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Motivation for PHM

e All engineered systems will eventually

e Maintenance is key to increase uptim

i
arrange for spare parts, reduce loss ¢
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and minimize maintenance costs
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e Types of Maintenance

o Reactive maintenance
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o  Scheduled maintenance »
o  Predictive maintenance, a.k.a. prc

management (PHM)

-

+| 3B

2 [

|



Motivation for this Tutorial

1. Share our experience using Cloud as a development environment

2. Invite PHM Society audience to see Cloud as a tool that is here to stay and key for all to know how to
use to remain relevant

3. Expand your engineering and scientific ambitions by seeing what is possible using cloud today and
what is coming in the future

4. Share an example of the many possibilities available to you to deploy a production ready system in a
cloud environment

5. Give you an idea of what a modern data analytics development environment looks like and relate to:

a. PHM data driven development
b. PHM physics modeling development
c. Hybrid use of data, physics, operational and other subject matter expert knowledge
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Some Things That We Will Not Cover

e Cloud cyber-security concerns the audience might have
o Not the intention of this talk but we can discuss offline
o Advising you on how to work with your company policies related data security for PHM
e Topics related to lloT/Edge in the cloud from the pure lloT side
o  Our demo works with IloT aspects but we will not cover here
o Thereis a world of new developments at industrial grade and lots of promise for PHM
e We care about science and engineering in PHM and all the information here is towards that
o  Cannot advise you on how to architect your company or individual solution in this tutorial (Software
Engineering side)
o  But we can certainly discuss offline or at our discretion if it enriches the tutorial experience
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Google Cloud Walkthrough

Sources of Information:
e  https://cloud.qgoogle.com/
e Console: https://console.cloud.google.com
e Docs: https://cloud.google.com/docs/
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Everything You Need To Build And Scale

Compute
From virtual machines with
proven price/performance

advantages to a fully managed
app development platform.

Compute Engine
App Engine
Contalner Engine
Container Registry
Cloud Functions

Big Data
@ Fully ged data housing,
batch and stream processing, data
exploration, Hadoop/Spark, and
reliable messaging.
BigQuery
Cloud Dataflow
Cloud Dataproc
Cloud Dataprep
Cloud Datalab
Cloud Pub/Sub
Genomics

Storage and Databases

Scalable, resilient, high
performance object storage and
datab for your applications.

Cloud Storage
Cloud Bigtable
Cloud Datastore
Cloud SQL
Cloud Spanner

Machine Learning

Fast, scalable, easy to use ML
services. Use our pre-trained models
or train custom models on your data.
Cloud Machine Leaming Platform
Vision API

Video Intelligence API

Speech API

Translate API

NLP API

Networking

State-of-the-art software-defined
networking products on Google's
private fiber network.

Cloud Virtual Network

Cloud Load Balancing

Cloud CON

Cloud Interconnect

Cloud DNS

Developer Tools

Develop and deploy your applications
using our command-line interface and
other developer tools.

Cloud SDK

Deployment Manager

Cloud Source Repositories

Cloud Endpoints

Cloud Tools for Android Studio

Cloud Tools for IntelliJ

Google Plugin for Eclipse

Cloud Test Lab

Cloud Container Builder

Management Tools

Monitoring, logging, and diagnostics
and more, all a easy to use web

manag or

il

app.
Stackdriver Overview

Monitoring

Logging

Error Reporting

Debugger

Deployment Manager & More

Identity & Security

Control access and visibility to
resources running on a platform
protected by Google's security model.
Cloud 1AM

Cloud |1AP

Cloud KMS

Cloud Resource Manager

Cloud Security Scanner

Cloud Platform Security Overview
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How to unlock the
value of data

o @ @ O

Rehost Fully Serverless Al and
existing managed data & machine
databases databases analytics learning

()
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Range of fully managed
databases

