factors that are unknown or cannot be 

modeled. The purple diamonds represent the actual RUL on 

the part.  Fig. 6 shows during the early part of the part life 

cycle, the life expectancy is high, but with usage and 

application of operating loads, the accumulated hours begin 

falling within the range of variation of expected life. At that 

point, the component is retired to prevent downhole tool 

failure. The part failed during the nineteenth drilling run. In 

retrospect, the model accurately predicted impending failure 

when it showed that the part was at high risk (>75% risk of 

failure) from the seventeenth run and should have been 

retired at that time. 

Figure 6. Predicted life vs. actual drilling hours after each 

run for LVPS modem. 

Fig. 6 shows that the expected life of a part can increase or 

decrease with each run and are not a constant number 

(because expected life is a function of usage). Table 3 

illustrates the concept where the average value of 

operational temperature and vibration over all the previous 

runs is calculated in columns two through four. The first run 

is the least severe and has the highest life expectancy. In 

subsequent runs, the life expectancy reduces as the severity 

of operation increases as shown by the values of 

temperature, lateral and stick slip vibrations. The trend 

continues until the ninth run, after which the operational 

severity starts reducing, leading to higher life expectancy 

until the thirteenth run. In summary, the life expectancy can 

vary through the operation depending on the severity of 

operating environment.  
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Table 3. Average operating environment and risk of failure 

after each drilling mission (run) during life of a part 

Run 

No. 

Average 

Temperature 

C 

Average 

Lateral 

(g_RMS) 

Average 

StickSlip 

(g_RMS) 

DrillHrs 

[h] 

 

Risk 

1 57.6 1.6 0.2 55.3 0.00 

2 63.8 1.5 0.1 80.8 0.00 

3 57.6 1.3 0.3 149.2 0.00 

4 71.9 1.1 0.2 215.4 0.00 

5 74.9 1.1 0.2 231.0 0.00 

6 72.0 1.1 0.2 266.1 0.00 

7 70.1 1.1 0.2 295.1 0.00 

8 77.3 1.0 0.3 361.4 0.00 

9 81.8 0.9 0.3 412.6 0.00 

10 78.9 0.9 0.3 472.6 0.00 

11 76.5 0.8 0.3 530.6 0.00 

12 73.0 0.9 0.2 633.8 0.00 

13 71.2 0.9 0.2 686.4 0.00 

14 71.7 0.9 0.3 761.5 0.00 

15 73.3 0.9 0.3 788.5 0.03 

16 75.5 0.9 0.2 844.9 0.25 

17 79.6 0.9 0.2 948.0 0.85 

18 78.6 0.9 0.2 981.0 0.90 

19 78.4 0.9 0.2 986.0 0.87 

7. CONCLUSIONS 

The paper presents a generic methodology to predict the life 

of electronic components used in drilling and evaluation 

tools. Statistical modeling techniques are used to derive best 

fit mathematical equations for durability of parts from field 

data. The method is applied to predict life of electronic 

printed circuit boards (PCBAs) and retire high risk 

components. The key challenges associated with developing 

durability models for PCBAs in drilling environment are: 

 

(a) Life of parts is impacted by several factors, not all 

which can be measured accurately because of 

limitations of measurement systems and human 

factors. 

(b) Field data may have noise and errors that may 

affect the quality of predictive model. 

(c) Statistical model do not incorporate physics of 

degradation and may not be applicable for all 

failure mechanisms. 

 

The methodology addresses the aforementioned challenges 

for the first time vis-à-vis application to lifing parts 

operating in downhole drilling environments. The key 

features of the analysis methodology include: 

 

(a) Algorithm to determine life from cumulative 

damage over time and the best-fit mathematical 

model using a combination of statistical 

distribution and characteristic life function. 

(b) Clustering mechanism to group parts life cycle data 

by upgrades, repair, failures and suspensions.   

(c) A pattern search and outlier detection algorithm to 

identify data from a physical degradation trend. 

(d) Iteratively reweighted maximum likelihood 

estimation method to determine optimal weights of 

data points. 

(e) A Bayesian model selection technique to 

incorporate part specific operational history to 

obtain improved accuracy in life prediction. 

Future work will focus on improving model predictions by 

using additional environment variables as well as integrating 

data from design and qualification tests. 

NOMENCLATURE 

ASS = AutoTrak steering system 

BCPM = Bi-directional communication and power module 

BHA = Bottomhole assembly 

HALT = Highly accelerated life test 

HAST = Highly accelerated stress test 

IRMLE= Iteratively reweighted maximum likelihood  

estimation. 

LVPS = Low voltage power supply 

LWD = Logging while drilling 

MaPS = Maintenance and performance system 

MLE = Maximum likelihood estimation 

MWD = Measurement while drilling 

PCBA = Printed circuit board assembly 

PHM = Prognostics and health management 

PoF = Physics of failure 

RPM = Revolutions per minute 

F = Failure 

L = Lateral vibration 

Mi = i
th

 model identifier  

N = Symbol used to represent negative decision, generally  

“no” or “0” 

S = Symbol used to represent stick slip or suspensions 

T = Temperature  

X = Vector of parameters like temperature and vibrations 

Y = Symbol used to represent affirmative decision, generally 

“yes” or “1” 

f = Probability density function 

m = Number of models 

n = Number of records 

p = Probability 

p(a|b) = Conditional probability of occurrence of event a 

provided b is true 

revid = Revision identifier 

tf = Time to failure (drilling hours)  

wi = Weight of i
th

 data point 
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xave = Average value of parameter x 

xstdev = Standard deviation of parameter x 

α = Calibration parameters of reliability model 

  = Likelihood 

η = Characteristic life or scale factor of a probability  

distribution 

β = Shape factor of a probability distribution 

σ = Standard deviation 

λ= Hazard function 

{CF} = Set of life data for confirmed failure 

{O} = Set of outliers 

{S} = Set of life data for suspension 

{UF} = Set of life data for unconfirmed failure 

Load, Stress and Severity are used interchangeably to 

describe the impact of an operational environment 

(mechanical and thermal) on the durability of parts. 

Nominal part is a representative part that has a life equal to 

the average of several parts produced using the same 

manufacturing process and operating under the same 

condition. 

Run refers to a drilling mission that can last for several 

hours.  

Suspensions are used in reliability modeling to represent 

hours accumulated on parts that are in operation or removed 

from service for reasons other than failure. 
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APPENDIX A 

A. General  Log-Linear Model 

The relation between characteristics of life and stress 

variables are represented by using one of the three models: 

generalized log-linear (GLL), proportional hazard (PH) or 

cumulative damage (CD). The GLL model represents life 

using Eq. (A-1) 

 

 ( ̅)      ∑       
 
   ∑ ∑          

 
         

             (A-1) 

 

Where  ̅  = {T, L, S}. For a Weibull distribution, the 

probability density function is shown in Eq. (A-2), where β 

is the shape parameter, η is the scale parameter and α’s are 

unknown parameters calculated from field data using the 

maximum likelihood estimation technique. 
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The probability density function (PDF) for an exponential 

distribution can be obtained by putting β=1 in Eq. (A-1). 

For lognormal distribution, the probability density function 

for a GLL stress function is shown in Eq. (A-3): 
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B. Proportional Hazard Model 

For a proportional hazard model, the hazard rate of a 

component is affected by hours in operation and stress 

variables. The instantaneous hazard rate of a part is given by 

the equation as: 

 

 (   ̅)  
 (   ̅)

 (   ̅)
   ( )  ( ̅  ̅)                  (A-4) 

 

where f is the probability density function and R is the 

reliability function. The instantaneous hazard rate λ0 is a 

function of time only and the stress function η is function of 

operating stresses like temperature or vibration. The list of 

unknown model parameter  ̅  is obtained by calibrating 

model-to-test data using maximum likelihood estimation 

(MLE). The stress function η is given by Eq. (A-5): 
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Substituting Eq. (A-5) in Eq. (A-2), the hazard function can 

be written for a Weibull distribution using Eq. (A-6): 
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C. Cumulative Damage Model 

The cumulative damage model is designed to incorporate 

the effect of varying stress on life of components. The 

model takes into account the impact of damage accumulated 

at each stress level on the reliability of the part. Damage 

accumulation can take place at different rates for different 

stress levels and can be determined using the linear damage 

sum (Miner’s rule), inverse power law or cycle counting 

techniques like rain flow counting. The cumulative damage 

model used in the paper is established from Miner’s rule, 

which is based on the hypothesis that if there are n different 

stress levels and the time to failure at the i
th

 stress σi is Tfi, 

then the damage fraction, p, is given by Eq. (A-7): 
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                                         (A-7) 

 

Where ti is the number of cycles accumulated at stress σi and 

failure occurs when the damage fraction equals unity. The 

probability distribution functions for Weibull and lognormal 

distributions are obtained by substituting Eq. (A-7) in Eqs 

(A-2) and (A-3), respectively. Given the stress variables ̅  
{                           }, the PDF for a 

Weibull distribution is given by: 

 

 (   ̅)  ∫
    ∑     ( )  

 
   ∑ ∑        ( )  ( )

 
         

   

 
  

 

 

 

 (   ̅)    (   ̅)( (   ̅))
   
  (( 

(   ̅)))
 

  

                 (A-8) 

 

D. Characteristic Life Function 

The life characteristic function describes a general relation 

between failure time and stress levels. The life characteristic 

can be any time-to-failure measure such as the mean, 

median or hazard rate that represents a bulk property of a 

probability distribution. Ideally, the function incorporates 

the governing equations that represent the physical 

phenomenon of degradation of the material under 

application of load. Typical electronic circuit boards used in 

drilling and evaluations are complex and the governing 

equations representing degradation and failure mechanisms 

are difficult to model; hence, the paper evaluates several 

empirical functions between stress variables and selects the 

one that best fits the field data.  

E. Maximum Likelihood Estimation and Outlier 

Detection 

The maximum likelihood estimation (MLE) obtains the 

most likely values of parameters that best describes lifecycle 

data. Typically, the life cycle data of a part contain two sets 

of populations (a) hours to failure on samples that failed in 
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an experiment or in field and (b) hours in operation for parts 

that are either currently being operated or those that are 

retired for precautionary measures but were fully functional 

at that time. 
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Where the initial weight of each data point is given by  
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Fe is the number of samples for which the exact times-to-

failure is known,   
  is the number samples for which the 

exact time-to-failure is Ti, f is the probability density 

function (pdf) for time to failure, η is the scale factor and β 

shape factor of the pdf,   
  is the number samples for which 

the right censoring time is    ,   
  is the number samples for 

which the left censoring time is   
  and right censoring time 

is   
 . The   

 is the weight of i
th

 data subgroup is 

determined by the IRMLE algorithm. The outliers identified 

by the algorithm are shown in Fig. A1-Fig. A6 and the 

comparison of estimated life versus actual drilling hours to 

failure is shown in Fig. A7. 

 

 

Figure A1. Time to failure Vs. lateral vibration severity for 

fielded LVPS-modem serialized parts. 

 

Figure A2. Time to failure Vs. stickslip vibration severity 

for fielded LVPS-modem serialized parts. 

 

Figure A3. Impact of interaction of temperature and 

vibration on failure of LVPS-modem serialized parts. 

Figure A4. Suspension time Vs. lateral vibration severity for 

fielded LVPS-modem serialized parts. 
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Figure A5. Suspension time Vs. stickslip vibration severity 

for fielded LVPS-modem serialized parts. 

 

Figure A6. Suspension time Vs. interaction effect for fielded 

LVPS-modem serialized parts. 

 

Figure A7. Comparison of actual life Vs. predicted mean 

life for parts that failed in field 
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ABSTRACT

This paper investigates the shortcomings of performance
evaluation for prognostic algorithms, particularly in the pres-
ence of uncertainty. To that end, the various elements of a
prognostic algorithm (present health state estimation, future
load condition, degradation model, and damage threshold)
and their effects on prognostics are examined. Each of these
elements contribute to overall prediction performance and
therefore it is important to distinguish between (1) assessment
of the correctness of information regarding these quantities,
and (2) the assessment of correctness of the prognostic algo-
rithm. The need for proper accounting for uncertainty in the
various associated elements is discussed. Next, the shortcom-
ings of traditional comparisons between ground truth and al-
gorithm prediction is discussed. Several scenarios are pointed
out where misleading interpretations about evaluation out-
comes are possible. In order to address these shortcomings an
“informed evaluation” methodology is being proposed, where
the algorithm is informed with future loading/operating con-
ditions before comparing against ground truth. Additionally,
the importance of estimating the accuracy of aggregating the
different sources of uncertainty using rigorous mathematical
procedures is also emphasized. While this discussion does
not target developing new metrics, it highlights key criteria
for an accurate performance evaluation process under uncer-
tainty and proposes new measures to accomplish this goal.

1. INTRODUCTION

1.1. Prognostics

Prognostics, the ability to predict future events, conditional
on anticipated usage and environmental conditions, signifi-

Shankar Sankararaman et al. This is an open-access article distributed un-
der the terms of the Creative Commons Attribution 3.0 United States Li-
cense, which permits unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are credited.

cantly contributes to a system’s resilience for safe and effi-
cient operation. It is now well accepted that prognostics can
add considerable value to life cycle cost reduction by assess-
ing the state of health of the system components, and esti-
mating their remaining useful life that makes it possible to
initiate a mitigating action that will either prevent the break-
down, minimize downtime, avoid unscheduled maintenance,
or result in similar outcomes that minimize operational cost
of the system. However, at the same time, prognostics is in-
herently affected by various sources of uncertainty present in
the system; if the methods that deal with uncertainty are not
adequately understood and incorporated, it can be difficult to
make reliable predictions with high accuracy and confidence.
It is, therefore, not surprising that considerable attention has
been given to this technology in the last few years. A variety
of different approaches have been explored and employed to
predict system health and/or estimate remaining useful life.
However, it is important to note that the term “prognostics”
has been used by various practitioners in any context that has
a predictive element but not all of these methods result in es-
timation of remaining life. Subsequently, it also has a bear-
ing on the interpretation and treatment of uncertainty in each
of these methods, which is important not only to understand
how to incorporate these uncertainties in the analysis but also
to assess performance of these methods in a technically cor-
rect and rigorous manner (Saxena, Sankararaman, & Goebel,
2014).

1.2. Prognostic Performance Evaluation

Performance assessment of prognostics algorithm is an in-
dispensable element in maturing prognostics and health man-
agement technology as these predictions become the basis of
any subsequent decision making process. Mitigating actions
taken based on these decisions ultimately determine the ef-
fectiveness of the overall health management system. Most of
the existing literature on prognostics performance evaluation

1
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focuses on choosing the most appropriate metrics to evalu-
ate algorithms. Several metrics have been proposed and used
in the past that measure unique characteristics of prognostics
(Saxena, Celaya, Saha, Saha, & Goebel, 2010). These metrics
described different ways to express and measure accuracy,
precision, timeliness, and prediction-confidence attributes of
the prediction of a prognostic algorithm. Less attention has
been paid towards determining the correct approach for eval-
uating and interpreting prognostic performance under uncer-
tainty. Current approaches rely on comparing predicted out-
comes to observed end of life (also referred to as ground
truth). The key question, as investigated in this paper, is
whether such a comparison is technically correct, especially
when considering uncertainty in the prediction process. In
contrast to discussing prognostic metrics, this paper attempts
to identify a meaningful approach for performance evalua-
tion irrespective of which metrics are used to quantify perfor-
mance. In particular, two issues are explored: (1) choosing
the baseline to compare prediction results with and (2) iden-
tifying a method that can be used to obtain such information.
In the process, several important caveats in interpreting the
results of prognostic algorithms are explained in detail and
several misconceptions are clarified in this regard.

1.3. Relation to Work on Metrics

For providing a clear context with regards to earlier works
investigating prognostic performance, it is important to draw
connections between the what should be measured and how
prognostic metrics were designed. Early versions of prognos-
tics algorithms output were point estimates of end-of-life that
were compared with the observed end-of-life to assess perfor-
mance (Saxena et al., 2008). Later as prognostics algorithms
matured they started incorporating uncertainties in predic-
tions through various representations of uncertainty, although
mostly dominated by probability distributions. However, the
basic underlying question of what the key contributing factors
to the quality of a prediction are and how the contribution of
each can be evaluated separately have not been addressed in
detail until very recently (Sankararaman & Goebel, 2013b).
Prognostic performance is understood to depend on two dis-
tinct factors; 1) External inputs (data quality, operating en-
vironment, system loading, etc.), and 2) Internal processing
(fault models, state estimation methods, uncertainty propa-
gation methods, etc.). To gain full understanding of uncer-
tainty expressed in remaining useful life (RUL) estimates it
is important to isolate the effects of these different internal
and external factors through adequate performance evaluation
while algorithm development. Based on feedback from such
evaluation, targets for further technology improvement can
be identified and a baseline of acceptable performance can
be established before a prognostic system is put into usage.
This paper extends the discussion in (Saxena et al., 2014)
by focusing on effects of uncertainty in prognostics for the

purpose of performance evaluation and explores how care-
fully designed performance evaluation process can help distill
these effects.

1.4. Organization of this Paper

This paper focuses its attention on performance evaluation
of only condition based prediction methods for prognostics.
Other prediction methods are considered beyond the scope of
this paper. First, Section 2 describes various sources of uncer-
tainty that are present in prognostics and clearly distinguishes
between the interpretation of uncertainty in condition-based
prognostics and fleet-based prediction methods. This discus-
sion dissects the overall uncertainty into a few fundamental
elements and subsequently provides a stepwise approach to
assess prognostic performance so that these effects of each
of these elements on prognostic performance evaluation can
be assessed. Next, Section 3 discusses the impact of uncer-
tainty on prognostic algorithms through an illustrative exam-
ple and a simple prediction algorithm. Section 4 explains the
challenges involved in performance evaluation of prognostic
algorithms and Section 5 explains different types of perfor-
mance measures. Section 6 numerically illustrates the above
concepts using a lithium-ion battery application. Finally, con-
clusion and future work are presented in Section 7.

2. PROGNOSTIC ALGORITHMS

In order to completely understand the various aspects of per-
formance evaluation of prognostic algorithms, it is necessary
to understand the various elements of a prognostic algorithm.
A prognostic algorithm ideally takes all available information
(state estimate, future estimates, degradation model, etc.) and
computes the remaining useful life of the component or sys-
tem of interest.

2.1. Key Elements of a Prognostic Algorithm

For the purpose of rating the performance of an algorithm, it
is important to decide which elements are part of an algorithm
and which are not. Roychoudhury et al. (Roychoudhury, Sax-
ena, Celaya, & Goebel, 2013) focused on identifying the key
aspects of a prognostic algorithm, this argument is extended
in this paper to identify the various elements that are needed
to determine the remaining useful life, as follows:

1. Present condition (state) of the system/component

2. Future (operational, loading, environmental, etc.) condi-
tions of the system/component

3. Degradation model of the system/component

4. End-of-Life damage threshold

5. The actual algorithmic procedure, that combines the
above information systematically in order to compute the
remaining useful life.

2
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One could argue that quantifying the present condition of the
system/component through a state estimation algorithm (per-
haps using a Bayesian filtering approach such as particle fil-
tering or Kalman filtering) is a necessary and essential com-
ponent of the prognostic algorithm. However, the develop-
ment of the degradation model and estimating the future con-
ditions seem to be outside the scope of the prognostic algo-
rithm. The problem is that these two components are “inputs”
to a prognostic algorithm, i.e., the algorithm needs these two
pieces of information to predict the remaining useful life. It
would not reasonable to penalize an algorithm whose predic-
tions do not compare well with ground truth data, if the algo-
rithm did not have access to an accurate degradation model
and/or an accurate estimate of the future conditions of the
component/system. Similarly, it is not reasonable to accept
a prognostic algorithm whose predictions apparently match
well with ground truth data, if the algorithm had used in-
accurate future conditions and inaccurate degradation model
(whose inaccuracies could cancel each other out). For exam-
ple, the degradation model may have a much smaller degrada-
tion rate and the chosen future conditions may be much more
severe than reality.

Figure 1. Components of Prognostics Algorithm

Therefore, this paper explores the various aspects of perfor-
mance evaluation with an emphasis on the above elements of
a typical prognostic algorithm, as explained through the rest
of this paper.

2.2. Uncertainty in Prognostics

While non-probabilistic methods (Wang, 2011) such as Fuzzy
logic, possibility theory, Dempster-Shafer theory, Evidence
theory, etc. have been used for the treatment of uncertainty,
probabilistic methods have been predominantly used for un-
certainty representation in prognostics (DeCastro, 2009; Or-
chard, Kacprzynski, Goebel, Saha, & Vachtsevanos, 2008;
Saha, Goebel, Poll, & Christophersen, 2009). Without loss
of generality, the rest of this paper will focus only on prog-
nostic algorithms based on probability theory.

In order to evaluate the performance of prognostic algorithms
in the presence of uncertainty, it is important to answer ques-
tions such as:

1. What does one actually mean by “uncertainty” in prog-
nostics?

2. What causes uncertainty in prognostics?
3. What are various elements of a prognostic algorithm that

are affected by uncertainty?
4. What is the contribution of these elements to overall

prognostic performance?

2.3. Interpreting Uncertainty in Prognostics

Though mathematical axioms and theorems of probability
have been well-established in the literature and probabilis-
tic methods are being increasingly used for uncertainty quan-
tification in engineering, there is considerable disagreement
among researchers on the interpretation of probability. There
are two major interpretations based on physical and subjec-
tive probabilities, respectively. Physical probabilities (Szabó,
2007), also referred to objective or frequentist probabilities,
are related to random physical systems such as rolling dice,
tossing coins, roulette wheels, etc. Each trial of the experi-
ment leads to an event (which is a subset of the sample space),
and in the long run of repeated trials, each event tends to oc-
cur at a persistent rate, and this rate is referred to as the rela-
tive frequency”. These relative frequencies are expressed and
explained in terms of physical probabilities. Thus, physical
probabilities are defined only in the context of random experi-
ments. On the other hand, subjective probabilities (De Finetti
& de Finetti, 1977) can be assigned to any “statement”. It
is not necessary that the concerned statement is in regard to
an event which is a possible outcome of a random experi-
ment. In fact, subjective probabilities can be assigned even in
the absence of random experiments. The Bayesian method-
ology is based on subjective probabilities, which are simply
considered to be degrees of belief and quantify the extent
to which the statement is supported by existing knowledge
and available evidence. Calvetti and Somersalo (Calvetti &
Somersalo, 2007) explain that “randomness” in the context of
physical probabilities is equivalent to “lack of information” in
the context of subjective probabilities. In this approach, even
deterministic quantities can be represented using probability
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distributions which reflect the subjective degree of the ana-
lyst’s belief regarding such quantities.

This leads to the obvious question - is one particular interpre-
tation more suitable to prognostics? In general, both inter-
pretations may be suitable. However, in the particular con-
text of condition-based monitoring or online health moni-
toring, there is only one system which is being monitored,
and hence, at any time instant, there is no “physical random-
ness” associated with the system (from a frequentist point
of view). Therefore, any quantity associated with a system,
even though it may be uncertain, cannot be represented using
a probability distribution, following the frequentist interpre-
tation of probability. Nevertheless, system state estimation
during health monitoring is commonly performed using par-
ticle filters and Kalman filters, and these approaches compute
probability distributions for the state variables; therefore, the
only possible explanation for such calculation is that the sub-
jective (Bayesian) approach is being inherently used for un-
certainty quantification. Such filtering approaches are known
as “Bayesian tracking” methods not only because they make
use of Bayes theorem, but also fall within the realm of subjec-
tive probability. This implies that the uncertainty estimated
through the aforementioned filtering algorithms are simply
reflective of the analyst’s degree of belief, and not related to
actual physical probabilities. Similarly, the uncertainty in fu-
ture conditions (loading, operating, and environmental con-
ditions) also need to interpreted subjectively. For example, if
the anticipated current on a battery follows a normal distri-
bution with mean and standard deviation equal to 10 and 1
(current units) respectively, then this probability distribution
is only reflective of the subjective belief, and only one re-
alization may occur in reality. The actual current may be 10
units (which is not possible to know), and this implies that the
subjective belief was reasonable; the subjective belief would
have been even better had the standard deviation been smaller.
On the other hand if the actual current had been 30 units, then
it implies that the subjective belief was completely wrong.

Sometimes, in practice, both frequentist and subjective in-
formation can be useful, even in condition-based prognos-
tics. For example, an ensemble of test units may be used
to develop degradation models and learn the corresponding
model parameters. Since these models and their parameters
are estimated based on physically variable units, the uncer-
tainty in such parameters need to be interpreted from a fre-
quentist point of view. However, when such a model is used
in condition-based monitoring, these parameters are typically
updated in order to reflect the parameters of the particular
unit; during this procedure, the interpretation of uncertainty
transitions from “frequentist” to “subjective” as the informa-
tion described in terms of uncertainty changes from reflecting
the ensemble of test units to the particular unit under con-
sideration for condition-based monitoring. It is important to
understand the interpretation of uncertainty during the course

of the monitoring procedure, depending upon what informa-
tion is used to characterize and quantify the aforementioned
uncertainty.

2.4. Sources of Uncertainty in Prognostics

Having discussed the importance and interpretation of un-
certainty, this subsection seeks the answer to the question:
What are the different sources of uncertainty in prognostics?
Typically, the answer to this question varies from applica-
tion to application, and depends on the type of prediction.
For example, in testing-based prediction methods (referred
to as “reliability-based testing” in some publications), the re-
maining useful life is typically calculated by testing multi-
ple nominally identical specimens of the engineering compo-
nent/system. It may be noted that the term “remaining” in
“remaining useful life” may not be applicable to such test-
ing methods. This is because, testing is typically carried
out before the engineering system is under operation. The
term “time-to-failure” is more appropriate for testing-based
health management. It is important not to confound “time-to-
failure” and “remaining useful life”.

Assume that a set of run to failure experiments have been
performed with high level of control, ensuring same usage
and operating conditions. The time to failure for all the n
samples (ri; i = 1 to n) are measured. It is important to
understand that different time-to-failure values are obtained
due to inherent variability across the n different specimens,
thereby confirming the presence of physical probabilities or
true randomness. The various factors that contribute are:

1. Inherent variability in properties and characteristics of
the nominally identical specimens

2. Inherent variability across the loading conditions experi-
enced by each of the individual specimens

3. Inherent variability in operating and environmental con-
ditions for each of the individual specimens

On the other hand, in condition-based prognostics, the focus
should be on monitoring the performance of one particular
component/system where the inherent variability across nom-
inally identical units are not of interest. In other words the end
of life of the system under test is not governed by system to
system variability within the context of condition based pre-
dictions or prognostics. It is, therefore, necessary to adopt
a significantly different approach for the treatment of uncer-
tainty. Various uncertainties involved in prognostics can be
divided into following broad categories:

1. Present uncertainty: Prior to prognosis, it is important
to be able to precisely estimate the condition/state of the
component/system at the time at which RUL needs to be
predicted. Typically, damage (or faults) are expressed
in terms of states, and therefore, estimating the state is
equivalent to estimating the extent of damage (or fault).
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This is related to state estimation and is commonly ad-
dressed using filtering. Output data (usually collected
through sensors) are used to estimate the state and many
filtering approaches (Kalman filtering, particle filtering,
etc.) are able to provide an estimate of the uncertainty in
the state. Practically, it is possible to improve the esti-
mate of the states and thereby reduce this uncertainty, by
using better sensors and improved filtering approaches.
It is important to understand that the system is at a par-
ticular state at any time instant, and the aforementioned
uncertainty simply describes the lack of knowledge re-
garding the “true” state of the system.

2. Future uncertainty: The most important source of un-
certainty in the context of prognostics is due to the fact
that the future is unknown, i.e. the loading, operating,
environmental, and usage conditions are not known pre-
cisely, and it is important to assess this uncertainty be-
fore performing prognosis. If there is no uncertainty re-
garding the future, then there would be no uncertainty
regarding the true remaining useful life of the engineer-
ing component/system. However, this true RUL needs to
be estimated using a model; the usage of a model imparts
additional uncertainty as explained below.

3. Modeling uncertainty: It is necessary to use a func-
tional degradation model in order to predict future state
behavior, i.e., model the response of the system to an-
ticipated loading, environmental, operational, and usage
conditions. Further, the end-of-life is also defined us-
ing a Boolean threshold functional model, that is used to
indicate whether failure has occurred or not. These two
models are jointly used to predict the RUL, and they may
either be physics-based or data-driven. It may be practi-
cally impossible to develop models that accurately pre-
dict the underlying reality. Modeling uncertainty repre-
sents the difference between the predicted response and
the true response (that can neither be known nor mea-
sured accurately), and comprises of several parts: model
form, model parameters, and process noise. While it may
be possible to quantify these terms until the time of pre-
diction, it is challenging to know their values at future
time instants.

3. IMPACT OF UNCERTAINTY ON PROGNOSTIC ALGO-
RITHMS

To better illustrate the impact of uncertainty on prognostic al-
gorithms, a conceptual example is introduced in this section.

3.1. Conceptual Example

Consider an engineering component whose health state at any
time instant is given by x(t). Consider a simple degradation
model, where the rate of degradation of the health state (that
decreases with time, due to the presence of damage) is pro-
portional to the current health state. This can be mathemati-

cally expressed as:
ẋ(t) ∝ x(t), (1)

where the constant of proportionality is a negative number.
Since differential equations are usually solved by considering
discrete time instants, the above equation can be rewritten as:

x(k + 1) = a.x(k) + b, (2)

where k represents the discretized time-index. The condition
that “the constant of proportionality in Eq. 1 is negative” is
equivalent to the condition that “a < 1 in Eq. 2”. The initial
health state, i.e., x(0) is a random variable, and is expressed
using a probability distribution. For the sake of illustration,
let a denote the loading on the system (the smaller the value a,
the larger the degradation rate), and let b denote the parameter
of the above degradation model. While a and b are constant
and time-invariant (for the sake of illustrating the conceptual
example), they are random and expressed using probability
distributions. (In practical examples, the probability distribu-
tions of a and b could vary as a function of time.)

In order to compute the remaining useful life, it is necessary
to chose a threshold function that defines the occurrence of
failure. Since x(k) is a decreasing function, the threshold
function will indicate that failure occurs when the state value
x becomes smaller than a critical lower bound (l), and the
first time instant at which this event occurs indicates the end
of life, and this time instant can be used to calculate the RUL.
For the purpose of illustration, consider prediction at the ini-
tial time instant; hence, the end of life is equal to the remain-
ing useful life. This remaining useful life (r, an instance of
the random variable R) is equal to the smallest n such that
x(n) < l, and is expressed as:

r = inf{n : x(n) < l}, (3)

In general (i.e., at arbitrary time instants when it is desired
to make prediction), the RUL is calculated as the difference
between the end-of-life and the time of prediction.

3.2. Closed-Form Solutions?

This section postulates that closed-form analytical solutions
for the remaining useful life prediction are not available even
for such simple problems involving linear prediction models.
In order to illustrate this point, assume that the chosen time-
discretization level is infinitesimally small, it is possible to
directly estimate the RUL by solving the equation:

ar.x(0) +

j=r−1∑

j=0

aj.b = l. (4)

The above equation can be used to calculate the RUL (r) as
a function of the initial state (x(0)), loading (a) and model
parameter (b). For the sake of further simplification, assume
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that a and b are completely known constants and x(0) is the
only uncertain quantity; further assume that x(0) follows a
Gaussian distribution. The following analysis shows that it is
impossible to analytically calculate the remaining useful life
prediction even with only one uncertain variable and a linear
degradation model.

The RUL R follows a Gaussian distribution if and only if it
is linearly dependent on x(0). In other words, R follows a
Gaussian distribution if and only if Eq. 4 can be rewritten as:

α.r + β.x(0) + γ = 0 (5)

for some arbitrary values of α, β, and γ. If it were possible to
estimate such values for α, β, and γ, the distribution of RUL
can be obtained analytically.

In order to examine if this is possible, rewrite Eq. 4 as:

x(0) =
1

ar
(l −

j=r−1∑

j=0

aj .b) (6)

While x(0) is completely on the left hand side of this equa-
tion, r appears not only as an exponent in the denominator
but is also indicative of the number of terms in the summa-
tion on the right hand side of the above equation. Therefore, it
is clear that the relationship between r and x(0) is not linear.
Therefore, even if the state variable (x(0)) follows a Gaus-
sian distribution, the RUL (r, a realization of R) does not
follow a Gaussian distribution. Thus, it is clear that even for
a simple problem consisting of linear state models, a straight-
forward threshold function, and only one uncertain variable
that is Gaussian, the calculation of the probability distribu-
tion of R is not trivial. Even the distribution type of RUL is
unknown for this conceptual problem.

Indeed practical problems considered in the prognostics and
health management domain may consist of:

1. Several non-Gaussian random variables which affect the
RUL prediction,

2. A non-linear multi-dimensional state space model,

3. Uncertain future loading conditions,

4. A complicated threshold function which may be defined
in multi-dimensional space.

It is the goal of a prognostic algorithm to rigorously account
for all the uncertain quantities and compute the uncertainty
in the remaining useful life prediction. It is important to note
that RUL is simply a dependent quantity and needs to be pre-
dicted without making any assumptions regarding the distri-
bution type (say, Gaussian) or statistics (say, mean or standard
deviation) of RUL. This can be addressed posing RUL predic-
tion as an uncertainty propagation problem (Sankararaman &
Goebel, 2013b, 2013a). For this purpose, the remaining use-
ful life prediction needs to be written as a function of all of

the uncertain quantities. For instance, in the above conceptual
example, Eq. 4 can be rewritten as:

r = G(x(0), a, b) (7)

Then, the uncertainty in x(0), a and b are propagated through
G (note that G is equivalent to solving Eq. 4 for r) to com-
pute the uncertainty in the remaining useful life prediction.
In the case of practical problems, such computation is very
challenging particular when prognostic calculations need to
be performed during the operation of the system.

3.3. Conceptual Algorithm

Given information regarding the state estimate, future con-
ditions, and degradation model, this section further uses a
conceptual algorithm for the purpose of illustration. This al-
gorithm calculates the mean and standard deviation of RUL
using first order Taylor’s series expansion (Sankararaman,
Daigle, & Goebel, 2014), and is known as the first-order sec-
ond moment (FOSM). Note that this simply has been delib-
erately chosen to illustrate certain pitfalls of existing perfor-
mance evaluation methods.

For the conceptual example of Section 3.1,

µr = G(µx(0), µa, µb) (8)

where µr, µx(0), µa, µb denote the mean of r, x(0), a, and b
respectively. The variance of r, i.e., σ2

r can be calculated as:

σ2
r = (

∂G

∂x(0)
)2σ2

x(0) + (
∂G

∂a
)2σ2

a + (
∂G

∂b
)2σ2

b (9)

where σr , σx(0), σa, σb denote the standard deviation of r,
x(0), a, and b respectively.

Typically, µx(0) and σx(0) are provided by the state estimation
algorithm, and the RUL needs to be predicted by forecasting
(extrapolating using the degradation model) the state estimate
forward in time; such forecasting is equivalent to the calcula-
tion in Eq. 7. For example, consider the following statistics:
x(0) follows a Gaussian distribution (with mean and standard
deviation equal to 1000 and 200 respectively), a follows a
uniform distribution (with lower and upper bounds of 0.990
and 0.995), and b follows a uniform distribution (with lower
and upper bounds of -0.005 and 0 respectively). For failure
threshold limit l = 50, the RUL prediction can be approxi-
mated to be a Gaussian distribution based on the above calcu-
lation of the FOSM method. The resultant probability density
function (PDF) is indicated in Fig. 2.

The various aspects of performance evaluation are discussed
in detail using this algorithm. While the above algorithm is
simply used for the purpose of illustration, the following dis-
cussion can be extended to any type of unit-based prognostic
algorithm.
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Figure 2. RUL: Conceptual Example

4. CHALLENGES IN PERFORMANCE EVALUATION

Any typical prognostic algorithm uses information regarding
the three key elements, i.e., state uncertainty, future uncer-
tainty, and model uncertainty, and computes the remaining
useful life prediction. While it would be ideal to compute the
entire probability distribution of the RUL, some algorithms
compute only certain statistics (like mean and standard de-
viation) and assume a distribution type (such as Gaussian).
Recall that Section 3 stipulated that such assumptions should
not be made, and RUL must be fully treated as a dependent
quantity.

In order to judge the performance of an algorithm, ground
truth data are obtained through experimental studies that
mimic the various uncertainties that are accounted for, in the
prognostic algorithm. Note that it is not individually possible
to evaluate how well each of the three key elements have been
quantified; only their combined effect on the RUL prediction
can be compared against ground truth data.

As far as experiment is concerned, the component/system is
at a particular state at any instant of time and there is no uncer-
tainty regarding this state. However, a typical state estimation
cannot precisely estimate this state and hence, expresses the
uncertainty through a probability distribution. Hence, a typ-
ical state estimation algorithm adds extraneous uncertainty,
and this would not exist if an idealistic state estimator were
present. Similarly, the degradation model uncertainty is also
extraneous from the perspective of an algorithm (arises due
to the inability to accurately predict the underlying degrada-
tion phenomenon), and would not exist if an idealistic, exact
degradation model were used. These two types of uncertainty
cannot be simulated in a laboratory experiment since they are
extraneously added by the algorithm due to the lack of an ex-
act state estimate and an exact degradation model. In fact,
effect of state estimation uncertainty and model uncertainty
on the difference between the the ground truth and prediction
will be equal to zero in the presence of an exact state estimate
and an exact degradation model.

However, this is not the case for future loading uncertainty be-
cause this uncertainty represents possible future realizations

of loading conditions. Hence, it is possible to simulate multi-
ple future loading conditions in the laboratory. However, the
challenge lies in the fact that one unit can experience only
one set of loading conditions. Multiple loading conditions
would have to be simulated on multiple, nominally identical
units, and in this case, run-to-failure times of these multiple,
nominally identical units will be colored by the inherent vari-
ability across them. Hence, it is not possible to experimen-
tally emulate multiple future loading conditions, in the con-
text of condition-based monitoring. And, it is not possible
to rigorously evaluate prognostic algorithm performance by
considering the simultaneous, joint, effect of state estimation
uncertainty, model uncertainty, and future uncertainty on the
remaining useful life prediction. Therefore, it is necessary to
investigate other practical performance evaluation techniques
that can quantitatively judge quality of the remaining useful
life predictions of a prognostic algorithm.

5. PRACTICAL PERFORMANCE EVALUATION

This section discusses the most common method of perfor-
mance evaluation, i.e., comparing the actual run-to-failure
time against the algorithm prediction. The shortcomings of
this approach are described and new performance evaluation
approaches are suggested.

5.1. Ground Truth Comparison

Most existing performance evaluation techniques rely on the
availability of the ground truth failure data, and the RUL pre-
dicted by the prognostic algorithm can be easily compared
against the observed failure time. However, such comparison
is not only inequitable, but,sometimes, it may lead to incor-
rect conclusions.

1. Inequitable Comparison: From the time of prediction
until the time of failure, the algorithm assumes some un-
certainty regarding the future loading and usage condi-
tions. However, the observed ground truth is reflective
of only one loading/usage condition that actually hap-
pened in reality, thereby implying that similar quantities
are not compared. In other words, the experiment con-
tains no uncertainty regarding loading/operating condi-
tions, whereas the algorithm accounted for such uncer-
tainty.

2. Concluding poor performance of a good algorithm:
The aforementioned inequitable comparison can some-
times lead to concluding that a good algorithm is poor.
Consider the case where an algorithm is provided fu-
ture loading conditions that are completely different from
the actual loading conditions. The algorithm may pro-
cess the provided information accurately and compute
the RUL. However, this prediction may be completely
different from the observed ground truth RUL. This dif-
ference needs to be attributed only to the incorrectly as-
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sumed loading conditions and it is not reasonable to pe-
nalize the prognostic algorithm in this context. In the
context of the conceptual example, the actual loading
may have been corresponding to a = 0.90 which would
have led to a much smaller ground truth RUL than that
predicted by the algorithm in Fig. 2. Thus, though the
algorithm had been reasonably accurate, its performance
would have been judged based on incorrect loading as-
sumptions.

3. Concluding good performance of a poor algorithm:
Suppose that the prediction of the algorithm is extremely
accurate and precise, with respect to the observed ground
truth. Then, it cannot be inferred that the algorithm is
performing well. This is because the algorithm may not
be accurately processing all the uncertainty regarding the
future and thereby leading estimates with lesser precision
than what the algorithm is supposed to do.

Some of these challenges can be overcome using another type
of performance evaluation, as explained in the following sec-
tion.

5.2. Informed Ground Truth Comparison

It is possible to eliminate the effect of not knowing the
loading condition in advance, by waiting until failure. The
actual loading/usage condition experienced by the compo-
nent/system can be observed, and the prediction algorithm
can be provided this information. Therefore, the algorithm
prediction can be ”informed” with the actual loading con-
dition, and the informed-prediction can be computed easily.
Note that, at the time of prediction, this information would
generally not be available to the algorithm. Therefore, this
procedure is only to evaluate the algorithm performance, after
eliminating the effect of unknown future loading conditions.
All the other information provided to the algorithm need to
be reflective of the information available to the algorithm at
the time of prediction, such as the state values at the instant
of prediction.

In the conceptual example, assume that a component has been
run until failure, and the actual loading condition was ob-
served to correspond to a = 0.994. Then, the informed pre-
diction can be computed, as shown in Fig. 3. Note that the
original prediction has also been shown, for the sake of com-
parison. This comparison needs to confirm that the observed
ground truth falls within reasonable bounds of the informed
prediction; note that these bounds are much narrower than the
bounds corresponding to the original algorithm prediction.

Similar to the traditional ground-truth-based evaluation, the
informed prediction of the algorithm can be compared against
the observed ground truth. Note that the former is uncertain
because of uncertainty in the state estimate and the degrada-
tion model. Note that it is still difficult to evaluate the effects
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Figure 3. RUL Prediction: Original vs. Informed

of state estimation uncertainty and model uncertainty; in fact,
these two quantities could have compounding or canceling ef-
fects and such effects cannot be detected and evaluated easily,
unless intermediate measurements of the state are available
during the experimental set up.

5.3. Assessment of Computational Accuracy

While the above described measures of evaluation focus on
characterizing the effects of state estimates, future loading
conditions, and degradation model, it is also necessary to
check whether the algorithm is accurately processing the
different sources of uncertainty. This is not related to ac-
curately predicting the RUL, but is directly associated to
the mathematical treatment of the various sources of uncer-
tainty. Some algorithms may average the effect of the differ-
ent sources of uncertainty on the RUL, and arbitrarily calcu-
late the variance of RUL using approximations and assump-
tions (Sankararaman & Goebel, 2013b). It is important not
to underestimate or overestimate the underlying uncertainty
and accurately calculate the probability distribution of RUL.
The ideal approach to perform such calculation is the use
of Monte Carlo simulation with a large number of samples;
though this requires high computational power, this method
can be used to check the performance of other algorithms that
are suitable for online prediction. In other words, the proba-
bility distributions obtained using the specific algorithm and
Monte Carlo simulation can be compared and any discrep-
ancy can be quantified, in order to evaluate the performance
of the algorithm, from the perspective of integrating the dif-
ferent sources of uncertainty.

For instance, in the conceptual example, if x(0) follows
a Gaussian distribution (with mean and standard deviation
equal to 1000 and 200 respectively), a follows a uniform dis-
tribution (with lower and upper bounds of 0.990 and 0.995),
and b follows a uniform distribution (with lower and upper
bounds of -0.005 and 0 respectively), then the RUL (defined
by Eq. 3, where l = 50) can calculated as a probability dis-
tribution, using Monte Carlo sampling. Using unit discretiza-
tion (i.e., the time interval between the kth and (k + 1)th
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instants is equal to one second) for solution, the resultant
probability density function (PDF) obtained using exhaustive
Monte Carlo sampling (MCS) is shown in Fig. 4. For the sake
of comparison, the previously obtained result using FOSM is
also shown.
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Figure 4. RUL: Conceptual Example

An ideal algorithm should be able to replicate the result from
Monte Carlo sampling, as much as possible. A narrower pre-
diction implies that the algorithm is underestimating the to-
tal amount of uncertainty whereas a wider prediction implies
that the algorithm is overestimating the total amount of uncer-
tainty. The former scenario may lead to unexpected system
failure and hence heavy losses, whereas the latter scenario re-
sults in extremely conservative decisions and may not use the
available resources in an optimal manner.

Note that the FOSM method reasonably agrees with MCS,
in this example. This can be attributed to the fact that the the
example itself was very simple to begin with. When more un-
certain variables are present, and when the degradation model
becomes increasingly non-linear, then it is expected that the
FOSM result will be significantly different from the MCS re-
sult.

5.4. Summary

The search of prognostic performance evaluation measures
raises several important questions and concerns. There are
four important critical factors that control the performance of
prognostic algorithm, and it is not practically possible to in-
dividually evaluate the goodness of these factors. While eval-
uating algorithm performance against observed ground truth
seems to be the most widely used method, it is not only un-
fair but may lead to incorrect conclusions. The informed-
prediction method eliminates the uncertainty regarding the
future loading conditions, and quantifies the combined ef-
fect of state uncertainty and degradation model uncertainty
on the RUL prediction. The fourth factor, i.e., whether all
the sources of uncertainty are being processed and integrated
accurately, can be verified by comparing the algorithm pre-
diction against rigorous Monte Carlo simulation.

An important challenge is the inability to check whether the

loading conditions assumed by the algorithm are reflective of
what is expected in reality. Is it reasonable to penalize the
algorithm for poor performance? Another issue is the ability
to identify whether the adverse effect of two (or more) incor-
rectly estimated quantities jointly cancel out one another, and
deceivingly suggest that the prediction is highly accurate and
precise. Further research is necessary to address these issues
and advance the state-of-the-art in performance evaluation of
prognostic algorithms.

6. AN ILLUSTRATIVE EXAMPLE

This section provides an application example to illustrate the
various concepts explained earlier in this paper. The exam-
ple used in this paper predicts end-of-discharge of a Li-ion
battery and is borrowed from previous works of the authors
(Sankararaman et al., 2014). Since various details about prog-
nostic model development for Li-ion battery are not directly
relevant to this discussion they are omitted here, which can
be found in (Sankararaman et al., 2014). This example il-
lustrates how one can apply the evaluation method proposed
in Section 5 to a real problem. To illustrate pitfalls of raw
ground truth comparison and explain the proposed method-
ology, the rest of this section discusses the various sources
of uncertainty in this application example, and explains the
previously discussed performance measures.

6.1. Sources of Uncertainty

Consider the prediction of end-of-discharge (EOD) at the ini-
tial time instant (t0). The EOD prediction depends on the
following uncertain quantities:

1. State Uncertainty: Typically, state estimation is ad-
dressed using a filtering technique that can continu-
ously estimate the uncertainty in the state based on
the available measurements. In the example discussed
in (Sankararaman et al., 2014; Daigle, Saxena, & Goebel,
2012) there are three state variables tracking amount of
charge in three capacitive elements of the battery model.
These three capacitive elements are referred to as — bulk
capacitance (Cb); concentration-polarization capacitance
(Csp); and ohmic-drop capacitance (Cs). For complete
details of the battery model, and explanation of these
terms, refer to (Sankararaman et al., 2014; Daigle et al.,
2012).
It must be noted that in this problem, the charge in Cb is
the most influential state variable for predicting the end-
of-discharge, and therefore, is considered to be the only
uncertain state variable. At the initial time instant, the
value of the state variable Cb is denoted by X , and the
values of the other state variables are set to zero. Let µX

and σX denote the mean and standard deviation of X .

2. Loading Uncertainty: For the purpose of illustration
and simplicity, the future loading is assumed to be con-

9

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

541



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

stant; however, this constant value is chosen at random,
and denoted by Y . Let µY and σY denote the mean and
standard deviation of Y .

All other quantities are assumed to be completely known con-
stants. The above two sources of uncertainty are sufficient to
explain the concepts discussed in this paper.

6.1.1. End-of-Discharge Prediction and Performance
Evaluation

It can be seen that the end-of-discharge (EOD) can be written
as a function of the uncertain quantities (X and Y ), as:

EOD = G(X, Y ) (10)

Note that G is a combination of the degradation model and the
end-of-discharge voltage threshold (VEOD) mentioned ear-
lier, and includes all constants that are precisely known. Due
to the uncertainty in X and Y , the predicted EOD is also un-
certain and represented using a probability distribution. This
distribution needs to be compared against experimental end-
of-discharge data for performance evaluation. The remainder
of this section illustrates various aspects of prognostic algo-
rithm performance evaluation under uncertainty.

6.2. Rejecting a Good Algorithm

If prognostics and prognostics performance are not inter-
preted and understood correctly, then it may lead to inferring
that the algorithm is not performing well.
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Figure 5. Rejecting a Good Algorithm

For example, consider the RUL prediction (equal to the end
of discharge, since the prediction is performed at t = 0) in
Fig. 5, obtained through Monte Carlo sampling. In this illus-
tration, X and Y are chosen to be Gaussian variables, with
µX = 31115.0, σX = 3111.5, µY = 35, and σY = 5.
In addition to the RUL prediction, two different ground truth
RUL values (Ground Truth I and II respectively) are shown;
these two values correspond to different future loading real-

izations – the more severe results in a shorter life whereas the
less severe results in a longer life.

Evidently, the comparison suggests that the algorithm is not
performing well since it does not predict Ground Truth II
well. However, this may have happened due to several rea-
sons such as:

1. Overestimating the system health during state estimation
that leads to the early prediction

2. Overestimating the severity of the loads that leads to
early prediction

There is nothing wrong about the algorithm; the information
provided to the algorithm is alone questionable. Further, note
that the above comparison against the ground truth is unfair
since the ground truth represents only one out of several pos-
sible realizations considered in the prognostic algorithm.

6.3. Accepting a Bad Algorithm

On the other hand, consider an algorithm that produces the
RUL prediction as shown in Fig. 6, and assume that Ground
Truth II alone was available through experiments. For exam-
ple, such an algorithm may compute the RUL in a completely
wrong approach in predicting the RUL either by neglecting
certain sources of uncertainty or by incorrectly combining
the state information along with the degradation model and
the threshold model. Therefore, this may lead to concluding
that the algorithm is performing well.

600 800 1000 1200 1400 1600
0

0.002

0.004

0.006

0.008

0.01

RUL (in seconds)

PD
F

Ground Ground
Truth I Truth II

Figure 6. Accepting a Bad Algorithm

However, such a conclusion is incorrect. Since some uncer-
tainty is not accounted for, this algorithm can only capture
certain possible realizations of the future but not all possible
future realizations; in this case, while Ground Truth II alone
be explained by the algorithm, Ground Truth I (which is also
a possible future realization) cannot be explained by the algo-
rithm.

10
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6.4. Performance Evaluation

In order to address these issues, this paper discussed two addi-
tional measures for performance evaluation. For the purpose
of illustration, assume that the FOSM algorithm has been pur-
sued. The first measure of “informed” evaluation measures
the actual loading scenario (value of Y , the electrical current,
in this numerical example) experienced by the ground truth
and “informs” the algorithm with such ground truth. In this
case, Y = 35 corresponds to Ground Truth I, Y = 25 cor-
responds to Ground Truth II, i.e., a less severe loading leads
to longer life. The informed predictions are plotted in Fig. 7,
and it can be easily seen that both informed RUL predictions
match well with the corresponding ground truth values.
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Figure 7. FOSM: Original vs. Informed

The second measure focuses on evaluating the correctness of
the algorithm by direct comparison against rigorous Monte
Carlo simulation, as shown in Fig. 8. As it can be seen from
this figure, the FOSM algorithm is able to capture central
tendencies but is not able to capture tail behavior. For this
numerical example, the prediction seems to be conservative.
However, it could be otherwise for a different set of uncer-
tain quantities and corresponding statistics. That is why it is
important to evaluate such correctness by direct comparison
against MCS.

6.5. Discussion

Practical problems may have several sources of uncertainty
that further complicate performance evaluation through com-
plicated interactions, i.e., Eq. 10 may get complicated with
multiple arguments. Many of these sources of uncertainty are
“inputs” to the prognostic algorithm, and it is not reasonable
to penalize the algorithm if the information regarding these
“inputs” are incorrect. That is why it is necessary to develop
a rigorous approach to separate (1) evaluation of correctness
of information regarding these “inputs” from (2) evaluation
of the prognostic algorithm itself. This paper presented a few
preliminary steps in this direction and future research may
continue to explore the topic of prognostic performance eval-
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Figure 8. FOSM Algorithm vs. MCS

uation in further detail.

7. CONCLUSION

This paper discussed the various aspects of performance eval-
uation of prognostic algorithms in detail, particularly in the
presence of uncertainty. To begin with, it was explained that
there are several sources of uncertainty that affect prognos-
tics, and that a good prognostic algorithm needs to rigorously
account for all of these uncertainties and quantify their com-
bined effect on the remaining useful life prediction. While the
presence of uncertainty has been addressed using probability
methods, it was explained that the interpretation of proba-
bility is not straightforward in prognostics. In testing-based
prediction methods, there is inherent variability amongst all
the nominally identical specimens that are being tested, and
classical statistics-based or frequentist interpretation is ap-
plicable. However, in condition-based monitoring, only one
unit is studied; therefore, physical variability is absent and
all uncertainty needs to be interpreted subjectively. This dif-
ference in interpretation plays a key role in understanding
the various elements that effectively contribute to the perfor-
mance of a prognostic algorithm. These elements include: (1)
state estimate and associated uncertainty; (2) future loading,
operating, and environmental conditions, and associated un-
certainty; (3) degradation model and associated uncertainty;
and (4) end-of-life threshold and the associated uncertainty.
Then, this paper discussed methods for performance evalua-
tion from the perspective of quantifying the combined effect
of these elements on the remaining useful life prediction.

First, this paper postulated that it is not possible to evaluate
algorithm performance by simultaneously accounting for all
these three sources of uncertainty. Second, the most popular
technique of comparing ground truth against the algorithm
prediction was discussed, and its shortcomings were men-
tioned. This approach is not only unfair, but also may lead
to incorrect conclusions of rejecting a correct algorithm and
accepting a wrong algorithm. In order to address some short-
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comings of this approach, an ”informed evaluation” method-
ology was proposed; in this method, the true future loading
information (available after failure) is provided to the algo-
rithm and then, it is tested whether the ground truth falls
within reasonable bounds of the algorithm prediction. Fi-
nally, the importance of the mathematical treatment of the dif-
ferent sources of uncertainty was explained, and in this con-
text, it is necessary to compare the performance of any algo-
rithm against Monte Carlo simulation. In other words, given
the same information to the algorithm and Monte Carlo simu-
lation, the algorithm prediction needs to be “similar” (in fact,
as exact as possible) to that of the Monte Carlo prediction.
A narrower prediction implies that the algorithm is underes-
timating the total amount of uncertainty whereas a wider pre-
diction implies that the algorithm is overestimating the total
amount of uncertainty. Future work needs to further explore
the concepts of informed evaluation and identify metrics that
can express various performance aspects of a prognostic al-
gorithm.
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ABSTRACT 
This paper introduces a framework for the conceptualization 
and design of novel operator-aircraft/unmanned system 
automated interface concepts that will assist to enhance 
operator reliance on automated advisories. There is a need 
to explore new human-machine interface strategies 
stemming from the proliferation over the past years of 
accidents due to system complexity, failure modes and 
human errors. Concepts of autonomy establish the 
foundational elements of the work. We pursue a rigorous 
systems engineering process to analyze and design the 
tools and techniques for automated vehicle health 
monitoring, human-automation interface and conflict 
resolution enabled by innovative methods from Dempster-
Shafer theory and reasoning algorithms. The emphasis in 
this contribution is on conflict resolution arising between 
the human operator (pilot) and on-system automated 
apparatus. The enabling technologies for conflict resolution 
borrow from Dempster-Shafer evidential theory, 
probabilistic and Game Theory for improved system 
autonomy and reasoning paradigms. The efficacy of the 
approach is demonstrated via an application to major drive 
subsystems of a helicopter and an autonomous hovercraft 
laboratory prototype. 

1. INTRODUCTION 

There is an urgent need to improve the autonomy, safety, 
survivability and availability of such critical assets as 
aircraft and robotic (unmanned) systems that are subjected 
to internal and/or external threats in the execution of a 
mission. It has been well documented over the past years 
that human error is a major cause of class A aircraft mishaps. 
Moreover, on-board equipment malfunctions, incipient 
failures and environmental stresses contribute to aircraft 
accidents. (Hoc, 2000) Most complex systems of interest are 

now designed and operated with on-board capability to 
monitor and assess the health of their critical 
components/subsystems. Such automated processes issue 
appropriate advisories to the operator/pilot/ground station to 
take corrective action and avoid detrimental or even 
catastrophic events. These automated systems and the 
human operator are invariably exposed to different 
evidences that result in conflict or disagreement as to the 
“best” action required to remedy an emergency situation. 

A significant challenge for unmanned systems and manned 
aircraft relates to their ability to resolve conflicts between 
the human operator and automated advisories, learn from 
situational awareness cases, and support the operator/pilot in 
the execution of a mission.  It was suggested by an 
Autonomous Vehicle Operator (AVO) that, at times, “he’s 
been more overcome by the torrent of information pouring 
in during a drone flight than he was in the cockpit”. During 
the past decades, research has focused on human machine 
interface issues with an emphasis mainly on the human 
collecting information and controlling the system. 
Apparently, the operator is faced with the problem of 
“information overflow”. More recently, with systems 
becoming more complex and the information processing 
ability of machines/systems improving, the machine is 
called upon to perform the same dynamical and automatic 
functions as those the human was executing in the past. 
These processes could be affected by uncertainty in the 
system or the environment. Hence, there is a need to 
allocate appropriate functions between the human and the 
machine to reduce the effects of uncertainty. 

2. TECHNICAL APPROACH 

The Human-Automation Interface-Conflict Resolution 
and Decision Support-The constituent modules of the 
human-machine interface architecture pursued in this paper 
include an on-board automated system that provides to the 
human operator the most accurate and reliable information 
regarding the platform’s current and future health state 
through key performance metrics specific to the vehicle and 
onboard sensors.  These are presented to the operator in a 
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prioritized manner based on mission essential elements. A 
modified Dempster-Shafer formula is employed to combine 
conflicting and incomplete information.   

The proposed human-machine interface architecture 
is illustrated in Figure 1. In the top middle of the 
figure is the aircraft, the targeted test bed. The pilot 
or operator is shown on the left. The block under the 
pilot represents the estimation of current system 
status. The latter is aided by the knowledge base, 
which, in return, provides an input to the pilot for 
emergency actions. Similarly, the Data Acquisition 
(DAQ) module and aircraft health status estimation 
block are depicted on the right. There are two major 
information flows, i.e. information collected by the 
pilot and the automated system, respectively. The 
pilot observes current environmental conditions, 
reads the on-board displays, and communicates with 
the knowledge base. The Automated System (AS), on 
the other hand, gathers information from the 
available on-board sensor suite, represented by the 
DAQ module. The pilot and the AS apply then 
reasoning strategies based on the information 
collected and data/information available in the 
knowledge base. If there is a conflict between the pilot’s 
decision and the AS’s advisory, the conflict resolution 
module attempts to resolve such conflicts using tools from 
Dempster-Shafer Theory, probabilistic/fuzzy reasoning 
paradigms. The final recommendation is generated by the 
Decision Support System and sent back to the pilot as the 
final “decision maker” for the “best” action to mitigate the 
current emergency condition.  

Particle Filtering for Fault Diagnosis and Failure 
Prognosis- The proposed fault diagnosis and failure 
prognosis framework builds upon mathematically rigorous 
concepts from estimation theory – an emerging and 
powerful methodology in Bayesian theory called Particle 
Filtering that is particularly useful in dealing with difficult 
non-linear and/or non-Gaussian problems. Particle filtering 
facilitates the estimation of the state (fault) model over 
consecutive time instants as measurements become 
available. The particle filtering routines for diagnosis and 
prognosis are implemented and executed in near real-time 
and constitute an integrated framework where the results of 
diagnosis serve as the initial conditions for prognosis in a 
transparent and efficient manner.  

Fault Diagnosis- The particle-filter-based diagnosis 
framework aims to accomplish the tasks of fault detection 
and identification using a reduced particle population to 
represent the state probability density function (pdf). 
(Orchard, Wu and Vachtsevanos, 2005)This framework 
provides an estimate of the probability masses associated 
with each fault mode, as well as a pdf estimate for 
meaningful physical variables in the system. Figure 2 shows 
the anomaly detection results based on an RMS feature. The 

first plot depicts the progression of the feature as a function 
of time while the second is the probability of failure; the last 
one shows the baseline and fault pdfs at 5% false alarm rate. 
The Type II error is 1.1117% at that specific instant of time. 

Another performance metric is the Fisher Discriminant 
Ratio shown at the bottom of the figure. 

The “smart” Knowledge Base-A reasoning paradigm 
called Dynamic Case Based Reasoning (DCBR) that stores 
cases, matches new cases with stored ones and exhibits 
attributes of learning and adaptation will be used as the 
“smart” knowledge base to provide the human operator the 
ability to interpret automated system outputs correctly and 
to effectively control the decision making process.  

The Pilot/Operator-The pilot/operator, on the other hand, 
gathers information in a very different way. (Parasuraman & 
Mouloua, 1996) He/she can exploit a variety of 
data/information sources, such as displays, alarms - red 
lights, personal sensing capabilities- the pilot could sense 
vibrations, temperature rising, noise, etc., visual 

Figure 1. Architecture of human-machine interface 
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observations – look outside the window- rain/ snow, thunder, 
etc., experience, communication with ground or other 
aircraft. The pilot gathers information such as oil 
temperature, fuel pressure, etc. He/she uses this information 
to assess the current state of the system’s health status and 
to take “initial” actions in the event of an emergency. The 
operator at this stage may initiate a corrective action or 
communicate his/her intended actions to the knowledge base. 
It is understood that timing requirements and sequencing of 
events in near real-time on-platform are crucial in the final 
decision making process. The computational requirements 
burdening the AS are minimized thus allowing for the 
expedient assessment of the vehicle’s state and the 
application of conflict resolution results. 

The Automated System- The Health Management 
Module-The goal is an advanced integrated reasoning 
toolset that incorporates justified levels of automated fault 
accommodation based on prognostic information for 
enhanced vehicle safety and decision support. 

Health and Usage Monitoring Systems (HUMS) acquire on-
line in real-time appropriate data and to develop models, 
algorithms and software that can efficiently and effectively 
detect faults and predict the Remaining Useful Life (RUL) 
of failing components with confidence while minimizing 
false alarm rates. Although the pilot/operator is tasked to 
use his/her experience, observations and displays to decide 
on probable causes of an emergency condition and take 
appropriate initial action, the automated system must 
perform a series of computationally intensive processes in 
order to arrive at an advisory for the human operator as to 
the cause of current adverse conditions and appropriate 
mitigating strategies. We are introducing a rigorous and 
verifiable architecture for monitoring and health assessment 
of critical aircraft systems/components. We outline briefly 
the major modules of the architecture.  

Decision Support System-The decision support system 
combines these two mass structures derived from the pilot 
and the automated system using Dempster’s rule of 
combination to arrive at the belief and plausibility for the 
combined advisory. We are assuming that the final advisory 
is given to the pilot from the decision support system for 
action. Moreover, an explanation of how this advisory was 
derived, i.e. based on what evidence is also provided to the 
pilot.  

3. THE AUTOMATED SYSTEM-PILOT CONFLICT 
RESOLUTION METHODOLOGY 

Conflicts arise between the pilot’s intent/commands and 
automated system commands/advisories. They arise from 
the different perceptions of the pilot and the automated 
routines stemming from experience, current data and 
information available to the pilot and the control 
architecture which may differ in content, quantity and 
means for the expedient presentation and follow-up action. 

The principal task of the Conflict Resolution Module is, 
therefore, to resolve conflicts between the pilot’s actions 
and those recommended by the automated system.  

Conflict resolution is a challenging task that must be 
addresses methodically in the presence of incomplete 
evidence, ambiguity and noise. We may apply such 
methodologies as Dempster-Shafer Theory or Game Theory, 
among others. In this paper we pursue a conflict resolution 
method based on Dempster-Shafer theory and specifically 
Dempster’s rule of combination. 

Dempster-Shafer Theory-The Dempster-Shafer Evidential 
Theory is widely used in possibility combination, sensor 
fusion, artificial intelligence, and conflict resolution areas. 
(Paksoy & Gokturk, 2011) It allows one to combine 
evidence from different sources and arrive at a degree of 
belief that takes into account all the available evidence. 

In this formalism a degree of belief, which is also referred to 
as a mass, is represented as a belief function. Possibility 
values are assigned to sets of possibilities rather than single 
events. Dempster-Shafer theory assigns its masses to all 
non-empty subsets of entities. Application of the Dempster-
Shafer Theory requires first and foremost the calculation of 
the mass functions, as detailed in the sequel.  

Assume 𝑚! and 𝑚! are two belief function structures on X 
provided by the pilot and automated system, respectively. 
𝑚! has focal elements 𝐴!,⋯ ,𝐴! and 𝑚! has 𝐵!,⋯ ,𝐵!. We 
will introduce a modified form of Dempster’s rule (Yager, 
1987) to combine evidences and avoid counterintuitive 
results faced by classical methods. Consider two mass 
functions m1 and 𝑚! and define: 

𝑚 = 𝑚! ⊥ 𝑚!                                 (1) 

where ⊥ denotes the direct sum and m is calculated as: 

𝐾 = 𝑚! 𝐴! 𝑚! 𝐵!
!!,!!

!!∩!!!∅

 

𝑚 ∅ = 0 

𝑚 𝐴 = 𝑚! 𝐴! 𝑚! 𝐵!
!!,!!

!!∩!!!!

, 𝐴 ≠ ∅,𝑋 

𝑚 𝑋 = 𝑚! 𝐴! 𝑚! 𝐵!!!,!!
!!∩!!!!

+ 𝐾                 (2) 

In Dempster’s rule, the quantity k is a measure of the degree 
to which the combined structures disagree with each other. 
Shafer defines K=log(1-k) as the weight of conflict. So, in 
Dempster’s rule, 1-k represents the normalizing factor 
needed to assure that the resulting possibility mass satisfies 
the necessary conditions, i.e.   𝑚 𝐴 = 1.  

Mass function Evaluation- The mass function is the 
foundation for applying Dempster-Shafer theory to the 
conflict resolution problem. The estimation of the mass 
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functions is a challenging problem addressed by several 
investigators without a satisfactory solution from an 
analytical and computational perspective. The following 
sections detail its principal components.  

Probability based reasoning-Several assumptions are 
stipulated for this method: (Basir & Yuan, 2007) 

1) There are N types of faults, and M features 

2) All features are independent from each other 

We employ initially the same formulation as in the previous 
section.  

We use the existing data to fit a two-dimensional normal 
distribution. In this case, as the two features are independent, 
𝜌 is equal to 0. So the distribution now becomes: 

𝑓 𝑥, 𝑦 =
1

2𝜋𝜎!𝜎!
𝑒
!!!

!!!! !

!!!
!
!!!!

!

!!!          

= !
!!!!

𝑒
! !!!! !

!!!! ∙ !
!!!!

𝑒
!

!!!!
!

!!!
! = 𝑓 𝑥 ∙ 𝑓 𝑦             (3)  

Thus, it is written as the product of two independent one-
dimensional normal distributions. 

For each fault mode, the histogram is generated and then a 

normal distribution is fitted. Consider next the hypotheses 
where multiple elements are present. For each hypothesis j 
we have the label vector  𝐿!. Based on this, the distribution is 
generated by the following criteria: 

𝜇!"
𝜇!" =

!!!
!!! ⋯

!!"
!!" !!!

!! !
! =

!!!
!!! ⋯

!!"
!!"

!!
!!
⋮
!!

!! !
!          (4) 

 

σ!"
σ!" =

!!"!

!!"
! ⋯

!!"
!

!!"
! !!

!

!!
! =

!!"!

!!"!
⋯

!!"
!

!!"
!

!!
!!
⋮
!!

!!
!               (5)  

Thus, all the distributions are generated as in Figure 3. For 
any given states, the actual state vector generated from the 
sensor suite is represented as: 𝑆 = [𝑠!, 𝑠!,… , 𝑠!] As in our 
case, there are only two features, then the S=[x!, y!]. Define 
P in a vector form as: 𝑃 = 𝑝!, 𝑝!,… , 𝑝!!!!  

 Each element in P is generated by the likelihood S for  each  
distribution:  

p! = f! x!, y! =
1

2πσ!σ!
e
!!!

!!!!! !

!!!
!
!!!!!

!

!!!     ,    

𝑖 = 1,2,… 2! − 1                                                                                        (6)  

Normalizing the P vector, the mass vector is derived by: 

𝑚! =
𝑝!
𝑃 !

   , 𝑗 = 1,2,… , 2! − 1  

𝑀 = 𝑚!,𝑚!,… ,𝑚!!!!                                                   (7)  

Thus, the mass functions are generated. 

We introduce the following Mean Error Bar (MEB) metric: 

𝑀𝐸𝐵 = (𝑃𝑙 𝑡 − 𝐵𝑒𝑙(𝑡))𝑑𝑡!!
!!!                                   (8)  

Or, in discrete form: 

𝑀𝐸𝐵 = (𝑃𝑙 𝑛 − 𝐵𝑒𝑙(𝑛))!
!!!                                     (9)  

As shown, the belief and plausibility functions give the 
lower and upper bounds of the possibility function, 
respectively. The value Pl(t)-Bel(t) stands for the ignorance 
of the possibility at time t. Usually the possibility is given 
by the mean of the plausibility and belief functions. If the 
two values are close, a precise estimate of the possibility 
function could be given with a small error. Another word, 
smaller MEB values stands for a more precise estimation. 
The MEB is, therefore, an appropriate performance metric.   

4. THE APPLICATION DOMAINS: HELICOPTER DRIVE 
SYSTEM 

The application domain (in simulation) for the conflict 
resolution configuration is the Oil-cooler & Intermediate 
Gearbox (OC-IGB) subsystems of the UH-60 helicopter 
drive system. The complete drivetrain is shown in Figure 4. 
The OC-IGB subsystem is highlighted by the red 
rectangular area. The components include the oil-cooler, the 
intermediate gearbox, and the tail shaft connecting these 
components. We define appropriate fault modes and suggest 
data/observations/displays available to the operator (pilot). 
On the other hand, we configure the automated system to 
accomplish sensor data collection and analysis including the 

Figure 3. Distributions of fault modes 
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diagnostic, prognostic and control modules introduced 
previously.   

An illustrative example-The proposed human-machine 
interface framework and the conflict resolution routines may 
be applied at various levels of the system hierarchy. For 
example, at the system/subsystem level, the pilot and the 
automated system may disagree (due to different evidence 
sources presented to each module) as to which subsystem is 
experiencing a fault/failure mode. Specifically, may be 
considering with certain confidence that the Intermediate 
Gear Box (IGB) of the helicopter’s drive system is subjected 
to a fault. The pilot’s conclusion stems from his/her 
perception/experience, the sensed vibration levels, panel 

indicators, displays, etc. On the other hand, the automated 
system is suggesting that the faulty component is the oil 
cooler. Sensor measurements collected and analyzed by the 
automated system include oil cooler temperature levels, 
vibration signals, etc. Shaft coupling in the drive system is 
one of the main causes for ambiguity/uncertainty corrupting 
the evidence and resulting in inaccurate allocation of faults. 
At the component level, the pilot may be surmising, on the 
basis of the current evidence, that a bearing in the oil cooler 
assembly is subjected to a fault while the automated system 
is concluding that the rise in the oil cooler temperature is 
causing another component to fail. 

Features or Condition indicators (CIs) are extracted from the 
data presented to the automated system. The “best” feature(s) 
constitute the mass function for the automated system 
expressed in appropriate probabilistic or fuzzy form. A 
similar approach is pursued to express the pilot’s assertion 
as a mass function. 

We employ the crack level evaluation as a demonstration of 
the possibility combination for conflict resolution.  Consider 
the crack level as the fault mode for the automated system.  
We break it down for simplicity into three categories: Light 
(wear level 0-1inch), Medium (wear level 1-2 inches) and 
Severe (wear level 2-3 inches). The automated system 
applies the distance-based algorithm. On the other hand, the 

pilot senses the vibration in Area 1 (oil cooler) and 2 (IGB). 
This possibility can be represented as a mass value as well. 
For instance, the pilot decides:  the probabilities of vibration 
in Areas 1 and 2 are 70% and 90%, respectively. Thus, the 
possibility of vibration in the oil cooler bearing area 
is  70%×90% = 63%. Based on the Bayesian allocation 
theorem, this possibility value is allocated uniformly to 
medium, severe, medium/severe, by: 

m Medium = m Severe = m(Medium/Severe) =
p
3

 

So the mass function for the pilot is shown in the Table 1. 
Then, the decision support system combines these two mass 
structures using Dempster’s rule of combination to arrive at 
the belief and plausibility functions using the MEB metric, 
as suggested previously. 

Table 1.  The mass function for the pilot 

Hypothesis M(H) 

Light 0.37 

Medium 0.21 

Severe 0.21 

Light/Medium 0 

Light/Severe 0 

Medium/Severe 0.21 

Any 0 

 

It is evident that the combined result decouples the oil 
cooler bearing and IGB. Meanwhile, it could provide 
rigorous estimates of the probabilities for each fault mode. 

5. RESULTS 

The data used in this case study is generated by a MATLAB 
routine. It consists of sensor values and status evaluations 
for 37 time indexes. The features discussed above and the 
status evaluations are extracted from the data set. The pilot’s 
judgment is based on his perception while the Automated 
System collects the pre-processed data and provides the 
advisories. Then, the decision support system reads the 
estimations and gives the combined reasoning result. The 
simulation procedure is also carried out in MATLAB.  

5.1 Oil Cooler Bearing Crack Level Prognosis 
(Dempster-Shafer Result) 

The pilot and the automated system can both do the 
prognosis based on the information they collected. For 
instance, in our case, the pilot and the automated system can 
collect information from time 0 to time 3.2. And based on 
these information to predict the 3.2 to 15 system situation，
as shown in Figure 5.  

Figure 4. Drivetrain of the UH-60 helicopter 
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The upper figure is generated by the pilot and the lower one 
belongs to the automated system. The lower edge of the 
figure is the threshold of severe crack. So the pilot believes 

the time for severe crack could be between 4.5 and 6.5. 
However, the Automated System says the time should be 
between 5.5 and 8, with a confidence level of 90%. Here 
comes the conflict between the two reasoning route. So we 
apply the conflict resolution here to get a combined result, 
as shown in the Figure 6. In this figure we can see at the 
time 6 the crack level should be severe with a confidence 
level higher than 50%. However at time 5 the condition 
should be light or medium with a confidence level higher 
than 70%, with is higher than both the pilot and automated 
system’s judgment. This is an example of resolving the 
conflict.  

The MEB is calculated as shown in the Table 2. The table 
illustrates that the combined result has much smaller MEB 
than the pilot or AS separately implying that the combined 
result reduces the risk, or ignorance, significantly.   

Table 2. MEB result for each reasoning Routine 

MEB Pilot AS Combined 

estimated estimated Result 

Light 0.2237 0.0805 0.0480 

Medium 0.3037 0.0842 0.0751 

Severe 0.2152 0.0841 0.0486 

Average 0.2475 0.0829 0.0572 

 

5.2 Game Theory Result 

First, we map the status evaluation to the action set based on 
the following table. Here, Action 1 stands for “continue 
flying” implying that no action is required. Action 2 stands 
for “prepare to land”, which means that maintenance action 
must be taken after the vehicle reaches its destination. 
Action 3 stands for “land the aircraft immediately”, which 
means that the aircraft’s condition is severe and the pilot 
must land the vehicle immediately. 

Since the automated system monitors the pilot’s suggested 
action(s) automatically, it knows only what action the pilot 
is taking but not why he takes this particular action and its 
corresponding probability. Thus, the automated system will 
evaluate the current status and will estimate the 
corresponding probability. For example, we are to evaluate 
the risk for the automated system suggesting Action 1 but 
the pilot takes Action 3. There are four conditions that 
recommend Action3 to be taken by the pilot: 

Table 3. Conditions which Recommend Action 3 

Condition IGB Oil cooler 
bearing Probability 

1 Faulty Light Pr! = p!"×p!" 

2 Faulty Medium Pr! = p!"×p!! 

3 Faulty Severe Pr! = p!"×p!" 

4 Normal Severe Pr! = p!"×p!" 

 

Then, referring to the risk table below: 

Table 4. Risk Table 

Components Status Risk for 
Action1 

Risk for 
Action2 

Risk for 
Action3 

Oil cooler 
bearing Crack 

Light 0 0 0 

Medium 16 0 0 

Severe 31 14 0 

IGB 
Normal 0 0 0 

Faulty 42 17 0 

Figure 5.  Particle Prediction result by pilot and 
automated system 

 

Figure 6. Probability estimated by the pilot, Automated 
System and the Combined Result 

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

551



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014 

7 

 

The risk for taking Action 1 is: 

R!" = Pr!

!

!!!

r! = 42Pr! + 58Pr! + 73Pr! + 31Pr! 

The cost corresponding to each action is estimated as 
follows: 

Table 5. Cost Table 

Action Action 1 Action 2 Action 3 

Cost 0 25 50 

 

The cost for taking Action 1 is, of course, zero. The 
proposed formulation provides thus both cost and risk 
information. The pilot’s suggested action and the AS’s 
advisory are illustrated in Figure 7.  

 
Figure 7 Suggested actions given by the pilot and 

Automated System 

 
Figure 8 Combined Advisory 

Generally, the situation estimated by the automated system 
is more severe than that of the pilot. Thus, the action 
suggested by the automated system tends to cost more and is 
more likely to avoid some severe risks. The combined result, 
which is the optimum under the given payoff function, is 
shown in Figure 8.  

6. CONCLUSION 

In this paper we have described a novel human machine 
interface framework for conflict resolution. The 
methodologies applied are modified Dempster-Shafer 
Theory and Game Theory based conflict resolution 
methodology. The result shows that the combined result has 
a better performance than the assessment provided by the 
pilot or the automated system. 
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ABSTRACT 

OEMs and operators of complex mission/safety critical 

systems are faced with the requirement to mitigate design 

and performance risks and their economic consequences. A 

key issue for any engineering organization is the integrity of 

the analysis that is used to support significant commercial 

decisions. Analysis outputs used to establish or validate 

performance criteria should have an appropriately high level 

of confidence associated with them when entering into 

significant financial contracts. While risk assessment 

methods and  techniques for analysis are well defined and 

understood and are captured in various international military 

and commercial standards, the issue of analysis quality has 

traditionally been neglected and is not adequately covered in 

most commercially available engineering analysis tools.  

The quality of data inputs determines the quality of analysis 

outputs. A key factor  is the source of the parameters used in 

an analysis. For example input data may be sourced from 

operational data, or may be based on the engineering 

judgement of an individual or a third party organization. 

This paper outlines an approach to analysis quality 

assessment in a model based engineering environment, 

focusing on the sources of data and ancillary information to 

generate an Analysis Quality Index (AQI) for the analysis. 

The AQI is generated as a dashboard reporting function for 

the engineering model that is used to provide a confidence 

rating on the analysis outputs.  Analysis Quality Index 

capability was incorporated into Maintenance Aware Design 

environment (MADe) software, an integrated tool-set that 

combines engineering risk analysis capabilities to support 

systems engineering, design and through-life support. 

1. INTRODUCTION 

Risk management has become a hot topic over the last 

decade, its ever increasing application to engineering 

systems is not always driven by purely technical 

considerations (Ross, K., & Main, B.W. (2001)). Factors 

like compulsory compliance with standards (MIL, ISO) and 

regulation (e.g. FAA), risk of litigation and thus possible 

audits of the risk assessment process, reliability dependent 

insurance costs, changes in system management approaches 

(Product Life Management (PLM), Life Cycle Management 

(LCM)), changes in sustainment of technical systems 

(Performance-based Contracts (PBC)), risks to 

environmental safety etc. cause increased awareness  that  

failures of engineering assets can have penalties. 

Operation of an engineering system inevitably leads to 

system degradation or failure of various degrees, which 

generate financial, operational (ceased function of the 

system) and physical risks to assets, human operators or the 

environment.  

To deal with these issues a range of methodologies have 

been proposed and accepted, especially in the military 

sector, there are over 150 methodologies dealing with risk 

management in engineering systems.  

The process of risk management is a two-step process: 

 Formalized risk identification using various 

methodologies of risk analysis - Failure Mode and 

Effects Analysis (FMEA), Failure Mode, Effects and 

Criticality Analysis (FMECA), Reliability Block 

Diagram (RBD), Fault Tree Analysis (FTA), etc. see 

International Standards Organization (ISO) (2004).  

 Risk elimination by changes in system design, 

maintenance, operation etc.  

Of course we must remember that risks are assessed and 

dealt with during the design process, albeit not necessarily 

using formalized methods.  

The objective of risk identification is to determine how the 

system may fail, and how such failure affects system safety, 

performance, availability, etc. Analysis provides metrics of 

Leila Salhi et al. This is an open-access article distributed under the 

terms of the Creative Commons Attribution 3.0 United States License, 

which permits unrestricted use, distribution, and reproduction in any 

medium, provided the original author and source are credited. 
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risks (e.g. criticality, reliability) which are the basis for 

corrective actions (e.g. design changes or changes in 

maintenance procedures). The formalized risk identification, 

depending on how and when it is applied, has varying 

impact on risk reduction. Ideally, it should be concurrent 

with design of the system so risks identified during design 

process can be eliminated and/or minimized by modification 

to design.  This approach is optimal in terms of cost, time 

and degree of risk reduction.   

However in practice, formalized risk identification (FMEA, 

RBD, FTA) is not conducted concurrently with design or is 

carried out too late to accommodate design changes. In 

these circumstances, risk analysis has only limited impact 

on the system design and is often conducted at completion 

of the design process to generate contractual deliverables or 

achieve compliance. 

The ‘concurrent with design’ approach is also not possible 

when dealing with legacy systems. In the case of such a 

system, we may only use workaround solutions to mitigate 

risk (better maintenance, sensing) as design changes are 

often not feasible or possible.  Methods like Reliability 

Centered Maintenance (RCM), Maintenance Effectiveness 

Review (MER) and Back-fit RCM are used to determine 

maintenance practices which can reduce operational risk. 

These methods often lead to outcomes such as Condition 

Based Maintenance (CBM) and Prognostics and Health 

Management (PHM). 

With a growing importance of risk management 

methodologies, the quality of the methods is becoming 

important. Low quality of risk assessment may increase 

rather than decrease the cost of designing and operating of 

technical systems. 

According to a Google search, the topic of quality of risk 

assessment is very prevalent - 60,000k results for “risk 

analysis engineering” and 81,200k results for “quality of 

risk analysis” engineering – it is currently seen as an 

important attribute of risk management. Table 1 presents the 

most widely used methods of risk assessment: 

2. THE PROBLEM – CURRENT APPROACHES THAT IMPACT 

THE QUALITY OF RISK ANALYSIS 

The current industry approaches to support risk analysis are 

primarily database or spreadsheet based software. The use 

of such software to conduct the required analysis generates a 

number of significant issues in terms of the cost of 

conducting analysis, quality of the analysis, system level 

analysis and scheduling (Bednarz & Marriott (1988), Kara-

Zaitri C., Keller A., Barody I. & Fleming, P. (1991), 

Ormsby A., Hunt J. & Lee  M. (1991). The main factors 

impacting the quality of analysis are the quality and quantity 

of data used.  

 

 Limited knowledge capture / reuse  

Spreadsheets are an obstacle to knowledge transfer which 

impacts the quantity of data available for risk analysis. The 

fact that spreadsheets can normally only be updated by the 

people that created them, is also critical to ensure maximum 

coverage of the risk analysis. Spreadsheets are not easily 

configuration managed based on operational data or as 

changes in the platform are made. Furthermore, the results 

of a performed analysis cannot be automatically transferred 

and used to support related analysis methods.  

Table 1. List of the most widely used methods of risk 

assessment according to Google search results (June 2014) 

Method of risk assessment Quantity 

FMEA 3,270k 

Reliability Diagram 20,600k 

Fault Tree 30,000k 

Fault Analysis 45,200k 

Failure Analysis 113,000k 

Performance Based Contract 70,200k 

Engineering Risk Audit 34,400k 

Condition Based Maintenance 16,700k 

 

 Inconsistency of terminology 

The quality in the analysis is significantly impacted by the 

lack of industry wide taxonomies to define functions and 

failure concepts, which brings issues of ambiguity and 

inconsistency of terminology. Risk analyses are also artefact 

driven (based on attributes of the platform) and performed 

on a specific state of the system. A snapshot of the system is 

thus captured by the analysts in spreadsheets and the 

designer is rarely involved in all iterations of the analyses - 

this can lead to poor data quality that is used in the risk 

analysis. 

 Retrospective analysis 

Usually analysis is done retrospectively (rather than 

concurrently) at the end of the design process using 

spreadsheets/database FMEA/FMECA mainly to document 

the outcomes for compliance or contractual requirements. 

Evans J. (1992) in his editorial wrote “..The idea that all the 

experts and number-crunchers should come in after a design 

was virtually complete, and second-guess the designers was 

stupid to begin with..”. 

 Disparate models 

Industry practice usually relies on the usage of disparate 

models of a platform and its Bill of Materials (BOMs) that 

reside within the functional stovepipes of an organization. 

This is an obstacle for comparing and controlling the data. 

Inconsistencies in models such as holes in the BOMs or in 

the structure of the system may cause coverage losses that 

are not obvious using spreadsheets. 

 

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

554



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014 

3 

 Bottom-up – inductive approach.  

Current methods to conduct risk analysis are inductive 

(based on brainstorming) and use a bottom-up approach. It 

is therefore difficult to visualize and aggregate all the data 

in order to analyze a system in whole. Each piece of the 

system data is stored by each stakeholder in spreadsheets. 

This implies a suggestive process to support the risk 

analysis process as the assumptions underlying analysis, 

data sources and knowledge of thought processes of the 

team members are generally not recorded. As a result, the 

quality and coverage are affected: a bottom-up approach 

may result in comments being missed (coverage) and 

missing the source of the data (brainstorming). 

 Subjective analysis audit  

Various FMEA guides/books stress the importance of 

FMEA quality see Carlson. C. S. (2012) and McKinney B. 

(1991). However, the FMEA quality audit is rather 

subjective as it relies on subject matter expertise and often is 

limited to checking that the standard procedure was 

correctly followed. This does not provide accurate and 

objective assessment of the quality of analysis. A major 

problem is repeatability of FMECA when carried by a 

different team of analysts (Bell D., Cox L., Jackson S. & 

Schaefer, P. (1992)). 

 Platform reliability based on design parameters 

In current engineering practices, designers do not 

necessarily understand how the operators will use the 

system and this is a critical issue for the reliability of the 

platform as (Reliability, Availability and Maintainability) 

RAM / (Integrated Logistics Support) ILS should be based 

on operationally determined RAM parameters rather than 

the design parameters. Design parameters are normally 

sourced from third party references that do not account for 

concept of operations, environment, etc. Thus it is important 

to document the source of the information, and list 

associated assumptions or else quality issues will occur. 

 Isolated system analysis 

Historically individual technical risk assessments associated 

with the deferral of maintenance or acceptance of technical 

defects are conducted in isolation using spreadsheets and 

therefore do not take into account the potential 

dependencies across the platform. This could lead to either 

safety issues or equipment breakdown and thus additional 

efforts to mitigate risk. Integrating isolated analysis on the 

higher system level by merging different spreadsheets is 

almost impossible due to potential taxonomy and hierarchy 

issues. This impacts the quality of the aggregated analysis 

performed at the system level.  

3. MAINTENANCE AWARE DESIGN ENVIRONMENT (MADE) 

MADe (Rudov-Clark S., Stecki J. & Stecki C. (2011)) is a 

model-based engineering software tool for conducting risk 

assessment (FMECA, RAM, RCM, FTA) – where each 

element in the model is associated with a number of key 

attributes such as its functional description, the specific 

physics of failure information (cause, mechanism, fault, 

symptoms) – as shown on Figure 1- and their relevant 

criticality based on the system performance requirements. 

 
Figure 1. MADe Failure diagram - mapping of failure 

concepts 

 

MADe utilizes simulation to propagate and trace the 

dependencies and impacts of any fault injected into the 

system as shown on Figure 2. This data is used to generate a 

functional risk assessment based on the associated physics 

of failure. Simulation is an important feature of the tool, as 

with highly complex systems it is difficult to identify how 

the impacts of a failure will propagate – without this 

knowledge it is impossible to accurately determine the 

criticality of a specific failure mode. 

MADe automates the dependency mapping of a system 

using the functional path propagations that are generated in 

the model. The system model is easily updated, modified 

and MADe enables to conduct ‘what-if’ analysis for an 

actual or proposed design and its constituent systems, 

components and parts. 

As it is simulation based, the software is fundamentally and 

significantly different from spreadsheet/databased tools 

because the model and therefore the analysis is extensible, 

objective and repeatable. As a Model Based Engineering 

(MBE) tool, MADe offers a number of advantages over 

available spreadsheet/database FMEA/RAM toolsets.  

 Knowledge capture, reuse and transfer 

All knowledge about the system and its components is 

captured in models which can be saved and reused for any 

other project. These user developed models are stored in a 

re-usable directory called a Library.  
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Models of components/systems can be loaded from the 

Library and re-used to represent a new system 

(dependencies will be automatically established). The key 

benefit is the improved quality of analysis, as knowledge is 

captured and re-usable for future projects. 

 Standardized taxonomy 

MADe uses standardized taxonomy of functions/failure 

concepts to ensure that there is consistency of terminology 

(and therefore understanding) within the organization and 

currency of data at each stage of the platform life-cycle 

(Rudov-Clark, S.D. & Stecki, J. (2009).  

Audit and validation are based on the input of references for 

the sources of data. A standardized taxonomy brings 

objectivity in the performed analysis.

 Concurrent engineering 

Model-based Engineering (MBE) enables concurrent 

engineering features such as functional simulation which 

means that the development of a system model can be 

associated with the functional requirements of a system 

rather than a specific design. This enables the ability to 

generate the model - and conduct modelling analyses - at the 

conceptual stage of the design process to evaluate the 

impact of changes to the design and mitigate risk at an early 

stage in the platform life-cycle. 

 Integrated capabilities 

MADe uses a single model (a Single Source Of Truth 

(SSOT)) as basis for other analysis tasks. A model of the 

system is used for reliability analysis (both functional and 

hardware), sensor selection (sensors coverage),   Reliability 

Centered Maintenance (RCM) etc. This eliminates the need 

to export data or results of analysis as the same model is 

used for all the analysis.  

 

 

 Configuration management of the analysis  

Because MADe generates each analysis based on the 

common system model, the impacts of any changes made by 

other functional groups within the organization are 

automatically reflected in the model (and thus future 

analyses). This considerably improves the quality of 

analyses as data come from a  SSOT model. 

 Integrated system analysis 

The toolset uses automated dependency mapping which 

eliminates the manual determination of the impacts of 

failures across the system. This enables risk analysis to be 

based on objective and verifiable data. MADe automatically 

establishes these connections and updates them when the 

system model is modified. This is a major benefit for 

increasingly complex and integrated systems. The level of 

details and dependency mapping enable risk identification at 

the platform level down to the component level leading to 

enhanced traceability of data.

 Dependencies mapping 

A functional model represents a flow of energy, material or 

signal in the system. Based on  (SSOT) model of the system, 

functional relationships and failures/effects dependencies in 

a system for both functional and physical failures are 

defined using standardized taxonomies.  

 What if..” and “As is..” analysis 

“What if...” analyses are often focused on the rearrangement 

of connections between models and/or inclusion of different 

components. This capability is normally too time consuming 

to be achieved using a database approach, but can be 

expedited using a MBE approach (e.g. copy-paste and 

library re-use) leading to otherwise unachievable options.  

Figure 2. MADe functional diagram of landing gear - showing failure propagation 
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MADe has the ability to update the parameters in the model 

based on operational data in order to conduct analysis of the 

system based on an ‘as-is’ performance state rather than 

‘expected’ (design) state. This has a significant impact on 

the supportability posture for equipment.  

 Objective analysis audit  

An objective approach to conduct risk analysis is beneficial 

for audit purposes and quality checking. A good example of 

efficient risk analysis verification is FMECA. Using an 

AQI, the analyst can easily check the completeness of the 

analysis based on the quality and quantity of the data inputs. 

When it comes to project management, an AQI can provide 

a means to evaluating the confidence level of a system 

globally or a particular risk analysis in order to validate a 

project.  

 Effective integration with the organization IT 

architecture (specifically PLM). 

Current challenges in PLM consist in using a single point of 

truth for the RAM / ILS analysis that can be shared by the 

design / supportability engineering communities. As a 

simulation based model, MADe offers the ability to 

configuration manage the associated ILS analysis and 

outputs for a system and automatically regenerate the 

artefacts that result from any modification to the design or 

changes to the maintenance regime. 

4. ANALYSIS QUALITY ASSESSMENT  

For any analysis or simulation based analysis, poor quality 

inputs or improperly defined scenarios create meaningless 

results. How then to assess the quality of risk analysis? 

Analysis Quality Index (AQI) is the process of determining 

that an analysis provides a correct outcome or solution. An 

AQI may be applied to numerous different analyses or 

algorithms (e.g. FMEA, Criticality, Reliability) to evaluate 

and document the accuracy of the results. An AQI process is 

implemented in MADe to increase data quality and enable 

objective audit of risk analysis.  The main function of an 

AQI is to enable the modeler to capture the assumptions 

used during the process of creating the model. A work flow 

assessing an AQI is shown in Figure 3. In MADe the 

process starts with setting up annotation policy Figure 4.  

The findings from an AQI can be used to document an 

analysis or query the effectiveness of another analysis. An 

example of this is performing an AQI on a FMEA to 

determine the confidence of a particular subsystem, which 

when integrated to the system level can identify high-risk 

areas in a project. 

When carrying out engineering functions, assumptions may 

not be listed, or listed after the fact leading to poorly 

documented work.  

 

 

Figure 3. AQI workflow implemented in MADe 

 

 

Figure 4. Annotation policy setting 
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The quality of the assumptions, data and parameters used in 

a model directly affects the integrity of any analysis output. 

The solution for this issue in MADe a user enters 

assumptions for each piece of data, Figure 5.  

 

Figure 5. Editing/entering assumptions 

 

However, it is difficult to keep track of the data sources and 

assumptions that support any parameter used in a model, 

particularly if multiple stakeholders (including departments, 

groups, teams and external suppliers) are involved in system 

development. Therefore a structured approach to 

documentation and assessment of data quality is essential.  

Considering the evolutionary nature of a model, it becomes 

necessary to capture this information concurrently as the 

user is modelling. Using this facility will allow more 

accurate models based on listing of the relevant 

assumptions, detailed entries including narratives and more 

consistent processes by capturing considerations. Shown in 

Figure 6, each parameter edited or changed in the model can 

be tracked and assessed using an annotation feature that 

requires each stakeholder to document his data. 

 

 

To summarize the data quality assessment of a model-based 

risk analysis such as FMEA/FMECA, requires evaluation of 

two key metrics: 

 Completeness of Data (Data Coverage) 

 Data Quality 

Once those two metrics are assessed, they can be aggregated 

to determine the overall confidence level of a particular risk 

analysis or completeness of a model. An AQI becomes 

increasingly important as the analysis or models become 

more complex, thus requiring greater control and 

management of a larger set of data. The quality assessment 

concept is especially beneficial for model-based risk 

analysis.  

4.1. Data Coverage 

The AQI is a metric that may be used to determine the 

completeness of data used in the analysis. Missing data 

regarding the system can result in poor coverage of the risk 

analysis, especially in a complex analysis where there are 

numerous inputs required. If any of these inputs are missing 

then the completeness of the analysis is weakened. 

Completeness can be considered as the ratio the amount of 

data entered / the amount of data required. Therefore if all 

data for a process/analysis is entered then the completeness 

would be 100%, providing a high confidence with the 

process/analysis. A higher completeness will improve 

confidence during an audit and prove better traceability of 

the analysis. Although it is important to note that while an 

analysis/process is complete, it may not be high quality. 

4.2. Data Quality 

Data quality involves documenting the source, confidence 

level and assumptions underlying each piece of data that is 

used as an input parameter for the analysis.  

This process aims at documenting critical questions 

regarding a model or a particular analysis: 

 Where does a particular parameter or data set come 

from? 

 

  
Figure 6. Annotation summary 
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 Who sourced this data?  

 Why was it set to this particular value?  

 Which confidence to assign to a particular data? 

