
Quantum computing

(QC)
Overview

Dr. Sunil Dixit
Technical Fellow

September 2018

Why is QC Important?

2

Classical Realm

3

4

Classical Physics Assumptions

• The universe is a giant machine

• All nonuniform motion and action have cause

– Uniform motion does not have cause (principle of inertia)

• If the state of motion is known now then all past and future states are
accurately predictable because the universe is predictable

• Light is a wave described completely by Maxwell’s electromagnetic
equations

• Waves and particles are distinct

• A measurement can be accurately made and errors corrected caused
by the measurement tool

4

5

Single Slit – Classical Marbles

5

6

Double Slits – Classical Marbles

6

7

Single Slit – Classical Waves

7

8

Double Slit – Classical Waves

8

Quantum Realm

9

10

Single Slit – Quantum Electrons

10

11

Double Slits – Quantum Electrons

11

12

Double Slit – Shoot One Electron At A Time

12

13

Double Slits – Quantum Electrons With

Observer (Measure At One Slit)

13

14

Computational Capacity in the Universe

14
*Seth Lloyd, “Computational Capacity of the Universe”, Phys. Rev. Letters, 88(23), 2002

https://en.wikipedia.org/wiki/Observable_universe

• Maximum possible elementary quantum logic

operations:

• With gravitational degrees of freedom

taken into account

• With registered quantum fields alone:

120

2

10

5 44

10

10 years is the age of the universe

with / 5.391 10 sec

is Planck time (the time scale at which

gravitational effects are the same order

as the quantum effects)

p

p

t

t

t

t Gh c 





  

90

3/4
10

p

t

t


• Provides upper bounds computational
capacity performed by all matter since the
Universe began

• Provides lower bounds of a quantum
computer required to simulate the entire
Universe required operations and bits

• If the entire Universe performs a
computation, these numbers give the
numbers of operations and bits in that
computation

https://en.wikipedia.org/wiki/Observable_universe

Quantum Computing Principles

15

16

Quantum Principles Important For QC

• Mathematics

– Primarily Linear Algebra

– Mathematical Notation – the Dirac Notation

• Superposition

• Information Representation

• Uncertainty Principle

• Entanglement

• 6 Postulates of Quantum Mechanics

16

See Backup Slides

17

Quantum Superposition & Uncertainty Principle

17

2

h
E t  

Quantum Information Representation

• Physical Representation
(Superposition and Entanglement)

– Electrons Spin Up / Spin Down

– Nuclear Spins

• Nuclear Magnetic Resonance

– Polarization of Light / Photons

– Optical Lattices

– Semiconductor Quantum DOT

– Semiconductor Josephson Junctions

– Ion Traps

– Others

• Classical Representation

– BIT (0,1)

• Quantum Representation

– Quantum BIT (qubit)

18

BLOCH representation of a qubit

   ˆ ˆ ˆ, , sin cos ,sin sin ,cosBLOCH x y zr r r r      

Quantum Dots Trapped Ions Optical Lattices

19

Quantum Entanglement

Electrons

19

20

Quantum Entanglement

Photons

20

21

Quantum Entanglement (continued)

• Start with 2-qubits:
– Both are their basis states

• How do we entangle them mathematically?
– Take the tensor product between the states

• 2-qubits in arbitrary states cannot be decomposed into their separate qubit

state. As an example, one of the Bell state , cannot be

separated into its individual qubit state

• Einstein called entanglement as “spooky action at a distance,” as it

appeared to violate the speed limit of information transmission in theory of

relativity (i.e., “c” the velocity of light)

21

0 1 0 1| 0 |1 | 0 |1and    

   0 1 0 1

0 0 0 1 1 0 1 1

| 0 |1 | 0 |1

| 00 | 01 |10 |11

   

       

  

   

 
1

| | 00 |11
2

  

22

Qubit & Nuclear Spin

Nuclear Magnetic Resonance

22

23

6 Postulates of QM deferred to

backup slides

24

• Classically
measurements only
reveal n-bits of
information

• Probability of 100-bit
string y is |αy|

2 ; new
state post
measurement is | y

Basic Classical & Quantum Computer

Operations & Flowchart Of Quantum Control

Classical
Input Classical

Output

“Quantification
”- n qubits in
state
transformed
via
superposition

| x 

y



Measure

| y

Input x

n-bit

string

Output y

n-bit

string

Quantum Mechanics

Exponential Superposition

May Repeat

May Repeat

Manipulate
Apply Gates

Quantum
Processor
(Slave)

Classical
Computer
(Master)

Control of quantum operations

Results of Measurements

Quantum computer image from: Nature 519, 66–69 (05 March 2015)
doi:10.1038/nature14270

25

Physical Quantum Computer

25

D-Wave

IBM

Microsoft

1000?

D-Wave Markets 1000

qubit computers for

$10M - $15M

IBM 5 Qubit

Quantum Computing Models

26

Models of Quantum Computing

Model Description

QC Circuits / Gates

Adiabatic QC
(Vary Hamiltonians slowly from initial to

final state)
s = (1/T)

Topological QC
(World lines of particles positioned in a
plane with time flowing downwards)

Computational power of Anyons

Measurement Based QC
(Cluster States, Tomography) (local

measurement is the only operation
needed)

ˆ (1) initial finalH s H sH  

27

Quantum Circuits & Gates

28

29

Quantum Circuits

Quantum Circuits Error Corrections

29

Gate Graphical Mathematical Form Comments

CNOT

CNOT gate is a generalized XOR gate: its action
on a bipartite state |A,B> is |A, B A>, where
is addition modulo 2 (an XOR operation)

SWAP

Swaps states:

Hadamard
H-gate (square root NOT gate) is an
idempotent operator: H 2 = I. It transforms the
computational basis into equal superpositions.

Pauli X, Y, Z

Quantum NOT is identical to σx => leaves |0>
invariant and changes the sign of |1>.
Rotations about the X, Y, Z axis

T-Gate

Applies a phase shift to the target qubit.

Measurement

Measurement collapses the superposed
quantum states

Qubit Wire = single qubit

n Qubits Wire with n qubits

Classical bit Double wire = single bit

1000

0100

0001

0010

 
 
 
 
 
 

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 
 
 
 
 
 

 
1 11 1

1 12 2
x z 

 
  

 

, ,

0 1 0 1 0
, ,

1 0 0 0 1

X Y Z

i

i

 

     
     

     

8



4

1 0

0
i

e


 
 
 
 

1 0 0 0
,

0 0 0 1

    
    
    

{H, T, and CNOT} are called the “Standard Set.” Others in charts below

 

   , ,   

4

4

| 00 remains same

|11 target qubit phase shift

i

i

e

e









30

Properties of Quantum Circuits

• Are not acyclic (no loops)

• No FANIN. This implies that the circuit is not reversible; does not obey

unitary operation

• No FANOUT. Cannot copy the qubit’s state during the computational

phase

– No-Cloning Theorem

• No copies of qubits in superposition (produces a multipartite entangled state)

30

     

     

| | | | | 0 |1 | 0 |1 | 0 |1 ;

| 0 |1 | 0 |1 | 0 |1 | 000 |111 | ;

Entangled 3qubits | |

NOT ALLOWED
         

        

 

      

       

  

31

IBM 5-Qubit Quantum Computer Using Toffoli

Gates – Freely Available Quantum Computing

31 https://quantumexperience.ng.bluemix.net/qx/editor

Timeline for IBM 17-qubit

computer is unknown

Uses QASM (IBM Q)

Assembler or QISKit SDK
(Python code) discussed

later, for producing the QC

circuit results

3Q Toffoli State

5Q SQRT(Toffoli) State

https://quantumexperience.ng.bluemix.net/qx/editor

32

12) Qubit Teleportation Circuit An arbitrary qubit is transferred from one location to another. In
literature ALICE and BOB example is commonly utilized.
Teleportation takes two classical bits to one quantum state.

Multi Qubit Gates (continued)

H|

| ALICEA

| BOBB | 

T
im

e

Step 1

Step 3

Step 2

Step 4

Space
Alice Bob

|

| , interactA

, entangledA B

measure

reconstruct |

|

Squiggly lines correspond to movement of qubits. Straight

lines correspond to movement of bits

moves from the lower left hand corner from Alice to Bob

in the upper right hand corner.

Only two classical bits remain with Alice in Step 4.

SINGLE QUANTUM PARTICLE IS TELEPORTED

Alice sends (with speed < speed of light) the two classical

bits to Bob along a classical channel. Without these Bob will

not know what he has received

Entanglement, as well, is not transported faster than the

speed of light despite its undisputable magic

Infinite amount of information is passed with the qubit,

however once Bob measures he can only get one bit of

information

|

33

Quantum Teleportation Video

33

Quantum-Kit Simulation: https://en.wikipedia.org/wiki/Quantum_teleportation#/media/File:Quantum_Teleportation.gif

https://en.wikipedia.org/wiki/Quantum_teleportation#/media/File:Quantum_Teleportation.gif

Quantum Computing Programming

Languages

34

35

QC Programming Languages and QC

Simulators

35

Product Description Website

QCL C like syntax and complete. The current version of

QCL is 0.6.4 (Mar 27 2014), Source Distribution: qcl-

0.6.4 (gcc 4.7 / gnu++98 compliant), Binary Distribution

(64 bit): qcl-0.6.4-x86_64-linux-gnu.tgz (AMD64, Linux

3.2, glibc2.13)

http://tph.tuwien.ac.at/~oemer/qcl.html

QASM Assembler: Maps directly to quantum circuit model
instructions
MIT: qasm2circ; QISKit: openQASM

https://www.media.mit.edu/quanta/qasm2circ/
https://qiskit.org/documentation/quickstart.html

QISKit SDK
Terra–Python

API-Python

QISKit, a quantum program is an array of quantum
circuits developed by IBM. Python program code
workflow consists of three stages: Build, Compile,
and Run.