Cloud SQL Datastore Bigtable Spanner

Fully managed NoSQL document Wide-column Mission-critical
MySQL, database for mobile = database with relational database
PostgreSQL & web apps HBase API with transactional

consistency, global
scale, and high
availability

Coming soon with
Microsoft SQL

()
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A comprehensive platform

Ingestion Pipeline Warehousing Analytics

Cloud Pub/Sub

Q

Cloud loT
Core

()

o e o0 0 O =

Data Transfer Cloud Cloud BigQuery Cloud Cloud Al Google
Service Dataflow Dataproc Storage Services Data Studio
Q © B 2
Storage Transfer Cloud Dataprep Apache Tensorflow Sheets
Service Beam
Tools
Data Fusion Data Catalog Cloud Composer
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Google BigQuery

Google Cloud Platform'’s enterprise
data warehouse for analytics

Exabyte-scale storage and
petabyte-scale SQL queries

Encrypted, durable, and
highly available

()

Fully managed and serverless

Real-time analytics on streaming data

Built-in ML and GIS

High-speed, in-memory Bl Engine

Schiumberger &, S7iC
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Ready-to-deploy Al solutions to

Cloud Al Solutions plug into your existing technology
and workflows

.....................................................................................................

Tools, services, and APIs that make

Cloud Al Builder Tools it easy for developers to build
Al-enabled systems

()
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Cloud Al builder tools

Hgh «-— - Level of ML Expertise » Low
Al Platform API - Pre-trained models
[ 2 [ 2 & L 2
ML Cloud AutoML
Infrastructure
Al Hub

()
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Powered by
Open source

L2

TensorFlow
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Cloud TPUs

Hardware acceleration for Al

Cloud TPU v3
Now generally available (GA)

Cloud TPU v2 Pod
100 petaflops, now in early Alpha

Most Accessible Scale for ML
27X faster and 38% cheaper as
measured by MLPerf benchmark

Growing Software Ecosystem
PyTorch, TF 2.0, Kubernetes Engine,
Deep Learning VMs, reference models,
and more

()
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AutoML and APlIs

Making ML accessible to all developers

Sight Language Conversation
Cloud Translation Dla?lpgﬂow Enterprise
Edition

Cloud Video Cloud Natural @ Cloud Text-to-Speech

Language

e Cloud Vision

Intelligence

e AutoML Vision 9 AutoML Translation @ Cloud Speech-to-Text

AutoML Video AutoML Natural
Intelligence Language

()

Structured Data @

AutoML Tables .

@ Recommendation Al .
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What makes Google Cloud different

Best-in-class Security @ Protect systems,
data, and users

HYbrld & Multi-Cloud o Enables choice

Fully Managed No Ops @ Easeofuse

with serverless

Embedded Al & ML o Intelligence in

everything

o Bringing culture of innovation
to customers and partners

Best of Google

()
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Physics-Based PHM in the Cloud: An Example
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Facts About Our Tutorial

Our intention is NOT to give you code that you can copy and paste and the run your own cloud PHM
solution

Our intention is NOT to make you an expert on cloud development

Our intention is to start opening the eyes to this community, that cloud is real, it is here to stay and more
importantly is the not only the way of the future, it is the “now”.

- If you are student, this is what you want to learn

- If you are a mid-career person, and you want to expand your expertise, this is what you would like to
do

- Project manager - the same

Schiumberger &, STIC 20



Designing/Transitioning Custom PHM Applications in the Cloud

e Design the application as a collection of cloud services, or APIs
o  Expose underlying functions as services that can be leveraged independently
o  Combine services into composite services or applications
o  These services are “stateless”
o Read in and return information in JSON format
e Decouple the data from the application
o  Can store and process data on any public or private cloud instance
o  Helps with performance, as database reads/writes have latency
e Consider communications between application components
o  Optimize communications between application components as communication over internet introduces
latency
o E.g.,combine communications into a single stream of data or a group of messages, rather than constantly
communicating as if the application components reside on a single platform
e Model and design for performance and scaling
o Insome instances, cloud services provide auto scaling capabilities
o  Orchestration platforms such as Kubernetes can help with this as well
m  Automatic deployment, scaling, and management of containerized applications