The quality of data can range from conceptual 

(brainstorming) to collected data (operation) and is 

important in defining the quality of the data used in the 

analysis. Previous articles on the quality of analysis (Evans 

J. (1992).) explain that in order to avoid poor data quality, 

“it is essential for everyone with a real-word problem to 

insist on an adequate, numbered, list of assumptions, where 

the assumptions are in reasonably plain language”. To rank 

quality, different categories can be assigned which 

correspond to different sources (e.g. engineer, database, 

etc.). By defining a data source type, a confidence level can 

be assigned to each type which may be aggregated to 

provide an overall level of confidence. As the quality of the 

data sources increases so does the quality of the analysis. 

The categories and weightings of sources can be adjusted 

for specific environments or applications. It is also 

important to track the source where data is obtained from, 

note the source of the information, time/date of data entry 

and allow annotation of a particular entry. This information 

is automatically updated as data is being annotated in the 

model to provide the percentage of annotated data, data 

quality, as well as an overall confidence level in the model 

as shown in Figure 7 and Figure 8. 

 

 

Figure 7. Coverage, quality and confidence level 

 

5. CONCLUSION 

This paper has outlined a unique approach to assess the 

quality of risk analysis in a model based engineering 

environment. In current industry approaches, the extensive 

usage of spreadsheet/database based tools to conduct risk 

analysis generates a number of significant issues in terms of 

cost of conducting analysis, quality and objectivity of the 

analysis, as well as system level analysis. To solve those 

issues, it is essential to conduct data quality assessment 

focusing on the quality and quantity of data used as 

parameters in the analysis. A good example of assessing the 

quality of analysis is to apply data quality assessment to 

model-based risk analysis. The quality assessment process 

implemented in the MADe software provides objective 

auditability of all relevant information regarding a particular 

analysis or a whole system. The confidence level in analysis 

outputs and thus the quality of analysis are optimized by: 

 Documenting and reviewing all parameters used in the 

model / analysis. 

 Mitigating posting cycle issues as expert knowledge to 

a project file is retained.  

 Ensuring that all relevant supporting assumptions are 

captured. 

 

 
Figure 8. Pie chart showing origin of data 

6. FUTURE WORK 

While this paper has focused on presenting the application 

of data quality assessment to a model-based risk analysis 

(AQI) there are other possible applications of data quality 

assessment. 

 Model Quality Index (MQI) 

This is the process of assessing the manner and degree to 

which data used in a model is an accurate representation of 

the real world and of establishing the level of confidence of 

this assessment. This index would be useful in model or 

simulation environments to determine the validity and 

correctness of a model compared to the system it is based 

upon. The findings from an MQI could be useful in learning 

how to create a more accurate or correct model of a system. 

 Process Quality Index (PQI) 

This is the process of assessing the confidence and 

adherence to a particular workflow or process. This could be 

applied to an engineering process and used to assist learning 

of a new process or even the audit of an existing process 

within a company. Findings from a PQI could be applied 

back into the process to optimize it for its function within a 

company. 
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ABSTRACT 

Structural health monitoring needs to produce actionable 
information regarding structural integrity that supports 
operational and maintenance decision making that is 
individualized for a given structure and its performance 
objectives. An effective Prognostics and Health 
Management (PHM) framework for aging structures 
(subjected to physical, chemical, environmental, and 
mechanical degradation) needs to integrate four elements – 
damage modeling, monitoring, data analytics, and 
uncertainty quantification. This paper briefly discusses 
available techniques and ongoing challenges in each of 
these four elements of PHM, in the context of concrete 
structures. A Bayesian network approach is discussed for 
integrating heterogeneous information from multi-physics 
computational models of degradation processes, full-field 
measurement techniques, big data analytics, and various 
data and model uncertainty sources.   Such a comprehensive 
framework can quantitatively support decisions regarding 
appropriate risk management actions.  

1. INTRODUCTION 

The purpose of structural health monitoring is to provide 
information to the decision-maker in a manner that is 
suitable for risk management with respect to structural 
integrity and performance. Risk management decisions 
include sustainment decisions regarding inspection, 
maintenance and repair, as well as operational decisions 
regarding the mission demand limits for the system and its 
operating conditions. In all engineering systems, such 
decisions are made in the presence of uncertainty that arises 
from multiple sources. The various types of uncertainty 
include natural variability (in loads, material properties, 
structural geometry, and boundary conditions), data 
uncertainty (e.g., sparse data, imprecise data, missing data, 
qualitative data, and measurement and processing errors), 

and model uncertainty (due to approximations and 
simplifying assumptions made in diagnosis and prognosis 
models and their computer implementation). An important 
challenge is to aggregate the uncertainty arising from 
multiple sources in a manner that provides quantitative 
information to the decision-maker about the future risks for 
structural integrity and performance, as well as the risk 
reduction offered by various risk management activities, 
thus facilitating quantitative risk-informed cost vs. benefit 
decisions. 

The information available in structural health monitoring is 
quite heterogeneous, since the information comes from a 
variety of sources in a variety of formats. The 
heterogeneous sources include mathematical models, 
experimental data, operational data, literature data, product 
reliability databases, and expert opinion. In addition to the 
specific system being monitored, information may also be 
available for similar or nominally identical systems in a 
fleet, as well as legacy systems. Even within the system 
being monitored, information may be available in different 
formats (e.g., numerical, text, image). It is also worth noting 
that information about different quantities may be available 
at different levels of fidelity and resolution. An important 
challenge in data analytics for PHM is information 
integration, i.e., fusion of heterogeneous information 
available from multiple sources and activities.  

Health monitoring systems have used either data-driven 
techniques or model-based techniques for diagnosis and 
prognosis. An effective framework for health diagnosis and 
prognosis of aging structures (subjected to physical, 
chemical, environmental, and mechanical degradation) 
needs to make use of all the available information through 
damage modeling, monitoring, data analytics, and 
uncertainty quantification techniques. This paper suggests a 
dynamic Bayesian network (DBN) approach for information 
integration, data analytics and uncertainty quantification in 
diagnosis and prognosis. The Bayesian network approach 
enables both the forward problem (uncertainty integration) 
and the inverse problem (risk management, resource 
allocation). Methods have recently been developed to 

Sankaran Mahadevan et al. This is an open-access article distributed under
the terms of the Creative Commons Attribution 3.0 United States License,
which permits unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are credited. 
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integrate various sources of uncertainty (natural variability, 
data uncertainty and model uncertainty) in order to quantify 
the overall uncertainty in health monitoring outcome. Such 
methods need to be quantitatively linked to decisions 
regarding appropriate risk management actions through the 
use of structural reliability theory (Naus, 2009).  

A particular problem of current interest to the authors is the 
application of the above concepts to the monitoring, 
diagnosis, prognosis, and health management of concrete 
structures. Concrete structures are affected by a variety of 
chemical, physical and mechanical degradation mechanisms 
such as chloride penetration, sulfate attack, carbonation, 
freeze-thaw cycles, shrinkage, and mechanical loading. 
Each of the four elements mentioned earlier – damage 
modeling, monitoring, data analytics and uncertainty 
quantification – is a difficult challenge for a heterogeneous 
material such as concrete. This paper outlines research 
needs and possible directions through a few illustrative 
damage modeling and health monitoring techniques for 
concrete structures. 

2. DAMAGE MODELING 

The deterioration processes in concrete structures can be 
classified briefly into three main groups, i.e. physical 
processes, chemical processes and mechanical processes 
(Mehta and Monteiro 2001). Sources of physical 
deterioration may include temperature variation and the 
associated thermal expansion/contraction, relative humidity 
variation and the associated drying shrinkage/wetting 
expansion, freezing and thawing cycles (i.e. frost attack), 
wear and abrasion etc. Sources of chemical deterioration 
include corrosion of reinforcement embedded in concrete, 
chloride penetration, carbonation, leaching of concrete 
constituents, acid attack, sulfate attack, and alkali-aggregate 
reaction etc. And sources of mechanical deterioration 
include externally applied overload or impact, cyclic fatigue 
loads, differential settlement of foundation, and seismic 
activity. All these sources of deterioration can alter the 
porosity and permeability of concrete, cause or aggravate 
various material flaws (such as scaling and spalling, 
swelling and debonding, cracking and disintegration), 
impair the integrity and tightness of concrete structure, and 
lower the loading capacity of structural member.  

The physical and chemical deterioration processes of 
reinforced concrete structures are closely interconnected and 
synergistic; distinguishing any single deterioration process 
from the joint impact is difficult. The complexity of the 
aforementioned classification of deterioration processes has 
led the technical community to model deterioration 
mechanisms of concrete individually. Individual 
deterioration processes have been studied extensively, and 
significant strides have been made in developing 
computational models. A major current challenge is how to 
develop an integrated computational methodology to 

quantitatively assess the durability of reinforced concrete 
structures subjected to a variety of coupled deterioration 
processes that are acting simultaneously. A related issue is 
that damage under different deterioration processes 
accumulates at different rates; thus multi-physics 
degradation analysis also needs to account for different time 
scales in different processes. 

In the case of concrete degradation under coupled 
physical/chemical processes, governing differential 
equations that characterize the mass/energy balance and 
thermodynamic/chemical equilibrium of coupled heat 
conduction, ionic diffusion, moisture transport and chemical 
reaction have been developed. A variety of multi-scale 
methods and continuum finite element/difference methods 
have been utilized to solve the interactive and nonlinear 
governing equations. Methods have also been pursued to 
connect chemical reaction products to the mechanical 
response of concrete (e.g., stress, displacement, crack 
density).  The accelerating effects of cracking on the 
transport processes of various aggressive agents have also 
been considered. 
 

Figure 1. Multi-physics degradation of concrete 
 
Prior to experiencing any deterioration, ordinary concrete 
usually possesses high porosity and low permeability. The 
overall connectivity of the micropore network, instead of the 
porosity of concrete, controls the transport properties of 
concrete. In other words, only interconnected micropores 
and microcracks in concrete contribute to the permeability 
of concrete and its vulnerability to deterioration. Under 
degrading environments, initially discontinuous micropores 
and microcracks grow, coalesce and finally form an  
interconnected network of multi-scale pores and cracks. As 
a result, the permeability of concrete increases, thus further 
accelerating the deterioration processes of the concrete 
structure, as shown in Fig. 1 (Chen, 2008).  

Thoft-Christensen (2003) classified various deterioration 
models of concrete structures into three levels. Level 1 
models are  empirical models, which are established on the 
basis of direct observations on existing structural elements 
and do not consider the deterioration mechanism. Level 1 
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models have been adopted extensively in current design 
codes as a means of producing a rough estimate of the 
durability level of existing concrete structures. Level 2 
models are medium level models from a sophistication 
viewpoint; these are based on semi-empirical or average 
“material parameters” (e.g., concrete permeability) and 
average “loading parameters” (e.g., average chloride content 
applied on the surface of concrete). Deterioration 
mechanisms are assumed to follow some formulated 
physical principles like Fick’s law. Level 2 models have 
usually limited their scope to individual deterioration 
mechanisms. Level 3 is the most advanced level, where the 
modeling of the deterioration profile is based on 
fundamental physical, chemical and mechanical principles. 
Detailed information on concrete microstructure and applied 
environmental loading is required, and multiple coupled 
deterioration processes are taken into account. 

A few examples of multi-physics degradation modeling, 
namely carbonation and chloride penetration (Level 2), and 
sulfate attack (Level 3), are described next for the sake of 
illustration.  

Carbonation 
Unlike physical deterioration processes such as the heat 
transfer and moisture transport, carbonation of concrete is 
essentially a chemical process. As the hydration product of 
Portland cement, calcium hydroxide in concrete may react 
with carbon dioxide dissolved in pore solution, neutralize its 
high alkalinity environment, and finally result in 
depassivation of the passive layer and initiation of 
reinforcement corrosion — one of the major deterioration 
mechanisms for reinforced concrete structures. On the other 
hand, as the main product of the carbonation reaction, 
calcium carbonate will not dissolve in water but precipitate 
in the pores of concrete, thus decreasing the porosity of 
concrete and altering its microstructure. In this case, 
carbonation reaction may be favorable to maintain the 
durability of plain concrete. Thus carbonation has opposing 
effects on different constituents of the material. 

Based on an assumption that the carbonation front advances 
after the alkaline material (i.e., calcium hydroxide) has been 
neutralized completely, the carbonation process is 
dominated by the diffusion of carbon dioxide through the 
porous microstructure of concrete, where the concentration 
gradient of carbon dioxide acts as a driving force. As a 
neutralization reaction, the carbonation process generates a 
specific amount of moisture, which may affect the temporal 
and spatial distribution of moisture content in concrete and 
should be considered in the simulation of previous moisture 
transport process. To develop a numerical model for 
carbonation, several coupled processes, namely the 
diffusion of carbon dioxide, moisture transport, heat 
transfer, formation of calcium carbonate, availability of 
calcium hydroxide in the pore solution etc., need to be 
considered. A popular approach is the multifactor equation, 

where the diffusivity of CO2 is assumed to be dependent on 
the pore relative humidity, temperature and the carbonation-
induced reduction of porosity as  
 
      32

*
10, FTFhFDD cc  (1) 

 
where F1, F2 and F3 represent the effects of humidity, 
temperature and carbonation, respectively. Refer Saetta et al 
(1995) for details of models for F1, F2 and F3. Saetta et al. 
(2004) also proposed a similar numerical model for the 
carbonation reaction rate as 
 
 

RchTr ffff  0  (2) 

 

where 0 indicates an ideal carbonation rate at which the 
carbonation reaction takes place in specified ideal 
conditions, and fT, fh, fc, and fR represent the influences of 
temperature, relative humidity, concentration of free CO2, 
and degree of carbonation respectively, on the reaction rate. 

Chloride Penetration 
Chloride-induced reinforcement corrosion is one of the 
major deterioration mechanisms for reinforced concrete 
structures exposed to marine environment, deicing salts or 
underground environment. It leads to a series of structural 
degradations, such as loss of the concrete-steel interface 
bond, reduction of the cross-section area of reinforcement, 
and cracking and spalling of the concrete cover, thus 
severely reducing the load carrying capacity of the structure. 
Considering its unique significance, substantial studies have 
been carried out on the chloride-induced reinforcement 
corrosion process for several decades. 

Based on Fick’s second law, the governing equation of 
chloride penetration in concrete is expressed as: 
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where Ccl(x,t) is the chloride content at spatial coordinate x 
and time t, and Dcl is chloride diffusivity. Chen and 
Mahadevan (2008) proposed the modeling of chloride-
induced deterioration through a multifactor equation as 
 
        localfclclcl FTFCFtFDD 54,320,  (4) 

 

where Dcl,0  is the reference or nominal chloride diffusivity 
when all influencing factors assume values of unity. F2 
denotes the influence of the age of concrete, which reflects 
the cement hydration-induced reduction in the concrete 
porosity with time t. F3 represents the influence of the free 
chloride content Ccl,f, which reflects the hindering effect of 
high chloride content on the chloride diffusion. F4 indicates 
the influence of temperature T, which reflects the 
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thermodynamic effect of high temperature on the chloride 
diffusion. F5 reflects the influence of local relative crack 
density  local. Chen and Mahadevan (2008) implemented 
this approach through a finite element-based computational 
methodology to link the diffusivity change to structural 
degradation expressed by the local relative crack density. 

The above two modeling approaches use semi-empirical 
multifactor equations, whose parameters are calibrated using 
experimental data. These are Level 2 approaches using 
averaged parameters. An example of a Level 3 approach 
based on multi-scale modeling is illustrated below for 
sulfate attack.  

Sulfate attack 
When sulfate ions diffuse through a cementitious structure, 
they react with the cement hydration products to form 
expansive products. This induces strain leading to cracking 
and eventual failure. Sarkar (2010) developed a probabilistic 
computational model of concrete durability under sulfate 
attack that considers three processes – diffusion of ions, 
chemical reactions and mechanical damage accumulation 
due to cracking. The three processes were modelled through 
basic differential equations, chemical reactions and 
mechanics models respectively, based on continuum first 
principles. 

There are several inputs and model parameters in the three 
parts of the model. Sarkar et al (2012) pursued a hierarchical 
Bayesian calibration approach where the parameters of each 
model component were calibrated using tests that 
progressively added the processes (i.e., first chemical alone, 
then chemical and diffusion, then all three). In the 
geochemical speciation modeling, many mineral sets are 
possible; their relative proportions were calibrated using 
experimental data.  

The effect of chemical reaction products on mechanical 
properties such as elastic modulus and strength was 
computed through multi-scale modeling. Four scales were 
considered for homogenization and calculation of macro-
level structural properties and strength degradation. These 
were: calcium silicate hydrate (CSH), cement paste, cement 
mortar, and concrete. The macro-level crack density was 
then connected to effective elastic modulus and diffusivity.  

In summary, the above examples of concrete deterioration 
modeling show attempts at modeling the interactions among 
multiple chemical, physical and mechanical processes that 
operate simultaneously across multiple spatial and temporal 
scales. This presents unique challenges for concrete 
structures health monitoring. Sensing of physical, chemical 
and mechanical quantities is one challenge. In addition, 
since multiple processes are interacting in a coupled 
manner, it is difficult to link any observed damage to a 
particular deterioration process or to estimate the proportion 
of damage contributed by different processes.   
 

Figure 2. Multi-physics modeling of sulfate attack 

3. HEALTH MONITORING 

A variety of non-destructive evaluation (NDE) techniques 
have been studied for concrete structures. While some 
studies have investigated embedded sensors in concrete, we 
restrict this discussion to external sensing considering that 
the structures are already built. In a recent study led by the 
Oak Ridge National Laboratory, five NDE techniques were 
assessed for damage detection in concrete, namely shear-
wave ultrasound, ground penetrating radar, impact echo, 
ultrasonic surface wave, and ultrasonic tomography 
(Clayton 2014). The techniques were compared in terms of 
ease of use, time consumption, and defect detection 
capability, and different techniques showed different 
advantages and disadvantages. For example, ultrasonic 
tomography appeared to have the best detection especially 
at larger depths under the surface, but was very time 
consuming. The first two (shear-wave ultrasound and 
ground penetrating radar) were found to have above average 
performance but some disadvantages as well.  

For larger structures (e.g., containment structure in a nuclear 
power plant), the use of full-field imaging techniques appear 
promising. Some of these techniques are briefly discussed 
below (infrared imaging, digital image correlation, and 
velocimetry). 

By using infrared imaging, it is possible to identify the 
thermal load path in a material.  By tracking this thermal 
signature longitudinally in time, the onset of changes in the 
load path and hence changes in the composition of a 
material as well as mechanical damage in the material can 
be identified. Infrared imaging can also be combined with 
excitation techniques such as standoff acoustic sound 
pressure.  By insonifying a material with an acoustic source, 
full-field vibro-thermography measurements can be made to 
characterize changes in the material over time.  Such a 
methodology falls into the class of active structural health 
monitoring sensing methods (Mares et al, 2013).  

A second approach to structural health monitoring for full-
field infrared imaging is to measure the thermal response 
under an applied uniform heat flux.  By analyzing thermal 
gradients in the material, regions of non-uniform material 
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composition such as due to the formation of defects can be 
identified and tracked (Sharp et al, 2014)..  

Digital image correlation (DIC) has also been studied in 
recent years as a full-field structural health monitoring 
imaging technique. For example, DIC has been used to 
detect micro cracking in chopped fiberglass compression 
molded parts.  The resulting image shows the principal 
strains in a region where a crack has formed.  The strain 
field indicates the strains that occur under an applied static 
load. This method can also be used to detect localized 
residual strains (and stresses) after an applied load is 
removed. Furthermore, the method is applicable to tracking 
the strain that occurs under temperature or other types of 
environmental loading (wind, solar, etc.). 

Velocimetry has also been studied as a full-field structural 
health monitoring imaging technique to detect subsurface 
nonlinearity due to material damage.  For example, full-field 
velocimetry has been applied to monitor the ambient 
vibration of composite structures and data has been 
analyzed to detect subsurface damage in such 
materials.  Damage indices quantify the degree of nonlinear 
stiffness/damping behavior that is observed locally at each 
measurement point in the grid. Using modern scanning laser 
technology, it is possible to perform these measurements for 
in-plane an out-of-plane vibration fields to achieve greater 
sensitivity to defects in composite structures.  Using this 
technique, it has been demonstrated that the nonlinear 
dynamic behavior of heterogeneous materials such as the 
fiberglass sandwich material are indicative of subsurface 
damage, and that a higher frequency vibration provides for 
enhanced localization of the damage (Bond et al, 2013).  

The aforementioned full-field measurement techniques have 
been applied to metallic and composite material structures. 
Their suitability for concrete structures is yet to be 
investigated. Full-field measurements also need to be 
supplemented by appropriate NDE and laboratory testing 
activities. 

4. DATA ANALYTICS 

Data analytics is a crucial step in processing the collected 
data and assembling the evidence for diagnosis and 
prognosis. A variety of data processing techniques have 
been developed during the past decades to analyze the data 
generated by the sensor systems. In general, health 
monitoring systems and sensors generate a large amount of 
data. For online monitoring, the amount of information 
grows very large, and this becomes a big data problem. A 
big data problem is characterized by volume, velocity and 
variety (heterogeneity) of data. When full-field imaging 
techniques are used, data analytics is challenged by the 
presence of heterogeneous data (numerical, text and image). 
The data becomes too large and complex to be stored, 
managed and processed by traditional database management 
techniques.  

 
In recent years, several software frameworks for storage, 
management and retrieval of big data have been developed. 
The well-known Hadoop distributed file system for storing 
large amounts of data is scalable and fault-tolerant. 
MapReduce is a parallel processing framework for large-
scale data processing. It consists of two segments -- Map 
function, where the task is subdivided and assigned to slave 
nodes, and Reduce function, where the results from slave 
nodes are aggregated to obtain final result (Prajapati, 2013).  

Big data presents many issues such as data quality, 
relevance, re-use, decision support etc. In particular, 
uncertainty of inference due to data quality, and 
incompleteness need to be addressed. Sensitivity analysis 
leads to identifying the relevance of various data 
components, and helps to focus attention and collection 
efforts to the most relevant data. Additional challenges 
relate to data scrubbing and robust data management, as also 
the requirements for increased memory, storage and 
computing power. 

Dimension reduction and data reduction are common steps 
in processing big data. Dimension reduction is achieved 
through feature selection and extraction. Two types of 
approaches are available for feature selection – filter 
approach and wrapper approach. In the wrapper approach, 
all possible subsets to predict the output variable are 
created, and the subset of variables, whose corresponding 
classification algorithm performs the best, is selected. In the 
filter approach, ranks are assigned to individual variables, 
and depending upon the accuracy required, the subset of 
variables is selected. In general, filter methods tend to be 
faster. In Feature Extraction, all the variables are mapped to 
a lower-dimensional space and models are constructed in 
this low-dimensional space. Principal components analysis 
(PCA) and factor analysis are well-known techniques that 
aid dimension reduction. 

Prominent data reduction techniques include classification 
and clustering. Several different classification techniques 
such as decision trees, nearest neighbor classifier, neural 
networks and support vector machines are available. 
However, many of these are deterministic classifiers, 
whereas the Bayesian network is an uncertainty-based 
classifier where the available evidence is assigned to 
different classes with a quantified probability measure. 
Clustering can be either hierarchical or based on partition of 
the problem domain. Several different clustering techniques, 
such as k-means, DBSCAN, expectation maximization are 
available, and these need to be investigated for suitability in 
the present problem. For larger data sets, dimension 
reduction is possible through feature extraction and feature 
selection, in order to develop a low-dimensional 
representation of the available data.  
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After preprocessing and reducing the available data, the next 
step is PHM model building by learning the 
interrelationships. While doing this, it is advisable to use the 
data in a systematic manner that maximizes the information 
gain. An adaptive selection of data sources can be pursued, 
based on information-theoretic metrics. Various possible 
data sources are ranked based on the information gain 
potential and selected to train the model in decreasing order 
of information gain.  

In summary, data about different physical quantities being 
measured is available in heterogeneous formats and fidelity, 
from multiple sources (e.g., test data, expert opinion, 
operational data, legacy system data, and model-based 
simulations). Data may be sparse about some quantities, 
while it may be abundant for other quantities. A systematic 
and rigorous approach is needed for data analytics that 
makes use of all available heterogeneous information. One 
promising approach is to use the Bayesian network (BN) 
machine learning approach as the organizing principle for 
connecting data in multiple different formats. The Bayesian 
network (discussed in the next section) allows the 
integration of various types of information that (a) occur at 
different times, and (b) combine in different ways (linear, 
nonlinear, coupled, nested, and iterative). 

5. UNCERTAINTY QUANTIFICATION 

Uncertainty sources in various components of the PHM 
model may broadly be classified into three categories: 
natural variability in the system properties and operating 
environments (aleatory uncertainty), information uncertainty 
due to inadequate, qualitative, missing, or erroneous data 
(epistemic uncertainty), and modeling uncertainty induced 
by assumptions and approximations (epistemic uncertainty). 
Much previous work has focused on variability, but a 
systematic approach to include data and model uncertainty 
sources within PHM still awaits development.  

Data Uncertainty: On the one hand, sensor information 
may be inadequate, due to sparse, imprecise, qualitative, 
subjective, faulty, or missing data. On the other hand, one 
may be confronted with a large volume of heterogeneous 
data (big data), involving significant uncertainty in data 
quality, relevance, and data processing. In the context of a 
probabilistic framework, both situations lead to uncertainty 
in the distribution parameters and distribution types of the 
variables being studied, and the Bayesian approach is 
naturally suited to handle such data cases and update the 
description with new information. Flexible parametric or 
non-parametric representations can be developed within the 
Bayesian framework to handle such epistemic uncertainty 
(Sankararaman and Mahadevan, 2011). An important recent 
development is the extension of global sensitivity analysis 
to quantify and distinguish the relative contributions of 
aleatory uncertainty vs. epistemic uncertainty 
(Sankararaman and Mahadevan, 2013a). 

Model Uncertainty: The challenges in developing a 
computational framework for concrete degradation 
modeling that mathematically represents the interactions 
among the multi-physics degradation processes and their 
relation to the quantities being measured by sensors were 
discussed earlier. The models for various processes could be 
based on first principles or regression of empirical data. For 
some components there may not even be any mathematical 
models available, but perhaps reliability data from past 
experience or literature.   The Bayesian network offers a 
systematic approach to integrate such heterogeneous 
information. Quantification of the model uncertainty 
resulting from such heterogeneous information could be 
studied w.r.t. three categories, namely, model parameters, 
model form, and solution approximations; and the 
corresponding activities to quantify them are calibration, 
validation and verification, respectively. Model parameters 
are estimated using calibration data, and Bayesian 
calibration constructs probability distributions for the model 
parameters. Model form uncertainty may be quantified in 
two ways: either through a validation metric, based on 
validation data, or as model form error (also referred to as 
model discrepancy or model inadequacy). Model form error 
can be estimated along with the model parameters using 
calibration and/or validation data, based on the comparison 
of model prediction against physical observation, and after 
accounting for solution approximation errors, uncertainty 
quantification errors, and measurement errors in the inputs 
and outputs (Liang and Mahadevan, 2011) 

Probabilistic graphical models for machine learning such as 
Bayesian networks (Jensen, 1996) have shown much 
effectiveness in the integration of information across 
multiple components and physics in several application 
domains. Dynamic Bayesian networks (DBNs) have been 
used for systems evolving in time, and recent work has 
extended DBNs to include heterogeneous information in 
diagnosis and prognosis (Bartram and Mahadevan, 2014). 
The Bayesian network is able to include asynchronous 
information from different sources. Also, Bayesian 
networks can be built in a hierarchical manner, by 
composing component-level networks to form a system-
level network.  

In summary, data and model uncertainty sources need to be 
systematically included in the PHM of concrete structures, 
and the Bayesian network offers such a systematic and 
comprehensive approach for the aggregation of uncertainty 
from multiple sources and heterogeneous information. The 
Bayesian network facilitates both forward propagation of 
uncertainty and the inverse problem of decision-making 
(e.g., sensor layout design) in order to achieve uncertainty 
reduction. The Bayesian approach has been used to quantify 
the uncertainty in each step of diagnosis and prognosis 
(Sankararaman et al, 2011; Sankararaman and Mahadevan, 
2013b). Connection of these uncertainty quantification 
techniques to risk assessment and risk management 
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decisions through the use of structural reliability theory 
needs to be investigated (Naus, 2009). 

6. CONCLUSION 

This paper discussed challenges encountered in four 
elements of PHM for concrete structures – degradation 
modeling, sensor measurement, data analytics and 
uncertainty quantification. Illustrative techniques and 
ongoing challenges in each direction were briefly discussed. 
An important current need is the development of an 
effective framework for PHM of concrete structures that 
combines the state-of-the-art techniques in each of the four 
elements, overcomes challenges such as feasibility, 
complexity and scalability, and develops confidence in 
PHM result. Such a comprehensive approach will facilitate 
the development of a quantitative, risk-informed framework 
for structural health management. 
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ABSTRACT 

Comparing with fixed shaft gearbox, vibration properties of 
planetary gearbox are much more complicated. In a 
planetary gearbox, there are multiple vibration sources as 
several pairs of sun-planet gears and several pairs of ring-
planet gears mesh simultaneously. In addition, the signal 
transmission path changes due to the rotation of the carrier. 
To facilitate fault detection of a planetary gearbox and avoid 
catastrophic consequences caused by gear failures, it is 
essential to understand the vibration properties of a 
planetary gearbox. This paper aims to simulate vibration 
signals and investigate vibration properties of a planetary 
gear set when there is a cracked tooth in a planet gear. 
Displacement signals of the sun gear and the planet gear, 
and resultant acceleration signals of the whole planetary 
gear set will be simulated and investigated. Previous work 
mainly focuses on the vibration properties of a single 
component, like the sun gear, the planet gear or the carrier. 
This paper simulated the vibration signal of a whole 
planetary gear set when there is a cracked tooth in a planet 
gear. In addition, fault symptoms will be revealed, which 
can be utilized to detect the crack in the planet gear. Finally, 
the proposed approach is experimentally validated.   

1. INTRODUCTION 

Planetary gears are widely used in aeronautic and industrial 
applications because of properties of compactness and high 
torque-to-weight ratio. A planetary gear set consists 
normally of a centrally pivoted sun gear, a ring gear and 
several planet gears that mesh with the sun gear and the ring 
gear simultaneously as shown in Figure 1.   

The vibration signals of a planetary gearbox are more 
complicated comparing with that of a fixed-shaft gearbox. 
In a planetary gearbox, there are multiple vibration sources 
as several pairs of sun-planet gears and several pairs of ring-

planet gears mesh simultaneously. In addition, signal 
transmission path changes due to the rotation of the carrier. 
Multiple vibration sources and the effect of transmission 
path lead to complexity of fault detection (Liang, Zuo and 
Hoseini, 2014). 

 
Figure 1. A planetary gear set having four planet gears  

(Lei, Lin, Zuo and He, 2014) 

A few studies investigated vibration properties of the 
planetary gearbox. Zhang, Khawaja, Patrick, et al. (2008) 
applied the blind deconvolution algorithms to denoise the 
vibration signals collected from a testbed of the helicopter 
main gearbox subjected to a seeded fault. Inalpolat and 
Kahraman (2009) proposed a simplified mathematical 
model to describe the mechanisms leading to modulation 
sidebands of planetary gear sets. Inalpolat and Kahraman 
(2010) predicted modulation sidebands of a planetary gear 
set having manufacturing errors. Chen, Vachtsevanos and 
Orchard (2012) proposed an integrated remaining useful life 
prediction method which was validated by successfully 
applying the method to a seeded fault test for a UH-60 
helicopter planetary gear plate. Feng and Zuo (2012) 

Xihui Liang et al. This is an open-access article distributed under the 
terms of the Creative Commons Attribution 3.0 United States License, 
which permits unrestricted use, distribution, and reproduction in any 
medium, provided the original author and source are credited. 
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mathematically modeled tooth pitting and tooth wear by 
applying amplitude modulation and frequency modulation, 
and then analyzed the spectral structure of the vibration 
signals of a planetary gear set. Patrick, Ferri and 
Vachtsevanos (2012) studied the effect of planetary gear 
carrier-plate cracks on vibration spectrum. Liang, Zuo and 
Hoseini (2014) investigated the vibration properties of a 
planetary gear set when there is a cracked tooth in the sun 
gear. Chen and Shao (2011) studied the dynamic features of 
a planetary gear set with tooth crack under different sizes 
and inclination angles. The displacement signals of the sun 
gear and the planet gear were investigated when a tooth 
crack was present on the sun gear or the planet gear. 
However, the effect of transmission path was not considered 
in their analysis. They did not model the resultant vibration 
signals of the whole gearbox. In practical applications, 
sensors are commonly mounted on the housing of the 
gearbox to capture the vibration signals. The signals 
acquired by sensors are the resultant vibration signals of the 
whole gearbox. They are not the vibration signals of the sun 
gear or a single planet gear. In this study, the resultant 
vibration signals of a planetary gear set will be modeled and 
then analyzed when there is a cracked tooth in the planet 
gear. 

2. MODELING OF VIBRATION SIGNALS 

Liang, Zuo and Hoseini (2014) simulated and investigated 
the vibration signals of a planetary gear set when there is a 
cracked tooth in the sun gear. The method proposed by 
Liang, Zuo and Hoseini (2014) will be applied directly in 
this paper. This study does not intend to propose a new 
method to model the vibration signals of a planetary gear set. 
This paper focuses on exploring vibration properties, and 
then finds the fault symptoms of a planetary gear set when 
there is a cracked tooth in the planet gear. Two steps are 
required to obtain the resultant vibration signals of a 
planetary gear set. First of all, a dynamic model will be 
applied to simulate the vibration signals of each gear, 
including the sun gear, each planet gear and the ring gear. 
Then, resultant vibration signals will be modeled 
considering multiple vibration sources and effect of 
transmission path. 

2.1. Dynamic Modeling of a Planetary Gear Set 

The dynamic model used in this study is the same as that 
used by Liang, Zuo and Hoseini (2014) except for 
differences of sun-planet mesh stiffness. The differences of 
sun-planet mesh stiffness will be described in detail in 
Section 3. Figure 2 shows the dynamic model that will be 
used in this study. It is a nonlinear two-dimensional lumped-
mass model. Each component has three degrees of freedom. 
Total, it has 9+3N degrees of freedom as a planet gear set 
has one sun gear, one ring gear, one carrier and N planet 
gears. All the coordinate systems are fixed on the carrier. 
Figure 2 shows locations and positions of all coordinate 

systems in the initial time (time zero). Equations of motion 
of the dynamic model will not be included in this paper. 
Equations can be found in Liang, Zuo and Hoseini (2014). 

 
Figure 2. Dynamic modeling of a planetary gear set 

(Liang, Zuo and Hoseini, 2014) 

2.2. Resultant Vibration Signals 

A dynamic model of a planetary gear set was described in 
Section 2.1. Equations of motion of the dynamic model can 
be built correspondingly. Numerically solving the equations, 
vibration signals of the sun gear, the ring gear, each planet 
gear and the carrier can be obtained. After that, resultant 
vibration signal of the planetary gear set can be modeled 
incorporating multiple vibration sources and the effect of 
transmission path. The resultant vibration signal is 
expressed as weighted summation of acceleration of each 
planet gear as shown in Equation (1) (Liang, Zuo and 
Hoseini, 2014). 

 
1

( ) ( ) ( )
N

n n

n

a t w t a t



 

(1) 

where ( )nw t  is the weighting function which counts for the 
effect of the transmission path; ( )na t  represents 
acceleration of the nth planet gear, which is obtained through 
dynamic simulation.  

A Hamming function is used to model the effect of 
transmission path. The Hamming function assumes that as 
planet n approaches transducer location, its influence 
increases, reaching its maximum when planet n is closest to 
transducer location, then, its influence decreases as the 
planet goes away from the transducer.  

 ( )=0.54 0.46cos( )i c nw t w t    (2) 
where 

cw  is carrier angular frequency; 
n  is phase angle 

corresponding to the nth planet gear. 
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3. CRACK MODELING AND MESH STIFFNESS EVALUATION 

Gear tooth crack is a common failure mode in a gear 
transmission system. It may occur in the sun gear, a planet 
gear or the ring gear. When a cracked tooth is in the sun 
gear, the cracked tooth will mesh with all planet gears. 
Therefore, mesh stiffness of all sun-planet gear pairs will be 
affected. While if a cracked tooth is in a planet gear, only 
mesh stiffness of one pair of sun-planet gear pair is affected.  

Tooth crack mostly initiates at the critical area of a gear 
tooth root (area of the maximum principle stress), and the 
propagation paths are smooth, continuous, and in most cases, 
rather straight with only a slight curvature as shown in 
Figure 3 (Belsak and Flasker, 2007). Liang, Zuo and Pandey 
simplified the crack growth path as a straight line (the red 
line) starting from the critical area of the tooth root. The 
same model developed by Liang, Zuo and Pandey (2014) 
will be applied in this study.  

 
Figure 3. Crack propagation path (Belsak and Flasker, 2007) 

 
Figure 4. Mesh stiffness of a sun-planet gear pair 

(Liang, Zuo and Pandey, 2014) 

Potential energy method used by Liang, Zuo and Pandey 
(2014) is applied directly in this study to evaluate the mesh 
stiffness of a planetary gear set in the perfect and the 
cracked tooth condition. Figure 4 shows the mesh stiffness 

of a pair of sun-planet gear when different crack levels are 
present on a planet gear tooth. With the growth of tooth 
crack, the mesh stiffness will decrease correspondingly. The 
reduction of mesh stiffness will cause the vibration signals 
behavior abnormally, which can be used to detect the tooth 
fault. 

4. VIBRATION SIGNALS OF SUN GEAR AND PLANET GEAR 

In this section, vibration signals of a planetary gear set are 
numerically simulated using MATLAB ode15s solver. 
Physical parameters of the planetary gear set are listed in 
Table 1. A constant torque of 450 N.m is applied to the sun 
gear and the rotation speed of the carrier is 8.87 r/min. Gear 
mesh damping is assumed to be proportional to the mesh 
stiffness (Tian, Zuo and Fyfe, 2004). 

Table 1.  Physical parameters of a planetary gear set  
(Liang, Zuo and Hoseini, 2014) 

Parameters Sun gear Planet gear Ring gear Carrier 
Number of teeth 19 31 81 --- 
Module (mm) 3.2 3.2 3.2 --- 
Pressure angle ο20  ο20  ο20  --- 
Mass (kg) 0.700 1.822 5.982 10.000 
Face width (m) 0.0381 0.0381 0.0381 --- 
Young’s modulus 

(Pa) 

2.068×1011 2.068×1011 2.068×1011 --- 
Poisson’s ratio 0.3 0.3 0.3 --- 
Base circle radius 

(mm) 

28.3 46.2 120.8 --- 
Root circle radius 

(mm) 

26.2 45.2 132.6 --- 
Bearing Stiffness ksx =ksy= krx =kry =kcx =kcy= kpnx = kpny = 1.0×108 N.m  

 Bearing damping csx =csy= crx =cry= ccx =ccy= cpnx = cpny = 1.5×103 Ns/m  
 

Figure 5 presents displacement signals of the planet gear 
that has a cracked tooth. The planet gear has 31 teeth. In the 
time duration of 31 gear mesh periods, the cracked tooth 
will mesh one time. It is observable from Figure 5 that large 
amplitude (fault symptom) of the displacement signal is 
generated when the cracked tooth is in meshing. As the 
crack grows, the amplitude of the fault symptoms increases 
accordingly. The fault symptom will repeat every 31 gear 
mesh periods. In Figure 5, the fault symptom mainly 
appears in the y-direction displacement. Actually, the fault 
symptom may mainly appear in the x-direction displacement 
or in the y-direction displacement or evenly in the two 
directions, which depends on the location of the planet gear. 

Since the ring gear has 81 teeth, the planet gear returns to its 
original position after 81 meshes. Figure 6 plots the center 
locus of the sun gear in 81 gear mesh periods when a planet 
gear tooth has different crack lengths. When the planet gear 
is in perfect condition, 81 spikes can be observed which 
corresponding to 81 gear meshes. When the planet gear has 
a cracked tooth, the cracked tooth will mesh two or three 
times (81/31) in 81 gear mesh periods. Figure 6 shows the 
condition when three meshes happen in 81 gear meshes. In 
the condition of 0.86 mm crack, three bigger spikes can be 
observed. Time duration of spike 1 and spike 2 is 31 gear 
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mesh periods. Similarly, it is 31 gear mesh periods between 
spike 2 and spike 3. The time duration of spike 3 and spike 
1 is 19 (81-62) gear mesh periods. It is predicable that the 
4th bigger spike will show after 31 gear mesh periods of 
spike 3. In the condition of 2.58 mm crack, the three spikes 
(1, 2 and 3) become even larger comparing to the condition 
of 0.86 mm crack. When the cracked tooth is in meshing, a 

spike will be generated due to the low stiffness of cracked 
tooth pair, like spike 1. Spike 1’ is generated along with 
spike 1 by the reaction force induced by the bigger 
amplitude of spike 1. Same situation applies to spike 2’ and 
spike 3’. Overall, clear fault symptoms show in the vibration 
signals of sun gear and planet gear. 

 

 
Figure 5. Displacement signals of the sun gear 

dx: displacement in x-direction; dy: displacement in y-direction 
 

 
Figure 6. Center locus of the sun gear 

5. RESULTANT VIBRATION SIGNALS 

Applying Equation (1), resultant signal of a planetary gear set 
(parameters are listed in Table 1) can be generated. Figure 7 
shows the resultant vibration signals in one revolution of the 
carrier (81 gear mesh periods). Three health conditions are 
plotted: perfect condition, 0.86 mm crack in one tooth of a 
planet gear and 2.58 mm crack in one tooth of a planet gear. 
The symbol ay represents y-direction acceleration of the 
planetary gear set. In one revolution of the carrier, the cracked 

tooth should mesh three times. Three fault symptoms should 
appear in one revolution of the carrier. However, in the 0.86 
mm crack, only one bigger spike is observed (see the red 
elliptical circle). In the 2.58 mm crack, two bigger spikes are 
observed. Therefore, some spikes are attenuated or 
disappeared. This is caused by the effect of transmission path. 
If the cracked tooth is meshing far from a transducer, the fault 
symptoms cannot be acquired by the transducer. Figure 8 
presents frequency spectrum of simulated resultant vibration 
signals of a planetary gear set in different health conditions. In 
the perfect condition, sizable amplitudes are marked in Figure 
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8 and they all show in the following locations: nfm if n is an 
integer and a multiple of 4, nfm±fc if n is an odd integer, nfm±2fc 

if n is an even integer but not a multiple of 4 (Liang, Zuo and 
Hoseini, 2014), where fm represents gear mesh frequency and fc 

denotes rotation frequency of the carrier. When crack is 

present on one tooth of a planet gear, these sizable amplitudes 
are rarely affected. Some sidebands (see the area circled by red 
lines) appear due to the tooth crack even it is not obvious in 
Figure 8.  
 

 
Figure 7. Simulated resultant vibration signal of a planetary gear set 

 
Figure 8. Frequency spectrum of simulated resultant vibration signals 
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Figure 9 gives zoomed-in plot of frequency region between 43 

fm and 45 fm. Many sidebands appear but they are not 
symmetric. Sizable sidebands appear at mfm±nfplanet±kfc or 
mfm±nfplanet±kfp, where m, n and k are all integers; fp represents 
rotation frequency of the planet gear and fplanet denotes 
characteristic frequency of the faulty planet gear. For the 

planetary gear set we used in this studied, n and k can take the 
following integer values: 0 ≤ n ≤ 15 and 0 ≤ k ≤ 1. The 
characteristic frequency of the cracked planet gear can be 
calculated as follows (Feng et al. 2012):  

 fplanet= fm/Zp  (3) 
where Zp denotes teeth number of the planet gear.

 
Figure 9. Zoomed-in frequency spectrum of simulated resultant vibration signals 

6. EXPERIMENTAL VALIDATION 

Acceleration signals are acquired from a planetary gearbox to 
validate simulated resultant vibration signals and fault 
symptoms discovered in this study. Figure 10 shows the 
experimental test rig whose parameters are listed in Table 2. 
An acceleration sensor was installed on top surface of the 
housing of 2nd stage planetary gearbox and vertical 
acceleration signals of the gearbox were recorded. The 
configuration and parameters of the 2nd stage planetary gear 
set are the same as that of the planetary gear set used for the 
signal simulation. The rotation speed of the carrier is 8.87 
r/min that is the same carrier speed used in the simulation. 
When the crack length is small, fault symptoms may be 
submerged in the noise and hard to be detected. To amplify the 
fault symptoms, 4.3 mm tooth crack was created in a planet 
gear tooth as shown in Figure 11. 

 
Figure 10. Experimental test rig 

 
Table 2. Parameters of experimental test rig 

 
Gearbox Bevel stage First stage planetary 

gearbox 

Second stage 

planetary gearbox Gear Input Output Sun Planet Ring Sun Planet Ring 

No. of 

teeth 

18 72 28 62 (4) 152 19 31 (4) 81 

Note: The number of planet gears is indicated in the parenthesis. 

 

 
Figure 11. 4.3 mm manually made tooth crack in planet gear 

Figure 12 shows the frequency spectrum of experimental 
vibration signals. In Figure 12, “Motor” represents rotation 
frequency of drive motor; “MBvl” denotes mesh frequency of 
bevel gears; “fm1” and “fc1” means mesh frequency and carrier 
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rotation frequency of 1st stage planetary gearbox, respectively. 
These frequencies are not relevant to the 2nd stage planetary 
gearbox. All other marked frequency components located at 
the following locations: nfm if n is an integer and a multiple of 
4, nfm±fc if n is an odd integer, nfm±2fc if n is an even integer 
but not a multiple of 4.  

Figure 13 describes frequency components of the experimental 
signal in the frequency region from 43 fm to 45 fm. Sidebands 
are not symmetric and sizable sidebands located at 
mfm±nfplanet±kfc or mfm±nfplanet±kfp, where m, n and k are all 
integers. The sidebands locations are the same as that 
anticipated in Section 5. 

 

 
Figure 12. Frequency spectrum of experimental vibration signals 

 
 

 
Figure 13. Zoomed-in frequency spectrum of experimental vibration signal
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7. CONCLUSION  

In this study, the vibration signals of a planetary gear set are 
simulated and investigated when there is a cracked tooth in 
a planet gear. When there is a cracked tooth in a planet gear, 
regular fault symptoms appear in the vibration signals of 
sun gear and planet gear. The fault symptom appears in 
every Zp meshes. The fault symptoms enlarge along with the 
growth of crack. Some fault symptoms attenuate or 
disappear in the resultant vibration signal. This is due to the 
effect of transmission path which is caused by the rotation 
of carrier. Asymmetric sidebands appear when there is a 
cracked tooth in a planet gear. The locations of these 
sidebands are investigated and found, which can be used to 
detect tooth crack fault. Experimental validations are 
performed to demonstrate the correctness of the anticipated 
sideband locations. 
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ABSTRACT 

Prognostics and health management (PHM) technologies 

reduce time and costs for maintenance of products or 

processes through efficient and cost-effective diagnostic and 

prognostic activities. These activities aim to provide 

actionable information to enable intelligent decision-making 

for improved performance, safety, reliability, and 

maintainability. Thoughtful PHM techniques can have a 

dramatic impact on manufacturing operations, and standards 

for PHM system development, data collection and analysis 

techniques, data management, system training, and software 

interoperability need to exist for manufacturing. The 

National Institute of Standards and Technology (NIST) 

conducted a survey of PHM-related standards applicable to 

manufacturing systems to determine the needs addressed by 

such standards, the extent of these standards, and any 

commonalities as well as potential gaps among the 

documents. Standards from various national and 

international organizations are summarized, including those 

from the International Electrotechnical Commission, the 

International Organization for Standardization, and SAE 

International. Finally, areas for future PHM-related 

standards development are identified. 

1. PHM ENABLES SMART MANUFACTURING  

Prognostics and health management (PHM) systems and 

technologies enable maintenance action on products and 

processes based on need, determined by the current system 

condition via diagnostic analyses and/or the expected future 

condition through prognostic methods. PHM techniques are 

in contrast to the use of schedules (i.e., preventative 

maintenance) where maintenance is conducted on specific 

time intervals (United States Army, 2013). PHM aims to 

reduce burdensome maintenance tasks while increasing the 

availability, safety, and cost effectiveness for the products 

and processes to which it is applied. In this sense, PHM 

enables smart manufacturing by optimizing maintenance 

operations via data collection, diagnostics, and prognostics 

as well as usage monitoring. 

1.1. National Strategic Needs in Manufacturing 

The United States is beginning to gain ground in 

reestablishing its manufacturing dominance through 

research and development in a wide-range of advanced 

technologies. Additive manufacturing, robotics, data 

analytics, cloud computing, and intelligent maintenance are 

just a few evolutionary technologies that are actively being 

refined. These technologies can have a tremendous impact 

on U.S. manufacturing that would “increase productivity, 

efficiency and innovation, speed-to-market, and 

flexibility” (Ludwig & Spiegel, 2014). 

The National Institute of Standards and Technology (NIST) 

is focused on advancing, documenting, and standardizing 

industry practices in many of these new technologies. 

Standards have a well-documented history of impact within 

the national and global manufacturing community (Ludwig 

& Spiegel, 2014). NIST has a strong history of working 

with industry to develop standards and guidelines to 

promote best practices and further manufacturing 

competitiveness (Bostelman, Teizer, Ray, Agronin & 

Albanese, 2014, Hunten, Barnard Feeney & Srinivasan, 

2013, Lee, Song & Gu, 2012, Marvel & Bostelman, 2013). 

Much of NIST’s work in the manufacturing sector lies 

within the NIST Engineering Laboratory (EL). 

One of EL’s manufacturing projects is Prognostics and 

Health Management for Smart Manufacturing Systems 

(PHM4SMS), which was initiated in 2013 (National 

Institute of Standards and Technology, 2014). The goal of 

this five-year effort is to develop and document methods, 

protocols, best practices, and tools to enable robust, real-

time diagnostics and prognostics in manufacturing 

environments. These outputs will provide manufacturers 

Gregory W. Vogl et al. This is an open-access article distributed under 

the terms of the Creative Commons Attribution 3.0 United States 

License, which permits unrestricted use, distribution, and reproduction 

in any medium, provided the original author and source are credited. 
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with uniform guidelines to identify the complex system, 

sub-system, and component interactions within smart 

manufacturing so they can understand the specific 

influences of each on process performance metrics and data 

integrity. Increased operational efficiency will be achieved 

through this greater understanding of the system, its 

constituent elements, and the multitude of relationships 

present. 

1.2. PHM Needs and Challenges 

Figure 1 shows a flowchart of the general process of PHM 

system development with certain standards listed for 

reference purposes. PHM system development begins with 

cost and dependability analyses to determine the 

components to monitor. The data management system is 

then initialized for collection, processing, visualization, and 

archiving of the maintenance data. Once the measurement 

techniques are established, the diagnostic and prognostic 

approaches are developed and tested to ensure that the 

desired goals are achieved. Finally, personnel are trained 

during the iterative process of system validation and 

verification before final system deployment. 

 

 

Figure 1. General PHM system development process and 

associated standards. 

 

Several needs and challenges exist for PHM system 

development. PHM is dependent on maintenance-related 

data collection and processing for components or 

subsystems, so standards about data acquisition and 

processing are needed to influence the requirements for 

PHM systems development (United States Army, 2013). 

Standards for PHM are needed for harmonized terminology, 

consistency of the PHM methods and tools, and 

compatibility and interoperability of PHM technology. 

Standards also help provide guidance in the practical use 

and development of PHM techniques (Mathew, 2012). The 

creation of PHM systems is still difficult due to the inter-

related tasks of design engineering, systems engineering, 

logistics, and user training (United States Army, 2013). 

1.3. NIST PHM Efforts 

PHM systems need to be developed, verified, and validated 

before implementation to enable improved decision-making 

for performance, safety, reliability, and maintainability of 

products and processes. However, standards appear to be 

lacking for PHM system development, data collection and 

analysis techniques, data management, system training, and 

software interoperability. The PHM4SMS project at NIST 

intends to help to serve a role in the development of such 

standards. The first step is to identify the existing pertinent 

standards, and this paper summarizes the results of such a 

review (Vogl, Weiss & Donmez, 2014). 

2. PUBLISHED STANDARDS 

Multiple organizations publish standards related to PHM for 

manufacturing products or processes. Table 1 lists the 

organizations that have published standards, while Table 2 

(see Section 3) and Table 3 (see Appendix) categorize the 

developing or existing standards, respectively, related to 

PHM for manufacturing. All tables are organized according 

to topics based on the PHM process steps seen in Figure 1: 

‘Overview’, ‘Dependability analysis’, ‘Measurement 

techniques’, ‘Diagnostics and Prognostics’, ‘Data 

management’, ‘Training’, and ‘Applications’. If a standard 

has an ‘X’ mark in a corresponding general topic column 

within a table, then that standard is largely applicable within 

that category. Some of the standards outline broad 

approaches for PHM (marked in the ‘Overview’ category) 

or are specific in guidance for PHM within a given 

application (marked in the ‘Applications’ category). Other 

standards focus on dependability analysis, measurement 

techniques, diagnostics and/or prognostics, PHM data 

management, or training related to maintenance of systems. 

The lists of standards are not exhaustive, yet are 

comprehensive enough for those in the manufacturing 

fields. 

As seen in Table 1, the standards were typically developed 

by a technical committee (TC) or subcommittee (SC) of 

various national and international organizations: the Air 

Transport Association (ATA), the International 

Electrotechnical Commission (IEC), the Institute of 

Electrical and Electronics Engineers (IEEE), the 

PHM System Design Begins
ISO 17359, MSG-3, ADS-79D-HDBK

Cost Benefit Analysis, Dependability Analysis
Cost Benefit Analysis: IEC 60300-3-3, SAE ARP6275

Dependability: IEC 60300-3-1, IEC 61703, SAE ARP4761

Bottom-Up Methods: SAE ARP5580, SAE J1739, IEC 60812

Top-Down Methods: IEC 61025, IEC 61165, ISO/IEC 15909

Data Requirements and Management
ISO 13374-1, ISO 13374-2, ISO 18435-1, ISO 18435-2

Measurement Techniques
ISO 17359, ISO 13379-1

Diagnostics and Prognostics
Diagnostics: ISO 13379-1

Prognostics: ISO 13381-1

PHM Testing and Training
Training: ISO 18436 (parts 1 to 8)

PHM System Deployment
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International Organization for Standardization (ISO), the 

Machinery Information Management Open Standards 

Alliance (MIMOSA), SAE International, and the United 

States Army (US Army). 

Table 1.  PHM-related standards organizations. 

Organization 

Committee/ 

Subcommittee 
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D
at

a 
m

an
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em
en

t 

T
ra

in
in

g
 

A
p

p
li

ca
ti

o
n
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ATA MSG X      X 

IEC 56 X X      

IEEE RS X       

ISO TC 108/SC 2   X     

ISO TC 108/SC 5 X  X X X X  

ISO TC 184/SC 4     X   

ISO TC 184/SC 5    X X   

ISO/IEC JTC 1/SC 7  X      

MIMOSA ——     X   

SAE International AQPIC  X      

SAE International E-32 X   X   X 

SAE International G-11r X X      

SAE International HM-1 X X X X   X 

US Army Aviation Engineering X  X X   X 

 

The following sections summarize the published standards 

in categories that are broad in scope: Overview, 

Dependability Analysis, Measurement Techniques, 

Diagnostics and Prognostics, and Data Management. 

Because they are outside the scope of NIST’s current focus, 

Cost-, Training-, and Application-focused standards are not 

summarized. 

2.1. Overview 

Standards with general guidance about the creation of PHM 

systems are indicated under the ‘Overview’ category within 

Table 3. Such standards are a natural starting point during 

the creation of PHM systems, because these documents 

outline the factors influencing condition monitoring and 

provide guidance for the monitoring of components and/or 

sub-systems. 

2.1.1. Manufacturing Industry 

As the parent document of a group of standards that cover 

condition monitoring and diagnostics, 

ISO 17359 (International Organization for Standardization, 

2011) was developed by ISO/TC 108/SC 5 (“Condition 

monitoring and diagnostics of machines”) to provide the 

general procedures for setting up a condition monitoring 

program for all machines, e.g., the generic approaches to 

setting alarm criteria and carrying out diagnosis and 

prognosis. ISO 17359 outlines the condition monitoring 

procedure for a general manufacturing process, factors 

influencing condition monitoring, a list of issues affecting 

equipment criticality (e.g., cost of machine down-time, 

replacement cost), and a table of condition monitoring 

parameters (such as temperature, pressure, and vibration) for 

various machine types. ISO 17359 also presents multiple 

examples of tables showing the correlation of possible faults 

(e.g., air inlet blockage, seal leakage, and unbalance) with 

symptoms or parameter changes. Furthermore, 

ISO 17359 shows an example of a typical form for 

recording monitoring information. 

2.1.2. Aircraft Industry 

Another standard that provides guidance for PHM systems 

development is MSG-3, a document titled 

“Operator/Manufacturer Scheduled Maintenance 

Development.” The Maintenance Steering Group (MSG) of 

the Air Transport Association (ATA) developed MSG-3, 

which is used for developing maintenance plans for aircraft, 

engines, and systems (Air Transport Association of 

America, 2013) before the aircraft enters service. MSG-3 is 

a top-down approach to determine the consequences (safety, 

operational, and economic) of failure, starting at the system 

level and working down to the component level (Adams, 

2009). Failure effects are divided into five categories, and if 

the consequences of failure cannot be mitigated, then 

redesign becomes necessary. For example, the MSG-3 

process led to mandatory design changes for the Boeing 

787-8’s in-flight control and lightning protection systems. 

Furthermore, the MSG-3 methodology helps improve safety 

while reducing maintenance-related costs up to 

30 percent (Adams, 2009). 

2.1.3. Military 

Similar in scope to the standards just described, an 

Aeronautical Design Standard (ADS) Handbook (HDBK), 

ADS-79D-HDBK, was developed by the U.S. Army to 

describe the Army’s condition-based maintenance (CBM) 

system for military aircraft systems (United States Army, 

2013). CBM is the preferred maintenance approach for 

Army aircraft systems, yet ADS-79D-HDBK is broad 

enough for application in other industries to be included in 

the ‘Overview’ category of Table 3. The document provides 

guidance and standards for use by all Department of 

Defense (DoD) agencies in the development of CBM data 

acquisition, signal processing software, and data 

management. Furthermore, ADS-79D-HDBK is in the spirit 

of the reliability centered maintenance (RCM) methods 

previously used by the DoD to avoid the consequences of 

material failure. Failure mode, effects, and criticality 

analysis (FMECA) identifies where CBM should be 

utilized, but RCM is used to determine the most appropriate 

failure management strategy. Additionally, ADS-79D-

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

578



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014 

4 

HDBK is supported by the Machinery Information 

Management Open Standards Alliance (MIMOSA), a 

United States association of industry and Government, and 

follows the information flow structure detailed in the 

ISO 13374 series (International Organization for 

Standardization, 2003, United States Army, 2013). 

ADS-79D-HDBK defines CBM-related terms 

(‘airworthiness’, ‘critical safety item’, ‘exceedance’, etc.) 

and assists in the development of CBM systems for both 

legacy and new aircraft. Also, the standard describes the 

elements of a CBM system architecture with technical 

considerations for Army aviation in thirteen separate 

appendices (e.g., fatigue life management, flight test 

validation, vibration based diagnostics, and data integrity). 

These appendices help developers identify components to 

maintain, plan for data acquisition, perform fault testing, 

design the software and hardware elements, and validate 

CBM algorithms. 

2.2. Dependability Analysis 

One aspect of the generation of PHM systems outlined in 

Figure 1 is the determination of what components or 

subsystems should be redesigned, changed, or monitored 

due to their fault and/or failure potential. Typically, a 

dependability analysis involves the identification of the 

reliability, availability, and maintainability of the entire 

system, its subsystems, and its components (International 

Electrotechnical Commission, 2003). 

Numerous methods exist to identify the failure modes of the 

system. Bottom-up (elements) methods are used to identify 

the failure modes at the component level, which are then 

used to determine the corresponding effect on higher-level 

system performance. On the other hand, top-down 

(functional) methods are used to identify undesirable system 

operations by starting from the highest level of interest (the 

top event) and proceeding to successively lower 

levels (International Electrotechnical Commission, 2003). 

Bottom-up dependability analysis methods include event 

tree analysis, failure mode and effects analysis (FMEA), and 

hazard and operability study (HAZOP), while top-down 

methods include fault tree analysis (FTA), Markov analysis, 

Petri net analysis, and reliability block diagrams (RBD). 

2.2.1. General Guidance 

IEC 60300-3-1 gives a general overview of the common 

dependability analysis techniques, including fault tree 

analysis, Markov analysis, Petri net analysis, and stress-

strength analysis. IEC 60300-3-1 presents tables outlining 

the general applicability and characteristics of each method 

as well as concise summaries of each method (including 

benefits, limitations, and examples) in a separate 

informative annex (International Electrotechnical 

Commission, 2003). The methods can be categorized 

according to their purpose of either fault avoidance (e.g., 

stress-strength analysis), architectural analysis and 

dependability allocation (bottom-up methods, such as 

FMEA, or top-down methods, such as FTA), or estimation 

of measures for basic events (such as failure rate 

prediction). Analysis based on either a hardware (bottom-

up), functional (top-down), or combination approach should 

be used to assess high risk items and provide corrective 

actions (United States Department of Defense, 1980). 

Another standard that covers various dependability analyses 

is SAE ARP4761, an Aerospace Recommended Practice 

(ARP)  that provides guidelines and methods of performing 

safety assessments for certification of civil aircraft (SAE 

International, 1996). Methods covered in SAE ARP4761 for 

safety assessment include FTA, dependence diagram (DD), 

Markov analysis, FMEA, and common cause analysis. 

To support the quantification of dependability, the IEC 

technical committee 56 (Dependability) developed 

IEC 61703 to provide the mathematical expressions for 

reliability, availability, maintainability, and other 

maintenance terms (International Electrotechnical 

Commission, 2001). The expressions are grouped into 

classes for various items: non-repaired items, repaired items 

with zero time to restoration, and repaired items with non-

zero time to restoration. Numerous equations are provided 

in IEC 61703 for the generic case of an exponentially 

distributed time to failure. 

2.2.2. Bottom-Up Methods 

FMEA 

FMEA is a formal and systematic approach to identify 

potential failure modes of a system along with their causes 

and immediate and final effects on system 

performance (International Electrotechnical Commission, 

2006a) through the usage of information about failure 

(“What has failed?”) and its effects (“What are the 

consequences?”) (SAE International, 2001). It is 

advantageous to perform FMEA early in the development of 

a product or process so that failure modes can be eliminated 

or mitigated as cost effectively as possible. FMEA can be 

used to identify failures (e.g., hardware, software, human 

performance) and improve reliability and maintainability via 

information for the development of diagnostic and 

maintenance procedures. FMEA has been modified for 

various purposes; failure modes, effects and criticality 

analysis (FMECA) is an extension of FMEA that uses a 

metric called criticality to rank the severity of failure 

modes (International Electrotechnical Commission, 2006a) 

as well as the probability of each failure mode (SAE 

International, 2001). 

For example, SAE ARP5580 describes the procedure for 

how to perform FMEA. This procedure includes a basic 

methodology for the three FMEA classifications related to 

how the failure modes are postulated: functional FMEA (at 
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the conceptual design level), interface FMEA (before the 

detailed design of the interconnected subsystems), and 

detailed FMEA (performed when detailed designs are 

available) (SAE International, 2001). SAE ARP5580 can be 

used to assess the reliability of systems with increasing 

impact when FMEA is performed at increasing levels of 

detail during development of hardware or software. 

SAE ARP5580 provides many definitions of key terms 

(e.g., ‘allocation’, ‘criticality’, and ‘fault tree’) and other 

items typically included within FMEA. SAE ARP5580 

provides ground rules (with an example), numbering 

conventions for functional FMEA to describe systems 

according to a hierarchy (subsystems, components, 

software, etc.) with well-defined inputs and outputs, and 

examples of severity classifications for military, aerospace, 

and automobile industries. 

DFMEA and PFMEA 

Another standard concerning FMEA is SAE J1739, which 

supports the development of an effective design FMEA 

(DFMEA) and a FMEA for manufacturing and assembly 

processes (PFMEA) (SAE International, 2009). Based on 

references (e.g., SAE ARP5580 and IEC 60812) and input 

from original equipment manufacturers (OEMs) and their 

suppliers, SAE J1739 includes current terms, requirements, 

ranking charts, and worksheets for the identification and 

mitigation of failure mode risks. Examples are given for a 

block or boundary diagram (for DFMEA), a process flow 

diagram (for PFMEA), and design and process FMEA 

worksheets related to the auto industry. Also, suggestions 

are given in tabulated form for design and process FMEA 

severity (S) evaluation criteria as well as those for 

occurrence (O) and detection (D) evaluation criteria. Even 

though the risk priority number (RPN) is defined as the 

product S    O    D, SAE J1739 warns that this number, 

which ranges from 1 to 1000, should not be used as the sole 

metric for risk evaluation via thresholding.  

FMEA and FMECA 

Another standard that gives guidance to produce successful 

FMEA and FMECA is IEC 60812, which was developed by 

the IEC technical committee 56 

(Dependability) (International Electrotechnical 

Commission, 2006a). IEC 60812 is a standard that provides 

steps, terms, criticality measures (potential risk, risk priority 

number, criticality matrix), failure modes, basic principles, 

procedures, and examples for FMEA and FMECA. 

IEC 60812 advises that while FMECA may be a very cost-

effective method for assessing failure risks, a probability 

risk analysis (PRA) is preferable to a FMECA; FMECA 

should not be the only basis for judging risks, especially 

since RPNs have deficiencies such as inadequate scaling, as 

discussed in SAE J1739. Also, FMEA has limitations in that 

it is difficult and tedious to apply to complex systems with 

multiple functions (International Electrotechnical 

Commission, 2006a). 

2.2.3. Top-Down Methods 

Fault Tree Analysis (FTA) 

FTA is a technique that is helpful in overcoming the current 

limitations of FMEA (SAE International, 2001). FTA is a 

deductive method used to determine the causes that can lead 

to the occurrence of a defined outcome, called the ‘top 

event’ (International Electrotechnical Commission, 2006b). 

FTA achieves this goal through use of a fault tree. 

Construction of the tree is a top-down process that 

continually approaches the desired lower level of 

mechanism and mode. The lowest possible level contains 

the primary (bottom) events, the individual causes of 

potential failures or faults (International Electrotechnical 

Commission, 2006b). Thus, FTA identifies potential 

problems caused by design, operational stresses, and flaws 

in product manufacturing processes. Hence, fault trees 

should be developed early during system design and 

continue throughout the development of a 

product (International Electrotechnical Commission, 

2006b). 

To enable the use of fault tree analysis, the IEC technical 

committee 56 developed IEC 61025, which addresses the 

two approaches to FTA: a qualitative or logical approach 

(Method A), used largely in the nuclear industry, and a 

quantitative or numerical approach (Method B) that results 

in a quantitative probability of the occurrence of a top event 

within manufacturing and other industries (International 

Electrotechnical Commission, 2006b). IEC 61025 describes 

FTA with its definitions (e.g., ‘top event’, ‘gate’, and 

‘event’), steps (fault tree construction, analysis, reporting, 

etc.), and fault tree symbols (for static and dynamics gates). 

IEC 61025 provides the mathematics for reliability of series 

and parallel (redundant) systems, which uses probabilistic 

data at the component level from reliability or actual field 

test data to determine the probability of the occurrence of 

the ‘top event’. 

Markov Analysis 

Markov analysis is another method to determine the 

dependability and safety of systems. The IEC technical 

committee 56 produced IEC 61165, a standard that gives an 

overview of the Markov technique (International 

Electrotechnical Commission, 2006c). Markov techniques 

use state transition diagrams to represent the temporal 

behavior of a system, which is a connected number of 

elements, each of which has only one of two states: up or 

down. The entire system transitions from one state to 

another as the system elements fail or are restored according 

to defined rates. IEC 61165 uses symbols from IEC 60050 

(‘International Electrotechnical Vocabulary’) but defines 

other fundamental terminology (e.g., ‘up state’ and ‘down 

state’), symbols (circles, rectangles, etc.), and mathematical 

techniques (e.g., via ordinary differential equations and 

Laplace transforms). The standard contains examples for the 

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

580



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014 

6 

homogeneous Markov technique, in which the state 

transition rates are assumed to be time-independent 

(International Electrotechnical Commission, 2006c). IEC 

61165 shows that the differences between the expressions 

for reliability, maintainability, and availability arise from 

the different state transition diagrams used to create the 

equations. Maintenance strategies can be modeled with 

Markov techniques, while other techniques such as fault tree 

analysis (FTA) and reliability block diagrams (RBDs) do 

not account for complex maintenance strategies. 

Petri Net Analysis 

Since their creation in 1962, Petri nets have been used to 

describe, design, and maintain a wide range of systems and 

processes in industries including aerospace, banking, 

manufacturing systems, and nuclear power systems 

(International Organization for Standardization & 

International Electrotechnical Commission, 2004). Petri nets 

are a rigorous method to mathematically describe processes 

based on basic set theory (Truss, 1998). Furthermore, Petri 

nets can be used to generate Markov models. In the 1980s, 

Petri nets were extended to Higher-level Petri nets (HLPNs) 

to model discrete-event systems. HLPNs were also used to 

advance the use of Petri nets for complex systems, 

analogous to the use of high-level programming languages 

to overcome challenges with assembly languages. 

To aid the use of HLPNs and facilitate the development of 

Petri net software tools, the ISO/IEC 15909-1 standard was 

developed by SC 7 (‘Software and system engineering’) of 

JTC 1 (‘Information technology’), a Joint Technical 

Committee (JTC) composed of ISO and IEC 

members (International Organization for Standardization & 

International Electrotechnical Commission, 2004). 

ISO/IEC 15909-1 defines a mathematical semantic model, 

an abstract mathematical syntax for annotations, and a 

graphical notation for High-level Petri nets (International 

Organization for Standardization & International 

Electrotechnical Commission, 2004). ISO/IEC 15909-1 

defines terms (such as ‘arc’, ‘multiset’, ‘Petri net’, ‘token’, 

‘transition’, etc.) and mathematical conventions needed for 

High-level Petri nets and provides the formal concepts of 

marking, enabling, and transition rules needed for HLPN 

graphs (HLPNGs) that represent complex processes within 

manufacturing and other industries. ISO/IEC 15909-2 

defines the transfer format, the Petri Net Markup Language 

(PNML), to support the exchange of HLPNs (International 

Organization for Standardization & International 

Electrotechnical Commission, 2011). 

2.3. Measurement Techniques 

Dependability analysis, whether top-down or bottom-up or 

some combination thereof, is used to identify the failure 

modes of the system and help manufacturers to determine 

which risks should be mitigated or eliminated. If a failure 

mode must exist, being unavoidable for system operation, 

then the failure mode may be monitored or predicted via 

diagnostics and prognostics with sensors and established 

measurement and analysis techniques. The system designer 

must be aware of the various measurement techniques and 

their preferred uses based on the accepted experience of 

others. 

Several standards contain explicit guidelines on the use of 

measurement techniques for PHM. This section summarizes 

those particular standards indicated under the ‘Measurement 

techniques’ category within Table 3. However, due to the 

detailed nature and variety of measurement techniques, this 

section covers only the standards that are relatively general 

in scope and application for manufacturing. 

For example, Annex B of ISO 17359 contains nine tables of 

guidance for measurement techniques for various systems, 

including generators, fans, engines, and pumps 

(International Organization for Standardization, 2011). The 

tables relate the possible faults for each system to the 

associated measureable symptoms. For example, ISO 17359 

reveals that the bearing unbalance of an electric motor 

affects the vibration directly, but only impacts the other 

detectable symptoms tangentially. Such tables are essential 

for understanding the basic physical consequences of system 

faults to aid in the selection and positioning of sensors. 

Similarly, Annex D of ISO 13379-1 relates measurement 

techniques and numerous diagnostic models in tabular form 

(International Organization for Standardization, 2012b). The 

combination of the information from ISO 17359 and ISO 

13379-1 helps both novices and experts in PHM to 

determine the measurement types and associated diagnostic 

techniques for a given system fault. For example, a bearing 

unbalance could be detected via vibration monitoring 

(according to ISO 17359) and analyzed via a subsequent 

data-driven statistical method (according to ISO 13379-1). 

2.4. Diagnostics and Prognostics 

Diagnostics is the determination of the current condition of 

a component or system, and prognostics is the predictive 

ability of future performance degradation and expected 

failures (SAE International, 2008). The following 

subsections summarize those particular standards indicated 

under the ‘Diagnostics and Prognostics’ category within 

Table 3. The number of standards dedicated to diagnostics 

and prognostics is fairly small, offering a significant 

opportunity for standards development. 

2.4.1. Diagnostics 

One recently-published standard aids the diagnostics of 

general PHM processes; ISO 13379-1 was created to aid the 

condition monitoring of industrial machines including 

turbines, compressors, pumps, generators, electrical motors, 

blowers, gearboxes, and fans (International Organization for 

Standardization, 2012b). ISO 13379-1, which was prepared 

under SC 5 (Condition monitoring and diagnostics of 
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machines) of ISO/TC 108 (Mechanical vibration, shock and 

condition monitoring), outlines the nine generic steps for 

diagnostics, composed of the union of FMEA or FMECA, 

as outlined in IEC 60812, and failure mode symptoms 

analysis (FMSA) methodology outlined in ISO 13379-1. 

FMSA is essentially a modification of a FMECA process 

that focuses on the selection of the most appropriate 

detection and monitoring techniques and strategies. The 

process results in a monitoring priority number (MPN) for 

each failure mode. The MPN is the product of four numbers 

representing the confidence (each rated from 1 to 5) of 

detection, severity, diagnosis, and prognosis for the given 

failure mode. The highest MPN value indicates the most 

suitable technique for detection, diagnostics, and 

prognostics of the associated failure mode (International 

Organization for Standardization, 2012b). 

ISO 13379-1 also compares the strengths and weaknesses of 

data-driven diagnostic approaches (e.g., neural network, 

logistic regression, and support vector machine) and 

knowledge-based diagnostic approaches (e.g., causal tree 

and first principles). The last step in the diagnostic process 

is a formal diagnostic report, such as the example given in 

Annex E of ISO 13379-1, which includes information about 

the event, its diagnosis, symptoms, failure modes, and 

recommendations for corrective action and fault avoidance. 

2.4.2. Prognostics 

Other standards provide guidance for prognostics, because 

there is currently no precise procedure or standard 

methodology. Fault prognostics require prior knowledge of 

the probable failure modes, the anticipated future activities 

of the machine, and the relationships between failure modes 

and operating conditions (International Organization for 

Standardization, 2004). 

To facilitate the development of prognostics within general 

PHM processes, ISO 13381-1 outlines general guidelines, 

approaches, and concepts for prognostics (International 

Organization for Standardization, 2004). Terms such as 

prognosis (an estimation of time to failure and associated 

risk), confidence level, root cause, and estimated time to 

failure (ETTF) are defined in ISO 13381-1. The standard 

also outlines the four basic phases of prognosis: pre-

processing, existing failure mode prognosis, future failure 

mode prognosis, and post-action prognosis. ISO 13381-

1 states that the trip set point used for thresholding to 

prevent damage or failure is a parameter value, normally 

determined from standards, manufacturers’ guidelines, and 

experience. Other thresholds, such as alert and alarm limits, 

are set at values below the trip set point to initiate 

maintenance. Once a fault has been detected based on a 

failure mode behavior model (FMECA, FTA, etc.), the 

estimated time to failure (ETTF) needs to be determined by 

expert opinion and/or empirical methods (International 

Organization for Standardization, 2004). 

2.5. Data Management 

Monitoring the condition of machines is not an easy 

task because the integration of various PHM software is 

typically not ‘plug-and-play’ (International Organization for 

Standardization, 2003). This section summarizes several 

standards that guide the management of PHM data and, 

hence, the integration of various PHM software via the 

transfer of standardized data formats. 

ISO 13374-1 provides the basic requirements for open 

software specifications to facilitate the transfer of data 

among various condition monitoring software, regardless of 

platform or hardware protocols (International Organization 

for Standardization, 2003). ISO 13374-1 establishes the 

general guidelines, including the requirement of an ‘open 

machine condition monitoring information schema 

architecture as an underlying framework’ (International 

Organization for Standardization, 2003). Vendor-

independent extensible markup language (XML) schema 

and protocols can be used for the network exchange of PHM 

information. In accordance with ISO 13374, the Machinery 

Information Management Open Systems Alliance 

(MIMOSA) published a conceptual schema called the 

Common Relational Information Schema (CRIS) in XML 

schema and other formats. The CRIS has been used in the 

condition monitoring industry to integrate information from 

many systems (MIMOSA, 2006). 

ISO 13374-2 provides details of the methodology and 

requirements for data processing within condition 

monitoring and diagnostics (CM&D) systems. ISO 13374-2 

describes all the data objects, types, relationships, etc. 

required for a CM&D information architecture 

(International Organization for Standardization, 2007). ISO 

13374-2 provides an informative annex about the unified 

modeling language (UML), XML, and Middleware services. 

Finally, MIMOSA publishes an open CM&D information 

specification known as the MIMOSA Open Systems 

Architecture for Enterprise Application Integration (OSA-

EAI™), which is compliant with the requirements outlined 

in ISO 13374-1 and ISO 13374-2 and free for 

download (MIMOSA, 2013). MIMOSA also publishes an 

open CM&D specification known as the MIMOSA Open 

Systems Architecture for Condition Based Maintenance 

(OSA-CBM™), which is based on OSA-EAI™, enabling 

integration of systems from various suppliers (International 

Organization for Standardization, 2007). 

ISO 18435-1 gives an overview of the elements and rules of 

an integration modeling method to describe a manufacturing 

application’s requirements for integration of an automation 

application with other applications, e.g., diagnostics, 

prognostics, capability assessment, and maintenance 

applications with production and control 

applications (International Organization for Standardization, 

2009). The method is based upon the Application Domain 

Integration Diagram (ADID), which facilitates the transfer 
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of information among domains of the manufacturing 

process. The domains include the processing blocks of 

ISO 13374, such as the Data Monitoring block or the State 

Detection block. ISO 18435-1 defines terms (e.g., 

‘integration’ and ‘interaction’) and provides examples of 

exchanged information among domains. 

ISO 18435-2 defines the application interaction matrix 

element (AIME) and application domain matrix element 

(ADME) structures and relationships, including the steps to 

construct an ADME for support by a set of 

AIMEs (International Organization for Standardization, 

2012a). An AIME represents a set of capabilities provided 

by a set of manufacturing resources of an application. An 

ADME is a means to model the information exchanges 

between applications, being constructed from 

interoperability profiles referenced in AIMEs. ISO 18435-2 

outlines the XML schema for the headers and bodies that 

comprise AIMEs and ADMEs. AIME bodies consist of 

context and conveyance sections, and ADME bodies consist 

of context, conveyance, and content sections. ISO 18435-2 

also contains formal definitions of the ADME/AIME 

schemas in informative annexes (International Organization 

for Standardization, 2012a). 

3. CURRENT STANDARDS DEVELOPMENT 

New standards and revisions to existing standards related to 

PHM are currently under development, as seen in Table 2. 

This section summarizes the scopes of these standards. 

Table 2.  PHM-related standards under development. 

Organization 

Committee/ 

Subcommittee Standard 

1st Edition 

/ Revision? 
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SAE Int. G-11r ARP6204 1st Edition X    

SAE Int. HM-1 ARP6268 1st Edition X    

SAE Int. HM-1 ARP6407 1st Edition X    

SAE Int. HM-1 ARP6883 1st Edition X    

IEEE RS P1856 1st Edition X    

ISO/IEC JTC 1/SC 7 ISO/IEC 15909-2 1st Edition  X   

ISO TC 108/SC 5 ISO 13379-2 1st Edition   X  

ISO TC 108/SC 5 ISO 13381-1 Revision   X  

ISO TC 108/SC 5 ISO 18129 1st Edition   X  

ISO TC 184/SC 5 ISO 22400-1 1st Edition   X  

ISO TC 184/SC 5 ISO 22400-2 1st Edition   X  

ISO TC 184/SC 5 ISO 18435-3 1st Edition    X 

SAE Int. HM-1 ARP6290 1st Edition    X 

3.1. Overview 

Currently, SAE International is developing SAE ARP6204, 

a standard for “Condition Based Maintenance (CBM) 

Recommended Practices,” under the G-11r Reliability 

Committee. The scope of the document is to outline a path 

for an organization to implement a CBM approach to 

maintenance, including practices regarding both CBM 

design and field equipment support (SAE International, 

2013). The G-11r Reliability Committee has benchmarked 

the CBM framework and performance specifications and is 

developing a formal application specification (Zhou, Bo & 

Wei, 2013). 

Other SAE International standards are under development in 

the HM-1 Integrated Vehicle Health Management (IVHM) 

Committee. Guidance is lacking for the systems engineering 

aspects of IVHM design; SAE ARP6407 will help to fill this 

gap by providing technology-independent guidance for the 

design of IVHM systems (SAE International, 2014a). 

Furthermore, SAE ARP6883 will provide guidelines for 

writing IVHM requirements for aerospace systems, and 

SAE ARP6268 will help improve coordination and 

communication between manufacturers and suppliers. 

Another broad standard under development is IEEE P1856 - 

“Standard Framework for Prognostics and Health 

Management of Electronic Systems” (IEEE Standards 

Association, 2013). In 2012, the IEEE Standards Board 

approved the new standard development project to produce 

IEEE P1856, which is sponsored by the Reliability Society 

(IEEE-RS) (IEEE Reliability Society, 2014). The working 

group meets regularly to prepare a draft for ballot in 

2014 (IEEE Reliability Society, 2014). Even though this 

standard is being developed by IEEE, the intent is for it to 

have broad applicability in mechanical structures, civil 

structures, nuclear technology, and aeronautics (The Center 

for Advanced Life Cycle Engineering (CALCE), 2013). 

3.2. Dependability Analysis 

The first edition of ISO/IEC 15909-3 is under development 

by ISO/IEC JTC 1/SC 7 to aid the use of High-level Petri 

nets (International Organization for Standardization & 

International Electrotechnical Commission, 2014). 

ISO/IEC 15909-3, expected to be the last part of the 

ISO/IEC 15909 series, will address the techniques for 

modularity and extensions of High-level Petri nets for 

dependability analysis of PHM systems. 

3.3. Diagnostics and Prognostics 

ISO 13379-2 (‘Data-driven applications’) will aid the 

condition monitoring of industrial machines via diagnostics 

and is currently in the committee draft stage within 

ISO/TC 108/SC 5. Also, ISO 13381-1 is now at the 

committee draft stage while being updated to advance 

prognostics within PHM systems. Furthermore, within the 

same subcommittee, a new standard, ISO 18129, is in the 

draft international stage to address ‘approaches for 

performance diagnosis‘ (International Organization for 

Standardization, 2014). 
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The ISO 22400 series of standards are also being developed 

by ISO/TC 184/SC 5 to guide the creation, computation, 

measurement, utilization, and maturation of key 

performance indicators (KPIs) within the manufacturing 

operations management (MOM) domain (International 

Organization for Standardization, 2013). KPIs are the most 

useful measures for monitoring and evaluating the 

performance of a production-oriented enterprise to help 

industries meet their performance targets in an intelligent 

manner (International Organization for Standardization, 

2013). Because KPIs are serviced by effective PHM 

systems, standards related to KPIs could easily influence the 

diagnostic and prognostic aspects of PHM systems. NIST 

personnel are active in the development of the ISO 22400 

standard series.  

3.4. Data Management 

SAE ARP6290, under development in the HM-1 

Committee, will provide guidance for the creation of 

optimum architectures for IVHM that are in line with the 

organization’s business goals and objectives. SAE 

ARP6290 will incorporate suggestions from ISO 13374 into 

specific guidelines for IVHM architecture development 

(SAE International, 2014b). 

Future improvements to ATA MSG-3 (Air Transport 

Association of America, 2013), used for developing 

maintenance plans for aircraft, engines, and systems, will 

involve an existing data format specification known as 

ATA SPEC2000, a comprehensive set of e-Business 

specifications, products, and services that help to overcome 

the supply chain challenges in the aircraft industry (Air 

Transport Association of America, 2012). ATA SPEC2000 

helps aircraft manufacturers with information exchange in 

order to have statistically significant data for optimizing and 

developing maintenance programs. 

4. CONCLUSIONS 

The National Institute of Standards and Technology 

conducted a survey of PHM-related standards to determine 

the industries and needs addressed by such standards, the 

extent of these standards, and any similarities as well as 

potential gaps among the documents. This effort revealed 

that standards exist that are related to all aspects of the 

development of prognostics and health management 

systems: general overview, dependability analysis, 

measurement techniques, diagnostic analysis, prognostic 

analysis, data management, performance metrics, and 

personnel training. Some standards were focused on 

providing guidance for specific applications, yet still broad 

enough for general application across industries. Other 

standards were more focused on a specific product or 

process within a target industry. 

Based on the lessons learned from the PHM-related 

standards, recommendations can be made for the 

development of future PHM standards: 

 The ‘overview’ standards cover numerous domains yet 

could be updated and harmonized by the respective 

organizations to provide better consolidation among the 

separate standards, providing for a more generally 

approved PHM process across disciplines. 

 The ‘dependability analysis’ standards could be 

extended by combining the KPI standards under 

development with a dependability method to provide a 

bridge of guidance between design and business 

decisions for manufacturing systems and systems of 

systems. 

 The ‘diagnostics and prognostics’ standards are lacking, 

due in part to the difficult nature of reliable diagnostics 

and prognostics techniques across various industries. 

However, the existing standards are still valuable for 

industry. Collaborations among PHM experts are 

recommended for the generation of new standards for 

diagnostics and prognostics that fill high-priority gaps 

for manufacturing systems. Priorities will be 

established at an upcoming industry workshop held at 

NIST in November 2014. 

 The ‘data management’ standards appear to be 

thorough and consistent among each other, providing 

generic structures for PHM data and control flow. 

Extension to a ‘digital factory’ could be reported in 

future editions of these standards. 

Consequently, NIST is exploring the development of 

methods and supporting standards for PHM of 

manufacturing systems and systems of systems. 
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ATA MSG ATA MSG-3 2013 MSG-3: Operator/Manufacturer Scheduled Maintenance 
Development, Volume 1 – Fixed Wing Aircraft 

X      X 

IEC 56 IEC 61703 2001 Mathematical expressions for reliability, availability, 

maintainability and maintenance support terms 
X       

ISO TC 108/SC 5 ISO 13372 2012 Condition monitoring and diagnostics of machines – 
Vocabulary 

X       

ISO TC 108/SC 5 ISO 17359 2011 Condition monitoring and diagnostics of machines − General 

guidelines 
X  X     

SAE E-32 ARP1587B 2007 Aircraft Gas Turbine Engine Health Management System Guide X      X 

US Army Aviation 
Engineering 

ADS-79D-HDBK 2013 Aeronautical Design Standard Handbook for Condition Based 
Maintenance Systems for US Army Aircraft 

X  X X   X 

IEC 56 IEC 60300-3-1 2003 Dependability management – Part 3-1: Application guide – 

Analysis techniques for dependability – Guide on methodology 
 X      

IEC 56 IEC 60300-3-3 2004 Dependability management – Part 3-3: Application guide – Life 

cycle costing 
 X      
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failure mode and effects analysis (FMEA) 
 X      
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Manufacturing and Assembly Processes (Process FMEA) 

 X      
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 X      
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 X      
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presentation of vibration data 
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Requirements for qualification and assessment of personnel – 
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ISO TC 108/SC 5 ISO 18436-5 2012 Condition monitoring and diagnostics of machines – 

Requirements for qualification and assessment of personnel – 
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ISO TC 108/SC 5 ISO 18436-6 2008 Condition monitoring and diagnostics of machines – 
Requirements for qualification and assessment of personnel – 

Part 6: Acoustic emission 
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ISO TC 108/SC 5 ISO 18436-7 2008 Condition monitoring and diagnostics of machines – 
Requirements for qualification and assessment of personnel – 
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Requirements for qualification and assessment of personnel – 
Part 8: Ultrasound 

     X  

SAE S-18 ARP4754A 2010 Guidelines for Development of Civil Aircraft and Systems       X 

 

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

588



A Self-Aware Machine Platform in Manufacturing Shop Floor
Utilizing MTConnect Data

Linxia Liao1, Raj Minhas2, Arvind Rangarajan3, Tolga Kurtoglu4, Johan de Kleer5

1,2,4,5 Palo Alto Research Center, Palo Alto, CA, 94304, USA
linxia.liao@parc.com
raj.minhas@parc.com

tolga.kurtoglu@parc.com
dekleer@parc.com

3 General Electric Global Research, San Ramon, CA, 94583, USA
arvind.rangarajan@ge.com

ABSTRACT

We propose a framework of self-aware machines based on
data collected using the MTConnect protocol. Beyond exist-
ing applications of OEE (Overall Equipment Effectiveness)
reporting, the proposed framework integrates multiple sources
of information for work-piece and machine condition moni-
toring, and equipment time to failure prediction in manufac-
turing processes, and provides feedback to shop supervisor.
Firstly, we propose a method to predict component wear and
failure based on operational data. ICP (Interactive Closest
Point) algorithm is used to find the best matching tool path
given a certain tool number to identify similar machining pro-
cesses. The result of ICP tool path matching, together with
other parameters such as spindle speed, feed rate and tool
number, are used to adaptively cluster the machining pro-
cesses. For each process cluster, a particle filter based prog-
nostic algorithm is used to predict tool wear and/or spindle
bearing failure. Secondly, we propose to use anomaly detec-
tion methods to detect changes in normal behavior of the ma-
chines. Various machine learning algorithms are utilized to
detect anomalies based on real-time data, and a voting mech-
anism is used to decide when to trigger an alarm. Thirdly,
the axes traverse is aggregated to provide a measure of the
wear on various axes in the machine, which is correlated to
errors in position comparing to the commanded positions and
nominal tool paths. Spindle load verse rotating speed is also
examined to facilitate shop floor scheduling to avoid damage
caused by unintentionally excessive machine usage. The pro-
posed framework has been demonstrated using published data

Linxia Liao et al. This is an open-access article distributed under the terms of
the Creative Commons Attribution 3.0 United States License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

from two Mazak machine tools.

1. INTRODUCTION

Sparked by IT megatrends, manufacturers are currently un-
dergoing an operational transformation with increased agility
and efficiency. Key technologies influencing this change in-
clude digital manufacturing, cloud computing, mobile appli-
cation, and big data. At the intersection of these technologies
there is an opportunity to create a self-aware machine plat-
form in manufacturing shop floor. With the advancement of
sensing technology and automation, more information can be
derived to facilitate better collaboration and decision making.

Some of the most critical factors, influencing the output of a
machining process, are related to tooling, operating parame-
ters, and the ability of a machine tool to maintain its accuracy
and repeatability. Changes due to wear or failure of criti-
cal machine tool components can lead to significant losses
in production and unexpected downtime. One of the current
barriers of condition monitoring systems is that the collected
sensor data are not well correlated with the in-process ma-
chining operating conditions, which compromises the predic-
tion accuracy. Another barrier is that the typical assumptions
underlying the prediction of time to failure algorithms (e.g.
exponential fault growth) are rarely applicable in real ma-
chining. In addition, existing systems operate independently,
and impose proprietary interfaces and machine communica-
tion protocols that can lead to excessive time consuming and
expensive installations.

The goal of the proposed framework is to develop a self-
aware system capable of integrating multiple sources of in-
formation for work-piece and machine condition monitoring,
and equipment time to failure prediction in manufacturing

1
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processes. Currently, the primary applications developed us-
ing MTConnect
(MTConnect, 2009) data are focused on the visualization and
reporting of OEE (Overall Equipment Effectiveness) and his-
tory of alarms. The proposed method goes beyond reporting
to provide insight for cell operators on accumulated damage
and use automatic clustering for process grouping with parti-
cle filter based prognostics using time series data to provide
early warning systems for tool wear. Rigid body registration
algorithms are used to automatically identify segments of tool
paths that can be used to predict or reinforce tool wear pre-
diction. Multiple anomaly detection algorithms with a voting
mechanism are used to detect process anomalies across ma-
chines. We believe that machine self-awareness will drive
the value chain from traditional fail-and-fix, preventive main-
tenance, condition based monitoring towards self-adaptive,
self-analyzing and coordinated assets (see Figure 1)

2. THE PROPOSED FRAMEWORK

The proposed framework uses MTConnect data alone to de-
rive information of health condition estimation and predic-
tion for machine components, process anomalies detection
across machines using machine learning methods, provide
shop floor planning recommendation using statistics.

2.1. Data Collection and Preprocessing

For demonstrating our framework, we use data provided at a
public URL for the MTConnect challenge. A query post (e.g.
http://66.42.196.109:5605/sample?count=2000)
is sent periodically to the MTConnect enabled machine IP ad-
dress. The query returns an XML (Extensible Markup Lan-
guage) formatted file which contains all the data published
from the machine. Since we query periodically, the data re-
turned by a query may contain some data that was also re-
turned as part of a previous query. To avoid data redundancy,
we check the sequence numbers returned from the query re-
sult to record data when it is updated. Using the tags ‘nextSe-
quence’, ‘firstSequence’, and ‘lastSequence’, we ensure that
‘nextSequence’ is greater than ‘lastSequence’ and ‘nextSe-
quence’ increases by the count number compared to its pre-
vious value (e.g. count number is set to 2000 in the query
example shown above). A snapshot of the data XML file is
shown in Figure 2.

A parser is written to obtain the time stamps and values of
the variables from the tags in the returned data file. The vari-
ables that we obtained include x-axis position, y-axis posi-
tion, z-axis position, spindle load, x-axis load, y-axis load, z-
axis load, feed rate, feed rate override, spindle speed, spindle
speed override, and tool number. The data is updated when
the value of a variable is changed. Hence, for a certain time
stamp, there may be no value for a variable because it is not
updated at the time stamp. If there is no value available, the

Figure 1. A vision of self-aware machine.

Figure 2. An example of MTConnect data file in XML for-
mat.

previous value is inserted at the time stamp since the value
hasn’t changed yet. After the parsing and insertion, a vec-
tor of a time stamp and the values of all the aforementioned
variables are obtained. This allows us to get a matrix of data
indexed by multiple time stamps.

2.2. Component Level Health Monitoring and Prediction

One of the characteristics of a self-aware machine is to be
able to detect its components degradation and predict future
failure. The components (e.g. spindle, cutting tool, and feed
axis) on a machine are often used under different machin-
ing processes in a manufacturing shop floor. A machining
process in our research is defined as a cutting tool with the
same tool number sharing similar tool paths with the same
non-zero spindle speed and feed rate (overridden value) asso-
ciated with a certain time period. For each process, the spin-
dle power data were recorded as wear indicators. An adaptive
clustering method is applied to cluster the different processes.
Prediction is made using a filtering method to predict com-
ponent failures with data from the specific process as well
as data from other processes using the same tool. The pre-
diction provides insight into every single process, which not
only guides the maintenance decision makers to take proac-
tive actions on the machine component to avoid unplanned

2
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Figure 3. Flowchart of component level health monitoring
and prediction.

Figure 4. The tool paths of similar machining processes.

downtime, but also assists the process planners to track the
production drawbacks to improve their process design. The
flowchart is shown in Figure 3.

• Machine and Process Identification
Different machines are using different IP addresses to
publish the data. The identification of the machine will
be determined by the IP address used in the query post
described in Section 2.1. For a specified cutting tool,
the tool path consists of multiple x, y, and z positions.
The spindle speed and feed rate change during machin-
ing. For the same part, x, y, and z positions determine
the shape of the tool path in 3-D space (shape space).
The spindle speed, feed rate and time form another 3-D
space (parameter space). For two machining processes,
if the same cutting tool is used for the entire machin-
ing process and the shape space and the parameter space
are both matching, we assume these two machining pro-
cesses are similar processes. The shape spaces of two
similar processes are shown in Figure 4. There are small
variations in the circled area. This could be happening
because the MTConnect protocol has a limitation in the
sampling rate. Other than that, the entire tool paths of
these two processes are very similar.
We use ICP (Interactive Closest Point) algorithm (Savoye,
2012) to determine how the shape space and parame-
ter space match. ICP is a commonly used algorithm to
align two free-form point clouds in 3-D space. It opti-
mizes the transformation matrices such as scaling, rota-
tion, and translation applied on the target shape to min-

imize the error with the source shape. It has been suc-
cessfully used in many fields such as manufacturing (3-D
surface inspection), and healthcare (medical image seg-
mentation). We use ICP algorithm to find the best match-
ing machining processes. Let us denote the original 3-
D space points cloud as source, the transformed points
cloud as tranform, and the targeted points cloud as
target. The operation matrix of rotation, scaling and
translation are T , b and c, respectively. After the oper-
ation we obtain

transform = b ∗ source ∗ T + c (1)

The ICP algorithm optimizes the operation matrix of T ,
b and c so that the difference (denoted as d) between
tranform and target is minimized. The difference shows
the extent to which source and target are different. The
smaller the difference, the better the match/overlap be-
tween source and target. The difference between the
shape spaces is denoted as ds, and the difference between
the parameter space is denoted as dp. The matching mea-
sure is denoted as da = [ds, dp].

