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Objectives of This Tutorial

• What is meant by model-based diagnostics and why it is a 
preferred approach

• Explain the fundamentals of model-based diagnosis
• Overview different kinds of models and algorithms
• What are the constituent problems, and how do we solve them
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Scope of This Tutorial
• The focus here is on defining the model-based diagnosis problem in a general 

way, and describing the types of models and algorithms used
– Defining the constituent problems
– Discrete-event systems, continuous systems, and hybrid systems models
– Algorithms for different types of models

• For other material, see diagnosis tutorials from previous PHM conferences
– Machine learning methods
– Consistency-based diagnosis
– Sensor selection
– Test generation
– Applications
– Other perspectives on diagnostics
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Running Example: Multi-Tank System
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Outline

• Preliminaries
• Fundamentals of Model-based Diagnosis
• Discrete-event Systems Diagnosis
• Continuous Systems Diagnosis
• Hybrid Systems Diagnosis
• Distributed Diagnosis
• Conclusions
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Preliminaries
1. What is diagnostics?
2. What is model-based diagnostics?
3. Why model-based diagnostics?
4. What are the constituent problems?



What is Diagnostics?
• Diagnosis = determining the nature and cause of something
• In a health management context, this “something” is a fault

– Fault = an unexpected change in the dynamics of a system
– Fault ≠ Failure!
– Failure = a condition of the system in which it does not meet functional specifications
– Faults can grow and lead to failure, or a fault may be significant enough in magnitude, or a 

severe enough change in configuration, such that the system will have failed (due to the 
occurrence of the fault)
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Why Diagnostics?
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Planetary  
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Example:  Rover  Mission
Visit  waypoints  to  accomplish  science  objectives.  If  serious  fault  occurs,  need  to  diagnose  on  
the  planet  and  head  back  to  home-­base.  Communication  delay  with  Earth  prevents  Earth-­
based  diagnosis!

Communication  
Earth  to  Mars

Communication  
Mars  to  Earth



Why Diagnostics?

• Diagnostics informs decision-making
• Which components to repair/replace
• Inform fault mitigation
• Inform fault recovery
• Inform functional reallocation
• Diagnostics informs prognostics
–What is (are) the dominant aging/degradation mode(s)
– Can we complete operation(s)/mission in presence of fault?
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The Basic Idea
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Diagnosis:  What  caused  this  difference in  observed  and  nominal  behavior?
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Nominal vs Faulty Behavior

• What is “nominal” behavior?
– Nominal is defined w/r/t some knowledge about the system, a reference 

behavior
– Comes from expert knowledge, known operating limits, physics model, 

machine learning approaches, etc.

• In model-based diagnostics, the reference comes from a model that 
explicitly describes the nominal behavior
– Models can be static or dynamic
– Models can be used for simulation
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Why Model-based Diagnostics?
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Instances  of  
Nominal  Behavior

Learn 
Nominal 
Behavior

Learn 
Faulty 

Behavior

Instances  of  
Faulty  Behavior

Machine  Learning  Approach:
Detection:  Classify  between  nominal  and  non-­nominal  behavior
Isolation:  Classify  between  different  classes  of  faulty  behavior

Problems:
• Lack  of  faulty  data  

instances
• No  explanatory  power  

from  models
• High  dimensionality
• No  identification

We  want  models  that  
we  can  use  to  reason
over…
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Why Model-based Diagnostics?

• Models have explanatory 
power
– Causal reasoning
– Explicit representation of faults

• Develop general model-based 
algorithms
– Models used for diagnosis are 

inputs
– Algorithms do not change for a 

new system, only the model 
changes
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Constituent Problems

• Fault detection = determination of whether the system is not 
operating nominally

• Fault isolation = determination of the root cause(s) of the 
unexpected system behavior

• Fault identification = determination of the magnitude of the fault 
(if applicable)
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Characterizing Faults
• Abrupt: Change in parameter value faster 

than the sampling frequency
• Incipient: Change in parameter value slower 

than the sampling frequency
– Can be linear, exponential, or arbitrary 

degradation
– Prognostics usually pertains to incipient 

faults
• Abrupt faults can be easier/faster to detect 

compared to incipient faults
• Dynamics of fault is different from 

dynamics of measurements/observations
– E.g., abrupt fault can present incipient change 

in measurements
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Characterizing Faults
• Persistent vs Intermittent
– Persistent: Once manifested, the 

fault persists 
– Intermittent: Fault manifests 

intermittently
• Discrete vs Parametric
– Discrete faults involve undesired 

change in system or model 
structure, e.g., valve on Pipe 12 
stuck closed

– Parametric faults involve undesired 
change in system or model 
parameter, e.g., Pipe 2 is clogged
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Models
• Discrete Event System Model

– System behavior abstracted into discrete states
– Dynamics represented through events that define state transitions
– Example models: Finite State Machines, Petri Nets, etc.

• Continuous System Model
– Tries to capture continuous time evolution of system behavior
– Using computers, these systems are modeled and simulated using differential or difference 

equations, and in discrete time
– Example models: Ordinary Differential Equations, Partial Differential Equations, Bond Graphs, 

Bayes Nets, etc.
• Hybrid System Model

– Combines both continuous time and discrete dynamics
– Has discrete states, with continuous behavior defined for each discrete state
– Example models: Hybrid Automata, Hybrid Bond Graphs, etc.
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Fundamentals of 
Model-Based Diagnosis
1. Logical foundations of diagnosis
2. How to perform diagnostic reasoning?
3. Practical considerations



Specifying Behavior

• First-order logic formulation
– SD = system description, set of first-order sentences
– COMPS = components, set of constants
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Pipe  12

Tank  2 Tank  3Tank  1

Pipe  23

Pipe  1 Pipe  2 Pipe  3

SD
• In(Pipe12)  =  Out(Pipe12)
• In(Tank1)  =  Out(Pipe1)  +  

Out(Pipe12)
• etc…
COMPS
• Tank1,  Tank2,  Tank3
• Pipe1,  Pipe2,  Pipe3
• Pipe12,  Pipe23

(Assume  steady-­state  behavior)



Observations

• Diagnosis requires observations from the system
–Without observations, no way to determine if something is wrong
– OBS = observations, set of first-order sentences
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OBS
• In(Tank1)  =  5
• Out(Pipe1)  =  10
• Out(Pipe12)  =  6
• …

Pipe  12

Tank  2 Tank  3Tank  1

Pipe  23

Pipe  1 Pipe  2 Pipe  3

(Assume  steady-­state  behavior)
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AB(.) Predicate

• SD describes nominal system behavior
• AB(C) means component C is abnormal, i.e., not nominal
• Extend SD with AB predicates
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Pipe  12

Tank  2 Tank  3Tank  1

Pipe  23

Pipe  1 Pipe  2 Pipe  3

SD
• ~AB(Pipe12)  à In(Pipe12)  =  

Out(Pipe12)
• ~AB(Tank1)  and  ~AB(Pipe1)  and  

~AB(Pipe12)  à In(Tank1)  =  
Out(Pipe1)  +  Out(Pipe12)

• etc…

(Assume  steady-­state  behavior)
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Diagnosis
• If operating nominally, then

– SD and OBS and {~AB(C1), ~AB(C2), …} will be consistent
• If not operating nominally, a contradiction is derived

– This is how fault detection is performed
• Diagnosis = set of components D such that:

– SD and OBS and {AB(c) | c in D} and {~AB(c) | c in COMPS-D} is consistent
– Isolation is performed by finding D
– Identification is not applicable
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{C1,C2,C3,C4}

{C2,C4} {C3,C4}

Diagnosis  
Lattice

Minimality:
A diagnosis is minimal if there is 
no superset that is also a 
diagnosis. Working with 
minimal diagnoses is more 
efficient and captures the 
principle of parsimony.



Reasoning with Conflicts
• Conflict = set of components that cannot all be faulty
• Given an observation, generate a conflict

– Update diagnosis based on conflict
– Repeat with new observations
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Reasoning with Conflicts
• Conflict = set of components that cannot all be faulty
• Given an observation, generate a conflict

– Update diagnosis based on conflict
– Repeat with new observations
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{  }

{C1} {C2} {C3} {C4}

{C1,C2} {C1,C3} {C1,C4} {C2,C3}

{C1,C2,C3} {C1,C2,C4} {C1,C3,C4} {C2,C3,C4}

{C1,C2,C3,C4}

{C2,C4} {C3,C4}

Example
1. Conflict  {C1,C2}

Means  C1  or  C2  is  faulty.
Previous  diagnosis  is  {  }.
New  diagnoses  are  {C1,C2}.



Reasoning with Conflicts
• Conflict = set of components that cannot all be faulty
• Given an observation, generate a conflict

– Update diagnosis based on conflict
– Repeat with new observations
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{  }

{C1} {C2} {C3} {C4}

{C1,C2} {C1,C3} {C1,C4} {C2,C3}

{C1,C2,C3} {C1,C2,C4} {C1,C3,C4} {C2,C3,C4}

{C1,C2,C3,C4}

{C2,C4} {C3,C4}

Example
1. Conflict  {C1,C2}

Means  C1  or  C2  is  faulty.
Previous  diagnosis  is  {  }.
New  diagnoses  are  {C1,C2}.

2. Conflict  {C2,C3}
Means  C2  or  C3  is  faulty.
New  diagnoses  are  (C1  or  C2)  
and  (C2  or  C3)  =  
{C2,C1C2,C1C3,C2C3}.
Minimal  diagnoses  are  
{C2,C1C3}.



Reasoning with Conflicts
• Conflict = set of components that cannot all be faulty
• Given an observation, generate a conflict

– Update diagnosis based on conflict
– Repeat with new observations
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{  }

{C1} {C2} {C3} {C4}

{C1,C2} {C1,C3} {C1,C4} {C2,C3}

{C1,C2,C3} {C1,C2,C4} {C1,C3,C4} {C2,C3,C4}

{C1,C2,C3,C4}

{C2,C4} {C3,C4}

Example
1. Conflict  {C1,C2}

Means  C1  or  C2  is  faulty.
Previous  diagnosis  is  {  }.
New  diagnoses  are  {C1,C2}.

2. Conflict  {C2,C3}
Means  C2  or  C3  is  faulty.
New  diagnoses  are  (C1  or  C2)  
and  (C2  or  C3)  =  
{C2,C1C2,C1C3,C2C3}.
Minimal  diagnoses  are  
{C2,C1C3}.

3. Conflict  {C1}
Means  C1  must  be  faulty.
New  diagnoses  are  ((C2)  or  
(C1  and  C3))  and  (C1)  =  
{C1C2,C1C3}.
Minimal  diagnoses  are  
{C1C2,C1C3}.