Ref: https://techbeacon.com/enterprise-it/5-steps-building-cloud-ready-application-architecture
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PHM Basics

e PHM consists of 5 steps:

Diagnostics

Fault Degradation Remaining Useful

AT Do Isolation Quantification Life Prediction

Is something wrong What is wrong with my How bad is the How much time do | have to What can be done to
with my system? system? damage? do something about the fault ~ mitigate the effects of
before the system loses the fault?

functionality?

e Data-driven and physics-based approaches can be used to answer each of the 5 questions

Schiumberger & STIC 22



State-of-the-art in PHM (Notional)

RUL Prediction

Fault Isolation Degradation . : Decision Making
: P (e.g., simulation ;
Physics-based Anomaly Detection (e.g., filtering or Quantification et - (e.g., Partially
: it - open-loop filtering -
Approaches (e.g., Z-test) state-estimation + (e.g., filtering or onlv predict. no observable Markov
search) state-estimation) yp ' Decision Process)

update)

Data
Requirement

Algorithm
Complexity
Maturity
Anomaly Detection Fault Isolation Q?Ji%rt?‘r?g:t?gn RLE:; Pr?gt'ﬁ:aon Decision Making
Data-driven (e.g., single-class (e.g., multi-class (Elohieaicssion pré?j.i'ctions (e.g., Reinforcement
Approaches classifiers) classification) object detection) CNN) Learning)
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Case Study — A 3-Pump lloT Testbed

e The System
o 3 DC Motor Pumps
o 3 Flow meters

e Inputs:
o  Controlled Pump Speed for
each pump
e Outputs:

o  Flow rate out of each pump
e Faults:
o Loss of efficiency in each of
the three pumps
o  Faults are single and
persistent
e End-of-life condition
o When the output flow of any
pump dips below 0.15 units

24

Schiumberger &



Our Physics-Based PHM Architecture

{p(xs(k), 07 (F)ly(0:k)): f € F(k)}

Fault

"I TIsolation

Schiumberger

» System > Faulj[
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A Nominal Model | ¥ (k)
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|
|
|
|

Fault \

F(k) LA 4
> Identification ¥ Fiediston +
. PP I
o |
{p(EOLy (k)|y(0:k)): f € F(k)}
Faulty Model {p(RUL#(k)|y(0:k)): f € F(k)}
Observer
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Residual Generation for Fault Detection e Observer based on nominal model estimates
nominal behavior as a reference

o E.g., Kalman filter, particle filter

o  Uses state-space model of nominal system

o  Predict and update steps % :

Nominal System

ominalx, dt, params, inputs):
dt = dt * 1.15e-2
i1, wl, i2, w2, i3, w3
i, =, L, Jil, Bl, L2, =2 k2 2 2 3 3, k3, J3, B3 = params
Vs2, Vs3 = inputs
(1/L1) * (Vsl - R1 * il - k1l wl) * dt + i
(1/J1) * (k1 * i1 - Bl * wl) dt + wl

(1/L2) * (Vs y i < w2) * dt + i2
{p(xs(k), gf(k)‘yl(()k)) f e F(k)} 1/32) *
, 1
F(k : dw3 (1/J3) * (k3 * i3 - B3 * w3)
Fault Fault (k) Fault Y
H jr—r > . . > icti — . o o
System Detection Isolation Identification Prediction * return [dil, dwl, di2, dw2, di3, dw3]
A ¢ ’,' I
v ro_-T |
l L= {p(EOL;(k)|y(0:k)): f € F(k)}
. y Faulty Model RUL#(k)|y(0:k)): f € F(k
N Nominal Model y (k) Oby {p( r()ly(0:k)): f ()} _model nominalx, dt, params, inputs):
\ Observer Server

return [x[1], x[3], x[5]]
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Fault Detection and Symbol Generation e Residual = observed sensor value - estimated
sensor values
o Nominally residual is approximately zero
e Fault detected when residual deviation from zero
to statistically significant
e Usually there is a delay between fault occurrence