• Process Clustering
Machines are usually programmed to perform different
jobs under various machining processes depending on
the tasks. To compare the condition of the machine, we
need to group the similar processes into a cluster with
in which the analysis is performed to derive the health
condition. The data stream may contain a brand new
process that has not been experienced before. An adap-
tive clustering method is used to automatically cluster
the machining processes into different clusters. If a new
machining process is detected (i.e. it does not belong to
any existing process clusters), a new process cluster is
assigned. If a machining process belongs to an existing
cluster, the process is assigned to that cluster and the cen-
troid of the cluster is updated. To determine whether a
process belongs to an existing cluster or not, a T2 limit is
applied on the matching measure da. Let the mean value
of the matching measure of an existing cluster be d̂a and
the covariance be s. The T2 statistics for the matching
measure of a process is calculated by

T2 = (da − d̂a) ∗ s−1 ∗ (da − d̂a)′ (2)

The T2 control limit is calculated by

T2limit =
(N − 1)(N + 1)p

N(N − p) Fα(p,N − p) (3)

where Fα(p,N − p) is the 100α% confidence level of
F -distribution with p and N − p degrees of freedom. If
the T2 statistic is below the T2limit, the process belongs
to an existing process cluster; otherwise a new cluster is
created for the process.
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Figure 5. Degradation of cutting tool No. 63.

• Degradation Detection
After similar processes are grouped into clusters, we can
perform degradation detection within each cluster. We
assume that the spindle power increase is proportional to
the increased severity of tool wear for similar machin-
ing processes. The local trend of the power increase
may vary (e.g. there may be stochastic variations lo-
cally). However, the overall trend of the power should
be increasing over time. Hence, a monotonicity criterion
is used to detect the increasing trending of the spindle
power. Monotonicity is defined in (Coble & Hines, 2009)
as:

Monotonicity(F ) =
#d/dF > 0

n− 1
−#d/dF < 0

n− 1
(4)

where F is the measurement, n is the number of mea-
surement in a period of time. F represents a feature and
d/dF is the derivative. The maximum value ofMonotonicity
equals to 1 only if the feature is monotonically increas-
ing. The value of monotonicity indicates the increasing
trend of the spindle power, which indirectly indicates the
degradation of the cutting tool. Figure 5 shows the de-
tected trend of the cutting tool number 63.
This analysis will be performed within all the process
clusters. If multiple processes belong to a same cutting
tool and degradation trend has been detected with these
processes, it is more certain that the cutting tool is wear-
ing.

• Degradation Prediction
If a degradation trend is detected, we can extrapolate the
trend to infer the remaining cuts under the same process
given a preset threshold of the power. A particle fil-
ter (Chen, Zhang, Vachtsevanos, & Orchard, 2011) can
be adapted for the prediction due to its capabilities to
cope with system non-linearity and estimate prediction
uncertainty. The prediction is made using a continuous
Bayesian update method assuming the fault growth fol-
lowing a physics-based system degradation model (e.g.
the Paris’ Law), which is widely used as the fatigue crack
growth model. The system degradation was assumed to

be a first-order Markov process, i.e. the current state was
only dependent upon the last state. In this case, we ob-
served that the degradation trend was closely following a
second order polynomial model such as:

Xk = aktk + bkt
2
k + ck (5)

where Xk is the system state (tool wear in this case), tk
is the time at step k, and ak, bk, ck are the parameters of
the second order polynomial model. We can write Eq.(5)
into the format of a Markov model as follows:

Xk = aktk + bkt
2
k + ck

= ak(tk−1 + ∆t) + bk(tk−1 + ∆t)2 + ck

= aktk−1 + bkt
2
k−1 + ck

+ak∆t+ 2bktk−1∆t+ bk∆t2

= Xk−1 + (ak + 2bktk−1)∆t+ bk∆t2 (6)

The parameter identification and state estimation can be
performed in parallel. The prediction (median of the par-
ticles) of the remaining cuts for the degradation situation
shown in Figure 5 is 13 give 70% of spindle power as the
threshold. This information can alert the maintenance
team to change the cutting tool before it fails.

2.3. Process Anomaly Detection Across Machines

Anomaly detection (Barnett & Lewis, 1994), (Hodge & Austin,
2004) is an important concept for a self-aware system. An
anomaly is simply an exception or deviation from the typi-
cal usage (tools, power, speed etc.) and does not necessarily
imply a malfunction. For example, machining a new part or
using a new tool or working with a new type of material may
all be deviations from the previous usage of a machine. How-
ever, these are intended (and desired) deviations - on the other
hand, if the power usage is unusually high despite unchanged
job parameters then it may point to an underlying condition.
So a self-aware machine can indicate to the operator that it is
experiencing a significant deviation from its typical behavior
- the operator can decide whether the deviation is a cause for
concern. In fact, the operator can annotate the behavior for
future use. So if the anomaly is just a desired new behavior
then it can be labeled as such and the machine will know not
to flag it in the future. On the other hand, if it is an indica-
tion of an underlying condition then it can be labeled with the
diagnosis and the machine can flag it appropriately in the fu-
ture. In this section, we show how anomaly detection can be
performed on MTConnect data to identify deviations in us-
age. While not as informative as the approaches mentioned
in Section , anomaly detection can be very scalable as it need
not rely on models of failure.

As mentioned in Section 2.3, we analyze data from an MT-
Connect stream. Let us look at a snippet of this data shown
in Table 1. The first six columns provide a time stamp for the

4
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data while the remaining columns provide details about the
job (tool ID, feed rate, spindle speed, tool path, and spindle
power) - we use the job parameters for our analysis. In the lit-
erature, there are a number of popular approaches to anomaly
detection. Here, we consider three: 1) self organizing maps
(SOMs), 2) regression, and 3) Mahalanobis distance.

2.3.1. Self Organizing Maps (SOMs)

SOMs (Kohonen, 2001) are a natural way to organize an in-
coming stream of data into a grid of cells - a (typically Eu-
clidean) distance metric is used to assign new data instances
to cells containing similar data. As data accumulates, some
cells will become very dense and will represent the typical
behavior/usage of the machine. If a new data instance is as-
signed to sparsely populated cell then that would indicate a
deviation from the typical behavior/usage. If this behavior
is desirable or intended then the cell can be labeled as such.
Otherwise, it can indicate undesired behavior or malfunction.
For this data, a SOM is shown in Figure 6. While the data
is high-dimensional, for ease of visualization we have only
shown spindle speed (x-axis) and spindle power (y-axis). We
start with a 7x7 grid evenly distributed on the space spanned
by the expected range of the variables. Then we assign points
to the cells in an incremental manner based on the Euclidean
distance. After a data point has been assigned, the cells are
warped to have a greater resolution in areas of high density
(i.e. areas representing usual behavior) - please see (Rougier,
Boniface, & Universit, 2011) for more details. The gray lines
in Figure 6 represent the Voronoi partition (http://en.wikipedia
.org/wiki/Voronoi_diagram) of this grid where each
partition represents the extent of the corresponding node - a
data point within a partition is assigned to the node associ-
ated with it. Due to the warping, the structure of the data
clearly stands out. The lower left corner has small and dense
cells representing the typical usage of the machine. The space
of large spindle speeds and power is very sparse. There is a
clear anomaly in the top right corner corresponding to spindle
power of 87 units and spindle speed of 3127 rpm - in addi-
tion, there are many sparse cells corresponding to higher than
usual values of speed and power. If a new data point falls in a
sparse or hitherto unseen region, it can be flagged for review.
The operator can choose to investigate and annotate the cell
for future reference.

2.3.2. Multivariate Regression

Another way to look at this problem of self-awareness is from
the perspective of relationships between the variables. In a
control system such as a CNC machine, the high level re-
quirements (e.g. the tool path) are translated into low level
specifications (e.g. feed rate, spindle speed etc.) which are
then met using control inputs (e.g. spindle power). So it
may be quite normal for power usage to be high if the re-
quired speed is high. If we can learn the normal relationship

Figure 6. A Self-Organizing Map for MTConnect Data from
a Mazak Machine

Table 2. Processed MTConnect Data

tool ID dur-
ation

spindle
speed

feed
rate

dist-
ance

spindle
power

0 0.083 400 1.19 0.81 13
0 0.70 1131 26.84 194.82 7

. . . . . . . . . . . . . . . . . .

between the different variables then it should be possible to
raise a flag when the variables of a new data instance exhibit
a significantly different relationship. In this section, we show
how multivariate regression may be used to learn the relation-
ship between variables.

Before performing regression, we need to pre-process the data.
In Section 2.3, we mentioned that ICP path matching as a ap-
proach for analyzing the tool path - it ensures that the analysis
performed is invariant with respect to affine transformations
of the tool path. The primitive for our regression analysis is
not the entire tool path but rather the sampling interval of the
data collection process - executing the entire tool path may
take many minutes but the data being analyzed is sampled ev-
ery few seconds. So rather than analyzing the entire tool path,
we analyze the distance traveled by the tool during a sampling
instance. This is just a design choice - domain expertise can
be used to pick a different primitive. After pre-processing, we
get data of the following form:

Here tool ID is a categorical variable1 while the others are real
numbers - we try to learn a model to predict spindle power
based on the other variables. There are many modeling ap-

1There are 36 distinct tool IDs: 0, 10, 102, 104, 107, 108, 109, 111, 112,
115, 117, 118, 120, 17, 2, 20, 24, 25, 3, 32, 4, 44, 45, 5, 52, 58, 63, 65, 69,
70, 74, 77, 88, 90, 92, 98

5
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Table 1. MTConnect Data

year month day hour minute second tool ID feed
rate

spindle
speed

x y z spindle
power

2014 1 23 14 51 28 0 1.19 400 2.11 -32.46 -70 13
2014 1 23 14 51 33 0 1.19 400 0 -32.46 -69.14 13
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

proaches for regression but we are specifically interested in
two characteristics: 1) ability to provide a prediction inter-
val for new data points, and 2) ability to build accurate mod-
els without making assumptions about the nature of relation-
ship between the variables. The first requirement (prediction
interval estimation) is necessary for defining anomalies (de-
viations) in a structured manner but the second requirement
(assumption-free modeling) is just a convenience to enable
automation. There are many options but quantile regression
forests (Meinshausen, 2006) are ideally suited for this sce-
nario and that is what we used for this analysis. They provide
a reasonable fit to the data and give us the ability to estimate
prediction intervals based on user defined quantiles. Let Qα
be defined as

Qα(x) = inf {P (Y ≤ y|X = x) ≥ α} (7)

Then Qα represents the α−quantile for the conditional dis-
tribution of a variable Y conditioned on a vector variable
X. If Y is the variable being predicted (spindle power in
our example) then Qα defines its α−quantile conditioned on
the prediction variables X (tool ID, duration, spindle speed,
feed rate, and distance in our example). For this analysis,
we use [Q0.025,Q0.975] as the prediction interval and desig-
nate a new data instance as anomalous if the actual spindle
power lies outside the prediction interval. Compared to the
SOM approach, this approach has the advantage that we ex-
plicitly model the relationship between spindle power (depen-
dent variable) and the other variables (independent variables).
The notion of prediciton interval is also a big advantage as
it provides a systematic approach to detecting outliers. The
prediciton interval will be small if we have a high confidence
in our prediction so even small unexpected deviations outside
the prediction interval may be flagged. On the other hand,
it has the disadvantage that we can only flag anomalies in the
value of the independent variable conditioned on the indepen-
dent variables - we cannot flag anomalies in the independent
variables themselves (since they are considered inputs into
the model). Typically, excessive deviations in the control sig-
nal are good indicators of underlying conditions so this is not
a big drawback.

For this dataset, the quantile regression forest achieves rea-
sonable accuracy in predicting the spindle power (R2 = 0.74).
However, we are not interested in the actual predictions per
se but rather in large errors in those predictions (i.e. values
that lie outside [Q0.025, Q0.975]. The graph in Figure 7 shows

Figure 7. Outlier Detection using Quantile Regression Forest

such deviations. As in the case of SOMs, the instance where
the spindle power is 87 stands out as a clear outlier. Most
of the other outliers are cases where the actual value lies just
outside the prediction interval.

2.3.3. Robust Mahalanobis Distance

If the data are assumed to be samples from a multivariate nor-
mal distribution then Mahalanobis distance can be used to de-
tect outliers. In that case, outliers are data points that are sam-
ples from a different distribution rather than extreme values of
the multivariate normal distribution. This has the advantage
that we don’t need to choose a cutoff point for labeling a point
as outlier - we simply look for points that likely came from
a different distribution (see (Filzmoser, Garrett, & Reimann,
2005) for more details). Of course, the normality assump-
tion may not be satisfied in reality - in fact, it is not satisfied
for the data set being used here. In that case, we can still
use Mahalanobis distance to look for outliers without relying
on distributional assumptions. One approach is to transform
the data into the principal component space and look for the
outliers in the space spanned by the top few principal compo-
nents. Since principal components are aligned with directions
of maximal variance, that makes it easier to spot the outliers.
Also, by looking in the reduced space of the top principal
components, it increases the signal to noise ratio. Using ap-

6
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Figure 8. Mahalanobis Distance Based Outlier Detection

propriate normalization (see (Filzmoser, Maronna, & Werner,
2008) for more details), the Euclidean distance in the princi-
pal component space is equivalent to Mahalanobis distance
in the original space. In the absence of any distributional as-
sumptions, (Filzmoser et al., 2008) proposes a measure of
outlyingness of a data instance based on its Mahalanobis dis-
tance. We use that same measure in our analysis here.

The results are show in Figure 8 - the outliers are shown in
red2. The instance where spindle power is 87 is again identi-
fied as a clear outlier in addition to some others.

2.3.4. Ensemble of Outlier Detection Methods

In this section, we discussed three outlier detection approaches,
namely, self-organizing maps, multivariate regression, and
robust Mahalanobis distance. There are many other other
methods that could be applied. All these methods make dif-
ferent assumptions and have different strengths and weak-
nesses. We can combine them into an ensemble that can raise
flags based on some predetermined policy. For example, if
the cost of failure is very high then the ensemble may flag a
data instance as an outlier if any member of the ensemble de-
termines the data instance to be an outlier (this would be an
OR policy). Alternatively, if the cost of disruption of work-
flow outweighs the cost of failure then the ensemble may flag
a data instance as an outlier only if all members of the ensem-
ble agree (this would be an AND policy). In most scenarios, a
good policy might be for the ensemble to flag a data instance
as an outlier if a large fraction of the ensemble members agree
(this would be a MAJORITY policy).

2This multivariate analysis included duration, feed rate, spindle speed, dis-
tance, and spindle power but we only show the spindle speed and power in
the graph for ease of visualization.

2.4. Shop Floor Planning Recommendation

Another aspect of machine self-awareness is that the machines
are able to compare their usage and performance with each
other. The information can be fed back to the shop floor plan-
ning trying to avoid damage due to unintentionally excessive
usage by rescheduling the machining tasks.

The spindle data can be used to estimate spindle damage as
the bearing life is proportional to load3 ∗ rpm (revolutions
per minute). The aggregate axes traverse provides a measure
of the wear on various axes in the machine (an estimate of the
way damage). This can be correlated to error in position if
either commanded position is available via MTConnect pro-
tocol or nominal tool paths are available to switch the axis to
condition based maintenance. This recommendation provides
insights by shop defined rules ifor switching parts between
machines if any axis travels beyond a threshold greater than
twice that of a comparable machine in the same time frame.

Figure 9 contains an overview about a cell of machines. The
machines are identified by the individual MTConnect Stream.
We use the data from two machine provided by MTConnect
challenge (http://66.42.196.109:5605/current
and http://66.42.196.109:5606/current). The
figure has three distinct sets of information presented: rec-
ommendations for the cell based on data, histogram plot of
spindle rpm (revolution per minute) weighted by the load at
the specific rpm, and total traverse compared across different
feed axes on the machine. MTConnect provides insight into
usage of machines both absolute and relative to each other in a
cell when aggregated over time. The histogram of the spindle
loads weighted by the time spent at various spindle speeds
provide a relative estimate of remaining useful life (RUL)
of the spindle bearings. This information can be fed back
to the scheduling systems depending on the shop’s mainte-
nance policy. For example, if all machines will be taken down
around the same time for service, this can be used to balance
the spindle loads across machine. Similar analysis can be
employed to balance travel of various drive axes by shifting
parts appropriately. These include rotating the fixtures based
on current state and scheduled tool paths.

This helps shop supervisors balance usage across machines
at a deeper level than utilization to reduce excessive damage
accumulation on a single machine in a cell while reducing un-
expected downtime for individual machines. The recommen-
dation will enable manufacturing shops to move from sched-
uled maintenance to condition based maintenance based on
true damage accumulation.

3. CONCLUSION AND DISCUSSION

The framework we have developed is scalable with broad
applicability for milling, drilling, turning machines in vari-
ous configurations. It can be configured from cell level to

7
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Figure 9. Shop floor recommendation for spindle and axis
planning.

plant level with minimal effort and is applicable for small and
medium-sized or large enterprises. It also has broad based
applicability for various industries including fabricating in-
dustrial components, such as automotive engine, medical de-
vice, or aerospace parts. Only part of the MTConnect data
is considered in our research. More variables can be used to
obtain the machine health information from a broader view.
The sampling rate has certain limitations as mentioned in the
previous section. More information can be derived by com-
bining operational data with external sensor data (e.g. vibra-
tion, acoustics signal) to gain more insight about the machine
component health, e.g. (Liao & Pavel, 2012) and (Liao, Ed-
mondson, & Ludwig, 2012).

Machine self-awareness could shift the industry from a re-
liance on a preventative paradigm (checking performance and
replacing parts on a set schedule, regardless of whether there
is an immediate need for these activities), to a predictive paradigm
(schedule maintenance before failure actually happens). Self-
aware machines will positively impact production time, cost,
and quality of any manufacturing plant by reducing unplanned
downtimes, adapting for work-piece variability, and enabling
specification of fault-tolerant process plans.
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ABSTRACT 

The paper deals with an online safety mechanism to define 

interactions between a diagnoser and a control filter for fault 

tolerant control of manufacturing discrete systems. The 

diagnoser observes the plant behavior whereas the control 

filter ensures the safety from the controller. This online 

interaction is based by events communication where the 

control law is never reconfigured. The proposed approach is 

applied to CISPI platform from the CRAN laboratory 

(Research Center for Automatic Control of Nancy). 

1. INTRODUCTION 

Engineering systems become more and more complex and 

consequently, faults are more and more present and cause 

undesired behaviors. Diagnosis information can lead the 

user in its decision for maintenance or reconfiguration (Nke 

and Lunze, 2011), but can also allow fault tolerant control. 

The aim of diagnosis approaches is to detected and isolated 

with certainty a fault. After this step, it is necessary to 

reconfigure the controller in order to guarantee the 

dependability and safety but also to propose a Fault Tolerant 

Control (FTC) in a degraded mode (Blanke et al., 2003, 

(Paoli et al., 2011, Brown and Vachtsevanos, 2011). 

Ensuring safety of manufacturing system control is currently 

based on two complementary approaches: control design 

activities with the objective to avoid unexpected behaviors 

and safe design activities by the development of online 

barriers.  

First one, we focus on the control design activities with the 

objective to avoid unexpected behavior. Two main 

approaches are suggested in this way (Faure and Lesage, 

2001): (i) control validation and verification (V&V) 

(Roussel and Faure, 2002), (ii) Supervisory Control Theory 

(SCT) based on synthesis controller (Ramadge and 

Wonham, 1989), that enables automatic generation of the 

controller from the specification, and the uncontrolled 

behavior of the plant. Most of the time, those designing 

approaches make two strong assumptions: the behavior of 

plant devices is not faulty and the designed control is 

exactly the same as the program that is implemented on the 

control devices (i.e. code generation deviations or code 

modifications by maintenance agents are not considered).  

These assumptions being not realistic in practice, a second 

approach complements the safe design activities by the 

development of online barriers like diagnosis or filtering 

control. Diagnosis of manufacturing systems aims at 

detecting unsafe behavior of the plant and localizing the 

components that are involved in the behavioral deviation 

(Sampath, 1995). Control filtering aims at avoiding that a 

PLC program provokes plant damages, whatever the PLC 

program (Marangé, 2008, Riera et al., 2012). The filter is 

placed between the controller and the plant and inhibits 

potential dangerous evolutions by checking a set of safety 

constraints. Nevertheless, the diagnosis and the filter are 

formally built from models of process behavior. 

Consequently, hypothesis that the information from the 

process is correct is made. At least, if the plant situation is 

unknown, automatic procedures implemented by control 

filtering and diagnosis may be not efficient. This case 

generally requires the intervention of human expert to 

analyze the unknown situation of the plant, and to take 

emergency decision to drive back the plant in acceptable 

states. 

The aim of this paper is to propose an approach of FTC 

where diagnosis provides information about the plant to the 

filter; and vice-versa. Control laws are never reconfigured 

but the system must always be in safety situation thanks to 

the filter even in case of plant fault. Models of the plant 

devices behavior as well as the control rules can be 

described as Discrete Event Systems (DES), i.e., dynamical 

systems with discrete state spaces and event-driven 
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transitions (Cassandras and Lafortune, 1999). The proposed 

approach provides similar results in term of detection to 

classical approaches (Sampath, 1995, Debouk, et al., 2000, 

Wang et al., 2007 …) but it continues to improve the safety 

even in presence of faults thanks to the control filter.  

The paper is organized as follows. In section 2, the fault 

tolerant control architecture proposed is presented with a 

diagnosis and a filtering control sub-sections. A benchmark 

is studied with results in section 3 before to conclude and 

propose some future works. 

2. FTC ARCHITECTURE 

From the previous discussion, diagnosis approaches make 

hypothesis that controller information is safe whereas 

filtering controller approaches are supposed free of faults. 

The figure 1 presents the FTC architecture. Control law, 

diagnoser and filter are present in a Remote Terminal Unit 

(RTU) as a Programmable Logic Controller (PLC) for 

example. The diagnoser does not use directly the orders sent 

by the controller but the orders validated by the filter, which 

set to allows to guarantee the orders correctness. Also, the 

filter confirms orders according to the plant information 

(value of sensors/actuators) and the plant state defined by 

the diagnoser. User can send requests but also have situation 

awareness thanks to filter and diagnoser. 

 

 

 

 

User 

 

Control law  

 

Filter 

 

 

Plant 

Diagnoser 

    Order 

Request 

       Request 

Validated 
Order 

Sensor Value 

State of the filter 

Behavior of the plant 

RTU  

Figure 1. FTC Architecture 

2.1. Diagnoser 

In industrial processes, a manufacturing system is a 

functional chain composed of a controller that emits signals 

to a plant and receives sensor values. This exchange 

between controller and plant represents the only observable 

information available online. Since a diagnoser is defined as 

an observer of the system, it is necessary to use this 

information to rebuild behaviors through models. 

From literature (Sampath, 1995, Qiu, 2005), centralized 

approaches appear as unthinkable for large and complex 

systems. As manufacturing system is composed of 

mechanical components (actuators/sensors), a methodology 

to obtain a decentralized diagnosis approach, as (Debouk, et 

al., 2000, Wang et al., 2007, Kan et al., 2010), for 

manufacturing systems with discrete sensors and actuators 

has been developed in previous works (Philippot and Carré-

Ménétrier, 2011). It is composed of 4 offline steps describe: 

1. From the plant components, decomposition is made to 

obtain local models called Plant Elements (PEs). A PE 

describes all possible mechanical evolution of the 

component independently of the controller.  

2. From each PE, local desired behavior is extracted. 

Temporal information, obtained by excited events 

simulation, is added to enrich the model. The result is 

an automaton called Normal Behavior Model (NBM).  

3. The third step identifies, from each normal state of 

NBMs, faults which can occur and composes the 

abnormal model by adding of labeled states to obtain 

local diagnosers (Di). Faults are grouped according to 

the failing component (sensor/actuator) into partitions. 

4. A High Level Diagnoser from global specifications is 

done for uncertainty cases. 

Diagnosers are implemented as online observers in the PLC. 

User’s decision is given thanks to the set of local labels.  

A local diagnoser is a special case of an observer that carries 
fault information by means of labels attached to states. 
These labels indicate the types of faults that have been 
occurred. A local diagnoser is considered as an extended 

automaton: Di = (Xi  XDFi, Zio, i, xi0, Ti, li) where: 

 Xi is the set of normal states of NBMi, 

 XDFi is the set of faulty states, 

 Zio is the set of observable events by the PEi,  

 i: Xi  Zi
*
 → Xi  XDFi is the transition function with 

the expected (ei) and unexpected (ui) functions from a 

state,  

 xi0 is the initial state,  

 Ti is the set of interval time where transition functions 

are expected between [tmin, tmax], 

 li is the set of decision functions of the local diagnoser 

Di with li(x) the decision function of the state x which 

can be one or more fault labels {Fj}. The sets of failure 

events corresponding to partitions, noted f.  

Indeed, the methodology is dependent of the control 

specification (step 2) and if the controller is not safe or if it 

changes, then diagnosers can return a bad decision in the 

first case or must be reconstructed in the second case. To 

have diagnosis independent from the control, diagnoser is 

obtained from the behavior of PE and the addition of the 

possible faulty events. 

From decentralized diagnosers, a transition function i 

corresponds to a logical expression composed by all the 

events. It is possible to define all transition functions by the 

2
n
 possibility (with n: number of events and intervals). 

However, the mechanical structure of components and the 

use of filters make it impossible some combinations. For 

example, only one interval time can be activate 

simultaneously, or thanks to the control filter, opposite 

orders cannot be sent. Consequently, the complexity 
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depends on the granularity of the local models but also on 

the performance of the control filter. These diagnosers are 

independent of the controller specification in its structure 

thanks to the control filter but not in the definition of the set 

of interval Ti.  

The choice of an automaton to represent a local diagnoser 

permits to compose a library of commonly components. 

However, this model can be translated as Markov chain or 

Causal Temporal Signature under some hypothesis. 

2.2. Control Filter 

The control filtering consists in interlacing a filter between 

the plant and the control law to inhibit the evolutions that 

can lead the system to a dangerous situation for operators 

and production resources. This aim is to ensure that the 

controller outputs (c), are legal according to plant safety. It 

means that, for each new evolution of actuators output 

vector (at t), the filter verifies that these outputs are 

compatible with the plant state perceived by means of 

uncontrollable variables uc (inputs sensors (at t, t-1, t-2…), 

previous outputs (at t-1, t-2…), observers (at t, t-1, t-2…)).  

The filter is built according to a set of logical constraints 

that must be satisfied to let the outputs getting out of the 

control filter. It is based on the use of safety constraints, 

which act as logical guards placed at the end of the PLC 

program, and forbids sending unsafe controllable events to 

the plant (Marangé et al. 2008), (Riera et al., 2014). 

Constraints (or guards) are always modeled with the point of 

view of the control part (PLC), and it is assumed that the 

PLC scan time is sufficient to detect any changes of the 

input vector (synchronous operation, possible simultaneous 

changes of state of PLC inputs). 

Safety constraints are expressed in the form of a logical 

monomial function (product of logical variables, as  ) 

which must always be equal to 0 (FALSE) at each PLC scan 

time in order to guarantee the safety. It is considered in this 

work that the initial safe state for all the actuators (ok) is 

defined to 0. 

Initially, the constraints are defined in order to ensure a 

permissive control, and it is assumed that, with the filter, the 

system remains controllable. In other words, it is possible to 

design a controller which matches the specifications. For 

example, considering the previous hypothesis about the safe 

initial state, a filter which resets all outputs is safe but does 

not ensure the controllability. Some guards involve a single 

output at time t (simple safety constraints CSs), other 

constraints involve several outputs at time t (combined 

safety constraints CSc). Constraints require the knowledge 

of c and uc at the current time t and possibly previous 

times (presence of edge (t-1) for instance noted *). Hence, 

the filter requires a memory function.  

The set of constraints CS is considered as necessary and 

sufficient to guarantee the safety. In this approach, it is 

assumed that safety constraints can always be represented as 

a monomial and depend on the uncontrollable and 

controllable variables (at t, t-1, t-2…). Filter stops has to 

stop the process in a safe situation if a safety constraint is 

not respected. 

CSs and CSc can be represented respectively by equation (1) 

and equation (2) which are Boolean monomial functions and 

have always to be False at each PLC scan time. NCSs and 

NCSc are respectively the number of simple safety 

constraints and the number of combined safety constraints. 

No is the number of outputs. 

                         
                   (1) 
                                           

                        (2) 

There are 2 forms of Simple Safety Constraints CSs because 

they are expressed as a monomial function, and they only 

involve a single output at time t (equation (3) or (4)): 

                         

                  (3) 

xor 

                     (4) 

These simple safety constraints (CSs) express the fact that if 

        which is a monomial (product) function of only 

uncontrollable variables at t, is TRUE, ok must be 

necessarily FALSE (equation (3)) in order to keep the 

constraints equal to 0. If       ) is TRUE, ok must be 

necessarily TRUE (equation (4)).  

For each output, it is possible to write equation (5) 

corresponding to a logical OR of all simple safety 

constraints. 

             
        

  
   

    

       (5) 

           is a logical   function independent of the 

other outputs at t because only CSs are considered. 

           can be developed in equation (6) where      

and      are polynomial functions (sum of products,   ) 

of uncontrollable variables. Equation (6) has always to be 

FALSE because all simple safety constraints must be 

FALSE at each PLC scan time. 

                                         (6) 

Taking into account all CSs; it is possible to write equation 

(7). 

     
    

                                   
  
      (7) 

The definition of constraints set is not formal and the filter 

robustness must be verified. In (Marangé, 2008) and (Riera 

et al., 2012), authors proposed to enrich this expert-based 

approach by a formal identification of the constraints set to 

ensure its completeness.  
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The use of this filter allows detecting errors resulting from 

the controller by making a hypothesis on the accuracy of the 

information resulting from the plant. Indeed, a fault on the 

plant can lead:  

 Too much restriction: sensor information is going to be 

blocked in the most critical state and the constraint is 

not verified while the plant is not in a critical situation. 

 Too much tolerant: sensor information is going to be in 

the state which verifies all the time the constraint and 

thus the filter is going to allow to pass dangerous orders 

for the plant. This case is to be avoided. 

The consideration of diagnosis information allows to use the 

filter in degraded mode. For that purpose, the information 

resulting from the plant is added by taking into account 

diagnoser. When a failure arises on a sensor or an actuator, 

the filter constraints that contain the logical variables 

associated to the faulty devices becomes unreliable. 

Authorized signals may be forbidden, and, worse forbidden 

signals may be authorized. Consequently, the filter 

constraints must consider the occurrence of a fault or not.  

For every fault partition, a flag is set to true when the 

diagnoser reaches a faulty decision state. This flag 

determines if the considered variable can be used into the 

filter constraint (flag=0), or if an equivalent reconstructed 

information must be used (flag=1). Only the sensor 

information can be reconstituted by using: 

 the expert knowledge (timed or temporal model),  

 redundant information or reconstruction logics. 

The property defining the dangerous situation has been 

verified using a model-checker meaning that the filter 

delivers correct inhibition and authorization even in 

presence of device faults (with the assumption that the 

diagnoser is able to detect and localize the fault). 

Moreover, as the control filter only concerns safety part and 

not the functional part, if the component is exchanged or 

replaced, only the set of constraints corresponding to this 

component must evolve. For industrial systems, 

establishment of a constraints library is feasible. In fact, 

constraints sets are defined for a sub-system of component 

interaction. 

3. CASE STUDY 

The approach is applied to the CISPI platform from the 

CRAN laboratory (figure 2). This platform implements 

hydraulic processes involving valves, pumps and tanks and 

various transmitters (flow, pressure…). Local controllers 

implement basic control loops and are involved in a global 

mode management control that enables concurrent access to 

devices for start, shutdown and normal operation 

procedures. To avoid damages and failures of the system, as 

well as the human operator’s errors, this experimental 

platform promotes new forms of control organization that 

exploits the capacity ambient technologies (sensor network, 

PDA, mobile control...) to favor safe human/system 

interactions in any place, at any instant and for any plant 

operation. 

Within the framework of this project, the control filter and 

diagnoser are implanted to bring a help during the 

supervisory control of the CISPI system. To illustrate the 

approach presented in this paper, an automatic valve is 

considerate. This valve can be closed or open by 

respectively C and O boolean signals, and two sensors for 

the open position (fso) and for the closed position (fsc) are 

present. 

Independently of the control laws, the sub-system valve 

must always be in a safety mode. For this, an assumption is 

made that when a fault is on an actuator, all outputs must be 

deactivated by the filter. If a fault is on a sensor, the sub-

system can be tolerant to this fault.  

 

Figure 2. CISPI Platform 

3.1. Diagnoser 

From the illustrative example, the valve with sensors fsc and 

fso constitute one PE and it is possible to identify each 

faulty event by a label: 

 Sensor fsc stuck to 0 (F1) or to 1 (F2) 

 Sensor fso stuck to 0 (F3) or to 1 (F4) 

 Valve stuck to fsc (F5) or fso (F6) position 

 Unexpected fsc (F7) or fso (F9) from 0 to 1 

 Unexpected fsc (F8) or fso (F10) from 1 to 0 

 Unexpected movement from fsc to fso (F11) or from fso 

to fsc (F12) 

 Valve blocked between fsc and fso (F13) 

Three fault partitions are defined belong to: 

 Sensor fsc: fsc = {F1, F2, F7, F8}  

 Sensor fso: fso = {F3, F4, F9, F10} 

 Valve: Va = {F5, F6, F11, F12, F13} 
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With the consideration of the controller information, and 

thanks to the filter, the valve diagnoser is composed of 9 

normal states and 16 abnormal states (Fig. 3) where: 

 double circle is the initial state,  

 9 white states are the normal states,  

 3 grey states noted F2, F7, F8 represent the abnormal 

states with detection and isolation of an abnormal 

behavior with certainty from fsc, 

 3 grey states noted F4, F9, F10 represent the abnormal 

states with detection and isolation of an abnormal 

behavior with certainty from fso, 

 4 grey states noted F5, F6, F11, F13 represent the 

abnormal states with detection and isolation of an 

abnormal behavior with certainty from Va, 

 6 black states describe the detection of a fault but not 

the isolation (4 intermediate before isolation).  

 

Figure 3. Valve Diagnoser 

The reliability of sensors ensures to be into a safety mode 

(white states). However, after the detection and isolation of 

a fault (grey and black states), this diagnoser cannot be 

anew used. Indeed, it is not possible to rely on 

misinformation. That is why, it is necessary to preserve the 

state of the system until the fault is been corrected and reset. 

3.2. Control Filter 

Constraints take into account information of the diagnosers. 

Information used in the filter is noted Xfilter and diagnosis 

information is noted defX. The following flags are done: 

 deffso for the partition of valve sensor fso, 

 deffsc for the partition of valve sensors fsc,  

 defV for the partition of valve actuator V,  

To be tolerant on sensors’ faults, an expert knowledge is 

used to estimate the plant information by temporal 

information. This knowledge can be optimally obtained by 

FMEA (Failure Mode and Effects Analysis) and so provide 

a reactivity of detection. For example, figure 4 shows 

equivalent information of fso and fsc sensors information 

from a learning chronogram where the estimated value of 

fso is given by a flag TON1 when an On Delay Timer is 

activated, and respectively a flag TON2 for the estimated 

value of fsc. 

 for       by            

 for       by            

 

Figure 4. Reconstruction of sensors’ information 

For a sensor fault, the plant information is replaced by 

temporal information: 

                                             (7) 

                                             (8) 

No information can be estimated for outputs C and O. 

Consequently, orders must be deactivated by the filter even 

in case of faulty event by: 
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                         (9) 

                         (10) 

The set of constraints is defined as following. It is forbidden 

to maintain an order when the position valve is done 

(equations (11) & (12)). It is forbidden to deactivate an 

order until the ending position valve is not done (equations 

(13) & (14)). It is forbidden to activate an order until the 

starting position valve is not done (equations (15) & (16)). 

For the combined safety constraint of equation (17), it is 

forbidden to activate orders C and O together:  

                           (11) 
                           (12) 

            
                                          (13) 

            
         

                                 (14) 

            
                                          (15) 

            
                                          (16) 

                         (17) 

Where          and       represent respectively a rising and a 

falling edge of an order X. 

            
                                          (13) 

            
         

                                 (14) 

3.3. Results and Key Performance Indicators 

A first analysis shows that the system is detectable in a 

bounded delay with certainty for the defined fault partitions. 

Indeed, all labels are represented in an abnormal state. 

However, the system is non-diagnosable with certainty. 10 

labels on 13 possible are isolated with certainty (one unique 

label), 3 labels are with an ambiguity. For example, it is not 

possible to isolate with certainty states with labels {F1, 

F13} and {F3, F13}. Diagnostic Coverage (DC) is the ratio 

of the probability of detected dangerous failures (dd) to the 

probability all the dangerous failures (d). This meaning of 

the term DC is common to (ISO13849-1) and (IEC/EN 

62061). For the valve, the DC is to 76.9%. The standard 

ISO13849-1 divides DC into four basic ranges: i) <60% = 

none, ii) 60% to <90% = low, iii) 90% to <99% = medium 

and iv) 99%+ = high. Consequently, another rule must be 

present to improve it and to guarantee complete 

diagnosability notion as defined in (Lin, 1994). 

Table 1 presents a comparison between solutions with or 

without filter and/or diagnosers by simulation of the 13 

faulty events under ProcesSim (http://processim.hecfh.be/). 

Thirteen scenarii have been exploited to obtain these results. 

With no filter, the valve system is under blocked behavior in 

8 cases, into a degraded mode in 1 case and induces a defect 

situation for 4 cases. We can see that the tolerant situation 

disappear with the use of the filter only because its purpose 

is to ensure a safety behavior. When the FTC solution is 

used, the degraded mode is tolerant to 4 faulty events and 

above all, it decreases 2 cases of defect situations. 

The proposed FTC approach has not been extended on all 

CISPI platforms yet. But a study has been done on a sub-

system composed of 2 automatic valves, one pump and 2 

tanks. Another point of view can be also to evaluate the 

steady state transition probabilities as a KPI. Indeed, a 

repetitive sequence of normal events can provide an 

indicator of the system behavior. For the moment, this 

remark is not treated in these works. 

Table 1: Comparison with and without FTC solution 

 Diag 

No Filter 

No Diag 

Filter 

FTC (Diag 

and Filter) 

Blocked 8 9 7 

Tolerant 1 0 4 

Defect 4 4 2 

4. CONCLUSION 

A Fault Tolerant Control approach is presented around an 

interaction between diagnosers and filtering control. 

Diagnosis design is refined using enriched information from 

the real implemented control rules (control + violated 

constraints of the filter) while control filter benefits from 

using diagnose information to adapt its set of constraints 

according to reliable raw or constructed information.  

In future works, when diagnosers detect a fault on a 

component or when the filter detects a mistake on the 

controller, a significant explanation must be given to a 

human operator to choose the best policy. A graduated 

explanation with potential consequences is to return. As last 

remark, the control filter has been implemented and 

extended to control design pattern on a real complex system 

called CellFlex at the University of Reims (www.univ-

reims.fr/meserp/). 
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ABSTRACT 

System state determination with incomplete sensory 

information set proved to be a technically challenging 

problem. In this paper, authors tackle a problem of this type 

associated with vehicle fuel storage systems and proposed a 

novel feature extraction method. Federal and state 

regulations require fuel storage leak detection mechanism to 

be conducted periodically and regulate its execution rate and 

performance to ensure effective emission controls. Being 

able to robustly determine a fuel storage system’s state in 

terms of its effectiveness of fuel containment is therefore of 

great importance to all vehicle original equipment 

manufacturers (OEM). Prevailing practice in the industry 

utilizes a method relevant to natural vacuum phenomenon 

and is loosely associated with ideal gas law. Commonly 

referred to as “Entry Conditions” in in-vehicle monitoring 

design literature, major noise factors go through stringent 

pre-monitoring evaluations before monitoring program 

execution to ensure ideal test conditions. Differences in 

ambient conditions compounded with varying customer 

drive cycle patterns present great challenge to existing 

monitor designs for the purpose of leak detection. In 

addition, prevailing practices of evaluation in-tank fuel 

pressure and temperature information are generally 

conducted with surrogate or estmiated temperature 

information due to the absence of in-tank temperature 

sensor. All this calls for an alternative feature calculation 

and detection method that are less sensitive to known noise 

factors, can operate with incomplete sensory information yet 

being able provide similar or improved detection capability. 

In this paper, we put the main focus on the derivation of a 

novel method of feature calculation for the purpose of 

detecting presence of a leak in a fuel storage tank. 

1. INTRODUCTION 

Murvay (Murvay, 2012) studied state-of-the-art 

development in terms of hardware (including pressure, 

acoustic, remote and reflective sensing) and software 

methods for gas leak detections. It was concluded that a 

hybrid approach to take advantage of cost effective 

hardware setup (high localization accuracy) with fast 

improving software methods (real-time detection capability) 

would be highly recommended. It also suggests that 

investment in a hybrid approach may be more cost effective 

in the long term as software capability enhancements may 

offset the effect of aging hardware, reducing the need for a 

complete revamp of leak detection setup, something very 

cost prohibitive.  Zhou (Zhou, 2011) proposed a Bayesian 

Belief Rule Based (BRB) system where subject expert 

knowledge and real-time information are incorporated to 

incrementally improve the performance of the system. Such 

a combination of human knowledge and data driven 

refinement to the model is suitable to deal with ever 

increasingly complex real-world problems. Ghazali’s work 

(Ghazali, 2012) focused on instantaneous frequency analysis 

(IFA), where comparisons between Hilbert transform (HT), 

Normalized HT (NHT), Direct Quadrature (DQ), Teager 

Energy Operator (TEO) and Cepstrum performed on 

pressure transients (opening a valve or stopping a pump) 

within a live distribution network were conducted. A 

detection method that includes multiple modeling 

techniques was proposed by (Mandal, 2012). They apply 

rough set theory and artificial bee colony (ABC) trained 

SVM (Support Vector Machine) to carry out classification 

tasks in two stages and yielded robust performance when 

compared with PSO (particle swarm optimization) and 
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EPSO (enhanced particle swarm optimization) based 

learning methods. 

Leak detection mechanism as part of an overall emission 

control strategy is gaining importance in recent years. As 

countries are increasingly pledging reduced carbon 

footprints, one of the main focuses was to incrementally 

reduce and eventually eliminate allowable fuel vapors 

escaped to the ambient air. In the United States, ongoing 

efforts from Environmental Protection Agency (EPA) and 

California Air Resources Board (CARB) requires consumer 

vehicle original equipment manufacturers (OEMs) to equip 

their products with leak detection monitors to improve 

monitoring capabilities within a given timeframe (State of 

California Air Resources Board, 2012). In the meantime, on 

the field performances are under federal and state level 

regulations subject to audits. If sampled results are deemed 

unsatisfactory, fines or even voluntary recalls could be 

imposed. These penalties are undesirable as they undermine 

an OEM not only financially but could also negatively affect 

brand image that take years to even decades to recover if 

such incidents occur. 

Emmission related monitors generally reside in the 

powertrain control module (PCM) therefore contraints such 

as A. During calculation memory requirement, B. 

Computational efficiency and C. Compactness of the code 

often need to be carefully evaluated due to implications in 

terms of cost and practicality during implementation phase. 

In this paper, authors focus on describing a fundamentally 

different way of extracting information from the in-tank 

pressure signal stream as it is one of most critical parts of an 

overall redesign of an in-vehicle monitor.  More 

specifically, we will cover a recursive approach to enable 

monitor design engineers to have access to physically 

meaningful probability density function (PDF) type of 

information continuously in the form of a recursively 

updated histogram or discretized probability density 

function (DPDF) from normalization performed on an 

obtained discretized relative frequency function (DRFF). 

Feature calculations are performed from evaluation of 

certain specific bin(s) of the DPDF from which decisions 

can be made about the fuel tank’s status with repect to the 

presence of a leak. Technique descibed in (Syed, 2009) 

utilizes a low pass filter (LPF) implementation to extract 

driver (non-conditional / overall) behavioral information for 

adaptation of an in-vehicle advisory system. When applied 

to scenarios where possible alternatives do exist, such 

calculation produces conditional relative frequency (RF) 

information which is a precursor of probabilistic 

information. In (Filev, 2011), organization and conditional 

updates of trip specific RF values enable the creation of a 

context senstive predictive system. Proposed feature 

exraction method strictly operates in the probabilistic space. 

It represents a significant step forward and a crucial 

enabling element to improve from prevailing pactice of 

evaluation of pressure signal (or its manipulated version) 

alone (Wong, 2003 and Jentz, 2013). Our preliminary 

analysis suggests proposed feature calculation produces 

meaningful and promising results. The investigation of 

promising alternative feature calculations as the one 

described in this paper is an important first step that shall 

shed more light on how to redesign a leak detection monitor 

in the future. 

The rest of the paper is organized as the following. In 

section 2, current prevailing practices in the industry will be 

discussed where most OEM’s approach can be understood 

as solving a classification problem (leak vs no leak) with a 

single feature commonly derived from in-tank pressure 

signal. In section 3, the derivation and computation 

procedure of obtaining a continuous measure of the content 

of in-tank pressure signal stream in the form of DPDF. In 

addition, proposed feature calculation from DPDF vector is 

desribed in detail. Section 4 covers a simple threshold 

determination based classification process utilizing the 

feature calculation described in Section 3 and preliminary 

results are presented. We conconlude current findings and 

future work in section 5 followed by cited references. 

2. INDUSTRY PRACTICE FOR VEHICULAR LEAK 

DETECTION 

Prevailing principle of fuel storage leak detection design 

relies on well-known “Ideal Gas Equation”, which states the 

governing relationship between system pressure and 

temperature given certain characterizing constants or a 

lumped product is known or estimated (Wong, 2003 and 

Jentz, 2013).   Determination of the presence of a leak in the 

fuel storage system is carried out by evaluation of whether 

expected pressure change is met within certain threshold 

(2005, McLain).  Due to its evaporative nature, gasoline 

vapor / liquid state transition activities does not warrant the 

direct use of the ideal gas equation, therefore, monotor 

specific “Entry Condition” evaluations have to be carried 

out before monitoring program execution.  

After vehicle key-off, when entry conditions are met, the 

system is then sealed by operation of certain actuators such 

as valves.  In this phase, in-tank pressure signal is kept alive 

for evaluation against thresholds that are dynamically 

adjusted to ambient as well as preceding driving conditions 

that led to the current stop. During all this time, parallel 

evaluations of certain run time parameters are common to 

reduce false state determinations and total engine-off battery 

draw. When it is deemed an effective determination cannot 

be reached, execution could self-abort without making a 

determination as to the system’s state. A set of built-in 

counters are required by law to be in place to keep track of 

how often a monitor runs against scenarios it is required to 

do so. The ratio of leak / no leak versus total number of 

successfully full executions are also being tracked. These 

values are subjected to insepctions of government agencies 

and OEM’s periodically. 
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Abovementioned leak detection process can be understood 

as carrying out a classification procedure with a main 

feature that is commonly derived from pressure sensor 

information. The goal of these leak detection monitors is to 

produce a leak indicator value [0, 1] in which 0 represents 

no leak state and 1 represents presence of a sizable leak. The 

original pressure value is subjected to futher common signal 

procesing methods such as signal smoothing, clipping and 

flipping. Other common modifications may also include 

multiple scalers associated with ambient / vehicle 

conditions.  After a series of manipulations, comparison is 

performed with thresholds resulted from calibrations 

conducted with a sweep of main noise factors spaces. 

Different from abovementioned commonly used feature, 

section 3 describes in detail a recursive procedure 

continously measure in-tank pressure content in the form of 

DPDF from which feature(s) will be calculated for the 

purpose of leak detection. 

3. FEATURE DERIVATION FROM PROBABILITY DENSITY 

CURVE FOR CLASSIFICATION PURPOSE 

The first step in solving a classification problem generally 

has to do with identification of effective features. Feature 

extraction serves at least following purposes: 1) Obtaining 

informative representation of data, 2) Dimensionality 

reduction, and 3) Reduction in noise and redundancy. 

Common feature extraction methods can be grouped into the 

following categories: 1) Time series based features, 2) 

Statistics based features, 3) Frequency based features, 4) 

Mixed domain features, and 5) Model based features. For 

some applications (e.g., vibration analysis), expert and 

domain knowledge play important roles in guiding the 

methodology and techniques involved in the feature 

extraction process. While certain calculation and data 

transformation may be common (e.g., Fourier Transform for 

accelerometer sensing signals), such practice may produce 

signatures associated with certain frequency range. 

Depending on subject problem of interest, simple data 

smoothing, deterministic or moving data window scheme or 

windowed data overlay techniques may be imposed as part 

of a feature extraction procedure. Details regarding signal 

and feature selection process are out of the scope of this 

paper.  

Different from common practice, the authors performed data 

analysis focused on signatures revealed from the probability 

density function of in-tank pressure changes.  This is one of 

the signals typically kept “alive” during leak detection 

monitoring phase after the engine has been turned off and 

the system has been sealed. More specifically, we developed 

a non-parametric method to continuously extract signatures 

indicative of the existence of a leak in a presumably sealed 

setting. The rationale is that change in overall pressure is a 

consequence of accumulated pressure (rate) changes. We 

apply procedures to obtain dprobability distribution function 

in a discretized form from the frequentist’s point of view (of 

relative frequency). This is procedure is implemneted with a 

low pass filter (LPF or 1st order exponential smoothing). 

After initialization phase (where a number of initial signal 

samples have been observed), proposed method gives a 

continuous output of the DPDF with predefined partitions. 

Resolution a DPDF is dependent on pre-determined signal 

range and number of partitions within that range.  

Conceptually, proposed implementation is identical to the 

creation of a histogram with a moving data windown given 

some continuously incoming data stream; the counting 

procedure is carried out by a LPF in which its learning rate 

controls the size of the moving data window. The crisp 

partitions within specified signal range act as “competing 

and possible” scenarios or alternatives where we impose a 

“winner takes all” rule for relative frequency (RF) updates 

for all partitions involved. Through this updating rule, the 

increment of the relative frequency occurs only for one 

partition at a time while the rest of the competing partitions 

receive negative updates. At any given time, a DPDF is 

obtained by normalizing most recent DRFF with the 

summation of its elements. Details regarding this process 

are described next. 

3.1. Recursive Estimation of Discretized Relative 

Frequency Function (DRFF) as Predecessor of 

Discretized Probability Density Function (DPDF) 

3.1. Recursive Estimation of Discretized Relative Frequency 

Function (DRFF) as Predecessor of Discretized Probability 

Density Function (DPDF) 

From a frequentist’s point of view of probability, 

probability density function (PDF) comes from obtaining a 

histogram-like vector (of very fine granulaity or partition), 

namely a DRFF. After a normalization procedure, a DPDF 

is obtained and the summation of its content should be 1 

(sum of total probability of 1). In the simplest case, the first 

step in obtaining DRFF vetor is to partition a signal’s value 

space into smaller non-overlapping ones. For example, if a 

signal X takes values from 0 to 10, an example of such a 

partition would be to define 10 partitions of the signal space 

that spans the following consecutive intervals or bins: 

0≤x<1, 1≤x<2, 2≤x<3 … 9≤x≤10. As a result, they 

represent mutually exclusive scenarios or value range 

alternatives regarding numeric content of signal X at any 

given moment. When a specific component of data stream 

of signal x is being evaluated, only one of the the 

alternatives will receive the increment in count from the fact 

current x’s value falls into a corresponding region while 

other alternatives will receive negative updates. From (Syed, 

2009), the construction of a count based histogram can be 

approximated recursively with an exponentially weighted 

moving average (EWMA) formulation where counts are 

replaced with relative frequencies (RF). When such 

implementation is in place, content captured in an interval in 

DRFF represents a relative frequency value corresponds to 
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the total number of occurances relative its alternatives (other 

intervals). For example, if α is 0.05 the moving window is 

approximately 1/0.05 = 20 meaning that at any given 

moment the DRFF preserves information from the most 

recent past 20 observations of signal X. The process of 

obtaining DRFF can be represented by following equation: 

     ( )  (   )       (   )         ( )              (1) 

where 〖 DRFF〗 _i denotes relative frequency of a partition 

enclosed by its lower and upper limits, α denotes the 

learning (0≤α≤1), and 〖 Flag〗 _i denotes a binary flag 

value of 0 or 1 indicating whether current value of X falls 

into the regrion defined by the i’th region.  All partitions of 

DRFF go through exactly one update during the evaluation 

of one incoming signal value with Eq (1) and all but one of 

the partitions will experience a value increment due to the 

use of “winner takes all” updating rule. 

DPDF is obtained by normalization procedure performed on 

DRFF with following equation: 

     ( )  
     ( )

∑      ( )
 
   

⁄                               (2) 

With equation (2), DPDF is obtained from updated DRFF 

from which subsequent feature calculation will be 

performed.  

A numerical example comparing LPF vs actual counts based 

DPDF is shown in the Figure 1. 

 

Figure 1: Comparison of recursively obtained DPDF vs 

Actual Count generated DPDF 

 

In Figure 1, a total of 150 random integers ranging from 0 to 

20 were populated. 

3.2. Extracting Probability Density Content from In-

Tank Pressure 

3.2.1. Focus of 1st Sealed Stage 

During experiments to generate representative datasets, the 

fuel storage system (fuel tank) goes through a series of state 

transitions that either expose or seal the system from the 

atmosphere. The rationale for the transitions contains 

proprietary information, and hence, will not be discussed 

here. Our research development focused on the 1st seal 

stage of all datasets. The reason being that subsequent 

changes are dependent on information collected during a 

prior state, making comparison between datasets not 

realistic. In addition, we identified that the early stage in the 

1st sealed phase is much more informative; therefore, we 

will focus on data collected in the first 300 seconds of each 

dataset. In addition, we have found that the contrast 

(separation) between classes reduced for the proposed 

method very quickly after 300 seconds into the 1st sealed 

phase. 

3.2.2. Pressure Change between Samples vs Pressure 

Change Rate 

The determination that a system has entered its 1st sealed 

state is conducted by monitoring a set of flags associated 

with actuators’ (valves) states that could be either open or 

closed. When the system is deemed to have entered its 1st 

sealed phase, the difference between previous and current 

in-tank pressures (inch mercury) is calculated continuously. 

Since our data collection system collects information at a 

(almost) constant rate of 10 Hz (every 100 milliseconds), 

pressure change rate in this case is proportional to pressure 

change between samples, and therefore, we omit the 

normalization division operation to simplify the calculation. 

3.2.3. Obtaining Vector Probability Density Content 

First of all, the signal numeric space is defined as 100 

equally spaced (0.0003) partitions ranging from -0.015 to 

0.015. α is set to be 1/500 or 0.002, which is equivalent of 

imposing a moving data window containing the last 500 

samples as it moves through the data stream. Since the 

normalization process effectively only scales DRFF through 

division of its element sum, the overall shape DRFF will be 

identical to DPDF. A snapshot of DPDF serves as a visual 

example is shown is Figure 2 according to partitions based 

on aforementioned definition. 
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Figure 2: DPDF obtained from normilzation of DRFF 

covering value range [-0.015, 0.015]. Each partition is of the 

width of 0.0003. 

 

3.2.4. Identification of Effective Features from DPDF for 

Classification Purpose 

From Figure 2, we noticed an interesting fact that close to 

75% of pressure change readings are assigned to the 

partition centered at 0 for this particular experimental 

dataset. This is not a coincidence but a result of the 

sensitivity of the pressure sensor in the existing product.  

The next step is to perform the same computational 

procedures to all datasets. With predefined partitions as 

described in 3.2.3, resuling DPDF from all datasets are 

inherently of the same size making it straightforward for us 

to calculatae the mean and standard deviations separately 

for two populations: leak vs no leak datasets. As a result, we 

obtained two sets of means and standard deviations for each 

partition using following equations: 

      
  

∑        
 
   

 
                                               (3) 

       
√
∑ (              

)  
   

   
                             (4) 

i denotes a particular partition, j denotes a dataset and K 

represents total number of datasets. Since we peforms such 

calculations for leak and no leak datasets separately, K will 

take different values if we have an unbalanced datasets 

where total numbers of leak and no leak datasets are 

different. From (3) and (4), we obtained population mean 

and standard deviation of each defined partition. We employ 

the well-known 6σ definition to show the range spans μ-3σ 

and μ+3σ for each partition separately for leak (blue line) vs 

no-leak (black line) datasets as shown in Figure 3. 

 
Figure 3: Visualation of  DPDF content of Leak (Blue) vs 

No-Leak (Black) Datasets. For each partition, upper bound / 

lower bound are obtained with μ+3σ and μ-3σ to visualize 

the location of the mean value and its spread 

simultaneously. 

Selective use of content from DPDF partitions for the 

purpose of distinguishing between leak and no leak 

(classification) datasets need to fulfill at least following 

criteria: 1) Potential content from a partition should exhibit 

class separation potential and 2) Potential content from a 

partition should have likelyhood of taking values (non-

zero). The first criteria suggests that patterns shown in 

DPDF should have some class separating capability such as 

μ_leak ≤ μ_(no-leak) such as the partition around 0.015 as 

shown in Figure 4. Or, as shown in Figure 3, the partition 

around zero that the spreads are different between classes, 

which indicates standard deviations of no-leak datasets may 

be generally smaller than those of leak datasets. The second 

criteria has to do with selection of content elements that will 

take value in the sealed process making sure such content 

will available to determine the overall system’s state in 

terms of the presence of a leak. This criteria is a basic yet a 

necessary one to ensure content availability of a partition 

from DPDF from which subsequent feature calculations are 

based on.  

Following aforementioned criteria, we will mainly focus on 

the features extracted from DPDF partition near the zero. 

This is due to the overall low DPDF values of almost all 

other partitions indicating risks of them to take value on a 

consistent basis. 
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Figure 4: Zoom-in view of Figure 3 focus on partitions on 

the positive side. For partition centered at 0.015, with some 

overlapping the means of leak vs no leak populations exhbit 

certain level of difference. 

3.2.5. Continuous Evaluation of DPDF Content Derived 

Features for Leak vs No-Leak System State 

Determination 

One advantage of using recursive equation for feature 

extraction is the enablement of continuous assessment of the 

system of interest. In Figure 5, DPDF partition content 

around zero for multiple leak (upper figure) and no leak 

(lower feagure) datasets (as described in 3.2.4) are shown in 

time domain where we can visually validated the continuous 

class separation capability. 

 
Figure 5: Continuous Evaluation of Content derived from 

DPDF partition around zero. DPDF content (Y-axis) as 

shown is presented in terms of probability where 1 equals 

100%. Upper figure includes only datasets with no leak. 

Lower figure includes only datasets with leak. 

4. CLASSIFICATION WITH A SIMPLE THRESOLD SETTING 

AND RESULTS 

Existing datasets to test out the method contains data 

streams that are collected for calibration purpose of existing 

strategies. Due to current monitor’s design, datasets 

collected for this purpose tend to put more focus on datasets 

with leaks. There are 14 data files labeled as system that has 

been verified to have no leak and 53 data files that have 

induced leak.  When applied to existing monitor, nearly half 

of all dataset will be thrown out without being evaluated due 

to failures to pass one of the entry condtions in place. 

For simplication purpose, we will refer to DPDF0 for the 

probability value obtained from the partition around zero. 

We employ method described above to calculate DPDF0 

continuously at a particular common execution phase of 

current strategy where the system was commanded to be 

sealed. 
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              √(
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The characterization of PDC0 from no leak dataset involves 

using 10 no leak data files. From these files, means and 

standard deviations of maximum and minimum values of 

each PDC0 profiles are obtained. Currently, upper and 

lower thresholds are estimated separately taking the 

common form as the following: 

                                                (9) 

                                                 (10) 

For each dataset, DPDF0 profiles are evaluated continuously 

against Threshold_Upperand Threshold_Lower. System is 

deemed to be leaky if at any given time “either” threshold is 

exceeded.  

Identification of thresholds k1 and k2 are performed with 

following procedure. We divide both datasets with leak and 

datasets with no leak into 2 equal sized groups (training and 

validation). As a result, each group contains 7 no leak 

datasets. In addition, training group contains 26 leak 

datasets and validation group contains 27. We enumerate k1 

and k2 values between -3 to 3 with 0.1 increments to 

identify potential pairs of k1 and k2 producing reasonable 

results. In this case, we define a reasonable performance as 

being able to at least classify all no leak datasets correctly. 

After that, passing pairs are ranked based on their detection 
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rate for leak datasets. In this process we found that among 

31*31 = 961 pairs there exist 20 pairs of k1 and k2 to have 

the same results. For these pairs, the overall prediction rates 

are the same at 100% meaning all leak and no leak datasets 

were identified correctly. They tend to have k1 around 0.9 ~ 

0.18 and k2 to be either -0.7 or -0.8.  

Table 1. k1 and k2 pair test sequence and detection rates for 

leak datasets, no leak datasets and when combined. 

 

  
 

Using these pairs we obtained best overall detection rate of 

88% that is slightly worse yet very similar to the result of 

the original leak monitor. The two k1 and k2 pairs produced 

best result during validation have the same k1 to be 0.9 and 

k2 to be -0.7 and -0.8 respectively at sequence #1434 and 

#1495. One thing to note is that application of the proposed 

method does not require a large set of entry conditions 

before monitoring procedures being executed. In other 

words, proposed feature calculation with a simple 

thresholding method result in significantly improved 

monitor applicability in comparison with current design.  

Table 2. k1 and k2 pair validate sequence and detection 

rates for leak datasets, no leak datasets and when both are 

combined. 

 

 

5. CONCLUSION AND FUTURE WORK 

We have proposed a novel method to obtain an effective 

feature from discretized probabilistic density function 

continuously. Using a simple threshold mechanism, 

different thresholds are setup such that exceeding either one 

indicates the presence of a leak in the system. Compared 

with existing strategies that use a set of entry conditions to 

determine whether to execute a test or not, proposed method 

produced similar detection rate while significantly increases 

applicability (no entry conditions has to be imposed).  

In addition to the simple threshold setting approach 

presented in this paper, continuing effort will be focused on 

evaluating the usage of more effective data classification 

methods such as SVM, Bayesian Classifiers, Fuzzy 

Classifiers or LVQ with proposed feature.  The eventual 

goal is to redesign computation procedures that minimizes 

false positives/negatives (robustness), enhances system 

performance (performance) in real-world settings with 

broad coverage (applicability).  We believe continual effort 

in this field will ensure future technical advancement in this 

fundamental yet critical aspect in emission reduction and 

control. 
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ABSTRACT

Benchmarking of prognostic algorithms has been challeng-
ing due to limited availability of common datasets suit-
able for prognostics. In an attempt to alleviate this prob-
lem, several benchmarking datasets have been collected by
NASA’s prognostic center of excellence and made available
to the Prognostics and Health Management (PHM) commu-
nity to allow evaluation and comparison of prognostics algo-
rithms. Among those datasets are five C-MAPSS datasets that
have been extremely popular due to their unique characteris-
tics making them suitable for prognostics. The C-MAPSS
datasets pose several challenges that have been tackled by
different methods in the PHM literature. In particular, man-
agement of high variability due to sensor noise, effects of
operating conditions, and presence of multiple simultaneous
fault modes are some factors that have great impact on the
generalization capabilities of prognostics algorithms. More
than 70 publications have used the C-MAPSS datasets for de-
veloping data-driven prognostic algorithms. The C-MAPSS
datasets are also shown to be well-suited for development of
new machine learning and pattern recognition tools for sev-
eral key preprocessing steps such as feature extraction and
selection, failure mode assessment, operating conditions as-
sessment, health status estimation, uncertainty management,
and prognostics performance evaluation. This paper summa-
rizes a comprehensive literature review of publications using
C-MAPSS datasets and provides guidelines and references to
further usage of these datasets in a manner that allows clear
and consistent comparison between different approaches.

1. INTRODUCTION

In the past decade, the science of prognostics has fairly ma-
tured and the general understanding of health prediction prob-

Emmanuel Ramasso et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

lem and its applications has greatly improved. Both data-
driven and physics based methods have been shown to pos-
sess unique advantages that are specific to application con-
texts. However, until very recently, a common bottleneck in
development of data-driven methods was the lack of availabil-
ity of run-to-failure data sets. In most real-world cases, data
contain fault signatures for a growing fault at various sever-
ity levels but no or little data capture fault evolution all the
way through failure. Procuring actual system fault progres-
sion data is typically time consuming and expensive. Fielded
systems are, most of the time, not properly instrumented for
collection of relevant data or are unable to distribute such data
due to proprietary constraints. The lack of common data sets,
which researchers can use to compare their approaches, has
been an impediment to progress in the field of prognostics. To
tackle this problem, a prognostics data repository was estab-
lished (Saxena & Goebel, 2008). Several datasets have been
since published that have been used by researchers around the
world. Among these datasets are five datasets from a turbo-
fan engine simulation model - C-MAPSS (Commercial Mod-
ular Aero-Propulsion System Simulation) (Frederick, DeCas-
tro, & Litt, 2007). By simulating a variety of operational
conditions and injecting faults of varying degree of degra-
dation, datasets were generated for prognostics development
(Saxena, Goebel, Simon, & Eklund, 2008a). One of the
first datasets was used for a prognostics data challenge at
the PHM’08 conference. A subsequent set was then released
later with varying degrees of complexity. These datasets have
since been used very widely in publications for benchmarking
prognostics algorithms.

The turbofan degradation datasets have received over seven
thousand unique downloads in the last five years but algo-
rithms developed using these have been published in only
about seventy publications. Furthermore, in many publica-
tions it is not clear how authors are computing results and
comparing with others. There has been a confusion and in-
consistency in how these datasets have been interpreted and
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used in many cases. Consequently, not all comparisons of
performance can be considered valid. Therefore, this paper
intends to analyze various approaches that researchers have
taken to implement prognostics using these turbofan datasets.
Some unique characteristics of these datasets are also identi-
fied that led to use of certain methods more often than oth-
ers. Specifically, various differences among these datasets
are pointed out. A commentary is provided on how these ap-
proaches fared compared to the winners of the data challenge.
Furthermore, this paper also attempts to clear several issues
so that researchers, in the future, can take these factors into
account in comparing their approaches with the benchmarks.

The paper is organised as follows. In Section 2, the C-
MAPSS datasets are presented. Section 3 is dedicated to the
literature review. Section 4 presents a taxonomy of prognos-
tics approaches for C-MAPSS datasets. Finally, Section 5
provides some guidelines to give a hand to future users in de-
veloping new prognostic algorithms applied to these datasets
and in facilitating algorithms benchmarking.

2. C-MAPSS DATASETS

C-MAPSS is a tool, coded in the MATLAB-Simulink R© en-
vironment for simulating engine model of the 90,000 lb thrust
class (Frederick et al., 2007). Using a number of editable
input parameters it is possible to specify operational profile,
closed-loop controllers, environmental conditions (various al-
titudes and temperatures), etc. Additionally, there are provi-
sions to modify some efficiency parameters to simulate vari-
ous degradations in different sections of the engine system.

2.1. Datasets characteristics

Using this simulation environment, five datasets were gen-
erated. By creating a custom code wrapper, as described
in (Saxena, Goebel, et al., 2008a), selected fault injection
parameters were varied to simulate continuous degradation
trends. Data from various parts of the system were collected
to record effects of degradations on sensor measurements and
provide time series exhibiting degradation behaviors in mul-
tiple units. These datasets possess unique characteristics that
make them very useful and suitable for developing prognostic
algorithms.

1. Data represent a multi-dimensional response from a
complex non-linear system from a high fidelity simula-
tion that very closely models a real system.

2. These simulations incorporated high levels of noise in-
troduced at various stages to accommodate the nature of
variability generally encountered.

3. The effects of faults are masked due to operational con-
ditions, which is yet another common trait of most oper-
ational systems.

4. Data from plenty of units is provided to allow algorithms

to extract trends and build associations for learning sys-
tem behavior useful for predicting RUL.

These datasets were geared towards data-driven approaches
where very little or no system information was made available
to PHM developers.

As described in detail in Section 3, the analysis on the publi-
cations using these datasets shows that many researchers have
tried to make comparisons between results obtained from
these similar yet different datasets. This section briefly de-
scribes and distinguishes the five datasets and explains why
it may or may not be appropriate to make such comparisons.
Table 1 summarizes the five datasets. The fundamental dif-
ference between these datasets is attributed to the number of
simultaneous fault modes and the operational conditions sim-
ulated in these experiments. Datasets #1 through #4 incor-
porate an increasing level of complexity and may be used to
incrementally learn the effects of faults and operational con-
ditions. Furthermore, what sets these four datasets apart from
the challenge datasets is the availability of ground truth to
measure performance. Datasets 1 − 4 consist of a training
set that users can use to train their algorithms and a test set
to test the algorithms. The ground truth RUL values for the
test set are also given to assess prediction errors and compute
any metrics for comparison purposes. Results between these
datasets may not always be comparable as these data simulate
different levels of complexity, unless a universal generalized
model is available that regards datasets 1− 3 as special cases
of dataset #4.

The PHM challenge datasets are designed in a slightly differ-
ent way and divided into three parts. Dataset #5T contains
a train set and test set just like for datasets 1− 4 except with
one difference. The ground truth RUL for the test set are
not revealed. The challenge participants were asked to up-
load their results (only once per day) to receive a score based
on an asymmetrical scoring function (see (Saxena, Goebel, et
al., 2008a)). Users can still get their results evaluated using
the same scoring function by uploading their results on the
repository page, but otherwise it is not possible to compute
any other metric on the results in absence of ground truth to
allow error computation. The third part of the challenge set is
dataset #5V , the final validation set that was used to rank the
challenge participants, where they were allowed only once
chance to submit their results. The challenge since then is still
continuing and a participant may submit final results (only
once) for evaluation per instructions posted with the dataset
on the NASA repository (Saxena & Goebel, 2008).

2.2. Performance Benchmarking

One of the key drivers for this study was to assess state-of-
the-art in prognostic methods established through compar-
isons and performance benchmarking. However, the survey
revealed a serious lack of consistency in methods used for

2
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Table 1. Description of the five turbofan degradation datasets available from NASA repository.

Datasets #Fault Modes #Conditions #Train Units #Test Units

Turbofan data
from NASA
repository

#1 1 1 100 100
#2 1 6 260 259
#3 2 1 100 100
#4 2 6 249 248

PHM2008 Data
Challenge

#5T 1 6 218 218
#5V 1 6 218 435

performance evaluation. One of the key contributing reasons
towards this inconsistency is thought to be the unavailabil-
ity of established performance banchmark. Originally it was
planned that the PHM08 challenge winning performances
would establish a benchmark that would allow further im-
provements as new methods are developed. But since that
webpage was taken down in subsequent years these scores
have not been easily available except as reported (often par-
tially) in some publications from the winners. It is, therefore,
planned to compute several relevant metrics on the submitted
results during PHM08 challenge and make them available to
serve as reference for future efforts. These benchmarks, how-
ever, remain beyond the scope of this paper and will be made
available in future publications.

3. C-MAPSS DATASET LITERATURE REVIEW

To analyze various approaches that have been used to solve
C-MAPSS dataset problem, all the publications that cite these
datasets including the references recommended by the repos-
itory were collected through standard web search. The search
results returned over seventy publications which were then
preprocessed to identify overlapping efforts by same authors
or the publications that only cite the dataset but perceivably
did not use them for algorithm development. This resulted
in forty unique publications that were then considered for re-
view and analysis in this work.

For the sake of readability, each of these publications were as-
signed a unique ID to use in various tables summarizing the
results presented in this section. This mapping between pub-
lication and IDs is presented in Table 10 as appendix. Fur-
thermore, to keep the paper length short, a detailed review
analysis of each of the forty publications is not included but
only the summarized findings.

The analysis of the collected publications reveals several im-
portant observations that are summarized here. First, these
publications are binned into various different categories and
then analyzed for the distributions thus observed. These cat-
egories and corresponding findings are presented next.

3.1. C-MAPSS Dataset Used

Table 2 identifies specific publications that use one or more
of these five datasets. It can be observed that the dataset #1

was the most used one (55%), followed by the test set (#5T )
from the PHM08 challenge (35%), whereas rest of the other
datasets are relatively under utilized. Three publications re-
port generating their own datasets using the C-MAPSS sim-
ulator and (Richter, 2012) describes the simulator and how
it can be used to generate degradation data rather than using
any specific dataset.

The heavy usage of the dataset #1 (≈ 70%) compared to
all other datasets among the four from the NASA Repository
may be attributed to its apparent simplicity compared to the
rest because some of the sensor measurements in this dataset
depict a monotonic trend. This may lead to a possible con-
fusion with health indicators. High usage of dataset #5T is
attributed to the PHM08 challenge, where several teams had
already used these data extensively, thereby gaining signifi-
cant familiarity with the dataset as well as a preference due to
availability of corresponding benchmark performance from
the challenge leader board.

Table 2. List of publications for each dataset.

Datasets Publication ID Ratio

Turbofan data
from NASA
repository

#1
5, 6, 10, 13, 14, 15, 19, 20,
23, 24, 25, 26, 27, 28, 31,
32, 33, 34, 36, 37, 38, 40

22/40

#2 13, 22, 34, 40 4/40
#3 34, 40 2/40
#4 7, 34, 40 3/40

PHM08 Data
challenge

#5T 1, 2, 3, 4, 8, 12, 16, 17, 21,
29, 30, 34, 35, 40 14/40

#5V 1, 2, 3, 40 4/40
Simulator OWN 9, 11, 39 3/40
Other - 18 1/40

Several publications mentioned in Table 2 have used only
the training datasets that have complete (run-to-failure) tra-
jectories. Using data with complete trajectories gives access
to the true End-of-Life (EOL) to compute RUL from any
time point in a degradation trajectory which could be used
to generate a larger set of training data. This approach is
also relevant to estimating RUL at different time points and
allows the usage of prognostics metrics (Saxena, Celaya, et
al., 2008) such as Prognostic Horizon, α − λ metric, or the
convergence measure. However, in true learning sense the
algorithm, once trained, must be tested on unseen data for
proper validation, as was required for the PHM’08 challenge
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datasets. Table 3 shows that 11 different publications used the
full training/testing datasets: the training dataset for estimat-
ing the parameters of the algorithms and using the full testing
datasets for performance evaluation.

Table 3. List of publications using only full training/testing
datasets.

Datasets Publication ID Ratio

Turbofan dataset
from NASA
repository

#1 20, 27, 28, 40 5/40
#2 40 1/40
#3 40 1/40
#4 40 1/40

PHM08 Data
challenge

#5T 1, 2, 3, 4, 16, 21, 40 7/40
#5V 1, 2, 3, 40 4/40

3.2. Target Problem Being Solved

As normally expected there is a wide variety of approaches
taken in interpreting the datasets, formulating a problem. and
modeling the system to solve the problem. However, contrary
to expectations a significant number of publications have uti-
lized these datasets for analysis heavily focused on diagnosis
(multi-class classification) rather than prognostics.

By posing a multi-class classification problem various publi-
cations attempt to solve mainly three types of problems:

• Supervised classification: The training dataset is labeled
(known classes for each feature vector);

• Unsupervised classification: The classes are not known
apriori and data are not labeled;

• Partially supervised classification: Some classes are pre-
cisely known, others are unknown or are attached with a
confidence value to express belief in that class.

Publications 1, 7, 10, 20, 24, 27, 32 use classification for
preprocessing steps towards solving a prognostics problem.
Specifically, unsupervised classification algorithms are used
in publications 1, 7 to segment the dataset into the six oper-
ating conditions. For reference, detailed information about
various simulated operating conditions in C-MAPSS is de-
scribed in (Richter, 2012), which can also be used to label
these datasets. Supervised and unsupervised classification al-
gorithms are also used in publications 6, 10, 20, 27, 32 to
assign a degradation level according to sensor measurements.
The sequence of discrete failure degradation stages is indeed
relevant for the estimation of the current health state and its
prediction (Kim, 2010).

Health assessment, anomaly detection (seen as a 1-class clas-
sification problem) or fault identification are tackled in pub-
lications 6, 11, 12, 13, 26, 31, 35 using supervised classifi-
cation methods, and partially supervised classification tech-
niques in publications 12, 27, 33. For these approaches, a
known target (or a degradation level) is required to evaluate
the classification rate. For instance, four degradation levels

were defined for labeling data in publications 6, 10, 27, 33:
normal degradation (class 1), knee corresponding to a notice-
able degradation (class 2 viewed as a transition between class
1 and 3), accelerated degradation (class 3) and failure (class
4). One such segmentation is provided at URL1, whereas
a different set of segmentation was proposed in publication
13. Using these segmented data (clusters) as proxy to ground
truth, some level of classification performance can be evalu-
ated for comparison purposes.

Similar to several classification approaches used, many ap-
proaches were employed for solving the prognostics problem
for predicting RUL. In order to give due attention to the anal-
ysis of prognostic methods, a discussion is presented sepa-
rately in Section 4.

3.3. Method for Treatment of Uncertainty

Given the inherent nature of datasets that include several
noise factors and lack of specific information on the effects of
operational conditions it is important for algorithms to model
and account for uncertainty in the system. Different publica-
tions have dealt with uncertainty at various stages of process-
ing as described below:

1. Signal processing step such as noise filtering using a
Kalman filter as in publications 2, 3, 20, Gaussian kernel
smoothing in publications 1, 7, and functional principal
component analysis in publication 15.

2. Feature extraction/selection step such as using princi-
pal component analysis and other variants of it as sug-
gested in publications 1, 7, 13, grey-correlation in pub-
lication 22, and computing relevance of features for pre-
diction in publication 23.

3. Health estimation step such as based on operating con-
ditions assessment to normalize/factor out the effects of
operating conditions as proposed in publications 1, 7, 21,
40 and using non-linear regression.

4. Classification step where uncertainty modeling plays a
role on data labeling using noisy and imprecise degrada-
tion levels as shown in publications 12, 27, 33, or on the
inference of a sequence of degradation levels such as us-
ing Markov Models or multi-models as in publications 6,
10, 24, 32, 34.

5. Prediction step such as gradually incorporating prior
knowledge during estimation in presence of noise as pro-
posed in publications 4, 14, 16, 17, 19, 21, 30, in deter-
mining failure thresholds as in publications 10, 27, 32 or
in representing health indicator such as in publication 40
to be used in prediction.

6. Information fusion step by merging multiple RUL esti-
mates through Bayesian updating as pointed in publica-

1http://members.femto-st.fr/emmanuel-ramasso/data-and-codes
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tions 4, 21 or in similarity-based matching as in publica-
tions 1, 27, 40.

A variety of different uncertainty representation theories are
found to be used. Table 4 classifies different publications ac-
cording to the theory of uncertainty treatment used in corre-
sponding analysis (Klir & Wierman, 1999). As shown in the
table, the probability theory is the most popular one (65%)
followed by set-membership approaches (in particular fuzzy-
sets with 15%), Dempster-Shafer’s theory of belief functions
(13%), and other measures (such as polygon area and Cho-
quet integral).

Table 4. Methods for uncertainty management used on C-
MAPSS datasets.

Theories Publication ID Ratio

Probability theory
1, 2, 3, 4, 5, 6, 7, 11, 12, 13, 15, 16,
17, 19, 20, 21, 22, 26, 28, 29, 30,
31, 32, 33, 34, 35

26/40

Set-membership 10, 14, 23, 25, 36, 39 6/40
Belief functions 6, 10, 24, 27, 33 5/40
Other measures 10, 40 2/40

3.4. Methods used for Performance Evaluation

Table 5 summarizes the performance measures that have
been used for prognostics-oriented publications. A taxon-
omy of performance measures for RUL estimation was pro-
posed in (Saxena, Celaya, et al., 2008; Saxena, Celaya, Saha,
Saha, & Goebel, 2010), where different categories were pre-
sented: accuracy-based, precision-based, robustness-based,
trajectory-based, computational performance and cost/benefit
measures, as well as some measures dedicated specifically
to prognostics (PHM metrics). Since this problem involves
predictions on multiple units, it is expected that the major-
ity of publications would use error-based accuracy and pre-
cision metrics. Metric like the Mean Squared Error (MSE)
has been used in two different ways: For the estimation of the
goodness of fit between a predicted and a real signal, and as
an accuracy-based metric to aggregate errors in RUL estima-
tion. Only the publications that fall under latter category are
included in the table. The table clearly shows that accuracy-
based measures were most widely used, in particular the scor-
ing function from PHM08 challenge, which also weighs ac-
curacy by timeliness of predictions. Broader usage of this
metric is also explained by the fact that this is the only met-
ric for which scores from data challenge were available and
can be used as benchmark to compare with any new develop-
ment. However, one may also compute additional measures
if using only the training datasets where full trajectories are
available. In that case, approaches like leave-one-out valida-
tion become applicable where all training instances but one
are used for training each time and the remaining one is used
for performance evaluation. Then the average of the perfor-
mance measure is computed from all the runs. Publication 27

presents this approach for dataset #1 and a cross-validation
procedure for dataset #5T is used in publication 21. Note
that publications 19, 20, 32 provide the only RUL estimates
for all testing instances (without computing any metrics) and
publications 10, 27 present distribution of errors.

Table 5. Performance measures used in prognostics-oriented
publications applied on C-MAPSS.

Categories Measures Publication ID Ratio

Accuracy

PHM08 Score 1, 2, 4, 5, 8, 16, 21, 29, 30, 40 10/40
FPR, FNR 8, 10, 27, 40 4/40

MSE 3, 8, 15, 17, 29, 40 6/40
MAPE 4, 23, 28, 32, 34, 39, 40 7/40
MAE 5, 13, 38, 40 4/40

Precision ME 25,28,32,39 4/40
MAD 25 1/40

Prognostics

PH 7, 22 2/40
α− λ 7, 22 2/40

RA 7, 22, 34 3/40
CV 7, 22, 34 3/40
AB 34 1/40

4. PROGNOSTIC APPROACHES

C-MAPSS datasets were generated to allow development and
benchmarking of various prognostics approaches. However,
as observed from the literature review (see Section 3.2) many
researchers have used them to cast a multiclass classification
problem instead, even though majority of publications did use
them to develop prognostics algorithm. This section focuses
on describing those prognostic approaches. These approaches
used on C-MAPSS datasets can be divided into three broad
categories as described next.

4.1. Category 1: Using functional mappings between set
of inputs and RUL

Methods in this category (see Table 6) first transform the
training data (trajectories) into a multidimensional feature
space and use corresponding RUL to label corresponding fea-
ture vectors. Then using supervised learning methods a map-
ping between feature vectors and RUL is developed. Methods
within this category are mostly based on Neural Networks
with various architectures. Different sensor channels were
used to generate corresponding features. However, it was ob-
served that the approaches yielding good performance also
included a feature selection step through advanced parameter
optimization such as using genetic algorithm and Kalman fil-
tering as described in publications 2, 3 that ranked 2d and 3rd
respectively in the competition.

4.2. Category 2: Functional mapping between health in-
dex (HI) and RUL

Methods listed in Table 7 are based on the estimation of
two mapping functions: One maps sensor measurements to
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Table 6. Category 1 methods using a mapping learned be-
tween a subset of sensor measurements as inputs and RUL as
output.

Methods Publication ID

RNN, EKF 2
MLP, RBF, KF, Ensemble 3
MLP 8
ANN 9
ESN 20
Fuzzy rules, genetic algorithm 36
MLP, adaboost 38

a health index (1-D variable) for each training unit based on
sensor measurements; The second mapping links health in-
dex values to the RUL. These approaches construct a library
of degradation models. Inference of the RUL for a given test
instance includes using the library as prior knowledge to up-
date the parameters of the model corresponding to the new
test instance. Updating can be done using Bayes rule as pro-
posed in publication 4 or other model averaging or ensemble
techniques designed to take into account the uncertainty in-
herent to the model selection process (Raftery, Gneiting, Bal-
abdaoui, & Polakowski, 2003).

Table 7. Type 2 methods using health index as input and RUL
as output.

Methods Publication ID

Quadratic fit, Bayesian updating 4
Logistic regression 5
Kernel regression, RVM 7
RVM 16
Gamma process 17
Linear, Bayesian updating 19
RVM, SVM, RNN, Exponential and quadratic fit,
Bayesian updating

21

Exponential fit 28
Wiener process 29
Copula 30
HMM, LS-SVR 34

Table 8 lists some other approaches that use approximation
functions to represent the evolution of individual sensor mea-
surement through time. Given a test instance as many predic-
tions are made as the number of sensors. These predictions
are then used in a classifier that assigns a class label related
to identified degradation level. Some of these approaches
also update classifier parameters with new measurements us-
ing some Bayesian updating rules as mentioned previously.
These methods were however applied only on dataset #1 in
which sensors depict clear monotonic trends.

4.3. Category 3: Similarity-based matching

In these methods (Table 9), historical instances of the system
(sensor measurements trajectories labeled with known failure
times) are used to create a library. For a given test instance

Table 8. Category 2 methods based on individual sensor mod-
eling and classification.

Methods Publication ID

exTS, supervised classification 10
SVR 13
exTS, ARX 14
ANN, ANFIS 23
Piece-wise linear (multi-models) 24
exTS 25
ELM, unsupervised classification 32

similarity with instances in the library is evaluated generating
a set of Remaining Useful Life (RUL) estimates that are even-
tually aggregated using different methods. Compared to cat-
egory 2 methods, these methods do not make use of training
trajectory abstraction into features, but trajectory data (possi-
bly filtered) are themselves stored. Similarity is computed in
the sensor space as in publication 27 or using health indices
as in publications 1, 7, 17, 21, 40.

As mentioned in publications 1, 7, in practice, the test in-
stance and the training instance may take different time in
reaching a particular degradation level from the initial healthy
state. Therefore, similarity-based matching must accommo-
date this difference in the early phases of degradation curves.
In publication 40, this problem was tackled by assuming a
constant initial wear for all instances yielding an offset on
health indices. Efficient similarity measures are also neces-
sary to cope with noise and degradation paths. For instance,
in publications 1, 7 three different similarity measures were
used, and in publication 40, computational geometry tools
were used for instance representation and similarity evalua-
tion.

Table 9. Category 3 methods using similarity-based match-
ing.

Methods Publication ID

HI-based 3 similarity measures and kernel smoothing 1, 7
Similar to 1 and 7 using 1 similarity measure 22
Feature-based similarity, 1 similarity measure, en-
semble, degradation levels classification

27

HI-based similarity, polygon coverage similarity, en-
semble

40

An advantage of approaches in this category is that new in-
stances can be easily incorporated. Moreover, similarity-
based matching approaches have demonstrated good general-
ization capability on all C-MAPSS datasets as shown in pub-
lications 1, 7, 40 despite a high level of noise, multiple simul-
taneous fault modes, and a number of operating conditions.
This category of algorithms are relatively easily parallelized
to reduce computational times needed for inference.
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5. SOME GUIDELINES TO USING C-MAPSS DATASETS

Another contribution from this paper is through summariz-
ing some guidelines in using C-MAPSS datasets that my help
future users to understand and utilize these datasets better.
It summarizes information gathered from the literature re-
view and authors’ own experiences, which in many cases goes
beyond the documentation provided along with the datasets.
Specifically, it offers some general processing steps and lists
relevant publications that describe implementation of these
preprocessing steps that could be useful in developing a prog-
nostic algorithm (Figure 1).

Figure 1. Guidelines to Using C-MAPSS Datasets.

Based on the analysis presented in (Section 3), five general
data processing and algorithmic steps are considered:

[Step 1:] Understanding C-MAPSS datasets – Compre-
hensive background information on turbofan engines and
C-MAPSS datasets is well presented in three publications,
(Saxena, Goebel, Simon, & Eklund, 2008b), (Richter, 2012),
and (T. Wang, 2010). More details about the hierarchical
decomposition of the simulated system into critical compo-
nents can also be found in (Frederick et al., 2007; Abbas,
2010), which provides valuable domain knowledge. These
publications do not focus on the physics-of-failure of tur-
bofan engines but describe generation of these datasets and
various practical aspects when using C-MAPSS datasets for
prognostics. These include description of sensors measure-
ments, illustrations of operating conditions, impact of fault
modes, etc., which can play an important role in improv-
ing data-driven prognostics algorithms as well. Going from
dataset #1 to #4 represents varying degrees of complexity
and, therefore, it is recommended to use them in that order to
incrementally develop methods to accommodating individual
complexity one by one. The challenge datasets fall some-
where in the middle as far as complexity level goes but suffer
from availability of ground truth information for a quicker

feedback during algorithm development. Therefore, these
datasets may be used as validation examples and should be
compared to other approaches using benchmarks presented
in Section 2.2.

[Step 2:] Defining the problem – Given the nature of these
datasets several types of problems can be defined. As men-
tioned in Section 3.2 in addition to prediction, a multi-class
classification problem can be defined for a multidimensional
feature space. However, the intent behind these data was
to promote prognostics algorithm development. Since these
data consist of multiple trajectories, the problem to predict
the RUL for all trajectories can be constructed just as the one
posed in the data challenge. However, one could also define
the problem at a higher granularity by modeling the degrada-
tion for each trajectory individually and predict RUL at multi-
ple time instances, which would be more of a condition based
prognostics context.

[Step 3:] Data preparation – After a dataset (turbofan or
data challenge) is selected, it is suggested to split the original
training dataset into two subsets: a training dataset for model
parameter estimation (learning) and a testing dataset to test
the learned model 7 (see for example publications 21, 40).
For the datasets #1− 4 corresponding RUL vectors are pro-
vided for the test sets so users can validate their algorithms.
However, for the challenge datasets, the evaluations can only
be obtained by uploading the RUL to the data repository web-
site. Therefore, it may be desirable to split the training set
itself for training, test, and validation purposes during algo-
rithm development. The next step is to downselect sensors to
reduce problem dimensionality. Some data exploration and
preparation approaches for the data challenge (datasets #5T
and #5V ) are well described in publications 1, 2 and 7. Some
“heuristic rules” to avoid over-predictions are also presented
in publication 40 and applied on all five C-MAPSS datasets.
Some of the better performing methods are based on a PCA
such as in publication 1, and other sensor selection proce-
dures such as in publications 2, 3 and 40. From the survey it
was noted that the most commonly selected subset of sensors
was 7, 8, 9, 12, 16, 17, 20 (as it was also initially suggested in
publication 1). Additional sensors may also be considered,
similar to the approach proposed in publication 40 where a
total of 511 combinations were studied for each dataset for
an exhaustive evaluation.

[Step 4:] Learning and Predicting – This step forms the
core of the prediction problem. As described in Section 3 a
variety of learning approaches can be employed to learn var-
ious mappings between the sensor data and system health to
compute RUL. Some of these methods try to learn RUL as
a function of sensor data (system state) or features thereof,
others estimate a health index first. Each of the trajectory can
be modeled into a degradation process to predict when they
cross the zero health threshold using regression methods. Ap-
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proaches based on health index computation can be applied
to all datasets. The approach proposed in publications 1, 7
is the simplest to implement. To deal with normalization (or
alternatively segmentation) of data by operating conditions
one could use a clustering approach as suggested by the au-
thors above, or one may directly use the parameters described
in publication 18 to validate the performance of segmenta-
tion. Some variants for health indicator estimation can also
be picked from publications 21 and 40.

[Step 5:] Performance evaluation – Once a learned model
results in to satisfactory results on the testing set aside by
partitioning the training data, one may use the actual test
dataset provided with the datasets. After further tuning, es-
pecially for datasets (#5T and #5V ), a final validation can
be done by submitting the results to the NASA repository.
Before uploading the final submission, the generalization ca-
pability should be ensured by computing using several perfor-
mance metrics as discussed in Section 2.2. Some benchmarks
have been provided in Section 2.2 using metrics that aggre-
gate prediction performance from multiple units. While the
exact numbers would not match, the performance is expected
to be in the similar range for results obtained from turbofan
datasets that have access to RUL. For comparison purposes,
the scores obtained in previous works on complete C-MAPSS
trajectories are summarized in publication 40. Note that here
using the full trajectory data it is possible to compute prog-
nostics metrics as presented in (Saxena, Celaya, et al., 2008;
Saxena et al., 2010) as the actual EOL is known apriori. This
allows testing the critical time aspect of a prediction in addi-
tion to accuracy and precision measures.

6. CONCLUSION

As observed from published PHM literature the most widely
used datasets for data-driven prognostics come from the C-
MAPSS turbofan simulator from among the other openly
available prognostic datasets. Guided by this observation, a
survey of approaches developed using these datasets (since
2008) was carried out with the purpose of understanding the
current state-of-the-art and assess how these datasets have
helped in development of prognostic algorithms. However,
it was noticed that due to several factors, these datasets did
not get used as intended and any meaningful comparison be-
tween approaches was not trivial. Specifically following ob-
servations were made and this paper tries to alleviate some of
these factors to improve usage of these datasets as originally
intended.

• Despite several thousand downloads only 70 papers re-
ferring to C-MAPSS were found in the published liter-
ature. This suggests that a vast majority of those who
downloaded did not get to utilize these data to the point
of publishing the results in a publication. Therefore,
some guidance has been provided to help in understand-
ing these datasets and how a prognostics problem may

be set up in few different ways. Furthermore, a descrip-
tion of all five C-MAPSS datasets is provided identifying
their distinguishing characteristics and clearing up some
misunderstandings as identified from the survey.

• Among the 70 papers, only a few actually used the test-
ing datasets for evaluating their methods. A mix of dif-
ferent datasets and the metrics used to evaluate perfor-
mance was observed from the survey. This made it diffi-
cult to compare performance between different reported
methods in a consistent manner. Therefore, a better ex-
planation of differences in these datasets and providing
the top thirty scores from challenge datasets should help
future users in comparing their methods against a bench-
mark in a more consistent manner. Furthermore, it is also
suggested how results from datasets that are not from the
challenge could be compared against this benchmark es-
tablished on the challenge set.

• The survey reveals usage of various prognostics ap-
proaches that can be divided into three main categories.
These approaches are briefly described with potential ar-
eas for further improvement. The survey also demon-
strated that C-MAPSS datasets can be used for devel-
oping and testing methods for several intermediate steps
in prognostics such as sensor selection, health indicator
estimation, operating conditions modeling in addition to
fault estimation and prediction.

With the analysis presented in this paper and references to a
variety of approaches employed, this paper hopes to establish
public knowledge that can be used by future users in prognos-
tic algorithm development and aid in fulfilling the underlying
intent of data repository to facilitate algorithm benchmarking
and further development. The issue of performance bench-
marking remains to be explored as part of future work where
authors plan to compute performance for challenge entries
based on several other metrics that will allow comparisons
with performance results reported in many publications.

NOMENCLATURE

PHM Prognostics and Health Management
RUL Remaining Useful Life
CMAPSS Commercial Modular Aero-Propulsion

System Simulation
HI Health index
MLP MultiLayer Perceptron
ANN Artificial neural network
RNN Recurrent neural network
RBF Radial basis function
ESN Echo state network
ELM Extreme learning machine
EKF Extended Kalman filter
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KF Kalman filter
SVR Support vector regression
LS-SVR Least squared support vector regression
exTS Evolving extended Takagi-Sugeno system
ARX Autoregressive exogeneous model
ANFIS Adaptive neuro fuzzy inference system
RVM Relevance vector machine
HMM Hidden Markov model
PCA Principal components analysis
MSE Mean squared error
MAPE Mean absolute percentage error
MAE Mean absolute error
ME Mean error
PH Prediction horizon
AP Acceptable predictions (rate)
α− λ Accuracy at specific times
RA Relative accuracy
CV Convergence
AB Average bias
FPR False positive rate
FNR False negative rate
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APPENDIX
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ping is provided in the Table 10 below.
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4(Coble, 2010)
(Coble & Hines, 2011)
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(Xue, Williams, & Qiu, 2011) 12
(Zhao, P., & Willett, 2011) 13
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ABSTRACT 

Today, data driven prognostics acquires historic data to 
generate degradation path and estimate the Remaining 
Useful Life (RUL) of a system.  A successful methodology, 
Trajectory Similarity Based Prediction (TSBP) that details 
the process of predicting the system RUL and evaluating the 
performance metrics of the estimate was proposed in 2008. 
Two essential components of TSBP identified for potential 
improvement include 1) a distance or similarity measure 
that is capable of determining which degradation model the 
testing data is most similar to and 2) computation of 
uncertainty in the remaining useful life prediction, instead of 
a point estimate.  In this paper, the Trajectory Based 
Similarity Prediction approach is evaluated to include 
Similarity Linear Regression (SLR) based on Pearson 
Correlation and Dynamic Time Warping (DTW) for 
determining the degradation models that are most similar to 
the testing data.  A computational approach for uncertainty 
quantification is implemented using the principle of 
weighted kernel density estimation in order to quantify the 
uncertainty in the remaining useful life prediction. The 
revised approach is measured against the same dataset and 
performance metrics evaluation method used in the original 
TBSP approach. The result is documented and discussed in 
the paper.  Future research is expected to augment TSBP 
methodology with higher accuracy and stronger anticipation 
of uncertainty quantification. 