Example: Steady-State Tank System
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Pipe  12

Tank  2 Tank  3Tank  1

Pipe  23

Pipe  1 Pipe  2 Pipe  3

COMPS:  
Tank1,  Tank2,  Tank3,  Pipe1,  Pipe2,  Pipe3,  Pipe12,  Pipe23

SD:
~AB(Tank1)  à In(Tank1)  =  In(Pipe1)  +  Left(Pipe12)
~AB(Tank2)  à In(Tank2)  +  Right(Pipe12)  =  In(Pipe2)  +  Left(Pipe23)
~AB(Tank3)  à In(Tank3)  +  Right(Pipe23)  =  In(Pipe3)
~AB(Pipe1)  à In(Pipe1)  =  Out(Pipe1)
~AB(Pipe2)  à In(Pipe2)  =  Out(Pipe2)
~AB(Pipe3)  à In(Pipe3)  =  Out(Pipe3)
~AB(Pipe12)  à Left(Pipe12)  =  Right(Pipe23)
~AB(Pipe23)  à Left(Pipe12)  =  Right(Pipe23)

OBS:
Left(Pipe12)  =  2
In(Tank1)  =  5
In(Pipe1)  =  2

SD  and  OBS  and  {~AB(Tank1),  
~AB(Tank2),…~AB(Pipe23)}  àContradiction!

Minimal  diagnosis is  AB(Tank1).

But  what  is  “abnormal”  about  it?
• Use  the  concept  of  behavioral  modes  
• For  each  possible  fault  for  each  component,  
specify  behavior  for  that  fault  mode

• Instead  of  determining  AB(C),  determine  
F1(C)  or  F2(C),  etc.



Summary of Approach
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SD
(Model)

OBS
(Measured System Data)

Reasoning
Algorithm

Diagnoses

Model-­based  approaches  will  differ  in  how  they  capture  
they  model,  and  how  they  abstract  the  system  data  into  
symbols  we  can  reason  with.

Reasoning  algorithm  is,  at  its  most  fundamental  level,  
always  the  same.



Practical Considerations
• Such an approach doesn’t work well for dynamic systems, and hides 

many issues
– What about sensor noise?
– How to represent dynamic behavior in this framework?
– How to reason over time?
– Computational complexity?

• However, the algorithmic approach is sound and forms the basis for 
most model-based diagnostic reasoning algorithms
– Describe nominal and faulty behavior
– Reason over discrepancies between nominal and observed behavior
– Determine which faults would be consistent with the observations
– This is always the approach in model-based diagnosis!
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Discrete-Event Systems Diagnosis
1. How do you model discrete event systems?
2. How do you diagnose faults in discrete event systems?
3. What are some practical considerations while diagnosing discrete 

event systems?
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Modeling Discrete-Event Systems
• Finite state machine: G = (X, S, d, x0)
– X is the set of states
– S is the set of events
– d is the transition function
– x0 is the initial state

• Faults are modeled as unobservable 
events
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Diagnosis

• Some events are observable, and some are not
• We need to estimate what the possible state is, as that determines 

whether an unobservable fault event may or may not have occurred
• In the valve example:
– We have a sensor that reports the position of the valve at a regular interval, 0 

for open and 1 for closed
– Say that we observe the event sequence: Open, 0, 0, 0, Close, 1, 1

• Is this nominal? Maybe
– Say that we observe: Open, 0, 0, Close, 0, 0

• Is this nominal? No
– How do we capture this reasoning?
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Diagnosers
• Build diagnosers, which are labeled 

FSMs, that track the system state 
along with observed events
– Labels are possible states and 

diagnoses (fault events)
– There is a procedure to build from 

given FSMs
• For example

– Start in initial states of both 
automata (11N) where system 
known to be nominal

– If we command to close and 
measure as open, it is definitely faulty 
(fail open has occurred)

– If we command to close and 
measure as closed, may or may not 
be faulty (fail closed might have 
occurred)
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Figure 4: DES diagnoser the switch and controller system.

and controller system is shown in Fig. 4. The first number in the state refers to the state of the

controller, and the second number refers to the state of the switch. Failure label N represents nor-

mal, F1 represents the occurrence of Fail Closed, and F2 represents the occurrence of Fail Open.

Each state-label pair corresponds to a possible system state given the observations. In the diagnoser

events, the first event represents the observable controller event, and the second the sensor reading.

A failure label associated with a state implies that a failure of that type must have occurred. When

an event is observed, the diagnoser provides the new state estimate based on the observed event and

the previous state. If a fault occurs in the system, and the system is diagnosable, then the diagnoser

will eventually reach a state that corresponds to that failure type. For example, if the controller

tries to open the switch but the sensor reads 1, the diagnoser’s state estimate is that the switch is in

the stuck closed state and that Fail Closed has occurred. This corresponds to the diagnoser state

labeled by 12F1.

A state-based DES diagnosis approach is described in [6]. Being state-based, the focus is on deter-

mining system condition (failure mode), rather than the explicit failure events that have occurred.

This is because, in most practical settings, system models are constructed by composing several

smaller component models, each usually having a single nominal mode and a few failure modes.

Thus, there is a direct relation between system state and failure mode. The approach assumes that

the state set of the system can be partitioned according to the system condition, defined by a single

nominal mode and several failure modes of the system. In order to perform state-based diagnosis

of DES, the system model is augmented to include a set of outputs and an output map. System

condition is then inferred from the output sequence. A diagnoser that determines system condition

is constructed in [6]. Diagnoser states contain an output, possible system states consistent with the

output sequence, and possible system conditions associated with these states. The diagnoser, its

construction, and the diagnosability conditions are analogous to those in the event-based approach.

16

A reasoning algorithm would map events to diagnoses. This is 
basically “hard-coding” the reasoning algorithm.



Diagnosability
• Want to be able to 

guarantee that, eventually, 
we will know if a fault 
event has occurred
– A system is diagnosable if, 

after finite time, we can 
determine that a fault has 
occurred from the 
observed events

• Procedure exists to, given 
FSMs, determine 
diagnosability w/r/t 
different faults
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Figure 4: DES diagnoser the switch and controller system.

and controller system is shown in Fig. 4. The first number in the state refers to the state of the

controller, and the second number refers to the state of the switch. Failure label N represents nor-

mal, F1 represents the occurrence of Fail Closed, and F2 represents the occurrence of Fail Open.

Each state-label pair corresponds to a possible system state given the observations. In the diagnoser

events, the first event represents the observable controller event, and the second the sensor reading.

A failure label associated with a state implies that a failure of that type must have occurred. When

an event is observed, the diagnoser provides the new state estimate based on the observed event and

the previous state. If a fault occurs in the system, and the system is diagnosable, then the diagnoser

will eventually reach a state that corresponds to that failure type. For example, if the controller

tries to open the switch but the sensor reads 1, the diagnoser’s state estimate is that the switch is in

the stuck closed state and that Fail Closed has occurred. This corresponds to the diagnoser state

labeled by 12F1.

A state-based DES diagnosis approach is described in [6]. Being state-based, the focus is on deter-

mining system condition (failure mode), rather than the explicit failure events that have occurred.

This is because, in most practical settings, system models are constructed by composing several

smaller component models, each usually having a single nominal mode and a few failure modes.

Thus, there is a direct relation between system state and failure mode. The approach assumes that

the state set of the system can be partitioned according to the system condition, defined by a single

nominal mode and several failure modes of the system. In order to perform state-based diagnosis

of DES, the system model is augmented to include a set of outputs and an output map. System

condition is then inferred from the output sequence. A diagnoser that determines system condition

is constructed in [6]. Diagnoser states contain an output, possible system states consistent with the

output sequence, and possible system conditions associated with these states. The diagnoser, its

construction, and the diagnosability conditions are analogous to those in the event-based approach.
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Practical Considerations

• Following the diagnoser approach
– A fault is detected once we reach a diagnoser state where the label 

contains only faults
– A fault is isolated once we reach a diagnoser state where the label 

contains only a specific fault
– Identification is not applicable here

• Need to abstract system behavior to FSM
– For continuous-time systems, there is a significant loss of information
– Still have to deal with sensor noise, and abstract sensor signals to events
– FSMs can get messy quickly – but the diagnosers are very time-efficient
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Continuous Systems Diagnosis
1. How do you model continuous time systems?
2. Fault Detection in Continuous Systems
3. Fault Isolation in Continuous Systems
4. Fault Identification in Continuous Systems
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Modeling
• Continuous system behavior 

captured using “equations”
– Generally modeled using 

Ordinary Differential Equations
• Faults are parametric only, i.e., 

modeled as changes in system 
parameters
– E.g., R1+ = increase in resistance 

R1 of Pipe 1
– Since continuous system, there 

are no discrete faults
– Faults can be abrupt or incipient, 

and persistent or intermittent
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Pipe  12

Tank  2 Tank  3Tank  1

Pipe  23

Pipe  1 Pipe  2 Pipe  3

dm1/dt = u1-q1-q12
p1 = m1/K1

m1 = ⎰dm1/dt

q1 = p1/R1
q1* = q1

q12 = (p1-p2)/R12

Tank1 Pipe1 Pipe12



Continuous System Diagnosis: One Approach
• Tackles fault detection, isolation, and identification problems
• Assumes single, persistent parametric faults 

– Can be either abrupt or incipient
• Changes in parameter produces changes in system outputs w/r/t no parameter change

– Eventually all (causally related) sensors effected
• Need to reason over those changes

– Have a model of how measurements should deviate given different possible faults 
– Noting the order in which different measurement deviations are observed can also give us clues about 

the fault
– Compare observed deviations to expected deviations for each fault candidate to diagnose true fault
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Residual Generation and Fault Detection
• Residual Generation

– Observer (eg, Kalman filter, unscented Kalman filter, particle filter) based on nominal local 
submodel computes nominal behavior as a reference

– Residual computed as measured value minus reference value
• Fault Detection

– Nominally residual is approximately zero
– Fault detected when residual deviation from zero is statistically significant
– Usually there is a delay between fault occurrence and fault detection – cannot be avoided
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Fault Signatures
• Once a fault is detected, each measurement is qualitatively represented 

as symbols
– 0 (at nominal), + (above nominal), and - (below nominal)

• Fault Signatures qualitatively capture the predicted effect of a fault on a 
measurement using the above symbols
– All discriminatory evidence for fault isolation is provided by the first change in 

residual from time of fault detection
– This reduces the possible fault signatures to {(+ -), (- +), (0 +), (0 -)} 
– {(++), (--)} imply positive feedback and hence, unstable systems
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Deriving Fault Signatures
• Fault signatures are predictions of what the residuals will do in response to a fault

– This information is already captured in the model!
– Need to extract it

• Start with a causal model
• Example: For fault K1

-, the fault signature of q1* is +-.
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dm1/dt = u1-q1-q12
p1 = m1/K1

m1 = ⎰dm1/dt
q1 = p1/R1
q1* = q1

q12 = (p1-p2)/R12

K1
decreases 

p1
increases 

q1
increases

q1*
increases

dm1/dt
decreases

m1
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(first 
order)

p1
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(first 
order)
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(first 
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(first 
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Fault Isolation
• Faults are isolated by comparing the qualitative deviation in measurements with the predicted fault 

signatures
– Example: Consider fault set F = {C1

-,R2
+,C2

-} and measurement set M = {p1, p3} all faults can be uniquely 
isolated

• Therefore, a system with faults F = {f1, … ,fl}, and measurements M = {m1, … ,mn}, is diagnosable
if all single faults in F can be uniquely isolated using M
– I.e., there is at least one distinguishing fault signature between fi and all other faults in the system. 
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Fault Isolation
• Faults are isolated by comparing the qualitative deviation in measurements with the predicted fault 

signatures
– Example: Consider fault set F = {C1

-,R2
+,C2

-} and measurement set M = {p1, p3} all faults can be uniquely 
isolated

• Therefore, a system with faults F = {f1, … ,fl}, and measurements M = {m1, … ,mn}, is diagnosable
if all single faults in F can be uniquely isolated using M
– I.e., there is at least one distinguishing fault signature between fi and all other faults in the system. 
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Fault Isolation
• Faults are isolated by comparing the qualitative deviation in measurements with the predicted fault 

signatures
– Example: Consider fault set F = {C1

-,R2
+,C2

-} and measurement set M = {p1, p3} all faults can be uniquely 
isolated

• Therefore, a system with faults F = {f1, … ,fl}, and measurements M = {m1, … ,mn}, is diagnosable
if all single faults in F can be uniquely isolated using M
– I.e., there is at least one distinguishing fault signature between fi and all other faults in the system. 
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Fault Identification