and fault detection
o . . . o o  This delay is typically not avoidable

Variance 1 i Mean
Estimation 1%~~~ """ Deley Bufer > Estimation
{p(xs(k), 05 (K)|y(0:k)): f € F(k)}
! Once fault detected, measurements = symbols
I
® ll | o 0 (at nominal), + (above nominal), - (below nominal)
N | | Fault | |- Fault | Fault A\ IR .
System = 1 iection [§7] Tsolation "] Identification Frediction *
(k) 1 ? /"/ i i r(‘t) Fault i r(‘t) Fault
[ S L= {p(EOL 1 (k)|y(0:)): f € F(k)} AT } I N j
N Nominal Model | ¥(F) Faulty Model {PRUL;(R)ly(0:k)): £ € F(k)} Threshold — T P = — t ""1- ------- t
Observer Observer v " P‘; . ‘;--.A_________. _____::w:__:_
Fault a Fault o=’
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flow (units)

Fault Detection and Symbol Generation — 3-Pump lloT Testbed

Pump 1 flow Pump 2 flow Pump 3 flow
0.40 - 1 0.40 - 0.40 -
Symbol: -0 measured Symbol: 00 measured Symbol: 00 measured
0.35 - estimated 035 - - estimated 0.35- estimated
0.30 - 0.30 - 0.30-
A C L - - SCPPTD -
0.25 - ,a-"v‘v‘-—-,"‘"-“"""‘"‘"\' s’ 025 (o Rania, = - 025
3 & .3 =
c 47 c
2 020- Pt 2 020-
z My z
S ]
= 015- € 01s5-
0.10 - 0.10-
0.05 - 0.05 -
At
. \ i | i 0.00 - " ) i \ 0.00 -~ ) ] | i . 1
100 150 200 250 300 350 400 450 0 150 200 250 300 350 400 450 0 50 100 150 200 250 300 350 400 450
time (s) time (s)

time (s)
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Fault Isolation - Matching Residual Symbols with Fault Signatures

{p(xs(k), 05 (k)ly(0:k)): f € F(k)}

(______

s Syst HEN - Fault z
ystem Tsolation i
l— y(k)
Nominal Model

Observer

Schiumberger
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y(0:k)): f € F(k)}

Fault signatures are qualitative predictions of how
residuals will change in response to a fault
o  SMEs can help generate fault signatures
o Information also captured in nominal
system model
o Can be generated using simulation

Fault \ Measurement Pump 1 Flow Pump 2 Flow Pump 3 Flow

Pump 1 Degrading -0 00 00

T unip £ woyraviny vy -V Y

F VS NS T nn nn n
L o o0

Pump 1 Flow Symbol: -0




Degradation Modeling and Fault Identification

{p(xs(k), 9f(k)\yl(0=k)) :f € F(k)}

| |
qu—
u(k) Fault Fault Fault L

System T prection Tsolation | Identification Frediction *

A ¢ _ I

y(k) -7 1
i = {p(EOL;(k)|y(0:k)): f € F(k)}
Nominal Model | ¥(k) Faulty Model {p(RUL;(k)|y(0:k)): f € F(k)}

M Observer Observer
\
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Unexpected change in system components
o Modeled as parameter changes
o E.g., dk1/dt =0, when nominal
= Ak1, otherwise
Faults assumed to be
o Single faults
o Incipient and persistent

Parameter
Value

Degraded System - Pump 1 Faulty

# t

trans ion mode 1 faulty

ion k1 faultx,

dt, params, inputs):

dt =dt * 1 15e=2

J2, B2, L3, R3, k3, J3,

inputs

(Vsl - R1 * i1 -k1 * wl) * dt + il

(k1 * il - B1 * wl) * dt + wl

s2 - R2 * i2 - k2 * w2) * dt + i2

dw2 * dt + w2

di3 Z 3 * 13 k3 * w3) * dt + i3

dw3 1/J33) ° k3 * i 33 * dt + w3

dkl = # @lie 4F

return [dil, dwl, di2, dw2, di3, dw3, dkl]

1 k1 faulfx, dt, params, inputs):

return



flow (units)

0.40 -

0.35 -

0.30 -

0.25 -

0.20 -

Degradation Modeling and Fault Identification — 3-Pump lloT Testhed

Pump 1 flow Pump 2 flow Pump 3 flow
0.40 - 0.40 -

seee measured
035 - —-= nom model est.
-~~~ faulty model est.

