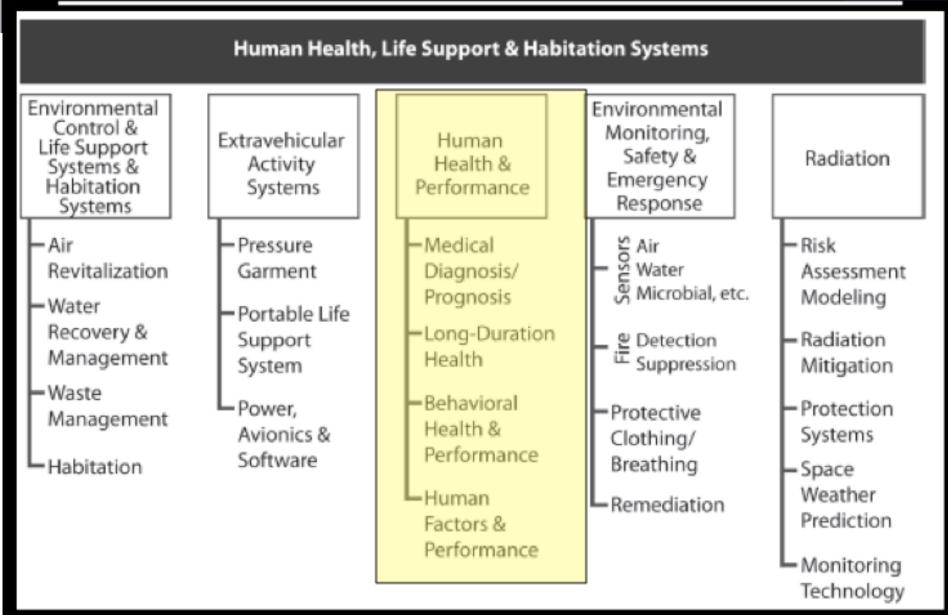


PHM Society 2016 Denver, CO

Special Panel on "PHM for Human Assets" PHM for Astronauts – A New Application

Wolfgang Fink¹, Alexandre Popov², Andrew Hess³

¹Visual and Autonomous Exploration Systems Research Laboratory, University of Arizona ² AIAA System Engineering Technical Committee ³ The Hess PHM Group, Inc.



Space Technology Roadmap by NASA

Human Health, Life Support and Habitation Systems (Technology Area #6)

Human Health, Life Support and Habitation Systems (Technology Area #6)

Human Health, Life Support and Habitation Systems physiciety (Technology Area #6)

Technology	Current SOA/Practice	Major Challenge(s)	Recommended Milestones/Activities to Advance to TRL-6 or beyond
Condition Specific Screening Technology	Astronauts are screened for physical and psycho- logical conditions	Conditions exist that current medical technology cannot detect far enough in advance	2012-20: Early screening technologies for dental emergencies, subclinical medical conditions includ- ing malignancies, cataracts, individual susceptibility levels to radiation and carbon dioxide exposures, osteoporosis, oxidative stress and renal stone for- mation, sleep disorder, anxiety and depression. In a phased-fashion, the development in the identified areas will be implemented
Genetic/Phenotypic Screening	Notin practice for selec- tions	Ethically acceptable screening technolo- gles	2015-25: Screening technologies to personalize in-flight medical planning and care
Autonomous Medical Decision	Screen-shots of paper procedures	Lack of standards in data output from vari- ous medical instrumentation	2012-20: Handheld, smart device that integrates with vehicle, hardware, patient, care giver and Mis- sion Control
Integrated Biomedical Informatics	Separate systems that do not seamlessly interface	Integrated standards	2012-20: Integrated electronic medical records, medical devices, inventory management system, procedures and utilizes a medical hardware com- munication standard

Background (continued)

PHM for Astronauts – A New Application. 2013 Annual Conference of the Prognostics and Health Management Society, New Orleans, LO, October 2013

- Risk Mitigation Technologies to be developed:
 - ✓ Autonomous medical decision*
 - ✓ Integrated biomedical informatics*

*NASA designation per <u>"Human Health, Life Support and Habitation Systems: Technology Area 06" Roadmap, NASA, April 2012</u>