• Parameter estimation problem
– Identify new (fault) parameter value, given observed faulty behavior
– Several algorithms solve this problem

• One approach:
– Determine an estimation window

• Use data from before td (detection time) to t (current time)
– Run an observer through that window, with the state vector augmented with 

the fault parameter (joint state-parameter estimation)
• Alternate approach
– Derive submodel expressing unknown parameter as function of 

known/measured variables
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Hybrid Systems Diagnosis
1. How do you model hybrid systems?
2. How do you diagnose faults in hybrid systems?
3. What are some practical considerations while diagnosing 

hybrid systems?
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Modeling
• A hybrid system combines both 

discrete event and continuous 
behavior
– Discrete behavior captured by 

different system modes and 
transitions between modes 
modeled using events

– Within each mode is a description 
of the continuous behavior

• In a component-based modeling 
paradigm, define modes at a 
component level
– System-level modes defined by 

specification of modes of each 
component
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Fault Modeling

• Faults can be modeled as parameter changes (continuous part)
– Termed parametric faults

• Faults can be modeled as events/modes (event-based part)
– Termed discrete faults

• Modeling a fault as parametric or discrete is a modeling decision
– Often, it makes more sense to model as one vs the other
– For example, a switch going stuck closed can be modeled as a resistance 

going in infinity
– Or, a parameter changing to a new value could be modeled as a new 

mode where the parameter has the new value
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Mode Changes

• Transitions between modes can be specified in different ways
• Mode transitions are typically classified as follows
– Controlled mode changes are known/commanded mode changes
• Example: turn valve on/off

– Autonomous mode changes are unobserved mode changes that are 
dependent on the system state
• Example: flow through pipe depends on pipe height and water level in tank

• Autonomous mode changes can be difficult to deal with, because 
then it is difficult to track the hybrid system state
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Fault Signatures

• We can derive fault 
signatures for each system 
mode
– If the mode doesn’t change 

during diagnosis, equivalent to 
continuous systems diagnosis

– If the mode does change, 
then we need to reason 
about what mode the system 
was in when the change 
occurred and if there was any 
observation delay (e.g., due 
to imperfect detectors)
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Table 2. Fault signatures and orderings for global model for
mode [0, 0].

Fault q⇤1 q⇤2 q⇤3 Residual Orderings
K�

1 +- 00 00 q⇤1 � q⇤2 , q⇤1 � q⇤3

K�
2 00 +- 00 q⇤2 � q⇤3 , q⇤2 � q⇤1

K�
3 00 00 +- q⇤3 � q⇤2 , q⇤3 � q⇤1

R+
1 -+ 00 00 q⇤1 � q⇤2 , q⇤1 � q⇤3

R+
12 00 00 00 ?

R+
2 00 -+ 00 q⇤2 � q⇤3 , q⇤2 � q⇤1

R+
23 00 00 00 ?

R+
3 00 00 -+ q⇤3 � q⇤2 , q⇤3 � q⇤1

Pipeon
12 0- 0+ 00 q⇤1 � q⇤3 , q⇤2 � q⇤3

Pipeon
23 00 0- 0+ q⇤2 � q⇤1 , q⇤3 � q⇤1

Pipeoff
12 00 00 00 ?

Pipeoff
23 00 00 00 ?

orderings for a fault f over residuals R in mode m is denoted
as ⌦f,R,m.

Table 3. Fault signatures and orderings for global model for
mode [0, 1].

Fault q⇤1 q⇤2 q⇤3 Residual Orderings
K�

1 +- 00 00 q⇤1 � q⇤2 , q⇤1 � q⇤3

K�
2 00 +- 0+ q⇤2 � q⇤3 , q⇤2 � q⇤1 , q⇤3 � q⇤1

K�
3 00 0+ +- q⇤2 � q⇤1 , q⇤3 � q⇤2 , q⇤3 � q⇤1

R+
1 -+ 00 00 q⇤1 � q⇤2 , q⇤1 � q⇤3

R+
12 00 00 00 ?

R+
2 00 -+ 0+ q⇤2 � q⇤3 , q⇤2 � q⇤1 , q⇤3 � q⇤1

R+
23 00 0+ 0- q⇤2 � q⇤1 , q⇤3 � q⇤1

R+
3 00 0+ -+ q⇤2 � q⇤1 , q⇤3 � q⇤2 , q⇤3 � q⇤1

Pipeon
12 0- 0+ 0+ q⇤2 � q⇤3

Pipeoff
23 00 0+ 0- q⇤2 � q⇤1 , q⇤3 � q⇤1

Pipeoff
12 00 00 00 ?

Pipeon
23 00 00 00 ?

Example 5. Tables 2–5 show the fault signatures and order-
ings for the four modes of the tank system for the global
model residuals. For example, in mode [0, 1], R+

3 will cause a
-+ in rq⇤3 , i.e., a decrease in magnitude and increase in slope.
Then on rq⇤2 it will cause 0+, i.e, no change in magnitude
and an increase in slope. In this mode, the first tank is de-
coupled since the connecting pipe is turned off, so no effect
on rq⇤1 will be observed. In the same mode, the fault Pipeon

12

will connect the first and second tanks, and so we will see 0-
on rq⇤1 (since now flow is also exiting through the connect-
ing pipe), 0+ on rq⇤2 , and 0+ on rq⇤3 (since flow is entering
through the connecting pipe into the second tank).

Table 4. Fault signatures and orderings for global model for
mode [1, 0].

Fault q⇤1 q⇤2 q⇤3 Residual Orderings
K�

1 +- 0+ 00 q⇤2 � q⇤3 , q⇤1 � q⇤2 , q⇤1 � q⇤3

K�
2 0+ +- 00 q⇤2 � q⇤3 , q⇤2 � q⇤1 , q⇤1 � q⇤3

K�
3 00 00 +- q⇤3 � q⇤2 , q⇤3 � q⇤1

R+
1 -+ 0+ 00 q⇤2 � q⇤3 , q⇤1 � q⇤2 , q⇤1 � q⇤3

R+
12 0+ 0- 00 q⇤2 � q⇤3 , q⇤1 � q⇤3

R+
2 0+ -+ 00 q⇤2 � q⇤3 , q⇤2 � q⇤1 , q⇤1 � q⇤3

R+
23 00 00 00 ?

R+
3 00 00 -+ q⇤3 � q⇤2 , q⇤3 � q⇤1

Pipeoff
12 0+ 0- 00 q⇤2 � q⇤3 , q⇤1 � q⇤3

Pipeon
23 0- 0- 0+ q⇤2 � q⇤1

Pipeon
12 00 00 00 ?

Pipeoff
23 00 00 00 ?

Table 5. Fault signatures and orderings for global model for
mode [1, 1].

Fault q⇤1 q⇤2 q⇤3 Residual Orderings
K�

1 +- 0+ 0+ q⇤2 � q⇤3 , q⇤1 � q⇤2 , q⇤1 � q⇤3

K�
2 0+ +- 0+ q⇤2 � q⇤3 , q⇤2 � q⇤1

K�
3 0+ 0+ +- q⇤2 � q⇤1 , q⇤3 � q⇤2 , q⇤3 � q⇤1

R+
1 -+ 0+ 0+ q⇤2 � q⇤3 , q⇤1 � q⇤2 , q⇤1 � q⇤3

R+
12 0+ 0- 0- q⇤2 � q⇤3

R+
2 0+ -+ 0+ q⇤2 � q⇤3 , q⇤2 � q⇤1

R+
23 0+ 0+ 0- q⇤2 � q⇤1

R+
3 0+ 0+ -+ q⇤2 � q⇤1 , q⇤3 � q⇤2 , q⇤3 � q⇤1

Pipeoff
12 0+ 0- 0- q⇤2 � q⇤3

Pipeoff
23 0+ 0+ 0- q⇤2 � q⇤1

Pipeon
12 00 00 00 ?

Pipeon
23 00 00 00 ?

Example 6. Tables 6–9 show the fault signatures and or-
derings for the four modes of the tank system for the local
submodel residuals. Consider the fault K�

2 . In [0, 1], it will
cause +- on rq⇤2 . No other residuals will be affected, since the
fault is decoupled from them due to the decomposition. In the
global model residuals, however, an additional residual (that
for q⇤3) will deviate. In the same mode, the fault Pipeon

12 will
connect the first and second tanks, and so we will see 0- on
rq⇤1 and 0+ on rq⇤2 . We will not see any change in rq⇤3 , since
the submodel generating that residual is decoupled from that
mode change.

A single sequence of fault signatures is termed a fault trace.

Definition 10 (Fault Trace). A fault trace for a fault f over
a set of residuals R in mode m, denoted by �f,R,m, is a se-
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Table 2. Fault signatures and orderings for global model for
mode [0, 0].

Fault q⇤1 q⇤2 q⇤3 Residual Orderings
K�

1 +- 00 00 q⇤1 � q⇤2 , q⇤1 � q⇤3

K�
2 00 +- 00 q⇤2 � q⇤3 , q⇤2 � q⇤1

K�
3 00 00 +- q⇤3 � q⇤2 , q⇤3 � q⇤1

R+
1 -+ 00 00 q⇤1 � q⇤2 , q⇤1 � q⇤3

R+
12 00 00 00 ?

R+
2 00 -+ 00 q⇤2 � q⇤3 , q⇤2 � q⇤1

R+
23 00 00 00 ?

R+
3 00 00 -+ q⇤3 � q⇤2 , q⇤3 � q⇤1

Pipeon
12 0- 0+ 00 q⇤1 � q⇤3 , q⇤2 � q⇤3

Pipeon
23 00 0- 0+ q⇤2 � q⇤1 , q⇤3 � q⇤1

Pipeoff
12 00 00 00 ?

Pipeoff
23 00 00 00 ?

orderings for a fault f over residuals R in mode m is denoted
as ⌦f,R,m.

Table 3. Fault signatures and orderings for global model for
mode [0, 1].

Fault q⇤1 q⇤2 q⇤3 Residual Orderings
K�

1 +- 00 00 q⇤1 � q⇤2 , q⇤1 � q⇤3

K�
2 00 +- 0+ q⇤2 � q⇤3 , q⇤2 � q⇤1 , q⇤3 � q⇤1

K�
3 00 0+ +- q⇤2 � q⇤1 , q⇤3 � q⇤2 , q⇤3 � q⇤1

R+
1 -+ 00 00 q⇤1 � q⇤2 , q⇤1 � q⇤3

R+
12 00 00 00 ?