https://qiskit.org/documentation/quickstart.html
https://github.com/QISKit/qiskit-terra
https://github.com/QISKit/qiskit-api-py

Q# Is a C# like quantum programming language
developed by Microsoft. It come with a quantum
simulator in the quantum development kit.

https://www.microsoft.com/en-
us/quantum/development-kit

CodeProject Is a Java quantum code project https://www.codeproject.com/Articles/1130092/Java-
based-Quantum-Computing-library

Quantum-Kit Is a graphical quantum circuit simulator https://sites.google.com/view/quantum-kit/home

Other Simulators
in various
languages and
tools

C/C++, CaML, Ocaml, F#, GUI based, Java,
Javascript, Julia, Maple, Mathematica, Maxima,
Matlab/Octave, .NET, Online Services, Perl/PH,P,
Python, Rust, and Scheme/Haskell/LISP/ML

https://quantiki.org/wiki/list-qc-simulators

Other Languages See Wikipedia https://en.wikipedia.org/wiki/Quantum_programming

http://tph.tuwien.ac.at/~oemer/tgz/qcl-0.6.4.tgz
http://tph.tuwien.ac.at/~oemer/tgz/qcl-0.6.4-x86_64-linux-gnu.tgz
http://tph.tuwien.ac.at/~oemer/qcl.html
https://www.media.mit.edu/quanta/qasm2circ/
https://qiskit.org/documentation/quickstart.html
https://qiskit.org/documentation/quickstart.html
https://github.com/QISKit/qiskit-terra
https://github.com/QISKit/qiskit-api-py
https://www.microsoft.com/en-us/quantum/development-kit
https://www.codeproject.com/Articles/1130092/Java-based-Quantum-Computing-library
https://sites.google.com/view/quantum-kit/home
https://quantiki.org/wiki/list-qc-simulators
https://en.wikipedia.org/wiki/Quantum_programming

36

Simple QSAM Example Using QRAM Model

INITIALIZE R 2

U TENSOR H H

APPLY U R

MEASURE R RES

36

Allocates register R to 2 qubits and initializes to

1 1 1 1

1 1 1 11

1 1 1 12

1 1 1 1

U H H

 
 

    
  
 

  

1

2
1 1 1 1 1 1

1 1 1 1 01 2

1 1 1 1 0 12

21 1 1 1 0

1

2

1 1 1 1
| 00 | 01 |10 |11

2 2 2 2

 
 
 

  
   

               
    
 
 
 

   

Parallel application of H to

the 2-qubits puts the

register R in a balanced

superposition of four basis

states

Measures the q-register R and

stores in bit array RES. What is

the probability for the ground

state (i.e., expectation value)?

2
1 1

from coefficient of | 00 : 0.25
2 4

 

| 00ۄ

Quantum Algorithms

37

38

Quantum Computing Algorithms (continued)

Algorithm Description Reference

Algorithms Based on QFT

Shor’s; Integer factorization (given integer N find its
prime numbers); discrete logarithms, hidden
subgroup problem, and order finding

Peter W. Shor, “Algorithms for Quantum Computation Discrete Log and Factoring,”
AT&T Bell Labs, shor@research.att.com

Simon’s; exponential Exponential quantum-classical separation.
Searches for patterns in functions

Simon, D.R. (1995), "On the power of quantum computation", Foundations of
Computer Science, 1996 Proceedings., 35th Annual Symposium on: 116–123,
retrieved 2011-06-06

Deutsch’s, Deutsch’s – Jozsa, an
extension Deutsch’s algorithm

Depicts quantum parallelism and
superposition. “Black Box” inside. Can
evaluate the input function, but cannot see if
the function is balanced or constant

David Deutsch (1985). "Quantum Theory, the Church-Turing Principle and the
Universal Quantum Computer". Proceedings of the Royal Society of London A. 400:
97
David Deutsch and Richard Jozsa (1992). "Rapid solutions of problems by quantum
computation". Proceedings of the Royal Society of London A. 439: 553

Bernstein/Vazirani; polynomial Superpolynomial quantum-classical separation Ethan Bernstein and Umesh Vazirani. Quantum complexity theory. In Proc. 25th
STOC, pages 11–20, 1993

Kitaev Abelian hidden subgroup problem A. Yu. Kitaev. Quantum measurements and the Abelian stabilizer problem,
arXiv:quant-ph/9511026, 1995

van Dam/Hallgren Quadratic character problems Wim van Dam, Sean Hallgren, Efficient Quantum Algorithms for Shifted Quadratic
Character Problems. CoRR quant-ph/0011067 (2000)

Watrous Algorithms for solvable groups John Watrous, Quantum algorithms for solvable groups, arXiv:quant-
ph/0011023, (2001)

Hallgren Pell’s equation Sean Hallgren. Polynomial-time quantum algorithms for pell’s equation and the
principal ideal problem, Proceedings of the thirty-fourth annual ACM symposium on
the theory of computing, pages 653–658. ACM Press, 2002.

Algorithms Based on Amplitude Amplification

Grover’s; Search algorithm from an unordered list
(database) for a marked element, and
statistical analysis

Lov Grover, A fast quantum mechanical algorithm for database search, In
Proceedings of 28th ACM Symposium on Theory of Computing, pages 212–219,
1996

Traveling Salesman Problem; Special case of Grover’s algorithm https://en.wikipedia.org/wiki/Travelling_salesman_problem

Machine Learning Quantum Particle Swarm Optimization (QPSO)
38

 O N

 O N

  32 logO n N

mailto:shor@research.att.com
http://citeseer.ist.psu.edu/viewdoc/download?doi=10.1.1.51.5477&rep=rep1&type=pdf
https://en.wikipedia.org/wiki/David_Deutsch
http://coblitz.codeen.org:3125/citeseer.ist.psu.edu/cache/papers/cs/13701/http:zSzzSzwww.qubit.orgzSzresourcezSzdeutsch85.pdf/deutsch85quantum.pdf
https://en.wikipedia.org/wiki/David_Deutsch
https://en.wikipedia.org/wiki/Richard_Jozsa
http://dblp.org/pers/hd/d/Dam:Wim_van
http://dblp.org/db/journals/corr/corr0011.html#quant-ph-0011067
https://arxiv.org/abs/quant-ph/0011023
https://en.wikipedia.org/wiki/Travelling_salesman_problem

Quantum Algorithms (continued)

Machine Learning Applications

39

Quantum Algorithm Grover’s
Algorithm
Applied?*

Execution
Improvement
vs. Classical

Quality of
Learning
Algorithm
Studied

Quantum
Computer

Implementation

Quantum
States?#

Reference

Neural networks Yes Numerical Yes No 1

Boosting No Quadratic Analytical Yes No 2

K-medians Yes Quadratic No No No 3

K-means Optional Exponential No No Yes 4

Principal
components

No Exponential No No Yes 5

Hierarchical
clustering

Yes Quadratic No No No 6

Associative memory Yes
No

No
No

No
No

No 7
8

Support vector
machines

Yes
No

Quadratic
Exponential

Analytical
No

No
No

No
Yes

9
10

Nearest neighbors Yes Quadratic Numerical No No 11

Regression No No No Yes 12

Hidden Markov
Chains

No No No No 13

Bayesian Methods No No No No 14

*Grover’s search or extension used; #Input or output were both quantum states vs. classical vectors
Most topics from: Peter Wittek, “Quantum Machine Learning”, Elsevier Insights, 2014

Summary

40

41

Summary

• Develop / reuse quantum gates tailored to PHM

– Creating “Oracles” are a very useful technique

– Note: QC gates in series accumulate errors (described earlier)

• Tailor quantum machine learning algorithms for PHM algorithms

• “Quantum particle swarm optimization (QPSO)” appears to be a good
candidate for dynamic degraded state prognostics (tracks dynamic changes to
a particle in its local focus specified by the characteristics length vector of the
swarm in some Hamiltonian potential {E+V()}. Implementation on a quantum
computer? Develop technology / gates / methods to do QPSO on quantum
computers.

• Consider “adiabatic quantum computing” as an alternative approach. It is
based on the time evolution of a quantum system. A quantum adiabatic
process is one in which the initial Hamiltonian evolves slowly to it final
Hamiltonian (i.e., the time scale should be proportional to the energy
difference between the ground state and the first excited)

– For electrons the Hamiltonian can be represented by the Pauli operators

• Consider “cluster state quantum computing” that does not rely on quantum
gates to do its processing (multi-qubits operations)

41 Treatment of topics discussed here are in Backup Slides

r

42

Summary (continued)

• Develop quantum computer with superconducting materials at higher

temperatures

– Apart for space vehicles, current implementations for temperatures < 1.5
◦
K are not

feasible out of large infrastructures

42 https://en.wikipedia.org/wiki/Superconductivity & Ref. 15, 16

*1 Gigapascal = 9869.2 Atmosphere

* *

https://en.wikipedia.org/wiki/Superconductivity

43

Summary (continued)

• Is classical cybersecurity safe with the power of quantum computing?

– Reference: Lily Chen et al., “Report on Post-Quantum Cryptography”, 2016
http://dx.doi.org/10.6028/NIST.IR.8105

– If DWave 1000/2000 qubits Quantum Computer is a reality, AES and SHA-2/SHA-3 are unsafe

• Is quantum computing cybersecurity safe?

– It is possible that we would need methods / techniques to keep Quantum Computers safe?