Picture credit: NASA

Human Health and Performance Technical Area Details

(excerpt from the Roadmap, NASA, April 2012)

Technology	Current SOA/ practice	Recommended milestones/ activities to advance to TRL-6 or beyond
Autonomous medical decision	Screen-shots of paper procedures	2012-20: Handheld, smart device that integrates with vehicle, hardware, patient, care giver and Mission Control
Integrated biomedical informatics	Separate systems that do not seamlessly interface	2012-20: Integrated electronic medical records, medical devices, inventory management system, procedures and utilizes a medical hardware communication standard

Background

Medicine vs Engineering Similarities

- Concepts of natural history, clinical course, and disease progression are similar to component aging, damage accumulation and fault progression
- Risk factors in medicine are similar to prognostic indicators used in PHM
- In medicine, prognostics is used to select optimal treatment/intervention policies
- In PHM, RUL estimation is used to determine optimal maintenance policies

Excerpt from "PHM: The second decade" by S. Uckun, M.D., Ph.D, 2008 IEEE Aerospace conference

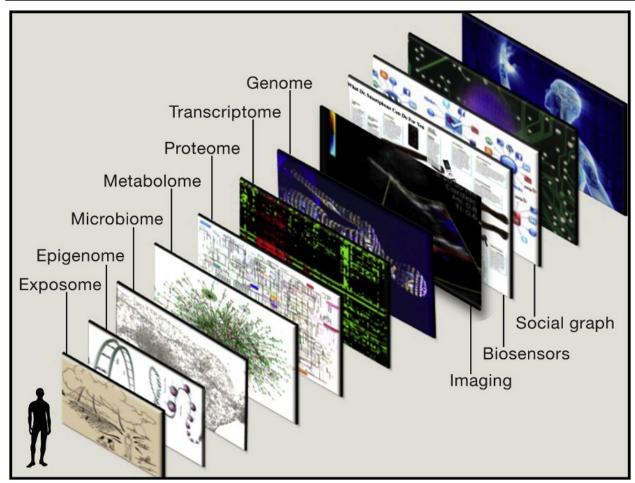
PERS PHM-based Healthcare Concept vs Conventional Medicine

The PHM-based Healthcare Concept	Conventional Medicine
Focus on keeping astronaut healthy by predicting a deterioration or impairment in his/her health before a sign is detected or a symptom is manifested	manifested symptoms in order
Real-time 24/7 streaming, monitoring and processing	One-off, snapshots made in doctor's office
Astronaut generated data	Doctor ordered data
Individualized	Population-based
Panoramic	Data limited
Condition Based Maintenance (CBM)	Diagnosis-based treatment

PERS PHM-based Healthcare Concept vs **https://www.conventional Medicine (continued)**

The PHM-based Healthcare Concept	Conventional Medicine
Evidence-based health maintenance	Diagnostics and treatment limited to experience and knowledge of healthcare provider
Used in conjunction with COTS wireless sensor network communicating with custom smartphone- based or tablet-based apps, reasonably priced	Expensive, Big-Ticket Technologies
Intuitive and customizable dashboard-based interface with user-friendly language designed for astronaut as the only end-user	Medical language and an interface designed for healthcare professional
Astronaut healthcare autonomy paradigm, rather than the one of tele-medicine	Medical Paternalism
Astronaut edited and owned his/her CEHR	Non-shared EHR that owned by healthcare provider
Astronaut engagement	Compliance with healthcare provider directives

The PHM-based Technology Key Components



- Condition-Based Maintenance (CBM) with predictive diagnostics capability
- ✓ Non-attributed Electronic Health Records (EHR)
- ✓ Real-time health monitoring, measurement, and processing:
 - ✓ Both natural and computationally generated bio-markers
 - ✓ Non-obtrusive and non-invasive sensors
- ✓ Health management autonomy:
 - ✓ Routine self-diagnostics
 - ✓ Decision making on which measurements, when, and with whom to share