»=+-+ measured

—-- nom model est.
d 0.35-

-~ faulty model est.

0.30 - 0.30-

e Tt

LIS

\,

N,

)
flow (units)
flow (units)

o
i
S

60 80 100 120 140

0 20 40 60 80 100
time (s) time (s)

time (s)
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Remaining Useful Life Prediction - Some Basics

0 0 o [ ] 0
{p(xs(k), 05 (F)|y(0:K)): f € F(k)}
A ! )
I
F(k) i
u(k) N Fault Fault Fault .
System > Detection jr—> Isolation "| Identification Prediction *
- I
G v :
i = {p(EOL;(k)|y(0:k)):
Nominal Model | ¥(k) Faulty Model {p(RULy (k) |y(0:k)):,
> Observer Observer )
Schiumberger &,

€ F(k)}
€ F(k)}

We are specifically interested in predicting

failure states

o  EOL =end of life (time to failure)

o RUL =remaining useful life (time until failure)
Define a threshold function that partitions
state-space into non-failure and failure-states

o Tf: R™  _, ftrue, false}

o Thatis, T(x(k)) returns true when it is a failure

state, false otherwise

32



Remaining Useful Life Prediction

0 o o [ ] o
{p(xs(k), 05 (K)|y(0:k)): f € F(k)}
A ! )
I
u(k) Fault Fault (k) Fault j .

¥ Systom —# Detection —‘fl' Isolation "| Identification Prediction T

A - I

y(k) e J
l = {p(EOL;(k)|y(0:k)):
Nominal Model | (k) Faulty Model {p(RUL#(k)ly(0:k)):

> Observer

Observer
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Prediction involves simulating degraded system
model with hypothesized or known future inputs
Sample from the state and parameter and
simulate each sample forward till RUL criteria is
fulfilled

Initial conditions are very important

Weighted mean of EOLs give mean EOL

Algorithm 1 EOL Prediction

Inputs: {(x}(kp), 0% (kp)),w' (kp)}L,
Outputs: {EOLY (kp), w'(kp) o
fori =1to N do
/\"(— tp
X} (k) ¢+ x; (kp)
Bf( ) + Hf(A )
while Tgor (x (k) ,0%(k)) = 0do
Predict u(L) ‘
0% (k +17~ p(05(k +1)|0%(k
xif(k—f—') Xf(k+l)|xf( 0Z (k),a(k))
k+—k+1
xf(k) — xf(k +1)
0} (k) 0% (k + 1)
end while
EOL%(kp) + K
end for
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RUL Prediction — 3-Pump lloT Testbed

Pump 1 flow Pump 2 flow Pump 3 flow
0.40- 0.40- 0.40-
P = 160.0 s 2 P = 160.0 e P = 160.0 L
fred predicted gl ~~- predicted pd predicted
030- 030-
tP=160s 2 g™
3
EOL=162s : :
e Q
200 250 300 350 400 450 200 250 300 350 400 450 200 250 300 350 400 450
time (s) time (s) time (s)
0.40- : 0.40 - : 0.40- .
P =180.0 fizs i = 180.0 L P = 180.0 G
e predicted gl predicted Ak - predicted
0.30- 030- 030-
Alng b i
5 - AR .25 -
tP= 1803 0.25 zozs A s ,\.1':, :fozs
< c
- 0.20 - 2 020- 2 020-
EOL=537s : :
2 ]
RUL=357S 015 = 015- = 01s-
010- 010- 010-
005 - 005 - 0.05-
M
0.00 - g o , \ : 3 0.00 -4 g : 3 ! \ " ; " . \
0 50 100 150 200 250 300 350 400 450 o 50 100 150 200 250 300 350 400 450 100 150 200 250 300 350 400 450
time (s) time (s) time (s)
0.40- 0.40 - 0.40-
1 = 260.0 L0 tP = 260.0 el
e predicted e e - predicted
0.30- 0.30- 14 0.30-
tP=260s Aadi, 1n
025- _025- pu i e, A . 0.25-
2 Y et WS 3
EOL =545s = y 5
0.20- 2 0.20- " 3 0.20-
= 3 5
RUL=285s 3 H
= 015- =
010-
005 -
3 " 3 000 -4 3 ) ; 3 : d
100 150 200 250 300 350 400 450 0 200 250 100 150 200 250 300 350 400 450
time (s) time (s) time (s)
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RUL Prediction — 3-Pump lloT Testbed

