
  

Probabilistic life prediction and prognostics-based 
maintenance optimization for gas pipelines 

Yuhao Wang, Yongming Liu 

Arizona State University, Tempe, AZ 
ywang542@asu.edu 

yongming.liu@asu.edu 
 

ABSTRACT 

Accurate life prediction of infrastructure such as gas 
pipelines is important in maintaining the system 
functionality. A good maintenance plan can reduce the 
failure probability and ensure the infrastructure is always 
in working condition. A method using a Paris’ law 
equation to predict the creep crack growth (CCG) in 
plastic pipes is proposed. The model adopted an 
asymptotic solution for the stress intensity factor (SIF). 
The model was calibrated and validated via the 
experimental data from GTI. A maintenance framework 
using the prognostics results was proposed to optimize 
the maintenance planning. The pipes were divided into 
condition stages according to the crack length. The 
maintenance decision was calculated for each condition 
via the genetic algorithm. Bayesian updating can be used 
to update the parameters in the creep crack prediction 
model and thus achieve dynamic maintenance planning. 
The proposed method can fuse the information from 
diagnostics and prognostics for accurate risk assessment 
and maintenance planning.  

1. PROBLEM STATEMENT 

The research of the creep crack growth in polymeric 
materials dates back to 1960s. The behavior of CCG in 
polymeric materials are different from that in metallic 
materials. There are craze forming at the crack tip that 
bridges the edges of the crack. Models based on 
viscoelastic fracture mechanics [1], linear elastic 
fracture mechanics (LEFM) with a time dependent 
Young’s modulus [2], and cohesive zone model [3] were 
developed for describing the crack growth rate. These 
studies indicated that the stress intensity factor (SIF) is 
the key for the calculation of the crack growth rate. 

Due to the stochastic nature of the crack propagation, 
a deterministic model would not always be accurate in 
describing the process. Hence, a model based on 
probability would be more adequate for such problems. 
Based on the probability model, a maintenance 
framework can be developed to optimize the overall 
reliability of the system. Two statistical models called 
proportional-hazards model (PHM) [4] and proportional 
intensity model (PIM) [5] has become a useful tool in 
remaining useful life (RUL) predictions. A hidden 

Markov model (HMM) can calculates the transition 
probability from known experimental data [6]. Some 
also tried to apply artificial intelligence to RUL [7]. 
Bayesian updating has been extensively used for damage 
diagnosis and prognosis of metallic and composite 
materials [8][9]. The information fusion between 
diagnostics and prognostics can achieve a more accurate 
risk assessment and maintenance planning. 

2. EXPECTED CONTRIBUTIONS 

The proposed study will develop a power law equation 
for the description of the creep crack growth. The 
equation will be calibrated and validated by 
experimental data and used for prediction of the 
remaining useful life of a pipe. A novel condition-based 
maintenance planning framework will be formulated. 
And Bayesian updating will be used to update the model 
parameters with on-field observation to achieve a 
dynamic maintenance framework.  

3. RESEARCH PLAN 

3.1 Work Performed 

The accurate detection and prediction of the damage 
in plastic pipeline system is of critical importance for the 
accurate risk assessment. The proposed study uses a 
power law equation to describe the crack growth 
behavior under constant loading: 

mda C K
dt

= ×
                               (1) 

 Where the left-hand side is the crack growth rate, K is 
the SIF, C and m are material constant. The crack is 
assumed to be a semi-circular surface crack at the inner 
wall of the pipe and is along the longitudinal direction of 
the pipe, The solution for the SIF is expressed as [10]: 

K aF
Q
ps=

                           (2) 
where a is the crack length, σ is the hoop stress, Q is the 
shape factor, and F is the boundary correction factor. Q 
and F can be calculated from geometry.  
An asymptotic solution for SIF that considers the stress 
concentration factor is used as defined in Liu [11]:  
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Where 

tK  is the stress concentration factor, d is related 
to the geometry of the damage. Integrating Eq.1 from the 
initial crack length 

ia  to critical crack length 
ca , the 

failure time can be expressed as: 
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The model will be calibrated and validated against 
experimental data. The data was collected from tests on 
Aldyl-A pipe with different types of damage.  The 
experimental data were plotted in Figure 1 in double log 
scale. Since the subject of this study is the creep 
behavior, the ductile data will not be used.  