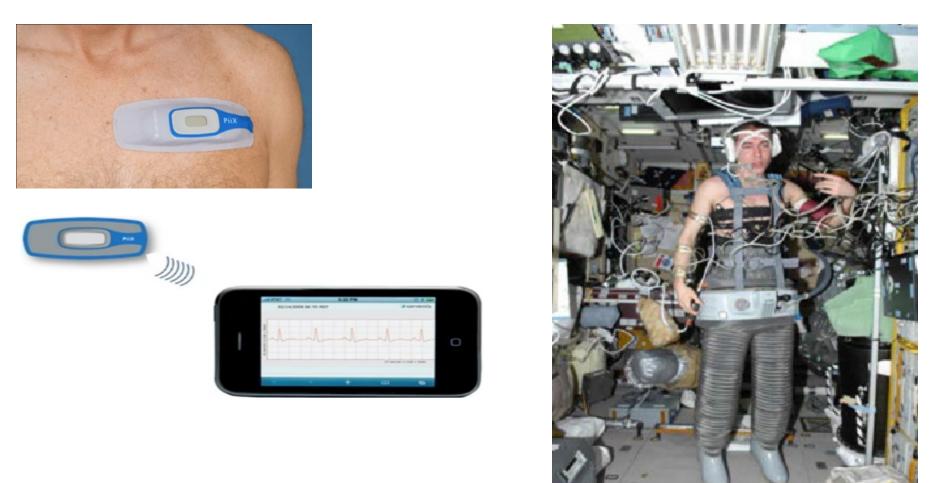
✓ Non-medical User Interface:

- The ultimate end-user of the portable system is crew member rather than healthcare professional
- ✓ Intuitive and customizable

Infografic credit: Topol, E.J. (2014). Individualized Medicine from Prewomb to Tomb. Cell, vol. 157

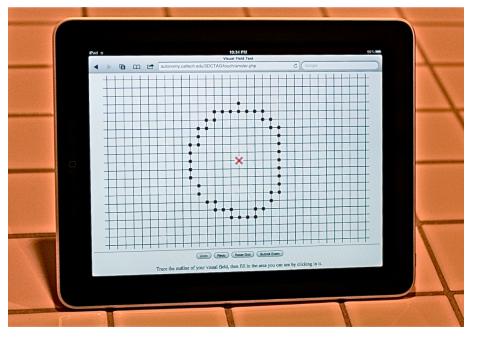
Natural Biomarkers vs

Computationally Generated Biomarkers



- Biomarker is a health-related characteristic that is objectively measured and evaluated as an indicator of:
 - \checkmark normal biological processes
 - ✓ pathogenic processes
 - ✓ pharmacologic responses to a therapeutic intervention
- Computationally generated biomarker is a biomarker that is generated indirectly by applying computation to health-related data in terms of the Human Geographical Information System (see slide 8). Examples are:
 - ✓ ECG morphological variability (a.k.a. heart rate variability)
 - ✓ Genetic diversity

mHealth Technologies vs the ones currently in use on ISS

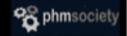


Corventis Inc. https://www.youtube.com/watch? v=ILXNg1iSTT0

PHM-based technologies vs the ones currently on ISS (continued)