R+
2 00 -+ 0+ q⇤2 � q⇤3 , q⇤2 � q⇤1 , q⇤3 � q⇤1

R+
23 00 0+ 0- q⇤2 � q⇤1 , q⇤3 � q⇤1

R+
3 00 0+ -+ q⇤2 � q⇤1 , q⇤3 � q⇤2 , q⇤3 � q⇤1

Pipeon
12 0- 0+ 0+ q⇤2 � q⇤3

Pipeoff
23 00 0+ 0- q⇤2 � q⇤1 , q⇤3 � q⇤1

Pipeoff
12 00 00 00 ?

Pipeon
23 00 00 00 ?

Example 5. Tables 2–5 show the fault signatures and order-
ings for the four modes of the tank system for the global
model residuals. For example, in mode [0, 1], R+

3 will cause a
-+ in rq⇤3 , i.e., a decrease in magnitude and increase in slope.
Then on rq⇤2 it will cause 0+, i.e, no change in magnitude
and an increase in slope. In this mode, the first tank is de-
coupled since the connecting pipe is turned off, so no effect
on rq⇤1 will be observed. In the same mode, the fault Pipeon

12

will connect the first and second tanks, and so we will see 0-
on rq⇤1 (since now flow is also exiting through the connect-
ing pipe), 0+ on rq⇤2 , and 0+ on rq⇤3 (since flow is entering
through the connecting pipe into the second tank).

Table 4. Fault signatures and orderings for global model for
mode [1, 0].

Fault q⇤1 q⇤2 q⇤3 Residual Orderings
K�

1 +- 0+ 00 q⇤2 � q⇤3 , q⇤1 � q⇤2 , q⇤1 � q⇤3

K�
2 0+ +- 00 q⇤2 � q⇤3 , q⇤2 � q⇤1 , q⇤1 � q⇤3

K�
3 00 00 +- q⇤3 � q⇤2 , q⇤3 � q⇤1

R+
1 -+ 0+ 00 q⇤2 � q⇤3 , q⇤1 � q⇤2 , q⇤1 � q⇤3

R+
12 0+ 0- 00 q⇤2 � q⇤3 , q⇤1 � q⇤3

R+
2 0+ -+ 00 q⇤2 � q⇤3 , q⇤2 � q⇤1 , q⇤1 � q⇤3

R+
23 00 00 00 ?

R+
3 00 00 -+ q⇤3 � q⇤2 , q⇤3 � q⇤1

Pipeoff
12 0+ 0- 00 q⇤2 � q⇤3 , q⇤1 � q⇤3

Pipeon
23 0- 0- 0+ q⇤2 � q⇤1

Pipeon
12 00 00 00 ?

Pipeoff
23 00 00 00 ?

Table 5. Fault signatures and orderings for global model for
mode [1, 1].

Fault q⇤1 q⇤2 q⇤3 Residual Orderings
K�

1 +- 0+ 0+ q⇤2 � q⇤3 , q⇤1 � q⇤2 , q⇤1 � q⇤3

K�
2 0+ +- 0+ q⇤2 � q⇤3 , q⇤2 � q⇤1

K�
3 0+ 0+ +- q⇤2 � q⇤1 , q⇤3 � q⇤2 , q⇤3 � q⇤1

R+
1 -+ 0+ 0+ q⇤2 � q⇤3 , q⇤1 � q⇤2 , q⇤1 � q⇤3

R+
12 0+ 0- 0- q⇤2 � q⇤3

R+
2 0+ -+ 0+ q⇤2 � q⇤3 , q⇤2 � q⇤1

R+
23 0+ 0+ 0- q⇤2 � q⇤1

R+
3 0+ 0+ -+ q⇤2 � q⇤1 , q⇤3 � q⇤2 , q⇤3 � q⇤1

Pipeoff
12 0+ 0- 0- q⇤2 � q⇤3

Pipeoff
23 0+ 0+ 0- q⇤2 � q⇤1

Pipeon
12 00 00 00 ?

Pipeon
23 00 00 00 ?

Example 6. Tables 6–9 show the fault signatures and or-
derings for the four modes of the tank system for the local
submodel residuals. Consider the fault K�

2 . In [0, 1], it will
cause +- on rq⇤2 . No other residuals will be affected, since the
fault is decoupled from them due to the decomposition. In the
global model residuals, however, an additional residual (that
for q⇤3) will deviate. In the same mode, the fault Pipeon

12 will
connect the first and second tanks, and so we will see 0- on
rq⇤1 and 0+ on rq⇤2 . We will not see any change in rq⇤3 , since
the submodel generating that residual is decoupled from that
mode change.

A single sequence of fault signatures is termed a fault trace.

Definition 10 (Fault Trace). A fault trace for a fault f over
a set of residuals R in mode m, denoted by �f,R,m, is a se-
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Table 6. Fault signatures and orderings for local submodels
for mode [0, 0].

Fault q⇤1 q⇤2 q⇤3 Residual Orderings
K�

1 +- 00 00 q⇤1 � q⇤2 , q⇤1 � q⇤3

K�
2 00 +- 00 q⇤2 � q⇤3 , q⇤2 � q⇤1

K�
3 00 00 +- q⇤3 � q⇤2 , q⇤3 � q⇤1

R+
1 -+ 00 00 q⇤1 � q⇤2 , q⇤1 � q⇤3

R+
12 00 00 00 ?

R+
2 00 -+ 00 q⇤2 � q⇤3 , q⇤2 � q⇤1

R+
23 00 00 00 ?

R+
3 00 00 -+ q⇤3 � q⇤2 , q⇤3 � q⇤1

Pipeon
12 0- 0+ 00 q⇤1 � q⇤3 , q⇤2 � q⇤3

Pipeon
23 00 0- 0+ q⇤2 � q⇤1 , q⇤3 � q⇤1

Pipeoff
12 00 00 00 ?

Pipeoff
23 00 00 00 ?

Table 7. Fault signatures and orderings for local submodels
for mode [0, 1].

Fault q⇤1 q⇤2 q⇤3 Residual Orderings
K�

1 +- 00 00 q⇤1 � q⇤2 , q⇤1 � q⇤3

K�
2 00 +- 00 q⇤2 � q⇤3 , q⇤2 � q⇤1

K�
3 00 00 +- q⇤3 � q⇤2 , q⇤3 � q⇤1

R+
1 -+ 00 00 q⇤1 � q⇤2 , q⇤1 � q⇤3

R+
12 00 00 00 ?

R+
2 00 -+ 0+ q⇤2 � q⇤1 , q⇤3 � q⇤1

R+
23 00 0+ 0- q⇤2 � q⇤1 , q⇤3 � q⇤1

R+
3 00 0+ -+ q⇤2 � q⇤1 , q⇤3 � q⇤1

Pipeon
12 0- 0+ 00 q⇤1 � q⇤3 , q⇤2 � q⇤3

Pipeoff
23 00 0+ 0- q⇤2 � q⇤1 , q⇤3 � q⇤1

Pipeoff
12 00 00 00 ?

Pipeon
23 00 00 00 ?

quence of fault signatures that can be observed given the oc-
currence of f in mode m.

Fault traces are grouped into fault languages.1

Definition 11 (Fault Language). The fault language for a
fault f and residual set R in mode m, denoted by Lf,R,m,
is the set of all fault traces for f over R in m.

For the purposes of this paper, we assume that signatures and
orderings are correctly observed.2

Assumption 3 (Correct Observation). If a fault f occurs in

1Fault languages can be automatically derived for certain classes of system
models (Daigle, 2008), obtained via simulation, or obtained experimentally.
In this work, we assume that the fault languages are given as input.

2Relaxation of this assumption has been explored for continuous systems
in (Daigle, Roychoudhury, & Bregon, 2014).

Table 8. Fault signatures and orderings for local submodels
for mode [1, 0].

Fault q⇤1 q⇤2 q⇤3 Residual Orderings
K�

1 +- 00 00 q⇤1 � q⇤2 , q⇤1 � q⇤3

K�
2 00 +- 00 q⇤2 � q⇤3 , q⇤2 � q⇤1

K�
3 00 00 +- q⇤3 � q⇤2 , q⇤3 � q⇤1

R+
1 -+ 0+ 00 q⇤2 � q⇤3 , q⇤1 � q⇤3

R+
12 0+ 0- 00 q⇤2 � q⇤3 , q⇤1 � q⇤3

R+
2 0+ -+ 00 q⇤2 � q⇤3 , q⇤1 � q⇤3

R+
23 00 00 00 ?

R+
3 00 00 -+ q⇤3 � q⇤2 , q⇤3 � q⇤1

Pipeoff
12 0+ 0- 00 q⇤1 � q⇤3 , q⇤2 � q⇤3

Pipeon
23 00 0- 0+ q⇤2 � q⇤1 , q⇤3 � q⇤1

Pipeon
12 00 00 00 ?

Pipeoff
23 00 00 00 ?

Table 9. Fault signatures and orderings for local submodels
for mode [1, 1].

Fault q⇤1 q⇤2 q⇤3 Residual Orderings
K�

1 +- 00 00 q⇤1 � q⇤2 , q⇤1 � q⇤3

K�
2 00 +- 00 q⇤2 � q⇤3 , q⇤2 � q⇤1

K�
3 00 00 +- q⇤3 � q⇤2 , q⇤3 � q⇤1

R+
1 -+ 0+ 00 q⇤2 � q⇤3 , q⇤1 � q⇤3

R+
12 0+ 0- 00 q⇤2 � q⇤3 , q⇤1 � q⇤3

R+
2 0+ -+ 0+ ?

R+
23 00 0+ 0- q⇤2 � q⇤1 , q⇤3 � q⇤1

R+
3 00 0+ -+ q⇤2 � q⇤1 , q⇤3 � q⇤1

Pipeoff
12 0+ 0- 00 q⇤1 � q⇤3 , q⇤2 � q⇤3

Pipeoff
23 00 0+ 0- q⇤2 � q⇤1 , q⇤3 � q⇤1

Pipeon
12 00 00 00 ?

Pipeon
23 00 00 00 ?

mode m, then if the system does not change mode after the
occurrence of the fault, the observed fault trace will belong to
Lf,R,m.

4.2. Hybrid Systems Diagnosis

For hybrid systems, fault signatures, residual orderings, fault
traces, and fault languages are a function of the system mode.
If the mode does not change between the point of fault occur-
rence and the diagnosis of the fault, then the problem reduces
to the continuous systems case. Otherwise, we will observe
some new trace that may not belong to any mode-specific
fault language, i.e., it may be a trace that is composed of par-
tial traces for a fault from the different modes encountered
during diagnosis.

Example 7. For example, consider the global model residu-
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Table 6. Fault signatures and orderings for local submodels
for mode [0, 0].

Fault q⇤1 q⇤2 q⇤3 Residual Orderings
K�

1 +- 00 00 q⇤1 � q⇤2 , q⇤1 � q⇤3

K�
2 00 +- 00 q⇤2 � q⇤3 , q⇤2 � q⇤1

K�
3 00 00 +- q⇤3 � q⇤2 , q⇤3 � q⇤1

R+
1 -+ 00 00 q⇤1 � q⇤2 , q⇤1 � q⇤3

R+
12 00 00 00 ?

R+
2 00 -+ 00 q⇤2 � q⇤3 , q⇤2 � q⇤1

R+
23 00 00 00 ?

