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ABSTRACT 

Rotating components such bearings and gears are one of the 
most critical components in many industrial machines.  
Predicting the remaining useful life (RUL) of these 
components has been an important task for condition-based 
maintenance of industrial machines.  One critical challenge 
for performing such task in the age of Internet of Things and 
Industrial 4.0 is to automatically process massive data and 
accurately predicting RUL of these components. The 
limitations of current methods rely quite heavily on user 
expertise in signal processing and explicit model equations 
such as the state transition model. The objective of this 
research is to addresses the limitations of traditional data 
driven prognostics by presenting new methods based on deep 
learning for RUL prediction of rotating components.  Real 
data collected from both gear test rig and bearing run-to-
failure tests are used to test and validate the methods to be 
developed.  The preliminary results have shown the 
promising RUL prediction performance of the deep learning 
based approaches.  

1.   PROBLEM STATEMENT 
In the age of Internet of Things and Industrial 4.0, the 
prognostic and health management (PHM) systems are used 
to collect massive real-time data from mechanical equipment.  
Mechanical big data has the characteristics of large-volume, 
diversity, and high-velocity. Remaining useful life (RUL) has 
been used as an important parameter for condition-based 
maintenance decision making (Huynh et al. 2014).  
Effectively mining features from such data and accurately 
predicting RUL of the rotating components of the equipment 
in use with new advanced methods become issues in PHM. 
Traditionally, data driven prognostics is largely dependent on 
signal processing and feature extraction techniques. Over the 
past years, many prognostic methods that require explicit 
model equations have been developed (Vachtsevanos et al. 
2006). This critical process of establishing explicit model 
equations requires much prior knowledge about signal 
processing techniques and prognostic expertise.  

Since the introduction of a deep belief network by Hinton 
et al. (2006), deep belief networks and other deep learning 
methods have become a popular approach for big data 
processing and analysis. Deep learning has the ability to yield 

useful and important features from data that can ultimately be 
useful for improving predictive power (Bengio et al. 2013).  
It has also the capability of processing big data and mining 
hidden information due to its multiple layer structure. There 
have been great successes in building deep neural network 
architectures in various domains such as image recognition, 
automatic speech recognition,  natural language processing 
(LeCun et al. 2015), and many more. It has also recently 
shown promising results for machine fault diagnostics on 
extraction of raw vibration signals (Chen et al. 2016) as well 
as time-domain features (Shao et al. 2015). Although much 
success in deep learning has been focused on classification 
problems, deep learning has also proven to be successful in 
solving prediction problems.  There are many types of deep 
learning algorithms present including auto-encoders, 
restricted Boltzman machines, deep belief networks, 
convolutional neural networks, and more that can also be 
used for prediction problems.  Deep learning represents an 
attractive option to process mechanical big data for RUL 
prediction as deep learning has the ability to automatically 
learn features that otherwise require much skill, time, and 
experience. This research will develop deep learning based 
prognostic methods for rotating components and validate the 
developed methods using real bearing and gear run to failure 
test data.  

2.   EXPECTED CONTRIBUTIONS 
The potential contributions of this research include: 
(1)   New deep learning based prognostic methods developed 

using vibration, acoustic emission, and other sensor 
signals. 

(2)   New deep learning based approach for prognostic feature 
extraction, state transition modeling, and for a 
completely data driven particle filter.  

(3)   Validation of the developed deep learning based 
prognostic methods using real bearing and gear run-to-
failure test data.  

3.   RESEARCH PLAN 
3.1   Development of Deep Learning based Methods for 

Prognostics 
The tasks include: (1) Continue to survey and study the deep 
learning methods in literature such as: denoising auto-
encoders, deep auto-encoders, and mixture density networks 
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(Bishop 1994); (2) Experiment with different deep learning 
structures for RUL prediction; (3) Compare the performance 
of the deep learning based methods with existing PHM 
methods to determine the best prognostic methods with big 
data.   

 
3.2   Real Gear and Bearing Run to Failure Test Data 
To validate the developed deep learning based RUL 
prediction methods, vibration, acoustic emission, and other 
sensor data collected at the NASA Glenn Spiral Bevel Gear 
Test Facility and from bearing run-to-failure tests in the 
laboratory as shown in Figure 1 and Figure 2 will be used. 

 
Figure 1. The bevel gear test rig and bevel gears (Dempsey et 

al. 2002) 

 
Figure 2.  The bearing run-to-failure test rig 

3.3   Validation of the Developed Deep Learning Based 
Fault Prognostic Methods 

The developed deep learning based prognostic methods will 
be validated with big data collected from both the gear and 
bearing test rigs. The performance of the developed methods 
will be compared to determine the best method for both gear 
and bearing RUL predictions. 

3.4   Work Performed 
Preliminary research has been conducted and shown 
promising results using deep learning based methods for 
modeling the RUL at various 𝐿 steps ahead in the future.   