Financial Disclosure: W. Fink is CTO and Co-Founder of Ceeable

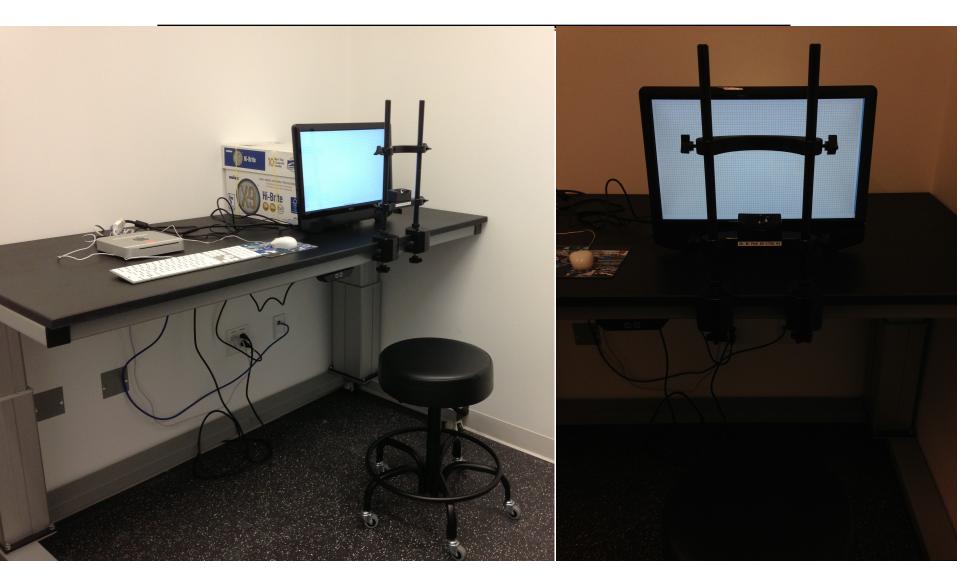
Picture credit: NASA



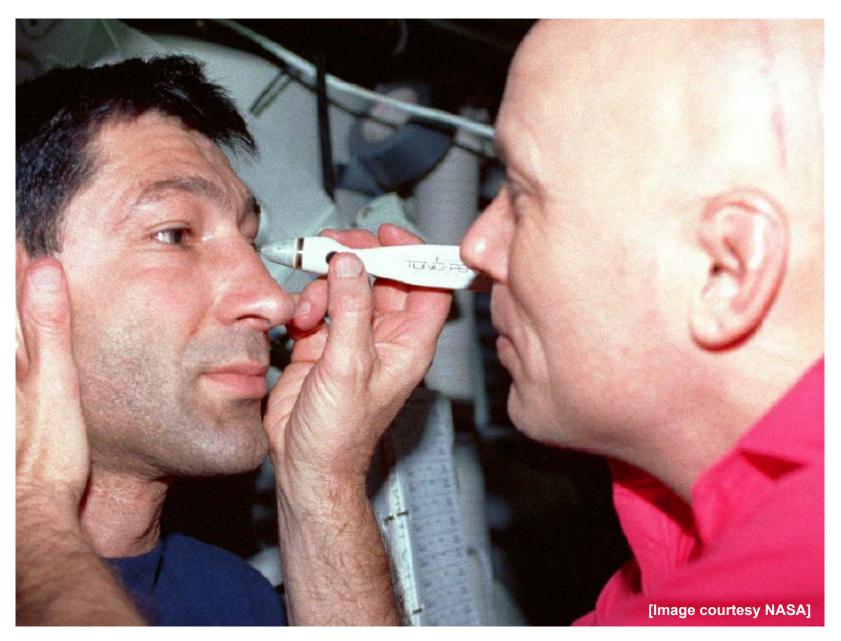
- Primary sense used by astronauts
- Essential during critical phases of spaceflight:
 - Launch
 - Entry and landing
 - Rendezvous and docking
 - Robotic operations
 - Spacewalks (EVA)

Vision is a key medical criterion for acceptance to the astronaut corps Note: 63% of pilot astronauts and 70% of mission specialists require vision correction

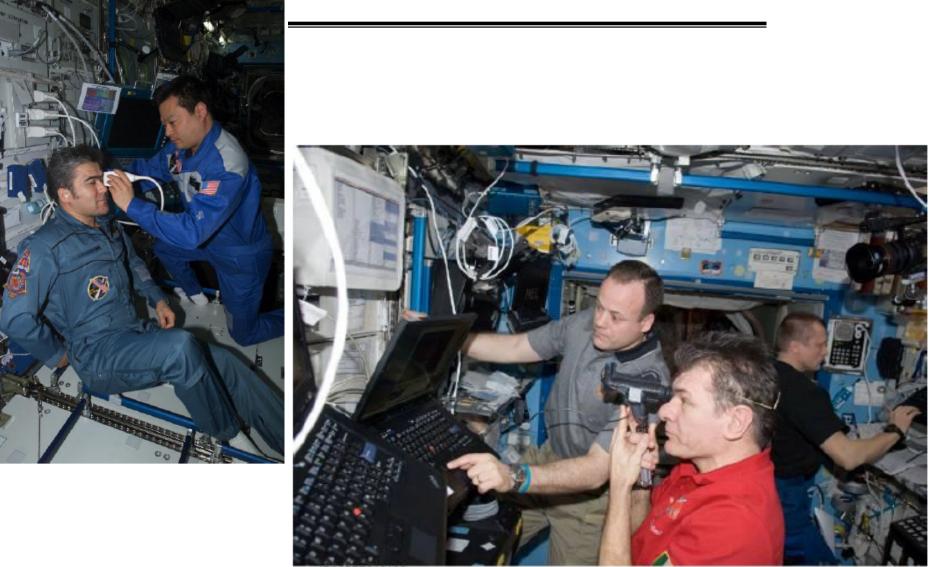
The spaceflight environment has significant influence on the visual and ocular system that can adversely affect astronaut performance, and may lead to long-term health consequences!