R+
3 00 00 -+ q⇤3 � q⇤2 , q⇤3 � q⇤1

Pipeon
12 0- 0+ 00 q⇤1 � q⇤3 , q⇤2 � q⇤3

Pipeon
23 00 0- 0+ q⇤2 � q⇤1 , q⇤3 � q⇤1

Pipeoff
12 00 00 00 ?

Pipeoff
23 00 00 00 ?

Table 7. Fault signatures and orderings for local submodels
for mode [0, 1].

Fault q⇤1 q⇤2 q⇤3 Residual Orderings
K�

1 +- 00 00 q⇤1 � q⇤2 , q⇤1 � q⇤3

K�
2 00 +- 00 q⇤2 � q⇤3 , q⇤2 � q⇤1

K�
3 00 00 +- q⇤3 � q⇤2 , q⇤3 � q⇤1

R+
1 -+ 00 00 q⇤1 � q⇤2 , q⇤1 � q⇤3

R+
12 00 00 00 ?

R+
2 00 -+ 0+ q⇤2 � q⇤1 , q⇤3 � q⇤1

R+
23 00 0+ 0- q⇤2 � q⇤1 , q⇤3 � q⇤1

R+
3 00 0+ -+ q⇤2 � q⇤1 , q⇤3 � q⇤1

Pipeon
12 0- 0+ 00 q⇤1 � q⇤3 , q⇤2 � q⇤3

Pipeoff
23 00 0+ 0- q⇤2 � q⇤1 , q⇤3 � q⇤1

Pipeoff
12 00 00 00 ?

Pipeon
23 00 00 00 ?

quence of fault signatures that can be observed given the oc-
currence of f in mode m.

Fault traces are grouped into fault languages.1

Definition 11 (Fault Language). The fault language for a
fault f and residual set R in mode m, denoted by Lf,R,m,
is the set of all fault traces for f over R in m.

For the purposes of this paper, we assume that signatures and
orderings are correctly observed.2

Assumption 3 (Correct Observation). If a fault f occurs in

1Fault languages can be automatically derived for certain classes of system
models (Daigle, 2008), obtained via simulation, or obtained experimentally.
In this work, we assume that the fault languages are given as input.

2Relaxation of this assumption has been explored for continuous systems
in (Daigle, Roychoudhury, & Bregon, 2014).

Table 8. Fault signatures and orderings for local submodels
for mode [1, 0].

Fault q⇤1 q⇤2 q⇤3 Residual Orderings
K�

1 +- 00 00 q⇤1 � q⇤2 , q⇤1 � q⇤3

K�
2 00 +- 00 q⇤2 � q⇤3 , q⇤2 � q⇤1

K�
3 00 00 +- q⇤3 � q⇤2 , q⇤3 � q⇤1

R+
1 -+ 0+ 00 q⇤2 � q⇤3 , q⇤1 � q⇤3

R+
12 0+ 0- 00 q⇤2 � q⇤3 , q⇤1 � q⇤3

R+
2 0+ -+ 00 q⇤2 � q⇤3 , q⇤1 � q⇤3

R+
23 00 00 00 ?

R+
3 00 00 -+ q⇤3 � q⇤2 , q⇤3 � q⇤1

Pipeoff
12 0+ 0- 00 q⇤1 � q⇤3 , q⇤2 � q⇤3

Pipeon
23 00 0- 0+ q⇤2 � q⇤1 , q⇤3 � q⇤1

Pipeon
12 00 00 00 ?

Pipeoff
23 00 00 00 ?

Table 9. Fault signatures and orderings for local submodels
for mode [1, 1].

Fault q⇤1 q⇤2 q⇤3 Residual Orderings
K�

1 +- 00 00 q⇤1 � q⇤2 , q⇤1 � q⇤3

K�
2 00 +- 00 q⇤2 � q⇤3 , q⇤2 � q⇤1

K�
3 00 00 +- q⇤3 � q⇤2 , q⇤3 � q⇤1

R+
1 -+ 0+ 00 q⇤2 � q⇤3 , q⇤1 � q⇤3

R+
12 0+ 0- 00 q⇤2 � q⇤3 , q⇤1 � q⇤3

R+
2 0+ -+ 0+ ?

R+
23 00 0+ 0- q⇤2 � q⇤1 , q⇤3 � q⇤1

R+
3 00 0+ -+ q⇤2 � q⇤1 , q⇤3 � q⇤1

Pipeoff
12 0+ 0- 00 q⇤1 � q⇤3 , q⇤2 � q⇤3

Pipeoff
23 00 0+ 0- q⇤2 � q⇤1 , q⇤3 � q⇤1

Pipeon
12 00 00 00 ?

Pipeon
23 00 00 00 ?

mode m, then if the system does not change mode after the
occurrence of the fault, the observed fault trace will belong to
Lf,R,m.

4.2. Hybrid Systems Diagnosis

For hybrid systems, fault signatures, residual orderings, fault
traces, and fault languages are a function of the system mode.
If the mode does not change between the point of fault occur-
rence and the diagnosis of the fault, then the problem reduces
to the continuous systems case. Otherwise, we will observe
some new trace that may not belong to any mode-specific
fault language, i.e., it may be a trace that is composed of par-
tial traces for a fault from the different modes encountered
during diagnosis.

Example 7. For example, consider the global model residu-
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Mode 0,0 Mode 1,0 Mode 0,1 Mode 1,1



Hybrid Systems Diagnosis: One Approach
• Assume single faults
• Assume all commanded mode 

changes are observed
• Assume observation delay is 

bounded
• Algorithm updates current diagnosis 

set based on new observation and 
previous observation sequence
– For all recent mode changes

• Check if current observed signature can 
start a fault trace in the mode, for the 
sublanguage of not-yet-deviated 
residuals

4 OCTOBER 2016 PHM 2016 51

Algorithm: Fault Isolation
Inputs: Current diagnosis, previous trace, new 
symbol, recent modes
Outputs: New diagnosis
• Set new diagnosis to empty set
• For each recent mode
• For each fault in the current diagnosis
• If new symbol is consistent with  

signatures in the new mode
• Add fault to diagnosis
• End if
• End for
• End for



Example: Diagnosis of Parametric Fault
• Delay bounded by 5 s
• 0.0 s: Mode [0,0]
• 10.0 s: Mode [1,0]
• 15.0 s: K1- occurs
• Global

– Consider past two modes
– 15.0 s: rq1* +- à {K1-}
– 15.0 s: rq2* 0+ à {K1-}

4 OCTOBER 2016 PHM 2016 52
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observed fault signature. This would be placed within a pro-
gressive monitoring algorithm, that keeps track of the current
diagnosis, and computes the set of recent modes based on the
times events are observed.

4.3. Scalability

The complexity of the fault isolation algorithm is dependent
on the number of faults, |F |, the number of residuals, |R|,
and the number of modes, |M |. For the global model case,
all faults, residuals, and modes in Mr,� must be searched.
Because r is computed using the global model, it is a function
of the system-level mode. For an n-tank system, there are
n�1 switching components and so 2n�1 system-level modes.
Clearly, diagnosis in this case will not scale.

For the local submodel case, each residual is generated by a
minimal submodel. Each minimal submodel has only a sin-
gle residual that it produces, contains only a subset of the
faults, and has only a few modes. Thus, on average it will
scale much better. The more decomposition can be achieved,
the better it will scale. For an n-tank system, each residual
rq⇤i for tank i will have at most 4 modes, because it depends
only on the switching behavior of the two adjacent connect-
ing pipes. So there will be at most 4 modes to search through
for each residual deviation, compared to 2n�1 for the global
model case. Here, then, this scales linearly with the num-
ber of tanks, not exponentially, and thus will have significant
efficiency gains as the system size grows.

5. DEMONSTRATION OF APPROACH

In this section, we demonstrate the approach through some
example scenarios using the three-tank system. In each exper-
iment, the system always starts in mode [0, 0], goes through
some mode changes, and a fault is injected. The complete
set of faults considered is that listed in Tables 3–6: 8 para-
metric faults and 4 discrete faults. In each case, we compare
the performance of the global model approach and the local
submodel approach.

The symbol generation approach described in (Daigle, Roy-
choudhury, et al., 2010) is used, which uses the Z-test for sta-
tistical fault detection and symbol generation. A window of
samples is used to compute the mean, and thus can produce a
delay that increases with window size. For the particular fault
detector settings, we consider the bounded observation delay
to be � = 5 s.

In the first scenario, we consider the parametric fault K�
1 . Ini-

tially, the system is in mode [0, 0], and moves to mode [1, 0]
at 10.0 s. At 15.0 s, K�

1 occurs, with the value reducing by
50%. For the global model residuals, we detect first +- in
rq⇤1 at this time, along with 0+ in rq⇤2 . The signatures may
have come from either of the past two modes, since the fault
was detected within 5.0 s of the first mode change. The only
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Figure 3. Residual values with a decrease in K1 at t = 15 s.

consistent fault is K�
1 , for both of these modes. Then, the

system moves to mode [1, 1] at 20.0 s. With this second mode
change, rq⇤3 becomes connected to the fault and so at 21.0 s,
0+ is detected, which is still consistent with the diagnosis of
K�

1 . For the local submodel residuals, we observe only +-

in rq⇤1 . This residual’s submodel is different for the previous
two modes, so both must be considered. Again, only K�

1 is
consistent, and is the diagnosis.

In the second example, we consider the discrete fault Pipeoff
12.

Initially, the system is in mode [0, 0], and moves to mode
[1, 0] at 10.0 s. At 15.0 s, Pipeoff

12 occurs. In the global model
residuals, we see first 0+ in rq⇤1 and 0- in rq⇤2 at 16.0 s. In
this case only mode [1, 0] needs to be considered as the mode
in which the fault occurred, and these signatures are consis-
tent only with Pipeoff

12. For the local submodel residuals, we
observe the same signatures and reach the same conclusion.

In the third example, we consider the parametric fault R+
2,3.

9
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Table 2. Fault signatures and orderings for global model for
mode [0, 0].

Fault q⇤1 q⇤2 q⇤3 Residual Orderings
K�

1 +- 00 00 q⇤1 � q⇤2 , q⇤1 � q⇤3

K�
2 00 +- 00 q⇤2 � q⇤3 , q⇤2 � q⇤1

K�
3 00 00 +- q⇤3 � q⇤2 , q⇤3 � q⇤1

R+
1 -+ 00 00 q⇤1 � q⇤2 , q⇤1 � q⇤3

R+
12 00 00 00 ?

R+
2 00 -+ 00 q⇤2 � q⇤3 , q⇤2 � q⇤1

R+
23 00 00 00 ?

R+
3 00 00 -+ q⇤3 � q⇤2 , q⇤3 � q⇤1

Pipeon
12 0- 0+ 00 q⇤1 � q⇤3 , q⇤2 � q⇤3

Pipeon
23 00 0- 0+ q⇤2 � q⇤1 , q⇤3 � q⇤1

Pipeoff
12 00 00 00 ?

Pipeoff
23 00 00 00 ?

orderings for a fault f over residuals R in mode m is denoted
as ⌦f,R,m.

Table 3. Fault signatures and orderings for global model for
mode [0, 1].