1. INTRODUCTION 

Data driven prognostics acquires historic data to generate 
degradation path and estimate the Remaining Useful Life 
(RUL) of a system.  In 2008, a new approached known as 

the Trajectory Similarity Based Prediction (TSBP) 
methodology was proposed in (Wang T. , 2013), and was 
successfully demonstrated during the NASA AMES 2008 
Prognostics Health Management (PHM) challenge by 
obtaining the highest score by using a data-driven 
prognostics method to predict the RUL of a turbofan engine 
(Saxena & Goebel, PHM08 Challenge Data Description, 
2008).  While the TSBP is a proven technique, (Wang T. , 
2013) does not address imbalanced data (Gouriveau, 
Ramasso, & Zerhouni, 2013), the effectiveness of different 
dissimilarity measure (Giusti, 2013), and uncertainty of the 
model (Dallachiesa, Nushi, Mirylenka, & Palpanas, 2012).  
These considerations are required to minimize the variation 
that exists in the data driven prognostics method, and 
systematically quantify the uncertainty in the RUL 
prediction. 

In (Wang T. , 2013), the author developed a novel RUL 
prediction method based on the Instance Based Learning 
methodology called TSBP.  In TSBP, the historical 
instances of a system with life-time condition data and 
known failure time from the training data are used to create 
a library of degradation models; these models are then 
compared against the testing data in order to compute a 
similarity measure and predict an RUL corresponding to 
each of the degradation models.  The final RUL estimate 
can be obtained by aggregating the multiple RUL estimates 
using a density estimation method.  While (Wang T. , 2013) 
focused on the basic TSBP methodology, there are still 
several areas for improvement. 

For example, in (Yu, Yong, Datong, & Xiyuan, 2012), the 
authors investigated sensor selection as a critical research 
topic for prognostics. In their research, the authors stated 
that inclusion of irrelevant or redundant variables during 
data fusion may lead to over-fitting or less sensitivity of 
prognostics model, which would lead to adverse prediction 
performance.  

Jack Lam et al. This is an open-access article distributed under the terms 
of the Creative Commons Attribution 3.0 United States License, which 
permits unrestricted use, distribution, and reproduction in any medium, 
provided the original author and source are credited. 
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In (Guo, Gerokostopoulos, Liao, & Niu, 2013), the authors 
proposed to incorporate degradation initiation time into the 
general degradation path modeling.  Their paper argued that 
there is a “degradation free” period, i.e., degradation starts 
only after an initiation time and that a product failure is a 
combined effect of the initiation time and the degradation 
growth.  In (Gouriveau, Ramasso, & Zerhouni, 2013), the 
authors suggested the need to deal with 1) data whose 
relative number of instances in each class evolves with time 
and 2) data whose significance is not known by the user.  In 
(Giusti, 2013)and (Otey & Parthasarathy, 2004), both 
authors examined the notion of quantifying the dissimilarity 
between different multivariate time series. Their argument 
suggested that calculating the Euclidean distance between 
the centroids of two data sets is ineffective because it 
ignores the correlations present in the data sets.  Finally, in 
(Dallachiesa, Nushi, Mirylenka, & Palpanas, 2012), the 
authors summarized the uncertainty in time series and 
suggested two main approaches to model these uncertain 
time series.  Given all these factors, it can be easily seen that 
the TSBP method proposed in (Wang T. , 2013) can be 
reviewed and be improved. 

In (Lei & Govindaraju, 2004), authors proposed the use of 
Simple Linear Regression (SLR) as a similarity measure 
technique for on-line signature recognition applications in 
comparison with the traditional approach of computing the 
Euclidean Distance, while having lower time complexity 
(O(n)) than Dynamic Time Warping (DTW) (O(n2)).  The 
SLR method utilized the mean-deviation normalization to 
circumvent the problem of scaling and shifting, which, in 
general, impacts the performance of the DTW method.  
Further, SLR can be adapted to multi-dimensional 
sequences, where most real-life applications are relevant.   

In this paper, we examine the use of SLR and DTW within 
the TSBP method for similarity prediction and address the 
various shortcomings of the original TBSP approach that 
were explained in the previous paragraphs. Further, we test 
the result on the original dataset (Saxena & Goebel, 2008) 
and use the original performance evaluation metrics 
(Saxena, Celaya, Saha, Saha, & Goebel, 2009) against the 
original TBSP approach described by (Wang T. , 2013).  We 
also compare the results using different density estimation 
approaches.  The TSBP method with SLR and DTW as the 
similarity measure with the use of the kernel density 
estimation provide us with more insight into the problem. 

The motivation for this work is to improve further the TSBP 
method by incorporating different similarity measures and 
develop a better understanding for uncertainty qualification.  
Although more work is needed to compare the results of 
TBSP methodology against the state-of-the-art data driven 
technique used by the industry, our study produced a survey 
of related areas that can be experimented to serve as an 
improved TSBP method.  The target application is highly 
complex systems where physical modeling will be difficult 

and state of the operating condition can be observed.  In this 
case, TSBP method can generate different degradation 
models against each regime from the different operating 
condition to generate an aggregation of RUL estimation.  
Unlike (Wang T. , 2013), this paper 1) anticipates 
imbalanced data, 2) evaluates the SLR and DTW similarity 
measures, and 3) incorporates the uncertainty modeling 
done in (Dallachiesa, Nushi, Mirylenka, & Palpanas, 2012). 
These capabilities further support the practical feasibility of 
the proposed method used in real applications.  We envision 
more interest and study in the TBSP approach will drive 
academic community and industry into maturing the 
methodology to provide more accurate RUL estimation. 

The rest of this paper is organized as follows.  In Section 2, 
we review the multi-regime partitioning and normalization 
method used in (Wang T. , 2013).  In Section 3, we briefly 
review the techniques for degradation modeling explained in 
(Wang & Coit, 2007) and (Guo, Gerokostopoulos, Liao, & 
Niu, 2013). In Section 4, we describe the 
similarity/dissimilarity measure used in (Dallachiesa, Nushi, 
Mirylenka, & Palpanas, 2012), (Yu, Yong, Datong, & 
Xiyuan, 2012), (Giusti, 2013), (Otey & Parthasarathy, 
2004), and (Lei & Govindaraju, 2004). In Section 5, we 
describe uncertainty quantification in RUL estimation and 
review the density estimation methods.  In Section 6, we 
include the discussion of the performance metrics described 
in (Saxena, et al., 2008). In Section 7, we review the dataset 
(Saxena & Goebel, 2008) and describe the procedures for 
the experiment. In Section 8 and 9 we present results and 
findings then conclude the paper in Section 10. 

 

 
Figure 1. Process for multi-regime health assessment. 
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2. MULTI-REGIME PARTITIONING AND NORMALIZATION 

When a system is operating under multiple operating 
conditions, the sensor measurements can behave differently 
in those unique environments, thereby causing difficulty in 
identifying failure trends. It is beneficial to identify the 
unique operating conditions or regimes from which sensors 
can be normalized or features can be extracted. Figure 
1shows the high level process for multi-regime health 
assessment. 

To illustrate multi-regime partitioning, the “Turbofan 
Engine Degradation simulation” data set from (Saxena & 
Goebel, PHM08 Challenge Data Description, 2008) will be 
examined. Within this data set, there are 21 sensor 
measurements and three other measurements that describe 
the operational conditions the system was operated under. 
The operating conditions change for each measurement 
(cycle). Figure 2 shows a select number of sensor 
measurements for the life time of one particular system. 

2.1. Regime Identification 

The first step in the process for multi-regime health 
assessment is to identify the unique, non-overlapping 
regimes. In this paper, multiple regimes are found using k-
means clustering. The k-means clustering algorithm finds 
the optimum number of clusters, k, where each observation 
belongs to the nearest cluster’s mean, hence the name k-
means. Figure 3 shows the results of the k-means clustering 
algorithm on the “Turbofan Engine Degradation simulation” 
data set. As seen in Figure 3, the data was found to have 6 
nicely separated and non-overlapping regimes.  

 
Figure 2. sensor measurement from “Turbofan Engine 

Degradation simulation” data set. 

2.2. Mean-Variance Normalization 

The next step is to normalize the sensor data according to 
the regime the measurement was taken under. This is done 
by performing mean-variance normalization. Similar to Eq. 

(1) where p represents the regime the sensor measurement 
belongs at time instance i. 

 𝑦𝑖 =
 𝑥𝑖𝑝 − 𝜇𝑝

𝜎𝑝  (1) 

The mean-variance normalized data becomes the time series 
health indices as depicted in Figure 1. In continuation of the 
illustration, the progression from Figure 2 to Figure 4 shows 
a more revealing portrayal of the system behavior once the 
operating conditions are taken into consideration. 

 

 
Figure 3. Multi-regime partitioning of the “Turbofan Engine 
Degradation simulation” data set. This figure represents all 

the operational condition that was performed. 

 

 
Figure 4. Mean variance normalized data (blue line) from 

the “Turbofan Engine Degradation simulation” data set for a 
single system or unit. The red line shows the degradation 

model for each sensor. 
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2.3. Variable Weighting and Dimensionality Reduction 

At this point, the system data has been prepared and 
normalized for training the degradation models. However, 
there are additional techniques that can be used to further 
emphasize and refine the data to produce more accurate and 
timely results. Variable/feature weighting is used to 
emphasis certain sensor measurements over other 
variable/features and is often used in the feature selection 
process. In (Wang T. , 2013), an Empirical Signal-to-Noise 
Ratio (eSNR) is used for variable relevance evaluation. The 
eSNR is defined as  

 𝑒𝑆𝑁𝑅(𝑠𝑖) =
𝑣𝑎𝑟(𝑠𝑖)
𝑣𝑎𝑟(𝑠𝑖)

 (2) 

where 𝑠𝑖  is a one dimensional time series representing the 
features of the system evolving over time. Let 𝑠𝑖  be a 
smoothed version of 𝑠𝑖  filtered by a certain filtering or 
smoothing algorithm. The idea is that, in the event the 
global variance (variance of the entire time series) is highly 
correlated to the local variance (variance within a shorter 
period of the time series), the smoothed time series will 
have a much smaller variance compared to the original. 
Therefore, the feature selection or emphasis can be 
performed from the ranking of the eSNR. The feature 
weighting is  
 

 𝑦�𝑛 = 𝑦𝑛 ∙ 𝑒𝑆𝑁𝑅(𝑦𝑛) (3) 

where n represents the nth feature. This approach effectively 
de-emphasizes the features with large local variance. 

Once the feature has been weighted, the next step is to 
uncorrelated the features. In this case, (Wang T. , 2013) 
suggests the use of Principal Component Analysis (PCA).  
PCA is a common technique used to transform the features 
into a smaller set of uncorrelated features. The uncorrelated 
feature will contain minimum redundancy and is important 
to combat the so-called curse of dimensionality. The method 
transforms the data into another coordinate system where 
the first coordinate or principal component (PC) represents 
the direction of the greatest variance of the original data 
with the second, third, etc. PC represents decreasing 
variance of the original data. The transformed features are 
calculated as 

 𝑧 = 𝑉𝑀𝑇 ∙ (𝑦� − 𝑦�) (4) 

Where 𝑦�  is the mean of 𝑦� , and 𝑉𝑀  consist of the 
eigenvectors from the covariance matrix of 𝑦� . The top M 
principal components that make up 90% of the total 
variance are retained. The resultant PCs form a new time 
series 𝑧 for each training and testing instance. An example 
of variable weighting and dimensionality reduction of the 
original data can be seen in Figure 5.  With the PCA 
completed, the original data is now ready for Degradation 
Trajectory Abstraction. The data is Figure 5 show how the 
system is degrading through time with the red line showing 

the degradation trajectory abstraction model discussed in the 
following section. 
 

3. DEGRADATION MODELING/REGRESSION 

The degradation models are built from the M Principal 
Components (PC) extracted from the normalized data as 
described in Section 2. These models describe the PCs of z 
as a function of time t: 

 𝐺: 𝑧 = 𝑔 𝑙 (𝑡) + 𝜀, 0 ≤ 𝑡 ≤ 𝑡 𝑙 𝐼  (5) 

where 𝜀 is the noise term and in many cases is modeled as 
Gaussian. (Wang, 2010) 

 
Figure 5. Example Trajectory Abstraction model from the 
“Turbofan Engine Degradation simulation” data set. The 
blue line is the variable weighting and dimensionality 
reduction of the original data, z. The red line is the 
degradation trajectory abstraction models. 

There are many parametric and non-parametric methods that 
can be used to build the degradation models, all of which 
should be considered based on their ability to address the 
global degradation pattern, short-period characteristics, 
amount of available data, data noise level, and many other 
influential system characteristics. For this type of RUL 
estimation, long-term degradation behavior and the 
operating setting of the system are important, whereas the 
local fluctuations in the degradation trajectory can largely 
be considered noise. For these types of applications a 
smoothing operation of the time series such as a linear 
interpolation can be used. In (Wang, 2010), an exponential 
curve fitting, moving average filter and interpolation, Kernel 
regression smoothing, and relevance vector machines were 
explored.  

Based on the results found in (Wang, 2010) the kernel 
regression smoothing approach was used for degradation 
Trajectory Abstraction in this paper; see Eq. (6)-(7).  

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

626



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014 

5 

 𝑧(𝑡) =
∑ 𝐾𝐺(𝑡, 𝑡𝑖) ∙ 𝑧𝑖𝐸
𝑖=1
∑ 𝐾𝐺(𝑡, 𝑡𝑖)𝐸
𝑖=1

 (6) 

 𝐾𝐺(𝑥, 𝑦) = 𝑒𝑥𝑝 �
‖𝑥 − 𝑦‖2

2𝜌2 � (7) 

Where 𝜌 is the kernel width and is a free parameter usually 
chosen based on the data. An example output is shown in 
Figure 5 as the red line. 

4. REMAINING USEFUL LIFE ESTIMATION 

Once all the models have been trained, the testing data will 
need to be compared to every model and a similarity 
measure computed. The similarity measure is used to 
determine which model the system under test is most similar 
too. This can be done by computing a distance or similarity 
measure. In (Wang T. , 2013), the Minimum Euclidean 
Distance with Degradation Acceleration (MED-DA), 
Minimum Euclidean Distance with Time Lag (MED-TL), 
and Minimum Euclidean Distance with Time Lag and 
Degradation Acceleration (MED-TL-DA) was proposed. It 
was found that the MED-DA performed the best on the 
CMAPSS dataset evaluated. The remaining of this section, 
we briefly review MED-DA distance measure and provide 
an overview of two new similarity/distance measures we 
propose in this paper: Pearson’s Correlation and Dynamic 
Time Warping.  

4.1. Minimum Euclidean Distance with Degradation 
Acceleration 

In (Wang T. , 2013), the Minimum Euclidean Distance with 
Degradation Acceleration (MED-DA) is the same as 
computing the Minimum Euclidean Distance between the 
training and testing models except the MED-DA uses a 
scaling factor for time dilation. This scaling factor is to 
accommodate the degradation rate differences between 
testing and training systems. 

 𝐷 𝑙 2(𝜆) ≔
𝑚𝑎𝑥 (𝜆, 1

𝜆
)

𝐼 � �
(𝑧𝑚𝑖 − 𝑔 𝑙 (𝜆 ∙ 𝑡𝑖))2

2𝜎𝑚2

𝑀

𝑚=1

𝐼

𝑖=1

 (8) 

where max(𝜆, 1/𝜆) is the pentalty term for the difference in 
degradation rate. 

The RUL prediction using this distance measure is 
calculated as: 

 𝑟𝐼 
𝑙 =

𝑡𝐸 
𝑙

𝑎𝑟𝑔𝑚𝑖𝑛
𝜆

𝐷  2(𝜆) − 𝑡𝐼 (9) 

Additionally, in (Wang T. , 2013) it was assumed that the 
most recent cycles provided more value to the similarity 
measure than the earlier cycles. Therefore (Wang T. , 2013) 
used a non-uniform weighting scheme to emphasis the most 
recent cycles of the system under test. Eq. (8) then becomes 

 𝐷𝐷𝐴 
𝑙 2(𝜆) ≔

𝑚𝑎𝑥 (𝜆, 1
𝜆
)

𝐼 ∑ 𝜐𝑖𝐼
𝑖=1

�𝜐𝑖 ��
(𝑧𝑚𝑖 − 𝑔 𝑙 (𝜆 ∙ 𝑡𝑖))2

2𝜎𝑚2

𝑀

𝑚=1

�
𝐼

𝑖=1

 (10) 

where υi is the non-uniform weighting of each cycle 𝑖. 
 

 𝜐𝑖 = 𝑒𝑥𝑝 �−
(𝑡𝑖 − 𝑡)2

2𝜌2 � 

𝜌 = 𝛾 ∙ 𝑟𝐸 
𝑙  

(11) 

The non-uniform weighting is controlled by the spread 
parameter which is a percentage of the life 𝑟𝐸 

𝑙 of the 
degradation model 𝐺 𝑙  and is controlled by the spread ratioγ. 
In (Wang T. , 2013), through cross-valuation, a spread 
parameter of 0.3 was found to produce the best results. 
 
Since MED-DA is a squared distance measure, a similarity 
measure is computed as follows: 

 𝑆𝐷𝐴 
𝑙 = 𝑒𝑥𝑝 (− 𝐷𝐷𝐴 

𝑙 2) (12) 

In (Wang T. , 2013), the best reported performance score on 
the evaluation set was 0.7534. This score is based the 
optimum values for the kernel width parameter 𝜌 used for 
the kernel regression smoothing and spread ratio 𝛾 used in 
the MED-DA similarity evaluation. The optimum 
parameters were found by a 5-fold cross-validation of the 
training set where 𝜌 = 7 and 𝛾 = 0.3. 

4.2. Similarity based on Pearson’s correlation 

In (Lei & Govindaraju, 2004), a simple linear regression 
was used to assess the strength of a linear relationship 
between sequences 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑛) and 𝑌 =
(𝑦1,𝑦2, … ,𝑦𝑛). A goodness-of-fit measures call 𝑅2was used 
and is defined as: 

 𝑅2 =
∑ 𝑢𝑖2𝑛
𝑖=1

∑ (𝑦𝑖 − 𝑌)𝑛
𝑖

 (13) 

where u is the error term and 𝑌 is the mean of 𝑌. 𝑅2 is also 
called the coefficient of determination. It is interpreted as 
the fraction of the variation in 𝑌  that is explained by  𝑋 . 
After further evaluation it is found that 𝑅2  is exactly the 
square of Pearson’s correlation (Lei & Govindaraju, 2004). 
 

 𝑆𝑆𝐿𝑅 = 𝑟 =
∑ (𝑥𝑖 − 𝑋)(𝑦𝑖 − 𝑌)𝑛
𝑖

�∑ (𝑥𝑖 − 𝑋)𝑛
𝑖

2 �∑ (𝑦𝑖 − 𝑌)2𝑛
𝑖

 (14) 

As r approaches 1, the linear relation between the two 
sequences becomes stronger. Therefore the Pearson’s 
correlation of X and Y will have similarity r. 

The RUL prediction using this similarity measure is a direct 
calculation between the test system and the model with the 
highest Pearson’s correlation. 

 𝑟𝐼 
𝑙 = 𝑡𝐸 

𝑙 − 𝑡𝐼 (15) 
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4.3. Similarity based on Dynamic Time Warping 

Dynamic Time Warping (DTW) is an alternative approach 
to determine the distance between two time-series signals 
where the two temporal sequences may vary in time or 
speed. It attempts to match two time series by “stretching” 
and “contracting” subsequences of the series so the 
difference between the series is minimized.  (Giusti, 2013) 
The distance is then measured as the square root of the sum 
of the differences between the matched observations. 

Technically, DTW (Salvador & Chan, 2007) constructs a 
warp path between the two time series.  A dynamic 
programming approach is first used to find the warp path 
and create a cost matrix.  A single point in the original time 
series can be warped to multiple points in the comparing 
time series.  Every cell of the cost matrix is filled and the 
minimum-distance warp path can be evaluated by reversely 
following the smallest cost of each move until the original 
point is reached.  If both series were identical, the warp path 
through the matrix would along the diagonal. 

DTW can also adapt a constrained version by incorporating 
a window size parameter.  This parameter limits the number 
of observations a matching can occur ahead or behind any 
given observation.  It is noted in (Giusti, 2013) that the 
constrained version may sometimes improve the 
classification accuracy by avoiding pathological warping. 

The RUL prediction using this similarity measure is a direct 
calculation between the test system and the model with the 
highest Pearson’s correlation. 

 𝑟𝐼 
𝑙 = 𝑡𝐸 

𝑙 − 𝑡𝐼 (16) 

Since DTW is a squared distance measure, a similarity 
measure is computed as follows: 

 𝑆𝐷𝑇𝑊 
𝑙 = 𝑒𝑥𝑝 (− 𝐷𝐷𝑇𝑊 

𝑙 2) (17) 

4.4. Model Aggregation 

All RUL estimates and similarity scores are used to form a 
hypothesis set and the goal of model aggregation is to use 
multiple estimates in the hypothesis set and sum them up to 
create a final prediction. The simplest method of 
aggregation is to use the similarity-weighted sum, which 
provides a Point Estimate of the RUL. 

 𝑟𝐼 ≔
∑ 𝑆𝐼 ∙ 𝑟𝐼 

𝑙
 
𝑙𝐿

𝑙=1
∑ 𝑆𝐼 

𝑙𝐿
𝑙=1

 (18) 

This approach is inadequate for uncertainty management in 
prognostics. A probability distribution or confidence 
interval for the predicted RUL is desired in order to aid risk-
informed decision-making in the context of prognostics and 
health management. (Wang, 2010) 

5. UNCERTAINTY QUANTIFICATION IN RUL PREDICTION 

The computation of uncertainty in the remaining useful life 
prediction is an important, essential, and challenging issue. 
Since prognostics deals with the prediction of the future 
behavior of engineering systems, it is necessary to 
understand that it is almost impossible to make predictions 
regarding the future. That is why it is important to quantify 
the various sources of uncertainty in prognostics and 
quantify their combined effect on the remaining useful life 
prediction. 

Some recent research efforts in (Sankararaman, Daigle, & 
Goebel, 2014) and (Sankararaman & Goebel, 2013) have 
been focusing on the topic of quantifying the uncertainty in 
prognostics and the remaining useful life prediction. At any 
given instant of time at which prediction needs to be 
performed, the uncertainty in the RUL prediction depends 
on three important factors: 

 Health state estimate at the time of prediction 
(initial state) 

 Future operating and loading conditions 

 Degradation model that predicts health state 
degradation from the initial state, based on the 
future operating and loading conditions 

It has been demonstrated that the computation of the 
uncertainty in the RUL, based on the uncertainty in the 
above quantities is a non-trivial problem and needs to be 
solved using statistical methods (Sankararaman, 2014). In 
this context, the goal is to calculate the probability 
distribution of the remaining useful life prediction 
continuously as a function of time; note that this probability 
distribution varies as a function of time and therefore, needs 
to be recalculated at every time instant. This probability 
distribution needs to systematically account for the different 
sources of uncertainty in the aforementioned list of 
quantities and quantify their combined effect on prognostics 
and remaining useful life prediction.   

Most of the previous efforts have focused on such 
uncertainty quantification only in the context of model-
based prognostics where physics-based models are used to 
represent health state degradation. Uncertainty 
quantification and management in the context of data-driven 
prognostics has not been studied in the detail, and since, 
different types of data-driven techniques have been used by 
several researchers, the interpretation, quantification, and 
management of uncertainty may be different for different 
data-driven approaches. Hence, uncertainty quantification 
needs to be discussed in the context of the data-driven 
approach being pursued, and hence, this paper focuses only 
on uncertainty quantification in the TBSP approach.  
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5.1. Uncertainty in Similarity-Based Prediction 
Technique 

In the context of similarity-based prediction, it is first 
essential to understand the importance of uncertainty 
quantification. In this methodology, the focus is on finding 
out the similarity between the desired testing data set and 
the entire training data set. The remaining useful life of the 
testing data set can be predicted through some sort of 
meaningful “interpolation” in the domain of the training 
data set, where the interpolation procedure attempts to 
identify where the testing data set lies, with respect to the 
training data set. An important underlying assumption here 
is that, at any point of prediction, the future operating 
conditions and loading conditions in the testing data set can 
also be interpolated based on that of the training data set; in 
many practical applications, this assumption may be 
incorrect and therefore, this method may not be applicable. 

Therefore, if there is exact similarity between a testing data 
set and a particular training data set, then there is no 
uncertainty regarding the prediction of remaining useful life. 
This is because the remaining useful life of the desired 
testing data set is equal to the remaining useful life of the 
corresponding training data set. This can be easily explained 
by understanding data-driven learning algorithms such as 
Gaussian process learning where the variance of the 
prediction at any training point is exactly equal to zero. 
Therefore, if the testing point is identical to a training point, 
the variance of the prediction is zero and hence, there is no 
uncertainty regarding the remaining useful life. (Note that, 
the similarity-based comparison is performed only until the 
time of prediction. There may be significant differences 
between the testing set and the training set after the time of 
prediction; such differences lead to uncertainty in the 
remaining useful life prediction but cannot be quantified 
without knowledge regarding the future operating/loading 
conditions of the testing data set.) 

Typically, the testing data set may be significantly different 
from the training data set, and the TBSP approach computes 
a similarity between the training and testing data set. This 
similarity measure is simply reflective of the probabilistic 
weightage that is given to each of the remaining useful life 
values of the training data set. Therefore, Eq. (18) implies 
that the remaining useful life is calculated only using a 
weighted averaging approach, and therefore, is reflective 
only of the mean behavior. Other statistics of the remaining 
useful life prediction can also be calculated. For example, 
the standard deviation can be calculated as: 

 𝜎𝑟 = �
∑ 𝑆𝐼( 

𝑙 𝑟 𝑙 𝐼𝐿′
𝑙=1 − 𝑟𝐼)2

∑ 𝑆𝐼 
𝑙𝐿′

𝑙=1

� 𝐿′
𝐿′ − 1

 (19) 

 

where L' denotes the number of non-zero similarity 
measures. 

Note that the weighted mean and weighted standard 
deviation are central measures. While such central measures 
are important, they do not sufficiently capture the 
information regarding the uncertainty in the remaining 
useful life prediction. In order to achieve this goal, it is 
necessary to calculate the entire probability distribution 
(either in terms of the probability density function or in 
terms of the cumulative distribution function). This 
calculation is facilitated through the use of kernel density 
estimation, as explained later in this section. 

5.2. Uncertainty Quantification through Maximum 
Likelihood Estimation 

In (Fonseca, Friswell, Mottershead, Lees, & Adhikari, 
2005), the authors describe that the key to the maximum 
likelihood (ML) approach is to parameterize the probability 
density functions (PDFs) of the parameters.  The uncertainty 
quantification includes calculating the probability that the 
measurements occur given the PDF of the parameters.   

Suppose that the physical parameters, x, follow a certain 
probability distribution belonging to a probability 
distribution family parameterized by Ѳ (for example the 
mean, μ, and covariance matrix, Σ).  For a given Ѳ, the 
output PDF, f(x|Ѳ), can be approximated using the 
uncertainty propagation method.  Let the measurements be 
x1, x2, …, xN.  The measurements are assumed to be 
independent, therefore the measurements likelihood is 

 𝐿(Ѳ) = 𝑓(𝑥1, 𝑥2, … , 𝑥𝑁|Ѳ) =  �𝑓(𝑥𝑖|Ѳ)
𝑁

𝑖=1

 (20) 

The maximum likelihood estimator is value of Ѳ that 
corresponds to the maximum of L(Ѳ). Note that the 
maximum likelihood estimate is also a central measure. 

Two important changes need to be made in order to adapt 
this methodology for the purpose of uncertainty 
quantification in TBSP. First, it is necessary to infer 
information regarding the uncertainty; such uncertainty can 
be expressed either in terms of the PDF f(x) or in terms of 
confidence intervals. Secondly, and more importantly, the 
PDF f(x|Ѳ) corresponds a parametric probability distribution 
(with parameters Ѳ), and such a distribution may not be 
available. So, it may be necessary to use non-parametric 
distribution and directly estimate the PDF f(x) without 
employing the use parameters Ѳ. In this paper, both of these 
goals are accomplished through the use of a weighted kernel 
density function that is not only parametric but also can 
directly compute confidence intervals on the quantity of 
interest, x in this case. 

5.3. Uncertainty Quantification through Kernel Density 
Estimation 

A non-parametric approach for model aggregation is used 
which is called Kernel Density Estimation or KDE using a 

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

629



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014 

8 

Parzen window method. (Wang T. , 2013) The kernel 
density approximation is given by: 

 𝑓ℎ(𝑥) =
1
𝑛�

1
ℎ 𝐾 �

𝑥 − 𝑥𝑖
ℎ �

𝑛

𝑖=1

 (21) 

where 𝐾  is the Gaussian kernel function and h is the 
bandwidth for density estimation. The Gaussian kernel 
function is defined as: 

 𝐾(𝑢) =  
1

2√𝜋
𝑒𝑥𝑝 �

𝑢2

2 � (22) 

In (Wang T. , 2013) and in this paper, the KDE method via 
diffusion with automatic bandwidth selection as proposed in 
(Botev, Grotowski, & Kroese, 2010) was used. 

 

 
Figure 6. Example of SLR similarity between testing data 
and all degradation model for each cycle of the test system. 

 
Figure 7. Kernel Density Estimation approach for RUL 
prediction using model aggregation. 
 
Figure 6 shows an example of the similarity between test 
data and the trained models for over 200+ cycles. As can be 
seen in Figure 6, at the beginning the testing unit is very 
similar to all the degradation models, however as time 

(cycles) progresses the most similar degradation models can 
be readily observed. The plot in Figure 7 shows the density 
estimation of the RUL prediction at each cycle based on the 
SLR weighted KDE model aggregation. 

6. PERFORMANCE METRICS 

The evaluation of the proposed enhancements to TBSP will 
be based on the work in (Saxena, Celaya, Saha, Saha, & 
Goebel, 2009): Prediction Horizon, Rate of Acceptable 
Predictions, Relative Accuracy, and Convergence. A brief 
description of the metric will be provided in this section but 
the reader is referred to (Saxena, Celaya, Saha, Saha, & 
Goebel, 2009) and (Wang T. , 2013) for further information. 

6.1. Prediction Horizon 

Prediction Horizon (PH) is the time difference between the 
𝐸𝑜𝐿 failure and the time from which the RUL prediction 
first met the specified performance criteria,𝑖. 

 𝑃𝐻 = 𝑡𝐸 − 𝑡𝑖𝑎  (23) 

6.2. Rate of Acceptable Predictions 

This metric quantifies the prediction quality. This is done by 
determining whether the prediction falls within a specified 
percentage of the true RUL for each RUL prediction. 

 𝐴𝑃 = 𝑀𝑒𝑎𝑛({𝛿𝑖|𝑡𝐻 ≤ 𝑡𝑖 ≤ 𝑡𝐸𝑜𝑈𝑃})  (24) 

 The specified percentage can be thought of as a cone of 
accuracy since as the true RUL decreases the accuracy 
requirement for the prediction become more stringent. 

 

 𝛿𝑖 = �
1   𝑖𝑓(1−∝)𝑟𝑖∗ ≤  𝑟𝑖 ≤  (1+∝)𝑟𝑖∗

 
0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (25) 

 

 𝛿𝑖 = �
1 � 𝜋(𝑟𝑖)𝑑𝑟𝑖  ≥  𝛽

𝑟𝑖
∗+ ∝ ∙ 𝑡𝐸

𝑟𝑖
∗− ∝ ∙ 𝑡𝐸  
0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (26) 

 

6.3. Relative Accuracy 

Relative accuracy quantitatively evaluates the absolute 
percentage error of a prediction at a time within the 
prediction horizon, 𝑡𝐻 , if the algorithm has met the 
requirements of the previous metrics. 

 𝑅𝐴 = 1 −𝑀𝑒𝑎𝑛 ��
|𝑟𝑖 −  𝑟𝑖∗|

𝑟𝑖∗
|𝑡𝐻 ≤  𝑡𝑖 ≤𝑡𝐸𝑜𝑈𝑃�� (27) 
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6.4. Convergence 

Convergence evaluates how fast the prediction performance 
(any accuracy based metric) improves towards the end life 
of the instance, if the algorithm has met the requirements of 
the previous metrics. 

 𝐶𝐺 = �
1
2
∑ �𝑡𝑖+1

2 − 𝑡𝑖
2�𝐸𝑜𝑈𝑃

𝑖=𝑃 𝑀𝑖

∑ �𝑡𝑖+1
2 − 𝑡𝑖

 �𝐸𝑜𝑈𝑃
𝑖=𝑃 𝑀𝑖

−  𝑡𝑝�  ∙  1
𝑡𝐸𝑜𝑈𝑃− 𝑡𝑝

 (28) 

6.5. Performance Score 

The final evaluation metric or performance score used in 
(Wang T. , 2013) will be used in this paper. The 
performance score is a weighted sum of the Rate of 
Acceptable Predictions, Relative Accuracy, and 
Convergence. 

 𝑃𝐻 = 𝑀𝑒𝑑𝑖𝑎𝑛({ 𝑃𝐻 
𝑘 }) (29) 

 𝐴𝑃 = 𝑀𝑒𝑑𝑖𝑎𝑛({ 𝐴𝑅 
𝑘 }) (30) 

 𝑅𝐴 = 𝑀𝑒𝑑𝑖𝑎𝑛({ 𝑅𝐴 
𝑘 }) (31) 

 𝐶𝐺 = 𝑀𝑒𝑑𝑖𝑎𝑛({ 𝐶𝐺 
𝑘 }) (32) 

Prediction Horizon is the only metric with a unit of time 
while the others have a value between 0 and 1, where 1 
implies perfect. Since 𝑃𝐻will be used as a preliminary 
requirement for the performance of 𝑅𝐴, a weighted sum of 
the other three will be used as the overall performance 
score. 
 𝑠𝑐𝑜𝑟𝑒 =  𝑤1  ∙ 𝐴𝑃 + 𝑤2  ∙ 𝑅𝐴 +  𝑤3  ∙ 𝐶𝐺 (33) 

where 𝑤1 = 0.6,𝑤2 = .3,𝑤3 = .1. (Wang T. , 2013) 

7. DATA SET& EXPERIMENT 

To compare the performance of the proposed enhancements 
to the baseline TBSP in (Wang T. , 2013), this paper will 
use the same data set and experiment as outlined in (Wang 
T. , 2013).  

The Commercial Modular Aero-Propulsion System 
Simulation (C-MAPSS) is used in this paper. C-MAPSS is a 
tool for simulating a realistic large commercial turbofan 
engine which simulates an engine model of a 90,000 lb 
thrust class turbofan engine that was written using 
MATLAB and Simulink. (Saxena A. , Goebel, Simon, & 
Eklund, 2008) There are four data sets of the run-to-failure 
data acquired from the C-MAPSS simulation (Saxena & 
Goebel, 2008). However, only the fourth data set, FD004, 
was used in (Wang T. , 2013) and will be used in this paper.  

The data set FD004, has 2 fault modes, 6 operating 
condition regimes, 249 training units, and 248 testing units. 
There are 25 fields in the data set: cycle number, 3 condition 
settings, and 21 sensor measurements. Though FD004 
provides a training and testing set, (Wang T. , 2013) 
determined that the testing set contained instances with 
incomplete run-to-failure data and would not be suitable for 

the performance evaluation method described in Section 6. 
Therefore, in (Wang T. , 2013) and in this paper the 249 
training units are partitioned in to a training set of 150 
randomly selected units with the remaining 99 units being 
used for evaluation. 

For the experiment, the regime identification, mean variance 
normalization, and regression modeling follow the same 
procedure described in (Wang T. , 2013).  For the RUL 
estimation, the SLR, MED-DA, and DTW are used to 
determine the similarity between the test system and the 
degradation models. The RUL of the test system is 
calculated based on four different approaches: 1) minimum 
distance (point estimation), 2) model aggregation (point 
estimation), 3) KDE (probability interval), and 4) MLE - 
Maximum Likelihood Estimation (confidence interval). In 
Summary, there are 12 different RUL predictions being 
evaluating for this paper; each similarity measure will have 
2 point estimation, KDE, and a MLE. 

8. RESULTS 

This paper compares the RUL prediction using the 
similarity measure MED-DA from (Wang T. , 2013) to the 
Pearson’s linear correlation coefficient and Dynamic Time 
Warping measures based on the FD004 data of the C-
MAPSS data set. 

 

 
Figure 8. TSBP high level process flow (Wang T. , 2013) 

 
The results are quite different than the ones report in (Wang 
T. , 2013). However, in (Wang T. , 2013) a single trial of 
150 randomly selected units were used for training and the 
remaining 99 were used for testing. In this paper we 
performed our analysis using 20 independent trials. Figure 9 
shows a boxplot of the 20 trial scores as defined in Eq. (33) 
showing the median performance of the 20 trials with the 
25th and 75th percentiles as the edges of the box. The 
whiskers of the box extend to the most extreme data points 
not considered outliers, and the outliers are plotted 
individually. 
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Figure 9. Boxplot of the 20 Trial Scores of 150 randomly 
selected units used for training and the remaining 99 used 
for testing.  

The results in Figure 9 show that DA and SLR similarity 
measures are not significantly different for Point Estimation 
(PE), Aggregated (Aggr), Kernel Density Estimation 
(KDE), or Maximum Likelihood (ML) predictors. What is 
interesting is that the DTW measure performed worse than 
the DA and SLR measure using PE but outperformed them 
using a ML predictor. It is very difficult to form a 
conclusion based on the experiment performed by (Wang T. 
, 2013), because the results will be greatly dependent upon 
the randomly selected training and testing dataset. Hence, 
without knowledge of the specific randomly selected 
training model used for the results in (Wang T. , 2013), it is 
not feasible to perform analysis of all possible training 
model configuration to verify results. 
 

 
Figure 10. 249 Unit of the FD004 dataset. There were two 
fault modes identify in the dataset description file and can 
be clearly seen by the first principal component of the 
degradation model. Each line is 1st PC for the 249 units in 
the FD004 dataset.  

 

9. BASELINE EXPERIMENT 

Based on the above results we have decided to perform an 
additional experiment with the intent to baseline these 
measures and predictors for the FD004 dataset. In the 
baseline experiment we will make predictions for each of 
the 249 unit in the dataset. For each unit under test we will 
use the remaining 248 unit for training. This will allow the 
experiment to have maximum knowledge of the Fleet but 
without overlapping the degradation models and unit under 
test. 

There are two fault modes identified in the FD004 dataset 
and can be seen in Figure 10. For simplicity, we will 
identify fault mode 1 as the red dashed lines and fault mode 
2 as the solid black lines which have 101 and 148 
degradation models, respectively. The only computational 
difference between the similarity evaluating of (Wang T. , 
2013) and our baseline experiment is that we use only the 
degradation models for a given fault mode once it has been 
identified for the unit under test (UUT). The initial RUL 
predictions are based on all of the 248 degradation models, 
however after 30 or less cycles the UUT’s fault mode is 
identified and the similarity comparisons is reduced to 101 
or 148 degradation models. Of course at no time will the 
UUT degradation model be included in similarity 
computation of the training degradation models. 

 

 
Figure 11. Boxplot of the baseline experiment.  

  
Table 1. Median score performance of RUL similiarity-
predictor combinations. 

 
From Table 1, the SLR PE showed the best performance for 
both the 20 trial experiment adapted from (Wang T. , 2013) 

Pointe 
Estimate

DA
-P

E

SL
R-

PE

DT
W

-P
E

Kernel 
Density 

Estimation

DA
-K

DE

SL
R-

KD
E

DT
W

-K
DE

20 Trials 0.2613 0.2626 0.1215 20 Trials 0.2267 0.214 0.2126
Baseline 0.2993 0.3523 0.1226 Baseline 0.2981 0.3035 0.2664

Model 
Aggregation

DA
-A

gg
r

SL
R-

Ag
gr

DT
W

-A
gg

r

Maximum 
Likelihood

DA
-M

L

SL
R-

M
L

DT
W

-M
L

20 Trials 0.1528 0.1529 0.1769 20 Trials 0.1464 0.1492 0.1761
Baseline 0.2403 0.2327 0.2605 Baseline 0.2339 0.2808 0.2778
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and our established baseline experiment. However, these 
scores are based on point estimation performance metrics 
(Saxena, Celaya, Saha, Saha, & Goebel, 2009) and do not 
take advantage of the probability or confidence intervals of 
the ML or KDE predictors. 

10. CONCLUSION 

This paper examined alternative approaches to measure 
similarity in a Trajectory Based Similarity Prediction 
framework. Additionally, we evaluated a similarity 
weighted Kernel Density Estimation RUL predictor and 
similarity weight maximum likelihood RUL predictor. The 
use of these weighted KDE and ML predictors allows the 
RUL prediction to be defined over a probability and 
confidence interval. The two experiments presented show 
that the point estimation predictor using the Simple Linear 
Regression measure performed the best for each experiment, 
but further research will be needed to examine the benefit of 
the KDE and ML predictors that are not fully evaluated by 
the performance metrics 

Some sources of error and uncertainty for TBSP approach 
include multi-regime normalization and sensor aggregation 
through principal component analysis, see Section 2. The 
regime normalization assumes uniform system degradation 
within and across the operational regimes which may 
greatly impact the similarity-predictor performance. 

Additionally, it is very difficult and impractical to make 
predictions of RUL for systems that have an unknown 
operational profile. It is anticipate that real world systems 
will have a known operational profile with a desired 
maintenance free period for a given system. Therefore, 
predictions and prediction accuracies should be based on a 
failure occurring within a maintenance free period and 
known operational profile for certain applications.  We 
envision future research will be focused with these 
restrictions in mind. 

NOMENCLATURE 

𝑡𝑖 The time stamp of the ith measurement cycle 
𝑧𝑖 The sample of PC vector at the ith measurement 

cycle 
𝐸 The index of the End-of-Life measurement cycle 

for an instance. 
𝑃 The index of the Start-of-Prediction cycle for an 

instance. 
𝐸𝑜𝑈𝑃 The index of End-of-Useful-Prediction cycle for an 

instance. 
𝑟𝐼  The estimated RUL at measurement cycle I 
𝑟𝐼∗ The ground-truth RUL at measurement cycle I. 
 
𝑙   A left super script applied to any of the above 

symbols, indicating the symbol corresponding 
to the lth training instance or degradation model. 

𝐺 𝑙   The lth degradation model extracted from the lth 
training instance. 

𝐷2
 
𝑙   Squared distance to the lth degradation model 

trajectory. 
𝑆 𝑙   Similarity to the lth degradation model 

trajectory. 
𝑒𝑆𝑁𝑅(⋅) The Empirical Signal/Noise Ratio computed 

from 1-D time series data. 
𝛼 Percentage of RUL prediction error bound, e.g. 

0.2. 
𝑖𝛼 The index of the first RUL prediction that 

satisfies the 𝛼-bound criteria. 
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ABSTRACT 

Currently, the wind energy industry is swiftly changing its 

maintenance strategy from schedule based maintenance to 

predictive based maintenance. Condition monitoring 

systems (CMS) play an important role in the predictive 

maintenance cycle. As condition monitoring systems are 

being adopted by  more and more OEM and O&M service 

providers from the wind energy industry, it is crucial to 

effectively interpret the data generated by the CMS and 

initiate proactive  processes to efficiently reduce the risk of 

potential component or system failure which often leads to 

down tower repair or gearbox replacement. The majority of 

CMS are designed and constructed based on vibration 

analysis which has been refined over the years by 

researchers and scientists. This paper provides detailed 

description and mathematical interpretation of a 

comprehensive selection of condition indicators for gears, 

bearings and shafts. Since different condition indicators are 

sensitive to different kind of failure modes, the application 

for each condition indicators were also discussed. The Time 

Synchronous Averaging (TSA) algorithm was applied as the 

signal processing method before the extraction of condition 

indicators for gears and shafts. Time Synchronous 

Resampling algorithm was applied to stabilize the shaft 

speed before the extraction of bearing condition indicators. 

Several case studies of real world wind turbine component 

failure detection using condition indicators were presented 

to demonstrate the effectiveness of certain condition 

indicators. 

1. INTRODUCTION 

As the global market of wind energy continuously grows 

over the recent years, the maintenance strategy of wind 

farms is evolving from schedule base maintenance to 

condition based maintenance. Scientists, researcher and 

engineers specialized in condition based monitoring 

techniques designed and utilized condition indicators to 

monitor and track the health status of the assets of interest. 

Condition indicators can be extracted from various signal 

sources including tradition vibration based signal from 

accelerometers, acoustic emission signal, oil condition 

signal and signal collected from SCADA systems. Different 

condition indicators were designed for different 

applications. Ideally, vibration based condition based 

monitoring techniques are very capable of detecting 

component fault signatures at high speed or intermediate 

sections of the wind turbine while acoustic emission based 

techniques are more capable of low speed or planetary 

section component fault detection.  

Previously, Vecer et al (2005) summarized a comprehensive 

selection of condition indicators for gears along with some 

typical vibration signal analysis algorithms. Also, the 

National Renewable Energy Laboratory (NREL) published 

a document named ‘Wind Turbine Gearbox Condition 

Monitoring Round Robin Study – Vibration Analysis’ in 

2012 covered detailed information regarding lots of the 

common condition indicators. This paper summarized a 

great amount of the information from the above mentioned 

two reports. And the authors provided an industry 

perspective on how to utilize different CIs including those 

not only for gears but also for bearings and shafts on 

machine health status monitoring.  

In general, the definition of condition indicators consists of 

two parts, the analysis algorithm and the statistical features. 

Analysis algorithm can be narrowband analysis, residual 

analysis and frequency/amplitude modulation analysis and 

so on. Statistical features include root mean square (RMS), 

kurtosis, crest factor, skewness, peak, peak to peak etc. A 

typical condition indicator can be expressed as narrowband 

kurtosis or residual RMS. Therefore, as a matter of fact, 

condition indicators are designed to describe the time or 

frequency domain signal waveform or analysis result from 

specific analysis algorithm in a statistical manner. Typical 

condition monitoring system data processing flowchart for 

gears is presented in Figure 1. In Figure 1, the incoming raw 

vibration signal were collected from the accelerometers and 

then goes into the Time Synchronous Averaging Algorithm 

(TSA) to remove noises that were not synchronous with the 

shaft rotating frequency. Time synchronous average signal 

_____________________ 
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permits unrestricted use, distribution, and reproduction in any medium, 
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is calculated by dividing the vibration signal into one 

revolution sections (based on the once-per-revolution 

tachometer signal). Each single revolution section is 

resampled into a common length to eliminate variations in 

speed. Then all the equal length sections are combined and 

averaged. TSA is a vibration signal processing algorithm 

that calculates the average vibration caused by one 

revolution of the shaft under analysis. It converts the 

vibration from the time domain into the revolution (or order) 

domain and significantly reduces all vibration that is not 

synchronous with the shaft. Bechhoefer explained the 

algorithm and its derivation (Bechhoefer and Kingsley, 

2009). The signal then goes through residual analysis 

algorithm. After that, statistical features are extracted from 

the residual analyzed vibration signal. Similarly, the raw 

vibration signal goes through narrowband analysis, energy 

operator analysis, Amplitude Modulation (AM) analysis and 

Frequency Modulation (FM) analysis. Accordingly, 

statistical features are extracted from the analyzed signals 

which are defined as condition indicators. 

 

Figure 1. Vibration signal processing flow chart. 

The first section of this paper gave an introduction to the 

techniques. The second section of this paper covered the 

definition of the statistical features, their definitions and 

applications. Then, the third section went over the analysis 

algorithms for different components including gears, 

bearing and shafts. The general descriptions of the analysis 

algorithm along with their applications were discussed. 

After that, the 4th session covered several case studies of 

real world wind turbine component failure detection using 

condition indicators to demonstrate the effectiveness of 

some of the described condition indicators. The last section 

summarized this paper. 

2. STATISTICAL FEATURES 

In general, statistical features were designed to describe the 

result of a specific vibration signal analysis algorithm. 

Common statistical features include Root Mean Square 

(RMS), Delta RMS, Peak, Peak to Peak, Kurtosis, Crest 

Factor, and Skewness, which were shown in the following 

respectively. 

2.1. Root Mean Square (RMS) 

RMS describes the energy content of the signal. RMS is 

used to evaluate the overall condition of the components. 

Therefore, it is not very sensitive to incipient fault but used 

to track general fault progression (Vecer et al, 2005). 

     √
 

 
∑    

 

 

   

 (1) 

     is the root mean square value of dataset s 

   is the i-th member of points in dataset s. 

N is the number of data points in dataset s. 

2.2. Delta RMS 

Delta RMS is the difference between two consequent RMS 

values.  

                          (2) 

If the gear damage occurs, the vibration level will be 

increased more rapidly than in a normal case without gear 

damage (Vecer et al, 2005). 

2.3. Peak 

Peak value is the maximum amplitude of the signals within 

a certain time interval.  

                        (3) 

Peak value is usually not used very often compared to peak 

to peak value. 

2.4. Peak to Peak 

Peak to peak value is the distance between the maximum 

amplitude and the minimum amplitude of the signal. Peak to 

peak is a measurement of spread in the signal. 

                     (4) 

2.5. Kurtosis 

The shape of the amplitude distribution is often used as a 

data descriptor. Kurtosis describes how peaked or flat the 

distribution is. A kurtosis value close to 3 indicates a 

Gaussian-like signal. Signals with relatively sharp peaks 

have kurtosis greater than 3. Signals with relatively flat 

peaks have kurtosis less than 3. The following equation 

calculates the kurtosis (Vecer et al, 2005). 

         
  ∑      ̅   

   

{∑      ̅   
   } 

 (5) 

N is the number of points in the history of signal s 

   is the i-th point in the time history of signal s 
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Kurtosis provides a measure of size of the tails of 

distribution and is used as an indicator of major peaks in a 

set of data. As a gear wears and breaks, this feature should 

signal an error due to the increased level of vibration. 

2.6. Crest Factor 

Crest factor is the ratio of the single side peak value of the 

input signal to the RMS level (Vecer et al, 2005). 

   
     

    

 (6) 

CF is the crest factor 

           is the single side peak of the signal 

     is the root mean square value of the vibration signal 

This value is normally between 2 to 6. Crest factor value 

over 6 indicates possible machine failure. There are certain 

variations on the definition of crest factor. The numerator 

could be the single side peak value (maximum or minimum) 

or a mean of the maximum and minimum of the signal of 

interest. Crest factor can be used to indicate faults in an 

early stage. This feature is used to detect changes in the 

signal pattern due to impulsive vibration sources such as 

tooth breakage on a gear. 

2.7. Skewness 

Skewness indicates the symmetry of the probability density 

function (PDF) of the amplitude of a time series. A time 

series with an equal number of large and small amplitude 

values has a skewness of zero. The following equation 

calculates skewness (Vecer et al, 2005). 

         
  ∑      ̅   

   

{√∑      ̅   
   }

  (7) 

N is the number of points in the history of signal s 

   is the i-th point in the time history of signal s 

A time series with many small values and few large values 

is positively skewed (right tail), and the skewness value is 

positive. A time series with many large values and few 

small values is negatively skewed (left tail), and the 

skewness value is negative. 

3. ANALYSIS ALGORITHMS 

Analysis algorithms were applied before the extraction of 

statistical features. These algorithms were developed to 

enhance the component fault signatures. The statistical 

features extracted from the result of the algorithm are called 

condition indicators. Different condition indicators were 

developed to detect various faults on different components. 

This section categorizes them into three categories including 

bearing, shaft and gear. The typical analysis algorithm for 

different components were listed and explained along with 

the extracted condition indicators. 

3.1. Bearings 

Time Synchronous Resampling algorithm was applied to 

stabilize the shaft speed before the extraction of bearing 

condition indicators. In the CMS industry, it is common to 

have a hard threshold over certain shaft speed that triggers 

the data collection. Combined with TSR, the shaft speed can 

be controlled to a maximum extend in terms of speed 

fluctuation. In general, bearing fault characteristic 

frequencies are used to diagnose and localize the bearing 

fault induced by pitting, spall, cracking and etc. The specific 

bearing fault characteristic frequency of different 

components can be obtained from the bearing kinematic 

information. There are 4 common condition indicators for 

bearings which are ball energy, cage energy, inner race 

energy and outer race energy, respectively. A window of 

observation is usually set around the fault frequency of the 

bearings. This is designed to ensure even if the shaft speed 

is somewhat inaccurate, the amplitude of the bearing fault 

frequency can still be captured. 

3.1.1. Ball Energy 

Ball energy represents the energy of the bearing vibration 

signal at/around the rolling element fault frequency. 

 

           √
 

 
∑       
 

   

 (8) 

   is the fault frequency of the rolling element 

  is half of the window of observation  

3.1.2. Cage Energy 

Cage energy represents the energy of the bearing vibration 

signal at/around the cage precession frequency. 

 

           √
 

 
∑       
 

   

 (9) 

   is the fault frequency of the cage 

  is half of the window of observation  

3.1.3. Inner Race Energy 

Inner race energy represents the energy of the bearing 

vibration signal at/around the inner race fault frequency. 
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                 √
 

 
∑       
 

   

 (10) 

   is the fault frequency of the inner race 

  is half of the window of observation  

3.1.4. Outer Race Energy 

Outer race energy represents the energy of the bearing 

vibration signal at/around the outer race fault frequency. 

 

                 √
 

 
∑       
 

   

 (11) 

   is the fault frequency of the outer race 

  is half of the window of observation  

3.2. Shafts 

All the condition indicators mentioned in this section were 

extracted after the original signal was processed through 

TSA algorithm. Typical condition indicator for shafts 

includes shaft order 1, shaft order 2, shaft order 3 and so on. 

Shaft condition indictors are used to detect shaft faults 

including shaft imbalance, misalignment etc. 

3.2.1. RPM 

Number of shaft revolution per minute. RPM is 

measurement of shaft speed. The 1/rev derivative of the 

RPM is a measurement of rated change of RPM at the 1/rev 

frequency. This measurement is capable of rotor shaft 

imbalance indication. 

3.2.2. Shaft Order 1 (SO1) 

Shaft Order 1 represents the magnitude of the first 

harmonics of the shaft of interest in frequency domain. SO1 

is an indicator of mass imbalance or a bent shaft. 

3.2.3. Shaft Order 2 (SO2) 

Shaft Order 2 represents the magnitude of the second 

harmonics of the shaft of interest in the frequency domain. 

SO2 is sensitive to coupling failures (misalignment) or bent 

shaft. 

3.2.4. Shaft Order 3 (SO3) 

Shaft Order 3 represents the magnitude of the third 

harmonics of the shaft of interest in the frequency domain. 

SO3 is sensitive to coupling failures. For the main rotor, 

SO3 is driven by combined effect of tower shadow and 

wind shear. 

3.2.5. TSA RMS 

The root mean square value of the TSA signal 

3.2.6. TSA Peak to Peak 

The peak to peak value of the TSA signal 

3.2.7. Shaft Order 1 Phase Angle 

Phase angle can be calculated as four-quadrant inverse 

tangent of the complex conjugate FFT transform of the raw 

vibration signal.  The phase angle of the shaft order 1. SO1 

Phase Angle is an indication of imbalance. 

3.2.8. 1/Rev Derivative of RPM 

Rated shaft RPM change per revolution. 

3.3. Gears 

Among the condition indicators used on different 

components, condition indicators for gears normally 

involves a specific signal processing algorithm and a 

statistical feature. This section shows the common signal 

processing algorithm for gears and the condition indicators 

extracted from the analysis result that are often used. 

3.3.1. Residual Analysis 

The residual signal for a gear can be calculated by removing 

the shaft harmonics and the gear mesh frequency and 

harmonics from the time synchronous average signal. But 

the residual analysis algorithm can vary depends on the 

information the researchers trying to acquire or remove. 

Residual Signal is effective for detecting gear scuffing, 

tooth pitting and tooth crack faults. Periodic faults like tooth 

breakage normally can have impact of 1 per rev show up in 

the TSA signal.  The residual analysis allows fault impact 

signatures to become prominent in the time domain. 

Combined with the above mentioned statistical features, 

common condition indicators extracted from residual 

analysis are residual RMS, residual peak to peak, residual 

kurtosis, and residual crest factor. 

3.3.2. Energy Ratio 

Energy ratio is the ratio between the energy of the 

difference signal and the energy of the original meshing 

component (Vecer et al, 2005). 

   
    

    
 (12) 

     is the standard deviation of the difference signal 

     is the standard deviation of the original signal  
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Energy ratio is very good indicator for heavy wear, where 

more than one tooth on the gear is damaged. The energy 

ratio will trend towards 1 as a fault progresses. 

3.3.3. Energy Operator 

Energy operator is computed as the normalized kurtosis 

from the signal where each point is computed as the 

difference of two squared neighborhood points of the 

original signal (Vecer et al, 2005). 

   
  ∑        ̅   

   

{∑        ̅   
   } 

 (13) 

  ̅ is the mean value of signal    

        
    

   

N is the number of data point in the dataset x  

Energy Operator is a type of residual of the autocorrelation 

function. It is designed to reveal the amplitude modulations 

and phase modulations of the signal of interest. For a 

nominal gear, the predominant vibration is gear mesh. 

Surface disturbances and scuffing generate small higher 

frequency values, which are not removed by autocorrelation. 

Large energy operator indicates server pitting or scuffing. 

Combined with statistical features, common condition 

indicators extracted from energy operator analysis are EO 

RMS, EO peak to peak, EO kurtosis, and EO crest factor. 

3.3.4. FM0 

FM0 is defined as the peak to peak level of the TSA signal 

divided by the sum of the amplitude at the gear mesh 

frequency and its corresponding harmonics (Vecer et al, 

2005; Lebold et al, 2000). 

    
          

∑      
   

 (14) 

FM0 is the zero-order figure of merit 

           is the peak to peak value of the TSA signal. 

A(i) is the amplitude of the i
th

 mesh frequency harmonics 

FM 0 is a statistic used to detect major changes in the 

meshing pattern. For heavy wear, the peak to peak value 

remains constant while the meshing frequency decreases, 

causing the FM0 parameter to increase. FM0 is a 

generalized gear fault indicator, sensitive to gear 

wear/scuffing/pitting and tooth bending due to crack root. 

However, FM0 is not a good indicator for minor tooth 

damage. 

3.3.5. Sideband Modulation Lifting Factor (SMLF) 

Sideband modulation lifting factor (SMLF) or sideband 

level factor (SLF) is defined as the sum of the first order 

side band about the fundamental gear mesh frequency 

divided by the standard deviation of the signal of interest 

(Vecer et al, 2005). 

     
∑              

 
   

    
 (15) 

si is the amplitude of the i
th

 sideband around fundamental 

gear meshing frequency 

     is the standard deviation of the time signal average. 

This parameter is based on the idea that tooth damage will 

produce amplitude modulation of the vibration signal. This 

CI is designed to detect gear misalignment. 

3.3.6. G2 

G2 is defined as the amplitude of the 2nd harmonics of gear 

meshing frequency over the amplitude of the gear meshing 

frequency in the frequency domain. 

3.3.7. Narrowband (NB) Analysis 

Narrowband analysis operates the TSA signal (or other time 

domain signal of interest) by filtering out all the tones 

except that of the gear mesh and with a given bandwidth. 

Narrowband signal is calculated by zeroing the bins in the 

Fourier transform of the TSA except the gear mesh. 

Statistics features of the narrowband signal can be 

calculated to enhance the fault feature. Narrowband 

represents the vibration associate with the primary gear 

mesh frequency. Narrowband analysis can capture sideband 

modulation of the gear mesh due to misalignment, or detect 

a cracker/soft/broken tooth. 

Combined with statistical features, common condition 

indicators extracted from narrowband analysis are NB RMS, 

NB peak to peak, NB kurtosis, and NB crest factor. 

3.3.8. Amplitude Modulation (AM) Analysis 

Amplitude Modulation (AM) analysis is the absolute value 

of the Hilbert transform of the narrowband signal 

(Bechhoefer, 2012), since primary gear meshing 

characteristics extracted from narrowband analysis is the 

subject of interest. However, AM analysis is not limited to 

narrowband signal.  

Modulation is a non-linear effect in which several signals 

interact with one another to produce new signals with 

frequencies not present in the original signals. Amplitude 

modulation is defined as the multiplication of one time-

domain signal by another time-domain signal. For a gear 

with minimum transmission error, the AM analysis feature 

should be a constant value of gear tooth displacement. Gear 

defects or faults can increase the kurtosis of the signal 

significantly. AM is sensitive to eccentric gears and broken 

or soft tooth faults. 
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Combined with statistical features, common condition 

indicators extracted from AM analysis are AM RMS, AM 

peak to peak, AM kurtosis, and AM crest factor. 

3.3.9. DAM 

DAM is defined as the derivative of the amplitude 

modulation (AM) signal. DAM is sensitive to both soft and 

broken gear tooth faults. 

Combined with statistical features, common condition 

indicators extracted from DAM analysis are DAM RMS, 

DAM peak to peak, DAM kurtosis, and DAM crest factor. 

3.3.10. Frequency Modulation (FM) Analysis 

Frequency Modulation (FM) is the derivative of the angle of 

the Hilbert transform of narrowband signal (Bechhoefer, 

2012), since primary gear meshing characteristics extracted 

from narrowband analysis is the subject of interest. 

However, FM analysis is not limited to narrowband signal. 

Modulation is a non-linear effect in which several signals 

interact with one another to produce new signals with 

frequencies not present in the original signals. Frequency 

modulation (FM) is the varying in frequency of one signal 

by the influence of another signal, usually of lower 

frequency. The frequency being modulated is called the 

carrier. Frequency Modulation analysis is in radians. 

Frequency modulation (FM) analysis is a powerful tool 

capable of detecting changes of phase due to uneven tooth 

loading, characteristics of a number of fault types. For 

certain gear architectures, FM analysis is more sensitive to 

fault than either the narrowband or amplitude modulation 

analysis. 

Combined with statistical features, common condition 

indicators extracted from FM analysis are FM RMS, FM 

peak to peak, FM kurtosis, and FM crest factor. 

3.3.11. FM4 

FM4 is a simple measure if the amplitude distribution of the 

difference signal is peaked or flat. The mathematical 

representation is shown below. NA4 is determined by 

dividing the fourth statistical moment of the residual signal 

by the current run time averaged variance of the residual 

signal, raised to the second power (Vecer et al, 2005; 

Lebold et al, 2000). 

    
  ∑      ̅   

   

{∑      ̅   
   }

  (16) 

   is the i-th point of the differential signal in the time 

record 

N is the total number of points in the time record  

The parameter assumes that a gearbox in good condition has 

a difference signal with a Gaussian amplitude distribution 

(kurtosis of 3), whereas a gearbox with a major peak or a 

series of major peaks results in a less peaked amplitude 

distribution (kurtosis greater than 3). For single tooth defect 

fault progression, the data distribution becomes peaky and 

the kurtosis increases. For multiple teeth fault progression, 

the data distribution becomes flat and the kurtosis value 

decreases. 

3.3.12. NB4 

NB4 is designed from the NA4 parameter.NA4 is calculated 

from the residual signal while NB4 uses the envelop of a 

band-passed segment of the time synchronous averaged 

signal.NB4 is determined by dividing the 4th statistical 

moments of the envelop signal, raised to the 2nd power. 

(Lebold et al, 2000; Lebold et al, 2000). 

    
  ∑      ̅   

   

{
 
 

∑ ∑        ̅ 
  

   
 
   }

  (17) 

E is the envelop of the band passed signal 

 ̅ is the mean value of the enveloped signal. 

N is the total data points in time record. 

M is the current time record in the run ensemble. 

                   | ̅   |  √       ̃                        (18) 

| ̅   | is the envelope of the analytic signal 

     is an input analog signal 

 ̃   Is the Hilbert transform of the input signal 

A few damaged gear teeth will cause transient load 

fluctuations that are different from normal tooth load 

fluctuations. The theory suggests these fluctuations will be 

manifested in the envelop of a signal which is band-pass 

filtered about the dominant meshing frequency. 

3.3.13. NA4 

NA4 is determined by dividing the fourth statistical moment 

of the residual signal by the current run time averaged 

variance of the residual signal, raised to the second power 

(Vecer et al, 2005; Lebold et al, 2000). 

    
  ∑      ̅   

   

{
 
 

∑ ∑        ̅ 
  

   
 
   }

  (19) 

   is the i-th point in the time record of the residual signal. 

    is the i-th point in the j-th time record of the residual 

signal. 

j is the current time record 

i is the data point number per reading 

M is the current time record in the run ensemble 
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N is the number of points in the time record 

3.3.14. NA4* 

NA4* is an enhanced version of NA4. The improvement is 

achieved by normalizing the fourth statistical moment with 

the residual signal variance for a gearbox in good condition 

instead of the running variance, which is used for NA4 

(Vecer et al, 2005; Lebold et al, 2000). 

     
  ∑      ̅   

   

          
 

 (20) 

         is the variance of the residual signal  for a 

gearbox in good condition (obtained from a well-

functioning gearbox) 

When gear damage progresses, the averaged variance value 

increases rapidly which results in the decrease of the      

parameter. To overcome this problem      is developed to 

be more robust when progressive damage occurs. 

4. CASE STUDIES 

This section presents three case studies covering gear, 

bearing and shaft. All the case studies are from the wind 

energy industry where there is a pressing need for condition 

monitoring systems. For the next three case studies, all data 

was collected and processed by TurbinePhD system. 

4.1. Wind Turbine High Speed Pinion 

The purpose of installing a condition monitoring systems is 

to help mitigate the high financial risk of unplanned 

maintenance and establish the framework for a new 

predictive maintenance program.  A well developed 

condition monitoring systems should be capable of 

monitoring every bearing, gear and shaft in the gearbox as 

well as the generator and main bearing.   

A condition monitoring system is designed to detect faults 

early on so that wind farm operators have the longest 

possible time to plan a maintenance action.  This early 

detection is critical in avoiding secondary damage from 

catastrophic failure and the subsequent additional financial 

cost.  Additionally, the system uses numerous complex 

algorithms to track the condition of a component, which in 

turn are then normalized and combined to estimate the 

overall health of the component.  The result is excellent 

fault discrimination, which is arguably one of the most 

important aspects of a condition monitoring system.  Fault 

discrimination is the ability to separate out a faulted 

component from good components.  If the fault 

discrimination is good, then the alarms the system provides 

are trustworthy and actionable.  On the other hand, if the 

fault discrimination is poor, then the likelihood of false 

alarms and missed detections increases.  Finally, the system 

uses a patented automated diagnostic capability to provide 

the user with an easy to read display of which turbines need 

attention all through a cloud-based client interface.  Thus, 

eliminating the need for complex data processing and 

interpretation before a maintenance decision can be made.      

After installation, the condition monitoring systems 

gathered wind turbine fleet vibration data for two weeks at 

which point alarm and warning thresholds were generated.  

These thresholds are data driven values obtained by 

statistically eliminating the outlying abnormal components 

on each turbine that define if a component is damaged.  

Once the thresholds were established, an alarm was 

triggered for the High Speed Pinion (the last gear in the 

gearbox before the generator) on one of the turbines.  

Alarms are triggered when one or more Condition Indicators 

or CIs were elevated over the generated thresholds.  In this 

case, several CIs were elevated while others were not.  

Since different CIs are sensitive to different fault modes, the 

type of fault can be estimated solely based on which CIs are 

elevated and which are not.  From the list of CIs that 

responded to this fault, there was strong evidence that the 

alarm was   triggered by a broken tooth. The wind farm 

operators were notified and an up tower visual inspection 

revealed the cracked tooth.    

One of the Condition Indicators that is very sensitive to gear 

tooth pitting, scuffing and bending is called the FM0.  It 

compares the general vibration level with the amplitude of 

gear meshing. A high FM0 value indicates the general 

vibration level is higher than normal and the gear meshing 

characteristic frequency is submerged in the high noise 

floor. In this case, FM0   was elevated to the point where the 

fault discrimination was perfect, meaning there were 

absolutely no overlapping values between the FM0 tracking 

the broken pinion and the FM0 tracking normal pinions on 

other turbines as seen in the following Figure 2. This means 

the probability of a false alarm or missed detection was 

extremely low. 

 

Figure 2. Fault discrimination based on FM0 

While the FM0 Condition Indicator contributed to the 

triggered the alarm, other condition indicators were less 

sensitive to the fault.  As explained previously, a condition 

monitoring system should offer clients the capability of 
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determining not only which component is not operating at a 

nominal condition but also performing diagnostics.  This is 

critical information when it comes to cost savings, as 

different fault modes require different maintenance actions.  

In this case, the AM Kurtosis CI, which is a sensitive 

indicator of  eccentric gears but less so  at capturing tooth 

damage, remained at the nominal level as seen in the 

following Figure 3. 

 

Figure 3. Fault discrimination based on AM Kurtosis 

This specific turbine was shut down and inspected, the 

initial inspection found tooth damage on the high speed 

pinion as shown in the following Figure 4. 

 

Figure 4. High speed pinion inspection result 

Detecting this broken tooth early is critical for maintenance 

cost savings.  When a gear loses a tooth, the remaining 

meshing teeth experience significant increases in load and 

subsequent stress and strain. This can cause cascading 

damage on the gear, which in turn will fill the gearbox with 

metal debris.  Before long, other components are damaged 

and the gearbox potentially needs to be removed from the 

tower and rebuilt.  A full gearbox rebuild, which requires 

the mobilization of a crane, can cost upwards of $150,000 

and results in significant downtime, especially when climate 

can affect the ability to get a crane to the turbine.  

Additionally, a gear with a broken tooth, if left to run, will 

transfer damage to any gear that it is mated with.  When this 

happens, both gears must be replaced.  In this case, by 

implementing a well developed condition monitoring 

system, the wind farm operators obtained actionable 

information that left them with the option of performing an 

up-tower repair of just the High-Speed Pinion. The cost 

differential between performing this up-tower repair and a 

gearbox rebuild is estimated at $250,000. This proves that 

condition monitoring systems are valuable as a crucial part 

of the wind turbine maintenance cycle. 

4.2. Wind Turbine High Speed Bearing 

As mentioned earlier, the purpose of implementing a 

condition monitoring system is to help the wind farm 

operators to maximize the fleet availability by means of 

detecting the early damage of the drive train assembly 

before secondary damage occurs. Most retrofit condition 

monitoring systems need a certain period of time to gather 

data and thresholding, a process that defines the data 

characteristics of healthy components.  Following the 

system thresholding, the Health Indicator (HI) of a “High 

Speed Bearing” (The bearing that holds the high speed 

generator shaft) started trending in March. The HI exceeded 

the warning and alarm limit around May. 

The recommendation is when the HI exceeds the threshold 

of 1, an inspection should be performed on this component. 

The wind farm O&M team confirmed the bearing inner race 

fault and replaced the HS bearing. When the turbine started 

up and condition monitoring recommenced, the HI value 

dropped to below 0.2 indicating a nominal component. 

 

Figure 5. High speed bearing health indicator 

The High speed bearing detail components CIs are also 

listed in the client interface as shown in Figure 6. From the 

pattern of the CI data log, the outer race, cage and rolling 

element energy showed no signs of degradation except the 

energy of the inner race. The inner race energy started 

increasing at March. Around May, the at the same time high 

speed bearing HI exceeds alarm limit, the inner race CI also 

exceed its own alarm threshold. This confirms that the HS 

bearing inner race cased the failure. The inner race fault had 

been located in March. The TurbinePHD systems tracked 

the fault progressing over a 2 month period. After HS 
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shaft/bearing replacement, the inner race energy dropped 

back to nominal. 

 

Figure 6. High speed bearing component trend 

Based on the inner race details presented in Figure 3 and 4, 

which is available using the client web interface of 

TurbinePHD. One can observe that the condition indicator 

has pick up the inner race fault and starts trending 2 month 

before the condition indicator exceeded the alarm threshold. 

In the component detail page of the Web interface (Figure 

4) the spectral information is displayed in the frequency 

domain.  A high magnitude peak around the inner race fault 

frequency with characteristic sidebands that are a product of 

the shaft modulation can be seen. 

 

Figure 7. A detail look at the inner race condition indicator 

 

Figure 8. Spectrum analysis showed a high magnitude peak  

around  the inner race fault frequency 

After the O&M bore scope inspection, a large crack was 

found on the inner race which confirms the TurbinePHD 

diagnostics as shown in Figure 9. 

 

Figure 9. Bore scope inspection of the inner race 

4.3. Wind Turbine Rotor Imbalance 

There can be many reasons behind a imbalanced rotor. In 

general, wind turbine rotor imbalance can be differentiating 

in the 2 types, Mass imbalance and aerodynamic 

imbalances. The imbalance can be induced by main reasons 

and some of them are listed as follow. 

 Improper component manufacturing. 

 Uneven buildup of debris on rotors, vanes or blades 

(ice, etc.). 

 The addition of shaft fittings without an appropriate 

counter balancing procedure. 

 Vane/blade erosion, crack or thrown balance weights. 

Fluid inclusion in the rotor blades. 

 Rotor division error. 

 Blade bearing jammed. 

 Gearbox support structure excessive wear and tear. 

 Generator alignment loss and coupler damage. 

 Support structure and main frame damage. 

 Yaw system/yaw breaks excessive wear and tear. 

 Door frame damage, cracks at welds top and bottom, 

steps. 

 Foundation bolt failure. 

The effects of rotor imbalance include the following. 

 35% of all wind turbines have rotor caused vibrations 

which exceed the designed specifications. These 

vibrations cause unusual structure loads, an increased 
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wear, adverse startup conditions and often vibration 

causing emergency turn off. 

 Rotational excitations cause higher dynamic load 

beyond design specification on bearing which leads to 

bearing failure from early fatigue. Fatigue, in a bearing, 

is the result of stresses applied immediately below the 

load carrying surfaces and is observed as appalling 

away of surface material. 

 A wind turbine with an unbalanced rotor will lose some 

of its low wind production capability. 

 High level of rotor vibration that appear as high 

magnitude of 1st harmonics of shaft rotating frequency. 

 High levels of vibration caused by rotor imbalance 

results in turbine efficiency loss. 

Rotor unbalance is a leading contributor to the need for 

frequent and costly maintenance action on yaw systems and 

fastening hardware. The unbalanced force on the rotor 

causes a reaction on the yaw system twice per revolution, 

accelerating the wear on the yaw gear teeth through impact 

loading and adding to the fatigue loading of the tower shell 

and mounting bolts.  

A Leading wind energy operator asked Renewable NRG 

Systems to instrument their MW class turbine fleets with the 

TurbinePHD Condition Monitoring System to help them 

maximize the turbine availability by means of detecting the 

early damage of the drive train assembly before any 

secondary damage occurs. Following the standard 

commissioning procedure, the system ran for two weeks 

gathering data and was then thresholded, a process that 

establishes data driven definitions of when a component is 

no longer nominal.  Following the system thresholding it 

was immediately apparent that “Nacelle X” (a component 

that watches the sway of the turbine tower) was not 

“nominal”. 

 

Figure 10. TurbinePHD Cloud Based Client Interface 

A quick click on the red component revealed the Health 

Indicator (HI) value was elevated because the tower was 

swaying at the rotational frequency of the main rotor.  This 

condition is a typical characteristic of a heavy blade and the 

subsequent imbalance (once per revolution imbalance). The 

recommendation is that when the HI exceeds the threshold 

of 1 an inspection needs to be performed on these 

component/components. In this case the HI value was 

floating around 1 between March 12th and June 13th. The 

wind farm O&M team inspected the blades and found that a 

heavy blade was causing the imbalance. The other turbine 

blades had a weight adjustment and subsequently the HI 

value dropped to nominal. After the 13th there was no data 

for a month because the turbine was down for maintenance.  

When the turbine started up and condition monitoring 

recommenced, the HI value had dropped to below .2 

indicating a nominal component. 

 

Figure 11. Health Indicator Trend 

The Health Condition (HI) represents the data fusing result 

of all the Condition Indicators (CI). In TurbinePHD The 

shaft condition indicators includes shaft order 1 (SO1), shaft 

order 2 (SO2), shaft order 3 (SO3), 1 per revolution delta 

RPM and etc. 

In this case, compared to SO2 and SO3, SO1 is trending 

along with the HI. The trending pattern correlates well 

between SO1 and component HI. The trending of SO1 

confirmed the reason behind the high HI is because of the 

imbalance of the Rotor. Meanwhile, the CI on the Tach 

component, 1/rev dRPM, showed the same patter between 

March and October. 

 

Figure 12. 1st shaft order (SO1), a measurement of the 

energy associated with the rotational frequency of the rotor.  

SO1 is one of several Condition Indicators (CIs) that are 

used to calculate the HI. 

 

Figure 13. 1/rev dRPM, a measurement of rated change of 

RPM at the 1/rev frequency. 1/rev dRPM is one of the 

several Condition Indicators that are used to calculate 

Component HI of the Tach. 

5. CONCLUSION 

Condition indicators play a significant role in machine 

health status monitoring and tracking. Over the years, 

scientists and researchers have developed a great selection 
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of condition indicator for various components and 

applications. These condition indicators provides insights of 

the components condition and increase the signal storage 

and transmitting efficiency at the same time. Therefore, 

condition indicators are widely accepted by researchers and 

engineers for vibration signal analysis, acoustic emission 

signal analysis and sometimes oil debris and oil condition 

analysis as well. 

This paper provided a detailed description and mathematical 

interpretation of a comprehensive selection of condition 

indicators developed for gears, bearings and shafts. Since 

different condition indicators are sensitive to different kind 

of failure modes, the application for each condition 

indicators were explained and discussed. The Time 

Synchronous Averaging (TSA) and Time Synchronous 

Resampling (TSR) algorithm was applied as the signal 

processing method before the extraction of condition 

indicators by the authors. Several case studies of real world 

wind turbine component failure detection using condition 

indicators were presented to demonstrate the effectiveness 

of certain condition indicators. 
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ABSTRACT 

In this paper, bogie performance criteria are reviewed and it 
is shown that a real-time, on-board condition monitoring 
system can efficiently monitor these criteria to improve 
failure mode detection in freight rail operations. Although 
the dynamics of rail car bogie performance are well 
understood in the industry, this topic has recently received 
renewed attention through impending regulatory changes. 
These changes seek to extend empty rail car performance 
criteria to include loaded rail cars as well. Currently, the 
monitoring of bogie performance is primarily accomplished 
by wayside detection systems in North America. These 
systems are only sparsely deployed in the track network and 
do not offer the ability to monitor bogies continuously. The 
lack of these elements leads to unexpected downtimes 
resulting in costly reactive maintenance and lengthy periods 
of time before an adequate performance history can be 
established. This paper reviews performance criteria which 
critically influence bogie performance and proposes a 
vibration based condition monitoring strategy to estimate 
system component deterioration and their contribution to the 
development of bogie hunting. The strategy addresses both 
sensing techniques and monitoring algorithms to maximize 
the efficiency of the monitoring solution. In particular it is 
proposed that understanding the relation of different hunting 
modes to car body oscillations can be used for a deeper 
understanding of the rail car condition which current 
technologies are not able to provide. 

1. INTRODUCTION 

A freight rail bogie is the main vehicle connecting the 
freight rail car body to the rail. Typical freight rail cars  

utilize two bogies underneath the car body to carry the 
lading. Railroad terminology refers to the most widely 
distributed bogie type in North America as the three-piece 
bogie. Figure 1 gives a general overview of the components 
of the three-piece bogie. The three main components of this 
system are the two side frames and connecting bolster.  

 
Figure 1. Standard North American three-piece bogie 

This bogie type is also commonly used in Russia, China, 
Australia and most African countries. The bolster is 
connected to the side frames through a spring nest in each 
side frame which is referred to as the secondary or also 
central suspension. The two wheelsets are connected to the 
side frames by tapered roller bearings which are designed to 
maintain extremely high vertical and lateral loads. Many 
different sizes exist in North America carrying loads 
ranging from 177,000 to 315,000 lbs gross rail load (GRL). 
The bogie connects to the car body through the center plate. 

The Association of American Railroads (AAR) is the 
standard setting organization for North America's railroads, 
focused on improving the safety and productivity of rail 
transportation. The AAR devises new rules for all aspects of 
rail transport, including freight car and bogie designs. Two 
major specifications exist, according to which all bogie 
systems intended for North American interchange service 
have to be designed. The first one is M-965, which was 
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adopted in 1968 and allowed for gross rail loads of up to 
263,000 lbs. This rule was expanded in 2003 with the 
release of rule M-976 which was intended to regulate gross 
rail loads higher than 268,000 and up to 286,000 lbs. M-976 
was directly related to AAR rule S-286 which sets the 
framework for the entire 286,000 GRL freight car. An 
extensive suite of tests exists which both M-965 and M-976 
bogies have to pass in order to be approved for North 
American interchange service. This set of tests is formalized 
in the Manual of Standards and Recommended Practices 
(MSRP) C-II Chapter 11 (AAR, 2007) which contains the 
trackworthiness criteria limits that new freight car designs 
have to meet. These include performance limits for lateral 
stability on tangent track (hunting), operation in constant 
curves, spiral negotiation, cross level variation (twist and 
roll), surface variation (pitch and bounce), alignment 
variation on tangent track (yaw and sway) and alignment, 
gauge, and cross level variation in curves (dynamic 
curving). These tests use the ratio of lateral to vertical (L/V) 
forces exerted by the wheelset onto the rail, accelerations, 
degrees of roll and loading percentages to evaluate bogie 
performance. Among these criteria, the L/V criterion 
constitutes the most widely used performance metric in 
bogie testing. This makes intuitive sense since the wheelset 
is the component which connects the bogie to the track 
structure. The forces can be used in different combinations, 
as an individual wheel (L/V), axle sum Eq. (1) or truck side 
Eq. (2) ratio 

          
 

 
  

 

 
         

 

 
           (1)  

            
 

 
  

              

              
   (2)  

Standard features of the modern rail car wheel, such as a 
flange and taper, have not always been part of the wheel. 
Figure 2 shows the two mentioned features on a wheelset.  

 
Figure 2. Wheelset in equilibrium position 

Their invention, especially taper, can be credited to the need 
for improved guidance and proper curve negotiation. When 
the wheelset negotiates a curve, the outer rail follows a 

larger radius of curvature than the inner rail. This requires 
the outer wheel to travel a longer distance than the inner 
wheel. As the wheelset rotates with a constant angular 
velocity, one of the wheels or both wheels will slip. The slip 
can be reduced if the rolling radii of the two wheels are 
allowed to vary during the wheel motion. This change in the 
rolling radius is accomplished by using the tapered wheel 
profile. As the wheelset negotiates a curve, the wheelset will 
move laterally in the direction of the outer rail. 
Consequently, the outer wheel will have a larger rolling 
radius and higher velocity in the longitudinal direction as 
compared to the inner wheel. This reduces the slip and wear, 
and leads to better curving behavior (Shabana, Zaazaa, & 
Sugiyama, 2010). However, an inevitable side effect of the 
taper is the wheelset’s inherent tendency to oscillate 
laterally. In 1883 Klingel (Klingel, 1883) derived the 
formula for this kinematic oscillation by relating wheel 
taper  , wheel radius   , and distance between the wheel 
contact points G. Under perfect conditions on tangent track, 
the wheelset is centered with     and         . 
When the wheelset is laterally perturbed in the  -direction, 
the wheel taper will cause a decrease in radius for one wheel 
while the other wheel’s radius increases. The combined 
difference    in radii  

       (3)  

results in a difference in wheel velocities on the same axle 
and is reacted by a yawing motion of the wheelset as shown 
in figure 3. 

 
Figure 3. Hunting oscillation 

In severe cases the wheelset will make flange contact with 
the rail in each oscillation as it “hunts” for its equilibrium 
position. For the same reason, this motion is commonly 
referred to as “hunting”. The yaw motion is characterized by 
the yaw angle Ψ of the wheelset. In (Klingel, 1883) the 
underlying oscillatory motion of the wheelset was shown to 
be  
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(4)  

The solution of Eq. (4) is of the form 

                (5)  

where   and   can be determined through initial conditions 
and    is the natural frequency of the mechanical system.  

 
     

  

   
 

(6)  

Equations (5) and (6) are generally known as Klingel’s 
Formulas (Klingel, 1883; Wickens, 1998) and describe the 
lateral oscillation of the wheelset due to the taper. The 
situation in which the taper of the wheels allows a bogie to 
negotiate a curve is the ideal for a perfectly aligned system. 
However, gradual wear from revenue service reduces this 
ability over time and affects bogie performance as a whole 
(Sawley, Urban, & Walker, 2005; Sawley & Wu, 2005). In 
addition to wheel wear, many other factors influence bogie 
performance. These include reduced warp restraint caused 
by worn suspension components, reduced rotational 
resistance caused by worn side bearings and 
manufacturing/reconditioning flaws such as mismatched 
side frames. Figure 4 shows four common misalignment 
faults of the bogie. In the case of rotational resistance it is 
worthwhile to note that a reduction decreases lateral 
stability but an increase worsens curving performance.  

  
Figure 4. Bogie System Failure Modes 

It is easy to see how each of the above mentioned fault 
conditions affects the wheelset alignment and triggers 

changes in the lateral and vertical forces of the wheels on 
the rail.  

Failure modes of the rail car bogie system are generally 
defined as a decrease in performance and not a complete 
breakdown, as may be the case for other machinery. The 
industry relies heavily on wayside equipment for the 
detection of these deteriorated bogie components (Zakharov 
& Zharov, 2005).  Different types of wayside equipment 
exist for detecting deteriorated parts on freight rail bogies. 
The two most relevant types for rail car bogie performance 
are Truck Performance Detectors (TPD) and Truck Hunting 
Detectors (THD). Both of these detectors consist of 
instrumentation which is added to the track to measure the 
lateral and vertical forces that rail car wheels exert on the 
track. TPDs achieve this through instrumentation of two 
reverse curves with strain gauges to measure the wheel 
lateral and vertical forces and wheelset angle of attack 
during curving. THDs are placed on tangent track and 
instrumented with strain gauges to measure wheelset 
hunting.  Currently, approximately 15 TPDs and 172 THDs 
are in service across the North American rail network. The 
difference in their numbers stems from two reasons. First, 
TPDs are more expensive and more difficult to set up due to 
their two reverse curve requirement. Second, THDs are 
usually setup in conjunction with Wheel Impact Load 
Detectors (WILDs) as an additional functionality, adding 
less to the overall cost than a standalone TPD system. 
However, it is commonly accepted in the industry that TPD 
alerts are more worthy of repairs than THD alerts as they 
generally relate to a broader spectrum of root causes.  

2. BOGIE PERFORMANCE CRITERIA 

As mentioned previously, the Association of American 
Railroads Transportation Technology Center, Inc. (AAR/ 
TTCi) has established a set of design validation criteria for 
the quantification of bogie system performance through 
track testing. Although the tests consist of both static and 
dynamic requirements, this study will focus on dynamic 
requirements only. The dynamic requirements are divided 
into tests for smooth, unperturbed track and geometrically 
varying, perturbed track. The perturbed track tests are 
designed to excite vehicle dynamic modes historically 
associated with poor performance. The majority of the tests 
are evaluated by comparing wheel L/V force results against 
threshold limits per AAR MSRP C-II Chapter 11. Table 1 
lists the criteria for these test regimes. As mentioned before, 
the most frequently used criterion of bogie performance 
(wheel L/V forces) comprises 9 out of the 21 requirements. 
This is followed by the percent load requirements (6) and 
acceleration based requirements (4). This shows that the 
industry has a historical affinity towards evaluating bogie 
performance by means of wheel L/V forces.   
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Table 1. AAR MSRP C-II Chapter XI Dynamic 
Performance Requirements 

Test Regime Criterion Limit 
Hunting (empty) Max. lat. Acc 1.5  [G]  

σ lat. Acc. 0.13  [G] 
Constant Curving 95th perc max wheel  0.8 L/V 

95th perc max axle sum  1.5 L/V 
Spiral Negotiation Min. vert. load 10  [%] 

Max wheel  1.0 L/V 
Max axle sum  1.5 L/V 

Twist/Roll Max. roll 6  [°] 
Max axle sum  1.5 L/V 
Min. vert. load 10 [%] 
Dyn. augment acc. 1.0  [G] 
Loaded spring cap max. 95 [%] 

Pitch/Bounce Min. vert. load 10 [%] 
Dyn. augment acc. 1.0  [G] 
Loaded spring cap. max. 95 [%] 

Yaw/Sway Max. truck side  0.6 L/V 
Max axle sum  1.5 L/V 

Dynamic Curving Max wheel  1.0 L/V 
Max axle sum  1.5 L/V 
Max roll  6 [°] 
Min. vert. load 10  [%] 

The unperturbed track tests include: 

 Lateral Stability on Tangent Track (Hunting): hunting 
is the transfer of energy from forward motion into 
sustained lateral oscillations of the axle between the 
wheel flanges. 

 Operation in Constant Curves: This tests the 
satisfactory negotiation of track curves. The resulting 
forces between wheel and rail have to be safe from any 
tendency to derail. 

 Spiral Negotiaion: This tests satisfactory negotiation of 
spirals leading into and out of curves. The tests are 
required to show an adequate safety margin from any 
tendency to derail, especially under reduced wheel 
loading. 

The perturbed track tests include: 

 Varying Cross-Level: This tests the satisfactory 
negotiation of oscillatory cross-level excitations which 
may lead to large car roll and twist amplitudes. The 
tests have to show an adequate margin from any 
tendency to derail. 

 Surface Variation: This tests the satisfactory 
negotiation of the car over track that provides an 
oscillatory excitation in pitch and bounce. A safety 
margin from any tendency to derail has to be shown. 

 Alignment Variation: This tests the satisfactory 
negotiation of the car over track with misalignments 
that provide excitation in yaw and sway. A safety 
margin from any tendency to derail has to be shown. 

 Alignment, Gauge, Cross-Level Variation in Curves: 
This tests the satisfactory negotiation of a combination 
of misalignments at low speeds. A safety margin from 
any tendency to derail has to be shown. 

3. MODEL-BASED SIMULATIONS VS DATA DRIVEN 

DIAGNOSTICS 

In recent years, the topic of advanced modeling techniques 
to supplement experiments such as the tests outlined above 
has received increased attention. In (Li & Goodall, 2004) a 
model-based approach is presented which derives 
theoretical knowledge from a mathematical model. Contrary 
to this method, data-driven approaches are used where 
mathematical models are unavailable and heuristic strategies 
have made solutions available. The authors argue in favor of 
a model-based approached, but steer their study away from 
complex non-linear simulation models. In the case of (Li & 
Goodall, 2004) this is permissible since it is assumed that 
the bogies in the study are passenger rail bogies with less 
non-linear effects, such as dry friction damping, stick-slip 
effects and clearances, than freight rail bogies (Iwnicki, 
2006). The authors also mention the difficulties in 
generating fault accentuated signals (residuals) for fault 
detection and isolation purposes. Generally, a trade-off 
between accuracy and (computational) expense has to be 
considered when a realistic model is the goal. The 
alternative is to simulate hard faults, as the authors did in 
(Li & Goodall, 2004), even though this approach neglects 
gradual deterioration. Typical data-driven approaches 
usually focus more on gradual deterioration effects to 
establish cause and effect relationships. In both (Li & 
Goodall, 2004) and (Tsunashima & Mori, 2010) the 
proposed methods are tested only in simulation which is yet 
another drawback. Contrary to the opinion in (Li & Goodall, 
2004) the best approach to be considered should be a 
combination of analytic simulation and experimental work. 
This is demonstrated in (Pogorelov, Simonov, Kovalev, 
Yazykov, & Lysikov, 2009) where the authors achieve this 
by using a multibody dynamics simulation package first to 
model the suspension and then validate their findings in a 
series of full scale experimental tests.  

On the opposite end of the spectrum, purely empirical 
studies have been completed to determine root causes of 
suspension faults. In this type of study data is systematically 
collected to reflect failures as they appear in the field under 
revenue service conditions. In (H. M. Tournay & Lang, 
2007; H. M. Tournay, Lang, & Wolgram, 2006) data from 
TPDs was analyzed and bogie systems which generated 
alerts were identified. Since the correlation between age and 
performance is well understood, old bogies with lowered 
warp restraint or mismatched side frames (due to 
reconditioning) were expected and not subject of the studies. 
The bogie systems with no obvious faults, which were 
expected to perform well, yet triggered an alert, were the 
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main subjects of both studies. The studies took a multitude 
of factors into consideration, including car maintenance 
history, TPD metrics (truck gauge spreading force, truck 
warp factor etc), truck parts/condition into account and 
identified potential root causes for poor performance. (H. M. 
Tournay, Lang, & Wolgram, 2006) concluded that side 
bearing malfunction and car body twist had caused line 
contact in the center bowl, and (H. M. Tournay & Lang, 
2007) concluded that high bogie to carbody rotational 
resistance due to out of tolerance side bearings and high 
friction in the center bowl had triggered the truck 
performance detector alarms. Evidently, a purely data-
driven analysis of wayside detector data intended to provide 
actionable results is very different from a model based 
technique to predict suspension failure based on simulated 
acceleration data. Empirical data is reflective of faults 
encountered in the field but may be difficult to interpret 
initially until repeated patterns can be systematically 
observed and attributed to their root causes. In contrast to 
this, model based approaches provide simulated data in 
which a single variable can be changed while others are held 
steady to isolate the root cause of a failure. The complexity 
and accuracy of a simulation strongly influences the 
applicability of results found in this manner.  

In between a theoretical model based and data-driven 
approach fall data-driven techniques with advanced sensors 
but without mathematical models (Sunder, Kolbasseff, 
Kieninger, Rohm, & Walter, 2001). These methods present 
an interesting alternative as they are more practical than the 
model based approaches, and hence more applicable. 
However, the lack of a mathematical model underutilizes 
available simulation methods to improve accuracy either for 
sensor placement or algorithm and sensor threshold design. 

The differences in the three presented approaches highlight 
the issues any condition based monitoring or predictive 
maintenance based approach faces.  

3.1. Data-Driven Interpretation of Model-Based 

Simulation Data  

The above presented model-based approaches do not outline 
how their goal of condition based maintenance should be 
achieved in practice. Implementation issues such as power 
on freight rail cars, reliability in harsh environments, 
feasibility and wireless communication remain entirely 
untouched. If these deficiencies were added to a model 
based approach, it could be a more viable solution in terms 
of an industrial application. An understanding of the faults, 
the maintenance practices, and operating environment can 
significantly strengthen conclusions obtained from the 
analysis of a theoretical bogie model and lead to results 
more reflective of industry practices. This paper is 
proposing the fusion of these two approaches to implement 
a system for data-driven based interpretation of model based 
data of railway bogie performance.  

The key for this proposal is to devise a representative model 
of a freight rail bogie that is adequately detailed and not too 
complex to be computationally solvable.  (Fujie & True, 
2003) and (Pogorelov et al., 2009) used simulations with 19 
rigid bodies and triple digit degrees of freedom models. 
These are significant numbers as they show the complexity 
of modeling the conventional North American three piece 
bogie. An investigation of which aspect of the bogie model 
would be most beneficial to model in higher detail to 
achieve the goal of fault simulation is recommended. 
Typically, the suspension system of the bogie is of the 
highest relevance amongst all bogie components. The 
suspension system of a freight rail bogie is made up of two 
subsystems.  These are the primary suspension which 
consists of the adapter and adapter pad at the pedestal seat in 
the side frame and the secondary suspension which consists 
of the spring nest and friction wedges inside the side frame.  
One possible focus for the modeling efforts could be the 
secondary suspension of the bogie, as this is the main 
component which reacts the dynamic forces from the wheels 
on the rest of the bogie. Warp of the bogie system, resulting 
from worn secondary suspension components such as 
friction wedges could be considered a target fault. As 
mentioned in the introduction, bogie warp is a condition 
under which the friction wedges fail to resist the 
longitudinal shift of the side frames which results in 
misalignment. The misalignment rotates the wheelsets such 
that they exert a larger than normal track gauge spreading 
force onto the track in curves. Figure 5 shows the alignment 
of the wheelsets under conditions of a warped bogie.  

 
Figure 5. Wheelset alignment under warped bogie 

conditions 

The red circles in figure 5 show where the increased forces 
would react with and potentially damage the track. Under 
lateral instability conditions (for loaded cars) on tangent 
track this fault would contribute to the development of 
hunting oscillations. It can be expected that symptoms of 
this fault will be discernible in the longitudinal acceleration 
signal from the side frames. An adequate method to iterate 
measurement responses towards deterioration should be 
implemented in the model. Measuring the response of bogie 
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components in terms of displacements and accelerations, 
would allow the creation of meaningful thresholds and the 
selection of the most beneficial location on the bogie for 
sensor placement. 