- Intracranial hypertension from fluid shifts
- Intraocular hypertension and glaucoma from fluid shifts
- Cataracts
- Macular degeneration, Retinal migraine, Retinal detachment
- Blindness
- 34% of astronauts experienced vision changes during missions
- Half of long duration astronauts report primarily increasing farsightedness
- Corneal, lens, and retinal damage from UV exposure
- Retinal thermal damage from excessive visible light, IR, and other types of radiation
- Hypoxia during depressurization prior to EVA
- Toxic environmental poisoning (several combustion events have occurred in space, and crews have been exposed to ethylene glycol, Freon, Halon, formaldehyde, lead, cadmium, and chloroform) [NASA Patient Condition Database]

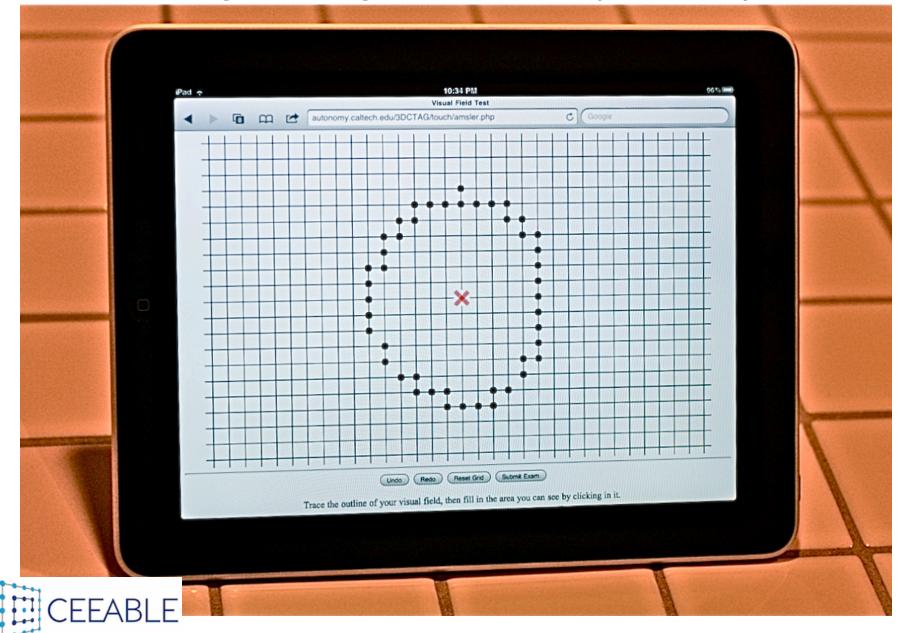
Future of "Vision Testing in Space" ???