• Still the issue of classical measurements

43 Treatment of topics discussed here are in Backup Slides

http://dx.doi.org/10.6028/NIST.IR.8105

References

• Videos
– Video from

https://www.youtube.com/watch?v=fwXQjRBLwsQ
(Slits Video)

– https://www.youtube.com/watch?v=815oMDT5g0o
(Superposition Video)

– https://www.youtube.com/watch?v=9lOWZ0Wv218
(Entanglement Video)

– https://www.youtube.com/watch?v=zNzzGgr2mhk
(Nuclear Magnetic Resonance Video)

– https://www.youtube.com/watch?v=f5vOfr1dl4o
(Teleportation Video)

• Quantum Mechanics Books
– Dirac Notation: “Principles of Quantum Mechanics”,

Ramamurti Shankar, Plenum Press, New York /
London, 1980

– “Lectures on Quantum Mechanics”, Steven
Weinberg, Cambridge University Press, New York,
2013

– “Lectures on Computation”, Richard P. Feynman,
Westview Press (1996, reprinted 1999)

• Quantum Computing Books
– Jun Sun, Choi-Hong Lai, Xiao-Jun Wu, “Particle

Swarm Optimisation-Classical and Quantum
Perspective”, Chapman & Hall/CRC Press,2012

– Peter Wittek, “Quantum Machine Learning”, Elsevier
Insights, 2014

Papers

1. Narayanan and Menneer (2000), Quantum artificial neural

network architectures and components, Inform Sci., 128(3-4),

231-255

2. Neven et al. (2009), Quantum pattern recognition with liquid-

state nuclear magnetic resolution, Phys. Rev. A 79, 042321

3. Aimeur et al. (2013), Quantum speed-up for unsupervised

learning Mach. Learn., 90(2), 261-287

4. Lloyd et al. (2013), Quantum algorithms for supervised and

unsupervised machine learning, arXiv:1307.0411

5. Lloyd et al. (2013), Quantum principle component analysis,

arXiv:1307.0411

6. Aimeur et al. (2013), Quantum speed-up for unsupervised

learning Mach. Learn., 90(2), 261-287

7. Ventura and Martinez (2000), Quantum associative memory,

Infom. Sci., 124(1), 273-296

8. Trugenberger (2001), Probabilistic quantum memories, Phys.

Lett., 87, 067901

9. Anguita et al. (2003), Quantum optimization for training support

vector machines, Neural Netw, 16(5), 763-770

10.Rebentrost et al. (2013), Quantum support vector machine for

big feature and big feature classification, arXiv:1307.0471

11.Wiebe et al. (2014), Quantum nearest neighbor algorithms for

machine learning, arXiv:1401.2142

12.Bisio et al. (2010), Optimal quantum learning of a unitary

transformation, Phys. Rev. A 81(3), 032324

44

https://www.youtube.com/watch?v=fwXQjRBLwsQ
https://www.youtube.com/watch?v=815oMDT5g0o
https://www.youtube.com/watch?v=9lOWZ0Wv218
https://www.youtube.com/watch?v=zNzzGgr2mhk
https://www.youtube.com/watch?v=f5vOfr1dl4o

References (continued)

13 Siddarth Srinivasan et al., Learning Hidden Quantum Markov Models,

Proceedings of the 21stInternational Conference on Artificial

Intelligence and Statistics (AISTATS) 2018, Lanzarote, Spain.

JMLR: W&CP volume 7X

14 Sentís, Gael; Calsamiglia, John; Muñoz-Tapia, Raúl; Bagan,

Emilio (2012), Quantum learning of coherent states. EPJ Quantum

Technology. 2 (1). doi:10.1140/epjqt/s40507-015-0030-4

15 Zhi-An Ren; et al. (2008), Superconductivity at 55 K in iron-based

F-doped layered quaternary compound Sm[O1-xFx]FeAs, “Chin.

Phys. Lett. 25, 2215 (2008)

16. Li, Yinwei; Hao, Jian; Liu, Hanyu; Li, Yanling; Ma, Yanming

(2014-05-07), "The metallization and superconductivity of dense

hydrogen sulfide". The Journal of Chemical Physics. 140 (17):

174712. arXiv:1402.2721

17 Zhi-An Ren; et al. (2008),), Superconductivity at 55 K in iron-

based F-doped layered quaternary compound Sm[O1-xFx]FeAs,

“Chin. Phys. Lett. 25, 2215 (2008)

18 Gelo Noel M. Tabia (2011), Qutrits Under a Microscope,

American Physical Society March Meeting 2011, Dallas, Texas,

United States (21 - 25 March 2011)

19 Frank Wilczek (1982), Phys. Rev. Lett. 49, 957

20 A. Kitaev (2003), Ann. Phys. 303, 2

21 Jacobson, Nathan (2009). Basic Algebra I (2nd ed.). Dover

Publications

• Various Quantum Computing Websites

– https://en.wikipedia.org/wiki/Quantum_computing

– https://qnncloud.com/

– https://en.wikipedia.org/wiki/Quantum_machine_learning

– https://en.wikipedia.org/wiki/Quantum_algorithm

45

https://en.wikipedia.org/wiki/Digital_object_identifier
https://doi.org/10.1140/epjqt/s40507-015-0030-4
http://scitation.aip.org/content/aip/journal/jcp/140/17/10.1063/1.4874158
https://en.wikipedia.org/wiki/ArXiv
https://arxiv.org/abs/1402.2721
https://qnncloud.com/
https://qnncloud.com/
https://en.wikipedia.org/wiki/Quantum_machine_learning
https://en.wikipedia.org/wiki/Quantum_algorithm

Backup Slides

46

47

Quantum Mathematics

• Mathematics

– Primarily Linear Algebra

– Notation Dirac Notation

47

 

† *

*

*

*

*

" " | ; " " | ;

| | | ;† is Ajoint Operator

1 () ();

| , | | () ();

| | ;

ˆ ˆ| | (

;

 (

(

6.626 10

))

()

T

Bra Ket

dx x x

dx x x

H dx x H x

h

Acting on an Hamilton

Schrödinger Hamiltonian for t e

N particle case

ia

h

n

 

  

   

     

   

   



 

 

 





  







34

2

1 2

1

sec) :

1ˆ (, ... ,);
2

ˆ(,) (,)

N

n N

n n

Joule

h
H V r r r t

m

Time dependent Schrödinger Equation

i h r t H r t
t




  


  





More mathematical details in Backup Slides

Quantum Mathematics

• Mathematics

– Primarily Linear Algebra

– Notation Dirac Notation

48

 

† *

*

*

*

*

" " | ; " " | ;

| | | ;† is Ajoint Operator

1 () ();

| , | | () ();

| | ;

ˆ ˆ| | (

 :

1

())

();

ˆ
2

T

n n

Bra K

h

et

dx x x

dx x x

H dx x H x

Acting on an Hamilto

Schrödinger Hamiltonian for t e

N particle case

h
H

in n

m

a

 

  

   

     

   

   



 

 

 
















2

1 2

1

(, ... ,)

:

ˆ(,) (,)

N

n NV r r r t

Time dependent Schrödinger Equation

i h r t H r t
t

 


  





 

1

1

1

2 2

22

1

1

* *

1

Linear Combination:

Linear Independence:

Probability Amplitudes:

Inner Product:

Norm: unit vector:

| | ;

| 0 ... 0;

| | 0 |1

1;

| ; 1;

| , ... , ...

n

i i

i

n

i i n

i

n

i ii
i

n

n

a c b

c b iff c c

  

 

    



   











   

  

 

  



 







 

 

* *

1

* *

1Outer Product:

Tensor Product:

Orthogonality:

; | | ; | ;

| | ... , ... , ;

| | | | | ;

;

| 0;

n

i i

i

n

n

ax ay bx by

a b x y av aw bv bw
A B

c d v w cx cy dx dy

cv cw dv dw

       



   



    

 


 

  
 



 
 

  
 
 

  

 
 

                
 
 





1

†

†

Orthonormality

Trace:

Hermitian Operators:

: (, 1, 2,...,); 0, ;

() ;

;

()

ij ij

n

iii

i j n i j

tr

anti

   

 

 

 



   





 



49

6 Postulates of Quantum Mechanics

• Postulate 1: At each instant the state of a physical system is

represented by a ket | in the space of states

• Postulate 2: Every observable attribute of a physical system is

described by an operator that acts on the kets that describe the system

– For every operator, there are special states that are not changed (except for being

multiplied by a constant) by the action of an operator

49

𝜓ۄ

'ˆ ˆ: | | |A A   

ˆ : | |a a

a

A a

are eigenstates

a is eigenvalue

 





50

6 Postulates of Quantum Mechanics (continued)

• Postulate 3: The only possible result of the measurement of an

observable is one of the eigenvalues of the corresponding operator

• Postulate 4: When a measurement of an observable A is made on a

generic state , the probability of obtaining an eigenvalue an is given

by the square of the inner product of with the eigenstate is

50

መ𝐴A

|

| | na
2

,na  |na  is the probability amplitude

51

6 Postulates of Quantum Mechanics (continued)

• Postulate 5: Immediately after the measurement of an observable

has yielded a value an, the state of the system is the normalized

eigenstate

• Postulate 6: The time evolution of a quantum system preserves the

normalization of the associated ket. The time evolution of the state

of a quantum system is described by for some

unitary operator

51

A

0 0
ˆ| () (,) | ()t U t t t 

Û

| na

52

Qubit Processor Architectures

52

4

17

8

2

1000?

D-Wave Markets 1000 qubit computers for

$10M - $15M

MicrosoftIBM 5 Qubit

53

Physical Quantum Computer

53

D-Wave

IBM

Microsoft
CMC Microelectronics Quantum & Classical Systems Integration

54

Quantum Random Access Memory (QRAM)

Quantum Register is an interface to an addressable sequence of qubits..

QRAM: In QRAM, the address and output registers are composed of qubits. The address register

contains a superposition of addresses: and the output registers post superposition of

information correlated with the address register:

QRAM Model: “Bucket-brigade”, architecture optimizes the retrieval of data to O(log 2n) switches where

“n” is the number of qubits in the address register. The basis of the architecture is to have qutrits

instead of qubits allocated to the nodes of a bifurcation graph. “011” memory cell is an address register.