Two deep learning approaches were used for estimating the 
RUL. The first method was based on using a deep belief 
network (DBN) to directly estimate the RUL. Vibration 
signals were processed using fast Fourier transform (FFT) to 
obtain condition indicators/features. These features were then 
embedded as inputs to the network using a technique known 
as the sliding window approach (Frank et al. 2001).  The 
DBN was then trained using the embedded FFT features in a 
completely unsupervised learning phase. Once training was 
complete, a supervised fine tuning layer was added on top of 

the last layer of the DBN, where it is fully connected to the 
(last) hidden layer of the DBN which serves as a weight 
initializing for the feedforward neural network This process 
has been shown to to add robustness to deep architectures and 
decrease the probability of obtaining a poor local minima 
(Erhan et al. 2010). 

 
Figure 3.  A deep belief network with two hidden layers 

 
The results from this approach indicate promising results 

that are fairly competitive with the particle filter approach as 
shown in Table 1 and Table 2. 
 
 Table 1. DBN based approach vs. Particle Filter (gear data) 

Deep learning based approach 
𝑳 RMSE MAPE 
1 2.54 6.70% 

10 3.35 10.04% 
Particle filter based approach 

𝑳  RMSE MAPE 
1 2.62 7.14% 

10 3.48 10.87% 
 

Table 2. RMSE and MAPE results for bearing data 
Deep learning based approach 

𝑳 RMSE MAPE 
1 2.64 8.40% 

10 3.71 9.31% 
Particle filter based approach 

𝑳  RMSE MAPE 
1 2.53 7.47% 

10 3.65 8.73% 
 

The second approach combines a DBN with a particle filter 
to create an integrated approach. Typically, the traditional 
particle filter requires the knowledge of a state transition 
model and a probability density function (PDF) between the 
measurement and the state Using the sequential importance 
resampling (SIR) algorithm (Gordon et al. 1993), we set the 
proposal distribution to the state transition function, which 
generates samples/particle and we then sample these particles 
based on a series of weights: 
 𝑥$%	
  ~	
  𝑝(𝑥$|𝑥$+,% ) 

𝑤$% =
𝑝(𝑧$|𝑥$%)
𝑝(𝑧$|𝑥$%)1

%2,
 

(1) 
 

(2) 
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Preliminary results have shown promising results from 
modeling (1) by creating i number of bootstrap samples of 
training set 𝑧$, 𝑧$+,, … . , 𝑧$+67, , 𝑥$78	
  	
  	
   ,  𝑡 = 𝑑 − 1,… , N −
𝐿 − 1, where d is the embedding dimension, t is the time, and 
L is the time horizon. The proposal distribution in (1) is then 
generated by the following Gaussian distribution: 

Ɲ 𝑆𝑇ABC 𝑧 , 𝜎EFG (𝑧) 	
     (3)  

 
where 𝑆𝑇ABC 𝑧 , 𝜎EFG (𝑧) are the mean and variances of the i 
bootstrap sample predictions With respect to (Baraldi et al. 
2013), the PDF between the measurement and the state can be 
generated by the following Gaussian distribution: 

 
𝑝 𝑧$ 𝑥$ ≈ 	
  Ɲ 𝜑ABC 𝑥 , 𝜎JG 𝑥 + 𝛼$G(𝑥) 	
     (4)  

 
where 𝜑ABC 𝑥  is the mean of the bootstrap samples 
(𝑥$, 𝑧$)$2,

1MNOPQPQRand the variances (𝜎JG 𝑥 + 𝛼$G(𝑥)), can then 
be derived using the same dataset. Equations (3) and (4) can 
be developed by using a DBN and then combined using the 
weighted sampling scheme in the SIR algorithm. .  

The results in Table 3 show better performance on the 
bearing data using the integrated approach against the 
traditional particle filter. 

 
  Table 3. Integrated approach vs. Particle filter 

Combined DBN and particle filter approach 
𝐿 RMSE MAPE 
1 1.62 7.06% 

10 3.33 8.52% 
Particle filter based approach 

𝐿  RMSE MAPE 
1 2.53 7.47% 

10 3.65 8.73% 
 

3.5   Remaining Work 
In the next stage of the research, other deep learning methods 
such as deep auto-encoders with sparse coding and deep 
denoising auto-encoders will be investigated. The DBN 
combined particle filter approach will also be tested on the 
gear data to further validate this method. Mixture density 
networks will be investigated and experimented with in order 
to obtain the PDF between the state and the measurement and 
possibly to model the state transition models.  

4.   CONCLUSIONS 
Predicting remaining useful life of rotating components has 
been an important task for condition-based maintenance of 
industrial machines.  One critical challenge for performing 
such task in the age of Internet of Things and Industrial 4.0 is 
to automatically process massive data and to accurately 
predict the RUL of these components. The objective of this 
research is to develop new deep learning based prognostic 
methods and tools for rotating components using various 
sensor signals. Our preliminary research results have shown 

the promising performance of deep learning based prognostic 
methods for bearing and gears.  This research will explore the 
optimal design and combination of deep learning structures 
for the best prognostic performance with big data. The 
developed methods will be validated with real bearing and 
gear run-to-failure test data.  
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