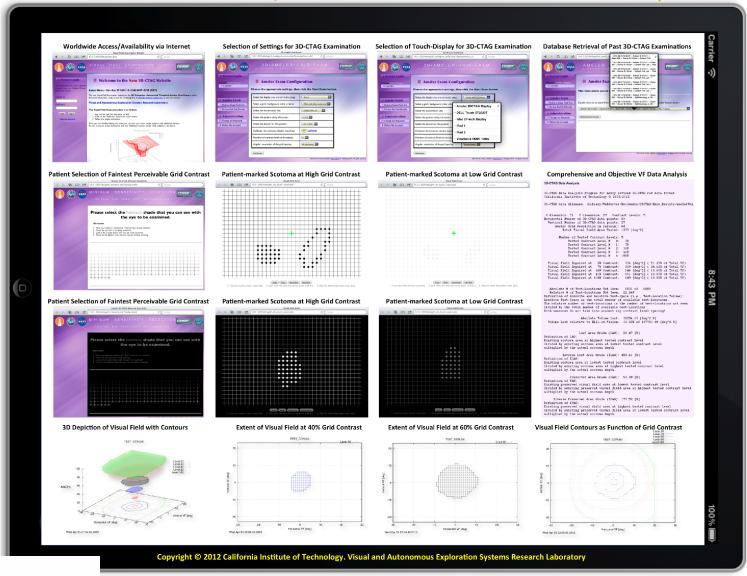
[Image courtesy Keith Manuel]


Comprehensive Visual Field Test & Diagnosis Systems Clinical Setup to Examine VIIP Syndrome

Current Vision/Ocular Testing on Shuttle



Current Vision/Ocular Testing on ISS


ISS027E013199

Comprehensive Visual Field Test & Diagnosis Systems In-flight Testing via iOS Device (here: iPad)

Comprehensive Visual Field Test & Diagnosis Systems Visual Field Test Results, Analyses, and Interpretation

Fink et al., ARVO 2012; Fink & Sadun, J Biomed Opt 2004; Caltech US-Patents #6,578,966, #6,769,770, #7,101,044, EP #1276411

- Articulate mission-specific effects of stressors, alone and in combination
- Identify changes of pharmacokinetic characteristics of medications and respective side-effects during space mission
- Develop metrics to measure mission-relevant health performance
- Identify environmental, genetic, physiological, and psychological factors to understand their roles in resilience to stressors

Real-Time Monitoring for Astronaut Health: Managing the Stressors

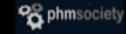
- Exposure to solar and space radiation;
- Prolonged period of exposure to microgravity;
- Confinement in close, relatively austere quarters;
- Limited contact with family and friends;
- Isolation (small number of crew members);
- Chronically inadequate sleep;
- Work overload;
- Atmospheric composition (e.g., CO₂ concentration);
- Volatile organic compounds;
- Variation in light spectrum;
- Vibration;
- Noise;
- Monotony;
- Environment pollution.

Implementation Issues and Challenges

- ✓ Privacy
- ✓ Security
- ✓ ISS Crew Health Care System (CHeCS) out-of-date architecture
- ✓ Lack of actionable data
- ✓ Inconsistent data
- ✓ Stand-alone devices instead of being integrated into an interoperable ecosystem including big data applications in order to provide healthcare at the required level

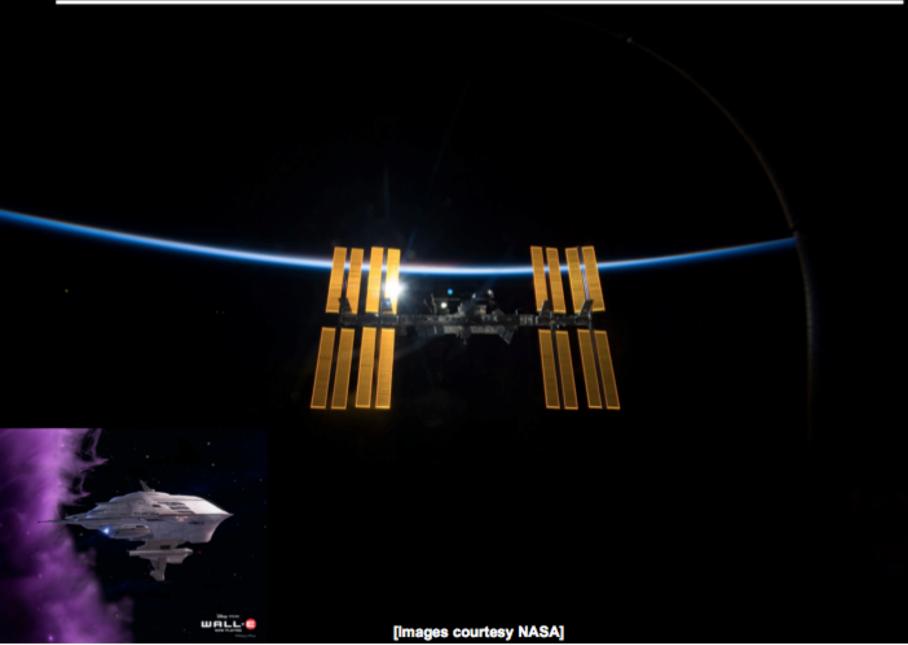
- ✓ AIAA Systems Engineering Committee (USA)
- ✓California Institute of Technology (USA)
- ✓ Institute for Bio-Medical Problems of Russian Science Academy (Russia)
- ✓PHM Society (USA)
- ✓ University of Arizona (USA)
- ✓ University of Ontario Institute of Technology (Canada)
- ✓ University of Technology (Russia)