54

|k a
k

b k

| |k ka d
k

b k D

Root Node0

1

2

G
ra

p
h

 L
e
v
e

ls

011

Memory Cells

wait

left

right

Bifurcation Graph
• Quantum Entropy: measure of information

contained in a quantum system (von Neumann

entropy):

• N qubits can store 2N bits of information, e.g., DWave

1000 Qubits computer can store 21000 ~ 1.07x10301 bits

>> 1075 – 1082 atoms in the universe

Note, however that N qubits can confer at

most N bits of classical information

2 2

where are the members of the set of eigenvalues of

and 0 log 0 0; () is nonnegative, maximum for mixed states

For qubits 0 () 1 ; () provides information in meas

() (log) log ,

i

i i

i

S

S S

S tr

 



 

    



 

   

ures of

qubits

55

Quantum Random Access Memory (QRAM)

(continued)

55

• |wait>, |left>, and |right> represent three-level qutrit

quantum system. During each memory call the qutrit is in

the |wait> state. The qubits of the address register are sent

one by one through the graph and the wait state is

transformed into |left> and |right> depending on the current

qubit

• States not in |wait> states are routed immediately and the

results are a superposition of routes

• The qutrit computation is to the O(1- €log N) where N is the

number of qubits not in |wait> state

Root Node0

1

2

G
ra

p
h

 L
e
v
e

ls

011

Memory Cells

wait

left

right

Bifurcation Graph

56

Quantum Circuits

• A quantum circuit consist of

– Finite sequence of wires representing qubits or sequences of qubits
(quantum registers)

– Quantum gates that represent elementary operations from the particular
set of operations implemented on a quantum machine

– Measurement gates that represent a measurement operation, which is
usually executed as the final step of a quantum algorithm

• It is possible to perform the measurement on each qubit in canonical
basis which corresponds to the measurement of a set of
observables

– Composite n-qubit circuit obey unitary evolution (every operation on
multiple qubits is described by a unitary matrix)

– Unitary implies reversibility: it establishes a bijective mapping between
input and output bits (with the output and operations, the initial state can
be recovered). Since all unitary operators U are invertible
with we can always “un-compute'' (reverse the computation)
on a quantum computer

56

 | 0 ,|1

1 †U U 

57

Quantum Parallelism

• Is there a single operation that

evaluates a single function on at least

two possible inputs to a quantum

circuit without destroying

superposition?

– The results of such an operation is known

as Quantum Parallelism

57

   Function in basis states : 0,1 0,1

with appropriate sequence of quantum gates

| , transform to | , () ;

qubit is called "data register"; qubit is

called "target register". If we apply a

unitary transform U with =0, suf

f

f    

 





ch that

the results becomes | , ()

If we apply a Hadamard Gate on each data

register it produces 2 bits with n gates; then

evaluate with an appropriate U gate as in

the example, we can generalize for

n

f

f

f

 

 n qubits with

 |0 | 0 the input state, Quantum Parallelism:

1
| | ()

2

n

n
f



 





H| 0

| 0

| 0, (0) |1, (1)

2

f f
Uf

Simple example of Quantum Parallelism

| 0 |1
;

2
data register



58

Quantum Circuits (continued)

Are one-shot circuits (run once from left to right)

• Circuit represents series of operations and measurements of n-qubit states

• Quantum gates Uf1
… Uf3

are operators that operate on qubits

• Each operator above is unitary and described by 2n x 2n matrix (n depends on

input states)

• Each Line is an abstract wire connecting quantum logic gates (or series of

gates)

• The meter symbol represents a measurement

58

Uf1
Uf2 Uf3

Output
Input

States

Controlled-Qubit-Uf1
-Gate Control Line

| |

0|
1| 3| 4|

2|

59

Single Qubit Gates

59

1) Qubit NOT-Gate

Representation:

2 x 2 matrix

Constraint:

Input Amplitudes:

Output Amplitudes:

0 1

1 0

 
 
 

†

()Identity matrix

U U I

2 2
1  

2 2
' ' 1  

4) Qubit Pauli I-Gate

Representation:

2 x 2 matrix

0

1 0

0 1
I

 
   

 

 
1 0

| 0 |1
0 1

   
 

  
 

| 0 | 0

|1 |1

I

I

 

 

5) Qubit Pauli X-, Y-,

and Z-Gates – Rotations

about X, Y, and Z axis

Representation:2 x 2

matrix

0 1

1 0
X X

 
   

 

X

Y

0

0
Y

i
Y

i


 
   

 

Z

1 0

0 1
Z Z

 
   

 

The unitary property provides other potential gates

60

Single Qubit Gates (continued)

5) Qubit
𝜋

8
T-Gate

Note: S = T2

4

4

1 0

0

| 0 |1

i

i

e

e









 

  
   
   



6) Qubit Hadamard

H-Gate (square root

NOT gate)

H

4) Qubit Phase S-Gate

S

1 0

0

| 0 |1

i

i





 

  
  

  



T

1 11

1 12

| 0 |1 | 0 |1

2 2





 

  
  

  

     
   

   

7) Qubit Rotational R-Gates

RX
RY RZ

2

cos sin
2 2

sin cos
2 2

X
i

i

e

i



 

 



 
 

 
 
  

2

cos sin
2 2

sin cos
2 2

Y
i

e


 

 



 
 

 
 
  

2

2

2

0

0

i
Z

i

i

e
e

e













 
 


 
  

, , , ,: cos sin ;
2 2

X Y Z X Y Zreduced form I i Identity and Pauli Operators
 

 
60

61

Multi Qubit Gates

1) Qubit CNOT-Gate

61

| |

|  |  

• True quantum gates must be reversible.
Reversibility require a control line which is

unaffected by a unitary transformation.

Implement by carrying the input with results

• represent the classical XOR with input on the

beta line and the control line in the alpha line

• The gate is a 2 qubit gate represented by a 4 x

4 matrix



1000

0100 0 0
| 00 |11

0001

0010 0 0

 

 
 

    
    
      
    
    
    

| 00 | 00 ;

| 01 | 01 ;

|10 |11 ;

|11 |10

CNOT

CNOT

CNOT

CNOT

 

 

 

 

 

 

 

| 0 |1 |1 | 01 |10 ;

| 0 | 0 |1 | 00 | 01 ;

|1 | 0 |1 |11 |10 ;

CNOT

CNOT

CNOT

   

   

   

   

   

   

2-Qubit CNOT-Gate treatment in Backup Slides

62

Multi Qubit Gates (continued)

2) Controlled X, Y, Z Gates

Y ZX

• CNOT is a controlled-X-gate

• SXSᶧ = controlled-Y-gate

• HXH = controlled-Z-gate

4) Swap Qubit States

SWAP12=CNOT12→CNOT21→CNOT12

5) Copying Circuits

Only on non-superposed states

A qubit in an input unknown state cannot be

copied. It must be measured before being

copied. The information held in the probability

amplitudes α and β is lost.

 

 

  

| 0 |1 | 0 | 00 |10 ; combined state

| 00 |10 | 00 |11 ;

not a copy of original state

| 0 |1 | 0 |1 | 00 |11 ;

CNOT

   

   

     

  

   

   

0ۄ

𝛼| 0ۄ + 𝛽| 1ۄ
6) Bell State Circuit

H|

| 
| xx

 

 

 

 

00

01

10

11

1
| 00 | 00 |11 ;

2

1
| 01 | 01 |10 ;

2

1
|10 | 00 |11 ;

2

1
|11 | 01 |10 ;

2

 

 

 

 

   

   

   

   

Entangled states

are produced:

β00, β01, β10, and

β11

3) Reversible Circuit

1|

| n

1|

| n

A
n

c
ill

a
e

Ancilla bit is a

storage/garbage bit

 1,..., nf  0

0

0 0

0

At end of computation all ancillae retain initial
values, except one ancilla bit, designated as
the “answer” bit, carries the value of the
function

R
e

v
e

rs
ib

le

       , , , ,             

63

Equivalent Quantum Gate Operations (some

examples)

7) Controlled-U Replaced by Equivalent Single Qubit Gates & CNOT gate

A

C

BU

Controlled-Unitary Gate Single Qubit Gates: A, B, C

8) Controlled-Pauli X Gate Replaced by Hadamard and Controlled-Pauli Z

Gate

H HZX

9) Controlled-Pauli X Gate Equivalent Circuit

H HX

X H H

63

64

Multi Qubit Gates (continued)

10) Qubit Toffoli Controlled-CNOT (CCNOT) or Deutsch (𝜋/2) Gate

• Universal reversible gate

• Fast, stable to imperfections, and has high

fidelity for fault-tolerant quantum computation

• Control qubits remain unaffected

• Third target qubit is flipped if both control

lines are set to 1, else it is left alone.

| |

|  | | | |     

|  |  

U

=
√𝑼 √𝑼ᶧ √𝑼

:

| 000 000 | | 001 001| | 010 010 | | 011 011|

|100 100 | |101 101| |110 111| |111 110 |

Toffoli Matrix

    

  

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

1 0 0 0 0 0 0 1

1 0 0 0 0 0 1 0

 
 
 
 
 
 
 
 
 
 
 
 
 

Implementation

Permutations in 8 Dimension Hilbert

Space that swaps the last two entries

65

Multi Qubit Gates (continued)

11) Qubit Fredkin (Controlled-SWAP) Gate
• Universal reversible gate

• Factor impossibly large number in short time periods

• Secure quantum communications - direct comparison of

two sets of qubits for equality i.e., the two digital
signatures are the same

S

|

| 

|

| | 

|  | | 

:

| 000 000 | | 001 001| | 010 010 | | 011 011|

|100 100 | |101 110 | |110 101| |111 111|

Fredkin Matrix

    

  

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0

1 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

 
 
 
 
 
 
 
 
 
 
 
 
 

Permutations in 8 Dimension

Hilbert Space that swaps the 101

and 110

66

Multi Qubit Gates

1) Qubit CNOT-Gate

2) Qubit NOT Two Gates

Which Acts On Qubit 2

66

| |

|  |  

• True quantum gates must be reversible. Reversibility require

a control line which is unaffected by unitary transformation.