 
Figure 1. Experimental creep data shifted to 23°C 

(73.4°F) 
The initial crack length was determined using the 

SEM image shown in Figure 2. The measurement of the 
micro-crack is about 25 µm. Hence, the initial crack 
length is assumed to be 310  inia

-= . And the critical 
crack length is set to be 0.1 inca = .  

 
Figure 2. The SEM image showing the initial crack 

 
Using the SCG group data as reference, we could 
calibrate the material constant C and m. By changing 

the Kt factor, the equation can be used to predict the 
life of pipes with damages. The prediction can be 
compared with the experimental data (Figure 3).  

 

 
Figure 3. Stress vs. Life curve for all 4 groups 

By changing the upper limit of the integral in Eq. 4 to an 
arbitrary crack length 

ta , we can calculate the 
corresponding time on the left-hand side. This gives an 
implicit equation for the crack length as a function of 
time. The crack growth curve can then be plotted.  
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(5) 
The uncertainty quantification is done by assuming the 
stress concentration factor 

tK  and the material constant 
C are random variables. The failure probability is a 
function of time and stress level. With repeated MC 
sampling simulation, the failure probability can be 
counted as the percentage of simulated crack length that 
exceeds the critical value. The implicit function of the 
crack length vs. time is plotted in Figure 4. 

 
Figure 4. The crack length prediction as a function 

of time for SCG at 1000 psi 

3.2 Remaining Work 

In the proposed maintenance framework, assume the 
pipes are categorized into S conditions and there are M 
possible maintenance method. The maintenance 
framework iterates the condition in each time step as:  
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( ,:)new m
m

m= ×´ ´ ´åD D X M P
              (6) 

Where D(1×S) and Dnew(1×S) are the condition vector 
which contain elements representing the percentage of 
samples in each stage. The degradation matrix P(S×S) 
represents the natural probability transition matrix. 
Mm(S×S) is the maintenance transition matrix of doing 
maintenance m. When no maintenance is done, M is an 
identity matrix. X(M×S) is the decision matrix contains 
the percentage of pipes that will go over maintenance m.  
The cost of the for each time step is calculated as:  

 
Budget ( ,:) ( ,:)

m
Q m m= ´ ×´ ´å D X C

        (7) 
C(M×S) is the cost matrix, meaning the cost for doing a 
type of maintenance to pipes in each condition. Q is the 
total quantity of pipes.  
The probability transition matrix is a function of time. It 
can be calculated using the predicted crack growth 
curve. The reliability constraint is defined as the 
threshold value for the last element in the condition 
vector. By optimizing the cost of maintenance under the 
reliability constraint, the decision matrix can be solved.  

The dynamic maintenance is achieved through the 
continuous updating of the model parameter via 
Bayesian updating. The Bayes’ theorem states that the 
posterior probability is proportional to the product of the 
prior and the likelihood:  

( ) ( ) ( ' | )p xq µ q µ qµ                            (8) 

The continuous updating of the model parameters can 
decrease the uncertainty in the model, hence increase the 
prediction accuracy of the crack growth behavior. This 
could help the maintenance planning to reduce the 
unnecessary costs or avoid unwanted failure.  

4. CONCLUSION 

The study used a power law equation to describe the 
creep crack behavior in polymeric materials. With some 
proper assumptions, the model was calibrated and 
validated using the experimental data. Within the margin 
of error, the prediction of the stress life curve agrees well 
with the experimental data. By introducing the concept 
of uncertainty, the stochastic process of crack growth 
can be evaluated using probability. MC method was used 
to simulate the random process. Hence, the implicit 
function of the crack length against time can be 
calculated and used for the transition matrix in the 
proposed maintenance framework. In the later study, the 
effect of the updating will be discussed. The fusion of 
prognosis with diagnosis is achieved by the real-time 
Bayesian updating of the model parameters with 
diagnostic results. The effect of the Bayesian updating 
will be studied. And the maintenance framework with 

consideration of the consequence cost is under 
development.  
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