Fault q⇤1 q⇤2 q⇤3 Residual Orderings
K�

1 +- 00 00 q⇤1 � q⇤2 , q⇤1 � q⇤3

K�
2 00 +- 0+ q⇤2 � q⇤3 , q⇤2 � q⇤1 , q⇤3 � q⇤1

K�
3 00 0+ +- q⇤2 � q⇤1 , q⇤3 � q⇤2 , q⇤3 � q⇤1

R+
1 -+ 00 00 q⇤1 � q⇤2 , q⇤1 � q⇤3

R+
12 00 00 00 ?

R+
2 00 -+ 0+ q⇤2 � q⇤3 , q⇤2 � q⇤1 , q⇤3 � q⇤1

R+
23 00 0+ 0- q⇤2 � q⇤1 , q⇤3 � q⇤1

R+
3 00 0+ -+ q⇤2 � q⇤1 , q⇤3 � q⇤2 , q⇤3 � q⇤1

Pipeon
12 0- 0+ 0+ q⇤2 � q⇤3

Pipeoff
23 00 0+ 0- q⇤2 � q⇤1 , q⇤3 � q⇤1

Pipeoff
12 00 00 00 ?

Pipeon
23 00 00 00 ?

Example 5. Tables 2–5 show the fault signatures and order-
ings for the four modes of the tank system for the global
model residuals. For example, in mode [0, 1], R+

3 will cause a
-+ in rq⇤3 , i.e., a decrease in magnitude and increase in slope.
Then on rq⇤2 it will cause 0+, i.e, no change in magnitude
and an increase in slope. In this mode, the first tank is de-
coupled since the connecting pipe is turned off, so no effect
on rq⇤1 will be observed. In the same mode, the fault Pipeon

12

will connect the first and second tanks, and so we will see 0-
on rq⇤1 (since now flow is also exiting through the connect-
ing pipe), 0+ on rq⇤2 , and 0+ on rq⇤3 (since flow is entering
through the connecting pipe into the second tank).

Table 4. Fault signatures and orderings for global model for
mode [1, 0].

Fault q⇤1 q⇤2 q⇤3 Residual Orderings
K�

1 +- 0+ 00 q⇤2 � q⇤3 , q⇤1 � q⇤2 , q⇤1 � q⇤3

K�
2 0+ +- 00 q⇤2 � q⇤3 , q⇤2 � q⇤1 , q⇤1 � q⇤3

K�
3 00 00 +- q⇤3 � q⇤2 , q⇤3 � q⇤1

R+
1 -+ 0+ 00 q⇤2 � q⇤3 , q⇤1 � q⇤2 , q⇤1 � q⇤3

R+
12 0+ 0- 00 q⇤2 � q⇤3 , q⇤1 � q⇤3

R+
2 0+ -+ 00 q⇤2 � q⇤3 , q⇤2 � q⇤1 , q⇤1 � q⇤3

R+
23 00 00 00 ?

R+
3 00 00 -+ q⇤3 � q⇤2 , q⇤3 � q⇤1

Pipeoff
12 0+ 0- 00 q⇤2 � q⇤3 , q⇤1 � q⇤3

Pipeon
23 0- 0- 0+ q⇤2 � q⇤1

Pipeon
12 00 00 00 ?

Pipeoff
23 00 00 00 ?

Table 5. Fault signatures and orderings for global model for
mode [1, 1].

Fault q⇤1 q⇤2 q⇤3 Residual Orderings
K�

1 +- 0+ 0+ q⇤2 � q⇤3 , q⇤1 � q⇤2 , q⇤1 � q⇤3

K�
2 0+ +- 0+ q⇤2 � q⇤3 , q⇤2 � q⇤1

K�
3 0+ 0+ +- q⇤2 � q⇤1 , q⇤3 � q⇤2 , q⇤3 � q⇤1

R+
1 -+ 0+ 0+ q⇤2 � q⇤3 , q⇤1 � q⇤2 , q⇤1 � q⇤3

R+
12 0+ 0- 0- q⇤2 � q⇤3

R+
2 0+ -+ 0+ q⇤2 � q⇤3 , q⇤2 � q⇤1

R+
23 0+ 0+ 0- q⇤2 � q⇤1

R+
3 0+ 0+ -+ q⇤2 � q⇤1 , q⇤3 � q⇤2 , q⇤3 � q⇤1

Pipeoff
12 0+ 0- 0- q⇤2 � q⇤3

Pipeoff
23 0+ 0+ 0- q⇤2 � q⇤1

Pipeon
12 00 00 00 ?

Pipeon
23 00 00 00 ?

Example 6. Tables 6–9 show the fault signatures and or-
derings for the four modes of the tank system for the local
submodel residuals. Consider the fault K�

2 . In [0, 1], it will
cause +- on rq⇤2 . No other residuals will be affected, since the
fault is decoupled from them due to the decomposition. In the
global model residuals, however, an additional residual (that
for q⇤3) will deviate. In the same mode, the fault Pipeon

12 will
connect the first and second tanks, and so we will see 0- on
rq⇤1 and 0+ on rq⇤2 . We will not see any change in rq⇤3 , since
the submodel generating that residual is decoupled from that
mode change.

A single sequence of fault signatures is termed a fault trace.

Definition 10 (Fault Trace). A fault trace for a fault f over
a set of residuals R in mode m, denoted by �f,R,m, is a se-
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Table 2. Fault signatures and orderings for global model for
mode [0, 0].

Fault q⇤1 q⇤2 q⇤3 Residual Orderings
K�

1 +- 00 00 q⇤1 � q⇤2 , q⇤1 � q⇤3

K�
2 00 +- 00 q⇤2 � q⇤3 , q⇤2 � q⇤1

K�
3 00 00 +- q⇤3 � q⇤2 , q⇤3 � q⇤1

R+
1 -+ 00 00 q⇤1 � q⇤2 , q⇤1 � q⇤3

R+
12 00 00 00 ?

R+
2 00 -+ 00 q⇤2 � q⇤3 , q⇤2 � q⇤1

R+
23 00 00 00 ?

R+
3 00 00 -+ q⇤3 � q⇤2 , q⇤3 � q⇤1

Pipeon
12 0- 0+ 00 q⇤1 � q⇤3 , q⇤2 � q⇤3

Pipeon
23 00 0- 0+ q⇤2 � q⇤1 , q⇤3 � q⇤1

Pipeoff
12 00 00 00 ?

Pipeoff
23 00 00 00 ?

orderings for a fault f over residuals R in mode m is denoted
as ⌦f,R,m.

Table 3. Fault signatures and orderings for global model for
mode [0, 1].

Fault q⇤1 q⇤2 q⇤3 Residual Orderings
K�

1 +- 00 00 q⇤1 � q⇤2 , q⇤1 � q⇤3

K�
2 00 +- 0+ q⇤2 � q⇤3 , q⇤2 � q⇤1 , q⇤3 � q⇤1

K�
3 00 0+ +- q⇤2 � q⇤1 , q⇤3 � q⇤2 , q⇤3 � q⇤1

R+
1 -+ 00 00 q⇤1 � q⇤2 , q⇤1 � q⇤3

R+
12 00 00 00 ?

R+
2 00 -+ 0+ q⇤2 � q⇤3 , q⇤2 � q⇤1 , q⇤3 � q⇤1

R+
23 00 0+ 0- q⇤2 � q⇤1 , q⇤3 � q⇤1

R+
3 00 0+ -+ q⇤2 � q⇤1 , q⇤3 � q⇤2 , q⇤3 � q⇤1

Pipeon
12 0- 0+ 0+ q⇤2 � q⇤3

Pipeoff
23 00 0+ 0- q⇤2 � q⇤1 , q⇤3 � q⇤1

Pipeoff
12 00 00 00 ?

Pipeon
23 00 00 00 ?

Example 5. Tables 2–5 show the fault signatures and order-
ings for the four modes of the tank system for the global
model residuals. For example, in mode [0, 1], R+

3 will cause a
-+ in rq⇤3 , i.e., a decrease in magnitude and increase in slope.
Then on rq⇤2 it will cause 0+, i.e, no change in magnitude
and an increase in slope. In this mode, the first tank is de-
coupled since the connecting pipe is turned off, so no effect
on rq⇤1 will be observed. In the same mode, the fault Pipeon

12

will connect the first and second tanks, and so we will see 0-
on rq⇤1 (since now flow is also exiting through the connect-
ing pipe), 0+ on rq⇤2 , and 0+ on rq⇤3 (since flow is entering
through the connecting pipe into the second tank).

Table 4. Fault signatures and orderings for global model for
mode [1, 0].

Fault q⇤1 q⇤2 q⇤3 Residual Orderings
K�

1 +- 0+ 00 q⇤2 � q⇤3 , q⇤1 � q⇤2 , q⇤1 � q⇤3

K�
2 0+ +- 00 q⇤2 � q⇤3 , q⇤2 � q⇤1 , q⇤1 � q⇤3

K�
3 00 00 +- q⇤3 � q⇤2 , q⇤3 � q⇤1

R+
1 -+ 0+ 00 q⇤2 � q⇤3 , q⇤1 � q⇤2 , q⇤1 � q⇤3

R+
12 0+ 0- 00 q⇤2 � q⇤3 , q⇤1 � q⇤3

R+
2 0+ -+ 00 q⇤2 � q⇤3 , q⇤2 � q⇤1 , q⇤1 � q⇤3

R+
23 00 00 00 ?

R+
3 00 00 -+ q⇤3 � q⇤2 , q⇤3 � q⇤1

Pipeoff
12 0+ 0- 00 q⇤2 � q⇤3 , q⇤1 � q⇤3

Pipeon
23 0- 0- 0+ q⇤2 � q⇤1

Pipeon
12 00 00 00 ?

Pipeoff
23 00 00 00 ?

Table 5. Fault signatures and orderings for global model for
mode [1, 1].

Fault q⇤1 q⇤2 q⇤3 Residual Orderings
K�

1 +- 0+ 0+ q⇤2 � q⇤3 , q⇤1 � q⇤2 , q⇤1 � q⇤3

K�
2 0+ +- 0+ q⇤2 � q⇤3 , q⇤2 � q⇤1

K�
3 0+ 0+ +- q⇤2 � q⇤1 , q⇤3 � q⇤2 , q⇤3 � q⇤1

R+
1 -+ 0+ 0+ q⇤2 � q⇤3 , q⇤1 � q⇤2 , q⇤1 � q⇤3

R+
12 0+ 0- 0- q⇤2 � q⇤3

R+
2 0+ -+ 0+ q⇤2 � q⇤3 , q⇤2 � q⇤1

R+
23 0+ 0+ 0- q⇤2 � q⇤1

R+
3 0+ 0+ -+ q⇤2 � q⇤1 , q⇤3 � q⇤2 , q⇤3 � q⇤1

Pipeoff
12 0+ 0- 0- q⇤2 � q⇤3

Pipeoff
23 0+ 0+ 0- q⇤2 � q⇤1

Pipeon
12 00 00 00 ?

Pipeon
23 00 00 00 ?

Example 6. Tables 6–9 show the fault signatures and or-
derings for the four modes of the tank system for the local
submodel residuals. Consider the fault K�

2 . In [0, 1], it will
cause +- on rq⇤2 . No other residuals will be affected, since the
fault is decoupled from them due to the decomposition. In the
global model residuals, however, an additional residual (that
for q⇤3) will deviate. In the same mode, the fault Pipeon

12 will
connect the first and second tanks, and so we will see 0- on
rq⇤1 and 0+ on rq⇤2 . We will not see any change in rq⇤3 , since
the submodel generating that residual is decoupled from that
mode change.