Implement by carrying the input with results

• represent the classical XOR with input on the beta line and

the control line in the alpha line

• The gate is a 2 qubit gate represented by a 4 x 4 matrix



1000

0100 0 0
| 00 |11

0001

0010 0 0

 

 
 

    
    
      
    
    
    

| 00 | 00 ;

| 01 | 01 ;

|10 |11 ;

|11 |10

CNOT

CNOT

CNOT

CNOT

 

 

 

 

 

 

 

| 0 |1 |1 | 01 |10 ;

| 0 | 0 |1 | 00 | 01 ;

|1 | 0 |1 |11 |10 ;

CNOT

CNOT

CNOT

   

   

   

   

   

   

0100

1000
;

0001

0010

 
 
 
 
 
 

2

2

2

2

| 00 | 01 ;

| 01 | 00 ;

|10 |11 ;

|11 |10 ;

NOT I X

NOT I X

NOT I X

NOT I X

   

   

   

   

2

0 1 1 0 0 1 0 0
1 0

1 0 0 11 0 0 1 1 0 0 0
;

0 1 1 0 0 0 0 10 1 0 1
0 1

0 0 1 01 0 1 0

NOT I X

      
      

                            
       

     

| 00 | 01 ;

| 01 | 00 ;

|10 |11 ;

|11 |10

I X

I X

I X

I X

  

  

  

  

67

Multi Qubit Gates (continued)

13) Qubit Superdense Coding
Superdense coding takes a quantum state to two classical bits. It is a method for building shared quantum entanglement in
order to increase the rate at which information may be sent through a noiseless quantum channel. Sending a
single qubit noiselessly between sender and receiver gives maximum communication rate of one bit per qubit. If the sender's
qubit is maximally entangled with a qubit in the receiver's possession, then dense coding increases the maximum rate to two bits
per qubit.

H|

| 

HZ

Sender
Encode BitsBell States

Prepared
Receiver Decodes

BitsSend

Arbitrary Distance

68

Multi Qubit Gates (continued)

14) Qubit Error Correction Circuit Errors in qubit superposition and entanglement occur due to

increase in thermal motion of qubits as a result of environmental

temperature increase. Qubit encoding errors are also possible.

Reasons for single qubit errors:

1) Qubit Flip X:

2) Qubit Phase Flip Z:

3) Qubit Complete Decoherence ρ:

4) Qubit Rotation Rθ:

5) Basis states: {|0>, |1>}

QEC

| 0 | 0 ; |1 | 0X X 

| 0 | 0 ; |1 |1Z Z  

| 0 | 0 ; |1 |1iR R e 

  

 †

†
where O is 2x2 matrix

1
;

2

; i i

Z Z

O O

  

 

 



M1

M2

| 001 |110  | 000 |111 

| 0

| 0

1) Qubit-Flip (Amplitude Flip)

Error Syndrome

M1 M2 Action

0 0 No action |111>→|111>

0 1 Flip qubit 3; |110>→|111>

1 0 Flip qubit 2; |101>→|111>

1 1 Flip qubit 1; |011>→|111>

1|
2|

3| 4| 5|

 

1

2

3

4

1 2

| | 001 |110 ;

| | 00100 |11000 ;

| | 00101 |11001 ;

| | 001 |110 | 0 |1 ;

M and M read 01 on lines 4 and 5. Feed 01

(error syndrome) into the QEC which performs

operations in the table below.

App

  

  

  

  

 

 

 

  

5

ly qubit flip to line 3:

| | 000 |111   

69

15) Qubit Error Correction Circuit

Multi Qubit Gates (continued)

QEC

M1

M2

| 001 |110  | 000 |111 

| 0

| 0

2) Qubit-Phase Flip

Error Syndrome1| 2|

H

H

H

• Same circuit as the amplitude flip circuit, except the Hadamard gates are added to the

first three lines. Repetition code in the Hadamard gates correct for phase errors.

• Errors happen between the encoding and the circuit

• Suppose the input state is: and phase flip occurs in line 2:

note that is the same as in the qubit-flip (amplitude flip)

• Since the rest of the circuit is the same as the qubit-flip case. The output of QEC is:

1| | |         

 2| | 001 |110 | 00 ;   

| 000 |111 

Theorem: If a quantum error correcting code (QECC) corrects error A and B, then it also
corrects errors 𝜶A +𝜷B

70

16) Qubit Error Correction Circuit

Multi Qubit Gates (continued)

3) Qubit-Decoherence

| 0 | 0 |1 |1 , . .,

| | 0 |1 | 0 |1 ;

| 0 |1
. ., | ;

2

1 1 11 1

1 12 2 1

i

i

i

i

and e i e

e

i e

e

e









    






 

   




  
    

   

Decoherence is the loss of coherence in

a quantum system due to interactions

with external environment.

    

†

0

2

2

Density Operator for state :

Time dependent Density Operator:

 (U is Unitary matrix

|

| |;

()) ;

| | | | | | | | | ;

() 1

tt U U

Tr





  



           







   



Decoherence in qubit system can be modeled by introducing a
relative phase:

| 0 |1 |1 | 0 | 0 |1 |1 | 0
| 0 ;|1

2 2
L L

i i 


A global phase multiplies all superpositions, whereas a relative phase multiplies only a single term in the superposition and
does not change measurements. We map, instead to a decoherent free subspace using logical gates in order avoid problems
with physical global and relative phases:

| 0 |1 |1 | 0
| 0 | 0 ;

2

| 0 |1 |1 | 0
|1 |1 ;

2

i i

i

L L

i i

i

L L

e ie
e

e ie
e

 



 




 




Introduce collective dephasing:

| | 0 |1 | 0 |1 |i i i

L L L L L Le e e           

Each logical qubit has ben altered by an overall global phase
and an arbitrary logical qubit is unchanged by decoherence. Hence
error correction has been applied:

eiθ

71

17) Qubit Error Correction Circuit

Multi Qubit Gates (continued)

3) Qubit-Continuous rotational error

| cos | sin |
2 2

cos | sin | |
2 2

j j

j j

R i Z

I i Z Z



 
  

 
 

 

 

Error Syndrome

Rθ acts on the jth qubit

Measuring the error syndrome collapses the state:

Probability:
2

2

cos : | ()
2

sin : | ()
2

j j

no correction needed

Z Corrected with Z







Error syndrome is formed by measuring

enough operators to determine the

location error

72

Pauli Group Stabilizers

9-Qubit Error Syndrome Code

Operators for Error Syndrome

M1 Z Z

M2 Z Z

M3 Z Z

M4 Z Z

M5 Z Z

M6 Z Z

M7 X X X X X X

M8 X X X X X X

72

These generate a group, the stabilizer of the code with all M Pauli

operators with property: M = and all encoded sates ۄ|𝜓 𝜓|ۄ𝜓|ۄ

73

QASM2CIRC - MIT

Simple Quantum Teleportation Circuit

73

% Time 01:

% Gate 00 h(q1)

% Time 02:

% Gate 01 cnot(q1,q2)

% Time 03:

% Gate 02 cnot(q0,q1)

% Time 04:

% Gate 03 h(q0)

% Gate 04 nop(q1)

% Time 05:

% Gate 05 measure(q0)

% Gate 06 measure(q1)

% Time 06:

% Gate 07 c-x(q1,q2)

% Time 07:

% Gate 08 c-z(q0,q2)

% Qubit circuit matrix:

%

% q0: n , n , gCA, gDA, gEA, N , gGA, N

% q1: gAB, gBB, gCB, gDB, gEB, gFB, N , N

% q2: n , gBC, n , n , n , gFC, gGC, n

\documentclass[11pt]{article}

\input{xyqcirc.tex}

% definitions for the circuit elements

\def\gAB{\op{H}\w\A{gAB}}

\def\gBB{\b\w\A{gBB}}

\def\gBC{\o\w\A{gBC}}

\def\gCA{\b\w\A{gCA}}

\def\gCB{\o\w\A{gCB}}

\def\gDA{\op{H}\w\A{gDA}}

\def\gDB{*-{}\w\A{gDB}}

\def\gEA{\meter\w\A{gEA}}

\def\gEB{\meter\w\A{gEB}}

\def\gFB{\b\W\A{gFB}}

\def\gFC{\op{X}\w\A{gFC}}

\def\gGA{\b\W\A{gGA}}

\def\gGC{\op{Z}\w\A{gGC}}

% definitions for bit labels and initial

states

\def\bA{ \q{q_{0}}}

\def\bB{ \q{q_{1}}}

\def\bC{ \q{q_{2}}}

% The quantum circuit as an xymatrix

\xymatrix@R=5pt@C=10pt{

\bA & \n &\n &\gCA &\gDA &\gEA

&\N &\gGA &\N

\\ \bB & \gAB &\gBB &\gCB &\gDB

&\gEB &\gFB &\N &\N

\\ \bC & \n &\gBC &\n &\n &\n

&\gFC &\gGC &\n

%

% Vertical lines and other post-

xymatrix latex

%

\ar@{-}"gBC";"gBB"

\ar@{-}"gCB";"gCA"

\ar@{=}"gFC";"gFB"

\ar@{=}"gGC";"gGA"

}

\end{document}

https://www.media.mit.edu/quanta/qasm2circ/

https://www.media.mit.edu/quanta/qasm2circ/

CodeProject Quantum Java Code

74

/**
* Constructs a new <code>Qubit</code> object.
* @param no0 complex number
* @param no1 complex number
*
*/
public Qubit(ComplexNumber no0, ComplexNumber no1) {
qubitVector = new ComplexNumber[2];
qubitVector[0] = no0;
qubitVector[1] = no1;
}

/**
* Constructs a new <code>Qubit</code> object.
* @param qubitVector an array of 2 complex numbers
*/
public Qubit(ComplexNumber[] qubitVector) {
this.qubitVector=Arrays.copyOf(qubitVector, qubitVector.length);
}

/**
* Return the qubit represented as an array of 2 complex numbers.
* @return qubit
*/
public ComplexNumber[] getQubit() {
ComplexNumber[] copyOfQubitVector = qubitVector;

return copyOfQubitVector;
}

/**
* Check if qubit state is valid
* @return true if the state is valid, otherwise false
*/

public boolean isValid(){
double sum=0.0;
for(ComplexNumber c:this.qubitVector){
double mod=ComplexMath.mod(c);
sum+=mod*mod;
}
return (sum==1.0);
}

public class QubitZero extends Qubit {
// Construct a new <code> QubitZero</code> object.
public QubitZero() {
super(new ComplexNumber(1.0, 0.0), new ComplexNumber(0.0, 0.0));
}
}
/**
* Currently Implemented Quantum Gates.

