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1. Introduction

Operational safety, maintenance cost effectiveness and asset availability have a direct impact on the compe-
titiveness of organisations and nations. Today’s complex and advanced machines demand highly sophisticated and
costly maintenance strategies. Domestic plants in the United States spent more than $600 billion to maintain their
critical plant systems in 1981 and this figure doubled within 20 years [1]. An even more alarming fact is that one-third to
one-half of this expenditure is wasted through ineffective maintenance. The trend is similar in many other countries
including Australia [2]. Therefore, there is a pressing need to continuously develop and improve current maintenance
programs.

Current maintenance strategies have progressed from breakdown maintenance, to preventive maintenance, then
to condition-based maintenance (CBM) managed by experts, and lately towards a futuristic view of intelligent
predictive maintenance systems. Breakdown maintenance is the earliest form of maintenance, where no actions are
taken to maintain the equipment until it breaks and consequently needs a repair or replacement. To prevent catastrophic
failures and emergency shutdowns, preventive maintenance was introduced in the 1950s. A typical preventive
maintenance scheme includes setting periodic intervals for machine inspections and maintenance regardless of the
machine’s health condition. The determination of optimal maintenance interval is critical for this scheme to work
effectively. Bazovsky [3] pioneered the use of mathematical optimization methods in preventive maintenance policies.
Jardine [4] introduced decision models for determining optimal replacement or overhaul interval by analysing reliability
data (e.g. historical breakdown events) and cost data. However, fixed time maintenance policies were not well-received by
most practitioners [5]. While these policies do sometimes reduce equipment failures, they are more labour intensive, does
not eliminate catastrophic failures and cause unnecessary maintenance. This is where CBM steps in. It was reported that
99% of mechanical failures are preceded by noticeable indicators [6]. CBM attempts to monitor machinery health based on
condition measurements that do not interrupt normal machine operation. Over the past few decades, technologies in
machine condition monitoring (CM) and fault diagnostics have become more developed. Data such as vibration signatures,
acoustic emissions signatures and oil particle counts can be acquired, processed and analysed through state-of-the-art
sensors, database software and parallel computation technologies. Nevertheless, new technologies often introduce new
types of information that may not have been fully exploited. This development has presented a paramount challenge for
the research community to synthesise and integrate the new information into conventional reliability calculations and
eventually into maintenance scheduling.

Three key elements of effective CBM are data acquisition (i.e. the collection and storage of machine health information),
data processing (i.e. the conditioning and feature extraction/selection of acquired data) and decision making (i.e. the
recommendation of maintenance actions through diagnosis and/or prognosis). Increased automation and mechanisation
have made computerised diagnostics and prognostics systems a valuable tool for maintenance personnel in making
maintenance decisions, or possibly even replace maintenance experts in due time. Today’s concept of machine diagnosis
comprises the automated detection and classification of faults, whereas machine prognosis is the automated estimation of
how soon and likely a failure will occur. Prognostics promises to significantly reduce expensive downtime, spares
inventory, maintenance labour costs and hazardous conditions. However, prognostics is a relatively new research area and
has yet to receive its prominence compared to the other areas of CBM.

Related reviews on prognostics have been reported in the literature. Pusey and Roemer [7] provided a broad overview of
the development in diagnostics and prognostics technologies applicable to high-performance turbo-machines up until year
1999. Jardine et al. [8] provided an overview and a catalogue of publications on data acquisition, data processing,
diagnostics and prognostics of various machines up to year 2005. Vachtsevanos et al. [9] defined and described intelligent
fault diagnostics and prognostics approaches for engineering systems through examples. Ma [10] discussed the need for a
new paradigm shift in CM research for engineering asset management.

This paper focuses on rotating machinery prognostics. Rotating machinery is one of the most common classes of
machines. The number of publications on rotating machinery prognosis has been increasing steadily over the past few
years. Section 2 aims to place these articles in context, showing how they add to the accumulation of knowledge in the area.
Section 3 then discusses the identified challenges and in doing so, alerts researchers to opportunities for advanced research
in the field of machinery prognostics.