The contributors are listed in the alphabetical order

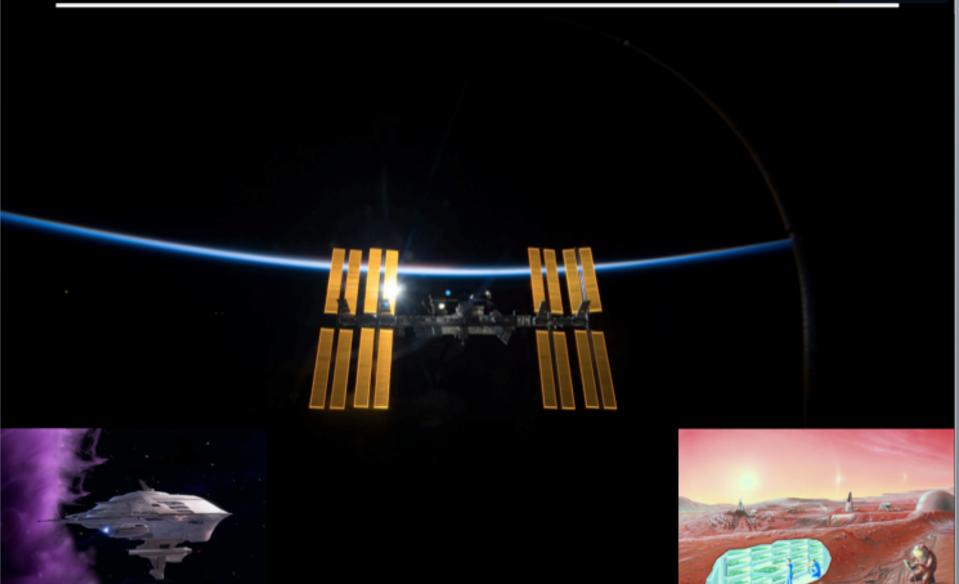


Conclusion

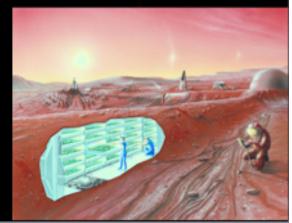
- Rather than treat a diagnosed health disorder, the suggested PHMbased concept, in contrast, keeps the crew healthy by providing the crew with early and actionable real-time warnings of impending health issues that otherwise would have gone undetected.
- The PHM-based healthcare solutions enable long-duration, deepspace human exploration missions with inherent:
 - ✓ minimal resupply of consumables
 - ✓ limited support from the mission control center and ground personnel
- Spin-off examples:
 - ✓ Home and rural healthcare
 - ✓ Theatre
 - ✓ Healthcare in disaster-stricken areas



[Images courtesy NASA]



P phmsociety



[Images courtesy NASA]

Thank you for your attention!

P phmsociety

[Images courtesy NASA]

Prof. Wolfgang Fink, Ph.D.

Visual and Autonomous Exploration Systems Research Laboratory

Depts. of Electrical & Computer Engineering and Biomedical Engineering University of Arizona

wfink@email.arizona.edu

http://autonomy.caltech.edu and http://autonomy.arizona.edu