*/
public enum EGateTypes {
// Hadamard Gate
E_HadamardGate,
// Pauli-X Gate
E_XGate,
// Pauli-Z Gate
E_ZGate,
// CNOT Gate
E_CNotGate
}

75

QISKit SDK – Quantum Python Code Example

75

Import the QISKit SDK

from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister

from qiskit import available_backends, execute

Create a Quantum Register with 2 qubits.

q = QuantumRegister(2)

Create a Classical Register with 2 bits.

c = ClassicalRegister(2)

Create a Quantum Circuit

qc = QuantumCircuit(q, c)

Add a H gate on qubit 0, putting this qubit in superposition.

qc.h(q[0])

Add a CX (CNOT) gate on control qubit 0 and target qubit 1, putting

the qubits in a Bell state.

qc.cx(q[0], q[1])

Add a Measure gate to see the state.

qc.measure(q, c)

See a list of available local simulators

print("Local backends: ", available_backends({'local': True}))

Compile and run the Quantum circuit on a simulator backend

job_sim = execute(qc, "local_qasm_simulator")

sim_result = job_sim.result()

Show the results

print("simulation: ", sim_result)

print(sim_result.get_counts(qc))

https://qiskit.org/documentation/quickstart.html

https://qiskit.org/documentation/quickstart.html

76

QUACK Simulator In MATLAB/OCTAVE

76 http://www.peterrohde.org/media/software/

Octave

Matlab
>> quack
Welcome to Quack! version pi/4 for MATLAB
by Peter Rohde
Centre for Quantum Computer Technology, Brisbane, Australia
http://www.physics.uq.edu.au/people/rohde/
>> init_state(2)
>> print_hist
{

[1,1] = |0>-
[2,1] = |0>-

}
>> prepare_one(1)
>> print_hist
{

[1,1] = |1>-
[2,1] = |0>-

}
>> Z_measure(1)
ans = -1
>> Z_measure(2)
ans = 1
>> print_hist
{

[1,1] = |1>-<Z|-----
[2,1] = |0>-----<Z|-

}
>> cnot(1,2)
>> print_hist
{

[1,1] = |1>-<Z|-----o-
[2,1] = |0>-----<Z|-X-

}
>> H(2)
>> print_hist
{

[1,1] = |1>-<Z|-----o---
[2,1] = |0>-----<Z|-X-H-

}
>> T(1)
>> print_hist
{

[1,1] = |1>-<Z|-----o---T-
[2,1] = |0>-----<Z|-X-H---

}
>> Z_measure(2)
ans = 1
>>

Initialize 2-qubit register to ground
state

Initialize states to |1> and |0>

Measure spins of |1> and |0>
along the z-axis (-1 => spin down)

Note the entry points in the circuit
are shown on the right side

Apply CNOT with first qubit as
control

Now apply Hadamard on second
qubit

Apply phase shift T gate to first
qubit

Measure spin of second qubit along
the z-axis

http://www.peterrohde.org/media/software/

77

5 Qubit Tofolli Gate and QISKIT Programming

77

from qiskit import QuantumRegister, QuantumCircuit

n = 5 # must be >= 2

ctrl = QuantumRegister(n, 'ctrl')

anc = QuantumRegister(n-1, 'anc')

tgt = QuantumRegister(1, 'tgt')

circ = QuantumCircuit(ctrl, anc, tgt)

compute

circ.ccx(ctrl[0], ctrl[1], anc[0])

for i in range(2, n):

circ.ccx(ctrl[i], anc[i-2], anc[i-1])

copy

circ.cx(anc[n-2], tgt[0])

uncompute

for i in range(n-1, 1, -1):

circ.ccx(ctrl[i], anc[i-2], anc[i-1])

circ.ccx(ctrl[0], ctrl[1], anc[0])

from qiskit.tools.visualization import circuit_drawer

circuit_drawer(circ)

https://qiskit.org/documentation/qiskit.html

https://qiskit.org/documentation/qiskit.html

78

JQuantum Java Quantum Simulator

78
http://jquantum.sourceforge.net/

http://jquantum.sourceforge.net/

Quantum Algorithms

• Quantum algorithms are realized by
quantum circuits

– Complexity optimization

• Turing machine complexity definitions
– P is the set of problems that can be solved by

deterministic Turing machines in Polynomial
number of steps

– NP is the set of problems that can be solved by
Nondeterministic Turing machines in Polynomial
number of steps

– coP is the set of problems whose complements can
be solved by deterministic Turing machine in
Polynomial number of steps

– coNP is the set of problems whose complements
can be solved by a Nondeterministic Turing
machine in Polynomial number of steps

– PSPACE is the set of problems that can be solved
by deterministic Turing machine using a Polynomial
number of SPACEs on the tape

;

• Probabilistic Turing machine (PTM)
complexity definitions

– BPP is the set of problems that can be solved by
Probabilistic Turing machines in Polynomial time
with some errors possible

– RP is the set of problems that can be solved by
Probabilistic Turing machines in Polynomial time with
false negatives possible

– coRP replaces “false negatives” with “false positives” in
RP definition

– ZPP replaces “some errors possible” with “zero error”
in BPP definition

• Quantum Turing machine (QTM) complexity
definitions
– BQP, ZQP,

– Is a set of problems that can be solved by QTM in
Polynomial time with Bounded error on both sides

– EQP

• Replaces Bounded error with “Exactly (without error)” in
definition of QTM

– QSPACE

79

; ? ()P NP P NP not proven yet 

P coP coNP 

NP PSPACE

coNP PSPACE

Turing Machine “String-101” Execution Time

Exact Probable

Deterministic N +N/2 NA

Probabilistic N +N/2 N/2

Quantum N/2 NA

2(()) ((()))QSPACE f n SPACE f n

Quantum Computing Algorithms

• Quantum Turing Machine (QTM)

– Is well formed if the constructed UM

preserves isometric inner product in

complex space

• QTM is similar to the probabilistic

Turning machine (PTM), except that

the probability amplitudes are

complex number amplitudes

• Probabilistic TM (PTM) traverses the

tape left to right; QTM traverses in

both directions simultaneously

• QTM performs all operations

simultaneously and enters a

superposition of all the resulting

states

• When QTM is measured, it collapses

into a single complex number

configuration (state) and behaves like

the PTM upon observation

80

Confign

Confign+1

Confign+2

Confign+3

Confign+m

ck

c3

c1

c2

()

()

In "m" time steps the initial configuration will be in a

configuration of "superposition(s) of configuration(s)":

... | |t m

M M M n M n

t m times

U U U config U config

Quantum Turing Complexity details in Backup Slides

Quantum Algorithms (continued)

• Quantum Fourier Transform (QFT) (Unitary Operator and Reversible)
– n-qubit QFT

• Input State:

• Output State:

– 3-qubit QFT

– Apply H gate to state

– Apply S gate with control bit for state either

– State of System at this point:

– Apply T gate with control bit for state :

– goes through the H gate and Controlled S-gate:

– State of System at this point:

– Finally Hadamard gate applied to :
81

2 1

0

| |
n

x

x

x 





2 /22 1 2 1

0 0

| ' | |
2

nixyn n
x

QFT
n

x y

e
U y


 

 

 

  

H

H

H

S T

S

2| x

1| x

0| x

2 2

0 2
2

2 /2

2

2
22

1 1
| (1) | |

2 2

1
| 0 |1

2

x y ix y

y y

x x
i

H x y e y

e




 

 
 

  

 

 

0 1 2
3 2

2
22 2

1 1

1
| | | 0 |1

2

x x x
i

I S x x e

 

  
     

12
4| 0 or |1 ; |1 : |1 |1
x

i

For S e




1| x

0 1 2
3 2

2
22 2

0 1

1
| | | 0 |1

2

x x x
i

x x e

 

  
   0| x

0 1
2

2
22

1

1
| | 0 |1

2

x x
i

x e

 

 
  

0 01 1 2
2 3 2

2 2
2 22 2 2

0

1 1
| | 0 |1 | 0 |1

2 2

x xx x x
i i

x e e
 
   

     
        

1| x

02
2

0

1
| | 0 |1

2

x
i

x e

 
 
  

0 0 01 1 2
2 3 2

2 2 2
2 2 22 2 21 1 1

| 0 |1 | 0 |1 | 0 |1
2 2 2

x x xx x x
i i i

e e e
  
     

       
          

Final System State

2| x

0| x

82

Quantum Computing Algorithms (continued)

• Basic framework for all QC algorithms

– Start with qubits in a particular classical state

– The system is put into a superposition of many states

– Unitary operations act on this superposition

– Measurement of qubits in final states

• Definitions

– Discrete Logarithm Problem: Given a prime number p, a base , and an arbitrary
element , find an such that

– Hidden Subgroup Problem: G is a group. Let H < G be a subgroup implicitly defined by
a function of f on G is constant and distinct on every co-set o H. The problem is to find a
set of generators for H

– Abelian Group (abstract algebra): Is a commutative group (generalize arithmetic
addition of integers), is a group in which the result of applying the group operation to two
group elements does not depend on the order in which they are written, i.e., these are the
groups that obey the axiom of commutativity; named after early 19th century
mathematician Niels Henrik Abel (ref. 21)

– Abelian Hidden Subgroup Problem: G is a finite Abelian group with cyclic
decomposition . Let H < G be a subgroup implicitly defined by a function
of f on G is constant and distinct on every co-set o H. The problem is to find a set of
generators for H

– Pell’s Equation Problem: Find an integral and positive solutions to
82

*

pb Z
*

py Z *

px Z modxb y p

0
...