ARTICLE IN PRESS
A. Heng et al. / Mechanical Systems and Signal Processing 23 (2009) 724–739 725

Heng, Zhang, Tan and Matthew, 2009, Rotating 
machinery prognostics: State of the art, challenges 
and opportunities, Mechanical Systems and Signal 
Processing, Vol. 23,pp 724-739 
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•  Symptomatic versus system-based monitoring 
  

 

System 
Output 

System 
Output Inputs 

      Challenges: 
•  Incomplete system information 
•  Inaccessibility of input 
•  Indirect measure of output 
•  Nonlinear input-output relationship 

 
http://www.geocaching.com/seek/cache_details.aspx?wp=GC39084 

Performance Monitoring of Human Body Systems 
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MODELING AND MONITORING PARADIGM 
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DATA SET 1: CONSTANT LEG CONTRACTION 5 

Sampling rate: 1212 Hz 
Related muscles: Gastrocnemius and Soleus 
Experiment Procedure: 
»  Hold 75% of maximum voluntary contraction (MVC) until it fails below 60% MVC 
»  After the 4 min constant contraction test, the subject conducts few recovery tests 

(attempting to maintain 75% MVC for a few seconds, followed by 1 minute rests) 
»  sEMG signals and output force are collected simultaneously 
 

Yu Yang Xie, “A Model Based Approach for 
Evaluating Human Neuromusculoskeletal 
System Performance,” MS Thesis, 
University of Texas at Austin, 2016 
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DATA SET 1: MONITORING RESULTS 6 



NSF I-UCRC on Intelligent 
Maintenance Systems 

DATA SET 1: MONITORING RESULTS 7 



NSF I-UCRC on Intelligent 
Maintenance Systems 

DATA SET 1: MONITORING RESULTS 8 
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DATA SET 1: MONITORING RESULTS 12 
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DATA SET 2: TMJ MUSCLE CYCLIC MOTION 13 

Sampling rate: 2000 Hz 
Related muscles: Temporalis, Masseter and Depressor 
Experiment Procedure: 
»  Perform mouth open-and-close motion repeatedly for 2 minutes 
»  After sufficient rest, another cyclic motion is performed for around 30 seconds 
»  Both sEMG signal and mandible velocity are collected at the same time 
 

Yu Yang Xie, “A Model Based Approach for Evaluating Human 
Neuromusculoskeletal System Performance,” MS Thesis, 
University of Texas at Austin, 2016 



NSF I-UCRC on Intelligent 
Maintenance Systems 

DATA SET 2: MONITORING RESULTS 14 
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DATA SET 2: MONITORING RESULTS 15 
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DATA SET 2: MONITORING RESULTS 16 
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DATASET 3: ARM AND SHOULDER SYSTEM 

Middle Trapezius 
Pectoralis Major 
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Triceps 
Wrist Flexor 
Wrist Extensor             Shoulder 
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ARX Model 

M. Musselman, D. Gates and D. 
Djurdjanovic, “A System-Based 
Approach to Monitoring a 
Human Neuromusculoskeletal 
System,” Int’l J. for Prognostics 
and Health Management, Vol. 7, 
No. 2, 2016. 
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CONTRIBUTIONS AND FINDINGS 

•  GFI with statistically significant decreasing trends for 100% 
subjects 

•  JFI with statistically significant decreasing trends for:  
§   - GHPE, GHAR, EP, WUD: 100% subject   
§   - GHNE and WF: 92% subject 
§   - EF: 75% subject 

•  Transfer function overlaps with statistical significant decreasing trends in 
96% subject – muscle – input feature combinations 

»   - 7 subjects who exercised the shortest had all muscle joint  
»      combinations with significant linear decreasing trends 
»   - Two subjects who performed the exercise the longest,  
»     performed it twice as long as the next nearest subject (1 was a  
»           triathlete) accounted for 82% of the muscle/joint pairs that did  
»     not show degradation 
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20 CONCLUDING 
REMARKS 

•  Model based monitoring holds 
tremendous promise for NMS 
system monitoring 

•  Athletics 
•  Rehabilitation 
•  Military 
•  Workplace safety 

•  Wearable electronics and pervasive 
computing are bringing us closer to the 
vision of performance oriented rather 
than pathology oriented monitoring. 

•  Predictive and preventive 
maintenance of humans should be 
one of the ultimate visions and goals of 
the PHM community! 

http://www.businessinsider.com/
wearable-technology-market-2013-5 

https://people.rit.edu/sml2565/iimproject/
wearables/index.html 


