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COMPELLING NEEDS OF NEXT GENERATION MANUFACTURING
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®  Massive and complex data
®  Imperfect/missing data

B Multi-stream/multi-source data .
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®  Greater asset reliability

®  Lower operating costs
Increased factory visibility
®  Worry-free production



INDUSTRIAL BIG DATA ANALYTICS CAPABILITIES

Monitor equipment/assets to identify operating
issues for more proactive maintenance

Connect

Connect equipment and collect
operating data

Analyze data to provide useful insights

Gain operational insights that lead to
better decisions

Consolidate and correlate data from various
sources to feed analytic insights

Predict based on existing data

Optimize (e.g., operations, workforce,
efficiencies, business decisions)

Other Optimize

None of the above

Current Data Analytics capabilities are stronger in the areas of monitoring and

connecting equipment than in predicting issues and optimizing operations.

Source: GE & Accenture report (2015)



UNOBSERVABLE PERFORMANCE DEGRADATION
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CHALLENGES & OPPORTUNITIES

* Rich Data / Sparse Data environment

« Sensor selection & allocation

« Lack of understanding degradation mechanism

« Sampling Strategy (static, dynamic, event-driven)
« Nominal condition (baseline) identification
 Variability & uncertainty quantification & control

* Physics-based or Data-driven methods fusion and interface design

Applications: (1) discrete manufacturing (2) continuous manufacturing



MULTISTAGE DISCRETE MANUFACTURING SYSTEMS

Process Products
Data from Metrology

Data from Sensors
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CYBER-MANUFACTURING SYSTEMS

Physical World Cyber Space
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FUSION OF PHYSICAL MODELS AND DATA ANALYTICS

L AN INTEGRATED PHYSICS-BASED AND DATA-DRIVEN PROGNOSTICS FOR DEGRADATION
MODELING OF VEHICLE SUB-SYSTEMS UNDER DIFFERENT ENVIRONMENTS, EACH DYNAMIC.

Physical modeling + Data analytics
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PHM FOR SMART CONNECTED SYSTEMS
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