Ln nG Z Z  

2 2 1x dy 

Quantum Algorithms (continued)

• Grover’s search algorithm (class of

algorithms called amplitude amplification)
– Finds an element in an unordered set

quadratically faster O(N1/2) time than any

theoretical limit for classical algorithms O(N/2)

– Internal calls to an oracle “O” for value of function

(i.e., membership is true for an instance)

83

Grover’s Diffusion Operator

O = G
nH  nH 2 | 0 0 | I

n

n

G

H

nH 

G …

…

Grover’s Circuit / Algorithm

Start: Initialize the n-qubit states to

Identify: Element requested (ensure it is available)
• Apply Hadamard transform to n-quits and

initialize superposition
• for O(√N) times do

• Apply the Grover operator G
• end for

Measure the system

| 0
n

| 0
nnH



N entries with n = log(N) bits

Apply Hadamard transform on to produce equal
superposition state

Apply the Grover diffusion operator

2 Hadamard operations require n operations each

The conditional phase shift is a controlled unitary operation
and require O(n) gates

The Oracle complexity is application dependent, in this
algorithm it requires only one call per iteration

Apply measurement

| 0
n

1

0

1
| |

n

x

x
n






 

1 Apply a call to Oracle O
2 Apply the Hadamard transform
3 Apply a phase shift (excluding):
4 Apply Hadamard transform

| 0

 2 | 0 0 | 2 | |n nH I H I    

nH 

0| () |xx x


 
nH 

| 0

|1

Uf

| x

| q
()q f x

n

Oracle

√N

Quantum Algorithms (continued)

• Quantum Fourier Transform (QFT) (Unitary Operator and Reversible)
n-qubit QFT
• Input State:

• Output State:

84

2 1

0

| |
n

x

x

x 





2 /22 1 2 1

0 0

| ' | |
2

nixyn n
x

QFT
n

x y

e
U y


 

 

 

  

H

H

H

S T

S

2| x

1| x

0| x

2-Qubit & 3-Qubit treatment in Backup Slides

2 2 1

2 4 2(2 1)

3 6 3(2 1)

2 1 2(2 1) (2 1)(2 1)

1 1 1 ... 1

1 ...

1 ...1

12

1 ...

n

n

n

n n n n

n

  

  

  

  







   

 
 
 
 
 
 
 
 
  
 

UQFT

1 5 9

0 3 96

…

…

M-3M-6

M-3M-7

Period 3

Period 4

QFT period superpositions

2(log)O n execution time

4

i

e


 

85

Quantum Algorithms (continued)

• 2 Qubit QFT matrix form

– QFT full matrix form:

85

2 3

4 4 4

2 4 6

4 4 4

3 6 9

4 4 4

3

4

6

4

9

4

1 1
| | 00 |11 ;

2 2

11 1 1 1

2
1 01

| ' |
04 1
1

1 2

1 1
0 0

2 2

1 1
0 0

2 21

1 14
0 0

2 2

1 1
0 0

2 2

i i i

i i iQFT

i i i

i

i

i

e e e
U

e e e

e e e

e

e

e

  

  

  









 

 

  
  
  
  

    
  
  

  
  

 
   

 
 

   
  
 

   
 
 

   
 

1 1
0 0

2 2

1 1
0 0

1 2 2

14
0 0

2 2

1 1
0 0

2 2

2

8

2 1

2 2 1 1 2 14
| 00 | 01 |10 |11 .

1 4 48 8

8

2 1

4

i

i

i

i

i i i

i

i

 
   

 
  

   
 

 
   

 
 

   
 

 
 
 
  
 

    
     

 
 
 
  
 
 

Quantum Algorithms (continued)

• Shor’s algorithm

– Is a factoring algorithm

• It can be used to break encryption

codes

– Computation execution time is O(n2log n

log log n) number of polynomial steps; n

bits to represent number N

– Classically it is O(ecn1/3 log2/3n)

exponential steps

| 0

| 0

,a NfU
QFTUmH 

m

m

0| 1|
2| 3| 4|

 

 
 

 

 
   

 0

0,1

0 1

,0,1 0,1

2

2

1
00

3

0

| ,0
| | 0 ,0 ; | ;

2

:

| , () ,
| ;

2 2

, ,
| ;

2 2

m

m m

m

x

nx

m n
m

x

a Nx x

m m

x x
r

a a Mod N j

m m

t x

x

Evaluation of f on all possibilities

x f x x a Mod N

x a Mod N t jr a Mod N

r r

where t is the first time a a Mod N is m

 







 


 

 

 


 

   
   
   





 

 

easured

Algorithm Steps
1. Input a positive integer N with n=log2N
2. Use a polynomial algorithm to determine if N is a

prime or a power of prime. If it is prime, declare
and exit. If it is power of prime, declare and exit

3. Randomly select an integer a: 1<a<N. Perform
Euclid’s algorithm to find GCD(a,N). If GCD is not
1, then return value and exit

4. Use the quantum circuit to find the period r
5. If r is odd, or if ar/2≡ -1 Mod N return to Step 3

and choose another a
6. Use Euclid’s algorithm to calculate the GCD(ar/2

7. + 1,N) and GCD(ar/2 - 1,N). Return at least one
non trivial solution

8. Output a factor p of N if it exists

87

Quantum Adiabatic Computing

• Uses adiabatic processes for QC in the

following steps:

– Create an initial state of qubits

– Start with an initial Hamiltonian and very it very

slowly (adiabatically)

• Hinitial transforms into Hfinal whose eigenstates

encode the solution

– The Hamiltonian ground state is created

• Consists of Pauli Operators

– The final Hamiltonian

– If the T is the total time of computation, we can

interpolate the Hamiltonian solution at any time “t”.

Let s=1/T with 0≤s≤1:

87

Adiabatic Process

;

Pr :
2

1

2

Hamiltonian Critical initial final
slowly

t t H H

h
Uncertainity inciple E t

h
t

E



  

  


j

initial

j

H X 

| |final x

x

H c x x 

ˆ (1) initial finalH s H sH  

Topological Quantum Computing (QC)

• Anyons (named by Frank Wilczek 1982 – ref. 19)

– Obey exotic statistics including Fermi-Dirac statistics for
fermions (Leptons, Quarks)

– Bose-Einstein statistics for bosons (Gauge, Higgs)

– They cannot occupy the same space

– Have arbitrary phase factors

– Follow non-trivial unitary evolutions when particles are
exchanged

– Transformation of the anionic wave function obey
exchange symmetry

– Hence the name “Any” + “ons”

• Kitaev (2003 – ref. 20) demonstrate that anyons
could be used to perform fault tolerant
computation

88

Anyonic QC

QC Anyonic Operations

Initialize state Create and arrange anyons

QC gates Braid anyons

State
measurement

Detect anionic charge

1 e1 e3e2 e5e4 e6

a a a a a a

• One configuration of topological fault tolerant

quantum computation

• During initialization a pair of anyons are created

from vacuum (i.e., electron-positron pair)

• Braided operations unitarily evolve to their fusion

state

• Fusing the anyons together give a set of

measurement outcomes ei; i=1,… which encodes

the results of the computation

,a a

,e e 

Laboratory Systems: Electron gas in high magnetic field is sandwiched between thin
semiconductor layers of aluminum gallium arsenide

Anyons

World Lines

89

Cluster State Quantum Computing (CSQC)

Represent CSQC as Graphs

• CSQC is a multipartite qubit (highly entangled) modeling

scheme. It simulates unitary dynamics in crystal lattices.

Within this model, the cluster states are a series of

measured points in the computation; the result is used to

select a new basis for the next measurement, thus

forming a feedback loop

– CSQC is represented a graph (each node/vertex of the graph is a

qubit; the edges of the graph are the CZ gates

– It is a two-step process: 1) initialize a set of qubits in some state, for

example start with |+> then apply the CPHASE gates to the states

– Measure the qubits in some basis states. As the next measurement

is taken the choice of the new basis depends/determined by the

previous measurement results

– Effect of CZ application:

– This operation gives an entangled 2-Qubit State represented by:89

4-qubit cluster state

Edges are c-phase gates

Vertices are qubits

qubit

c-phase

gate

(

) :

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

CZ controlled Z gate

is controlled phase operation

CZ

 
 
 
 
 

 

Phase shift is applied to the target

qubit with control qubit in state |1>:

CZ|11>= -|11>

 

 

Example: intial state:

where

Chose a basis state:

| | | | | ,

1

2

| 0 |1 | 0 |11

2 2 2

| | () () ()

1
| 00 | 01 |10 |11

2

C
product CZ

CZ I I Z I I Z Z Z

A

CZ A Z I A I Z A Z Z A

        

       

     
    

    

         

      

 

2

..