Another interesting fault for the proposed method is 
hunting. Hunting was explained in the introduction as the 
lateral oscillatory motion of the bogie system, which is 
initiated by the wheel taper. It worsens over time as the 
wheel profile wears hollow and as a result the lateral 
oscillations increase in magnitude when the rail vehicle 
enters instability on tangent track.  It can be expected that 
symptoms of this fault will be discernible in the lateral 
acceleration signal from the side frames, bearing adapters 
and rail car body.  MSRP C-II Chapter 11 specifically 
mandates the use of worn wheel profiles for the hunting 
tests described above. The mandated (KR) profile is 
formalized as an approximation for a wheel profile after 
100,000 miles of revenue service. Figure 6 shows the 
change in the profile from a new to a KR worn wheel.  

 
Figure 6. New wheel profile vs worn KR wheel profile 

This fault mode is particularly interesting because MSRP C-
II chapter 11 specifies acceleration levels as thresholds and 
not L/V ratios as it does for most of the other bogie 
performance tests.  This makes the translation of regulatory 
requirements into actionable thresholds directly possible. 
Simulation results from the model will add the relationship 
of the oscillation severity to the wear of the wheel profile 
and potentially other root causes.  These two examples show 
how the proposed method can be expanded and applied to 
additional bogie faults.  

4. FIELD TEST 

A first set of tests was conducted at Transportation 
Technologies Center, Inc. (TTCI) in Pueblo, CO. TTCI, a 
subsidiary of the Association of American Railroads, is a 
transportation research and testing organization. TTCI offers 

a wide range of tests for rail applications on their seven test 
tracks.  

4.1. Field Test Setup 

One of these tracks, the Railroad Test Track (RTT), is a 
13.5-mile loop with four 50-minute curves and a single 1-
degree, 15-minute reverse curve. Maximum speed is 165 
mph and all curves have 6-inches of superelevation 
(difference in rail height on the same section of track - 
especially relevant in curves to maintain stability). The 
primary purpose of this track is high speed stability testing 
which is well suited for exciting lateral vehicle dynamic 
modes. The selection of lateral instability testing was based 
on two reasons: the first being that it is one of only two tests 
in MSRP C-II Chapter 11 which evaluate performance 
criteria as a quantity of acceleration in G and secondly, the 
industry’s interest in modifying this specific requirement 
from currently empty cars to loaded cars. The increased 
interest in this particular instability mode is related to the 
introduction of higher load bogies as shown earlier in this 
paper. The higher car loads have resulted in wagon bodies 
with higher yaw/roll moments of inertia that react with 
relatively low warp restraint leading to coupled oscillatory 
resonance at speeds as low as 47 mph (H. Tournay, Wu, & 
Wilson, 2009). The extension of lateral instability tests is 
likely to affect product development and Mean-Time-To-
Failure (MTTF) requirements, and as such poses a 
particularly well-suited example for an application of 
condition monitoring strategies.  

For this study, one of the 50-minute (0.8 degree) curves 
with 6-inches superelevation was used to accelerate the train 
to target speeds, ranging from 40 mph to 80 mph. Figure 7 
shows the profile of the segment of the RTT track that was 
used.  
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Figure 7. Test segment of RTT track 

The upper graph shows the superelevation and the bottom 
graph shows the curvature. Once the target speed was 
reached, data acquisition systems began to measure the 
lateral and vertical accelerations at two sensor locations on 
the rail car body. Figure 8 shows the sensor locations at the 
A- and B-end on the loaded hopper car. The triangles 
indicate where the accelerometers were installed on the test 
car. Red indicates the accelerometers that were mounted 
near the roof of the car and green shows accelerometers on 
the deck above the bogie center location. The 
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instrumentation of the test car was in accordance with 
MSRP C-II Chapter 11 rules for trackworthiness testing of 
new freight car designs. As previously mentioned, per AAR 
rules, hunting is quantified as the peak to peak magnitude 
and standard deviation of the lateral acceleration on the deck 
above the center of the bogie. The two additional 
accelerometers (red in figure 8) were added to the test setup 
to measure lateral acceleration at the top of the rail car body. 

 
Figure 8. Instrumentation overview for loaded hopper car 

Since the rail car body can be assumed to be rigid the 
extended moment arm between the center of rotation and 
measurement location at the top provides more pronounced 
acceleration which can be analyzed in correlation to the 
lower deck location. Additional signal processing 
requirements per the AAR rules were followed.  

4.2. Field Test results 

The field tests led to a number of significant results. Figure 
9 shows the power spectral densities of each run’s time 
series data from the rail car’s top A-end location. It can be 
observed that a distinct resonant frequency becomes 
detectable above 55 mph and that the resonance is located 
between 2.0 and 3.0 Hz, depending on the speed of the test 
run.  This is not a coincidence as it is well known in the 
industry that hunting occurs in this frequency range.  

 
Figure 9. Frequency domain data between 40 and 80 mph  

Furthermore, this frequency range also correlates to that of 
the kinematic analysis in the introduction and can be 

regarded as the propagated vibration of the wheelset’s side 
to side oscillation in which the wheel flange contacts the 
rail. The finding of this result is significant because it shows 
that when factors such as wheel taper and lading are 
controlled so that they favor excitation of a dynamic failure 
mode, accelerations indicative of this failure can be 
measured. Moreover, the progressively increased test speeds 
show the gradual increase of the oscillatory power in 
frequency domain. The increased oscillatory power at the 
roof of the car body versus the sill location can be observed 
in figure 10. There, the 80 mph test run data is shown in 
four different locations and it can be observed that the roof 
and sill follow similar trends with different magnitudes. 

 
Figure 10. Comparison of roof vs sill location at 80 mph  

5. DISCUSSION 

It was shown in the field test section that actionable 
information could be obtained from accelerometers in the 
sill or roof locations of the rail car. This first test can be 
assumed as a proof of concept for expansion of the outlined 
monitoring strategy to the following additional bogie faults, 
historically associated with certain component failures: 

 Bogie Misalignment: figure 4 in the introduction 
showed four different misalignment faults for bogies. 
Having various root causes (H. M. Tournay, Lang, 
Wolgram, & Chapman, 2006) these misalignments lead 
to forces resulting from the complex, dynamic 
interactions of the bogie parts and track. Identification 
of interactions such as warp restraint and angle of 
attack and the effect an increase or reduction would 
have on the dynamic behavior of the bogie system is 
proposed. 

 Spring Nest: faulty operation of this suspension 
component is coupled to the vertical motion of the 
bolster and anomalies could be detectable if there is a 
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significant change in the displacement when this 
component wears.  

 Side Bearings: are intended to support the even 
distribution of the lading and prevent hunting. If contact 
forces are too high, the rotation of the car body against 
the bogie can be inhibited leading to high curving 
forces. If they are too low, lateral oscillations will not 
be adequately resisted.   

 Wheels: this fault can be quantified by wheelset lateral 
oscillations as they occur when wheels are worn hollow 
and begin to lose their self-centering abilities as 
outlined in the kinematic analysis. 
 

For the first three of the above described faults a triaxial 
accelerometer would be a suitable sensor package to 
identify the faults. The longitudinal axis would sense side 
frame displacements due to bolster rotation, the vertical axis 
would sense bolster vertical displacements and the lateral 
axis would sense lateral oscillations such as bogie hunting. 
For the last fault, wheelset displacements, the best 
acceleration axis would be the lateral axis.  

To detect these faults the selected sensor package would be 
placed on the bogie. Multiple locations meet the 
requirements outlined above and could work but should be 
investigated in simulations and field testing to confirm 
applicability. Three particular locations are of high interest: 
1. Either end of the side frame, 2. Either end of the bolster 
and 3. Bearing adapter locations. Additional knowledge can 
be gained by placing accelerometers on the car body, 
especially if yaw/roll coupled instability modes of the car 
body are of interest. Simulating the dynamic modes with a 
model and supplementing the findings with a field test 
would provide a better understanding of which location is 
preferable and provides higher accuracy in detecting these 
faults.  

To create actionable thresholds it would be furthermore of 
interest to relate currently existing TPD alarm levels to 
acceleration limits. TPDs classify bogies as bad actors based 
on force and angle of attack based TPD data.  The criteria 
for this are either two events exceeding the forces shown in 
figure 11 within 12 months or two Lead Axle High Rail L/V 
values of 1.05 also within 12 months. Both of these 
requirements were established in parallel to MSRP C-II 
Chapter 11 and are outlined in detail in (H. M. Tournay, 
Lang, Wolgram, et al., 2006). Multibody simulation 
packages are able to estimate these wheel lateral and vertical 
forces as part of a simulation. One issue the authors mention 
is the intermittent behavior of TPDs during successive 
passes of the same car. It has proven to be a major obstacle 
to the interpretation of TPD data. This is yet another aspect 
in favor of the proposed monitoring approach.  

For THDs the condemning criteria are either two events 
with a Salient Hunting Index above or equal to 0.35 or a 
single Salient Hunting Index above 0.5. Hunting is 

investigated in (H. M. Tournay, Wu, & Wilson, 2008) with 
respect to its occurrence under loaded car conditions. This is 
relevant as it directly pertains to the pending rule change to 
extend empty car criteria to loaded car criteria. Investigation 
of factors such as adapter pad (primary suspension) and 
wheel profile combinations resulted in concluding that 
loaded car hunting is a resonant coupling between the yaw 
oscillation of the wheelset and natural frequency of rail car 
body in a yaw mode that includes in-phase body roll 
motion. 

Table 2. TPD Truck gauge spread force (TGSF) limits 

TGSF  

(kips) 

Site Curvature 

(degrees) 

28      

33          

38          

43          

48          

53          

58      

From a component perspective it primarily depends on 
frictional warp properties, adapter pad stiffness and taper 
wear of the wheelsets. A meaningful combination of these 
fault modes and hierarchical structure for which to monitor 
first shall be derived from these initial findings.  

6. CONCLUSION 

Problems in monitoring the condition of the standard North 
American three piece bogie were outlined in this study and a 
strategy to attack these from a combined data-driven and 
analytic simulation approach was presented. An overview of 
bogie performance standards from a regulatory perspective 
and existing technologies that are currently in use in railroad 
revenue service was provided. Challenges that these 
technologies pose in terms of implementation effort, 
preventive action effectiveness, and faulty component 
identification were presented. 

A field study presented initial results of an investigation of 
lateral instability and how these results can be used to detect 
gradual wear in components that are tied to a particular fault 
mode. The addition of a model to simulate these failures 
prior to field testing was proposed and would enable 
researchers to make decisions about locations for sensor 
placement and thresholds. Finally, currently used 

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

655



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014 

 
 

performance parameters for the two dominant monitoring 
technologies were presented and it was outlined how these 
performance parameters could be 1) linked to components 
associated with the performance parameters, 2) adopted in a 
condition monitoring strategy to reflect the existing 
performance standards. As an extension of this strategy the 
failure mode of loaded car hunting was presented as an 
example in which application of the proposed strategy is 
particularly sensible, as the determining performance factor 
can be directly linked to the regulatory standard and sensor 
measurements. 
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ABSTRACT 

This paper investigates a real-time fault detection and 

degradation prediction scheme for dynamical systems such 

as jet engines, based on Regularized Particle Filtering 

(RPF). Particle Filtering is a prognosis method for the 

prediction of state degradation and remaining useful life 

(RUL) due to its demonstrated performance in handling 

non-linear and non-Gaussian situations.  RPF overcomes the 

problem of sample impoverishment among particles over 

the resampling process. Based on measured data from 

hybrid sensing and nonlinear models, which link system 

parameters and degradation state to the measurement, RPF 

has been applied to establishing a framework for both state 

and parameter estimation, to achieve prognosis at the 

component level.  In addition, a modified system evolution 

model is proposed to track both exponential and transient 

types of system performance degradation. The developed 

method is evaluated using simulated data created with C-

MAPSS, which contains measured parameters associated 

with engine degradation under nominal and varied fault 

types (fan, compressor and turbine) during a series of 

flights. The developed system-parameter estimation method 

is found effective in state estimation and degradation 

prediction in jet engines. 

1. INTRODUCTION 

In most cases real world data contain failure signatures but 

little to no information about the failure evolution or state 

degradation, thus driving the need for health monitoring, 

diagnosis of faults, system performance degradations and 

trend prediction for dynamic systems, such as jet engines. 

Several prevalent sensing and diagnosis techniques have 

been proposed in past decades for health management in jet 

engines, such as gas path analysis (Volponi, 2003), exhaust 

composition and gas path debris (Simon, Garg, Hunter, Guo 

& Semega, 2004). Gas path analysis (GPA) is one of the 

most popular techniques to quantify the thermodynamic 

performance of engines based on the hybrid sensing of 

temperature, pressure and other measurements. The 

approaches to establish the relationship between 

measurement and system state can be classified into two 

categories: data-driven and model-based. A data-driven 

approach requires a large amount of historical data for 

training and lacks generality (Peng, Dong & Zuo, 2010), 

while a model based approach takes advantage of merits of 

both physical knowledge and historical data information.  

Depending on system types and noise assumptions, different 

methods including the Kalman filter (for linear system and 

Gaussian noise) (Kalman, 1960), the extended Kalman filter 

(for weak nonlinear system and Gaussian noise) (Julier & 

Uhlmann, 1997), and the particle filter (for nonlinear system 

and non-Gaussian noise) (Gordon, Salmond & Smith, 1993) 

can be applied to implement model based prognosis (Doucet 

& Johansen, 2009). Due to the stochastic and nonlinear 

nature of the engine system performance degradation, this 

paper presents a probabilistic degradation prediction method 

to achieve the diagnosis and prognosis at the component 

level by recursively updating the physical model with online 

measurement based on Regularized Particle Filtering (RPF), 

while RPF is proposed to overcome the sample 

impoverishment problem in the resampling stage of standard 

PF (Musso, Oudjane & Legland, 2001).  Besides 

exponential degradation prediction, a modification of the 

state evolution model has been proposed to track transient 

changes in system state and parameters due to faults. 

The rest of the paper is constructed as follows. 

Theoretical background of particle filtering and the 

modified system evolution model are introduced in Section 

2, followed by the discussion of the system degradation 

model and thermodynamic measurement models of engines 

at the component level that are implemented in RPF based 

prognosis in Section 3. The effectiveness of the presented 

technique is demonstrated in Section 4, based on run-to-

failure simulated data created with C-MAPSS. Finally, 

conclusions are drawn in Section 5. 

Peng Wang et al. This is an open-access article distributed under the 
terms of the Creative Commons Attribution 3.0 United States License, 

which permits unrestricted use, distribution, and reproduction in any 

medium, provided the original author and source are credited. 
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2. FILTERING FRAMEWORK 

In order to analyze and make inference about a dynamic 

system, the posterior probability density function (pdf) 

needs to be estimated and updated for the underlying system 

state, based on the availability of new measurements, in the 

Bayesian framework. The system model describing the 

evolution of the state (variables representing system 

performance degradation in this paper) with time and the 

measurement model relating observable noisy 

measurements to true state are not nonlinear in many 

dynamic systems. Particle Filtering, also referred as 

Sequential Monte Carlo (SMC) (Orchard, Cerda, Olivares & 

Silva, 2012), provides a numerical approximation for 

nonlinear system estimation, using a set of random samples 

(or particles) with associated weights to construct the pdf of 

a state (Gordon, 1993). 

2.1. Regularized Particle Filtering 

For the estimation of the underlying state in a nonlinear 

dynamic system, it is assumed the stochastic model of 

system evolution is known as:  

 
1 1( , )k k k kx f x w                            (1) 

where : x w xn n n
kf    describes the state transition 

function from state xk-1 to xk considering an order-one 

Markov process. wk-1 is the process noise representing 

uncertainty. The state is recursively estimated based on the 

measurements (Saha & Goebel, 2011): 

( , )k k k kz h x v                             (2) 

where : x v zn n n
kh    is the measurement function 

representing the relation between online measurements zk 

and an unobservable degradation state xk. νk is the sequence 

of measurement noise. 

In the Bayesian framework, estimation is fulfilled by 

recursively calculating the posterior pdf p(xk|z1:k) of the state 

given the noisy measurements z1:k (Wang, Wang & Gao, 

2013).  Taking into account the one-step Markov process, 

the pdf can be obtained using two stages: prediction and 

update, as shown in Eq. (3) and Eq. (4). 

1 1 1 1 1( | ) ( | ) ( | )k k k k k k kp x z p x x p x z dx              (3)       

1

1

( | ) ( | )
( | )

( | )

k k k k

k k

k k

p x z p z x
p x z

p z z





                  (4)                                             

where p(zk|zk-1) is the normalizing factor which can be 

calculated as:  

1 1( | ) ( | ) ( | )k k k k k k kp z z p x z p z x dx               (5)                                   

In particle filters, the posterior pdf is represented and 

approximated by a set of random samples or particles { 1:

i

kx  , 

i = 1, 2, …, N} and associated importance weights
i

kw . The 

weights are normalized with 1i

ki
w  . The integral 

operation in Eq. (3) is then approximated as the 

summarization of these random numbers as:  

1 1 1 1 1

1 1 1 1 1 1

1 1

( | ) ( | ) ( | )

( ) ( | ) ( | )

k k k k k k k

N N
i i i i

k k k k k k k k

i i

p x z p x x p x z dx

w x x p x x w p x x

    

     

 



  



 
   (6)   

where the total number of particles N can affect the 

accuracy of the represented probability distribution, and 

computational efficiency. In the update step, the weight of 

each particle is updated based on the likelihood of the 

observation zk at time k as: 

            1 ( | )i i i

k k k kw w p z x                             (7)  

Similarly, the posterior probability distribution p(xk+l|zk) in 

the l-step ahead prediction can be obtained as:  

1 1

1

( | ) ( | )
N

i i

k l k k l k l k l

i

p x z w p x x     



              (8)  

In constructing the particle filter, resampling is applied in 

every step to remove particles with small weights (justified 

by comparing the cumulative distribution function to a 

threshold within 0~1) and obtain equally weighted samples 

so as to avoid the degeneracy problem of the algorithm. 

After resampling, the weights of the new particle population 

are reset to 1/i

kw N . However, in the standard PF methods 

stated above, due to the fact that the samples are drawn from 

discrete distributions instead of continuous distributions, the 

problem of loss of diversity among the particles may arise. 

To overcome this problem, the Regularized Particle Filter 

(RPF) has been proposed. The fundamental idea is to change 

the discrete approximation to a continuous one of posterior 

pdf in the resampling stage with the rescaled kernel 

structure. The update process Eq. (4) becomes: 

1

( | ) ( )
N

i i

k k k h k k

i

p x z w K x x


                    (9) 

Where 

1
( ) ( )

x
h n

x
K x K

hh
                            (10) 

K(·) is the recalled kernel density and h is the kernel 

bandwidth, the selection of which is optimally related to the 

dimension of state nx and the number of particles N. 

2.2. System Model for Transient Degradation  

System estimation includes state estimation and parameter 

estimation. In most cases, the parameters are included in the 

state transition function : x w xn n n
kf   , and then it 

becomes the joint state and parameter estimation. For most 

dynamical models like the performance degradation, the 

parameters are assumed to be constant within in a small 

range and the artificial evolution law is adopted (Liu & 

West, 2001), then the state will decay in an exponential 
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way. However these state models do not consider the case of 

transient degradation due to faults, which would cause a 

transient change in both parameters and states (Daroogheh, 

Meskin & Khorasani, 2013). The idea to handle this 

problem proposed in this paper is to include the output 

prediction error or measurement innovation into the state 

evolution model. 

If fault occurs between sampling time k and k+1, the 

parameters used to predict the state xk+1 and output zk+1 are 

assumed to be consistent with values in previous sampling 

times 1:k. Thus there will be transient change of the output 

prediction error between time k and k+1. The solution is to 

compare the cost function  

1 11 1

1
[ ( )( ) ]
2

T
k kk kJ E z z z z

 

                 (11) 

to a predefined threshold. Where 1kz


 is the predicted 

output at time k+1. If the cost function exceeds the 

threshold, the state evolution model Eq. (1) becomes: 

1 xk k k kx u w                          (12) 

where u is the unit step function and γk is the time varying 

gain related to the cost function J.  The additional item γku is 

to track the state change due to failures.  

3. MODEL FORMULATION 

Gas path analysis relies on discernable changes in 

observable parameters to detect physical faults. The 

fundamental tenet underlying this approach is that physical 

faults occurring in components (fan, low/high pressure 

compressor and high/low pressure turbine) of engines 

induce a change in component performance (modeled as 

efficiency, flow capacity, etc.), which in turn produce 

observable changes in measureable parameters 

(temperature, pressure, speeds, etc.). This inverse 

relationship offers the approach for engine performance 

estimation (Volponi, 2003). In the implementation of fault 

detection and degradation trend prediction of engines at the 

component level, using the proposed estimation method, the 

efficiency of each component is considered as the state 

needing to be estimated from observable measurements. 

The exponential behavior of the fault evolution or system 

performance degradation is common for all degradation 

models (Saxena, Goebel, Simon & Eklund, 2008).  Thus, a 

generalized state evolution model in this paper is assumed 

as: 

1

1 1 1exp( )kB

k k k kx x A w 

                       (13) 

where Ak-1 is the scaling factor and Bk-1 is the time-varying 

factor determining the degradation rate at sampling k-1. τ is 

the sampling interval and w is the associated process noise. 

In the training stage, parameters A and B are estimated 

using RPF iteratively. In the prediction stage, the latest 

updated parameters assigned with each particle joint with 

state evolution model would provide the predicted states. 

Namely, the parameters stay constant in the prediction stage 

(Zhu, Yoon, He, Qu & Bechhoefer, 2009). 
 

The nonlinear measurement equations that relate state 

(efficiency) and measurements for compressor and turbine 

(Moran & Howard, 2004) are listed as follows 

1

( 1)
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                  (14) 

1

(( ) 1)
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T P
T T
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                   (15) 

where, TCin, TCout, TTin and TTout denote the temperature of 

the inlet and outlet of the compressor (low/high pressure) 

and turbine (low/high pressure), respectively, and PCin, 

TCout, TTin and TTout denote the temperature of the inlet and 

outlet of the compressor and turbine, respectively. CPR is 

the abbreviation of compressor pressure ratio. γC and γT 

denote the specific heat ratio of the compressor and turbine, 

which are assumed to be constant. ηC and ηT denote the 

efficiency of the compressor and turbine, which are also 

assigned as the state parameter to represent engine status. 

Even if no fault occurs, the engine performance still decays 

in an exponential way, causing an accumulative efficiency 

loss of each component, which in turn is represented by 

discernable changes of observable measurements. Fig (1) 

gives an example of accumulative efficiency loss and 

corresponding measurement change of the high pressure 

compressor (HPC). More details on implementation of 

degradation trend prediction and  transient decay detection 

using proposed diagnosis and prognosis method are 

discussed in the next section. 

 

Figure 1. Accumulative efficiency loss and corresponding 

CPR increase of HPC 
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4. PERFORMANCE EVALUATION 

To evaluate the performance of the proposed RPF based 

engine degradation prediction method, a set of high fidelity 

system level engine simulation data is used (Saxena, 2008). 

The data is created with a Matlab Simulink tool called C-

MAPSS, designed to simulate normal and fault engine 

degradation over a series of flights. Each flight is a 

combination of a series of flight conditions with a 

reasonable transition period to allow the engine to change 

from one flight condition to the next. For the normal 

condition case, the engine is given an exponentially 

degrading fuel flow and efficiency profile, which denote the 

degradation of system performance. For fault condition 

cases, the engine is assigned one of five possible faults (fan, 

LPC, HPC, HPT and LPT) at a random flight. The fault is 

manifested by increasing the efficiency parameters 

degradation from the fault time point until the end of the 

simulation for the remaining flights. After a flight is 

simulated, a snapshot of all engine parameters is taken in the 

middle of cruise and applied to estimate engine state and  

predict the degradation trend. 

In the learning stage, based on the state equations (denoted 

by Eq. (12) and Eq. (13)) and measurement equations 

(denoted by Eq. (14) and Eq. (15)), the state transition 

probability p(xk|xk-1) and measurement probability p(zk|xk) 

can be obtained as a priori, then the posterior distribution 

function of efficiency state p(xk+l|zk) can be predicted using 

the RPF. In the system equation, the model parameters A 

and B in Eq. (13) are modeled as probability distributions 

following the uniform distribution, to incorporate the 

stochastic property of the engine component degradation. 

The latest update of these two parameters helps construct 

the state transition probability p(xk|xk-1) and subsequently the 

degradation prediction. Fig. 2 shows an example of HPC 

efficiency degradation prediction based on the developed 

methods under a normal case (natural decay, no fault 

occurrence), using the information of the first 160 flights as 

the prior knowledge to predict the efficiency trend.  
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Figure 2. Predicted HPC efficiency degraded in an 

exponential way without external fault 

Fig. 3 shows the HPC efficiency prediction under fault case, 

where the transient decay occurs at the 23
rd

 flight by a 

0.25% loss. Also, the information about the first 80 flights is 

taken as the prior knowledge for the proposed method to 

predict the efficiency evolution of the last 20 flights. The 

simulation result indicates that the proposed method can 

track the both exponential and transient types of system 

performance degradation. Because the cost function of 

estimated output at previous sampling time, as denoted by 

Eq. (11), is checked each step, there is a time delay for the 

estimation to track the transient change. Fig. 4 is the 

evolution of distribution of parameters A and B in Eq. (13). 

It is noted that the value of both parameters are consistent 

before and after the transient change. In addition, because 

there is no new information to update the parameters, they 

stay the same in the prediction stage.   
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Figure 3. Predicted HPC efficiency with a transient decay 

under the effect of external fault 
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Figure 4. Evolution of distribution of parameters A and B 

for HPC efficiency estimation 

Fig. 5 shows another example of LPT efficiency prediction 

in the fault case, where the fault occurs at 33
rd

 flightFig. 6 is 

the corresponding evolution of parameters distribution. 
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Figure 5. Predicted LPT efficiency with a transient decay 

under the effect of external fault 
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Figure 6. Evolution of distribution of parameters A and B 

for LPT efficiency estimation 

To evaluate the effectiveness and robustness of proposed 

method on degradation prediction, Monte Carlo simulation 

is applied to derive the comprehensive simulation results. 

Each scenario has been run for 100 times. Mean and root 

mean square (RMS) of root mean square error (RMSE) of 

median prediction are listed in Table 1. 

Table 1 Monte Carlo simulation result of proposed method 

 Normal HPC Fault HPC Fault LPT 

Mean 0.086% 0.1% 0.13% 

RMS 0.097% 0.12% 0.14% 

Extended Kalman filter (EKF) is selected here as the 

alternative method to compare with PF, while the results are 

shown in Fig. 7. Maximum likelihood (ML) integrated with 

EKF is adopted to estimate the unknown parameters in the 

state evolution model, based on which prediction is 

performed.  It is found that prediction accuracy of PF is over 

EKF+ML, and the prediction accuracy of natural 

degradation over the mixed degradation. 

 
Figure 7. Performance comparison between PF and EKF 

5. CONCLUSION 

Particle Filtering has been investigated as a prognostic 

method for both state and parameter estimations in 

determining the efficiency degradation of jet engines as an 

example of dynamical system prognosis, at the component 

level. State estimator is modified by a cost function that 

compares the predicted measurements to updated 

measurements, and enables the tracking of transient decays 

in addition to exponential type of degradations. Simulated 

data sets including normal and fault cases generated by the 

C-MAPSS program have been used to evaluate the 

effectiveness of the developed algorithm for engine 

degradation state prediction,   with quantified confidence 

intervals to manage uncertainty. In the three examples 

considered, the results indicate that the method can track 

transient changes within two steps, and the prediction error 

is less than 1%. Future research will investigate the 

robustness of the developed algorithm for different 

applications under different operational conditions, using 

experimental data.  
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ABSTRACT 

In asset-intensive services, a well-known challenge is to 
maintain high availability of the physical assets while 
keeping the total maintenance cost low.  In applications of 
high-value machinery such as heavy industrial equipment, a 
traditional approach is to perform periodic maintenance 
according to a runtime-based schedule.  Most equipment 
vendors publish a maintenance schedule based on a 
“standard” or “average” working environment. In addition, 
it is a common practice that maintenance schedules from 
equipment vendors are highly conservative in order to 
reduce in-field failures which gives an adverse perception of 
a vendor’s reputation. Therefore, such a schedule may not 
result in satisfactory performance as measured according to 
the owner’s business objectives. Also, the assumption of 
normal operating condition may not apply in some 
situations. For example, stresses due to frequent overloading, 
continuous usage of engine at a high rate in tough 
environments, machine usage beyond its designed capacity 
can serve as good contributors to excessive wear and 
premature failures. In this paper we propose a novel 
computational framework to build a data-driven 
economically optimized vital sign indicator for a given 
component type and an economic criterion (e.g., average 
maintenance cost per unit runtime) by combining different 
sources of historical data such as total runtime hours, load 
carried, fuel consumed and event information from sensors. 
This new vital sign indicator can be viewed as a transformed 
time scale and used to find the optimal threshold value (or 
“scheduled replacement time equivalent”) for a component 
replacement policy.  Our case study was based on the 
collected data from 50 mining haul trucks over about 6 

years in one of the largest mining service companies in the 
world. We present that the new vital sign indicator-based 
replacement policy for a critical component type largely 
improves on the traditional runtime-based schedule in terms 
of a given economic criterion, achieving a lower total 
maintenance cost of the enterprise. 

1. INTRODUCTION 

A traditional replacement policy for components in asset-
intensive service business is often based on runtime hours-
based fixed time interval (“scheduled replacement time”) 
that the manufacturer of equipment recommends for 
scheduled maintenance. This is based on standard usage in 
an average situation assumed by the manufacturer. Most 
equipment vendors publish a maintenance schedule based 
on a “standard” or “average” working environment. In 
addition, it is a common practice that maintenance schedules 
from equipment vendors are highly conservative in order to 
reduce in-field failures which gives an adverse perception of 
a vendor’s reputation. Therefore, such a schedule may not 
result in satisfactory performance as measured according to 
the owner’s business objectives. Also, the assumption of 
normal operating condition may not apply in some 
situations. For example, stresses due to frequent overloading, 
continuous usage of engine at a high rate in tough 
environments, machine usage beyond its designed capacity 
can serve as good contributors to excessive wear and 
premature failures.  

In asset-intensive services, a well-known challenge is to 
maintain high availability of the physical assets while 
keeping the total maintenance cost low (Jardine & Tsang, 
2013). The optimization of replacement decision policy 
based on component failure predictions has been critical in 
the area of condition-based predictive asset management.  
One of the most popular approaches involves modeling a 
proportional hazard function (Cox PHM) with time-
dependent covariates and a Weibull baseline hazard function 

Hyung-il Ahn et al. This is an open-access article distributed under the 
terms of the Creative Commons Attribution 3.0 United States License, 
which permits unrestricted use, distribution, and reproduction in any 
medium, provided the original author and source are credited. 
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(Banjevic, Jardine, Makis, & Ennis, 2001)(Jardine, 
Banjevic, Montgomery, & Pak, 2008).  In practice, the 
modeled hazard function using this approach is not 
guaranteed to be monotonically increasing, and thus, it often 
involves a complicated algorithm to compute the optimal 
policy (Wu & Ryan, 2011). Furthermore, a non-monotonic 
hazard function is not very intuitive and cannot be viewed 
as a new kind of time scale. Equipment managers would 
often like to have a time scale-like monotonically increasing 
measure for the component replacement policy.  Then, they 
could use this new vital sign indicator measure exactly in 
the same way they used the runtime measure for 
replacement decisions.   

In this paper we propose a novel computational framework 
to build a data-driven economically optimized vital sign 
indicator for a given component type and an economic 
criterion (e.g., average maintenance cost per unit runtime) 
by combining different sources of historical data such as 
total runtime hours, load carried, fuel consumed and event 
information from sensors. A vital sign indicator can provide 
a measure that contains useful information with respect to 
the   “health”   of   a   piece   of   a   component   or   equipment,   and  
can therefore support improved decision making in terms of 
maintenance planning and execution, as well as production 
maximization. This new vital sign indicator can be viewed 
as a transformed time scale and used to find the optimal 
threshold  value  (or  “scheduled  replacement  time  equivalent”)  
for a component replacement policy.  We provide an 
individualized maintenance plan for each component based 
on its real usage.  Our approach involves classification and 
regression techniques for estimating a hazard rate and uses 
the “individualized” cumulative failure probability model 
for building a vital sign indicator.   

Our case study was based on the collected data from 50 
mining haul trucks over about 6 years in one of the largest 
mining service companies in the world. We present that the 
new vital sign indicator-based replacement policy for a 
critical component type largely improves on the traditional 
runtime-based schedule in terms of a given economic 
criterion, achieving a lower total maintenance cost of the 
enterprise. 

2. COMPONENT REPLACEMENT POLICIES 

2.1. Runtime-based Replacement Policy 
Figure 1 shows an example of the failure probability density 
function with T* (optimal scheduled replacement time) for a 
component type. Assuming that a company has run a 
scheduled replacement policy at T*, at the time of collecting 
the component data for our analysis,  the historical list of all 
components of this component type over a group of 
equipment include running components (at the time of data 
collection), schedule-replaced components, and failure-
replaced components. In Figure 1 each circle represents a 

component in the list. All blue circles before T* correspond 
to running components and their observed runtimes at the 
time of data collection. All blue circles after T* correspond 
to schedule-replaced components. Note that companies in 
practice often do not keep the exact replacement schedule at 
T*.  All red circles before T* correspond to in-field failure 
replacements. Note that running and scheduled replacement 
components are considered “right-censored” samples in 
survival analysis. That is, we know that the components 
survived at the time of data collection or scheduled 
replacement, but cannot tell when those components would 
actually fail in the future.    

 
 
Figure 1. An example of failure probability density function 
with the optimal scheduled replacement time T* 
 

 
Figure 2. An example of vital sign indicator with the 
optimal scheduled replacement vital sign value v*  
 

Note in Figure 1 that the standard deviation of the failure 
probability density function is very large; thus, we have too 
many in-field failure-replaced components  

2.2. Vital sign-based Replacement Policy 

Now we conceptually explain the development of our new 
vital sign indicator model.  For the historical list of all 
components, we also have the corresponding time-stamped 
logs of runtime hours (meter), total fuel consumption, total 
work (load) and sensor events. Imagine that for the 
component data and the failure probability density function 
shown in Figure 1, we can design a vital sign indicator 
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(vertical axis) in Figure 2 using some features derived from 
all available information. Note that the time/color of each 
circle in Figure 2 are exactly the same as those of the 
corresponding circle in Figure 1, and the color (failure 
replacement (red), running or scheduled replacement (blue)) 
of each path is based on the collected component data (i.e., 
the traditionally employed runtime-based replacement 
policy), not according to the new vital sign-based 
replacement policy.  

Then, we propose a vital sign indicator-based scheduled 
replacement policy that replaces components when their 
vital sign value reaches a threshold value v*.  In Figure 2, 
the dotted line shows the threshold value. Each path in the 
runtime vs. vital sign indicator 2-dimensional plot 
corresponds to a component and shows its vital sign 
indicator profile over the runtime. Note that the runtime (= 
the value in the horizontal axis) at the intersection point 
between the threshold line and the path for a component 
indicates the actual replacement time using the policy.   

Keep in mind that the failure probability density function in 
terms of the vital sign indicator axis depends on our model 
of a vital sign indicator. Intuitively, one desirable 
characteristic for being a good vital sign indicator is a small 
standard deviation in the vital sign indicator axis.  This 
contributes to a better classification, using a constant v*, 
between the failure-replaced components (above the v* line) 
and the other running/schedule-replaced components (below 
the v* line). In other words, if this vital sign indicator-based 
scheduled replacement policy had been used in the past, 
most of failure-replaced components in the collected data 
(red circles) would have been replaced on schedule (at v*) 
before the actual in-field failures. However, this 
characteristic about the failure probability is not a sufficient 
condition to be a good vital sign indicator model, since the 
average runtime to scheduled replacements (i.e., the average 
of actual runtimes from intersection points at v*) and the 
average runtime to failure replacements should also be large 
values. For this reason, we should look into the shape of 
vital sign paths in the runtime vs. vital sign indicator 2-
dimensional plot. We will explain it using economic 
optimization equations below in more detail.  

3. ECONOMIC OPTIMIZATION 

3.1. Runtime-based Replacement Policy 

Let 

��

F(t)  be the cumulative failure probability function at 
runtime t (=

��

Pr(T d t)  where 

��

T
 
is a random variable 

denoting the runtime at failure), 

��

S(t)  1�F(t)  be the 
survival probability function at t. When we deal with the 
dataset from real industry practice, it is very likely that there 
is no failure data after the scheduled replacement time the 
company has employed during the period of the dataset. 
Therefore, we would not make a good estimate on the exact 
shape of the function over the time after the current 

scheduled replacement time. However, in this paper we 
assume that the survival probability function can be 
estimated using a parametric Weibull fit (Fox, 2002) to the 
runtime and failure data. 

For our economic optimization analysis, we are provided the 
economic and logistic parameters including 

��

C f  = in-field failure replacement cost, which includes the 
part and labor cost to replace the component, the retrieval 
cost of equipment from the field, and lost revenue due to 
blocking other equipment when it fails in the field (called 
“circuit break”), 

��

C p  = scheduled replacement cost, which includes the part 
and labor cost to replace the component, 

dc  = cost per unit downtime of the equipment, including 
lost revenue that could have been contributed by that piece 
of equipment, 

��

DTf = down time due to an in-field failure, 

��

DTp  = down time due to a scheduled replacement. 

In general, in-field failure replacement cost and downtime 
are greater than scheduled replacement cost and downtime, 
respectively ( pf CC ! , pf DTDT ! ).  

Denote by 

��

t p  the scheduled replacement time for the policy, 
which is our optimization target.  With this scheduled 
replacement policy, the mean time to failure replacement 
that happens before 

��

t p  is denoted by ft  and estimated as: 

    
ft

��

 1
F(t p )

tf (t)dt
0

t p³  t p �
F(t)dt

0

t p³
F(t p )

 

A new component lifetime cycle starts at the installation 
time of a component. The component may be replaced due 
to an in-field failure or a scheduled replacement finishing its 
lifetime cycle.  

For a runtime-based replacement policy, we choose tp to 
minimize the average maintenance cost per unit runtime. 

average total time per cycle  

= 

��

(t f �DTf )F(tp )� (tp �DTp )(1�F(tp )) 

average run time per cycle  = ))(1()( pppf tFttFt ��  

average maintenance cost per unit runtime  

= ௩  ௧  ௦௧    ௬
௩  ௨௧    ௬

 

=  

(  𝑎𝑣𝑒𝑟𝑎𝑔𝑒  𝑓𝑎𝑖𝑙𝑢𝑟𝑒  𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡  𝑐𝑜𝑠𝑡  𝑝𝑒𝑟  𝑐𝑦𝑐𝑙𝑒 +
𝑎𝑣𝑒𝑟𝑎𝑔𝑒  𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑  𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡  𝑐𝑜𝑠𝑡  𝑝𝑒𝑟  𝑐𝑦𝑐𝑙𝑒)

𝑎𝑣𝑒𝑟𝑎𝑔𝑒  𝑟𝑢𝑛𝑡𝑖𝑚𝑒  𝑝𝑒𝑟  𝑐𝑦𝑐𝑙𝑒
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=
))(1()(

 ))(1)(()()(

pppf

ppdppfdf

tFttFt
tFDTcCtFDTcC

��

����

 

=
X

DTcC
X
tF

DTDTcCC pdp
p

pfdpf
1)(

)(
))(( �����  

where  X  = average run time per cycle 

                  = ))(1()( pppf tFttFt ��  

As tp (= the scheduled replacement time) is set to a higher 
value, there is more chance of in-field failure replacements, 
that is, )( ptF (= the total probability of in-field failure 
replacements) becomes larger (See Figure 3). 

 

 
Figure 3. The trade-off between the average runtime per 
cycle and )( ptF (= total in-field failure probability) 
 
Since 

��

DTf  > 

��

DTp  and 

��

C f  > 

��

C p  in general, the 
optimization goal of minimizing the average maintenance 
cost per unit runtime is achieved by increasing average 
runtime per cycle (X = ))(1()( pppf tFttFt �� ) and 

decreasing in-field failure probability per cycle )( ptF . Note 
that there is a trade-off between decreasing )( ptF  and 
increasing the average runtime per cycle.  In general, 
decreasing )( ptF  that would involve fewer failure 

replacements can be obtained by decreasing pt , but this 

then reduces the average run time per cycle.  Note that ft  
< pt  in general. Also, note that as )( ptF  becomes smaller, 

pt  becomes more weighted in the estimate of average run 
time per cycle. Given fdpf DTcCCtF   , , , ),(  and

��

DTp , the 
average maintenance cost per unit runtime is a function of 

��

t p , which is denoted as

��

g.    

 )( g pt  ))(1()(
 ))(1)(()()(

pppf

ppdppfdf

tFttFt
tFDTcCtFDTcC

��

����
 

It is important to note that the cumulative failure probability 
function

��

F(t)  is fixed and can be estimated using the failure 
data for the component type we analyze. Note also that 

��

t f  
depends on ).(tF Then, the optimized time threshold for the 

scheduled replacement policy is ) ( g maxarg*
p

t
p tt

p

 . 

3.2. Vital Sign-based Replacement Policy 

Let v be vital sign indicator. 

��

ˆ  F (v)  be the cumulative failure 
probability function at vital sign v (=

��

Pr(V dv)  where 

��

V
 
is a 

random variable denoting the vital sign at failure),

��

ˆ  S (v)  1� ˆ  F (v)  be the survival probability function at v.  
Note that we estimate this survival probability function by a 
local regression (loess) on the Kaplan-Meir (KM) estimate 
(Therneau, 2000) using the vital sign and failure data.  

Denote by 

��

v p  the vital sign threshold value for scheduled 
replacements for the vital sign-based scheduled replacement 
policy, which is our optimization target. Then, )(ˆ pvF  is the 
total expected probability of failure replacements, and 

)(ˆ1 pvF�  is the total expected probability of scheduled 
replacements. With this scheduled replacement policy, the 
expected time to scheduled replacement at 

��

v p  is denoted by 

��

ˆ  t p . Also, the expected time to failure replacement is 

denoted by 

��

ˆ  t f .  In this paper we estimate  and  under 
reasonable assumptions.  

Let 𝐶𝑜𝑚𝑝[𝑣 ≥ 𝑣] denote the set of all components whose 
vital sign value reaches 

��

v p  in the dataset, whereas 
𝐶𝑜𝑚𝑝[𝑣 < 𝑣]  denotes the set of all components whose 
vital sign value 

��

v � vp  for all time t in the dataset. 

Let 𝑃[𝑣 ≥ 𝑣]  denote the actual ratio of the number of 
components in   𝐶𝑜𝑚𝑝[𝑣 ≥ 𝑣]  to the total number of 
components in the dataset. The actual ratio 𝑃[𝑣 ≥ 𝑣]  is 
equal to or smaller than  (= total expected 
probability of scheduled replacement), since the total 
expected probability takes right-censored components 
(running at the time of data collection) into account. There 
are running components that would fail with 𝑣 > 𝑣.  We 
assume that those components contribute to scheduled 
replacements corresponding to the difference between the 
expected probability and the actual ratio (= 
−𝑃[𝑣 ≥ 𝑣] ) and that they are schedule-replaced at 𝑣 with 
the cumulative probability function of the replacement time, 

)(ˆ1)(ˆ tStF
pp vvvv �� �  where )(ˆ tS

pvv�  is the survival 

probability function estimated using a Weibull fit to the 
runtime and failure data of 𝐶𝑜𝑚𝑝[𝑣 < 𝑣]. In other words, 
we assume that )(ˆ tF

pvv�  estimated using  𝐶𝑜𝑚𝑝[𝑣 < 𝑣] is 

uniformly applied to all the range of 𝑣 < 𝑣 .  Thus, the 
mean scheduled replacement time over those components 
corresponding to −𝑃ൣ𝑣 ≥ 𝑣൧  is the same as the 
mean failure time over  𝐶𝑜𝑚𝑝ൣ𝑣 < 𝑣൧, which is denoted by 

r and estimated as r = ³
f

�
0

)(ˆ dttS
pvv . Thus, 

Runtime
pt

)( ptF

Failure probability 
density function

��

ˆ  t p

��

ˆ  t f

)(ˆ1 pvF�

)(ˆ1 pvF�

)(ˆ1 pvF�

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

667



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014 

5 

= expected time to failure replacement  = .   

��

ˆ  t p = expected time to scheduled replacement 

     =   {  𝑃ൣ𝑣 ≥ 𝑣൧  𝐸[𝑡|𝑣 = 𝑣  for    𝐶𝑜𝑚𝑝ൣ𝑣 ≥ 𝑣൧] + 

      ( −𝑃[𝑣 ≥ 𝑣]) r } / ( ). 

Note that 𝐸[𝑡|𝑣 = 𝑣  for    𝐶𝑜𝑚𝑝ൣ𝑣 ≥ 𝑣൧]   is the average of 
scheduled replacement times at 𝑣 = 𝑣  over 𝐶𝑜𝑚𝑝ൣ𝑣 ≥ 𝑣൧. 
  

Alternatively, we may assume that components in 
𝐶𝑜𝑚𝑝[𝑣 < 𝑣]  that would fail after tc contribute to 
scheduled replacements for the difference (= 
−𝑃[𝑣 ≥ 𝑣] ), whereas components in 𝐶𝑜𝑚𝑝[𝑣 < 𝑣] that 
would fail before tc  are failure-replaced. Also, we can 
estimate tc from the constraint )(ˆ pvF = )(ˆ

cvv tF
p�  ( 1 −

𝑃[𝑣 ≥ 𝑣]). That is, the total expected probability of failure 
replacements over all components (= ) should be the 
same as the actual ratio of the number of components in 
𝐶𝑜𝑚𝑝[𝑣 < 𝑣]  to the number of total components in the 
dataset (= 1 − 𝑃[𝑣 ≥ 𝑣]) multiplied by the total expected 
probability of failure replacements before tc  over 
𝐶𝑜𝑚𝑝[𝑣 < 𝑣] (= ). Thus, 

= expected time to failure replacement   

     = 
)(ˆ

)(ˆ
0

cvv

t
vv

c tF

dttF
t

p

c

p

�

�³
� . 

Then, the mean scheduled replacement time over those 
components corresponding to −𝑃ൣ𝑣 ≥ 𝑣൧   is 
denoted by r and estimated as 

r = {  − }/( )(ˆ1 cvv tF
p�� ).  

 = expected time to scheduled replacement 

     =   {  𝑃ൣ𝑣 ≥ 𝑣൧  𝐸[𝑡|𝑣 = 𝑣  for    𝐶𝑜𝑚𝑝ൣ𝑣 ≥ 𝑣൧] + 

      ( −𝑃[𝑣 ≥ 𝑣]) r } / ( ). 

 

For this vital sign-based replacement policy, we choose 

��

v p  
to minimize the average maintenance cost per unit runtime. 

Average maintenance cost per unit runtime 

= ௩  ௧  ௦௧    ௬
௩  ௨௧    ௬

 

=
))(ˆ1(ˆ)(ˆˆ

 ))(ˆ1)(()(ˆ)(

pppf

ppdppfdf

vFtvFt

vFDTcCvFDTcC

��

����

 

=
X

DTcC
X

vF
DTDTcCC pdp

p
pfdpf ˆ

1)(ˆ
)(ˆ

))(( �����  

where X̂  = average run time per cycle 

                  = ))(ˆ1(ˆ)(ˆˆ pppf vFtvFt ��  

 
Figure 4.  Vital-sign indicator functions steeply increasing 
around 

��

v p : no strong trade-off between the average runtime 
per cycle and 

��

ˆ  F (v p )  (= total in-field failure probability) 
 

As in the analysis of the runtime-based policy, the 
optimization goal of minimizing average maintenance cost 
per unit work is achieved by increasing average run time 
per cycle (= ))(ˆ1(ˆ)(ˆˆ pppf vFtvFt �� ) and decreasing in-

field failure probability per cycle 

��

ˆ  F (v p ) .  However, in 
contrast to the runtime-based policy, with vital-sign 
indicator functions steeply increasing around 

��

v p , there is 

no strong trade-off between decreasing )(ˆ pvF  and 
increasing the average run time per cycle.  In other words, 
decreasing 

��

ˆ  F (v p )  that would involve fewer failure 

replacements can be obtained by decreasing pv  but this 

does not necessarily lead to a large decrease of pt̂  (= the 
average of scheduled replacement times at

��

v p  ) when the 
vital-sign indicator functions are steeply increasing around 

��

v p  (compared with slowly increasing shaped functions). 
More importantly, considering the definitions of pt̂  

(involving the term [𝑡|𝑣 = 𝑣  for    𝐶𝑜𝑚𝑝ൣ𝑣 ≥ 𝑣൧] ) and ft̂  

(involving or )(ˆ tF
pvv� ), if decreasing pv  would 

allow failures that happen later in time to be schedule-
replaced, this would tend to increase both pt̂  and ,ˆ ft as 

well as decreasing 

��

ˆ  F (v p ) ; thus, this helps the optimization 

��

ˆ  t f ³
f

�
0

)(ˆ dttS
pvv

)(ˆ1 pvF� )(ˆ1 pvF�

)(ˆ1 pvF�

)(ˆ pvF

)(ˆ
cvv tF

p�

��

ˆ  t f

)(ˆ1 pvF�

³
f

�
0

)(ˆ dttS
pvv

��

ˆ  t f )(ˆ
cvv tF

p�

��

ˆ  t p

)(ˆ1 pvF� )(ˆ1 pvF�
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goal. Also, if decreasing pv  would allow failures that 
happen earlier in time to be schedule-replaced, this would 
tend to decrease pt̂  but still tend to increase ft̂  and 

decrease 

��

ˆ  F (v p ) . Note that in contrast to the runtime-based 
policy, ft̂  is not necessarily smaller than than pt̂  for a vital 

sign-based policy. That is, decreasing  pt̂  does not lead to 

decreasing ft̂ . The values of pt̂  and ft̂  at the optimization 
of 

��

v p  rely on the complete distribution and paths in the 
runtime vs. vital sign indicator 2-dimensional plot.  

It is critical to note that the shape of cumulative failure 
probability function )(ˆ vF c for any candidate threshold v c  
can be changed according to our modeling parameters to 
design a vital sign indicator. Note also that  and ft̂  for 
any candidate threshold v c  (i.e., functions of v c ) depend on 
the designed vital sign indicator.  

Given , , ,, , pfdpf DTDTcCC ),(ˆ vF c  )(ˆ vt p c  and )(ˆ vt f c  for 
a designed vital sign indicator, the average maintenance cost 
per unit runtime is a function of 

��

v p  , which is denoted as

��

ˆ  g .    

) )(ˆ),(ˆ  ),(ˆ|(ˆ vtvtvFvg fpp ccc  = 

 
))(ˆ1)((ˆ)(ˆ)(ˆ

 ))(ˆ1)(()(ˆ)(

pppppf

ppdppfdf

vFvtvFvt

vFDTcCvFDTcC

��

����
 

Thus, the value of

��

ˆ  g  at 

��

v p  is determined by our design of the 
vital sign indicator, which is what the paths of vital sign 
over time look like.  

Then, the optimized vital sign threshold value for the 
scheduled replacement policy using this vital sign indicator 
is ) )(ˆ),(ˆ ),(ˆ|(ˆ maxarg* vtvtvFvgv fpp

v
p

p

ccc . 

We compare the runtime-based component replacement 
policy with the new designed vital sign-based replacement 
policy in terms of the average maintenance cost per unit 
runtime. That is, we compare 

��

g (t p
* )  with 

)).(ˆ),(ˆ ),(ˆ|(ˆ * vtvtvFvg fpp ccc    

If  ))(ˆ),(ˆ ),(ˆ|(ˆ * vtvtvFvg fpp ccc  > 

��

g (t p
* ), this means that the 

designed vital-sign based replacement policy is more 
beneficial in terms of the economic criterion. 

4. BUILDING A VITAL SIGN INDICATOR BASED ON 
CLASSIFICATION AND REGRESSION 

 

 
(a) Convex-shaped vital sign indicator model 

 
(b) Concave-shaped vital sign indicator model 

Figure 5. Comparing convex-shaped and concave-shaped 
vital sign indicator models 
 

In Figure 5(a) and (b), we compare two hypothetical vital 
sign indicator models (convex-shaped and concave-shaped) 
when the failure probability density functions in the vital 
sign indicator axis are the same, although this would hardly 
happen in practice. For the same vital sign threshold value 

��

v p , the convex shape in Figure 5 (a) would have a greater 
average runtime to scheduled replacement  (

��

ˆ  t p = the 
average of runtimes from all intersection points) than the 
concave shape in Figure 5 (b). The convex paths would 
predict the upcoming failures near the actual failure times, 
whereas the concave paths would predict the upcoming 
failures too early.  The concave paths would have a smaller 
average runtime due to too early replacements.  Thus, in 
general, the convex-shaped vital sign indicator model would 
be more desirable than the concave-shaped one.  This is also 
why we should look into the complete vital sign paths, not 
just examining the shape of failure probability density 
function or 

��

ˆ  F (v p ) . 

Before explaining our vital sign indicator model, we first 
introduce the notion of “individualized cumulative failure 
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probability function”.  For each individual component, let us 
consider a hypothetical population of components that share 
the same history of covariates as that component has. Then, 
we can define a cumulative distribution function of the 
failure time for the population. We call it the individualized 
cumulative failure probability function for the component. 
In addition, the individualized cumulative failure probability 
function 𝐹(𝑡) of component j has the following relationship 
with the individualized cumulative hazard function 𝐻(𝑡): 

 𝐹(𝑡)  = 1 – 𝑆(𝑡)  = 1 – exp(−𝐻(𝑡)) where 𝑆(𝑡) is the 
individualized survival probability function.  

In this paper we model the vital sign indicator using the 
individualized cumulative failure probability function. That 
is, the vital sign indicator for a component is the same as its 
individualized cumulative failure probability over runtime.  

In the runtime-based policy we select the best scheduled 
replacement time so that the cumulative failure probability 

)( ptF  optimizes the economic criterion. In contrast, in the 
vital sign-based policy for scheduled replacements, we 
apply a selected vital sign threshold value to the 
individualized cumulative failure probability functions 𝐹(𝑡) 
of components. This is the same as applying a common 
threshold to the individualized cumulative hazard functions 
𝐻(𝑡).  Note that this individualization in cumulative failure 
probability (or cumulative hazard) is critical to allow each 
component to have its own transformed time scale for the 
replacement policy.  

The individualized cumulative hazard 𝐻(𝑡)  assesses the 
total amount of accumulated risk that the component j has 
faced from the beginning of time until the present, while the 
(instantaneous) hazard rate assesses the risk that a 
component which has not yet had the failure so will 
experience it within a unit of runtime (Singer & Willett, 
2003). Compared to using the hazard rate in designing a 
scheduled replacement policy, applying the individualized 
cumulative hazard 𝐻(𝑡)  has some advantages. First, in 
contrast to the hazard rate, the individualized cumulative 
hazard may capture the accumulated wear and tear over the 
component runtime. Second, the individualized cumulative 
hazard is always increasing, whereas the hazard rate may be 
fluctuating up and down over the runtime. Note that the 
characteristic of monotonically increasing is necessary 
because the vital sign indicator is conceptualized as a 
transformed time scale.  In addition, people usually think 
that the accumulated wear and tear is always increasing over 
the runtime, that is, the quality of a component becomes 
worse with runtime. 

Considering that our dataset includes daily-interval samples, 
we define the daily hazard ℎ(𝑑)  on date d for component j 
by the total hazard during the daily runtime. That is, daily 
hazard = hazard rate × daily runtime.  Then, we can estimate 

the individualized cumulative hazard by summing up all 
daily hazards until the present time t: 
𝐻(𝑡) =   ∑ ℎ(𝑑)ୟ୪୪  ௗ  ୧୬  {ௗ:ெ௧(,ௗ)ஸ௧}  where Meter(j,d) is 
the  accumulated runtime hours over days up to and 
including date d. 
 

 
Figure 6. An example of the “designed” daily hazard as a 
regression target variable  
 
It is important to note that the “estimated” daily hazard 
depends on our selection of covariates and the model.  Also, 
daily hazard estimates from a desirable model would predict 
its failure near the date of actual failure time. Wrong 
predictions or too early predictions of failures would lead to 
the reduction of average runtime. Thus, it will be better to 
find the covariates and model that enable the daily hazard 
estimates to be convex-shaped and very close to the 
maximum value (= 1) near the date of actual failure time 
(e.g., Figure 6). In practice, however, we do not require the 
daily hazard estimates to be necessarily convex-shaped, 
because it may not be possible with our selected features 
and modeling choice.  We only want the individualized 
cumulative hazards to satisfy some desired characteristics 
(monotonically increasing, high values of 

��

ˆ  t p  and 

��

ˆ  t f , high 
vital sign values on the failure times) for the economic 
criterion. Thus, we set up our problem of designing a vital 
sign indicator model as a regression task where the 
regression target variable is the “designed” daily hazard 
ℎ෨(𝑑) we specify on any date  d  for component j  as follows:  

- If the component was failure-replaced, ℎ෨(𝑑) =
(𝑀𝑒𝑡𝑒𝑟(𝑗, 𝑑)/𝑀𝑒𝑡𝑒𝑟(𝑗, 𝑇ி(𝑗)))ఈ  where Meter(j,d) is the 
total runtime hours up to and including date d, TF(j) is the 
finally observed date (or the replaced date), and α   ≥ 1. 

- If the component was schedule-replaced or actively 
running,  ℎ෨(𝑑) = 𝛽(𝑀𝑒𝑡𝑒𝑟(𝑗, 𝑑)/𝑀௫)ఈ  where 𝑀௫ =
  𝑚𝑎𝑥[𝑀𝑒𝑡𝑒𝑟(𝑖, 𝑇ி(𝑖))] = the maximum total runtime hours 
over all components in the dataset, and β  (≪ 1)  is  a small 
positive number close to 0 (e.g., β = 0.1).  

Runtime

Daily Hazard
Red circle 
(failure 
replacement)

Blue circle
(running 
or scheduled 
replacement) 
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That is, shown as in Figure 6, the first equation satisfies the 
condition that failure-replaced components have the 
maximum value (= 1) near the date of actual failure time. 
Also, the second equation allows the running/schedule-
replaced components to have low values over their runtimes.  

We build vital sign indicator models by performing 
regression tasks with differently designed daily hazard 
setups (different α  and  β  values), and find the best vital 
sign indicator model in terms of the economic optimization 
criterion estimate by leave-one-component-out cross-
validations.  We will describe it below in detail. 

Provided that we have the list of past replaced components 
(failure or scheduled replacements) and current running 
ones for a component type over a group of equipment as 
well as the corresponding time-stamped logs of runtime 
hours (meter), total fuel consumption, total work (load) and 
sensor events, we propose a framework of building a vital 
sign indicator for the component type using regression. 

Suppose that there are totally J components that were past 
replaced or are actively running for the target component 
type.  For component j (=1,  …,  J), the start date of service is 
TS(j), and the final date of observation is TF(j). Note that the 
final date of observation is defined as the replaced date for 
past components or the last observed date for running 
components. For this task, the overall dataset includes all 
points x(j,d) over component j (=1,  …,  J) and date d (=TS(j), 
…,TF(j)).   

Input data:  
From the start date of service of component j,  
� Meter(j,d) = accumulated runtime hours over days up to 

and including date d 
� Fuel(j,d)  = accumulated fuel consumption over days up 

to and including date d 
� Load(j,d) = accumulated number of loads (total work) 

over days up to and including date d 
� EventCount(j,d) = accumulated number of relevant 

sensor events for the target component type over days 
up to and including date d 
 

Note that Meter(j, TS(j)) = 0,  Fuel(j, TS(j)) = 0, Load(j, 
TS(j)) = 0, and EventCount(j, TS(j)) = 0.  Here we assume 
that the relevant sensor event types for the component type 
are selected using the significance test in a univariate Cox 
proportional hazard model for each event type (Hastie, 
Tibshirani, Friedman, & Franklin, 2005)(Bair, Hastie, Paul, 
& Tibshirani, 2006). But other techniques including 
frequent sequence mining (Zaki, 2001) on component 
failure and event data can be exploited for the same purpose.   

Given the parameters such as  

 Nsmooth = positive integer for a smoothing filter,  

 Nfuel = positive real threshold value for counting the number 
of dates with high daily fuel rate,  

 Nload = positive real threshold value for counting the number 
of dates with high daily load rate,  

we compute intermediate variables as follows. Note that 
these intermediate variables are used to calculate features. 
Also, the purpose of Nfuel and Nload is to count outliers. 
Although we present this simple rule-based outlier detection 
here, our framework allows other sophisticated anomaly 
detection algorithms to be applied for more effective feature 
generation.   

Intermediate variables:  
� DailyMeter(j,d)  = daily meter hours on date d 

= Meter(j,d) – Meter(j,d-1) 
� DailyFuel(j,d)  = daily fuel consumption on date d  

= Fuel(j,d) – Fuel(j,d-1)  
� DailyLoad(j,d)  = daily number of loads on date d  

= Load(j,d) – Load(j,d-1) 
� SmoothedDailyMeter(j,d) = average daily meter hours 

over past Nsmooth days on date d  
� SmoothedDailyFuel(j,d) = average daily fuel 

consumption over past Nsmooth days on date d 
� SmoothedDailyLoad(j,d) = average number of loads 

over past Nsmooth days on date d 
� DailyFuelRate(j,d) = SmoothedDailyFuel(j,d) /  

SmoothedDailyMeter(j,d) 
� DailyLoadRate(j,d) = SmoothedDailyLoad(j,d) / 

SmoothedDailyMeter(j,d) 
� HighFuelRateCount(j,d) = accumulated count of days 

in which the daily fuel rate > Nfuel over days up to and 
including date d 

� HighLoadRateCount(j,d) = accumulated count of days 
in which the daily load rate > Nload  over days up to and 
including date d 

 

Before doing the regression task, we perform a classification 
task to estimate the probability of having the component 
failure within next M runtime hours from each date. This 
estimated failure probability can be used as a key predictor 
variable in the later regression task.  We observed that this 
failure probability improved fitting to the designed daily 
hazard in the regression task.   
 
For the classification task, we now explain how to compute 
features and assign labels to model the predicted failure 
probability.  
 
Features for the classification task: 
� HighFuelRateCountPerMeter(j,d) = 

HighFuelRateCount(j,d) / Meter(j,d) 
� HighLoadRateCountPerMeter(j,d) =  

HighLoadRateCount(j,d) / Meter(j,d) 
� TotalFuelRate(j,d) = Fuel(j,d) / Meter(j,d) 
� TotalLoadRate(j,d) = Load(j,d) / Meter(j,d) 
� TotalEventRate(j,d) = EventCount(j,d) / Meter(j,d) 
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Label assignment for the classification task: 
We assign the classification label L(j,d) to each point x(j,d) 
that corresponds to date d for component j.  Note that x(j,d) 
is a multi-dimensional vector of classification features. 
Among all historical data of component replacements, there 
are two types of replacement on the final date of 
observation: scheduled replacement and in-field failure 
replacement. The goal of the classification task is to 
estimate the failure probability within the next M runtime 
hours from each date d.  With binary classification labels of 
Failure and No Failure classes, 
� For a point x(j,d) on a failure-replaced component j, 

when Meter(j, d) is within  M  meter hours of the failure 
replacement (that is, Meter(j,d) > Meter(j, TF(j)) - M ), 
classification label L(j,d) is assigned Failure class. 
Otherwise, classification label L(j,d) is assigned No 
Failure class. 

� For any point x(j,d) on a schedule-replaced component 
j, classification label L(j,d) is assigned No Failure class. 

� For any point x(j,d) on running component j, 
classification label L(j,d) is assigned No Failure class. 

To measure the performance of our model, we propose and 
use leave-one-component-out cross validation. That is, for 
each run corresponding to a component j (= 1,…,   J), we 
split the overall dataset into the test dataset of all points 
from component j and the training dataset of all points from 
all J-1 remaining components k (z j), build a vital sign 
indicator model based on the training dataset only and 
compute the vital sign indicator values on all points in the 
test dataset.   In more detail, we have J runs in total, and in 
each run corresponding to a component j we perform the 
steps below.  

Initial Parameters: α  and  β  (designing daily hazards), 
Nsmooth, Nfuel, Nload (computing features), M (modeling failure 
probability) 

Step 1. Divide the overall dataset into the test dataset of all 
points from one component j and the training dataset of all 
points from remaining components. 

Step 2. Using only the training dataset, perform the 
classification to build a binary classifier (e.g., applying 
Support Vector Classification (Cristianini & Shawe-Taylor, 
2000)) to compute the failure probability Pfailure(j, d) (= 
probability of being Failure class) on each point.  This 
estimated probability can be viewed as the failure 
probability within the next  M  runtime hours from date d. 
 
Step 3. Design the target variable for the regression task. 
This regression target variable ℎ෨(𝑑) for any component k 
(z j) in the training dataset should have the desired 
characteristic of the daily hazard such as being 
monotonically increasing, convex-shaped, and the 
maximum value on failure.  

Step 4. Using only the training dataset, build the regression 
model (e.g., applying Support Vector Regression 
(Scholkopf & Smola, 2002) to target daily hazard ℎ෨(𝑑) 
with feature variables such as Meter(k,d), Fuel(k,d), Load(k, 
d), EventCount(k,d) and Pfailure(j, d). 

Step 5.  Apply the built regression model to obtain the 
estimated daily hazard ℎ(𝑑)    for each point x(j,d) on 
component  j  in the testing dataset. 

Step 6. Compute the individualized cumulative hazard on 
component j,  𝐻(𝑡) =   ∑ ℎ(𝑑)ୟ୪୪  ௗ  ୧୬  {ௗ:ெ௧(,ௗ)ஸ௧} . 

Step 7. Compute the individualized cumulative failure 
probability on component j, 𝐹(𝑡) = 1 – exp(−𝐻(𝑡)). 

After all J runs in leave-one-component-out cross 
validations, we can obtain the vital sign indicator values 
over all components. Given these values, we perform an 
optimization task to obtain the optimal threshold value for 
the replacement policy in terms of the economic 
optimization criterion such as the average maintenance cost 
per unit runtime.  Note that in a threshold-based 
replacement policy, a component should be replaced when 
the vital sign indicator value reaches a threshold value. 
Optionally, we may use this estimated optimal threshold 
value to normalize the vital sign indicator.  Then, a 
component should be replaced when its vital sign is 100% 
of wear.  

In general, the parameter selections (α, β, Nsmooth, Nfuel, Nload, 
M) influence the ultimate model. Thus, we need to find the 
optimal parameters to obtain the best vital sign indicator 
model in terms of our optimization criterion. 

5. CASE STUDY 

Our proposed framework of building the vital sign indicator 
and optimizing the economical profit was tested with one of 
the largest mining service companies in the world.  The 
collected data includes the logs of daily fuel consumption, 
daily number of loads moved, daily meter hours, sensor 
event data, and component replacement history on 50 
mining haul trucks over the period from January 1st 2007 to 
November 11th 2012. Each truck is equipped with a set of 
sensors triggering events on a variety of vital machine 
conditions. Note that the estimated overall cost of downtime 
for one of these haul trucks amounts to about 1.5 million 
USD per day.  Therefore, the financial impact of reducing 
the downtime is very large.  This is because not only is the 
scheduled maintenance cost high, the total cost due to 
unscheduled in-field failure is even higher. When one piece 
of equipment breaks down, in addition to stopping its own 
production, it may block other equipment from producing. 
The goal of our vital sign indicator is to optimize the 
tradeoff between scheduled replacement cost and 
unscheduled failure cost, to achieve a lower total 
maintenance cost of the enterprise. 
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(a) (b) 

  

(c) (d) 

Figure 7. The individualized cumulative hazard and the vital 
sign indicator, (a) and (b) from SVC+SVR model, (c) and (d) 
from SVC+Cox model.  Red = Failure replacements, Green 
= Scheduled replacements, and Blue = Running at the time 
of data collection  
 

 

In this section we present our application and results 
focused  on  one  specific  component  type  (called  “X1”).  To 
use our framework explained in the steps above, we should 
choose a pair of classification and regression algorithms. In 
general we can apply any algorithms for this purpose, but 
here we mainly present our results using Support Vector 
Classification (SVC) and Support Vector Regression (SVR).  
We found out that these algorithms using kernel tricks 
worked better than other basic algorithms including 
linear/quadratic discriminant analysis, generalized linear 
models and Cox PH regression. Also, we compared vital 
sign indicator models obtained using different parameter 
settings of  α, β (designing daily hazards), Nsmooth, Nfuel, Nload 
(computing features) and M (modeling failure probability) 
in terms of our optimization criterion. Here we show the 
result with the RBF kernel and the best setting of  α =
1, β = 0.1, Nsmooth = 60, Nfuel = 190, Nload =3.0, M = 4890  in 
our application.  

  
(a) ℎ෨(𝑑) (b) )(tS  

  

(c) )(ˆ vS  (d)  

Figure 8.  (a) Designed daily hazard (α = 1, β = 0.1), (b) 
Survival probability in runtime (KM, Weibull), (c) Survival 
probability in vital sign indicator (KM, loess), (d) Survival 
probability for 𝐶𝑜𝑚𝑝[𝑣 < 𝑣] (KM, loess) 
 
 
Table 1. Comparison between the traditional runtime-based 
policy and the vital sign indicator-based policy  
 
  Runtime-

based policy 
Vital sign-
based policy 

Threshold pt = 16500  pv = 0.50 

Total failure probability )( ptF =0.63 

��

ˆ  F (v p )=0.21 

Expected time to scheduled 
replacement  pt  = 16500 = 14848 

Expected time to failure 
replacement ft = 8708 = 7311 

Avg runtime per cycle 11592 13201 
Avg failure replacement 
cost per unit runtime 

$30.6 $9.3 

Avg scheduled replacement 
cost per unit runtime 

$15.6 $27.9 

Avg maintenance cost per 
unit runtime 

$45.6 $37.2 

 

)(ˆ tS
pvv�

��

ˆ  t p

��

ˆ  t f
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The economic and logistic parameters for the target 
component type are as follows:

��

C f  = failure replacement 
cost = $443600, 

��

C p  = scheduled replacement cost = 
$374400, dc  = cost per unit downtime of the equipment = 
$2000, 

��

DTf = down time due to an in-field failure = 64.8 
hrs, 

��

DTp  = down time due to a scheduled replacement = 48 
hrs.  Note that ( fdf DTcC � )/( pdp DTcC � ) = 1.22. 

Figure 7(a) and (b) show the individualized cumulative 
hazard and the vital sign indicator, respectively, for the 
model based on SVC and SVR.  In the figures, each line 
corresponds to a component.  The color of the line and 
corresponding end point indicates whether the component 
had a failure replacement at the end (red), were running at 
the time of data collection (blue, right-censored) or had a 
scheduled replacement at the end (green, right-censored).  

Figure 8(a) shows the designed daily hazard. The optimized 
vital sign threshold was 0.50. Based on two different 
approaches explained to estimate  and , we obtained 
almost similar values of the criterion ($37.1 and  $37.2). 
Figure 8(b),(c) and (d) show survival probabilities such as 

),(tS  )(ˆ vS  and ).(ˆ tS
pvv�  Considering that the cumulative 

failure probability corresponds to 1 − survival probability 
(that is, )(tF = ),(1 tS�  )(ˆ vF = )(ˆ1 vS� ), note that )( ptF = 

0.63 > 

��

ˆ  F (v p )  = 0.21.  This significant reduction in total 
expected failure probability is a necessary condition for 
being a good vital sign indicator.  Also, comparing  

 and )(tS  in  Figure 8(b) and (d),  we find that the 

expected lifetime of 𝐶𝑜𝑚𝑝[𝑣 < 𝑣]  alone is significantly 
longer than that of all components in the dataset.  

Table 1 compares the runtime-based and vital-sign based 
replacement policy in terms of the average maintenance cost 
per unit runtime. There is about 20% cost reduction with the 
vital-sign based policy, compared to the runtime-based 
policy. The new vital-sign based policy with vital sign 
threshold = 0.5 has some false failure predictions so 
involves higher average scheduled replacement cost per unit 
runtime than the runtime-based policy ($27.9 > $15.6), but 
the vital-sign based policy has significantly smaller average 
failure replacement cost per unit runtime ($9.3 << $30.6) 
and thus, overall it is better than the runtime-based policy. 

We tested Cox PH regression in combination with SVC in 
our framework. In fact we compared several Cox PH 
regression models using differently selected features as 
time-dependent covariates. Then, we observed that the Cox 
PH regression simply using the SVC-estimated failure 
probability as the only one time-dependent covariate worked 
best among them. Figure 7(c) and (d) show the 
individualized cumulative hazard and the vital sign indicator 
from this model.  But, this still performed a bit worse ($38.0) 

than the SVR-based model ($37.2). Note that while Cox PH 
regression considers only the covariate values at sampled 
failure times (i.e., maximizing the partial likelihood), SVR 
can consider covariate values at all times (i.e., maximizing 
the fit to the complete paths of the designed target daily 
hazards).    

6. CONCLUSION AND DISCUSSION 

We compared our vital sign indicator-based policy with a 
traditional runtime-based policy in terms of the average 
maintenance cost per unit runtime. When the failure 
replacement cost of a component is extremely high, it is 
critical to reduce the total number of in-field failures by 
following the recommended option for decreasing the total 
expected probability of failures. We modeled our vital sign 
indicator based on “individualized” cumulative failure 
probability function for each component. This new indicator 
as a transformed time scale allows us to have an 
individualized maintenance plan for each component based 
on its real usage.  Our case study demonstrates that the new 
vital sign indicator-based replacement policy can obtain 
greater economic value in terms of the average maintenance 
cost per unit runtime.  

Future work will include a remaining useful lifetime (RUL) 
model based on this vital-sign indicator.  This will involve 
the estimation of paths in the runtime vs. vital sign indicator 
2-dimensional plot. Another future direction is to 
incorporate a constrained regression to make vital sign 
indicators suitably convex-shaped, eventually leading to 
lower optimal costs.  
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ABSTRACT 

Aircraft hydraulic systems are composed of several 
components connected and distributed along the aircraft. 
Monitoring leakage of these components are time 
consuming tasks, and often cover only some parts of the 
system. The objective of this work is to present a method to 
estimate hydraulic leakage and recommend maintenance 
and servicing tasks using aircraft standard sensors such as 
fluid temperature and reservoir level. 

The proposed method was tested using several aircraft 
operating data with different levels of degradation (external 
leakages) and the results were analyzed in order to evaluate 
its precision on estimating leakage. Results showed the 
capability to detect leakage although uncertainties must be 
considered when evaluating maintenance interventions. 

1. INTRODUCTION  

Increased aircraft availability is one of the most desirable 
fleet characteristics to an airliner. Delays due to 
unanticipated system components failures cause prohibitive 
expenses, especially when these events occur on sites 
without proper maintenance staff and equipments. In recent 
years researches have focused on providing new 
technologies which could detect incipient failures and notify 
maintenance staff in advance when any component is about 
to fail. On the other hand these technologies requires several 
sensors that sometimes are not available on the aircraft 
which limits their application and consequently operational 
savings. 

Hydraulic systems are found on most of the aircrafts 
nowadays and contain several components with significant 
failure rates. Some sensors are available to monitor them, 
but due to the number of components and their distributed 
localization along the aircraft, several faults are not 

monitored. Hydraulic fluid leakage is one example. 

Hydraulic leakage detection systems major applications are 
in the oil and gas industries (Stavenes, 2010) focusing most 
on pipelines such as “American Petroleum Institute Publ 
1149” and (Beushausen, 2004). Aircraft applications are 
most of the times limited to visual inspections of some 
components with higher failure rates or some internal 
leakage monitoring such as pumps case drain flow 
monitoring as presented in (Copsey, 2006) and (Byington et 
al. 2003). The main issue related to aircraft applications is 
the sensors availability. Most of the aircraft hydraulic 
systems do not contain the proper set of sensors to monitor 
leakage although dispatch recommendations are made for 
leakage limits. 

The method presented in this article describes a method to 
detect total system leakage using only a set of sensors 
available on most of aircrafts. 

2. SYSTEM DESCRIPTION  

A simplified architecture of aircraft hydraulic systems can 
be summarized as Figure 1. 

 

Figure 1 General Schematic of a Hydraulic System (Vianna, 
2008). 

 

Wlamir Vianna et al. This is an open-access article distributed under the 
terms of the Creative Commons Attribution 3.0 United States License, 
which permits unrestricted use, distribution, and reproduction in any 
medium, provided the original author and source are credited. 
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The system contains one or more variable displacement 
pumps, accumulators, filters, and consumers, that include all 
the actuators connected to the hydraulic power such as flight 
controls, brake and landing gear. Also the system contains a 
bootstrap reservoir. The basic set of sensors available are 
pressure transducers (PT) at the pressure line, fluid 
temperature transducers (TT) at the reservoir and a quantity 
gauge (QG) indicating the reservoir level.  

3. LEAKAGE DETECTION METHOD  

The method here described was created for the EMBRAER 
Regional jets (E-Jets). On this platform the three sensors 
listed in Figure 1 were available and recorded on the Flight 
Data Recorder (FDR). Figure 2 illustrates some flight 
records for the reservoir level and fluid temperature under 
nominal behavior. 
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Figure 2 Hydraulic system flight record example. 
 

From Figure 2 it is possible to conclude that direct 
measurement of the reservoir level is not enough to estimate 
the system total leakage since the fluid is submitted to a 
significant variance of temperature. Also some actuators 
(landing gear specially) interfere on the measured reservoir 
level as observed by the spikes in the first curve in Figure 1 
when the landing gear is actuated.  

The first step is to eliminate the influence of these 
parameters on the level measurement and to accomplish that 
a model was proposed considering fluid physical properties. 
According to (Merrit, 1967), a linear approximation for the 
fluid density is: 

 ρ=ρ0[1+
1
β
(P�P0)�α(T�T0)]

 
(1) 

where: 

β is the Bulk Modulus 

α is the Coefficient of Expansion 

ρ0 is the initial density (ISA Condition) 

P0 is the initial pressure of 1 atm (ISA Condition) 

T0 is the initial temperature of 15 oC (ISA Condition) 

ρ is the actual density 

P is the actual pressure 

T is the actual temperature 

For the elimination of temperature variation on the reservoir 
level, the volume was estimated for constant fluid density at 
ISA (International Standard Atmosphere) conditions. By 
manipulating Eq. (1), the hydraulic system fluid volume at 
ISA conditions is: 

 )]()(
1

1[ 000 TTPPVV −−−+= α
β

 (2) 

where: 

V0 is the hydraulic system fluid volume at ISA conditions 

V is the hydraulic system fluid volume  

The relation between V and the reservoir level indication is 

 V=VQG+V sys  (3) 

where: 

VQG is the sensor indication 

Vsys is the system volume excluding reservoir. It contains 
all volumes specified in “SAE Aerospace Standard 
AS5586” 

To estimate V and consequently V0, it is necessary to 
estimate Vsys  first.   Two methods could be used for that. 
The first one is to measure the volume of fluid necessary to 
fill the entire hydraulic system, and the second is to estimate  
Vsys by minimizing Eq. (4) using aircraft operating data (for 
example those in Figure 2) in a healthy condition. A 
gradient descent method was used to solve this equation. 

 ]),[var( 0 sysVVArgMin  (4) 

which is the same as: 
















 −−−+ sysVTTPPVArgMin ,))()(
1

1(var 00 α
β

 (5) 

It was assumed  Vsys constant, which in other words means 
that variances in actuators, piping, accumulators and any 
other components volumes were not considered . To 
minimize these variations only data with similar operating 
conditions (for example cruise) were used and with no 
observed leakage. 

After estimating Vsys, the value of the estimated quantity 
gauge sensor indication at ISA condition  (Vest) was 
estimated with Eq. (6) representing the mass estimation 
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(density multiplied by volume) for both temperatures: ISA 
and actual temperature.  

 ρ0(Vsys+Vest)=ρ(Vsys+VQG)  (6) 

 

For illustration purposes, the same data of Figure 2 was used 
to estimate the values of  Vest (using Eq. 6)  illustrated in 
Figure 3. 
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Figure 3 Normalized level indication (Vest) Vs Raw data 
level indication. 

 

The variance of the raw data from Figure 3 was 3.41 and the 
variance of the normalized data was 0.157. Although 
reservoir level variance decreased significantly, some 
variations still persisted probably caused by non uniform 
fluid properties in the system and consumers’ variations 
(accumulators for example). 

If no data is available for fluid properties (β and α), a 
principal component analysis (PCA) could be used to 
eliminate the temperature influence (1st component). Figure 
4 illustrate the relation between temperature and reservoir 
level for the same data in figure 2 
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Figure 4 Relation between temperature and reservoir level. 
 

The coefficients (loadings) of the two components are given 
by the following matrix:  

[0.230 0.973
0.973 �0.230]  

and the components variances:  

[ 62.1
0.148]  

The much larger value of the first component variance 
indicates the strong correlation of level and temperature as 
expected. 

The expected hydraulic system leakage can be determined 
through the angular coefficient of a linear interpolation of 
the normalized levels over the time. A least square method 
was used with data collected from the last 5 flights. Eq. (7) 
represents the equation variables estimated from the least 
square method. 

 Level(t)=(�Leakage)t+InitialLevel  (7) 

4. SERVICING AND M AINTENANCE RECOMMENDATION  

The current method triggers two possible maintenance 
actions. The first one is the inspection of the system and 
repair of leaking components when leakage estimation 
reaches a predetermined threshold. This task could be an 
improvement of the traditional periodical visual inspection. 
The next one is the reservoir hydraulic fluid filling service. 
This task can be trigged when for example the estimated 
future level for 5 days from now will reach the minimum 
allowed level to operate the system. This expected future 
level can be obtained from Eq. (7).   
By using both of these alerts, maintenance could improve 
leakage inspections and optimize filling services, reducing 
non-schedule maintenance activities and AOG (Aircraft On 
Ground) events. 

5. RESULTS 

To validate the method operational data were used. Several 
flights from different aircrafts were collected and analyzed 
under several different health conditions. Figure 5 illustrates 
the three main different situations observed from all those 
data. Each sample represents the average level for 1 flight. 
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Figure 5 Examples of normalized level estimations. 

 

The upper example shows an aircraft with no significant 
leakage as the reservoir level decreasing rate (leakage) is 
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low. Also it was possible to observe a filling task around 
day 35 (abrupt increase in level). 

The middle example shows a failure around day 70 and its 
repair around day 81, probably detected from visual 
inspection. 

The lower example shows a system with increased leakage 
requiring several hydraulic filling tasks in order to keep the 
system within the required levels. Probably the visual 
inspections executed for this example could not detect the 
excessive leakage. 

For the same examples the leakage was plotted and 
displayed in Figure 6.  
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Figure 6 Examples of leakage estimations. 

 

It is possible to observe that leakage estimations are noisier 
than levels estimations, especially with the presence of 
higher levels of leakage as seen in the third example of 
figure 6. This behavior is caused by the derivative nature of 
leakage estimation when few errors in level estimation 
generate increased errors in the leakage (derivate). One 
possible solution to minimize this error is to increase the 
interpolation window, here established in 5 flights. 
Although it softens the results, it increases the time response 
of leakage detection.    

From all flights analyzed, 1202 filling tasks were executed 
in which 541 could be eliminated if the proposed method 
were used. Also a histogram is plotted in Figure 7 showing 
the leakage estimation for all flights analyzed. 
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Figure 7 Fleet leakage estimation histogram. 

 

From this plot, it is possible to perform several statistical 
analysis for the entire fleet and each individual aircraft such 

as an estimative of the number of flights with leakage levels 
above the recommended limit and how each aircraft is 
positioned compared to the entire fleet. 

6. CONCLUSION  

Aircraft hydraulic leakage detection maintenance tasks are 
time consuming and often do not bring an estimation of the 
leakage of the entire system. Also the lack of dedicated 
sensors makes this estimation more difficult. This paper 
presented a method to estimate total leakage and future 
reservoir levels from a hydraulic system considering only 
reservoir quantity gauge, fluid temperature and fluid 
pressure sensors. Also servicing and maintenance 
recommendations were proposed for these estimations in 
order to increase fleet leakage detection and reduce AOG 
(Aircraft On Ground) events. 

Several aircraft data were used to validate the method. 
Although some estimations were less precise (leakage 
estimation), the method showed to be promising. 
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ABSTRACT

Maintenance is an important activity in industry as it reduces
costs and enhances availability. This can be done either to
revive a system/component or to prevent it from breaking
down. The increasing need for reliability has led mainte-
nance strategies to evolve from corrective to condition-based
and predictive maintenance. The key process of the latter is
prognostics and health management, a tool that predicts the
remaining useful life of engineering assets. As plants are re-
quested to offer both safety and reliability, planning a main-
tenance activity requires accurate information about the sys-
tem/component health state. Usually, this information is gath-
ered through independent sensors or a wired network of sen-
sors. The use of a wireless sensor network has many advan-
tages. First of all, the absence of wires gives sensor networks
the ability to cover a large scale surveillance area. Second, it
has become possible to monitor hostile and inaccessible areas
by simply dropping the sensors from an aircraft to the moni-
toring region. Finally, the accuracy of measurements can be
improved as the sensors can be placed at specific locations
without being wired. Even though the deployment of wireless
sensor networks is gaining great importance in monitoring ap-
plications, there are some research issues that still need to be
studied to provide more accurate and reliable data. Indeed,
we strongly believe that a good prognostic process starts with
a reliable source of information; the wireless sensor network
in our case. For this matter, in this paper, we discuss the

Wiem Elghazel et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

dependability of wireless sensor networks, we highlight the
attributes that have an impact on data accuracy, and present
the state of the art in prognostics.

1. INTRODUCTION

Industrial systems are subject to failures, which can be ir-
reversible or result in consequences varying from minor to
severe. From this context, it is important to monitor a sys-
tem, assess its health, and plan maintenance activities to avoid
“catastrophic” failure results.
The research in Prognostic and Health Management (PHM)
field has led to the development of prognostic models in an
attempt to predict the Remaining Useful Life (RUL) of ma-
chinery before failure takes place. A maintenance schedule
is then decided and system shutdown is prevented. Yet, if
the prediction model and the provided measurements are not
accurate, it is possible that the maintenance activity will be
performed either too soon or too late.
Such a prediction activity requires online measurements of
the operating conditions of the system under consideration.
This information is usually gathered by the means of sensor
nodes. In this study, we consider the case where the nodes
communicate their information within a Wireless Sensor Net-
work (WSN). Nevertheless, a WSN is prone to failure due to
the nature of communication in the network and to the char-
acteristics of its devices. For this reason, before deployment,
a prior dependability study of the network is needed. It is the
only way to guarantee the reception of accurate data.
Although both dependability of WSNs and prognostic models
development have been studied and reported in the literature,
as far as we know, none of the existing research work has

1
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considered the dependability of WSNs for PHM purposes. In
real life applications, the provided data can be inaccurate and
incomplete. If this is not taken into consideration while build-
ing the prognostic model, the provided results cannot be re-
liable. Considering the limited computational capacities of
WSNs, it is very common to privilege some dependability
issues over others, regarding the target applications require-
ments. Thus, it is crucial to consider a “prognostic-oriented”
dependability solution for WSNs.
This paper presents dependability issues with WSNs, that are
relevant for RUL prediction, and discusses different prognos-
tic approaches. The remainder of the paper is structured as
follows. Section 2 presents an overview of wireless sensor
networks. A state of the art in prognostics and health man-
agement is provided in Section 3. The relation between prog-
nostics and WSN dependability and the remaining challenges
are illustrated in Section 4. Finally, a conclusion is given in
Section 5.

2. OVERVIEW OF WIRELESS SENSOR NETWORKS

WSNs are event-based systems that rely on the collective ef-
fort of several microsensor nodes (Akan & Akyildiz, 2005).
This offers the network greater accuracy, larger coverage area,
and the possibility to extract localized features. Typically, a
WSN is composed of few base stations and hundreds (or thou-
sands) of sensor nodes. A sensor node is a tiny device having
the capability of sensing new events, computing the sensed
values, and communicating information. Thus, the network
can be deployed to monitor physical and environmental phe-
nomena such as temperature, vibrations, light, humidity, etc.
There are different settings for a WSN model, which is gener-
ally dynamic, as radio range and network connectivity evolve
over time. A network model can be either hierarchical, dis-
tributed, centralized, heterogeneous, or homogeneous (Z. Li
& Gong, 2011).

2.1. Shortcomings of a WSN

WSNs are designed for an efficient event detection. They
consist of a large number of sensor nodes deployed in a surveil-
lance area to detect the occurrence of possible events. Such
an activity necessitates efficiency, which is hard to achieve
with the constraints of WSNs.
Available energy is a big limitation to WSN capabilities. In
fact, sensor nodes are small sized devices, resulting in tiny
and non-refillable batteries as energy supply (Carman, Kuus,
& Matt, 2000). Moreover, wireless networks are vulnerable
and necessitate security codes. Yet, processing security func-
tions, transmitting security related data, and securing storage
necessitate extra power, which is critical for WSNs (Carman
et al., 2000; Walters, Liang, Shi, & Chaudhary, 2007).
The wireless communication between sensor nodes renders
packet loss highly probable. The absence of physical con-
nections in the network can result in channel errors, missing

Figure 1. Illustration of some link failures in a WSN

links, and network congestion and cause packet drops. In ad-
dition to this, multi-hop routing and node processing lead to
great latency and transmission errors in the network.
External deployment conditions also add to network vulnera-
bility. WSNs are often deployed in harsh environments where
they can be exposed to adversary attacks. Such attacks can
cause permanent damage to the hardware. Thus, the network
will remain unable to fulfill the intended tasks (Walters et al.,
2007). Since the network is managed remotely, the sensor
nodes are left unattended for a long period. It is yet impossi-
ble to detect physical tampering and to perform regular main-
tenance.
In Figure 1, two possible causes of packet loss are illustrated.
In the first case, a previously established link between the
sensors is lost. Once the parent node exhausts its energy,
it is dropped from the network. As a result, a child node
can no longer forward the sensed data and the previously re-
ceived packets are permanently lost. In the second case, more
than one sensor node simultaneously try to send data packets
to the same parent, resulting in a network congestion and a
possible loss of all the packets being forwarded at that level.
Considering all the limitations mentioned above, it is not easy
for the network to always fulfill the intended tasks. Reliability
and efficiency of WSNs are dependent on key issues, which
are enumerated in the following.

2.2. Dependability issues

Sensor nodes have a short radio range and they collaborate to
cover a given surveillance area. At the setup phase, it is cru-
cial to ensure that the network covers the whole area (Tian &
Georganas, 2005). The coverage problem arises as: “how to
ensure that, at any time, any zone in the network is covered
by at least one sensor node?”
Zorbas et al. (Zorbas, Glynos, & Douligeris, 2007) presented
B{GOP}, a centralized coverage algorithm for WSNs. The
algorithm proposes sensor candidate and avoids double-coverage
depending on the coverage status of the corresponding field.
In (X. Wang et al., 2003), Wang et al. presented a protocol
that can dynamically configure a network to achieve guaran-
teed degrees of coverage and connectivity. They gave a proof

2
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that sensing coverage range does not need to be more than
half the connectivity range in the network. Thus, their proto-
col helps preserve energy while maintaining coverage in the
network.
As discussed before, available energy is a big limitation to
WSNs. In order to prolong the network’s lifetime, a possible
solution is to keep a minimum number of sensor nodes in ac-
tive mode. As WSNs rely on nodes density in the sensing and
communicating processes, it is very likely that some nodes
will not be needed. If a reliable node can forward data pack-
ets toward the sink, its neighbors can switch to idle state tem-
porarily. Lifetime optimization using knowledge about the
dynamics of stochastic events has been studied in (He, Chen,
Li, Shen, & Sun, 2012). The authors presented the interac-
tions between periodic scheduling and coordinated sleep for
both synchronous and asynchronous dense static sensor net-
work. They show that the event dynamics can be exploited
for significant energy savings by putting the sensors on a pe-
riodic on/off schedule. The authors in (Kasbekar, Bejerano,
& Sarkar, 2011) leverage prediction to prolong the network
life time, by exploiting temporal-spatial correlations among
the data sensed by different sensor nodes. Based on Gaussian
Process, the authors formulate the issue as a minimum weight
submodular set cover problem and propose a centralized and
a distributed truncated greedy algorithms (TGA and DTGA).
They prove that these algorithms obtain the same set cover.
As sensor nodes periodically go to sleep, they need to be
awake when they are requested to. This is done by the trans-
mission of wake-up messages towards a target sensor. How-
ever, if the message is not received at the right moment, data
packets will be dropped. This will cost the network extra en-
ergy due to packet retransmission (Ye, Zhong, Cheng, Lu,
& Zhang, 2003; Gallais, Carle, Simplot-Ryl, & Stojmenovic,
2006; J. Bahi, Haddad, Hakem, & Kheddouci, 2011).
In WSN, if the wear-out failures are not taken into consider-
ation during the execution of the involved application, some
nodes may age much faster than the others and become the
reliability bottleneck for the network, thus significantly re-
ducing the system’s service life. In the literature, this prob-
lem has been formulated and studied in various ways. For
instance, prior work (He, Chen, Li, et al., 2012; He, Chen,
Yau, Shao, & Sun, 2012; Kasbekar et al., 2011) in lifetime
reliability assumes node’s failure rates to be independent of
their usage times. While this assumption can be accepted
for memoryless soft failures, it is obviously inaccurate for
the wear-out-related fail-silent (a faulty node does not pro-
duce any output) and fail-stop (no node recovery) failures,
because the sensor node’s lifetime reliability will gradually
decrease over time. To cope with this problem, a distributed
self-stabilizing and wear-out-aware algorithm is presented in
(J. M. Bahi, Haddad, Hakem, & Kheddouci, 2013). This al-
gorithm seeks to build resiliency by maintaining a necessary
set of working nodes and replacing failed ones when needed.
The proposed protocol is able to increase the lifetime of wire-

less sensor networks, especially when the reliability of sensor
nodes is expected to decrease due to use and wear-out effects.

2.3. Attacks in WSNs

WSNs suffer from limited computation capabilities, a small
memory capacity, poor energy resources, absence of infras-
tructure, and susceptibility to physical capture. A variety of
security solutions exists for infrastructureless networks (Ad
hoc networks). Yet, they do not all answer the security chal-
lenges of WSNs.
WSNs are vulnerable to many attacks, due to their uncon-
trolled environment of deployment, the limitation of their re-
sources, and the broadcast nature of transmission medium.
The attacks are mainly classified under two categories: phys-
ical attacks and non-physical attacks.
Examples of well-known non-physical attacks in WSNs are:
Denial of Service (DoS) attack, (Walters et al., 2007; Wood
& Stankovic, 2002; Kim, Doh, & Chae, 2006), sybil attack,
(Walters et al., 2007; Douceur, 2002; Zhang, Wang, Reeves,
& Ning, 2005), traffic analysis attack, (Walters et al., 2007;
Deng, Han, & Mishra, 2004), and node replication attack
(Walters et al., 2007; Parno, Perrig, & Gligor, 2005; Bragin-
sky & Estrin, 2002).

2.4. Dependability of WSNs

The dependability of a WSN is a property that integrates the
attributes needed for the application to be justifiably trusted.
Such a network should be able to deliver a correct service
-a service that implements the system function- and makes
sure that a failed component will not lead to system failure.
System dependability was defined by Avizienis in (Avizienis,
Lapire, & Randell, 2000) as “the ability of a system to avoid
failures that are more frequent or more severe, and outage du-
rations that are longer, than is acceptable to the users”.
Developing a dependable WSN starts with defining the de-
pendability requirements of users. In order to satisfy these
needs, it is crucial to understand what might stop the network
from delivering a correct service. In the following, we enu-
merate the attributes of a dependable network.

2.4.1. Availability

In the classical definition, a network is considered as highly
available if its downtime is very limited. This can be due ei-
ther to few failures, or to quick restarts when failures take
place (Knight, 2004; Taherkordi, Taleghan, & Sharifi, 2006).
If we add the security aspect, we can define availability as
readiness for correct service for authorized users. This at-
tribute can be computed as the probability that the network
is functioning at a given time (Silva, Guedes, Portugal, &
Vasques, 2012).

3
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2.4.2. Reliability

A reliable network is a network that is able to continuously
deliver a correct service. It can also be defined as the proba-
bility that a network functions properly and continuously in a
time interval (Silva et al., 2012; Taherkordi et al., 2006).
Most of research works that have been accomplished so far
employ retransmission mechanisms over redundancy schemes
to achieve network reliability (Silva et al., 2012). The main
purpose of a WSN is the correct delivery of data packets from
sensor nodes to end user. Thus, reliability of WSNs is highly
related to data transport. Reliability can be classified into dif-
ferent levels: packet reliability, event reliability, Hop-by-Hop
reliability, and End-to-End reliability.
Both packet and event reliability levels deal with the required
amount of information to notify the sink of the occurrence
of an event within the network environment. Whereas the
remaining two levels (i.e., Hop-by-Hop and End-to-End reli-
ability levels) are concerned with the successful recovery of
event information. Yet, all of them rely on retransmission and
redundancy mechanisms.