A single sequence of fault signatures is termed a fault trace.

Definition 10 (Fault Trace). A fault trace for a fault f over
a set of residuals R in mode m, denoted by �f,R,m, is a se-

6

Mode  [0,0] Mode  [1,0]



Example: Diagnosis of Discrete Fault
• Delay bounded by 5 s
• 0.0 s: Mode [0,0]
• 10.0 s: Mode [1,0]
• 15.0 s: Pipe12off occurs
• Global
– Consider past two 

modes
– 16.0 s: rq1* 0+ à

{Pipe12off}
– 16.0 s: rq2* 0- à

{Pipe12off}
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Figure 4. Residual values with Pipeoff
12 at t = 15 s.

Initially, the system is in mode [0, 0], and moves to mode
[0, 1] at 10.0 s, and [1, 1] at 12.0 s. At 15.0 s, R+

2,3 occurs,
doubling in value. Here, we consider � = 6 s. At 16.0 s, 0+
in rq⇤2 and 0- in rq⇤3 are detected in the global model resid-
uals, and both modes [0, 1] and [1, 1] must be considered. In
both cases, both R+

2,3 and Pipeoff
12 are consistent, and cannot

be distinguished further. For the local submodel residuals, 0+
in rq⇤2 and 0- in rq⇤3 are detected at 16.0 s. Because the local
submodel for rq⇤2 only changes modes to to Pipe23, which has
not changed in the last � = 6 s, only the last known system
mode needs to be considered. The diagnosis is the same as in
the global model case, but it is arrived at with less computa-
tion (fewer searches over past modes).

In the fourth example, we consider the discrete fault Pipeon
12.

Initially, the system is in mode [0, 0], and moves to mode
[1, 0] at 10.0 s, and then to [1, 1] at 15.0 s. At 17.0 s, Pipeon

12

occurs. In this mode, however, it is not observable because
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Figure 5. Residual values with an increase in R2,3 at t = 15 s.

Pipe12 is already on. At 20.0 s, the system changes to mode
[0, 1]. At this point, the fault becomes observable. In both the
global model and local submodel residuals we observe 0- in
rq⇤1 and 0+ in rq⇤2 , consistent only with Pipeon

12. At 23.0 s, 0+
is observed in rq⇤3 for the global model residuals, confirming
the diagnosis.

6. RELATED WORK

During the last decade or so, modeling and diagnosis for hy-
brid systems have been an important topic of researchers from
both the FDI and DX communities. In the FDI community,
several hybrid system diagnosis approaches have been devel-
oped. In (Cocquempot, El Mezyani, & Staroswiecki, 2004),
parameterized ARRs are used. However, the approach is not
suitable for systems with high nonlinearities or a large set
of modes. In the DX community, some approaches have
used different kind of automata to model the complete set
of modes and transitions between them. In those cases, the

10
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Table 2. Fault signatures and orderings for global model for
mode [0, 0].

Fault q⇤1 q⇤2 q⇤3 Residual Orderings
K�

1 +- 00 00 q⇤1 � q⇤2 , q⇤1 � q⇤3

K�
2 00 +- 00 q⇤2 � q⇤3 , q⇤2 � q⇤1

K�
3 00 00 +- q⇤3 � q⇤2 , q⇤3 � q⇤1

R+
1 -+ 00 00 q⇤1 � q⇤2 , q⇤1 � q⇤3

R+
12 00 00 00 ?

R+
2 00 -+ 00 q⇤2 � q⇤3 , q⇤2 � q⇤1

R+
23 00 00 00 ?

R+
3 00 00 -+ q⇤3 � q⇤2 , q⇤3 � q⇤1

Pipeon
12 0- 0+ 00 q⇤1 � q⇤3 , q⇤2 � q⇤3

Pipeon
23 00 0- 0+ q⇤2 � q⇤1 , q⇤3 � q⇤1

Pipeoff
12 00 00 00 ?

Pipeoff
23 00 00 00 ?

orderings for a fault f over residuals R in mode m is denoted
as ⌦f,R,m.

Table 3. Fault signatures and orderings for global model for
mode [0, 1].

Fault q⇤1 q⇤2 q⇤3 Residual Orderings
K�

1 +- 00 00 q⇤1 � q⇤2 , q⇤1 � q⇤3

K�
2 00 +- 0+ q⇤2 � q⇤3 , q⇤2 � q⇤1 , q⇤3 � q⇤1

K�
3 00 0+ +- q⇤2 � q⇤1 , q⇤3 � q⇤2 , q⇤3 � q⇤1

R+
1 -+ 00 00 q⇤1 � q⇤2 , q⇤1 � q⇤3

R+
12 00 00 00 ?

R+
2 00 -+ 0+ q⇤2 � q⇤3 , q⇤2 � q⇤1 , q⇤3 � q⇤1

R+
23 00 0+ 0- q⇤2 � q⇤1 , q⇤3 � q⇤1

R+
3 00 0+ -+ q⇤2 � q⇤1 , q⇤3 � q⇤2 , q⇤3 � q⇤1

Pipeon
12 0- 0+ 0+ q⇤2 � q⇤3

Pipeoff
23 00 0+ 0- q⇤2 � q⇤1 , q⇤3 � q⇤1

Pipeoff
12 00 00 00 ?

Pipeon
23 00 00 00 ?

Example 5. Tables 2–5 show the fault signatures and order-
ings for the four modes of the tank system for the global
model residuals. For example, in mode [0, 1], R+

3 will cause a
-+ in rq⇤3 , i.e., a decrease in magnitude and increase in slope.
Then on rq⇤2 it will cause 0+, i.e, no change in magnitude
and an increase in slope. In this mode, the first tank is de-
coupled since the connecting pipe is turned off, so no effect
on rq⇤1 will be observed. In the same mode, the fault Pipeon

12

will connect the first and second tanks, and so we will see 0-
on rq⇤1 (since now flow is also exiting through the connect-
ing pipe), 0+ on rq⇤2 , and 0+ on rq⇤3 (since flow is entering
through the connecting pipe into the second tank).

Table 4. Fault signatures and orderings for global model for
mode [1, 0].

Fault q⇤1 q⇤2 q⇤3 Residual Orderings
K�

1 +- 0+ 00 q⇤2 � q⇤3 , q⇤1 � q⇤2 , q⇤1 � q⇤3

K�
2 0+ +- 00 q⇤2 � q⇤3 , q⇤2 � q⇤1 , q⇤1 � q⇤3

K�
3 00 00 +- q⇤3 � q⇤2 , q⇤3 � q⇤1

R+
1 -+ 0+ 00 q⇤2 � q⇤3 , q⇤1 � q⇤2 , q⇤1 � q⇤3

R+
12 0+ 0- 00 q⇤2 � q⇤3 , q⇤1 � q⇤3

R+
2 0+ -+ 00 q⇤2 � q⇤3 , q⇤2 � q⇤1 , q⇤1 � q⇤3

R+
23 00 00 00 ?

R+
3 00 00 -+ q⇤3 � q⇤2 , q⇤3 � q⇤1

Pipeoff
12 0+ 0- 00 q⇤2 � q⇤3 , q⇤1 � q⇤3

Pipeon
23 0- 0- 0+ q⇤2 � q⇤1

Pipeon
12 00 00 00 ?

Pipeoff
23 00 00 00 ?

Table 5. Fault signatures and orderings for global model for
mode [1, 1].

Fault q⇤1 q⇤2 q⇤3 Residual Orderings
K�

1 +- 0+ 0+ q⇤2 � q⇤3 , q⇤1 � q⇤2 , q⇤1 � q⇤3

K�
2 0+ +- 0+ q⇤2 � q⇤3 , q⇤2 � q⇤1

K�
3 0+ 0+ +- q⇤2 � q⇤1 , q⇤3 � q⇤2 , q⇤3 � q⇤1

R+
1 -+ 0+ 0+ q⇤2 � q⇤3 , q⇤1 � q⇤2 , q⇤1 � q⇤3

R+
12 0+ 0- 0- q⇤2 � q⇤3

R+
2 0+ -+ 0+ q⇤2 � q⇤3 , q⇤2 � q⇤1

R+
23 0+ 0+ 0- q⇤2 � q⇤1

R+
3 0+ 0+ -+ q⇤2 � q⇤1 , q⇤3 � q⇤2 , q⇤3 � q⇤1

Pipeoff
12 0+ 0- 0- q⇤2 � q⇤3

Pipeoff
23 0+ 0+ 0- q⇤2 � q⇤1

Pipeon
12 00 00 00 ?

Pipeon
23 00 00 00 ?

Example 6. Tables 6–9 show the fault signatures and or-
derings for the four modes of the tank system for the local
submodel residuals. Consider the fault K�

2 . In [0, 1], it will
cause +- on rq⇤2 . No other residuals will be affected, since the
fault is decoupled from them due to the decomposition. In the
global model residuals, however, an additional residual (that
for q⇤3) will deviate. In the same mode, the fault Pipeon

12 will
connect the first and second tanks, and so we will see 0- on
rq⇤1 and 0+ on rq⇤2 . We will not see any change in rq⇤3 , since
the submodel generating that residual is decoupled from that
mode change.

A single sequence of fault signatures is termed a fault trace.

Definition 10 (Fault Trace). A fault trace for a fault f over
a set of residuals R in mode m, denoted by �f,R,m, is a se-

6
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Table 2. Fault signatures and orderings for global model for
mode [0, 0].

Fault q⇤1 q⇤2 q⇤3 Residual Orderings
K�

1 +- 00 00 q⇤1 � q⇤2 , q⇤1 � q⇤3

K�
2 00 +- 00 q⇤2 � q⇤3 , q⇤2 � q⇤1

K�
3 00 00 +- q⇤3 � q⇤2 , q⇤3 � q⇤1

R+
1 -+ 00 00 q⇤1 � q⇤2 , q⇤1 � q⇤3

R+
12 00 00 00 ?

R+
2 00 -+ 00 q⇤2 � q⇤3 , q⇤2 � q⇤1

R+
23 00 00 00 ?

R+
3 00 00 -+ q⇤3 � q⇤2 , q⇤3 � q⇤1

Pipeon
12 0- 0+ 00 q⇤1 � q⇤3 , q⇤2 � q⇤3

Pipeon
23 00 0- 0+ q⇤2 � q⇤1 , q⇤3 � q⇤1

Pipeoff
12 00 00 00 ?

Pipeoff
23 00 00 00 ?

orderings for a fault f over residuals R in mode m is denoted
as ⌦f,R,m.

Table 3. Fault signatures and orderings for global model for
mode [0, 1].

Fault q⇤1 q⇤2 q⇤3 Residual Orderings
K�

1 +- 00 00 q⇤1 � q⇤2 , q⇤1 � q⇤3

K�
2 00 +- 0+ q⇤2 � q⇤3 , q⇤2 � q⇤1 , q⇤3 � q⇤1

K�
3 00 0+ +- q⇤2 � q⇤1 , q⇤3 � q⇤2 , q⇤3 � q⇤1

R+
1 -+ 00 00 q⇤1 � q⇤2 , q⇤1 � q⇤3

R+
12 00 00 00 ?