tP=280s
EOL=492s
RUL=212s

tP=340s
EOL =458 s
RUL=118s

flow (units)

tP=380s
EOL=425s
RUL=45s
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Pump 1 flow

0.40-
1= 200/ IR I [ B G
e -~~~ predicted
030-
025-
B
0.00 -+ ; ! ‘ ) ) \
: 50 100 150 200 250 300 350 400 450
time (s)
1 = 340.0 Lot
e predicted
030-
025-
0 50 100 150 200 250 300 350 400 450
time (s)
1 = 380.0 G d el
fea predicted
030-

50

$

100

150

200 250
time (s)

300

350

400

450

flow (units)

flow (units)

flow (units)

Pump 2 flow
0.40 -
----- measured
——- predicted

tP = 280.0
035 -

030-

. Sl
0.25 - n, .’u,« ,k 1A

\.\_,‘,‘,‘{,.v W K
020- L

100 150 200 250 300 350 400 450
time (s)

measured
predicted

P = 340.0

035 -

030

- W A o
025 \./.uf.(n\)“l:,'w v

020 -

°

o 50 100 150 200 250 300 350 400 450
time (s)

measured
predicted

P = 380.0

035 -

030 -

025 -

°

o 50 100 150 200 250 300 350 400 450
time (s)

Pump 3 flow

0.40-
toa=2a0,0/ 0 B BEELCY
e -~ predicted
0.30-
. 025- S Wi
z Rt
= v
2
z
]
100 150 200 250 300 350 400 450
time (s)
t = 340.0 jman e
e - predicted
0.30-
A .
— 025- vk e
g S ale T Vuﬁ"‘u
c <
2 0.20-
z
]
= 015-
010-
0.05- f
i
F
0.00 o4 ) ! ) ! ; \
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RUL Prediction — 3-Pump lloT Testbed

tP=400s
EOL=451s
RUL=51s

Schiumberger

W (units)

Pump 1 flow
0.40- 040
= 400.0 e
035- predictad 035
0.30- 030-
025 025
g
Ao 5
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tP=4000 measured

——- predicted
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P = 400.0
o -~ predicted

‘\ .
4»-'\_«1_,";1‘-‘(!‘4

0.10-

50 100 150 200 250 300 350 400
time (s)

measured
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Wrapping Up...
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Closing Remarks

What is Cloud

Benefits of Cloud

How Cloud can help PHM

What is available in GCP

Custom algorithms in GCP

Example of a PHM Solution on the Cloud

Schiumberger & STIC
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PHM in the Cloud Status (Notional)

RUL Prediction

Fault Isolation Degradation . : Decision Making
: P (e.g., simulation ;
Physics-based Anomaly Detection (e.g., filtering or Quantification et - (e.g., Partially
: it - open-loop filtering -
Approaches (e.g., Z-test) state-estimation + (e.g., filtering or onlv predict. no observable Markov
search) state-estimation) yp ' Decision Process)

update)

Data
Requirement

Algorithm
Complexity
Maturity
Anomaly Detection Fault Isolation Q?Ji%rt?‘r?g:t?gn RLE:; Pr?gt'ﬁ:aon Decision Making
Data-driven (e.g., single-class (e.g., multi-class (Elohieaicssion pré?j.i'ctions (e.g., Reinforcement
Approaches classifiers) classification) object detection) CNN) Learning)
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