2.4.3. Security

WSNs are different from traditional computer networks. There-
fore, existing security mechanisms are not suitable for these
networks. Developing adequate security measures requires
understanding WSNs constraints related to security issues.
An attack on a network can be extended to more than just
modifying the data packets originally circulating in the net-
work. An attacker can inject additional data packets to disturb
the normal function of the network and tamper with the deci-
sion making process. For this reason, a receiver (i.e., node)
must be sure that the data being accepted is coming from a
member of the network. Similarly, a sender needs to verify
that the reception entity is whom it claims to be. This finality
can be achieved through authentication.
Benenson et al. based their entity authentication on elliptic
curve cryptography (Benenson, Gedicke, & Ravivo, 2005).
Each user holds a legitimate certificate, which is the public
key signed by a certification authority. Every node can verify
the legitimacy of the users since the public key with the sig-
nature are preloaded in the sensors. Yet, this scheme requires
an significant overhead for data encryption.
One of the most important issues related to network secu-
rity is data confidentiality, and it refers to limiting data access
to legitimate destinations. Keeping data packets confidential
mainly means that:

• Sensor readings can only be performed by the legitimate
destination; a sensor node holding information must not
leak information to its neighbors.

• Communication channel has to be secured, especially
when the data being communicated is highly sensitive.

• The network needs to achieve confidentiality by encrypt-

ing data during transmissions.

In (J. M. Bahi, Guyeux, & Makhoul, n.d.), Bahi et al. argue
that in-network communication, node scheduling, and data
aggregation need to be proven as secure. For this matter, they
proposed a security framework for wireless sensor networks.
The authors proved that in-network communication answers
to security objectives (indistinguishability, non-malleability,
detection resistance). In addition to this, the proposed algo-
rithm is able to aggregate data over encrypted packets.

2.4.4. Defensive measures

Key establishment techniques have received great attention
for many years. Nevertheless, WSN applications are rela-
tively recent. Besides, the features of these networks are dif-
ferent from traditional networks. Therefore, preexisting tech-
niques for key establishment are an unsuitable solution for
WSNs applications. Traditionally, key exchange techniques
use asymmetric cryptography (public key cryptography). Un-
fortunately, low power WSNs are unable to handle such a
computationally intensive technique.
The easiest way for encryption keys distribution, is to estab-
lish one single key for the entire network and forward it. It is
easy to notice that this method is inefficient as one node can
compromise the entire network.
An alternative solution that can be adopted is symmetric en-
cryption key. This technique secures communication between
two hosts as they share a private key that is not recognized by
the rest of the network. This key will be used for both data
encryption and decryption.
Another possibility is random probabilistic key distribution
scheme. The initialization stage starts with preloading in ev-
ery sensor node a maximum number of keys (with respect to
the memory). This is done in a way that two sets of keys (in
two different nodes) will at least share one key. By broad-
casting the identity of the keys, every node can discover the
neighbors with which it can exchange information. Now, ev-
ery node can only communicate with its legitimate neighbors;
a link only exists between nodes sharing a key. It is now pos-
sible for a sensor node to safely establish a link with a target
node by secretly sharing a key via their neighbors (Z. Li &
Gong, 2011).

3. PROGNOSTICS AND HEALTH MANAGEMENT: STATE
OF THE ART

Maintenance is an important activity in industry. It is per-
formed either to revive a machine/component, or to prevent it
from breaking down. Different strategies have evolved through
time, bringing maintenance to its current state. This evolution
was due to the increasing demand of reliability in industry.
Nowadays, plants are required to avoid shutdowns while of-
fering both safety and reliability (Peng, Dong, & Zuo, 2010).
The first form of maintenance is corrective maintenance. In

4

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

684



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

Figure 2. CBM Flowchart

this strategy, actions are only taken when the system breaks
and can no longer perform the intended tasks. Yet, plants
cannot afford to undergo breakdowns; in fact, sudden shut-
downs cost money and time, in addition to safety and clients’
trust. As a remedy to this problem, maintenance became a
periodic activity. Domain experts rely on their knowledge
and the observation of upcoming events to set time inter-
vals in which the components are inspected and replaced if
needed. This preventive (often called periodic) maintenance
is especially adopted by transportations and nuclear plants
(Hu, Youn, Wang, & Yoon, 2012). The main drawback of pre-
ventive maintenance is the fact that it is performed regardless
of the machine’s condition. In other words, industrials have to
hire domain experts in order to set intervals for maintenance.
Sometimes, this is unnecessary as the machine can be in a
healthy state and this will cost extra and avoidable fees. Be-
sides, even with periodic maintenance and inspections, ran-
dom failures still occur. This is why Condition Based Main-
tenance (CBM) was proposed and developed in early nineties
(Heng, Zhang, Tan, & Mathew, 2009).
CBM is a proactive precess for maintenance scheduling, based
on real-time observations. It is an online model that assesses
machine’s health through condition measurements. As any
maintenance strategy, CBM aims at increasing the system re-
liability and availability. The benefits of this particular strat-
egy include avoiding unnecessary maintenance tasks and costs,
as well as not interrupting normal machine operations (Heng
et al., 2009).
In order to be efficient, a CBM program needs to go through
the steps illustrated in Figure 2 (Jardine, Lin, & Banjevic,
2006).

Figure 3. An illustration of RUL with uncertainties

3.1. PHM: definitions

The terms diagnostics and prognostics are widely used. Though,
the difference between these two concepts is sometimes vague.
However, it is important to specify the difference as it is the
key to perform a good PHM.
PHM is the core activity of CBM, and it implies the same
steps, namely: data processing, health assessment, diagnos-
tics, prognostics, and decision making support.
While diagnostics aims at identifying and quantifying an ac-
tual failure, prognostics have the goal of anticipating fail-
ures. Several definitions concerning prognostics exist in the
literature (ISO13381-1, 2004; D. Tobon-Mejia, Medjaher, &
Zerhouni, 2012; D. A. Tobon-Mejia, Medjaher, Zerhouni, &
Tripot, 2012; Zio & Maio, 2010; Jardine et al., 2006). Prog-
nostics considers past events, the machine’s current state, and
operating conditions to estimate the Remaining Useful Life
(RUL). This estimation is done by inspecting the evolution of
continuous measurements of parameters that need to be mon-
itored in time to assess the machine’s state. These parameters
can be temperature, humidity, vibration, pressure, and so on.
A monitored parameter has a fixed threshold. Once reached,
an alarm goes off indicating that a symptom of system dete-
riorating has been detected. The RUL is then computed with
an associated confidence limit. The latter information illus-
trates to what point the predictions are trustworthy. The un-
certainties of the RUL predictions have two causes: either the
threshold value of monitored parameter, or the RUL predic-
tion itself.
In Figure 3, we can observe the uncertainties that can be re-
lated to RUL prediction.

In (ISO13381-1, 2004), the necessary pre-requisites for reli-
able prognostics are proposed.

3.2. Classifying approaches

Prognostics approaches are classified under groups employ-
ing, more or less, the same techniques. Nevertheless, re-
searchers use different classifications (Jardine et al., 2006),
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(Heng et al., 2009), (Peng et al., 2010), (Sikorska, Hodkiewicz,
& Ma, 2011), (Cadini, Zio, & Avram, 2009), (Hu et al., 2012),
(D. Tobon-Mejia et al., 2012). More details on each approach
can be found in the given references.
In this paper, we consider four groups: Physical models, Knowledge-
based models, Data-driven models, and Hybrid models. They
are detailed in the following sections.

3.2.1. Physical models:

Physical models rely on mathematical models to describe the
physics of a failure, and are developed by domain experts.
The first condition for a reliable model is a good understand-
ing of the behavior of the system responding to stress. The
description of the behavioral models is carried out via differ-
ential equations, state-space methods, or simulations.
Physical models are considered if:

• the mathematical model of the system is known;

• the failure mode is well understood;

• a physical model for each failure mode is available;

• the operating conditions can be monitored; and

• data describing the conditions related to each process
isavailable.

Examples of model-based prognostics are given in (Y. Li,
Billington, Kurfess, Danyluk, & Liang, 1999), (Byington,
Watson, Edwards, & Stoelting, 2004), (Cempel, Natke, &
Tabaszewski, 1997), (Qiu, Zhang, Seth, & Liang, 2002).

3.2.2. Knowledge-based models:

Since it is hard to build an accurate physical model for com-
plex industrial systems, the employment of the latter is lim-
ited. Besides, it is impossible to apply a developed model to
a different component. Other methods, such as knowledge-
based ones, appear to be promising as they require no physi-
cal model.
In the following, two examples of this model are presented.

• Expert systems
Since late 1960s, expert systems seemed to be suitable
for problems usually solved by domain specialists. These
models consist of computer system, designed to display
expert knowledge. This knowledge is extracted by do-
main specialists and organized into rules learned by the
computer to generate solutions.

The rules have the form of:
IF condition, THEN consequence

Such a rule is strict and does not adapt to any changes in
operating conditions. The only way to adapt the model
to new situations is to add new rules whenever a new
condition is observed. This can lead to a combinatorial

explosion, given that a rule is required for every possible
combination of inputs. Another limitation of this model
is that it is only as good as its developers.

• Fuzzy logic
It is a form of probabilistic knowledge, where the rules
are approximate rather than fixed and exact. It was in-
troduced by Zadeh in 1965 (Zadeh, 1965). The differ-
ence between fuzzy logic and classical predicate logic,
is the use of fuzzy sets rather than discrete values stand-
ing for true or false. In a fuzzy set, variables member-
ship is defined based on their degree of truth. The truth
value ranges from 0 (completely wrong) to 1 (completely
true).The rules may look like:

IF condition “A” AND condition “B” THEN
consequence.

The description associated to the parameters differs from the
description used with expert system rules. Here is an example
to illustrate the difference:
Expert system:

IF engine is hot THEN shutdown

Fuzzy logic:

IF engine is slightly hot AND temperature is rising THEN
cool down the system

This new way of introducing rules gives the computer a very
human-like and intuitive way of reasoning with incomplete,
noisy, and inaccurate information. As a result, fault detection
and prediction are more accurate, and for this reason, fuzzy
logic is usually incorporated with other techniques.
Even though this method can only be developed by domain
experts, it is easy to understand the developed rules. It is not
only recommended because it covers a large set of operating
conditions, but also because of its efficiency when it is im-
possible to build a mathematical model or when data contains
high levels of uncertainties and noise.

3.2.3. Data-driven models:

In data-driven approaches, models are directly derived from
condition monitoring data, based on statistical and machine
learning techniques. These models have a double role: assess
current operating conditions and predict the RUL. Neither hu-
man expertise nor comprehensive system physics are needed
for the prognostic model building process.
A data-driven prognostic model transforms raw data provided
by the monitoring system into useful information, which com-
bined with historical records, helps building a behavioral model
and performing predictions. The data-driven approach is pop-
ular and widely-used because it offers a reasonable tradeoff
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between complexity and precision. This approach remains
the best solution when obtaining reliable sensor data is much
easier than constructing mathematical behavioral models. Nev-
ertheless, accuracy depends on many factors.

• The training set: normally, an efficient training requires
a large set of inputs. It is not easy to decide whether the
amount of inputs we dispose of is enough for training a
reliable model or not.

• Operating conditions: manufacturing conditions change
all the time, so do the environmental and operational con-
ditions. All these changes may lead to uncertainties in
the predictions as they refer to new situations that may
not be recognizable by the model.

• Sensory signals: the amount of effective sensory data
available when prediction is performed has an impact on
accuracy.

• Degradation trend: RUL prediction relies on historical
data and past events. As shown in Figure 3, the pre-
diction is an extrapolation of what we observe up to the
present moment. If the degradation trend is highly simi-
lar to a trend the model can recognize, prediction can be
accurate (and inversely so).

Examples of the developed methods reported in the literature
are:

• Aggregate reliability functions (Crevecoeur, 1993), (Duane,
1964), (Goode, Moore, & Roylance, 2000)

• Artificial neural networks ANN (Huang et al., 2007), (Herzog,
Marwala, & Heyns, 2009), (W. Wang, Golnaraghi, & Is-
mail, 2004)

• Autoregressive moving average ARMA (Wu, Hu, & Zhang,
2007), (Yan, Koc, & Lee, 2004)

• Bayesian techniques (Cadini et al., 2009), (Kallen & van
Noortwijk, 2005), (Weidl, Madsen, & Israelson, 2005)

• Hidden markov and hidden semi-markov models (Bunks,
McCarthy, & Al-Ani, 2000), (Baruah & Chinnam, 2005),
(Medjaher, Tobon-Mejia, & Zerhouni, 2012)

• Proportional hazards models (Z. Li, Zhou, Choubey, &
Sievenpiper, 2007), (Liao, Zhao, & Guo, 2006), (Makis
& Jiang, 2003)

• Trend extrapolation (Batko, 1984), (Kazmierczak, 1983),
(C.Cempel, 1987)

3.2.4. Hybrid models:

Usually, prognostic activity does not consider one parameter.
The monitored parameters are diversified, making it hard to
study failure behavior using only one model.

Figure 4. Categories for prognostic models

Hybrid models aim at improving prediction quality by provid-
ing more accurate RUL. All research works agree that physi-
cal models guarantee the most precise prediction. Neverthe-
less, even with good output quality, the complexity is too sig-
nificant to ignore. This complexity can be reduced by adopt-
ing a data-driven approach. Thus, we can benefit from the
merits of both prognostic approaches.
When physical understanding of failure mechanism and mon-
itoring data are available, a hybrid approach is the best solu-
tion offering a compromise between model complexity and
prediction accuracy.
In Figure 4 we illustrate the categories for prognostic models.

4. WSNS FOR INDUSTRIAL PHM AND
CHALLENGES AHEAD

Reliability has become very essential in industry. It is a means
to financial gain in addition to client trust. The research in
the prognostic field, over the past years, resulted in a vari-
ety of tools and techniques offering plants the possibility to
survey their systems, anticipate failures, and schedule main-
tenance. As the existent tools are different from one another,
they have different advantages, drawbacks, complexities, etc.
Data driven prognostic models drew a great deal of attention
due to their low cost, low complexity, and easy deployment.
The prediction model will first acquire information about the
monitored system, assess the current state, and then extrapo-
late its future health state.
WSNs are mainly designed for surveillance purposes. They
can be deployed in many fields such as military, automotive,
agriculture, medicine...(Z. Li & Gong, 2011). Recently, in-
dustry has given WSN monitoring applications a great deal of
attention. Nowadays, sensor networks are used to monitor in-
dustrial machinery for maintenance scheduling. The sensors
deployed to survey the system/component will provide data
to estimate the RUL. Nevertheless, if this data is inaccurate,
the prediction based on it will not be relevant. The depend-
ability requirements, discussed before, need to be considered
before the network starts running. Thereby, they can provide
accurate data for RUL prediction and maintenance schedul-
ing. Despite the existence of many dependability solutions in
WSNs, these solutions are not always applicable. As sensors

7

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

687



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

have restricted computational capabilities, solutions are often
application oriented. Thus, a definition of dependability is-
sues related to prognostics is essential.
Many aspects still need further studying in order to provide
more reliable predictions. How can we explore available data?
How can we consider operating conditions in RUL predic-
tion? How can we allow multiple interactions while building
a model? All these questions still need answers.
Data-driven models are designed to reduce model complex-
ity and enhance real-time maintenance. For this matter, they
only provide general predictions for a population of identical
units; this makes prediction process easier and faster.
In the literature of prognostics, it is very common that the
causes of a failure are limited to the values of monitored pa-
rameters. Other factors, although responsible for failures,
seem to be neglected and overlooked. Although Condition
Monitoring (CM) data reflects online monitoring, it does not
replace reliability data. In fact, CM data provides measure-
ments informing about a single component state at a specific
moment. A failure does not only consider a single parame-
ter (pressure, humidity...), it is a consequence of many factors
(component age, different failing components...).
Reliability data, informing about all these factors, gives a
bigger picture of the failing process. We are not neglecting
the importance of CM data for prognostic process. However,
while CM data provides information for short-term predic-
tion, reliability data is able to extend these predictions until
the next maintenance window. The complete neglection of
operating conditions, operating age, and interactions between
failures can only limit the application of developed models to
real machines. Operating conditions are constantly changing,
and if the model is unable to consider these changes, it is un-
able to produce reliable estimations. Furthermore, if we ob-
serve two similar components with different operating ages
and operating under similar conditions, we will notice that
they will not fail at the same time. Operating age definitely
has an influence on time to failure. An internal failure can
even accelerate or provoke another one.
Another issue to face while performing prognostics, is cen-
sored data. Many plants do not allow their system to run
to failure. Components are often replaced before they actu-
ally fail. As a result, the real time to failure is not recorded.
The performed preventive maintenance is mistaken for fail-
ure time, and RUL prediction is based upon that time. The
value of RUL is critical for maintenance scheduling. In other
words, the less accurate the prediction, the less reliable the
maintenance schedule will be.
Maintenance scheduling is the reason behind building prog-
nostic models. Once accomplished, the maintenance actions
are not always considered in the model and generally, the re-
lated component is considered “as good as new”. It is very
important to consider the effects of maintenance actions in
the prediction model, at least to evaluate the model efficiency
and study the new failure behavior after the maintenance be-

ing performed.
What also drew our attention are the assumptions made to
perform predictions. To the best of our knowledge, none of
the previous research works has questioned the availability,
safety, and security of data used for RUL prediction. It is
assumed that:

• Sensory data is available and there is no data loss.

• The sensor network is reliable.

• There is no fault in the sensors.

• There is no constraint on energy consumption

So far, all prognostic work is limited to the condition moni-
toring layer, the health assessment layer, and the prognostic
layer of the Open System Architecture for Condition-Based
Maintenance OSA-CBM (Thurston, 2001; Niu & Yang, 2010).
As RUL prediction concerns results that are yet to come, it
has to rely on assumptions. Nevertheless, these assumptions,
in no way, reflect a real life situation. The application of
Wireless Sensor Networks (WSN) is very critical. First of all,
the sensors size is very small. So they have very small batter-
ies with limited disposable energy. If the communication in
the network does not consider this limitation, the sensors will
quickly consume all the energy they have and be dropped.
Thus, the information will no longer circulate in the network.
Still, an energy efficient WSN will not stop some nodes from
being dropped. This means that the network has to be fault
tolerant in order to be able to pursue its functionalities in case
of any sudden events (sensor loss, interferences...). Besides,
like all wireless networks, WSN can be hacked. Competitors
and hackers can steal information, change data, cause dam-
age to the system... Data circulating in the network needs to
be secured against such attacks.
Many research works have been done in the field of WSN
reliability. But every application has its own features, and
generalized solutions do not always solve the problem. An
adapted solution for prognostics needs and goals should be
considered.

5. CONCLUSION

Condition-based maintenance is an important tool for mod-
ern plants in order to optimize their maintenance schedule.
An appropriate schedule is reflected by the economical bene-
fits. This paper went through the CBM process and its differ-
ent steps leading to prognostics, and presented the different
methods used in the literature of the latter to estimate the re-
maining useful life. Choosing one model over another mainly
depends on (1) the available information to perform predic-
tions and to study the systems behavior, (2) the complexity of
the model, and (3) preferences regarding the domain of appli-
cation, advantages and drawbacks of each model.
This paper also highlighted the fact that prognostic field still
needs several improvements. RUL predictions cannot be ac-
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curate if several points are not considered while building a
model, namely (1) WSN dependability, (2) securing data, (3)
including event data and censored data in the prediction pro-
cess, and (4) model updates.
A discussion of dependability in WSNs is also given in this
paper. In order to build a dependable network several at-
tributes need to be considered: (1) network availability, (2)
network reliability, and (3) network security. These attributes
are the key for accurate data and reliable predictions.
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ABSTRACT

Unplanned aircraft groundtimes caused by component fail-
ures create costs for the operator through delays and reduced
aircraft availability. Unscheduled maintenance on the other
hand also creates costs for Maintenance, Repair and Over-
haul (MRO) companies. The use of PHM is considered to
improve the planning of component-specific maintenance and
thus reduces consequential costs of unscheduled events on
both sides.

This study assesses the component-specific costs and charac-
teristics of today’s maintenance approach. A discrete event
simulation represents all relevant aircraft maintenance pro-
cesses and dependencies. For this purpose the Event-driven
Process Chain (EPC) method and Matlab/SimEvents are used.
The data input (process information, empirical data) is pro-
vided by a particular MRO company.

Whereas recent approaches deal with stochastically processed
data only, e.g. failure probabilities, the proposed method
mainly uses deterministic data. Empirical data, representing
particular dependencies, describes all relevant stages in the
component lifecycle. This includes operation, line and com-
ponent maintenance, troubleshooting, planning and logistics.

By simulating different scenarios, various maintenance future
states can be evaluated by analysing effects on costs. The ob-
tained economical and technical constraints allow to specify
component-level PHM design parameters, as minimum prog-
nostic horizon or accuracy. Detailed process-specific infor-
mation is provided as well, e.g. costs of non-productive MRO
activities or no-fault-found (NFF) characteristics.

Alexander Kählert et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

1. INTRODUCTION

Since the development in research fields as e.g. fuel efficiency
has reached a point, where the savings potential is expected to
advance incrementally only, the concept of PHM offers new
opportunities to improve competitiveness, see (Sun, Shengkui
Zeng, Kang, & Pecht, 2010) and (Feldman, Jazouli, & Sand-
born, 2009). By converting unplanned aircraft groundtimes
into planned maintenance tasks, it is considered to support
the general objectives of aircraft maintenance. According to
(Fromm, 2009) and (Knotts, 1999) these are:

• maximising aircraft availability and dispatch reliability
• minimising consequential costs of technical delays
• minimising direct maintenance costs (DMC)

The dispatch reliability (DR) describes the ratio of revenue
departures without delays or cancellations compared to all
flights. A higher DR results in a higher aircraft availabil-
ity and thereby implies a reduction of delay compensation
costs (e.g. rescheduling costs, payoffs) as well as lower op-
portunity costs through more revenue flights, see (Rodrigues,
Balestrassi, Paiva, Garcia-Diaz, & Pontes, 2012) and (Sisk,
1993). According to (Eurocontrol, 2010) average costs of
aircraft delays reach $113 per operating minute. Other re-
sults are given in (Rodrigues et al., 2012), (Cook, Tanner,
& Anderson, 2004) and (Fritzsche & Lasch, 2012). In 2008
European airlines experienced 85 million delay minutes, cre-
ating estimated overall costs of $9.7 billion, see (Eurocontrol,
2011). According to (Eurocontrol, 2012) technically induced
delays account for a large portion of all delays. Since PHM
allows to perform maintenance tasks within planned main-
tenance events prior to a component failure, technical delay
costs are one measured variable in this study. The scheduling
is based on remaining useful life (RUL) prediction, e.g. see
(Hölzel, Schilling, Neuheuser, Gollnick, & Lufthansa Tech-
nik AG, 2012). Within a prognostic horizon (PH) the future
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system state can be predicted with sufficient accuracy.

Reducing the DMC, being part of the direct operating costs
(DOC), is another key factor in competition. According to
(Fromm, 2009) DMC account for approximately 7% of the
DOC of an airline. (Fritzsche & Lasch, 2012) state that PHM
enables a MRO company to optimise the maintenance pro-
gram’s scheduling as well as structuring. This allows more ef-
ficient processes by converting unplanned into planned activ-
ities and preventing non-productive events. Therefore avoid-
able maintenance costs are another measured variable in this
study.

Since a PHM system is not ideal, it is characterised by uncer-
tainties and involves various risks:

• The PH is too short and allows no useful forecast.
• A low accuracy causes misinterpretation (NFF or unde-

tected events).
• The PHM system itself fails (e.g. sensor failure).

In order to facilitate the planning of maintenance events, the
PH has to allow forecasts for a certain number of flight cy-
cles (FC) or flight hours (FH). For instance, if a component
malfunction is indicated by a RUL prediction 5 minutes prior
to failure, it may not be early enough in order to prevent a
groundtime at the next station. On the other hand 5 minutes
might be enough to significantly improve operation in some
cases (Sun et al., 2010). If the PHM system’s accuracy is
not sufficient, false conclusions are possible. Non-productive
NFF events may be generated by false alarms, or unscheduled
events by undetected failures, see (Knotts, 1999) and (Hölzel
et al., 2012). Furthermore, a PHM system involves require-
ments concerning its own maintainability.

In summary, the goals of this study can be defined as follows:

1. Evaluate the financial potential of a component-specific
PHM system.

2. Specify component-based PHM parameters.

The required component-specific PHM performance param-
eters, as PH and accuracy, can be specified by the evaluated
economic constraints. These are gained from the calculation
of a component-specific PHM system’s effect on

• delay compensation costs and
• direct maintenance costs

with respect to the different PHM design parameters. Studies
analysing similar goals often use simulation models. (Hölzel
et al., 2012) employ a model to carry out a cost-benefit anal-
ysis by using failure probabilities as input data and evaluat-
ing savings potentials of different PHM systems. An alterna-
tive to the data input approach will be discussed in sections

2.2.1 and 2.2.2. Another similar procedure is presented in
(Feldman et al., 2009). Key of this study is the Return on
Investment (ROI) calculation. Component failures are gener-
ated probabilistically as well in this case.

Compared to the other studies, this paper presents a PHM
evaluation using mostly deterministic data to simulate main-
tenance events as close to reality as possible. This is enabled
by available, adequate MRO data. The methodology, includ-
ing assumptions and limitations, is discussed in the next chap-
ter.

2. METHODOLOGY

This chapter provides an overview of the applied approach,
illustrated in Figure 1. The major steps described in the next
sections are indicated by the labeled arrows: Data prepro-
cessing, modelling and simulation. The boxes represent the
in- and outputs, further explained in the particular sections.

Databases

Simulation 

Model

Event-based 

Data

Maintenance 

Process Logic

Data Pre-

Processing
Modelling

Results

Simulation

Figure 1. Description of the approach.

2.1. Component-Level Approach

The component-level approach used in this study is explained
in the following.

2.1.1. Level of Detail

The introduced approach aims to evaluate the effects of a
PHM system on component or line-replacable unit (LRU)
level. LRUs are designed to be replaced quickly during turn
around times between two flights. Hence, faulty LRUs are
responsible for technical delays in many cases, because the
replacement requires a prior diagnosis as well as spare parts
and often takes place during flight operation time.

An evaluation on a more detailed level is not conducted, due
to the fact that most available MRO data provides LRU spe-
cific data only. In most cases LRUs can be found within an
ATA-6-digit chapter, specified as a subsystem. For further in-
formation on the ATA-numbering system see (Air Transport
Association of America, 2012). If an LRU is supplied by dif-
ferent manufacturers or modified by minor updates, different
partnumbers (PN) are applied.
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2.1.2. Sample Component Selection

The assumptions made in this study require the evaluated
LRUs to fulfill the following requirements:

• Standard LRU maintenance applies.

• LRU shows any sort of wear behaviour.

• LRU causes high costs through delays and cancellations.

• LRU causes high costs through NFF events.

It is assumed that all LRUs pass through a standardized LRU
maintenance process, which is the focus of this study. The
wear behaviour provides information about the technical fea-
sibility of a prognosis application. In order to be able to
perform prognosis an observable degradation process is nec-
essary, whereas diagnosis requires the binary states ”func-
tional” and ”not functional” only. LRUs can cause opera-
tional delays through time-consuming replacements or trou-
bleshooting (TS) tasks. Costs through NFF events can result
from insufficient fault interpretation and the conflicting goals
of different maintenance departments. Line maintenance at
an airport aims to assure an aircraft’s availability by perform-
ing all tasks as quickly as possible, e.g. by simply replacing
an LRU in case of a fault indication, even if a detailed TS
was not conducted. The shop maintenance on the other hand
overhauls all incoming LRUs. If a line maintenance replace-
ment takes place without any exact finding, the subsequent
shop maintenance event might be rated as NFF. This can be
considered a non-productive maintenance action.

Besides the cost factors, the minimum equipment list (MEL)
is considered for the LRU selection as well. A MEL category
is specified by the corresponding rectification interval (RI) of
a component or its function. The RI shows how urgently a
problem has to be fixed in order to keep an aircraft realeased
to service. Thus, a failure’s priority and operational risk can
be described. Examples for MEL RI are given in Table 1.

Table 1. MEL rectification intervals.

MEL RI Time for rectification
A instantly or failure-specific
B within 3 days
C within 10 days
D within 30 days

In order to select adequate LRUs for the study, prior to the
simulation all LRUs are ranked. Based on the available MRO
data, a ranking as exemplarily shown in Table 2 for the LRU
Air Data Inertial Reference Unit (ADIRU) is obtained. MRO
component data from the years 2010 to 2013 is considered,
providing estimated annual costs for delays and NFF events
as well as the corresponding MEL RI categories for each
LRU. At the end of this study the exemplary results for the
ADIRU are discussed.

Table 2. Ranking of LRUs.

ATA LRU Delay costs NFF costs MEL RI
34-12-34 ADIRU 1 CDelay CNFF A
... ... ... ... ...

2.1.3. Component Maintenance

The LRU maintenance process can be described by the main
modules shown in Figure 2. The interface between airline
operation and the MRO involves the TS, the maintenance
planning and the system maintenance. In the following the
term system describes the aircraft, consisting of subsystems,
the LRUs. The TS mainly derives supporting and mainte-
nance actions from fault isolation, e.g. by interpretation of
fault messages. The planning department concentrates on the
time scheduling of maintenance tasks considering priority, re-
quired time as well as available ground times. The system
maintenance consists of line and base maintenance. The sub-
system (shop) maintenance, connected by the logistics, deals
with the overhaul of LRUs. Repaired components are sent to
and taken from the spare parts inventory. Since the impact of
this study on the spares inventory is insignificant, it will not
be subject in detail. Furthermore, information and material
flows are illustrated.

MRO

Airline

Planning
Trouble-

shooting

Information

LRU

Spares

Logistics

Operation

System-

Maintenance

Subsystem-

Maintenance

Figure 2. Modules of the component maintenance.

2.1.4. Non-routine Maintenance

The component maintenance can be subdivided into the fields
routine and non-routine maintenance. Routine tasks deal with
maintenance actions that are planned in advance. This applies
for especially safety relevant items or consumables. Non-
routine maintenance deals with unscheduled tasks, created by
faults of components that are maintained on-condition. Since
the earlier mentioned approach includes on-condition main-
tained LRUs only, this study focusses on non-routine mainte-
nance. Furthermore, only maintenance events carried out at
the homebase are analysed.
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2.2. Discrete Event Approach

In a discrete event simulation (DES) state changes are only
modelled at discrete time steps, called events. By skipping
simulation times without any changes, the approach is very
computing time-efficient. States are defined by objects, re-
ferred to as entities, and their attributes. Events are caused by
attribute changes and the induced state transformations.

If a DES model uses non-probabilistic data only, it is called
deterministic. Thus, all input variables are exactly defined
and all states pre-determined. The use of a simulation model
then primarily enables the computing of numerous operation
steps. If input data is probabilistically specified, a simula-
tion model allows to consider stochastic input by conducting
a Monte Carlo simulation. A set of simulation runs then en-
ables the representation of distributed variables.

DES allows to analyse interdependencies between particular
events in detail, as described in (Rodrigues et al., 2012). For
instance, information about failure message generation, LRU
replacements and aircraft delays can exactly be represented
and correlations described. Whereas pure probabilistic ap-
proaches mainly allow analysis concerning particular factors
(consequence-wise analysis), an event-wise analysis provides
information about specific causes and effects (see Figure 3).
In this study both data input types, probabilistic distributions
and deterministic data, are used.

Failure 

message

LRU 

replacement

Aircraft 

delays

LRUi

Event 1

..
.

Failure 

message

LRU 

replacement

Aircraft 

delays

..
.

..
.

..
.

LRUi

Event n

Event-wise analysis 

Consequence-wise analysis 

Figure 3. Different analysis approaches.

2.2.1. Stochastic and Deterministic Data

If particular data is not described by a constant value, it is
distributed. According to (Kohn, 2005) probability density
functions (PDF) allow to describe the probability of a value
to apply. An example for uncertain data used in this study
is varying process time. Since in reality not every LRU re-
placement needs the same amount of time, an analysis of
past process durations provides statistical information on the
empirical distribution. Figure 4 shows different PDF types.
Depending on how accurate the empirical data is available,
one of the introduced approaches is used. If only one scalar
value is available, the special case deterministic distribution
applies. This is the case for most input data in this study.

scalar value

(1 input value)

uniform 

distribution

(2 input values)

triangular 

distribution

(3 input values)

tmean tmin tmax tmeantmin tmaxt t t

P P P

Figure 4. Used probability density functions.

2.2.2. Component Failure Generation

As opposed to many other studies, as (Hölzel et al., 2012) or
(Feldman et al., 2009), the chosen approach defines compo-
nent failures deterministically. Since empirical data regarding
date and time of a component failure or replacement is avail-
able, all temporal information is inherited. Thereby different
analysis scenarios all refer to the same initial failures as the
root cause for replacements and allow exact comparisons.

2.2.3. Process Definition

In order to acquire knowledge about the overall maintenance
process, a conducted process analysis provides information
about the following process factors:

• work type (information-/LRU-processing)
• process time (minimum/average/maximum)
• number of required personnel
• qualification of required personnel
• required resources (e.g. hangar)

By mapping the process sequence including conjunctions, the
process interdependencies are represented (see Section 2.4).
Whereas the information on process sequence and personnel
requirements is derived from MRO documents, the process
times of LRU-specific processes are specified by maintenance
experts and historical data. Concerning process resources
only the demands are modelled as opposed to available ca-
pacities.

2.3. Data Acquisition and Preprocessing

The data preprocessing provides the event-based data input
for the simulation. It is described in the following sections.

2.3.1. Input Data

Input data for the simulation is derived from various MRO
databases. Flight log databases provide information about the
flight schedule, ground events and operational irregularities.
Fleet databases contain registration-specific information. A
variety of technical logbooks provide data about failure mes-
sages, the maintenance history (reports and actions) and lo-
gistics. Experts contributed process-specific details.

All databases contain data sets that are exactly defined by the
attributes aircraft registration, LRU part- and serialnumber,
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date, time and location. According to the logic introduced
in the next section, corresponding data sets from different
databases are connected to single events.

2.3.2. Event Definition

An LRU replacement event is specified by data from the afore-
mentioned databases. In order to identify and extract data
event-wise, the linking logic, shown in Figure 5, is applied.
(Beynon-Davies, 2004) further discusses data models.

LRU Replacements

 Aircraft registration

 LRU registration

 Date and time

 Removal information

Fleet Information

 Aircraft registration

 Specific functions

Flight Irregularities

 Aircraft registration

 Date and time

 Delaycode/-time

Ground Times

 Aircraft registration

 Date and time

 Location

 Ground event type & 

duration

Logistics History

 LRU registration

 Date and time

Shop History

 LRU registration

 Date and time

 Reports and actions

 NFF information

Logbooks

 Aircraft registration

 Date and time

 Location

 Reports and actions

Failure Messages

 Aircraft registration

 Date and time

 Flight phase

 Failure message Flight Schedule

 Aircraft registration

 Date and time

 Location
1 1 1 1

0..n

0..n

0..1

0..1

1

1..n

0..n

0..n

1 1

1

1

Figure 5. Relational object data model for an event definition.

As shown in the data model, an LRU replacement data set
entry is the basis for an event definition. Based on the avail-
able attributes, all other databases are connected by linking
parameters, e.g. aircraft registration and date. As indicated
by the data model, several conjunction types are used. The
connection of multiple data sets is possible (n) as well as sin-
gle data entries or no data at all (1 or 0). By matching all
relevant data, unique subsets specifying separate events are
defined. Matching conflicts, redundancies or incomplete data
is accounted for by robust merging, either correcting or skip-
ping the particular data set. Insufficient data quality is a ma-
jor limitation in this study. Therefore only reliably defined
replacement events are considered for the evaluation.

The data is organised in the structure shown in Figure 6. Dif-
ferent hierarchy levels are used in order to classify similar
information. Thereby results can later be analysed concern-
ing particular characteristics, e.g. comparing all events of k
different partnumbers for one LRU.

LRU1
Partnumber1

Input

Data
LRUi

Partnumberk

Event1

Eventn

Failure Messages

Ground Times..
. ..
. ..
.

..
.

Figure 6. Hierarchy levels of the obtained data structure.

2.4. Modelling

The following sections explain the model building.

2.4.1. Process Modelling

The EPC method is used for the logical maintenance pro-
cess modelling. It comprises the elements process, event and
Boolean operators (AND, OR, XOR). A process, illustrated
by a rectangle, is defined by the aforementioned process fac-
tors. An event, displayed as a hexagon, defines the state that
is supposed to be reached after a process completion. The
logical operators, illustrated by circles, enable the modelling
of intersections by defining routing conditions. Information
flow is indicated by dashed lines. Figure 7 shows an example:

Aircraft

available

Replace

LRU

Substitute 

LRU

available

V LRU

replaced

Change

order

approved

Figure 7. Example of EPC modelling.

By using the EPC method all modules of the component main-
tenance, shown in Figure 2, are described in detail. Due to
intellectual property (IP) reasons, a detailed process map is
not presented in this paper.

2.4.2. Simulation Model

The EPC model is transferred to a software model using Mat-
lab SimEvents, as applied in (Gray, 2007) or (Bender, Pin-
combe, & Sherman, 2009). Matlab Stateflow is used to rep-
resent the system (aircraft) and subsystem (LRU) states. All
defined states are shown in Table 3 and Table 4.

Table 3. System states.

zSystem State description
1 flight
0 on ground, other station
-1 maintenance, other station
-2 on ground, homebase
-3 unscheduled maintenance, homebase
-4 available for maintenance, homebase
-5 scheduled maintenance, homebase

An aircraft can only hold one particular system state at a time.
Flight operation is represented by alternating system states
zSystem ∈ {−2, 0, 1}. Maintenance times are distinguished
between scheduled zSystem ∈ {−5,−4} and unscheduled
events zSystem ∈ {−3,−1}.
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Table 4. Subsystem states.

State State description
1 regular operation
0 rectification in progress
-1 maintenance required
-2 deferred
-3 deferrable

An LRU holds the states functioning zSubsystem = 1, in re-
pair zSubsystem = 0 or not properly functioning zSubsystem ∈
{−3,−2,−1}, further described by the urgency accounted
for by the MEL logic. Items that do not require immedi-
ate rectification, can be deferred. By defining discrete states
and parameter dependent transitions, the toolbox allows to
account for and evaluate different operating modes.

2.5. Simulation

The simulation characteristics are explained in the following
sections.

2.5.1. Simulation Time Characteristics

One simulation cycle represents all events within the analysed
time period for one aircraft at a time. This allows the evalua-
tion of subsequent, interrelated events generated by different
LRUs on the same aircraft. Due to computing time issues and
the study objectives, only time frames of two weeks around an
LRU replacement event are examined. Taking advantage of
DES all dates without any relevant occurrences are skipped.

2.5.2. Scenario-based Analysis

If the degree of particular process transformations through
PHM is supposed to be analysed, the definition of different
simulation scenarios is useful. Defined scenarios are:

1. current state maintenance (data-based only)

2. best-case current state maintenance (data- / logic-based)

3. target state maintenance with PHM (data- / logic-based)

If the maintenance in its current state is to be analysed, the
first scenario applies. In this case the simulation model di-
rectly uses the data input in order to represent all actions and
queue times as they occurred in reality. The second scenario
aims at the representation of a best-case evaluation of today’s
maintenance. The input data is used partially, e.g. date and
time of first failure occurrence. The missing information is
then generated by the modelled process logic. The third sce-
nario is targeted on the evaluation of possible future states
with PHM, by assessing the impacts of different prognosis
parameters, as PH and accuracy. In this case only a small
amount of the historical input data is used, e.g. first occurence
of a failure message, in order to dissolve dependencies on to-

day’s procedure and to generate an ideal state case. The fur-
ther rectification process is represented by the implemented
process logic. By comparing the significant changes to pos-
sible maintenance characteristics with PHM, today’s mainte-
nance deficits can be analysed.

2.5.3. Monte Carlo Simulation

In order to account for input data provided as distribution
functions, a Monte Carlo simulation carries out various sim-
ulation runs. Based on the in section 2.2.1 described distri-
butions, at each cycle the stochastically provided input data
is randomly assigned, creating slightly differing simulation
results. This way especially the varying process times are
accounted for. By defining and saving seed values - initial
values for random number generators - all Monte Carlo sim-
ulation runs can be reproduced. The effects of the Monte
Carlo simulation are considered in the model output interpre-
tation by including the result’s distributions and illustrating
particular risks.

2.6. Target Values

The simulation results can be classified as process data and
operational aircraft data. The results interpretation covers the
statistical analysis of costs as well as raw, time-based sim-
ulation data. Cost values are obtained from calculation of
time-based simulation data with available MRO cost rates.
The simulations outputs are available on different levels of
detail, allowing versatile result interpretation (see Figure 6).
The different categories of target values are explained in the
following sections. (Linser, 2005) e.g. gives an overview of
other prevalent target values.

2.6.1. Costs

Cost analysis can be performed on all levels of detail. If de-
sired, the IATA MRO cost structure, presented in (Fromm,
2009) or (Linser, 2005), can be considered. Primarily the ap-
proach determines costs for an event k according to the logic
shown in eq. 1-3.

Event-based costs consist of process and operation irregular-
ity expenses. Process costs are defined by labour, material
and overhead expenses. Operational charges arise from flat
rates defining compensation and opportunity costs of delays
or Aircraft-on-Ground (AOG) times multiplied by the corre-
sponding event duration.

CEventk =

m∑

i=1

CProci +

n∑

j=1

COpsj (1)

CProci = tLi
· nLi

· cLi
+ nMi

· cMi
+ COi

(2)
COpsj = tOj

· cOj
(3)
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CEventk Total cost of event k
CProci Cost of process i
COpsj Cost of operational irregularity j
tLi

Process time
nLi

Amount of labour
cLi

Labour cost rate
nMi

Amount of material
cMi Material cost rate
COi Overhead costs
tOj Irregularity duration
cOj

Compensation cost rate

Future model updates will include ROI calculation, as de-
scribed in (Feldman et al., 2009). This will enable the com-
parison of different scenarios concerning PHM investments
and avoided costs.

2.6.2. Process Characteristics

The simulation output directly provides process-specific in-
formation, as time distributions and process sequences. By
evaluating the raw data, non-monetary target values can be
analysed. Some examples are:

• response and wait times
• time savings through process transformations
• process loops
• bottlenecks

2.6.3. Additional Results

Examples for parameters, relevant for the MRO company and
not expressed as costs or process times, are:

• aircraft dispatch reliability and availability
• delay characteristics
• NFF characteristics
• effectiveness of actions
• real-time data transmission benefit

Regarding a PHM design the following prognosis parameters
are evaluated:

• minimum required PH
• minimum required prognosis accuracy

As explained in the introduction, these parameters will par-
tially be based on cost factors. Statistical values as Mean
Time Between Repair (MTBR) are not evaluated in this study,
because the results will not have any impact on these param-
eters. For further information see e.g. (Saxena et al., 2008).

3. MODEL APPLICATION

In this section the results of an exemplary simulation model
application are summarised. Due to IP reasons a detailed de-

scription of the maintenance process logic as well as partic-
ular process factors are not presented. Regarding the scenar-
ios, introduced in section 2.5.2, the analysis represents data
obtained from scenario 1. Results of the other scenarios are
not presented in this paper due to IP reasons and model mod-
ifications not implemented yet.

3.1. Numerical Example

The conducted test run presents LRU-specific data for the
ADIRU using the Lufthansa Airbus A320 fleet. The MRO
data provides complete information for the ADIRU from the
years 2010 to 2013. 294 exemplary replacement events at the
homebase are generated. Since the LRU is not maintained
periodically, all replacements are unscheduled.

According to redundancy requirements each aircraft has three
ADIRUs. ADIRU 1 is classified as particularly critical (MEL
RI A). Regarding the examined fleet, four modifications (part-
numbers) of the ADIRU are currently in service (see Table 5).

Table 5. ADIRU-specific model input values.

Parameter Value
number of events 294
installed ADIRUs per aircraft 3
MEL RIADIRU 1 A
MEL RIADIRU 2,3 C
different ADIRU modifications (PNs) 4

General simulation input parameters are defined in Table 6.
The labour cost rate is an average value for different em-
ployee qualifications. In reality, different qualifications with
varying cost rates apply. An ADIRU replacement does not
require any extra materials, thus not creating additional ma-
terial costs. Logistics are considered as overhead costs.

Table 6. Simulation input values.

Parameter Value
nMonte Carlo Runs 250
cL $200 per man hour
cOpsDelay $82 per delay minute
cOLogistics $100 per component

3.2. Input Data Analysis

Analysing the preprocessed data input without any simula-
tion, provides information about LRU-specific maintenance
characteristics, made available through the event-wise data
clustering. A target value, supposed to be reduced by PHM, is
the component’s NFF rate. The influence of particular event
characteristics on the NFF ratio is illustrated in Table 7. The
NFF rate provides information about the diagnosis accuracy.
An ideal 100% accuracy is not realistic, since the aim of low-
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ering risks of false positive statements (NFF), falsely assum-
ing an LRU is defective, is opposed to the aim to reduce false
negative statements, falsely assuming an LRU is functioning.

It is shown that 35% of all replacement events are classified
as NFF. Replacements involving AOG times (7%) show a
slightly higher NFF ratio. As expected, cost-intensive ground-
times as AOGs mainly cause quick part removals even with-
out exact findings. Subsequent NFF findings in the subsys-
tem maintenance then often occur. However, the sample size
is low in this case and a direct correlation cannot reliably be
stated. Replacements, that were deferred in the past (22%),
show a higher NFF ratio as well. This behaviour is not ex-
pected. A deferral should leave more time for troubleshoot-
ing, thus improving diagnosis quality resulting in less NFF
cases. The ability of an aircraft to provide fault messages in
real-time (RTS) (72% of the events) has no influence on the
NFF ratio. Regarding the mounting location, the evaluation
shows that the replacements are equally distributed over the
different ADIRU positions. If the ADIRU 1 is affected, the
NFF rate is lower. Since the ADIRU 1 is more critical (MEL
RI A), this behaviour is contrary to the AOG results. On the
other hand a higher components priority can lead to more pre-
cise troubleshooting, eventually creating less NFF events.

Table 7. NFF analysis w.r.t. event characteristics.

Event characteristic nevents nNFF
nNFF
nevents

[%]

1. all events 294 103 35.0
2.a) AOG 21 13 61.9
2.b) no AOG 273 90 32.9
3.a) deferred 66 40 60.6
3.b) non-deferred 228 63 27.6
4.a) with RTS 211 74 35.1
4.b) without RTS 83 29 34.9
5.a) ADIRU 1 94 13 13.8
5.b) ADIRU 2 91 46 50.5
5.c) ADIRU 3 109 44 40.4

By analysing LRU-specific delay characteristics the effects of
a PHM system introduction can exactly be quantified. A de-
lay analysis, concerning technically caused delays only, pro-
vides the results shown in Table 8. 20.4% of the events gener-
ated technically caused (primary) delays. The average delay
duration is 18.1 minutes. Within subsequent flights further
delays (secondary) were generated. Their accumulated aver-
age duration is 19.6 minutes. The results are relevant for the
cost calculation in Section 3.3.3.

Analysing LRU data on an aircraft-based level provides in-
formation about correlations between events (see Figure 8).
For three exemplary aircrafts it is shown that ADIRU replace-
ments occur w.r.t. all mounting positions. Table 7 also illus-
trates the nearly equal distribution over all positions. A fur-

Table 8. Analysis of initial (primary) and subsequent (sec-
ondary) delays.

Delay type ndelay
ndelay

nevents
[%] tO,mean[min]

primary delay 60 20.4 18.1
secondary delay 53 18.0 19.6

ther analysis shows that within the period of examination 131
consecutive ADIRU replacements occur. Out of 131 events,
59 replacements (45%) occur at the same mounting position
as the prior one, being slightly higher than the probability of
an equally distributed behaviour (33% for 3 mounting posi-
tions). Probably not all replacements actually solved the root
cause of the problem.
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Figure 8. Aircaft-specific failure sequence analysis w.r.t. the
ADIRU mounting positions.

3.3. Simulation Results

The following subsections deal with results obtained from the
simulation.

3.3.1. Simulation States

The system states (see Table 3 and 4) of an exemplary event
are illustrated in Figure 9. The subsystem state illustrates the
point of time of failure (tSimulation = 0) and the further pro-
cessing. The failure rectification, starting after the aircraft has
landed, is represented by zSubsystem = 0.
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Figure 9. System and subsystem states of an exemplary event.

The plot primarily enables model validation by visualisation
of the system states. It shows available maintenance times
as well as generated delays and rectification process charac-
teristics. zSystem is a result of the flight plan and particular
boundary conditions generated by maintenance actions. The
effects on aircraft availability can be represented, if the entire
flight operation is considered.
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3.3.2. Time-based Analysis

Analysing processes w.r.t. temporal data, provides informa-
tion about particularly time-consuming or delay-causing pro-
cesses and modules. Concerning the ADIRU, the overall pro-
cess time from failure identification to rectification is repre-
sented in Figure 10. The plot shows two distributions caused
by different rectification procedures. If a failure occurs dur-
ing flight operation and is classified as urgent, the rectification
usually takes place at the ramp immediately (left distribution,
short duration). If the complaint is deferred, the rectification
is carried out in a hangar at the next planned plug (right dis-
tribution, long duration). This usually involves higher main-
tenance efforts, e.g. through detailed planning and repeated
troubleshooting tasks and thus is more time-consuming. For
the ADIRU the mean average is trectification = 71.7min.
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Figure 10. Overall processing time of ADIRU replacements.

Figure 11 shows ADIRU diagnosis process times. The mean
average time is tdiagnosis = 37.6min. One aim of PHM
is to consistently carry out system diagnosis prior to failures
in order to reduce replacement durations. Since the average
diagnosis time is almost half the average total rectification
time, the effects on unscheduled groundtimes and delays are
expected to be significant.
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Figure 11. ADIRU diagnosis process time.

If a failure requires specific action, the TS creates an Action
Order (AO), a detailed task manual. The completion of re-
placements with an AO requires more time in most cases, as
confirmed by the results shown in Figure 12. Since events
involving AOs can be classified as special case treatment, the
use of PHM is expected to standardize the rectification and to
reduce the number of AO processes.

Based on a detailed delay analysis w.r.t. process times, all
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Figure 12. ADIRU processing time w.r.t. AO characteristics.

events are categorized into four classes. 79.6% of the ADIRU
replacements do not generate any delays. 6.6% of the events
cause delays, but could have been prevented, if the diagnosis
processes were carried out prior to the unscheduled ground-
time. 13.6% of the events generated delays that could only be
prevented by planning the replacement into a prior ground-
time. 0.2% of the events would always cause delays, because
a unique ADIRU problem occured.

Based on the event characteristics of the second and third cat-
egory (events with avoidable delays) the results shown in Fig-
ure 13 and 14 can be obtained.
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Figure 13. Required prognostic horizon for delay avoidance
as a function of flight cycles.
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Figure 14. Required prognostic horizon for delay avoidance
as a function of flight hours.

By means of the flight schedule and the calculated process
times, the prior groundtime for every event, not generating
a delay, can be identified. The necessary time-shift to that
particular groudtime can be specified in terms of FC or FH,
illustrated as a PDF. Since only replacements at the homebase
are analysed in the first place, the FC analysis shows the ex-
pected behaviour that only every second flight is accounted
for (groundtimes at the homebase). For instance, if an ide-
ally working PHM system with a PH of 4 FC or 9 FH is used,
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60% of the delays could have been avoided completely. Addi-
tionally the delays of other events could partially be reduced
by scheduling them into more adequate groundtimes than the
actual ones.

3.3.3. Cost-based Analysis

A cost-based analysis provides information about specific cost
distributions. Table 9 gives an overview of the calculated
ADIRU replacement costs. The average value for the annual
costs as well as the lower and upper boundaries of the con-
fidence interval (CI), including 95% of the values, are given.
Due to deterministic input data, for logistics overhead costs
no CI applies.

The average overall costs for ADIRU replacements sum up to
$125,365 per year. One event generates average total costs of
$1,706. The uncertainty is described by the given CI, rang-
ing from $269 to $4,419. Two thirds of the costs of an ordi-
nary replacement event are generated by MRO processes, one
third by operational irregularities. The module-wise analysis
shows that especially the maintenance modules and the logis-
tics account for a large portion of the costs. A further anal-
ysis determines the costs of NFF events (CSubsys.M.NFF

) as
a fraction of the subsystem maintenance costs. The subsys-
tem maintenance process is the costliest process, due to the
fact that all on-aircraft ADIRU tasks are performed quickly,
whereas a detailed component maintenance - the ADIRU is
a computer - is time-consuming. Furthermore, the costs of
diagnosis tasks (CDiagnosis) are analysed, being part of trou-
bleshooting (CTS), system maintenance (CSys.M.) and sub-
system maintenance costs (CSubsys.M.).

Table 9. ADIRU replacement cost analysis.

Cost type mean costs 95% CI mean costs
[per event] [per event] [per year]

min - max
CEvent $1,706 $269 - $4,419 $125,365
COps $593 $0 - $2,291 $43,558
CProc $1,113 $269 - $2,524 $81,807
CTS $35 $11 - $127 $2,597
CPlanning $13 $8 - $22 $948
CSys.M. $164 $112 - $207 $12,039
CSubsys.M. $801 $0.4 - $1,859 $58,873
CLogistics $100 $7,350
CSubsys.M.NFF $183 $26 - $432 $11,282
CLogisticsNFF $35 $2,573
CDiagnosis $125 $59 - $348 $9,212

Out of the listed costs only some are avoidable (eq. 4). These
are delay costs COps, costs of NFF events CSubsys.M.NFF

,
logistics costs of NFF events CLogisticsNFF

and costs of di-
agnosis processes CDiagnosis. The avoidable, annual costs
reach Cavoidable = $66, 625 or 53.1% of the average overall

costs per year.

Cavoidable = COps+CSubs.NFF
+CLog.NFF

+CDiag. (4)

3.3.4. Derivation of PHM Design Parameters

Based on the calculated operational and economic constraints,
the benefit of particular PHM design parameters can be eval-
uated. Figure 15 shows the impact of different PHM system
prognosis horizons, specified by the numbers of FH, and dif-
ferent prognosis accuracies on the costs of operational irreg-
ularities (COps). An imperfect system is accounted for by a
confidence value, representing a simplified accuracy. A con-
fidence of 0.25 implies that 25% of the delay causing events
could have been prevented by performing proactive mainte-
nance. It is shown that an effective cost reduction requires
a reliable prognosis (high confidence) as well as a sufficient
PH (high number of FH). A full reduction of delay costs is
not feasible because of few unavoidable major events within
the evaluation period.
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Figure 15. Impact of different inaccurate PHM systems with
varying PH on costs of operational irregularities.

Some potential cost reductions are quantified in Table 10. The
reductions for realistic PHM systems (confidence < 1, short
PH) appear to be low. If the parameters of an exemplary PHM
system are set to PHMconf = 0.5 and PH = 2 FH, the po-
tential savings reach $987 per year only. If investment costs
of PHM systems are considered, the cost-benefit might turn
out negative in the end.

Table 10. Impact on costs of operational irregularities w.r.t.
prognosis accuracy and horizon.

PHMconf 2 FH 5 FH 10 FH 20 FH
0.25 -$494 -$1,756 -$4,768 -$6,038
0.5 -$987 -$3,513 -$9,536 -$12,076

0.75 -$1,481 -$5,269 -$14,304 -$18,114
1.0 -$1,974 -$7,025 -$19,072 -$24,152

Besides the impact on delay costs, the influence on MRO pro-
cess costs is evaluated as well. Table 11 gives an overview
of potential savings concerning the aforementioned avoid-
able cost categories. It is assumed that the PHM system’s
confidence allows to avoid the calculated costs proportion-
ally. For instance, a PHM system with 50% accuracy enables
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the reduction of 50% avoidable costs, generating savings of
$11,534 per year in this case.

Table 11. Impact of different inaccurate PHM systems on
avoidable MRO process costs.

PHMconf CSub.NFF CLog.NFF CDiag.

∑

0.25 -$2,821 -$643 -$2,303 -$5,767
0.5 -$5,641 -$1,287 -$4,606 -$11,534

0.75 -$8,462 -$1,930 -$6,909 -$17,300
1.0 -$11,282 -$2,573 -$9,212 -$23,067

The overall savings potential is illustrated in Figure 16. It
depends on accuracy and PH of the PHM system. Whereas
the accuracy reduces costs in both categories, operational and
MRO costs, a longer PH primarily allows to prevent more
delays. So the effects on process costs only depend on the ac-
curacy. For instance, a realistic PHM system for the ADIRU
with 50% accuracy and PH = 2FH reduces the avoidable
costs to Cavoidable = $54, 104 per year, an annual reduction
of $12,521 or 18.8%. Since no investment costs are consid-
ered in this study, the savings potentials specify a boundary
for reasonable PHM investment costs.
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Figure 16. Impact of different inaccurate PHM systems with
varying PH on avoidable costs.

Since no prognosis algorithm performance data is available
for this study, the effects of correlations between PH and ac-
curacy are not represented. It is assumed that a shorter PH
will result in a higher prediction accuracy. By quantification
of the exact correlations, the analysis quality and the conclu-
sions could be described more detailed in the future.

3.4. Model Validation

The model validation is carried out by conducting plausibil-
ity checks. By comparing the simulated process sequences
with the process analysis EPC model, the model logic is val-
idated. A comparison of the simulated process time distribu-
tions to the input distributions verifies correct data usage. The
system state diagram enables the validation of the interaction
between flight operation and MRO processes. This way also
the generation and recording of delay data can be confirmed.
Further methods for model validation include Gantt charts for

visualisation as well as process route marking for plausibility
checking.

4. CONCLUSION AND OUTLOOK

This study presents a new approach for the assessment of
PHM relevant components concerning avoidable costs of un-
scheduled events. The aim is to evaluate the characteristics
of today’s maintenance on LRU level and to derive design in-
formation for future PHM systems. Therefore, a DES model
is built up in order to represent the MRO process logic us-
ing empirical maintenance data. After a data preprocessing is
carried out, a Monte Carlo simulation enables the representa-
tion of uncertain parameters. Process times and costs of ex-
emplary LRUs are calculated and analysed. Unique features
of this study are the use of mostly deterministic data and the
event-discrete approach. Both procedures allow to evaluate
dependencies, causes and effects within replacements events.

The results of an exemplary LRU, the ADIRU, show a de-
cent savings potential. Operational irregularities and non-
productive MRO processes cause $66, 625 avoidable costs
per year. A sensitivity analysis of the impact of imperfect
PHM systems on the aforementioned costs reveals that the
benefit largely depends on the prediction accuracy as well
as the PH. Whereas the PH allows to facilitate planning pro-
cesses and thereby reduces delay costs, a PHM system’s ac-
curacy mostly saves costs of non-productive MRO processes
through improved diagnosis. Not considering PHM invest-
ment costs, a realistic PHM system allows to save approxi-
mately 20% of the annual costs for the entire fleet.

A final specification of a PHM system is enabled by a ROI
calculation, considering avoidable as well as investment costs,
and an analysis of the correlation between prognosis accu-
racy and horizon, providing prognosis algorithm performance
characteristics. Future work will focus on the simulation of
target state scenarios in order to evaluate the effects of differ-
ent diagnosis and prognosis approaches in detail. Influential
parameters will be considered by performing further sensi-
tivity analysis. The analysis of a large number of LRUs will
further improve the understanding.

It is assumed that there is a standardized LRU maintenance
process and that the analysed LRUs show an observable wear
behaviour. LRUs that do not meet these requirements, are not
applicable for the simulation. Furthermore, the quality of the
simulation results largely depends on the input data quality,
as inaccurate or conflicting data degrades the conclusions.
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ABBREVIATIONS

ADIRU Air Data Inertial Reference Unit
AO Action Order
AOG Aircraft on Ground
ATA Air Transport Association
CI Confidence Interval
DES Discrete Event Simulation
DMC Direct Maintenance Costs
DOC Direct Operating Costs
DR Dispatch Reliability
EPC Event-driven Process Chain
FC Flight Cycle
FH Flight Hour
IP Intellectual Property
LRU Line replacable Unit
MEL Minimum Equipment List
MRO Maintenance, Repair and Overhaul
MTBR Mean Time Between Repair
NFF No-Fault-Found
PDF Probability Density Function
PH Prognostic Horizon
PHM Prognostics and Health Management
PN Partnumber
RI Rectification Interval
ROI Return on Investment
RTS Real-Time-Sending
RUL Remaining Useful Life
TS Troubleshooting
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ABSTRACT 

With electrical power supplies playing an important role in 

the operation of aircraft systems and sub-systems, flight and 

ground crews need health state awareness and prediction 

tools that accurately diagnose faults, predict failures, and 

project remaining life of these onboard power supplies. 

Among onboard power supplies, switch-mode power 

supplies are commonly used where their weight, size, and 

efficiency make them preferable to conventional 

transformer-based power supplies. In this paper, we present 

a framework of diagnostics and prognostics methodology 

based on an equivalent circuit system simulation model 

developed from a commercially available switch-mode 

power supply, and empirical component degradation models. 

In industrial applications, case-specified modifications can 

be made according to specific experimental or service 

conditions of different commercial products.  First, the 

developed simulation model is validated through 

experimental testing. Then, a series of data are collected 

from simulation to build the baseline and fault databases 

under a fixed load profile. Next, promising features are 

extracted from sensed parameters, and further data analysis 

are conducted to estimate the current health condition and to 

predict the remaining useful life of the target system. Some 

highlights of the work are included but not only limited to 

the following aspects: first, the methodology is based on 

electronic system simulation instead of traditional 

accelerated testing by employing a high-fidelity system 

simulation model and empirical critical component 

degradation models; second, efforts are made in this 

preliminary work to adapt proven prognostics and health 

management techniques from machinery to electronic health 

management, with the goal of expanding the realm of 

electronic diagnostics and prognostics.  

1. INTRODUCTION 

Electronic systems such as electronic controls, onboard 

computers, communications, navigation and radar perform 

many critical functions in onboard military and commercial 

aircrafts. All of these systems depend on electrical power 

supplies for direct current power at a constant voltage to 

drive solid-state electronics. With these power supplies 

playing an important role in the operation of aircraft systems 

and sub-systems, flight and ground crews need health state 

awareness and prediction tools that diagnose faults 

accurately, predict failures, and project remaining useful life 

(RUL) of these components. Among various electrical 

power supplies, switch-mode power supplies (SMPS’s) are 

commonly used in onboard aircrafts where their weight, size, 

and efficiency make them preferable to conventional 

transformer-based power supplies.  

Traditional reliability practices applied in electronics are 

limited to reliability analysis based on historic reliability 

statistics and ageing models/factors of population-specific 

components from commonly accepted resources. Few 

efforts target at developing high fidelity models for specific 

electronic systems. On the other hand, many current 

prognostic and health management (PHM) practices rely on 

extensive highly accelerated life testing (HALT) to obtain 

degradation/failure data or models, which may substantially 

increase product life cycle costing (Brown, D. W., Kalgren, 

P. W., & Roemer, M. J., 2007). To address the need of 

developing higher fidelity models and reducing the life 

cycle costing, this paper proposes the use of a model-based 

diagnostics and prognostics approach for specific electronic 

systems, integrating reliability statistics, domain expertise, 

with experimental testing verification. More specifically, in 

this paper, the efforts are made to develop processes that 

adapt proven PHM concepts from machinery health 

management to electronic systems with the utilization of an 

integrated simulation model combining two empirical 

models in the application of SMPS: a circuit-based SMPS 

simulation model and the components’ degradation models 

Honglei Li et al. This is an open-access article distributed under the terms of 
the Creative Commons Attribution 3.0 United States License, which permits 

unrestricted use, distribution, and reproduction in any medium, provided the 

original author and source are credited. 
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developed based on domain expertise and validated via 

experimental testing.  

A schematic diagram of the proposed model-based SMPS 

diagnostics and prognostics methodology is as shown in 

Figure 1. First, a high-fidelity SMPS system simulation 

model is established and validated via actual system testing 

under a fixed load profile. Single critical component is 

selected with the consideration of both the reliability 

statistics and the specific application. Then, in the fault 

diagnostics module, simulated data are generated to build 

baseline and fault databases under the same load profile. 

Probability of detection (POD) is selected and calculated 

over time for the purpose of fault detection and the trigger 

of failure prognosis. In the failure prognostics module, 

system degradation model is developed and then a model-

based particle filter routine is adopted to estimate the model 

parameters and finally, predict RULs. Note that, all models, 

experimental results and analysis discussed in this paper 

pertain to a commercial-available SMPS as shown in Figure 

2. The target SMPS system is a constant current source with 

the output current of 700mA±15mA. 

 

Figure 1. Systematic diagram of the proposed methodology. 

 

Figure 2. The SMPS commercial product. 

2. MODELING METHODOLOGY 

In this section, the above-mentioned two types of empirical 

models are introduced: the circuit-based SMPS system 

simulation model and the critical components’ degradation 

models, from which an integrated simulation model is 

generated to serve in the framework of diagnostics and 

prognostics to be introduced in Section 3.  

2.1 SMPS System Modeling  

2.1.1 Model Development 

A circuit-based simulation model for the target SMPS 

system was developed using software PSpice. OrCAD 

PSpice is a Simulation Program with Integrated Circuit 

Emphasis (SPICE) analog circuit and digital logic 

simulation and analysis program, which is widely used in 

academia and industry. First, equivalent circuit models were 

built for individual components, for example, transformers. 

Then, all component models were integrated to build the 

SMPS system circuit model as shown in Figure 3. The 

whole SMPS consists of the input protecting circuit, Active 

Power Factor Corrector (APFC), opto-isolator, comparing 

regulator and other parts. The loads are 44 LEDs in serial 

connection, as shown in Figure 3. 

T

D

C

RcS

RcCc

Dc

PWM

controller

Opto-

coupler

LEDs

APFC
220V

Reference

U

Ri

Input

protection

Regulator

C in this circuit is the aluminum electrolytic capacitor that will age.

Figure 3. SMPS model schematic diagram. 

2.1.2 Model Validation 

Model validation is crucial to the high-fidelity simulation 

model establishment. To validate the established model, 

critical model parameters are usually compared to the 

corresponding experimental outputs from selected testing 

points. In this case, several comparison parameters were 

selected such as MOSFET drive signals (i.e., Vgs, Vds) and 

diode D voltage. The MOSFET drive signal waveforms 

from the model and the experiment are as shown in Figure 4 

as an example. As indicated in Figure 4, the model 

performances generally match with the experimental results, 

and the simulation model is validated. Note that in Figure 4, 

according to the authors’ domain experience, high-

frequency oscillation observed at the simulated waveform 
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changing edges could be attributed to the simulation 

algorithm design, and the small discrepancy between 

simulation and testing values could be due to the testing 

temperature variation and/or the actual system’s Pulse-

Width Modulation (PWM) chip output voltage variation.  

 

(a) 

 

(b) 

Figure 4. Simulation and experimental test waveforms of 

MOSFET drive signals: (a) Vgs, (b)Vds. 

2.2 SMPS Degradation Modeling  

It has been established in several works (Zhang, Kang, Luo 

and Pecht, 2009; Goodman, Hofmeister, and Judkins, 2007) 

that component degradation, especially the critical 

components’ degradation, is the prime contributor to SMPS 

system degradation and eventually functional failure. Thus, 

it is essential to identify the critical components and study 

their degradation progression trends. Here our interest is to 

study the target SMPS system’s soft failure induced by 

system’s functional degradation under a fixed load profile, 

and our hypothesis is that the SMPS system’s degradation is 

only caused by the single critical component’s degradation. 

Thus, the system assumes the same degradation model as 

the critical component. 

2.2.1 Critical Component Identification 

Previous reliability studies of typical SMPS components 

have shown that the majority of failures may be attributed to 

a list of critical components such as metal-oxide 

semiconductor field-effect transistors (MOSFETs), 

aluminum electrolytic capacitors and silicon power rectifier 

diodes (Li, D., & Li, X., 2012). The failures of those 

components correspond to approximately 80% of the total 

failures. In this work, in addition to component reliability 

studies, a failure mode and effects analysis (FMECA) was 

also conducted to generate a list of critical components for 

this specific commercial SMPS. In this paper, for the 

purpose of illustration of methodology, aluminum 

electrolytic capacitor and feedback resistor are selected for 

single critical component degradation study. 

2.2.2 Critical Component Degradation Modeling 

System/component degradation modeling is tightly 

connected with the usage, environmental and operational 

conditions, or, the corresponding load profile U composed 

of critical stress factors. It is recommended in practice to 

integrate the stress factor influence into the degradation 

modeling. However, studying the fault progression as a 

function of varied load profiles is beyond the scope of this 

paper. Thus, here, we fix the SMPS load profile including 

three stress factors: input voltage, load resistance and 

temperature. For the choice of modeling approach, we adopt 

the feature-based modeling, as the degradation of electronic 

components usually reflects in their performance parameters’ 

drifting from the nominal values. 

a) Aluminum Electrolytic Capacitor Degradation 

Aluminum electrolytic capacitors are known for their 

comparatively low reliability, and due to their criticality in 

SMPS systems they are a good candidate to study their 

degradation modeling and its contribution to system’s 

failure. The performance of those components depends on 

the anode metal oxide film. With the thickening of anodic 

metal oxide film, the equivalent series resistance (ESR) 

increases and its capacitance decreases, while hydrogen 

produced from the cathode reaction accelerates the 

evaporation of electrolyte, which causes aluminum 

electrolytic capacitors’ degradation. 

The equivalent circuit model of the aluminum electrolytic 

capacitor in this application is as shown in Figure 5. In 

Figure 5, C7 and C11 represent capacity values; R39 and R43 

represent ESR values.  
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Figure 5. Aluminum electrolytic capacitor equivalent circuit 

model in PSpice. 

 

Given a fixed operational temperature, the capacitor 

degradation rate is constant. The capacity and ESR values 

change as the aluminum electrolytic capacitor degrades, as 

expressed in Equations (1) and (2): 

   ( )        (      )                   (1) 

 ( )                                           (2) 

where   = 0.3 Ω,   =220 µF,        
  ,      

    . The degradation model parameter values are 

empirically selected. 

b) Feedback Resistor Degradation 

In an SMPS system, the feedback circuit monitors the 

output voltage and compares it with a reference voltage. In 

the feedback loop, the degradation of feedback resistor plays 

a vital role in SMPS’s reliability. Theoretically, with the 

reference voltage unchanged, an increase of feedback 

resistance will lead to a decrease of SMPS output current as 

indicated in Equation (3): 

      
  

  
                                     (3) 

where    and    are SMPS average output current and 

feedback resistance under healthy condition, and    is the 

degraded feedback resistance. In this SMPS module, the 

feedback resistor is composed of two resistors in parallel. 

The empirical degradation models are as shown as follows: 

            
     

            
    .                        (4) 

3. METHODOLOGY FOR MODEL-BASED DIAGNOSTICS 

AND PROGNOSTICS 

In the field of PHM, fault diagnostics and failure 

prognostics techniques are usually classified according to 

the way that data is used to describe the behavior of the 

system: data-driven or model-based approaches. When the 

domain expertise is available to build a reliable degradation 

model of the monitored system, model-based diagnostics 

and prognostics approaches are preferable than the data-

driven techniques. Figure 6 shows the systematic diagram 

for the proposed framework of model-based diagnostics and 

prognostics with Particle Filter (PF). In this case, the real-

time data comes from the simulation model. 

 

 

Figure 6. Model-based diagnostics and prognostics diagram. 

 

3.1 Model-Based Diagnostics Module 

A fault diagnostics module involves the tasks of fault 

detection and isolation, and identification (FDI). In general, 

this procedure may be interpreted as the fusion and 

utilization of the information present in a feature vector 

(measurements), with the objective of determining the 

operation states (i.e., being healthy or fault presence) of a 

system and the causes for deviations from particularly 

desired behavioral patterns.  

In the model-based diagnostics framework, at any given 

instant of time, it provides a probability distribution 

function (PDF) estimate for meaningful physical variables 

in the system. In this case, simulation measurements at 

every time instant were collected from the integrated 

simulation model as introduced previously, and PDFs were 

generated from corresponding measurement histograms. 

Then, hypothesis testing through calculating current and 

baseline PDFs is used to generate fault alarms, and other 

statistical analysis tools may be used to extract additional 

information about the detection and diagnostic results. For 

example, in this case, POD is defined as below: 

POD = 1 – Type II error. 

Based on the calculated PODs from simulation, a fault 

detection threshold is set up in terms of POD. An illustrative 

example of fault detection confidence derived from type II 

statistical hypothesis testing with an example fault detection 

threshold is as shown in Figure 7. An illustration of fault 

progression with regard to the comparison of current and the 

baseline PDFs are as shown in Figure 8. 
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Figure 7. Estimator confidence metric derived from type II 

statistical hypothesis testing. 

 

 

(a) 

 

(b) 

Figure 8. Baseline (left) and estimated (right) PDFs of (a) 

the mild and (b) the severe fault levels. 

3.2 Model-Based Prognostics Module 

A health-based failure prognostics module is usually 

triggered after the fault is detected, and the major task is to 

estimate RUL of the target system/component. In the 

process of model-based prognostics, the degradation model 

is expressed as a function of given load profile U, time t, 

and model parameters to be estimated ϴ, or, mathematically, 

   (     ).                                  (5) 

Note that Load profile U includes the contribution from the 

system external inputs and different stress factors as 

introduced before. The model parameters are estimated by 

integrating the degradation model with the observed health 

data. The RUL is calculated based on estimated model 

parameters.  

In this paper, we realize the model-based prognostics in the 

PF framework. The methodology takes advantage of the 

empirical fault/degradation model, and a nonlinear process, 

a Bayesian estimation method using PF and real-time 

measurements. A merit of using PF for model-based 

prognostics is it combines RUL prediction and model 

estimation. Prognosis is achieved by performing two 

sequential steps, prediction and filtering. Prediction uses 

both the knowledge of the previous state estimate and the 

process model to generate the a priori state PDF estimate for 

the next time instant, or mathematically, 

 (  |    )  ∫  (  |    )  (      |      )             (6) 

Unfortunately, this expression does not have an analytical 

solution in most cases. Instead, Sequential Monte Carlo 

(SMC) algorithms, or PF, are used to numerically solve this 

equation in real-time through the use of efficient sampling 

strategies. PF approximates the state pdf using samples or 

“particles” having associated discrete probability masses 

(“weights”), as expressed in Equation (7),  

 (  |    )    ̃(    
 )   (         

 )       ,         (7) 

where     
  is the state trajectory and      are the 

measurements up to time t. The simplest implementation of 

this algorithm, the Sequential Importance Re-sampling (SIR) 

particle filter, updates the weights using the likelihood of    
as  

         (  |  )                             (8) 

Long-term predictions are used to estimate the probability 

of failure in a system given a hazard zone that is defined via 

a probability density function with lower and upper bounds 

for the domain of the random variable, denoted as     and 

   , respectively. The probability of failure at any future 

time instant is estimated by combining both the weights 

    
( )

 of predicted trajectories and specifications for the 

hazard zone through the application of the Law of Total 

Probabilities. The resulting RUL PDF, where      refers to 

RUL, provides the basis for the generation of confidence 

intervals and expectations for prognosis, 

 ̂     ∑  (       |   ̂    
( )         )

 
             (9) 

In this case, we use a predetermined failure threshold 

instead of a hazard zone for the illustration of methodology. 

4. RESULTS 

In the SMPS simulated degradation process, we fixed a load 

profile of temperature      , input voltage       , 

load resistance       , ran the integrated simulation 

model and monitored 10 output parameters: output current, 

voltage ripple, capacitance current ripple, capacitance 

voltage, transformer consumption, MOSFET consumption, 

MOSFET voltage, diode reverse voltage, and 47K resistance 

consumption. 
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4.1 Case Study: Aluminum Electrolyte Capacitor  

4.1.1 Model-based Diagnostics 

In the above-mentioned 10 output parameters, the amplitude 

of the output voltage ripple (VR) was substantially 

influenced by the degradation of aluminum electrolyte 

capacity. Therefore, VR amplitude was selected as a raw 

feature for further processing. In one cycle of SMPS 

degradation simulation, we collected 13 baseline and fault 

VR datasets with the time step of “thousand-hours”, i.e., at 

                   . At every time step, Gaussian 

noise     (      ) was added to every VR measurement 

to represent uncertainty introduced by measurement noise, 

and 60 measurements of VRs were collected with an 

example as shown in Figure 9. Based on the measurement, 

the histograms were computed and the histogram of every 

faulty dataset was compared to the one of the baseline 

dataset with an example as shown in Figure 10, and the PDF 

was computed from the corresponding histogram. Then 

POD was calculated and recorded as shown in Table 2. Note 

that, in this case, we fixed the false alarm rate (Type I error) 

at 5% and monitored POD change as fault evolves. Recall 

that POD = 1 – Type II error. Figure 10 and Table 2 both 

show that the POD values increased as the SMPS degraded 

over time. Here, we chose POD=95% as the SMPS fault 

detection threshold to trigger our prognosis module. As 

indicated in Table 2, based on the given fault detection 

threshold, the first 8 datasets (i.e., t=0h, 1000h, …, 7000h) 

was regarded as the training data sets, while the last 5 (i.e., 

t=8000h, …, 12,000h) as the testing datasets.  

 

Table 2. POD between the faulty and the baseline datasets. 

t 

(kh) 

1 … 4 5 6 7 8 9 … 12 

POD 0 … 0 0.018 0.334 0.769 0.994 1 … 1 

 

Voltage ripple Voltage ripple Voltage ripple ... Voltage rippleGet 60 measurement value

Figure 9. VR baseline (t=0h) measurements in PSpice. 

 

 

 

Figure 10. Comparison of faulty data at 6000h and baseline 

histograms. 

4.1.2 Model-based Prognostics with Particle Filter 

Once the fault detection threshold (i.e.,        ) was 

reached, the SMPS RUL prognosis routine was triggered. 

An empirical degradation model is expressed by an 

exponential growth model as  

       (  )                               (10) 

where x is VR, t is time, and a, b, c are unknown model 

parameters. The above SMPS degradation model can be 

rewritten in an iterative form of  

       (   ) (       )              (11) 

Both the model parameters and the RULs were estimated 

using PF. Here empirically we set the SMPS performance-

based failure threshold as VR=0.3. The prediction diagram 

results in the form of probability are shown in Figure 11 (a). 

Figure 11 (b) and (c) show the RUL predictions at arbitrary 

cycles of 6,000h and 1,1000h respectively, in the form of 

distribution along with the 90% confidence interval (CI). As 

indicated in Figure 11 (b) and (c), the probabilistic RUL 

prediction was updated and the prediction accuracy 

improved over time.  
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 (b) 

 

(c) 

Figure 11. SMPS prognostics results in the case of 

aluminum electrolyte capacitor degradation: (a) prognosis 

module diagram results, (b) RUL pdf prediction at t=6,000 h, 

and (c) RUL pdf prediction at t=11,000 h. 

 

4.2 Case Study: Feedback Resistor Degradation 

The above-mentioned methodology is also adapted to the 

case of feedback resistor degradation diagnostics and failure 

prognostics. RUL results are illustrated in Figure 12. As 

indicated in Figure 12, the output current decreased as the 

feedback resistor degraded over time. 

 

 

(a)  

 

(b)  

 

(c)  

Figure 12. SMPS prognostics results in the case of feedback 

resistor degradation. (a) prognosis module diagram results, 

(b) RUL pdf prediction at t=10,000 h, and (c) RUL pdf 

prediction at t=11,000 h. 
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5. CONCLUSIONS 

This paper introduces a novel framework of a model-based 

SMPS fault diagnostics and failure prognostics 

methodology, which leverages the knowledge of the 

component physics and degradation physics to assess the 

health status, diagnose faulty conditions and predict RULs. 

The methodology is based on electronic system simulation 

by employing a high-fidelity system simulation model and 

empirical critical component degradation models. General 

procedures and simulation results are presented in two case 

studies of critical component degradation. Although the 

discussion is limited in the scope of a specific simulated 

model from a commercially available SMPS product, the 

methodology can be extended to other SMPS systems with 

related adjustment of the simulation model and the 

component degradation models based on corresponding 

system test results and the knowledge of critical component 

ageing behaviors. Future work is needed to study other 

cases for single critical component degradation, to study the 

scenario when multiple faults are injected simultaneously 

(i.e., multiple component degradation), to study the impact 

of varied loads on the RUL predictions, and to explore the 

damage accumulation degradation modeling approach in 

addition to the feature-based modeling approach as adopted 

in this paper.  
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ABSTRACT 

Harnessing the power of currents from the sea bed, tidal 

power has great potential to provide a means of renewable 

energy generation more predictable than similar 

technologies such as wind power.  However, the nature of 

the operating environment provides challenges, with 

maintenance requiring a lift operation to gain access to the 

turbine above water.  Failures of system components can 

therefore result in prolonged periods of downtime while 

repairs are completed on the surface, removing the system’s 

ability to produce electricity and damaging revenues.  The 

utilization of effective condition monitoring systems can 

therefore prove particularly beneficial to this industry.   

This paper explores the use of the CRISP-DM data mining 

process model for identifying key trends within turbine 

sensor data, to define the expected response of a tidal 

turbine.  Condition data from an operational 1 MW turbine, 

installed off the coast of Orkney, Scotland, was used for this 

study.  The effectiveness of modeling techniques, including 

curve fitting, Gaussian mixture modeling, and density 

estimation are explored, using tidal turbine data in the 

absence of faults.  The paper shows how these models can 

be used for anomaly detection of live turbine data, with 

anomalies indicating the possible onset of a fault within the 

system. 

1. INTRODUCTION 

Tidal power has great potential worldwide to be a major 

contributing source of renewable energy.  It is a European 

target for 20% of energy generation to come from renewable 

resources by 2020, as stated in the European Union 

Committee  27
th

 Report of Session 2007-08.  Within the UK 

alone, tidal stream generation could potentially supply over 

4 TWh per year within the next 5 to 10 years, with the 

potential to reach up to 94 TWh per year with an installed 

capacity of 36 GW (King & Tryfonas, 2009), around 26% 

of the total electricity generated within the UK in 2013 (UK 

Government electricity statistics).  It is therefore clear that 

tidal energy has the potential to provide a major contribution 

to renewable sources of energy. 

However, tidal power technology is in its infancy, and no 

clear tidal turbine design has emerged as an industry 

standard for extracting energy from tidal flow.  The state of 

the art in turbine design includes many horizontal and 

vertical axis solutions, some with major structural and 

operational variations (Aly & El-Hawary, 2011).  However, 

a common focus is the horizontal axis design, holding many 

similarities with a standard wind turbine. 

Maintenance on tidal turbines requires a lift operation to 

access the turbine above sea-level.  This can be a costly and 

lengthy procedure, resulting in prolonged periods of 

downtime.  An effective condition monitoring system would 

therefore be of great benefit to this industry, allowing the 

health state of system components to be known, and 

allowing maintenance to be scheduled efficiently.  

Condition monitoring has already been well established for 

the wind industry.  However, despite similarities between 

tidal and wind power turbine design, the operating 

environment is vastly different.  Water is over 800 times 

denser than air and, despite slower flow rates (around 3 m/s 

compared to around 15 m/s for offshore wind), tidal flow 

has a much higher kinetic energy compared to wind flow 

(Winter, 2011).  This causes tidal turbines to operate with 

higher torque and thrust loading, inducing increased stress 

on the machine, particularly on the low speed stages of the 

drive train.  Additionally, the marine environment provides 

other complications, such as corrosion and interaction with 

plant and animal life.  Furthermore, there is limited 

historical data of failures from tidal turbines required to 

Grant Galloway et al. This is an open-access article distributed under the 
terms of the Creative Commons Attribution 3.0 United States License, 

which permits unrestricted use, distribution, and reproduction in any 

medium, provided the original author and source are credited. 
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implement condition monitoring techniques used as 

standard in the wind industry. 

This paper focuses on using anomaly detection techniques 

for identifying developing faults within tidal turbines with 

limited historical data.   Using the CRISP-DM data mining 

methodology (Wirth & Hipp, 2000), key relationships 

between sensor data parameters from an operational tidal 

turbine were identified, describing the normal response of 

the turbine over variable operating conditions.  These trends 

were then defined using several modeling techniques, 

allowing for deviations from expected data patterns to be 

detected from live turbine data, alerting the operator to the 

possible onset of a fault.  The implementation of an 

intelligent condition monitoring system is also discussed, to 

integrate a number of seperate models together through a 

decision system to assess the state of the turbine and its 

components. 

1.1. HS1000 Turbine 

The data examined within this paper was sourced from the 

Andritz Hydro Hammerfest HS1000 turbine (Figure 1).  The 

HS1000 is an operational tidal turbine with a rated power of 

1 MW, deployed off the coast of Orkney, Scotland, as part 

of the European Marine Energy Centre (EMEC). 

 

Figure 1. The Andritz Hydro Hammerfest HS1000 tidal 

turbine 

The turbine has an open-blade horizontal axis design, fixed 

to the seabed.  Similar to a wind turbine, its drive train 

consists of a gearbox connected to an induction generator, 

translating tidal speeds of around 3.5 m/s to rotations 

exceeding 1000 RPM within the generator.  The turbine has 

no yaw, with blades rotating in opposite directions in 

response to upstream and downstream tides.  Pitch control 

of the blades is used to control the output power produced. 

This paper will focus on data from the following sources: 

 Tri-axial generator vibration velocity 

 Gearbox vibration velocity 

 Bearing vibration velocity 

 Bearing displacement 

 Bearing temperature 

 Generator rotor speed 

 Output power 

1.2. Data Mining 

Data mining is the analysis of large data sets for knowledge 

discovery.  It involves the use of processing techniques, 

involving statistical, machine learning and visualization 

methods, to extract patterns and relationships hidden within 

data parameters (Olson & Delen, 2008).  Data mining has 

been commonly used by banking and marketing firms, and 

also within the medical field applied to vast amounts of 

patient records for improved diagnosis and prediction 

(Maimon & Rokach, 2005). 

Within this study, data mining was used to discover trends 

and relationships between parameters within initial datasets 

from the HS1000 tidal turbine.  A modeling stage then 

defines the expected response of the turbine over its typical 

range of operating conditions.  By comparing live turbine 

data to these models, anomaly detection is used to indicate a 

change in the response of the system, indicating the possible 

onset of a fault. 

1.2.1. CRISP-DM  

The CRISP-DM (Cross-Industry Standard Process for Data 

Mining) process model was utilized for this study.  This 

model manages the data mining process as six key stages: 

business understanding, data understanding, data 

preparation, modeling, evaluation, and deployment (Wirth 

& Hipp, 2000).  These stages are shown in figure 2. 

 

Figure 2. The CRISP-DM process model for data mining 

(Wirth & Hipp, 2000) 

Each stage of the CRISP-DM process model was employed 

as follows: 

 Business Understanding – Understand the operating 

environment of the turbine and how condition 

monitoring may be used to assess turbine health. 

 Data Understanding – Use statistical analysis to identify 

key parameters, relationships, and trends to learn the 
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response of sensor data over standard operating 

conditions. 

 Data Preparation – Organize sensor data before 

modeling, trending data and grouping by tidal cycle and 

operating state of the turbine. 

 Modeling – Model key trends and relationships using 

curve fitting, Gaussian mixture modeling and kernel 

density estimation to define the response of data 

parameters over varying operating conditions. 

 Evaluation – Evaluate the performance of each model, 

using past operational data to train and test models for 

anomaly detection. 

 Deployment – Compare live data to models and identify 

deviations from expected behavior, integrating multiple 

models together through an intelligent condition 

monitoring system. 

2. BUSINESS UNDERSTANDING  

The business understanding phase of the CRISP-DM 

process model involved an appreciation of the operating 

environment and its effect on the expected response of the 

turbine.  The role of condition monitoring within the field 

was also considered.  

2.1. Condition Monitoring 

The use of sensor data from turbine components (such as the 

gearbox, generator, bearings, blades, etc) can allow the 

onset of faults to be detected before they cause failure.  This 

enables an efficient maintenance strategy to be employed, as 

maintenance can be scheduled to reflect to the known health 

of system components. 

Examples of previous research on condition monitoring for 

tidal turbines includes: 

 A review of condition monitoring and prognostic 

techniques applicable to tidal turbines (Wald, 

Khoshgoftaar, Beaujean & Sloan, 2010). 

 Use of Failure Modes and Effects Analysis (FMEA) to 

detect faults and failures within tidal turbines (Prickett, 

Grosvenor, Byrne, Jones, Morris, O’Doherty & 

O’Doherty, 2011). 

 Design of a dynamometer for simulating tidal turbine 

bearing faults, and application of wavelet based 

monitoring (Duhaney, Khoshgaftaar, Sloan, Alhalibi & 

Beaujean, 2011). 

 Fatigue analysis of tidal turbine blades (Mahfuz & 

Akram, 2011). 

However, since tidal turbines have limited deployment, 

there are few examples of condition monitoring systems 

implemented in practice reported in the literature. 

2.2. Turbine Operation 

The EMEC test site in Orkney experiences a semi-diurnal 

tide, with corresponding high and low tides each day.  

Upstream and downstream tidal flow is experienced by the 

HS1000 turbine in cycles between each high and low tide. 

Figures 3 and 4 demonstrate the response of the turbine to a 

single tidal flow cycle, detailing generator rotor speed and 

output power.  The rotation of the turbine is controlled 

through a combination of blade pitching and torque control 

through a frequency convertor.  Generator rotor speed is 

held at approximately 800 RPM at low tidal flow rates, 

increasing to a value of over 1000 RPM as the flow rate 

increases.  Output power varies more gradually with tidal 

flow rate, reaching a maximum of around 1 MW. 

It is expected that these parameters will be most indicative 

of turbine operation, driving relationships with other data 

parameters as turbine components respond to changes in 

loading due to variation of tidal flow. 

 

Figure 3. Trend of output power against time for a single 

tidal cycle. 

 

Figure 4. Trend of generator rotor speed against time for a 

single tidal cycle. 

3. DATA EXPLORATION 

Within this study, the data understanding stage of the 

CRISP-DM data mining process involved a statistic analysis 

of data parameters.  Principal component analysis and 

correlation were used to reveal key relationships between 

parameters, indicative of normal operation of the HS1000 

turbine over a range of operating conditions.  This analysis 

also revealed differences in the response of the turbine to 

opposing tidal flow directions. 
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3.1. Principal Component Analysis 

Principal component analysis (PCA) is a technique used to 

extract and remove linear correlations from a set of 

multivariate data (Pearson, 1901).  This technique generates 

a set of principal components, which are the uncorrelated 

parameters underlying the observations within the data 

(Abdi & Williams, 2010).  

Components are a list of coefficients, representing a weight 

for each input parameter, and an eigenvalue. Parameters 

with high weightings are the highest contributors to 

relationships within the data, and parameters with low 

weighting contribute the least.  A component’s eigenvalue is 

representative of the significance of a component to the 

data. 

Results for this analysis returned components with high 

coefficient weightings for output power and generator 

rotation speed values, with high corresponding eigenvalues 

(in the range of 1x10
3
 to 1x10

5
). This confirmed these 

parameters were highly relevant within the data, driving 

relationships between other data parameters. 

3.2. Correlation 

Correlation describes the statistical relationship between 

two variables or data sets.  This can be expressed via 

Pearson’s correlation coefficient, which is a value 

describing the linear dependence of two parameters 

(Rodgers & Nicewander, 1988). This value ranges between 

+1 (an ideal increasing linear relationship) and -1 (an ideal 

decreasing linear relationship).  Parameters with a 

correlation coefficient of zero have no association to each 

other. 

Pearson’s correlation coefficient was calculated for every 

pair of data parameters.  High correlation was consistently 

seen in output power and generator rotor speed parameters, 

confirming these parameters are key to the response of other 

sensor data parameters (in particular gearbox and generator 

vibrations).  Therefore, for the modeling stage of data 

mining, all other data parameters (including vibration, 

displacement and temperature readings from the gearbox, 

generator and bearings) were trended against output power 

and generator rotor speed.  These relationships describe the 

response of turbine components over a range of varying 

operating conditions. 

Comparison of these values also highlighted a change in 

system response between upstream and downstream tidal 

flows.  This was expected as changes in tidal flow direction 

alter the direction of loads on the turbine.  As a result, for 

the following stage of analysis, data was batched by tidal 

cycle and categorized by tidal flow direction. Separate 

models were then constructed to define the expected turbine 

response for both tidal flow directions. 

3.3. Visual Analysis 

Visual analysis confirmed meaningful relationships were 

generated by plotting data parameters against output power 

and generator rotor speed. 

Trends against output power showed a spread of data across 

the full range of output power. This is expected, since the 

turbine generates at all tidal flow rates, and the output power 

is proportional to tidal flow.  Figure 5 shows an example of 

gearbox vibration trended against output power for a single 

upstream tidal cycle. 

Trends against generator rotor speed exhibited a less 

consistent spread of data, with points grouping in specific 

regions of the plot.  This is because the generator rotor 

speed dictates the frequency of output power, which must be 

within defined limits to export power to the grid. Therefore, 

above the cut-in tidal flow rate, generator rotor speed 

increases immediately to approximately 800 RPM. Figure 6 

shows an example of this trend, with generator vibration X-

axis trended against generator rotor speed. 

 

Figure 5. Trend of gearbox vibration against output power. 

 

Figure 6. Trend of generator vibration X-axis against 

generator rotor speed. 

4. DATA PREPARATION 

The data preparation stage of the CRISP-DM model 

involved the organization of data before modeling, once key 

relationships had been identified. 

Data was batched by tidal cycle, with upstream and 

downstream tidal flow data separated.  Data parameters 

were then trended against output power and generator rotor 

speed. 
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Also at this stage, four key regions of data were defined, to 

further segment data before models were constructed.  

These regions were representative of the operating state of 

the turbine, and defined using change point analysis (Killick 

& Eckley, 2013) applied to the speed-power curve of the 

turbine. 

4.1. Change Point Analysis 

Change point analysis is a technique used to find a series of 

points within data parameters where changes in the data are 

most significant.  Change points are determined by 

calculating a vector of the sum of differences between each 

data point and the mean of all data points.  The maximum or 

minimum point on this vector will indicate the location of a 

change point (Killick & Eckley, 2013).  This process can be 

repeated to find additional change points within each newly 

identified region. 

Four regions of operation were visible from the speed-

power curve (figure 7): 

1. Start up and shut down region 

2. Constant rotor speed region 

3. Increasing rotor speed region 

4. Turbine rotor speed and power limitation region 

Figure 7 shows the result of change point analysis in 

defining these operating state regions.  Separating these 

regions allowed the effects of the turbine’s control scheme 

to be seen across other data parameters and was used to help 

partition data for use with anomaly detection techniques. 

Figure 8 demonstrates how each operating region shapes the 

trend of gearbox vibration against output power.  Changes 

in operating state can be clearly seen as maximum and 

minimum turning points in vibration level. 

Figure 9 shows how groups of data are formed by the 

operating state of the turbine.  Separating data points by 

operating regions allow these groups of data to be isolated 

and modeled separately. 

 

Figure 7. Turbine operating regions identified by change 

point analysis applied to speed-power curve. 

 

Figure 8. Turbine operating regions over gearbox vibration 

trended against output power. 

 

Figure 9. Generator vibration X-axis trended against 

generator rotor speed, separated by turbine operating region. 

5. MODELING 

With parameters trended against output power and generator 

rotor speed, a number of techniques were employed to best 

define the response of the system. Two types of 

relationships were observed between parameters: those 

where data was evenly spread throughout the trend, 

exhibiting patterns that could be modeled by an individual 

function; and those where data points tended to cluster 

within specific areas of a plot. 

Curve fitting was used to define even spreads of data, fitting 

a function to the envelope of the trend or the entire trend 

itself. Within the data, this was applicable for vibration data 

trended against output power. 

Gaussian mixture modeling and kernel density estimation 

techniques were used for defining relationships where data 

points clustered within specific areas.  Clusters of data were 

separated by operating region (as in section 4.1), with areas 

defined probabilistically. This applied to parameters trended 

against generator rotor speed. 

The output of this stage is a set of models that define the 

expected response of each turbine component.  These 

models can then be used for anomaly detection, where live 

turbine data is compared to these models, and deviations 

represent the potential development of a fault within the 

system. 