2

2 2

2

2

ˆ ();
2

where is intensity of potential well, ;

Schr odinger equation:

2
() 0;

Wave function solution is:

1 1
() ; ;

Probability Distribution Function:

() 1 ;

Particles

y

L

y

L

h d
H y

m dy

y x p

d m
E y

dy h

h
y e L

mL

F y e






 


 





  

 

  

  

 

position is given by:

1
ln ;

2

where u is random number uniformly distributed

on (0,1); (0,1)

L
x p

u

u U

 
   

 

Quantum Particle Swarm Optimization (QPSO)

• QPSO Algorithm

– Uses the one of many potential functions
for determination of particle position using
the Schrödinger equation with Hamiltonian
Ĥ (here the simple case of delta potential
well is used)

– Uses the mean best position “x” of particle
to enhance the global search capability for
particle position

– Unlike the classical PSO algorithm the
QPSO does not require the velocity vectors
of particle and fewer parameters to adjust.
It is simpler to implement

– Choosing QPSO parameters swarm size,
problem dimension, the number of
maximum iteration, and the most important
parameter “α” the contraction-expansion
coefficient (CE) describes the dynamical
behavior of individual particles and the
algorithm converges (for α≤α0

– i.e.,

• qpso\qpso.bat finds the mean best
fit to particle position “x”

90

V(x)

x

x-p

 

δ potential well

 1.7,1.8)

0 1.781; is optimized for behavior particle

0.577215665 is called the Euler constant

e



 

 

From: Jun Sun, Choi-Hong Lai, Xiao-Jun Wu, “Particle Swarm Optimisation-Classical and Quantum
Perspective”, Chapman & Hall/CRC Press, 2012

QPSO (continued)

• Variants of QPSO have been

utilized

– Cooperative QPSO (CQPSO); Gao et.

Al [2007] , Sun et al. [2008]

– Diversity-controlled QPSO (DCQPSO);

Riget et al. [2002], Ursem et al. [2001],

Sun et al. [2006]

– Local-attractor QPSO (LAQPSO); Shao

et al. [2016]

– QPSO Tournament-selector (QPSO-

TS); P. Angeline [1998]

– QPSO-Roulette-Wheel selection

(QPSO-RS); Long et al. [2009]

– QPSO with Hybrid Distribution (QPSO-

HD); Sun et al. [2006]

– QPSO with Mutation; Liu et al. [2006],

Fang et al. [2009]

• H. Gao et al., A cooperative approach to quantum-behaved particle swarm optimization,

In Proceedings of the 2007 IEEE International Symposium on Intelligent Signal

Processing, Madrid, Spain, 2007, pp. 1–6

• S. Lu, C. Sun, Quantum-behaved particle swarm optimization with cooperative-

competitive coevolutionary, In Proceedings of the 2008 International Symposium on

Knowledge Acquisition and Modeling, Wuhan, China, 2008, pp. 593–597. 32

• S. Lu, C. Sun, Coevolutionary quantum-behaved particle swarm optimization with hybrid

cooperative search, In Proceedings of the 2008 Pacific-Asia Workshop on Computational

Intelligence and Industrial Application, Washington, DC, 2008, pp. 109–113

• J. Sun, W. Xu, W. Fang. Quantum-behaved particle swarm optimization with a hybrid

probability distribution, In Proceedings of the Ninth Pacific Rim International Conference

on Artificial Intelligence, Guilin, China, 2006, pp. 737–746.

• Shao D., Hu S., Fei Y., A new quantum particle swarm optimization algorithm, Neural

Network World 5/2016, 477–496

• J. Liu, J. Sun, W. Xu. Quantum-behaved particle swarm optimization with adaptive

mutation operator, In Proceedings of the 2006 International Conference on Natural

Computing, Hainan, China, 2006, pp. 959–967.

• W. Fang, J. Sun, W. Xu. Analysis of mutation operators on quantum-behaved particle

swarm optimization algorithm, New Mathematics and Natural Computation, 2009, 5(2):

487–496

• H. Long, J. Sun, X. Wang, C. Lai, W. Xu. Using selection to improve quantum behaved

particle swarm optimization, International Journal of Innovative Computing and

Applications, 2009, 2(2): 100–114.

• P.J. Angeline, Using selection to improve particle swarm optimization, In Proceedings of

the 1998 IEEE International Conference on Evolutionary Computation, Anchorage, AK,

1998, pp. 84–89.

• J. Riget, J. Vesterstroem. A diversity-guided particle swarm optimizer—The ARPSO:

Department of Computer Science, University of Aarhus, Aarhus, Denment, 2002

• R.K. Ursem. Diversity-guided evolutionary algorithms, In Proceedings of the 2011 Parallel

Problem Solving from Nature Conference, Paris, France, 2001, pp. 462–471

• J. Sun, W. Xu, W. Fang, Quantum-behaved particle swarm optimization algorithm with

controlled diversity, In Proceedings of the 2006 International Conference on

Computational Science, Reading, MA, 2006, pp. 847–854.

• J. Sun, W. Xu, W. Fang, Enhancing global search ability of quantum-behaved particle

swarm optimization by maintaining diversity of the swarm, In Proceedings of the 2006

International Conference on Rough Sets and Current Trends in Computing, Kobe, Japan,

2006, pp. 736–745.

91

QPSO (continued)

Applications

• Antenna Design: Determine infinitesimal dipoles
to represent an arbitrary antenna for near-field
distributions (ref. Mikki et al. [2006])

• Biomedicine: Coupling RFB neural networks to
the QPSO algorithm for the culture conditions of
hyaluronic acid production by Streptococcus
zooepidemicus (Lui et al. [2009]). Lu and Wang
[2008] employed QPSO to estimate parameters
from kinetic model of batch fermentation

• Mathematical Programming: Integer
programming (Liu et al. [2006]), constrained non-
linear programming (Liu et al. [2008]),
combinatorial optimization (Wang et al. [2008]),
layout optimization (Xiao et al. [2009]), and
multiobjective design optimization of laminated
composite components (Omkar et al. [2009])

• Communication Networks: NP-hard QoS
multicast routing (converted to integer
programming and solved by Sun et al. [2006]),
RBFNN network anomaly detection (hybrid QPSO
with gradient descent algorithm to train RBFNN by
Ma et al. [2008], Wavelet NN & conjugate gradient
algorithm for network anomaly detection (Ma et al.
[2007], WLS-SVM QPSO for anomaly detection
(Wu et al. [2008]), mobile IP routing (Zhao et al.
[2008]), and channel assignment (Yue et al [2009])

• S. Mikki et al., Infinitesimal dipole model for dielectric resonator

antennas using the QPSO algorithm, Proceedings of the 2006

IEEE Antennas and Propagation Society International

Symposium, Albuquerque, NM, 2006, pp. 3285-3288

• Lui et al., Culture conditions…neural network and quantum-

behaved particle swarm optimization algorithm, Enzyme and

Microbial Technology, 2009, 44(1), pp. 24-32

• K. Lu and R. Wang, Application of PSO and QPSO … glutamic

acid batch fermentation, In Proceedings of the Seventh World

Congress on Intelligent Control and Automation, Chongqinq,

China, 2008, pp. 8968-8971

• J. Liu et al., Quantum-behaved particle swarm optimization for

integer programming, In Proceedings of the 2006 International

Conference on Neural Information Processing, Hong Kong,

China, 2006, pp. 1042-1050

• H. Liu et al., A modified quantum-behaved particle swarm

optimization for constrained optimization, In Proceedings o the

2008 International Symposium on Intelligent Information

Technology Application Workshops, Shanghai, China, 2008, pp.

531-534

• J. Wang et al., Discrete quantum-behaved particle swarm

optimization of distribution for combinatorial optimization, In

Proceedings of the 2008 IEEE World Congress on

Computational Intelligence, Hong Kong, China, 2008, pp. 897-

904

• B. Xiao et al., Optimal planning of substation locating and sizing

based on improved QPSO algorithm, In Proceedings of the Asia-

Pacific, Power and Energy Engineering Conference, Shanghai,

China, 2009, pp. 1-5

92

QPSO (continued)

Applications

• Many other applications employing QPSO
algorithm in the following areas:

– Control Engineering

– Clustering & Classification

– Image Processing

• Image processing, image segmentation,
image registration, image interpolation,
and face recognition and registration

– Fuzzy Systems

– Finance

– Graphics

• Rectangular packing problem, polygonal
approximation curves, and irregular
polygon layouts

– Power Systems

– Modelling

• SVM, LS-SVM

• Transistor Devices

• Detection of unstable orbits in a non-
Lyapunov technique

– Filters

• Design of Finite Impulse Response (FIR)
and Infinite Impulse Response (IIR) filters

– Multiprocessor Scheduling

• S.N. Omkar et al., Quantum behaved particle swarm optimization (QPSO) for
multi-objective design optimization of composite structures, Expert Systems
with Applications, 2009, 36(8), pp. 11312-11322

• R. Ma et al., Network anomaly detection using RBF neural networks with
hybrid QPSO, In Proceedings of the IEEE International Conference on
Networking, Sensing and Control, Chicago, IL, 2008, pp, 1284-1287

• J. Sun et al., QoS multicast routing algorithm, In Proceedings of the 2006
International Conference on Simulated Evolution and Learning, Hefei, China,
2006, pp. 261-268

• D. Zhao et al., An approach to mobile IP routing based on QPSO algorithm. In
Proceedings of the Pacific-Asia Workshop on Computational Intelligence and
Industrial Application, Wuhan, China, 2008, pp. 667-671

• R. Ma et al., Hybrid QPSO based wavelet neural networks for network anomaly
detection, In Proceedings of the Second Workshop on Digital Media and its
Application in Museum and Heritages, Qingdao, China, 2007, pp 442-447

• R. Wu et al., An approach to WLS-SVM based on QPSO algorithm in anomaly
detection, In Proceedings of the 2008 World Congress on Intelligent Control
and Automation, Chongqing, China, 2008, pp. 4468-4472

• C. Yue et al., Channel assignment based on QPSO algorithm,
Communications Technology, 2009, 42(2), pp. 204-206

93 From: Jun Sun, Choi-Hong Lai, Xiao-Jun Wu, “Particle Swarm Optimisation-Classical and Quantum
Perspective”, Chapman & Hall/CRC Press, 2012