R+
2 00 -+ 0+ q⇤2 � q⇤3 , q⇤2 � q⇤1 , q⇤3 � q⇤1

R+
23 00 0+ 0- q⇤2 � q⇤1 , q⇤3 � q⇤1

R+
3 00 0+ -+ q⇤2 � q⇤1 , q⇤3 � q⇤2 , q⇤3 � q⇤1

Pipeon
12 0- 0+ 0+ q⇤2 � q⇤3

Pipeoff
23 00 0+ 0- q⇤2 � q⇤1 , q⇤3 � q⇤1

Pipeoff
12 00 00 00 ?

Pipeon
23 00 00 00 ?

Example 5. Tables 2–5 show the fault signatures and order-
ings for the four modes of the tank system for the global
model residuals. For example, in mode [0, 1], R+

3 will cause a
-+ in rq⇤3 , i.e., a decrease in magnitude and increase in slope.
Then on rq⇤2 it will cause 0+, i.e, no change in magnitude
and an increase in slope. In this mode, the first tank is de-
coupled since the connecting pipe is turned off, so no effect
on rq⇤1 will be observed. In the same mode, the fault Pipeon

12

will connect the first and second tanks, and so we will see 0-
on rq⇤1 (since now flow is also exiting through the connect-
ing pipe), 0+ on rq⇤2 , and 0+ on rq⇤3 (since flow is entering
through the connecting pipe into the second tank).

Table 4. Fault signatures and orderings for global model for
mode [1, 0].

Fault q⇤1 q⇤2 q⇤3 Residual Orderings
K�

1 +- 0+ 00 q⇤2 � q⇤3 , q⇤1 � q⇤2 , q⇤1 � q⇤3

K�
2 0+ +- 00 q⇤2 � q⇤3 , q⇤2 � q⇤1 , q⇤1 � q⇤3

K�
3 00 00 +- q⇤3 � q⇤2 , q⇤3 � q⇤1

R+
1 -+ 0+ 00 q⇤2 � q⇤3 , q⇤1 � q⇤2 , q⇤1 � q⇤3

R+
12 0+ 0- 00 q⇤2 � q⇤3 , q⇤1 � q⇤3

R+
2 0+ -+ 00 q⇤2 � q⇤3 , q⇤2 � q⇤1 , q⇤1 � q⇤3

R+
23 00 00 00 ?

R+
3 00 00 -+ q⇤3 � q⇤2 , q⇤3 � q⇤1

Pipeoff
12 0+ 0- 00 q⇤2 � q⇤3 , q⇤1 � q⇤3

Pipeon
23 0- 0- 0+ q⇤2 � q⇤1

Pipeon
12 00 00 00 ?

Pipeoff
23 00 00 00 ?

Table 5. Fault signatures and orderings for global model for
mode [1, 1].

Fault q⇤1 q⇤2 q⇤3 Residual Orderings
K�

1 +- 0+ 0+ q⇤2 � q⇤3 , q⇤1 � q⇤2 , q⇤1 � q⇤3

K�
2 0+ +- 0+ q⇤2 � q⇤3 , q⇤2 � q⇤1

K�
3 0+ 0+ +- q⇤2 � q⇤1 , q⇤3 � q⇤2 , q⇤3 � q⇤1

R+
1 -+ 0+ 0+ q⇤2 � q⇤3 , q⇤1 � q⇤2 , q⇤1 � q⇤3

R+
12 0+ 0- 0- q⇤2 � q⇤3

R+
2 0+ -+ 0+ q⇤2 � q⇤3 , q⇤2 � q⇤1

R+
23 0+ 0+ 0- q⇤2 � q⇤1

R+
3 0+ 0+ -+ q⇤2 � q⇤1 , q⇤3 � q⇤2 , q⇤3 � q⇤1

Pipeoff
12 0+ 0- 0- q⇤2 � q⇤3

Pipeoff
23 0+ 0+ 0- q⇤2 � q⇤1

Pipeon
12 00 00 00 ?

Pipeon
23 00 00 00 ?

Example 6. Tables 6–9 show the fault signatures and or-
derings for the four modes of the tank system for the local
submodel residuals. Consider the fault K�

2 . In [0, 1], it will
cause +- on rq⇤2 . No other residuals will be affected, since the
fault is decoupled from them due to the decomposition. In the
global model residuals, however, an additional residual (that
for q⇤3) will deviate. In the same mode, the fault Pipeon

12 will
connect the first and second tanks, and so we will see 0- on
rq⇤1 and 0+ on rq⇤2 . We will not see any change in rq⇤3 , since
the submodel generating that residual is decoupled from that
mode change.

A single sequence of fault signatures is termed a fault trace.

Definition 10 (Fault Trace). A fault trace for a fault f over
a set of residuals R in mode m, denoted by �f,R,m, is a se-
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Distributed Diagnosis
1. Why distributed diagnosis?
2. Global vs local diagnosability
3. A distributed diagnosis approach
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Why Distributed?

• Centralized diagnosis schemes have some issues
– Expensive in memory and computational requirements
– Poorly scalable
– Contain single points of failure

• Distributed diagnosis schemes address these issues
• One can distribute all aspects of diagnosis
– Distributed detection
– Distribute isolation
– Distributed identification
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What Does ‘Distributed’ Mean?
• Model-based diagnosis approaches broadly 

classified into 
– Centralized

• Construct single diagnoser from global system model
– Decentralized

• Use a global system model but distribute diagnosis 
computations among multiple local diagnosers

• Local diagnosis decisions are based on subset of 
observations and these decisions are communicated to 
other diagnosers or to a central coordinator
– Use global model to generate globally consistent results

– Distributed
• Uses subsystem models and assume global model is 

unknown
• Local diagnosers for each subsystem communicate their 

diagnosis results to each other to arrive at the global 
solution
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Global vs Local Diagnosability

• Local diagnosability
– Faults in a subsystem can be 

diagnosable from other faults in 
the same subsystem

• Global diagnosability
– Faults in a subsystem can be 

diagnosable from all other faults 
in the system
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Fault pTank1 qPipe1 pTank2 qPipe2
C1- +- +- 0+ 0+
R12+ 0+ 0+ 0- 0-
C2- 0+ 0+ +- +-
R23+ 0+ 0+ 0+ 0+

Fault pTank1 qPipe1 pTank2 qPipe2
C1- +- +- 0+ 0+
R12+ 0+ 0+ 0- 0-
C2- 0+ 0+ +- +-
R23+ 0+ 0+ 0+ 0+
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Distributed Diagnosis: Our Approach
• We want to distribute the diagnosis task into subtasks that can be executed on separate 

processors
• The (composed) global system model is analyzed offline to design distributed local diagnosers

which generate globally correct diagnosis results 
– Without any coordination
– With minimal or no exchange of information amongst themselves
– Only observations are exchanged, if at all. No results are exchanged

• Design Problem1: Given the partition structure of the system, construct a local diagnoser
for each known subsystem such that they require minimal information exchange amongst 
themselves

• Design Problem 2: Assuming no knowledge of subsystem partition, simultaneously 
construct subsystem partition + local diagnoser for each subsystem such that no information 
exchange between diagnosers is required for generating correct diagnosis results

PHM 2016: Model-based Diagnostics



Minimizing Shared Measurements – Algorithm 1
• This algorithm is useful for designing diagnosis schemes in practical distributed systems with known 

partition structure
• Given the prior knowledge of a subsystem Si with faults, Fi, and measurements, Mi

– We identify the faults that are not globally diagnosable given Mi
– Search for a minimal number of additional measurements that will make these faults globally diagnosable, giving 

preference to measurements from nearer subsystems 
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Fault p1 q1 p2 q2 p3 q3 p4 q4 p5 q5 p6 q6
C1- +- +- 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+

R12+ 0+ 0+ 0- 0- 0- 0- 0- 0- 0- 0- 0- 0-

C2- 0+ 0+ +- +- 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+

R23+ 0+ 0+ 0+ 0+ 0- 0- 0- 0- 0- 0- 0- 0-

C3- 0+ 0+ 0+ 0+ +- +- 0+ 0+ 0+ 0+ 0+ 0+

R34+ 0+ 0+ 0+ 0+ 0+ 0+ 0- 0- 0- 0- 0- 0-

C4- 0+ 0+ 0+ 0+ 0+ 0+ +- +- 0+ 0+ 0+ 0+

R45+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0- 0- 0- 0-

C5- 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ +- +- 0+ 0+

R56+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0- 0-

C6- 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ +- +-

({C1,  R12},{p1,  q1,  p2})
({C2,  R23},{p2,  q2,  p3})

({C3,  R34},{p3,  q3,  p4})
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Minimizing Shared Measurements – Algorithm 1
• This algorithm is useful for designing diagnosis schemes in practical distributed systems with known 

partition structure
• Given the prior knowledge of a subsystem Si with faults, Fi, and measurements, Mi

– We identify the faults that are not globally diagnosable given Mi
– Search for a minimal number of additional measurements that will make these faults globally diagnosable, giving 

preference to measurements from nearer subsystems 
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Minimizing Shared Measurements – Algorithm 1
• This algorithm is useful for designing diagnosis schemes in practical distributed systems with known 

partition structure
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Minimizing Shared Measurements – Algorithm 2
• This algorithm is more open-ended and designs distributed diagnosers based on diagnosability and efficiency criteria
• Assumes no knowledge of subsystem partition 
• Simultaneously constructs subsystem partition + local diagnoser for each subsystem
• We partition sets F and M into subsets, F1, F2, …, Fn and M1, M2, …, Mn such that each Fi is globally diagnosable using Mi

– Therefore no information is exchanged between diagnosers
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Distributed Diagnosers

• The different diagnosers are independently run on the different 
processors
– A distributed Extended Kalman Filter implementation provides each 

distributed diagnoser with a distributed observer
• Since the faults for each diagnoser forms a partition of the global 

fault set, a global diagnosis result is obtained when:
– All measurements for a local diagnoser have deviated and the fault 

hypothesis set is reduced to a singleton fault set, or,
– A local diagnoser’s hypothesis set is reduced to a singleton but all of its 

measurements have not deviated, and all other diagnosers produce a null 
hypothesis, i.e., their candidate sets are empty
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Conclusions
1. Challenges
2. Open problems
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Challenges

• Modeling!
– At what level of abstraction should one model?
– How to combine results from different levels of abstractions?

• Online simulation
– Problems with dynamic systems: initial conditions

• What is the source of complexity?
– Complex systems or large systems (# components)
– Exponential number of multiple fault candidates
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Open Problems

• Integration of model-based diagnosis
–With other diagnosis techniques
–With other tasks, such as prognostics, re-configuration, repair, 

monitoring, supervision, …
– Model-based diagnosis in the product life-cycle

• Re-usable model libraries
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Additional Information Sources
• Conferences 

– PHM: http://www.phmsociety.org/ 
– DX: http://www.dx-2016.org/ 
– IJCAI: http://ijcai.org/ 
– Safeprocess (part of IFAC organization): http://safeprocess15.sciencesconf.org/
– IFAC world conference: http://www.ifac2014.org/

• Journals 
– Artificial Intelligence Journal 
– International Journal of the PHM Society (IJPHM) 
– Journal of AI Research 
– IEEE Transactions On Systems, Man and Cybernetics 
– AI Communications 
– Control Engineering Practice 
– Engineering Application on Artificial Intelligence
– …
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