Region 

1 

Region 

2 

Region 

3 

Region 

4 

Region 

1 

Region 

2 

Region 

3 

Region 

4 
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5.1. Curve Fitting 

Curve fitting was applied to data parameters trended against 

output power, where relationships displayed an even spread 

of data across the trend. Initially, this technique was applied 

to the envelope of these trends, as maximum levels of 

vibration varied with output power.  Anomalies would be 

detected in this case by data points exceeding maximum 

expected levels of vibration, lying about a curve fitted to the 

envelope. 

Curve fitting was also applied to describe the trend between 

gearbox vibration and output power as a whole.  This would 

enable additional metrics, such as variance, to be measured, 

with anomalies detected where data points exceeded a 

threshold of distance from the fitted curve. 

Within this study, curve fitting was implemented in 

MATLAB using the ‘Trust-Region-Reflective Least 

Squares’ algorithm.  This is an iterative method that tunes 

parameters              of the chosen function        to 

minimize the squared error between each data point         

and the function itself, equation (1) (Hung, 2012). 

    
 

             
 

 

   

 (1) 

5.1.1. Envelope Fitting 

Within the data from the HS1000 turbine, parameters 

trended against output power displayed varying levels of 

maximum vibration across their envelopes.  Curves fitted to 

these envelopes will therefore describe a threshold of 

maximum expected vibration levels over the full range of 

turbine operation for each parameter, with anomalies 

detected above this threshold.  

An envelope was determined by sampling maximum values 

of output power across a trend.  A curve was then fitted to 

this envelope, describing the expected boundary of a data 

parameter.  Each stage of this process is outlined in figure 

10. 

Functions were chosen to model each parameter trended 

against output power that minimized the root mean squared 

error (RMSE) between the function and the envelope.  Table 

1 summarizes the RMSE values for Gaussian and 

Polynomial functions of increasing orders fitted to the 

envelope of generator vibration Z-axis trended against 

output power.  Gaussian functions of varying order were 

found to best fit the envelopes of all parameters trended 

against output power, with the order number representative 

of the number of peaks across the envelope. 

 

 
(a) 

 
(b) 

 
(c) 

Figure 10. Curve fitting applied to the envelope of a 

generator vibration Z-axis trended against output power.  (a) 

Data parameter trended against output power. (b) Sampled 

envelope across trend. (c) 4
th

 order Gaussian function fitted 

to envelope. 

Table 1. Summary of RMSE values for curve fitting 

applied to envelope of generator vibration Z-axis 

trended against output power. 

Function RMSE 

6th order Polynomial 0.732 

7th order Polynomial 0.727 

8th order Polynomial 0.719 

9th order Polynomial 0.722 

3rd order Gaussian 0.761 

4th order Gaussian 0.709 

5th order Gaussian 0.782 
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5.1.2. Gearbox Vibration Curve Fitting 

Gearbox vibration parameters trended against output power 

displayed all data points varying across the relationship 

(figure 5).  Fitting a curve to describe the relationship as a 

whole would allow for additional measures to be 

determined, such as variance, to reveal additional 

information about the response of the system.  Anomalies 

would be detected in this case by data points exceeding a 

certain distance from the fitted function. 

A number of different functions were fitted to this 

relationship, observed by three seperate vibration sensors.  

Table 2 summarizes the results, including Gaussian and 

polynomial functions, as well as a piecewise linear fit within 

each defined operational region (i.e. four sequential linear 

fits).  The accuracy of each function was compared using 

the RMSE value between the function and all data points 

used to generate the model.  

The Gaussian function was found to best describe this 

relationship returning the lowest RMSE.  This is shown in 

figure 11. 

 

Figure 11. 3rd order Gaussian function fitted to gearbox vibration 

sensor 1 trended against output power. 

5.2. Gaussian Mixture Modeling 

Since the generator rotor speed does not behave as a 

continuous variable (unlike output power), curve fitting 

approaches are less appropriate.  Two techniques were 

employed to define the operational groups of data against 

generator rotor speed: Gaussian mixture modeling and 

kernel density estimation.  Each technique defined regions 

of data by probability.  Deviations from expected response 

of the turbine can be identified as live turbine data occurring 

with low values of probability when compared to these 

models. 

Gaussian mixture modeling is a method used to fit a 

combination of n-dimensional Gaussian distributions, each 

with a given weighting, to an n-dimensional data set 

(Dempster, Laird & Rubin, 1977). This was performed in 

MATLAB through the Expectation Maximisation algorithm 

(Bilmes, 1998).  This method involves making an initial 

‘guess’ (randomly generated within a given range) of 

Gaussian parameters, and calculating the probability of the 

data points within this model.  The model parameters are 

then updated iteratively to maximize the likelihood of each 

data point.  This process is stopped once a threshold of 

convergence is reached. 

Figure 12 details the result of Gaussian mixture modeling 

within a contour plot for the Z-axis component from the 

generator vibration sensor trended against generator rotor 

speed, separated into the four operating regions.  Within this 

plot, outwardly lines represent areas of decreasing 

probability. These plots revealed this method works well for 

regions 2, 3 and 4, where contour lines fit tightly around 

clear groups of data.  However, this technique is not as 

effective for region 1, where data points are spread more 

sparsely throughout the plot. 

 
Region 1   Region 2 

 
Region 3   Region 4 

Figure 12. Contour plot of Gaussian mixture modeling 

applied to the trend between generator vibration X-axis and 

generator rotor speed. 

5.3. Kernel Density Estimation 

Gaussian kernel density estimation is a technique similar to 

Gaussian mixture modeling, used to the same effect within 

Table 2. Summary of RMSE values for curve fitting 

applied to the trend of gearbox vibration against output 

power 

Function 

RMSE 

Gearbox 

vibration 

sensor 1 

Gearbox 

vibration 

sensor 2 

Gearbox 

vibration 

sensor 1 

Linear fit between 

operating regions 
0.204 0.209 0.243 

6th order Polynomial 0.221 0.218 0.238 

3rd order Gaussian 0.203 0.205 0.237 
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this study to define regions of probability between 

parameters.  However, this technique differs as it aims to 

approximate the true probability density function (PDF) of 

the data. 

The true distribution is estimated by computing the sum of 

small individual PDFs at each observed data point (Zucchi, 

2003).  In this case, the Gaussian distribution was used as 

the individual (kernel) PDF.  This method will generate a 

more accurate model, however it is a lot more 

computationally intensive.  This was implemented in 

MATLAB by adapting a method by Cao (2013). 

Figure 13 shows a contour plot describing Gaussian kernel 

density estimation applied to the Z-axis component from the 

generator vibration sensor trended against generator rotor 

speed, separated into the four operating regions.  In 

comparison to Gaussian mixture modeling (figure 12), this 

technique provides a much closer fit to the data, particularly 

within region 1.   

Although this model was more accurate, it produces a less 

general model, treating individual data points lying outside 

the main group of data as separate regions of data. This 

model can be improved by training with as many datasets as 

possible. It is expected that additional data points will fill in 

some of the spaces between separately defined regions.  

Alternatively, smaller groups of data could be removed in 

pre-processing, and the resultant model could be smoothed 

over a larger area. 

 
Region 1   Region 2 

 
Region 3   Region 4 

Figure 13. Contour plot of Gaussian kernel density 

estimation applied to the trend between generator vibration 

X-axis and generator rotor speed. 

6. EVALUATION 

Using the techniques described above, models were 

constructed using training data from October 2013, and 

tested using data from subsequent December, January and 

February.  Appropriate metrics were then extracted to detect 

anomalies and measure the severity of deviations from 

training data.  Although no fault data was available, results 

showed the effectiveness of each technique in defining 

system behavior and observing changes over time. 

6.1. Envelope Fitting 

Envelope fitted models, describing parameters trended 

against output power (as in section 5.1.1.) were tested, 

where anomalies were detected as data points exceeding the 

Gaussian function used to describe the envelope of training 

data. 

Some anomalies were detected as crossing the boundary, 

shown in figure 14.  Using this technique a number of 

metrics can be extracted, including number of anomalies, 

percentage of anomalies and average distance from the 

boundary, to indicate the severity of a deviation from 

normal behavior.  

 

Figure 14. Envelope fitting anomaly detection applied to 

December 2013 test dataset. 

Table 3 summarizes the results of testing this technique, 

with each metric measured for each test dataset.  No 

significant deviations were detected in the test datasets, with 

the total number of anomalies being minimal and average 

distances not being significantly large.  This correctly 

suggests normal behavior. 

 

6.2. Curve Fitting 

The curve fitting modeling technique was tested on the 

relationship between gearbox vibration and output power, 

using a 3
rd

 order Gaussian curve (as in section 5.1.2.).   

Table 3. Envelope fitting test results 

Testing dataset 
Number of 

anomalies 

Percentage 

of 

anomalies 

Average 

distance 

(mm/s) 

December 2013 156 0.1718 % 0.226 

January 2014 36 0.0361 % 0.388 

February 2014 69 0.0418 % 0.355 
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Figure 15 shows the December 2013 testing data compared 

against a trained model constructed from October 2013 data.  

In contrast to envelope model fitting, no set boundary is 

used to indicate anomalous data points.  Instead, metrics 

such as maximum error and RMSE can be used to measure 

the severity of any deviation from normal system response. 

 

Figure 15. Curve fitting anomaly detection applied to December 

2013 test data. 

Table 4 summarizes testing results using these metrics.  An 

increase in RMSE is seen in both December and February 

where more data points are lying above the Gaussian 

function, indicating an overall increase in vibration across 

the full operating range.  This was attributed to seasonal 

changes in tidal flow affecting the test data, and not 

component wear or damage. 

 

6.3. Gaussian Mixture Modeling 

Gaussian mixture modeling was tested on clusters of 

generator vibration data trended against generator rotor 

speed, separated by operational regions, as described in 

sections 4.1. and 5.2.  Results detailed in this section were 

recorded from the generator X-axis vibration parameter. 

Anomalies were considered to be data points lying outside 

the 95% confidence interval.  The percentage of anomalies 

lying outside the 95% confidence interval (CI) was used as a 

metric.  A value exceeding 5% was considered to indicate 

that the model was not a good fit to the test data and a 

change in system response may have occurred.   

Table 5 and figure 16 show the results of testing.  A number 

of clusters were identified to have a significant number of 

anomalies, with percentages exceeding 5%.  These results 

indicate a deviation in system response over time, however, 

the variations were due to seasonal changes in tidal flow. 

The significant number of anomalies is therefore not 

representative of the relatively small variation in data, and it 

was concluded that Gaussian mixture modeling provided a 

poor representation of training data distributions. 

 
Region 1   Region 2 

 
Region 3   Region 4 

Figure 16. Gaussian mixture modeling anomaly detection applied 

to December 2013 test data. 

 

Table 5. Gaussian mixture modeling test results 

Testing dataset Region 

No. of 

Anomalies 

outside 95% CI 

Percentage 

of 

anomalies 

December 2013 

1 59 1.006 

2 1532 4.454 

3 1425 9.799 

4 7180 19.928 

January 2014 

1 88 0.821 

2 347 1.998 

3 194 1.552 

4 10350 19.938 

February 2014 

1 2469 5.776 

2 6031 5.519 

3 1986 15.055 

4 19 52.777 

 

 

Table 4. Curve fitting test results 

Training dataset 
Max Error 

(mm/s) 

RMSE 

(mm/s) 

October 2013 1.45 0.203 

Testing dataset 
Max Error 

(mm/s) 

RMSE 

(mm/s) 

December 2013 1.26 0.251 

January 2014 0.93 0.202 

February 2014 1.04 0.235 
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Region 1   Region 2 

 
Region 3   Region 4 

Figure 17. Kernel density estimation anomaly detection applied to 

December 2013 test data. 

 

6.4. Kernel Density Estimation 

Kernel density estimation was tested on clusters of data 

separated by operating regions as in 6.3.  As with Gaussian 

mixture modeling, anomalies were detected as data points 

lying outside the 95% confidence interval (CI).  Here, the 

confidence interval was calculated using bootstrap 

sampling, as by Chen, Goulding, Sandoz and Wynne 

(1998). 

Table 6 and figure 17 show the results of testing.  In contrast 

to results achieved through Gaussian mixture modeling, the 

number of detected anomalies is significantly less, and 

under 5% in the majority of cases.  This suggests kernel 

density estimation provides a more accurate representation 

of the distribution of data points within each cluster and is 

therefore a more suitable technique for this application. 

6.5. Summary of Results 

Results were obtained to test the effectiveness of a number 

of modeling techniques, used to define the expected 

response of a tidal turbine under normal operating 

conditions.  

Envelope and curve fitting techniques were observed to 

provide a good representation of expected turbine response, 

capable of detecting small seasonal deviations in data over 

time. Gaussian mixture modeling was seen to be less 

effective, detecting a large number of anomalies where little 

deviation occurred.  Kernel density estimation was favored 

over this technique. 

Each anomaly detection technique provides a seperate group 

of metrics to describe anomalous behavior, indicating the 

severity of deviations.  Future work will involve the analysis 

of further metrics to support testing on additional data as it 

becomes available.  

No significant changes in system response were observed 

within test data, with only small variations seen due to 

seasonal changes in tidal flow.  It is therefore recommended 

that models are examined at regular monthly intervals with 

deviations matched against seasonal trends.  Models can 

then be updated accordingly.  

7. DEPLOYMENT  

Since there is no single model which covers all parameter 

relationships, the deployment stage involves using each 

model of expected turbine response in parallel to perform 

anomaly detection of live turbine data.  Each individual 

model can be integrated as part of an intelligent system, 

with seperate models implemented to process data from the 

turbine and output whether or not the data has deviated from 

expected trends.  A decision system linked to these modules 

can then use these results to make assessments of turbine 

health. 

Although anomaly detection is useful as an initial stage of 

condition monitoring, it is only suitable for indicating if a 

deviation from the defined normal behavior has occurred.  

Specific failure modes cannot be identified through this 

method.  Further stages of condition monitoring include 

diagnosis and prognostics. 

Table 6. Kernel density estimation test results 

Testing dataset Region 

No. of 

Anomalies 

outside 95% CI 

Percentage 

of 

anomalies 

December 2013 

1 0 0 

2 108 0.314 

3 499 3.441 

4 1085 3.011 

January 2014 

1 4 0.037 

2 6 0.025 

3 35 0.280 

4 1532 2.871 

February 2014 

1 0 0 

2 99 0.090 

3 777 5.894 

4 10 2.778 
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Diagnosis involves analysis of turbine component failure 

modes, and understanding how these will be represented 

within data parameters.  Prognostics involve assessing the 

current state of the system and estimating the remaining 

useful life of individual components, or the system as a 

whole.  Various algorithms can be used for these purposes, 

including those used within machine learning and artificial 

intelligence, such as neural networks or Bayesian classifiers.  

Future work will explore these algorithms in relation to the 

system, utilizing failure data as it becomes available. 

Diagnostics and prognostics can be implemented as 

additional modules in the intelligent system. 

8. CONCLUSION 

This paper outlined the use of data mining through the 

CRISP-DM process model to explore data from the HS1000 

tidal turbine and define its expected operational behavior.  

The use of principal component analysis and correlation 

revealed key relationships within the data, relating 

parameters to output power and generator rotor speed.   

Envelope and curve fitting techniques were found to provide 

accurate models of the response of system components to 

changes in output power.  Kernel density estimation was 

also found to be an effective technique when used to model 

clusters of generator vibration data formed when trended 

against rotor speed.  Gaussian mixture modeling was found 

to be less effective in this application. 

Models were trained using past operational turbine sensor 

data, with anomaly detection performed using data from 

subsequent months.  Small deviations in system response 

were detected, due to seasonal changes in tidal flow. 

Future work will involve the analysis of further metrics to 

describe the severity of anomalous responses, using 

additional data as it becomes available. Once techniques are 

established, an intelligent condition monitoring system will 

be designed to integrate seperate modules together and 

assess the state of the turbine and its components.  With 

further research, additional modules can be added to the 

intelligent system, to perform diagnosis and prognosis as 

failure data becomes available. 
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1,2,3 Brüel and Kjær Vibro, Nærum, 2850, Denmark
alexandros.skrimpas@bkvibro.com

christian.sweeney@bkvibro.com
kun.marhadi@bkvibro.com

4 University of the Faroe Islands, Tórshavn, 100, Faroe Islands
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ABSTRACT

Condition monitoring of wind turbines is a field of continu-
ous research and development as new turbine configurations
enter into the market and new failure modes appear. Systems
utilising well established techniques from the energy and in-
dustry sector, such as vibration analysis, are commercially
available and functioning successfully in fixed speed and vari-
able speed turbines. Power performance analysis is a method
specifically applicable to wind turbines for the detection of
power generation changes due to external factors, such as ic-
ing, internal factors, such as controller malfunction, or delib-
erate actions, such as power de-rating. In this paper, power
performance analysis is performed by sliding a time-power
window and calculating the two eigenvalues corresponding
to the two dimensional wind speed - power generation dis-
tribution. The power is classified into five bins in order to
achieve better resolution and thus identify the most proba-
ble root cause of the power deviation. An important aspect
of the proposed technique is its independence of the power
curve provided by the turbine manufacturer. It is shown that
by detecting any changes of the two eigenvalues trends in the
five power bins, power generation anomalies are consistently
identified.

Georgios Alexandros Skrimpas et al. This is an open-access article dis-
tributed under the terms of the Creative Commons Attribution 3.0 United
States License, which permits unrestricted use, distribution, and reproduc-
tion in any medium, provided the original author and source are credited.

1. INTRODUCTION

Nowadays, condition monitoring of wind turbines is directly
connected to the predictive maintenance strategy employed
by numerous operators in order to increase the availability,
minimize the maintenance expenses, reduce the downtime
and therefore the cost of energy (CoE) (Butler, Ringwood, &
O’Connor, 2013). As many countries in Europe and world-
wide have set high goals for the renewable energy penetration
on their systems, CoE constitutes an important parameter for
the competitiveness of wind power compared to the conven-
tional energy sources (Lu, Li, Wu, & Yang, 2009).

Techniques such as vibration, temperature and oil analysis
have been extensively applied for the mitigation of the un-
expected operation and maintenance expenses over the past
years focusing mainly on the drive train components. Contin-
uous data trending is an essential part of condition monitoring
in order to identify the commence of a faulty state and its pro-
gression in time. A typical example is the trending of speed
related narrowband filtes, such as running speed harmonics
and tooth mesh frequencies, and not speed related broadband
measurements in vibration analysis (Marhadi & Hilmisson,
2013).

As the power rating of modern turbines is continuously in-
creasing reaching 8MW in prototype installations, it is a re-
quirement that their condition monitoring is performed holis-
tically combining various techniques. Power performance
analysis can be used as an assisting tool along with the es-
tablished methods, such as vibration analysis. Its utilization
as power generation abnormality detector and general indica-

1
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tor of the overall health of the turbine is based on analysing
standard collected supervisory control and data acquisition
(SCADA) system information and extracting useful features
(Uluyol, Parthasarathy, Foslien, & Kim, 2011).

The theoretical input power obtained from wind can be ex-
pressed by the following equation:

P = 0.5ρACp(λ, β)u
3 (1)

where P is the power captured by the wind turbine rotor, ρ
is the air density, A is the swept rotor area, Cp is the power
coefficient, β is the blade-pitch angle, λ is the tip-speed ra-
tio and u is the wind speed (Lydia, Selvakumar, Kumar, &
Kumar, 2013). Furthermore, the air density ρ is equal to:

ρ =
p

RT
(2)

where p is the absolute air pressure and R is the specific gas
constant; these two parameters are functions of altitude and
humidity (Schlechtingen, Santos, & Achiche, 2013). Finally,
the air density ρ is also influenced by the ambient temperature
T .

The above equations suggest that the input wind power de-
pends on the weather conditions (seasonality) and the site of
erection. Other factors, such as terrain, park topology, and
wake effects contribute on the unique power production pro-
file of every turbine (Mchali, Barthelmie, Frandsen, Jensen,
& Rthor, 2006). Therefore, utilization of the nominal power
curve applicable to each turbine type enhances a number of
challenges which may complicate the identification of abnor-
malities.

In addition to the above, the wind turbine power production
can be affected by external factors, such as icing and dirt on
blades; internal factors, such as pitch system defect or control
system malfunction; or by deliberate actions, such as power
de-rating or application of specific operation modes (Park,
Lee, Oh, & Lee, 2014). The aforementioned conditions yield
power generation deviations which can be observed in differ-
ent power production states.

In this paper, the application of eigenvalue analysis for mon-
itoring of power performance deviations due to external fac-
tors and deliberate actions is presented and analysed. There
are two special points on the proposed performance assess-
ment method. Firstly, the power curve is divided in discrete
power classes deviating from the conventional approach of
having wind bins (Park et al., 2014). The power classifi-
cation is followed in order to obtain finer resolution so as
to discriminate between different performance deterioration
factors. Furthermore, eigenvalue analysis is an unsupervised
method meaning that the objective is to calculate a number of
features from the distribution under consideration rather than

explicitly defining relations between sets of variables, e.g.
condition distributions in the form p(output|input). Hence,
prior knowledge of the power curve suggested by the wind
turbine manufacturer or employment of power curve learning
are not required.

The paper structure is as follows. Section 2 provides a short
description to the mathematical background of eigenvectors
and eigenvalues. In section 3, the method description is pre-
sented based on the analysis of a turbine subjected to ice
build-up. The trending behaviour of the calculated eigenval-
ues is illustrated in section 4 for the cases of icing, power
de-rating and operation under noise reduction mode. Finally,
sections 5 and 6 present the discussion and conclusions re-
spectively.

2. EIGENVECTORS AND EIGENVALUES BACKGROUND

The statistical characteristics of a given data set can be rep-
resented by the covariance matrix, its eigenvalues, and the
corresponding eigenvectors. The following analysis is classi-
fied as an unsupervised learning method which can be used
to discover correlation among patterns as well as intrinsic di-
rections where the data patterns change most (with maximum
variance).

Rxx is defined as the covariance matrix of the power curve
data set, with dimension N = 2. The two orthonormal eigen-
vectors e1 and e2, corresponding to the eigenvalues λ1 and
λ2 of the data covariance matrix Rxx are called eigenvectors.

Rxx · ei = λi · ei , i = 1, 2 (3)

These eigenvectors show orthogonal directions in the pattern
space where data change is maximum (maximum variance)
(Cios, Pedrycz, Swiniarski, & Kurgan, 2007). The latter fea-
ture is used to explore any abnormal deviations of the power
curve which could potentially correspond to power produc-
tion anomalies.

Providing a two dimensional data set (wind speed and power
production), the number of eigenvectors is two. However, if
more data related to the wind turbine operation are taken into
consideration, such as the blade pitch angle, the rotor running
speed, the ambient temperature and the nacelle direction, then
principal component analysis could be employed to extract
only the most informative factors. This reduction of dimen-
sionality is usually applied on classification problems for data
compression (Bishop, 2006).

3. WIND TURBINE POWER PERFORMANCE MONITOR-
ING VIA EIGENVALUES VARIATIONS

Figure 1 depicts the power production and wind speed s func-
tion of time for Turbine#14 for a period of approximately two
years along with the derived power curve. The power produc-

2
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tion - wind speed data are sampled every one hour. The neg-
ative power values correspond to periods where the turbine is
set to local mode due to performed maintenance activities or
inspection of potential faulty components.

Figure 1. Turbine#14 - Power Production, Wind Speed and
Power Curve - Case: Ice build-up on blades.

In order to detect any power performance changes, a slid-
ing time window is used. The time window length selection
is a compromise between computational cost and capability
of extracting useful information. A reasonable choice is be-
tween one to three weeks, as a too long window would re-
sult in smoothing phenomena and a too short window would
generate noisy results. The sliding time window can be over-
lapping for finer time resolution. The overlapping selection
is also a function of the computational cost and desired time
step. The analysis in the following sections is based on time
window of two weeks and time step of one hour.

In order to proceed to the recognition of any patterns effi-
ciently, the sliding time window is further divided into five
power bins (classes). The classification into five bins follows
Brüel and Kjær Vibro’s vibration based condition monitor-
ing scheme (Andersson, Gutt, & Hastings, 2007). The five
classes are evenly distributed in general terms, but they might
alter for different turbine models. The power classification
is implemented so as to distinguish between various factors
influencing the power production.

Figure 2 presents the power curve points of Turbine#14 under
normal and abnormal power production for two weeks in late
September 2013 and mid January 2014, along with the nomi-
nal power curve provided by the turbine manufacturer (black
dashed line). The abnormal operation is due to ice build-up
on the turbine blades, which was verified by the park operator.
For better illustration, figure 3 presents the contour plot of the
two dimensional histogram corresponding to the data shown
in figure 2. The red lines correspond to high probability den-

sity function (pdf) values whereas the blue lines indicate low
pdf values.

The data distribution of the right subplot in low to mid power
production is significantly shifted to the right compared to
the left subplot as well as compared to the power curve pro-
vided by the manufacturer. However, it should be noted that
the ideal power curve should not be fully trusted as it is a
function of the air density and consequently of the ambient
temperature, which is not available for this turbine. Further-
more, it should be emphasized that the performance of a wind
turbine is also influenced by site related factors and thus any
discrepancies are not necessarily indicators of abnormal be-
haviour.

Figure 2. Turbine#14 - Power curve points under normal and
abnormal (icing) power production.

Figure 3. Turbine#14 - Contour plot of two dimensional his-
togram under normal and abnormal (icing) power production.

Following the power classification approach, figure 4 presents
the contour plot of the two dimensional histogram in low pro-
duction, i.e. from 0% to 30% of the nominal power output, for

3
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both normal and abnormal operation. It can be noticed that
two orthonormal vectors are included for the two cases under
investigation. The two vectors are further described by two
quantities, direction and magnitude. The direction is defined
by the eigenvector and the magnitude by the corresponding
eigenvalue. The eigenvalues represent the variances of the
data set in directions specified by the eigenvectors. Given that
the direction does not vary significantly, the eigenvalues pro-
vide essential information about the scatter of the distribution
and consequently the power performance of the wind turbine.
Hence, figure 4 suggests that the distribution presented in the
right subplot is drawn from a wind speed - power production
data set where the performance of the turbine is influenced
by an external factor. Bearing in mind that the right set cor-
responds to two weeks in January 2014 and that the turbine
is installed in cold climate location, it can be concluded that
icing is the most likely root cause of the detected power curve
deviation.

The naming convention wind and power variation is adopted
for the two eigenvalues. The virtual unit for wind variation is
in m/s and for power variation is in kW .

Figure 4. Turbine#14 - Zoom in low power production con-
tour plot of two dimensional histogram under normal and ab-
normal (icing) power production.

4. DETECTION OF WIND TURBINE POWER PERFOR-
MANCE ABNORMALITIES

Figures 5 and 6 show the trending behaviour of the square
root of the two eigenvalues for two power classes, 0%-30%
and 30%-50% of the rated power output. The sliding window
length is two weeks and the time step is set to one hour.

It can be observed that the wind variation shows increased
trends in both power bins in winter seasons. The increase
in the trends shows that the scatter of the two-week sets is
wider, indicating potential performance deterioration. Espe-
cially in winter 2012-2013, one can notice several hills and

Figure 5. Turbine#14 - Icing - Trending behaviour of eigen-
values in low power production.

Figure 6. Turbine#14 - Icing - Trending behaviour of eigen-
values in low to mid power production.

valleys. The cause was ice formation on the turbine blades
in December 2012, which was successfully removed by the
turbine operator. However, the turbine was subjected to icing
again a few days later resulting in emergency stop. The same
phenomenon was repeated in winter 2013-2014, where again
the wind variation behaviour presents clear increasing trends.

The above example focuses on icing detection, which can be
classified as a condition which needs to be addressed by the
turbine operator. However, many reasons, such as power de-
rating or enabling of certain operation modes, can change
power production from expected. If these actions are not
communicated properly between the involved parties (park
supervisor and technicians, performance centre, condition mon-
itoring supplier) or the information flow has a delay of several
days, unnecessary processes may initiate from either party.

Figure 7 presents the power production, wind speed time se-
ries and power curve of Turbine#09. The power output has

4
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been de-rated two times over the past two years due to grid is-
sues. The power curve subplot validates the above as a cluster
of points is centred at 1.5MW for wind speed above 12m/s.

Figure 7. Turbine#09 - Power Production, Wind Speed and
Power Curve - Case: Power output de-rating.

By inspecting the power production over time, one could iden-
tify that the generated power was restricted to approximately
50% in the beginning of 2013 until middle of the year. Al-
though the wind speed could be advised to verify the above,
the procedure is time consuming as data of at least a few days
shall be available for confirmation. Figures 8 and 9 present
the variation of the two eigenvalues in low (0% to 25%) and
mid (45% to 65%) power classes. The power de-rating is
clearly present in both eigenvalues in figure 9, whereas no
change is seen for the low power class (figure 8). These ob-
servations lead to the the conclusion that the performance is
influenced only in certain power bins and thus the most prob-
able root cause is a deliberate control action by the turbine
operator. The result from a vibration-based condition moni-
toring point of view is positive step changes on the gearbox
speed related measurements during these periods. The latter
can be considered as a sign of sudden changes in the drive
train dynamics denoting a faulty operation of one or more
components. Hence the eigenvalue trending can be used to
detect any changes in the performance of the turbine which
coincide with changes in the vibration data.

Two different control actions have caused power production
variations on Turbine#07. Firstly, the power was de-rated to
1/3 of Pn for a short period of time in mid 2012. This ac-
tion yielded changes to both eigenevalues as it was seen for
Turbine#09 in figure 9. Then, a noise reduction mode was
enabled for the current wind turbine (and for the vast major-
ity of the turbines in the park) many times in 2012 and 2013.
The noise reduction mode corresponds to the mitigation of
the aerodynamic noise emitted by the blades by reducing the

Figure 8. Turbine#09 - Power de-rating - Trending behaviour
of eigenvalues in low power production.

Figure 9. Turbine#09 - Power de-rating - Trending behaviour
of eigenvalues in mid power production.

main rotor running speed. In this case, only the wind variation
subplot presents increased trends matching the periods where
this operation mode was active. It can be remarked that the
wind and power variation is not affected by the operational
changes in low power production. Thus, as for Turbine#09,
the fact that the trends of the low power bin are stables indi-
cates that the most likely origin of the increase in mid power
production is again due to an intentional control action.

At this point, it is important to emphasize that the recogni-
tion of the power generation changes is solely based on the
comparison between the normal behaviour and any decrease
or increase of either the wind or power variation trends. This
approach excludes the dependency from the power curve pro-
vided by the manufacturer. In addition, any site related fac-
tors influencing the power output profile of the turbine under
investigation are implicitly included.

5
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Figure 10. Turbine#07 - Power Production, Wind Speed and
Power Curve - Case: Enabling of noise reduction mode.

Figure 11. Turbine#07 - Noise reduction mode - Trending
behaviour of eigenvalues in low power production.

5. DISCUSSION

The analysis presented in the previous sections attempted to
illustrate the condition monitoring capabilities of the power
performance technique. As condition monitoring systems rely
on alarms when an alert or danger limit is violated, the same
approach can be adopted in this case as well. The authors of
the present paper are currently working on setting customized
alert limits for each turbine individually after a short learning
period (approximately one month) and global danger limits
for each turbine type.

The results of the power performance monitoring method can
be also applicable to other functions related to the operation
of the turbine. A potential application is the enabling of de-
icing systems installed in turbines erected in cold climate lo-

Figure 12. Turbine#07 - Trending behavior of eigenvalues in
mid power production.

cations. By combining indications from the power perfor-
mance analysis technique and the ambient temperature, the
de-icing systems can be triggered in order to avoid long of-
fline periods by consuming a portion of the energy production
for heating the blades and the nacelle.

6. CONCLUSIONS

In this paper, changes in eigenvalues of wind speed - power
production data sets are employed as power performance mon-
itoring tools. Three cases have been analysed and presented:
icing, power de-rating and noise reduction mode. The analy-
sis has shown that detection of power production abnormal-
ities can be achieved without necessity of the power curve
provided by the turbine manufacturer, but based solely on the
trending behaviour of the two eigenvectors. Furthermore, the
division of the power output into discrete power classes has
provided essential information regarding the identification of
the most likely root cause of the power generation change. Fi-
nally, with high time resolution of the field data, the presented
approach adds value to existing diagnostics, based on vibra-
tion, resulting in a comprehensive evaluation of the turbine
state and consistent identification of issues during operation.
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ABSTRACT 

Fabrication of three-dimensional (3D) objects through direct 
deposition of functional materials using 3D printing 
equipment is called additive manufacturing (AM).  Benefits 
of AM include producing goods quickly and on-demand, 
with greater customization and complexity and less material 
waste.  While the use of AM has been growing, a number of 
challenges continue to impede its more widespread adoption, 
particularly in the areas of non-destructive evaluation/non-
destructive testing (NDE/NDT) techniques for AM 
equipment health monitoring and measurement.  In this 
paper, a prognostics and health management (PHM) 
approach to AM equipment health monitoring, fault 
diagnosis and quality control is presented and illustrated 
with a case study. The presented PHM approach is 
developed using two types of NDE/NDT sensors: acoustic 
emission (AE) sensor and piezoelectric strain sensor.  A 
seeded driving belt fault on a fused filament fabrication 
desktop 3D printer is used to validate the feasibility of the 
PHM approach in the case study.  The case study results 
have shown the effectiveness of the presented method for 
AM equipment fault diagnosis and quality control. 

1. INTRODUCTION 

In his 2013 state of the union address, US President Obama 
called three-dimensional (3D) printing “the potential to 
revolutionize the way we make almost everything” (Office 
of the Press Secretary, 2013). Fabrication of 3D objects 
through direct deposition of functional materials using 3D 
printing equipment is called additive manufacturing (AM).  
Benefits of AM include producing goods quickly and on-
demand, with greater customization and complexity and less 
material waste.   If the modern manufacturing which was 
subtractive process by cutting or milling is optimized at 

mass production, the future manufacturing would be called a 
creative customization through 3D printing at consumers’ 
will. 

While the use of AM has been growing, a number of 
challenges continue to impede its more widespread adoption, 
particularly in the areas of non-destructive evaluation/non-
destructive testing (NDE/NDT) techniques for AM 
equipment health monitoring and measurement. According 
to a recent report on measurement science roadmap for 
metal-based additive manufacturing (Energetics 
Incorporated, 2013), current technical barriers or challenges 
in AM were roughly categorized as materials, process and 
equipment, qualification and certification, and modeling and 
simulation. Particularly in the process and equipment 
category, the highest priority in NDE/NDT techniques have 
been specified as: (1) Combining NDE techniques to better 
assess quality via an integrated approach; (2) Adapting 
existing NDE techniques to AM, especially parts, and 
characterizing defects; (3) Lack of affordable quality 
inspection tools for direct metal parts. Even though the 3D 
printing technology has been available since 80s, it was not 
until recent days that 3D printing came to the fore in 
commercial manufacturing. Thus, very few studies have 
been conducted on NDE based 3D printer health monitoring 
and prognostics.  The AM has two unique characteristics: (1) 
relatively long cycle time; (2) high quality standard for 
dimension accuracy.  These unique characteristics of AM 
can be considered as good opportunities for developing 
PHM based approach for 3D printer health monitoring, fault 
detection and quality control.  As the dimension accuracy of 
the printed product can be caused by inaccurate movement 
of the 3D printer, by detecting the 3D printer fault and 
stopping the faulty execution of the printing process, 
manufacturing time, materials, and cost can be saved and 
product quality assured. 

In the related field of rotating machinery fault detection and 
diagnostics, the use of different NDE/NDT techniques such 
as acoustic emission (Yoshioka and Fujiwara, 1984; Tandon 
and Mata, 1999; Tandon and Narka, 2000; Scheer et al., 
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permits unrestricted use, distribution, and reproduction in any medium,
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2007; Bechhoefer et al., 2013; Qu et al., 2013 and 2014), 
torsional vibration (Feng & Zuo, 2013), and fiber optic 
strain sensors (Kiddy et al., 2011) has been investigated 
with drivetrain in wind turbine and rotorcraft. In this study, 
the potential capability of acoustic emission (AE) and 
piezoelectric (PE) strain sensors as fault detection and 
quality control technique for AM equipment and product is 
investigated. 

AE is commonly defined as transient elastic waves within a 
material, caused by the release of localized stress energy 
(Mathews, 1983).  The advantage of using AE sensor as 
failure analysis source is that AE propagates from the 
epicenter to sensing apparatus within materials while 
vibration sensor requires perpendicular installation along 
with the vibration direction. Identifying vibration direction 
is sometimes painful if their sources are combinative. Also, 
AE signals are distinguishable from acoustic signals in that 
acoustic signals generally lie on the audible range of human 
(e.g. 20 Hz ~ 20 kHz). On the other hand, AE signals lie on 
a higher frequency range (e.g. 1 kHz ~ 1 MHz). Thus a high 
sampling rate between 2 to 10 MHz has been a typical 
choice of sampling rate for AE data collection. Other issues 
may arise including a high data volume and complicated 
feature of AE signals, which make the AE data processing 
challenging. However, it has been also reported that AE 
sensors are more sensitive in early fault detection than 
vibration sensors with various gear and bearing fault 
diagnostic applications (Yoshioka and Fujiwara, 1984; 
Tandon and Mata, 1999; Tandon and Narka, 2000; and 
Scheer et al., 2007).  

The feasibility of using fiber optic strain sensors to detect 
damaged gearbox was recently reported by Kiddy et al. 
(2011). In their study, fiber optic strain sensors were 
mounted on a helicopter transmission test rig to investigate 
the detectability of gear fault conditions. However, the low 
maximum sampling rate (up to 1 kHz) of the fiber optic 
strain sensor limits its wide applicability in machinery fault 
detection. On the other hand, the PE strain sensors measure 
torsional vibration by quantifying terminal voltage 
difference released by deformed piezoelectric material. 
Unlike the fiber optic strain sensor, PE strain sensor has a 
merit in higher sampling rate up to 100 kHz. Compared to 
the conventional strain gauge sensors and accelerometers, 
the PE strain sensors have certain advantages that could be 
summarized as follows: (1) ability to measure the first 
derivative of physical deformation, (2) high linearity and 
sensitivity from their superior noise immunity as compared 
to differentiated sensing performance of conventional strain 
sensors (Lee and O’Sullivan, 1991; Banaszak 2001), (3) 
high frequency range (Jiang et al., 2014), (4) space-
efficiency without a structural change on the measuring 
target (Kon et al., 2007), and (5) negligible temperature 
effect on the measurement output (Sirohi and Chopra, 2000; 
Jiang et al., 2014). The aforementioned benefits allow PE 

strain sensors to potentially have greater sensing resolution 
and accuracy. 

Up to today, no investigation on 3D printer health 
monitoring and fault diagnosis has been reported in the 
literature.  In this paper, an investigation into the feasibility 
of PHM based AE and PE strain signal analysis techniques 
for 3D printer fault detection and quality control is reported. 
The remainder of the paper is organized as follows. Section 
2 provides a detailed explanation of the proposed 
methodology. In Section 3, the details of the experimental 
setup and the seeded fault tests on a 3D printer test rig for 
validating the proposed methodology are provided. Section 
4 presents the 3D printer fault detection results from the 
seeded fault tests.  Finally, Section 5 concludes the paper. 

2. METHODOLOGY 

An overview of the proposed methodology is provided in 
Figure 1. As shown in Figure 1, a data acquisition (DAQ) 
system is used to collect the AE signals and PE strain 
signals at the same time. While the PE sensor is directly 
connected to the DAQ, the AE sensor, on the other hands, is 
connected to the DAQ board through a hardware based 
heterodyne frequency reduction device. Then, filter bands 
are chosen for each sensor to remove noise in the collected 
signals before they can be used to compute condition 
indicators (CIs) for fault detection.   The key components of 
the methodology are explained in the next two sections. 
Section 2.1 provides a brief review of the hardware based 
heterodyne technique for AE sensor and the computation of 
CIs for 3D printer fault detection is followed in Section 2.2. 

 

Figure 1. Overview of the 3D printer fault diagnosis with 
PE strain sensor and AE sensor. 
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2.1. The Heterodyne Technique 

To apply AE based NDE/NDT techniques to machine fault 
detection and diagnosis, one technical challenge is to deal 
with the data storage and processing burden caused by the 
typical high sampling rate of AE sensor (from several MHz 
to 10 MHz).  To meet the challenge, frequency shifting 
technique, namely heterodyne (Fessenden, 1913) based AE 
fault detection and diagnosis methods have been developed 
for gearboxes (Bechhoefer et al., 2013; Qu et al., 2013; 
2014). The heterodyne technique downshifts the frequency 
of the AE signals so that a sampling rate comparable to 
vibration analysis can be utilized. Qu et al. (2013 and 2014) 
have shown the effectiveness AE based fault detection and 
diagnosis using heterodyne technique with a sampling rate 
as low as to 20 kHz  for a split torque type gearbox. The AE 
based NDE/NDT techniques implemented with heterodyne 
are significant as size of AE data needs to be stored and the 
computational cost can be significantly reduced. The 
heterodyned AE technique implemented in this paper works 
similarly to a radio quadrature demodulator: shifting the 
carrier frequency to baseband, followed by low pass 
filtering. Mathematically, heterodyning is based on the 
trigonometric identity. For two signals with different 
frequency ଵ݂  and ଶ݂ , respectively, their product could be 
written as: 

 
sinሺ2ߨ ଵ݂ݐሻ	 sin	ሺ2ߨ ଶ݂ݐሻ

ൌ
1
2
cosሾ2ߨሺ ଵ݂ െ ଶ݂ሻሿ െ

1
2
cosሾ2ߨሺ ଵ݂  ଶ݂ሻሿ 

(1)

where ଵ݂  is the AE carrier frequency and ଶ݂  is the 
demodulator’s reference signal frequency. In applications, 
any desired new output signals called as heterodynes, one at 
the sum ଵ݂  ଶ݂, and the other at the difference ଵ݂ െ ଶ݂, are 
utilized upon necessity. Technically, the heterodyning 
technique is aimed especially at demodulating the amplitude 
modulated signals. The amplitude modulation process can 
be mathematically expressed as: 

	 ܷ ൌ ሺܷ ݉ݔሻ cos߱ݐ	 (2)

where, 	ܷ  is the amplitude modulated signal, ܷ  is the 
carrier signal amplitude, ݉ is the modulation coefficient, ݔ 
is the signal of interest, and ߱  is the carrier signal 
frequency. By introducing an amplitude and frequency for ݔ 
by ܺ  and Ω, respectively, the signal of interest ݔ  can be 
represented as:  

	 ݔ ൌ ܺܿݏΩݐ	 (3)

Note that it is assumed that Ω is much smaller than ߱. Then, 
with the heterodyning technique, the modulated signal will 
be multiplied by a unit amplitude reference signal cos	ሺ߱ݐሻ. 
Then the resulting ܷ can be written as: 

 
ܷ ൌ ሺܷ ݉ݔሻ cosሺ߱ݐሻ cosሺ߱ݐሻ

ൌ ሺܷ ݉ݔሻ 
1
2

1
2
cosሺ2߱ݐሻ൨	

(4)

Substituting Eq. (3) into Eq. (4) yields: 

ܷ ൌ
1
2
ܷ 

1
2
݉ܺܿݏΩݐ 

1
2
ܷܿݏሺ2߱ݐሻ


1
4
݉ܺሾܿݏሺ2߱  Ωሻݐ  ሺ2߱ݏܿ െ Ωሻݐሿ 

(5)

Since ܷ is assumed not to contain any useful information 
related to the modulated signal, it could be canceled out. 
From Eq. (5), it can be concluded that only the second term 
ଵ

ଶ
݉ܺܿݏΩݐ  will remain after applying low pass filter, 

while the high frequency components around frequency 2߱ 
will be removed. In the final heterodyning demodulation 
step, the signal frequency can be reduced to 10s of kHz. The 
resulting frequency range for AE signals becomes 
comparable to that of typical vibration signals. Thus, a 
lower sampling rate in an AE data acquisition system can be 
used. The heterodyned AE data acquisition procedure is 
shown by comparing it with the conventional AE method in 
Figure 2. 

 

Figure 2. Comparison of the heterodyned AE data 
acquisition procedure with the conventional AE methods. 

 
Finding a proper reference signal is critical to the successful 
implementation of the heterodyne technique in AE data 
acquisition. Since each AE sensor product from varying 
manufacturers has a unique frequency characteristic, the 
following optimization process based a linear chirp function 
is performed so that the root mean square (RMS) of the 
demodulated output signal could be maximized. The 
optimization process is described in Qu et al. (2014).   

2.2. CIs for 3D Printer Fault Detection 

Table 1 provides the definitions of CIs investigated for 3D 
printer fault detection in this paper. The CIs can be defined 
into five general types: root mean square (RMS), peak to  
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Table 1. The definitions of the CIs. 
 

  
Input Signal ሺݔூேሻ 

  
Raw AE EO NB AM FM 

CI 

      Description 
 
 
Equation 

Raw 
heterodyned 

AE data 
ሺݔ௪ሻ 

Energy 
operator: a 

residual of the 
autocorrelation 

function 
ሺݔாைሻ 

Narrow 
band pass 

filtered 
ሺݔேሻ 

Amplitude 
modulation 

of NB 
filtered signal 
ሺܯܣሺݔேሻሻ 

Frequency 
modulation 

of NB 
filtered signal
ሺܯܨሺݔேሻሻ 

Root 
mean 
square 
(RMS) 

ூேሻݔሺܵܯܴ ൌ ඩ
1
ܰ
ݔ

ଶ

ே

ୀଵ

 .ூேሻ: measures the magnitude of a discretized signalݔሺܵܯܴ 

Peak to 
peak 
(P2P) 

ܲ2ܲሺݔூேሻ

ൌ
ሺmax	ሺݔூேሻ െ minሺݔூேሻሻ

2
 

ܲ2ܲሺݔூேሻ: measures the maximum difference within the data range. 

Skewness 
(SK) 

ூேሻݔሺܭܵ

ൌ

1
ܰ∑ ሺݔ െ ሻேݔ̅

ୀଵ
ଷ

ቈට
1
ܰ∑ ሺݔ െ ሻேݔ̅

ୀଵ
ଶ

ଷ 

 ூேሻ: measures the asymmetry of the data about its mean value. Aݔሺܭܵ
negative SK value and positive SK value imply the data has a longer or fatter 

left tail and the data has a longer or fatter right tail, respectively. 

Kurtosis 
(KT) 

ூேሻݔሺܶܭ

ൌ
ܰ∑ ሺݔ െ ሻேݔ̅

ୀଵ
ସ

ൣ∑ ሺݔ െ ሻேݔ̅
ୀଵ

ଶ
൧
ଶ 

 ூேሻ: measures the peakedness, smoothness, and the heaviness of tail inݔሺܶܭ
a data set. 

Crest 
factor 
(CF) 

ூேሻݔሺܨܥ ൌ
ܲ2ܲሺݔூேሻ
ூேሻݔሺܵܯܴ

 
 ூேሻ to describeݔሺܵܯܴ ூேሻ andݔூேሻ: measures the ratio between ܲ2ܲሺݔሺܨܥ

how extreme the peaks are in a waveform. 

Note: ݔ is ith element of the input data	ݔூே; ܰ is the length of the input data  ூே; maxሺ⋅ሻ returns the maximal element ofݔ
input data	ݔூே; min	ሺ⋅ሻ returns the minimal element of input data ூே defined asݔ	is a mean value of the input data ݔ̅ ;ூேݔ ∑ ݔ

ே
ୀଵ /

ܰ 

 
 
peak (P2P), skewness (SK), kurtosis (KT), and crest factor 
(CF).  Each type of CI can be computed using different 
input signals.  In addition to raw signals, other types of 
input signals can be generated: energy operator (EO), 
narrow band (NB), AM, and FM. The EO introduced by 
Teager (1992) is defined as the residual of the 
autocorrelation function as following: 

 
ாை,ݔ ൌ ݔ

ଶ െ ିଵݔ ⋅   ,ାଵݔ
(for ݅ ൌ 2, 3, … , ܰ െ 1) 

(6)

where ݔாை, is the ith element of EO data; ݔ is the ith element 
of the input data	ݔூே. NB is the time domain representation 
after applying narrow band of interest which could be seen 
in frequency domain. Finally, AM and FM are obtained by  
 
 

 
amplitude modulation and phase modulation of the NB 
filtered data. 

3. EXPERIMENTAL SETUP 

This section covers the experimental setup used to establish 
the AE and PE strain sensor based 3D printer fault diagnosis 
technique. The methodologies were validated with a desktop 
3D printer using fused filament fabrication. Section 3.1 
introduces the 3D printer test rig and Section 3.2 covers the 
seeded fault test. 

3.1. The 3D Printer Test Rig 

Figure 3 shows the 3D printer test rig and the DAQ system 
used in the seeded fault test in this paper. 
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Figure 3. The 3D printer test rig and the DAQ system. 

 

The 3D printer test rig composes two main parts: (1) 
heterodyned AE based DAQ system, (2) 3D printer. The  
DAQ system includes a National Instruments’ DAQ board 
with a maximum analog input sampling rate of 1.25 MHz, 
AE sensor attached on the 3D printer, demodulation board 
(AD8339), analog amplifier with gain 20/40/60dB, and 
function generator. The 3D printer (Makerbot, 2014) has a 
layer resolution up to100	μm, position precision of 11	μm 
on X and Y axes and 2.5	μm on Z axis, and a nozzle of 0.4 
mm diameter controlled by two stepper motors and wear 
resistant oil-infused bronze bearings. 

3.2. 3D Printer Seeded Fault 

According to the troubleshooting maintenance document 
(Makerbot, 2014) of the machine, one potential problem is 
the looseness of the belt driving the motion of the extruder 
nozzle. Thus, a malfunctioned toothed belt scenario was 
artificially created and simulated in this paper. The seeded 
fault was created by inserting five small pieces of metal 
wire into the slots between teeth of belt to create faulty 
operation during printing process. Figure 4 shows the 
seeded fault created by inserting a metal wire piece into the 
slot between two teeth on the toothed driving belt to 
simulate the looseness of the driving belt. The inserted 
metal wire piece was cut into the same dimensions in size as 
the slot between the belt teeth so that the slot was perfectly 
filled with the metal wire piece. Then the metal wire piece 
was tied on the belt with a thin flexible tape. 

 

 

Figure 4. Seeded fault on toothed belt. 
 
The 3D printer was run with and without the fault seeded 
driving belt to produce ten sets of bolt and nut (five sets for 
each conditions).  Individual run took about 28 minutes to 
print one set of bolt and nut. For sample consistency, a total 
of six heterodyned AE data samples were recorded for 10 
seconds at pre-specified time locations from each run. The 
data acquisition procedure for the seeded fault test is 
depicted with a flowchart in Figure 5.  

 

Figure 5. Data acquisition procedure. 
 
Figure 6 shows the 3D outputs of the healthy and faulty 3D 
printers.   Under the normal printing conditions, the printed 
nut and bolt should smoothly thread together and function 
as intended.  Under the faulty printing condition, even 
though the pair of printed bolt and nut appears to be normal, 
the bolt can only be turned into the nut half way.  This 
clearly indicates that the threads on the bolt or inside the nut 
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were not printed up to the required precision due to the 
driving belt fault in the 3D printer. 

 
Figure 6. 3D outputs from the healthy and the faulty 3D 

printers. 

4. RESULTS 

This section covers the 3D printer fault diagnostic results 
from the AE and PE strain sensor based technique. Section 
3.1 explains AE signal analysis results and Section 3.2 the 
PE strain sensor signal analysis results. 

4.1. AE Signal Analysis Results 

The AE signal analysis results for the seeded fault tests 
conducted on the 3D printer test rig are provided in this 
section. Figure 7 shows the spectrums of AE data samples. 
By examining the spectrums in Figure 7, two different 
frequency regions were chosen for the low pass and narrow 
band pass filters: low frequency region up to 20 kHz and 
narrow band frequency around 3906 Hz. As shown in 
Figure 7, a remarkably high peak was observed within low 
pass range from all of AE samples. These peaks are 
specifically located at 3906 Hz.  So a narrow band pass 
filter with a band width of 3906±3 Hz around the peak 
frequency location was chosen. 

In Figure 8, RMS result from the low pass filter is provided. 
The resulting RMS of the heterodyned AE sample showed 
clear separation between healthy and faulty 3D printing 
condition. In Figure 8(a), RMS values at each sample 
location and trial are presented. In Figure 8(b), the averaged 
RMS values with a 95% confidence interval at each sample 
location are provided. 

In Figures 9 to 12, CIs from the narrow band filtered AE 
signals are provided. Among all the CIs tested, majority of 
those that show a clear separation between the healthy and 
faulty conditions were computed from narrow band filtered  
signals.  Note that the bandwidth of this narrow band is in 
the low frequency filter region. A clear separation between 
the healthy and faulty 3D printing conditions with a 95% 
statistical significance can be observed for the following AE 

based CIs: RMS, NB-RMS, NB-P2P, AM-RMS, and AM-
P2P. 

 

Figure 7. Spectrum of 3D printer AE signal samples: (a) 
healthy, (b) faulty. 
 

 

Figure 8. RMS of healthy and faulty low pass filtered results: 
(a) all data, (b) average with 95% confidence interval. 

 

Figure 9. RMS from narrow band pass filtered result: (a) all 
data, (b) average with 95% confidence interval. 
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Figure 10. Peak to peak from narrow band pass filtered 

result: (a) all data, (b) average with 95% confidence interval. 
 

 
Figure 11. RMS from amplitude modulation result after 
narrow band pass filtered result: (a) all data, (b) average 

with 95% confidence interval. 
 

 
Figure 12. Peak to peak from amplitude modulation result 

after narrow band pass filtered result: (a) all data, (b) 
average with 95% confidence interval. 

4.2. PE Strain Signal Analysis 

In processing the PE strain sensor signals to extract CIs for 
the 3D printer fault detection, a similar strategy used by 
Kiddy et al. (2011) was applied. In their study, PE strain 
signals were divided into two parts based on their frequency: 
low frequency part and high frequency part. Actual damage 
detection was performed on the high frequency part of the 
strain sensor data using condition indicators. Thus, in this 
research, high pass filtered PE strain signals were used to 
compute the CIs. In search for the appropriate filter band, 
the fast kurtogram (Antoni, 2007) was applied to exam the 
impulsivity locations of PE strain signals collected from the 
healthy 3D printers.  

Provided in Figure 13, a sample fast kurtogram result from 
the healthy 3D printer is displayed. The area in dark red 
color indicates the location of impulsivity. Statistical result 
of the fast kurtogram is summarized in Table 2. The 90% 
and 95% trimmed mean indicate that the impulsivity of PE 
sensor signals are located around 3.3 kHz to 4.2 kHz, 
respectively. Thus, a high pass band above 3 kHz was 
selected.  Here a ܺ	% trimmed mean is the average of the 
data after ሺ100 െ ܺሻ% of the outliers are removed.  

 
Figure 13. A sample fast kurtogram of PE strain sensor 

result from the healthy 3D printer. 
 
Among all the CIs computed using PE strain signals, only 
RMS showed a clear separation of the faulty condition from 
the normal condition. The RMS of the PE stain signals and 
the averaged RMS with 95% confidence intervals for both 
the healthy and faulty conditions are provided in Figure 14. 

 
Table 2. Statistical results of Fast kurtogram. 

 

Healthy 

90% trimmed mean 95% trimmed mean 

Center 
frequency 
value (Hz)

3320 4199 
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Figure 14. RMS of healthy and faulty PE strain signals: (a) 

all data, (b) average with 95% confidence interval. 
 

4.3. Results Summary 

The 3D printer seeded fault detection results using both the 
AE sensor and PE strain sensor can be summarized in Table 
3. 

 
Table 3.  Summary of the 3D printer fault detection results 

using AE and PE strain sensors. 

Sensor Type AE Sensor PE Strain Sensor 

Sampling 
frequency 

100 kHz 100 kHz 

Filter 
bandwidth 

Low pass 
band 

(< 20 kHz) 

Narrow band 
(3906 ± 3 Hz) 

High pass band 
(> 3k Hz) 

Effective CIs 
selected 

RMS 
NB-RMS, NB-
P2P, AM-RMS, 

AM-P2P 
RMS 

 
As shown in Table 2, for both the AE sensor and PE strain 
sensor used in the case study for 3D printer fault detection, a 
sampling rate of 100 kHz was used for data acquisition.  For 
AE sensor signals, two band pass filters were used: a low 
pass filter and a narrow band filter.  When the low pass filter 
was used, RMS provided the best performance and was able 
to detect the fault.  When a narrow band filter was used, the 
following CIs were able to detect the fault: NB-RMS, NB-
P2P, AM-RMS, and AM-P2P.  For PE strain sensor signals, 
a high pass filter was used and only one CI, RMS, was able 
to detect the fault. 

It has to be pointed out that the 3D printer fault was detected 
right after the first sample data was collected by both the AE 
and PE strain sensor in the seeded fault test.  In real AM 
application, it can take up to several days to print out a 
product by a 3D printer.  Therefore, significant amount of 

manufacturing time, materials, and cost can be saved and 
the quality of the product can be assured if a 3D printer fault 
can be detected and the printer be stopped days before it 
finishes printing the defective product.   

5. CONCLUSIONS 

In this paper, an investigation into the feasibility of PHM 
based AE and PE strain signal analysis techniques for 3D 
printer fault detection and quality control was reported.  The 
presented PHM approach was developed using two types of 
NDE/NDT sensors: AE sensor and piezoelectric strain 
sensor.  A seeded driving belt fault on a fused filament 
fabrication desktop 3D printer was used to validate the 
feasibility of the PHM approach in the case study.  For the 
AE signal analysis in particular, a high peak in the 
frequency domain was detected and a narrow band pass 
filter around the peak was used to extract multiple condition 
indicators to detect the fault. On the other hand, in the PE 
strain analysis, the fast kurtogram was used to determine the 
proper high-pass filter band to obtain high frequency 
components to obtain effective fault detection CIs. The 
results have shown that the driving belt seeded looseness 
fault could be detected by both of the AE and PE strain 
sensor analysis methods.  The methods presented in this 
paper could be extended to other potential 3D printing faults 
such as material feed or additional mechanical component 
faults.  
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ABSTRACT 

Manufacture transforms raw materials into finished 
components.  Ageing and degradation of components, 
driven by dissipative processes, irreversibly alter material 
structures. The second and third laws of thermodynamics 
assert that these dissipative processes must generate 
entropy. This entropy is a fundamental quantity to describe 
ageing and degradation.   
 
This recognition led to a Thermodynamic Degradation 
Paradigm encapsulated in a Degradation Entropy 
Generation (DEG) Theorem, wherein the rate of degradation 
was related to the irreversible entropies produced by the 
underlying dissipative physical processes that age and 
degrade components. This paradigm and theorem permit a 
structured approach to modeling degradation of any kind. If 
properly applied, the DEG Theorem leads to a differential 
equation in a variable that describes the degradation. The 
equation depends on the operational and environmental 
variables that characterize the system. Integration of the 
equation accumulates the degradation over time. This 
approach has led to accurate models for progression of and 
failure by wear, fatigue, and battery degradation that are 
consistent with prior models. 
 
This article will review the Thermodynamic Degradation 
Paradigm and Degradation Entropy Generation Theorem, 
and apply these to formulate predictive models of wear, 
fatigue, and battery degradation, i.e., differential equations 
that govern the degradation or ageing. The article will 
conclude with a discussion on how to use these governing 
degradation equations for machine prognosis. 

1. THERMODYNAMIC DEGRADATION PARADIGM AND 
DEGRADATION ENTROPY GENERATION THEOREM 

Doelling, Ling, Bryant, and Heilman (2000) originally 
proposed the Thermodynamic Degradation Paradigm

(TDP), which states that the irreversible entropy produced 
as a consequence of degradation can become a fundamental 
variable to quantitatively describe the degradation. For 
boundary lubricated sliding of copper on steel, they 
measured wear and the concomitant entropy produced at the 
sliding interface, and showed wear proportional to entropy. 
For dry sliding of bronze on stainless steel, Bryant and 
Khonsari (2008) also showed wear proportional to entropy.  
 
Degradation manifests via a mechanism of dissipative 
processes. Dissipative processes that damage tribology 
interfaces include adhesion, surface plastic deformation, 
fracture, chemical reaction, material phase changes, viscous 
dissipation, heat dissipation, and material mixing, among 
others (Bryant, 2009).  
 
Bryant, Khonsari, and Ling (2008) encapsulated the 
Thermodynamic Degradation Paradigm into the 
Degradation Entropy Generation (DEG) Theorem. Suppose 
degradation of whatever form can be measured by a variable 
w, which is a non negative, monotonic function w=w{pi} of 
the energies pi associated with the i = 1,2,…,n dissipative 
processes that comprise the degradation mechanism. 
Suppose also that the processes pi = pi(ζj

i) depend on time 
dependent phenomenological variables ζj

i =ζj
i(t). Here i 

indexes all the dissipative processes of a degradation 
mechanism, and j indexes the phenomenological variables 
within a dissipative process. Altogether, w=w{pi(ζj

i)}. 
According to thermodynamics laws 2 and 3, the dissipative 
processes must produce irreversible entropy S’ =S’{pi(ζj

i)} 
dependent on the same energies and phenomenological 
variables. Via the chain rule, rates of entropy and 
degradation are (Bryant et al, 2008) 
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= Bi
dS 'i
dti

∑
    (2) 

 
In the foregoing, indices i,j beneath summation signs refer 
to a sum over both variables. The similar dependence 
structures in w=w{pi(ζj

i)} and S’ =S’{pi(ζj
i)} led to the 

similar factors inside the sums in Eqs. (1) and  (2). Terms in 
the first line of Eq. (2) were multiplied by unity in the form 
(∂S’/∂pi)-1(∂S’/∂pi) to give the terms in the second line of 
Eq. (2). Coefficients  

Bi =
∂w
∂pi

∂S '
∂pi

"

#
$

%

&
'

−1

=
∂w
∂S ' p

i

  (3) 

which arise from the terms inside the square bracket of Eq. 
(2) are material properties that represent the increment of 
degradation incurred per increment of entropy generated by 
activity of process pi. The Bi can be measured or related to 
other material properties. If pi is the energy dissipated by a 
dissipative process, definition of entropy suggests ∂S’/∂pi = 
1/Ti, where Ti is a temperature associated with pi. The other 
terms in the second line of Eq. (2) are then dissipated power 
components dpi/dt = (∂pi/∂ζj

i)(∂ζj
i/∂t). 

The final line of Eq. (2) asserts that rate of degradation can 
be expressed as a linear combination of the rates of 
production of irreversible entropy by the underlying 
dissipative processes of a degradation mechanism. As 
suggested in the prior paragraph, when a process dissipates 
power dpi/dt the irreversible entropy S’ generated and the 
degradation w depend on process temperature Ti, 
generalized force (∂pi/∂ζj

i) and generalized velocity (∂ζj
i/∂t). 

Also used will be laws 1 and 2 of thermodynamics 
(Kondepudi & Prigogine, 1998)  

   (4a) 

    (4b) 

that conserve energy (internal energy E, heat Q, work W and 
energy in chemical potential ηk and molar mass Nk) and 
entropy (entropy flow Se associated with heat flow, entropy 
generated S’, and system entropy S). 

2. APPLICATIONS 

The DEG theorem presented in the prior section will be 
applied to sliding wear, fatigue, and battery degradation. 

2.1. Sliding Wear 

Figure 1 depicts a slider sliding on a counter surface. Bodies 
that rub and slide shed particles that accumulate as wear, 
measured as volume w of material lost. Friction force F = 
µN sliding through distance x dissipates work p = Fx, where 
µ is friction coefficient and N normal load. For steady

 sliding at speed dx/dt the process is stationary, rendering dE 
= dS = 0 which simplifies Eqs. (4). Also, since the internal 
energy lost with a wear particle is small, the final term in 
Eq. (4a) can be neglected compared to other terms.  The 
entropy produced arises from the friction work p dissipated 
within the tribo control volume (Fig. 1) that encompasses 
the sliding interface and nearby surface layers within slider 
and counter surface. Via Eq. (1), friction generates entropy 
at rate 

dS '
dt

=
dS '
dp

dp
dx

!

"
#

$

%
&
dx
dt
=
F
T
dx
dt

, (5a) 

where contact temperature T arose via dS’/dp = 1/T. 
Applying Eq. (2), 

dw
dt

=
BF
T

dx
dt
=
Bµ
T
N dx
dt

.    (5b) 

Archard’s (1953) wear law w = kNx/H relates w to N and x, 
via wear constant k and hardness H of the softer of the 
material pair. With N and T constant, Archard’s law gives 

dw
dt

=
k
H
N dx
dt

.   (5c) 

Comparing (5c) to (5b),  

k = BµH
T

.    (5d) 

Doelling et al (2000) estimated B = dw/dS’|p under boundary 
lubricated sliding of copper on steel using the Fig. 2 graph 
of normalized wear versus normalized entropy flow. 

! 

dE = dQ " dW + #kdNk$

! 

dS = dS '+dSe

                       
Figure 2. Wear vs. entropy flow, with axes normalized by 

max values. Symbols show six trials. Load N = 9.9 kg, 
speed dx/dt = 3.3 ms-1. From Doelling et al (2000). 

 

                  
Figure 1. Slider on counter surface. 
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Doelling calculated entropy flow 

€ 

Sn =
ΔQ(n )

T (n )
n

∑ , where 

)(nQΔ is the heat input to the slider during the nth time 
interval, and T(n) is the corresponding average absolute 
surface temperature of the stationary copper slider rubbing 
the rotating steel cylinder. Via Eq. (4b) and a stationary 
process wherein dS = 0, dSe = - dS’, leading to B = dw/dSe. 
Averages over the six data trials of Fig. 2 led to B = 4.0 ×10-

10 m3/(JK-1) and k=1.01×10-4. For the same metals sliding 
under poor or similar lubrication, Rabinowicz (1980) 
measured  k=1.0×10-4. The k estimated by (5d) and Fig. 2 
arose from measured wear, temperatures and forces; 
Rabinowicz’s k via Archard (1953) arose from measured 
wear, forces and distance.  
 
A different sliding configuration (bronze ring against 4140 
stainless steel) under dry rubbing with different load 226.8 
kg (500 lb), speed, temperature, and materials was 
performed (Bryant & Khonsari, 2008). Friction coefficient, 
wear, and temperature were measured similar to Doelling et 
al (2000). Results also yielded a remarkably accurate wear 
coefficient compared to Rabinowicz (1980).  
 
Measurements of very different quantities rendering k 
values identical to within a few percent suggests validity of 
the entropy/degradation hypothesis, and Eq. (2). Note that 
integration of Eq. (5b) would accumulate the degradation by 
wear. Since energetics of degradation and friction are 
embedded in the entropy-wear statement of (5b), friction 
and wear are treated as related, not separate. Archard’s wear 
law is a subset of the thermodynamic entropy formulation. 
As shown in Bryant et al (2008), Eqs. (2) and (3) can 
describe other modes of wear (abrasive and fretting among 
others) if the entropy generated can be formulated. 

2.2. Metal Fatigue 

Amiri & Khonsari (2012), Naderi & Khonsari (2010), and 
Amiri, Naderi & Khonsari (2011) have shown that fatigue 
of metals and other materials such as composites (Naderi & 
Khonsari, 2012) obey the Thermodynamic Degradation 
Paradigm and the Degradation Entropy Generation (DEG) 
Theorem. Collectively, these references experimentally 
correlate the cumulative effects of fatigue damage with the 
entropy produced in a fatiguing member.  
 
Fatigue is driven by the energy dissipated by plasticity and 
fracture. Amiri et al (2011) formulated an expression for the 
irreversible entropy S’ generated during progression of 
fatigue based on the Clausius-Duhem inequality (Lemaitre 
& Chaboche, 1990). But since the expression was very 
complicated–––the expression included the complex plastic 
strain and stress fields, the thermal heat transfer, and the 
strain hardening effects–––they instead pursued entropy 
flow Se as a substitute for S’ under a stationary process 

approximation dS = 0. As discussed in section 2.1, this leads 
to dSe = - dS’, which allows use of entropy flow in the DEG 
theorem, to describe degradation. Naderi, Amiri, & 
Khonsari (2010) determined the entropy flow via 
temperature measurements over a cantilevered member 
undergoing reverse bending, using an infra-red camera in 
conjunction with thermal finite elements. Finite elements 
calculations of stress and heat transfer induced by plastic 
work estimated flows of heat and entropy over the fatigued 
member. The elasto-plastic-thermal finite element model 
was excited by mechanical loads similar to those applied to 
the specimen, and 2709 ten-node quadratic tetrahedral finite 
elements connected via an appropriate mesh. The 
temperatures estimated were consistent with the infra-red 
measured temperature distribution. 

Naderi et al (2010) found that during an initial phase of the 
first hundred cycles or so temperatures increased due to heat 
generated by plastic work dissipation. During a second 
phase of thousand of cycles, temperatures stabilized at 
approximately constant levels set by equilibrium between 
heat transfer and heat generated. Finally, near the end of the 
component’s fatigue life, temperatures abruptly increased. 
Naderi et al (2010) proposed that temperature can be used to 
predict progression of fatigue and fatigue failure. 

Defining degradation measure w as rupture strength SR 
(i.e., the maximum load the specimen can sustain) the DEG 
theorem gives dSR/dt = -BS’ where the minus sign denotes 
diminishing. When integrated, Eq. (2) becomes  

SR = SR0 −B S 'dt∫ ,     (6a) 

where subscript 0 refers to the initial rupture strength. When 
sufficient entropy accumulates, fatigue strength SR equals 
the applied load, and the specimen ruptures. 
 
Similar to Fig. 2, Amiri, Naderi, & Khonsari (2011) found 
that a plot of normalized number of cycles M/Mf vs. 
normalized entropy flow Se/Sf yielded an approximately 
linear function, up to the catastrophic rupture of the 
component. Their plot can be visualized by replacing 
normalized wear on the ordinate axis of Fig. 2 with 
normalized number of cycles. Amiri et al (2011) normalized 
Se and M with counterparts Sf and Mf at rupture, since these 
were maximum values. Since the plot had unity slope, 
similar to Fig. 2, Amiri et al (2011) concluded 

Se
Sf

≈
M
M f

   (6b) 

which suggests that once a fatiguing member generates a 
critical amount of entropy Sf (which Eq. (6) correlates to a 
critical number of cycles Mf), rupture occurs. This is 
consistent to Eq. (6a) accumulating enough entropy to 
reduce the strength to critical levels. Indeed, others tests 
(Amiri et al, 2011) under different loading conditions such 
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as torsion showed the persistence of the same amount of 
critical entropy to rupture. Finally, Naderi & Khonsari 
(2010) showed that the damage parameter used extensively 
to characterize fatigue can be obtained from entropy.  

2.3. Battery Degradation 

In this section, a battery ageing model will be constructed 
from a model of the operational dynamics of a battery, by 
blindly applying the DEG theorem of Eq. (2) to those 
elements in the batteries’ operational system dynamics 
model that generate entropy. The ageing model will be 
shown to be qualitatively consistent with known 
characteristics and traits of battery ageing. 
 
Batteries store energy electrochemically. Popular battery 
types include lead acid and lithium ion batteries. Batteries 
consist of anode and cathode electrodes, electrolyte, 
separator, and terminals. Batteries have finite lifetimes, 
which are usually limited by manufacturing defects and 
ageing effects. This section will focus on ageing effects on 
battery life. Battery health is often measured in terms of 
capacity C (Ah), the amount of charge in ampere-hours a 
battery can deliver when discharged at a rated current, or 
growth of internal cell impedance Z (ohms), see (Broussely, 
Biensan, Bonhomme, Blanchard, Herreyre, Nechev & 
Staniewicz, 2005). Ageing reduces capacity C  and 
increases impedance Z. Cycles of charging and discharging 
age a battery. Battery cycle life is rated as the number of 
complete charge-discharge cycles a battery can perform 
before 1) capacity C  falls below 80% of initial rated 
capacity and/or 2) the internal resistance Z increases 1.3 to 2 
times initial value.  

 
Battery life, typically 500 to 1200 charge discharge cycles, 
depends on many factors (Broussely et al, 2005 and Vetter, 
Novak, Wagner, Veit, Moller, Besenhard, Winter, 

Wohlfahrt-Mehrens, Vogler & Hammouche, 2005). Most 
prevalent are:  

(a) Number of charge-discharge cycles experienced by 
the battery: more cycles diminish remaining life. 

(b) Depth of discharge (DOD- the percent of battery 
capacity discharged during a charge-discharge 
cycle): a larger DOD reduces cycle and increases 
the increment of energy dissipated per cycle. 

(c) Electrolyte decomposition enhanced by high 
temperature and Li plating. 

(d) Electrode plating by Li, which increases resistance 
and fades capacity, is exacerbated by lower 
temperature. 
 

A battery operational model in bond graph form from 
Ménard, Fontès, & Astier (2010) models the dynamic 
electrochemical phenomena in a Li-ion battery. The bond 
graph of Ménard et al (2010) was copied and is presented as 
Fig. 3. A bond graph is a map of where and how power 
flows in a physical system. A bond graph also shows where 
energy is stored, dissipated, and transformed. The half 
arrows in Fig. 3 indicate the direction of positive power 
flow in the Li ion battery. In a bond graph, potential energy 
is stored in capacitance elements C, kinetic energy is stored 
in inertance elements I, and power is dissipated in resistance 
elements R. From a completed bond graph, the differential 
equations that govern the physics and dynamics of a system 
can be extracted (Brown, 2006 and Karnopp, Margolis, & 
Rosenberg, 2000). 

The bond graph of Fig. 3 has additional labels to indicate 
where in the battery system is “energy storage”, “diffusion 
phenomena”, “electrochemical conversion”, 
“electrochemical phenomena”, and “ohmic phenomena”. On 
the far right of Fig. 3 are battery terminal voltage Vbat and 
current I, which pertain to the voltage and current across the 
physical terminals of a physical battery. Chemical 
capacitance Cstorage found in the “energy storage” sector 
stores the battery’s energy via electrochemical charge 
separation involving Li+ ions and electrons. Gibbs free 
energy -ΔGstorage (J) and molar flow of lithium ions J 
(mol/sec) appear as effort and flow on multiple bonds, 
indicating the chemical thermodynamics embedded in this 
bond graph. The minus sign on -ΔGstorage refers to energy 
leaving the main storage Cstorage. In “diffusion phenomena”, 
capacitance Cdiff and dissipative resistance Rdiff together set a 
time constant which controls the slow dynamics of Li+ ion 
diffusion in the electrolyte, which transports charge through 
the electrolyte. Transformer TF: nF in electrochemical 
conversion has modulus of the Faraday constant F (9.649 x 
104 C mol-1) and the number of moles of electrons n 
exchanged for each mole of lithium ions involved in the 
electrochemical reaction at the electrodes. This transformer, 
which converts electrochemical power to electrical power, 
bridges the electrochemical and electrical domains. Effort 
source -ΔG0 establishes a reference thermodynamic potential 

 
 
Figure 3. Bond graph systems dynamic model of a Li ion 

battery, from Ménard et al (2010). 
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within the bond graph. The power needed to activate 
electrochemical reactions at the electrode–electrolyte 
interfaces imposes resistance Ract. This activation power is 
not stored, but dissipated. Capacitance Cdc is due to a layer 
of charge (electrons and lithium ions Li+) that forms about 
the electrode-electrolyte interface. Low mobility of Li+ ions 
through the electrolyte relative to electron flows in the 
battery causes ohmic resistance Relec.  

In electric circuits, electric resistances dissipate power V I, 
where V and I are the voltage drop across and current 
through the physical resistor. The electric resistance Relec in 
Fig. 3––which represents the Thevenin equivalent 
impedance seen across the battery terminal––has voltage 
drop ηelec and current I. Similar to an electrical resistance, 
the power dissipated by other resistances is the product of 
the labeled quantities (which are equivalent to voltages and 
currents) on the half arrow bonds. In the bond graph of Fig. 
3, generalized resistances Relec, Rdiff, and Ract dissipate 
powers ηelec I, -ΔGdiff Jdiff,  and ηact It  respectively. 

The entropy S’ generated is the dissipated power divided by 
a temperature associated with the dissipative process. Thus, 
via Eq. (1),  

       

dS '
dt

=
−ΔGdiff Jdiff

Tdiff
+
ηact It
Tact

+
ηelecI
Telec .  (7a) 

By way of Eq. (2), the battery degradation is 

   

dw
dt

= Bdiff
−ΔGdiff Jdiff

Tdiff
+Bact

ηact It
Tact

+Belec
ηelecI
Telec

, (7b) 

where degradation measure w can be battery capacity C 
and/or internal impedance Z. Temperatures Tdiff, Tact, and 
Telec are associated with the diffusion, activation, and 
electric domains of the battery. Equation (7b) relates rate of 
capacity or impedance change (Erdinc, Vural & Uzunoglu, 
2009) to power dissipated, and sums dissipative effects from 
Li-ion diffusion into/out of electrodes, the energy of 
activation of Li/Li-ions at electrodes, and ohmic effects 
associated with mobility of Li ions in electrolyte. The sum 
over effects in Eq. (7b) is consistent with Vetter et al (2005), 
who reviewed ageing mechanisms in Li-ion batteries and 
stated that diverse “effects can be considered as additive”. 
Equation (7b) is consistent with item (b) of the list, since a 
larger depth of discharge yields larger power dissipations 
from all effects, with greater per cycle changes in w, and 
with Broussely et al (2005) who found capacity faded and 
impedance increased with more charge-discharge cycles1. In 

                                                             
1 With each increment of energy dissipated during each 
charge-discharge cycle an increment of entropy must be 

Eq. (7b), coefficients Bdiff, Bact, and Belec should be adjusted 
to reflect the relative importance of each entropy term on 
the degradation. For w being C or Z, these coefficients must 
be negative or positive, respectively, to model capacity fade 
or impedance increase. Equation (7b) can be posed in terms 
of phenomenological variables via constitutive relations of 
Eqs. (14) and (17) of Ménard et al. (2010), wherein 

 
−ΔGdiff Jdiff =

RTdiff
αFI lim

It ,       ηact It =,      ηelecI = RelecI
2 (8a)

 
giving

 

dw
dt

= Bdiff
RTdiff
αFI lim

It
Tdiff

+Bact
RTact
αFIo

It
2

Tact
+Belec

RelecI
2

Telec . (8b)
 

Here R is the molar gas constant, α =1/2, and Ilim and Io are 
diffusion currents dependent on number of lithium ions. The 
first two terms of Eqs. (8b)––pertaining to electrolyte 
diffusion and electrode-electrolyte interface activation––
increase influence of temperature on the electrolyte 
diffusion and activation terms of Eq. (7b), consistent with 
item list (c). The last term of Eq. (8b) retains Telec in the 
electric term of Eq. (7b), suggesting more influence from 
this term at lower temperature, consistent with item list (d). 
Finally, since It increases with state of charge Ménard et al. 
(2010), a higher state of charge results in a higher, which 
increases the first two terms of Eqs. (7b) and (8b). 

3. DISCUSSION 

Prognostics tries to predict future behavior of systems, to 
assess performance. Models of a machine’s physical 
operation, consisting of the machine system’s governing 
differential equations, can accurately mimic machine 
behavior if the model has sufficient fidelity (i.e., the model 
includes the critical physics and has sufficient dynamic 
states), is given inputs similar to that of the real machine, 
and if the numerical values of the model’s parameters 
accurately reflect the real machine’s condition. Parameters 
can be tuned from data measured off the real machine. As 
equipment degrades or ages via processes such as wear, 
fatigue, and others such as those involved in battery ageing, 
the system’s operational behavior can change, causing the 
machine to lose tolerance and not perform its function. 
Often this degraded machine behavior can be mimicked by 
the machine system’s operational models (the governing 
differential equations), but with certain parameters 
associated with the ageing given revised numerical values. 
As a system ages, those parameters associated with the 

                                                                                                       
produced, via the second law of thermodynamics. As cycles 
accumulate, the entropy produced accumulates, and list item 
(a) suggests battery life diminishes with increased entropy 
accumulation. 
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ageing will change with time. As presented in this article, 
physical ageing is driven by dissipative processes, and the 
ageing behavior can be predicted by solving differential 
equations posed in terms of a variable w that measures the 
degradation.  

If degradation changes a certain parameter Pk then Pk = 
Pk(w), and via the chain rule dPk/dt =  dPk/dw (dw/dt). 
Substitution of Eq. (2) then gives 

 dPk
dt

= Bi
dPk
dw

!

"
#

$

%
&
dS 'i
dti=1

n

∑ = Bi
* dS 'i
dti=1

n

∑  (9) 

where dPk/dw was grouped with the “old” constants Bi to 
form new constants Bi*. Values for these constants can be 
derived by measurements of the ageing phenomena on a 
machine. Once tuned, governing differential equations can 
forecast the changes in parameters far into the future. These 
forecasted parameter values can then be used in the 
operational machine model to simulate future behavior of 
the aged or degraded machine. 
  

4. CONCLUSION 

The method presented derives differential equations that 
govern system degradation from an assessment of the 
irreversible entropy produced by operation of the system. 
Equation (2), which states the simple result of the DEG 
theorem, was applied to degradation venues of wear, 
fatigue, and battery ageing. When applied to wear, the DEG 
theorem and Eq. (2) related wear to friction and accurately 
described multiple forms of wear that do and do not obey 
Archard’s wear law. When applied to fatigue, the DEG 
theorem and Eq. (2) accurately described fatigue, for 
reversed bending, torsion, and combinations, and led to a 
method of predicted fatigue life by measuring temperatures. 
Finally, when the DEG theorem and Eq. (2) were blindly 
applied to a system dynamics model of a battery, an 
expression for battery ageing Eq. (8b) was obtained that 
qualitatively agreed with existing observations of Li ion 
batteries. 
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NOMENCLATURE 

Bi degradation coefficient 
C battery capacity (Ah) 
C generalized capacitance 
E internal energy 

F friction force 
-ΔG Gibbs free energy for electrochemical cell 
J  molar flow of lithium ions (mol/sec) 
k wear coefficient 
M number of fatigue cycles 
N normal force 
pi energy of ith dissipative process 
Q heat 
R generalized resistance 
Se entropy flow 
S’ irreversible entropy generated 
S system entropy 
Sf critical entropy at failure 
t time 
T temperature 
w degradation 
W work 
x distance slid 
Z battery internal impedance 
η internal voltage drop in battery 
µ friction coefficient 
ζ phenomenological variable 
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ABSTRACT 

This paper discusses a micro-linear polarization resistance 

(µLPR) sensor modified to perform coating evaluation by 

means of electrochemical impedance spectroscopy (EIS).  A 

circuit model is used with the EIS data to measure solution 

resistance, pore resistance, charge transfer resistance, intact 

coating capacitance, and double layer capacitance.  These 

measurements allow the end user to monitor degradation of 

protective coatings in real-time, through non-destructive 

means.  This is demonstrated through an accelerated aging 

test using a coated metal plate with a modified µLPR 

sensor.  A metal panel made from aluminum alloy 7075-T6 

was coated with 2 mils of an epoxy-based polymer coating 

and 2 mils of high solids polyurethane.  The sensor was 

adhered to the face of the coated panel in a manner that 

allowed the electrolyte solution consisting of 3.5% NaCl to 

flow between the sensor and the coated surface of the panel.  

EIS measurements were acquired every hour for a total of 

35 hours and at the conclusion of the test, changes in key 

parameters within the circuit model identified the initial 

time and mechanism of coating degradation, in this case, 

delamination. 

1. BACKGROUND 

Polymer coatings are commonly applied to metal substrates 

to prevent contact with natural elements that initiate and 

perpetuate corrosion.  This corrosion process requires the 

metal be in contact with oxygen and an electrolyte.  

Protective coating integrity is of utmost importance to 

maximize remaining useful life of equipment and minimize 

costs associated with maintenance and repairs.  

Electrochemical impedance spectroscopy (EIS) provides a 

means of monitoring the present condition of a protective 

coating.  Small defects in the protective coating, if 

undetected and unaddressed, can lead to coating failures, 

thus providing pathways for the electrolyte to reach the 

metal substrate. 

The British Standards Institution's (BSI) Publicly Available 

Specification for the optimized management of physical 

assets defines asset management as the “systematic and 

coordinated activities and practices through which an 

organization optimally and sustainably manages its assets 

and asset systems, their associated performance, risks and 

expenditures over their life cycles for the purpose of 

achieving its organizational strategic plan.”  The motivation 

for effective asset management is driven by owners’ desire 

for higher value assets at less overall costs, thus extracting 

the maximum value from their assets (Engineering, 2012).  

Condition-based maintenance aims to maximize asset value 

by extending the useful life of assets through mitigation of 

unnecessary maintenance actions performed during schedule 

based maintenance strategies.  By providing maintenance 

engineers with information regarding the health of the 

structure, maintenance can be performed on a basis of 

necessity unique to each asset, as opposed to schedule-based 

predictions formed on statistical trends of operational 

reliability.     

 

Protective coatings are the first line of defense against 

corrosion for metal substrates.  Coatings aim to prolong the 

integrity of metal structures by creating a barrier between 

the elements and the metal substrate.  Removing the 

possibility of contact with electrolytic fluid prevents 

electron transfer between the anodic and cathodic portions 

of the metal, which prevents the oxidation-reduction 

reactions that lead to metal loss.  EIS measurements 

evaluate the integrity of the protective coating and are the 

first indication of compromised structural health of an asset. 

The micro-linear polarization resistance (µLPR) corrosion 

sensor presented in this paper, provides insight into the 

health of coated metal structures through non-destructive 

Nicholas Waters et al. This is an open-access article distributed under 
the terms of the Creative Commons Attribution 3.0 United States 

License, which permits unrestricted use, distribution, and reproduction 

in any medium, provided the original author and source are credited. 

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

748



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014 

2 

testing.  In its native configuration, this sensor is capable of 

identifying coating failure through changes in polarization 

resistance and time-of-wetness measurements which is 

further explained in (Brown, 2014).  By measuring changes 

in the electrochemical properties of the coating, EIS is able 

to monitor coating degradation over time.  Coupling EIS 

with linear polarization resistance provides a broader 

assessment of structural and coating integrity by answering 

“why” and “how” failure occurs on susceptible components. 

EIS can be used as a non-destructive method of performing 

coating evaluation in real time.  Impedance values of the 

electrochemical cell are determined by applying a sinusoidal 

voltage at various fixed frequencies and measuring the 

current response.  Impedance is calculated from the 

current’s magnitude and phase response with respect to the 

applied potential across an electrochemical cell.  Typically, 

EIS measurements are represented by either Bode or 

Nyquist plots.  After acquiring EIS data, a circuit model 

representing the impedance of the coating is selected that 

provides the best fit for experimental data.  Once the 

appropriate model is selected, it is possible to extract values 

for model parameters, such as resistance and capacitance.  

EIS provides insight into how each parameter changes by 

the electrochemical properties of the coating as the coating 

degrades over time; this provides insight into the level and 

type of degradation taking place (David Loveday, 2004; 

Gamry Instruments, 2011). 

2. LITERATURE REVIEW 

Coating degradation is a costly problem that many 

industries face.  The best way to minimize costs associated 

with corrosion is to mitigate the effects through preventative 

conservation.  Similar to the metal substrate, the coating 

degrades over time leaving the metal exposed to the 

elements.  Providing service engineers insight into the state 

of their protective coatings is not only critical when dealing 

with valuable equipment, but also in the preservation of 

historical artifacts, where corrosion is taking place on 

priceless historical pieces (Emilio Cano, 2010). 

Proper application of the coating is one of the main factors 

affecting lifetime and performance.  Improper application of 

the coating can lead to poor adhesion to the metal substrate 

which provides pathways for corrosive substances to 

undercut the coating and compromise the coating's ability to 

protect the metal from corrosion.  EIS provides a means of 

monitoring and evaluating the key parameters that change as 

the coating degrades over time, providing the user an 

opportunity to intercept the degradation pathways with 

preventative maintenance strategies (Api Popoola, 2014; M. 

Taqi Zahid Butt, n.d.). 

 

 

3. IMPEDANCE AND EQUIVALENT CIRCUIT FOR COATING 

EVALUATION 

The use of EIS to measure coating degradation relies on 

impedance measurements.  Impedance is a measure of a 

circuit’s ability to resist current and is defined as the ratio of 

the applied voltage to the current.  A small amplitude 

sinusoidal excitation signal is applied across the coating.  

The amplitude of this excitation signal must be low, as the 

simple linear relationship relating resistance to current and 

voltage, shown in Eq. (1), becomes non-linear with more 

complex circuits. 

                  
E

R
I

  , (equation for an ideal resistor)            (1) 

where E is the voltage and I is the current.  In more complex 

non-linear systems, impedance is the metric used to 

represent the circuit’s ability to resist the flow of current.  

By applying a small amplitude excitation potential to the 

electro-chemical cell, it is possible to observe a pseudo-

linear response in the response current which is shifted in 

phase.  This excitation potential is expressed according to 

Eq. (2) 

                                      sin( )t oE E t ,                           (2) 

where 
tE  is the applied potential, Eo is the amplitude of the 

applied potential, and ω is the radial frequency (2ᴨf).  The 

response current is expressed according to Eq. (3) 

                                    sin( )t oI I t   ,                         (3) 

where tI  is the response current, Io is the amplitude of the 

response current, is the radial frequency, and  is the 

phase.  The impedance is then defined as the ratio of the 

applied potential to the response current as shown in Eq. (4) 

                                               t

t

E
Z

I
  .                              (4) 

A potentiostat is used to apply a frequency sweep of the 

potential across the electrochemical cell and measure the 

response current.  These data are then used to calculate the 

resulting impedance.  Data is plotted using a Bode plot 

which displays phase and impedance as a function of 

frequency.  EIS relies on fitting a model to impedance 

values based on an equivalent circuit representation of the 

interrogated electrochemical system.  Impedance values for 

different circuit components are listed below in Table 1. 
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Table 1.  Circuit components and corresponding impedance 

values. 

Circuit Component Impedance ( )Z   

Resistor R   

Inductor J L   

Capacitor 1/ ( )J C   

Where R = Resistance, ω is radial frequency, L is inductance,  

J =    , and C is capacitance. 

For a linear system and circuit components wired in series 

(Figure 1), the equivalent impedance value is calculated 

according to Eq. (5). 

 

Figure 1. Circuit components wired in series. 

                                   1 2 ...eq nZ Z Z Z     .       (5) 

For circuit components wired in parallel (Figure 2), the 

equivalent impedance value is calculated according to Eq. 

(6). 

 

Figure 2. Circuit components wired in parallel. 

                 
1 2

1 1 1 1
...

eq nZ Z Z Z
    .                      (6) 

In order to use EIS to perform coating evaluation, a circuit 

model is used to represent the physical system comprising 

the electrochemical cell.  A coated metal plate is wired as 

the working electrode and is submerged in an electrolyte.  

Reference and counter electrodes are placed in the 

electrolyte as well.  As an alternating potential is applied to 

the working electrode (the coated panel), the metal 

substrate, coating, and electrolyte form a capacitor, whose 

value is referred to as the coating capacitance (Cc).  The 

metal substrate and electrolyte form parallel plates, while 

the coating acts as the dielectric barrier.  An additional 

capacitor is formed when the coating begins to delaminate 

and electrolyte has penetrated the space between the coating 

and the metal substrate.    The electrolyte and the metal form 

the two plates of the capacitor, while a single layer of water 

molecules (Helmholtz Plane) separates the two plates 

forming the dielectric.  This capacitance is referred to as the 

double layer capacitance (Cdl).  The circuit model shown in 

Figure 3 is commonly used to represent metal with 

protective coatings (Loveday, 2004; Mike O'Donoghue, 

2003). 

 

Figure 3. Equivalent circuit diagram for paint used for EIS. 

In the circuit model, Rs is the solution resistance, Rpo is the 

pore resistance, Cc is the intact coating capacitance, Cdl is 

the double layer capacitance, and Rct is the charge transfer 

resistance.  Once the model has been fitted to the data, 

changes in the model's parameters offer insight into the 

health of the coating.  For example a decrease in coating 

capacitance represents deterioration of the coating’s ability 

to shield the metal substrate from the environment.  Another 

example is the pore resistance, which provides information 

on the effectiveness of the coating.  As pores in the paint 

begin to expand over time, the resistance associated with 

these pores decreases.  This parameter provides a general 

indication of paint degradation (Gamry Instruments, 2011; 

K. M. Deen, 2009).  Figure 4 provides a physical 

representation of the circuit model used to interpolate the 

impedance data.    

 

 

Figure 4. Physical representation of the equivalent circuit 

model for damaged coating. 
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4. EXPERIMENTAL RESULTS 

4.1. Test Plan 

Research is currently being conducted using a modified 

µLPR corrosion sensor for EIS measurements.  The first EIS 

test cell is configured as depicted below in Figrue 5. 

 

Figrue 5. EIS experimental setup depicting a coated metal 

panel acting as the working electrode and a two electrode 

sensor connected to the counter and reference electrodes. 

First, a metal panel made from aluminum alloy 7075-T6 is 

coated with 2 mils of an epoxy-based polymer coating and 2 

mils of high solids polyurethane.  The sensor is then 

adhered to the face of the panel with industrial strength 

epoxy.  The bonding agent (industrial strength epoxy) is 

placed on opposing edges of the sensor so as to adhere the 

sensor to the surface of the painted metal plate in a manner 

such that the ambient environment is allowed to rapidly 

diffuse between the sensor and the painted substrate.  The 

coated metal plate is then connected to a potentiostat as the 

working electrode.  Two leads are connected to the sensor; 

one as the counter electrode and another as the reference 

electrode.  A baseline EIS measurement is then taken with 

the sensor and panel in ambient air.  The coated 

panel/sensor configuration is then placed in a solution 

containing 3.5% sodium chloride in deionized water.  

Another EIS measurement is taken immediately after 

submerging the panel/sensor configuration.  EIS 

measurements are then taken every hour following 

submersion in the electrolyte solution.  A circuit model is 

then selected based on the fit criteria between the expected 

and acquired EIS data. 

 
Figure 6.  Singleton corrosion test chamber used to run 

ASTM G85 A5 cyclic fog test. 

Coating evaluation is also currently being conducted using 

the modified µLPR for coated panels in a Singleton 

corrosion test chamber, shown in Figure 6.  A panel coated 

with 4 mils of an epoxy-based polymer coating and 2 mils 

of high solids polyurethane was placed in a Singleton 

corrosion test chamber.  Prohesion testing is being 

performed following the ASTM G85 Annex A5 Dilute 

Electrolyte Cyclic Fog/Dry Test.  This test consists of a 1 

hour fog at 25°C followed by a 1 hour dry-off period at 

35°C.  The electrolyte used for the fog is made up of 0.05% 

sodium chloride and 0.35% ammonium sulfate by mass in 

deionized water. 

4.2. Results 

To test the system’s ability to perform coating evaluation in 

a typical laboratory environment, an experiment was 

conducted.  A metal panel made from AA 7075-T6 

measuring 7.6 cm x 1.91 cm x 0.16 cm was used for this 

accelerated coating evaluation experiment.  Three quarters 

of the panel was coated with 2 mils of an epoxy-based 

polymer coating.  A µLPR sensor was adhered to the face of 

the painted portion of the panel.  The working lead of the 

potentiostat was connected to the uncoated portion of the 

panel.  The counter electrode and reference were connected 

to the µLPR sensor as shown in Figure 7.  A 10 mV AC 

signal operating between 10 mHz and 10 MHz was utilized 

as the interrogation waveform.  The coated panel was 

partially submerged in a graduated cylinder containing 3.5% 

sodium chloride such that only the coated portion of the 

plate was submerged while the uncoated portion of the plate 

and working electrode interface were outside the solution. 
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Figure 7. Photo of sensor and coated panel configuration 

(left) and sensor, coated panel with working electrode, and 

graduated cylinder with panel partially submerged in 

solution of 3.5% sodium chloride (right). 

Data collection was set at one-hour intervals.  The plots 

shown display the changes in Rpo, Cc, Rct, and Cdl over the 

35 hours of data collection for the submerged panel.  Once 

the panel is placed in the solution, the coating begins to 

absorb electrolyte through its pores.  This process causes the 

coating thickness to expand.  As the coating absorbs fluid, 

the dielectric constant for the coating increases, causing an 

increase in coating capacitance, which is observed in the 

first 8 data sets, as shown in Figure 8.  After around 9 hours, 

a drastic drop in Rpo, Cc,  and Rct was observed, indicating 

electrolyte penetrated through to the metal substrate (coating 

failure).  At the time of coating failure it was observed that 

there was an increase in Cdl.  This increase in capacitance 

can be attributed to electrochemical reactions occurring on 

the surface of the metal.  After removing panel from the 

solution, regions of paint delamination were present across 

both faces of the plate. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 

Figure 8. Plots of the pore resistance (a), coating 

capacitance (b), charge transfer resistance (c), and double 

layer capacitance (d) collected at 1 hour intervals. 

5. CONCLUSION 

In this paper, a μLPR sensor was used with EIS for coating 

evaluation.  An accelerated corrosion test was performed on 

a coated metal plate.  EIS data was collected over 35 hours 

which showed a sharp decrease in Rpo, Cc, and Rct and a 

sharp increase in Cdl during the duration of the experiment.  

The data showed failure of the protective coating 9 hours 

into the test, due to the thin coating layer and high salt 

concentration.  Key parameters were evaluated within the 

circuit model to identify the mechanism of coating 

degradation.  Further, this experiment showed the shielding 

present on Analatom’s micro-sensor was sufficient to reduce 

the effects of ambient electromagnetic interference when 

operating outside of a Faraday cage. 

Time [hours] 

Time [hours] 

Time [hours] 

Time [hours] 
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6. FUTURE WORK 

Future work is necessary to further understand the 

relationship between mechanisms of coating failure and key 

modeling parameters.  This will involve operating under 

more stringent conditions, such as in a corrosion chamber 

running the ASTM  B117 profile.  Testing within a 

corrosion chamber presents challenges due to the additional 

electromagnetic interference generated by the chamber and 

the inability to enclose the electrochemical cell within a 

Faraday cage.  Multiple coating types will need to be tested.  

Experiments involving coated metal samples with controlled 

coating defects need to be conducted to attain information 

with regard to the fault propagation rate as well as the radius 

of detection for the µLPR sensor. 
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ABSTRACT 

Redundancy is an effective, high-level solution to the 

requirement for reliable safety-critical systems, but it comes 

at the cost of Size, Weight and Power (SWaP) and reduced 

capability.  A modeling and simulation framework was 

developed to address the need for robust design alternatives 

to redundancy.  Robustness, in our application, is treated as 

the insensitivity of the performance with reference to 

specification.  The necessity to characterize both reliability 

and robustness in the same framework has resulted in a 

time-domain simulation approach to modeling behaviors 

associated with unreliability and a lack of robustness.  The 

incorporation of these features offers a novel insight into 

potential applications of prognostic technology.  Further 

development of this approach has the potential to allow 

designers to choose how risks associated with failures are 

mitigated, by redundancy, robustness, or prognosis. 

By modeling the life of parts, the factors that impact them 

and the resulting behaviors, the observability and 

predictability (even controllability in the case of optimized, 

fault-tolerant, closed-loop control) of faults and failures is 

identified.  Designers can determine which parts of a system 

would benefit from prognostic health management (PHM) 

technologies, adaptive / tolerant features to yield robust 

design, or redundancy based approaches.  The complex 

causality in the models requires a Monte Carlo approach 

analogous to the simulation of fleets of systems; this, 

combined with the ability to simulate systems made from 

new and old parts, can inform strategies for condition-based 

maintenance (CBM). 

We present the mathematical modeling concept and the 

simulation framework which permits comparative 

assessment of reliability, robustness and prognostics.  The 

multi-hierarchical, systems integration aspects inherent to 

the concept make this technique highly applicable to real-

world dynamic systems.  The framework also supports 

statistical, standards based and physics-of-failure 

descriptions of stress, aging, fault and failure behaviors in a 

unified way.  There are challenges to be overcome in 

realizing the benefits of this approach to model-based 

system design.  Issues of model validation, data availability 

and computational burden are recognized and discussed.  As 

we show, these challenges can be overcome to produce new 

design tools providing better products and transparent 

project quality. 

1. INTRODUCTION 

1.1. The Requirement for a Unified Modeling Approach 

Complexity is the arch-nemesis of the systems engineer.  

This has been addressed in a historical context in work by 

Zio (2009), where the need to develop methods for 

integrating dynamics and reliability analysis was 

highlighted. Reliability engineering methods employ 

methods that combat complexity by reducing a system to a 

list of its parts or by offering abstracted representations in 

the form of reliability block diagrams and fault trees. These 

typically have a much greater degree of abstraction than the 

detailed models which describe the dynamic behavior of the 

system, where causal relationships are the topic of interest.   

Mathematical descriptions of system behaviors often take 

the form of differential and algebraic equations (DAEs), and 

comparable representations exist for discrete time, state, 

space, and event systems. Numerical integration methods 

and solvers are used to produce simulated solutions to the 

mathematical system representations. The simulations are 

used for testing of designs with reduced or no physical 

hardware representation of the system. They often represent 

the physical plant for development and testing of software. 

Models of the system dynamics are computationally 

expensive to run and simulations of timescales associated 

with reliability are infeasible.  As a result, reliability 

Nicholas A. Lambert et al. This is an open-access article distributed 
under the terms of the Creative Commons Attribution 3.0 United States 

License, which permits unrestricted use, distribution, and reproduction 

in any medium, provided the original author and source are credited. 
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considerations are omitted save for functionality for fault 

injection.  In large projects and organizations, these starkly 

different modeling modalities are often implemented by 

separate teams, each with separate requirements and tools.  

Each team’s input into the design decision making process 

occurs at different stages in the design of systems and this 

can miss opportunities for whole-system optimization, 

potentially producing sub-optimal solutions. The impacts to 

a high-level, abstracted reliability analysis of low-level 

design decisions made using the detailed dynamic models 

can be poorly communicated, understood or missed entirely 

given the organizational and methodological disparities that 

are inherent in the design of large, complicated systems.  

This issue has been identified and addressed by Siu (1994) 

and discrete event, explicit state-transition and extended 

reliability methods were reviewed; the methods described 

here approach the issue from a starting point of simulation 

of system dynamics.  

1.2.  A Novel Reliability Modeling Method 

The primary focus of this work has been to assess 

robustness.  Robustness is usually treated as a beneficial 

insensitivity of a design to variations in conditions or design 

parameters (for example, variation within manufacturing 

tolerance of component values), where the performance 

against the specification is used in assessing robustness.  In 

this case, however, the question of robustness is with regard 

to a particular instance of a system.  Is a given instance of 

the system design robust?  In answering this, it was 

necessary to produce models of systems that lacked 

robustness.  These models needed to exhibit features of 

variation, aging, degradation and failure in response to 

simulated usage.  The measure of robustness used is also 

closely related to reliability, but rather than reporting the 

statistics of failure, the statistics of specification violations 

are used.   

The incorporation of these aspects of system behavior 

makes it possible to include prognostic technologies.  

Through the mathematical modeling of fault and failure 

behavior that is accurate in its stochastic and deterministic 

properties, the attention of the designer can be focused on 

that which is predictable and where appropriate investments 

on prognostics can be made. 

A number of challenges remain and are associated with 

computational feasibility (in this case of sequential and 

parallel Monte Carlo simulations) and verification and 

validation of modeling assumptions.  This work presents the 

opportunity to unify system design practices by introducing 

time-domain simulation techniques that also serve as 

reliability predictions; the ability to assess robustness and 

prognostics as risk mitigating design features means that 

this topic will be applicable in safety and capability critical 

systems. 

The following sections outline the techniques used for 

modeling and simulating unreliable systems and including 

behaviors from standards, statistical and physics of failure 

based approaches.    

2. TIME DOMAIN MODELING OF UNRELIABLE SYSTEMS 

Time-domain modeling serves as a useful tool for system 

integration.  The behaviors of parts can be defined and their 

roles in the system interpreted, yielding the performance of 

the system as a whole.  The methods presented here are 

intended to be used in the same way.  There are models for 

aging, fault and failure behaviors associated with the usage 

of each part within a system.  Changes that occur in parts 

are then represented in the system performance.  For this 

method to offer some utility, it must be used as a system 

integration tool.  In describing a part, there is little to be 

learned about the part; but by including that part in a 

system, we can learn something about the impact of the part 

behaviors on the system.  We can also derive knowledge 

about system behaviors on individual parts.  It is this causal 

loop that is the subject of investigations using this approach.  

There are two key questions to be answered: 

1. Does the reliability and life performance of one 

part affect the reliability and life performance of 

other parts in the system? 

2. Can knowledge of this be used as the basis for 

predictions about the behavior of individual parts 

and systems? 

The first of these question aims to address challenges 

present in the design of ever more complex systems.  The 

second question is regarding whether an enhanced 

understanding of system reliability behavior can be used to 

formulate effective prognostic solutions.  A feature of the 

approach is that it allows for multiple and various 

representations of unreliable parts and systems to exist in 

the same modeling framework.  

2.1. The Life State Approach 

The key to modeling unreliable systems in a manner which 

fits with numerical integration based simulation techniques 

is to use a method involving a life state.  This life state is a 

measure of the age of a part of a system which is analogous 

to a measure of time; however, the rate at which life elapses 

is linked to usage via a stress factor.  For each part, the life 

state is the underlying variable upon which all age related 

behaviors are dependent.  This is based on the fundamental 

reliability relationship found in MIL-HDBK-217:  

       (1)  

The predicted rate of failure is the product of the base rate 

of failure and the part stress factor.  The part stress factor is 

unitless, but by considering the same equation expressed in 

terms of mean time to failure (MTTF), it can be deemed that 
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the unit of the part stress factor is hours per hour.  It is the 

ratio of the predicted failure time to the base failure time.  

The part stress factor is the rate at which a part accumulates 

age; it is the rate (with respect to time) associated with the 

life state.  This method yields a measure of physical age 

(referred to as “life”) and chronological age as measured in 

elapsed time.   

For complex parts, a vector approach can be taken such that 

a single part can have an n-dimensional life state with each 

state having its own stress factor function and accumulation 

properties.  This feature permits multiple behaviors to be 

modeled. 

Typical application of the part stress factors method requires 

estimation of nominal or maximal usage characteristics and 

operating temperatures.  The life state approach allows for 

usage characteristics to be taken from time domain 

simulation results and integrated numerically with respect to 

time.  Consider the Arrhenius relationship at the heart of the 

part stress approach: 

  

  
   

 
  
   (2)  

M is the state of a chemical reaction process.  If we consider 

the temperature, T, to be a function of time, T(t), then 

numerical integration can be used to simulate the 

progression of the state, M.   

One method for estimating the reliability of a part is to take 

a time averaged rate of life with respect to time and use a 

first-order prediction of when the life would reach the base 

mean time to failure.   A more representative method is to 

re-estimate the part stress distribution in a system as the 

accumulation of stress into life results in changes of the 

physical properties of each of the parts.  The physical 

properties will be referred to subsequently as part 

parameters. 

2.2. Failure and Fault Onset Distributions 

The use of predicted and base rates of failure is indicative of 

the single parameter exponential failure distribution; 

however, many distributions can be used in the analysis of 

reliability and these are supported by the life state approach. 

Probability distributions are used to describe the random 

failure behavior of a population of systems, products, or test 

articles. The occurrence of failure events is typically 

described as a probability density function (PDF), 

cumulative distribution function (CDF), or hazard rate, 

expressed as functions of time.  The life state approach sees 

these expressed as a function of the life state, rather than 

time. 

The use of Bernoulli trials using uniformly distributed 

random numbers and the hazard rate for each distribution 

allows for the occurrence of fault onset and failure events in 

keeping with the distribution.  This can be performed online, 

using numerical integration methods to derive the hazard 

rate, or offline where a set of events are pre-computed as 

crisp thresholds for comparison to a life state.  

     ( ) 
 

(3)  

     ( )   ∫  ( )   
 

 

 

 

(4)  

 ( )  
 ( )

   ( )
 

 

(5)  

Note that for exponentially distributed events, the hazard 

function is constant and the memoryless property is 

preserved in spite of the inclusion of the life state.  

Where fault onsets and failure events are causally linked 

(i.e. the fault leads to the failure), the failure event can be 

associated only with life accumulated after the fault onset 

event. 

Distributions can be continuous functions or discrete, and as 

usual, care must be afforded with numerical integration 

techniques in the case of Dirac and Kronecker deltas. 

2.3. Part Parameters – Failure, Fault and Aging Effects 

Parts exhibit a number of behaviors with respect to time 

including aging effects, faults, and failures. These effects 

are expressed in terms of the part parameters, which 

represent the role of the part within the system.  For 

example, a capacitor can be modeled as having the 

parameters of capacitance, series resistance, and parallel 

conductance. Over the life of the capacitor, the capacitance 

can decrease dielectric degradation. These parameters affect 

the performance of a system with a capacitor. Failure 

effects, for example failing open or short, can be described 

in the part parameters or a new dynamic model without the 

capacitor can be used. 

Part parameters vary in accordance with 4 effects: 

1. Operating environment effects (temperature and 

pressure) – simulated with the system dynamics. 

2. Aging effects – small effects as a result of the 

gradual accumulation of life. 

3. Fault effects – accumulation of life becomes 

manifest in the part parameters in a more drastic 

manner.  

4. Failure effects – catastrophic step change in part 

parameters. 

Operating environment effects can be included in dynamic 

models based on deviations from a set of nominal 

parameters for states conditions. 

Aging effects are usually the result of slow processes, long 

term usage and storage without incident. These can be 
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described as a function of a life state.  Arrhenius approaches 

have been taken (Kuehl, 2010) in estimating variation of 

resistance and this is compatible with our approach.  If the 

part parameter variations must be expressed purely as a 

function of time, then an element of the life state vector 

corresponding to a unity rate of life accumulation can be 

used; that is, the part representation has a built in clock.  For 

example, for parts where there is no known correlation 

between failure and applied stress, but failures are 

distributed as a function of time, this behavior can be 

described with a stress factor equal to one. 

The representation of faults is an extension of the method 

for representing the effects of aging.  Faults are the 

manifestation of accumulated stress in the part parameters 

that occurs after a fault onset event.  The occurrence of a 

fault onset event can be described using the same method as 

for describing failures through the use of distributions.  For 

example, a part accumulates stress into a life state and 

demonstrates the effects of aging, after the occurrence of a 

fault onset event, the part parameters vary according to the 

fault behavior as a function of the still accumulating life 

state. 

Failures are typically represented as the termination of aging 

and fault behaviors resulting in the part parameters taking a 

set of final values as determined by the failure mode. A part 

may have many failure modes, each corresponding to a 

particular set of part parameters. 

2.4. Support for Physics of Failure Techniques 

Modeling underlying parameters – the parameters used to 

represent the part in the dynamics are dependent on some 

underlying physical parameter.  This is in keeping with the 

systems integration approach as it allows for definition of 

parts with internal behaviors – there is scope for self-

similar, systems of systems model architectures.  There is 

no fundamental limit to the level of detail that can be 

included in the mechanics of the through-life behaviors, 

although computational burden may establish practical 

bounds. 

2.5. Stochastic Modeling with Random Walks 

There is considerable literature content on the use of 

Markov chain and other random walk processes to model 

the progression of a part from full health through fault to 

failure. The accumulation of stress into a life state can be 

considered in similar terms.  By use of stochastic integral 

techniques, random behavior can be modeled in continuous 

and discrete time and state.   

The accumulation properties accumulation rate and 

accumulation severity have been defined.  Accumulation 

rate is the probability that stress in any given time step will 

be accumulated into the life state.  The accumulation 

severity is a gain factor that is applied to accumulated stress. 

If the accumulation severity is the reciprocal of the 

accumulation rate, then in the limit as time tends to infinity, 

the average rate of stress accumulation is equal to the 

standards based definition.  The accumulation of a life state 

is illustrated in Figure 1.  It follows that the standard can 

still be applied, whilst permitting the expression of 

stochastic fault progressions.  Taken in combination with 

the ability to describe physics of failure behaviors in the part 

parameters, the framework provides a strong basis for 

including models of different types in a single simulation 

environment. 

 
Figure 1.  Accumulation of a "Life State" 

2.6. System Representations 

System representations must be extended to include the 

reliability and life data necessary to run simulations of 

models on product life timescales.  In the framework, 

systems are described as a collection of parts.  A system has 

the following attributes: 

 A set of parts 

 A dynamic model 

 A set of specifications 

 A set of use-cases 

In typical time-domain simulations, a single part may only 

be represented by a single parameter (e.g. resistance).  Part 

descriptions in this application are considerably more 

involved and should contain: 

 A set of part parameters (observable and latent) 

 A stress factor definition 

 A set of life state accumulation properties 

 Aging functions 

 Fault onset distributions and fault effects 

 Failure mode distributions and effects 

2.7. Simulation Overview 

The simulation uses parallel and sequential Monte Carlo 

approaches.  The sequential part simulates a single instance 

of a system, and the variations that may occur over the life 

of that system.  These variations can be internal variations in 
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part parameters or external factors like usage characteristics 

or operating environment.  The parallel part of the Monte 

Carlo allows for variation in the initial conditions, which 

may be limited to the seed for random number generation or 

may include manufacturing tolerance or build 

configurations (which may include nominally identical 

systems that have differing part replacement histories).  The 

steps in the simulation loop used in the sequential Monte 

Carlo are shown in Figure 2. 

 

 

Figure 2.  Simulation Steps 

 

The numerical methods employed in running the simulation 

reuse and reinterpret the time series results from the 

simulation of the system dynamics in determining the 

amount of stress and life accumulated by the system.  Only 

when the system is deemed to have changed sufficiently are 

the dynamic responses of the system re-simulated. 

2.8. Specification Expression and Evaluation 

In the assessment of robustness, aging and failures are 

simulated.  The performance of the system is determined by 

measurement of some system properties against a set of 

rules.  These properties can be time-domain simulation 

results, frequency domain transformations of simulation 

results or expressions formed from the set of available part 

parameters.  A specification in the context of the framework 

is defined as: 

<expression><operator><value><condition> 

Where the expression contains the abovementioned system 

properties, the operator is a relational operator {=, ~=, >, 

>=, <, <=}, the value is a numeric or Boolean constant (but 

can also be another expression) and the condition is a 

constraint on the evaluation of the specification (evaluate 

subject to X being true, for example). 

2.9. Use Cases 

Use cases are the inputs to the dynamic model which 

indicate how the system is used.  Each of these can be given 

a weighting, or in a more elaborate scheme, a usage 

sequence or schedule can be used over the life of the 

system.  The set of use cases should describe in a complete 

sense the ways that the system will be used and the loads 

that the system will experience. Representations of the 

operating environment and ambient temperatures have been 

included. 

2.10. Prognostics 

By using techniques that take measurements of part 

parameters, either directly or by inference from system 

dynamic states or other parameters, prognostics aims to 

predict the time remaining before the system (or a part 

thereof) reaches the end of its life.  Given the nature of the 

random behaviors incorporated into the simulation of 

system lives, and the nature of the inference algorithm, this 

prediction will have inaccuracies which can be classed as 

type I or type II errors: 

 Type I (False positive) error:  Prognostics falsely 

indicate imminent failure, system taken out of service 

to avoid failure effects resulting in a period when 

specifications are not met. 

 Type II (False negative) error:  Prognostics fail to 

indicate imminent failure, failure effects occur as they 

would have without prognostic. 
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2.11. Reliability, Robustness and Prognostics Assessment 

A feature of the method is the comparative assessment of 

reliability, robustness and prognostic efficacy.  Given the 

inclusion of fault and failure behavior, sets of system 

specifications and available prognostic techniques, the 

simulation results will indicate: 

 the distribution of failures in time and their effects (a 

reliability analysis) 

 the performance of the system with regard to the 

specifications over the range of part parameters (a 

robustness analysis) 

 rates of false positive and false negative errors for the 

prognostic technique 

3. AN RLC EXAMPLE 

A resistor-inductor-capacitor (RLC) circuit serves to 

demonstrate clearly the essential features of the framework, 

without the distractions of a complex system.  This example 

was chosen for its simplicity and for the fact that it calls out 

readily programmable sections of MIL-HDBK-217.  The 

specifications and part parameters were selected arbitrarily, 

but such that simulation times were short.  The inclusion of 

a thermal model was important for demonstrating coverage 

of a range of the stress factors.  This example is not for the 

purpose of offering insight into the behavior of RLC 

circuits; the objective is to illustrate the incorporation of 

reliability behaviors in a time-domain robustness 

simulation.  This example demonstrates the type of output 

data available and the reader is encouraged to envisage 

potential applications of the technique.  

3.1. The System 

The system was modeled using MATLAB/Simscape.  Joule 

heating of each element was used in the thermal model.  The 

thermal model was represented as a Cauer topology 

equivalent circuit.  To enable calculation of the part stress 

factors, the model was required to output voltage, current 

and temperature time series.  A schematic of the system is 

shown in Figure 3. 

 

Figure 3.  RLC circuit with thermal casings 

3.2. Parts 

Each part had a set of properties, parameters, aging 

functions and failure modes.  Each part had exponentially 

distributed failure modes of open and short.  

3.3. The Specifications 

The specification applied to the circuit referred to the -3dB 

crossover frequency, which was calculated from the part 

parameters.  The upper and lower limits for this frequency 

were defined as 2.340 and 2.436 radians per second, 

respectively. 

3.4. System Usage 

The use-cases for the model included sinusoidal and square 

wave input time series, and a range of ambient temperature 

and operating environment profiles. 

3.5.  Results 

The results shown here are from a parallel Monte Carlo 

simulation where no variation was applied save for the 

random number generator seed. One hundred instances of 

the system were simulated with identical initial conditions 

and no through-life variation applied to the usage.   

Figure 4 shows the variation in the characteristic frequency 

of the circuit as calculated from the part parameters.  The 

vertical spikes are variations due to failure of a part - the 

distribution can be observed to be the result of constant 

hazard rate failures.  The shaded regions correspond to the 

specification limits.  There are breaches of the upper 

specification limit due to the aging of the parts. 

 

Figure 4.  Through-life variation of frequency response 

characteristics 

 

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

759



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014 

7 

A selection of life states are shown in Figure 5.  The 

randomized accumulation can be seen in the traces.  The 

distributions of fault onset and failure are not representative 

as these life states were chosen for clarity of the graph. 

The key aspect to these results is not the prediction 

regarding the reliability or robustness of the circuit, but that 

these data are the outputs of the same simulation. 

 

Figure 5.  A subset of accumulated stress profiles 

4. DISCUSSION 

The results show the connection between simulation of the 

system dynamics, failures in the system and the adherence 

to the specifications for the system.  The introductory 

example shows the type of outputs available using the 

framework; an enhanced demonstration would show the 

impact of variation of usage and operating environment on 

the reliability and robustness characteristics. 

This following addresses advantages and disadvantages of 

the approach; it identifies key beneficial features and 

highlights areas which present new challenges in light of the 

novel techniques. 

Advantages: 

The incorporation of multiple types of part description into a 

model that captures causal relationships in a system yields 

an approach that can unify the analysis of a system design.  

This allows for trades between features of designs that were 

previously assessed by disparate means; reliability and 

robustness in particular.  The unified analysis is well suited 

for complex systems.  Application of variation in usage, 

operating environment and internal system states can yield 

variation in the reliability performance of the system and 

dominant system failure characteristics.  

Models assessed against encoded specifications (and 

requirements) permits a closed loop design verification and 

validation methodology.  Specification adherence in the face 

of applied variation forms the basis for an assessment of 

robustness.  It can be argued that if the system design 

remains within the specification in the event of a failure, 

then the risk associated with the failure is mitigated by 

means of robustness.  By the inclusion of the causal 

relationships of system parts, the impact of the long term 

presence of undetected degradations and failures to other 

elements of the system can be assessed.  For example, if part 

A fails but the system remains in specification in the 

immediate term, is the long term performance of the system 

impacted due to increased stress on part B?  

Further benefits are anticipated if this approach were 

coupled with executable specification modeling.  This 

would permit early lifecycle design validation. 

Other Considerations: 

There is potentially a high computational expense of Monte 

Carlo simulations. Typical parallelization mitigations apply, 

but there are other mitigations that may yield substantially 

beneficial performance results: 

 A database containing results for individual 

subsystems or units could allow for storage and 

reuse of costly simulation results.   

 The consistent approach to modeling the many 

different types of behavior means that the 

execution of the simulation can be highly 

optimized. 

It is recognized that the approach sets a high requirement for 

a large quantity of data about the parts of the candidate 

design.  This may be offset with the development of 

libraries of standard parts, such that a design tool could 

make satisfaction of this requirement less challenging.  

Object oriented approach supports development of a library 

based design tool. 

There is also a substantial outstanding burden to validate the 

approach against real world data, existing models and 

results from accelerated life testing.  To that end, the use of 

the part stress approach is intended to be mathematically 

consistent with data in the standard, but the approach is not 

limited to standards based approaches.  In the spirit of 

reliability standards, the methods demonstrated here are for 

the purpose of directing the attention of system designers at 

a stage where design decisions are critical. 

Certain types of system may not be suitable for this 

approach and further work is required to determine the 

limits of applicability of the methods described here.  

Chaotic behavior, where the system state trajectories are 

highly sensitive to small deviations and variations from 

nominal can be simulated, however the computational 

burden may be well beyond reasonable limits. 
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5. CONCLUSION 

An analytical framework to support systems-level decisions 

for robust performance has been presented.  The “life state” 

method for time-domain simulation of unreliable systems 

has been explained.  The methodology allows trade-space 

analysis on the appropriate use of prognostics to minimize 

the Size Weight and Power (SWaP) of redundant systems 

that otherwise would be needed.  Significant potential 

benefits have been highlighted, yet further work is required 

to enhance demonstrations of the techniques described.  It is 

anticipated that the development of these ideas will allow 

for better optimized designs, more unified analyses and a 

common approach to the design of reliable, robust and 

prognostic enabled systems. 
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ABSTRACT

Non destructive testing methods are often used in order to de-
tect and classify structural flaws. The detection of structural
flaws is useful for maintenance. In this paper we propose to
classify flaws in ferromagnetic materials by measuring Eddy
currents. Our approach consists of two steps. First, we use
a system identification algorithm to find a dynamical system
which describes the data. Then, we use the parameters of this
dynamical system as a feature vector and we use support vec-
tor machines in order to classify the various cracks. We test
our method on a well-known benchmark.

1. INTRODUCTION AND MOTIVATION

Non destructive testing methods are used for checking the
presence of structural flaws (cracks, deformations, etc.) of
materials without causing damage. This is useful for pre-
dictive maintenance. The most important methods for non-
destructive detection of structural flaws are the following: ul-
trasonic (Cantrell & Yost, 2001), acoustic emission (Madaras,
Prosser, & Gorman, 2005), terahertz ray (Němec, Kužel, Garet,
& Duvillaret, 2004), X-ray (Elaqra, Godin, Peix, R’Mili, &
Fantozzi, 2007), thermal (Clark, McCann, & Forde, 2003),
optical method (Jie, Siwei, Qingyong, Hanqing, & Sheng-
wei, 2009) and eddy currents (EC) (Smid, Docekal, & Kreidl,
2005).

In this paper, we propose using Eddy currents for detecting
flaws. Methods based on measuring Eddy currents are pop-
ular, because measuring Eddy currents is cheap and it allows
detecting clogged defects and to classify cracks. For any
classification method, feature extraction is one of the critical
steps. For Eddy currents, several feature extraction methods
exist in the literature. (Jo & Lee, 2009; Song & Shin, 2000;
Liu et al., 2013) use maximum amplitude and phase angle or

Blaise Guépie et al. This is an open-access article distributed under the terms
of the Creative Commons Attribution 3.0 United States License, which per-
mits unrestricted use, distribution, and reproduction in any medium, provided
the original author and source are credited.

width of defect signal; (Oukhellou, Aknin, & Perrin, 1999;
Smid et al., 2005) focus on the Fourier or wavelets transform
parameters; (Lingvall & Stepinski, 2000; Ye et al., 2009) use
principal component analysis or its kernel version.

In comparison to the existing methods for feature extraction,
the main novelty of the proposed method lies in using param-
eters of dynamical systems as feature. This represents a novel
application of system identification techniques to fault detec-
tion and health monitoring of ferromagnetic materials based
on Eddy currents.

Our approach is based on two steps. First, using the measured
data, we find a parametric dynamical model. This model rep-
resents current impedance values of eddy currents as function
of past impedance values. We use a system identification al-
gorithm for identifying the model parameters based on mea-
sured data. Thus, the obtained parameters serve as feature.
We assume that each flaw corresponds to an unique parame-
ter vector. We then use support vector machines to compute
a classifier on the extracted parameter space.

The experimental evaluation shows that our approach gives
good results.

The paper is organized as follows. Section 2 is devoted to the
problem statement. Section 3 presents the data pre-processing
step including denoising and re-sampling. A new method of
feature extraction based on dynamical systems identification
is explained in Section 4. The Support Vector Machines op-
erating is briefly described in Section 5. Section 6 shows an
example of classification of flaws using Eddy currents . Some
conclusions are drawn in Section 7.

2. PROBLEM DEFINITION

Eddy currents are used in many applications of non destruc-
tive testing. When a conductive material is within a time-
variable magnetic field created by a coil subjected to an al-
ternative current, induced Eddy currents are developed inside
the material without altering its characteristics. When an in-

1
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homogeneity, a change in geometry or a flaw is present in the
material, variations in the phase and magnitude of these eddy
currents can be monitored, as they lead to a change of the coil
impedance. This is the principle of material inspection by
Eddy currents. Sensors travel across the surface of the mate-
rial and the variations of the coil impedance are acquired and
compared with an impedance reference. Then, in presence of
a crack, the impedance data varies as function of sensor or
material displacement, following a trajectory into a complex
plane where abscissa is the resistance and the reactance is the
ordinate.

By firstly considering aluminum structures, the goal of the
method presented in this paper is to propose to automati-
cally classify the type of defaults or cracks using as input the
impedance data trajectory. To present the method, an exist-
ing database 1 composed of Eddy currents signatures from
aluminum aircraft structures has been used. The database
is composed of twelve types of crack, characterized by both
penetration angle into the material and depth of penetration.
Figure 1 shows characteristics of all the twelve cracks. For
example, the first crack type is defined by 1.5mm of depth
and 90◦ of penetration angle.

Figure 1. Aluminum sample with machined notches of dif-
ferent penetration angles and depths.

For each crack, acquired impedance data are complex discrete
time series

z̃(k) = x̃(k) + jỹ(k),

where the resistance curve x̃(k) and the reactance curve ỹ(k)
are known. Each type of crack is scanned 20 times by a coil.
This leads to 20 impedance trajectories. Figure 2 illustrates

1freely available on the website : http://wireless.feld.cvut.cz/diagnolab/node/16

different impedance trajectories for several types of crack.

Figure 2. Impedance trajectories of four crack types.

The originality of this paper lies in classifying crack types us-
ing the parameters of temporal models that fit the impedance
trajectories. Each component of the trajectory (resistance and
reactance) will be considered as time series ARX model where
its parameters will be used to classify the crack type. So, the
main steps of the proposed method are :

• from each inspection, extract sequences x̃(k) and ỹ(k),
• estimate θx and θy the parameters associated to the time

series models,
• knowing the set of θx and θy , corresponding to the whole

inspection database, build the classifiers.

Before explaining in detail the estimation and the classifica-
tion steps, it is worth introducing remarks on the data prepro-
cessing step.

3. DATA PREPROCESSING

First, in order to reduce noise impact, resistance x̃ and reac-
tance ỹ are filtered. A standard median filter is used. For
k ≥ 1, the median values
x̌(k) of {x̃(k − Lx + 1), · · · , x̃(k + Lx − 1))} and
y̌(k) of {ỹ(k − Lx + 1), · · · , ỹ(k + Lx − 1))} respectively
replace x̃(k) and ỹ(k) where 2Lx − 1 end 2Ly − 1 are the
prescribed length of the median filter window.

Moreover, collected data come from a manual scanning. This
implies that the scan speed varies over time and variations
impact the impedance curve shape for the same crack. To re-
duce the effect of variate scanning speed, data {x̌(k)}Mk=1 and
{y̌(k)}Mk=1 are re-sampled in order to get the same number

2
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of points for each crack.These filtered and re-sampled data
{x̂(k)}Nk=1 and {ŷ(k)}Nk=1 will serve as the second learning
dataset.

Each type of cracks is characterized by the following two
properties: “depth” and “angle”. Depth refers to the depth of
the crack, and angle refers to the angle formed by the crack
and the horizontal axis. That is, each crack is identified with
a pair of numbers (depth, angle), where depth denotes the
depth of the crack and angle denotes the angle of the crack.
Hence, we can classify cracks as follows. First, we construct
a classifier which determines the angle associated with each
crack based on measurement data. In this way, we obtain
several groups of cracks, each group representing cracks with
the same angle. Second, for each angle α, we construct a
classifier which determines the depth of a crack whose angle
equals α. This classifier will use measurements to determine
the depth. Note that the second classifier is supposed to dis-
tinguish only cracks with the same angle. Figure 3 shows
curves of impedance values for cracks with 60◦ af angle and
1.5mm, 1mm, 0.7mm, 0.4mm of penetration depths. Each
curve is a finite collection {(x̂(k), ŷ(k))}Nk=1 of data points,
where x̂(k) is the real part and ŷ(k) is the complex part of
ẑ(k), the filtered and re-sampled impedance value measured
at time step k. It can be seen from the data that the shapes
of the four cracks are similar but some are larger than other.
Therefore, we can assume that the depth does not have impact
on the shape of the curve except its magnitude. For this rea-
son, we will apply a normalization step in order to find crack
angles. That is to say, before computing the first classifier,
we will divide the data points by a constant. Thus, the first
dataset is composed of

{(x(k), y(k))}Nk=1 =





(x̂(k), ŷ(k))

max
k∈{1,··· ,N}

√
x̂2(k) + ŷ2(k)





N

k=1

. Note that for the computation of the second classifier, we
will use the original data points {(x̌(k), y̌(k))}Nk=1, since the
crack’s depth influences the magnitude of the data points and
thus normalization could lead to loss of information.

4. FEATURE EXTRACTION BASED ON DYNAMICAL SYS-
TEMS

As we have seen before, each crack observation is composed
of time series data points arising from Eddy currents measure-
ments. It can be represented as curve in the complex plane,
since each impedance value is a complex number. However,
such a representation discards the temporal dependence be-
tween various data points. For this reason, in order to com-
pute classifiers, we will use the time series {x(k)}Nk=1 and
{y(k)}Nk=1. We will use these time series to compute a dy-
namical system whose input-output behavior is consistent with
them. We assume that each group of flaws (i.e, each angle

Figure 3. Cracks with 60◦ of angle and four penetration
depths.

of penetration) determines an unique pair of parameters vec-
tors, where each parameters vector corresponds to a dynam-
ical system. It is worth noting that each pair of parameters
vectors is extracted from one crack observation. Thus, pa-
rameters vectors are independent from each over. The first
dynamical system models the resistance:

x(k) = θTx φx(k) + ξx(k), (1)

and the second one models the reactance:

y(k) = θTy φy(k) + ξy(k), (2)

where
φx(k) = [x(k − 1), · · · , x(k − nax ), y(k − 1), · · · , y(k − nbx ), 1]

T ,

φy(k) =
[
y(k − 1), · · · , y(k − nay ), x(k − 1), · · · , x(k − nby ), 1

]T
,

(nax , nbx) and (nay , nby ) are models orders,{ξx(k)}k≥1,
{ξy(k)}k≥1 are independent identically distributed random
sequences and θx, θy are the associated parameters vectors.

We assume that for each crack, the pair of parameters vectors
(θx, θy) determine the angle of the crack. More precisely, we
assume that these pairs are close when cracks belong to the
same group, i.e, the penetration angle is the same.

In this paper, we will use the Recursive Least-Squares method
(abbreviated by RLS) as linear system identification algorithm
because its recursive form is exact comparatively to the Least
Mean Squares (LMS) and then, it converges more quickly to
the solution. The RLS algorithm was proposed to determine
the parameter θ of the equation

w(k) = θTψ(k) + ξ(k) (3)

3
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from finitely many measurements {w(k), ψ(k)}Nk=1. Note
that both (1) and (2) are of the form (3) with a suitable choice
of θ(k), ψ(k), ξ(k) andw(k). Below we describe the RLS al-
gorithm. We will follow the presentation of (Ljung & Söder-
ström, 1983). Let I be the identity matrix and let P (0) = σI
be the initial auto-correlation matrix of data. For each new
observation (w(k), ψ(k)), the update of(
θ̂T (k − 1), P (k − 1)

)
is given by:

ξ(k) = w(k)− θ̂T (k − 1)ψ(k),

θ̂(k) = θ̂(k − 1) +
ξ(k)P (k − 1)ψ(k)

α+ ψ(k)TP (k − 1)ψ(k)
,

P (k) = α−1P (k − 1)

[
I − ψ(k)ψ(k)TP (k − 1)

α+ ψ(k)P (k − 1)Tψ(k)

]

(4)
where α ∈ [0, 1] is the forgetting factor.

5. CLASSIFICATION OF CRACKS

The goal of this part is to identify the class membership of
each crack. The classification is in two step. The first one is
for discriminating the penetration angle into the material and
the second one is for selecting the penetration depth. Sev-
eral methods exist in classification theory. For labeled data,
the Support Vector Machines (SVM) developed in (Vapnik,
2000) achieve excellent performance according to (Caruana
& Niculescu-Mizil, 2006; Khelil, Boudraa, Kechida, & Drai,
2005). The following lines briefly explain SVM principle.

5.1. Two classes SVM

The SVM has been firstly used to separate two classes. Its
principle is to maximize the separation margin ; the margin
being the distance between the closest observations and the
separator.

Consider a given training set {xk, yk}1≤k≤N where the ob-
servation xk ∈ R and the class variable yk ∈ {−1, 1}. Sup-
pose that data are linearly separable, i.e, there exists a linear
classifier (w, b) such as

{
wTxk + b ≥ +1 if yk = +1
wTxk + b ≤ −1 if yk = −1

. (5)

The problem of finding the separator which maximizes the
margin is equivalent to :

min
w,b

1

2
〈w,w〉

constraint to yk(wTxk + b) > 1, 1 ≤ k ≤ N,
(6)

where 〈, 〉 is the dot product.

Generally, data are not separable. In this case, the margin of
some observations are allowed to be less than one. Slacks

variables εk ≥ 0, 1 ≤ k ≤ N are introduced in order to solve
the problem. The optimization problem becomes

min
w,b,εk

1

2
〈w,w〉+ C

N∑

k=1

εk

such that
{
yk(wTxk + b) > 1− εk
εk ≥ 0

for 1 ≤ k ≤ N,
(7)

where C is a positive real constant for determining the toler-
ance of the SVM to the poorly separated observations. The

solution are w =

N∑

k=1

γkykxk and b = b0 where γk ≥ 0 for

1 ≤ k ≤ N and b0 are obtained by solving the dual formula-
tion of (7). Then, the decision function is

f(x) = sign

(
N∑

k=1

γkyk 〈xk, x〉+ b0

)
. (8)

When datasets are linearly non-separable, the trick is to project
them on a high-dimensional feature space by using a nonlin-
ear map ψ(·) such as the projections are linearly separable.
Thanks to the Mercer’s condition (Mercer, 1909), the calcula-
tion of the dot product 〈ψ(xk′ ), ψ(xk)〉 which often requires
a lot of computational resources is replaced by the calculation
of the kernel K(xk′ , xk). Two kernels are widely used: the

Gaussian kernel K(xk′ , xk) = exp

(
−‖xk′ − xk‖

2

2σ2

)
and

the homogenous polynomial kernelK(xk′ , xk) = 〈xk′ , xk〉
d,

where σ an d are tuning parameters.

In this paper, these parameters are selected as those minimize
the leave-one-out cross validation error whose the procedure
consists of:

• splitting the data set of size k into k smaller subsets
• a model is trained using k-1 subsets as training data
• the resulting model is validated on the remaining subset
• the previous both lines are repeated k times.

After using a kernel, the decision function (8) becomes

f(x) = sign

(
N∑

k=1

γkykK (xk, x) + b0

)
. (9)

5.2. Multi-class SVM

The mutli-class SVM is an extended version of two classes
SVM. Here, it is supposed that the number of classes is greater
than two.

Here, the One Against One SVM is used for classifying more
than two classes. This approach is very intuitive. It consists
of making several classifiers in order to compare pairs classes.

4
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Thus, for classifying a dataset between M classes, we need to

make
M(M − 1)

2
separators (Moreira & Mayoraz, 1998). A

majority vote across the classifiers is applied to classify a new
observation.

In brief, the global crack classification procedure is given by
algorithm 1.

6. EXPERIMENTAL RESULTS

In order to test the reliability of our method, a database 2 com-
posed of Eddy currents signatures from aluminum aircraft
structures is used. In this database, there are twelve types
of crack. Each type of crack is characterized by the angle and
the penetration depth, is recorded 20 times. Figure 1 shows
characteristics of all the twelve cracks.

The first classification task is devoted to the penetration an-
gle. Four groups are created from the twelve types of crack.
The first group contains 80 cracks with 90◦ of angle and 1.5,
1, 0.7, 0.4 mm of penetration depth. The second group con-
tains 80 cracks with 60◦ of angle and 1.5, 1, 0.7, 0.4 mm of
penetration depth. In the third group, there are 20 cracks with
45◦ of angle and 1.5 mm of penetration depth. The last group
contains 60 cracks with 30◦ of angle and 1.5, 1, 0.7 mm of
penetration depth.

The parameters used in the first part of classification algo-
rithm (see algorithm 1) are the following. The median filters
widows size are Lx = 30 observations and Ly = 30 obser-
vations. The fixed number of observations is N = 300. The
re-sampling factor is factor = N/M where M is the curve
number of observations. The Recursive Least Squares for-
getting factor is α = 9.99 × 10−1, its value for the initial
auto-correlation matrix is σ = 10 and its initial parameters
θx(0), θy(0) are randomly selected.

Each crack observation is composed of time series data points
arising from Eddy currents measurements. For discriminating
different cracks, our procedure consists to extract represen-
tative parameters vector from each crack observations. The
extracted parameters vectors are independent from each over.
Several values of order are tested for both dynamical systems
identification (1) and (2) in order to select the model param-
eters. The values which minimize the least squares errors are
(nax , nbx) = (0, 2) and (nay , nby ) = (0, 2). Figure 4 shows
estimations of measured resistance and reactance. Both esti-
mated curves obtained from two order dynamical systems are
close to real curves.

It is worth nothing that the goal of our extracted parameters
is not exactly to predict the real curves of resistance and re-
actance. The goal of prediction is to evaluate whether the
extracted parameters vector explains the dynamic of the con-
sidered time series. The evaluation step allows defining the

2Free available on the website : http://wireless.feld.cvut.cz/diagnolab/node/16

Algorithm 1 Procedure of cracks classification

1: Have Eddy currents measuring data
2: Removal of edge data: a set of uninformative data (null

data) to the right of each curve is deleted
3: Data filtering: set the windows sizes Lx and Ly of me-

dian filters
4: Duplication of the dataset {(x̌(k), y̌(k))}Mk=1 : the 1st

dataset will be processed for discriminating angle and the
2nd dataset will be used for discriminating depth without
further processing

5: Re-sampling of resistance and reactance curves extracted
from the 1st dataset : set the re-sampling factor factor
in order to obtain the same number of observations N in
each curve; {(x̂(k), ŷ(k))}Nk=1 is the obtained dataset.

6: Normalization: resistance and reactance curves extracted
from the 1st dataset are divided by the magnitude:

{(x(k), y(k))}Nk=1 =





(x̂(k), ŷ(k))

max
k∈{1,··· ,N}

√
x̂2(k) + ŷ2(k)





N

k=1

7: Extraction of dynamical system parameters vectors
(θx, θy) from {(x(k), y(k))}Nk=1 and the Recursive Least
Squares algorithm:
• set the forgetting factor α ∈ [0, 1], the value σ for

the initial auto-correlation matrix of data P (0) =
σI , and (θx(0), θy(0)) the initial parameters vectors

• for i ∈ {1, · · · , N} do
ξx(k)← x(k)− θTx (k − 1)φx(k),

θx(k)← θx(k− 1) +
ξx(k)P (k − 1)φx(k)

α+ φx(k)TP (k − 1)φx(k)
,

P (k)← P (k − 1)

α

[
I − φx(k)φx(k)

TP (k − 1)

α+ φx(k)P (k − 1)Tφx(k)

]

• end for
• find θy as in the above lines

8: Using a multi-class Support Vector Machines for de-
termining angle:
• set θ the concatenation of θx and θy
• the dataset of θ is separated in two parts. the first

part will be used for training and the second part for
evaluation algorithm performance

• set the kernel, the kernel parameter and the positive
constant of tolerance C

9: Using a multi-class Support Vector Machines and the
2nd dataset {(x̌(k), y̌(k))}Mk=1 for determining the depth
among depths belonging to the previously found angle
group:
• calculation of the magnitude mg :

mg = max
k∈{1,··· ,M}

√
x̌2(k) + y̌2(k)

• the subset of the 2nd dataset containing magnitudes
of the previously found angle is used for training
and the second part of data used in step 8 is used for
the evaluation

• set the kernel, the kernel parameter and the positive
constant of tolerance C

5
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quality of extracted feature so that this one could be used to
the second step. The assumption is that whatever the type of
crack, the used model structure is fixed. Then, only the pa-
rameter of the identified model will be used to characterize
the type of crack.

Figure 4. Estimation of resistance and reactance from two
order dynamical systems model.

For each crack data recorded, the pair of extracted parameters
vectors (θx, θy) belongs to R3 × R3. Figures 5 and 6 show
these parameters in two three-dimensional spaces. It can be
seen that the four groups are well separated. Before classify-
ing, parameters θx and θy are concatenated. The new vector
from this concatenation θ belongs to R6.

The One Against One SVM with a Gaussian kernel is used
for the classification. The pair (σ,C) of the kernel param-
eter and the constant of tolerance are searched into a grid[
10−5, 104

]
×
[
10−5, 104

]
containing 100 equidistant pairs.

The selected pair (σ = 10, C = 10) is that minimizes the miss-
classification error rate after using leave-one-out cross vali-
dation. The minimum of the miss-classification error rate is
equal to 1.25%. Tables 1 shows the confusion matrix of the
One Against One SVM. Thus, we can say that our approach
has a good classification performance with respect to the pen-
etration angle into material.

In order to evaluate the efficiency of our classification proce-
dure, we are going to realize the classification with extracted
parameters obtained by a Principal Component Analysis ap-
plied on Fourier descriptors (FD-PCA). The FD-PCA proce-
dure consists firstly to extracted Fourier descriptors from our
crack observations. Discrete Fourier descriptors are defined

as

df(p) =
1

N

N∑

k=1

z(k) exp (−j2πp(k − 1)/N), p = 1, · · · , N

After the calculation of the discrete Fourier descriptors for
each crack observation, the most representative descriptors
are selected by using Principal Component Analysis. Three
complex descriptors are chosen and these ones represent 93%
of the total variance. By using One Against One SVM and
the leave-one-out cross validation, the miss-classification er-
ror rate is equal to 7.5%. Tables 2 shows the confusion matrix
of the classification based on the FD-PCA procedure.

It can be seen that our extraction procedure based on dynam-
ical systems combined to SVM gives better results than the
FD-PCA procedure combined to SVM for the same number
of extracted parameters (6 real parameters for the first one
and 3 complex parameters for the second one). Thus, our
classification algorithm is efficiency and promising.

Figure 5. Illustration of the parameter θx for the four crack
groups.

Table 1. Confusion matrix of the One Against One SVM.

Predicted Group
Actual Group Group 1 Group 2 Group 3 Group 4

Group 1 80 0 0 0
Group 2 0 80 0 0
Group 3 0 0 19 1
Group 4 0 1 1 58

The second step of classification consists of discriminating
the penetration depth for cracks with the same penetration

6
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Figure 6. Illustration of the parameters θy for the four crack
groups.

Table 2. Confusion matrix of the One Against One SVM ap-
plied on the FD-PCA feature extraction.

Predicted Group
Actual Group Group 1 Group 2 Group 3 Group 4

Group 1 77 3 0 0
Group 2 8 71 1 0
Group 3 0 2 17 1
Group 4 0 1 2 57

angle. To do this, the second dataset, i.e, without normaliza-
tion is used. Figures 7 shows the second classification step in
group 1. Similar figures are obtained for groups 2 and 4. For
cracks classified in group 3, there is not a second step because
the penetration depth is unique (1.5mm). According to this
figure, recorded data can be well separated by hyperplanes.
The One Against One SVM with a Gaussian kernel is used for
the three classifications in the second step. As we previously
mentioned, the pair (σ,C) of the kernel parameter and the
constant of tolerance are searched into a grid

[
10−5, 104

]
×[

10−5, 104
]

containing 100 equidistant pairs. The selected
pairs of kernel parameter and constant of tolerance of group 1,
2 and 4 are receptively (σ = 1, C = 1), (σ = 0.1, C = 0.1)
and (σ = 0.1, C = 0.1). The miss-classification error in step
two, i.e for the three classifications is null. In other words,
according to available data, if a crack is classified in the right
group (ie, if the right angle is selected), the right depth is au-
tomatically selected. Hence, the global miss-classification er-
ror is equal to the first step miss-classification (approximately
equal to 1%).

Remark.

The previous classification uses Gaussian kernel. However,
when Gaussian kernel is replaced by homogenous polynomial
kernel respectively with parameters (d = 3, C = 10−3), the
same miss-classification error is obtained. Our classification
seems robust with respect to the selected SVM kernel.

Figure 7. Impedance magnitude of the first group records.

7. CONCLUSION

This paper addresses the problem of classifying cracks by us-
ing measurements of Eddy currents. The paper proposes a
new approach for cracks classification which uses dynamical
systems. The parameters of these dynamical systems form
the feature space. The parameters vectors are found from the
measured data by using an algorithm from systems identifi-
cation. The classification is done in two steps. The first one
is to group cracks according to theirs penetration angles into
the material. The second one is to group them according to
penetration depths. Our method is evaluated on a particularly
challenging benchmark, for which the cracks are more dif-
ficult to classify due to the variation of the scanning speed.
After using multi-class SVM for both steps classification, the
miss-classification error is approximately equal to 1%. This
means that our approach is efficiency and promising.
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Němec, H., Kužel, P., Garet, F., & Duvillaret, L. (2004).
Time-domain terahertz study of defect formation in
one-dimensional photonic crystals. Applied optics,
43(9), 1965–1970.

Oukhellou, L., Aknin, P., & Perrin, J.-P. (1999). Dedicated
sensor and classifier of rail head defects. Control Engi-
neering Practice, 7(1), 57 - 61.

Smid, R., Docekal, A., & Kreidl, M. (2005). Automated
classification of eddy current signatures during manual
inspection. NDT & E International, 38(6), 462–470.

Song, S.-J., & Shin, Y.-K. (2000). Eddy current flaw char-
acterization in tubes by neural networks and finite ele-
ment modeling. {NDT} & E International, 33(4), 233
- 243.

Vapnik, V. (2000). The nature of statistical learning theory.
Springer.

Ye, B., Huang, P., Fan, M., Gong, X., Hou, D., Zhang, G., &
Zhou, Z. (2009). Automatic classification of eddy cur-
rent signals based on kernel methods. Nondestructive

Testing and Evaluation, 24(1-2), 19–37.

8

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

769



 

 

Operation Condition Monitoring using Temporal Weighted 
Dempster-Shafer Theory 

Xiaoyun Wang
1
, Tingdi Zhao

2
 

1,2
 School of System Engineering and Reliability, BeiHang University, Bejiing,100191, China 

wangxys@gmail.com 

ztd@buaa.edu.cn 

 
ABSTRACT 

System operation is a real time, dynamic decision process, a 

continuous observation should be implemented to support 

timely decision. Real time condition monitoring and 

diagnosis is featured with ongoing event sequence. The 

more recent observation, the much detailed, accurate 

informat ion, and the more obsolete observations with much 

weak correlation to current faults and errors  vise versa.  

Dempster-Shafer evidence theory is best suitable for the 

problem of redundant sensors, insufficient data reasoning. 

However, D-S base applicat ions largely  focused on 

causational relationship between symptoms and effects, and 

the fusion process of evidences was performed regardless 

whatever order observed. As an improvement to the frame 

of discernment of the D-S theory, we purposed a time 

weighted evidence combination method. Observed events 

were extracted from mult iple time points to form a temporal 

evidence sequence. Basic probability assignment was 

altered by temporal weights in accordance with the time 

proximity between the observed events and current time. 

The temporal weights value set was in accordance with  its 

occurring time point. Evidences with same t imestamps 

should be allocated with the same temporal weights. An 

example was discussed to illustrate the temporal weight, D-

S ru le based assessment framework. In the framework, latest 

observed evidences stream were combined into the 

framework to improving fault recognition. 

1. INTRODUCTION 

Condition assessment for system operation is a real t ime, 

dynamic decision process, during that course, a continuous 

observation should be implemented to support timely  

condition assessment. Currently, as a method widely in the 

area of fault diagnosis applications, Dempster-Shafer 

evidence theory is best suitable for the problem of redundant 

sensors, reasoning of insufficient data which might be 

imprecise and incomplete(Yang, 2006)(Parikh,2001)  

As an extension of traditional probabilistic theory, the 

Dempster-Shafer Theory (DST) of evidence provides 

beneficial approaches to uncertain reasoning. In the network 

security area, DST was used as a method for incursion 

detection (Lan, 2010), intrusion priorit izing (Zomlot, 2011). 

In ubiquitous network and pervasive computing, DST was 

applied to recognize situation and activities in smart 

environment (McKeever, 2009). It also play an important 

role in bank fraud detection applications (Beranek, 2013). 

Some of these researches concerned the temporal property 

of evidence to improve performance of detection, for 

examples, McKeever tried to use a duration measure to 

generate the belief of event and evidence.  

Our research focused on the problem of temporal aspect of 

DST evidence. During the online condition monitoring, 

some observed information  might not up to date sufficiently  

while others may appears better timeliness. Outdated 

informat ion as one of three kind of major informat ion 

problems (Garvin, 1988), is not sufficiently fo r the task of 

fault detection. The more recent observations could provide 

much detailed, accurate information about current condition. 

This paper is organized as fo llows. In section 2, the classic 

Dempster-Shafer Theory of Ev idence is introduced, and the 

problem of application DST to online diagnosis for 

operation condition monitoring and failure detection and 

recognition is analyzed. Here we purposed a temporal 

weighted evidence combination method together with the 

procedure of application. In section 3, an example is 

discussed to illustrate how the temporal weight D-S rule 

combination method can be applied to online failure 

identification. Also we compared the result of classic D-S 

rules of combination with our method. 
Xiaoyun WANG et al. This is an open-access article distributed under 
the terms of the Creative Commons Attribution 3.0 United States 

License, which permits unrestricted use, distribution, and reproduction 
in any medium, provided the original author and source are credited. 
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2. METHODOLOGY 

2.1. D-S evidence theory 

The Dempster-Shafer Theory (DST) or D-S theory of 

evidence was first introduced at 1960s(Dempster, 

1968)(Shafer, 1976). The DST is basically an extension of 

traditional p robabilistic modeling of uncertainty. Currently, 

the D-S theory of evidence was applied widely in fault  

diagnosis and recognize for its effect iveness to incomplete, 

inaccurate or conflict data.  

According to the classic D-S theory of evidence, the 

elements needed to model the problem could be summarized 

as following:  

A frame of discernment  , which should be a finite set of 

all of the possible hypotheses that are mutually exclusive; 

A mapping of  : 2 0,1m   , which defines the basic 

probability assignment(BPA) of each subset A   of 

hypotheses and satisfying ( ) 0;m   ( ) 1
A

m A


 . The BPA 

represents a certain piece of ev idence. 

A rule of D-S evidence combination, which could be used to 

yield a new BPA from two independent evidences and their 

BPAs. There are a number of possible combination rules in  

application (Sentz, 2002). One of them is the Dempster’s 

Rule, that could be defined as follows 

1 2

1 2

( ) ( )

( ) ( )
1

B C A

m B m C

m A m m A
K

   



    (1)

 

1 2( ) ( )
B C

K m B m C
 

 
              .  

 (2) 

B and C are subset of hypothesis. K  reflects the conflict  

between B andC , while the higher the K  , the greater the 

conflict between the evidences. It was proven that the 

Dempster rule of combination meets the commutative and 

associative laws, which could be depicted as such: 

1 2 3 1 2 3( ) ( )m m m m m m      

and  

1 2 2 1m m m m   . 

Therefore evidences are treated as equal, as well as the order 

of evidences dose not affect the result of evidence 

combination. 

2.2. Temporal Weighted Evidence Combination 

D-S rule of combination treat evidences equally from 

different sensor. However, that assumption generally  cannot 

hold during an online condition monitoring. System data 

and evidence unveiled gradually, sequentially, as time 

lapsing. What we have identified is only a fract ion of the 

facts. At the early stage of a fault or failure, the symptom 

could be dim and weak. As the system operation went on, 

the system performance appears variation, while some 

symptom may change as well, others could be expired or not 

valid any more. The creditability of past evidence is not 

static. Instead it should change in course of timeliness. 

Ev idence that is up-to-date should be assessed as a strong 

sample. The more recent observations could provide much 

detailed, accurate informat ion about current condition. At 

the same t ime, those past, obsolete evidences only have 

partial utility, appeared a weak correlation to current faults 

and errors(Garv in, 1988). 

Based on the weighted view of evidence (Yu, 2005), we 

purposed a temporal weighted combination ru les to solve 

the problems of timeliness of evidence. The weight of each 

evidences are based on their timestamp properties. The 

temporal weighted rule combination is: 

1 2

1 2

1,2 1 2

1 2

( ) ( )

( )
( ) ( )

w w

t t

B C A

w w

t t

B C

m B m C

m A
m B m C

 

 









             (3) 

where
1 2,w w is the temporal weights of time point 

1 2,t t  for 

evidence B and C ： 

exp( ( ))i iw K t T                         (4) 

in which T  is the current time (system time). K  is a user 

predefined constant, 0K  . 

Condition 

Monitoring

Event 

Extraction

Time Weight 

Estimate

Timestamp

And sequence 

generation

BPA 

assignment

Time Weighted 

Evidence 

Combination  
Figure 1. Schematic o f the method for time weighted 

evidence combination. 

 

From the equation (4), we could find some feature of iw : 

a) The temporal weight of the latest evidence is g reater than 

that of those previously evidences. 

b) The older of the evidence, the less timeliness and values 

of the belief, as well as its temporal weight. 

c) Evidences with time proximity have similar temporal 

weights. 

d)Temporal weight of on-going evidence has approximate 

value to 1, which represent it is the most up-to-date 

evidence. 
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The workflow of temporal weighted D-S evidence 

combination method is  described as Figure 1. Observed 

events were extracted from mult iple time point to  form a 

temporal evidence sequence. Basic probability assignment is 

altered by temporal weights in accordance with the time 

proximity between the observed events and current time. 

The temporal weights setup is in accordance with its 

occurring time point. Lately observed evidence could have 

better influence and support to the hypothesis than those 

older evidences. Evidences with same timestamps should be 

allocated with the same temporal weights. 

Considering the introduction of temporal weighted 

combination rules, the combination of multiple evidence is 

no longer commutative and  equally  treated, that means each 

time point we need to recalcu late the set of temporal weight 

iw , as shown in Figure 2. 

…

w3

…

…

D-S Rule of Combin-ation

m1(A1) m2(A2) mk(Ak)m3(A3)

m(A)

m1,2

m1,2,3

w1 w2

m1(A1) m2(A2) mk(Ak)m3(A3)

E1 E2 EkE3

Timeline

m(A)

wk…

w1

w1

w2

 
Figure 2. Time weighted D-S evidence combination.  

 

However, this approach might be faced with time 

complexity for the calculat ion of iw  at each time point. To  

simplified the framework, we merged the past combination 

result into a new evidence at each time point, as shown in 

Figure 3. The improved framework has better time 

performance while yield approximately result as Figure 2. 

 

m1,2

m1,2,3

w1 w2

w3

m1(A1) m2(A2) mk(Ak)m3(A3) …

E1 E2 EkE3 …

Timeline

m(A)

w1,2

wk

m1,2,..k-1

…

 
Figure 3. A improved framework of t ime weighted D-S 

evidence combination for mult iple symptoms . 

3. CAS E S TUDY 

In this case, we adopted the dataset of a power generator 

(Ray, 2007) as an example to  illustrate the temporal weight, 

D-S rule based assessment framework. During its operation, 

working condition and performance events was monitored 

periodically.  

We need to assess the on-going events and symptoms to 

identify the type of possible failure(s) in  a near real t ime 

manner. The challenge lies in that the observing events were 

ever changing and added in, while the early events and their 

informat ion might expired, the latest evidence need be 

combined into the frame to improv ing the accuracy of 

results. 

3.1. Dataset Preparations 

There are three kinds of power generator failures g iven by 

domain  specialist, namely , 1 2 3, ,h h h . The corresponding 

frame of discernment could be given with 

 1 2 3= , , ,h h h   

where   is the unknown type of failures. 

Event 1E , 2E  and 3E  were reported by system monitoring 

function, with the corresponding timestamps as 

1 2 31, 2, 3t t t   . So we have a sequence of symptom as 

 1 2 3,1 , ,2 , ,3E E E      . 

To simplify  the calculation, we choose the time-weighted 

constant ln 2K  . As a result, the time weight turns into 
( )

exp( ( )) 2 it T

i iw K t T


                      (5) 

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

772



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH M ANAGEMENT SOCIETY 2014  

4 

The BPAs for the hypothesizes of evidence
1E ,

2E  and 
3E  

were g iven.  

Event
1E was the symptom to failure types 

1 2 3, ,h h h  with a 

BPA of 0.7, so: 

 
1 1 2 3, , 0.7tm h h h   And  

1
0.3tm    

2E  was the symptom of failure 1h  with the belief of 0.9: 

 
2 1 0.9tm h   And  

2
0.1tm    

For event
3E which was a evidence for failures of 

2 3,h h , the 

BPA is 0.8, so that: 

 
3 2 3, 0.8tm h h   and  

3
0.2tm    

3.2. Temporal Combination of Evidence Sequence  

According to equation (5), the time weight could be given 

for sequence  1 2 3,1 , ,2 , ,3E E E      . 

Event
1E  was detected at 

1 1t  . W ith the new event 
2E  was 

detected at 
2 2t  , evidence 

1E  and evidence 
2E  need to be 

fused. Table 1 shows the combination rules for 
1, 2t tm ： 

 
According to equation (3),  

  1

1 2

1

12
1 2

, 1 1

12
1 2

( ) ( )

0.9

( ) ( )

t t

B C h

t t

t t

B C

m B m C

m h

m B m C

 

 



 







 

 
1 2, 1 2 3, , 0.06t tm h h h   

 
1 2, 0.04t tm    

With the event 3E  was detected at time 3 3t  ,new evidence 

added in and the result reflect the influence of up-to-date 

informat ion. Table 2 shows the combination rules for 

1, 2 3,t t tm ： 

 
The combination at time 

3 3t   as shown: 

 
1 2 3, , 1 0.299t t tm h   

 
1 2 3, , 2 3, 0.560t t tm h h   

 
1 2 3, , 1 2 3, , 0.077t t tm h h h   

 
1 2 3, , 0.063t t tm    

Here we had combine the sequence 

 1 2 3,1 , ,2 , ,3E E E       at 
3 3t  . 

 

In Table 3 we compared the results of classic D-S approach 

and our temporal weighted combination method. Apparently, 

from row 3 3t   we can see that the temporal weighted 

approach is more sensitive to latest, up-to-date evidence, 

which yield a higher belief for hypothesis set  2 3,h h  in 

favor of the newly observed evidence
3 ,3E  . Also we 

could infer from the line 
2 2t   that when the latest 

evidence was similar to the former ones, the output beliefs 

of temporal weighted combination method is only slightly 

different to classic D-S approach.  

 

 

Table 3. Comparison of temporal weighted combination 

method and classic D-S evidence combination 

Time BPA  
Classic 

D-S 

Temporal 

Weighted 

2 2t    
1 2, 1t tm h  0.9 0.9 

 
1 2, 1 2 3, ,t tm h h h  0.07 0.06 

 
1 2,t tm   0.03 0.04 

3 3t    
1 2 3, , 1t t tm h  0.511 0.299 

 
1 2 3, , 2 3,t t tm h h  0.227 0.560 

 
1 2 3, , 1 2 3, ,t t tm h h h  

0.034 0.077 

 
1 2 3, ,t t tm   0.227 0.063 

 

Table 2. Combination of 
1E ,

2E  and 
3E  

1,2 3

1 2 3, ( ) ( )
w w

t t tm B m C  

1,2 0.5w  3 1w   

 2 3,h h     

 
3 2 3, 0.8tm h h    

3
0.2tm    

 1h     1h  

 
1 2, 1 0.9t tm h   0 0.19 

 1 2 3, ,h h h   2 3,h h   1 2 3, ,h h h  

 
1 2, 1 2 3, ,

0.06

t tm h h h


 0.196 0.049 

    2 3,h h     

 
1 2, 0.04t tm    0.16 0.04 

 

Table 1. Combination of 
1E and

2E  

1 2

1 2
( ) ( )

w w

t tm B m C  

1 0.5w  2 1w   

 1h     

 
2 1 0.9tm h    

2
0.1tm    

 1 2 3, ,h h h   1h   1 2 3, ,h h h  

 
1 1 2 3, , 0.7tm h h h   0.753 0.084 

    1h     

 
1

0.3tm    0.493 0.055 
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4. CO NCLUSION 

The Dempster-Shafer Theory of evidence based model has 

been widely used to multi sensor fault detection and 

recognition. As an improvement to the DST, the temporal 

weighted evidence combination method could be beneficial 

to the balance of long term trend and abrupt fault 

recognition, especially fo r the on line health management 

applications, compared with the classic DST combination 

method. 

 

Our contribution could be summarized as follows: First, the 

problem of obsolete evidence of real time monitoring and 

diagnosis is analyzed. Then the temporal weighted evidence 

combination method is purposed. To make the method for 

efficiency, an improved framework that accumulates the 

past combination result is suggested. Furthermore, a case 

study was discussed to illustrate the temporal weighted D-S 

rule based assessment framework. 
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ABSTRACT 

This paper presents work on model-based automation of 

failure-modes-and-effects analysis (FMEA) applied to the 

hydraulic part of a vehicle braking system. We describe the 

FMEA task and the application problem and outline the 

foundations for automating the task based on a 

(compositional) system model. Models of the essential 

hydraulic components suitable to generate the predictions 

needed for the FMEA are introduced and the required 

models of the control software outlined. These models are 

based on constraints, rather than simulation, and capture the 

dynamic response of the systems to an initial situation based 

on one global integration step and determine deviations 

from nominal functionality of the device. We also present 

the FMEA results based on this model. 

1. INTRODUCTION 

Failure-modes-and-effects Analysis (FMEA) is performed 

by groups of experts during the design phase of a system. Its 

core is to exhaustively go over all potential component 

faults and predict their impact on the functionality of the 

system in order to assess whether they can lead to a critical 

situation and violate safety requirements, and take steps to 

minimize or mitigate the negative impact through a design 

correction.  

FMEA was originally developed in the military area (MIL, 

1980) and has become a mandatory task in the aeronautics 

and automotive industries (see e.g. (SAE, 1993)), 

meanwhile as part of international standards for functional 

safety (e.g. ISO 26262 in the automotive industries, (ISO 

2011)) and receives increasing interest in other areas, such 

as automation systems. 

The main result of the analysis is a table that relates certain 

scenarios (such as “Braking in forward motion”), 

components or subsystems and their faults (“valve stuck 

open”) to the effects caused by them in the respective 

scenario, possibly at component level, next level, and 

system level, (“right front wheel overbraked; vehicle 

yawing to the right”) and some other assessments (e.g. 

criticality, detectability, suggested design changes). 

The analysis is performed by groups of experts, consuming 

precious time and labor, and repetitive, because it has to be 

redone or revised for each variant or version of a system and 

each revision of a design. Current computer support to 

reduce the effort and time is fairly poor and mainly limited 

to editors and data handling. The key part of the analysis, 

inferring the effects of the assumed faults, remains the task 

of the human experts. Although a major part of this analysis 

is not very sophisticated, but rather routine and mechanistic, 

it requires knowledge about the involved components and 

reasoning about the (physical and software) system. Hence, 

computer systems substantially supporting it have to be 

knowledge-based systems. More specifically: 

 a model-based solution is required that can reason 

about how the (mis-)behavior of components and their 

interaction establishes the (mis-)behavior of the overall 

system, because, during early design stages, only a 

blueprint may be available. (Even when a physical 

prototype exists, it may be too costly, risky, or even 

impossible to implant certain faults in the physical 

system.) 

 Exact parameter values of the design may still be 

undetermined. Hence, the analysis cannot be based on 

numerical, but only on qualitative models. 

 Even if the parameters do have fixed numerical values, 

the analysis is inherently qualitative both w.r.t input 

(classes of faults, such as “a leakage”, rather than 

“leakage of size x”) and relevant effects (“loss of 

pressure in wheel brake” and “potentially reduced 

deceleration”). 

For both reasons, numerical models (e.g. Matlab/Simulink, 

Modelica models) are useless and could, at best, produce 

some incomplete hints, based on sampling an infinite space 

Peter Struss et al. This is an open-access article distributed under the 

terms of the Creative Commons Attribution 3.0 United States License, 
which permits unrestricted use, distribution, and reproduction in any 

medium, provided the original author and source are credited. 
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of space of scenarios and faults. In fact, we are not aware of 

any serious attempt of using numerical models for this 

purpose in practice. 

 The modeling effort must be low to handle a class of 

systems and to support repetitive FMEA of design 

variants and modifications. This needs to be addressed 

by compositional modeling, which has to be based on 

a library of generic, context-independent component 

models. 

The systems that offer support to the automated generation 

of fault-effect associations in the context of FMEA are 

based on qualitative models. The AutoSteve system (Price, 

2000) was specialized on performing FMEA of electrical 

car subsystems. The AUTAS project developed a generic 

FMEA tool with applications to electrical, hydraulic, 

pneumatic, and mechanical systems in aeronautic systems 

(Picardi et al., 2004). 

In collaboration with a German car manufacturer, we 

applied this algorithm to FMEA of a novel braking system, 

which confronted us with the need for models of hydraulic 

components, especially valves, that are, on the one hand, 

general enough to be reusable and, on the other hand, 

powerful enough to deliver the predictions relevant to 

FMEA of braking systems. 

In this paper, we present the core of models that have 

proven to successfully produce the results needed for FMEA 

of the braking system. The key features of the models are 

that they 

 capture one integration step, but avoid any simulation 

and are stated in terms of constraints (finite relations), 

 are compositional and context-independent, 

 analyze how a stimulus in terms of a local pressure 

change (e.g. pushing a brake pedal) propagates through 

the system, 

 capture qualitative deviations of pressure and flow from 

their nominal values resulting from component faults, 

 can be complemented by models of the control software 

functions for both their correct and their faulty 

behavior, due to the high level of abstraction. 

The focus of the work reported in this paper is on 

automatically determining the local and global effects of  

each failure mode (i.e. component fault). It first describes 

the case study, FMEA of braking systems, and then 

summarizes the foundations of model-based FMEA. In 

section 4, we present the key parts of the models. The 

results obtained for FMEA are discussed in section 5. 

Section 6 briefly outlines foundations for modeling the 

embedded software. 

2. THE BRAKING SYSTEM 

The target is a novel braking system whose details are 

proprietary. For safety reasons, it still has to comprise the 

traditional braking function. Therefore, we use this part of 

the system in order to illustrate our solution. 

A standard braking system is mainly composed of hydraulic 

and mechanical components and the electronic control unit 

(ECU) and its software. It contains a tandem pedal actuation 

unit (with two pistons and two chambers), valves (inlet and 

outlet types) and wheel brakes, shown in Figure 1. 

The pedal actuation block (top right) comprises two pistons 

(PA_P1 and PA_P2) and the two chambers (PA_C1 and 

PA_C2), where PA_P1 is directly affected by pushing the 

brake pedal. Each chamber produces pressure for one 

diagonal wheel pair, and each wheel brake (WB11, 12, 21, 

22) sits between an inlet valve and an outlet valve. 

The inlet-valves (M_VI11, 12, 21, 22) are piloted check 

valves; during standard braking (i.e. with no command), 

they are open, while the outlet-valves (M_VO11, 12, 21, 22) 

are closed. Pushing the brake pedal causes pressure to build 

Figure 1. Braking system. Pressure is generated by two pistons, PA_P1,2, in two chambers, PA_CA1,2, and reaches the 

wheel brakes, WBij, via open inlet valves, M_VIij, while outflow is blocked by closed outlet valves, M_VOij. The impact 

of inserting another valve, M_Vixx, is discussed in section 5.3 
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up in the wheel brakes. Inlet valves always allow a flow 

back from the wheel brakes, which causes the diminishing 

of the wheel brake pressure if the brake pedal is released. 

When operated under the Anti-lock-braking system (ABS), 

the valves are controlled by commands from the ECU. The 

pressure-build-up phase is the scenario described above. For 

pressure maintenance, the inlet valve is closed. If the speed 

sensors indicate that the wheels tend to lock up, the outlet 

valves are opened to release pressure, let the wheels spin 

again and, thus, enable steering of the vehicle. Then the 

cycle is entered again. 

Typical inferences required for FMEA are 

 If an inlet valve is stuck closed under normal braking, 

the respective wheel will be underbraked (reduced 

deceleration). 

 The same holds if an outlet valve is stuck open under 

normal braking. 

 If an outlet valve is stuck closed during the pressure 

release phase of ABS braking, the respective wheel will 

be overbraked, because the pressure is not released. 

 An inlet valve being stuck open during this phase will 

have the same impact. 

Other faults are leakages of the wheel brakes and the 

chambers, the wheel brakes and pistons being stuck, bad 

sensors etc. Also bugs in the embedded software have to be 

considered, which becomes an increasingly important aspect 

in functional safety. 

3. MODEL-BASED FMEA 

Predicting the principled impact of (classes of) faults in 

(classes of) scenarios is the core of the FMEA task. In this 

section, we summarize the logical foundation of model-

based FMEA, which have been developed in the AUTAS 

project (see (Picardi et al., 2004), (Fraracci, 2009)), 

implemented as an inference engine in Raz’r (OCC’M, 

2014), and applied to various aircraft subsystems. 

3.1. Relational Models 

As motivated in the introduction, models supporting FMEA 

have to be qualitative. We use finite qualitative relations 

over variables. Hence, a behavior model is regarded as a 

relation R over a set of variables that characterize a 

component or system:  R DOM(v), where v is a vector of 

system variables with the domain DOM (v), which is the 

Cartesian product 

       DOM (v) = DOM (v1)  DOM (v2)  ...  DOM (vn). 

So, a relation R (i.e. a constraint) is a subset of the possible 

behavior space. 

If elementary model fragments Rij are related to behavior 

modes modei(Cj) of the component Cj, then an aggregate 

system (under correct or faulty conditions) is defined by a 

mode assignment MA = {modei(Cj)} which specifies a 

unique behavior mode for each component of this aggregate 

whose model is obtained as the join of the mode models, i.e. 

the result of applying a (complete version of) constraint 

satisfaction to {Rij}: 

RMA=  Rij . 

3.2. Formalization of FMEA 

To support FMEA, it is necessary to determine whether the 

effects of a certain component fault (represented as a mode 

assignment MA) violate an intended function of the system. 

If the function is considered as part of GOALS, then the task 

might mean to check whether the fault model FMMA is 

inconsistent with the function: 

 FMMA   GOALS   
?
  

Often, the analysis is carried out for particular mission 

phases (such and “cruising” or “landing” of an aircraft) or 

scenario Sk (e.g. the three phases of the ABS braking as 

explained above): 

FMMA  Sk  GOALS   
?
  

In practice, FMEA is not carried out this way, but by 

specifying effects Ei, which are specific violations of the 

intended function (GOALS), for instance too high and too 

low deceleration of a wheel, i.e. underbraking and 

overbraking: 

Sk  Ei    GOALS  , 

and the analysis determines the effects that may occur under 

a particular failure mode: 

FMMA   Sk  Ei    

Since models, scenarios, and effects can all be represented 

by relations, we can characterize and compute the effects of 

the FMMA as follows: 

 RMA  Sk   

if the failure mode is included in effect, then the effect 

will definitely occur (case E1 in Figure 2) 

 RMA  Sk =  

if the intersection is empty, the effect does not occur 

(case E2) 

 otherwise 

the effect may occur: E3 

The above checks can be performed using general 

techniques, such as constraint solvers (Rossi et al., 2008) or 

logical reasoning engines that can determine consistency  
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Figure 2. Determining effects 

 

and entailment. We use the FMEA engine of Raz’r 

mentioned above (OCC’M, 2014). 

3.3. Deviations Models – Formalization 

FMEA is about inferring deviations from nominal system 

function due to a deviation from nominal component 

behavior. Hence, not the magnitude of certain quantities 

matter, but the fact whether or not they deviate from what is 

expected under normal or safe behavior. 

This is why deviation models (Struss, 2004) offer the basis 

for a solution: they express constraints on the deviations of 

system variables and parameters from the nominal behavior 

and capture how they are propagated through the system. 

For each system variable and parameter vi, the deviation is 

defined as the sign of the difference between the actual and 

a reference value:  

v := sign(vact - vref). 

Then algebraic expressions in an equation can be 

transformed to deviation models according to rules like 

a + b = c  a + b = c 

a * b = c aact * b + bact * a - a * b = c , 

where +, -, * on the right-hand side should be interpreted as 

operators over the sign domain. 

Furthermore, for any monotonically growing (section of a) 

function y = f(x), we obtain y = x as an element of a 

qualitative deviation model. 

For instance, the deviation model of a valve is given by the 

constraint 

Q = A * (P1-P2) + A * (P1-P2) - A * (P1-P2) 

on the signs of the deviations of pressure (Pi), flow (Q), 

and area (A). This constraint allows, for instance, to infer 

that P1 being too large (P1 = +) causes an increased flow 

(Q = +), if P2 and the area remain unchanged (P2 = 0, A 

= 0) and the valve is not closed (A = +). Such qualitative 

deviation models specify finite relations over the qualitative 

variables and can be constructed from first principles 

(differential) equation models, if they exist. Under certain 

conditions (piecewise monotonic functions) these relations 

can be calculated automatically from numerical models 

(Struss et al., 2011). 

Note that in contrast to model-based diagnosis, where we 

may use the very same models, we do not face the problem 

of determining whether a certain sensor value indicates a 

qualitative deviation or not: in FMEA, there are no 

measurements; a deviation is simply assumed as the starting 

point of the analysis. 

4. HYDRAULIC MODELS 

The literature on qualitative modeling does not deliver a 

ready-made library of hydraulic models that could be used 

for real applications like the one we are tackling.  Especially 

for valves, most of the proposed models compile strong 

assumptions about the context into the models, which makes 

them inappropriate for a library of generic, reusable 

component models. What is it that makes hydraulic 

modeling hard? While we can easily model, for instance, a 

resistor network by simultaneous equations characterizing 

the steady state, the analysis of hydraulic systems often 

focuses on the transitions, and the finally reached 

equilibrium may be uninteresting (e.g. all connected parts 

with equal pressure). Pressures determine flows, which in 

turn determine change of pressure. Hence, the analysis has 

to include some integration step (in the mathematical sense), 

and our component models duplicate variables to describe 

states “before” and (directly) “after”. 

Another problem dimension, which is not dealt with in this 

paper, is related to the fact that often, the nature of the stuff 

that flows cannot be ignored, e.g. when there is air in a 

hydraulic circuit. 

In the following, we present the core pieces of the 

qualitative hydraulic model that we used to solve the FMEA 

task. Our starting point was our early work on modeling for 

diagnosis of braking systems (Struss et al., 1997), and we 

created 

 a relational model that 

 qualitatively captures the system’s direct response to 

some initial condition, especially 

 in terms of deviations from nominal behavior, and 

 can be used by the FMEA engine whose basis was 

outlined in section 3.2. 

Despite its simplicity, it turns out to be quite powerful and 

appropriate for generating the kind of information needed 

for the FMEA task. We first characterize its scope by 

discussing the most important requirements and modeling 

assumptions underlying it and then present the various 

“slices” of the key component models, namely valve and 

volume. 
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4.1. Modeling Methodology and Assumptions 

In the current model, we assume that there is one source of 

pressure, or, more precisely, a unique maximal pressure 

level generated by components or some external force. In 

our application, this is determined by the driver pushing the 

brake pedal. It is not fixed to a particular numerical value, 

but, rather, by the fact that the pressure in the system cannot 

exceed it. We are convinced that the approach can be 

extended to multiple source levels, but did not implement 

such a model and make no claims. 

This assumption is reflected by the chosen domain for 

pressure: 

PosSign3:={0, (+), +}, 

where + is the source pressure (and maximal), 0 corresponds 

to the sink (in our case the reservoir of the liquid), and (+) is 

any pressure in between. For pressure drops and flows, only 

their direction matters, i.e. their domain is Sign = {-, 0, +}. 

Valves are assumed to be either closed (A = 0) or open (A = 

+), which does not imply they are completely open. 

The next assumption (a requirement of our application) is 

that the interest is in determining the systems direct 

response to an initial situation. To illustrate what this means 

(and what is excluded), consider the right-hand part of Fig. 

3 with a volume component Vol2, with initial pressure 0, 

connected via open valves on the right to a volume Vol1 

with pressure P=+ in the initial scenario S0, and on the left 

to another volume Vol3 with initial pressure (+). The state 

following this initial situation will be a state with positive 

inflows Q into Vol2, and this is what the model should 

predict (scenario S1 in Fig. 3). There may be a future state, 

in which the pressure in Vol2 exceeds the one in Vol3, and 

the flow through the respective valve reverses. This is not 

what we are interested in, and accordingly, we exclude such 

multiple changes of qualitative values. Also, no other event 

should occur during the period of interest, especially no 

valve changes its state. We furthermore assume pressure to 

be homogeneous in a volume and ignore time required to 

achieve or approximate the situation. 

 

To simplify the presentation in this paper, we assume that 

there are no deviations in the initial situation. This 

assumption can be dropped if the system response to a 

deviating initial situation is of interest. 

The modeling is not ad-hoc, but follows a clear and 

general methodology that can be applied to other 

components and systems. A qualitative deviation 

component model is constructed from an equation-based 

model Me as the union of five sets of constraints, three 

obtained as transformations of Me: 

 Q(Me): the qualitative abstraction of Me 

 

Figure 3. Volume-Valve sequence 

 

 ∂(Me):the qualitative abstraction of the derivative 

version of Me 

 ∆(Me): the qualitative deviation model of Me 

and two set of constraints representing the qualitative 

integration constraints, which are generic and 

independent of Me: 

 I(x): the qualitative integration constraint for the 

variables 

 I(∆x): the qualitative integration constraint for the 

deviations. 

 

 Valve Volume 

Base 

model 

Q(Me) 

T1.Q=A*(T1.P-T2.P) 

T1.Q = -T2.Q 

T1.Q = ∂P 

Base 

model 

derivative 

∂(Me) 

T1. ∂Q =  

    A*(T1. ∂P-T2. ∂P) 

T1. ∂Q = -T2. ∂Q 

 

Deviation 

model 

∆(Me) 

T1.∆Q = ∆A*Pdiff + 

+A*∆Pdiff-∆A*∆Pdiff 

Pdiff  =T1.P-T2.P 

T1.∆Q = -T2.∆Q 

T1.∆Q =∆∂P 

Continuity

Integration 

Persistence 

I(x) 

 

Q0 ∂Q Q 

-  * - 

0 - - 

0 0 0 

0 + + 

+ * + 
 

 

P0 ∂P P 

0 0 0 

0 + (+) 

(+) * (+) 

+ - (+) 

+ 0 + 
 

Integration 

Deviation 

I(∆x) 

Ti. ∆∂Q = Ti. ∆Q ∆P = ∆∂P 

 

Figure 4. The elements of valve and volume models 
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We present the different elements of the models, which are 

summarized in Figure 4. We do so step by step in order to 

demonstrate the necessity of each model slice and its 

contribution. 

4.2. Base Models 

The core of the models is given by the qualitative 

abstractions of the standard (differential) equations. A key 

requirement is that the component models are local and 

context-independent in order to be compositional as 

required by the application task. 

For the valve, the terminals Ti are its hydraulic connections 

(it has another one for the control command). With the 

convention that a positive flow is going into the respective 

component, we obtain 

T1.Q = A* (T1.P-T2.P) , 

where pressure subtraction 

- : {0, (+), +}{0, (+), +}  {-, 0, +} 

is defined as 

0 - 0 = + - + = 0, 

+ - (+) = + - 0 = (+) - 0 = + 

0 - (+) = 0 - + = (+) - + = - 

(+) - (+) unrestricted. 

The second element is Kirchhoff’s Law (see Fig. 4, row 1). 

Since A is the actual opening of the valve, these elements 

apply to all behavior modes of a valve except leakages. 

The base model of a volume is straightforward. To simplify 

the presentation, we consider a volume with only one 

terminal (like the wheel brake). If there is more than one 

terminal, T1.Q is replaced by the sum of all flows across all 

terminals (or the volume is connected to a joint capturing 

the various flows, as done in the brake model). In case of a 

leakage, also the resulting leak flow has to be included. ∂P 

denotes the qualitative derivative with the domain Sign. 

The results obtained by this base model do not always 

contain an answer relevant to the FMEA task. In our brake 

system, normal braking happens when the inlet valve is 

open and the outlet valve is closed. The consequence is 

pressure (+) in the wheel brake. If the outlet valve is stuck-

open, there will be an outflow (after one integration step). 

The wheel brake pressure is still (+). But the important point 

is: it is less than under nominal conditions. Therefore, we 

add a layer of deviation models, as shown in Figure 4. 

4.3. Deviation Models 

The deviation models are easily obtained from the algebraic 

equations of the base models. However, they are quite 

powerful and provide the prediction we need for FMEA in 

the scenario discussed above: the inflow via the inlet valve 

will have a deviation 0, while the flow towards the outlet 

valve has a negative deviation (being negative instead of 0), 

and, hence, will cause a negative deviation ∂P (“reduced 

pressure built-up”). 

Again, the deviation model applies to each instance of time. 

But still, we need to answer the question how we represent 

and predict the overall system response properly. 

4.4. Integration, Continuity, Persistence 

This model, which applies to every point in time, still has 

limited utility. Consider again a sequence of three or more 

connected volumes (as in Figure 3), each with initial 

pressure 0, except for Vol1, which has a pressure (+). What 

we would like to predict is a flow through all valves from 

right to left (scenario S37 in Fig. 3). The model as it stands 

will predict a flow into Vol2 and zero flows, otherwise (S38). 

Of course, the pressure derivative in Vol2 is positive. Hence, 

after integration, the pressure becomes (+), too, and 

applying the model will lead to a flow from Vol2 to Vol3 – 

but leave the flow from Vol1 to the second Vol2 unrestricted, 

because of pressure=(+) for both (S39). If there are n more 

volumes, n integration steps are required in order to let the 

flow reach the last one – and leave all other flows 

undetermined. – Obviously, this is not what we need. 

In our model, we consider two temporal slices of the system 

behavior: the initial situation and the one capturing the 

direct global system response, i.e. a representation of the 

state after the effect of pressure differences has been 

propagated to all (connected) parts of the system. This 

means, we neglect the time needed for this propagation and 

apply some kind of “temporal factorization” (Pietersma & 

van Gemund, 2007). 

The initial state is characterized by variables P0, Q0, etc., 

while the next state is represented by P, Q, etc. 

Then the integration step can be represented as a constraint 

on different variables, namely P0, ∂P, P. The crucial point is 

that we do not choose ∂P0, but ∂P, i.e. the derivative after 

the impact. Figure 4 shows the respective constraint in row 

4, column 3. It expresses more than the continuous 

transition from P0 to P dependent on ∂P. It excludes 

transitions from (+) to + or 0, expressing the restriction of 

the predictions to the next state (which implies the exclusion 

of state-changing events). 

Starting from some initial situation and the respective values 

of P0, Q0, etc., how can we determine ∂P instead of only 

∂P0? This is supported by the constraint on flows shown in 

row 4, column 2 of Figure 4. Again, it captures more than 

continuity: non-zero flows are considered to be persistent, 

which again expresses the restriction to the next qualitative 

state and the exclusion of events that change the direction of 

flow. This achieves the intended prediction, for instance, for 

the volume sequence discussed above: Q0 and hence, also Q 

from Vol1 to Vol2 is determined to be non-zero, which 
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suffices to determine ∂P = + and P = (+) for Vol2. This 

implies a positive flow into Vol3, etc. 

Without further distinctions between sink and source 

pressures, i.e. within (+), the model developed, so far, may 

appear quite weak, being unable to determine the direction 

of flow between two volumes with pressure (+). Consider 

another initial scenario, S67, for the hydraulic chain in Fig. 

3, where initially, all volumes have pressure (+), the valves 

are open, but there are no flows across them (because all 

volumes have exactly the same pressure). If we connect 

Vol1 to a source (pressure +) and the left-most valve to a 

sink (pressure 0), again we expect a flow from right to left 

(S68). However, the model slices presented, so far, are 

unable to derive this, because the inflow to Vol1 leaves its 

pressure at (+), and the flow through Valve1 remains 

undetermined. What enables us to predict the change is the 

consideration that the pressure in Vol1 has increased, 

exceeds the one in Vol2 and, hence, produces a flow into 

Vol2, and so on. We can capture this by adding a derivative 

of the base model that links change in pressure and change 

in flow, as shown in row 2 of Fig. 4 (We omit producing 

constraints involving the second derivative, what would 

happen for the volume). This model successfully generates 

the expected result S68. 

Finally, we add a constraint that integrates the deviations 

(row 5 of Figure 4). Intuitively, this states that if the 

derivative of a quantity deviates from the nominal value, 

then so does the quantity itself. This is based on the 

assumption that the initial situation does not contain 

deviations. If it is dropped, an initial pressure deviation has 

to be added. 

5. FMEA RESULTS 

5.1. Scenarios 

We used the model whose core has been outlined in section 

4 to produce an FMEA of the braking system described in 

section 2 for a number of scenarios: braking and non-

braking with/without ABS for a moving/no-moving car. In 

the following, we focus on the scenario “Standard braking 

while car moving”, which is identical to the 1
st
 phase of 

ABS braking as explained in section 2. This scenario is 

defined as: 

 no commands to all valves: Cmd = 0 (i.e. under normal 

conditions inlet valves open, outlet valves closed) 

 the initial hydraulic pressure of all wheel-brakes are 

zero: WBxy.P0 = 0 

 velocity v > 0 for all: WBxy.v = + 

 constant pressure P on the piston PA_P1 exerted by the 

brake pedal:  PA_P1.P = + 

 no deviation of the pedal pressure: PA_P1.P = 0 and 

PA_P1.∂P = 0 

For the "maintain pressure" phase, the commands to the 

inlet valves are set to 1, and the wheel brake pressures are 

(+) (from the previous phase). In the "release pressure" 

scenario, the commands to the outlet valves also become 1. 

5.2. System Level Effects 

The system effects are defined by the experts as the relevant 

deviations from the intended function. For the braking 

system, this includes the following effects: 

 soft pedal, P  = +; P = 0 and ∂pos = +; where pos 

indicates the position of piston PA_P1: when pushed 

(without deviation), the piston (and, hence, the pedal) 

moves faster than normal 

 hard pedal, like soft pedal with  ∂pos = - 

 underbraking, reduced deceleration of a wheel: 

WBxy.∂v = + where xy indicates the wheel involved 

 overbraking,  

too much deceleration: WBxy∂v = - 

 potential no steering, both front wheels are 

underbraked (and, hence, may lock up) 

 yawing to left,  

WB21.∂v-WB11.∂v + WB22.∂v-WB12.∂v = +  

AND NOT 

WB21.∂v-WB11.∂v+WB22.∂v -WB12∂v = - 

where:  

WB21: left front wheel; WB11: right front wheel; 

WB22: left rear wheel; WB12: right rear wheel . 

This means: underbraking of at least one wheel on the 

right-hand side or overbraking of at least one wheel on 

the left-hand side and no possibly counteracting 

under/overbraking. 

 yawing to right  

WB21.∂v-WB11.∂v + WB22.∂v-WB12.∂v = -  

AND NOT 

       WB21.∂v-WB11.∂v+WB22.∂v -WB12∂v = + 

 potential yawing 

WB21.∂v-WB11.∂v + WB22.∂v-WB12.∂v = -  

WB21.∂v-WB11.∂v + WB22.∂v-WB12∂v = +  

Some over/underbraking, but none of the above cases 

(i.e. potential compensation of yawing) 

 loss of liquid, Qleakx =+, where Qleakx is the leakage 

liquid flow and x indicates (as above) the respective 

wheel involved. 

5.3. Results 

The qualitative model has been implemented in Raz'r 

(OCC'M, 2014), an environment for model-based diagnosis, 

prediction, and FMEA. Partial results for the scenario 

“Standard braking while car is moving” are shown in Fig. 5. 
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Figure 5. Partial FMEA (omitting repetitive results) 

 

Columns 2 and 3 refer to the respective component and 

failure mode, while column 4 states the effects local to this 

component, and column 5 contains the system level effects. 

This table, which is generated within seconds (as opposed to 

person days if carried manually), is complete and correct 

when compared to FMEA tables produced by experts. 

Despite its simplicity, the model turns out to be quite 

powerful. To illustrate this, consider the table entry for the 

inlet valve M_VI11 BlockedClosed in Figure 5. It predicts 

that the respective Wheel brake, WB11 is underbraked, while 

WB21 behaves normally, because, after all, it receives the 

proper pressure. 

When we insert another valve between the chamber PA_C1 

(with pressure +) and JointT2_1 the valve M_IVxx indicated 

in Fig. 1), then besides WB11 underbraked, also WB21 

overbraked is predicted, because of a higher flow through 

M_IV21 due to the blockage of M_IV11. 

6. SOFTWARE MODELS 

Including the consideration of the embedded software and, 

hence, in our approach, a qualitative deviation model of it, is 

necessary for two reasons: 

 the impact of a sensor fault can only be analyzed by 

considering how the software functions that depend on 

the sensor value process it to determine actuator signals 

to the physical components, 

 the software itself may contain bugs that lead to 

behavior deviations of the controlled physical system. 

In the following, we briefly outline the basis for modeling 

the software appropriately and refer to Struss (2013) for the 

principles and Struss & Dobi (2013) for an application. 

In our case study, for investigating the impact of a failure of 

a sensor that measures the rotational speed of a, we need a 

model of the intended behavior of the ECU, more precisely 

the software functions that control the valves based on the 

measured wheel speed: it has to issue a command, cmd=1, 

when the wheel speed drops below a certain threshold. For 

two different thresholds, the commands cause an inlet valve 

to close and an outlet valve to open, respectively. In our 

context, the only interesting aspect is how the (correct) 

function propagates a deviation of a sensor value (or a 

missing one). 

Slightly simplified, this can be stated as 

cmd = v_s , 

 

where v_s is the sensor signal and cmd is defined on the 

domain {0, 1} of cmd. If the v_s is too low (high), i.e. 

deviates negatively (positively) and, hence, reaches the 

threshold too early (too late), this causes the command to be 

set too early (too late), i.e. deviate positively (negatively). 

The OK model of the inlet valve contains 

cmd 

while the outlet valve includes 

cmd 


In summary, based on the OK models of the software and 

the physical components, the impact of the sensor failure 

will be determined as for the respective valve failures, in 

particular overbraking and underbraking. 

The relevant failures of the software itself are 

 untimely command (which includes “command sent too 

early”, e.g. due to a high threshold value, and 

“command always”): cmd =+ and 

 missing command (“command too late or never”): 

cmd = , triggering the same effects as 

for the inlet (outlet) valve. 

For analogue actuator signals, the deviations generated by 

the software (either caused by a wrong sensor input or by 

itself) would be “too high” and “too low”. 

This may seem to be over-simplified. However, consider 

that FMEA and also the broader safety analysis is ultimately 

targeted at determining the failure behavior of the physical 

system and its criticality, and that software bugs are relevant 
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only with regard to their impact on this, which is totally 

specified by (deviating) actuator signals. This boils down to 

faults “untimely/no command” for Boolean signals as 

discussed above and “signal too high/too low” for analogue 

ones. Hence, this “physics-centered” perspective makes 

modeling software faults at this high abstraction level 

feasible. 

7. DISCUSSION 

According to the evaluation, so far, the models produced 

according to the proposed methodology generate the results 

required by FMEA. 

We pointed out that the scope of the models is limited; for 

instance, they do not capture the impact of air entering the 

hydraulic circuit. Also, there may be some relevant long-

term impact of a fault, which is missed by the system, for 

instance that a small leakage may not have a dramatic effect 

immediately, but ultimately causes a relevant drop in the 

amount of liquid and pressure. 

However, the goal of building such tools cannot be to 

completely replace the human analysis, but rather 

automatically generate the tables for the vast majority of 

cases within seconds instead of person days as in the manual 

process and leave the sophisticated cases to the human 

experts. 

Currently, functional safety analysis gains increased 

importance, for instance in the automotive industries 

through the new ISO 26262 standard. This analysis has to 

go beyond the pure characterization of the physical behavior 

and also assess its consequences for hazards in various 

situations, such as collisions, personal damage, and 

environmental impact. In a different case study, functional 

safety analysis of a drive train of a truck, described in Struss 

& Dobi (2013), we extended the analysis in order to derive 

such conclusions (the risk of collisions with other vehicles, 

persons, or obstacles in different traffic scenarios) 

automatically. 
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